& RedHat

Red Hat Decision Manager 7.13

Deploying and managing Red Hat Decision
Manager services

Last Updated: 2024-03-14

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision
Manager services

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to deploy and manage your Red Hat Decision Manager projects and
assets using the Business Central interface or using KIE APIs.

Table of Contents

Table of Contents

[3 Y O AP 5
MAKING OPEN SOURCE MORE INCLUSIVE ..ttt it et eeaeeanneeaneeeaneennneeaneens 6
PART I. PACKAGING AND DEPLOYING A RED HAT DECISION MANAGERPROJECTccvvvvnnn.. 7
CHAPTER 1. RED HAT DECISION MANAGER PROJECT PACKAGING ...ttt i iiiiennnennns 8
CHAPTER 2. PROJECT DEPLOYMENT INBUSINESS CENTRAL ...ttt i eieenneennneanns 9
2.1. CONFIGURING KIE SERVER TO CONNECT TO BUSINESS CENTRAL 9
2.2. CONFIGURING THE ENVIRONMENT MODE IN KIE SERVER AND BUSINESS CENTRAL 12
2.3. CONFIGURING AN EXTERNAL MAVEN REPOSITORY FOR BUSINESS CENTRAL AND KIE SERVER 12
2.4. EXPORTING A BUSINESS CENTRAL PROJECT TO AN EXTERNAL MAVEN REPOSITORY 13
2.5. BUILDING AND DEPLOYING A PROJECT IN BUSINESS CENTRAL 14
2.6. DEPLOYMENT UNITS IN BUSINESS CENTRAL 15
2.6.1. Creating a deployment unit in Business Central 15
2.6.2. Starting, stopping, and removing deployment units in Business Central 16
2.6.3. KIE container aliases 16
2.7.EDITING THE GAV VALUES FOR A PROJECT IN BUSINESS CENTRAL 18
2.8. DUPLICATE GAV DETECTION IN BUSINESS CENTRAL 18
2.8.1. Managing duplicate GAV detection settings in Business Central 19
CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS CENTRAL ...ttt eeann, 20
3.1. CONFIGURING A KIE MODULE DESCRIPTOR FILE 20
3.1.1. KIE module configuration properties 23
3.1.2. KIE base attributes supported in KIE modules 24
3.1.3. KIE session attributes supported in KIE modules 26

3.2. PACKAGING AND DEPLOYING A RED HAT DECISION MANAGER PROJECT IN MAVEN 28
3.3. PACKAGING AND DEPLOYING A RED HAT DECISION MANAGER PROJECT IN A JAVA APPLICATION 31
3.4. EXECUTABLE RULE MODELS 34
3.4.1. Modifying or disabling executable rule models in a Red Hat Decision Manager project 35

3.5. USING A KIE SCANNER TO MONITOR AND UPDATE KIE CONTAINERS 36
3.6. STARTING A SERVICE IN KIE SERVER 38
3.7.STOPPING AND REMOVING A SERVICE IN KIE SERVER 38
CHAPTER 4. ADDITIONAL RESOURCES ...ttt ettt tiiteeaeeaneeeaneennneeaneeraneennneenn 40
PART Il. MANAGING PROJECTS INBUSINESS CENTRAL ...ttt eieriitenneeeaneennnens 41
CHAPTER 5. RED HAT DECISION MANAGER PROJECTS ...ttt it teieeeieennneennnennneenn, 42
CHAPTER 6. MIGRATING BUSINESS PROCESSES TO THE NEW PROCESS DESIGNER 43
CHAPTER 7. MODIFYING EXISTING PROJECTSINBUSINESS CENTRALoiiiiiiiii i, 46
CHAPTER 8. CREATING THE MORTGAGE-PROCESS PROJECT .. iiiitiiitiiiiiitennneennnennnnenn, 47
8.1. MODIFYING THE MORTGAGES SAMPLE PROJECT 47
8.2. CREATING A PROJECT USING ARCHETYPES 48
CHAPTER 9. IMPORTING PROJECTS FROM GIT REPOSITORIESttt i iiieennnenns 49
CHAPTER10. REVISING PROJECT VERSIONS . ittt ittt eieeieeeaneennneenn 50
CHAPTER 11. CONFIGURING PROJECT SETTINGS ..ttt ittt eiteieeeeeennneeannenaneenn, 52
CHAPTER 12. MULTIPLE BRANCHES INBUSINESS CENTRAL ...ttt eiiieeieieiienneenn, 55

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

12.1. CREATING BRANCHES 55
12.2. SELECTING BRANCHES 56
12.3. DELETING BRANCHES 56
12.4. BUILDING AND DEPLOYING PROJECTS 57
CHAPTER 13. CHANGE REQUESTS IN BUSINESS CENTRAL ...ttt iiee e cieenneeeeannnn, 59
13.1. CREATING CHANGE REQUESTS 59
13.2. WORKING WITH CHANGE REQUESTS 59
PART Ill. MANAGING ASSETS INBUSINESS CENTRAL .. etttt it iiiiieeiieeeieeieeennns 61
CHAPTER 14. ASSET OVERVIEW ..ttt ettt ettt ettt ettt ettt ettt eeeaeeaaaannn, 62
CHAPTER 15, TYPES OF ASSE TS ..ttt it tetet e tet e ttet ettt ettt entetentaeeneaeeneaeanenennens 63
CHAPTER 16. CREATING ASSE TS 1.ttt ittt ettt ettt it et ite e eitaeeneaeeneneaneneneenennenens 66
CHAPTER 17. RENAMING, COPYING, OR DELETING ASSETS ...ttt et eeeeeenn, 67
CHAPTER 18. MANAGING ASSET METADATA AND VERSION HISTORYottt 68
CHAPTER 19. FILTERING ASSETS BY TAGS . ittt ettt eeaeaaeaanns 70
CHAPTER 20. UNLOCKING ASSE TS .. iititttittt ittt eateteteat ettt e eatetentaeeneaeeneneanenennens. 72
PART IV. INTERACTING WITH RED HAT DECISION MANAGERUSINGKIEAPIScooiiiiiiiiait., 73
CHAPTER 21. KIE SERVER REST API FOR KIE CONTAINERS AND BUSINESS ASSETS cov.s, 74
21.1. SENDING REQUESTS WITH THE KIE SERVER REST API USING A REST CLIENT OR CURL UTILITY 76
21.2. SENDING REQUESTS WITH THE KIE SERVER REST API USING THE SWAGGER INTERFACE 80
21.3. SUPPORTED KIE SERVER REST API ENDPOINTS 83
21.3.1. REST endpoints for specific DMN models 83
CHAPTER 22. KIE SERVER JAVA CLIENT API FOR KIE CONTAINERS AND BUSINESS ASSETS 95
22.1. SENDING REQUESTS WITH THE KIE SERVER JAVA CLIENT API 99
22.2. SUPPORTED KIE SERVER JAVA CLIENTS 104
22.3. EXAMPLE REQUESTS WITH THE KIE SERVER JAVA CLIENT API 105
CHAPTER 23. KIE SERVER AND KIE CONTAINER COMMANDS IN RED HAT DECISION MANAGER 109
23.1. SAMPLE KIE SERVER AND KIE CONTAINER COMMANDS 109
CHAPTER 24. RUNTIME COMMANDS IN RED HAT DECISION MANAGER i 124
24.1. SAMPLE RUNTIME COMMANDS IN RED HAT DECISION MANAGER 124

CHAPTER 25. PROCESS AUTOMATION MANAGER CONTROLLER REST API FOR KIE SERVER TEMPLATES

AND INST AN CES . i e e i et e i i i s 140
25.1. SENDING REQUESTS WITH THE PROCESS AUTOMATION MANAGER CONTROLLER REST API USING A
REST CLIENT OR CURL UTILITY 142
25.2. SENDING REQUESTS WITH THE PROCESS AUTOMATION MANAGER CONTROLLER REST API USING
THE SWAGGER INTERFACE 146
25.3. SUPPORTED PROCESS AUTOMATION MANAGER CONTROLLER REST API ENDPOINTS 149

CHAPTER 26. PROCESS AUTOMATION MANAGER CONTROLLER JAVA CLIENT API FOR KIE SERVER
TEMPLATES AND INSTANCES ... i i e e e i ittt 151

26.1. SENDING REQUESTS WITH THE PROCESS AUTOMATION MANAGER CONTROLLER JAVA CLIENT API
155

26.2. SUPPORTED PROCESS AUTOMATION MANAGER CONTROLLER JAVA CLIENTS 157

26.3. EXAMPLE REQUESTS WITH THE PROCESS AUTOMATION MANAGER CONTROLLER JAVA CLIENT API
158

Table of Contents

CHAPTER 27. BPMN PROCESS FLUENT API FOR BUSINESS CENTRALPROCESSES 163
27.1. EXAMPLE REQUESTS WITH THE BPMN PROCESS FLUENT API 163
27.2. EXAMPLE REQUESTS TO EXECUTE A BUSINESS PROCESS 164

CHAPTER 28. KNOWLEDGE STORE REST API FOR BUSINESS CENTRAL SPACES AND PROJECTS 165
28.1. SENDING REQUESTS WITH THE KNOWLEDGE STORE REST API USING A REST CLIENT OR CURL
UTILITY 166
28.2. SUPPORTED KNOWLEDGE STORE REST API ENDPOINTS 170

28.2.1. Spaces 170
28.2.2. Projects 175
28.2.3. Jobs (APl requests) 181
28.2.4. Branches 183

CHAPTER 29. SECURITY MANAGEMENT REST API FOR BUSINESS CENTRAL GROUPS, ROLES, AND USERS

188

29.1. SENDING REQUESTS WITH THE SECURITY MANAGEMENT REST API USING A REST CLIENT OR CURL
UTILITY 189
29.2. SUPPORTED SECURITY MANAGEMENT REST API ENDPOINTS 191
29.2.1. Groups 192
29.2.2. Roles 193
29.2.3. Users 193
29.2.4. Permissions 197
29.2.4.1. Supported permissions in Business Central 203
CHAPTER 30. ADDITIONAL RESOURCESiiiiitttiittit it eiteeateanneeaneeraneenaneennens 205
APPENDIX A. VERSIONING INFORMATION .. it ettt e ettt ettt eeiiaaens 206
APPENDIX B. CONTACT INFORMATION ..ottt ettt ettt et aaanaeens 207

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

PREFACE

PREFACE

As a developer of business decisions , you must deploy a developed Red Hat Decision Manager project
to a KIE Server in order to begin using the services you have created in Red Hat Decision Manager. You

can deploy and manage your Red Hat Decision Manager projects and assets using the Business Central
interface or using KIE APls.

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message .

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PART I. PACKAGING AND DEPLOYING A RED HAT DECISION MANAGER PROJECT

PART I. PACKAGING AND DEPLOYING A RED HAT DECISION
MANAGER PROJECT

As a business rules developer, you must build and deploy a developed Red Hat Decision Manager project
to a KIE Server in order to begin using the services you have created in Red Hat Decision Manager. You
can develop and deploy a project from Business Central, from an independent Maven project, from a
Java application, or using a combination of various platforms. For example, you can develop a project in
Business Central and deploy it using the KIE Server REST API, or develop a project in Maven configured
with Business Central and deploy it using Business Central.

Prerequisites

® The project to be deployed has been developed and tested. For projects in Business Central,
consider using test scenarios to test the assets in your project. For example, see Testing a
decision service using test scenarios.

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-test-scenarios

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

CHAPTER 1. RED HAT DECISION MANAGER PROJECT
PACKAGING

Red Hat Decision Manager projects contain the business assets that you develop in Red Hat Decision
Manager. Each project in Red Hat Decision Manager is packaged as a Knowledge JAR (KJAR) file with
configuration files such as a Maven project object model file (pom.xml), which contains build,
environment, and other information about the project, and a KIE module descriptor file (kmodule.xml),
which contains the KIE base and KIE session configurations for the assets in the project. You deploy the
packaged KJAR file to a KIE Server that runs the decision services and other deployable assets
(collectively referred to as services) from that KJAR file. These services are consumed at run time
through an instantiated KIE container, or deployment unit. Project KJAR files are stored in a Maven
repository and identified by three values: Groupld, Artifactld, and Version (GAV). The Version value
must be unique for every new version that might need to be deployed. To identify an artifact (including a
KJAR file), you need all three GAV values.

Projects in Business Central are packaged automatically when you build and deploy the projects. For
projects outside of Business Central, such as independent Maven projects or projects within a Java
application, you must configure the KIE module descriptor settings in an appended kmodule.xml file or
directly in your Java application in order to build and deploy the projects.

CHAPTER 2. PROJECT DEPLOYMENT IN BUSINESS CENTRAL

CHAPTER 2. PROJECT DEPLOYMENT IN BUSINESS CENTRAL

You can use Business Central to develop your business assets and services and to manage KIE Server
instances configured for project deployment. When your project is developed, you can build the project
in Business Central and deploy it automatically to KIE Server. To enable automatic deployment,
Business Central includes a built-in Maven repository. From Business Central, you can start, stop, or
remove the deployment units (KIE containers) that contain the services and their project versions that
you have built and deployed.

You can also connect several KIE Servers to the same Business Central instance and group them into
different server configurations (in Menu — Deploy = Execution Servers). Servers belonging to the
same server configuration run the same services, but you can deploy different projects or different
versions of projects on different configurations.

For example, you could have test servers in the Test configuration and production serversin a
Production configuration. As you develop business assets and services in a project, you deploy the
project on the Test server configuration and then, when a version of the project is sufficiently tested,
you can deploy it on the Production server configuration. In this case, to keep developing the project,
change the version in the project settings. Then the new version and the old version are seen as
different artifacts in the built-in Maven repository. You can deploy the new version on the Test server
configuration and keep running the old version on the Production server configuration. This
deployment process is simple but has significant limitations. Notably, there is not enough access control:
a developer can deploy a project directly into a production environment.

IMPORTANT

You cannot move a KIE Server into a different server configuration using Business
Central. You must change the configuration file of the server to change the server
configuration name for it.

2.1. CONFIGURING KIE SERVER TO CONNECT TO BUSINESS CENTRAL

' WARNING
A This section provides a sample setup that you can use for testing purposes. Some of

the values are unsuitable for a production environment, and are marked as such.

If a KIE Server is not configured in your Red Hat Process Automation Manager environment, or if you
require additional KIE Servers in your Red Hat Process Automation Manager environment, you must
configure a KIE Server to connect to Business Central.

NOTE

If you are deploying KIE Server on Red Hat OpenShift Container Platform, see the
Deploying an Red Hat Decision Manager environment on Red Hat OpenShift Container
Platform 4 using Operators document for instructions about configuring it to connect to
Business Central.

Prerequisites

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_red_hat_decision_manager_on_red_hat_openshift_container_platform#assembly-openshift-operator

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

® Business Central and KIE Server are installed in the base directory
installation (EAP_HOME).

NOTE

of the Red Hat JBoss EAP

You must install Business Central and KIE Server on different servers in production

environments. In this sample situation, we use only one user
containing both rest-all and the kie-server roles. However,
Business Central on the same server, for example in a devel

named controllerUser,
if you install KIE Server and
opment environment, make

the changes in the shared standalone-full.xml file as described in this section.

® Users with the following roles exist:

o In Business Central, a user with the role rest-all

o OnKIE Server, a user with the role kie-server

Procedure

1. In your Red Hat Process Automation Manager installation director
standalone-full.xml file. For example, if you use a Red Hat JBoss

y, havigate to the
EAP installation for Red Hat

Process Automation Manager, go to $EAP_HOME/standalone/configuration/standalone-

full.xml.

2. Open the standalone-full.xml file and under the <system-prope
JVM properties:

Table 2.1. JVM Properties for the managed KIE Server instance

Property Value

rties> tag, set the following

Note

org.kie.server.id default-kie-server

org.kie.server.controller http://localhost:8080/busin
ess-central/rest/controller

org.kie.server.controller.u controllerUser
ser

org.kie.server.controller.p controllerUser1234;
wd

org.kie.server.location http://localhost:8080/kie-
server/services/rest/server

Table 2.2. JVM Properties for the Business Central instance

10

The KIE Server ID.

The location of Business
Central. The URL for
connecting to the API of
Business Central.

The user name with the role
rest-all who can log in to the
Business Central.

The password of the user who
can log in to the Business
Central.

The location of KIE Server. The
URL for connecting to the API
of KIE Server.

CHAPTER 2. PROJECT DEPLOYMENT IN BUSINESS CENTRAL

Property Value Note

org.kie.server.user controllerUser The user name with the role
kie-server.

org.kie.server.pwd controllerUser1234; The password of the user.

The following example shows how to configure a KIE Server instance:

<property name="org.kie.server.id" value="default-kie-server"/>

<property name="org.kie.server.controller" value="http://localhost:8080/business-
central/rest/controller"/>

<property name="org.kie.server.controller.user" value="controllerUser"/>
<property name="org.kie.server.controller.owd" value="controllerUser1234;"/>
<property name="org.kie.server.location" value="http://localhost:8080/kie-
server/services/rest/server"/>

The following example shows how to configure a for Business Central instance:

<property name="org.kie.server.user" value="controllerUser"/>
<property name="org.kie.server.pwd" value="controllerUser1234;"/>

3. To verify that KIE Server starts successfully, send a GET request to http://SERVER:PORT/kie-
server/services/rest/server/ when KIE Server is running. For more information about running
Red Hat Process Automation Manager on KIE Server, see Running Red Hat Process Automation
Manager.

After successful authentication, you receive an XML response similar to the following example:

<response type="SUCCESS" msg="Kie Server info">
<kie-server-info>
<capabilities>KieServer</capabilities>
<capabilities>BRM</capabilities>
<capabilities>BPM</capabilities>
<capabilities>CaseMgmt</capabilities>
<capabilities>BPM-Ul</capabilities>
<capabilities>BRP</capabilities>
<capabilities>DMN</capabilities>
<capabilities>Swagger</capabilities>
<location>http://localhost:8230/kie-server/services/rest/server</location>
<messages>
<content>Server KieServerInfo{serverld='first-kie-server', version='7.5.1.Final-redhat-
1", location="http://localhost:8230/kie-server/services/rest/server', capabilities=[KieServer,
BRM, BPM, CaseMgmt, BPM-UI, BRP, DMN, Swagger]}started successfully at Mon Feb 05
15:44:35 AEST 2018</content>
<severity>INFO</severity>
<timestamp>2018-02-05T15:44:35.355+10:00</timestamp>
</messages>
<name>first-kie-server</name>
<id>first-kie-server</id>
<version>7.5.1.Final-redhat-1</version>
</kie-server-info>
</response>

1

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/installing_and_configuring_red_hat_decision_manager#eap-ba-dm-run-proc_install-on-eap

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

4. Verify successful registration:

a. Login to Business Central.

b. Click Menu — Deploy = Execution Servers.
If registration is successful, you will see the registered server ID.

2.2. CONFIGURING THE ENVIRONMENT MODE IN KIE SERVER AND
BUSINESS CENTRAL

You can set KIE Server to run in production mode or in development mode. Development mode
provides a flexible deployment policy that enables you to update existing deployment units (KIE
containers) while maintaining active process instances for small changes. It also enables you to reset the
deployment unit state before updating active process instances for larger changes. Production mode is
optimal for production environments, where each deployment creates a new deployment unit.

In a development environment, you can click Deploy in Business Central to deploy the built KJAR file to
a KIE Server without stopping any running instances (if applicable), or click Redeploy to deploy the built
KJAR file and replace all instances. The next time you deploy or redeploy the built KJAR, the previous
deployment unit (KIE container) is automatically updated in the same target KIE Server.

In a production environment, the Redeploy option in Business Central is disabled and you can click only
Deploy to deploy the built KJAR file to a new deployment unit (KIE container) on a KIE Server.

Procedure

1. To configure the KIE Server environment mode, set the org.kie.server.mode system property
to org.kie.server.mode=development or org.kie.server.mode=production.

2. To configure the deployment behavior for a project in Business Central, go to project Settings
- General Settings = Version and toggle the Development Mode option.

NOTE

By default, KIE Server and all new projects in Business Central are in
development mode.

You cannot deploy a project with Development Mode turned on or with a manually added
SNAPSHOT version suffix to a KIE Server that is in production mode.

2.3. CONFIGURING AN EXTERNAL MAVEN REPOSITORY FOR
BUSINESS CENTRAL AND KIE SERVER

You can configure Business Central and KIE Server to use an external Maven repository, such as Nexus
or Artifactory, instead of the built-in repository. This enables Business Central and KIE Server to access
and download artifacts that are maintained in the external Maven repository.

12

CHAPTER 2. PROJECT DEPLOYMENT IN BUSINESS CENTRAL

IMPORTANT

Artifacts in the repository do not receive automated security patches because Maven
requires that artifacts be immutable. As a result, artifacts that are missing patches for
known security flaws will remain in the repository to avoid breaking builds that depend on
them. The version numbers of patched artifacts are incremented. For more information,
see JBoss Enterprise Maven Repository.

NOTE

For information about configuring an external Maven repository for an authoring
environment on Red Hat OpenShift Container Platform, see the following documents:

® Deploying an Red Hat Decision Manager environment on Red Hat OpenShift
Container Platform 4 using Operators

® Deploying an Red Hat Decision Manager environment on Red Hat OpenShift
Container Platform 3 using templates

Prerequisites
® Business Central and KIE Server are installed. For installation options, see Planning a Red Hat
Decision Manager installation.
Procedure

1. Create a Maven settings.xml file with connection and access details for your external
repository. For details about the settings.xml file, see the Maven Settings Reference.

2. Save the file in a known location, for example, /opt/custom-config/settings.xml.

3. Inyour Red Hat Process Automation Manager installation directory, navigate to the
standalone-full.xml file. For example, if you use a Red Hat JBoss EAP installation for Red Hat
Process Automation Manager go to $EAP_HOME/standalone/configuration/standalone-
full.xml.

4. Open standalone-full.xml and under the <system-properties> tag, set the
kie.maven.settings.custom property to the full path name of the settings.xml file.
For example:

I <property name="kie.maven.settings.custom" value="/opt/custom-config/settings.xml"/>

5. Start or restart Business Central and KIE Server.

Next steps

For each Business Central project that you want to export or push as a KJAR artifact to the external
Maven repository, you must add the repository information in the project pom.xml file. For instructions,
see Section 2.4, "Exporting a Business Central project to an external Maven repository” .

2.4. EXPORTING A BUSINESS CENTRAL PROJECT TO AN EXTERNAL
MAVEN REPOSITORY

If you configured an external Maven repository for Business Central and KIE Server, you must add the
repository information in the pom.xml file for each Business Central project that you want to export or

13

https://access.redhat.com/maven-repository
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_red_hat_decision_manager_on_red_hat_openshift_container_platform#operator-deploy-central-proc_openshift-operator
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_red_hat_decision_manager_on_red_hat_openshift_container_platform#assembly-openshift-templates
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning
https://maven.apache.org/settings.html

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

push as a KJAR artifact to that external repository. You can then progress the project KJAR files
through the repository as necessary to implement your integration process, and deploy the KJAR files
using Business Central or the KIE Server REST API.

Prerequisites

® You configured Business Central and KIE Server to use an external Maven repository. If you
deployed Business Central on-premise, for more information about configuring an external
Maven repository, see Section 2.3, “Configuring an external Maven repository for Business
Central and KIE Server”. If you deployed your authoring environment on Red Hat OpenShift
Container Platform, for more information, see the following documents:

o Deploying an Red Hat Decision Manager environment on Red Hat OpenShift Container
Platform 4 using Operators

o Deploying an Red Hat Decision Manager environment on Red Hat OpenShift Container
Platform 3 using templates

Procedure

1. In Business Central, go to Menu - Design = Projects, click the project name, and select any
asset in the project.

2. In the Project Explorer menu on the left side of the screen, click the Customize View gear icon
and select Repository View = pom.xml.

3. Add the following settings at the end of the project pom.xml file (before the </projects closing
tag). The values must correspond to the settings that you defined in your settings.xml file.

<distributionManagement>
<repository>
<id>${maven-repo-id}</id>
<url>${maven-repo-url}</url>
<layout>default</layout>
</repository>
</distributionManagement>

4. Click Save to save the pom.xml file changes.

Repeat this procedure for each Business Central project that you want to export or push as a KJAR
artifact to the external Maven repository.

