
Red Hat Fuse 7.0

Fuse on OpenShift Guide

Installing and developing with Red Hat Fuse on OpenShift

Last Updated: 2018-12-13

Red Hat Fuse 7.0 Fuse on OpenShift Guide

Installing and developing with Red Hat Fuse on OpenShift

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Guide to using Fuse on OpenShift

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. BEFORE YOU BEGIN
1.1. RELEASE NOTES
1.2. VERSION COMPATIBILITY AND SUPPORT
1.3. SUPPORT FOR WINDOWS O/S
1.4. COMPARISON: FUSE STANDALONE AND FUSE ON OPENSHIFT

CHAPTER 2. GET STARTED FOR ADMINISTRATORS
2.1. PREPARE THE OPENSHIFT SERVER

CHAPTER 3. GET STARTED FOR DEVELOPERS
3.1. PREREQUISITES

3.1.1. Access to an OpenShift Server
3.1.1.1. Install Container Development Kit (CDK) on Your Local Machine
3.1.1.2. Get Remote Access to an Existing OpenShift Server

3.1.2. Java Version
3.1.3. Install the Requisite Client-Side Tools

3.2. PREPARE YOUR DEVELOPMENT ENVIRONMENT
3.2.1. Configure Maven Repositories
3.2.2. (Optional) Install Developer Studio

3.3. CREATE AND DEPLOY A PROJECT USING THE S2I BINARY WORKFLOW
3.3.1. Undeploy and Redeploy the Project
3.3.2. Opening the HawtIO Console

3.4. CREATE AND DEPLOY A PROJECT USING THE S2I SOURCE WORKFLOW

CHAPTER 4. DEVELOP AN APPLICATION FOR THE SPRING BOOT IMAGE
4.1. OVERVIEW
4.2. CREATE A SPRING BOOT PROJECT USING MAVEN ARCHETYPE
4.3. STRUCTURE OF THE CAMEL SPRING BOOT APPLICATION
4.4. SPRING BOOT ARCHETYPE CATALOG
4.5. CAMEL STARTER MODULES

4.5.1. Overview
4.5.2. Using Camel Starter Modules

4.6. UNSUPPORTED STARTER MODULES
4.7. BOM FILE FOR SPRING BOOT
4.8. SPRING BOOT MAVEN PLUGIN

CHAPTER 5. APACHE CAMEL IN SPRING BOOT
5.1. INTRODUCTION TO CAMEL SPRING BOOT
5.2. INTRODUCTION TO CAMEL SPRING BOOT STARTER
5.3. AUTO-CONFIGURED CAMEL CONTEXT
5.4. AUTO-DETECTING CAMEL ROUTES
5.5. CAMEL PROPERTIES
5.6. CUSTOM CAMEL CONTEXT CONFIGURATION
5.7. DISABLING JMX
5.8. AUTO-CONFIGURED CONSUMER AND PRODUCER TEMPLATES
5.9. AUTO-CONFIGURED TYPECONVERTER
5.10. SPRING TYPE CONVERSION API BRIDGE
5.11. DISABLING TYPE CONVERSIONS FEATURES
5.12. ADDING XML ROUTES
5.13. ADDING XML REST-DSL
5.14. TESTING WITH CAMEL SPRING BOOT
5.15. SEE ALSO

6
6
6
6
6

8
8

10
10
10
10
11
11
11
12
12
12
12
16
16
18

22
22
22
22
25
26
26
26
27
27
29

31
31
31
32
33
33
34
34
35
35
36
36
36
37
37
38

Table of Contents

1

. .

. .

. .

CHAPTER 6. INTEGRATE A CAMEL APPLICATION WITH THE AMQ BROKER
6.1. EXAMPLE HOW TO DEPLOY A SPRING BOOT CAMEL A-MQ QUICKSTART

6.1.1. Prerequisites
6.1.2. Building and Deploying the Quickstart

CHAPTER 7. INTEGRATE SPRING BOOT WITH KUBERNETES
7.1. INTRODUCTION TO SPRING BOOT WITH KUBERNETES INTEGRATION

7.1.1. What are we Integrating?
7.1.2. Spring Boot Externalized Configuration
7.1.3. Kubernetes ConfigMap
7.1.4. Kubernetes Secrets
7.1.5. Spring Cloud Kubernetes Plug-In
7.1.6. How to Enable Spring Boot with Kubernetes Integration

7.2. TUTORIAL FOR CONFIGMAP PROPERTY SOURCE
7.2.1. Build and run the spring-boot-camel-config quickstart
7.2.2. Configuration Properties bean

7.2.2.1. Overview
7.2.2.2. QuickstartConfiguration class

7.2.3. How to set up the Secret
7.2.3.1. Sample Secret object
7.2.3.2. Configure volume mount for the Secret
7.2.3.3. Configure spring-cloud-kubernetes to read Secret properties

7.2.4. How to set up the ConfigMap
7.2.4.1. Sample ConfigMap object
7.2.4.2. Setting the view permission
7.2.4.3. Configuring the Spring Cloud Kubernetes plug-in

7.3. CONFIGMAP PROPERTYSOURCE
7.3.1. Apply Individual Properties
7.3.2. Apply Property Named application.yaml
7.3.3. Apply Property Named application.properties
7.3.4. Deploying a ConfigMap

7.4. SECRETS PROPERTYSOURCE
7.4.1. Example of Setting Secrets
7.4.2. Consuming the Secrets
7.4.3. Secrets Configuration Properties

7.5. PROPERTYSOURCE RELOAD
7.5.1. Example

CHAPTER 8. DEVELOP AN APPLICATION FOR THE KARAF IMAGE
8.1. CREATE A KARAF PROJECT USING MAVEN ARCHETYPE
8.2. STRUCTURE OF THE CAMEL KARAF APPLICATION
8.3. KARAF ARCHETYPE CATALOG
8.4. FABRIC8 KARAF FEATURES

8.4.1. Adding Fabric8 Karaf Features
8.4.2. Fabric8 Karaf Core Bundle functionalities

8.4.2.1. Property placeholders resolvers
8.4.2.2. Adding a custom property placeholders resolvers

8.4.3. Adding Fabric8 Karaf Config Admin Support
8.4.3.1. Adding ConfigMap injection
8.4.3.2. Configuration plugin

8.4.4. Fabric8 Karaf Blueprint Support
8.4.5. Fabric8 Karaf Health Checks

8.4.5.1. Adding Custom Heath Checks

39
39
39
39

42
42
42
42
42
42
42
42
43
43
45
45
46
47
47
48
49
50
50
50
50
51
51
51
52
52
52
53
53
54
54
55

58
58
58
59
60
60
61
61
63
64
65
65
67
68
69

Red Hat Fuse 7.0 Fuse on OpenShift Guide

2

. .

. .

. .

. .

. .

. .

CHAPTER 9. DEVELOP AN APPLICATION FOR THE JBOSS EAP IMAGE
9.1. CREATE A RED HAT FUSE CAMEL CDI WITH EAP PROJECT USING THE S2I SOURCE WORKFLOW

9.2. STRUCTURE OF THE RED HAT FUSE 7.0 CAMEL CDI WITH EAP APPLICATION
9.3. JBOSS EAP QUICKSTART TEMPLATES

CHAPTER 10. USING PERSISTENT STORAGE IN FUSE ON OPENSHIFT
10.1. VOLUMES
10.2. PERSISTENTVOLUMES
10.3. SAMPLE PERSISTENTVOLUME CONFIGURATION
10.4. PERSISTENTVOLUMECLAIMS
10.5. VOLUMES IN PODS

CHAPTER 11. PATCHING FUSE ON OPENSHIFT
11.1. IMPORTANT NOTE ON BOMS AND MAVEN DEPENDENCIES
11.2. PATCHING OVERVIEW
11.3. PATCH THE FUSE ON OPENSHIFT IMAGES
11.4. PATCH APPLICATION DEPENDENCIES USING THE OLD-STYLE BOM

11.4.1. Update Old-Style Dependencies in a Spring Boot Application
11.4.2. Update Old-Style Dependencies in a Karaf Application
11.4.3. Update Old-Style Dependencies in a JBoss EAP Application
11.4.4. Available Old-Style BOM Versions

11.5. PATCH APPLICATION DEPENDENCIES USING THE NEW-STYLE BOM
11.5.1. Update New-Style Dependencies in a Spring Boot Application
11.5.2. Update New-Style Dependencies in a Karaf Application
11.5.3. Update New-Style Dependencies in a JBoss EAP Application
11.5.4. Available New-Style BOM Versions

11.6. PATCH THE FUSE ON OPENSHIFT TEMPLATES

APPENDIX A. SPRING BOOT MAVEN PLUG-IN
A.1. SPRING BOOT MAVEN PLUGIN OVERVIEW
A.2. GOALS
A.3. USAGE

APPENDIX B. KARAF MAVEN PLUG-IN
B.1. USING THE KARAF-MAVEN-PLUGIN
B.2. KARAF MAVEN PLUG-IN GOALS

B.2.1. karaf:assembly Goal
B.2.1.1. Example of a Maven Assembly
B.2.1.2. Parameters

APPENDIX C. FABRIC8 MAVEN PLUG-IN
C.1. OVERVIEW

C.1.1. Building Images
C.1.2. Kubernetes and OpenShift Resources
C.1.3. Configuration

C.2. INSTALLING THE PLUGIN
C.3. UNDERSTANDING THE GOALS
C.4. GENERATORS

C.4.1. Zero-Configuration
C.4.2. Modes for Specifying the Base Image

C.4.2.1. Default Values for istag Mode
C.4.2.2. Default Values for docker Mode
C.4.2.3. Mode Configuration for Spring Boot Applications

71

71
76
77

78
78
78
78
79
79

81
81
81
81
82
83
84
85
86
87
87
88
89
90
90

92
92
92
92

95
95
95
95
95
96

97
97
97
97
97
98
98
99

100
100
100
101
101

Table of Contents

3

. .

. .

. .

C.4.2.4. Mode Configuration for Karaf Applications
C.4.2.5. Specifying the Mode on the Command Line

C.4.3. Spring Boot
C.4.4. Karaf

APPENDIX D. FABRIC8 CAMEL MAVEN PLUG-IN
D.1. GOALS
D.2. ADDING THE PLUGIN TO YOUR PROJECT
D.3. RUNNING THE GOAL ON ANY MAVEN PROJECT
D.4. OPTIONS

D.4.1. Table
D.5. VALIDATING INCLUDE TEST

APPENDIX E. JVM ENVIRONMENT VARIABLES
E.1. S2I JAVA BUILDER IMAGE WITH OPENJDK 8
E.2. S2I KARAF BUILDER IMAGE WITH OPENJDK 8

E.2.1. Configuring the Karaf4 Assembly
E.2.2. Customizing the Build

E.3. ENVIRONMENT VARIABLES
E.3.1. Build Time
E.3.2. Run Time
E.3.3. Jolokia Configuration

APPENDIX F. TUNING JVMS TO RUN IN LINUX CONTAINERS
F.1. OVERVIEW
F.2. TUNING THE JVM
F.3. DEFAULT BEHAVIOUR OF FUSE ON OPENSHIFT IMAGES
F.4. CUSTOM TUNING OF FUSE ON OPENSHIFT IMAGES
F.5. TUNING THIRD-PARTY LIBRARIES

101
102
102
103

104
104
104
105
106
106
107

108
108
108
108
108
108
108
109
110

111
111
111
111
111
112

Red Hat Fuse 7.0 Fuse on OpenShift Guide

4

Table of Contents

5

CHAPTER 1. BEFORE YOU BEGIN

1.1. RELEASE NOTES

See the Release Notes for important information about this release.

1.2. VERSION COMPATIBILITY AND SUPPORT

See the Red Hat JBoss Fuse Supported Configurations page for details of version compatibility and
support.

1.3. SUPPORT FOR WINDOWS O/S

The developer tooling (oc client and Container Development Kit) for Fuse on OpenShift is fully
supported on the Windows O/S. The examples shown in Linux command-line syntax can also work on
the Windows O/S, provided they are modified appropriately to obey Windows command-line syntax.

1.4. COMPARISON: FUSE STANDALONE AND FUSE ON OPENSHIFT

There are several major functionality differences:

An application deployment with Fuse on OpenShift consists of an application and all required
runtime components packaged inside a Docker image. Applications are not deployed to a
runtime as with Fuse Standalone, the application image itself is a complete runtime environment
deployed and managed through OpenShift.

Patching in an OpenShift environment is different from Fuse Standalone, as each application
image is a complete runtime environment. To apply a patch, the application image is rebuilt and
redeployed within OpenShift. Core OpenShift management capabilities allow for rolling upgrades
and side-by-side deployment to maintain availability of your application during upgrade.

Provisioning and clustering capabilities provided by Fabric in Fuse have been replaced with
equivalent functionality in Kubernetes and OpenShift. There is no need to create or configure
individual child containers as OpenShift automatically does this for you as part of deploying and
scaling your application.

Fabric endpoints are not used within an OpenShift environment. Kubernetes services must be
used instead.

Messaging services are created and managed using the A-MQ for OpenShift image and not
included directly within a Karaf container. Fuse on OpenShift provides an enhanced version of
the camel-amq component to allow for seamless connectivity to messaging services in OpenShift
through Kubernetes.

Live updates to running Karaf instances using the Karaf shell is strongly discouraged as updates
will not be preserved if an application container is restarted or scaled up. This is a fundamental
tenet of immutable architecture and essential to achieving scalability and flexibility within
OpenShift.

Maven dependencies directly linked to Red Hat Fuse components are supported by Red Hat.
Third-party Maven dependencies introduced by users are not supported.

The SSH Agent is not included in the Apache Karaf micro-container, so you cannot connect to it
using the bin/client console client.

Red Hat Fuse 7.0 Fuse on OpenShift Guide

6

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.0/html-single/release_notes/index#FISDistrib
https://access.redhat.com/articles/310603

Protocol compatibility and Camel components within a Fuse on OpenShift application: non-HTTP
based communications must use TLS and SNI to be routable from outside OpenShift into a Fuse
service (Camel consumer endpoint).

CHAPTER 1. BEFORE YOU BEGIN

7

CHAPTER 2. GET STARTED FOR ADMINISTRATORS
If you are an OpenShift administrator, you can prepare an OpenShift cluster for Fuse on OpenShift
deployments by installing the Fuse on OpenShift images and templates as described here.

2.1. PREPARE THE OPENSHIFT SERVER

1. Start the OpenShift Server.

2. Log in to the OpenShift Server as an administrator, as follows:

oc login -u system:admin

3. Install the Fuse on OpenShift image streams. Enter the following commands at a command
prompt:

BASEURL=https://raw.githubusercontent.com/jboss-fuse/application-
templates/application-templates-2.1.fuse-000099-redhat-5
oc create -n openshift -f ${BASEURL}/fis-image-streams.json

4. Install the quickstart templates. Enter the following commands at a command prompt:

for template in eap-camel-amq-template.json \
 eap-camel-cdi-template.json \
 eap-camel-cxf-jaxrs-template.json \
 eap-camel-cxf-jaxws-template.json \
 eap-camel-jpa-template.json \
 karaf-camel-amq-template.json \
 karaf-camel-log-template.json \
 karaf-camel-rest-sql-template.json \
 karaf-cxf-rest-template.json \
 spring-boot-camel-amq-template.json \
 spring-boot-camel-config-template.json \
 spring-boot-camel-drools-template.json \
 spring-boot-camel-infinispan-template.json \
 spring-boot-camel-teiid-template.json \
 spring-boot-camel-template.json \
 spring-boot-camel-xml-template.json \
 spring-boot-cxf-jaxrs-template.json \
 spring-boot-cxf-jaxws-template.json ;
 do
 oc create -n openshift -f \
 https://raw.githubusercontent.com/jboss-fuse/application-
templates/application-templates-2.1.fuse-000099-redhat-
5/quickstarts/${template}
 done

5. Install the templates for Fuse Console (Hawtio). Enter the following commands at a command
prompt:

oc create -n openshift -f https://raw.githubusercontent.com/jboss-
fuse/application-templates/application-templates-2.1.fuse-000099-
redhat-5/fis-console-cluster-template.json

Red Hat Fuse 7.0 Fuse on OpenShift Guide

8

oc create -n openshift -f https://raw.githubusercontent.com/jboss-
fuse/application-templates/application-templates-2.1.fuse-000099-
redhat-5/fis-console-namespace-template.json

CHAPTER 2. GET STARTED FOR ADMINISTRATORS

9

CHAPTER 3. GET STARTED FOR DEVELOPERS
You can start using Fuse on OpenShift by creating an application and deploying it to OpenShift using
one of the following OpenShift Source-to-Image (S2I) application development workflows:

S2I binary workflow

S2I with build input from a binary source. This workflow is characterized by the fact that the build is
partly executed on the developer’s own machine. After building a binary package locally, this
workflow hands off the binary package to OpenShift. For more details, see Binary Source from the
OpenShift 3.9 Developer Guide.

S2I source workflow

S2I with build input from a Git source. This workflow is characterised by the fact that the build is
executed entirely on the OpenShift server. For more details, see Git Source from the OpenShift 3.9
Developer Guide.

3.1. PREREQUISITES

3.1.1. Access to an OpenShift Server

The fundamental requirement for developing and testing Fuse on OpenShift projects is having access to
an OpenShift Server. You have the following basic alternatives:

Section 3.1.1.1, “Install Container Development Kit (CDK) on Your Local Machine”

Section 3.1.1.2, “Get Remote Access to an Existing OpenShift Server”

3.1.1.1. Install Container Development Kit (CDK) on Your Local Machine

To get started quickly, the most practical alternative for a developer is to install Red Hat CDK on their
local machine. Using CDK, you can boot a virtual machine (VM) instance that runs an image of
OpenShift on Red Hat Enterprise Linux (RHEL) 7. An installation of CDK consists of the following key
components:

A virtual machine (libvirt, VirtualBox, or Hyper-V)

Minishift to start and manage the Container Development Environment

For Fuse on OpenShift, we recommend you install version 3.4 of CDK. Detailed instructions for installing
and using CDK 3.4 are provided in the following guide:

Red Hat CDK 3.4 Getting Started Guide

If you opt to use CDK, we recommend that you read and thoroughly understand the content of the
preceding guide before proceeding with the examples in this chapter.

NOTE

Recent versions of CDK have Fuse on OpenShift images and templates pre-installed. If
the images and templates are not pre-installed, however, or if the provided versions are
out of date, you will need to install (or update) the Fuse on OpenShift images and
templates manually — see Chapter 2, Get Started for Administrators.

Red Hat Fuse 7.0 Fuse on OpenShift Guide

10

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#binary-source
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#source-code
https://access.redhat.com/documentation/en/red-hat-container-development-kit/
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.4/html-single/getting_started_guide/

IMPORTANT

Red Hat CDK is intended for development purposes only. It is not intended for other
purposes, such as production environments, and may not address known security
vulnerabilities. For full support of running mission-critical applications inside of docker-
formatted containers, you need an active RHEL 7 or RHEL Atomic subscription. For more
details, see Support for Red Hat Container Development Kit (CDK).

3.1.1.2. Get Remote Access to an Existing OpenShift Server

Your IT department might already have set up an OpenShift cluster on some server machines. In this
case, the following requirements must be satisfied for getting started with Fuse on OpenShift:

The server machines must be running a supported version of OpenShift Container Platform (as
documented in the Supported Configurations page). The examples in this guide have been
tested against version 3.9.

Ask the OpenShift administrator to install the latest Fuse on OpenShift container base images
and the Fuse on OpenShift templates on the OpenShift servers.

Ask the OpenShift administrator to create a user account for you, having the usual developer
permissions (enabling you to create, deploy, and run OpenShift projects).

Ask the administrator for the URL of the OpenShift Server (which you can use either to browse
to the OpenShift console or connect to OpenShift using the oc command-line client) and the
login credentials for your account.

3.1.2. Java Version

On your developer machine, make sure you have installed a Java version that is supported by Fuse 7.0.
For details of the supported Java versions, see Supported Configurations.

3.1.3. Install the Requisite Client-Side Tools

We recommend that you have the following tools installed on your developer machine:

Apache Maven 3.3.x

Required for local builds of OpenShift projects. Download the appropriate package from the Apache
Maven download page. Make sure that you have at least version 3.3.x (or later) installed, otherwise
Maven might have problems resolving dependencies when you build your project.

Git

Required for the OpenShift S2I source workflow and generally recommended for source control of
your Fuse on OpenShift projects. Download the appropriate package from the Git Downloads page.

OpenShift client

If you are using CDK, you can add the oc binary to your PATH using minishift oc-env which
displays the command you need to type into your shell (the output of oc-env will differ depending on
OS and shell type):

$ minishift oc-env
export PATH="/Users/john/.minishift/cache/oc/v1.5.0:$PATH"
Run this command to configure your shell:
eval $(minishift oc-env)

CHAPTER 3. GET STARTED FOR DEVELOPERS

11

https://access.redhat.com/articles/2387591
https://access.redhat.com/articles/310603
https://access.redhat.com/articles/310603
https://maven.apache.org/download.cgi
https://git-scm.com/downloads

For more details, see Using the OpenShift Client Binary in CDK 3.4 Getting Started Guide.

If you are not using CDK, follow the instructions in the CLI Reference to install the oc client tool.

(Optional) Docker client

Advanced users might find it convenient to have the Docker client tool installed (to communicate with
the docker daemon running on an OpenShift server). For information about specific binary
installations for your operating system, see the Docker installation site.
For more details, see Reusing the docker Daemon in CDK 3.4 Getting Started Guide.

IMPORTANT

Make sure that you install versions of the oc tool and the docker tool that are compatible
with the version of OpenShift running on the OpenShift Server.

3.2. PREPARE YOUR DEVELOPMENT ENVIRONMENT

After installing the required software and tools, prepare your development environment as follows.

3.2.1. Configure Maven Repositories

Configure the Maven repositories, which hold the archetypes and artifacts you will need for building an
Fuse on OpenShift project on your local machine. Edit your Maven settings.xml file, which is usually
located in ~/.m2/settings.xml (on Linux or macOS) or Documents and Settings\
<USER_NAME>\.m2\settings.xml (on Windows). The following Maven repositories are required:

Maven central: https://repo1.maven.org/maven2

Red Hat GA repository: https://maven.repository.redhat.com/ga

Red Hat EA repository: https://maven.repository.redhat.com/earlyaccess/all

You must add the preceding repositories both to the dependency repositories section as well as the plug-
in repositories section of your settings.xml file.

3.2.2. (Optional) Install Developer Studio

Red Hat JBoss Developer Studio is an Eclipse-based development environment, which includes support
for developing Fuse on OpenShift applications. For details about how to install this development
environment, see Install Red Hat JBoss Developer Studio.

