
Red Hat Decision Manager 7.4

Designing a decision service using DRL rules

Last Updated: 2020-06-11

Red Hat Decision Manager 7.4 Designing a decision service using DRL
rules

Red Hat Customer Content Services
brms-docs@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to design a decision service using DRL rules in Red Hat Decision
Manager 7.4.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

CHAPTER 2. DRL (DROOLS RULE LANGUAGE) RULES

CHAPTER 3. DATA OBJECTS
3.1. CREATING DATA OBJECTS

CHAPTER 4. CREATING DRL RULES IN BUSINESS CENTRAL
4.1. ADDING WHEN CONDITIONS IN DRL RULES
4.2. ADDING THEN ACTIONS IN DRL RULES

4.2.1. Rule attributes

CHAPTER 5. EXECUTING RULES

CHAPTER 6. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES
6.1. CREATING AND EXECUTING DRL RULES IN RED HAT JBOSS DEVELOPER STUDIO
6.2. CREATING AND EXECUTING DRL RULES USING JAVA
6.3. CREATING AND EXECUTING DRL RULES USING MAVEN
6.4. EXECUTABLE RULE MODELS

6.4.1. Embedding an executable rule model in a Maven project
6.4.2. Embedding an executable rule model in a Java application

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE
7.1. IMPORTING AND EXECUTING RED HAT DECISION MANAGER EXAMPLE DECISIONS IN AN IDE
7.2. HELLO WORLD EXAMPLE DECISIONS (BASIC RULES AND DEBUGGING)
7.3. STATE EXAMPLE DECISIONS (FORWARD CHAINING AND CONFLICT RESOLUTION)

State example using salience
State example using agenda groups
Dynamic facts in the State example

7.4. FIBONACCI EXAMPLE DECISIONS (RECURSION AND CONFLICT RESOLUTION)
7.5. PRICING EXAMPLE DECISIONS (DECISION TABLES)

Spreadsheet decision table setup
Base pricing rules
Promotional discount rules

7.6. PET STORE EXAMPLE DECISIONS (AGENDA GROUPS, GLOBAL VARIABLES, CALLBACKS, AND GUI
INTEGRATION)

Rule execution behavior in the Pet Store example
Pet Store rule file imports, global variables, and Java functions
Pet Store rules with agenda groups
Pet Store example execution

7.7. HONEST POLITICIAN EXAMPLE DECISIONS (TRUTH MAINTENANCE AND SALIENCE)
Politician and Hope classes
Rule definitions for politician honesty
Example execution and audit trail

7.8. SUDOKU EXAMPLE DECISIONS (COMPLEX PATTERN MATCHING, CALLBACKS, AND GUI
INTEGRATION)

Sudoku example execution and interaction
Sudoku example classes
Sudoku validation rules (validate.drl)
Sudoku solving rules (sudoku.drl)

7.9. CONWAY’S GAME OF LIFE EXAMPLE DECISIONS (RULEFLOW GROUPS AND GUI INTEGRATION)

4

5

9

10
10

12
15
18

20

23

28
28
32
35
40
41

43

45
45
48
51

54
57
58
59
65
66
69
70

70
71
73
74
78
82
83
84
85

88
88
94
94
95

102

Table of Contents

1

. .

. .

Conway example execution and interaction
Conway example rules with ruleflow groups

7.10. HOUSE OF DOOM EXAMPLE DECISIONS (BACKWARD CHAINING AND RECURSION)
Recursive query and related rules
Transitive closure rule
Reactive query rule
Queries with unbound arguments in rules

CHAPTER 8. NEXT STEPS

APPENDIX A. VERSIONING INFORMATION

103
104
108
112
113
114
115

117

118

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

2

Table of Contents

3

PREFACE
As a business rules developer, you can define business rules using the DRL (Drools Rule Language)
designer in Business Central. DRL rules are defined directly in free-form .drl text files instead of in a
guided or tabular format like other types of rule assets in Business Central. These DRL files form the
core of the decision service for your project.

Prerequisites

The space and project for the DRL rules have been created in Business Central. Each asset is
associated with a project assigned to a team. For details, see Getting started with decision
services.

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

4

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.4/html-single/getting_started_with_decision_services

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT
DECISION MANAGER

Red Hat Decision Manager supports several assets that you can use to define business decisions for
your decision service. Each decision-authoring asset has different advantages, and you might prefer to
use one or a combination of multiple assets depending on your goals and needs.

The following table highlights the main decision-authoring assets supported in Red Hat Decision
Manager projects to help you decide or confirm the best method for defining decisions in your decision
service.

Table 1.1. Decision-authoring assets supported in Red Hat Decision Manager

Asset Highlights Authoring tools Documentation

Decision Model
and Notation
(DMN) models

Are decision models based on a
notation standard defined by the
Object Management Group
(OMG)

Use graphical decision
requirements diagrams (DRDs)
with one or more decision
requirements graphs (DRGs) to
trace business decision flows

Use an XML schema that allows
the DMN models to be shared
between DMN-compliant
platforms

Support Friendly Enough
Expression Language (FEEL) to
define decision logic in DMN
decision tables and other DMN
boxed expressions

Are optimal for creating
comprehensive, illustrative, and
stable decision flows

Business Central
or other DMN-
compliant editor

Designing a
decision service
using DMN models

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

5

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.4/html-single/designing_a_decision_service_using_dmn_models

Guided decision
tables Are tables of rules that you

create in a UI-based table
designer in Business Central

Are a wizard-led alternative to
spreadsheet decision tables

Provide fields and options for
acceptable input

Support template keys and
values for creating rule
templates

Support hit policies, real-time
validation, and other additional
features not supported in other
assets

Are optimal for creating rules in
a controlled tabular format to
minimize compilation errors

Business Central Designing a
decision service
using guided
decision tables

Spreadsheet
decision tables Are XLS or XLSX spreadsheet

decision tables that you can
upload into Business Central

Support template keys and
values for creating rule
templates

Are optimal for creating rules in
decision tables already managed
outside of Business Central

Have strict syntax requirements
for rules to be compiled properly
when uploaded

Spreadsheet
editor

Designing a
decision service
using spreadsheet
decision tables

Guided rules
Are individual rules that you
create in a UI-based rule
designer in Business Central

Provide fields and options for
acceptable input

Are optimal for creating single
rules in a controlled format to
minimize compilation errors

Business Central Designing a
decision service
using guided rules

Asset Highlights Authoring tools Documentation

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

6

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.4/html-single/designing_a_decision_service_using_guided_decision_tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.4/html-single/designing_a_decision_service_using_spreadsheet_decision_tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.4/html-single/designing_a_decision_service_using_guided_rules

Guided rule
templates Are reusable rule structures that

you create in a UI-based
template designer in Business
Central

Provide fields and options for
acceptable input

Support template keys and
values for creating rule
templates (fundamental to the
purpose of this asset)

Are optimal for creating many
rules with the same rule structure
but with different defined field
values

Business Central Designing a
decision service
using guided rule
templates

DRL rules
Are individual rules that you
define directly in .drl text files

Provide the most flexibility for
defining rules and other
technicalities of rule behavior

Can be created in certain
standalone environments and
integrated with Red Hat
Decision Manager

Are optimal for creating rules
that require advanced DRL
options

Have strict syntax requirements
for rules to be compiled properly

Business Central
or integrated
development
environment (IDE)

Designing a
decision service
using DRL rules

Asset Highlights Authoring tools Documentation

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

7

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.4/html-single/designing_a_decision_service_using_guided_rule_templates
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.4/html-single/designing_a_decision_service_using_drl_rules

Predictive Model
Markup Language
(PMML) models

Are predictive data-analytic
models based on a notation
standard defined by the Data
Mining Group (DMG)

Use an XML schema that allows
the PMML models to be shared
between PMML-compliant
platforms

Support Regression, Scorecard,
Tree, Mining, and other model
types

Can be included with a
standalone Red Hat Decision
Manager project or imported
into a project in Business Central

Are optimal for incorporating
predictive data into decision
services in Red Hat Decision
Manager

PMML or XML
editor

Designing a
decision service
using PMML
models

Asset Highlights Authoring tools Documentation

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

8

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.4/html-single/designing_a_decision_service_using_pmml_models

CHAPTER 2. DRL (DROOLS RULE LANGUAGE) RULES
DRL (Drools Rule Language) rules are business rules that you define directly in .drl text files. These DRL
files are the source in which all other rule assets in Business Central are ultimately rendered. You can
create and manage DRL files within the Business Central interface, or create them externally using Red
Hat Developer Studio, Java objects, or Maven archetypes. A DRL file can contain one or more rules that
define at a minimum the rule conditions (when) and actions (then). The DRL designer in Business
Central provides syntax highlighting for Java, DRL, and XML.

All data objects related to a DRL rule must be in the same project package as the DRL rule in Business
Central. Assets in the same package are imported by default. Existing assets in other packages can be
imported with the DRL rule.

CHAPTER 2. DRL (DROOLS RULE LANGUAGE) RULES

9

CHAPTER 3. DATA OBJECTS
Data objects are the building blocks for the rule assets that you create. Data objects are custom data
types implemented as Java objects in specified packages of your project. For example, you might create
a Person object with data fields Name, Address, and DateOfBirth to specify personal details for loan
application rules. These custom data types determine what data your assets and your decision services
are based on.

3.1. CREATING DATA OBJECTS

The following procedure is a generic overview of creating data objects. It is not specific to a particular
business asset.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Data Object.

3. Enter a unique Data Object name and select the Package where you want the data object to be
available for other rule assets. Data objects with the same name cannot exist in the same
package. In the specified DRL file, you can import a data object from any package.

IMPORTING DATA OBJECTS FROM OTHER PACKAGES

You can import an existing data object from another package directly into the
asset designers like guided rules or guided decision table designers. Select the
relevant rule asset within the project and in the asset designer, go to Data
Objects → New item to select the object to be imported.

4. To make your data object persistable, select the Persistable checkbox. Persistable data objects
are able to be stored in a database according to the JPA specification. The default JPA is
Hibernate.

5. Click Ok.

6. In the data object designer, click add field to add a field to the object with the attributes Id,
Label, and Type. Required attributes are marked with an asterisk (*).

Id: Enter the unique ID of the field.

Label: (Optional) Enter a label for the field.

Type: Enter the data type of the field.

List: (Optional) Select this check box to enable the field to hold multiple items for the
specified type.

Figure 3.1. Add data fields to a data object

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

10

Figure 3.1. Add data fields to a data object

7. Click Create to add the new field, or click Create and continue to add the new field and
continue adding other fields.

NOTE

To edit a field, select the field row and use the general properties on the right
side of the screen.

CHAPTER 3. DATA OBJECTS

11

CHAPTER 4. CREATING DRL RULES IN BUSINESS CENTRAL
You can create and manage DRL rules for your project in Business Central. In each DRL rule file, you
define rule conditions, actions, and other components related to the rule, based on the data objects you
create or import in the package.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → DRL file.

3. Enter an informative DRL file name and select the appropriate Package. The package that you
specify must be the same package where the required data objects have been assigned or will
be assigned.
You can also select Show declared DSL sentences if any domain specific language (DSL)
assets have been defined in your project. These DSL assets will then become usable objects for
conditions and actions that you define in the DRL designer.

4. Click Ok to create the rule asset.
The new DRL file is now listed in the DRL panel of the Project Explorer, or in the DSLR panel if
you selected the Show declared DSL sentences option. The package to which you assigned
this DRL file is listed at the top of the file.

5. In the Fact types list in the left panel of the DRL designer, confirm that all data objects and data
object fields (expand each) required for your rules are listed. If not, you can either import
relevant data objects from other packages by using import statements in the DRL file, or create
data objects within your package.

6. After all data objects are in place, return to the Model tab of the DRL designer and define the
DRL file with any of the following components:

Components of a DRL file

package //automatic

import

function //optional

query //optional

declare //optional

rule

rule

...

package: (automatic) This was defined for you when you created the DRL file and selected
the package.

import: Use this to identify the data objects from either this package or another package

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

12

import: Use this to identify the data objects from either this package or another package
that you want to use in the DRL file. Specify the package and data object in the format
package.name.object.name, one import per line.

Importing data objects

function: (optional) Use this to include a function to be used by rules in the DRL file.
Functions put semantic code in your rule source file. Functions are especially useful if an
action (then) part of a rule is used repeatedly and only the parameters differ for each rule.
Above the rules in the DRL file, you can declare the function or import a static method as a
function, and then use the function by name in an action (then) part of the rule.

Declaring and using a function with a rule (option 1)

Importing and using the function with a rule (option 2)

query: (optional) Use this to search the decision engine for facts related to the rules in the
DRL file. Queries search for a set of defined conditions and do not require when or then
specifications. Query names are global to the KIE base and therefore must be unique among
all other rule queries in the project. To return the results of a query, construct a traditional
QueryResults definition using ksession.getQueryResults("name"), where "name" is the
query name. This returns a list of query results, which enable you to retrieve the objects that
matched the query. Define the query and query results parameters above the rules in the
DRL file.

Query and query results for people under the age of 21, with a rule

import mortgages.mortgages.LoanApplication;

function String hello(String applicantName) {
 return "Hello " + applicantName + "!";
}

rule "Using a function"
 when
 eval(true)
 then
 System.out.println(hello("James"));
end

import function my.package.applicant.hello;

rule "Using a function"
 when
 eval(true)
 then
 System.out.println(hello("James"));
end

query "people under the age of 21"
 person : Person(age < 21)
end

QueryResults results = ksession.getQueryResults("people under the age of 21");

CHAPTER 4. CREATING DRL RULES IN BUSINESS CENTRAL

13

declare: (optional) Use this to declare a new fact type to be used by rules in the DRL file.
The default fact type in the java.lang package of Red Hat Decision Manager is Object, but
you can declare other types in DRL files as needed. Declaring fact types in DRL files enables
you to define a new fact model directly in the decision engine, without creating models in a
lower-level language like Java.

Declaring and using a new fact type

rule: Use this to define each rule in the DRL file. Rules consist of a rule name in the format
rule "name", followed by optional attributes that define rule behavior (such as salience or
no-loop), followed by when and then definitions. The same rule name cannot be used more
than once in the same package. The when part of the rule contains the conditions that must
be met to execute an action. For example, if a bank requires loan applicants to have over 21
years of age, then the when condition for an Underage rule would be Applicant(age < 21
). The then part of the rule contains the actions to be performed when the conditional part
of the rule has been met. For example, when the loan applicant is under 21 years old, the
then action would be setApproved(false), declining the loan because the applicant is
under age. Conditions (when) and actions (then) consist of a series of stated fact patterns
with optional constraints, bindings, and other supported DRL elements, based on the
available data objects in the package. These patterns determine how defined objects are
affected by the rule.

Rule for loan application age limit

System.out.println("we have " + results.size() + " people under the age of 21");

rule "Underage"
 when
 application : LoanApplication()
 Applicant(age < 21)
 then
 application.setApproved(false);
 application.setExplanation("Underage");
end

declare Person
 name : String
 dateOfBirth : java.util.Date
 address : Address
end

rule "Using a declared type"
 when
 $p : Person(name == "James")
 then // Insert Mark, who is a customer of James.
 Person mark = new Person();
 mark.setName("Mark");
 insert(mark);
end

rule "Underage"
 salience 15
 dialect "mvel"
 when
 application : LoanApplication()

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

14

At a minimum, each DRL file must specify the package, import, and rule components. All
other components are optional.

Figure 4.1. Sample DRL file with required components and optional rule attributes

7. After you define all components of the rule, click Validate in the upper-right toolbar of the DRL
designer to validate the DRL file. If the file validation fails, address any problems described in
the error message, review all syntax and components in the DRL file, and try again to validate
the file until the file passes.

8. Click Save in the DRL designer to save your work.

4.1. ADDING WHEN CONDITIONS IN DRL RULES

The when part of the rule contains the conditions that must be met to execute an action. For example, if
a bank requires loan applicants to have over 21 years of age, then the when condition of an Underage
rule would be Applicant(age < 21). Conditions consist of a series of stated patterns and constraints,
with optional bindings and other supported DRL elements, based on the available data objects in the
package.

Prerequisites

The package is defined at the top of the DRL file. This should have been done for you when you
created the file.

The import list of data objects used in the rule is defined below the package line of the DRL
file. Data objects can be from this package or from another package in Business Central.

The rule name is defined in the format rule "name" below the package, import, and other lines
that apply to the entire DRL file. The same rule name cannot be used more than once in the
same package. Optional rule attributes (such as salience or no-loop) that define rule behavior
are below the rule name, before the when section.

 Applicant(age < 21)
 then
 application.setApproved(false);
 application.setExplanation("Underage");
end

CHAPTER 4. CREATING DRL RULES IN BUSINESS CENTRAL

15

Procedure

1. In the DRL designer, enter when within the rule to begin adding condition statements. The
when section consists of zero or more fact patterns that define conditions for the rule.
If the when section is empty, then actions in the then section are executed every time a
fireAllRules() call is made in the decision engine. This is useful if you want to use rules to set up
the decision engine state.

Rule without conditions

2. Enter a pattern for the first condition to be met, with optional constraints, bindings, and other
supported DRL elements. A basic pattern format is patternBinding : patternType (
constraints). Patterns are based on the available data objects in the package and define the
conditions to be met in order to trigger actions in the then section.

Simple pattern: A simple pattern with no constraints matches against a fact of the given
type. For example, the following condition is only that the applicant exists.

Pattern with constraints: A pattern with constraints matches against a fact of the given
type and the additional restrictions in parentheses that are true or false. For example, the
following condition is that the applicant is under the age of 21.

Pattern with binding: A binding on a pattern is a shorthand reference that other
components of the rule can use to refer back to the defined pattern. For example, the
following binding a on LoanApplication is used in a related action for underage applicants.

rule "bootstrap"
 when // empty

 then // actions to be executed once
 insert(new Applicant());
end

// The above rule is internally rewritten as:

rule "bootstrap"
 when
 eval(true)
 then
 insert(new Applicant());
end

when
 Applicant()

when
 Applicant(age < 21)

when
 a : LoanApplication()
 Applicant(age < 21)
then
 a.setApproved(false);
 a.setExplanation("Underage")

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

16

3. Continue defining all condition patterns that apply to this rule. The following are some of the
keyword options for defining DRL conditions:

and: Use this to group conditional components into a logical conjunction. Infix and prefix
and are supported. By default, all listed conditions or actions are combined with and when
no conjunction is specified.

or: Use this to group conditional components into a logical disjunction. Infix and prefix or are
supported.

exists: Use this to specify facts and constraints that must exist. Note that this does not
mean that a fact exists, but that a fact must exist. This option is triggered on only the first
match, not subsequent matches.

not: Use this to specify facts and constraints that must not exist.

forall: Use this to set up a construct where all facts that match the first pattern match all the
remaining patterns.

from: Use this to specify a source for data to be matched by the conditional pattern.

entry-point: Use this to define an Entry Point corresponding to a data source for the
pattern. Typically used with from.

collect: Use this to define a collection of objects that the construct can use as part of the
condition. In the example, all pending applications in the decision engine for each given

a : LoanApplication() and Applicant(age < 21)

a : LoanApplication()
and Applicant(age < 21)

a : LoanApplication()
Applicant(age < 21)

// All of the above are the same.

Bankruptcy(amountOwed == 100000) or IncomeSource(amount == 20000)

Bankruptcy(amountOwed == 100000)
or IncomeSource(amount == 20000)

exists (Bankruptcy(yearOfOccurrence > 1990 || amountOwed > 10000))

not (Applicant(age < 21))

forall(app : Applicant(age < 21)
 Applicant(this == app, status = 'underage'))

Applicant(ApplicantAddress : address)
Address(zipcode == "23920W") from ApplicantAddress

Applicant() from entry-point "LoanApplication"

CHAPTER 4. CREATING DRL RULES IN BUSINESS CENTRAL

17

mortgage are grouped in ArrayLists. If three or more pending applications are found, the
rule is executed.

accumulate: Use this to iterate over a collection of objects, execute custom actions for each
of the elements, and return one or more result objects (if the constraints evaluate to true).
This option is a more flexible and powerful form of collect. Use the format accumulate(
<source pattern>; <functions> [;<constraints>]). In the example, min, max, and average
are accumulate functions that calculate the minimum, maximum and average temperature
values over all the readings for each sensor. Other supported functions include count, sum,
variance, standardDeviation, collectList, and collectSet.

ADVANCED DRL OPTIONS

These are examples of basic keyword options and pattern constructs for
defining conditions. For more advanced DRL options and syntax supported in
the DRL designer, see the Drools Documentation online.

4. After you define all condition components of the rule, click Validate in the upper-right toolbar of
the DRL designer to validate the DRL file. If the file validation fails, address any problems
described in the error message, review all syntax and components in the DRL file, and try again
to validate the file until the file passes.