2.5. BUILDING AND DEPLOYING A PROJECT IN BUSINESS CENTRAL

After your project is developed, you can build the project in Business Central and deploy it to the
configured KIE Server. Projects in Business Central are packaged automatically as KJARs with all
necessary components when you build and deploy the projects.

Procedure

1. In Business Central, go to Menu - Design = Projects and click the project name.

2. In the upper-right corner, click Deploy to build the project and deploy it to a KIE Server. To
compile the project without deploying it to KIE Server, click Build.

14

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_red_hat_decision_manager_on_red_hat_openshift_container_platform#operator-deploy-kieserver-proc_openshift-operator
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_red_hat_decision_manager_on_red_hat_openshift_container_platform#assembly-openshift-templates

CHAPTER 2. PROJECT DEPLOYMENT IN BUSINESS CENTRAL

NOTE

You can also select the Build & Installoption to build the project and publish the
KJAR file to the configured Maven repository without deploying to a KIE Server.
In a development environment, you can click Deploy to deploy the built KJAR file
to a KIE Server without stopping any running instances (if applicable), or click
Redeploy to deploy the built KJAR file and replace all instances. The next time
you deploy or redeploy the built KJAR, the previous deployment unit (KIE
container) is automatically updated in the same target KIE Server. In a production
environment, the Redeploy option is disabled and you can click Deploy only to
deploy the built KJAR file to a new deployment unit (KIE container) on a KIE
Server.

To configure the KIE Server environment mode, set the org.kie.server.mode
system property to org.kie.server.mode=development or
org.kie.server.mode=production. To configure the deployment behavior for a
corresponding project in Business Central, go to project Settings = General
Settings = Version and toggle the Development Mode option. By default, KIE
Server and all new projects in Business Central are in development mode. You
cannot deploy a project with Development Mode turned on or with a manually
added SNAPSHOT version suffix to a KIE Server that is in production mode.

If only one KIE Server is connected to Business Central, or if all connected KIE Servers are in the
same server configuration, the services in the project are started automatically in a deployment
unit (KIE container).

If multiple server configurations are available, a deployment dialog is displayed in Business
Central, prompting you to specify server and deployment details.

3. If the deployment dialog appears, verify or set the following values:

® Deployment Unit Id / Deployment Unit Alias:Verify the name and alias of the deployment
unit (KIE container) running the service within KIE Server. You normally do not need to
change these settings. For more information about KIE container aliases, see Section 2.6.3,
“KIE container aliases”.

e Server Configuration: Select the server configuration for deploying this project. You can
later deploy it to other configured servers without rebuilding the project.

e Start Deployment Unit?:Verify that this box is selected to start the deployment unit (KIE
container). If you clear this box, the service is deployed onto the server but not started.

To review project deployment details, click View deployment details in the deployment banner
at the top of the screen orin the Deploy drop-down menu. This option directs you to the Menu
- Deploy — Execution Servers page.

2.6. DEPLOYMENT UNITS IN BUSINESS CENTRAL

The services in a project are consumed at run time through an instantiated KIE container, or deployment
unit, on a configured KIE Server. When you build and deploy a project in Business Central, the
deployment unit is created automatically in the configured server. You can start, stop, or remove
deployment units in Business Central as needed. You can also create additional deployment units from
previously built projects and start them on existing or new KIE Servers configured in Business Central.

2.6.1. Creating a deployment unit in Business Central

15

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

One or more deployment units should already exist as part of your Red Hat Decision Manager
configuration, but if not, you can create a deployment unit from a project that was previously built in
Business Central.

Prerequisites

® The project for which you are creating the new deployment unit has been built in Business
Central.

Procedure

1. In Business Central, go to Menu - Deploy — Execution servers.

2. Under Server Configurations, select an existing configuration or click New Server
Configuration to create a configuration.

3. Under Deployment Units, click Add Deployment Unit
4. Add an alias in the Alias field if required.

5. In the table within the window, select a GAV and click Select next to the GAV to populate the
deployment unit data fields.

6. Select the Start Deployment Unit?box to start the service immediately, or clear the box to
start it later.

7. Click Finish.
The new deployment unit for the service is created and placed on the KIE Servers that are
configured for this server configuration. If you have selected Start Deployment Unit?, the
service is started.

2.6.2. Starting, stopping, and removing deployment units in Business Central

When a deployment unit is started, the services in the deployment unit are available for use. If only one
KIE Server is connected to Business Central, or if all connected KIE Servers are in the same server
configuration, services are started in a deployment unit automatically when a project is deployed. If
multiple server configurations are available, you are prompted upon deployment to specify server and
deployment details and to start the deployment unit. However, at any time you can manually start, stop,
or remove deployment units in Business Central to manage your deployed services as needed.

Procedure

1. In Business Central, go to Menu - Deploy — Execution servers.
2. Under Server Configurations, select a configuration.
3. Under Deployment Units, select a deployment unit.

4. Click Start, Stop, or Remove in the upper-right corner. To remove a running deployment unit,
stop it and then remove it.

2.6.3. KIE container aliases

An alias for a KIE container (deployment unit) is a proxy in the KIE Server instance that helps in handling
different versions of the same container deployment. You can link a single alias to different versions of a

16

CHAPTER 2. PROJECT DEPLOYMENT IN BUSINESS CENTRAL

container. When a container is upgraded, the linked alias automatically points to the new version of the
container. For information about creating a KIE container alias, see Section 2.6.1, “Creating a
deployment unit in Business Central”.
For example, if a client application is changing every time a new version of a container is deployed, then
the client application can point to the container alias. When a new container version is deployed, the
associated alias is updated and all the requests are routed automatically to the new container without
changing the client application.
Consider an example project that contains a single process and uses the following properties:

e Groupld: org.jbpm

e Artifactld: my-project

e Version: 1.0

e containerlD: my-project

When you update, build, and deploy the above project, the associated project is updated on KIE Server
with the latest version and contains the following properties:

e Groupld: org.jbpm
e Artifactld: my-project
e Version: 2.0

If you want to deploy the latest version of the project, you need to update the containerlD as my-
project2 because the my-project container points to the old version.

NOTE

Every project version contains a different containerlD name. The associated client
applications need to be aware of all versions of the projects they interact with.

Container aliases also help you manage KIE containers. You can set the container aliases explicitly when
creating a container, or implicitly based on the associated Artifactld name. You can add a single alias to
multiple containers if required. If you do not specify a container alias, then the Artifactld of a project is
set as the container alias by default.

When you set an alias for multiple containers that contain different Groupld and Artifactld names, then
you can use the same alias every time to interact with KIE Server.

You typically use container aliases in the following use cases:
e Starting a new process instanceon the client application with the latest version of the process
® |Interacting with an existing processof a specific version
® |nteracting with an existing taskin a process
® |Interacting with a process definitionimage and form

For example, after you deploy the 1.0 version of a project, you send a POST request to the following KIE
Server REST API endpoint to start the process in the project:

17

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

/http://localhost:8230/kie-server/services/rest/server/containers/my-
project/processes/evaluation/instances

The sent request starts a new process instance from org.jbpm:my-project:1.0 in which my-project is
defined as the container alias. Later, when you deploy the 2.0 version of the project and send the same
request, a new instance starts from org.jbpm:my-project:2.0. You can deploy the latest version of the
process without adding the containerlD name.

2.7. EDITING THE GAV VALUES FOR A PROJECT IN BUSINESS
CENTRAL

The Groupld, Artifactld, and Version (GAV) values identify a project in a Maven repository. When
Business Central and KIE Server are on the same file system and use the same Maven repository, the
project is automatically updated in the repository each time you build a new version of your project.
However, if Business Central and KIE Server are on separate file systems and use separate local Maven
repositories, you must update a project GAV value, usually the version, for any new versions of the
project to ensure that the project is seen as a different artifact alongside the old version.

NOTE

For development purposes only, you can toggle the Development Mode option in
project Settings = General Settings = Version to add the SNAPSHOT suffix in the
project version. This suffix instructs Maven to get a new snapshot update according to
the Maven policy. Do not use Development Mode or manually add the SNAPSHOT
version suffix for a production environment.

You can set the GAV values in the project Settings screen.

Procedure
1. In Business Central, go to Menu - Design = Projects and click the project name.
2. Click the project Settings tab.

3. In General Settings, modify the Group ID, Artifact ID, or Version fields as necessary. If you
have deployed the project and are developing a new version, usually you need to increase the
version number.

NOTE

For development purposes only, you can toggle the Development Mode option
in project Settings - General Settings —» Version to add the SNAPSHOT suffix
in the project version. This suffix instructs Maven to get a new snapshot update

according to the Maven policy. Do not use Development Mode or manually add
the SNAPSHOT version suffix for a production environment.

4. Click Save to finish.

2.8. DUPLICATE GAV DETECTION IN BUSINESS CENTRAL

In Business Central, all Maven repositories are checked for any duplicated Groupld, Artifactld, and
Version (GAV) values in a project. If a GAV duplicate exists, the performed operation is canceled.

18

CHAPTER 2. PROJECT DEPLOYMENT IN BUSINESS CENTRAL

NOTE
Duplicate GAV detection is disabled for projects in Development Mode. To enable

duplicate GAV detection in Business Central, go to project Settings —» General Settings
- Version and toggle the Development Mode option to OFF (if applicable).

Duplicate GAV detection is executed every time you perform the following operations:
® Save a project definition for the project.
® Save the pom.xml file.
® |[nstall, build, or deploy a project.

The following Maven repositories are checked for duplicate GAVs:

® Repositories specified in the <repositories> and <distributionManagement> elements of the
pom.xml file.

® Repositories specified in the Maven settings.xml configuration file.

2.8.1. Managing duplicate GAV detection settings in Business Central

Business Central users with the admin role can modify the list of repositories that are checked for
duplicate Groupld, Artifactld, and Version (GAV) values for a project.

NOTE

Duplicate GAV detection is disabled for projects in Development Mode. To enable
duplicate GAV detection in Business Central, go to project Settings —» General Settings
- Version and toggle the Development Mode option to OFF (if applicable).

e

Procedure

1. In Business Central, go to Menu - Design = Projects and click the project name.
2. Click the project Settings tab and then click Validation to open the list of repositories.

3. Select or clear any of the listed repository options to enable or disable duplicate GAV detection.
In the future, duplicate GAVs will be reported for only the repositories you have enabled for
validation.

NOTE

To disable this feature, set the org.guvnor.project.gav.check.disabled system
property to true for Business Central at system startup:

$ ~/EAP_HOME/bin/standalone.sh -c¢ standalone-full.xml
-Dorg.guvnor.project.gav.check.disabled=true

19

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS
CENTRAL

As an alternative to developing and deploying projects in the Business Central interface, you can use
independent Maven projects or your own Java applications to develop Red Hat Decision Manager
projects and deploy them in KIE containers (deployment units) to a configured KIE Server. You can then
use the KIE Server REST API to start, stop, or remove the KIE containers that contain the services and
their project versions that you have built and deployed. This flexibility enables you to continue to use
your existing application workflow to develop business assets using Red Hat Decision Manager features.

Projects in Business Central are packaged automatically when you build and deploy the projects. For
projects outside of Business Central, such as independent Maven projects or projects within a Java
application, you must configure the KIE module descriptor settings in an appended kmodule.xml file or
directly in your Java application in order to build and deploy the projects.

3.1. CONFIGURING A KIE MODULE DESCRIPTOR FILE

A KIE module is a Maven project or module with an additional metadata file META-INF/kmodule.xml. All
Red Hat Decision Manager projects require a kmodule.xml file in order to be properly packaged and
deployed. This kmodule.xml file is a KIE module descriptor that defines the KIE base and KIE session
configurations for the assets in a project. A KIE base is a repository that contains all rules and other
business assets in Red Hat Decision Manager but does not contain any runtime data. A KIE session
stores and executes runtime data and is created from a KIE base or directly from a KIE container if you
have defined the KIE session in the kmodule.xml file.

If you create projects outside of Business Central, such as independent Maven projects or projects
within a Java application, you must configure the KIE module descriptor settings in an appended
kmodule.xml file or directly in your Java application in order to build and deploy the projects.

Procedure

1. In the ~/resources/META-INF directory of your project, create a kmodule.xml metadata file
with at least the following content:

<?xml version="1.0" encoding="UTF-8"7>
<kmodule xmins="http://www.drools.org/xsd/kmodule">
</kmodule>

This empty kmodule.xml file is sufficient to produce a single default KIE base that includes all
files found under your project resources path. The default KIE base also includes a single
default KIE session that is triggered when you create a KIE container in your application at build
time.

The following example is a more advanced kmodule.xml file:

<?xml version="1.0" encoding="UTF-8"7>
<kmodule xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlins="http://www.drools.org/xsd/kmodule">

<configuration>

<property key="drools.evaluator.supersetOf"

value="org.mycompany.SupersetOfEvaluatorDefinition"/>

</configuration>

<kbase name="KBase1" default="true" eventProcessingMode="cloud"
equalsBehavior="equality" declarativeAgenda="enabled" packages="org.domain.pkg1">

20

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS CENTRAL

<ksession name="KSession1_1" type="stateful" default="true" />
<ksession name="KSession1_2" type="stateful" default="true" beliefSystem="jtms" />
</kbase>
<kbase name="KBase2" default="false" eventProcessingMode="stream"
equalsBehavior="equality" declarativeAgenda="enabled" packages="org.domain.pkg2,
org.domain.pkg3" includes="KBase1">
<ksession name="KSession2_1" type="stateless" default="true" clockType="realtime">
<fileLogger file="debuglnfo" threaded="true" interval="10" />
<workltemHandlers>
<workltemHandler name="name" type="new org.domain.WorkltemHandler()" />
</workltemHandlers>
<listeners>
<ruleRuntimeEventListener type="org.domain.RuleRuntimeListener" />
<agendaEventListener type="org.domain.FirstAgendaListener" />
<agendaEventListener type="org.domain.SecondAgendaListener" />
<processEventListener type="org.domain.ProcessListener" />
</listeners>
</ksession>
</kbase>
</kmodule>

This example defines two KIE bases. Specific packages of rule assets are included with both KIE
bases. When you specify packages in this way, you must organize your rule files in a folder
structure that reflects the specified packages. Two KIE sessions are instantiated from the
KBase1 KIE base, and one KIE session from KBase2. The KIE session from KBase2is a
stateless KIE session, which means that data from a previous invocation of the KIE session (the
previous session state) is discarded between session invocations. That KIE session also specifies
a file (or a console) logger, a WorkltemHandler, and listeners of the three supported types
shown: ruleRuntimeEventListener, agendaEventListener and processEventListener. The
<configuration> element defines optional properties that you can use to further customize
your kmodule.xml file.

As an alternative to manually appending a kmodule.xml file to your project, you can use a
KieModuleModel instance within your Java application to programmatically create a
kmodule.xml file that defines the KIE base and a KIE session, and then add all resources in your
project to the KIE virtual file system KieFileSystem.

Creating kmodule.xml programmatically and adding it to KieFileSystem

import org.kie.api.KieServices;

import org.kie.api.builder.model.KieModuleModel;
import org.kie.api.builder.model.KieBaseModel;
import org.kie.api.builder.model.KieSessionModel;
import org.kie.api.builder.KieFileSystem;

KieServices kieServices = KieServices.Factory.get();
KieModuleModel kieModuleModel = kieServices.newKieModuleModel();

KieBaseModel kieBaseModel1 = kieModuleModel.newKieBaseModel("KBase1")
.setDefault(true)
.setEqualsBehavior(EqualityBehaviorOption.EQUALITY)
.setEventProcessingMode(EventProcessingOption.STREAM);

KieSessionModel ksessionModel1 = kieBaseModel1.newKieSessionModel("KSession1_1")

.setDefault(true)
.setType(KieSessionModel.KieSessionType.STATEFUL)

21

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

.setClockType(ClockTypeOption.get("realtime"));

KieFileSystem kfs = kieServices.newKieFileSystem();
kfs.writetKModuleXML (kieModuleModel.toXML());

2. After you configure the kmodule.xml file either manually or programmatically in your project,
retrieve the KIE bases and KIE sessions from the KIE container to verify the configurations:

KieServices kieServices = KieServices.Factory.get();
KieContainer kContainer = kieServices.getKieClasspathContainer();

KieBase kBase1 = kContainer.getKieBase("KBase1");
KieSession kieSession1 = kContainer.newKieSession("KSession1_1"),
kieSession2 = kContainer.newKieSession("KSession1_2");

KieBase kBase2 = kContainer.getKieBase("KBase2");
StatelessKieSession kieSession3 = kContainer.newStatelessKieSession("KSession2_1");

If KieBase or KieSession have been configured as default="true" in the kmodule.xml file, as
in the previous kmodule.xml example, you can retrieve them from the KIE container without
passing any names:

KieContainer kContainer = ...

KieBase kBase1 = kContainer.getKieBase();
KieSession kieSession1 = kContainer.newKieSession(),
kieSession2 = kContainer.newKieSession();

KieBase kBase2 = kContainer.getKieBase();
StatelessKieSession kieSession3 = kContainer.newStatelessKieSession();

To increase or decrease the maximum number of KIE modules or artifact versions that are
cached in the decision engine, you can modify the values of the following system properties in
your Red Hat Decision Manager distribution:

kie.repository.project.cache.size: Maximum number of KIE modules that are cached in the
decision engine. Default value: 100

kie.repository.project.versions.cache.size: Maximum number of versions of the same
artifact that are cached in the decision engine. Default value: 10

For the full list of KIE repository configurations, download the Red Hat Process Automation
Manager 7.13.5 Source Distribution ZIP file from the Red Hat Customer Portal and navigate to
~/rhpam-7.13.5-sources/src/drools-$VERSION/drools-
compiler/src/main/java/org/drools/compiler/kie/builder/impl/KieRepositorylmpl.java.

For more information about the kmodule.xml file, download the Red Hat Process Automation
Manager 7.13.5 Source Distribution ZIP file from the Red Hat Customer Portal (if not downloaded
already) and see the kmodule.xsd XML schema located at $FILE_HOME/rhpam-$VERSION-
sources/kie-api-parent-$VERSION/kie-api/src/main/resources/org/kie/api/.

22

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS CENTRAL

NOTE
KieBase or KiePackage serialization is not supported in Red Hat Decision Manager 7.13.

For more information, see Is serialization of kbase/package supported in BRMS 6/BPM
Suite 6/RHDM 77.

3.1.1. KIE module configuration properties

The optional <configuration> element in the KIE module descriptor file (kmodule.xml) of your project
defines property key and value pairs that you can use to further customize your kmodule.xml file.

Example configuration property in a kmodule.xml file

<kmodule>

<configuration>
<property key="drools.dialect.default" value="java"/>

</configuration>

</kmodule>

The following are the <configurations> property keys and values supported in the KIE module descriptor
file (kmodule.xml) for your project:
drools.dialect.default

Sets the default Drools dialect.
Supported values: java, mvel

<property key="drools.dialect.default"
value="java"/>

drools.accumulate.function.$FUNCTION

Links a class that implements an accumulate function to a specified function name, which allows you
to add custom accumulate functions into the decision engine.

<property key="drools.accumulate.function.hyperMax"
value="org.drools.custom.HyperMaxAccumulate"/>

drools.evaluator.$EVALUATION

Links a class that implements an evaluator definition to a specified evaluator name so that you can
add custom evaluators into the decision engine. An evaluator is similar to a custom operator.

<property key="drools.evaluator.soundslike"
value="org.drools.core.base.evaluators.SoundslikeEvaluatorsDefinition"/>

drools.dump.dir

Sets a path to the Red Hat Decision Manager dump/log directory.

<property key="drools.dump.dir"
value="$DIR_PATH/dump/log"/>

23

https://access.redhat.com/solutions/3216951

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

drools.defaultPackageName

Sets a default package for the business assets in your project.

<property key="drools.defaultPackageName"
value="org.domain.pkg1"/>

drools.parser.processStringEscapes

Sets the String escape function. If this property is set to false, the \n character will not be interpreted
as the newline character.

Supported values: true (default), false

<property key="drools.parser.processStringEscapes"
value="true"/>

drools.kbuilder.severity. $DUPLICATE

Sets a severity for instances of duplicate rules, processes, or functions reported when a KIE base is
built. For example, if you set duplicateRule to ERROR, then an error is generated for any duplicated
rules detected when the KIE base is built.

Supported key suffixes: duplicateRule, duplicateProcess, duplicateFunction

Supported values: INFO, WARNING, ERROR

<property key="drools.kbuilder.severity.duplicateRule"
value="ERROR'"/>

drools.propertySpecific

Sets the property reactivity of the decision engine.
Supported values: DISABLED, ALLOWED, ALWAYS

<property key="drools.propertySpecific"
value="ALLOWED"/>

drools.lang.level

Sets the DRL language level.
Supported values: DRL5, DRL6, DRL6_STRICT (default)

<property key="drools.lang.level"
value="DRL_STRICT"/>

3.1.2. KIE base attributes supported in KIE modules

AKIE base is a repository that you define in the KIE module descriptor file (kmodule.xml) for your
project and contains all rules and other business assets in Red Hat Decision Manager. When you define
KIE bases in the kmodule.xml file, you can specify certain attributes and values to further customize
your KIE base configuration.

Example KIE base configuration in a kmodule.xml file

I <kmodule>

24

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS CENTRAL

<kbase name="KBase2" default="false" eventProcessingMode="stream" equalsBehavior="equality"
declarativeAgenda="enabled" packages="org.domain.pkg2, org.domain.pkg3" includes="KBase1"
sequential="false">

</kbase>

</kmodule>

The following are the kbase attributes and values supported in the KIE module descriptor file
(kmodule.xml) for your project:

Table 3.1. KIE base attributes supported in KIE modules

Attribute Supported values Description
name Any name Defines the name that retrieves KieBase
from KieContainer. This attribute is
mandatory.
includes Comma-separated list of Defines other KIE base objects and
other KIE base objects in the artifacts to be included in this KIE base. A
KIE module KIE base can be contained in multiple KIE

modules if you declare it as a dependency
in the pom.xml file of the modules.

packages Comma-separated list of Defines packages of artifacts (such as
packages to include in the KIE rules and processes) to be included in this
base KIE base. By default, all artifacts in the
~/resources directory are included into
Default: all a KIE base. This attribute enables you to

limit the number of compiled artifacts.
Only the packages belonging to the list
specified in this attribute are compiled.

default true, false Determines whether a KIE base is the
default KIE base for a module so that it
Default: false can be created from the KIE container

without passing any name. Each module
can have only one default KIE base.

25

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

Attribute Supported values

equalsBehavior identity, equality

Default: identity

eventProcessingMode cloud, stream

Default: cloud

declarativeAgenda disabled, enabled

Default: disabled

sequential true, false

Default: false

Description

Defines the behavior of Red Hat Decision
Manager when a new fact is inserted into
the working memory. If set to identity, a
new FactHandle is always created
unless the same object is already present
in the working memory. If set to equality,
anew FactHandle is created only if the
newly inserted object is not equal to an
existing fact, according to the equals()
method of the inserted fact. Use
equality mode when you want objects to
be assessed based on feature equality
instead of explicit identity.

Determines how events are processed in
the KIE base. If this property is set to
cloud, the KIE base treats events as
normal facts. If this property is set to
stream, temporal reasoning on events is
allowed.

Determines whether the declarative
agenda is enabled or not.

Determines whether sequential mode is
enabled or not. In sequential mode, the
decision engine evaluates rules one time
in the order that they are listed in the
decision engine agenda without regard to
changes in the working memory. Enable
this property if you use stateless KIE
sessions and you do not want the
execution of rules to influence
subsequent rules in the agenda.

3.1.3. KIE session attributes supported in KIE modules

A KIE session stores and executes runtime data and is created from a KIE base or directly from a KIE
container if you have defined the KIE session in the KIE module descriptor file (kmodule.xml) for your
project. When you define KIE bases and KIE sessions in the kmodule.xml file, you can specify certain
attributes and values to further customize your KIE session configuration.