3.3. CREATE AND DEPLOY A PROJECT USING THE S2I BINARY
WORKFLOW

In this section, you will use the OpenShift S2I binary workflow to create, build, and deploy an Fuse on
OpenShift project.

1. Create a new Fuse on OpenShift project using a Maven archetype. For this example, we use an
archetype that creates a sample Spring Boot Camel project. Open a new shell prompt and enter
the following Maven command:

mvn org.apache.maven.plugins:maven-archetype-plugin:2.4:generate \

Red Hat Fuse 7.0 Fuse on OpenShift Guide

12

https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.4/html-single/getting_started_guide/#using_the_openshift_client_binary_oc
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/cli_reference/
https://docs.docker.com/engine/installation/
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.4/html-single/getting_started_guide/#reusing-docker-daemon
https://repo1.maven.org/maven2
https://maven.repository.redhat.com/ga
https://maven.repository.redhat.com/earlyaccess/all
https://access.redhat.com/documentation/en-us/red_hat_jboss_developer_studio/11.2/html/installation_guide/

 -
DarchetypeCatalog=https://maven.repository.redhat.com/ga/io/fabric8/
archetypes/archetypes-catalog/2.2.0.fuse-000110-redhat-5/archetypes-
catalog-2.2.0.fuse-000110-redhat-5-archetype-catalog.xml \
 -DarchetypeGroupId=org.jboss.fuse.fis.archetypes \
 -DarchetypeArtifactId=spring-boot-camel-xml-archetype \
 -DarchetypeVersion=2.2.0.fuse-000110-redhat-5

The archetype plug-in switches to interactive mode to prompt you for the remaining fields:

Define value for property 'groupId': : org.example.fis
Define value for property 'artifactId': : fuse70-spring-boot
Define value for property 'version': 1.0-SNAPSHOT: :
Define value for property 'package': org.example.fis: :
[INFO] Using property: spring-boot-version = 1.5.13.RELEASE
Confirm properties configuration:
groupId: org.example.fis
artifactId: fuse70-spring-boot
version: 1.0-SNAPSHOT
package: org.example.fis
spring-boot-version: 1.5.13.RELEASE
 Y: :

When prompted, enter org.example.fis for the groupId value and fuse70-spring-boot
for the artifactId value. Accept the defaults for the remaining fields.

2. If the previous command exited with the BUILD SUCCESS status, you should now have a new
Fuse on OpenShift project under the fuse70-spring-boot subdirectory. You can inspect the
XML DSL code in the fuse70-spring-boot/src/main/resources/spring/camel-
context.xml file. The demonstration code defines a simple Camel route that continuously
sends message containing a random number to the log.

3. In preparation for building and deploying the Fuse on OpenShift project, log in to the OpenShift
Server as follows:

oc login -u developer -p developer https://OPENSHIFT_IP_ADDR:8443

Where, OPENSHIFT_IP_ADDR is a placeholder for the OpenShift server’s IP address as this IP
address is not always the same.

NOTE

The developer user (with developer password) is a standard account that is
automatically created on the virtual OpenShift Server by CDK. If you are
accessing a remote server, use the URL and credentials provided by your
OpenShift administrator.

4. Create a new project namespace called test (assuming it does not already exist), as follows:

oc new-project test

If the test project namespace already exists, you can switch to it using the following command:

oc project test

CHAPTER 3. GET STARTED FOR DEVELOPERS

13

5. You are now ready to build and deploy the fuse70-spring-boot project. Assuming you are
still logged into OpenShift, change to the directory of the fuse70-spring-boot project, and
then build and deploy the project, as follows:

cd fuse70-spring-boot
mvn fabric8:deploy -P openshift

At the end of a successful build, you should see some output like the following:

...
[INFO] OpenShift platform detected
[INFO] Using project: test
[INFO] Creating a Service from openshift.yml namespace test name
fuse70-spring-boot
[INFO] Created Service: target/fabric8/applyJson/test/service-
fuse70-spring-boot.json
[INFO] Using project: test
[INFO] Creating a DeploymentConfig from openshift.yml namespace test
name fuse70-spring-boot
[INFO] Created DeploymentConfig:
target/fabric8/applyJson/test/deploymentconfig-fuse70-spring-
boot.json
[INFO] Creating Route test:fuse70-spring-boot host: null
[INFO] F8: HINT: Use the command `oc get pods -w` to watch your pods
start up
[INFO] --

[INFO] BUILD SUCCESS
[INFO] --

[INFO] Total time: 05:38 min
[INFO] Finished at: 2018-02-22T12:08:11+01:00
[INFO] Final Memory: 63M/272M
[INFO] --

NOTE

The first time you run this command, Maven has to download a lot of
dependencies, which takes several minutes. Subsequent builds will be faster.

6. Navigate to the OpenShift console in your browser and log in to the console with your credentials
(for example, with username developer and password, developer).

7. In the OpenShift console, scroll down to find the test project namespace. Click the test project
to open the test project namespace. The Overview tab of the test project opens, showing the
fuse70-spring-boot application.

8. Click the arrow on the left of the fuse70-spring-boot deployment to expand and view the details
of this deployment, as shown.

Red Hat Fuse 7.0 Fuse on OpenShift Guide

14

9. Click in the centre of the pod icon (blue circle) to view the list of pods for fuse70-spring-boot.

10. Click on the pod Name (in this example, fuse70-spring-boot-1-kxdjm) to view the details
of the running pod.

11. Click on the Logs tab to view the application log and scroll down the log to find the random
number log messages generated by the Camel application.

...
07:30:32.406 [Camel (camel) thread #0 - timer://foo] INFO simple-

CHAPTER 3. GET STARTED FOR DEVELOPERS

15

route - >>> 985
07:30:34.405 [Camel (camel) thread #0 - timer://foo] INFO simple-
route - >>> 741
07:30:36.409 [Camel (camel) thread #0 - timer://foo] INFO simple-
route - >>> 796
07:30:38.409 [Camel (camel) thread #0 - timer://foo] INFO simple-
route - >>> 211
07:30:40.411 [Camel (camel) thread #0 - timer://foo] INFO simple-
route - >>> 511
07:30:42.411 [Camel (camel) thread #0 - timer://foo] INFO simple-
route - >>> 942

12. Click Overview on the left-hand navigation bar to return to the applications overview in the test

namespace. To shut down the running pod, click the down arrow beside the pod icon.
When a dialog prompts you with the question Scale down deployment fuse70-spring-boot-
1?, click Scale Down.

13. (Optional) If you are using CDK, you can shut down the virtual OpenShift Server completely by
returning to the shell prompt and entering the following command:

minishift stop

3.3.1. Undeploy and Redeploy the Project

You can undeploy or redeploy your projects, as follows:

To undeploy the project, enter the command:

mvn fabric8:undeploy

To redeploy the project, enter the commands:

mvn fabric8:undeploy
mvn fabric8:deploy -P openshift

3.3.2. Opening the HawtIO Console

To open the HawtIO console for a pod running the Fuse on OpenShift Spring Boot example, proceed as
follows:

1. From the Applications → Pods view in your OpenShift project, click on the pod name to view
the details of the running Fuse on OpenShift Spring Boot pod. On the right-hand side of this
page, you see a summary of the container template:

Red Hat Fuse 7.0 Fuse on OpenShift Guide

16

2. From this view, click on the Open Java Console link to open the HawtIO console.

NOTE

In order to configure OpenShift to display a link to HawtIO console in the pod
view, the pod running a Fuse on OpenShift image must declare a tcp port within a
name attribute set to jolokia:

{
 "kind": "Pod",
 [...]
 "spec": {
 "containers": [
 {
 [...]
 "ports": [
 {
 "name": "jolokia",
 "containerPort": 8778,
 "protocol": "TCP"
 }

CHAPTER 3. GET STARTED FOR DEVELOPERS

17

3.4. CREATE AND DEPLOY A PROJECT USING THE S2I SOURCE
WORKFLOW

In this section, you will use the OpenShift S2I source workflow to build and deploy a Fuse on OpenShift
project based on a template. The starting point for this demonstration is a quickstart project stored in a
remote Git repository. Using the OpenShift console, you will download, build, and deploy this quickstart
project in the OpenShift server.

1. Navigate to the OpenShift console in your browser (https://OPENSHIFT_IP_ADDR:8443,
replace OPENSHIFT_IP_ADDR with the IP address that was displayed in the case of CDK) and
log in to the console with your credentials (for example, with username developer and
password, developer).

2. In the Catalog search field, enter Red Hat Fuse 7.0 Camel XML DSL with Spring
Boot as the search string and select the Red Hat Fuse 7.0 Camel XML DSL with Spring Boot
template.

3. The Information step of the template wizard opens. Click Next.

4. The Configuration step of the template wizard opens, as shown. From the Add to Project
dropdown, select test. You can accept the default values for the rest of the settings in the
Configuration step.

Red Hat Fuse 7.0 Fuse on OpenShift Guide

18

https://openshift_ip_addr:8443

NOTE

Alternatively, if you prefer to create a new project for this example, select Create
Project from the Add to Project dropdown. A Project Name field then appears
for you to fill in the name of the new project.

NOTE

If you want to modify the application code (instead of just running the quickstart
as is), you would need to fork the original quickstart Git repository and fill in the
appropriate values in the Git Repository URL and Git Reference fields.

5. The Bindings option creates a secret with necessary information for an application to use a
service. Click Create.

CHAPTER 3. GET STARTED FOR DEVELOPERS

19

6. The Results step of the template wizard opens. Click Close.

7. In the right-hand My Projects pane, click test. The Overview tab of the test project opens,
showing the s2i-fuse70-spring-boot-camel-xml application.

8. Click the arrow on the left of the s2i-fuse70-spring-boot-camel-xml deployment to expand and
view the details of this deployment, as shown.

9. In this view, you can see the build log. If the build should fail for any reason, the build log can
help you to diagnose the problem.

NOTE

The build can take several minutes to complete, because a lot of dependencies
must be downloaded from remote Maven repositories. To speed up build times,
we recommend you deploy a Nexus server on your local network.

Red Hat Fuse 7.0 Fuse on OpenShift Guide

20

10. If the build completes successfully, the pod icon shows as a blue circle with 1 pod running. Click
in the centre of the pod icon (blue circle) to view the list of pods for s2i-fuse70-spring-boot-
camel-xml.

NOTE

If multiple pods are running, you would see a list of running pods at this point.
Otherwise (if there is just one pod), you get straight through to the details view of
the running pod.

11. The pod details view opens. Click on the Logs tab to view the application log and scroll down the
log to find the log messages generated by the Camel application.

12. Click Overview on the left-hand navigation bar to return to the overview of the applications in the

test namespace. To shut down the running pod, click the down arrow beside the pod
icon. When a dialog prompts you with the question Scale down deployment s2i-fuse70-
spring-boot-camel-xml-1?, click Scale Down.

13. (Optional) If you are using CDK, you can shut down the virtual OpenShift Server completely by
returning to the shell prompt and entering the following command:

minishift stop

CHAPTER 3. GET STARTED FOR DEVELOPERS

21

CHAPTER 4. DEVELOP AN APPLICATION FOR THE SPRING
BOOT IMAGE

4.1. OVERVIEW

This chapter explains how to develop applications for the Spring Boot image.

4.2. CREATE A SPRING BOOT PROJECT USING MAVEN ARCHETYPE

To create a Spring Boot project, follow these steps:

1. Go to the appropriate directory on your system.

2. In a shell prompt, enter the following the mvn command to create a Spring Boot project

mvn org.apache.maven.plugins:maven-archetype-plugin:2.4:generate \
 -
DarchetypeCatalog=https://maven.repository.redhat.com/ga/io/fabric8/
archetypes/archetypes-catalog/2.2.0.fuse-000110-redhat-5/archetypes-
catalog-2.2.0.fuse-000110-redhat-5-archetype-catalog.xml \
 -DarchetypeGroupId=org.jboss.fuse.fis.archetypes \
 -DarchetypeArtifactId=spring-boot-camel-xml-archetype \
 -DarchetypeVersion=2.2.0.fuse-000110-redhat-5

The archetype plug-in switches to interactive mode to prompt you for the remaining fields

Define value for property 'groupId': : org.example.fis
Define value for property 'artifactId': : fuse70-spring-boot
Define value for property 'version': 1.0-SNAPSHOT: :
Define value for property 'package': org.example.fis: :
[INFO] Using property: spring-boot-version = 1.5.13.RELEASE
Confirm properties configuration:
groupId: org.example.fis
artifactId: fuse70-spring-boot
version: 1.0-SNAPSHOT
package: org.example.fis
spring-boot-version: 1.5.13.RELEASE
 Y: :

When prompted, enter org.example.fis for the groupId value and fuse70-spring-boot
for the artifactId value. Accept the defaults for the remaining fields.

Then, follow the instructions in the quickstart on how to build and deploy the example.

NOTE

For the full list of available Spring Boot archetypes, see Section 4.4, “Spring Boot
Archetype Catalog”.

4.3. STRUCTURE OF THE CAMEL SPRING BOOT APPLICATION

The directory structure of a Camel Spring Boot application is as follows:

Red Hat Fuse 7.0 Fuse on OpenShift Guide

22

 ├── LICENSE.md
 ├── pom.xml
 ├── README.md
 ├── configuration
 │ └── settings.xml
 └── src
 ├── main
 │ ├── fabric8
 │ │ └── deployment.yml
 │ ├── java
 │ │ └── org
 │ │ └── example
 │ │ └── fis
 │ │ ├── Application.java
 │ │ └── MyTransformer.java
 │ └── resources
 │ ├── application.properties
 │ ├── logback.xml
 │ └── spring
 │ └── camel-context.xml
 └── test
 └── java
 └── org
 └── example
 └── fis

Where the following files are important for developing an application:

pom.xml

Includes additional dependencies. Camel components that are compatible with Spring Boot are
available in the starter version, for example camel-jdbc-starter or camel-infinispan-
starter. Once the starters are included in the pom.xml they are automatically configured and
registered with the Camel content at boot time. Users can configure the properties of the components
using the application.properties file.

application.properties

Allows you to externalize your configuration and work with the same application code in different
environments. For details, see Externalized Configuration
For example, in this Camel application you can configure certain properties such as name of the
application or the IP addresses, and so on.

application.properties

#spring.main.sources=org.example.fos

logging.config=classpath:logback.xml

the options from
org.apache.camel.spring.boot.CamelConfigurationProperties can be
configured here
camel.springboot.name=MyCamel

lets listen on all ports to ensure we can be invoked from the pod IP
server.address=0.0.0.0
management.address=0.0.0.0

CHAPTER 4. DEVELOP AN APPLICATION FOR THE SPRING BOOT IMAGE

23

http://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html

lets use a different management port in case you need to listen to
HTTP requests on 8080
management.port=8081

disable all management endpoints except health
endpoints.enabled = false
endpoints.health.enabled = true

Application.java

It is an important file to run your application. As a user you will import here a file camel-
context.xml to configure routes using the Spring DSL.
The Application.java file specifies the @SpringBootApplication annotation, which is
equivalent to @Configuration, @EnableAutoConfiguration and @ComponentScan with their
default attributes.

Application.java

It must have a main method to run the Spring Boot application.

Application.java

camel-context.xml

The src/main/resources/spring/camel-context.xml is an important file for developing
application as it contains the Camel routes.

NOTE

You can find more information on developing Spring-Boot applications at Developing
your first Spring Boot Application

src/main/fabric8/deployment.yml

Provides additional configuration that is merged with the default OpenShift configuration file
generated by the fabric8-maven-plugin.

@SpringBootApplication
// load regular Blueprint file from the classpath that contains the
Camel XML DSL
@ImportResource({"classpath:blueprint/camel-context.xml"})

public class Application {
 /**
 * A main method to start this application.
 */
 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

Red Hat Fuse 7.0 Fuse on OpenShift Guide

24

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/html/getting-started-first-application.html

NOTE

This file is not used part of Spring Boot application but it is used in all quickstarts to
limit the resources such as CPU and memory usage.

4.4. SPRING BOOT ARCHETYPE CATALOG

The Spring Boot Archetype catalog includes the following examples.

Table 4.1. Spring Boot Maven Archetypes

Name Description

spring-boot-camel-archetype Demonstrates how to use Apache Camel with Spring Boot
based on a fabric8 Java base image.

spring-boot-camel-amq-
archetype

Demonstrates how to connect a Spring-Boot application to an
ActiveMQ broker and use JMS messaging between two Camel
routes using Kubernetes or OpenShift.

spring-boot-camel-config-
archetype

Demonstrates how to configure a Spring-Boot application using
Kubernetes ConfigMaps and Secrets.

spring-boot-camel-drools-
archetype

Demonstrates how to use Apache Camel to integrate a Spring-
Boot application running on Kubernetes or OpenShift with a
remote Kie Server.

spring-boot-camel-
infinispan-archetype

Demonstrates how to connect a Spring-Boot application to a
JBoss Data Grid or Infinispan server using the Hot Rod protocol.

spring-boot-camel-teiid-
archetype

Demonstrates how to connect Apache Camel to a remote JBoss
Data Virtualization (or Teiid) Server using the JDBC protocol.

spring-boot-camel-xml-
archetype

Demonstrates how to configure Camel routes in Spring Boot via
a Blueprint configuration file.

spring-boot-cxf-jaxrs-
archetype

Demonstrates how to use Apache CXF with Spring Boot based
on a fabric8 Java base image. The quickstart uses Spring Boot
to configure an application that includes a CXF JAXRS endpoint
with Swagger enabled.

spring-boot-cxf-jaxws-
archetype

Demonstrates how to use Apache CXF with Spring Bootbased
on a fabric8 Java base image. The quickstart uses Spring Boot
to configure an application that includes a CXF JAXWS endpoint.

CHAPTER 4. DEVELOP AN APPLICATION FOR THE SPRING BOOT IMAGE

25

IMPORTANT

A Technology Preview quickstart is also available. The Spring Boot Camel XA
Transactions quickstart demonstrates how to use Spring Boot to run a Camel service that
supports XA transactions. This quickstart shows the use of two external transactional
resources: a JMS (AMQ) broker and a database (PostgreSQL). You can find this
quickstart here: https://github.com/jboss-fuse/spring-boot-camel-xa.

Technology Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during the
development process. For more information, see Red Hat Technology Preview features
support scope.

4.5. CAMEL STARTER MODULES

4.5.1. Overview

Starters are Apache Camel modules intended to be used in Spring Boot applications. There is a camel-
xxx-starter module for each Camel component (with a few exceptions listed below).

Starters meet the following requirements:

Allow auto-configuration of the component using native Spring Boot configuration system which
is compatible with IDE tooling.

Allow auto-configuration of data formats and languages.

Manage transitive logging dependencies to integrate with Spring Boot logging system.

Include additional dependencies and align transitive dependencies to minimize the effort of
creating a working Spring Boot application.

Each starter has its own integration test in tests/camel-itest-spring-boot, that verifies the
compatibility with the current release of Spring Boot.

4.5.2. Using Camel Starter Modules

Apache Camel provides a starter module that allows you to develop Spring Boot applications using
starters.

To use the Spring Boot starter:

1. Add the following to your Spring Boot pom.xml file:

2. Add classes with your Camel routes such as:

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-spring-boot-starter</artifactId>
</dependency>

package com.example;

Red Hat Fuse 7.0 Fuse on OpenShift Guide

26

https://github.com/jboss-fuse/spring-boot-camel-xa
https://access.redhat.com/support/offerings/techpreview/

These routes will be started automatically.

NOTE

To keep the main thread blocked so that Camel stays up, either include the spring-
boot-starter-web dependency, or add camel.springboot.main-run-
controller=true to your application.properties or application.yml file.

You can customize the Camel application in the application.properties or application.yml
file with camel.springboot.* properties.

4.6. UNSUPPORTED STARTER MODULES

The following components do not have a starter because of compatibility issues:

camel-blueprint (intended for OSGi only)

camel-cdi (intended for CDI only)

camel-core-osgi (intended for OSGi only)

camel-ejb (intended for JEE only)

camel-eventadmin (intended for OSGi only)

camel-ibatis (camel-mybatis-starter is included)

camel-jclouds

camel-mina (camel-mina2-starter is included)

camel-paxlogging (intended for OSGi only)

camel-quartz (camel-quartz2-starter is included)

camel-spark-rest

camel-swagger (camel-swagger-java-starter is included)

4.7. BOM FILE FOR SPRING BOOT

import org.apache.camel.builder.RouteBuilder;
import org.springframework.stereotype.Component;

@Component
public class MyRoute extends RouteBuilder {

 @Override
 public void configure() throws Exception {
 from("timer:foo")
 .to("log:bar");
 }
}

CHAPTER 4. DEVELOP AN APPLICATION FOR THE SPRING BOOT IMAGE

27

The purpose of a Maven Bill of Materials (BOM) file is to provide a curated set of Maven dependency
versions that work well together, saving you from having to define versions individually for every Maven
artifact.

The Fuse BOM for Spring Boot offers the following advantages:

Defines versions for Maven dependencies, so that you do not need to specify the version when
you add a dependency to your POM.

Defines a set of curated dependencies that are fully tested and supported for a specific version
of Fuse.

Simplifies upgrades of Fuse.

IMPORTANT

Only the set of dependencies defined by a Fuse BOM are supported by Red Hat.

To incorporate a BOM file into your Maven project, specify a dependencyManagement element in your
project’s pom.xml file (or, possibly, in a parent POM file), as shown in the following example:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<project ...>
 ...
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <!-- configure the versions you want to use here -->
 <bom.version>7.0.0.fuse-000027-redhat-1</bom.version>
 <spring-boot.version>1.5.13.RELEASE</spring-boot.version>

 <maven-compiler-plugin.version>3.3</maven-compiler-plugin.version>
 <maven-surefire-plugin.version>2.18.1</maven-surefire-plugin.version>
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fuse-springboot-bom</artifactId>
 <version>${bom.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 ...
</project>

Red Hat Fuse 7.0 Fuse on OpenShift Guide

28

https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

NOTE

The org.jboss.redhat-fuse BOM is new in Fuse 7.0 and has been designed to
simplify BOM versioning. The Fuse quickstarts and Maven archetypes still use the old
style of BOM, however, as they have not yet been refactored to use the new one. Both
BOMs are correct and you can use either one in your Maven projects. In an upcoming
Fuse release, the quickstarts and Maven archetypes will be refactored to use the new
BOM.

After specifying the BOM using the dependency management mechanism, it becomes possible to add
Maven dependencies to your POM without specifying the version of the artifact. For example, to add a
dependency for the camel-hystrix component, you would add the following XML fragment to the
dependencies element in your POM:

Note how the Camel artifact ID is specified with the -starter suffix — that is, you specify the Camel
Hystrix component as camel-hystrix-starter, not as camel-hystrix. The Camel starter
components are packaged in a way that is optimized for the Spring Boot environment.