5. Click Save in the DRL designer to save your work.

4.2. ADDING THEN ACTIONS IN DRL RULES

The then part of the rule contains the actions to be performed when the conditional part of the rule has
been met. For example, when a loan applicant is under 21 years old, the then action of an Underage rule
would be setApproved(false), declining the loan because the applicant is under age. Actions execute
consequences based on the rule conditions and on available data objects in the package.

Prerequisites

The package is defined at the top of the DRL file. This should have been done for you when you
created the file.

The import list of data objects used in the rule is defined below the package line of the DRL
file. Data objects can be from this package or from another package in Business Central.

The rule name is defined in the format rule "name" below the package, import, and other lines
that apply to the entire DRL file. The same rule name cannot be used more than once in the
same package. Optional rule attributes (such as salience or no-loop) that define rule behavior
are below the rule name, before the when section.

m : Mortgage()
a : ArrayList(size >= 3)
 from collect(LoanApplication(Mortgage == m, status == 'pending'))

s : Sensor()
accumulate(Reading(sensor == s, temp : temperature);
 min : min(temp),
 max : max(temp),
 avg : average(temp);
 min < 20, avg > 70)

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

18

http://docs.jboss.org/drools/release/latestFinal/drools-docs/html_single/#_droolslanguagereferencechapter

Procedure

1. In the DRL designer, enter then after the when section of the rule to begin adding action
statements.

2. Enter one or more actions to be executed on fact patterns based on the conditions for the rule.
The following are some of the keyword options for defining DRL actions:

and: Use this to group action components into a logical conjunction. Infix and prefix and are
supported. By default, all listed conditions or actions are combined with and when no
conjunction is specified.

set: Use this to set the value of a field.

modify: Use this to specify fields to be modified for a fact and to notify the decision engine
of the change.

update: Use this to specify fields and the entire related fact to be modified and to notify the
decision engine of the change. After a fact has changed, you must call update before
changing another fact that might be affected by the updated values. The modify keyword
avoids this added step.

delete: Use this to remove an object from the decision engine. The keyword retract is also
supported in the DRL designer and executes the same action, but delete is preferred for
consistency with the keyword insert.

insert: Use this to insert a new fact and define resulting fields and values as needed for the
fact.

application.setApproved (false) and application.setExplanation("has been bankrupt");

application.setApproved (false);
and application.setExplanation("has been bankrupt");

application.setApproved (false);
application.setExplanation("has been bankrupt");

// All of the above are the same.

application.setApproved (false);
application.setExplanation("has been bankrupt");

modify(LoanApplication) {
 setAmount(100)
}

update(LoanApplication) {
 setAmount(100)
}

delete(LoanApplication);

insert(new Applicant());

CHAPTER 4. CREATING DRL RULES IN BUSINESS CENTRAL

19

insertLogical: Use this to insert a new fact logically into the decision engine and define
resulting fields and values as needed for the fact. The decision engine is responsible for
logical decisions on insertions and retractions of facts. After regular or stated insertions,
facts have to be retracted explicitly. After logical insertions, facts are automatically
retracted when the conditions that originally asserted the facts are no longer true.

ADVANCED DRL OPTIONS

These are examples of basic keyword options and pattern constructs for
defining actions. For more advanced DRL options and syntax supported in
the DRL designer, see the Drools Documentation online.

3. After you define all action components of the rule, click Validate in the upper-right toolbar of
the DRL designer to validate the DRL file. If the file validation fails, address any problems
described in the error message, review all syntax and components in the DRL file, and try again
to validate the file until the file passes.

4. Click Save in the DRL designer to save your work.

4.2.1. Rule attributes

Rule attributes are additional specifications that you can add to business rules to modify rule behavior.
The following table lists the names and supported values of the attributes that you can assign to rules:

Table 4.1. Rule attributes

Attribute Value

salience An integer defining the priority of the rule. Rules with a higher salience value
are given higher priority when ordered in the activation queue.

Example: salience 10

enabled A Boolean value. When the option is selected, the rule is enabled. When the
option is not selected, the rule is disabled.

Example: enabled true

date-effective A string containing a date and time definition. The rule can be activated
only if the current date and time is after a date-effective attribute.

Example: date-effective "4-Sep-2018"

date-expires A string containing a date and time definition. The rule cannot be activated
if the current date and time is after the date-expires attribute.

Example: date-expires "4-Oct-2018"

insertLogical(new Applicant());

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

20

http://docs.jboss.org/drools/release/latestFinal/drools-docs/html_single/#_droolslanguagereferencechapter

no-loop A Boolean value. When the option is selected, the rule cannot be reactivated
(looped) if a consequence of the rule re-triggers a previously met condition.
When the condition is not selected, the rule can be looped in these
circumstances.

Example: no-loop true

agenda-group A string identifying an agenda group to which you want to assign the rule.
Agenda groups allow you to partition the agenda to provide more execution
control over groups of rules. Only rules in an agenda group that has
acquired a focus are able to be activated.

Example: agenda-group "GroupName"

activation-group A string identifying an activation (or XOR) group to which you want to
assign the rule. In activation groups, only one rule can be activated. The first
rule to fire will cancel all pending activations of all rules in the activation
group.

Example: activation-group "GroupName"

duration A long integer value defining the duration of time in milliseconds after which
the rule can be activated, if the rule conditions are still met.

Example: duration 10000

timer A string identifying either int (interval) or cron timer definition for
scheduling the rule.

Example: timer "*/5 * * * *" (every 5 minutes)

calendar A Quartz calendar definition for scheduling the rule.

Example: calendars "* * 0-7,18-23 ? * *" (exclude non-business hours)

auto-focus A Boolean value, applicable only to rules within agenda groups. When the
option is selected, the next time the rule is activated, a focus is
automatically given to the agenda group to which the rule is assigned.

Example: auto-focus true

lock-on-active A Boolean value, applicable only to rules within rule flow groups or agenda
groups. When the option is selected, the next time the ruleflow group for the
rule becomes active or the agenda group for the rule receives a focus, the
rule cannot be activated again until the ruleflow group is no longer active or
the agenda group loses the focus. This is a stronger version of the no-loop
attribute, because the activation of a matching rule is discarded regardless
of the origin of the update (not only by the rule itself). This attribute is ideal
for calculation rules where you have a number of rules that modify a fact
and you do not want any rule re-matching and firing again.

Example: lock-on-active true

Attribute Value

CHAPTER 4. CREATING DRL RULES IN BUSINESS CENTRAL

21

ruleflow-group A string identifying a rule flow group. In rule flow groups, rules can fire only
when the group is activated by the associated rule flow.

Example: ruleflow-group "GroupName"

dialect A string identifying either JAVA or MVEL as the language to be used for
code expressions in the rule. By default, the rule uses the dialect specified at
the package level. Any dialect specified here overrides the package dialect
setting for the rule.

Example: dialect "JAVA"

NOTE

When you use Red Hat Decision Manager without the
executable model, the dialect "JAVA" rule consequences
support only Java 5 syntax. For more information about
executable models, see Packaging and deploying a Red Hat
Decision Manager project.

Attribute Value

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

22

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.4/html-single/packaging_and_deploying_a_red_hat_decision_manager_project#executable-model-con_packaging-deploying

CHAPTER 5. EXECUTING RULES
After you identify example rules or create your own rules in Business Central, you can build and deploy
the associated project and execute rules locally or on Decision Server to test the rules.

Prerequisites

Business Central and Decision Server are installed and running. For installation options, see
Planning a Red Hat Decision Manager installation .

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. In the upper-right corner of the project Assets page, click Deploy to build the project and
deploy it to Decision Server. If the build fails, address any problems described in the Alerts panel
at the bottom of the screen.
For more information about project deployment options, see Packaging and deploying a Red Hat
Decision Manager project.

3. Create a Maven or Java project outside of Business Central, if not created already, that you can
use for executing rules locally or that you can use as a client application for executing rules on
Decision Server. The project must contain a pom.xml file and any other required components
for executing the project resources.
For example test projects, see "Other methods for creating and executing DRL rules" .

4. Open the pom.xml file of your test project or client application and add the following
dependencies, if not added already:

kie-ci: Enables your client application to load Business Central project data locally using
ReleaseId

kie-server-client: Enables your client application to interact remotely with assets on
Decision Server

slf4j: (Optional) Enables your client application to use Simple Logging Facade for Java
(SLF4J) to return debug logging information after you interact with Decision Server

Example dependencies for Red Hat Decision Manager 7.4 in a client application pom.xml file:

<!-- For local execution -->
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-ci</artifactId>
 <version>7.23.0.Final-redhat-00002</version>
</dependency>

<!-- For remote execution on Decision Server -->
<dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-client</artifactId>
 <version>7.23.0.Final-redhat-00002</version>
</dependency>

<!-- For debug logging (optional) -->
<dependency>

CHAPTER 5. EXECUTING RULES

23

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.4/html-single/planning_a_red_hat_decision_manager_installation
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.4/html-single/packaging_and_deploying_a_red_hat_decision_manager_project
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.4/html-single/designing_a_decision_service_using_drl_rules#drl-rules-other-con

For available versions of these artifacts, search the group ID and artifact ID in the Nexus
Repository Manager online.

NOTE

Instead of specifying a Red Hat Decision Manager <version> for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between Red Hat Decision Manager and the Maven library version?.

5. Ensure that the dependencies for artifacts containing model classes are defined in the client
application pom.xml file exactly as they appear in the pom.xml file of the deployed project. If
dependencies for model classes differ between the client application and your projects,
execution errors can occur.
To access the project pom.xml file in Business Central, select any existing asset in the project
and then in the Project Explorer menu on the left side of the screen, click the Customize View
gear icon and select Repository View → pom.xml.

For example, the following Person class dependency appears in both the client and deployed
project pom.xml files:

6. If you added the slf4j dependency to the client application pom.xml file for debug logging,
create a simplelogger.properties file on the relevant classpath (for example, in
src/main/resources/META-INF in Maven) with the following content:

 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-simple</artifactId>
 <version>1.7.25</version>
</dependency>

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.4.0.GA-redhat-00002</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

<dependency>
 <groupId>com.sample</groupId>
 <artifactId>Person</artifactId>
 <version>1.0.0</version>
</dependency>

org.slf4j.simpleLogger.defaultLogLevel=debug

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

24

https://repository.jboss.org/nexus/index.html#welcome
https://access.redhat.com/solutions/3363991

7. In your client application, create a .java main class containing the necessary imports and a
main() method to load the KIE base, insert facts, and execute the rules.
For example, a Person object in a project contains getter and setter methods to set and
retrieve the first name, last name, hourly rate, and the wage of a person. The following Wage
rule in a project calculates the wage and hourly rate values and displays a message based on the
result:

To test this rule locally outside of Decision Server (if desired), configure the .java class to
import KIE services, a KIE container, and a KIE session, and then use the main() method to fire
all rules against a defined fact model:

Executing rules locally

package com.sample;

import com.sample.Person;

dialect "java"

rule "Wage"
 when
 Person(hourlyRate * wage > 100)
 Person(name : firstName, surname : lastName)
 then
 System.out.println("Hello" + " " + name + " " + surname + "!");
 System.out.println("You are rich!");
end

import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

public class RulesTest {

 public static final void main(String[] args) {
 try {
 // Identify the project in the local repository:
 ReleaseId rid = new ReleaseId();
 rid.setGroupId("com.myspace");
 rid.setArtifactId("MyProject");
 rid.setVersion("1.0.0");

 // Load the KIE base:
 KieServices ks = KieServices.Factory.get();
 KieContainer kContainer = ks.newKieContainer(rid);
 KieSession kSession = kContainer.newKieSession();

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 // Insert the person into the session:

CHAPTER 5. EXECUTING RULES

25

To test this rule on Decision Server, configure the .java class with the imports and rule
execution information similarly to the local example, and additionally specify KIE services
configuration and KIE services client details:

Executing rules on Decision Server

 kSession.insert(p);

 // Fire all rules:
 kSession.fireAllRules();
 kSession.dispose();
 }

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

package com.sample;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

import org.kie.api.command.BatchExecutionCommand;
import org.kie.api.command.Command;
import org.kie.api.KieServices;
import org.kie.api.runtime.ExecutionResults;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;
import org.kie.server.api.marshalling.MarshallingFormat;
import org.kie.server.api.model.ServiceResponse;
import org.kie.server.client.KieServicesClient;
import org.kie.server.client.KieServicesConfiguration;
import org.kie.server.client.KieServicesFactory;
import org.kie.server.client.RuleServicesClient;

import com.sample.Person;

public class RulesTest {

 private static final String containerName = "testProject";
 private static final String sessionName = "myStatelessSession";

 public static final void main(String[] args) {
 try {
 // Define KIE services configuration and client:
 Set<Class<?>> allClasses = new HashSet<Class<?>>();
 allClasses.add(Person.class);
 String serverUrl = "http://$HOST:$PORT/kie-server/services/rest/server";
 String username = "$USERNAME";
 String password = "$PASSWORD";
 KieServicesConfiguration config =
 KieServicesFactory.newRestConfiguration(serverUrl,

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

26

8. Run the configured .java class from your project directory. You can run the file in your
development platform (such as Red Hat JBoss Developer Studio) or in the command line.
Example Maven execution (within project directory):

mvn clean install exec:java -Dexec.mainClass="com.sample.app.RulesTest"

Example Java execution (within project directory)

javac -classpath "./$DEPENDENCIES/*:." RulesTest.java
java -classpath "./$DEPENDENCIES/*:." RulesTest

9. Review the rule execution status in the command line and in the server log. If any rules do not
execute as expected, review the configured rules in the project and the main class configuration
to validate the data provided.

 username,
 password);
 config.setMarshallingFormat(MarshallingFormat.JAXB);
 config.addExtraClasses(allClasses);
 KieServicesClient kieServicesClient =
 KieServicesFactory.newKieServicesClient(config);

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 // Insert Person into the session:
 KieCommands kieCommands = KieServices.Factory.get().getCommands();
 List<Command> commandList = new ArrayList<Command>();
 commandList.add(kieCommands.newInsert(p, "personReturnId"));

 // Fire all rules:
 commandList.add(kieCommands.newFireAllRules("numberOfFiredRules"));
 BatchExecutionCommand batch = kieCommands.newBatchExecution(commandList,
sessionName);

 // Use rule services client to send request:
 RuleServicesClient ruleClient =
kieServicesClient.getServicesClient(RuleServicesClient.class);
 ServiceResponse<ExecutionResults> executeResponse =
ruleClient.executeCommandsWithResults(containerName, batch);
 System.out.println("number of fired rules:" +
executeResponse.getResult().getValue("numberOfFiredRules"));
 }

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

CHAPTER 5. EXECUTING RULES

27

CHAPTER 6. OTHER METHODS FOR CREATING AND
EXECUTING DRL RULES

As an alternative to creating and managing DRL rules within the Business Central interface, you can
create DRL rule files in external standalone projects using Red Hat Developer Studio, Java objects, or
Maven archetypes. These standalone projects can then be integrated as knowledge JAR (KJAR)
dependencies in existing Red Hat Decision Manager projects in Business Central. The DRL files in your
standalone project must contain at a minimum the required package specification, import lists, and rule
definitions. Any other DRL components, such as global variables and functions, are optional. All data
objects related to a DRL rule must be included with your standalone DRL project or deployment.

You can also use executable rule models in your Maven or Java projects to provide a Java-based
representation of a rule set for execution at build time. The executable model is a more efficient
alternative to the standard asset packaging in Red Hat Decision Manager and enables KIE containers
and KIE bases to be created more quickly, especially when you have large lists of DRL (Drools Rule
Language) files and other Red Hat Decision Manager assets.

6.1. CREATING AND EXECUTING DRL RULES IN RED HAT JBOSS
DEVELOPER STUDIO

You can use Red Hat JBoss Developer Studio to create DRL files with rules and integrate the files with
your Red Hat Decision Manager decision service. This method of creating DRL rules is helpful if you
already use Red Hat Developer Studio for your decision service and want to continue with the same
work flow. If you do not already use this method, then the Business Central interface of Red Hat
Decision Manager is recommended for creating DRL files and other rule assets.

Prerequisites

Red Hat JBoss Developer Studio has been installed from the Red Hat Customer Portal .

Procedure

1. In the Red Hat JBoss Developer Studio, click File → New → Project.

2. In the New Project window that opens, select Drools → Drools Project and click Next.

3. Click the second icon to Create a project and populate it with some example files to help you
get started quickly. Click Next.

4. Enter a Project name and select the Maven radio button as the project building option. The
GAV values are generated automatically. You can update these values as needed for your
project:

Group ID: com.sample

Artifact ID: my-project

Version: 1.0.0-SNAPSHOT

5. Click Finish to create the project.
This configuration sets up a basic project structure, class path, and sample rules. The following is
an overview of the project structure:

my-project

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

28

https://access.redhat.com/downloads/

 `-- src/main/java
 | `-- com.sample
 | `-- DecisionTableTest.java
 | `-- DroolsTest.java
 | `-- ProcessTest.java
 |
 `-- src/main/resources
 | `-- dtables
 | `-- Sample.xls
 | `-- process
 | `-- sample.bpmn
 | `-- rules
 | `-- Sample.drl
 | `-- META-INF
 |
 `-- JRE System Library
 |
 `-- Maven Dependencies
 |
 `-- Drools Library
 |
 `-- src
 |
 `-- target
 |
 `-- pom.xml

Notice the following elements:

A Sample.drl rule file in the src/main/resources directory, containing an example Hello
World and GoodBye rules.

A DroolsTest.java file under the src/main/java directory in the com.sample package. The
DroolsTest class can be used to execute the Sample.drl rule.

The Drools Library directory, which acts as a custom class path containing JAR files
necessary for execution.

You can edit the existing Sample.drl file and DroolsTest.java files with new configurations as
needed, or create new rule and object files. In this procedure, you are creating a new rule and
new Java objects.

6. Create a Java object on which the rule or rules will operate.
In this example, a Person.java file is created in my-project/src/main/java/com.sample. The
Person class contains getter and setter methods to set and retrieve the first name, last name,
hourly rate, and the wage of a person:

 public class Person {
 private String firstName;
 private String lastName;
 private Integer hourlyRate;
 private Integer wage;

 public String getFirstName() {
 return firstName;
 }

CHAPTER 6. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES

29

7. Click File → Save to save the file.

8. Create a rule file in .drl format in my-project/src/main/resources/rules. The DRL file must
contain at a minimum a package specification, an import list of data objects to be used by the
rule or rules, and one or more rules with when conditions and then actions.
The following Wage.drl file contains a Wage rule that imports the Person class, calculates the
wage and hourly rate values, and displays a message based on the result:

9. Click File → Save to save the file.

10. Create a main class and save it to the same directory as the Java object that you created. The

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public Integer getHourlyRate() {
 return hourlyRate;
 }

 public void setHourlyRate(Integer hourlyRate) {
 this.hourlyRate = hourlyRate;
 }

 public Integer getWage(){
 return wage;
 }

 public void setWage(Integer wage){
 this.wage = wage;
 }
 }

package com.sample;

import com.sample.Person;

dialect "java"

rule "Wage"
 when
 Person(hourlyRate * wage > 100)
 Person(name : firstName, surname : lastName)
 then
 System.out.println("Hello" + " " + name + " " + surname + "!");
 System.out.println("You are rich!");
end

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

30

10. Create a main class and save it to the same directory as the Java object that you created. The
main class will load the KIE base and execute rules.

NOTE

You can also add the main() method and Person class within a single Java object
file, similar to the DroolsTest.java sample file.

11. In the main class, add the required import statements to import KIE services, a KIE container,
and a KIE session. Then load the KIE base, insert facts, and execute the rule from the main()
method that passes the fact model to the rule.
In this example, a RulesTest.java file is created in my-project/src/main/java/com.sample with
the required imports and main() method:

12. Click File → Save to save the file.

13. After you create and save all DRL assets in your project, right-click your project folder and select
Run As → Java Application to build the project. If the project build fails, address any problems
described in the Problems tab of the lower window in Developer Studio, and try again to
validate the project until the project builds.

package com.sample;

import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

public class RulesTest {
 public static final void main(String[] args) {
 try {
 // Load the KIE base:
 KieServices ks = KieServices.Factory.get();
 KieContainer kContainer = ks.getKieClasspathContainer();
 KieSession kSession = kContainer.newKieSession();

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 // Insert the person into the session:
 kSession.insert(p);

 // Fire all rules:
 kSession.fireAllRules();
 kSession.dispose();
 }

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

CHAPTER 6. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES

31

IF THE RUN AS → JAVA APPLICATION OPTION IS NOT AVAILABLE

If Java Application is not an option when you right-click your project and select Run As,
then go to Run As → Run Configurations, right-click Java Application, and click New.
Then in the Main tab, browse for and select your Project and the associated Main class.
Click Apply and then click Run to test the project. The next time you right-click your
project folder, the Java Application option will appear.