Example KIE session configuration in a kmodule.xml file

<kmodule>

<kbase>

<ksession name="KSession2_1" type="stateless" default="true" clockType="realtime">

26

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS CENTRAL

</kbase>

</kmodule>

The following are the ksession attributes and values supported in the KIE module descriptor file
(kmodule.xml) for your project:

Table 3.2. KIE session attributes supported in KIE modules

Attribute Supported values Description

name Any name Defines the name that retrieves
KieSession from KieContainer. This
attribute is mandatory.

type stateful, stateless Determines whether data is retained
(stateful) or discarded (stateless)
Default: stateful between invocations of the KIE session. A

session set to stateful enables you to
iteratively work with the working memory,
while a session set to stateless is
typically used for one-off execution of
assets. A stateless session stores a
knowledge state that is changed every
time a new fact is added, updated, or
deleted, and every time a rule is executed.
An execution in a stateless session has
no information about previous actions,
such rule executions.

default true, false Determines whether a KIE session is the
default session for a module so that it can
Default: false be created from the KIE container

without passing any name. Each module
can have only one default KIE session.

clockType realtime, pseudo Determines whether event time stamps
are assigned by the system clock or by a
Default: realtime pseudo clock controlled by the

application. This clock is especially useful
for unit testing on temporal rules.

beliefSystem simple, jtms, defeasible Defines the type of belief system used by
the KIE session. A belief system deduces
Default: simple the truth from knowledge (facts). For

example, if a new fact is inserted based
on another fact which is later removed
from the decision engine, the system can
determine that the newly inserted fact
should be removed as well.

27

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

3.2. PACKAGING AND DEPLOYING A RED HAT DECISION MANAGER
PROJECT IN MAVEN

If you want to deploy a Maven project outside of Business Central to a configured KIE Server, you can
edit the project pom.xml file to package your project as a KJAR file and add a kmodule.xml file with
the KIE base and KIE session configurations for the assets in your project.

Prerequisites

® You have a Maven project that contains Red Hat Decision Manager business assets.

e KIE Server is installed and kie-server user access is configured. For installation options, see
Planning a Red Hat Decision Manager installation .

Procedure

1. In the pom.xml file of your Maven project, set the packaging type to kjar and add the kie-
maven-plugin build component:

<packaging>kjar</packaging>

<build>
<plugins>
<plugin>
<groupld>org.kie</groupld>
<artifactld>kie-maven-plugin</artifactid>
<version>${rhpam.version}</version>
<extensions>true</extensions>
</plugin>
</plugins>
</build>

The kjar packaging type activates the kie-maven-plugin component to validate and pre-
compile artifact resources. The <versions is the Maven artifact version for Red Hat Decision
Manager currently used in your project (for example, 7.67.0.Final-redhat-00024). These
settings are required to properly package the Maven project for deployment.

28

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS CENTRAL

NOTE

Instead of specifying a Red Hat Decision Manager <versions for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

<dependency>
<groupld>com.redhat.ba</groupld>
<artifactld>ba-platform-bom</artifactid>
<version>7.13.5.redhat-00002</version>
<scope>import</scope>
<type>pom</type>

</dependency>

For more information about the Red Hat Business Automation BOM, see What is
the mapping between Red Hat Process Automation Manager and the Maven
library version?.

. Optional: If your project contains Decision Model and Notation (DMN) assets, also add the
following dependency in the pom.xml file to enable DMN executable models. DMN executable
models enable DMN decision table logic in DMN projects to be evaluated more efficiently.

<dependency>
<groupld>org.kie</groupld>
<artifactld>kie-dmn-core</artifactld>
<scope>provided</scope>
<version>${rhpam.version}</version>
</dependency>

. In the ~/resources directory of your Maven project, create a META-INF/kmodule.xml
metadata file with at least the following content:

<?xml version="1.0" encoding="UTF-8"?>
<kmodule xmiIns="http://www.drools.org/xsd/kmodule">
</kmodule>

This kmodule.xml file is a KIE module descriptor that is required for all Red Hat Decision
Manager projects. You can use the KIE module to define one or more KIE bases and one or more
KIE sessions from each KIE base.

For more information about kmodule.xml configuration, see Section 3.1, “Configuring a KIE
module descriptor file”.

. In the relevant resource in your Maven project, configure a .java class to create a KIE container
and a KIE session to load the KIE base:

import org.kie.api.KieServices;

import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

29

https://access.redhat.com/solutions/3405361

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

30

public void testApp() {

// Load the KIE base:

KieServices ks = KieServices.Factory.get();

KieContainer kContainer = ks.getKieClasspathContainer();
KieSession kSession = kContainer.newKieSession();

}

In this example, the KIE container reads the files to be built from the class path for a testApp
project. The KieServices APl enables you to access all KIE building and runtime configurations.

You can also create the KIE container by passing the project Releaseld to the KieServices API.
The Releaseld is generated from the Groupld, Artifactld, and Version (GAV) values in the
project pom.xml file.

import org.kie.api.KieServices;

import org.kie.api.builder.Releaseld;

import org.kie.api.runtime.KieContainer;

import org.kie.api.runtime.KieSession;

import org.drools.compiler.kproject.Releaseldimpl;

public void testApp() {

// Identify the project in the local repository:
Releaseld rid = new Releaseldlmpl("com.sample”, "my-app", "1.0.0");

// Load the KIE base:

KieServices ks = KieServices.Factory.get();
KieContainer kContainer = ks.newKieContainer(rid);
KieSession kSession = kContainer.newKieSession();

. Ina command terminal, navigate to your Maven project directory and run the following

command to build the project:

I mvn clean install

For DMN executable models, run the following command:
I mvn clean install -DgenerateDMNModel=YES

If the build fails, address any problems described in the command line error messages and try
again to validate the files until the build is successful.

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS CENTRAL

NOTE

If the rule assets in your Maven project are not built from an executable rule
model by default, verify that the following dependency is in the pom.xml file of
your project and rebuild the project:

<dependency>
<groupld>org.drools</groupld>
<artifactld>drools-model-compiler</artifactld>
<version>${rhpam.version}</version>
</dependency>

This dependency is required for rule assets in Red Hat Decision Manager to be
built from executable rule models by default. This dependency is included as part
of the Red Hat Decision Manager core packaging, but depending on your Red
Hat Decision Manager upgrade history, you may need to manually add this
dependency to enable the executable rule model behavior.

For more information about executable rule models, see Section 3.4, "Executable
rule models”.

6. After you successfully build and test the project locally, deploy the project to the remote Maven
repository:

I mvn deploy

3.3. PACKAGING AND DEPLOYING A RED HAT DECISION MANAGER
PROJECT IN A JAVA APPLICATION

If you want to deploy a project from within your own Java application to a configured KIE Server, you can
use a KieModuleModel instance to programmatically create a kmodule.xml file that defines the KIE
base and a KIE session, and then add all resources in your project to the KIE virtual file system
KieFileSystem.

Prerequisites
® You have a Java application that contains Red Hat Decision Manager business assets.

e KIE Server is installed and kie-server user access is configured. For installation options, see
Planning a Red Hat Decision Manager installation .

Procedure

1. Optional: If your project contains Decision Model and Notation (DMN) assets, add the following
dependency to the relevant class path of your Java project to enable DMN executable models.
DMN executable models enable DMN decision table logic in DMN projects to be evaluated
more efficiently.

<dependency>
<groupld>org.kie</groupld>
<artifactld>kie-dmn-core</artifactld>
<scope>provided</scope>
<version>${rhpam.version}</version>
</dependency>

31

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

32

The <versions is the Maven artifact version for Red Hat Decision Manager currently used in
your project (for example, 7.67.0.Final-redhat-00024).

NOTE

Instead of specifying a Red Hat Decision Manager <versions for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

<dependency>
<groupld>com.redhat.ba</groupld>
<artifactld>ba-platform-bom</artifactid>
<version>7.13.5.redhat-00002</version>
<scope>import</scope>
<type>pom</type>

</dependency>

For more information about the Red Hat Business Automation BOM, see What is
the mapping between Red Hat Process Automation Manager and the Maven
library version?.

. Use the KieServices API to create a KieModuleModel instance with the desired KIE base and

KIE session. The KieServices API enables you to access all KIE building and runtime
configurations. The KieModuleModel instance generates the kmodule.xml file for your project.
For more information about kmodule.xml configuration, see Section 3.1, “Configuring a KIE
module descriptor file”.

. Convert your KieModuleModel instance into XML and add the XML to KieFileSystem.

Creating kmodule.xml programmatically and adding it to KieFileSystem

import org.kie.api.KieServices;

import org.kie.api.builder.model.KieModuleModel;
import org.kie.api.builder.model.KieBaseModel;
import org.kie.api.builder.model.KieSessionModel;
import org.kie.api.builder.KieFileSystem;

KieServices kieServices = KieServices.Factory.get();
KieModuleModel kieModuleModel = kieServices.newKieModuleModel();

KieBaseModel kieBaseModel1 = kieModuleModel.newKieBaseModel("KBase1")
.setDefault(true)
.setEqualsBehavior(EqualityBehaviorOption.EQUALITY)
.setEventProcessingMode(EventProcessingOption.STREAM);

KieSessionModel ksessionModel1 = kieBaseModel1.newKieSessionModel("KSession1")
.setDefault(true)
.setType(KieSessionModel.KieSessionType.STATEFUL)

https://access.redhat.com/solutions/3405361

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS CENTRAL

.setClockType(ClockTypeOption.get("realtime"));

KieFileSystem kfs = kieServices.newKieFileSystem();
kfs.writeKModuleXML (kieModuleModel.toXML());

4. Add any remaining Red Hat Decision Manager assets that you use in your project to your
KieFileSystem instance. The artifacts must be in a Maven project file structure.

import org.kie.api.builder.KieFileSystem;

KieFileSystem kfs = ...
kfs.write("src/main/resources/KBase1/ruleSet1.drl", stringContainingAValidDRL)
.write("src/main/resources/dtable.xIs",
kieServices.getResources().newlnputStreamResource(dtableFileStream));

In this example, the project assets are added both as a String variable and as a Resource
instance. You can create the Resource instance using the KieResources factory, also provided
by the KieServices instance. The KieResources class provides factory methods to convert
InputStream, URL, and File objects, or a String representing a path of your file system to a
Resource instance that the KieFileSystem can manage.

You can also explicitly assign a ResourceType property to a Resource object when you add
project artifacts to KieFileSystem:

import org.kie.api.builder.KieFileSystem;

KieFileSystem kfs = ...
kfs.write("src/main/resources/myDrl.txt",
kieServices.getResources().newlnputStreamResource(drlStream)
.setResourceType(ResourceType.DRL));

5. Use KieBuilder with the buildAll() method to build the content of KieFileSystem, and create a
KIE container to deploy it:

import org.kie.api.KieServices;

import org.kie.api.KieServices.Factory;
import org.kie.api.builder.KieFileSystem;
import org.kie.api.builder.KieBuilder;
import org.kie.api.runtime.KieContainer;

KieServices kieServices = KieServices.Factory.get();
KieFileSystem kfs = ...

KieBuilder kieBuilder = ks.newKieBuilder(kfs);
kieBuilder.buildAll()
assertEquals(0, kieBuilder.getResults().getMessages(Message.Level. ERROR).size());

KieContainer kieContainer = kieServices
.newKieContainer(kieServices.getRepository().getDefaultReleaseld());

A build ERROR indicates that the project compilation failed, no KieModule was produced, and
nothing was added to the KieRepository singleton. A WARNING or an INFO result indicates
that the compilation of the project was successful, with information about the build process.

33

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

NOTE

To build the rule assets in your Java application project from an executable rule
model, verify that the following dependency is in the pom.xml file of your
project:

<dependency>
<groupld>org.drools</groupld>
<artifactld>drools-model-compiler</artifactld>
<version>${rhpam.version}</version>
</dependency>

This dependency is required for rule assets in Red Hat Decision Manager to be
built from executable rule models. This dependency is included as part of the Red
Hat Decision Manager core packaging, but depending on your Red Hat Decision
Manager upgrade history, you may need to manually add this dependency to
enable the executable rule model behavior.

After you verify the dependency, use the following modified buildAll() option to
enable the executable model:

I kieBuilder.buildAll(ExecutableModelProject.class)

For more information about executable rule models, see Section 3.4, "Executable
rule models”.

3.4. EXECUTABLE RULE MODELS

Rule assets in Red Hat Decision Manager are built from executable rule models by default with the
standard kie-maven-plugin plugin. Executable rule models are embedded models that provide a Java-
based representation of a rule set for execution at build time. The executable model is a more efficient
alternative to the standard asset packaging in previous versions of Red Hat Decision Manager and
enables KIE containers and KIE bases to be created more quickly, especially when you have large lists of
DRL (Drools Rule Language) files and other Red Hat Decision Manager assets.

If you do not use the kie-maven-plugin plugin or if the required drools-model-compiler dependency is
missing from your project, then rule assets are built without executable models. Therefore, to generate
the executable model during build time, ensure that the kie-maven-plugin plugin and drools-model-
compiler dependency are added in your project pom.xml file.

Executable rule models provide the following specific advantages for your projects:

® Compile time: Traditionally, a packaged Red Hat Decision Manager project (KJAR) contains a
list of DRL files and other Red Hat Decision Manager artifacts that define the rule base
together with some pre-generated classes implementing the constraints and the consequences.
Those DRL files must be parsed and compiled when the KJAR is downloaded from the Maven
repository and installed in a KIE container. This process can be slow, especially for large rule sets.
With an executable model, you can package within the project KJAR the Java classes that
implement the executable model of the project rule base and re-create the KIE container and
its KIE bases out of it in a much faster way. In Maven projects, you use the kie-maven-plugin
plugin to automatically generate the executable model sources from the DRL files during the
compilation process.

® Run time: In an executable model, all constraints are defined as Java lambda expressions. The
same lambda expressions are also used for constraints evaluation, so you no longer need to use

34

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS CENTRAL

mvel expressions for interpreted evaluation nor the just-in-time (JIT) process to transform the
mvel-based constraints into bytecode. This creates a quicker and more efficient run time.

® Development time: An executable model enables you to develop and experiment with new
features of the decision engine without needing to encode elements directly in the DRL format
or modify the DRL parser to support them.

NOTE
For query definitions in executable rule models, you can use up to 10 arguments only.

For variables within rule consequences in executable rule models, you can use up to 24
bound variables only (including the built-in drools variable). For example, the following
rule consequence uses more than 24 bound variables and creates a compilation error:

then

$input.setNo25Count(functions.sumOf(new Object[]{$no1Count_1, $no2Count_1,
$no3Count_1, ..., $no25Count_1}).intValue());

$input.getFirings().add("fired");

update($input);

3.4.1. Modifying or disabling executable rule models in a Red Hat Decision Manager
project

Rule assets in Red Hat Decision Manager are built from executable rule models by default with the
standard kie-maven-plugin plugin. The executable model is a more efficient alternative to the standard
asset packaging in previous versions of Red Hat Decision Manager. However, if needed, you can modify
or disable executable rule models to build a Red Hat Decision Manager project as a DRL-based KJAR
instead of the default model-based KJAR.

Procedure

Build your Red Hat Decision Manager project in the usual way, but provide an alternate build option,
depending on the type of project:

® ForaMaven project, navigate to your Maven project directory in a command terminal and run
the following command:

I mvn clean install -DgenerateModel=<VALUE>

Replace <VALUE> with one of three values:
o YES_WITHDRL: (Default) Generates the executable model corresponding to the DRL files
in the original project and also adds the DRL files to the generated KJAR for documentation

purposes (the KIE base is built from the executable model regardless).

o YES: Generates the executable model corresponding to the DRL files in the original project
and excludes the DRL files from the generated KJAR.

o NO: Does not generate the executable model.

Example build command to disable the default executable model behavior:

I mvn clean install -DgenerateModel=NO

35

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

® ForaJava application configured programmatically, the executable model is disabled by
default. Add rule assets to the KIE virtual file system KieFileSystem and use KieBuilder with
one of the following buildAll() methods:

(o}

buildAll() (Default) or buildAll(DrIProject.class): Does not generate the executable
model.

buildAll(ExecutableModelProject.class): Generates the executable model corresponding
to the DRL files in the original project.

Example code to enable executable model behavior:

import org.kie.api.KieServices;
import org.kie.api.builder.KieFileSystem;
import org.kie.api.builder.KieBuilder;

KieServices ks = KieServices.Factory.get();

KieFileSystem kfs = ks.newKieFileSystem()

kfs.write("src/main/resources/KBase1/ruleSet1.drl", stringContainingAValidDRL)

.write("src/main/resources/dtable.xIs",
kieServices.getResources().newlnputStreamResource(dtableFileStream));

KieBuilder kieBuilder = ks.newKieBuilder(kfs);

// Enable executable model

kieBuilder.buildAll(ExecutableModelProject.class)

assertEquals(0, kieBuilder.getResults().getMessages(Message.Level. ERROR).size());

3.5. USING A KIE SCANNER TO MONITOR AND UPDATE KIE
CONTAINERS

The KIE scanner in Red Hat Decision Manager monitors your Maven repository for new SNAPSHOT
versions of your Red Hat Decision Manager project and then deploys the latest version of the project to
a specified KIE container. You can use a KIE scanner in a development environment to maintain your Red
Hat Decision Manager project deployments more efficiently as new versions become available.

IMPORTANT

For production environments, do not use a KIE scanner with SNAPSHOT project versions
to avoid accidental or unexpected project updates. The KIE scanner is intended for
development environments that use SNAPSHOT project versions.

Prerequisites

Procedure

36

® The kie-ci.jar file is available on the class path of your Red Hat Decision Manager project.

1. In the relevant .java class in your project, register and start the KIE scanner as shown in the
following example code:

Registering and starting a KIE scanner for a KIE container

import org.kie.api.KieServices;
import org.kie.api.builder.Releaseld;

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS CENTRAL

import org.kie.api.runtime.KieContainer;
import org.kie.api.builder.KieScanner;

KieServices kieServices = KieServices.Factory.get();
Releaseld releaseld = kieServices

.newReleaseld("com.sample", "my-app", "1.0-SNAPSHOT");
KieContainer kContainer = kieServices.newKieContainer(releaseld);
KieScanner kScanner = kieServices.newKieScanner(kContainer);

// Start KIE scanner for polling the Maven repository every 10 seconds (10000 ms)
kScanner.start(10000L);

In this example, the KIE scanner is configured to run with a fixed time interval. The minimum KIE
scanner polling interval is 1 millisecond (ms) and the maximum polling interval is the maximum
value of the data type long. A polling interval of O or less results in a
java.lang.lllegalArgumentException: pollinginterval must be positive error. You can also
configure the KIE scanner to run on demand by invoking the scanNow() method.

The project group ID, artifact ID, and version (GAV) settings in the example are defined as
com.sample:my-app:1.0-SNAPSHOT. The project version must contain the -SNAPSHOT
suffix to enable the KIE scanner to retrieve the latest build of the specified artifact version. If
you change the snapshot project version number, such as increasing to 1.0.1-SNAPSHOT, then
you must also update the version in the GAV definition in your KIE scanner configuration. The
KIE scanner does not retrieve updates for projects with static versions, such as
com.sample:my-app:1.0.

. In the settings.xml file of your Maven repository, set the updatePolicy configuration to always
to enable the KIE scanner to function properly:

<profile>
<id>guvnor-m2-repo</id>
<repositories>
<repository>
<id>guvnor-m2-repo</id>
<name>BA Repository</name>
<url>http://localhost:8080/business-central/maven2/</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
<updatePolicy>always</updatePolicy>
</releases>
<snapshots>
<enabled>true</enabled>
<updatePolicy>always</updatePolicy>
</snapshots>
</repository>
</repositories>
</profile>

After the KIE scanner starts polling, if the KIE scanner detects an updated version of the
SNAPSHOT project in the specified KIE container, the KIE scanner automatically downloads the
new project version and triggers an incremental build of the new project. From that moment, all
of the new KieBase and KieSession objects that were created from the KIE container use the
new project version.

37

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

For information about starting or stopping a KIE scanner using KIE Server APls, see Interacting
with Red Hat Decision Manager using KIE APIs.

3.6. STARTING A SERVICE IN KIE SERVER

If you have deployed Red Hat Decision Manager assets from a Maven or Java project outside of
Business Central, you use a KIE Server REST API call to start the KIE container (deployment unit) and
the services in it. You can use the KIE Server REST API to start services regardless of your deployment
type, including deployment from Business Central, but projects deployed from Business Central either
are started automatically or can be started within the Business Central interface.

Prerequisites

e KIE Server is installed and kie-server user access is configured. For installation options, see
Planning a Red Hat Decision Manager installation .

Procedure

In your command terminal, run the following API request to load a service into a KIE container in KIE
Server and to start it:

$ curl --user "<username>:<password>" -H "Content-Type: application/json" -X PUT -d '{"container-
id" : "<containerID>","release-id" : {"group-id" : "<grouplD>","artifact-id" : "<artifactID>","version" : "
<version>"}}' http://<serverhost>:<serverport>/kie-
server/services/rest/server/containers/<container|D>

Replace the following values:
® <username>, <password>: The user name and password of a user with the kie-server role.

® <containerID>: The identifier for the KIE container (deployment unit). You can use any random
identifier but it must be the same in both places in the command (the URL and the data).

e <grouplD>, <artifactlD>, <version>: The project GAV values.

e <serverhost>: The host name for KIE Server, or localhost if you are running the command on
the same host as KIE Server.

® <serverport>: The port number for KIE Server.

Example:

curl --user "rhpamAdmin:password@1" -H "Content-Type: application/json" -X PUT -d '{"container-id"
: "kie1","release-id" : {"group-id" : "org.kie.server.testing","artifact-id" : "container-crud-tests1","version"
:"2.1.0.GA"}}' http://localhost:39043/kie-server/services/rest/server/containers/kie1

3.7.STOPPING AND REMOVING A SERVICE IN KIE SERVER

If you have started Red Hat Decision Manager services from a Maven or Java project outside of
Business Central, you use a KIE Server REST API call to stop and remove the KIE container (deployment
unit) containing the services. You can use the KIE Server REST API to stop services regardless of your
deployment type, including deployment from Business Central, but services from Business Central can
also be stopped within the Business Central interface.

38

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_and_managing_red_hat_decision_manager_services#kie-server-commands-con_kie-apis
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS CENTRAL

Prerequisites

e KIE Server is installed and kie-server user access is configured. For installation options, see
Planning a Red Hat Decision Manager installation .

Procedure

In your command terminal, run the following API request to stop and remove a KIE container with
services on KIE Server:

$ curl --user "<username>:<password>" -X DELETE http://<serverhost>:<serverport>/kie-
server/services/rest/server/containers/<container|D>

Replace the following values:
® <username>, <password>: The user name and password of a user with the kie-server role.

® <containerID>: The identifier for the KIE container (deployment unit). You can use any random
identifier but it must be the same in both places in the command (the URL and the data).

e <serverhost>: The host name for KIE Server, or localhost if you are running the command on
the same host as KIE Server.

® <serverport>: The port number for KIE Server.

Example:

curl --user "rhpamAdmin:password@1" -X DELETE http://localhost:39043/kie-
server/services/rest/server/containers/kie1

39

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

40

CHAPTER 4. ADDITIONAL RESOURCES

"Executing rules” in Designing a decision service using DRL rules
Interacting with Red Hat Decision Manager using KIE APIs

Deploying an Red Hat Decision Manager environment on Red Hat OpenShift Container Platform
4 using Operators

Deploying an Red Hat Decision Manager environment on Red Hat OpenShift Container Platform
3 using templates

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assets-executing-proc_drl-rules
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-kie-apis
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_red_hat_decision_manager_on_red_hat_openshift_container_platform#assembly-openshift-operator
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_red_hat_decision_manager_on_red_hat_openshift_container_platform#assembly-openshift-templates

PART Il. MANAGING PROJECTS IN BUSINESS CENTRAL

PART Il. MANAGING PROJECTS IN BUSINESS CENTRAL

As a process administrator, you can use Business Central in Red Hat Decision Manager to manage new,
sample, and imported projects on a single or multiple branches.

Prerequisites

® Red Hat JBoss Enterprise Application Platform 7.4 is installed. For details, see the Red Hat
JBoss Enterprise Application Platform 7.4 Installation Guide.

® Red Hat Process Automation Manager is installed and configured with KIE Server. For more
information, see Installing and configuring Red Hat Decision Manager on Red Hat JBoss EAP 7.4 .

® Red Hat Decision Manager is running and you can log in to Business Central with the developer
role. For more information, see Planning a Red Hat Decision Manager installation .

41

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/installing_and_configuring_red_hat_decision_manager#assembly-install-on-eap
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

CHAPTER 5. RED HAT DECISION MANAGER PROJECTS

Red Hat Decision Manager projects contain the business assets that you develop in Red Hat Decision
Manager and are assigned to a space (for example, MyProject within MySpace). Projects also contain
configuration files such as a Maven project object model file (pom.xml), which contains build,
environment, and other information about the project, and a KIE module descriptor file (kmodule.xml),
which contains the KIE Base and KIE Session configurations for the assets in the project.