4.8. SPRING BOOT MAVEN PLUGIN

The Spring Boot Maven plugin is provided by Spring Boot and it is a developer utility for building and
running a Spring Boot project:

Building — create an executable Jar package for your Spring Boot application by entering the
command mvn package in the project directory. The output of the build is placed in the
target/ subdirectory of your Maven project.

Running — for convenience, you can run the newly-built application with the command, mvn
spring-boot:start.

To incorporate the Spring Boot Maven plugin into your project POM file, add the plugin configuration to
the project/build/plugins section of your pom.xml file, as shown in the following example:

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-hystrix-starter</artifactId>
</dependency>

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<project ...>
 ...
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <!-- configure the versions you want to use here -->
 <bom.version>7.0.0.fuse-000027-redhat-1</bom.version>

 </properties>
 ...
 <build>
 <plugins>
 <plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>

CHAPTER 4. DEVELOP AN APPLICATION FOR THE SPRING BOOT IMAGE

29

 <version>${bom.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>repackage</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 ...
</project>

Red Hat Fuse 7.0 Fuse on OpenShift Guide

30

CHAPTER 5. APACHE CAMEL IN SPRING BOOT

5.1. INTRODUCTION TO CAMEL SPRING BOOT

The Camel Spring Boot component provides auto configuration for Apache Camel. Auto-configuration of
the Camel context auto-detects Camel routes available in the Spring context and registers the key Camel
utilities such as producer template, consumer template, and the type converter as beans.

Every Camel Spring Boot application should use dependencyManagement with productized versions,
see quickstart pom. Versions that are tagged later can be omitted to not override the versions from BOM.

NOTE

camel-spring-boot jar comes with the spring.factories file which allows you to
add that dependency into your classpath and hence Spring Boot will automatically auto-
configure Camel.

5.2. INTRODUCTION TO CAMEL SPRING BOOT STARTER

Apache Camel includes a Spring Boot starter module that allows you to develop Spring Boot
applications using starters.

NOTE

For more details, see sample application in the source code.

To use the starter, add the following snippet to your Spring Boot pom.xml file:

<project>
 ...
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <!-- configure the versions you want to use here -->
 <bom.version>7.0.0.fuse-000027-redhat-1</bom.version>
 ...
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fuse-springboot-bom</artifactId>
 <version>${bom.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 ...
</project>

CHAPTER 5. APACHE CAMEL IN SPRING BOOT

31

https://github.com/fabric8-quickstarts/spring-boot-camel-amq/blob/fuse-7.0.x.redhat/pom.xml#L28-L38
https://github.com/apache/camel/tree/master/examples/camel-example-spring-boot

The starter allows you to add classes with your Camel routes, as shown in the snippet below. Once
these routes are added to the class path the routes are started automatically.

You can customize the Camel application in the application.properties or application.yml
file.

Camel Spring Boot now supports referring to bean by the id name in the configuration files
(application.properties or yaml file) when you configure any of the Camel starter components. In the
src/main/resources/application.properties (or yaml) file you can now easily configure the
options on the Camel that refers to other beans by refering to the beans ID name. For example, the xslt
component can refer to a custom bean using the bean ID as follows:

Refer to a custom bean by the id myExtensionFactory as follows:

Which you can then create using Spring Boot @Bean annotation as follows:

Or, in case of a Jackson ObjectMapper in the camel-jackson data-format:

5.3. AUTO-CONFIGURED CAMEL CONTEXT

Camel auto-configuration provides a CamelContext instance and creates a SpringCamelContext. It
also initializes and performs shutdown of that context. This Camel context is registered in the Spring
application context under camelContext bean name and you can access it like other Spring bean.

For example, you can access the camelContext as shown below:

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-spring-boot-starter</artifactId>
</dependency>

package com.example;

import org.apache.camel.builder.RouteBuilder;
import org.springframework.stereotype.Component;

@Component
public class MyRoute extends RouteBuilder {

 @Override
 public void configure() throws Exception {
 from("timer:foo").to("log:bar");
 }
}

camel.component.xslt.saxon-extension-functions=myExtensionFactory

@Bean(name = "myExtensionFactory")
public ExtensionFunctionDefinition myExtensionFactory() {
 }

camel.dataformat.json-jackson.object-mapper=myJacksonMapper

Red Hat Fuse 7.0 Fuse on OpenShift Guide

32

5.4. AUTO-DETECTING CAMEL ROUTES

Camel auto configuration collects all the RouteBuilder instances from the Spring context and
automatically injects them into the CamelContext. It simplifies the process of creating new Camel route
with the Spring Boot starter. You can create the routes by adding the @Component annotated class to
your classpath.

To create a new route RouteBuilder bean in your @Configuration class, see below:

5.5. CAMEL PROPERTIES

Spring Boot auto configuration automatically connects to Spring Boot external configuration such as
properties placeholders, OS environment variables, or system properties with Camel properties support.

@Configuration
public class MyAppConfig {

 @Autowired
 CamelContext camelContext;

 @Bean
 MyService myService() {
 return new DefaultMyService(camelContext);
 }

}

@Component
public class MyRouter extends RouteBuilder {

 @Override
 public void configure() throws Exception {
 from("jms:invoices").to("file:/invoices");
 }

}

@Configuration
public class MyRouterConfiguration {

 @Bean
 RoutesBuilder myRouter() {
 return new RouteBuilder() {

 @Override
 public void configure() throws Exception {
 from("jms:invoices").to("file:/invoices");
 }

 };
 }

}

CHAPTER 5. APACHE CAMEL IN SPRING BOOT

33

These properties are defined in application.properties file:

Use as system property

Use as placeholders in Camel route:

5.6. CUSTOM CAMEL CONTEXT CONFIGURATION

To perform operations on CamelContext bean created by Camel auto configuration, you need to
register CamelContextConfiguration instance in your Spring context as shown below:

NOTE

The method CamelContextConfiguration and
beforeApplicationStart(CamelContext) will be called before the Spring context
is started, so the CamelContext instance passed to this callback is fully auto-configured.
You can add many instances of CamelContextConfiguration into your Spring
context and all of them will be executed.

5.7. DISABLING JMX

route.from = jms:invoices

java -Droute.to=jms:processed.invoices -jar mySpringApp.jar

@Component
public class MyRouter extends RouteBuilder {

 @Override
 public void configure() throws Exception {
 from("{{route.from}}").to("{{route.to}}");
 }

}

@Configuration
public class MyAppConfig {

 ...

 @Bean
 CamelContextConfiguration contextConfiguration() {
 return new CamelContextConfiguration() {
 @Override
 void beforeApplicationStart(CamelContext context) {
 // your custom configuration goes here
 }
 };
 }

}

Red Hat Fuse 7.0 Fuse on OpenShift Guide

34

To disable JMX of the auto-configured CamelContext use camel.springboot.jmxEnabled
property as JMX is enabled by default.

For example, you could add the following property to your application.properties file:

5.8. AUTO-CONFIGURED CONSUMER AND PRODUCER TEMPLATES

Camel auto configuration provides pre-configured ConsumerTemplate and ProducerTemplate
instances. You can inject them into your Spring-managed beans:

By default consumer templates and producer templates come with the endpoint cache sizes set to 1000.
You can change those values using the following Spring properties:

5.9. AUTO-CONFIGURED TYPECONVERTER

Camel auto configuration registers a TypeConverter instance named typeConverter in the Spring
context.

camel.springboot.jmxEnabled = false

@Component
public class InvoiceProcessor {

 @Autowired
 private ProducerTemplate producerTemplate;

 @Autowired
 private ConsumerTemplate consumerTemplate;
 public void processNextInvoice() {
 Invoice invoice = consumerTemplate.receiveBody("jms:invoices",
Invoice.class);
 ...
 producerTemplate.sendBody("netty-http:http://invoicing.com/received/"
+ invoice.id());
 }

}

camel.springboot.consumerTemplateCacheSize = 100
camel.springboot.producerTemplateCacheSize = 200

@Component
public class InvoiceProcessor {

 @Autowired
 private TypeConverter typeConverter;

 public long parseInvoiceValue(Invoice invoice) {
 String invoiceValue = invoice.grossValue();
 return typeConverter.convertTo(Long.class, invoiceValue);
 }

}

CHAPTER 5. APACHE CAMEL IN SPRING BOOT

35

5.10. SPRING TYPE CONVERSION API BRIDGE

Spring consist of type conversion API. Spring API is similar to the Camel type converter API. Due to the
similarities between the two APIs Camel Spring Boot automatically registers a bridge converter
(SpringTypeConverter) that delegates to the Spring conversion API. That means that out-of-the-box
Camel will treat Spring Converters similar to Camel.

This allows you to access both Camel and Spring converters using the Camel TypeConverter API, as
shown below:

Here, Spring Boot delegates conversion to the Spring’s ConversionService instances available in the
application context. If no ConversionService instance is available, Camel Spring Boot auto
configuration creates an instance of ConversionService.

5.11. DISABLING TYPE CONVERSIONS FEATURES

To disable registering type conversion features of Camel Spring Boot such as TypeConverter
instance or Spring bridge, set the camel.springboot.typeConversion property to false as
shown below:

5.12. ADDING XML ROUTES

By default, you can put Camel XML routes in the classpath under the directory camel, which camel-
spring-boot will auto detect and include. From Camel version 2.17 onwards you can configure the
directory name or disable this feature using the configuration option, as shown below:

NOTE

The XML files should be Camel XML routes and not CamelContext such as:

@Component
public class InvoiceProcessor {

 @Autowired
 private TypeConverter typeConverter;

 public UUID parseInvoiceId(Invoice invoice) {
 // Using Spring's StringToUUIDConverter
 UUID id = invoice.typeConverter.convertTo(UUID.class,
invoice.getId());
 }

}

camel.springboot.typeConversion = false

// turn off
camel.springboot.xmlRoutes = false
// scan in the com/foo/routes classpath
camel.springboot.xmlRoutes = classpath:com/foo/routes/*.xml

 <routes xmlns="http://camel.apache.org/schema/spring">

Red Hat Fuse 7.0 Fuse on OpenShift Guide

36

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/validation.html#core-convert
http://camel.apache.org/type-converter.html

When using Spring XML files with <camelContext>, you can configure Camel in the Spring XML file as
well as in the application.properties file. For example, to set a name on Camel and turn On the stream
caching, add:

5.13. ADDING XML REST-DSL

By default, you can put Camel Rest-DSL XML routes in the classpath under the directory camel-rest,
which camel-spring-boot will auto detect and include. You can configure the directory name or
disable this feature using the configuration option, as shown below:

NOTE

The Rest-DSL XML files should be Camel XML rests and not CamelContext such as:

5.14. TESTING WITH CAMEL SPRING BOOT

 <route id="test">
 <from uri="timer://trigger"/>
 <transform>
 <simple>ref:myBean</simple>
 </transform>
 <to uri="log:out"/>
 </route>
 </routes>

camel.springboot.name = MyCamel
camel.springboot.stream-caching-enabled=true

// turn off
camel.springboot.xmlRests = false
// scan in the com/foo/routes classpath
camel.springboot.xmlRests = classpath:com/foo/rests/*.xml

 <rests xmlns="http://camel.apache.org/schema/spring">
 <rest>
 <post uri="/persons">
 <to uri="direct:postPersons"/>
 </post>
 <get uri="/persons">
 <to uri="direct:getPersons"/>
 </get>
 <get uri="/persons/{personId}">
 <to uri="direct:getPersionId"/>
 </get>
 <put uri="/persons/{personId}">
 <to uri="direct:putPersionId"/>
 </put>
 <delete uri="/persons/{personId}">
 <to uri="direct:deletePersionId"/>
 </delete>
 </rest>
 </rests>

CHAPTER 5. APACHE CAMEL IN SPRING BOOT

37

In case on Camel running on Spring Boot, Spring Boot automatically embeds Camel and all its routes,
which are annotated with @Component. When testing with Spring boot you use @SpringBootTest
instead of @ContextConfiguration to specify which configuration class to use.

When you have multiple Camel routes in different RouteBuilder classes, Camel Spring Boot will include
all these routes. Hence, when you wish to test routes from only one RouteBuilder class you can use the
following patterns to include or exclude which RouteBuilders to enable:

java-routes-include-pattern: Used for including RouteBuilder classes that match the pattern.

java-routes-exclude-pattern: Used for excluding RouteBuilder classes that match the pattern.
Exclude takes precedence over include.

You can specify these patterns in your unit test classes as properties to @SpringBootTest
annonation, as shown below:

@RunWith(CamelSpringBootRunner.class)
@SpringBootTest(classes = {MyApplication.class);
 properties = {"camel.springboot.java-routes-include-pattern=**/Foo*"})
public class FooTest {

In the FooTest class, the include pattern is **/Foo*, which represents an Ant style pattern. Here, the
pattern starts with double asterisk, which matches with any leading package name. /Foo* means the
class name must start with Foo, for example, FooRoute. You can run a test using following maven
command:

mvn test -Dtest=FooTest

5.15. SEE ALSO

Configuring Camel

Component

Endpoint

Getting Started

Red Hat Fuse 7.0 Fuse on OpenShift Guide

38

http://camel.apache.org/configuring-camel.html
https://camel.apache.org/components.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

CHAPTER 6. INTEGRATE A CAMEL APPLICATION WITH THE
AMQ BROKER

6.1. EXAMPLE HOW TO DEPLOY A SPRING BOOT CAMEL A-MQ
QUICKSTART

This tutorial shows how to deploy a quickstart using the A-MQ image.

6.1.1. Prerequisites

1. Ensure that OpenShift is running correctly and the Fuse image streams are already installed in
OpenShift. See Section 3.1, “Prerequisites”.

2. Ensure that Maven Repositories are configured for fuse, see Section 3.2.1, “Configure Maven
Repositories”

6.1.2. Building and Deploying the Quickstart

This example requires a Red Hat A-MQ 6 image and deployment template. If you are using CDK 3.1.1+,
Red Hat A-MQ 6 images and templates should be already installed in the openshift namespace by
default.

To build and deploy the A-MQ quickstart, perform the following steps:

1. Log in to OpenShift as a developer, for example:

oc login -u developer -p developer

2. Create a new project amq-quickstart

oc new-project amq-quickstart

3. Determine the version of the A-MQ 6 images and templates installed:

$ oc get template -n openshift

You should be able to find a template named amqXX-basic, where XX is the version of A-MQ
installed in Openshift.

4. Deploy the A-MQ 6 image in the amq-quickstart namespace (replace XX with the actual
version of A-MQ found in previous step):

$ oc process openshift//amqXX-basic -p APPLICATION_NAME=broker -p
MQ_USERNAME=admin -p MQ_PASSWORD=admin -p MQ_QUEUES=test -p
MQ_PROTOCOL=amqp -n amq-quickstart | oc create -f -

NOTE

This oc command could fail, if you use an older version of oc. This syntax works
with oc versions 3.5.x (based on Kubernetes 1.5.x).

CHAPTER 6. INTEGRATE A CAMEL APPLICATION WITH THE AMQ BROKER

39

5. Add role which is needed for discovery of mesh endpoints (through Kubernetes REST API
agent).

$ oc policy add-role-to-user view system:serviceaccount:amq-
quickstart:default

6. Create the quickstart project using the Maven workflow:

$ mvn org.apache.maven.plugins:maven-archetype-plugin:2.4:generate \
-
DarchetypeCatalog=https://maven.repository.redhat.com/ga/io/fabric8/
archetypes/archetypes-catalog/2.2.0.fuse-000110-redhat-5/archetypes-
catalog-2.2.0.fuse-000110-redhat-5-archetype-catalog.xml \
-DarchetypeGroupId=org.jboss.fuse.fis.archetypes \
-DarchetypeArtifactId=spring-boot-camel-amq-archetype \
-DarchetypeVersion=2.2.0.fuse-000110-redhat-5

7. The archetype plug-in switches to interactive mode to prompt you for the remaining fields:

Define value for property 'groupId': : org.example.fis
Define value for property 'artifactId': : fuse70-spring-boot-camel-
amq
Define value for property 'version': 1.0-SNAPSHOT: :
Define value for property 'package': org.example.fis: :
[INFO] Using property: spring-boot-version = 1.5.4.RELEASE
Confirm properties configuration:
groupId: org.example.fis
artifactId: fuse70-spring-boot-camel-amq
version: 1.0-SNAPSHOT
package: org.example.fis
spring-boot-version: 1.5.4.RELEASE
 Y: :

When prompted, enter org.example.fis for the groupId value and fuse70-spring-
boot-camel-amq for the artifactId value. Accept the defaults for the remaining fields.

8. Navigate to the quickstart directory fuse70-spring-boot-camel-amq:

$ cd fuse70-spring-boot-camel-amq

9. Customize the client credentials for logging on to the broker, by setting the
ACTIVEMQ_BROKER_USERNAME and ACTIVEMQ_BROKER_PASSWORD environment variables. In
the fuse70-spring-boot-camel-amq project, edit the
src/main/fabric8/deployment.yml file, as follows:

spec:
 template:
 spec:
 containers:
 -
 resources:
 requests:
 cpu: "0.2"
memory: 256Mi

Red Hat Fuse 7.0 Fuse on OpenShift Guide

40

 limits:
 cpu: "1.0"
memory: 256Mi
 env:
 - name: AMQP_HOST
 value: broker-amq-amqp
 - name: SPRING_APPLICATION_JSON
 value: '{"server":{"undertow":{"io-threads":1, "worker-
threads":2 }}}'
 - name: AMQP_USERNAME_USERNAME
 value: admin
 - name: AMQP_USERNAME_PASSWORD
 value: admin

10. Run the mvn command to deploy the quickstart to OpenShift server.

mvn fabric8:deploy

11. To verify that the quickstart is running successfully, navigate to the OpenShift console, select the
project amq-quickstart, click Applications, select Pods, click fuse70-spring-boot-camel-amq-
xxx, and click Logs.

12. The output shows the messages are sent successfully.

10:17:59.825 [Camel (camel) thread #10 - timer://order] INFO
generate-order-route - Generating order order1379.xml
10:17:59.829 [Camel (camel) thread #8 - JmsConsumer[incomingOrders]]
INFO jms-cbr-route - Sending order order1379.xml to the UK
10:17:59.829 [Camel (camel) thread #8 - JmsConsumer[incomingOrders]]
INFO jms-cbr-route - Done processing order1379.xml
10:18:02.825 [Camel (camel) thread #10 - timer://order] INFO
generate-order-route - Generating order order1380.xml
10:18:02.829 [Camel (camel) thread #7 - JmsConsumer[incomingOrders]]
INFO jms-cbr-route - Sending order order1380.xml to another country
10:18:02.829 [Camel (camel) thread #7 - JmsConsumer[incomingOrders]]
INFO jms-cbr-route - Done processing order1380.xml

13. To view the routes on the web interface, click Open Java Console and check the messages in
the A-MQ queue.

CHAPTER 6. INTEGRATE A CAMEL APPLICATION WITH THE AMQ BROKER

41

CHAPTER 7. INTEGRATE SPRING BOOT WITH KUBERNETES

7.1. INTRODUCTION TO SPRING BOOT WITH KUBERNETES
INTEGRATION

7.1.1. What are we Integrating?

The Spring Cloud Kubernetes plug-in currently enables you to integrate the following features of Spring
Boot and Kubernetes:

Section 7.1.2, “Spring Boot Externalized Configuration” integrates with,

Section 7.1.3, “Kubernetes ConfigMap” and,

Section 7.1.4, “Kubernetes Secrets”

7.1.2. Spring Boot Externalized Configuration

In Spring Boot, externalized configuration is the mechanism that enables you to inject configuration
values from external sources into Java code. In your Java code, injection is typically enabled by
annotating with the @Value annotation (to inject into a single field) or the
@ConfigurationProperties annotation (to inject into multiple properties on a Java bean class).

The configuration data can come from a wide variety of different sources (or property sources). In
particular, configuration properties are often set in a project’s application.properties file (or
application.yaml file, if you prefer).

7.1.3. Kubernetes ConfigMap

A Kubernetes ConfigMap is a mechanism that can provide configuration data to a deployed application.
A ConfigMap object is typically defined in a YAML file, which is then uploaded to the Kubernetes cluster,
making the configuration data available to deployed applications.

7.1.4. Kubernetes Secrets

A Kubernetes Secrets is a mechanism for providing sensitive data (such as passwords, certificates, and
so on) to deployed applications.

7.1.5. Spring Cloud Kubernetes Plug-In

The Spring Cloud Kubernetes plug-in implements the integration between Kubernetes and Spring Boot.
In principle, you could access the configuration data from a ConfigMap using the Kubernetes API. It is
much more convenient, however, to integrate Kubernetes ConfigMap directly with the Spring Boot
externalized configuration mechanism, so that Kubernetes ConfigMaps behave as an alternative
property source for Spring Boot configuration. This is essentially what the Spring Cloud Kubernetes plug-
in provides.

7.1.6. How to Enable Spring Boot with Kubernetes Integration

In a typical Spring Boot Maven project, you can enable the integration by adding the following Maven
dependency to your project’s POM file:

Red Hat Fuse 7.0 Fuse on OpenShift Guide

42

http://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
http://kubernetes.io/docs/user-guide/configmap/
http://kubernetes.io/docs/user-guide/secrets/
https://github.com/fabric8io/spring-cloud-kubernetes/

To complete the integration, you need to add some annotations to your Java source code, create a
Kubernetes ConfigMap object, and modify the OpenShift service account permissions to allow your
application to read the ConfigMap object. These steps are described in detail in Section 7.2, “Tutorial for
ConfigMap Property Source”.

7.2. TUTORIAL FOR CONFIGMAP PROPERTY SOURCE

The following tutorial is based on the spring-boot-camel-config-archetype Maven archetype,
which enables you to experiment with setting Kubernetes Secrets and ConfigMaps. The Spring Cloud
Kubernetes plug-in is also enabled, making it possible to integrate Kubernetes configuration objects with
Spring Boot Externalized Configuration.