To integrate the new rule assets with an existing project in Red Hat Decision Manager, you can compile
the new project as a knowledge JAR (KJAR) and add it as a dependency in the pom.xml file of the
project in Business Central. To access the project pom.xml file in Business Central, you can select any
existing asset in the project and then in the Project Explorer menu on the left side of the screen, click
the Customize View gear icon and select Repository View → pom.xml.

6.2. CREATING AND EXECUTING DRL RULES USING JAVA

You can use Java objects to create DRL files with rules and integrate the objects with your Red Hat
Decision Manager decision service. This method of creating DRL rules is helpful if you already use
external Java objects for your decision service and want to continue with the same work flow. If you do
not already use this method, then the Business Central interface of Red Hat Decision Manager is
recommended for creating DRL files and other rule assets.

Procedure

1. Create a Java object on which the rule or rules will operate.
In this example, a Person.java file is created in a directory my-project. The Person class
contains getter and setter methods to set and retrieve the first name, last name, hourly rate,
and the wage of a person:

 public class Person {
 private String firstName;
 private String lastName;
 private Integer hourlyRate;
 private Integer wage;

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public Integer getHourlyRate() {
 return hourlyRate;
 }

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

32

2. Create a rule file in .drl format under the my-project directory. The DRL file must contain at a
minimum a package specification (if applicable), an import list of data objects to be used by the
rule or rules, and one or more rules with when conditions and then actions.
The following Wage.drl file contains a Wage rule that calculates the wage and hourly rate
values and displays a message based on the result:

3. Create a main class and save it to the same directory as the Java object that you created. The
main class will load the KIE base and execute rules.

4. In the main class, add the required import statements to import KIE services, a KIE container,
and a KIE session. Then load the KIE base, insert facts, and execute the rule from the main()
method that passes the fact model to the rule.
In this example, a RulesTest.java file is created in my-project with the required imports and
main() method:

 public void setHourlyRate(Integer hourlyRate) {
 this.hourlyRate = hourlyRate;
 }

 public Integer getWage(){
 return wage;
 }

 public void setWage(Integer wage){
 this.wage = wage;
 }
 }

package com.sample;

import com.sample.Person;

dialect "java"

rule "Wage"
 when
 Person(hourlyRate * wage > 100)
 Person(name : firstName, surname : lastName)
 then
 System.out.println("Hello" + " " + name + " " + surname + "!");
 System.out.println("You are rich!");
end

import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

public class RulesTest {
 public static final void main(String[] args) {
 try {
 // Load the KIE base:
 KieServices ks = KieServices.Factory.get();
 KieContainer kContainer = ks.getKieClasspathContainer();
 KieSession kSession = kContainer.newKieSession();

CHAPTER 6. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES

33

5. Download the Red Hat Decision Manager 7.4.0 Source Distribution ZIP file from the Red Hat
Customer Portal and extract it under my-project/dm-engine-jars/.

6. In the my-project/META-INF directory, create a kmodule.xml metadata file with the following
content:

This kmodule.xml file is a KIE module descriptor that selects resources to KIE bases and
configures sessions. This file enables you to define and configure one or more KIE bases, and to
include DRL files from specific packages in a specific KIE base. You can also create one or more
KIE sessions from each KIE base.

The following example shows a more advanced kmodule.xml file:

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 // Insert the person into the session:
 kSession.insert(p);

 // Fire all rules:
 kSession.fireAllRules();
 kSession.dispose();
 }

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

<?xml version="1.0" encoding="UTF-8"?>
<kmodule xmlns="http://www.drools.org/xsd/kmodule">
</kmodule>

<?xml version="1.0" encoding="UTF-8"?>
<kmodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.drools.org/xsd/kmodule">
 <kbase name="KBase1" default="true" eventProcessingMode="cloud"
equalsBehavior="equality" declarativeAgenda="enabled" packages="org.domain.pkg1">
 <ksession name="KSession1_1" type="stateful" default="true" />
 <ksession name="KSession1_2" type="stateful" default="true" beliefSystem="jtms" />
 </kbase>
 <kbase name="KBase2" default="false" eventProcessingMode="stream"
equalsBehavior="equality" declarativeAgenda="enabled" packages="org.domain.pkg2,
org.domain.pkg3" includes="KBase1">
 <ksession name="KSession2_1" type="stateless" default="true" clockType="realtime">
 <fileLogger file="debugInfo" threaded="true" interval="10" />
 <workItemHandlers>
 <workItemHandler name="name" type="new org.domain.WorkItemHandler()" />
 </workItemHandlers>
 <listeners>

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

34

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

This example defines two KIE bases. Two KIE sessions are instantiated from the KBase1 KIE
base, and one KIE session from KBase2. The KIE session from KBase2 is a stateless KIE
session, which means that data from a previous invocation of the KIE session (the previous
session state) is discarded between session invocations. Specific packages of rule assets are
included with both KIE bases. When you specify packages in this way, you must organize your
DRL files in a folder structure that reflects the specified packages.

7. After you create and save all DRL assets in your Java object, navigate to the my-project
directory in the command line and run the following command to build your Java files. Replace
RulesTest.java with the name of your Java main class.

javac -classpath "./dm-engine-jars/*:." RulesTest.java

If the build fails, address any problems described in the command line error messages and try
again to validate the Java object until the object passes.

8. After your Java files build successfully, run the following command to execute the rules locally.
Replace RulesTest with the prefix of your Java main class.

java -classpath "./dm-engine-jars/*:." RulesTest

9. Review the rules to ensure that they executed properly, and address any needed changes in the
Java files.

To integrate the new rule assets with an existing project in Red Hat Decision Manager, you can compile
the new Java project as a knowledge JAR (KJAR) and add it as a dependency in the pom.xml file of the
project in Business Central. To access the project pom.xml file in Business Central, you can select any
existing asset in the project and then in the Project Explorer menu on the left side of the screen, click
the Customize View gear icon and select Repository View → pom.xml.

6.3. CREATING AND EXECUTING DRL RULES USING MAVEN

You can use Maven archetypes to create DRL files with rules and integrate the archetypes with your
Red Hat Decision Manager decision service. This method of creating DRL rules is helpful if you already
use external Maven archetypes for your decision service and want to continue with the same work flow.
If you do not already use this method, then the Business Central interface of Red Hat Decision Manager
is recommended for creating DRL files and other rule assets.

Procedure

1. Navigate to a directory where you want to create a Maven archetype and run the following
command:

mvn archetype:generate -DgroupId=com.sample.app -DartifactId=my-app -
DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false

 <ruleRuntimeEventListener type="org.domain.RuleRuntimeListener" />
 <agendaEventListener type="org.domain.FirstAgendaListener" />
 <agendaEventListener type="org.domain.SecondAgendaListener" />
 <processEventListener type="org.domain.ProcessListener" />
 </listeners>
 </ksession>
 </kbase>
</kmodule>

CHAPTER 6. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES

35

This creates a directory my-app with the following structure:

my-app
|-- pom.xml
`-- src
 |-- main
 | `-- java
 | `-- com
 | `-- sample
 | `-- app
 | `-- App.java
 `-- test
 `-- java
 `-- com
 `-- sample
 `-- app
 `-- AppTest.java

The my-app directory contains the following key components:

A src/main directory for storing the application sources

A src/test directory for storing the test sources

A pom.xml file with the project configuration

2. Create a Java object on which the rule or rules will operate within the Maven archetype.
In this example, a Person.java file is created in the directory my-
app/src/main/java/com/sample/app. The Person class contains getter and setter methods to
set and retrieve the first name, last name, hourly rate, and the wage of a person:

package com.sample.app;

 public class Person {

 private String firstName;
 private String lastName;
 private Integer hourlyRate;
 private Integer wage;

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

36

3. Create a rule file in .drl format in my-app/src/main/resources/rules. The DRL file must contain
at a minimum a package specification, an import list of data objects to be used by the rule or
rules, and one or more rules with when conditions and then actions.
The following Wage.drl file contains a Wage rule that imports the Person class, calculates the
wage and hourly rate values, and displays a message based on the result:

4. In the my-app/src/main/resources/META-INF directory, create a kmodule.xml metadata file
with the following content:

This kmodule.xml file is a KIE module descriptor that selects resources to KIE bases and
configures sessions. This file enables you to define and configure one or more KIE bases, and to
include DRL files from specific packages in a specific KIE base. You can also create one or more
KIE sessions from each KIE base.

The following example shows a more advanced kmodule.xml file:

 public Integer getHourlyRate() {
 return hourlyRate;
 }

 public void setHourlyRate(Integer hourlyRate) {
 this.hourlyRate = hourlyRate;
 }

 public Integer getWage(){
 return wage;
 }

 public void setWage(Integer wage){
 this.wage = wage;
 }
 }

package com.sample.app;

import com.sample.app.Person;

dialect "java"

rule "Wage"
 when
 Person(hourlyRate * wage > 100)
 Person(name : firstName, surname : lastName)
 then
 System.out.println("Hello " + name + " " + surname + "!");
 System.out.println("You are rich!");
end

<?xml version="1.0" encoding="UTF-8"?>
<kmodule xmlns="http://www.drools.org/xsd/kmodule">
</kmodule>

<?xml version="1.0" encoding="UTF-8"?>
<kmodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.drools.org/xsd/kmodule">

CHAPTER 6. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES

37

This example defines two KIE bases. Two KIE sessions are instantiated from the KBase1 KIE
base, and one KIE session from KBase2. The KIE session from KBase2 is a stateless KIE
session, which means that data from a previous invocation of the KIE session (the previous
session state) is discarded between session invocations. Specific packages of rule assets are
included with both KIE bases. When you specify packages in this way, you must organize your
DRL files in a folder structure that reflects the specified packages.

5. In the my-app/pom.xml configuration file, specify the libraries that your application requires.
Provide the Red Hat Decision Manager dependencies as well as the group ID, artifact ID, and
version (GAV) of your application.

 <kbase name="KBase1" default="true" eventProcessingMode="cloud"
equalsBehavior="equality" declarativeAgenda="enabled" packages="org.domain.pkg1">
 <ksession name="KSession1_1" type="stateful" default="true" />
 <ksession name="KSession1_2" type="stateful" default="true" beliefSystem="jtms" />
 </kbase>
 <kbase name="KBase2" default="false" eventProcessingMode="stream"
equalsBehavior="equality" declarativeAgenda="enabled" packages="org.domain.pkg2,
org.domain.pkg3" includes="KBase1">
 <ksession name="KSession2_1" type="stateless" default="true" clockType="realtime">
 <fileLogger file="debugInfo" threaded="true" interval="10" />
 <workItemHandlers>
 <workItemHandler name="name" type="new org.domain.WorkItemHandler()" />
 </workItemHandlers>
 <listeners>
 <ruleRuntimeEventListener type="org.domain.RuleRuntimeListener" />
 <agendaEventListener type="org.domain.FirstAgendaListener" />
 <agendaEventListener type="org.domain.SecondAgendaListener" />
 <processEventListener type="org.domain.ProcessListener" />
 </listeners>
 </ksession>
 </kbase>
</kmodule>

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.sample.app</groupId>
<artifactId>my-app</artifactId>
<version>1.0.0</version>
<repositories>
 <repository>
 <id>jboss-ga-repository</id>
 <url>http://maven.repository.redhat.com/ga/</url>
 </repository>
</repositories>
<dependencies>
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-compiler</artifactId>
 <version>VERSION</version>
 </dependency>
 <dependency>

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

38

For information about Maven dependencies and the BOM (Bill of Materials) in Red Hat Decision
Manager, see What is the mapping between Red Hat Decision Manager and Maven library
version?.

6. Use the testApp method in my-app/src/test/java/com/sample/app/AppTest.java to test the
rule. The AppTest.java file is created by Maven by default.

7. In the AppTest.java file, add the required import statements to import KIE services, a KIE
container, and a KIE session. Then load the KIE base, insert facts, and execute the rule from the
testApp() method that passes the fact model to the rule.

8. After you create and save all DRL assets in your Maven archetype, navigate to the my-app
directory in the command line and run the following command to build your files:

mvn clean install

If the build fails, address any problems described in the command line error messages and try

 <groupId>org.kie</groupId>
 <artifactId>kie-api</artifactId>
 <version>VERSION</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
 </dependency>
</dependencies>
</project>

import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

public void testApp() {

 // Load the KIE base:
 KieServices ks = KieServices.Factory.get();
 KieContainer kContainer = ks.getKieClasspathContainer();
 KieSession kSession = kContainer.newKieSession();

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 // Insert the person into the session:
 kSession.insert(p);

 // Fire all rules:
 kSession.fireAllRules();
 kSession.dispose();
}

CHAPTER 6. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES

39

https://access.redhat.com/solutions/3405361

If the build fails, address any problems described in the command line error messages and try
again to validate the files until the build is successful.

9. After your files build successfully, run the following command to execute the rules locally.
Replace com.sample.app with your package name.

mvn exec:java -Dexec.mainClass="com.sample.app"

10. Review the rules to ensure that they executed properly, and address any needed changes in the
files.

To integrate the new rule assets with an existing project in Red Hat Decision Manager, you can compile
the new Maven project as a knowledge JAR (KJAR) and add it as a dependency in the pom.xml file of
the project in Business Central. To access the project pom.xml file in Business Central, you can select
any existing asset in the project and then in the Project Explorer menu on the left side of the screen,
click the Customize View gear icon and select Repository View → pom.xml.

6.4. EXECUTABLE RULE MODELS

Executable rule models are embeddable models that provide a Java-based representation of a rule set
for execution at build time. The executable model is a more efficient alternative to the standard asset
packaging in Red Hat Decision Manager and enables KIE containers and KIE bases to be created more
quickly, especially when you have large lists of DRL (Drools Rule Language) files and other Red Hat
Decision Manager assets. The model is low level and enables you to provide all necessary execution
information, such as the lambda expressions for the index evaluation.

Executable rule models provide the following specific advantages for your projects:

Compile time: Traditionally, a packaged Red Hat Decision Manager project (KJAR) contains a
list of DRL files and other Red Hat Decision Manager artifacts that define the rule base
together with some pre-generated classes implementing the constraints and the consequences.
Those DRL files must be parsed and compiled when the KJAR is downloaded from the Maven
repository and installed in a KIE container. This process can be slow, especially for large rule sets.
With an executable model, you can package within the project KJAR the Java classes that
implement the executable model of the project rule base and re-create the KIE container and
its KIE bases out of it in a much faster way. In Maven projects, you use the kie-maven-plugin to
automatically generate the executable model sources from the DRL files during the compilation
process.

Run time: In an executable model, all constraints are defined as Java lambda expressions. The
same lambda expressions are also used for constraints evaluation, so you no longer need to use
mvel expressions for interpreted evaluation nor the just-in-time (JIT) process to transform the
mvel-based constraints into bytecode. This creates a quicker and more efficient run time.

Development time: An executable model enables you to develop and experiment with new
features of the decision engine without needing to encode elements directly in the DRL format
or modify the DRL parser to support them.

NOTE

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

40

NOTE

For query definitions in executable rule models, you can use up to 10 arguments only.

For variables within rule consequences in executable rule models, you can use up to 12
bound variables only (including the built-in drools variable). For example, the following
rule consequence uses more than 12 bound variables and creates a compilation error:

...
then
 $input.setNo13Count(functions.sumOf(new Object[]{$no1Count_1, $no2Count_1,
$no3Count_1, ..., $no13Count_1}).intValue());
 $input.getFirings().add("fired");
 update($input);

6.4.1. Embedding an executable rule model in a Maven project

You can embed an executable rule model in your Maven project to compile your rule assets more
efficiently at build time.

Prerequisites

You have a Mavenized project that contains Red Hat Decision Manager business assets.

Procedure

1. In the pom.xml file of your Maven project, ensure that the packaging type is set to kjar and add
the kie-maven-plugin build component:

The kjar packaging type activates the kie-maven-plugin component to validate and pre-
compile artifact resources. The <version> is the Maven artifact version for Red Hat Decision
Manager currently used in your project (for example, 7.23.0.Final-redhat-00002). These
settings are required to properly package the Maven project.

NOTE

<packaging>kjar</packaging>
...
<build>
 <plugins>
 <plugin>
 <groupId>org.kie</groupId>
 <artifactId>kie-maven-plugin</artifactId>
 <version>${rhdm.version}</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
</build>

CHAPTER 6. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES

41

NOTE

Instead of specifying a Red Hat Decision Manager <version> for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHDM product and maven library version?.

2. Add the following dependencies to the pom.xml file to enable rule assets to be built from an
executable model:

drools-canonical-model: Enables an executable canonical representation of a rule set
model that is independent from Red Hat Decision Manager

drools-model-compiler: Compiles the executable model into Red Hat Decision Manager
internal data structures so that it can be executed by the decision engine

3. In a command terminal, navigate to your Maven project directory and run the following
command to build the project from an executable model:

mvn clean install -DgenerateModel=<VALUE>

The -DgenerateModel=<VALUE> property enables the project to be built as a model-based
KJAR instead of a DRL-based KJAR.

Replace <VALUE> with one of three values:

YES: Generates the executable model corresponding to the DRL files in the original project

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.4.0.GA-redhat-00002</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-canonical-model</artifactId>
 <version>${rhdm.version}</version>
</dependency>

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-model-compiler</artifactId>
 <version>${rhdm.version}</version>
</dependency>

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

42

https://access.redhat.com/solutions/3363991

YES: Generates the executable model corresponding to the DRL files in the original project
and excludes the DRL files from the generated KJAR.

WITHDRL: Generates the executable model corresponding to the DRL files in the original
project and also adds the DRL files to the generated KJAR for documentation purposes
(the KIE base is built from the executable model regardless).

NO: Does not generate the executable model.

Example build command:

mvn clean install -DgenerateModel=YES

For more information about packaging Maven projects, see Packaging and deploying a Red Hat Decision
Manager project.

6.4.2. Embedding an executable rule model in a Java application

You can embed an executable rule model programmatically within your Java application to compile your
rule assets more efficiently at build time.

Prerequisites

You have a Java application that contains Red Hat Decision Manager business assets.

Procedure

1. Add the following dependencies to the relevant classpath for your Java project:

drools-canonical-model: Enables an executable canonical representation of a rule set
model that is independent from Red Hat Decision Manager

drools-model-compiler: Compiles the executable model into Red Hat Decision Manager
internal data structures so that it can be executed by the decision engine

The <version> is the Maven artifact version for Red Hat Decision Manager currently used in
your project (for example, 7.23.0.Final-redhat-00002).

NOTE

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-canonical-model</artifactId>
 <version>${rhdm.version}</version>
</dependency>

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-model-compiler</artifactId>
 <version>${rhdm.version}</version>
</dependency>

CHAPTER 6. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES

43

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.4/html-single/packaging_and_deploying_a_red_hat_decision_manager_project#project-build-deploy-maven-proc_packaging-deploying

NOTE

Instead of specifying a Red Hat Decision Manager <version> for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHDM product and maven library version?.

2. Add rule assets to the KIE virtual file system KieFileSystem and use KieBuilder with buildAll(
ExecutableModelProject.class) specified to build the assets from an executable model:

After KieFileSystem is built from the executable model, the resulting KieSession uses
constraints based on lambda expressions instead of less-efficient mvel expressions. If buildAll()
contains no arguments, the project is built in the standard method without an executable model.

As a more manual alternative to using KieFileSystem for creating executable models, you can
define a Model with a fluent API and create a KieBase from it:

For more information about packaging projects programmatically within a Java application, see
Packaging and deploying a Red Hat Decision Manager project .

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.4.0.GA-redhat-00002</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

import org.kie.api.KieServices;
import org.kie.api.builder.KieFileSystem;
import org.kie.api.builder.KieBuilder;

 KieServices ks = KieServices.Factory.get();
 KieFileSystem kfs = ks.newKieFileSystem()
 kfs.write("src/main/resources/KBase1/ruleSet1.drl", stringContainingAValidDRL)
 .write("src/main/resources/dtable.xls",
 kieServices.getResources().newInputStreamResource(dtableFileStream));

 KieBuilder kieBuilder = ks.newKieBuilder(kfs);
 // Build from an executable model
 kieBuilder.buildAll(ExecutableModelProject.class)
 assertEquals(0, kieBuilder.getResults().getMessages(Message.Level.ERROR).size());

Model model = new ModelImpl().addRule(rule);
KieBase kieBase = KieBaseBuilder.createKieBaseFromModel(model);

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

44

https://access.redhat.com/solutions/3363991
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.4/html-single/packaging_and_deploying_a_red_hat_decision_manager_project#project-build-deploy-java-proc_packaging-deploying

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION
MANAGER FOR AN IDE

Red Hat Decision Manager provides example decisions distributed as Java classes that you can import
into your integrated development environment (IDE). You can use these examples to better understand
decision engine capabilities or use them as a reference for the decisions that you define in your own Red
Hat Decision Manager projects.