42

CHAPTER 6. MIGRATING BUSINESS PROCESSES TO THE NEW PROCESS DESIGNEF

CHAPTER 6. MIGRATING BUSINESS PROCESSES TO THE NEW
PROCESS DESIGNER

The legacy process designer in Business Central is deprecated in Red Hat Decision Manager 7.13.5. It will
be removed in a future Red Hat Decision Manager release. The legacy process designer will not receive
any new enhancements or features. If you intend to use the new process designer, start migrating your
processes to the new designer. Create all new processes in the new process designer.

NOTE

The process engine will continue to support the execution and deployment of business
processes generated with the legacy designer into KIE Server. If you have a legacy
business process that is functioning and that you do not intend to change, it is not
mandatory to migrate to the new designer at this time.

You can only migrate business processes that contain supported business process nodes in the new
designer. More nodes will be added in future versions of Red Hat Decision Manager.

Prerequisites

® You have an existing project that contains a business process asset that was created with the
legacy process designer.

Procedure

1. In Business Central, click Menu = Design — Projects.
2. Click the project you want to migrate, for example Mortgages.

3. Click Ok to open the project’s asset list.

i

. Click the project’s Business Process asset to open it in the legacy process designer.

ul

. Click Migrate —» Migrate Diagram.

Figure 6.1. Migration confirmation message

Migrate Diagram b4

Migrating the diagram will create a new file with the process contents for being edited with the new

Business Process Modeler. Current file will remain unmaodified

Cancel Migrate Diagram

6. Select Yes or No to confirm if you made changes. This option is only available if you have made
changes to your legacy business process.

43

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

Figure 6.2. Save diagram changes confirmation

Infoermation

Do you want to save current changes prior to migrate the file?

If the migration is successful, the business process opens in the new process designer and the business
process name’s extension changes from *.bpmn2 to *.bpmn.

If the migration is unsuccessful due to an unsupported node type, Business Central displays the
following error message:

44

CHAPTER 6. MIGRATING BUSINESS PROCESSES TO THE NEW PROCESS DESIGNEF

Figure 6.3. Migration failure message

Migrate Diagram

correctly migrate current process.

@ The following errors has been produced by the migration process, it won't be possible to

Level Message

Error org.eclipse.bpmn2.impl.EventBasedGatewaylmpl

Cancel

©
i

1 of1

. P
Migrate Diagram

45

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

CHAPTER 7. MODIFYING EXISTING PROJECTS IN BUSINESS
CENTRAL

Business Central includes a number of sample projects that you can use to get familiar with the product
and its features. The sample projects have been designed and created to demonstrate a variety of
business scenarios. You can modify the sample projects to meet your specific business needs. For
example, Red Hat Decision Manager 7.13 contains the Mortgages sample project, which consists of
predefined data objects, guided decision tables, guided rules, forms, and a business process. You can
edit the sample to refine your business process.

If none of the existing Business Central project samples align with your requirements, you can create a
new project or import one from a Git repository. For more information, see Chapter 9, Importing
projects from Git repositories. You can import any other project from Git. For example, a project that
was developed in another Business Central instance.

46

CHAPTER 8. CREATING THE MORTGAGE-PROCESS PROJECT

CHAPTER 8. CREATING THE MORTGAGE-PROCESS
PROJECT

A project is a container for assets such as data objects, business processes, guided rules, decision tables,
and forms. The project that you are creating is similar to the existing Mortgage_Process sample project
in Business Central.

Procedure

1. In Business Central, go to Menu - Design = Projects.

Red Hat Decision Manager provides a default space called MySpace, as shown in the following
image. You can use the default space to create and test example projects.

Figure 8.1. Default space

Spaces MySpace

2. Click Add Project.
3. Enter mortgage-process in the Name field.

4. Click Configure Advanced Options and modify the GAV fields with the following values:

® Group ID: com.myspace
e Artifact ID: mortgage-process
® Version:1.0.0

5. Click Add.

The Assets view of the project opens.

8.1. MODIFYING THE MORTGAGES SAMPLE PROJECT

The Mortgages sample project consists of predefined data objects, guided decision tables, guided
rules, forms, and a business process. Using the sample project provides a quick way to get acclimated
with Red Hat Decision Manager. In a real business scenario, you would create all of the assets by

providing data that is specific to your business requirements.

Navigate to the Mortgages sample project to view the predefined assets.

Procedure

1. In Business Central, go to Menu - Design = Projects.

2. In the upper-right corner of the screen, click the arrow next to Add Project and select Try
Samples.

3. Select Mortgages and click Ok. The Assets view of the project opens.

4. Click an asset that you want to modify. All of the assets can be edited to meet your project
requirements.

47

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

8.2. CREATING A PROJECT USING ARCHETYPES
Archetypes are projects that are installed in Apache Maven repositories and contain a specific template
structure. You can also generate parameterized versions of the project templates using archetypes.

When you use an archetype to create a project, it is added to the Git repository that is connected to
your Red Hat Decision Manager installation.

Prerequisites

® You have created an archetype and added it to the Archetypes page in the Business Central
Settings. For information about creating archetypes, see the Guide to Creating Archetypes.

® You have set a default archetype in your space in Business Central.

For more information about archetypes management, see Configuring Business Central settings and
properties.

Procedure

1. In Business Central, go to Menu - Design = Projects.
2. Select or create the space into which you want to add a new project from an archetype template.
3. Click Add Project.
4. Type the project name and description in the Name and Description fields.
5. Click Configure Advanced Options.
6. Select the Based on template checkbox.

7. Select the archetype from drop-down options if required. The default archetype is selected that
is already set in the space.

8. Click Add.

The Assets view of the project opens based on the selected archetype template.

48

https://maven.apache.org/guides/mini/guide-creating-archetypes.html
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/managing_red_hat_decision_manager_and_kie_server_settings#assembly-configuring-central

CHAPTER 9. IMPORTING PROJECTS FROM GIT REPOSITORIES

CHAPTER 9. IMPORTING PROJECTS FROM GIT
REPOSITORIES

Git is a distributed version control system. It implements revisions as commit objects. When you save
your changes to a repository, a new commit object in the Git repository is created.

Business Central uses Git to store project data, including assets such as rules and processes. When you
create a project in Business Central, it is added to a Git repository that is connected to Business Central.
If you have projects in Git repositories, you can import the project’s master branch or import the master

branch along with other specific branches into the Business Central Git repository through Business
Central spaces.

Prerequisites

® Red Hat Decision Manager projects exist in an external Git repository.

® You have the credentials required for read access to that external Git repository.

Procedure

1. In Business Central, go to Menu - Design = Projects.

2. Select or create the space into which you want to import the projects. The default space is
MySpace.

3. Inthe upper-right corner of the screen, click the arrow next to Add Project and select Import
Project.

4. In the Import Project window, enter the URL and credentials for the Git repository that
contains the project that you want to import and click Import. The Import Projects page is
displayed.

5. Optional: To import master and specific branches, do the following tasks:

a. On the Import Projects page, click the branches Ij icon.

b. In the Branches to be imported window, select branches from the list.

NOTE

You must select the master branch as a minimum.

c. Click Ok.

6. On the Import Projects page, ensure the project is highlighted and click Ok.

49

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

CHAPTER 10. REVISING PROJECT VERSIONS

You can revise the version number of a project in Red Hat Decision Manager before you build and
deploy a new instance of the project. Creating a new version of a project preserves the old version in
case there is a problem with the new one and you need to revert back.

Prerequisites

Procedure

50

3. Click Deploy.

® KIE Server is deployed and connected to Business Central.

1. In Business Central, go to Menu - Design = Projects.

2. Click the project you want to deploy, for example Mortgages.

If there is no container with the project name, a container with default values is
automatically created.

If an older version of the project is already deployed, go to the project settings and change
the project version. When finished, save the change and click Deploy. This will deploy a new
version of the same project with the latest changes in place, alongside the older version(s).

NOTE

You can also select the Build & Installoption to build the project and publish
the KJAR file to the configured Maven repository without deploying to a KIE
Server. In a development environment, you can click Deploy to deploy the
built KJAR file to a KIE Server without stopping any running instances (if
applicable), or click Redeploy to deploy the built KJAR file and replace all
instances. The next time you deploy or redeploy the built KJAR, the previous
deployment unit (KIE container) is automatically updated in the same target
KIE Server. In a production environment, the Redeploy option is disabled and
you can click Deploy only to deploy the built KJAR file to a new deployment
unit (KIE container) on a KIE Server.

To configure the KIE Server environment mode, set the
org.kie.server.mode system property to
org.kie.server.mode=development or org.kie.server.mode=production.
To configure the deployment behavior for a corresponding project in
Business Central, go to project Settings = General Settings = Version and
toggle the Development Mode option. By default, KIE Server and all new
projects in Business Central are in development mode. You cannot deploy a
project with Development Mode turned on or with a manually added
SNAPSHOT version suffix to a KIE Server that is in production mode.

. Toreview project deployment details, click View deployment detailsin the deployment banner
at the top of the screen orin the Deploy drop-down menu. This option directs you to the Menu
- Deploy — Execution Servers page.

Fa

. To verify process definitions, click Menu = Manage — Process Definitions, and click

CHAPTER 10. REVISING PROJECT VERSIONS

6. Click in the Actions column and select Start to start a new instance of the process.

51

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

CHAPTER 1. CONFIGURING PROJECT SETTINGS

Starting with Red Hat Decision Manager 7.13, Business Central contains additional project setting
categories in the new process designer.
Prerequisites

® You have created a Business Central project.

Procedure

1. To access the project Settings tab, in Business Central go to Menu - Design = Projects.
2. Click the project name.

3. Click Settings to view or modify the following project settings:

® General Settings - Enables users to set the project’'s Name, Description, Group ID,
Artifact ID, Version (GAV), and Development Mode attributes. It also includes the
following options:

o URL - Use to specify a read-only URL for cloning a project as a git repository.

o Disable GAV conflict check- Determines whether to enable or disable the GAV
conflict check. Disabling this feature enables projects to have the same GAV values.

o Allow child GAV edition- Allows GAV editions for sub-projects.

® Dependencies - Used to add dependencies either manually, by entering the Group ID,
Artifact ID, and Version or from a repository project in Business Central. For each
dependency, set select All or None for the Package white listoption.

e KIE Bases - The new name for what was previously called Knowledge bases. You must
specify a KIE base as the default. Provide the following details to add a Kie base:

o Name

o Included KIE bases

o Package

o Equal Behavior - Identity or Equality

o Event Processing Model - Stream or Cloud

o KIE sessions
e External Data Objects - Data objects are not explicitly defined within a project or project
dependencies that a rule author may require. External data objects are usually provided by

the Java runtime, for example, java.util.List.

e Validation - Maven repositories that are used to check the uniqueness of a project’'s GAV
when creating a new project or module or when installing or deploying a project to a Maven
repository.

® Service Tasks - The following service tasks can be added to a project:

52

CHAPTER 11. CONFIGURING PROJECT SETTINGS

o BusinessRuleTask - Execute a business rule task
o Decision Task - Execute a DMN decision task

o Email - Send email

o JMSSendTask - Send JMS Message

o Rest - Perform a Rest call

o ServiceTask - Execute a service task

o WebService - Perform a web service call

® Deployments - Deployments are divided in to the following categories:

o General Settings - Runtime Strategy, Persistence Unit Name, Persistence Mode,
Audit Persistence Unit Name, and Audit Mode

o Marshalling strategies
o Global

o Eventlisteners

o Requiredroles

o Remoteable classes

o Task event listeners

o Configuration

o Environment entries

o Work item handlers

® Persistence - Persistence is divided in to the following categories:

o Persistence Unit
o Persistence Provider
o Data Source

o Properties - Used to set values for the following properties and also to create new
properties:

® hibernate.dialect

® hibernate.max_fetch_depth

® hibernate.hbm2ddl.auto

® hibernate.show_sql

B hibernate.id.new_generator_mappings

® hibernate.transaction.jta.platform

53

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

o Project Persistable Data Objects

® Branch Management - Provides branch role access based on the branch name and
assigned user roles.

4. Click Save.

54

CHAPTER 12. MULTIPLE BRANCHES IN BUSINESS CENTRAL

CHAPTER 12. MULTIPLE BRANCHES IN BUSINESS CENTRAL

Multiple branches support in Business Central provides the ability to create a new branch based on an
existing one, including all of its assets. All new, imported, and sample projects open in the default
master branch. You can create as many branches as you need and can work on multiple branches
interchangeably without impacting the original project on the master branch.

Red Hat Decision Manager 7.13 includes support for persisting branches, which means that Business
Central remembers the last branch used and will open in that branch when you log back in.

12.1. CREATING BRANCHES

You can create new branches in Business Central and name them whatever you like. Initially, you will only
have the default master branch. When you create a new branch for a project, you are making a copy of
the selected branch. You can make changes to the project on the new branch without impacting the
original master branch version.

Procedure
1. In Business Central, go to Menu - Design = Projects.
2. Click the project to create the new branch, for example the Mortgages sample project.
3. Click master - Add Branch.

Figure 12.1. Create the new branch menu

Spaces MySpace Mortgage_Process P master ~

master L
Mortgage_Process
Add Branch i

Assets |BY Contributors [fl] Metrics Seffings

4. Type testBranchi in the Name field and select master from the Add Branch window. Where
testBranch1 is any name that you want to name the new branch.

5. Select the branch that will be the base for the new branch from the Add Branch window. This
can be any existing branch.

6. Click Add.

55

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

Figure 12.2. Add the new branch window

Add Branch

Mame

testBranchi

From

master

Cancel m

After adding the new branch, you will be redirected to it, and it will contain all of the assets that you had

in your project in the master branch.

12.2. SELECTING BRANCHES

You can switch between branches to make modifications to project assets and test the revised

functionality.

Procedure

1. Click the current branch name and select the desired project branch from the drop-down list.

Figure 12.3. Select a branch menu

Spaces MySpace Mortgage_Process ¥ Branch2 ~
Branch

Mortgage Process Branch?

Assets |3} ChangeRequests fJJ C master
Add Branch

After selecting the branch, you are redirected to that branch containing the project and all of the assets

that you had defined.

12.3. DELETING BRANCHES

You can delete any branch except for the master branch. Business Central does not allow you to delete

the master branch to avoid corrupting your environment. You must be in any branch other than

for the following procedure to work.

Procedure

56

master

CHAPTER 12. MULTIPLE BRANCHES IN BUSINESS CENTRAL

1. Click in the upper-right corner of the screen and select Delete Branch.

Figure 12.4. Delete a branch

Deploy | ~ | | Hide Alerts | i

Add Asset
Import Asset
i [l Duplicate Project

Reimport

Delete Froject

Delete Branch ™

Submit Change Request

2. Inthe Delete Branch window, enter the name of the branch you want to delete.

3. Click Delete Branch. The branch is deleted and the project branch switches to the master
branch.

12.4. BUILDING AND DEPLOYING PROJECTS

After your project is developed, you can build the project from the specified branch in Business Central
and deploy it to the configured KIE Server.

Procedure
1. In Business Central, go to Menu - Design = Projects and click the project name.

2. In the upper-right corner, click Deploy to build the project and deploy it to KIE Server.

57

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

58

NOTE

You can also select the Build & Installoption to build the project and publish the
KJAR file to the configured Maven repository without deploying to a KIE Server.
In a development environment, you can click Deploy to deploy the built KJAR file
to a KIE Server without stopping any running instances (if applicable), or click
Redeploy to deploy the built KJAR file and replace all instances. The next time
you deploy or redeploy the built KJAR, the previous deployment unit (KIE
container) is automatically updated in the same target KIE Server. In a production
environment, the Redeploy option is disabled and you can click Deploy only to
deploy the built KJAR file to a new deployment unit (KIE container) on a KIE
Server.

To configure the KIE Server environment mode, set the org.kie.server.mode
system property to org.kie.server.mode=development or
org.kie.server.mode=production. To configure the deployment behavior for a
corresponding project in Business Central, go to project Settings = General
Settings = Version and toggle the Development Mode option. By default, KIE
Server and all new projects in Business Central are in development mode. You
cannot deploy a project with Development Mode turned on or with a manually
added SNAPSHOT version suffix to a KIE Server that is in production mode.

If the build fails, address any problems described in the Alerts panel at the bottom of the
screen.

To review project deployment details, click View deployment details in the deployment banner
at the top of the screen orin the Deploy drop-down menu. This option directs you to the Menu
- Deploy — Execution Servers page.

For more information about project deployment options, see Packaging and deploying an Red
Hat Decision Manager project.

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

CHAPTER 13. CHANGE REQUESTS IN BUSINESS CENTRAL

CHAPTER 13. CHANGE REQUESTS IN BUSINESS CENTRAL

If you have more than one branch in a Business Central project and you make a change in a branch that
you want to merge to another branch, you can create a change request. Any user with permission to view
the target branch, usually the master branch, can see the change request.

13.1. CREATING CHANGE REQUESTS

You can create a change request in a Business Central project after you have made a change in your
project, for example after you have added or deleted an attribute to an asset.

Prerequisites

® You have more than one branch of a Business Central project.

® You made a change in one branch that you want to merge to another branch.

Procedure

1. In Business Central, go to Menu - Design = Projects and select the space and project that
contains the change that you want to merge.

2. On the project page, select the branch that contains the change.

Figure 13.1. Select a branch menu

Spaces MySpace Mortgage_Process ¥ Branch2 ~
Branch1
Mortgage Process Branch2 v
t
Assets |3} ChangeRequests fJJ C master f

Add Branch

3. Do one of the following tasks to submit the change request:

® Click in the upper-right corner of the screen and select Submit Change Request.

® Click the Change Requests tab and then click Submit Change Request.
The Submit Change Request window appears.

4. Enter a summary and a description, select the target branch, and click Submit. The target

branch is the branch where the change will be merged. After you click Submit, the change
request window appears.

13.2. WORKING WITH CHANGE REQUESTS

You can view change requests for any branch that you have access to. You must have administrator
permissions to accept a change request.

59

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

Prerequisites

® You have more than one branch of a Business Central project.

Procedure

1. In Business Central, go to Menu - Design = Projects and select a space and project.

2. On the project page, verify that you are on the correct branch.

Spaces MySpace Mortgage_Process ¥ Branch2 ~
Branch
Mortgage Process Branch? v
Assets |3} ChangeRequests fJJ C master f
Add Branch

3. Click the Change Requests tab. A list of pending change requests appears.
4. To filter change requests, select Open, Closed, or All to the left of the Search box.

5. To search for specific change requests, enter an ID or text in the Search box and click the
magnifying glass.

6. To view the change request details, click the summary link. The change request window has two
tabs:

a. Review the Overview tab for general information about the change request.
b. Click the Changed Files tab and expand a file to review the proposed changes.

7. Click a button in the top right corner.

® Click Squash and Merge to squash all commits into a single commit and merge the commit
to the target branch.

® Click Merge to merge the changes into the target branch.
® Click Reject to reject the changes and leave the target branch unchanged.

® Click Close to close the change request without rejecting or accepting it. Note that only the
user who created the submitted the change request can close it.

® Click Cancel to return to the project window without making any changes.

60

PART Ill. MANAGING ASSETS IN BUSINESS CENTRAL

PART Illl. MANAGING ASSETS IN BUSINESS CENTRAL

As a process administrator, you can use Business Central in Red Hat Decision Manager to manage
assets, such as rules, business processes, and decision tables.

Prerequisites

® Red Hat JBoss Enterprise Application Platform 7.4 is installed. For details, see Red Hat JBoss
Enterprise Application Platform 7.4 Installation Guide.

® Red Hat Process Automation Manager is installed and configured with KIE Server. For more
information see Installing and configuring Red Hat Decision Manager on Red Hat JBoss EAP 7.4 .

® Red Hat Decision Manager is running and you can log in to Business Central with the developer
role. For more information, see Planning a Red Hat Decision Manager installation .

61

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/installing_and_configuring_red_hat_decision_manager#assembly-install-on-eap
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

CHAPTER 14. ASSET OVERVIEW

Business rules, process definition files, and other assets and resources created in Business Central are
stored in the Artifact repository (Knowledge Store) that KIE Server accesses.

The Artifact repository is a centralized repository for your business knowledge. It connects multiple GIT
repositories so that you can access them from a single environment while storing different kinds of
knowledge and artifacts in different locations. GIT is a distributed version control system and it
implements revisions as commit objects. Every time you save your changes to a repository this creates a
new commit object in the GIT repository. Similarly, the user can also copy an existing repository. This
copying process is typically called cloning and the resulting repository can be referred to as clone. Every
clone contains the full history of the collection of files and a cloned repository has the same content as
the original repository.

Business Central provides a web front-end that enables you to view and update the stored content. To
access Artifact repository assets, go to Menu = Design = Projects in Business Central and click the
project name.

62

CHAPTER15. TYPES OF ASSETS

CHAPTER15. TYPES OF ASSETS

Anything that can be versioned in the Business Central repository is an asset. A project can contain
rules, packages, business processes, decision tables, fact models, domain specific languages (DSLs) or
any other assets that are specific to your project’s requirements.

The following image shows the available assets in Red Hat Decision Manager 7.13.

Business Process Data Object Decision Table (Spreadsheet)
- et

o

DRL file DSL definition Enumeration
=
wwwwwww Decision Model

wwwwwww

©
o

° o
s
5
z
=
by

Guided Decision Table Guided Decision Table Graph Guided Rule Guided Rule Template

Decision Decision Decision Decision

)

Package Solver configuration Test Scenario
Others &) Optimization Decision

.
g3
S
7
3
£
o
B
°
5

wwwwwww

The following sections describe each asset type in Red Hat Decision Manager 7.13.

® Business Process
Business processes are diagrams that describe the steps necessary to achieve business goals.

® Data Object
Data objects are the building blocks for the rule assets that you create. Data objects are custom
data types implemented as Java objects in specified packages of your project. For example, you
might create a Person object with data fields Name, Address, and Date of Birth to specify
personal details for loan application rules. These custom data types determine what data your
assets and your decision service are based on.

® Decision Table (Spreadsheet)
Decision tables are collections of rules stored in either a spreadsheet or in the Red Hat Decision
Manager user interface as guided decision tables. After you define your rules in an external XLS
or XLSX file, you can upload the file as a decision table in your project in Business Central.

IMPORTANT

You should typically upload only one spreadsheet of decision tables, containing
all necessary RuleTable definitions, per rule package in Business Central. You
can upload separate decision table spreadsheets for separate packages, but
uploading multiple spreadsheets in the same package can cause compilation
errors from conflicting RuleSet or RuleTable attributes and is therefore not
recommended.

e DMN
Decision Model and Notation (DMN) creates a standardized bridge for the gap between the
business decision design and decision implementation. You can use the DMN designer in
Business Central to design DMN decision requirements diagrams (DRDs) and define decision
logic for a complete and functional DMN decision model.

e DRL file
Arule file is typically a file with a .drl extension. In a DRL file you can have multiple rules, queries
and functions, as well as some resource declarations like imports, globals and attributes that are

63

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

64

assigned and used by your rules and queries. However, you are also able to spread your rules
across multiple rule files (in that case, the extension .rule is suggested, but not required) -
spreading rules across files can help with managing large numbers of rules. A DRL file is simply a
text file.

DSL definition

Domain Specific Languages (DSLs) are a way of creating a rule language that is dedicated to
your problem domains. A set of DSL definitions consists of transformations from DSL
"sentences” to DRL constructs, which lets you use of all the underlying rule language and
decision engine features.

Enumeration

Data enumerations are an optional asset type that can be configured to provide drop-down
lists for the guided designer. They are stored and edited just like any other asset, and apply to
the package that they belong to.

Global Variable(s)

Global variables are used to make application objects available to the rules. Typically, they are
used to provide data or services that the rules use, especially application services used in rule
consequences, and to return data from the rules, like logs or values added in rule consequences,
or for the rules to interact with the application, doing callbacks.

Guided Decision Table
Decision tables are collections of rules stored in either a spreadsheet or in the Red Hat Decision
Manager user interface as guided decision tables.

Guided Decision Table Graph

A Guided Decision Table Graph is a collection of related guided decision tables that are
displayed within a single designer. You can use this designer to better visualize and work with
various related decision tables in one location. Additionally, when a condition or an action in one
table uses the same data type as a condition or an action in another table, the tables will be
physically linked with a line in the table graph designer.