7.2.1. Build and run the spring-boot-camel-config quickstart

Perform the following steps to create a simple Camel Spring Boot project:

1. Open a new shell prompt and enter the following Maven command:

mvn org.apache.maven.plugins:maven-archetype-plugin:2.4:generate \
 -
DarchetypeCatalog=https://maven.repository.redhat.com/ga/io/fabric8/
archetypes/archetypes-catalog/2.2.0.fuse-000110-redhat-5/archetypes-
catalog-2.2.0.fuse-000110-redhat-5-archetype-catalog.xml \
 -DarchetypeGroupId=org.jboss.fuse.fis.archetypes \
 -DarchetypeArtifactId=spring-boot-camel-config-archetype \
 -DarchetypeVersion=2.2.0.fuse-000110-redhat-5

The archetype plug-in switches to interactive mode to prompt you for the remaining fields:

Define value for property 'groupId': : org.example.fis
Define value for property 'artifactId': : fuse70-configmap
Define value for property 'version': 1.0-SNAPSHOT: :
Define value for property 'package': org.example.fis: :
[INFO] Using property: spring-boot-version = 1.5.13.RELEASE
Confirm properties configuration:
groupId: org.example.fis
artifactId: fuse70-configmap
version: 1.0-SNAPSHOT
package: org.example.fis
spring-boot-version: 1.5.13.RELEASE
 Y: :

<project ...>
 ...
 <dependencies>
 ...
 <dependency>
 <groupId>io.fabric8</groupId>
 <artifactId>spring-cloud-kubernetes-core</artifactId>
 </dependency>
 ...
 </dependencies>
 ...
</project>

CHAPTER 7. INTEGRATE SPRING BOOT WITH KUBERNETES

43

When prompted, enter org.example.fis for the groupId value and fuse70-configmap for
the artifactId value. Accept the defaults for the remaining fields.

2. Log in to OpenShift and switch to the OpenShift project where you will deploy your application.
For example, to log in as the developer user and deploy to the test project, enter the
following commands:

oc login -u developer -p developer
oc project test

3. At the command line, change to the directory of the new fuse70-configmap project and create
the Secret object for this application:

oc create -f sample-secret.yml

NOTE

It is necessary to create the Secret object before you deploy the application,
otherwise the deployed container enters a wait state until the Secret becomes
available. If you subsequently create the Secret, the container will come out of the
wait state.

4. Build and deploy the quickstart application. From the top level of the fuse70-configmap
project, enter:

mvn fabric8:deploy

5. View the application log as follows. Open the OpenShift console in your browser and select the
relevant project namespace (for example, test). Click in the center of the circular pod icon for
the fuse70-configmap service and then — in the Pods view — click on the pod Name to view
the details of the running pod (alternatively, you will get straight through to the details page, if
there is only one pod running). Now click on the Logs tag to view the application log and scroll
down to find the log messages generated by the Camel application.

6. The default recipient list, which is configured in
src/main/resources/application.properties, sends the generated messages to two
dummy endpoints: direct:async-queue and direct:file. This causes messages like the
following to be written to the application log:

5:44:57.376 [Camel (camel) thread #0 - timer://order] INFO
generate-order-route - Generating message message-44, sending to the
recipient list
15:44:57.378 [Camel (camel) thread #0 - timer://order] INFO target-
route-queue - ----> message-44 pushed to an async queue (simulation)
15:44:57.379 [Camel (camel) thread #0 - timer://order] INFO target-
route-queue - ----> Using username 'myuser' for the async queue
15:44:57.380 [Camel (camel) thread #0 - timer://order] INFO target-
route--file - ----> message-44 written to a file

7. Before you can update the configuration of the fuse70-configmap application using a
ConfigMap object, you must give the fuse70-configmap application permission to view data
from the OpenShift ApiServer. Enter the following command to give the view permission to the
fuse70-configmap application’s service account:

Red Hat Fuse 7.0 Fuse on OpenShift Guide

44

oc policy add-role-to-user view system:serviceaccount:test:qs-camel-
config

NOTE

A service account is specified using the syntax
system:serviceaccount:PROJECT_NAME:SERVICE_ACCOUNT_NAME. The
fis-config deployment descriptor defines the SERVICE_ACCOUNT_NAME to be
qs-camel-config.

8. To see the live reload feature in action, create a ConfigMap object as follows:

oc create -f sample-configmap.yml

The new ConfigMap overrides the recipient list of the Camel route in the running application,
configuring it to send the generated messages to three dummy endpoints: direct:async-
queue, direct:file, and direct:mail. This causes messages like the following to be
written to the application log:

16:25:24.121 [Camel (camel) thread #0 - timer://order] INFO
generate-order-route - Generating message message-9, sending to the
recipient list
16:25:24.124 [Camel (camel) thread #0 - timer://order] INFO target-
route-queue - ----> message-9 pushed to an async queue (simulation)
16:25:24.125 [Camel (camel) thread #0 - timer://order] INFO target-
route-queue - ----> Using username 'myuser' for the async queue
16:25:24.125 [Camel (camel) thread #0 - timer://order] INFO target-
route--file - ----> message-9 written to a file (simulation)
16:25:24.126 [Camel (camel) thread #0 - timer://order] INFO target-
route--mail - ----> message-9 sent via mail

7.2.2. Configuration Properties bean

A configuration properties bean is a regular Java bean that can receive configuration settings by
injection. It provides the basic interface between your Java code and the external configuration
mechanisms.

7.2.2.1. Overview

Externalized Configuration and Bean Registry shows how Spring Boot Externalized Configuration works
in the spring-boot-camel-config quickstart.

Externalized Configuration and Bean Registry

CHAPTER 7. INTEGRATE SPRING BOOT WITH KUBERNETES

45

The configuration mechanism has the following main parts:

Property Sources

Provides property settings for injection into configuration. The default property source is the
application’s application.properties file, and this can optionally be overridden by a ConfigMap
object or a Secret object.

Configuration Properties bean

Receives configuraton updates from the property sources. A configuration properties bean is a Java
bean decorated by the @Configuration and @ConfigurationProperties annotations.

Spring bean registry

With the requisite annotations, a configuration properties bean is registered in the Spring bean
registry.

Integration with Camel bean registry

The Camel bean registry is automatically integrated with the Spring bean registry, so that registered
Spring beans can be referenced in your Camel routes.

7.2.2.2. QuickstartConfiguration class

The configuration properties bean for the fuse70-configmap project is defined as the
QuickstartConfiguration Java class (under the src/main/java/org/example/fis/
directory), as follows:

package org.example.fis;

import
org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Configuration;

@Configuration 1

@ConfigurationProperties(prefix = "quickstart") 2
public class QuickstartConfiguration {

 /**

Red Hat Fuse 7.0 Fuse on OpenShift Guide

46

1

2

3

4

5

The @Configuration annotation causes the QuickstartConfiguration class to be
instantiated and registered in Spring as the bean with ID, quickstartConfiguration. This
automatically makes the bean accessible from Camel. For example, the target-route-queue
route is able to access the queueUserName property using the Camel syntax
${bean:quickstartConfiguration?method=getQueueUsername}.

The @ConfigurationProperties annotation defines a prefix, quickstart, that must be used
when defining property values in a property source. For example, a properties file would reference
the recipients property as quickstart.recipients.

The recipient property is injectable from property sources.

The queueUsername property is injectable from property sources.

The queuePassword property is injectable from property sources.

7.2.3. How to set up the Secret

The Kubernetes Secret in this quickstart is set up in the standard way, apart from one additional required
step: the Spring Cloud Kubernetes plug-in must be configured with the mount paths of the Secrets, so
that it can read the Secrets at run time.

For more details, see the chapter on Secrets in the Kubernetes reference documentation.

7.2.3.1. Sample Secret object

The quickstart project provides a sample Secret, sample-secret.yml, as follows:

 * A comma-separated list of routes to use as recipients for messages.
 */

 private String recipients; 3

 /**
 * The username to use when connecting to the async queue (simulation)
 */

 private String queueUsername; 4

 /**
 * The password to use when connecting to the async queue (simulation)
 */

 private String queuePassword; 5

 // Setters and Getters for Bean properties
 // NOT SHOWN
 ...
}

apiVersion: v1
kind: Secret
metadata:
 name: camel-config
type: Opaque
data:
 # The username is 'myuser'

CHAPTER 7. INTEGRATE SPRING BOOT WITH KUBERNETES

47

https://kubernetes.io/docs/concepts/configuration/secret/

Note the following settings:

metadata.name

Identifies the Secret. Other parts of the OpenShift system use this identifier to reference the Secret.

quickstart.queue-username

Is meant to be injected into the queueUsername property of the quickstartConfiguration
bean. The value must be base64 encoded.

quickstart.queue-password

Is meant to be injected into the queuePassword property of the quickstartConfiguration
bean. The value must be base64 encoded.

Property values in Secret objects are always base64 encoded (use the base64 command-line utility).
When the Secret is mounted in a pod’s filesystem, the values are automatically decoded back into plain
text.

NOTE

Kubernetes does not allow you to define property names in CamelCase (it requires
property names to be all lowercase). To work around this limitation, use the hyphenated
form queue-username, which Spring Boot matches with queueUsername. This takes
advantage of Spring Boot’s relaxed binding rules for externalized configuration.

7.2.3.2. Configure volume mount for the Secret

The application must be configured to load the Secret at run time, by configuring the Secret as a volume
mount. After the application starts, the Secret properties then become available at the specified location
in the filesystem.

The Example 7.1, “deployment.yml file” listing shows the application’s deployment.yml file (located
under src/main/fabric8/), which defines the volume mount for the Secret.

Example 7.1. deployment.yml file

 quickstart.queue-username: bXl1c2VyCg==
 quickstart.queue-password: MWYyZDFlMmU2N2Rm

spec:
 template:
 spec:
 serviceAccountName: "qs-camel-config"

 volumes: 1
 - name: "camel-config"
 secret:
 # The secret must be created before deploying this
application
 secretName: "camel-config"
 containers:
 -

 volumeMounts: 2
 - name: "camel-config"
 readOnly: true
 # Mount the secret where spring-cloud-kubernetes is
configured to read it

Red Hat Fuse 7.0 Fuse on OpenShift Guide

48

http://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding

1

2

In the volumes section, the deployment declares a new volume named camel-config, which
references the Secret named camel-config.

In the volumeMounts section, the deployment declares a new volume mount, which references the
camel-config volume and specifies that the Secret volume should be mounted to the path
/etc/secrets/camel-config in the pod’s filesystem.

7.2.3.3. Configure spring-cloud-kubernetes to read Secret properties

To integrate secrets with Spring Boot externalized configuration, the Spring Cloud Kubernetes plug-in
must be configured with the secret’s mount path. Spring Cloud Kubernetes reads the secrets from the
specified location and makes them available to Spring Boot as property sources.

The Spring Cloud Kubernetes plug-in is configured by settings in the bootstrap.yml file, located
under src/main/resources in the quickstart project, as shown in the Example 7.2, “bootstrap.yml
file” listing.

Example 7.2. bootstrap.yml file

The spring.cloud.kubernetes.secrets.paths property specifies the list of paths of secrets
volume mounts in the pod.

 # see src/main/resources/bootstrap.yml
 mountPath: "/etc/secrets/camel-config"
 resources:
requests:
cpu: "0.2"
memory: 256Mi
limits:
cpu: "1.0"
memory: 256Mi
 env:
 - name: SPRING_APPLICATION_JSON
 value: '{"server":{"undertow":{"io-threads":1, "worker-
threads":2 }}}'

Startup configuration of Spring-cloud-kubernetes
spring:
 application:
 name: camel-config
 cloud:
 kubernetes:
 reload:
 # Enable live reload on ConfigMap change (disabled for Secrets
by default)
 enabled: true
 secrets:
 paths: /etc/secrets/camel-config

CHAPTER 7. INTEGRATE SPRING BOOT WITH KUBERNETES

49

NOTE

A bootstrap.properties file (or bootstrap.yml file) behaves similarly to an
application.properties file, but it is loaded at an earlier phase of application start-
up. It is more reliable to set the properties relating to the Spring Cloud Kubernetes plug-in
in the bootstrap.properties file.

7.2.4. How to set up the ConfigMap

In addition to creating a ConfigMap object and setting the view permission appropriately, the integration
with Spring Cloud Kubernetes requires you to match the ConfigMap’s metadata.name with the value of
the spring.application.name property configured in the project’s bootstrap.yml file.

7.2.4.1. Sample ConfigMap object

The quickstart project provides a sample ConfigMap, sample-configmap.yml, as follows:

Note the following settings:

metadata.name

Identifies the ConfigMap. Other parts of the OpenShift system use this identifier to reference the
ConfigMap.

data.application.properties

This section lists property settings that can override settings from the original
application.properties file that was deployed with the application.

quickstart.recipients

Is meant to be injected into the recipients property of the quickstartConfiguration bean.

For more details about the format of this file, see Section 7.3, “ConfigMap PropertySource”.

7.2.4.2. Setting the view permission

As shown in the Example 7.1, “deployment.yml file” listing, the serviceAccountName is set to qs-
camel-config in the project’s deployment.yml file. Hence, you need to enter the following
command to enable the view permission on the quickstart application (assuming that it deploys into the
test project namespace):

oc policy add-role-to-user view system:serviceaccount:test:qs-camel-config

7.2.4.3. Configuring the Spring Cloud Kubernetes plug-in

kind: ConfigMap
apiVersion: v1
metadata:
 # Must match the 'spring.application.name' property of the application
 name: camel-config
data:
 application.properties: |
 # Override the configuration properties here
 quickstart.recipients=direct:async-queue,direct:file,direct:mail

Red Hat Fuse 7.0 Fuse on OpenShift Guide

50

The Spring Cloud Kubernetes plug-in is configured by the following settings in the bootstrap.yml file,
as shown in the Example 7.2, “bootstrap.yml file” listing:

spring.application.name

This value must match the metadata.name of the ConfigMap object (for example, as defined in
sample-configmap.yml in the quickstart project). It defaults to application.

spring.cloud.kubernetes.reload.enabled

Setting this to true enables dynamic reloading of ConfigMap objects.

For more details about the supported properties, see Section 7.5, “PropertySource Reload”.

7.3. CONFIGMAP PROPERTYSOURCE

Kubernetes has the notion of ConfigMap for passing configuration to the application. The Spring cloud
Kubernetes plug-in provides integration with ConfigMap to make config maps accessible by Spring
Boot.

The ConfigMap PropertySource when enabled will look up Kubernetes for a ConfigMap named
after the application (see spring.application.name). If the map is found it will read its data and do
the following:

Section 7.3.1, “Apply Individual Properties”

Section 7.3.2, “Apply Property Named application.yaml”

Section 7.3.3, “Apply Property Named application.properties”

7.3.1. Apply Individual Properties

Let’s assume that we have a Spring Boot application named demo that uses properties to read its thread
pool configuration.

pool.size.core

pool.size.max

This can be externalized to config map in YAML format:

7.3.2. Apply Property Named application.yaml

Individual properties work fine for most cases but sometimes we find YAML is more convenient. In this
case we use a single property named application.yaml and embed our YAML inside it:

kind: ConfigMap
apiVersion: v1
metadata:
 name: demo
data:
 pool.size.core: 1
 pool.size.max: 16

kind: ConfigMap
apiVersion: v1

CHAPTER 7. INTEGRATE SPRING BOOT WITH KUBERNETES

51

http://kubernetes.io/docs/user-guide/configmap/

7.3.3. Apply Property Named application.properties

You can also define the ConfigMap properties in the style of a Spring Boot application.properties
file. In this case we use a single property named application.properties and list the property
settings inside it:

7.3.4. Deploying a ConfigMap

To deploy a ConfigMap and make it accessible to a Spring Boot application, perform the following steps:

1. In your Spring Boot application, use the externalized configuration mechanism to access the
ConfigMap property source. For example, by annotating a Java bean with the
@Configuration annotation, it becomes possible for the bean’s property values to be injected
by a ConfigMap.

2. In your project’s bootstrap.properties file (or bootstrap.yaml file), set the
spring.application.name property to match the name of the ConfigMap.

3. Enable the view permission on the service account that is associated with your application (by
default, this would be the service account called default). For example, to add the view
permission to the default service account:

oc policy add-role-to-user view system:serviceaccount:$(oc project -
q):default -n $(oc project -q)

7.4. SECRETS PROPERTYSOURCE

Kubernetes has the notion of Secrets for storing sensitive data such as password, OAuth tokens, etc.
The Spring cloud Kubernetes plug-in provides integration with Secrets to make secrets accessible by
Spring Boot.

The Secrets property source when enabled will look up Kubernetes for Secrets from the following
sources:

1. Reading recursively from secrets mounts

metadata:
 name: demo
data:
 application.yaml: |-
 pool:
 size:
 core: 1
 max:16

kind: ConfigMap
apiVersion: v1
metadata:
 name: demo
data:
 application.properties: |-
 pool.size.core: 1
 pool.size.max: 16

Red Hat Fuse 7.0 Fuse on OpenShift Guide

52

http://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
http://kubernetes.io/docs/user-guide/secrets/

2. Named after the application (see spring.application.name)

3. Matching some labels

Please note that, by default, consuming Secrets via API (points 2 and 3 above) is not enabled.

If the secrets are found, their data is made available to the application.

7.4.1. Example of Setting Secrets

Let’s assume that we have a Spring Boot application named demo that uses properties to read its
ActiveMQ and PostreSQL configuration.

amq.username
amq.password
pg.username
pg.password

These secrets can be externalized to Secrets in YAML format:

ActiveMQ Secrets

PostreSQL Secrets

7.4.2. Consuming the Secrets

You can select the Secrets to consume in a number of ways:

1. By listing the directories where the secrets are mapped:

-
Dspring.cloud.kubernetes.secrets.paths=/etc/secrets/activemq,etc/sec

apiVersion: v1
kind: Secret
metadata:
 name: activemq-secrets
 labels:
 broker: activemq
type: Opaque
data:
 amq.username: bXl1c2VyCg==
 amq.password: MWYyZDFlMmU2N2Rm

apiVersion: v1
kind: Secret
metadata:
 name: postgres-secrets
 labels:
 db: postgres
type: Opaque
data:
 pg.username: dXNlcgo=
 pg.password: cGdhZG1pbgo=

CHAPTER 7. INTEGRATE SPRING BOOT WITH KUBERNETES

53

rets/postgres

If you have all the secrets mapped to a common root, you can set them like this:

-Dspring.cloud.kubernetes.secrets.paths=/etc/secrets

2. By setting a named secret:

-Dspring.cloud.kubernetes.secrets.name=postgres-secrets

3. By defining a list of labels:

-Dspring.cloud.kubernetes.secrets.labels.broker=activemq
-Dspring.cloud.kubernetes.secrets.labels.db=postgres

7.4.3. Secrets Configuration Properties

You can use the following properties to configure the Secrets property source:

spring.cloud.kubernetes.secrets.enabled

Enable the Secrets property source. Type is Boolean and default is true.

spring.cloud.kubernetes.secrets.name

Sets the name of the secret to look up. Type is String and default is
${spring.application.name}.

spring.cloud.kubernetes.secrets.labels

Sets the labels used to lookup secrets. This property behaves as defined by Map-based binding.
Type is java.util.Map and default is null.

spring.cloud.kubernetes.secrets.paths

Sets the paths where secrets are mounted. This property behaves as defined by Collection-based
binding. Type is java.util.List and default is null.

spring.cloud.kubernetes.secrets.enableApi

Enable/disable consuming secrets via APIs. Type is Boolean and default is false.

NOTE

Access to secrets via API may be restricted for security reasons — the preferred way is to
mount a secret to the POD.

7.5. PROPERTYSOURCE RELOAD

Some applications may need to detect changes on external property sources and update their internal
status to reflect the new configuration. The reload feature of Spring Cloud Kubernetes is able to trigger
an application reload when a related ConfigMap or Secret change.

This feature is disabled by default and can be enabled using the configuration property
spring.cloud.kubernetes.reload.enabled=true (for example, in the
bootstrap.properties file).

The following levels of reload are supported (property
spring.cloud.kubernetes.reload.strategy):

Red Hat Fuse 7.0 Fuse on OpenShift Guide

54

https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-Configuration-Binding#map-based-binding
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-Configuration-Binding#collection-based-binding

refresh

(default) only configuration beans annotated with @ConfigurationProperties or
@RefreshScope are reloaded. This reload level leverages the refresh feature of Spring Cloud
Context.

NOTE

The PropertySource reload feature can only be used for simple properties (that is, not
collections) when the reload strategy is set to refresh. Properties backed by
collections must not be changed at runtime.

restart_context

the whole Spring ApplicationContext is gracefully restarted. Beans are recreated with the new
configuration.

shutdown

the Spring ApplicationContext is shut down to activate a restart of the container. When using this
level, make sure that the lifecycle of all non-daemon threads is bound to the ApplicationContext and
that a replication controller or replica set is configured to restart the pod.

7.5.1. Example

Assuming that the reload feature is enabled with default settings (refresh mode), the following bean will
be refreshed when the config map changes:

A way to see that changes effectively happen is creating another bean that prints the message
periodically.

The message printed by the application can be changed using a ConfigMap like the following one:

@Configuration
@ConfigurationProperties(prefix = "bean")
public class MyConfig {

 private String message = "a message that can be changed live";

 // getter and setters

}

@Component
public class MyBean {

 @Autowired
 private MyConfig config;

 @Scheduled(fixedDelay = 5000)
 public void hello() {
 System.out.println("The message is: " + config.getMessage());
 }
}

apiVersion: v1

CHAPTER 7. INTEGRATE SPRING BOOT WITH KUBERNETES

55

Any change to the property named bean.message in the Config Map associated with the pod will be
reflected in the output of the program.

The full example is available in [spring-cloud-kubernetes-reload-example](spring-cloud-kubernetes-
examples/spring-cloud-kubernetes-reload-example).

The reload feature supports two operating modes:

event

(default) watches for changes in ConfigMaps or secrets using the Kubernetes API (web socket). Any
event will produce a re-check on the configuration and a reload in case of changes. The view role on
the service account is required in order to listen for config map changes. A higher level role (eg.
edit) is required for secrets (secrets are not monitored by default).

polling

re-creates the configuration periodically from config maps and secrets to see if it has changed. The
polling period can be configured using the property spring.cloud.kubernetes.reload.period
and defaults to 15 seconds. It requires the same role as the monitored property source. This means,
for example, that using polling on file mounted secret sources does not require particular privileges.

The following properties can be used to configure the reloading feature:

spring.cloud.kubernetes.reload.enabled

Enables monitoring of property sources and configuration reload. Type is Boolean and default is
false.

spring.cloud.kubernetes.reload.monitoring-config-maps

Allow monitoring changes in config maps. Type is Boolean and default is true.

spring.cloud.kubernetes.reload.monitoring-secrets

Allow monitoring changes in secrets. Type is Boolean and default is false.

spring.cloud.kubernetes.reload.strategy

The strategy to use when firing a reload (refresh, restart_context, shutdown). Type is Enum
and default is refresh.

spring.cloud.kubernetes.reload.mode

Specifies how to listen for changes in property sources (event, polling). Type is Enum and default
is event.

spring.cloud.kubernetes.reload.period

The period in milliseconds for verifying changes when using the polling strategy. Type is Long and
default is 15000.

Note the following points:

The spring.cloud.kubernetes.reload.* properties should not be used in ConfigMaps or
Secrets. Changing such properties at run time may lead to unexpected results;

kind: ConfigMap
metadata:
 name: reload-example
data:
 application.properties: |-
 bean.message=Hello World!