The following example decision sets are some of the examples available in Red Hat Decision Manager:

Hello World example: Demonstrates basic rule execution and use of debug output

State example: Demonstrates forward chaining and conflict resolution through rule salience and
agenda groups

Fibonacci example: Demonstrates recursion and conflict resolution through rule salience

Banking example: Demonstrates pattern matching, basic sorting, and calculation

Pet Store example: Demonstrates rule agenda groups, global variables, callbacks, and GUI
integration

Sudoku example: Demonstrates complex pattern matching, problem solving, callbacks, and GUI
integration

House of Doom example: Demonstrates backward chaining and recursion

NOTE

For optimization examples provided with Red Hat Business Optimizer, see Getting
started with Red Hat Business Optimizer.

7.1. IMPORTING AND EXECUTING RED HAT DECISION MANAGER
EXAMPLE DECISIONS IN AN IDE

You can import Red Hat Decision Manager example decisions into your integrated development
environment (IDE) and execute them to explore how the rules and code function. You can use these
examples to better understand decision engine capabilities or use them as a reference for the decisions
that you define in your own Red Hat Decision Manager projects.

Prerequisites

Java 8 or later is installed.

Maven 3.5.x or later is installed.

An IDE is installed, such as Red Hat JBoss Developer Studio.

Procedure

1. Download and unzip the Red Hat Decision Manager 7.4.0 Source Distribution from the Red
Hat Customer Portal to a temporary directory, such as /rhdm-7.4.0-sources.

2. Open your IDE and select File → Import → Maven → Existing Maven Projects, or the

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

45

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.4/html-single/getting_started_with_red_hat_business_optimizer#examples-con
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

2. Open your IDE and select File → Import → Maven → Existing Maven Projects, or the
equivalent option for importing a Maven project.

3. Click Browse, navigate to ~/rhdm-7.4.0-sources/src/drools-$VERSION/drools-examples (or,
for the Conway’s Game of Life example, ~/rhdm-7.4.0-sources/src/droolsjbpm-integration-
$VERSION/droolsjbpm-integration-examples), and import the project.

4. Navigate to the example package that you want to run and find the Java class with the main
method.

5. Right-click the Java class and select Run As → Java Application to run the example.
To run all examples through a basic user interface, run the DroolsExamplesApp.java class (or,
for Conway’s Game of Life, the DroolsJbpmIntegrationExamplesApp.java class) in the
org.drools.examples main class.

Figure 7.1. Interface for all examples in drools-examples (DroolsExamplesApp.java)

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

46

Figure 7.1. Interface for all examples in drools-examples (DroolsExamplesApp.java)

Figure 7.2. Interface for all examples in droolsjbpm-integration-examples

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

47

1

2

3

Figure 7.2. Interface for all examples in droolsjbpm-integration-examples
(DroolsJbpmIntegrationExamplesApp.java)

7.2. HELLO WORLD EXAMPLE DECISIONS (BASIC RULES AND
DEBUGGING)

The Hello World example decision set demonstrates how to insert objects into the decision engine
working memory, how to match the objects using rules, and how to configure logging to trace the
internal activity of the decision engine.

The following is an overview of the Hello World example:

Name: helloworld

Main class: org.drools.examples.helloworld.HelloWorldExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.helloworld.HelloWorld.drl (in src/main/resources)

Objective: Demonstrates basic rule execution and use of debug output

In the Hello World example, a KIE session is generated to enable rule execution. All rules require a KIE
session for execution.

KIE session for rule execution

Obtains the KieServices factory. This is the main interface that applications use to interact with
the decision engine.

Creates a KieContainer from the project class path. This detects a /META-INF/kmodule.xml file
from which it configures and instantiates a KieContainer with a KieModule.

Creates a KieSession based on the "HelloWorldKS" KIE session configuration defined in the
/META-INF/kmodule.xml file.

KieServices ks = KieServices.Factory.get(); 1
KieContainer kc = ks.getKieClasspathContainer(); 2
KieSession ksession = kc.newKieSession("HelloWorldKS"); 3

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

48

NOTE

For more information about Red Hat Decision Manager project packaging, see Packaging
and deploying a Red Hat Decision Manager project.

Red Hat Decision Manager has an event model that exposes internal engine activity. Two default debug
listeners, DebugAgendaEventListener and DebugWorkingMemoryEventListener, print debug event
information to the System.err output. The KieRuntimeLogger provides execution auditing, the result
of which you can view in a graphical viewer.

Debug listeners and audit loggers

The logger is a specialized implementation built on the Agenda and RuleRuntime listeners. When the
decision engine has finished executing, logger.close() is called.

The example creates a single Message object with the message "Hello World", inserts the status
HELLO into the KieSession, executes rules with fireAllRules().

Data insertion and execution

Rule execution uses a data model to pass data as inputs and outputs to the KieSession. The data
model in this example has two fields: the message, which is a String, and the status, which can be
HELLO or GOODBYE.

Data model class

// Set up listeners.
ksession.addEventListener(new DebugAgendaEventListener());
ksession.addEventListener(new DebugRuleRuntimeEventListener());

// Set up a file-based audit logger.
KieRuntimeLogger logger = KieServices.get().getLoggers().newFileLogger(ksession,
"./target/helloworld");

// Set up a ThreadedFileLogger so that the audit view reflects events while debugging.
KieRuntimeLogger logger = ks.getLoggers().newThreadedFileLogger(ksession, "./target/helloworld",
1000);

// Insert facts into the KIE session.
final Message message = new Message();
message.setMessage("Hello World");
message.setStatus(Message.HELLO);
ksession.insert(message);

// Fire the rules.
ksession.fireAllRules();

public static class Message {
 public static final int HELLO = 0;
 public static final int GOODBYE = 1;

 private String message;

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

49

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.4/html-single/packaging_and_deploying_a_red_hat_decision_manager_project

The two rules are located in the file
src/main/resources/org/drools/examples/helloworld/HelloWorld.drl.

The when condition of the "Hello World" rule states that the rule is activated for each Message object
inserted into the KIE session that has the status Message.HELLO. Additionally, two variable bindings
are created: the variable message is bound to the message attribute and the variable m is bound to
the matched Message object itself.

The then action of the rule is written using the MVEL expression language, as declared by the rule
dialect attribute. After printing the content of the bound variable message to System.out, the rule
changes the values of the message and status attributes of the Message object bound to m. The rule
uses the MVEL modify statement to apply a block of assignments in one statement and to notify the
decision engine of the changes at the end of the block.

"Hello World" rule

rule "Hello World"
 dialect "mvel"
 when
 m : Message(status == Message.HELLO, message : message)
 then
 System.out.println(message);
 modify (m) { message = "Goodbye cruel world",
 status = Message.GOODBYE };
end

The "Good Bye" rule, which specifies the java dialect, is similar to the "Hello World" rule except that it
matches Message objects that have the status Message.GOODBYE.

"Good Bye" rule

rule "Good Bye"
 dialect "java"
 when
 Message(status == Message.GOODBYE, message : message)
 then
 System.out.println(message);
end

To execute the example, run the org.drools.examples.helloworld.HelloWorldExample class as a Java
application in your IDE. The rule writes to System.out, the debug listener writes to System.err, and the
audit logger creates a log file in target/helloworld.log.

System.out output in the IDE console

Hello World
Goodbye cruel world

System.err output in the IDE console

 private int status;
 ...
}

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

50

==>[ActivationCreated(0): rule=Hello World;
 tuple=[fid:1:1:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]]
[ObjectInserted: handle=
[fid:1:1:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96];
 object=org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]
[BeforeActivationFired: rule=Hello World;
 tuple=[fid:1:1:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]]
==>[ActivationCreated(4): rule=Good Bye;
 tuple=[fid:1:2:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]]
[ObjectUpdated: handle=
[fid:1:2:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96];
 old_object=org.drools.examples.helloworld.HelloWorldExample$Message@17cec96;
 new_object=org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]
[AfterActivationFired(0): rule=Hello World]
[BeforeActivationFired: rule=Good Bye;
 tuple=[fid:1:2:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]]
[AfterActivationFired(4): rule=Good Bye]

To better understand the execution flow of this example, you can load the audit log file from
target/helloworld.log into your IDE debug view or Audit View, if available (for example, in Window →
Show View in some IDEs).

In this example, the Audit view shows that the object is inserted, which creates an activation for the
"Hello World" rule. The activation is then executed, which updates the Message object and causes the
"Good Bye" rule to activate. Finally, the "Good Bye" rule is executed. When you select an event in the
Audit View, the origin event, which is the "Activation created" event in this example, is highlighted in
green.

Figure 7.3. Hello World example Audit View

7.3. STATE EXAMPLE DECISIONS (FORWARD CHAINING AND
CONFLICT RESOLUTION)

The State example decision set demonstrates how the decision engine uses forward chaining and any
changes to facts in the working memory to resolve execution conflicts for rules in a sequence. The
example focuses on resolving conflicts through salience values or through agenda groups that you can
define in rules.

The following is an overview of the State example:

Name: state

Main classes: org.drools.examples.state.StateExampleUsingSalience,
org.drools.examples.state.StateExampleUsingAgendaGroup (in src/main/java)

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

51

Module: drools-examples

Type: Java application

Rule files: org.drools.examples.state.*.drl (in src/main/resources)

Objective: Demonstrates forward chaining and conflict resolution through rule salience and
agenda groups

A forward-chaining rule system is a data-driven system that starts with a fact in the working memory of
the decision engine and reacts to changes to that fact. When objects are inserted into working memory,
any rule conditions that become true as a result of the change are scheduled for execution by the
agenda.

In contrast, a backward-chaining rule system is a goal-driven system that starts with a conclusion that
the decision engine attempts to satisfy, often using recursion. If the system cannot reach the conclusion
or goal, it searches for subgoals, which are conclusions that complete part of the current goal. The
system continues this process until either the initial conclusion is satisfied or all subgoals are satisfied.

The decision engine in Red Hat Decision Manager uses both forward and backward chaining to evaluate
rules.

The following diagram illustrates how the decision engine evaluates rules using forward chaining overall
with a backward-chaining segment in the logic flow:

Figure 7.4. Rule evaluation logic using forward and backward chaining

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

52

Figure 7.4. Rule evaluation logic using forward and backward chaining

In the State example, each State class has fields for its name and its current state (see the class
org.drools.examples.state.State). The following states are the two possible states for each object:

NOTRUN

FINISHED

State class

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

53

The State example contains two versions of the same example to resolve rule execution conflicts:

A StateExampleUsingSalience version that resolves conflicts by using rule salience

A StateExampleUsingAgendaGroups version that resolves conflicts by using rule agenda
groups

Both versions of the state example involve four State objects: A, B, C, and D. Initially, their states are set
to NOTRUN, which is the default value for the constructor that the example uses.

State example using salience
The StateExampleUsingSalience version of the State example uses salience values in rules to resolve
rule execution conflicts. Rules with a higher salience value are given higher priority when ordered in the
activation queue.

The example inserts each State instance into the KIE session and then calls fireAllRules().

Salience State example execution

To execute the example, run the org.drools.examples.state.StateExampleUsingSalience class as a
Java application in your IDE.

After the execution, the following output appears in the IDE console window:

Salience State example output in the IDE console

A finished

public class State {
 public static final int NOTRUN = 0;
 public static final int FINISHED = 1;

 private final PropertyChangeSupport changes =
 new PropertyChangeSupport(this);

 private String name;
 private int state;

 ... setters and getters go here...
}

final State a = new State("A");
final State b = new State("B");
final State c = new State("C");
final State d = new State("D");

ksession.insert(a);
ksession.insert(b);
ksession.insert(c);
ksession.insert(d);

ksession.fireAllRules();

// Dispose KIE session if stateful (not required if stateless).
ksession.dispose();

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

54

B finished
C finished
D finished

Four rules are present.

First, the "Bootstrap" rule fires, setting A to state FINISHED, which then causes B to change its state
to FINISHED. Objects C and D are both dependent on B, causing a conflict that is resolved by the
salience values.

To better understand the execution flow of this example, you can load the audit log file from
target/state.log into your IDE debug view or Audit View, if available (for example, in Window → Show
View in some IDEs).

In this example, the Audit View shows that the assertion of the object A in the state NOTRUN activates
the "Bootstrap" rule, while the assertions of the other objects have no immediate effect.

Figure 7.5. Salience State example Audit View

Rule "Bootstrap" in salience State example

rule "Bootstrap"
 when
 a : State(name == "A", state == State.NOTRUN)
 then
 System.out.println(a.getName() + " finished");
 a.setState(State.FINISHED);
end

The execution of the "Bootstrap" rule changes the state of A to FINISHED, which activates rule "A to
B".

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

55

Rule "A to B" in salience State example

rule "A to B"
 when
 State(name == "A", state == State.FINISHED)
 b : State(name == "B", state == State.NOTRUN)
 then
 System.out.println(b.getName() + " finished");
 b.setState(State.FINISHED);
end

The execution of rule "A to B" changes the state of B to FINISHED, which activates both rules "B to C"
and "B to D", placing their activations onto the decision engine agenda.

Rules "B to C" and "B to D" in salience State example

rule "B to C"
 salience 10
 when
 State(name == "B", state == State.FINISHED)
 c : State(name == "C", state == State.NOTRUN)
 then
 System.out.println(c.getName() + " finished");
 c.setState(State.FINISHED);
end

rule "B to D"
 when
 State(name == "B", state == State.FINISHED)
 d : State(name == "D", state == State.NOTRUN)
 then
 System.out.println(d.getName() + " finished");
 d.setState(State.FINISHED);
end

From this point on, both rules may fire and, therefore, the rules are in conflict. The conflict resolution
strategy enables the decision engine agenda to decide which rule to fire. Rule "B to C" has the higher
salience value (10 versus the default salience value of 0), so it fires first, modifying object C to state
FINISHED.

The Audit View in your IDE shows the modification of the State object in the rule "A to B", which results
in two activations being in conflict.

You can also use the Agenda View in your IDE to investigate the state of the decision engine agenda. In
this example, the Agenda View shows the breakpoint in the rule "A to B" and the state of the agenda
with the two conflicting rules. Rule "B to D" fires last, modifying object D to state FINISHED.

Figure 7.6. Salience State example Agenda View

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

56

Figure 7.6. Salience State example Agenda View

State example using agenda groups
The StateExampleUsingAgendaGroups version of the State example uses agenda groups in rules to
resolve rule execution conflicts. Agenda groups enable you to partition the decision engine agenda to
provide more execution control over groups of rules. By default, all rules are in the agenda group MAIN.
You can use the agenda-group attribute to specify a different agenda group for the rule.

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

57

Initially, a working memory has its focus on the agenda group MAIN. Rules in an agenda group only fire
when the group receives the focus. You can set the focus either by using the method setFocus() or the
rule attribute auto-focus. The auto-focus attribute enables the rule to be given a focus automatically
for its agenda group when the rule is matched and activated.

In this example, the auto-focus attribute enables rule "B to C" to fire before "B to D".

Rule "B to C" in agenda group State example

rule "B to C"
 agenda-group "B to C"
 auto-focus true
 when
 State(name == "B", state == State.FINISHED)
 c : State(name == "C", state == State.NOTRUN)
 then
 System.out.println(c.getName() + " finished");
 c.setState(State.FINISHED);
 kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("B to D").setFocus();
end

The rule "B to C" calls setFocus() on the agenda group "B to D", enabling its active rules to fire, which
then enables the rule "B to D" to fire.

Rule "B to D" in agenda group State example

rule "B to D"
 agenda-group "B to D"
 when
 State(name == "B", state == State.FINISHED)
 d : State(name == "D", state == State.NOTRUN)
 then
 System.out.println(d.getName() + " finished");
 d.setState(State.FINISHED);
end

To execute the example, run the org.drools.examples.state.StateExampleUsingAgendaGroups class
as a Java application in your IDE.

After the execution, the following output appears in the IDE console window (same as the salience
version of the State example):

Agenda group State example output in the IDE console

A finished
B finished
C finished
D finished

Dynamic facts in the State example
Another notable concept in this State example is the use of dynamic facts, based on objects that
implement a PropertyChangeListener object. In order for the decision engine to see and react to
changes of fact properties, the application must notify the decision engine that changes occurred. You

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

58

can configure this communication explicitly in the rules by using the modify statement, or implicitly by
specifying that the facts implement the PropertyChangeSupport interface as defined by the
JavaBeans specification.

This example demonstrates how to use the PropertyChangeSupport interface to avoid the need for
explicit modify statements in the rules. To make use of this interface, ensure that your facts implement
PropertyChangeSupport in the same way that the class org.drools.example.State implements it, and
then use the following code in the DRL rule file to configure the decision engine to listen for property
changes on those facts:

Declaring a dynamic fact

declare type State
 @propertyChangeSupport
end

When you use PropertyChangeListener objects, each setter must implement additional code for the
notification. For example, the following setter for state is in the class org.drools.examples:

Setter example with PropertyChangeSupport

7.4. FIBONACCI EXAMPLE DECISIONS (RECURSION AND CONFLICT
RESOLUTION)

The Fibonacci example decision set demonstrates how the decision engine uses recursion to resolve
execution conflicts for rules in a sequence. The example focuses on resolving conflicts through salience
values that you can define in rules.

The following is an overview of the Fibonacci example:

Name: fibonacci

Main class: org.drools.examples.fibonacci.FibonacciExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.fibonacci.Fibonacci.drl (in src/main/resources)

Objective: Demonstrates recursion and conflict resolution through rule salience

The Fibonacci Numbers form a sequence starting with 0 and 1. The next Fibonacci number is obtained by
adding the two preceding Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,
1597, 2584, 4181, 6765, 10946, and so on.

The Fibonacci example uses the single fact class Fibonacci with the following two fields:

public void setState(final int newState) {
 int oldState = this.state;
 this.state = newState;
 this.changes.firePropertyChange("state",
 oldState,
 newState);
}

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

59

sequence

value

The sequence field indicates the position of the object in the Fibonacci number sequence. The value
field shows the value of that Fibonacci object for that sequence position, where -1 indicates a value that
still needs to be computed.

Fibonacci class

To execute the example, run the org.drools.examples.fibonacci.FibonacciExample class as a Java
application in your IDE.

After the execution, the following output appears in the IDE console window:

Fibonacci example output in the IDE console

recurse for 50
recurse for 49
recurse for 48
recurse for 47
...
recurse for 5
recurse for 4
recurse for 3
recurse for 2
1 == 1
2 == 1
3 == 2
4 == 3
5 == 5
6 == 8
...
47 == 2971215073
48 == 4807526976
49 == 7778742049
50 == 12586269025

To achieve this behavior in Java, the example inserts a single Fibonacci object with a sequence field of
50. The example then uses a recursive rule to insert the other 49 Fibonacci objects.

Instead of implementing the PropertyChangeSupport interface to use dynamic facts, this example

public static class Fibonacci {
 private int sequence;
 private long value;

 public Fibonacci(final int sequence) {
 this.sequence = sequence;
 this.value = -1;
 }

 ... setters and getters go here...
}

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

60

Instead of implementing the PropertyChangeSupport interface to use dynamic facts, this example
uses the MVEL dialect modify keyword to enable a block setter action and notify the decision engine of
changes.

Fibonacci example execution

This example uses the following three rules:

"Recurse"

"Bootstrap"

"Calculate"

The rule "Recurse" matches each asserted Fibonacci object with a value of -1, creating and asserting a
new Fibonacci object with a sequence of one less than the currently matched object. Each time a
Fibonacci object is added while the one with a sequence field equal to 1 does not exist, the rule re-
matches and fires again. The not conditional element is used to stop the rule matching once you have all
50 Fibonacci objects in memory. The rule also has a salience value because you need to have all 50
Fibonacci objects asserted before you execute the "Bootstrap" rule.

Rule "Recurse"

rule "Recurse"
 salience 10
 when
 f : Fibonacci (value == -1)
 not (Fibonacci (sequence == 1))
 then
 insert(new Fibonacci(f.sequence - 1));
 System.out.println("recurse for " + f.sequence);
end

To better understand the execution flow of this example, you can load the audit log file from
target/fibonacci.log into your IDE debug view or Audit View, if available (for example, in Window →
Show View in some IDEs).

In this example, the Audit View shows the original assertion of the Fibonacci object with a sequence
field of 50, done from Java code. From there on, the Audit View shows the continual recursion of the
rule, where each asserted Fibonacci object causes the "Recurse" rule to become activated and to fire
again.

Figure 7.7. Rule "Recurse" in Audit View

ksession.insert(new Fibonacci(50));
ksession.fireAllRules();

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

61

Figure 7.7. Rule "Recurse" in Audit View

When a Fibonacci object with a sequence field of 2 is asserted, the "Bootstrap" rule is matched and
activated along with the "Recurse" rule. Notice the multiple restrictions on field sequence that test for
equality with 1 or 2:

Rule "Bootstrap"

rule "Bootstrap"
 when
 f : Fibonacci(sequence == 1 || == 2, value == -1) // multi-restriction
 then
 modify (f){ value = 1 };
 System.out.println(f.sequence + " == " + f.value);
end

You can also use the Agenda View in your IDE to investigate the state of the decision engine agenda.
The "Bootstrap" rule does not fire yet because the "Recurse" rule has a higher salience value.