For example, if one decision table determines a loan application rate and another table uses the
application rate to determine some other action, then the two decision tables are linked in a
guided decision table graph.

Guided Rule

Rules provide the logic for the decision engine to execute against. A rule includes a name,
attributes, a when statement on the left hand side of the rule, and a then statement on the right
hand side of the rule.

Guided Rule Template
Guided rule templates provide a reusable rule structure for multiple rules that are compiled into
Drools Rule Language (DRL) and form the core of the decision service for your project.

Package
All assets are contained in packages in Business Central. A package is a folder for rules and also
serves as a "namespace”.

Solver configuration

A Solver configuration is created by the Solver designer and can be run in the Execution Solver
or plain Java code after the KJAR is deployed. You can edit and create Solver configurations in
Business Central.

Test Scenario

CHAPTER15. TYPES OF ASSETS

Test scenarios in Red Hat Decision Manager enable you to validate the functionality of rules,
models, and events before deploying them into production. A test scenario uses data for
conditions that resemble an instance of your fact or project model. This data is matched against
a given set of rules and if the expected results match the actual results, the test is successful. If
the expected results do not match the actual results, then the test fails.

® Test Scenario (Legacy)

Red Hat Decision Manager 7.13 includes support for the legacy Test Scenario because the
default Test Scenario asset is still in development.

65

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

CHAPTER 16. CREATING ASSETS

You can create business processes, rules, DRL files, and other assets in your Business Central projects.

NOTE

Migrating business processes is an irreversible process.

Procedure

1. In Business Central, go to Menu - Design = Projects and click the project name. For example,
Evaluation.

2. Click Add Asset and select the asset type.
3. Inthe Create newasset_type window, add the required information and click Ok.

Figure 16.1. Define Asset

Create new DRL file ¥

DRL file™

Package

CoOMm.myspace myproject w

Lise Domain Specific Language (D5L)

Shiow declared DSL sentences

o JE

NOTE

If you have not created a project, you can either add a project, use a sample project, or
import an existing project. For more information, see Managing projects in Business
Central.

66

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-managing-projects

CHAPTER 17. RENAMING, COPYING, OR DELETING ASSETS

CHAPTER 17. RENAMING, COPYING, OR DELETING ASSETS

After an asset has been created and defined, you can use the Repository View of the Project Explorer
to copy, rename, delete, or archive assets as needed.

Procedure

1. In Business Central, go to Menu - Design = Projects and click the project name.

>

2. Click the asset name and expand the Project Explorer by clicking on the upper-left
corner.

3. Click o in the Project Explorer toolbar and select Repository View to display the folders
and files that make up the asset.

4. Use the icons next to each listed asset to copy, rename, delete, or archive the asset as needed.
Some of these options may not be available for all assets.

Figure 17.1. Copy, rename, delete, or archive assets

Spaces MySpace Mortgage_Process ¥ master ~ Applicant
Project Explorer F+ Bh < & Applicant.java - Data Obje... save | - Delete | Rename | Copy | Validate | Download | LatestVersion ~ | | Viewalerts || /| %
Model Overview Source
i —
Applicant (Applicant) + add field ‘Applicant (Applicant)- general properties
Identifi Label T -
® sobal A0 f"‘ i spe Identifier Applicant
: address Address String m
- aa annualinc.. | Annual In.. Integer m Label Applicant
[package-names.white-list A creditrating | Credit Rat Integer Deseription
ipti
O pomaxm] name Name String @
ssn SSN Integer
[project.imports 2l m m Package com.myspace.mortgage_app v |[*
[project repositories Nen
Superclass java.lang Object
O readme.md 2@

5. Use the following toolbar buttons to copy, rename, or delete assets.

Figure 17.2. Toolbar options

Save | ~ Delete | Rename @ Copy

67

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

CHAPTER 18. MANAGING ASSET METADATA AND VERSION
HISTORY

Most assets within Business Central have metadata and version information associated with them to
help you identify and organize them within your projects. You can manage asset metadata and version
history from the asset designer in Business Central.

Procedure
1. In Business Central, go to Menu - Design = Projects and click the project name.
2. Select the asset from the list to open the asset designer.

3. Inthe asset designer window, select Overview. If an asset doesn't have an Overview tab, then
no metadata is associated with that asset.

Form Modeler [Qualify-taskform] -~

Model Overview

4. Select the Version History or Metadata tab to edit and update version and metadata details.

Version history Metadata
h‘
Tags Add new tagls)
Mote {isrotestiresources/comimyspace/mortgage_app/ gitkeep}
URI pit:/fmasten@htySpace/Mortgage- Process/sro/main/resounesfco mimyspace/mortgage_app/Qualify-taskform frm

Subject

Type

External link

Source

Lock status Mot locked

NOTE

Another way to update the working version of an asset is by clicking Latest
Version in the top-right corner of the asset designer.

Figure 18.1. Latest version of an asset

Save | Delete | Rename | Copy | Latest Version > || Hide Alerts | | ./ | %

Version 1
{fsrotest/resources/com/myspace/mortgage_app/.gitkeep}

Comments

68

CHAPTER 18. MANAGING ASSET METADATA AND VERSION HISTORY

5. Click Save to save changes.

69

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

CHAPTER 9. FILTERING ASSETS BY TAGS

You can apply tags in the metadata of each asset and then group assets by tags in the Project Explorer.
This feature helps you quickly search through assets of a specific category.

Procedure

1. In Business Central, go to Menu - Design = Projects and click the project name.
2. Open the asset editor by clicking the asset name.
3. Inthe asset editor window, go to Overview = Metadata.

4. In the Tags field, enter the name of your new tag and click Add new tag(s). You can assign
multiple tags to an asset by separating tag names with a space.

Figure 19.1. Creating tags

Version history Metadata

Tags myTagl myTagd Add new tag(s)

The assigned tags are displayed as buttons next to the Tags field.

Figure 19.2. Tags in metadata view

Version history Metadata

Tags i myTagl @ myTag2
Add new tag(s)

Click the trash icon on the tag button to delete the tag.

Figure 19.3. Deleting tags in metadata view

Version history Metadata

il i 3 Il i 3 F‘I
Tags & myTag1 [|i|_ myTag2

=

o Add new tag(s)

5. Click Save to save your metadata changes.

b

6. Expand the Project Explorer by clicking on the upper-left corner.

7. CIick['] in the Project Explorer toolbar and select Enable Tag filtering.

70

Figure 19.4. Enable tag filtering

CHAPTER19. FILTERING ASSETS BY TAGS

Spaces MySpace Mortgage Process

Project Explorer
v Project View

Repository View

<default> » com » myspace

' Show as Links

Lhow as Folders

@ BUSINESS PROCESSES ~
% | DATA OBJECTS ~

@ FORMS ~

@ GUIDED DECISION TABLES ~
GUIDED RULES ~

D OTHERS ~

@ TEST SCENARIOS ~

Qualify

Enable Tag filtering

& Download Project

g <

~u
L=

Ih'

This displays a Filter by Tag drop-down menu in the Project Explorer.

Figure 19.5. Filter by tag

Filter by Tag = -- none --+
-- none --
El;j BUSINES my’Tag_]_
lest myTag?2

You can sort your assets through this filter to display all
the selected metadata tag.

assets and service tasks that include

71

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

CHAPTER 20. UNLOCKING ASSETS

By default, whenever you open and modify an asset in Business Central, that asset is automatically
locked for your exclusive use in order to avoid conflicts in a multiuser setup. This lock is automatically
released when your session ends or when you save or close the asset. This lock feature ensures that
users do not overwrite each other’s changes.

However, you can force unlock an asset if you need to edit a file that is locked by another user.

Procedure

1. In Business Central, go to Menu - Design = Projects and click the project name.
2. Select the asset from the list to open the asset designer.
3. Go to Overview = Metadata and view the Lock Status.

Figure 20.1. Unlock metadata view

Model Overview
Type Forms
Comments
Description
4
Used in projects Mortgage_Process y
Last modified By jboss on 2020-02-17 22:46
Created on By jboss on 2020-02-17 22:46
ersion history Metadata
Tags Add new tag(s)
Note Initial commit
URI git://master@MySpace/Mortgage_Process/src/main/resounces/com/myspace/mortgage_app/Applicant.frm
Subject
Type
External link
Source
Lock status Locked by you | Ty Force unlock asset

If the asset is already being edited by another user, the following will be displayed in the Lock
status field:

Locked by <user_name>

4. Click Force unlock assetto unlock.
The following confirmation pop-up message is displayed:

Are you sure you want to release the lock of this asset? This might cause <user_name>
to lose unsaved changes!

5. Click Yes to confirm.
The asset returns to an unlocked state and the lock icon option will appear next to the asset.

72

PART IV. INTERACTING WITH RED HAT DECISION MANAGER USING KIE APIS

PART IV.INTERACTING WITH RED HAT DECISION MANAGER
USING KIE APIS

As a business rules developer or system administrator, you can use KIE APIs to interact with KIE Servers,

KIE containers, and business assets in Red Hat Decision Manager. You can use the KIE Server REST API
and Java client API to interact with KIE containers and business assets (such as business rules,
processes, and solvers), the Process Automation Manager controller REST API and Java client API to
interact with KIE Server templates and instances, and the Knowledge Store REST API to interact with
spaces and projects in Business Central.

REST API ENDPOINTS FOR KIE SERVER AND THE PROCESS AUTOMATION
MANAGER CONTROLLER

The lists of REST APl endpoints for KIE Server and the Process Automation Manager
controller are published separately from this document and maintained dynamically to
ensure that endpoint options and data are as current as possible. Use this document to
understand what the KIE Server and Process Automation Manager controller REST APIs
enable you to do and how to use them, and use the separately maintained lists of REST
APl endpoints for specific endpoint details.

For the full list of KIE Server REST APl endpoints and descriptions, use one of the
following resources:

® Execution Server REST API on the jBPM Documentation page (static)

® Swagger Ul for the KIE Server REST API at http://SERVER:PORT/kie-
server/docs (dynamic, requires running KIE Server)

For the full list of Process Automation Manager controller REST APl endpoints and
descriptions, use one of the following resources:

® Controller REST API on the jBPM Documentation page (static)

® Swagger Ul for the Process Automation Manager controller REST API at
http://SERVER:PORT/CONTROLLER/docs (dynamic, requires running Process
Automation Manager controller)

Prerequisites

® Red Hat Decision Manager is installed and running. For installation and startup options, see
Planning a Red Hat Decision Manager installation .

® You have access to Red Hat Decision Manager with the following user roles:

o Kkie-server: For access to KIE Server API capabilities, and access to headless Process
Automation Manager controller API capabilities without Business Central (if applicable)

o rest-all: For access to Business Central API capabilities for the built-in Process Automation
Manager controller and for the Business Central Knowledge Store

o admin: For full administrative access to Red Hat Decision Manager
Although these user roles are not all required for every KIE API, consider acquiring all of
them to ensure that you can access any KIE APl without disruption. For more information
about user roles, see Planning a Red Hat Decision Manager installation .

73

http://jbpm.org/learn/documentation.html
http://jbpm.org/learn/documentation.html
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

CHAPTER 21. KIE SERVER REST API FOR KIE CONTAINERS
AND BUSINESS ASSETS

Red Hat Decision Manager provides a KIE Server REST API that you can use to interact with your KIE
containers and business assets (such as business rules, processes, and solvers) in Red Hat Decision
Manager without using the Business Central user interface. This API support enables you to maintain
your Red Hat Decision Manager resources more efficiently and optimize your integration and
development with Red Hat Decision Manager.

With the KIE Server REST API, you can perform the following actions:
® Deploy or dispose KIE containers
® Retrieve and update KIE container information
® Return KIE Server status and basic information
® Retrieve and update business asset information
® Execute business assets (such as rules and processes)
KIE Server REST API requests require the following components:

Authentication

The KIE Server REST API requires HTTP Basic authentication or token-based authentication for the
user role kie-server. To view configured user roles for your Red Hat Decision Manager distribution,
navigate to ~/$SERVER_HOME/standalone/configuration/application-roles.properties and
~lapplication-users.properties.

To add a user with the kie-server role, navigate to ~/$SERVER_HOME/bin and run the following
command:

$./bin/jboss-cli.sh --commands="embed-server --std-out=echo,/subsystem=elytron/filesystem-
realm=ApplicationRealm:add-identity(identity=<USERNAME>),/subsystem=elytron/filesystem-
realm=ApplicationRealm:set-password(identity=<USERNAME>, clear=
{password='<PASSWORD>"),/subsystem=elytron/filesystem-realm=ApplicationRealm:add-
identity-attribute(identity=<USERNAME>, name=role, value=['kie-server’)"

For more information about user roles and Red Hat Decision Manager installation options, see
Planning a Red Hat Decision Manager installation .

HTTP headers
The KIE Server REST API requires the following HTTP headers for APl requests:
® Accept: Data format accepted by your requesting client:
o application/json (JSON)
o application/xml (XML, for JAXB or XSTREAM)
e Content-Type: Data format of your POST or PUT API request data:
o application/json (JSON)

o application/xml (XML, for JAXB or XSTREAM)

74

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning

CHAPTER 21. KIE SERVER REST API FOR KIE CONTAINERS AND BUSINESS ASSETS

e X-KIE-ContentType: Required header for application/xml XSTREAM API requests and
responses:

o XSTREAM

HTTP methods
The KIE Server REST API supports the following HTTP methods for API requests:

® GET: Retrieves specified information from a specified resource endpoint
® POST: Updates a resource or resource instance
® PUT: Updates or creates a resource or resource instance

e DELETE: Deletes a resource or resource instance

Base URL

The base URL for KIE Server REST API requests is http://SERVER:PORT/kie-server/services/rest/,
such as http://localhost:8080/kie-server/services/rest/.

Endpoints

KIE Server REST API endpoints, such as /server/containers/{containerld} for a specified KIE
container, are the URIs that you append to the KIE Server REST API base URL to access the
corresponding resource or type of resource in Red Hat Decision Manager.

Example request URL for /server/containers/{containerld} endpoint

http://localhost:8080/kie-server/services/rest/server/containers/MyContainer

Request parameters and request data

Many KIE Server REST API requests require specific parameters in the request URL path to identify
or filter specific resources and to perform specific actions. You can append URL parameters to the
endpoint in the format 2<PARAM>=<VALUE>&<PARAM>=<VALUE>.

Example GET request URL with parameters

http:/localhost:8080/kie-server/services/rest/server/containers?
groupld=com.redhat&artifactld=Project1&version=1.0&status=STARTED

HTTP POST and PUT requests may additionally require a request body or file with data to
accompany the request.

Example POST request URL and JSON request body data

http://localhost:8080/kie-server/services/rest/server/containers/MyContainer/release-id

{
"release-id": {
"artifact-id": "Project1",
"group-id": "com.redhat",
"version™: "1.1"

75

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

21.1. SENDING REQUESTS WITH THE KIE SERVER REST API USING A
REST CLIENT OR CURL UTILITY

The KIE Server REST API enables you to interact with your KIE containers and business assets (such as
business rules, processes, and solvers) in Red Hat Decision Manager without using the Business Central
user interface. You can send KIE Server REST API requests using any REST client or curl utility.

Prerequisites

® KIE Server isinstalled and running.

® You have kie-server user role access to KIE Server.

Procedure

1. ldentify the relevant API endpoint to which you want to send a request, such as [GET]
/server/containers to retrieve KIE containers from KIE Server.

2. Ina REST client or curl utility, enter the following components for a GET request to
/server/containers. Adjust any request details according to your use case.
For REST client:

® Authentication: Enter the user name and password of the KIE Server user with the kie-
server role.

e HTTP Headers: Set the following header:
o Accept: application/json
® HTTP method: Set to GET.

® URL: Enter the KIE Server REST API base URL and endpoint, such as
http://localhost:8080/kie-server/services/rest/server/containers.

For curl utility:
® -u: Enter the user name and password of the KIE Server user with the kie-server role.
® -H: Set the following header:
o Accept: application/json
o -X:Setto GET.

® URL: Enter the KIE Server REST APl base URL and endpoint, such as
http://localhost:8080/kie-server/services/rest/server/containers.

curl -u 'baAdmin:password@1' -H "Accept: application/json" -X GET
"http://localhost:8080/kie-server/services/rest/server/containers”

3. Execute the request and review the KIE Server response.
Example server response (JSON):

{
"type": "SUCCESS",

76

CHAPTER 21. KIE SERVER REST API FOR KIE CONTAINERS AND BUSINESS ASSETS

"msg": "List of created containers”,
"result": {
"kie-containers": {
"kie-container": [
{
"container-id": "itorders_1.0.0-SNAPSHOT",
"release-id": {
"group-id": "itorders",
"artifact-id": "itorders",
"version™": "1.0.0-SNAPSHOT"

3

"resolved-release-id": {
"group-id": "itorders",
"artifact-id": "itorders",
"version™": "1.0.0-SNAPSHOT"

3
"status": "STARTED",
"scanner": {

"status": "DISPOSED",
"poll-interval™: null
3
"config-items": [],
"container-alias": "itorders"

. For this example, copy or note the project group-id, artifact-id, and version (GAV) data from
one of the deployed KIE containers returned in the response.

. Inyour REST client or curl utility, send another APl request with the following components for a
PUT request to /server/containers/{containerld} to deploy a new KIE container with the copied

project GAV data. Adjust any request details according to your use case.
For REST client:

® Authentication: Enter the user name and password of the KIE Server user with the kie-
server role.

® HTTP Headers: Set the following headers:
o Accept: application/json

o Content-Type: application/json

NOTE

When you add fields=not_null to Content-Type, the null fields are
excluded from the REST APl response.

® HTTP method: Set to PUT.

® URL: Enter the KIE Server REST API base URL and endpoint, such as
http://localhost:8080/kie-server/services/rest/server/containers/MyContainer.

77

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

® Request body: Add a JSON request body with the configuration items for the new KIE
container:

{
"config-items": [
{
"itemName": "RuntimeStrategy”,
"itemValue": "SINGLETON",
"itemType": "java.lang.String"

b
{
"itemName": "MergeMode",
"itemValue": "MERGE_COLLECTIONS",
"itemType": "java.lang.String"
b
{
"itemName": "KBase",
"itemValue": ",
"itemType": "java.lang.String"
b
{
"itemName": "KSession",
"itemValue": ",
"itemType": "java.lang.String"
}
1,
"release-id": {

"group-id": "itorders",

"artifact-id": "itorders",

"version": "1.0.0-SNAPSHOT"
|3

"scanner": {
"poll-interval™: "5000",
"status": "STARTED"

}
}

For curl utility:

® -u: Enter the user name and password of the KIE Server user with the kie-server role.
® -H:Set the following headers:
o Accept: application/json

o Content-Type: application/json

NOTE

When you add fields=not_null to Content-Type, the null fields are
excluded from the REST APl response.

e -X:Setto PUT.

78

CHAPTER 21. KIE SERVER REST API FOR KIE CONTAINERS AND BUSINESS ASSETS

® URL: Enter the KIE Server REST API base URL and endpoint, such as
http://localhost:8080/kie-server/services/rest/server/containers/MyContainer.

e -d: Add a JSON request body or file (@file.json) with the configuration items for the new
KIE container:

curl -u 'baAdmin:password@1' -H "Accept: application/json" -H "Content-Type:
application/json" -X PUT "http://localhost:8080/kie-
server/services/rest/server/containers/MyContainer" -d "{ \"config-items\": [{ \"itemName\":
\"RuntimeStrategy\", \"itemValue\": \"SINGLETON\", \"itemType\": \"java.lang.String\" }, {
\"itemName\": \"MergeMode\", \"itemValue\": "MERGE_COLLECTIONS\", \"itemType\":
\"java.lang.String\" }, { \"itemName\": \"KBase\", \"itemValue\": \"\", \"itemType\":
\"java.lang.String\" }, { \"itemName\": \"KSession\", \"itemValue\": \"\", \"itemType\":
\"java.lang.String\" }], \"release-id\": { \"group-id\": \"itorders\", \"artifact-id\": \"itorders\",
\"version\": \"1.0.0-SNAPSHOT\" }, \"scannen\": { \"poll-interval\": \"5000\", \"status\":
\"STARTED\" }}"

curl -u 'baAdmin:password@1' -H "Accept: application/json" -H "Content-Type:
application/json" -X PUT "http://localhost:8080/kie-
server/services/rest/server/containers/MyContainer" -d @my-container-configs.json

6. Execute the request and review the KIE Server response.
Example server response (JSON):

{
"type": "SUCCESS",

"msg": "Container MyContainer successfully deployed with module itorders:itorders:1.0.0-
SNAPSHOT.",
"result": {
"kie-container": {
"container-id": "MyContainer",
"release-id": {
"group-id": "itorders",
"artifact-id": "itorders",
"version™": "1.0.0-SNAPSHOT"

}

esolved-release-id": {
"group-id": "itorders",
"artifact-id": "itorders",
"version™": "1.0.0-SNAPSHOT"
b
"status": "STARTED",
"scanner": {
"status": "STARTED",
"poll-interval": 5000
b
"config-items": [],
"messages”: [
{
"severity": "INFO",
"timestamp": {
"java.util.Date": 1540584717937
I3
"content”: [
"Container MyContainer successfully created with module itorders:itorders:1.0.0-

79

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

SNAPSHOT."

]
}
],
"container-alias": null
}
}
}

If you encounter request errors, review the returned error code messages and adjust your
request accordingly.

21.2. SENDING REQUESTS WITH THE KIE SERVER REST API USING THE
SWAGGER INTERFACE

The KIE Server REST API supports a Swagger web interface that you can use instead of a standalone
REST client or curl utility to interact with your KIE containers and business assets (such as business
rules, processes, and solvers) in Red Hat Decision Manager without using the Business Central user

interface.
NOTE
By default, the Swagger web interface for KIE Server is enabled by the
org.kie.swagger.server.ext.disabled=false system property. To disable the Swagger
- web interface in KIE Server, set this system property to true.

Prerequisites

KIE Server is installed and running.

® You have kie-server user role access to KIE Server.

Procedure

80

1.

In a web browser, navigate to http://SERVER:PORT/kie-server/docs, such as
http://localhost:8080/kie-server/docs, and log in with the user name and password of the KIE
Server user with the kie-server role.

In the Swagger page, select the relevant APl endpoint to which you want to send a request, such
as KIE Server and KIE containers— [GET] /server/containers to retrieve KIE containers from
KIE Server.

Click Try it outand provide any optional parameters by which you want to filter results, if
needed.

In the Response content typedrop-down menu, select the desired format of the server
response, such as application/json for JSON format.

Click Execute and review the KIE Server response.
Example server response (JSON):

{
"type": "SUCCESS",

"msg": "List of created containers”,

CHAPTER 21. KIE SERVER REST API FOR KIE CONTAINERS AND BUSINESS ASSETS

"result": {
"kie-containers": {
"kie-container": [
{
"container-id": "itorders_1.0.0-SNAPSHOT",
"release-id": {
"group-id": "itorders",
"artifact-id": "itorders",
"version™": "1.0.0-SNAPSHOT"
3
"resolved-release-id": {
"group-id": "itorders",
"artifact-id": "itorders",
"version™: "1.0.0-SNAPSHOT"
b
"status": "STARTED",
"scanner": {
"status": "DISPOSED",
"poll-interval": null
I3
"config-items": [],
"container-alias": "itorders"

6. For this example, copy or note the project group-id, artifact-id, and version (GAV) data from
one of the deployed KIE containers returned in the response.

7. In the Swagger page, navigate to the KIE Server and KIE containers— [PUT]
/server/containers/{containerld} endpoint to send another request to deploy a new KIE
container with the copied project GAV data. Adjust any request details according to your use
case.

8. Click Try it outand enter the following components for the request:
® containerld: Enter the ID of the new KIE container, such as MyContainer.

® body: Set the Parameter content typeto the desired request body format, such as
application/json for JSON format, and add a request body with the configuration items for
the new KIE container:

{
"config-items": [

{
"itemName": "RuntimeStrategy",
"itemValue": "SINGLETON",
"itemType": "java.lang.String"

},

{
"itemName": "MergeMode",
"itemValue": "MERGE_COLLECTIONS",
"itemType": "java.lang.String"

},

81

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

{

"itemName": "KBase",
"itemValue": ",
"itemType": "java.lang.String"
b
{
"itemName": "KSession",
"itemValue": ",
"itemType": "java.lang.String"
}
1,
"release-id": {
"group-id": "itorders",
"artifact-id": "itorders",
"version™": "1.0.0-SNAPSHOT"
b
"scanner": {
"poll-interval™: "5000",
"status": "STARTED"
}
}

9. In the Response content typedrop-down menu, select the desired format of the server
response, such as application/json for JSON format.