Red Hat Fuse 7.0 Fuse on OpenShift Guide

56

Deleting a property or the whole config map does not restore the original state of the beans when
using the refresh level.

CHAPTER 7. INTEGRATE SPRING BOOT WITH KUBERNETES

57

CHAPTER 8. DEVELOP AN APPLICATION FOR THE KARAF
IMAGE

8.1. CREATE A KARAF PROJECT USING MAVEN ARCHETYPE

To create a Karaf project using a Maven archetype, follow these steps:

1. Go to the appropriate directory on your system.

2. Launch the Maven command to create a Karaf project

mvn org.apache.maven.plugins:maven-archetype-plugin:2.4:generate \
 -
DarchetypeCatalog=https://maven.repository.redhat.com/ga/io/fabric8/
archetypes/archetypes-catalog/2.2.0.fuse-000110-redhat-5/archetypes-
catalog-2.2.0.fuse-000110-redhat-5-archetype-catalog.xml \
 -DarchetypeGroupId=org.jboss.fuse.fis.archetypes \
 -DarchetypeArtifactId=karaf-camel-log-archetype \
 -DarchetypeVersion=2.2.0.fuse-000110-redhat-5

3. The archetype plug-in switches to interactive mode to prompt you for the remaining fields

Define value for property 'groupId': : org.example.fis
Define value for property 'artifactId': : fuse70-karaf-camel-log
Define value for property 'version': 1.0-SNAPSHOT: :
Define value for property 'package': org.example.fis: :
Confirm properties configuration:
groupId: org.example.fis
artifactId: fuse70-karaf-camel-log
version: 1.0-SNAPSHOT
package: org.example.fis
 Y: :

When prompted, enter org.example.fis for the groupId value and fuse70-karaf-
camel-log for the artifactId value. Accept the defaults for the remaining fields.

Then, follow the instructions in the quickstart on how to build and deploy the example.

NOTE

For the full list of available Karaf archetypes, see Section 8.3, “Karaf Archetype Catalog”.

8.2. STRUCTURE OF THE CAMEL KARAF APPLICATION

The directory structure of a Camel Karaf application is as follows:

 ├── pom.xml
 ├── README.md
 ├── configuration
 │ └── settings.xml
 └── src
 ├── main
 │ ├── fabric8

Red Hat Fuse 7.0 Fuse on OpenShift Guide

58

 │ │ └── deployment.yml
 │ ├── java
 │ │ └── org
 │ │ └── example
 │ │ └── fis
 │ └── resources
 │ ├── assembly
 │ │ └── etc
 │ │ └── org.ops4j.pax.logging.cfg
 │ └── OSGI-INF
 │ └── blueprint
 │ └── camel-log.xml
 └── test
 └── java
 └── org
 └── example
 └── fis

Where the following files are important for developing a Karaf application:

pom.xml

Includes additional dependencies. You can add dependencies in the pom.xml file, for example for
logging you can use SLF4J.

org.ops4j.pax.logging.cfg

Demonstrates how to customize log levels, sets logging level to DEBUG instead of the default INFO.

camel-log.xml

Contains the source code of the application.

src/main/fabric8/deployment.yml

Provides additional configuration that is merged with the default OpenShift configuration file
generated by the fabric8-maven-plugin.

NOTE

This file is not used as part of the Karaf application, but it is used in all quickstarts to
limit the resources such as CPU and memory usage.

8.3. KARAF ARCHETYPE CATALOG

The Karaf archetype catalog includes the following examples.

Table 8.1. Karaf Maven Archetypes

 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 </dependency>

CHAPTER 8. DEVELOP AN APPLICATION FOR THE KARAF IMAGE

59

Name Description

karaf-camel-amq-archetype Demonstrates how to send and recieve messages to an Apache
ActiveMQ message broker, using the Camel amq component.

karaf-camel-log-archetype Demonstrates a simple Apache Camel application that logs a
message to the server log every 5th second.

karaf-camel-rest-sql-
archetype

Demonstrates how to use SQL via JDBC along with Camel’s
REST DSL to expose a RESTful API.

karaf-cxf-rest-archetype Demonstrates how to create a RESTful(JAX-RS) web service
using CXF and expose it through the OSGi HTTP Service.

8.4. FABRIC8 KARAF FEATURES

Fabric8 provides support for Apache Karaf making it easier to develop OSGi apps for Kubernetes.

The important features of Fabric8 are as listed below:

Different strategies to resolve placeholders in Blueprint XML files.

Environment variables

System properties

Services

Kubernetes ConfigMap

Kubernetes Secrets

Using Kubernetes configuration maps to dynamically update the OSGi configuration
administration.

Provides Kubernetes heath checks for OSGi services.

8.4.1. Adding Fabric8 Karaf Features

To use the features, add fabric8-karaf-features dependency to the project pom file.

These features will be installed into the Karaf server.

<dependency>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-karaf-features</artifactId>
 <version>${fabric8.version}</version>
 <classifier>features</classifier>
 <type>xml</type>
</dependency>

Red Hat Fuse 7.0 Fuse on OpenShift Guide

60

8.4.2. Fabric8 Karaf Core Bundle functionalities

The bundle fabric8-karaf-core provides functionalities used by Blueprint and ConfigAdmin
extensions.

To add the feature in a custom Karaf distribution, add it to startupFeatures in the project pom.xml

8.4.2.1. Property placeholders resolvers

The bundle fabric8-karaf-core exports a service PlaceholderResolver with the following
interface:

<startupFeatures>
 ...
 <feature>fabric8-karaf-core</feature>
 ...
</startupFeatures>

public interface PlaceholderResolver {
 /**
 * Resolve a placeholder using the strategy indicated by the prefix
 *
 * @param value the placeholder to resolve
 * @return the resolved value or null if not resolved
 */
 String resolve(String value);

 /**
 * Replaces all the occurrences of variables with their matching
values from the resolver using the given source string as a template.
 *
 * @param source the string to replace in
 * @return the result of the replace operation
 */
 String replace(String value);

 /**
 * Replaces all the occurrences of variables within the given source
builder with their matching values from the resolver.
 *
 * @param value the builder to replace in
 * @rerurn true if altered
 */
 boolean replaceIn(StringBuilder value);

 /**
 * Replaces all the occurrences of variables within the given
dictionary
 *
 * @param dictionary the dictionary to replace in
 * @rerurn true if altered
 */
 boolean replaceAll(Dictionary<String, Object> dictionary);

 /**

CHAPTER 8. DEVELOP AN APPLICATION FOR THE KARAF IMAGE

61

The PlaceholderResolver service acts as a collector for different property placeholder resolution
strategies. The resolution strategies it provides by default are listed in the table.

1. List of resolution strategies

Prefix Example Description

env env:JAVA_HOME lookup the property from OS
environment variables.

sys sys:java.version lookup the property from Java
JVM system properties.

service service:amq lookup the property from OS
environment variables using the
service naming idiom.

service.host service.host:amq lookup the property from OS
environment variables using the
service naming idiom returning
the hostname part only.

service.port service.port:amq lookup the property from OS
environment variables using the
service naming idiom returning
the port part only.

k8s:map k8s:map:myMap/myKey lookup the property from a
Kubernetes ConfigMap (via API)

k8s:secret k8s:secret:amq/password lookup the property from a
Kubernetes Secrets (via API or
volume mounts)

The property placeholder service supports the following options:

1. List of property placeholder service options

Name Default Description

fabric8.placeholder.prefix $[The prefix for the placeholder

 * Replaces all the occurrences of variables within the given
dictionary
 *
 * @param dictionary the dictionary to replace in
 * @rerurn true if altered
 */
 boolean replaceAll(Map<String, Object> dictionary);
}

Red Hat Fuse 7.0 Fuse on OpenShift Guide

62

fabric8.placeholder.suffix] The suffix for the placeholder

fabric8.k8s.secrets.path null A comma delimited list of paths
were secrets are mapped

fabric8.k8s.secrets.api.enabled false Enable/Disable consuming
secrets via APIs

Name Default Description

To set the property placeholder service options you can use system properties or environment variables
or both.

1. To access ConfigMaps on OpenShift the service account needs view permissions

oc policy add-role-to-user view system:serviceaccount:$(oc project -
q):default -n $(oc project -q)

2. Mount secret to the POD as access to secrets through API might be restricted.

3. Secrets available on the POD as volume mounts are mapped to a directory named as the secret,
as shown below

8.4.2.2. Adding a custom property placeholders resolvers

You can add a custom placeholder resolver to support a specific need, such as custom encryption. You
can also use the PlaceholderResolver service to make the resolvers available to Blueprint and
ConfigAdmin.

To add a custom property placeholders resolvers, follow these steps:

containers:
 -
 env:
 - name: FABRIC8_K8S_SECRETS_PATH
 value: /etc/secrets
 volumeMounts:
 - name: activemq-secret-volume
 mountPath: /etc/secrets/activemq
 readOnly: true
 - name: postgres-secret-volume
 mountPath: /etc/secrets/postgres
 readOnly: true

volumes:
 - name: activemq-secret-volume
 secret:
 secretName: activemq
 - name: postgres-secret-volume
 secret:
 secretName: postgres

CHAPTER 8. DEVELOP AN APPLICATION FOR THE KARAF IMAGE

63

1. Add the following mvn dependency to the project pom.xml.

pom.xml

2. Implement the PropertiesFunction interface and register it as OSGi service using SCR.

3. You can reference the resolver in Configuration management as follows.

properties

my.property = $[myResolver:value-to-resolve]

8.4.3. Adding Fabric8 Karaf Config Admin Support

To include Config Admin Support feature in your custom Karaf distribution, add fabric8-karaf-cm to
startupFeatures in your project pom.xml

pom.xml

<dependency>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-karaf-core</artifactId>
</dependency>

import io.fabric8.karaf.core.properties.function.PropertiesFunction;
import org.apache.felix.scr.annotations.Component;
import org.apache.felix.scr.annotations.ConfigurationPolicy;
import org.apache.felix.scr.annotations.Service;

@Component(
 immediate = true,
 policy = ConfigurationPolicy.IGNORE,
 createPid = false
)
@Service(PropertiesFunction.class)
public class MyPropertiesFunction implements PropertiesFunction {
 @Override
 public String getName() {
 return "myResolver";
 }

 @Override
 public String apply(String remainder) {
 // Parse and resolve remainder
 return remainder;
 }
}

<startupFeatures>
 ...
 <feature>fabric8-karaf-cm</feature>

Red Hat Fuse 7.0 Fuse on OpenShift Guide

64

https://github.com/fabric8io/fabric8/blob/master/components/fabric8-karaf/fabric8-karaf-core/src/main/java/io/fabric8/karaf/core/properties/function/PropertiesFunction.java

8.4.3.1. Adding ConfigMap injection

The fabric8-karaf-cm provides a ConfigAdmin bridge that inject ConfigMap values in Karaf’s
ConfigAdmin.

To be added by the ConfigAdmin bridge, a ConfigMap has to be labeled with karaf.pid, where its values
corresponds to the pid of your component.

Individual properties work for most cases. But to define your configuration, you can use a single property
names. It is same as the pid file in karaf/etc. For example,

8.4.3.2. Configuration plugin

The fabric8-karaf-cm provides a ConfigurationPlugin which resolves configuration property
placeholders.

To enable property substitution with the fabric8-karaf-cm plug-in, you must set the Java property,
fabric8.config.plugin.enabled to true. For example, you can set this property using the
JAVA_OPTIONS environment variable in the Karaf image, as follows:

JAVA_OPTIONS=-Dfabric8.config.plugin.enabled=true

An example of configuration property placeholders is shown below.

my.service.cfg

 ...
</startupFeatures>

kind: ConfigMap
apiVersion: v1
metadata:
 name: myconfig
 labels:
 karaf.pid: com.mycompany.bundle
data:
 example.property.1: my property one
 example.property.2: my property two

kind: ConfigMap
apiVersion: v1
metadata:
 name: myconfig
 labels:
 karaf.pid: com.mycompany.bundle
data:
 com.mycompany.bundle.cfg: |
 example.property.1: my property one
 example.property.2: my property two

 amq.usr = $[k8s:secret:$[env:ACTIVEMQ_SERVICE_NAME]/username]
 amq.pwd = $[k8s:secret:$[env:ACTIVEMQ_SERVICE_NAME]/password]
 amq.url = tcp://$[env+service:ACTIVEMQ_SERVICE_NAME]

CHAPTER 8. DEVELOP AN APPLICATION FOR THE KARAF IMAGE

65

my-service.xml

Fabric8 Karaf Config Admin supports the following options.

Name Default Description

fabric8.config.plugin.enabled false Enable ConfigurationPlugin

fabric8.cm.bridge.enabled true Enable ConfigAdmin bridge

fabric8.config.watch true Enable watching for ConfigMap
changes

fabric8.config.merge false Enable merge ConfigMap values
in ConfigAdmin

fabric8.config.meta true Enable injecting ConfigMap meta
in ConfigAdmin bridge

fabric8.pid.label karaf.pid Define the label the ConfigAdmin
bridge looks for (that is, a
ConfigMap that needs to be
selected must have that label; the
value of which determines to what
PID it gets associated)

 <?xml version="1.0" encoding="UTF-8"?>

 <blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.1.0"
 xsi:schemaLocation="
 http://www.osgi.org/xmlns/blueprint/v1.0.0

https://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint
 http://camel.apache.org/schema/blueprint/camel-
blueprint.xsd">

 <cm:property-placeholder persistent-id="my.service" id="my.service"
update-strategy="reload"/>

 <bean id="activemq"
class="org.apache.activemq.camel.component.ActiveMQComponent">
 <property name="userName" value="${amq.usr}"/>
 <property name="password" value="${amq.pwd}"/>
 <property name="brokerURL" value="${amq.url}"/>
 </bean>
 </blueprint>

Red Hat Fuse 7.0 Fuse on OpenShift Guide

66

fabric8.pid.filters empty Define additional conditions for
the ConfigAdmin bridge to select
a ConfigMap. The supported
syntax is:

Conditions on different
labels are separated by
"," and are intended in
AND between each
other.

Inside a label, separated
by ";" there might be
conditions on the label
value which are
considered in OR with
each other.

For example, a filter like -
Dfabric8.pid.filters=appName=A
;B,database.name=my.oracle.da
tasource translates to "give me
all the ConfigMaps that have a
label appName with values A or B
and a label database.name
equals to my.oracle.datasource".

Name Default Description

IMPORTANT

ConfigurationPlugin requires Aries Blueprint CM 1.0.9 or above.

8.4.4. Fabric8 Karaf Blueprint Support

The fabric8-karaf-blueprint uses Aries PropertyEvaluator and property placeholders resolvers
from fabric8-karaf-core to resolve placeholders in your Blueprint XML file.

To include the feature for blueprint support in your custom Karaf distribution, add fabric8-karaf-
blueprint to startupFeatures in your project pom.xml.

The fabric8 evaluator supports chained evaluators, such as ${env+service:MY_ENV_VAR}. You need
to resolve MY_ENV_VAR variable against environment variables. The result is then resolved using service
function. For example,

<startupFeatures>
 ...
 <feature>fabric8-karaf-blueprint</feature>
 ...
</startupFeatures>

<?xml version="1.0" encoding="UTF-8"?>

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

CHAPTER 8. DEVELOP AN APPLICATION FOR THE KARAF IMAGE

67

https://github.com/apache/aries/blob/trunk/blueprint/blueprint-core/src/main/java/org/apache/aries/blueprint/ext/evaluator/PropertyEvaluator.java

IMPORTANT

Nested property placeholder substitution requires Aries Blueprint Core 1.7.0 or
above.

8.4.5. Fabric8 Karaf Health Checks

It is recommended to install the fabric8-karaf-checks as a startup feature. Once enable, your Karaf
server can expose http://0.0.0.0:8181/readiness-check and
http://0.0.0.0:8181/health-check URLs which can be used by Kubernetes for readiness and
liveness probes.

NOTE

These URLs will only respond with a HTTP 200 status code when the following is true:

OSGi Framework is started.

All OSGi bundles are started.

All boot features are installed.

All deployed BluePrint bundles are in the created state.

All deployed SCR bundles are in the active, registered or factory state.

All web bundles are deployed to the web server.

All created Camel contexts are in the started state.

 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-
ext/v1.2.0"
 xsi:schemaLocation="
 http://www.osgi.org/xmlns/blueprint/v1.0.0
 https://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint
 http://camel.apache.org/schema/blueprint/camel-blueprint.xsd
 http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.3.0
 http://aries.apache.org/schemas/blueprint-ext/blueprint-ext-
1.3.xsd">

 <ext:property-placeholder evaluator="fabric8" placeholder-prefix="$["
placeholder-suffix="]"/>

 <bean id="activemq"
class="org.apache.activemq.camel.component.ActiveMQComponent">
 <property name="userName"
value="$[k8s:secret:$[env:ACTIVEMQ_SERVICE_NAME]/username]"/>
 <property name="password"
value="$[k8s:secret:$[env:ACTIVEMQ_SERVICE_NAME]/password]"/>
 <property name="brokerURL"
value="tcp://$[env+service:ACTIVEMQ_SERVICE_NAME]"/>
 </bean>
</blueprint>

Red Hat Fuse 7.0 Fuse on OpenShift Guide

68

http://0.0.0.0:8181/readiness-check
http://0.0.0.0:8181/health-check

You can add the Karaf health checks feature to the project pom.xml using startupFeatures.

pom.xml

The fabric8-maven-plugin:resources goal will detect if your using the fabric8-karaf-
checks feature and automatically add the Kubernetes for readiness and liveness probes to your
container’s configuration.

8.4.5.1. Adding Custom Heath Checks

You can provide additional custom heath checks to prevent the Karaf server from receiving user traffic
before it is ready to process the requests. TO enable custom health checks you need to implement the
io.fabric8.karaf.checks.HealthChecker or
io.fabric8.karaf.checks.ReadinessChecker interfaces and register those objects in the OSGi
registry.

Your project will need to add the following mvn dependency to the project pom.xml file.

pom.xml

NOTE

The simplest way to create and registered an object in the OSGi registry is to use SCR.

An example that performs a health check to make sure you have some free disk space, is shown below:

<startupFeatures>
 ...
 <feature>fabric8-karaf-checks</feature>
 ...
</startupFeatures>

<dependency>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-karaf-checks</artifactId>
</dependency>

import io.fabric8.karaf.checks.*;
import org.apache.felix.scr.annotations.*;
import org.apache.commons.io.FileSystemUtils;
import java.util.Collections;
import java.util.List;

@Component(
 name = "example.DiskChecker",
 immediate = true,
 enabled = true,
 policy = ConfigurationPolicy.IGNORE,
 createPid = false
)
@Service({HealthChecker.class, ReadinessChecker.class})
public class DiskChecker implements HealthChecker, ReadinessChecker {

CHAPTER 8. DEVELOP AN APPLICATION FOR THE KARAF IMAGE

69

 public List<Check> getFailingReadinessChecks() {
 // lets just use the same checks for both readiness and health
 return getFailingHeathChecks();
 }

 public List<Check> getFailingHealthChecks() {
 long free = FileSystemUtils.freeSpaceKb("/");
 if (free < 1024 * 500) {
 return Collections.singletonList(new Check("disk-space-low",
"Only " + free + "kb of disk space left."));
 }
 return Collections.emptyList();
 }
}

Red Hat Fuse 7.0 Fuse on OpenShift Guide

70

CHAPTER 9. DEVELOP AN APPLICATION FOR THE JBOSS
EAP IMAGE

9.1. CREATE A RED HAT FUSE CAMEL CDI WITH EAP PROJECT
USING THE S2I SOURCE WORKFLOW

To create a Red Hat Fuse 7.0 Camel CDI with EAP project using the S2I source workflow, follow these
steps:

1. Before creating a project, add the view role to the default service account to enable clustering.
Enter the following oc client commands in a shell prompt:

oc login -u developer -p developer
oc policy add-role-to-user view -z default

2. Navigate to the OpenShift console in your browser (https://OPENSHIFT_IP_ADDR:8443.
Replace OPENSHIFT_IP_ADDR with the IP address that was displayed in the case of CDK) and
log in to the console with your credentials (for example, with username developer and
password, developer).

3. In the Catalog search field, enter Red Hat Fuse 7.0 Camel CDI with EAP as the search
string and select the Red Hat Fuse 7.0 Camel CDI with EAP template.

4. The Information step of the template wizard opens. Click Next.

CHAPTER 9. DEVELOP AN APPLICATION FOR THE JBOSS EAP IMAGE

71

https://openshift_ip_addr:8443

5. The Configuration step of the template wizard opens. From the Add to Project dropdown,
select MyProject.

NOTE

Alternatively, if you prefer to create a new project for this example, select Create
Project from the Add to Project dropdown. A Project Name field then appears
for you to fill in the name of the new project.

6. You can accept the default values for the rest of the settings in the Configuration step.

Red Hat Fuse 7.0 Fuse on OpenShift Guide

72

NOTE

If you want to modify the application code (instead of just running the quickstart
as is), you would need to fork the original quickstart Git repository and fill in the
appropriate values in the Git Repository URL and Git Reference fields.

7. The Bindings option creates a secret with necessary information for an application to use a
service. Click Create.

CHAPTER 9. DEVELOP AN APPLICATION FOR THE JBOSS EAP IMAGE

73

8. The Results step of the template wizard opens. Click Close.

9. In the right-hand My Projects pane, click MyProject. The Overview tab of the MyProject
project opens, showing the s2i-fuse70-eap-camel-cdi application.

Red Hat Fuse 7.0 Fuse on OpenShift Guide

74

10. Click the arrow on the left of the s2i-fuse70-eap-camel-cdi deployment to expand and view the
details of this deployment, as shown.

11. In this view, you can see the build log. If the build should fail for any reason, the build log can
help you to diagnose the problem.

NOTE

The build can take several minutes to complete, because a lot of dependencies
must be downloaded from remote Maven repositories. To speed up build times,
we recommend you deploy a Nexus server on your local network.

12. If the build completes successfully, the pod icon shows as a blue circle with 1 pod running.

CHAPTER 9. DEVELOP AN APPLICATION FOR THE JBOSS EAP IMAGE

75

13. To open the application, click the link that is shown above the application details, which has the
form http://s2i-fuse70-eap-camel-cdi-myproject.IP_ADDRESS.nip.io/. This
shows a message like the following in your browser:

Hello world from 172.17.0.3

You can also specify a name using the name parameter in the URL. For example, if you enter
the URL, http://s2i-fuse70-eap-camel-cdi-myproject.IP_ADDRESS.nip.io/?
name=jdoe, in your browser you see the response:

Hello jdoe from 172.17.0.3

14. Click Overview on the left-hand navigation bar to return to the overview of the applications in the

MyProject namespace. To shut down the running pod, click the down arrow beside the
pod icon. When a dialog prompts you with the question Scale down deployment s2i-fuse70-
eap-camel-cdi-1?, click Scale Down.