Figure 7.8. Rules "Recurse" and "Bootstrap" in Agenda View 1

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

62

Figure 7.8. Rules "Recurse" and "Bootstrap" in Agenda View 1

When a Fibonacci object with a sequence of 1 is asserted, the "Bootstrap" rule is matched again,
causing two activations for this rule. The "Recurse" rule does not match and activate because the not
conditional element stops the rule matching as soon as a Fibonacci object with a sequence of 1 exists.

Figure 7.9. Rules "Recurse" and "Bootstrap" in Agenda View 2

The "Bootstrap" rule sets the objects with a sequence of 1 and 2 to a value of 1. Now that you have

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

63

The "Bootstrap" rule sets the objects with a sequence of 1 and 2 to a value of 1. Now that you have
two Fibonacci objects with values not equal to -1, the "Calculate" rule is able to match.

At this point in the example, nearly 50 Fibonacci objects exist in the working memory. You need to
select a suitable triple to calculate each of their values in turn. If you use three Fibonacci patterns in a
rule without field constraints to confine the possible cross products, the result would be 50x49x48
possible combinations, leading to about 125,000 possible rule firings, most of them incorrect.

The "Calculate" rule uses field constraints to evaluate the three Fibonacci patterns in the correct order.
This technique is called cross-product matching.

The first pattern finds any Fibonacci object with a value != -1 and binds both the pattern and the field.
The second Fibonacci object does the same thing, but adds an additional field constraint to ensure that
its sequence is greater by one than the Fibonacci object bound to f1. When this rule fires for the first
time, you know that only sequences 1 and 2 have values of 1, and the two constraints ensure that f1
references sequence 1 and that f2 references sequence 2.

The final pattern finds the Fibonacci object with a value equal to -1 and with a sequence one greater
than f2.

At this point in the example, three Fibonacci objects are correctly selected from the available cross
products, and you can calculate the value for the third Fibonacci object that is bound to f3.

Rule "Calculate"

rule "Calculate"
 when
 // Bind f1 and s1.
 f1 : Fibonacci(s1 : sequence, value != -1)
 // Bind f2 and v2, refer to bound variable s1.
 f2 : Fibonacci(sequence == (s1 + 1), v2 : value != -1)
 // Bind f3 and s3, alternative reference of f2.sequence.
 f3 : Fibonacci(s3 : sequence == (f2.sequence + 1), value == -1)
 then
 // Note the various referencing techniques.
 modify (f3) { value = f1.value + v2 };
 System.out.println(s3 + " == " + f3.value);
end

The modify statement updates the value of the Fibonacci object bound to f3. This means that you now
have another new Fibonacci object with a value not equal to -1, which allows the "Calculate" rule to re-
match and calculate the next Fibonacci number.

The debug view or Audit View of your IDE shows how the firing of the last "Bootstrap" rule modifies
the Fibonacci object, enabling the "Calculate" rule to match, which then modifies another Fibonacci
object that enables the "Calculate" rule to match again. This process continues until the value is set for
all Fibonacci objects.

Figure 7.10. Rules in Audit View

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

64

Figure 7.10. Rules in Audit View

7.5. PRICING EXAMPLE DECISIONS (DECISION TABLES)

The Pricing example decision set demonstrates how to use a spreadsheet decision table for calculating
the retail cost of an insurance policy in tabular format instead of directly in a DRL file.

The following is an overview of the Pricing example:

Name: decisiontable

Main class: org.drools.examples.decisiontable.PricingRuleDTExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.decisiontable.ExamplePolicyPricing.xls (in
src/main/resources)

Objective: Demonstrates use of spreadsheet decision tables to define rules

Spreadsheet decision tables are XLS or XLSX spreadsheets that contain business rules defined in a
tabular format. You can include spreadsheet decision tables with standalone Red Hat Decision Manager
projects or upload them to projects in Business Central. Each row in a decision table is a rule, and each
column is a condition, an action, or another rule attribute. After you create and upload your decision
tables into your Red Hat Decision Manager project, the rules you defined are compiled into Drools Rule
Language (DRL) rules as with all other rule assets.

The purpose of the Pricing example is to provide a set of business rules to calculate the base price and a

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

65

The purpose of the Pricing example is to provide a set of business rules to calculate the base price and a
discount for a car driver applying for a specific type of insurance policy. The driver’s age and history and
the policy type all contribute to calculate the basic premium, and additional rules calculate potential
discounts for which the driver might be eligible.

To execute the example, run the org.drools.examples.decisiontable.PricingRuleDTExample class as
a Java application in your IDE.

After the execution, the following output appears in the IDE console window:

Cheapest possible
BASE PRICE IS: 120
DISCOUNT IS: 20

The code to execute the example follows the typical execution pattern: the rules are loaded, the facts
are inserted, and a stateless KIE session is created. The difference in this example is that the rules are
defined in an ExamplePolicyPricing.xls file instead of a DRL file or other source. The spreadsheet file
is loaded into the decision engine using templates and DRL rules.

Spreadsheet decision table setup
The ExamplePolicyPricing.xls spreadsheet contains two decision tables in the first tab:

Base pricing rules

Promotional discount rules

As the example spreadsheet demonstrates, you can use only the first tab of a spreadsheet to create
decision tables, but multiple tables can be within a single tab. Decision tables do not necessarily follow
top-down logic, but are more of a means to capture data resulting in rules. The evaluation of the rules is
not necessarily in the given order, because all of the normal mechanics of the decision engine still apply.
This is why you can have multiple decision tables in the same tab of a spreadsheet.

The decision tables are executed through the corresponding rule template files BasePricing.drt and
PromotionalPricing.drt. These template files reference the decision tables through their template
parameter and directly reference the various headers for the conditions and actions in the decision
tables.

BasePricing.drt rule template file

template header
age[]
profile
priorClaims
policyType
base
reason

package org.drools.examples.decisiontable;

template "Pricing bracket"
age
policyType
base

rule "Pricing bracket_@{row.rowNumber}"
 when

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

66

 Driver(age >= @{age0}, age <= @{age1}
 , priorClaims == "@{priorClaims}"
 , locationRiskProfile == "@{profile}"
)
 policy: Policy(type == "@{policyType}")
 then
 policy.setBasePrice(@{base});
 System.out.println("@{reason}");
end
end template

PromotionalPricing.drt rule template file

template header
age[]
priorClaims
policyType
discount

package org.drools.examples.decisiontable;

template "discounts"
age
priorClaims
policyType
discount

rule "Discounts_@{row.rowNumber}"
 when
 Driver(age >= @{age0}, age <= @{age1}, priorClaims == "@{priorClaims}")
 policy: Policy(type == "@{policyType}")
 then
 policy.applyDiscount(@{discount});
end
end template

The rules are executed through the kmodule.xml reference of the KIE Session
DTableWithTemplateKB, which specifically mentions the ExamplePolicyPricing.xls spreadsheet and
is required for successful execution of the rules. This execution method enables you to execute the rules
as a standalone unit (as in this example) or to include the rules in a packaged knowledge JAR (KJAR)
file, so that the spreadsheet is packaged along with the rules for execution.

The following section of the kmodule.xml file is required for the execution of the rules and spreadsheet
to work successfully:

 <kbase name="DecisionTableKB" packages="org.drools.examples.decisiontable">
 <ksession name="DecisionTableKS" type="stateless"/>
 </kbase>

 <kbase name="DTableWithTemplateKB" packages="org.drools.examples.decisiontable-template">
 <ruleTemplate dtable="org/drools/examples/decisiontable-
template/ExamplePolicyPricingTemplateData.xls"
 template="org/drools/examples/decisiontable-template/BasePricing.drt"
 row="3" col="3"/>
 <ruleTemplate dtable="org/drools/examples/decisiontable-

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

67

As an alternative to executing the decision tables using rule template files, you can use the
DecisionTableConfiguration object and specify an input spreadsheet as the input type, such as
DecisionTableInputType.xls:

The Pricing example uses two fact types:

Driver

Policy.

The example sets the default values for both facts in their respective Java classes Driver.java and
Policy.java. The Driver is 30 years old, has had no prior claims, and currently has a risk profile of LOW.
The Policy that the driver is applying for is COMPREHENSIVE.

In any decision table, each row is considered a different rule and each column is a condition or an action.
Each row is evaluated in a decision table unless the agenda is cleared upon execution.

Decision table spreadsheets (XLS or XLSX) require two key areas that define rule data:

A RuleSet area

A RuleTable area

The RuleSet area of the spreadsheet defines elements that you want to apply globally to all rules in the
same package (not only the spreadsheet), such as a rule set name or universal rule attributes. The
RuleTable area defines the actual rules (rows) and the conditions, actions, and other rule attributes
(columns) that constitute that rule table within the specified rule set. A decision table spreadsheet can
contain multiple RuleTable areas, but only one RuleSet area.

Figure 7.11. Decision table configuration

template/ExamplePolicyPricingTemplateData.xls"
 template="org/drools/examples/decisiontable-template/PromotionalPricing.drt"
 row="18" col="3"/>
 <ksession name="DTableWithTemplateKS"/>
 </kbase>

DecisionTableConfiguration dtableconfiguration =
 KnowledgeBuilderFactory.newDecisionTableConfiguration();
 dtableconfiguration.setInputType(DecisionTableInputType.XLS);

 KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

 Resource xlsRes = ResourceFactory.newClassPathResource("ExamplePolicyPricing.xls",
 getClass());
 kbuilder.add(xlsRes,
 ResourceType.DTABLE,
 dtableconfiguration);

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

68

Figure 7.11. Decision table configuration

The RuleTable area also defines the objects to which the rule attributes apply, in this case Driver and
Policy, followed by constraints on the objects. For example, the Driver object constraint that defines
the Age Bracket column is age >= $1, age <= $2, where the comma-separated range is defined in the
table column values, such as 18,24.

Base pricing rules
The Base pricing rules decision table in the Pricing example evaluates the age, risk profile, number of
claims, and policy type of the driver and produces the base price of the policy based on these
conditions.

Figure 7.12. Base price calculation

The Driver attributes are defined in the following table columns:

Age Bracket: The age bracket has a definition for the condition age >=$1, age <=$2, which
defines the condition boundaries for the driver’s age. This condition column highlights the use of
$1 and $2, which is comma delimited in the spreadsheet. You can write these values as 18,24 or
18, 24 and both formats work in the execution of the business rules.

Location risk profile: The risk profile is a string that the example program passes always as

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

69

Location risk profile: The risk profile is a string that the example program passes always as
LOW but can be changed to reflect MED or HIGH.

Number of prior claims: The number of claims is defined as an integer that the condition
column must exactly equal to trigger the action. The value is not a range, only exact matches.

The Policy of the decision table is used in both the conditions and the actions of the rule and has
attributes defined in the following table columns:

Policy type applying for: The policy type is a condition that is passed as a string that defines
the type of coverage: COMPREHENSIVE, FIRE_THEFT, or THIRD_PARTY.

Base $ AUD: The basePrice is defined as an ACTION that sets the price through the constraint
policy.setBasePrice($param); based on the spreadsheet cells corresponding to this value.
When you execute the corresponding DRL rule for this decision table, the then portion of the
rule executes this action statement on the true conditions matching the facts and sets the base
price to the corresponding value.

Record Reason: When the rule successfully executes, this action generates an output message
to the System.out console reflecting which rule fired. This is later captured in the application
and printed.

The example also uses the first column on the left to categorize rules. This column is for annotation only
and has no affect on rule execution.

Promotional discount rules
The Promotional discount rules decision table in the Pricing example evaluates the age, number of
prior claims, and policy type of the driver to generate a potential discount on the price of the insurance
policy.

Figure 7.13. Discount calculation

This decision table contains the conditions for the discount for which the driver might be eligible. Similar
to the base price calculation, this table evaluates the Age, Number of prior claims of the driver, and
the Policy type applying for to determine a Discount % rate to be applied. For example, if the driver is
30 years old, has no prior claims, and is applying for a COMPREHENSIVE policy, the driver is given a
discount of 20 percent.

7.6. PET STORE EXAMPLE DECISIONS (AGENDA GROUPS, GLOBAL
VARIABLES, CALLBACKS, AND GUI INTEGRATION)

The Pet Store example decision set demonstrates how to use agenda groups and global variables in
rules and how to integrate Red Hat Decision Manager rules with a graphical user interface (GUI), in this
case a Swing-based desktop application. The example also demonstrates how to use callbacks to
interact with a running decision engine to update the GUI based on changes in the working memory at
run time.

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

70

The following is an overview of the Pet Store example:

Name: petstore

Main class: org.drools.examples.petstore.PetStoreExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.petstore.PetStore.drl (in src/main/resources)

Objective: Demonstrates rule agenda groups, global variables, callbacks, and GUI integration

In the Pet Store example, the sample PetStoreExample.java class defines the following principal
classes (in addition to several classes to handle Swing events):

Petstore contains the main() method.

PetStoreUI is responsible for creating and displaying the Swing-based GUI. This class contains
several smaller classes, mainly for responding to various GUI events, such as user mouse clicks.

TableModel holds the table data. This class is essentially a JavaBean that extends the Swing
class AbstractTableModel.

CheckoutCallback enables the GUI to interact with the rules.

Ordershow keeps the items that you want to buy.

Purchase stores details of the order and the products that you are buying.

Product is a JavaBean containing details of the product available for purchase and its price.

Much of the Java code in this example is either plain JavaBean or Swing based. For more information
about Swing components, see the Java tutorial on Creating a GUI with JFC/Swing .

Rule execution behavior in the Pet Store example
Unlike other example decision sets where the facts are asserted and fired immediately, the Pet Store
example does not execute the rules until more facts are gathered based on user interaction. The
example executes rules through a PetStoreUI object, created by a constructor, that accepts the Vector
object stock for collecting the products. The example then uses an instance of the CheckoutCallback
class containing the rule base that was previously loaded.

Pet Store KIE container and fact execution setup

// KieServices is the factory for all KIE services.
KieServices ks = KieServices.Factory.get();

// Create a KIE container on the class path.
KieContainer kc = ks.getKieClasspathContainer();

// Create the stock.
Vector<Product> stock = new Vector<Product>();
stock.add(new Product("Gold Fish", 5));
stock.add(new Product("Fish Tank", 25));
stock.add(new Product("Fish Food", 2));

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

71

https://docs.oracle.com/javase/tutorial/uiswing/

The Java code that fires the rules is in the CheckoutCallBack.checkout() method. This method is
triggered when the user clicks Checkout in the UI.

Rule execution from CheckoutCallBack.checkout()

The example code passes two elements into the CheckoutCallBack.checkout() method. One element
is the handle for the JFrame Swing component surrounding the output text frame, found at the bottom
of the GUI. The second element is a list of order items, which comes from the TableModel that stores
the information from the Table area at the upper-right section of the GUI.

The for loop transforms the list of order items coming from the GUI into the Order JavaBean, also
contained in the file PetStoreExample.java.

In this case, the rule is firing in a stateless KIE session because all of the data is stored in Swing
components and is not executed until the user clicks Checkout in the UI. Each time the user clicks
Checkout, the content of the list is moved from the Swing TableModel into the KIE session working
memory and is then executed with the ksession.fireAllRules() method.

Within this code, there are nine calls to KieSession. The first of these creates a new KieSession from

// A callback is responsible for populating the working memory and for firing all rules.
PetStoreUI ui = new PetStoreUI(stock,
 new CheckoutCallback(kc));
ui.createAndShowGUI();

public String checkout(JFrame frame, List<Product> items) {
 Order order = new Order();

 // Iterate through list and add to cart.
 for (Product p: items) {
 order.addItem(new Purchase(order, p));
 }

 // Add the JFrame to the ApplicationData to allow for user interaction.

 // From the KIE container, a KIE session is created based on
 // its definition and configuration in the META-INF/kmodule.xml file.
 KieSession ksession = kcontainer.newKieSession("PetStoreKS");

 ksession.setGlobal("frame", frame);
 ksession.setGlobal("textArea", this.output);

 ksession.insert(new Product("Gold Fish", 5));
 ksession.insert(new Product("Fish Tank", 25));
 ksession.insert(new Product("Fish Food", 2));

 ksession.insert(new Product("Fish Food Sample", 0));

 ksession.insert(order);

 // Execute rules.
 ksession.fireAllRules();

 // Return the state of the cart
 return order.toString();
}

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

72

Within this code, there are nine calls to KieSession. The first of these creates a new KieSession from
the KieContainer (the example passed in this KieContainer from the CheckoutCallBack class in the
main() method). The next two calls pass in the two objects that hold the global variables in the rules: the
Swing text area and the Swing frame used for writing messages. More inserts put information on
products into the KieSession, as well as the order list. The final call is the standard fireAllRules().

Pet Store rule file imports, global variables, and Java functions
The PetStore.drl file contains the standard package and import statements to make various Java
classes available to the rules. The rule file also includes global variables to be used within the rules,
defined as frame and textArea. The global variables hold references to the Swing components JFrame
and JTextArea components that were previously passed on by the Java code that called the
setGlobal() method. Unlike standard variables in rules, which expire as soon as the rule has fired, global
variables retain their value for the lifetime of the KIE session. This means the contents of these global
variables are available for evaluation on all subsequent rules.

PetStore.drl package, imports, and global variables

The PetStore.drl file also contains two functions that the rules in the file use:

PetStore.drl Java functions

package org.drools.examples;

import org.kie.api.runtime.KieRuntime;
import org.drools.examples.petstore.PetStoreExample.Order;
import org.drools.examples.petstore.PetStoreExample.Purchase;
import org.drools.examples.petstore.PetStoreExample.Product;
import java.util.ArrayList;
import javax.swing.JOptionPane;

import javax.swing.JFrame;

global JFrame frame
global javax.swing.JTextArea textArea

function void doCheckout(JFrame frame, KieRuntime krt) {
 Object[] options = {"Yes",
 "No"};

 int n = JOptionPane.showOptionDialog(frame,
 "Would you like to checkout?",
 "",
 JOptionPane.YES_NO_OPTION,
 JOptionPane.QUESTION_MESSAGE,
 null,
 options,
 options[0]);

 if (n == 0) {
 krt.getAgenda().getAgendaGroup("checkout").setFocus();
 }
}

function boolean requireTank(JFrame frame, KieRuntime krt, Order order, Product fishTank, int total)
{

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

73

The two functions perform the following actions:

doCheckout() displays a dialog that asks the user if she or he wants to check out. If the user
does, the focus is set to the checkout agenda group, enabling rules in that group to
(potentially) fire.

requireTank() displays a dialog that asks the user if she or he wants to buy a fish tank. If the user
does, a new fish tank Product is added to the order list in the working memory.

NOTE

For this example, all rules and functions are within the same rule file for efficiency. In a
production environment, you typically separate the rules and functions in different files or
build a static Java method and import the files using the import function, such as import
function my.package.name.hello.

Pet Store rules with agenda groups
Most of the rules in the Pet Store example use agenda groups to control rule execution. Agenda groups
allow you to partition the decision engine agenda to provide more execution control over groups of
rules. By default, all rules are in the agenda group MAIN. You can use the agenda-group attribute to
specify a different agenda group for the rule.

Initially, a working memory has its focus on the agenda group MAIN. Rules in an agenda group only fire
when the group receives the focus. You can set the focus either by using the method setFocus() or the
rule attribute auto-focus. The auto-focus attribute enables the rule to be given a focus automatically
for its agenda group when the rule is matched and activated.

The Pet Store example uses the following agenda groups for rules:

 Object[] options = {"Yes",
 "No"};

 int n = JOptionPane.showOptionDialog(frame,
 "Would you like to buy a tank for your " + total + " fish?",
 "Purchase Suggestion",
 JOptionPane.YES_NO_OPTION,
 JOptionPane.QUESTION_MESSAGE,
 null,
 options,
 options[0]);

 System.out.print("SUGGESTION: Would you like to buy a tank for your "
 + total + " fish? - ");

 if (n == 0) {
 Purchase purchase = new Purchase(order, fishTank);
 krt.insert(purchase);
 order.addItem(purchase);
 System.out.println("Yes");
 } else {
 System.out.println("No");
 }
 return true;
}

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

74

"init"

"evaluate"

"show items"

"checkout"

For example, the sample rule "Explode Cart" uses the "init" agenda group to ensure that it has the
option to fire and insert shopping cart items into the KIE session working memory:

Rule "Explode Cart"

// Insert each item in the shopping cart into the working memory.
rule "Explode Cart"
 agenda-group "init"
 auto-focus true
 salience 10
 dialect "java"
 when
 $order : Order(grossTotal == -1)
 $item : Purchase() from $order.items
 then
 insert($item);
 kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("show items").setFocus();
 kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("evaluate").setFocus();
end

This rule matches against all orders that do not yet have their grossTotal calculated. The execution
loops for each purchase item in that order.