10. Click Execute and review the KIE Server response.
Example server response (JSON):

{
"type": "SUCCESS",
"msg": "Container MyContainer successfully deployed with module itorders:itorders:1.0.0-
SNAPSHOT.",
"result": {
"kie-container": {
"container-id": "MyContainer",
"release-id": {
"group-id": "itorders",
"artifact-id": "itorders",
"version™": "1.0.0-SNAPSHOT"
b
"resolved-release-id": {
"group-id": "itorders",
"artifact-id": "itorders",
"version™": "1.0.0-SNAPSHOT"
b
"status": "STARTED",
"scanner": {
"status": "STARTED",
"poll-interval": 5000
b
"config-items": [],
"messages": [
{
"severity": "INFO",
"timestamp": {
"java.util.Date": 1540584717937

82

CHAPTER 21. KIE SERVER REST API FOR KIE CONTAINERS AND BUSINESS ASSETS

|3
"content”: [
"Container MyContainer successfully created with module itorders:itorders:1.0.0-

SNAPSHOT."

]
}
],

"container-alias": null

}
}
}

If you encounter request errors, review the returned error code messages and adjust your
request accordingly.

21.3. SUPPORTED KIE SERVER REST API ENDPOINTS

The KIE Server REST API provides endpoints for the following types of resources in Red Hat Decision
Manager:

® KI|E Server and KIE containers

® KIE session assets (for runtime commands)
® DMN assets

® Planning solvers

The KIE Server REST API base URL is http://SERVER:PORT/kie-server/services/rest/. All requests
require HTTP Basic authentication or token-based authentication for the kie-server user role.

For the full list of KIE Server REST API endpoints and descriptions, use one of the following resources:
® Execution Server REST API on the jBPM Documentation page (static)

® Swagger Ul for the KIE Server REST API at http://SERVER:PORT/kie-server/docs (dynamic,
requires running KIE Server)

NOTE

By default, the Swagger web interface for KIE Server is enabled by the
org.kie.swagger.server.ext.disabled=false system property. To disable the
Swagger web interface in KIE Server, set this system property to true.

21.3.1. REST endpoints for specific DMN models

Red Hat Decision Manager provides model-specific DMN KIE Server endpoints that you can use to
interact with your specific DMN model without using the Business Central user interface.

For each DMN model in a container in Red Hat Decision Manager, the following KIE Server REST
endpoints are automatically generated based on the content of the DMN model:

o POST /server/containers/{containerld}/dmn/models/{modelname}: A business-domain
endpoint for evaluating a specified DMN model in a container

83

http://jbpm.org/learn/documentation.html

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

o POST /server/containers/{containerld}/dmn/models/{modelname}/{decisionServiceName}:
A business-domain endpoint for evaluating a specified decision service component in a specific
DMN model available in a container

® POST /server/containers/{containerld}/dmn/models/{modelname}/dmnresult: An endpoint
for evaluating a specified DMN model containing customized body payload and returning a
DMNResult response, including business-domain context, helper messages, and helper
decision pointers

e POST
/server/containers/{containerld}/dmn/models/{modelname}/{decisionServiceName}/dmnre
sult: An endpoint for evaluating a specified decision service component in a specific DMN model
and returning a DMNResult response, including the business-domain context, helper messages,
and help decision pointers for the decision service

e GET /server/containers/{containerld}/dmn/models/{modelname}: An endpoint for returning
standard DMN XML without decision logic and containing the inputs and decisions of the
specified DMN model

e GET /server/containers/{containerld}/dmn/openapi.json (|.yaml): An endpoint for retrieving
Swagger or OAS for the DMN models in a specified container

You can use these endpoints to interact with a DMN model or a specific decision service within a model.
As you decide between using business-domain and dmnresult variants of these REST endpoints, review
the following considerations:

e REST business-domain endpoints Use this endpoint type if a client application is only
concerned with a positive evaluation outcome, is not interested in parsing Info or Warn
messages, and only needs an HTTP 5xx response for any errors. This type of endpoint is also
helpful for single-page application-like clients, due to singleton coercion of decision service
results that resemble the DMN modeling behavior.

e RESTdmnresult endpoints: Use this endpoint type if a client needs to parse Info, Warn, or
Error messages in all cases.

For each endpoint, use a REST client or curl utility to send requests with the following components:
® Base URL: http://HOST:PORTI/kie-server/services/rest/

® Path parameters

o {containerld}: The string identifier of the container, such as mykjar-project
o {modelName}: The string identifier of the DMN model, such as Traffic Violation

o {decisionServiceName}: The string identifier of the decision service component in the
DMN DRG, such as TrafficViolationDecisionService

o dmnresult: The string identifier that enables the endpoint to return a full DMNResult
response with more detailed Info, Warn, and Error messaging

® HTTP headers: For POST requests only:
o accept: application/json
o content-type: application/json

® HTTP methods: GET or POST

84

CHAPTER 21. KIE SERVER REST API FOR KIE CONTAINERS AND BUSINESS ASSETS

The examples in the following endpoints are based on a mykjar-project container that contains a
Traffic Violation DMN model, containing a TrafficViolationDecisionService decision service
component.

For all of these endpoints, if a DMN evaluation Error message occurs, a DMNResult response is
returned along with an HTTP 5xx error. If a DMN Info or Warn message occurs, the relevant response is
returned along with the business-domain REST body, in the X-Kogito-decision-messages extended
HTTP header, to be used for client-side business logic. When there is a requirement of more refined
client-side business logic, the client can use the dmnresult variant of the endpoints.

Retrieve Swagger or OAS for DMN models in a specified container

GET /server/containers/{containerld}/dmn/openapi.json (|.yaml)

Example REST endpoint

http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/openapi.json (|.yaml)

Return the DMN XML without decision logic
GET /server/containers/{containerld}/dmn/models/{modelname}

Example REST endpoint

http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/models/Traffic Violation

Example curl request

curl -u wbadmin:wbadmin -X GET "http://localhost:8080/kie-
server/services/rest/server/containers/mykjar-project/dmn/models/Traffic%20Violation" -H
"accept: application/xml"

Example response (XML)

<?xml version="'1.0" encoding="UTF-8'?>
<dmn:definitions xmIns:dmn="http://www.omg.org/spec/DMN/20180521/MODEL/"
xmlins="https://kiegroup.org/dmn/_A4BCA8B8-CF08-433F-93B2-A2598F19ECFF"
xmins:di="http://www.omg.org/spec/DMN/20180521/DI/"
xmins:kie="http://www.drools.org/kie/dmn/1.2"
xmins:feel="http://www.omg.org/spec/DMN/20180521/FEEL/"
xmlins:dmndi="http://www.omg.org/spec/DMN/20180521/DMNDI/"
xmins:dc="http://www.omg.org/spec/DMN/20180521/DC/" id="_1C792953-80DB-4B32-99EB-
25FBE32BAF9E" name="Traffic Violation"
expressionLanguage="http://www.omg.org/spec/DMN/20180521/FEEL/"
typeLanguage="http://www.omg.org/spec/DMN/20180521/FEEL/"
namespace="https://kiegroup.org/dmn/_A4BCA8B8-CF08-433F-93B2-A2598F19ECFF">
<dmn:extensionElements/>
<dmn:itemDefinition id="_63824D3F-9173-446D-A940-6A7FOFA056BB" name="tDriver"

isCollection="false">

<dmn:itemComponent id="_9DAB5DAA-3B44-4F6D-87F2-95125FB2FEE4" name="Name"
isCollection="false">

<dmn:typeRef>string</dmn:typeRef>

</dmn:itemComponent>

<dmn:itemComponent id="_856BA8FA-EF7B-4DF9-A1EE-E28263CE9955" name="Age"
isCollection="false">

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

86

<dmn:typeRef>number</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_FDC2CE03-D465-47C2-A311-98944E8CC23F" name="State"
isCollection="false">
<dmn:typeRef>string</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_D6FD34C4-00DC-4C79-B1BF-BBCF6FC9B6D7" name="City"
isCollection="false">
<dmn:typeRef>string</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_7110FE7E-1A38-4C39-BOEB-AEEF06BA37F4" name="Points"
isCollection="false">
<dmn:typeRef>number</dmn:typeRef>
</dmn:itemComponent>
</dmn:itemDefinition>
<dmn:itemDefinition id="_40731093-0642-4588-9183-1660FC55053B" name="tViolation"
isCollection="false">
<dmn:itemComponent id="_39E88D9F-AE53-47AD-B3DE-8AB38D4F50B3" name="Code"
isCollection="false">
<dmn:typeRef>string</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_1648EA0A-2463-4B54-A12A-D743A3E3EE7B" name="Date"
isCollection="false">
<dmn:typeRef>date</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_9F129EAA-4E71-4D99-B6D0-84EEC3AC43CC" name="Type"
isCollection="false">
<dmn:typeRef>string</dmn:typeRef>
<dmn:allowedValues kie:constraintType="enumeration" id="_626A8F9C-9DD1-44E0-9568-
0F6F8F8BA228">
<dmn:text>"speed", "parking”, "driving under the influence"</dmn:text>
</dmn:allowedValues>
</dmn:itemComponent>
<dmn:itemComponent id="_DDD10D6E-BD38-4C79-9E2F-8155E3A4B438" name="Speed
Limit" isCollection="false">
<dmn:typeRef>number</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_229F80E4-2892-494C-B70D-683ABF2345F6" name="Actual
Speed" isCollection="false">
<dmn:typeRef>number</dmn:typeRef>
</dmn:itemComponent>
</dmn:itemDefinition>
<dmn:itemDefinition id="_2D4F30EE-21A6-4A78-A524-A5C238D433AE" name="tFine"
isCollection="false">
<dmn:itemComponent id="_B9F70BC7-1995-4F51-B949-1AB65538B405" name="Amount"
isCollection="false">
<dmn:typeRef>number</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_F49085D6-8F08-4463-9A1A-EF6B57635DBD" name="Points"
isCollection="false">
<dmn:typeRef>number</dmn:typeRef>
</dmn:itemComponent>
</dmn:itemDefinition>
<dmn:inputData id="_1929CBD5-40E0-442D-B909-49CEDE0101DC" name="Violation">
<dmn:variable id="_C16CF9B1-5FAB-48A0-95E0-5FCD661E0406" hame="Violation"
typeRef="tViolation"/>

CHAPTER 21. KIE SERVER REST API FOR KIE CONTAINERS AND BUSINESS ASSETS

</dmn:inputData>
<dmn:decision id="_4055D956-1C47-479C-B3F4-BAEB61F1C929" hame="Fine">
<dmn:variable id="_8C1EAC83-F251-4D94-8A9E-BO3ACF6849CD" name="Fine"
typeRef="tFine"/>
<dmn:informationRequirement id="_800A3BBB-90A3-4D9D-BA5E-A311DED0134F">
<dmn:requiredinput href="#_1929CBD5-40E0-442D-B909-49CEDEO101DC"/>
</dmn:informationRequirement>
</dmn:decision>
<dmn:inputData id="_1F9350D7-146D-46F1-85D8-15B5B68AF22A" name="Driver">
<dmn:variable id="_A80F16DF-0DB4-43A2-B041-32900B1A3F3D" name="Driver"
typeRef="tDriver"/>
</dmn:inputData>
<dmn:decision id="_8A408366-D8E9-4626-ABF3-5F69AA01F880" name="Should the driver be
suspended?">
<dmn:question>Should the driver be suspended due to points on his license?</dmn:question>
<dmn:allowedAnswers>"Yes", "No"</dmn:allowedAnswers>
<dmn:variable id="_ 40387B66-5D00-48C8-BB90-E83EE3332C72" name="Should the driver be
suspended?" typeRef="string"/>
<dmn:informationRequirement id="_982211B1-5246-49CD-BE85-3211F71253CF">
<dmn:requiredinput href="#_1F9350D7-146D-46F1-85D8-15B5B68AF22A"/>
</dmn:informationRequirement>
<dmn:informationRequirement id="_AEC4AA5F-50C3-4FED-A0C2-261F90290731">
<dmn:requiredDecision href="#_4055D956-1C47-479C-B3F4-BAEB61F1C929"/>
</dmn:informationRequirement>
</dmn:decision>
<dmndi:DMNDI>
<dmndi:DMNDiagram>
<di:extension/>
<dmndi:DMNShape id="dmnshape-_1929CBD5-40E0-442D-B909-49CEDE0101DC"
dmnElementRef="_1929CBD5-40E0-442D-B909-49CEDEQO101DC" isCollapsed="false">
<dmndi:DMNStyle>
<dmndi:FillColor red="255" green="255" blue="255"/>
<dmndi:StrokeColor red="0" green="0" blue="0"/>
<dmndi:FontColor red="0" green="0" blue="0"/>
</dmndi:DMNStyle>
<dc:Bounds x="708" y="350" width="100" height="50"/>
<dmndi:DMNLabel/>
</dmndi:DMNShape>
<dmndi:DMNShape id="dmnshape-_4055D956-1C47-479C-B3F4-BAEB61F1C929"
dmnElementRef="_4055D956-1C47-479C-B3F4-BAEB61F1C929" isCollapsed="false">
<dmndi:DMNStyle>
<dmndi:FillColor red="255" green="255" blue="255"/>
<dmndi:StrokeColor red="0" green="0" blue="0"/>
<dmndi:FontColor red="0" green="0" blue="0"/>
</dmndi:DMNStyle>
<dc:Bounds x="709" y="210" width="100" height="50"/>
<dmndi:DMNLabel/>
</dmndi:DMNShape>
<dmndi:DMNShape id="dmnshape-_1F9350D7-146D-46F1-85D8-15B5B68AF22A"
dmnElementRef="_1F9350D7-146D-46F1-85D8-15B5B68AF22A" isCollapsed="false">
<dmndi:DMNStyle>
<dmndi:FillColor red="255" green="255" blue="255"/>
<dmndi:StrokeColor red="0" green="0" blue="0"/>
<dmndi:FontColor red="0" green="0" blue="0"/>
</dmndi:DMNStyle>
<dc:Bounds x="369" y="344" width="100" height="50"/>

87

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

<dmndi:DMNLabel/>
</dmndi:DMNShape>
<dmndi:DMNShape id="dmnshape-_8A408366-D8E9-4626-ABF3-5F69AA01F880"
dmnElementRef="_8A408366-D8E9-4626-ABF3-5F69AA01F880" isCollapsed="false">
<dmndi:DMNStyle>
<dmndi:FillColor red="255" green="255" blue="255"/>
<dmndi:StrokeColor red="0" green="0" blue="0"/>
<dmndi:FontColor red="0" green="0" blue="0"/>
</dmndi:DMNStyle>
<dc:Bounds x="534" y="83" width="133" height="63"/>
<dmndi:DMNLabel/>
</dmndi:DMNShape>
<dmndi:DMNEdge id="dmnedge-_800A3BBB-90A3-4D9D-BA5E-A311DEDO134F"
dmnElementRef="_800A3BBB-90A3-4D9D-BA5E-A311DED0134F">
<di:waypoint x="758" y="375"/>
<di:waypoint x="759" y="235"/>
</dmndi:DMNEdge>
<dmndi:DMNEdge id="dmnedge-_982211B1-5246-49CD-BE85-3211F71253CF"
dmnElementRef="_982211B1-5246-49CD-BE85-3211F71253CF">
<di:waypoint x="419" y="369"/>
<di:waypoint x="600.5" y="114.5"/>
</dmndi:DMNEdge>
<dmndi:DMNEdge id="dmnedge-_ AEC4AA5F-50C3-4FED-A0C2-261F90290731"
dmnElementRef="_AEC4AA5F-50C3-4FED-A0C2-261F90290731">
<di:waypoint x="759" y="235"/>
<di:waypoint x="600.5" y="114.5"/>
</dmndi:DMNEdge>
</dmndi:DMNDiagram>
</dmndi:DMNDI>

Evaluate a specified DMN model in a specified container

POST /server/containers/{containerld}/dmn/models/{modelname}

Example REST endpoint

http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/models/Traffic Violation

Example curl request

curl -u wbadmin:wbadmin-X POST "http://localhost:8080/kie-
server/services/rest/server/containers/mykjar-project/dmn/models/Traffic Violation" -H "accept:
application/json" -H "Content-Type: application/json" -d "{\"Driver\":{\"Points\":15},\"Violation\":
{\"Date\":\"2021-04-08\"\"Type\":\"speed\" \"Actual Speed\":135,\"Speed Limit\":100}}"

Example POST request body with input data

{

"Driver": {
"Points": 15

b

"Violation": {
"Date": "2021-04-08",
"Type": "speed",
"Actual Speed": 135,

88

CHAPTER 21. KIE SERVER REST API FOR KIE CONTAINERS AND BUSINESS ASSETS

"Speed Limit": 100
}
}

Example response (JSON)

{
"Violation": {
"Type": "speed",
"Speed Limit": 100,
"Actual Speed": 135,
"Code": null,
"Date": "2021-04-08"
b
"Driver": {
"Points": 15,
"State": null,
"City": null,
"Age": null,
"Name": null
b
"Fine": {
"Points": 7,
"Amount": 1000
}

"Should the driver be suspended?": "Yes"

Evaluate a specified decision service within a specified DMN model in a container

POST /server/containers/{containerld}/dmn/models/{modelname}/{decisionServiceName}
For this endpoint, the request body must contain all the requirements of the decision service. The
response is the resulting DMN context of the decision service, including the decision values, the
original input values, and all other parametric DRG components in serialized form. For example, a
business knowledge model is available in string-serialized form in its signature.

If the decision service is composed of a single-output decision, the response is the resulting value of
that specific decision. This behavior provides an equivalent value at the API level of a specification
feature when invoking the decision service in the model itself. As a result, you can, for example,
interact with a DMN decision service from single-page web applications.

89

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

Figure 21.1. Example TrafficViolationDecisionService decision service with single-output
decision

= Traffic Violation.dmn X

Editor Documentation Data Types

[isass
L]
/ TrafficViolationDecisionService \

o

Should the driver
(=] be suspended?

A ¥
(]
\\
[
Fine

: Driver } I Violation]

Figure 21.2. Example TrafficViolationDecisionService decision service with multiple-output
decision

= Traffic Violation.dmn x

Editor Documentation Data Types

[Fes
(=]
/' TrafficViolationDecisionService \
(=)
Should the driver .
be suspended? < Fine
(=]
) f
(=
c

- J

Example REST endpoint

90

CHAPTER 21. KIE SERVER REST API FOR KIE CONTAINERS AND BUSINESS ASSETS

http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/models/Traffic Violation/TrafficViolationDecisionService

Example POST request body with input data

{
"Driver": {
"Points": 2
b
"Violation": {
"Type": "speed",
"Actual Speed": 120,
"Speed Limit": 100
}
}

Example curl request

curl -X POST http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/models/Traffic Violation/TrafficViolationDecisionService -H 'content-type:
application/json’ -H 'accept: application/json' -d {"Driver": {"Points": 2}, "Violation": {"Type":
"speed", "Actual Speed": 120, "Speed Limit": 100}}'

Example response for single-output decision (JSON)

I HNOII

Example response for multiple-output decision (JSON)

{

"Violation": {
"Type": "speed",
"Speed Limit": 100,
"Actual Speed": 120

b

"Driver": {
"Points": 2

b

"Fine": {
"Points": 3,
"Amount": 500

}

"Should the driver be suspended?": "No"

Evaluate a specified DMN model in a specified container and return DMNResult response

POST /server/containers/{containerld}/dmn/models/{modelname}/dmnresult

Example REST endpoint

http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/models/Traffic Violation/dmnresult

o1

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

Example POST request body with input data

{
"Driver": {
"Points": 2
b
"Violation": {
"Type": "speed",
"Actual Speed": 120,
"Speed Limit": 100
}
}

Example curl request

curl -X POST http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/models/Traffic Violation/dmnresult -H 'content-type: application/json' -H 'accept:
application/json' -d '{"Driver": {"Points": 2}, "Violation": {"Type": "speed", "Actual Speed": 120,
"Speed Limit": 100}}'

Example response (JSON)

{
"namespace": "https://kiegroup.org/dmn/_A4BCA8B8-CF08-433F-93B2-A2598F19ECFF",

"modelName": "Traffic Violation",
"dmnContext": {
"Violation": {
"Type": "speed",
"Speed Limit": 100,
"Actual Speed": 120,
"Code": null,
"Date": null
b
"Driver": {
"Points": 2,
"State": null,
"City": null,
"Age": null,
"Name": null
b
"Fine": {
"Points": 3,
"Amount": 500
b

"Should the driver be suspended?": "No"
1
"messages": [],
"decisionResults": [
{
"decisionld": " 4055D956-1C47-479C-B3F4-BAEB61F1C929",
"decisionName": "Fine",
"result": {
"Points": 3,
"Amount": 500

92

CHAPTER 21. KIE SERVER REST API FOR KIE CONTAINERS AND BUSINESS ASSETS

13

"messages": [],

"evaluationStatus": "SUCCEEDED"
|3

{
"decisionld": "_8A408366-D8E9-4626-ABF3-5F69AA01F880",

"decisionName": "Should the driver be suspended?",
"result": "No",

"messages": [],

"evaluationStatus": "SUCCEEDED"

Evaluate a specified decision service within a DMN model in a specified container and return a
DMNResult response

POST
/server/containers/{containerld}/dmn/models/{modelname}/{decisionServiceName}/dmnresult

Example REST endpoint

http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/models/Traffic Violation/TrafficViolationDecisionService/dmnresult

Example POST request body with input data

{
"Driver": {
"Points": 2
b
"Violation": {
"Type": "speed",
"Actual Speed": 120,
"Speed Limit": 100
}
}

Example curl request

curl -X POST http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/models/Traffic Violation/TrafficViolationDecisionService/dmnresult -H 'content-type:
application/json’ -H 'accept: application/json' -d '{"Driver": {"Points": 2}, "Violation": {"Type":
"speed", "Actual Speed": 120, "Speed Limit": 100}}'

Example response (JSON)

{
"namespace": "https://kiegroup.org/dmn/_A4BCA8B8-CF08-433F-93B2-A2598F19ECFF",

"modelName": "Traffic Violation",
"dmnContext": {
"Violation": {
"Type": "speed",
"Speed Limit": 100,
"Actual Speed": 120,

93

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

"Code": null,
"Date": null

2

"Driver": {
"Points": 2,
"State": null,
"City": null,
"Age": null,
"Name": null

}

"Should the driver be suspended?": "No"
|3

"messages": [],
"decisionResults": [
{
"decisionld": "_8A408366-D8E9-4626-ABF3-5F69AA01F880",
"decisionName": "Should the driver be suspended?",
"result": "No",
"messages": [],
"evaluationStatus": "SUCCEEDED"

94

CHAPTER 22. KIE SERVER JAVA CLIENT API FOR KIE CONTAINERS AND BUSINESS ASSETS

CHAPTER 22. KIE SERVER JAVA CLIENT API FORKIE
CONTAINERS AND BUSINESS ASSETS

Red Hat Decision Manager provides a KIE Server Java client API that enables you to connect to KIE
Server using REST protocol from your Java client application. You can use the KIE Server Java client API
as an alternative to the KIE Server REST API to interact with your KIE containers and business assets
(such as business rules, processes, and solvers) in Red Hat Decision Manager without using the Business
Central user interface. This API support enables you to maintain your Red Hat Decision Manager
resources more efficiently and optimize your integration and development with Red Hat Decision
Manager.

With the KIE Server Java client API, you can perform the following actions also supported by the KIE
Server REST AP

® Deploy or dispose KIE containers
® Retrieve and update KIE container information
® Return KIE Server status and basic information
® Retrieve and update business asset information
® Execute business assets (such as rules and processes)
KIE Server Java client APl requests require the following components:

Authentication

The KIE Server Java client APl requires HTTP Basic authentication for the user role kie-server. To
view configured user roles for your Red Hat Decision Manager distribution, navigate to
~/$SERVER_HOME/standalone/configuration/application-roles.properties and ~/application-
users.properties.