15. (Optional) If you are using CDK, you can shut down the virtual OpenShift Server completely by
returning to the shell prompt and entering the following command:

minishift stop

9.2. STRUCTURE OF THE RED HAT FUSE 7.0 CAMEL CDI WITH EAP
APPLICATION

You can find the source code for the Red Hat Fuse 7.0 Camel CDI with EAP example at the following
location:

https://github.com/wildfly-extras/wildfly-camel-examples/tree/wildfly-
camel-examples-5.1.0.fuse-000059-redhat-3/camel-cdi

The directory structure of the Camel on EAP application is as follows:

 ├── pom.xml
 ├── README.md
 ├── configuration
 │ └── settings.xml
 └── src
 └── main
 ├── java
 │ └── org
 │ └── wildfly
 │ └── camel
 │ └── examples
 │ └── cdi
 │ └── camel
 │ ├── MyRouteBuilder.java
 │ ├── SimpleServlet.java
 │ └── SomeBean.java
 └── webapp
 └── WEB-INF
 └── beans.xml

Red Hat Fuse 7.0 Fuse on OpenShift Guide

76

http://s2i-fuse70-eap-camel-cdi-myproject.ip_address.nip.io/
http://s2i-fuse70-eap-camel-cdi-myproject.ip_address.nip.io/?name=jdoe

Where the following files are important for developing a JBoss EAP application:

pom.xml

Includes additional dependencies.

9.3. JBOSS EAP QUICKSTART TEMPLATES

The following S2I templates are provided for Red Hat Fuse on JBoss EAP:

Table 9.1. Red Hat Fuse on JBoss EAP S2I Templates

Name Description

Red Hat Fuse 7.0 Camel A-MQ with EAP
(eap-camel-amq-template)

Demonstrates using the camel-activemq component to connect
to an AMQ message broker running in OpenShift. It is assumed
that the broker is already deployed.

Red Hat Fuse 7.0 Camel CDI with EAP
(eap-camel-cdi-template)

Demonstrates using the camel-cdi component to integrate CDI
beans with Camel routes.

Red Hat Fuse 7.0 CXF JAX-RS with EAP
(eap-camel-cxf-jaxrs-
template)

Demonstrates using the camel-cxf component to produce and
consume JAX-RS REST services.

Red Hat Fuse 7.0 CXF JAX-WS with EAP
(eap-camel-cxf-jaxws-
template)

Demonstrates using the camel-cxf component to produce and
consume JAX-WS web services.

Red Hat Fuse 7.0 Camel JPA + MySQL
(Ephemeral) with EAP eap-camel-
jpa-template

Demonstrates how to connect a Camel application with Red Hat
Fuse on EAP to a MySQL database and expose a REST API.
This example creates two containers, one container to run as a
MySQL server, and another running the Camel application which
acts as as a client to the database.

CHAPTER 9. DEVELOP AN APPLICATION FOR THE JBOSS EAP IMAGE

77

CHAPTER 10. USING PERSISTENT STORAGE IN FUSE ON
OPENSHIFT

Fuse on OpenShift applications are based on OpenShift containers, which do not have a persistent
filesystem. Every time you start an application, it is started in a new container with an immutable Docker-
formatted image. Hence any persisted data in the file systems is lost when the container stops. But
applications need to store some state as data in a persistent store and sometimes applications share
access to a common data store. OpenShift platform supports provisioning of external stores as
Persistent Storage.

10.1. VOLUMES

OpenShift allows pods and containers to mount Volumes as file systems which are backed by multiple
host-local or network attached storage endpoints. Volume types include:

emptydir (empty directory): This is a default volume type. It is a directory which gets allocated
when the pod is created on a local host. It is not copied across the servers and when you delete
the pod the directory is removed.

configmap: It is a directory with contents populated with key-value pairs from a named
configmap.

hostPath (host directory): It is a directory with specific path on any host and it requires elevated
privileges.

secret (mounted secret): Secret volumes mount a named secret to the provided directory.

persistentvolumeclaim or pvc (persistent volume claim): This links the volume directory in the
container to a persistent volume claim you have allocated by name. A persistent volume claim is
a request to allocate storage. Note that if your claim is not bound, your pods will not start.

Volumes are configured at the Pod level and can only directly access an external storage using
hostPath. Hence it is harder to mange the access to shared resources for multiple Pods as hostPath
volumes.

10.2. PERSISTENTVOLUMES

PersistentVolumes allow cluster administrators to provision cluster wide storage which is backed by
various types of network storage like NFS, Ceph RBD, AWS Elastic Block Store (EBS), etc.
PersistentVolumes also specify capacity, access modes, and recycling policies. This allows pods from
multiple Projects to access persistent storage without worrying about the nature of the underlying
resource.

See the Configuring Persistent Storage for creating various types of PersistentVolumes.

10.3. SAMPLE PERSISTENTVOLUME CONFIGURATION

The sample configuration below provisions a path on the host machine as a PersistentVolume named
pv001:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001

Red Hat Fuse 7.0 Fuse on OpenShift Guide

78

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#configuring-persistent-storage

spec:
 accessModes:
 - ReadWriteOnce
 capacity:
 storage: 2Mi
 hostPath:
 path: /data/pv0001/

Here the host path is /data/pv0001 and storage capacity is limited to 2MB. For example, when using
OpenShift CDK it will provision the directory /data/pv0001 from the virtual machine hosting the OpenShift
Cluster. To create this PersistentVolume, add the above configuration in a file pv.yaml and use the
command:

oc create -f pv.yaml

To verify the creation of PersistentVolume, use the following command, which will list all the
PersistentVolumes configured in your OpenShift cluster:

oc get pv

10.4. PERSISTENTVOLUMECLAIMS

A PersistentVolume exposes a storage endpoint as a named entity in an OpenShift cluster. To access
this storage from Projects, PersistentVolumeClaims must be created that can access the
PersistentVolume. PersistentVolumeClaims are created for each Project with customized claims for a
certain amount of storage with certain access modes.

The sample configuration below creates a claim named pvc0001 for 1MB of storage with read-write-
once access against a PersistentVolume named pv0001.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc0001
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Mi

10.5. VOLUMES IN PODS

Pods use Volume Mounts to define the filesystem mount location and Volumes to define reference
PersistentVolumeClaims. The sample container configuration below mounts PersistentVolumeClaim
pvc0001 at /usr/share/data in its filesystem.

spec:
 template:
 spec:
 containers:
 - volumeMounts:
 - name: vol0001

CHAPTER 10. USING PERSISTENT STORAGE IN FUSE ON OPENSHIFT

79

 mountPath: /usr/share/data
 volumes:
 - name: vol0001
 persistentVolumeClaim:
 claimName: pvc0001

Any data written by the application to the directory /usr/share/data is now persisted across container
restarts. Add this configuration in the file src/main/fabric8/deployment.yml in a Fuse on OpenShift
application and create OpenShift resources using command:

mvn fabric8:resource-apply

To verify that the created DeploymentConfiguration has the volume mount and volume use the
command:

oc describe deploymentconfig <application-dc-name>

For Fuse on OpenShift quickstarts, the <application-dc-name> is the Maven project name, for example
spring-boot-camel.

Red Hat Fuse 7.0 Fuse on OpenShift Guide

80

CHAPTER 11. PATCHING FUSE ON OPENSHIFT

11.1. IMPORTANT NOTE ON BOMS AND MAVEN DEPENDENCIES

In the context of Fuse on OpenShift, applications are built entirely using Maven artifacts downloaded from
the Red Hat Maven repositories. Hence, to patch your application code, all that you need to do is to edit
your project’s POM file, changing the Maven dependencies to use the appropriate Fuse on OpenShift
patch version.

It is important to upgrade all of the Maven dependencies for Fuse on OpenShift together, so that your
project uses dependencies that are all from the same patch version. The Fuse on OpenShift project
consists of a carefully curated set of Maven artifacts that are built and tested together. If you try to mix
and match Maven artifacts from different Fuse on OpenShift patch levels, you could end up with a
configuration that is untested and unsupported by Red Hat. The easiest way to avoid this scenario is to
use a Bill of Materials (BOM) file in Maven, which defines the versions of all the Maven artifacts
supported by Fuse on OpenShift. When you update the version of a BOM file, you automatically update
the versions for all the Fuse on OpenShift Maven artifacts in your project’s POM.

The POM file that is generated by a Fuse on OpenShift Maven archetype or by a Fuse on OpenShift
template has a standard layout that uses a BOM file and defines the versions of certain required plugins.
It is recommended that you stick to this standard layout in your own applications, because this makes it
much easier to patch and upgrade your application’s dependencies.

11.2. PATCHING OVERVIEW

You might need to perform one or more of the following tasks to bring the Fuse on OpenShift product up
to the latest patch level:

Section 11.3, “Patch the Fuse on OpenShift Images”

Update the Fuse on OpenShift images on your OpenShift server, so that new application builds are
based on patched versions of the Fuse base images.

Section 11.4, “Patch Application Dependencies Using the Old-Style BOM”

Update the dependencies in your project POM file, so that your application uses patched versions of
the Maven artifacts.

Section 11.5, “Patch Application Dependencies Using the New-Style BOM”

Update the dependencies in your project POM file, so that your application uses patched versions of
the Maven artifacts.

Section 11.6, “Patch the Fuse on OpenShift Templates”

Update the Fuse on OpenShift templates on your OpenShift server, so that new projects created with
the Fuse on OpenShift templates use patched versions of the Maven artifacts.

11.3. PATCH THE FUSE ON OPENSHIFT IMAGES

The Fuse on OpenShift images are updated independently of the main Fuse product. If any patches are
required for the Fuse on OpenShift images, updated images will be made available on the standard Fuse
on OpenShift image streams and the updated images can be downloaded from the Red Hat image
registry, registry.access.redhat.com. Fuse on OpenShift provides the following image streams
(identified by their OpenShift image stream name):

jboss-fuse70-java-openshift

jboss-fuse70-karaf-openshift

CHAPTER 11. PATCHING FUSE ON OPENSHIFT

81

jboss-fuse70-eap-openshift

jboss-fuse70-console

These image streams are normally installed on the openshift project on the OpenShift server. To
check the status of the Fuse on OpenShift images on OpenShift, login to OpenShift as an administrator
and enter the following command:

$ oc get is -n openshift
NAME DOCKER REPO
TAGS UPDATED
jboss-fuse70-console 172.30.1.1:5000/openshift/jboss-
fuse70-console 1.0 15 hours
ago
jboss-fuse70-eap-openshift 172.30.1.1:5000/openshift/jboss-
fuse70-eap-openshift 1.0 15 hours
ago
jboss-fuse70-java-openshift 172.30.1.1:5000/openshift/jboss-
fuse70-java-openshift 1.0 15 hours
ago
jboss-fuse70-karaf-openshift 172.30.1.1:5000/openshift/jboss-
fuse70-karaf-openshift 1.0 15 hours
ago
...

You can now update each image stream one at a time:

oc import-image -n openshift jboss-fuse70-java-openshift:1.0
oc import-image -n openshift jboss-fuse70-karaf-openshift:1.0
oc import-image -n openshift jboss-fuse70-eap-openshift:1.0
oc import-image -n openshift jboss-fuse70-console:1.0

NOTE

The version tags in the image stream have the form 1.0-<BUILDNUMBER>. When you
specify the tag as 1.0, you will get the latest build in the 1.0 stream.

NOTE

You can also configure your Fuse applications so that a rebuild is automatically triggered
whenever a new Fuse on OpenShift image becomes available. For details, see the
section Setting Deployment Triggers in the OpenShift Container Platform 3.9 Developer
Guide.

11.4. PATCH APPLICATION DEPENDENCIES USING THE OLD-STYLE
BOM

If your application pom.xml file is configured to use the old-style BOM, follow the instructions in this
section to upgrade the Maven dependencies. To check whether your application is using an old-style
BOM, compare the layout of your project’s pom.xml file with the examples in this section.

Red Hat Fuse 7.0 Fuse on OpenShift Guide

82

https://access.redhat.com/documentation/en/openshift-container-platform/3.9/single/developer-guide/#triggers

POM files that uses the old-style BOM have a similar layout to POM files from the previous major release
of Fuse on OpenShift. As of Fuse 7.0 on OpenShift, projects generated from Maven archetypes and
OpenShift templates are still using the old-style BOM by default.

11.4.1. Update Old-Style Dependencies in a Spring Boot Application

The following code fragment shows the standard layout of a POM file for a Spring Boot application in
Fuse on OpenShift, highlighting some important property settings:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<project ...>
 ...
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-
8</project.reporting.outputEncoding>

 <spring-boot.version>1.5.13.RELEASE</spring-boot.version>
 <fabric8.version>3.0.11.fuse-000039-redhat-1</fabric8.version>

 <!-- versions of Maven plugins -->
 <fabric8.maven.plugin.version>3.5.33.fuse-000067-redhat-
1</fabric8.maven.plugin.version>
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-project-bom-camel-spring-boot</artifactId>
 <version>${fabric8.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 ...
 <build>
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>
 <version>${fabric8.maven.plugin.version}</version>
 </plugin>
 </plugins>
 </pluginManagement>

 <plugins>
 <!-- Core plugins -->
 ...
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 ...
 <version>${spring-boot.version}</version>

CHAPTER 11. PATCHING FUSE ON OPENSHIFT

83

When it comes to patching or upgrading the application, the following version settings are important:

fabric8.version

Defines the version of the fabric8-project-bom-camel-spring-boot BOM file.

fabric8.maven.plugin.version

Defines the version of the fabric8-maven-plugin plugin. The fabric8-maven-plugin plugin
is tightly integrated with each version of Fuse on OpenShift. Hence, whenever you patch or upgrade
Fuse on OpenShift, it is essential to upgrade the fabric8-maven-plugin plugin to the matching
version.

spring-boot.version

Defines the version of the spring-boot-maven-plugin plugin.

11.4.2. Update Old-Style Dependencies in a Karaf Application

The following code fragment shows the standard layout of a POM file for a Karaf application in Fuse on
OpenShift, highlighting some important property settings:

 </plugin>
 </plugins>
 </build>

 <profiles>
 <profile>
 <id>openshift</id>
 <build>
 <plugins>
 <plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>
 ...
 </plugin>
 </plugins>
 </build>
 </profile>
 </profiles>
</project>

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<project ...>
 ...
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <!-- configure the versions you want to use here -->
 <fabric8.version>3.0.11.fuse-000039-redhat-1</fabric8.version>
 <karaf.plugin.version>4.2.0.fuse-000237-redhat-
1</karaf.plugin.version>
 ...
 <fabric8.maven.plugin.version>3.5.33.fuse-000067-redhat-
1</fabric8.maven.plugin.version>
 </properties>

 <dependencyManagement>

Red Hat Fuse 7.0 Fuse on OpenShift Guide

84

When it comes to patching or upgrading the application, the following version settings are important:

fabric8.version

Defines the version of the fabric8-project-bom-fuse-karaf BOM file.

fabric8.maven.plugin.version

Defines the version of the fabric8-maven-plugin plugin. The fabric8-maven-plugin plugin
is tightly integrated with each version of Fuse on OpenShift. Hence, whenever you patch or upgrade
Fuse on OpenShift, it is essential to upgrade the fabric8-maven-plugin plugin to the matching
version.

karaf.plugin.version

Defines the version of the karaf-maven-plugin plugin.

11.4.3. Update Old-Style Dependencies in a JBoss EAP Application

The following code fragment shows the standard layout of a POM file for a JBoss EAP application in
Fuse on OpenShift, highlighting some important property settings:

 <dependencies>
 <!-- import fabric8 platform bom first -->
 <dependency>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-project-bom-fuse-karaf</artifactId>
 <version>${fabric8.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 ...
 <build>
 ...
 <plugins>
 ...
 <plugin>
 <groupId>org.apache.karaf.tooling</groupId>
 <artifactId>karaf-maven-plugin</artifactId>
 <version>${karaf.plugin.version}</version>
 ...
 </plugin>
 ...
 <plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>
 <version>${fabric8.maven.plugin.version}</version>
 ...
 </plugin>
 </plugins>
 </build>

</project>

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<project ...>

CHAPTER 11. PATCHING FUSE ON OPENSHIFT

85

When it comes to patching or upgrading the application, the following version settings are important:

version.wildfly.camel

Defines the version of the wildfly-camel-bom BOM file. By updating the BOM version to a
particular patch version, you are effectively updating all of the Fuse on JBoss EAP Maven
dependencies as well.

11.4.4. Available Old-Style BOM Versions

The following table shows the old-style BOM versions corresponding to different patch releases of Red
Hat Fuse.

Table 11.1. Red Hat Fuse Releases and Corresponding Old-Style BOM Version

Red Hat
Fuse
Release

Fabric8 BOM Version Fabric8 Maven Plugin
Version

Wildfly Camel BOM
Version

Red Hat
Fuse 7.0.0
GA

3.0.11.fuse-000039-redhat-1 3.5.33.fuse-000067-redhat-1 5.1.0.fuse-000063-redhat-1

Red Hat
Fuse 7.0.1
patch

3.0.11.fuse-000065-redhat-3 3.5.33.fuse-000089-redhat-4 5.1.0.fuse-000083-redhat-3

To upgrade your Spring Boot or Apache Karaf application POM to a specific Red Hat Fuse patch
release, set the fabric8.version property to the corresponding BOM version, and the

 ...
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <!-- WildFly-Camel versions -->
 <version.wildfly.camel>5.1.0.fuse-000063-redhat-
1</version.wildfly.camel>
 ...
 </properties>

 <!-- Dependency Management -->
 <dependencyManagement>
 <dependencies>
 <!-- WildFly Camel -->
 <dependency>
 <groupId>org.wildfly.camel</groupId>
 <artifactId>wildfly-camel-bom</artifactId>
 <version>${version.wildfly.camel}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 ...
</project>

Red Hat Fuse 7.0 Fuse on OpenShift Guide

86

fabric8.maven.plugin.version property to the corresponding Fabric8 Maven plugin version.

To upgrade your Fuse on JBoss EAP application POM, set the version.wildfly.camel property to
the corresponding BOM version.

To discover the latest available versions, you can check the Red Hat Maven repository directly:

fabric8-project-bom-camel-spring-boot BOM versions

fabric8-project-bom-fuse-karaf BOM versions

fabric8-maven-plugin versions

11.5. PATCH APPLICATION DEPENDENCIES USING THE NEW-STYLE
BOM

If your application pom.xml file is configured to use the new-style BOM, follow the instructions in this
section to upgrade the Maven dependencies. To check whether your application is using a new-style
BOM, compare the layout of your project’s pom.xml file with the examples in this section.

11.5.1. Update New-Style Dependencies in a Spring Boot Application

The following code fragment shows the standard layout of a POM file for a Spring Boot application in
Fuse on OpenShift, highlighting some important property settings:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<project ...>
 ...
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-
8</project.reporting.outputEncoding>

 <bom.version>7.0.0.fuse-000027-redhat-1</bom.version>
 ...
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fuse-springboot-bom</artifactId>
 <version>${bom.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 ...
 <build>
 ...
 <plugins>
 <!-- Core plugins -->
 ...
 <plugin>

CHAPTER 11. PATCHING FUSE ON OPENSHIFT

87

https://maven.repository.redhat.com/ga/io/fabric8/fabric8-project-bom-camel-spring-boot/
https://maven.repository.redhat.com/ga/io/fabric8/fabric8-project-bom-fuse-karaf/
https://maven.repository.redhat.com/ga/io/fabric8/fabric8-maven-plugin/

When it comes to patching or upgrading the application, the following version settings are important:

bom.version

Defines the version of the new-style fuse-springboot-bom BOM, as well as the versions of the
fabric8-maven-plugin plugin and the spring-boot-maven-plugin plugin.

11.5.2. Update New-Style Dependencies in a Karaf Application

The following code fragment shows the standard layout of a POM file for a Karaf application in Fuse on
OpenShift, highlighting some important property settings:

 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 ...
 <version>${bom.version}</version>
 </plugin>
 </plugins>
 </build>

 <profiles>
 <profile>
 <id>openshift</id>
 <build>
 <plugins>
 <plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>
 ...
 <version>${bom.version}</version>
 </plugin>
 </plugins>
 </build>
 </profile>
 </profiles>
</project>

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<project ...>
 ...
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <bom.version>7.0.0.fuse-000027-redhat-1</bom.version>
 ...
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fuse-karaf-bom</artifactId>
 <version>${bom.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>

Red Hat Fuse 7.0 Fuse on OpenShift Guide

88

When it comes to patching or upgrading the application, the following version settings are important:

bom.version

Defines the version of the new-style fuse-karaf-bom BOM, as well as the versions of the
fabric8-maven-plugin plugin and the karaf-maven-plugin plugin.

11.5.3. Update New-Style Dependencies in a JBoss EAP Application

The following code fragment shows the standard layout of a POM file for a JBoss EAP application in
Fuse on OpenShift, highlighting some important property settings:

 </dependencies>
 </dependencyManagement>
 ...
 <build>
 ...
 <plugins>
 ...
 <plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>karaf-maven-plugin</artifactId>
 <version>${bom.version}</version>
 ...
 </plugin>
 ...
 <plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>
 <version>${bom.version}</version>
 ...
 </plugin>
 </plugins>
 </build>

</project>

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<project ...>
 ...
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <bom.version>7.0.0.fuse-000027-redhat-1</bom.version>
 ...
 </properties>

 <!-- Dependency Management -->
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fuse-eap-bom</artifactId>
 <version>${bom.version}</version>
 <type>pom</type>
 <scope>import</scope>

CHAPTER 11. PATCHING FUSE ON OPENSHIFT

89

When it comes to patching or upgrading the application, the following version settings are important:

bom.version

Defines the version of the fuse-eap-bom BOM file (which replaces the old-style wildfly-camel-
bom BOM file). By updating the BOM version to a particular patch version, you are effectively
updating all of the Fuse on JBoss EAP Maven dependencies as well.

11.5.4. Available New-Style BOM Versions

The following table shows the new-style BOM versions corresponding to different patch releases of Red
Hat Fuse.

Table 11.2. Red Hat Fuse Releases and Corresponding New-Style BOM Version

Red Hat Fuse Release org.jboss.redhat-fuse BOM Version

Red Hat Fuse 7.0.0 GA 7.0.0.fuse-000027-redhat-1

Red Hat Fuse 7.0.1 patch 7.0.1.fuse-000008-redhat-4

To upgrade your application POM to a specific Red Hat Fuse patch release, set the bom.version
property to the corresponding BOM version.