The rule uses the following features related to its agenda group:

agenda-group "init" defines the name of the agenda group. In this case, only one rule is in the
group. However, neither the Java code nor a rule consequence sets the focus to this group, and
therefore it relies on the auto-focus attribute for its chance to fire.

auto-focus true ensures that this rule, while being the only rule in the agenda group, gets a
chance to fire when fireAllRules() is called from the Java code.

kcontext… .setFocus() sets the focus to the "show items" and "evaluate" agenda groups,
enabling their rules to fire. In practice, you loop through all items in the order, insert them into
memory, and then fire the other rules after each insertion.

The "show items" agenda group contains only one rule, "Show Items". For each purchase in the order
currently in the KIE session working memory, the rule logs details to the text area at the bottom of the
GUI, based on the textArea variable defined in the rule file.

Rule "Show Items"

rule "Show Items"
 agenda-group "show items"
 dialect "mvel"
 when
 $order : Order()
 $p : Purchase(order == $order)

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

75

1

2

3

4

 then
 textArea.append($p.product + "\n");
end

The "evaluate" agenda group also gains focus from the "Explode Cart" rule. This agenda group
contains two rules, "Free Fish Food Sample" and "Suggest Tank", which are executed in that order.

Rule "Free Fish Food Sample"

// Free fish food sample when users buy a goldfish if they did not already buy
// fish food and do not already have a fish food sample.
rule "Free Fish Food Sample"
 agenda-group "evaluate" 1
 dialect "mvel"
 when
 $order : Order()
 not ($p : Product(name == "Fish Food") && Purchase(product == $p)) 2
 not ($p : Product(name == "Fish Food Sample") && Purchase(product == $p)) 3
 exists ($p : Product(name == "Gold Fish") && Purchase(product == $p)) 4
 $fishFoodSample : Product(name == "Fish Food Sample");
 then
 System.out.println("Adding free Fish Food Sample to cart");
 purchase = new Purchase($order, $fishFoodSample);
 insert(purchase);
 $order.addItem(purchase);
end

The rule "Free Fish Food Sample" fires only if all of the following conditions are true:

The agenda group "evaluate" is being evaluated in the rules execution.

User does not already have fish food.

User does not already have a free fish food sample.

User has a goldfish in the order.

If the order facts meet all of these requirements, then a new product is created (Fish Food Sample) and
is added to the order in working memory.

Rule "Suggest Tank"

// Suggest a fish tank if users buy more than five goldfish and
// do not already have a tank.
rule "Suggest Tank"
 agenda-group "evaluate"
 dialect "java"
 when
 $order : Order()
 not ($p : Product(name == "Fish Tank") && Purchase(product == $p)) 1
 ArrayList($total : size > 5) from collect(Purchase(product.name == "Gold Fish")) 2
 $fishTank : Product(name == "Fish Tank")

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

76

1

2

 then
 requireTank(frame, kcontext.getKieRuntime(), $order, $fishTank, $total);
end

The rule "Suggest Tank" fires only if the following conditions are true:

User does not have a fish tank in the order.

User has more than five fish in the order.

When the rule fires, it calls the requireTank() function defined in the rule file. This function displays a
dialog that asks the user if she or he wants to buy a fish tank. If the user does, a new fish tank Product is
added to the order list in the working memory. When the rule calls the requireTank() function, the rule
passes the frame global variable so that the function has a handle for the Swing GUI.

The "do checkout" rule in the Pet Store example has no agenda group and no when conditions, so the
rule is always executed and considered part of the default MAIN agenda group.

Rule "do checkout"

rule "do checkout"
 dialect "java"
 when
 then
 doCheckout(frame, kcontext.getKieRuntime());
end

When the rule fires, it calls the doCheckout() function defined in the rule file. This function displays a
dialog that asks the user if she or he wants to check out. If the user does, the focus is set to the
checkout agenda group, enabling rules in that group to (potentially) fire. When the rule calls the
doCheckout() function, the rule passes the frame global variable so that the function has a handle for
the Swing GUI.

NOTE

This example also demonstrates a troubleshooting technique if results are not executing
as you expect: You can remove the conditions from the when statement of a rule and
test the action in the then statement to verify that the action is performed correctly.

The "checkout" agenda group contains three rules for processing the order checkout and applying any
discounts: "Gross Total", "Apply 5% Discount", and "Apply 10% Discount".

Rules "Gross Total", "Apply 5% Discount", and "Apply 10% Discount"

rule "Gross Total"
 agenda-group "checkout"
 dialect "mvel"
 when
 $order : Order(grossTotal == -1)
 Number(total : doubleValue) from accumulate(Purchase($price : product.price),
 sum($price))
 then
 modify($order) { grossTotal = total }
 textArea.append("\ngross total=" + total + "\n");

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

77

end

rule "Apply 5% Discount"
 agenda-group "checkout"
 dialect "mvel"
 when
 $order : Order(grossTotal >= 10 && < 20)
 then
 $order.discountedTotal = $order.grossTotal * 0.95;
 textArea.append("discountedTotal total=" + $order.discountedTotal + "\n");
end

rule "Apply 10% Discount"
 agenda-group "checkout"
 dialect "mvel"
 when
 $order : Order(grossTotal >= 20)
 then
 $order.discountedTotal = $order.grossTotal * 0.90;
 textArea.append("discountedTotal total=" + $order.discountedTotal + "\n");
end

If the user has not already calculated the gross total, the Gross Total accumulates the product prices
into a total, puts this total into the KIE session, and displays it through the Swing JTextArea using the
textArea global variable.

If the gross total is between 10 and 20 (currency units), the "Apply 5% Discount" rule calculates the
discounted total, adds it to the KIE session, and displays it in the text area.

If the gross total is not less than 20, the "Apply 10% Discount" rule calculates the discounted total,
adds it to the KIE session, and displays it in the text area.

Pet Store example execution
Similar to other Red Hat Decision Manager decision examples, you execute the Pet Store example by
running the org.drools.examples.petstore.PetStoreExample class as a Java application in your IDE.

When you execute the Pet Store example, the Pet Store Demo GUI window appears. This window
displays a list of available products (upper left), an empty list of selected products (upper right),
Checkout and Reset buttons (middle), and an empty system messages area (bottom).

Figure 7.14. Pet Store example GUI after launch

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

78

Figure 7.14. Pet Store example GUI after launch

The following events occurred in this example to establish this execution behavior:

1. The main() method has run and loaded the rule base but has not yet fired the rules. So far, this is
the only code in connection with rules that has been run.

2. A new PetStoreUI object has been created and given a handle for the rule base, for later use.

3. Various Swing components have performed their functions, and the initial UI screen is displayed
and waits for user input.

You can click on various products from the list to explore the UI setup:

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

79

Figure 7.15. Explore the Pet Store example GUI

No rules code has been fired yet. The UI uses Swing code to detect user mouse clicks and add selected
products to the TableModel object for display in the upper-right corner of the UI. This example
illustrates the Model-View-Controller design pattern.

When you click Checkout, the rules are then fired in the following way:

1. Method CheckOutCallBack.checkout() is called (eventually) by the Swing class waiting for the
click on Checkout. This inserts the data from the TableModel object (upper-right corner of the
UI) into the KIE session working memory. The method then fires the rules.

2. The "Explode Cart" rule is the first to fire, with the auto-focus attribute set to true. The rule

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

80

2. The "Explode Cart" rule is the first to fire, with the auto-focus attribute set to true. The rule
loops through all of the products in the cart, ensures that the products are in the working
memory, and then gives the "show Items" and "evaluate" agenda groups the option to fire.
The rules in these groups add the contents of the cart to the text area (bottom of the UI),
evaluate if you are eligible for free fish food, and determine whether to ask if you want to buy a
fish tank.

Figure 7.16. Fish tank qualification

3. The "do checkout" rule is the next to fire because no other agenda group currently has focus
and because it is part of the default MAIN agenda group. This rule always calls the
doCheckout() function, which asks you if you want to check out.

4. The doCheckout() function sets the focus to the "checkout" agenda group, giving the rules in
that group the option to fire.

5. The rules in the "checkout" agenda group display the contents of the cart and apply the
appropriate discount.

6. Swing then waits for user input to either select more products (and cause the rules to fire again)
or to close the UI.

Figure 7.17. Pet Store example GUI after all rules have fired

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

81

Figure 7.17. Pet Store example GUI after all rules have fired

You can add more System.out calls to demonstrate this flow of events in your IDE console:

System.out output in the IDE console

Adding free Fish Food Sample to cart
SUGGESTION: Would you like to buy a tank for your 6 fish? - Yes

7.7. HONEST POLITICIAN EXAMPLE DECISIONS (TRUTH
MAINTENANCE AND SALIENCE)

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

82

The Honest Politician example decision set demonstrates the concept of truth maintenance with logical
insertions and the use of salience in rules.

The following is an overview of the Honest Politician example:

Name: honestpolitician

Main class: org.drools.examples.honestpolitician.HonestPoliticianExample (in
src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.honestpolitician.HonestPolitician.drl (in
src/main/resources)

Objective: Demonstrates the concept of truth maintenance based on the logical insertion of
facts and the use of salience in rules

The basic premise of the Honest Politician example is that an object can only exist while a statement is
true. A rule consequence can logically insert an object with the insertLogical() method. This means the
object remains in the KIE session working memory as long as the rule that logically inserted it remains
true. When the rule is no longer true, the object is automatically retracted.

In this example, rule execution causes a group of politicians to change from being honest to being
dishonest as a result of a corrupt corporation. As each politician is evaluated, they start out with their
honesty attribute being set to true, but a rule fires that makes the politicians no longer honest. As they
switch their state from being honest to dishonest, they are then removed from the working memory. The
rule salience notifies the decision engine how to prioritize any rules that have a salience defined for
them, otherwise utilizing the default salience value of 0. Rules with a higher salience value are given
higher priority when ordered in the activation queue.

Politician and Hope classes
The sample class Politician in the example is configured for an honest politician. The Politician class is
made up of a String item name and a Boolean item honest:

Politician class

The Hope class determines if a Hope object exists. This class has no meaningful members, but is present
in the working memory as long as society has hope.

Hope class

public class Politician {
 private String name;
 private boolean honest;
 ...
}

public class Hope {

 public Hope() {

 }
 }

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

83

Rule definitions for politician honesty
In the Honest Politician example, when at least one honest politician exists in the working memory, the
"We have an honest Politician" rule logically inserts a new Hope object. As soon as all politicians
become dishonest, the Hope object is automatically retracted. This rule has a salience attribute with a
value of 10 to ensure that it fires before any other rule, because at that stage the "Hope is Dead" rule
is true.

Rule "We have an honest politician"

rule "We have an honest Politician"
 salience 10
 when
 exists(Politician(honest == true))
 then
 insertLogical(new Hope());
end

As soon as a Hope object exists, the "Hope Lives" rule matches and fires. This rule also has a salience
value of 10 so that it takes priority over the "Corrupt the Honest" rule.

Rule "Hope Lives"

rule "Hope Lives"
 salience 10
 when
 exists(Hope())
 then
 System.out.println("Hurrah!!! Democracy Lives");
end

Initially, four honest politicians exist so this rule has four activations, all in conflict. Each rule fires in turn,
corrupting each politician so that they are no longer honest. When all four politicians have been
corrupted, no politicians have the property honest == true. The rule "We have an honest Politician" is
no longer true and the object it logically inserted (due to the last execution of new Hope()) is
automatically retracted.

Rule "Corrupt the Honest"

rule "Corrupt the Honest"
 when
 politician : Politician(honest == true)
 exists(Hope())
 then
 System.out.println("I'm an evil corporation and I have corrupted " + politician.getName());
 modify (politician) { honest = false };
end

With the Hope object automatically retracted through the truth maintenance system, the conditional
element not applied to Hope is no longer true so that the "Hope is Dead" rule matches and fires.

Rule "Hope is Dead"

rule "Hope is Dead"
 when

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

84

 not(Hope())
 then
 System.out.println("We are all Doomed!!! Democracy is Dead");
end

Example execution and audit trail
In the HonestPoliticianExample.java class, the four politicians with the honest state set to true are
inserted for evaluation against the defined business rules:

HonestPoliticianExample.java class execution

To execute the example, run the org.drools.examples.honestpolitician.HonestPoliticianExample
class as a Java application in your IDE.

After the execution, the following output appears in the IDE console window:

Execution output in the IDE console

Hurrah!!! Democracy Lives
I'm an evil corporation and I have corrupted President of Umpa Lumpa
I'm an evil corporation and I have corrupted Prime Minster of Cheeseland
I'm an evil corporation and I have corrupted Tsar of Pringapopaloo
I'm an evil corporation and I have corrupted Omnipotence Om
We are all Doomed!!! Democracy is Dead

The output shows that, while there is at least one honest politician, democracy lives. However, as each
politician is corrupted by some corporation, all politicians become dishonest, and democracy is dead.

To better understand the execution flow of this example, you can modify the
HonestPoliticianExample.java class to include a RuleRuntime listener and an audit logger to view
execution details:

HonestPoliticianExample.java class with an audit logger

public static void execute(KieContainer kc) {
 KieSession ksession = kc.newKieSession("HonestPoliticianKS");

 final Politician p1 = new Politician("President of Umpa Lumpa", true);
 final Politician p2 = new Politician("Prime Minster of Cheeseland", true);
 final Politician p3 = new Politician("Tsar of Pringapopaloo", true);
 final Politician p4 = new Politician("Omnipotence Om", true);

 ksession.insert(p1);
 ksession.insert(p2);
 ksession.insert(p3);
 ksession.insert(p4);

 ksession.fireAllRules();

 ksession.dispose();
 }

package org.drools.examples.honestpolitician;

import org.kie.api.KieServices;

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

85

1

2

3

4

Adds to your imports the packages that handle the DebugAgendaEventListener and
DebugRuleRuntimeEventListener

Creates a KieServices Factory and a ks element to produce the logs because this audit log is not
available at the KieContainer level

Modifies the execute method to use both KieServices and KieContainer

Modifies the execute method to pass in KieServices in addition to the KieContainer

import org.kie.api.event.rule.DebugAgendaEventListener; 1
import org.kie.api.event.rule.DebugRuleRuntimeEventListener;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

public class HonestPoliticianExample {

 /**
 * @param args
 */
 public static void main(final String[] args) {
 KieServices ks = KieServices.Factory.get(); 2
 //ks = KieServices.Factory.get();
 KieContainer kc = KieServices.Factory.get().getKieClasspathContainer();
 System.out.println(kc.verify().getMessages().toString());
 //execute(kc);
 execute(ks, kc); 3
 }

 public static void execute(KieServices ks, KieContainer kc) { 4
 KieSession ksession = kc.newKieSession("HonestPoliticianKS");

 final Politician p1 = new Politician("President of Umpa Lumpa", true);
 final Politician p2 = new Politician("Prime Minster of Cheeseland", true);
 final Politician p3 = new Politician("Tsar of Pringapopaloo", true);
 final Politician p4 = new Politician("Omnipotence Om", true);

 ksession.insert(p1);
 ksession.insert(p2);
 ksession.insert(p3);
 ksession.insert(p4);

 // The application can also setup listeners 5
 ksession.addEventListener(new DebugAgendaEventListener());
 ksession.addEventListener(new DebugRuleRuntimeEventListener());

 // Set up a file-based audit logger.
 ks.getLoggers().newFileLogger(ksession, "./target/honestpolitician"); 6

 ksession.fireAllRules();

 ksession.dispose();
 }

}

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

86

5

6

Creates the listeners

Builds the log that can be passed into the debug view or Audit View or your IDE after executing of
the rules

When you run the Honest Politician with this modified logging capability, you can load the audit log file
from target/honestpolitician.log into your IDE debug view or Audit View, if available (for example, in
Window → Show View in some IDEs).

In this example, the Audit View shows the flow of executions, insertions, and retractions as defined in
the example classes and rules:

Figure 7.18. Honest Politician example Audit View

When the first politician is inserted, two activations occur. The rule "We have an honest Politician" is
activated only one time for the first inserted politician because it uses an exists conditional element,
which matches when at least one politician is inserted. The rule "Hope is Dead" is also activated at this
stage because the Hope object is not yet inserted. The rule "We have an honest Politician" fires first
because it has a higher salience value than the rule "Hope is Dead", and inserts the Hope object
(highlighted in green). The insertion of the Hope object activates the rule "Hope Lives" and
deactivates the rule "Hope is Dead". The insertion also activates the rule "Corrupt the Honest" for
each inserted honest politician. The rule "Hope Lives" is executed and prints "Hurrah!!! Democracy
Lives".

Next, for each politician, the rule "Corrupt the Honest" fires, printing "I’m an evil corporation and I
have corrupted X", where X is the name of the politician, and modifies the politician honesty value to
false. When the last honest politician is corrupted, Hope is automatically retracted by the truth
maintenance system (highlighted in blue). The green highlighted area shows the origin of the currently
selected blue highlighted area. After the Hope fact is retracted, the rule "Hope is dead" fires, printing
"We are all Doomed!!! Democracy is Dead".

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

87

7.8. SUDOKU EXAMPLE DECISIONS (COMPLEX PATTERN MATCHING,
CALLBACKS, AND GUI INTEGRATION)

The Sudoku example decision set, based on the popular number puzzle Sudoku, demonstrates how to
use rules in Red Hat Decision Manager to find a solution in a large potential solution space based on
various constraints. This example also shows how to integrate Red Hat Decision Manager rules into a
graphical user interface (GUI), in this case a Swing-based desktop application, and how to use callbacks
to interact with a running decision engine to update the GUI based on changes in the working memory
at run time.

The following is an overview of the Sudoku example:

Name: sudoku

Main class: org.drools.examples.sudoku.SudokuExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule files: org.drools.examples.sudoku.*.drl (in src/main/resources)

Objective: Demonstrates complex pattern matching, problem solving, callbacks, and GUI
integration

Sudoku is a logic-based number placement puzzle. The objective is to fill a 9x9 grid so that each
column, each row, and each of the nine 3x3 zones contains the digits from 1 to 9 only one time. The
puzzle setter provides a partially completed grid and the puzzle solver’s task is to complete the grid with
these constraints.

The general strategy to solve the problem is to ensure that when you insert a new number, it must be
unique in its particular 3x3 zone, row, and column. This Sudoku example decision set uses Red Hat
Decision Manager rules to solve Sudoku puzzles from a range of difficulty levels, and to attempt to
resolve flawed puzzles that contain invalid entries.

Sudoku example execution and interaction
Similar to other Red Hat Decision Manager decision examples, you execute the Sudoku example by
running the org.drools.examples.sudoku.SudokuExample class as a Java application in your IDE.

When you execute the Sudoku example, the Drools Sudoku Example GUI window appears. This
window contains an empty grid, but the program comes with various grids stored internally that you can
load and solve.

Click File → Samples → Simple to load one of the examples. Notice that all buttons are disabled until a
grid is loaded.

Figure 7.19. Sudoku example GUI after launch

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

88

Figure 7.19. Sudoku example GUI after launch

When you load the Simple example, the grid is filled according to the puzzle’s initial state.

Figure 7.20. Sudoku example GUI after loading Simple sample

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

89

Figure 7.20. Sudoku example GUI after loading Simple sample

Choose from the following options:

Click Solve to fire the rules defined in the Sudoku example that fill out the remaining values and
that make the buttons inactive again.

Figure 7.21. Simple sample solved

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

90

Figure 7.21. Simple sample solved

Click Step to see the next digit found by the rule set. The console window in your IDE displays
detailed information about the rules that are executing to solve the step.

Step execution output in the IDE console

single 8 at [0,1]
column elimination due to [1,2]: remove 9 from [4,2]
hidden single 9 at [1,2]
row elimination due to [2,8]: remove 7 from [2,4]
remove 6 from [3,8] due to naked pair at [3,2] and [3,7]
hidden pair in row at [4,6] and [4,4]

Click Dump to see the state of the grid, with cells showing either the established value or the
remaining possibilities.

Dump execution output in the IDE console

 Col: 0 Col: 1 Col: 2 Col: 3 Col: 4 Col: 5 Col: 6 Col: 7 Col: 8
Row 0: 123456789 --- 5 --- --- 6 --- --- 8 --- 123456789 --- 1 --- --- 9 --- --- 4 ---
123456789
Row 1: --- 9 --- 123456789 123456789 --- 6 --- 123456789 --- 5 --- 123456789
123456789 --- 3 ---
Row 2: --- 7 --- 123456789 123456789 --- 4 --- --- 9 --- --- 3 --- 123456789 123456789
--- 8 ---

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

91

Row 3: --- 8 --- --- 9 --- --- 7 --- 123456789 --- 4 --- 123456789 --- 6 --- --- 3 --- --- 5 ---
Row 4: 123456789 123456789 --- 3 --- --- 9 --- 123456789 --- 6 --- --- 8 --- 123456789
123456789
Row 5: --- 4 --- --- 6 --- --- 5 --- 123456789 --- 8 --- 123456789 --- 2 --- --- 9 --- --- 1 ---
Row 6: --- 5 --- 123456789 123456789 --- 2 --- --- 6 --- --- 9 --- 123456789 123456789
--- 7 ---
Row 7: --- 6 --- 123456789 123456789 --- 5 --- 123456789 --- 4 --- 123456789
123456789 --- 9 ---
Row 8: 123456789 --- 4 --- --- 9 --- --- 7 --- 123456789 --- 8 --- --- 3 --- --- 5 ---
123456789

The Sudoku example includes a deliberately broken sample file that the rules defined in the example can
resolve.