To add a user with the kie-server role, navigate to ~/$SERVER_HOME/bin and run the following
command:

$./bin/jboss-cli.sh --commands="embed-server --std-out=echo,/subsystem=elytron/filesystem-
realm=ApplicationRealm:add-identity(identity=<USERNAME>),/subsystem=elytron/filesystem-
realm=ApplicationRealm:set-password(identity=<USERNAME>, clear=
{password='<PASSWORD>"),/subsystem=elytron/filesystem-realm=ApplicationRealm:add-
identity-attribute(identity=<USERNAME>, name=role, value=['kie-server'])"

For more information about user roles and Red Hat Decision Manager installation options, see
Planning a Red Hat Decision Manager installation .

Project dependencies

The KIE Server Java client API requires the following dependencies on the relevant classpath of your
Java project:

<!I-- For remote execution on KIE Server -->
<dependency>
<groupld>org.kie.server</groupld>
<artifactld>kie-server-client</artifactld>
<version>${rhpam.version}</version>
</dependency>

95

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

<!I-- For runtime commands -->
<dependency>
<groupld>org.drools</groupld>
<artifactld>drools-compiler</artifactld>
<scope>runtime</scope>
<version>${rhpam.version}</version>
</dependency>

<!I-- For debug logging (optional) -->
<dependency>
<groupld>ch.gos.logback</groupld>
<artifactld>logback-classic</artifactld>
<version>${logback.version}</version>
</dependency>

The <version> for Red Hat Decision Manager dependencies is the Maven artifact version for Red
Hat Decision Manager currently used in your project (for example, 7.67.0.Final-redhat-00024).

NOTE

Instead of specifying a Red Hat Decision Manager <versions for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business Automation
BOM applies to both Red Hat Decision Manager and Red Hat Process Automation
Manager. When you add the BOM files, the correct versions of transitive
dependencies from the provided Maven repositories are included in the project.

Example BOM dependency:

<dependency>
<groupld>com.redhat.ba</groupld>
<artifactld>ba-platform-bom</artifactid>
<version>7.13.5.redhat-00002</version>
<scope>import</scope>
<type>pom</type>

</dependency>

For more information about the Red Hat Business Automation BOM, see What is the
mapping between RHDM product and maven library version?.

Client request configuration

96

All Java client requests with the KIE Server Java client APl must define at least the following server
communication components:

e Credentials of the kie-server user
® KI|E Server location, such as http://localhost:8080/kie-server/services/rest/server

® Marshalling format for APl requests and responses (JSON, JAXB, or XSTREAM)

e A KieServicesConfiguration object and a KieServicesClient object, which serve as the

entry point for starting the server communication using the Java client API

e A KieServicesFactory object defining REST protocol and user access

https://access.redhat.com/solutions/3363991

CHAPTER 22. KIE SERVER JAVA CLIENT API FOR KIE CONTAINERS AND BUSINESS ASSETS

® Any other client services used, such as RuleServicesClient, ProcessServicesClient, or
QueryServicesClient

The following are examples of basic and advanced client configurations with these components:

Basic client configuration example

import org.kie.server.api.marshalling.MarshallingFormat;
import org.kie.server.client.KieServicesClient;

import org.kie.server.client.KieServicesConfiguration;
import org.kie.server.client.KieServicesFactory;

public class MyConfigurationObject {

private static final String URL = "http://localhost:8080/kie-server/services/rest/server";
private static final String USER = "baAdmin";
private static final String PASSWORD = "password@1";

private static final MarshallingFormat FORMAT = MarshallingFormat.JSON;

private static KieServicesConfiguration conf;
private static KieServicesClient kieServicesClient;

public static void initialize() {
conf = KieServicesFactory.newRestConfiguration(URL, USER, PASSWORD);

//If you use custom classes, such as Obj.class, add them to the configuration.
Set<Class<?>> extraClassList = new HashSet<Class<?>>();
extraClassList.add(Obj.class);

conf.addExtraClasses(extraClassList);

conf.setMarshallingFormat(FORMAT);
kieServicesClient = KieServicesFactory.newKieServicesClient(conf);

Advanced client configuration example with additional client services

import org.kie.server.api.marshalling.MarshallingFormat;
import org.kie.server.client.CaseServicesClient;

import org.kie.server.client. DMNServicesClient;

import org.kie.server.client.DocumentServicesClient;
import org.kie.server.client.JobServicesClient;

import org.kie.server.client.KieServicesClient;

import org.kie.server.client.KieServicesConfiguration;
import org.kie.server.client.KieServicesFactory;

import org.kie.server.client.ProcessServicesClient;
import org.kie.server.client.QueryServicesClient;

import org.kie.server.client.RuleServicesClient;

import org.kie.server.client.SolverServicesClient;

import org.kie.server.client.UIServicesClient;

import org.kie.server.client.UserTaskServicesClient;
import org.kie.server.api.model.instance.Processinstance;
import org.kie.server.api.model.KieContainerResource;
import org.kie.server.api.model.Releaseld;

97

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

98

public class MyAdvancedConfigurationObject {

// REST API base URL, credentials, and marshalling format

private static final String URL = "http://localhost:8080/kie-server/services/rest/server";
private static final String USER = "baAdmin";

private static final String PASSWORD = "password@1";;

private static final MarshallingFormat FORMAT = MarshallingFormat.JSON;
private static KieServicesConfiguration conf;

// KIE client for common operations
private static KieServicesClient kieServicesClient;

// Rules client
private static RuleServicesClient ruleClient;

// Process automation clients

private static CaseServicesClient caseClient;

private static DocumentServicesClient documentClient;
private static JobServicesClient jobClient;

private static ProcessServicesClient processClient;
private static QueryServicesClient queryClient;

private static UlServicesClient uiClient;

private static UserTaskServicesClient userTaskClient;

// DMN client
private static DMNServicesClient dmnClient;

// Planning client
private static SolverServicesClient solverClient;

public static void main(String[] args) {
initializeKieServerClient();
initializeDroolsServiceClients();
initializeJbpmServiceClients();
initializeSolverServiceClients();

}

public static void initializeKieServerClient() {
conf = KieServicesFactory.newRestConfiguration(URL, USER, PASSWORD);
conf.setMarshallingFormat(FORMAT);
kieServicesClient = KieServicesFactory.newKieServicesClient(conf);

}

public static void initializeDroolsServiceClients() {
ruleClient = kieServicesClient.getServicesClient(RuleServicesClient.class);
dmnClient = kieServicesClient.getServicesClient(DMNServicesClient.class);

}

public static void initializeJopmServiceClients() {
caseClient = kieServicesClient.getServicesClient(CaseServicesClient.class);
documentClient = kieServicesClient.getServicesClient(DocumentServicesClient.class);
jobClient = kieServicesClient.getServicesClient(JobServicesClient.class);
processClient = kieServicesClient.getServicesClient(ProcessServicesClient.class);

CHAPTER 22. KIE SERVER JAVA CLIENT API FOR KIE CONTAINERS AND BUSINESS ASSETS

queryClient = kieServicesClient.getServicesClient(QueryServicesClient.class);
uiClient = kieServicesClient.getServicesClient(UIServicesClient.class);
userTaskClient = kieServicesClient.getServicesClient(UserTaskServicesClient.class);

}

public static void initializeSolverServiceClients() {
solverClient = kieServicesClient.getServicesClient(SolverServicesClient.class);

}

22.1. SENDING REQUESTS WITH THE KIE SERVER JAVA CLIENT API

The KIE Server Java client API enables you to connect to KIE Server using REST protocol from your Java
client application. You can use the KIE Server Java client API as an alternative to the KIE Server REST
API to interact with your KIE containers and business assets (such as business rules, processes, and
solvers) in Red Hat Decision Manager without using the Business Central user interface.

Prerequisites

® KI|E Server isinstalled and running.
® You have Kie-server user role access to KIE Server.

® You have a Java project with Red Hat Decision Manager resources.

Procedure

1. Inyour client application, ensure that the following dependencies have been added to the
relevant classpath of your Java project:

<!I-- For remote execution on KIE Server -->
<dependency>
<groupld>org.kie.server</groupld>
<artifactld>kie-server-client</artifactld>
<version>${rhpam.version}</version>
</dependency>

<!I-- For runtime commands -->
<dependency>
<groupld>org.drools</groupld>
<artifactld>drools-compiler</artifactld>
<scope>runtime</scope>
<version>${rhpam.version}</version>
</dependency>

<!I-- For debug logging (optional) -->
<dependency>
<groupld>ch.gos.logback</groupld>
<artifactld>logback-classic</artifactld>
<version>${logback.version}</version>
</dependency>

2. Download the Red Hat Process Automation Manager 7.13.5 Source Distributionfrom the Red
Hat Customer Portal and navigate to ~/rhpam-7.13.5-sources/src/droolsjbpm-integration-

99

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

$VERSION/kie-server-parent/kie-server-remote/kie-server-
client/src/main/java/org/kie/server/client to access the KIE Server Java clients.

3. In the ~/kie/server/client folder, identify the relevant Java client for the request you want to
send, such as KieServicesClient to access client services for KIE containers and other assets in
KIE Server.

4. Inyour client application, create a .java class for the APl request. The class must contain the
necessary imports, KIE Server location and user credentials, a KieServicesClient object, and
the client method to execute, such as createContainer and disposeContainer from the
KieServicesClient client. Adjust any configuration details according to your use case.

Creating and disposing a container

import org.kie.server.api.marshalling.MarshallingFormat;
import org.kie.server.client.KieServicesClient;

import org.kie.server.client.KieServicesConfiguration;
import org.kie.server.client.KieServicesFactory;

import org.kie.server.api.model.KieContainerResource;
import org.kie.server.api.model.ServiceResponse;

public class MyConfigurationObject {
private static final String URL = "http://localhost:8080/kie-server/services/rest/server";
private static final String USER = "baAdmin";
private static final String PASSWORD = "password@1";
private static final MarshallingFormat FORMAT = MarshallingFormat.JSON;

private static KieServicesConfiguration conf;
private static KieServicesClient kieServicesClient;

public static void initialize() {
conf = KieServicesFactory.newRestConfiguration(URL, USER, PASSWORD);

public void disposeAndCreateContainer() {
System.out.printin("== Disposing and creating containers ==");

// Retrieve list of KIE containers
List<KieContainerResource> kieContainers =
kieServicesClient.listContainers().getResult().getContainers();

if (kieContainers.size() == 0) {
System.out.printin("No containers available...");
return;

}

// Dispose KIE container

KieContainerResource container = kieContainers.get(0);

String containerld = container.getContainerld();

ServiceResponse<Void> responseDispose =

kieServicesClient.disposeContainer(containerld);

if (responseDispose.getType() == ResponseType.FAILURE) {
System.out.printin("Error disposing " + containerld + ". Message: ");
System.out.printin(responseDispose.getMsg());
return;

}

100

CHAPTER 22. KIE SERVER JAVA CLIENT API FOR KIE CONTAINERS AND BUSINESS ASSETS

System.out.printin("Success Disposing container " + containerld);
System.out.printin("Trying to recreate the container...");

// Re-create KIE container
ServiceResponse<KieContainerResource> createResponse =
kieServicesClient.createContainer(containerld, container);
if(createResponse.getType() == ResponseType.FAILURE) {
System.out.printin("Error creating " + containerld + ". Message: ");
System.out.printin(responseDispose.getMsg());
return;
}
System.out.printin("Container recreated with success!");
}
}
}

You define service responses using the org.kie.server.api.model.ServiceResponse<T>
object, where T represents the type of returned response. The ServiceResponse object has
the following attributes:

® String message: Returns the response message
® ResponseType type: Returns either SUCCESS or FAILURE
® T result Returns the requested object

In this example, when you dispose a container, the ServiceResponse returns a Void response.
When you create a container, the ServiceResponse returns a KieContainerResource object.

NOTE

A conversation between a client and a specific KIE Server container in a clustered
environment is secured by a unique conversationID. The conversationlID is
transferred using the X-KIE-Conversationld REST header. If you update the
container, unset the previous conversationlD. Use
KieServiesClient.completeConversation() to unset the conversationID for
Java API.

. Run the configured .java class from your project directory to execute the request, and review
the KIE Server response.

If you enabled debug logging, KIE Server responds with a detailed response according to your
configured marshalling format, such as JSON.

Example server response for a new KIE container (log):

10:23:35.194 [main] INFO o.k.s.a.m.MarshallerFactory - Marshaller extensions init
10:23:35.396 [main] DEBUG o.k.s.client.balancer.LoadBalancer - Load balancer
RoundRobinBalancerStrategy{availableEndpoints=[http://localhost:8080/kie-
server/services/rest/server]} selected url 'http://localhost:8080/kie-server/services/rest/server'
10:23:35.398 [main] DEBUG o.k.s.c.i.AbstractKieServicesClientimpl - About to send GET
request to 'http://localhost:8080/kie-server/services/rest/server'
10:23:35.440 [main] DEBUG o.k.s.c.i.AbstractKieServicesClientimpl - About to deserialize
content:

1

"type" : "SUCCESS",

101

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

102

"msg" : "Kie Server info",
"result" : {
"kie-server-info" : {
"id" : "default-kieserver",
"version" : "7.11.0.Final-redhat-00003",
"name" : "default-kieserver",
"location" : "http://localhost:8080/kie-server/services/rest/server",
"capabilities” : ["KieServer", "BRM", "BPM", "CaseMgmt", "BPM-UI", "BRP", "DMN",
"Swagger"],
"messages” : [{
"severity" : "INFO",
"timestamp” : {
"java.util.Date" : 1540814906533
3
"content" : ["Server KieServerlnfo{serverld="default-kieserver', version='7.11.0.Final-
redhat-00003', name='default-kieserver', location="http://localhost:8080/kie-
server/services/rest/server', capabilities=[KieServer, BRM, BPM, CaseMgmt, BPM-UI, BRP,
DMN, Swagger], messages=null}started successfully at Mon Oct 29 08:08:26 EDT 2018"]

}]
}
}
y
into type: 'class org.kie.server.api.model.ServiceResponse'
10:23:35.653 [main] DEBUG o.k.s.c.impl.KieServicesClientimpl - KieServicesClient
connected to: default-kieserver version 7.11.0.Final-redhat-00003
10:23:35.653 [main] DEBUG o.k.s.c.impl.KieServicesClientimpl - Supported capabilities by
the server: [KieServer, BRM, BPM, CaseMgmt, BPM-UI, BRP, DMN, Swagger]
10:23:35.653 [main] DEBUG o.k.s.c.impl.KieServicesClientimpl - Building services client for
server capability KieServer
10:23:35.653 [main] DEBUG o.k.s.c.impl.KieServicesClientimpl - No builder found for
'KieServer' capability
10:23:35.654 [main] DEBUG o.k.s.c.impl.KieServicesClientimpl - Building services client for
server capability BRM
10:23:35.654 [main] DEBUG o.k.s.c.impl.KieServicesClientimpl - Builder
'org.kie.server.client.helper.DroolsServicesClientBuilder@6b927fb' for capability 'BRM'
10:23:35.655 [main] DEBUG o.k.s.c.impl.KieServicesClientimpl - Capability implemented by
{interface
org.kie.server.client.RuleServicesClient=org.kie.server.client.impl.RuleServicesClientimpl@4a9:
eed}
10:23:35.655 [main] DEBUG o.k.s.c.impl.KieServicesClientimpl - Building services client for
server capability BPM
10:23:35.656 [main] DEBUG o.k.s.c.impl.KieServicesClientimpl - Builder
'org.kie.server.client.helper.JBPMServicesClientBuilder@4cc451f2' for capability 'BPM'
10:23:35.672 [main] DEBUG o.k.s.c.impl.KieServicesClientimpl - Capability implemented by
{interface
org.kie.server.client.JobServicesClient=org.kie.server.client.impl.JobServicesClientimpl@1189d
52, interface
org.kie.server.client.admin.ProcessAdminServicesClient=org.kie.server.client.admin.impl.Proces
sAdminServicesClientimpl@36bc55de, interface
org.kie.server.client.DocumentServicesClient=org.kie.server.client.impl.DocumentServicesClien
mpl@564fabc8, interface
org.kie.server.client.admin.UserTaskAdminServicesClient=org.kie.server.client.admin.impl.User
TaskAdminServicesClientimpl@16d04d3d, interface
org.kie.server.client.QueryServicesClient=org.kie.server.client.impl.QueryServicesClientimpl@4
9ec7118, interface
org.kie.server.client.ProcessServicesClient=org.kie.server.client.impl.ProcessServicesClientimp

CHAPTER 22. KIE SERVER JAVA CLIENT API FOR KIE CONTAINERS AND BUSINESS ASSETS

@1d2adfbe, interface
org.kie.server.client.UserTaskServicesClient=org.kie.server.client.impl.UserTaskServicesClientl
mpl@36902638}
10:23:35.672 [main] DEBUG o.k.s.c.impl.KieServicesClientimpl - Building services client for
server capability CaseMgmt
10:23:35.672 [main] DEBUG o.k.s.c.impl.KieServicesClientimpl - Builder
'org.kie.server.client.helper.CaseServicesClientBuilder@223d2c72' for capability 'CaseMgmt’
10:23:35.676 [main] DEBUG o.k.s.c.impl.KieServicesClientimpl - Capability implemented by
{interface
org.kie.server.client.admin.CaseAdminServicesClient=org.kie.server.client.admin.impl.CaseAdn
nServicesClientimpl@2b662a77, interface
org.kie.server.client.CaseServicesClient=org.kie.server.client.impl.CaseServicesClientimpl@7f0
eb4b4}
10:23:35.676 [main] DEBUG o.k.s.c.impl.KieServicesClientimpl - Building services client for
server capability BPM-UI
10:23:35.676 [main] DEBUG o.k.s.c.impl.KieServicesClientimpl - Builder
'org.kie.server.client.helper.JBPMUIServicesClientBuilder@5c33f1a9' for capability 'BPM-UI'
10:23:35.677 [main] DEBUG o.k.s.c.impl.KieServicesClientimpl - Capability implemented by
{interface
org.kie.server.client.UIServicesClient=org.kie.server.client.impl.UIServicesClientimpl@223191a
}
10:23:35.678 [main] DEBUG o.k.s.c.impl.KieServicesClientimpl - Building services client for
server capability BRP
10:23:35.678 [main] DEBUG o.k.s.c.impl.KieServicesClientimpl - Builder
'org.kie.server.client.helper.OptaplannerServicesClientBuilder@49139829' for capability
'BRP"
10:23:35.679 [main] DEBUG o.k.s.c.impl.KieServicesClientimpl - Capability implemented by
{interface
org.kie.server.client.SolverServicesClient=org.kie.server.client.impl.SolverServicesClientimpl@7
7fbd92c}
10:23:35.679 [main] DEBUG o.k.s.c.impl.KieServicesClientimpl - Building services client for
server capability DMN
10:23:35.679 [main] DEBUG o.k.s.c.impl.KieServicesClientimpl - Builder
'org.kie.server.client.helper.DMNServicesClientBuilder@67c27493' for capability 'DMN'
10:23:35.680 [main] DEBUG o.k.s.c.impl.KieServicesClientimpl - Capability implemented by
{interface
org.kie.server.client. DMNServicesClient=org.kie.server.client.impl. DMNServicesClientimpl@35¢
2d654}
10:23:35.680 [main] DEBUG o.k.s.c.impl.KieServicesClientimpl - Building services client for
server capability Swagger
10:23:35.680 [main] DEBUG o.k.s.c.impl.KieServicesClientimpl - No builder found for
'Swagger' capability
10:23:35.681 [main] DEBUG o.k.s.client.balancer.LoadBalancer - Load balancer
RoundRobinBalancerStrategy{availableEndpoints=[http://localhost:8080/kie-
server/services/rest/server]} selected url 'http://localhost:8080/kie-server/services/rest/server'
10:23:35.701 [main] DEBUG o.k.s.c.i.AbstractKieServicesClientimpl - About to send PUT
request to 'http://localhost:8080/kie-server/services/rest/server/containers/employee-
rostering3' with payload '{
"container-id" : null,
"release-id" : {
"group-id" : "employeerostering",
"artifact-id" : "employeerostering",
"version" : "1.0.0-SNAPSHOT"
b
"resolved-release-id" : null,
"status” : null,

103

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

"scanner" : null,
"config-items" : [],
"messages” : [],
"container-alias" : null
y
10:23:38.071 [main] DEBUG o.k.s.c.i.AbstractKieServicesClientimpl - About to deserialize
content:
1
"type" : "SUCCESS",
"msg" : "Container employee-rostering3 successfully deployed with module
employeerostering:employeerostering:1.0.0-SNAPSHOT.",
"result" : {
"kie-container" : {
"container-id" : "employee-rostering3",
"release-id" : {
"group-id" : "employeerostering",
"artifact-id" : "employeerostering",
"version" : "1.0.0-SNAPSHOT"
b
"resolved-release-id" : {
"group-id" : "employeerostering",
"artifact-id" : "employeerostering",
"version" : "1.0.0-SNAPSHOT"
b
"status" : "STARTED",
"scanner" : {
"status" : "DISPOSED",
"poll-interval” : null
b
"config-items" : [],
"messages” : [{
"severity" : "INFO",
"timestamp” : {
"java.util.Date" : 1540909418069
13
"content" : ["Container employee-rostering3 successfully created with module
employeerostering:employeerostering:1.0.0-SNAPSHOT." |
H,
"container-alias" : null
}
}
y

into type: 'class org.kie.server.api.model.ServiceResponse'

If you encounter request errors, review the returned error code messages and adjust your Java
configurations accordingly.

22.2. SUPPORTED KIE SERVER JAVA CLIENTS

The following are some of the Java client services available in the org.kie.server.client package of your
Red Hat Decision Manager distribution. You can use these services to interact with related resources in
KIE Server similarly to the KIE Server REST API.

o KieServicesClient: Used as the entry point for other KIE Server Java clients, and used to
interact with KIE containers

104

CHAPTER 22. KIE SERVER JAVA CLIENT API FOR KIE CONTAINERS AND BUSINESS ASSETS

e JobServicesClient: Used to schedule, cancel, re-queue, and get job requests

e RuleServicesClient: Used to send commands to the server to perform rule-related operations,
such as executing rules or inserting objects into the KIE session

e SolverServicesClient: Used to perform all Red Hat build of OptaPlanner operations, such as
getting the solver state and the best solution, or disposing a solver

The getServicesClient method provides access to any of these clients:

I RuleServicesClient rulesClient = kieServicesClient.getServicesClient(RuleServicesClient.class);

For the full list of available KIE Server Java clients, download the Red Hat Process Automation
Manager 7.13.5 Source Distribution from the Red Hat Customer Portal and navigate to ~/rhpam-
7.13.5-sources/src/droolsjbpm-integration-$VERSION/kie-server-parent/kie-server-remote/kie-
server-client/src/main/java/org/kie/server/client.

22.3. EXAMPLE REQUESTS WITH THE KIE SERVER JAVA CLIENT API

The following are examples of KIE Server Java client API requests for basic interactions with KIE Server.
For the full list of available KIE Server Java clients, download the Red Hat Process Automation
Manager 7.13.5 Source Distribution from the Red Hat Customer Portal and navigate to ~/rhpam-
7.13.5-sources/src/droolsjbpm-integration-$VERSION/kie-server-parent/kie-server-remote/kie-
server-client/src/main/java/org/kie/server/client.

Listing KIE Server capabilities

You can use the org.kie.server.api.model.KieServerinfo object to identify server capabilities. The
KieServicesClient client requires the server capability information to correctly produce service
clients. You can specify the capabilities globally in KieServicesConfiguration; otherwise they are
automatically retrieved from KIE Server.

Example request to return KIE Server capabilities

public void listCapabilities() {

KieServerinfo serverinfo = kieServicesClient.getServerinfo().getResult();
System.out.print("Server capabilities:");

for (String capability : serverinfo.getCapabilities()) {
System.out.print(" " + capability);

}

System.out.printin();

Listing KIE containers in KIE Server

KIE containers are represented by the org.kie.server.api.model.KieContainerResource object. The
list of resources is represented by the org.kie.server.api.model.KieContainerResourceList object.

Example request to return KIE containers from KIE Server

public void listContainers() {
KieContainerResourceList containersList = kieServicesClient.listContainers().getResult();

105

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

List<KieContainerResource> kieContainers = containersList.getContainers();
System.out.printin("Available containers: ");
for (KieContainerResource container : kieContainers) {
System.out.printin("\t" + container.getContainerld() + " (" + container.getReleaseld() + ")");
}
}

You can optionally filter the KIE container results using an instance of the
org.kie.server.api.model.KieContainerResourceFilter class, which is passed to the
org.kie.server.client.KieServicesClient.listContainers() method.