11.6. PATCH THE FUSE ON OPENSHIFT TEMPLATES

You must update the Fuse on OpenShift templates to the latest patch level, to ensure that new template-
based projects are built using the correct patched dependencies. Patch the Fuse on OpenShift templates
as follows:

1. You need administrator privileges to update the Fuse on OpenShift templates. Log in to the
OpenShift Server as an administrator, as follows:

oc login URL -u ADMIN_USER -p ADMIN_PASS

Where URL is the URL of the OpenShift server and ADMIN_USER, ADMIN_PASS are the
credentials of an administrator account on the OpenShift server.

2. Install the patched Fuse on OpenShift templates. Enter the following commands at a command
prompt:

 </dependency>
 </dependencies>
 </dependencyManagement>
 ...
</project>

BASEURL=https://raw.githubusercontent.com/jboss-fuse/application-
templates/application-templates-2.1.fuse-000099-redhat-5
oc replace --force -n openshift -f ${BASEURL}/quickstarts/eap-camel-
amq-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/eap-camel-
cdi-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/eap-camel-

Red Hat Fuse 7.0 Fuse on OpenShift Guide

90

NOTE

The BASEURL points at the GA branch of the Git repository that stores the
quickstart templates and it will always have the latest templates at HEAD. So, any
time you run the preceding commands, you will get the latest version of the
templates.

cxf-jaxrs-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/eap-camel-
cxf-jaxws-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/eap-camel-
jpa-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/karaf-
camel-amq-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/karaf-
camel-log-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/karaf-
camel-rest-sql-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/karaf-cxf-
rest-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/spring-
boot-camel-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/spring-
boot-camel-amq-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/spring-
boot-camel-config-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/spring-
boot-camel-drools-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/spring-
boot-camel-infinispan-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/spring-
boot-camel-teiid-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/spring-
boot-camel-xml-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/spring-
boot-cxf-jaxrs-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/spring-
boot-cxf-jaxws-template.json

CHAPTER 11. PATCHING FUSE ON OPENSHIFT

91

APPENDIX A. SPRING BOOT MAVEN PLUG-IN

A.1. SPRING BOOT MAVEN PLUGIN OVERVIEW

This appendix describes the Spring Boot Maven Plugin. It provides the Spring Boot support in Maven
and allows you to package the executable jar or war archives and run an application in-place.

A.2. GOALS

The Spring Boot Plugin includes the following goals:

1. spring-boot:run runs your Spring Boot application.

2. spring-boot:repackage repackages your .jar and .war files to be executable.

3. spring-boot:start and spring-boot:stop both are used to manage the lifecycle of your
Spring Boot application.

4. spring-boot:build-info generates build information that can be used by the Actuator.

A.3. USAGE

You can find general instructions on how to use the Spring Boot Plugin at:
http://docs.spring.io/spring-boot/docs/current/maven-plugin/usage.html.
Following is an example that illustrates the usage of the spring-boot-maven-plugin plugin:

<project>
 <modelVersion>4.0.0</modelVersion>

 <groupId>io.fabric8.quickstarts</groupId>
 <artifactId>spring-boot-camel</artifactId>
 <version>1.0-SNAPSHOT</version>

 <name>Fabric8 :: Quickstarts :: Spring-Boot :: Camel</name>
 <description>Spring Boot example running a Camel route</description>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <!-- configure the versions you want to use here -->
 <fuse.version>7.0.0.fuse-000191-redhat-1</fuse.version>
 <bom.version>7.0.0.fuse-000027-redhat-1</bom.version>
 <fabric8.version>3.0.11.fuse-000039-redhat-1</fabric8.version>
 <spring-boot.version>1.5.13.RELEASE</spring-boot.version>

 <!-- maven plugin versions -->
 <fabric8.maven.plugin.version>3.5.33.fuse-000067-redhat-
1</fabric8.maven.plugin.version>
 <maven-compiler-plugin.version>3.3</maven-compiler-plugin.version>
 <maven-surefire-plugin.version>2.18.1</maven-surefire-plugin.version>
 </properties>

 <dependencyManagement>
 <dependencies>

Red Hat Fuse 7.0 Fuse on OpenShift Guide

92

http://docs.spring.io/spring-boot/docs/current/maven-plugin/usage.html

 <dependency>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fuse-springboot-bom</artifactId>
 <version>${bom.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>

 <!-- Enabling health checks -->
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>

 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-spring-boot-starter</artifactId>
 </dependency>

 <!-- testing -->
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-test</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.jboss.arquillian.junit</groupId>
 <artifactId>arquillian-junit-container</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-arquillian</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>

APPENDIX A. SPRING BOOT MAVEN PLUG-IN

93

For more information on Spring Boot Maven Plugin, refer the http://docs.spring.io/spring-
boot/docs/current/maven-plugin link.

 <defaultGoal>spring-boot:run</defaultGoal>

 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>${maven-compiler-plugin.version}</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>${maven-surefire-plugin.version}</version>
 <inherited>true</inherited>
 <configuration>
 <excludes>
 <exclude>**/*KT.java</exclude>
 </excludes>
 </configuration>
 </plugin>

 <plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <version>${bom.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>repackage</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

 <plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>
 <version>${fabric8.maven.plugin.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>resource</goal>
 <goal>build</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

Red Hat Fuse 7.0 Fuse on OpenShift Guide

94

http://docs.spring.io/spring-boot/docs/current/maven-plugin

APPENDIX B. KARAF MAVEN PLUG-IN

B.1. USING THE KARAF-MAVEN-PLUGIN

The karaf-maven-plugin enables you to create a Karaf server assembly, which is a microservices
style packaging of a Karaf container. That is, the finished assembly contains all of the essential
components of a Karaf installation (for example, including the contents of the etc/, data/, lib, and
system directories), but stripped down to the bare minimum required to run your application.

B.2. KARAF MAVEN PLUG-IN GOALS

The following Karaf Maven plug-in goals are relevant to building server assemblies in Fuse on
OpenShift:

Section B.2.1, “karaf:assembly Goal”

B.2.1. karaf:assembly Goal

The recommended way to create a Karaf server assembly is to use the karaf:assembly goal provided
by the karaf-maven-plugin. This assembles a server from the Maven dependencies in the project
pom.

B.2.1.1. Example of a Maven Assembly

You can create a Karaf server assembly using the karaf:assembly goal provided by the karaf-
maven-plugin. This goal assembles a microservices style server assembly from the Maven
dependencies in the project POM. In a Fuse on OpenShift project, it is recommended that you bind the
karaf:assembly goal to the Maven install phase. The project uses bundle packaging and the
project itself gets installed into the Karaf container by listing it inside the startupBundles element. The
following example displays the typical Maven configuration in a quickstart:

<plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>karaf-maven-plugin</artifactId>
 <version>${bom.version}</version>
 <extensions>true</extensions>
 <executions>
 <execution>
 <id>karaf-assembly</id>
 <goals>
 <goal>assembly</goal>
 </goals>
 <phase>install</phase>
 </execution>
 </executions>
 <configuration>

 <karafVersion>{karafMavenPluginVersion}</karafVersion>
 <useReferenceUrls>true</useReferenceUrls>
 <archiveTarGz>false</archiveTarGz>
 <includeBuildOutputDirectory>false</includeBuildOutputDirectory>
 <startupFeatures>
 <feature>karaf-framework</feature>

APPENDIX B. KARAF MAVEN PLUG-IN

95

B.2.1.2. Parameters

The karaf:assembly goal supports the following parameters:

startupFeature

This will result in the feature bundles being listed in startup.properties at the appropriate start
level and the bundles being copied into the system/ internal repository. You can use <feature-
name> or <feature-name>/<feature-version> formats.

bootFeature

This will result in the feature name being added to boot-features in the features service
configuration file and all the bundles in the feature copied into the system/ internal repository. You
can use <feature-name> or <feature-name>/<feature-version> formats.

installedFeature

This will result in all the bundles in the feature being installed in the system/ internal repository.
Therefore, at run time the feature may be installed without access to external repositories. You can
use <feature-name> or <feature-name>/<feature-version> formats.

libraries

The plugin accepts the libraries element, which can have one or more library child elements
that specify a library URL. For example:

 <feature>shell</feature>
 <feature>jaas</feature>
 <feature>aries-blueprint</feature>
 <feature>camel-blueprint</feature>
 <feature>fabric8-karaf-blueprint</feature>
 <feature>fabric8-karaf-checks</feature>
 </startupFeatures>
 <startupBundles>

<bundle>mvn:${project.groupId}/${project.artifactId}/${project.version}</b
undle>
 </startupBundles>
 </configuration>
</plugin>

<libraries>
 <library>mvn:org.postgresql/postgresql/9.3-1102-
jdbc41;type:=endorsed</library>
</libraries>

Red Hat Fuse 7.0 Fuse on OpenShift Guide

96

APPENDIX C. FABRIC8 MAVEN PLUG-IN

C.1. OVERVIEW

With the help of fabric8-maven-plugin, you can deploy your Java applications to OpenShift. It
provides tight integration with Maven and benefits from the build configuration already provided. This
plug-in focuses on the following tasks:

Building Docker-formatted images and,

Creating OpenShift resource descriptors

It can be configured very flexibly and supports multiple configuration models for creating:

A Zero-Config setup, which allows for a quick ramp-up with some opinionated defaults. Or for
more advanced requirements,

An XML configuration, which provides additional configuration options that can be added to the
pom.xml file.

C.1.1. Building Images

The fabric8:build goal is for creating Docker-formatted images containing an application. It is easy
to include build artifacts and their dependencies in these images. This plugin uses the assembly
descriptor format from the maven-assembly-plugin to specify the content which will be added to the
image.

IMPORTANT

Fuse on OpenShift supports only the OpenShift s2i build strategy, not the docker build
strategy.

C.1.2. Kubernetes and OpenShift Resources

Kubernetes and OpenShift resource descriptors can be created with fabric8:resource. These files
are packaged within the Maven artifacts and can be deployed to a running orchestration platform with
fabric8:apply.

C.1.3. Configuration

There are three levels of configuration:

Zero-Config mode helps to make some very useful decisions based on what is present in the
pom.xml file like, what base image to use or which ports to expose. It is used for starting up
things and for keeping quickstart applications small and tidy.

XML plugin configuration mode is similar to what docker-maven-plugin provides. It allows for
type safe configuration with IDE support, but only a subset of possible resource descriptor
features is provided.

Kubernetes and OpenShift resource fragments are user provided YAML files that can be
enriched by the plugin. This allows expert users to use plain configuration file with all their
capabilities, but also to add project specific build information and avoid boilerplate code.

APPENDIX C. FABRIC8 MAVEN PLUG-IN

97

For more information about the Configuration, see https://maven.fabric8.io/#configuration.

C.2. INSTALLING THE PLUGIN

The Fabric8 Maven plugin is available under the Maven central repository and can be connected to pre-
and post-integration phases as shown below.

C.3. UNDERSTANDING THE GOALS

The Fabric8 Maven Plugin supports a rich set of goals for providing a smooth Java developer
experience. You can categorize these goals as follows:

Build goals are used to create and manage the Kubernetes and OpenShift build artifacts like
Docker-formatted images or S2I builds.

Development goals are used in deploying resource descriptors to the development cluster. Also,
helps you to manage the lifecycle of the development cluster.

The following are the goals supported by the Fabric8 Maven plugin in the Red Hat Fabric Integration
Services product:

Table C.1. Build Goals

<plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>
 <version>${bom.version}</version>

 <configuration>

 <images>
 <!-- A single's image configuration -->
 

 </images>
 </configuration>

 <!-- Connect fabric8:resource and fabric8:build to lifecycle phases -->
 <executions>
 <execution>
 <id>fabric8</id>
 <goals>
 <goal>resource</goal>
 <goal>build</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Red Hat Fuse 7.0 Fuse on OpenShift Guide

98

https://maven.fabric8.io/#configuration

Goal Description

fabric8:build Build images. Note that Fuse on OpenShift supports only the OpenShift s2i build
strategy, not the docker build strategy.

fabric8:resource Create Kubernetes or OpenShift resource descriptors

fabric8:apply Apply resources to a running cluster

fabric8:resource-apply Run fabric8:resource → fabric8:apply

Table C.2. Development Goals

Goal Description

fabric8:run Run a complete development workflow cycle fabric8:resource →
fabric8:build → fabric8:apply in the foreground.

fabric8:deploy Deploy resources descriptors to a cluster after creating them and building the app.
Same as fabric8:run except that it runs in the background.

fabric8:undeploy Undeploy and remove resources descriptors from a cluster.

fabric8:start Start the application which has been deployed previously

fabric8:stop Stop the application which has been deployed previously

fabric8:log Show the logs of the running application

fabric8:debug Enable remote debugging

fabric8:watch Monitor the project workspace for changes and automatically trigger redeployment
of application.

For more information about the Fabric8 Maven plugin goals, see https://maven.fabric8.io/#goals.

C.4. GENERATORS

The Fabric8 Maven plug-in provides generator components, which have the capability to build images
automatically for specific kinds of application. In the case of Fuse on OpenShift, the following generator
types are supported:

Section C.4.3, “Spring Boot”

Section C.4.4, “Karaf”

Depending on certain characteristics of the application project, the generator framework auto-detects
what type of build is required and invokes the appropriate generator component.

APPENDIX C. FABRIC8 MAVEN PLUG-IN

99

https://maven.fabric8.io/#goals

NOTE

The open source community version of the Fabric8 Maven plug-in provides additional
generator types, but these are not supported in the Fuse on OpenShift product.

C.4.1. Zero-Configuration

Generators do not require any configuration. They are enabled by default and run automatically with
default settings when the Fabric8 Maven plug-in is invoked. But you can easily customize the
configuration of the generators, if you need to.

C.4.2. Modes for Specifying the Base Image

In Fuse on OpenShift, the base image for an application build can either be a Java image (for Spring
Boot applications) or a Karaf image (for Karaf applications) The Fabric8 Maven plug-in supports the
following modes for specifying the base image:

istag

(Default) The image stream mode works by selecting a tagged image from an OpenShift image
stream. In this case, the base image is specified in the following format:

<namespace>/<image-stream-name>:<tag>

Where <namespace> is the name of the OpenShift project where the image streams are defined
(normally, openshift), <image-stream-name> is the name of the image stream, and <tag>
identifies a particular image in the stream (or tracks the latest image in the stream).

docker

The docker mode works by selecting a particular Docker-formatted image directly from an image
registry. Because the base image is obtained directly from a remote registry, an image stream is not
required. In this case, the base image is specified in the following format:

[<registry-location-url>/]<image-namespace>/<image-name>:<tag>

Where the image specifier optionally begins with the URL location of the remote image registry
<registry-location-url>, followed by the image namespace <image-namespace>, the image
name <image-name>, and the tag, <tag>.

NOTE

The default behaviour of the open source community version of fabric8-maven-
plugin is different from the Red Hat productized version (for example, in the community
version, the default mode is docker).

C.4.2.1. Default Values for istag Mode

When istag mode is selected (which is the default), the Fabric8 Maven plug-in uses the following
default image specifiers to select the Fuse images (formatted as <namespace>/<image-stream-
name>:<tag>):

Red Hat Fuse 7.0 Fuse on OpenShift Guide

100

openshift/fuse-eap-openshift:1.0
openshift/fuse-java-openshift:1.0
openshift/fuse-karaf-openshift:1.0

NOTE

In the Fuse image streams, the individual images are tagged with build numbers — for
example, 2.0-1, 2.0-2, and so on. The 2.0 tag is configured to always track the latest
image.

C.4.2.2. Default Values for docker Mode

When docker mode is selected, and assuming that the OpenShift environment is configured to access
registry.access.redhat.com, the Fabric8 Maven plug-in uses the following default image
specifiers to select the Fuse images (formatted as <image-namespace>/<image-name>:<tag>):

fuse7/fuse-eap-openshift:1.0
fuse7/fuse-java-openshift:1.0
fuse7/fuse-karaf-openshift:1.0

C.4.2.3. Mode Configuration for Spring Boot Applications

To customize the mode configuration and base image location used for building Spring Boot
applications, add a configuration element to the fabric8-maven-plugin configuration in your
application’s pom.xml file, in the following format:

<configuration>
 <generator>
 <config>
 <spring-boot>
 <fromMode>{istag|docker}</fromMode>
 <from>{image locations}</from>
 </spring-boot>
 </config>
 </generator>
</configuration>

C.4.2.4. Mode Configuration for Karaf Applications

To customize the mode configuration and base image location used for building Karaf applications, add a
configuration element to the fabric8-maven-plugin configuration in your application’s pom.xml
file, in the following format:

<configuration>
 <generator>
 <config>
 <karaf>
 <fromMode>{istag|docker}</fromMode>
 <from>{image locations}</from>
 </karaf>

APPENDIX C. FABRIC8 MAVEN PLUG-IN

101

 </config>
 </generator>
</configuration>

C.4.2.5. Specifying the Mode on the Command Line

As an alternative to customizing the mode configuration directly in the pom.xml file, you can pass the
mode settings directly to the mvn command, by adding the following property settings to the command
line invocation:

//build from Docker-formatted image directly, registry location, image
name or tag are subject to change if desirable
-Dfabric8.generator.fromMode=docker
-Dfabric8.generator.from=<custom-registry-location-url>/<image-
namespace>/<image-name>:<tag>

//to use ImageStream from different namespace
-Dfabric8.generator.fromMode=istag //istag is default
-Dfabric8.generator.from=<namespace>/<image-stream-name>:<tag>

C.4.3. Spring Boot

The Spring Boot generator gets activated when it finds a spring-boot-maven-plugin plug-in in the
pom.xml file. The generated container port is read from the server.port property
application.properties, defaulting to 8080 if it is not found.

In addition to the common generator options, this generator can be configured with the following options:

Table C.3. Spring-Boot configuration options

Element Description Default

assembly
Ref

If a reference to an assembly is given, then this is used without trying to detect
the artifacts to include.

targetDir Directory within the generated image where the detected artefacts are put.
Change this only if the base image is changed too.

/deploy
ments

jolokiaPor
t

Port of the Jolokia agent exposed by the base image. Set this to 0 if you don’t
want to expose the Jolokia port.

8778

mainClass Main class to call. If not specified, the generator searches for the main class as
follows. First, a check is performed to detect a fat-jar. Next, the
target/classes directory is scanned to look for a single class with a main
method. If none is found or more than one is found, the generator does nothing.

webPort Port to expose as service, which is supposed to be the port of a web application.
Set this to 0 if you don’t want to expose a port.

8080

color If set, force the use of color in the Spring Boot console output.

Red Hat Fuse 7.0 Fuse on OpenShift Guide

102

The generator adds Kubernetes liveness and readiness probes pointing to either the management or
server port as read from the application.properties. If the server.ssl.key-store property is
set in application.properties then the probes are automatically set to use https.

C.4.4. Karaf

The Karaf generator gets activated when it finds a karaf-maven-plugin plug-in in the pom.xml file.

In addition to the common generator options, this generator can be configured with the following options:

Table C.4. Karaf configuration options

Element Description Default

baseDir Directory within the generated image where the detected artifacts are put.
Change this only if the base image is changed too.

/deploy
ments

jolokiaPor
t

Port of the Jolokia agent exposed by the base image. Set this to 0 if you don’t
want to expose the Jolokia port.

8778

mainClass Main class to call. If not specified, the generator searches for the main class as
follows. First, a check is performed to detect a fat-jar. Next, the
target/classes directory is scanned to look for a single class with a main
method. If none is found or more than one is found, the generator does nothing.

user User and/or group under which the files should be added. The user must already
exist in the base image. It has the general format <user>[:<group>[:
<run-user>]]`. The user and group can be given either as numeric user-
and group-id or as names. The group id is optional.

jboss:j
boss:jb
oss

webPort Port to expose as service, which is supposed to be the port of a web application.
Set this to 0 if you don’t want to expose a port.

8080

APPENDIX C. FABRIC8 MAVEN PLUG-IN

103

APPENDIX D. FABRIC8 CAMEL MAVEN PLUG-IN

D.1. GOALS

For validating Camel endpoints in the source code:

fabric8-camel:validate validates the Maven project source code to identify invalid camel
endpoint uris

D.2. ADDING THE PLUGIN TO YOUR PROJECT

To enable the Plugin, add the following to the pom.xml file:

Note: Check the current version number of the fabric8-forge release. You can find the latest release at
the following location: https://github.com/fabric8io/fabric8-forge/releases.

However, you can run the validate goal from the command line or from your Java editor such as IDEA or
Eclipse.

mvn fabric8-camel:validate

You can also enable the Plugin to run automatically as a part of the build to catch the errors.

<plugin>
 <groupId>io.fabric8.forge</groupId>
 <artifactId>fabric8-camel-maven-plugin</artifactId>
 <version>2.3.80</version>
 <executions>
 <execution>
 <phase>process-classes</phase>
 <goals>
 <goal>validate</goal>
 </goals>
 </execution>
 </executions>
</plugin>

The phase determines when the Plugin runs. In the above example, the phase is process-classes
which runs after the compilation of the main source code.

You can also configure the maven plugin to validate the test source code. Change the phase as per the
process-test-classes as shown below:

<plugin>
 <groupId>io.fabric8.forge</groupId>
 <artifactId>fabric8-camel-maven-plugin</artifactId>
 <version>2.3.80</version>

<plugin>
 <groupId>io.fabric8.forge</groupId>
 <artifactId>fabric8-camel-maven-plugin</artifactId>
 <version>2.3.80</version>
</plugin>

Red Hat Fuse 7.0 Fuse on OpenShift Guide

104

https://github.com/fabric8io/fabric8-forge/releases

 <executions>
 <execution>
 <configuration>
 <includeTest>true</includeTest>
 </configuration>
 <phase>process-test-classes</phase>
 <goals>
 <goal>validate</goal>
 </goals>
 </execution>
 </executions>
</plugin>

D.3. RUNNING THE GOAL ON ANY MAVEN PROJECT

You can also run the validate goal on any Maven project, without adding the Plugin to the pom.xml file.
You need to specify the Plugin, using its fully qualified name. For example, to run the goal on the camel-
example-cdi plugin from Apache Camel, execute the following:

 $cd camel-example-cdi
 $mvn io.fabric8.forge:fabric8-camel-maven-plugin:2.3.80:validate

which then runs and displays the following output:

[INFO] ---

[INFO] Building Camel :: Example :: CDI 2.16.2
[INFO] ---

[INFO]
[INFO] --- fabric8-camel-maven-plugin:2.3.80:validate (default-cli) @
camel-example-cdi ---
[INFO] Endpoint validation success: (4 = passed, 0 = invalid, 0 =
incapable, 0 = unknown components)
[INFO] Simple validation success: (0 = passed, 0 = invalid)
[INFO] ---

[INFO] BUILD SUCCESS
[INFO] ---

After passing the validation successfully, you can validate the four endpoints. Let us assume that you
made a typo in one of the Camel endpoint uris in the source code, such as:

 @Uri("timer:foo?period=5000")

You can make changes to include a typo error in the period option, such as:

 @Uri("timer:foo?perid=5000")

And when running the validate goal again, reports the following:

[INFO] ---

APPENDIX D. FABRIC8 CAMEL MAVEN PLUG-IN

105

[INFO] Building Camel :: Example :: CDI 2.16.2
[INFO] ---

[INFO]
[INFO] --- fabric8-camel-maven-plugin:2.3.80:validate (default-cli) @
camel-example-cdi ---
[WARNING] Endpoint validation error at:
org.apache.camel.example.cdi.MyRoutes(MyRoutes.java:32)

 timer:foo?perid=5000

 perid Unknown option. Did you mean: [period]

[WARNING] Endpoint validation error: (3 = passed, 1 = invalid, 0 =
incapable, 0 = unknown components)
[INFO] Simple validation success: (0 = passed, 0 = invalid)
[INFO] ---

[INFO] BUILD SUCCESS
[INFO] ---

D.4. OPTIONS

The maven plugin supports the following options which you can configure from the command line (use -
D syntax), or defined in the pom.xml file in the <configuration> tag.