Click File → Samples → !DELIBERATELY BROKEN! to load the broken sample. The grid starts with
some issues, for example, the value 5 appears two times in the first row, which is not allowed.

Figure 7.22. Broken Sudoku example initial state

Click Solve to apply the solving rules to this invalid grid. The associated solving rules in the Sudoku
example detect the issues in the sample and attempts to solve the puzzle as far as possible. This
process does not complete and leaves some cells empty.

The solving rule activity is displayed in the IDE console window:

Detected issues in the broken sample

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

92

cell [0,8]: 5 has a duplicate in row 0
cell [0,0]: 5 has a duplicate in row 0
cell [6,0]: 8 has a duplicate in col 0
cell [4,0]: 8 has a duplicate in col 0
Validation complete.

Figure 7.23. Broken sample solution attempt

The sample Sudoku files labeled Hard are more complex and the solving rules might not be able to solve
them. The unsuccessful solution attempt is displayed in the IDE console window:

Hard sample unresolved

Validation complete.
...
Sorry - can't solve this grid.

The rules that work to solve the broken sample implement standard solving techniques based on the
sets of values that are still candidates for a cell. For example, if a set contains a single value, then this is
the value for the cell. For a single occurrence of a value in one of the groups of nine cells, the rules insert
a fact of type Setting with the solution value for some specific cell. This fact causes the elimination of
this value from all other cells in any of the groups the cell belongs to and the value is retracted.

Other rules in the example reduce the permissible values for some cells. The rules "naked pair",
"hidden pair in row", "hidden pair in column", and "hidden pair in square" eliminate possibilities but
do not establish solutions. The rules "X-wings in rows", "`X-wings in columns"`, "intersection removal

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

93

row", and "intersection removal column" perform more sophisticated eliminations.

Sudoku example classes
The package org.drools.examples.sudoku.swing contains the following core set of classes that
implement a framework for Sudoku puzzles:

The SudokuGridModel class defines an interface that is implemented to store a Sudoku puzzle
as a 9x9 grid of Cell objects.

The SudokuGridView class is a Swing component that can visualize any implementation of the
SudokuGridModel class.

The SudokuGridEvent and SudokuGridListener classes communicate state changes between
the model and the view. Events are fired when a cell value is resolved or changed.

The SudokuGridSamples class provides partially filled Sudoku puzzles for demonstration
purposes.

NOTE

This package does not have any dependencies on Red Hat Decision Manager libraries.

The package org.drools.examples.sudoku contains the following core set of classes that implement
the elementary Cell object and its various aggregations:

The CellFile class, with subtypes CellRow, CellCol, and CellSqr, all of which are subtypes of the
CellGroup class.

The Cell and CellGroup subclasses of SetOfNine, which provides a property free with the type
Set<Integer>. For a Cell class, the set represents the individual candidate set. For a CellGroup
class, the set is the union of all candidate sets of its cells (the set of digits that still need to be
allocated).
In the Sudoku example are 81 Cell and 27 CellGroup objects and a linkage provided by the Cell
properties cellRow, cellCol, and cellSqr, and by the CellGroup property cells (a list of Cell
objects). With these components, you can write rules that detect the specific situations that
permit the allocation of a value to a cell or the elimination of a value from some candidate set.

The Setting class is used to trigger the operations that accompany the allocation of a value. The
presence of a Setting fact is used in all rules that detect a new situation in order to avoid
reactions to inconsistent intermediary states.

The Stepping class is used in a low priority rule to execute an emergency halt when a "Step"
does not terminate regularly. This behavior indicates that the program cannot solve the puzzle.

The main class org.drools.examples.sudoku.SudokuExample implements a Java application
combining all of these components.

Sudoku validation rules (validate.drl)
The validate.drl file in the Sudoku example contains validation rules that detect duplicate numbers in
cell groups. They are combined in a "validate" agenda group that enables the rules to be explicitly
activated after a user loads the puzzle.

The when conditions of the three rules "duplicate in cell … " all function in the following ways:

The first condition in the rule locates a cell with an allocated value.

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

94

The second condition in the rule pulls in any of the three cell groups to which the cell belongs.

The final condition finds a cell (other than the first one) with the same value as the first cell and
in the same row, column, or square, depending on the rule.

Rules "duplicate in cell …"

rule "duplicate in cell row"
 when
 $c: Cell($v: value != null)
 $cr: CellRow(cells contains $c)
 exists Cell(this != $c, value == $v, cellRow == $cr)
 then
 System.out.println("cell " + $c.toString() + " has a duplicate in row " + $cr.getNumber());
end

rule "duplicate in cell col"
 when
 $c: Cell($v: value != null)
 $cc: CellCol(cells contains $c)
 exists Cell(this != $c, value == $v, cellCol == $cc)
 then
 System.out.println("cell " + $c.toString() + " has a duplicate in col " + $cc.getNumber());
end

rule "duplicate in cell sqr"
 when
 $c: Cell($v: value != null)
 $cs: CellSqr(cells contains $c)
 exists Cell(this != $c, value == $v, cellSqr == $cs)
 then
 System.out.println("cell " + $c.toString() + " has duplicate in its square of nine.");
end

The rule "terminate group" is the last to fire. This rule prints a message and stops the sequence.

Rule "terminate group"

rule "terminate group"
 salience -100
 when
 then
 System.out.println("Validation complete.");
 drools.halt();
end

Sudoku solving rules (sudoku.drl)
The sudoku.drl file in the Sudoku example contains three types of rules: one group handles the
allocation of a number to a cell, another group detects feasible allocations, and the third group
eliminates values from candidate sets.

The rules "set a value", "eliminate a value from Cell", and "retract setting" depend on the presence
of a Setting object. The first rule handles the assignment to the cell and the operations for removing the
value from the free sets of the three groups of the cell. This group also reduces a counter that, when
zero, returns control to the Java application that has called fireUntilHalt().

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

95

The purpose of the rule "eliminate a value from Cell" is to reduce the candidate lists of all cells that are
related to the newly assigned cell. Finally, when all eliminations have been made, the rule "retract
setting" retracts the triggering Setting fact.

Rules "set a value", "eliminate a value from a Cell", and "retract setting"

// A Setting object is inserted to define the value of a Cell.
// Rule for updating the cell and all cell groups that contain it
rule "set a value"
 when
 // A Setting with row and column number, and a value
 $s: Setting($rn: rowNo, $cn: colNo, $v: value)

 // A matching Cell, with no value set
 $c: Cell(rowNo == $rn, colNo == $cn, value == null,
 $cr: cellRow, $cc: cellCol, $cs: cellSqr)

 // Count down
 $ctr: Counter($count: count)
 then
 // Modify the Cell by setting its value.
 modify($c){ setValue($v) }
 // System.out.println("set cell " + $c.toString());
 modify($cr){ blockValue($v) }
 modify($cc){ blockValue($v) }
 modify($cs){ blockValue($v) }
 modify($ctr){ setCount($count - 1) }
end

// Rule for removing a value from all cells that are siblings
// in one of the three cell groups
rule "eliminate a value from Cell"
 when
 // A Setting with row and column number, and a value
 $s: Setting($rn: rowNo, $cn: colNo, $v: value)

 // The matching Cell, with the value already set
 Cell(rowNo == $rn, colNo == $cn, value == $v, $exCells: exCells)

 // For all Cells that are associated with the updated cell
 $c: Cell(free contains $v) from $exCells
 then
 // System.out.println("clear " + $v + " from cell " + $c.posAsString());
 // Modify a related Cell by blocking the assigned value.
 modify($c){ blockValue($v) }
end

// Rule for eliminating the Setting fact
rule "retract setting"
 when
 // A Setting with row and column number, and a value
 $s: Setting($rn: rowNo, $cn: colNo, $v: value)

 // The matching Cell, with the value already set
 $c: Cell(rowNo == $rn, colNo == $cn, value == $v)

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

96

 // This is the negation of the last pattern in the previous rule.
 // Now the Setting fact can be safely retracted.
 not($x: Cell(free contains $v)
 and
 Cell(this == $c, exCells contains $x))
 then
 // System.out.println("done setting cell " + $c.toString());
 // Discard the Setter fact.
 delete($s);
 // Sudoku.sudoku.consistencyCheck();
end

Two solving rules detect a situation where an allocation of a number to a cell is possible. The rule
"single" fires for a Cell with a candidate set containing a single number. The rule "hidden single" fires
when no cell exists with a single candidate, but when a cell exists containing a candidate, this candidate is
absent from all other cells in one of the three groups to which the cell belongs. Both rules create and
insert a Setting fact.

Rules "single" and "hidden single"

// Detect a set of candidate values with cardinality 1 for some Cell.
// This is the value to be set.
rule "single"
 when
 // Currently no setting underway
 not Setting()

 // One element in the "free" set
 $c: Cell($rn: rowNo, $cn: colNo, freeCount == 1)
 then
 Integer i = $c.getFreeValue();
 if (explain) System.out.println("single " + i + " at " + $c.posAsString());
 // Insert another Setter fact.
 insert(new Setting($rn, $cn, i));
end

// Detect a set of candidate values with a value that is the only one
// in one of its groups. This is the value to be set.
rule "hidden single"
 when
 // Currently no setting underway
 not Setting()
 not Cell(freeCount == 1)

 // Some integer
 $i: Integer()

 // The "free" set contains this number
 $c: Cell($rn: rowNo, $cn: colNo, freeCount > 1, free contains $i)

 // A cell group contains this cell $c.
 $cg: CellGroup(cells contains $c)
 // No other cell from that group contains $i.
 not (Cell(this != $c, free contains $i) from $cg.getCells())
 then
 if (explain) System.out.println("hidden single " + $i + " at " + $c.posAsString());

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

97

 // Insert another Setter fact.
 insert(new Setting($rn, $cn, $i));
end

Rules from the largest group, either individually or in groups of two or three, implement various solving
techniques used for solving Sudoku puzzles manually.

The rule "naked pair" detects identical candidate sets of size 2 in two cells of a group. These two values
may be removed from all other candidate sets of that group.

Rule "naked pair"

// A "naked pair" is two cells in some cell group with their sets of
// permissible values being equal with cardinality 2. These two values
// can be removed from all other candidate lists in the group.
rule "naked pair"
 when
 // Currently no setting underway
 not Setting()
 not Cell(freeCount == 1)

 // One cell with two candidates
 $c1: Cell(freeCount == 2, $f1: free, $r1: cellRow, $rn1: rowNo, $cn1: colNo, $b1: cellSqr)

 // The containing cell group
 $cg: CellGroup(freeCount > 2, cells contains $c1)

 // Another cell with two candidates, not the one we already have
 $c2: Cell(this != $c1, free == $f1 /*** , rowNo >= $rn1, colNo >= $cn1 ***/) from $cg.cells

 // Get one of the "naked pair".
 Integer($v: intValue) from $c1.getFree()

 // Get some other cell with a candidate equal to one from the pair.
 $c3: Cell(this != $c1 && != $c2, freeCount > 1, free contains $v) from $cg.cells
 then
 if (explain) System.out.println("remove " + $v + " from " + $c3.posAsString() + " due to naked pair
at " + $c1.posAsString() + " and " + $c2.posAsString());
 // Remove the value.
 modify($c3){ blockValue($v) }
end

The three rules "hidden pair in … " functions similarly to the rule "naked pair". These rules detect a
subset of two numbers in exactly two cells of a group, with neither value occurring in any of the other
cells of the group. This means that all other candidates can be eliminated from the two cells harboring
the hidden pair.

Rules "hidden pair in …"

// If two cells within the same cell group contain candidate sets with more than
// two values, with two values being in both of them but in none of the other
// cells, then we have a "hidden pair". We can remove all other candidates from
// these two cells.
rule "hidden pair in row"
 when

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

98

 // Currently no setting underway
 not Setting()
 not Cell(freeCount == 1)

 // Establish a pair of Integer facts.
 $i1: Integer()
 $i2: Integer(this > $i1)

 // Look for a Cell with these two among its candidates. (The upper bound on
 // the number of candidates avoids a lot of useless work during startup.)
 $c1: Cell($rn1: rowNo, $cn1: colNo, freeCount > 2 && < 9, free contains $i1 && contains $i2,
$cellRow: cellRow)

 // Get another one from the same row, with the same pair among its candidates.
 $c2: Cell(this != $c1, cellRow == $cellRow, freeCount > 2, free contains $i1 && contains $i2)

 // Ascertain that no other cell in the group has one of these two values.
 not(Cell(this != $c1 && != $c2, free contains $i1 || contains $i2) from $cellRow.getCells())
 then
 if(explain) System.out.println("hidden pair in row at " + $c1.posAsString() + " and " +
$c2.posAsString());
 // Set the candidate lists of these two Cells to the "hidden pair".
 modify($c1){ blockExcept($i1, $i2) }
 modify($c2){ blockExcept($i1, $i2) }
end

rule "hidden pair in column"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i1: Integer()
 $i2: Integer(this > $i1)
 $c1: Cell($rn1: rowNo, $cn1: colNo, freeCount > 2 && < 9, free contains $i1 && contains $i2,
$cellCol: cellCol)
 $c2: Cell(this != $c1, cellCol == $cellCol, freeCount > 2, free contains $i1 && contains $i2)
 not(Cell(this != $c1 && != $c2, free contains $i1 || contains $i2) from $cellCol.getCells())
 then
 if (explain) System.out.println("hidden pair in column at " + $c1.posAsString() + " and " +
$c2.posAsString());
 modify($c1){ blockExcept($i1, $i2) }
 modify($c2){ blockExcept($i1, $i2) }
end

rule "hidden pair in square"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i1: Integer()
 $i2: Integer(this > $i1)
 $c1: Cell($rn1: rowNo, $cn1: colNo, freeCount > 2 && < 9, free contains $i1 && contains $i2,
 $cellSqr: cellSqr)
 $c2: Cell(this != $c1, cellSqr == $cellSqr, freeCount > 2, free contains $i1 && contains $i2)
 not(Cell(this != $c1 && != $c2, free contains $i1 || contains $i2) from $cellSqr.getCells())
 then

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

99

 if (explain) System.out.println("hidden pair in square " + $c1.posAsString() + " and " +
$c2.posAsString());
 modify($c1){ blockExcept($i1, $i2) }
 modify($c2){ blockExcept($i1, $i2) }
end

Two rules deal with "X-wings" in rows and columns. When only two possible cells for a value exist in each
of two different rows (or columns) and these candidates lie also in the same columns (or rows), then all
other candidates for this value in the columns (or rows) can be eliminated. When you follow the pattern
sequence in one of these rules, notice how the conditions that are conveniently expressed by words such
as same or only result in patterns with suitable constraints or that are prefixed with not.

Rules "X-wings in …"

rule "X-wings in rows"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i: Integer()
 $ca1: Cell(freeCount > 1, free contains $i,
 $ra: cellRow, $rano: rowNo, $c1: cellCol, $c1no: colNo)
 $cb1: Cell(freeCount > 1, free contains $i,
 $rb: cellRow, $rbno: rowNo > $rano, cellCol == $c1)
 not(Cell(this != $ca1 && != $cb1, free contains $i) from $c1.getCells())

 $ca2: Cell(freeCount > 1, free contains $i,
 cellRow == $ra, $c2: cellCol, $c2no: colNo > $c1no)
 $cb2: Cell(freeCount > 1, free contains $i,
 cellRow == $rb, cellCol == $c2)
 not(Cell(this != $ca2 && != $cb2, free contains $i) from $c2.getCells())

 $cx: Cell(rowNo == $rano || == $rbno, colNo != $c1no && != $c2no,
 freeCount > 1, free contains $i)
 then
 if (explain) {
 System.out.println("X-wing with " + $i + " in rows " +
 $ca1.posAsString() + " - " + $cb1.posAsString() +
 $ca2.posAsString() + " - " + $cb2.posAsString() + ", remove from " + $cx.posAsString());
 }
 modify($cx){ blockValue($i) }
end

rule "X-wings in columns"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i: Integer()
 $ca1: Cell(freeCount > 1, free contains $i,
 $c1: cellCol, $c1no: colNo, $ra: cellRow, $rano: rowNo)
 $ca2: Cell(freeCount > 1, free contains $i,
 $c2: cellCol, $c2no: colNo > $c1no, cellRow == $ra)
 not(Cell(this != $ca1 && != $ca2, free contains $i) from $ra.getCells())

 $cb1: Cell(freeCount > 1, free contains $i,

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

100

 cellCol == $c1, $rb: cellRow, $rbno: rowNo > $rano)
 $cb2: Cell(freeCount > 1, free contains $i,
 cellCol == $c2, cellRow == $rb)
 not(Cell(this != $cb1 && != $cb2, free contains $i) from $rb.getCells())

 $cx: Cell(colNo == $c1no || == $c2no, rowNo != $rano && != $rbno,
 freeCount > 1, free contains $i)
 then
 if (explain) {
 System.out.println("X-wing with " + $i + " in columns " +
 $ca1.posAsString() + " - " + $ca2.posAsString() +
 $cb1.posAsString() + " - " + $cb2.posAsString() + ", remove from " + $cx.posAsString());
 }
 modify($cx){ blockValue($i) }
end

The two rules "intersection removal … " are based on the restricted occurrence of some number within
one square, either in a single row or in a single column. This means that this number must be in one of
those two or three cells of the row or column and can be removed from the candidate sets of all other
cells of the group. The pattern establishes the restricted occurrence and then fires for each cell outside
of the square and within the same cell file.

Rules "intersection removal …"

rule "intersection removal column"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i: Integer()
 // Occurs in a Cell
 $c: Cell(free contains $i, $cs: cellSqr, $cc: cellCol)
 // Does not occur in another cell of the same square and a different column
 not Cell(this != $c, free contains $i, cellSqr == $cs, cellCol != $cc)

 // A cell exists in the same column and another square containing this value.
 $cx: Cell(freeCount > 1, free contains $i, cellCol == $cc, cellSqr != $cs)
 then
 // Remove the value from that other cell.
 if (explain) {
 System.out.println("column elimination due to " + $c.posAsString() +
 ": remove " + $i + " from " + $cx.posAsString());
 }
 modify($cx){ blockValue($i) }
end

rule "intersection removal row"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i: Integer()
 // Occurs in a Cell
 $c: Cell(free contains $i, $cs: cellSqr, $cr: cellRow)
 // Does not occur in another cell of the same square and a different row.
 not Cell(this != $c, free contains $i, cellSqr == $cs, cellRow != $cr)

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

101

 // A cell exists in the same row and another square containing this value.
 $cx: Cell(freeCount > 1, free contains $i, cellRow == $cr, cellSqr != $cs)
 then
 // Remove the value from that other cell.
 if (explain) {
 System.out.println("row elimination due to " + $c.posAsString() +
 ": remove " + $i + " from " + $cx.posAsString());
 }
 modify($cx){ blockValue($i) }
end

These rules are sufficient for many but not all Sudoku puzzles. To solve very difficult grids, the rule set
requires more complex rules. (Ultimately, some puzzles can be solved only by trial and error.)

7.9. CONWAY’S GAME OF LIFE EXAMPLE DECISIONS (RULEFLOW
GROUPS AND GUI INTEGRATION)

The Conway’s Game of Life example decision set, based on the famous cellular automaton by John
Conway, demonstrates how to use ruleflow groups in rules to control rule execution. The example also
demonstrates how to integrate Red Hat Decision Manager rules with a graphical user interface (GUI), in
this case a Swing-based implementation of Conway’s Game of Life.

The following is an overview of the Conway’s Game of Life (Conway) example:

Name: conway

Main classes: org.drools.examples.conway.ConwayRuleFlowGroupRun,
org.drools.examples.conway.ConwayAgendaGroupRun (in src/main/java)

Module: droolsjbpm-integration-examples

Type: Java application

Rule files: org.drools.examples.conway.*.drl (in src/main/resources)

Objective: Demonstrates ruleflow groups and GUI integration

NOTE

The Conway’s Game of Life example is separate from most of the other example decision
sets in Red Hat Decision Manager and is located in ~/rhdm-7.4.0-
sources/src/droolsjbpm-integration-$VERSION/droolsjbpm-integration-examples of
the Red Hat Decision Manager 7.4.0 Source Distribution from the Red Hat Customer
Portal.

In Conway’s Game of Life, a user interacts with the game by creating an initial configuration or an
advanced pattern with defined properties and then observing how the initial state evolves. The
objective of the game is to show the development of a population, generation by generation. Each
generation results from the preceding one, based on the simultaneous evaluation of all cells.