D.4.1. Table

Parameter Default Value Description

downloadVersion true Whether to allow downloading Camel catalog version
from the internet. This is needed, if the project uses a
different Camel version than this plugin is using by
default.

failOnError false Whether to fail if invalid Camel endpoints was found.
By default the plugin logs the errors at WARN level

logUnparseable false Whether to log endpoint URIs which was un-parsable
and therefore not possible to validate

includeJava true Whether to include Java files to be validated for
invalid Camel endpoints

includeXML true Whether to include XML files to be validated for
invalid Camel endpoints

includeTest false Whether to include test source code

Red Hat Fuse 7.0 Fuse on OpenShift Guide

106

includes - To filter the names of java and xml files to only
include files matching any of the given list of patterns
(wildcard and regular expression). Multiple values
can be separated by comma.

excludes - To filter the names of java and xml files to exclude
files matching any of the given list of patterns
(wildcard and regular expression). Multiple values
can be separated by comma.

ignoreUnknownCompon
ent

true Whether to ignore unknown components

ignoreIncapable true Whether to ignore incapable of parsing the endpoint
uri

ignoreLenientProperties true Whether to ignore components that uses lenient
properties. When this is true, then the uri validation is
stricter but would fail on properties that are not part of
the component but in the uri because of using lenient
properties. For example using the HTTP components
to provide query parameters in the endpoint uri.

showAll false Whether to show all endpoints and simple
expressions (both invalid and valid).

Parameter Default Value Description

D.5. VALIDATING INCLUDE TEST

If you have a Maven project, then you can run the plugin to validate the endpoints in the unit test source
code as well. You can pass in the options using -D style as shown:

 $cd myproject
 $mvn io.fabric8.forge:fabric8-camel-maven-plugin:2.3.80:validate -
DincludeTest=true

APPENDIX D. FABRIC8 CAMEL MAVEN PLUG-IN

107

APPENDIX E. JVM ENVIRONMENT VARIABLES

E.1. S2I JAVA BUILDER IMAGE WITH OPENJDK 8

In this S2I builder image for Java builds, you can run results directly without using any other application
server. It is suitable for microservices with a flat classpath (including fat jars).

You can configure Java options when using the Fuse on OpenShift images. All the options for the Fuse
on OpenShift images are set by using environment variables as given below. For the JVM options, you
can use the environment variable JAVA_OPTIONS. Also, provide JAVA_ARGS for the arguments which
are given through to the application.

E.2. S2I KARAF BUILDER IMAGE WITH OPENJDK 8

This image can be used with OpenShift’s Source To Image in order to build Karaf4 custom assembly
based maven projects.

Following is the command to use S2I:

s2i build <git repo url> registry.access.redhat.com/fuse7/fuse-karaf-
openshift:1.0 <target image name>
docker run <target image name>

E.2.1. Configuring the Karaf4 Assembly

The location of the Karaf4 assembly built by the maven project can be provided in multiple ways.

Default assembly file *.tar.gz in output directory

By using the -e flag in sti or oc command

By setting FUSE_ASSEMBLY property in .sti/environment under the project source

E.2.2. Customizing the Build

It is possible to customize the maven build. The MAVEN_ARGS environment variable can be set to change
the behaviour.

By default, the MAVEN_ARGS is set as follows:

Karaf4: install karaf:assembly karaf:archive -DskipTests -e

E.3. ENVIRONMENT VARIABLES

Following are the environment variables that are used to influence the behaviour of S2I Java and Karaf
builder images:

E.3.1. Build Time

During the build time, you can use the following environment variables:

MAVEN_ARGS: Arguments to use when calling maven, replacing the default package.

Red Hat Fuse 7.0 Fuse on OpenShift Guide

108

MAVEN_ARGS_APPEND: Additional Maven arguments, useful for adding temporary arguments
like -X or -am -pl.

ARTIFACT_DIR: Path to target/ where the jar files are created for multi-module builds. These
are added to ${MAVEN_ARGS}.

ARTIFACT_COPY_ARGS: Arguments to use when copying artifacts from the output directory to
the application directory. Useful to specify which artifacts will be part of the image.

MAVEN_CLEAR_REPO: If set, remove the Maven repository after you build the artifact. This is
useful for keeping the application image small, however, It prevents the incremental builds. The
default value is false.

E.3.2. Run Time

You can use the following environment variables to influence the run script:

JAVA_APP_DIR: the directory where the application resides. All paths in your application are
relative to the directory.

JAVA_LIB_DIR: this directory contains the Java jar files as well an optional classpath file, which
holds the classpath. Either as a single line classpath (colon separated) or with jar files listed line-
by-line. However, If not set, then JAVA_LIB_DIR is the same as JAVA_APP_DIR directory.

JAVA_OPTIONS: options to add when calling java.

JAVA_MAX_MEM_RATIO: It is used when no -Xmx option is given in JAVA_OPTIONS. This is
used to calculate a default maximal heap Memory based on a containers restriction. If used in a
Docker container without any memory constraints for the container, then this option has no
effect.

JAVA_MAX_CORE: It restricts manually the number of cores available, which is used for
calculating certain defaults like the number of garbage collector threads. If set to 0, you cannot
perform the base JVM tuning based on the number of cores.

JAVA_DIAGNOSTICS: Set this to fetch some diagnostics information, to standard out when
things are happening.

JAVA_MAIN_CLASS: A main class to use as an argument for java. When you give this
environment variable, all jar files in $JAVA_APP_DIR directory are added to the classpath and in
the $JAVA_LIB_DIR directory.

JAVA_APP_JAR: A jar file with an appropriate manifest, so that you can start with java -jar.
However, if it is not provided, then $JAVA_MAIN_CLASS is set. In all cases, this jar file is added
to the classpath.

JAVA_APP_NAME: Name to use for the process.

JAVA_CLASSPATH: the classpath to use. If not given, the startup script checks for a file
${JAVA_APP_DIR}/classpath and use its content as classpath. If this file doesn’t exists, then
all jars in the application directory are added under (classes:${JAVA_APP_DIR}/*).

JAVA_DEBUG: If set, remote debugging will be switched on.

JAVA_DEBUG_PORT: Port used for remote debugging. The default value is 5005.

APPENDIX E. JVM ENVIRONMENT VARIABLES

109

E.3.3. Jolokia Configuration

You can use the following environment variables in Jolokia:

AB_JOLOKIA_OFF: If set, disables the activation of Jolokia (echos an empty value). By default,
Jolokia is enabled.

AB_JOLOKIA_CONFIG: If set, uses the file (including path) as Jolokia JVM agent properties.
However, If not set, the /opt/jolokia/etc/jolokia.properties will be created using the
settings.

AB_JOLOKIA_HOST: Host address to bind (Default value is 0.0.0.0)

AB_JOLOKIA_PORT: Port to use (Default value is 8778)

AB_JOLOKIA_USER: User for basic authentication. By default, it is jolokia

AB_JOLOKIA_PASSWORD: Password for basic authentication. By default, authentication is
switched off

AB_JOLOKIA_PASSWORD_RANDOM: Generates a value and is written in
/opt/jolokia/etc/jolokia.pw file

AB_JOLOKIA_HTTPS: Switch on secure communication with HTTPS. By default, self-signed
server certificates are generated, if no serverCert configuration is given in AB_JOLOKIA_OPTS

AB_JOLOKIA_ID: Agent ID to use

AB_JOLOKIA_DISCOVERY_ENABLED: Enables the Jolokia discovery. The default value is false.

AB_JOLOKIA_OPTS: Additional options to be appended to the agent configuration. Options are
given in the format key=value

Here is an option for integration with various environments:

AB_JOLOKIA_AUTH_OPENSHIFT: Switch on client authentication for OpenShift TSL
communication. Ensure that the value of this parameter must be present in a client certificate. If
you enable this parameter, it will automatically switch Jolokia into HTTPS communication mode.
The default CA cert is set to
/var/run/secrets/kubernetes.io/serviceaccount/ca.crt

Application arguments can be provided by setting the variable JAVA_ARGS to the corresponding value.

Red Hat Fuse 7.0 Fuse on OpenShift Guide

110

APPENDIX F. TUNING JVMS TO RUN IN LINUX CONTAINERS

F.1. OVERVIEW

Java processes running inside the Linux container do not behave as expected when you allow JVM
ergonomics to set the default values for the garbage collector, heap size, and runtime compiler. When
you execute a Java application without any tuning parameters — for example, java -jar
mypplication-fat.jar — the JVM automatically sets several parameters based on the host limits,
not the container limits.

This section provides information about the packaging of Java applications inside a Linux container so
that the container’s limits are taken into consideration for calculating default values.

F.2. TUNING THE JVM

The current generation of Java JVMs are not container-aware, so they allocate resources based on the
size of the physical host, not on the size of the container. For example, a JVM normally sets the
maximum heap size to be 1/4 of the physical memory on a host. On a large host machine, this value can
easily exceed the memory limit defined for a container and, if the container limit is exceeded at run time,
OpenShift will kill the application.

To solve this issue, you can use the Fuse on OpenShift base image that is capable of understanding that
a Java JVM runs inside a restricted container and automatically adjusts the maximum heap size, if not
done manually. It provides a solution of setting the maximum memory limit and the core limit on the JVM
that runs your application.

F.3. DEFAULT BEHAVIOUR OF FUSE ON OPENSHIFT IMAGES

In Fuse on OpenShift, the base image for an application build can either be a Java image (for Spring
Boot applications) or a Karaf image (for Karaf applications). Fuse on OpenShift images execute a script
that reads the container limits and uses these limits as the basis for allocating resources. By default, the
script allocates the following resources to the JVM:

50% of the container memory limit,

50% of the container core limit.

There are some exceptions to this. For Karaf and Java images, when the physical memory is below
300MB threshold, heap size is restored to one-fourth default heap size instead of the one-half.

F.4. CUSTOM TUNING OF FUSE ON OPENSHIFT IMAGES

The script sets the CONTAINER_MAX_MEMORY and CONTAINER_CORE_LIMIT environment variables,
which can be read by a custom application to tune its internal resources. Additionally, you can specify the
following runtime environment variables that enable you to customize the settings on the JVM that runs
your application:

JAVA_OPTIONS

JAVA_MAX_MEM_RATIO

To customize the limits explicitly, you can set the JAVA_MAX_MEM_RATIO environment variable by
editing the deployment.yml file, in your Maven project. For example:

APPENDIX F. TUNING JVMS TO RUN IN LINUX CONTAINERS

111

https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/ergonomics.html

spec:
 template:
 spec:
 containers:
 -
 resources:
 requests:
 cpu: "0.2"
 memory: 256Mi
 limits:
 cpu: "1.0"
 memory: 256Mi
 env:
 - name: JAVA_MAX_MEM_RATIO
 value: 60

F.5. TUNING THIRD-PARTY LIBRARIES

Red Hat recommends you to customize limits for any third-party Java libraries such as Jetty. These
libraries would use the given default limits, if you fail to customize limits manually.

The startup script exposes some environment variables describing container limits which can be used by
applications:

CONTAINER_CORE_LIMIT

A calculated core limit

CONTAINER_MAX_MEMORY

Memory limit given to the container

Red Hat Fuse 7.0 Fuse on OpenShift Guide

112

	Table of Contents
	CHAPTER 1. BEFORE YOU BEGIN
	1.1. RELEASE NOTES
	1.2. VERSION COMPATIBILITY AND SUPPORT
	1.3. SUPPORT FOR WINDOWS O/S
	1.4. COMPARISON: FUSE STANDALONE AND FUSE ON OPENSHIFT

	CHAPTER 2. GET STARTED FOR ADMINISTRATORS
	2.1. PREPARE THE OPENSHIFT SERVER

	CHAPTER 3. GET STARTED FOR DEVELOPERS
	3.1. PREREQUISITES
	3.1.1. Access to an OpenShift Server
	3.1.1.1. Install Container Development Kit (CDK) on Your Local Machine
	3.1.1.2. Get Remote Access to an Existing OpenShift Server

	3.1.2. Java Version
	3.1.3. Install the Requisite Client-Side Tools

	3.2. PREPARE YOUR DEVELOPMENT ENVIRONMENT
	3.2.1. Configure Maven Repositories
	3.2.2. (Optional) Install Developer Studio

	3.3. CREATE AND DEPLOY A PROJECT USING THE S2I BINARY WORKFLOW
	3.3.1. Undeploy and Redeploy the Project
	3.3.2. Opening the HawtIO Console

	3.4. CREATE AND DEPLOY A PROJECT USING THE S2I SOURCE WORKFLOW

	CHAPTER 4. DEVELOP AN APPLICATION FOR THE SPRING BOOT IMAGE
	4.1. OVERVIEW
	4.2. CREATE A SPRING BOOT PROJECT USING MAVEN ARCHETYPE
	4.3. STRUCTURE OF THE CAMEL SPRING BOOT APPLICATION
	4.4. SPRING BOOT ARCHETYPE CATALOG
	4.5. CAMEL STARTER MODULES
	4.5.1. Overview
	4.5.2. Using Camel Starter Modules

	4.6. UNSUPPORTED STARTER MODULES
	4.7. BOM FILE FOR SPRING BOOT
	4.8. SPRING BOOT MAVEN PLUGIN

	CHAPTER 5. APACHE CAMEL IN SPRING BOOT
	5.1. INTRODUCTION TO CAMEL SPRING BOOT
	5.2. INTRODUCTION TO CAMEL SPRING BOOT STARTER
	5.3. AUTO-CONFIGURED CAMEL CONTEXT
	5.4. AUTO-DETECTING CAMEL ROUTES
	5.5. CAMEL PROPERTIES
	5.6. CUSTOM CAMEL CONTEXT CONFIGURATION
	5.7. DISABLING JMX
	5.8. AUTO-CONFIGURED CONSUMER AND PRODUCER TEMPLATES
	5.9. AUTO-CONFIGURED TYPECONVERTER
	5.10. SPRING TYPE CONVERSION API BRIDGE
	5.11. DISABLING TYPE CONVERSIONS FEATURES
	5.12. ADDING XML ROUTES
	5.13. ADDING XML REST-DSL
	5.14. TESTING WITH CAMEL SPRING BOOT
	5.15. SEE ALSO

	CHAPTER 6. INTEGRATE A CAMEL APPLICATION WITH THE AMQ BROKER
	6.1. EXAMPLE HOW TO DEPLOY A SPRING BOOT CAMEL A-MQ QUICKSTART
	6.1.1. Prerequisites
	6.1.2. Building and Deploying the Quickstart

	CHAPTER 7. INTEGRATE SPRING BOOT WITH KUBERNETES
	7.1. INTRODUCTION TO SPRING BOOT WITH KUBERNETES INTEGRATION
	7.1.1. What are we Integrating?
	7.1.2. Spring Boot Externalized Configuration
	7.1.3. Kubernetes ConfigMap
	7.1.4. Kubernetes Secrets
	7.1.5. Spring Cloud Kubernetes Plug-In
	7.1.6. How to Enable Spring Boot with Kubernetes Integration

	7.2. TUTORIAL FOR CONFIGMAP PROPERTY SOURCE
	7.2.1. Build and run the spring-boot-camel-config quickstart
	7.2.2. Configuration Properties bean
	7.2.2.1. Overview
	7.2.2.2. QuickstartConfiguration class

	7.2.3. How to set up the Secret
	7.2.3.1. Sample Secret object
	7.2.3.2. Configure volume mount for the Secret
	7.2.3.3. Configure spring-cloud-kubernetes to read Secret properties

	7.2.4. How to set up the ConfigMap
	7.2.4.1. Sample ConfigMap object
	7.2.4.2. Setting the view permission
	7.2.4.3. Configuring the Spring Cloud Kubernetes plug-in

	7.3. CONFIGMAP PROPERTYSOURCE
	7.3.1. Apply Individual Properties
	7.3.2. Apply Property Named application.yaml
	7.3.3. Apply Property Named application.properties
	7.3.4. Deploying a ConfigMap

	7.4. SECRETS PROPERTYSOURCE
	7.4.1. Example of Setting Secrets
	7.4.2. Consuming the Secrets
	7.4.3. Secrets Configuration Properties

	7.5. PROPERTYSOURCE RELOAD
	7.5.1. Example

	CHAPTER 8. DEVELOP AN APPLICATION FOR THE KARAF IMAGE
	8.1. CREATE A KARAF PROJECT USING MAVEN ARCHETYPE
	8.2. STRUCTURE OF THE CAMEL KARAF APPLICATION
	8.3. KARAF ARCHETYPE CATALOG
	8.4. FABRIC8 KARAF FEATURES
	8.4.1. Adding Fabric8 Karaf Features
	8.4.2. Fabric8 Karaf Core Bundle functionalities
	8.4.2.1. Property placeholders resolvers
	8.4.2.2. Adding a custom property placeholders resolvers

	8.4.3. Adding Fabric8 Karaf Config Admin Support
	8.4.3.1. Adding ConfigMap injection
	8.4.3.2. Configuration plugin

	8.4.4. Fabric8 Karaf Blueprint Support
	8.4.5. Fabric8 Karaf Health Checks
	8.4.5.1. Adding Custom Heath Checks

	CHAPTER 9. DEVELOP AN APPLICATION FOR THE JBOSS EAP IMAGE
	9.1. CREATE A RED HAT FUSE CAMEL CDI WITH EAP PROJECT USING THE S2I SOURCE WORKFLOW
	9.2. STRUCTURE OF THE RED HAT FUSE 7.0 CAMEL CDI WITH EAP APPLICATION
	9.3. JBOSS EAP QUICKSTART TEMPLATES

	CHAPTER 10. USING PERSISTENT STORAGE IN FUSE ON OPENSHIFT
	10.1. VOLUMES
	10.2. PERSISTENTVOLUMES
	10.3. SAMPLE PERSISTENTVOLUME CONFIGURATION
	10.4. PERSISTENTVOLUMECLAIMS
	10.5. VOLUMES IN PODS

	CHAPTER 11. PATCHING FUSE ON OPENSHIFT
	11.1. IMPORTANT NOTE ON BOMS AND MAVEN DEPENDENCIES
	11.2. PATCHING OVERVIEW
	11.3. PATCH THE FUSE ON OPENSHIFT IMAGES
	11.4. PATCH APPLICATION DEPENDENCIES USING THE OLD-STYLE BOM
	11.4.1. Update Old-Style Dependencies in a Spring Boot Application
	11.4.2. Update Old-Style Dependencies in a Karaf Application
	11.4.3. Update Old-Style Dependencies in a JBoss EAP Application
	11.4.4. Available Old-Style BOM Versions

	11.5. PATCH APPLICATION DEPENDENCIES USING THE NEW-STYLE BOM
	11.5.1. Update New-Style Dependencies in a Spring Boot Application
	11.5.2. Update New-Style Dependencies in a Karaf Application
	11.5.3. Update New-Style Dependencies in a JBoss EAP Application
	11.5.4. Available New-Style BOM Versions

	11.6. PATCH THE FUSE ON OPENSHIFT TEMPLATES

	APPENDIX A. SPRING BOOT MAVEN PLUG-IN
	A.1. SPRING BOOT MAVEN PLUGIN OVERVIEW
	A.2. GOALS
	A.3. USAGE

	APPENDIX B. KARAF MAVEN PLUG-IN
	B.1. USING THE KARAF-MAVEN-PLUGIN
	B.2. KARAF MAVEN PLUG-IN GOALS
	B.2.1. karaf:assembly Goal
	B.2.1.1. Example of a Maven Assembly
	B.2.1.2. Parameters

	APPENDIX C. FABRIC8 MAVEN PLUG-IN
	C.1. OVERVIEW
	C.1.1. Building Images
	C.1.2. Kubernetes and OpenShift Resources
	C.1.3. Configuration

	C.2. INSTALLING THE PLUGIN
	C.3. UNDERSTANDING THE GOALS
	C.4. GENERATORS
	C.4.1. Zero-Configuration
	C.4.2. Modes for Specifying the Base Image
	C.4.2.1. Default Values for istag Mode
	C.4.2.2. Default Values for docker Mode
	C.4.2.3. Mode Configuration for Spring Boot Applications
	C.4.2.4. Mode Configuration for Karaf Applications
	C.4.2.5. Specifying the Mode on the Command Line

	C.4.3. Spring Boot
	C.4.4. Karaf

	APPENDIX D. FABRIC8 CAMEL MAVEN PLUG-IN
	D.1. GOALS
	D.2. ADDING THE PLUGIN TO YOUR PROJECT
	D.3. RUNNING THE GOAL ON ANY MAVEN PROJECT
	D.4. OPTIONS
	D.4.1. Table

	D.5. VALIDATING INCLUDE TEST

	APPENDIX E. JVM ENVIRONMENT VARIABLES
	E.1. S2I JAVA BUILDER IMAGE WITH OPENJDK 8
	E.2. S2I KARAF BUILDER IMAGE WITH OPENJDK 8
	E.2.1. Configuring the Karaf4 Assembly
	E.2.2. Customizing the Build

	E.3. ENVIRONMENT VARIABLES
	E.3.1. Build Time
	E.3.2. Run Time
	E.3.3. Jolokia Configuration

	APPENDIX F. TUNING JVMS TO RUN IN LINUX CONTAINERS
	F.1. OVERVIEW
	F.2. TUNING THE JVM
	F.3. DEFAULT BEHAVIOUR OF FUSE ON OPENSHIFT IMAGES
	F.4. CUSTOM TUNING OF FUSE ON OPENSHIFT IMAGES
	F.5. TUNING THIRD-PARTY LIBRARIES