The following basic rules govern what the next generation looks like:

If a live cell has fewer than two live neighbors, it dies of loneliness.

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

102

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

If a live cell has more than three live neighbors, it dies from overcrowding.

If a dead cell has exactly three live neighbors, it comes to life.

Any cell that does not meet any of those criteria is left as is for the next generation.

The Conway’s Game of Life example uses Red Hat Decision Manager rules with ruleflow-group
attributes to define the pattern implemented in the game. The example also contains a version of the
decision set that achieves the same behavior using agenda groups. Agenda groups enable you to
partition the decision engine agenda to provide execution control over groups of rules. By default, all
rules are in the agenda group MAIN. You can use the agenda-group attribute to specify a different
agenda group for the rule.

This overview does not explore the version of the Conway example using agenda groups. For more
information about agenda groups, see the Red Hat Decision Manager example decision sets that
specifically address agenda groups.

Conway example execution and interaction
Similar to other Red Hat Decision Manager decision examples, you execute the Conway ruleflow
example by running the org.drools.examples.conway.ConwayRuleFlowGroupRun class as a Java
application in your IDE.

When you execute the Conway example, the Conway’s Game of Life GUI window appears. This window
contains an empty grid, or "arena" where the life simulation takes place. Initially the grid is empty
because no live cells are in the system yet.

Figure 7.24. Conway example GUI after launch

Select a predefined pattern from the Pattern drop-down menu and click Next Generation to click
through each population generation. Each cell is either alive or dead, where live cells contain a green ball.
As the population evolves from the initial pattern, cells live or die relative to neighboring cells, according
to the rules of the game.

Figure 7.25. Generation evolution in Conway example

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

103

Figure 7.25. Generation evolution in Conway example

Neighbors include not only cells to the left, right, top, and bottom but also cells that are connected
diagonally, so that each cell has a total of eight neighbors. Exceptions are the corner cells, which have
only three neighbors, and the cells along the four borders, with five neighbors each.

You can manually intervene to create or kill cells by clicking the cell.

To run through an evolution automatically from the initial pattern, click Start.

Conway example rules with ruleflow groups
The rules in the ConwayRuleFlowGroupRun example use ruleflow groups to control rule execution. A
ruleflow group is a group of rules associated by the ruleflow-group rule attribute. These rules can only
fire when the group is activated. The group itself can only become active when the elaboration of the
ruleflow diagram reaches the node representing the group.

The Conway example uses the following ruleflow groups for rules:

"register neighbor"

"evaluate"

"calculate"

"reset calculate"

"birth"

"kill"

"kill all"

All of the Cell objects are inserted into the KIE session and the "register … " rules in the ruleflow group
"register neighbor" are allowed to execute by the ruleflow process. This group of four rules creates
Neighbor relations between some cell and its northeastern, northern, northwestern, and western
neighbors.

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

104

This relation is bidirectional and handles the other four directions. Border cells do not require any special
treatment. These cells are not paired with neighboring cells where there is not any.

By the time all activations have fired for these rules, all cells are related to all their neighboring cells.

Rules "register …"

rule "register north east"
 ruleflow-group "register neighbor"
 when
 $cell: Cell($row : row, $col : col)
 $northEast : Cell(row == ($row - 1), col == ($col + 1))
 then
 insert(new Neighbor($cell, $northEast));
 insert(new Neighbor($northEast, $cell));
end

rule "register north"
 ruleflow-group "register neighbor"
 when
 $cell: Cell($row : row, $col : col)
 $north : Cell(row == ($row - 1), col == $col)
 then
 insert(new Neighbor($cell, $north));
 insert(new Neighbor($north, $cell));
end

rule "register north west"
 ruleflow-group "register neighbor"
 when
 $cell: Cell($row : row, $col : col)
 $northWest : Cell(row == ($row - 1), col == ($col - 1))
 then
 insert(new Neighbor($cell, $northWest));
 insert(new Neighbor($northWest, $cell));
end

rule "register west"
 ruleflow-group "register neighbor"
 when
 $cell: Cell($row : row, $col : col)
 $west : Cell(row == $row, col == ($col - 1))
 then
 insert(new Neighbor($cell, $west));
 insert(new Neighbor($west, $cell));
end

After all the cells are inserted, some Java code applies the pattern to the grid, setting certain cells to
Live. Then, when the user clicks Start or Next Generation, the example executes the Generation
ruleflow. This ruleflow manages all changes of cells in each generation cycle.

Figure 7.26. Generation ruleflow

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

105

Figure 7.26. Generation ruleflow

The ruleflow process enters the "evaluate" ruleflow group and any active rules in the group can fire.
The rules "Kill the … " and "Give Birth" in this group apply the game rules to birth or kill cells. The
example uses the phase attribute to drive the reasoning of the Cell object by specific groups of rules.
Typically, the phase is tied to a ruleflow group in the ruleflow process definition.

Notice that the example does not change the state of any Cell objects at this point because it must
complete the full evaluation before those changes can be applied. The example sets the cell to a phase
that is either Phase.KILL or Phase.BIRTH, which is used later to control actions applied to the Cell
object.

Rules "Kill the …" and "Give Birth"

rule "Kill The Lonely"
 ruleflow-group "evaluate"
 no-loop
 when
 // A live cell has fewer than 2 live neighbors.
 theCell: Cell(liveNeighbors < 2, cellState == CellState.LIVE,
 phase == Phase.EVALUATE)
 then
 modify(theCell){
 setPhase(Phase.KILL);
 }
end

rule "Kill The Overcrowded"
 ruleflow-group "evaluate"
 no-loop
 when
 // A live cell has more than 3 live neighbors.
 theCell: Cell(liveNeighbors > 3, cellState == CellState.LIVE,
 phase == Phase.EVALUATE)
 then

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

106

 modify(theCell){
 setPhase(Phase.KILL);
 }
end

rule "Give Birth"
 ruleflow-group "evaluate"
 no-loop
 when
 // A dead cell has 3 live neighbors.
 theCell: Cell(liveNeighbors == 3, cellState == CellState.DEAD,
 phase == Phase.EVALUATE)
 then
 modify(theCell){
 theCell.setPhase(Phase.BIRTH);
 }
end

After all Cell objects in the grid have been evaluated, the example uses the "reset calculate" rule to
clear any activations in the "calculate" ruleflow group. The example then enters a split in the ruleflow
that enables the rules "kill" and "birth" to fire, if the ruleflow group is activated. These rules apply the
state change.

Rules "reset calculate", "kill", and "birth"

rule "reset calculate"
 ruleflow-group "reset calculate"
 when
 then
 WorkingMemory wm = drools.getWorkingMemory();
 wm.clearRuleFlowGroup("calculate");
end

rule "kill"
 ruleflow-group "kill"
 no-loop
 when
 theCell: Cell(phase == Phase.KILL)
 then
 modify(theCell){
 setCellState(CellState.DEAD),
 setPhase(Phase.DONE);
 }
end

rule "birth"
 ruleflow-group "birth"
 no-loop
 when
 theCell: Cell(phase == Phase.BIRTH)
 then
 modify(theCell){
 setCellState(CellState.LIVE),
 setPhase(Phase.DONE);
 }
end

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

107

At this stage, several Cell objects have been modified with the state changed to either LIVE or DEAD.
When a cell becomes live or dead, the example uses the Neighbor relation in the rules "Calculate … " to
iterate over all surrounding cells, increasing or decreasing the liveNeighbor count. Any cell that has its
count changed is also set to to the EVALUATE phase to make sure it is included in the reasoning during
the evaluation stage of the ruleflow process.

After the live count has been determined and set for all cells, the ruleflow process ends. If the user
initially clicked Start, the decision engine restarts the ruleflow at that point. If the user initially clicked
Next Generation, the user can request another generation.

Rules "Calculate …"

rule "Calculate Live"
 ruleflow-group "calculate"
 lock-on-active
 when
 theCell: Cell(cellState == CellState.LIVE)
 Neighbor(cell == theCell, $neighbor : neighbor)
 then
 modify($neighbor){
 setLiveNeighbors($neighbor.getLiveNeighbors() + 1),
 setPhase(Phase.EVALUATE);
 }
end

rule "Calculate Dead"
 ruleflow-group "calculate"
 lock-on-active
 when
 theCell: Cell(cellState == CellState.DEAD)
 Neighbor(cell == theCell, $neighbor : neighbor)
 then
 modify($neighbor){
 setLiveNeighbors($neighbor.getLiveNeighbors() - 1),
 setPhase(Phase.EVALUATE);
 }
end

7.10. HOUSE OF DOOM EXAMPLE DECISIONS (BACKWARD CHAINING
AND RECURSION)

The House of Doom example decision set demonstrates how the decision engine uses backward
chaining and recursion to reach defined goals or subgoals in a hierarchical system.

The following is an overview of the House of Doom example:

Name: backwardchaining

Main class: org.drools.examples.backwardchaining.HouseOfDoomMain (in src/main/java)

Module: drools-examples

Type: Java application

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

108

Rule file: org.drools.examples.backwardchaining.BC-Example.drl (in src/main/resources)

Objective: Demonstrates backward chaining and recursion

A backward-chaining rule system is a goal-driven system that starts with a conclusion that the decision
engine attempts to satisfy, often using recursion. If the system cannot reach the conclusion or goal, it
searches for subgoals, which are conclusions that complete part of the current goal. The system
continues this process until either the initial conclusion is satisfied or all subgoals are satisfied.

In contrast, a forward-chaining rule system is a data-driven system that starts with a fact in the working
memory of the decision engine and reacts to changes to that fact. When objects are inserted into
working memory, any rule conditions that become true as a result of the change are scheduled for
execution by the agenda.

The decision engine in Red Hat Decision Manager uses both forward and backward chaining to evaluate
rules.

The following diagram illustrates how the decision engine evaluates rules using forward chaining overall
with a backward-chaining segment in the logic flow:

Figure 7.27. Rule evaluation logic using forward and backward chaining

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

109

Figure 7.27. Rule evaluation logic using forward and backward chaining

The House of Doom example uses rules with various types of queries to find the location of rooms and
items within the house. The sample class Location.java contains the item and location elements used
in the example. The sample class HouseOfDoomMain.java inserts the items or rooms in their respective
locations in the house and executes the rules.

Items and locations in HouseOfDoomMain.java class

ksession.insert(new Location("Office", "House"));

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

110

The example rules rely on backward chaining and recursion to determine the location of all items and
rooms in the house structure.

The following diagram illustrates the structure of the House of Doom and the items and rooms within it:

Figure 7.28. House of Doom structure

To execute the example, run the org.drools.examples.backwardchaining.HouseOfDoomMain class
as a Java application in your IDE.

After the execution, the following output appears in the IDE console window:

Execution output in the IDE console

go1
Office is in the House

go2
Drawer is in the House

go3

Key is in the Office

go4
Chair is in the Office
Desk is in the Office
Key is in the Office
Computer is in the Office
Drawer is in the Office

go5
Chair is in Office

ksession.insert(new Location("Kitchen", "House"));
ksession.insert(new Location("Knife", "Kitchen"));
ksession.insert(new Location("Cheese", "Kitchen"));
ksession.insert(new Location("Desk", "Office"));
ksession.insert(new Location("Chair", "Office"));
ksession.insert(new Location("Computer", "Desk"));
ksession.insert(new Location("Drawer", "Desk"));

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

111

Desk is in Office
Drawer is in Desk
Key is in Drawer
Kitchen is in House
Cheese is in Kitchen
Knife is in Kitchen
Computer is in Desk
Office is in House
Key is in Office
Drawer is in House
Computer is in House
Key is in House
Desk is in House
Chair is in House
Knife is in House
Cheese is in House
Computer is in Office
Drawer is in Office
Key is in Desk

All rules in the example have fired to detect the location of all items in the house and to print the
location of each in the output.

Recursive query and related rules
A recursive query repeatedly searches through the hierarchy of a data structure for relationships
between elements.

In the House of Doom example, the BC-Example.drl file contains an isContainedIn query that most of
the rules in the example use to recursively evaluate the house data structure for data inserted into the
decision engine:

Recursive query in BC-Example.drl

query isContainedIn(String x, String y)
 Location(x, y;)
 or
 (Location(z, y;) and isContainedIn(x, z;))
end

The rule "go" prints every string inserted into the system to determine how items are implemented, and
the rule "go1" calls the query isContainedIn:

Rules "go" and "go1"

rule "go" salience 10
 when
 $s : String()
 then
 System.out.println($s);
end

rule "go1"
 when
 String(this == "go1")
 isContainedIn("Office", "House";)

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

112

 then
 System.out.println("Office is in the House");
end

The example inserts the "go1" string into the decision engine and activates the "go1" rule to detect
that item Office is in the location House:

Insert string and fire rules

ksession.insert("go1");
ksession.fireAllRules();

Rule "go1" output in the IDE console

go1
Office is in the House

Transitive closure rule
Transitive closure is a relationship between an element contained in a parent element that is multiple
levels higher in a hierarchical structure.

The rule "go2" identifies the transitive closure relationship of the Drawer and the House: The Drawer is
in the Desk in the Office in the House.

rule "go2"
 when
 String(this == "go2")
 isContainedIn("Drawer", "House";)
 then
 System.out.println("Drawer is in the House");
end

The example inserts the "go2" string into the decision engine and activates the "go2" rule to detect
that item Drawer is ultimately within the location House:

Insert string and fire rules

ksession.insert("go2");
ksession.fireAllRules();

Rule "go2" output in the IDE console

go2
Drawer is in the House

The decision engine determines this outcome based on the following logic:

1. The query recursively searches through several levels in the house to detect the transitive
closure between Drawer and House.

2. Instead of using Location(x, y;), the query uses the value of (z, y;) because Drawer is not
directly in House.

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

113

3. The z argument is currently unbound, which means it has no value and returns everything that is
in the argument.

4. The y argument is currently bound to House, so z returns Office and Kitchen.

5. The query gathers information from the Office and checks recursively if the Drawer is in the
Office. The query line isContainedIn(x, z;) is called for these parameters.

6. No instance of Drawer exists directly in Office, so no match is found.

7. With z unbound, the query returns data within the Office and determines that z == Desk.

isContainedIn(x==drawer, z==desk)

8. The isContainedIn query recursively searches three times, and on the third time, the query
detects an instance of Drawer in Desk.

Location(x==drawer, y==desk)

9. After this match on the first location, the query recursively searches back up the structure to
determine that the Drawer is in the Desk, the Desk is in the Office, and the Office is in the
House. Therefore, the Drawer is in the House and the rule is satisfied.

Reactive query rule
A reactive query searches through the hierarchy of a data structure for relationships between elements
and is dynamically updated when elements in the structure are modified.

The rule "go3" functions as a reactive query that detects if a new item Key ever becomes present in the
Office by transitive closure: A Key in the Drawer in the Office.

Rule "go3"

rule "go3"
 when
 String(this == "go3")
 isContainedIn("Key", "Office";)
 then
 System.out.println("Key is in the Office");
end

The example inserts the "go3" string into the decision engine and activates the "go3" rule. Initially, this
rule is not satisfied because no item Key exists in the house structure, so the rule produces no output.

Insert string and fire rules

ksession.insert("go3");
ksession.fireAllRules();

Rule "go3" output in the IDE console (unsatisfied)

go3

The example then inserts a new item Key in the location Drawer, which is in Office. This change satisfies
the transitive closure in the "go3" rule and the output is populated accordingly.

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

114

Insert new item location and fire rules

ksession.insert(new Location("Key", "Drawer"));
ksession.fireAllRules();

Rule "go3" output in the IDE console (satisfied)

Key is in the Office

This change also adds another level in the structure that the query includes in subsequent recursive
searches.

Queries with unbound arguments in rules
A query with one or more unbound arguments returns all undefined (unbound) items within a defined
(bound) argument of the query. If all arguments in a query are unbound, then the query returns all items
within the scope of the query.

The rule "go4" uses an unbound argument thing to search for all items within the bound argument
Office, instead of using a bound argument to search for a specific item in the Office:

Rule "go4"

rule "go4"
 when
 String(this == "go4")
 isContainedIn(thing, "Office";)
 then
 System.out.println(thing + "is in the Office");
end

The example inserts the "go4" string into the decision engine and activates the "go4" rule to return all
items in the Office:

Insert string and fire rules

ksession.insert("go4");
ksession.fireAllRules();

Rule "go4" output in the IDE console

go4
Chair is in the Office
Desk is in the Office
Key is in the Office
Computer is in the Office
Drawer is in the Office

The rule "go5" uses both unbound arguments thing and location to search for all items and their
locations in the entire House data structure:

Rule "go5"

rule "go5"

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

115

 when
 String(this == "go5")
 isContainedIn(thing, location;)
 then
 System.out.println(thing + " is in " + location);
end

The example inserts the "go5" string into the decision engine and activates the "go5" rule to return all
items and their locations in the House data structure:

Insert string and fire rules

ksession.insert("go5");
ksession.fireAllRules();

Rule "go5" output in the IDE console

go5
Chair is in Office
Desk is in Office
Drawer is in Desk
Key is in Drawer
Kitchen is in House
Cheese is in Kitchen
Knife is in Kitchen
Computer is in Desk
Office is in House
Key is in Office
Drawer is in House
Computer is in House
Key is in House
Desk is in House
Chair is in House
Knife is in House
Cheese is in House
Computer is in Office
Drawer is in Office
Key is in Desk

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

116

CHAPTER 8. NEXT STEPS
Testing a decision service using test scenarios

Packaging and deploying a Red Hat Decision Manager project

CHAPTER 8. NEXT STEPS

117

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.4/html-single/testing_a_decision_service_using_test_scenarios
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.4/html-single/packaging_and_deploying_a_red_hat_decision_manager_project

APPENDIX A. VERSIONING INFORMATION
Documentation last updated on Wednesday, June 10, 2020.

Red Hat Decision Manager 7.4 Designing a decision service using DRL rules

118

	Table of Contents
	PREFACE
	CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER
	CHAPTER 2. DRL (DROOLS RULE LANGUAGE) RULES
	CHAPTER 3. DATA OBJECTS
	3.1. CREATING DATA OBJECTS

	CHAPTER 4. CREATING DRL RULES IN BUSINESS CENTRAL
	4.1. ADDING WHEN CONDITIONS IN DRL RULES
	4.2. ADDING THEN ACTIONS IN DRL RULES
	4.2.1. Rule attributes

	CHAPTER 5. EXECUTING RULES
	CHAPTER 6. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES
	6.1. CREATING AND EXECUTING DRL RULES IN RED HAT JBOSS DEVELOPER STUDIO
	6.2. CREATING AND EXECUTING DRL RULES USING JAVA
	6.3. CREATING AND EXECUTING DRL RULES USING MAVEN
	6.4. EXECUTABLE RULE MODELS
	6.4.1. Embedding an executable rule model in a Maven project
	6.4.2. Embedding an executable rule model in a Java application

	CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE
	7.1. IMPORTING AND EXECUTING RED HAT DECISION MANAGER EXAMPLE DECISIONS IN AN IDE
	7.2. HELLO WORLD EXAMPLE DECISIONS (BASIC RULES AND DEBUGGING)
	7.3. STATE EXAMPLE DECISIONS (FORWARD CHAINING AND CONFLICT RESOLUTION)
	State example using salience
	State example using agenda groups
	Dynamic facts in the State example

	7.4. FIBONACCI EXAMPLE DECISIONS (RECURSION AND CONFLICT RESOLUTION)
	7.5. PRICING EXAMPLE DECISIONS (DECISION TABLES)
	Spreadsheet decision table setup
	Base pricing rules
	Promotional discount rules

	7.6. PET STORE EXAMPLE DECISIONS (AGENDA GROUPS, GLOBAL VARIABLES, CALLBACKS, AND GUI INTEGRATION)
	Rule execution behavior in the Pet Store example
	Pet Store rule file imports, global variables, and Java functions
	Pet Store rules with agenda groups
	Pet Store example execution

	7.7. HONEST POLITICIAN EXAMPLE DECISIONS (TRUTH MAINTENANCE AND SALIENCE)
	Politician and Hope classes
	Rule definitions for politician honesty
	Example execution and audit trail

	7.8. SUDOKU EXAMPLE DECISIONS (COMPLEX PATTERN MATCHING, CALLBACKS, AND GUI INTEGRATION)
	Sudoku example execution and interaction
	Sudoku example classes
	Sudoku validation rules (validate.drl)
	Sudoku solving rules (sudoku.drl)

	7.9. CONWAY’S GAME OF LIFE EXAMPLE DECISIONS (RULEFLOW GROUPS AND GUI INTEGRATION)
	Conway example execution and interaction
	Conway example rules with ruleflow groups

	7.10. HOUSE OF DOOM EXAMPLE DECISIONS (BACKWARD CHAINING AND RECURSION)
	Recursive query and related rules
	Transitive closure rule
	Reactive query rule
	Queries with unbound arguments in rules

	CHAPTER 8. NEXT STEPS
	APPENDIX A. VERSIONING INFORMATION