Example request to return KIE containers by release ID and status

public void listContainersWithFilter() {

// Filter containers by releaseld "org.example:container:1.0.0.Final" and status FAILED
KieContainerResourceFilter filter = new KieContainerResourceFilter.Builder()
.releaseld("org.example”, "container”, "1.0.0.Final")
.status(KieContainerStatus.FAILED)
.build();

// Using previously created KieServicesClient
KieContainerResourceList containersList = kieServicesClient.listContainers(filter).getResult();
List<KieContainerResource> kieContainers = containersList.getContainers();

System.out.printin("Available containers: ");

for (KieContainerResource container : kieContainers) {
System.out.printin("\t" + container.getContainerld() + " (" + container.getReleaseld() + ")");
}
}

Creating and disposing KIE containers in KIE Server

106

You can use the createContainer and disposeContainer methods in the KieServicesClient client
to dispose and create KIE containers. In this example, when you dispose a container, the
ServiceResponse returns a Void response. When you create a container, the ServiceResponse
returns a KieContainerResource object.

Example request to dispose and re-create a KIE container

public void disposeAndCreateContainer() {
System.out.printin("== Disposing and creating containers ==");

// Retrieve list of KIE containers
List<KieContainerResource> kieContainers =
kieServicesClient.listContainers().getResult().getContainers();

if (kieContainers.size() == 0) {
System.out.printin("No containers available...");
return;

}

// Dispose KIE container
KieContainerResource container = kieContainers.get(0);
String containerld = container.getContainerld();

CHAPTER 22. KIE SERVER JAVA CLIENT API FOR KIE CONTAINERS AND BUSINESS ASSETS

ServiceResponse<Void> responseDispose = kieServicesClient.disposeContainer(containerld);
if (responseDispose.getType() == ResponseType.FAILURE) {
System.out.printin("Error disposing " + containerld + ". Message: ");
System.out.printin(responseDispose.getMsg());
return;
}
System.out.printin("Success Disposing container " + containerld);
System.out.printin("Trying to recreate the container...");

// Re-create KIE container
ServiceResponse<KieContainerResource> createResponse =
kieServicesClient.createContainer(containerld, container);
if(createResponse.getType() == ResponseType.FAILURE) {
System.out.printin("Error creating " + containerld + ". Message: ");
System.out.printin(responseDispose.getMsg());
return;

}

System.out.printin("Container recreated with success!");

}

Executing runtime commands in KIE Server

Red Hat Decision Manager supports runtime commands that you can send to KIE Server for asset-
related operations, such as inserting or retracting objects in a KIE session or firing all rules. The full
list of supported runtime commands is located in the org.drools.core.command.runtime package in
your Red Hat Decision Manager instance.

You can use the org.kie.api.command.KieCommands class to insert commands, and use
org.kie.api.KieServices.get().getCommands() to instantiate the KieCommands class. If you want
to add multiple commands, use the BatchExecutionCommand wrapper.

Example request to insert an object and fire all rules

import org.kie.api.command.Command;

import org.kie.api.command.KieCommands;
import org.kie.server.api.model.ServiceResponse;
import org.kie.server.client.RuleServicesClient;
import org.kie.server.client.KieServicesClient;
import org.kie.api.KieServices;

import java.util.Arrays;

public void executeCommands() {

String containerld = "hello";

System.out.printin("== Sending commands to the server ==");

RuleServicesClient rulesClient = kieServicesClient.getServicesClient(RuleServicesClient.class);
KieCommands commandsFactory = KieServices.Factory.get().getCommands();

Command<?> insert = commandsFactory.newlnsert("Some String OBJ");

Command<?> fireAllRules = commandsFactory.newFireAllRules();

Command<?> batchCommand = commandsFactory.newBatchExecution(Arrays.asList(insert,
fireAllIRules));

ServiceResponse<String> executeResponse = rulesClient.executeCommands(containerld,

107

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

batchCommand);

if(executeResponse.getType() == ResponseType.SUCCESS) {
System.out.printin("Commands executed with success! Response: ");
System.out.printin(executeResponse.getResult());

} else {
System.out.printin("Error executing rules. Message: ");
System.out.printin(executeResponse.getMsg());

NOTE

A conversation between a client and a specific KIE Server container in a clustered
environment is secured by a unique conversationID. The conversationlID is
transferred using the X-KIE-Conversationld REST header. If you update the
container, unset the previous conversationlD. Use
KieServiesClient.completeConversation() to unset the conversationID for Java
API.

108

CHAPTER 23. KIE SERVER AND KIE CONTAINER COMMANDS IN RED HAT DECISION MANAGER

CHAPTER 23. KIE SERVER AND KIE CONTAINER COMMANDS
IN RED HAT DECISION MANAGER

Red Hat Decision Manager supports server commands that you can send to KIE Server for server-
related or container-related operations, such as retrieving server information or creating or deleting a
container. The full list of supported KIE Server configuration commands is located in the
org.kie.server.api.commands package in your Red Hat Decision Manager instance.

In the KIE Server REST API, you use the org.Kie.server.api.commands commands as the request body
for POST requests to http:/SERVER:PORT/kie-server/services/rest/server/config. For more
information about using the KIE Server REST API, see Chapter 21, KIE Server REST API for KIE
containers and business assets.

In the KIE Server Java client API, you use the corresponding method in the parent KieServicesClient
Java client as an embedded API request in your Java application. All KIE Server commands are executed
by methods provided in the Java client API, so you do not need to embed the actual KIE Server

commands in your Java application. For more information about using the KIE Server Java client API,
see Chapter 22, KIE Server Java client API for KIE containers and business assets .

23.1. SAMPLE KIE SERVER AND KIE CONTAINER COMMANDS

The following are sample KIE Server commands that you can use with the KIE Server REST API or Java
client API for server-related or container-related operations in KIE Server:

® GetServerinfoCommand

e GetServerStateCommand
e CreateContainerCommand
® GetContainerinfoCommand
e ListContainersCommand

e (CallContainerCommand

o DisposeContainerCommand
® GetScannerinfoCommand
o UpdateScannerCommand
o UpdateReleaseldCommand

For the full list of supported KIE Server configuration and management commands, see the
org.kie.server.api.commands package in your Red Hat Decision Manager instance.

You can run KIE Server commands individually or together as a batch REST API request or batch Java
APl request:

Batch REST API request to create, call, and dispose a KIE container (JSON)

{

"commands": [

{

109

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

"create-container": {
"container": {

"status": "STARTED",

"container-id": "command-script-container",

"release-id": {
"version": "1.0",
"group-id": "com.redhat",
"artifact-id": "Project1"

}
b
{
"call-container™: {
"payload™ "{\n \"commands\" : [{\n \"fire-all-rules\" : {\n \"'max\":-1\n \"out-identifier\" :
nulhin -~ A\n } [\n}",
"container-id": "command-script-container”
}
b
{
"dispose-container": {
"container-id": "command-script-container”
}
}
]
}

Batch Java APl request to retrieve, dispose, and re-create a KIE container

public void disposeAndCreateContainer() {
System.out.printin("== Disposing and creating containers ==");

// Retrieve list of KIE containers
List<KieContainerResource> kieContainers =
kieServicesClient.listContainers().getResult().getContainers();

if (kieContainers.size() == 0) {
System.out.printin("No containers available...");
return;

}

// Dispose KIE container
KieContainerResource container = kieContainers.get(0);
String containerld = container.getContainerld();
ServiceResponse<Void> responseDispose = kieServicesClient.disposeContainer(containerld);
if (responseDispose.getType() == ResponseType.FAILURE) {
System.out.printin("Error disposing " + containerld + ". Message: ");
System.out.printin(responseDispose.getMsg());
return;
}
System.out.printin("Success Disposing container " + containerld);
System.out.printin("Trying to recreate the container...");

// Re-create KIE container

ServiceResponse<KieContainerResource> createResponse =
kieServicesClient.createContainer(containerld, container);

if(createResponse.getType() == ResponseType.FAILURE) {

110

CHAPTER 23. KIE SERVER AND KIE CONTAINER COMMANDS IN RED HAT DECISION MANAGER

System.out.printin("Error creating " + containerld + ". Message: ");
System.out.printin(responseDispose.getMsg());
return;

}

System.out.printin("Container recreated with success!");

}

Each command in this section includes a REST request body example (JSON) for the KIE Server REST
APl and an embedded method example from the KieServicesClient Java client for the KIE Server Java
client API.

GetServerlnfoCommand

Returns information about this KIE Server instance.

Example REST request body (JSON)

{

"commands” : [{
"get-server-info" : { }
}
}

Example Java client method
I KieServerinfo serverinfo = kieServicesClient.getServerInfo();

Example server response (JSON)

{
"response”; [
{
"type": "SUCCESS",
"msg": "Kie Server info",
"result": {
"kie-server-info™: {
"id": "default-kieserver",
"version": "7.11.0.Final-redhat-00001",
"name": "default-kieserver",
"location": "http://localhost:8080/kie-server/services/rest/server",
"capabilities": [
"KieServer",
"BRM",
"BPM",
"CaseMgmt",
"BPM-UI",
"BRP",
"DMN",
"Swagger"
1,
"messages”: [
{
"severity": "INFO",
"timestamp": {
"java.util.Date": 1538502533321

m

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

b

"content”: [

"Server KieServerlnfo{serverld='default-kieserver', version='7.11.0.Final-redhat-00001",
name='default-kieserver', location="http://localhost:8080/kie-server/services/rest/server’,
capabilities=[KieServer, BRM, BPM, CaseMgmt, BPM-UIl, BRP, DMN, Swagger],
messages=null}started successfully at Tue Oct 02 13:48:53 EDT 2018"

GetServerStateCommand

Returns information about the current state and configurations of this KIE Server instance.

Example REST request body (JSON)

{

"commands” : [{
"get-server-state" : { }

g
}

Example Java client method
I KieServerStatelnfo serverStatelnfo = kieServicesClient.getServerState();
Example server response (JSON)

{

"response”; [

{
"type": "SUCCESS",

"msg": "Successfully loaded server state for server id default-kieserver",

"result": {
"kie-server-state-info": {
"controller": [

"http://localhost:8080/business-central/rest/controller”
1,
"config": {
"config-items": [
{
"itemName": "org.kie.server.location",
"itemValue": "http://localhost:8080/kie-server/services/rest/server”,
"itemType": "java.lang.String"
b
{
"itemName": "org.kie.server.controller.user”,
"itemValue": "controllerUser",
"itemType": "java.lang.String"

b

12

CHAPTER 23. KIE SERVER AND KIE CONTAINER COMMANDS IN RED HAT DECISION MANAGER

{
"itemName": "org.kie.server.controller",
"itemValue": "http://localhost:8080/business-central/rest/controller”,
"itemType": "java.lang.String"
}
]
I3
"containers": [
{
"container-id": "employee-rostering",
"release-id": {
"group-id": "employeerostering",
"artifact-id": "employeerostering",
"version™": "1.0.0-SNAPSHOT"
b
"resolved-release-id": null,
"status": "STARTED",
"scanner": {
"status": "STOPPED",
"poll-interval": null
b
"config-items": [
{
"itemName": "KBase",
"itemValue": ",
"itemType": "BPM"
I3
{
"itemName": "KSession",
"itemValue": ",
"itemType": "BPM"
3
{
"itemName": "MergeMode",
"itemValue": "MERGE_COLLECTIONS",
"itemType": "BPM"
3
{
"itemName": "RuntimeStrategy”,
"itemValue": "SINGLETON",
"itemType": "BPM"
}
1,
"messages": [],
"container-alias": "employeerostering"

CreateContainerCommand

Creates a KIE container in the KIE Server.

13

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services
Table 23.1. Command attributes

Name

Description

Requirement
container

Map containing the container-id, release-id data Required
(group ID, artifact ID, version), status, and any

other components of the new KIE container

Example REST request body (JSON)

{
"commands” : [{
"create-container" : {
"container" : {
"status” : null,
"messages" :[],

"container-id" : "command-script-container",
"release-id" : {

"version" : "1.0",

"group-id" : "com.redhat",
"artifact-id" : "Project1”

b

"config-items" : []

Example Java client method

ServiceResponse<KieContainerResource> response =
kieServicesClient.createContainer("command-script-container", resource);

Example server response (JSON)

{
"response”; [

{
"type": "SUCCESS",

"msg": "Container command-script-container successfully deployed with module
com.redhat:Project1:1.0.",
"result": {
"kie-container": {
"container-id": "command-script-container”,
"release-id": {
"version" : "1.0",
"group-id" : "com.redhat",
"artifact-id" : "Project1”

b

"resolved-release-id": {
"version" : "1.0",

"group-id" : "com.redhat",
"artifact-id" : "Project1”

14

CHAPTER 23. KIE SERVER AND KIE CONTAINER COMMANDS IN RED HAT DECISION MANAGER

12
"status": "STARTED",

"scanner": {
"status": "DISPOSED",
"poll-interval": null
3
"config-items": [],
"messages": [
{
"severity": "INFO",
"timestamp": {
"java.util.Date": 1538762455510
b
"content”: [
"Container command-script-container successfully created with module
com.redhat:Project1:1.0."

]
}
],

"container-alias": null

GetContainerinfoCommand

Returns information about a specified KIE container in KIE Server.

Table 23.2. Command attributes

Name Description Requirement

container-id ID of the KIE container Required

Example REST request body (JSON)

{

"commands” : [{
"get-container-info" : {
"container-id" : "command-script-container"

}
}]
}

Example Java client method

ServiceResponse<KieContainerResource> response =
kieServicesClient.getContainerinfo("command-script-container");

Example server response (JSON)

115

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

{
"response": [
{
"type": "SUCCESS",
"msg": "Info for container command-script-container",
"result": {
"kie-container": {
"container-id": "command-script-container",
"release-id": {
"group-id": "com.redhat",
"artifact-id": "Project1",
"version™: "1.0"

}

esolved-release-id": {
"group-id": "com.redhat",
"artifact-id": "Project1",
"version": "1.0"

}
"status": "STARTED",
"scanner": {

"status": "DISPOSED",
"poll-interval": null

b

"config-items": [

1,

"container-alias": null

ListContainersCommand

Returns a list of KIE containers that have been created in this KIE Server instance.

Table 23.3. Command attributes

Name Description Requirement

kie-container-filter Optional map containing release-id-filter, Optional
container-status-filter, and any other KIE
container properties by which you want to filter
results

Example REST request body (JSON)

{

"commands” : [{
"list-containers” : {
"kie-container-filter" : {
"release-id-filter" : { },
"container-status-filter" : {

16

CHAPTER 23. KIE SERVER AND KIE CONTAINER COMMANDS IN RED HAT DECISION MANAGER

"accepted-status” : ["FAILED"]

Example Java client method

KieContainerResourceFilter filter = new KieContainerResourceFilter.Builder()
.status(KieContainerStatus.FAILED)
.build();

KieContainerResourceList containersList = kieServicesClient.listContainers(filter);
Example server response (JSON)

{
"response": [
{
"type": "SUCCESS",
"msg": "List of created containers”,
"result": {
"kie-containers": {
"kie-container": [
{
"container-id": "command-script-container",
"release-id": {
"group-id": "com.redhat",
"artifact-id": "Project1",
"version™: "1.0"

}

resolved-release-id": {
"group-id": "com.redhat",
"artifact-id": "Project1",
"version™: "1.0"
b
"status": "STARTED",
"scanner": {
"status": "STARTED",
"poll-interval”: 5000
b
"config-items": [
{
"itemName": "RuntimeStrategy”,
"itemValue": "SINGLETON",
"itemType": "java.lang.String"
}
{

"itemName": "MergeMode",
"itemValue": "MERGE_COLLECTIONS",
"itemType": "java.lang.String"

I3

{

"itemName": "KBase",

17

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

"itemValue": ",

"itemType": "java.lang.String"
I3
{

"itemName": "KSession",
"itemValue": ",
"itemType": "java.lang.String"
}
],
"messages": [
{
"severity": "INFO",
"timestamp": {
"java.util.Date": 1538504619749
b
"content": [
"Container command-script-container successfully created with module

com.redhat:Project1:1.0."

]
}
],

"container-alias": null

CallContainerCommand

Calls a KIE container and executes one or more runtime commands. For information about Red Hat
Decision Manager runtime commands, see Chapter 24, Runtime commands in Red Hat Decision
Manager.

Table 23.4. Command attributes

Name Description Requirement
container-id ID of the KIE container to be called Required
payload One or more commands in a Required

BatchExecutionCommand wrapper to be
executed on the KIE container

Example REST request body (JSON)

{

"commands” : [{
"call-container" : {
"payload" : "{\n \"lookup\" : \"defaultKieSession\",\n \"commands\" : [{\n \"fire-all-rules\" : {\n

\"max\" : -1,\n \"out-identifie\" : nul\n }7\n } \n}",
"container-id" : "command-script-container"

18

CHAPTER 23. KIE SERVER AND KIE CONTAINER COMMANDS IN RED HAT DECISION MANAGER

Example Java client method

ListcCommand<?>> commands = new ArrayList<Command<?>>();
BatchExecutionCommand batchExecution1 =

commandsFactory.newBatchExecution(commands, "defaultKieSession");
commands.add(commandsFactory.newFireAllRules());

ServiceResponse<ExecutionResults> responsel =
ruleClient.executeCommandsWithResults("command-script-container", batchExecution1);

Example server response (JSON)

{

"response”; [

{
"type": "SUCCESS",

"msg": "Container command-script-container successfully called.",
"result": "{\n \"results\" : [],\n \"facts\" : []\n}"

}
]
}

DisposeContainerCommand

Disposes a specified KIE container in the KIE Server.

Table 23.5. Command attributes

Name Description Requirement

container-id ID of the KIE container to be disposed Required

Example REST request body (JSON)

{

"commands” : [{
"dispose-container" : {
"container-id" : "command-script-container”

}
g
}

Example Java client method

I ServiceResponse<Void> response = kieServicesClient.disposeContainer("command-script-
container");

Example server response (JSON)

19

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

{
"response”; [
{
"type": "SUCCESS",
"msg": "Container command-script-container successfully disposed.”,
"result": null
}
]
}

GetScannerlnfoCommand

Returns information about the KIE scanner used for automatic updates in a specified KIE container, if
applicable.

Table 23.6. Command attributes

Name Description Requirement
container-id ID of the KIE container where the KIE scanner is Required
used

Example REST request body (JSON)

{

"commands” : [{
"get-scanner-info" : {
"container-id" : "command-script-container”
}
4
}

Example Java client method

ServiceResponse<KieScannerResource> response =
kieServicesClient.getScannerinfo("command-script-container");

Example server response (JSON)

{
"response”; [
{

"type": "SUCCESS",

"msg": "Scanner info successfully retrieved",

"result": {

"kie-scanner": {

"status": "DISPOSED",
"poll-interval": null

120

CHAPTER 23. KIE SERVER AND KIE CONTAINER COMMANDS IN RED HAT DECISION MANAGER

UpdateScannerCommand

Starts or stops a KIE scanner that controls polling for updated KIE container deployments.

NOTE
: Avoid using a KIE scanner with business processes. Using a KIE scanner with processes
can lead to unforeseen updates that can then cause errors in long-running processes
4 when changes are not compatible with running process instances.

Table 23.7. Command attributes

Name Description Requirement
container-id ID of the KIE container where the KIE scanner is Required
used
status Status to be set on the KIE scanner (STARTED, Required
STOPPED)
poll-interval Permitted polling duration in milliseconds Required only
when starting
scanner

Example REST request body (JSON)

{

"commands” : [{
"update-scanner" : {
"scanner" : {
"status" : "STARTED",
"poll-interval” : 10000
b
"container-id" : "command-script-container”
}
}
}

Example Java client method

KieScannerResource scannerResource = new KieScannerResource();
scannerResource.setPolllnterval(10000);
scannerResource.setStatus(KieScannerStatus. STARTED);

ServiceResponse<KieScannerResource> response =
kieServicesClient.updateScanner("command-script-container", scannerResource);

Example server response (JSON)

{

"response”; [

{

121

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

"type": "SUCCESS",
"msg": "Kie scanner successfully created.",
"result": {
"kie-scanner": {
"status": "STARTED",
"poll-interval": 10000

UpdateReleaseldCommand

Updates the release ID data (group ID, artifact ID, version) for a specified KIE container.

Table 23.8. Command attributes

Name Description Requirement
container-id ID of the KIE container to be updated Required
releaseld Updated GAV (group ID, artifact ID, version) data Required

to be applied to the KIE container

Example REST request body (JSON)

{

"commands” : [{
"update-release-id" : {
"releaseld" : {
"version" : "1.1",
"group-id" : "com.redhat",
"artifact-id" : "Project1”
b
"container-id" : "command-script-container”
}
4
}

Example Java client method

ServiceResponse<Releaseld> response = kieServicesClient.updateReleaseld("command-script-
container”, "com.redhat:Project1:1.1");

Example server response (JSON)

{

"response”; [

{
"type": "SUCCESS",

"msg": "Release id successfully updated",
"result": {

122

CHAPTER 23. KIE SERVER AND KIE CONTAINER COMMANDS IN RED HAT DECISION MANAGER

"release-id": {
"group-id": "com.redhat",
"artifact-id": "Project1",
"version™: "1.1"

123

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

CHAPTER 24. RUNTIME COMMANDS IN RED HAT DECISION
MANAGER

Red Hat Decision Manager supports runtime commands that you can send to KIE Server for asset-
related operations, such as executing all rules or inserting or retracting objects in a KIE session. The full
list of supported runtime commands is located in the org.drools.core.command.runtime package in
your Red Hat Decision Manager instance.

In the KIE Server REST API, you use the global org.drools.core.command.runtime commands or the
rule-specific org.drools.core.command.runtime.rule commands as the request body for POST
requests to http://SERVER:PORT/kie-
server/services/rest/server/containers/instances/{containerld}. For more information about using the
KIE Server REST API, see Chapter 21, KIE Server REST API for KIE containers and business assets .

In the KIE Server Java client API, you can embed these commands in your Java application along with
the relevant Java client. For example, for rule-related commands, you use the RuleServicesClient Java

client with the embedded commands. For more information about using the KIE Server Java client AP,
see Chapter 22, KIE Server Java client API for KIE containers and business assets .

24.1. SAMPLE RUNTIME COMMANDS IN RED HAT DECISION
MANAGER

The following are sample runtime commands that you can use with the KIE Server REST APl or Java
client API for asset-related operations in KIE Server:

e BatchExecutionCommand
¢ [nsertObjectCommand

® RetractCommand

e ModifyCommand

o GetObjectCommand

o GetObjectsCommand

® InsertElementsCommand
e FireAllRulesCommand

e QueryCommand

e SetGlobalCommand

e GetGlobalCommand

For the full list of supported runtime commands, see the org.drools.core.command.runtime package
in your Red Hat Decision Manager instance.

Each command in this section includes a REST request body example (JSON) for the KIE Server REST
APl and an embedded Java command example for the KIE Server Java client API. The Java examples

use an object org.drools.compiler.test.Person with the fields name (String) and age (Integer).

BatchExecutionCommand

124

CHAPTER 24. RUNTIME COMMANDS IN RED HAT DECISION MANAGER

Contains multiple commands to be executed together.

Table 24.1. Command attributes

Name Description Requirement
commands List of commands to be executed. Required
lookup Sets the KIE session ID on which the commands will ~ Required for
be executed. For stateless KIE sessions, this stateless KIE
attribute is required. For stateful KIE sessions, this session, optional
attribute is optional and if not specified, the default ~ for stateful KIE
KIE session is used. session

NOTE

KIE session IDs are in the kmodule.xml file of your Red Hat Decision Manager project.
To view or add a KIE session ID in Business Central to use with the lookup command
attribute, navigate to the relevant project in Business Central and go to project
Settings — KIE bases — KIE sessions. If no KIE bases exist, click Add KIE base— KIE
sessions to define the new KIE base and KIE sessions.

Example JSON request body

{

"lookup™: "ksession1",
"commands": [{
"insert": {
"object": {
"org.drools.compiler.test.Person": {
"name": "john",
"age": 25

}
2
{
"fire-all-rules™: {
"max": 10,
"out-identifier": "firedActivations"
}
}
]
}

Example Java command

InsertObjectCommand insertCommand = new InsertObjectCommand(new Person("john", 25));
FireAllRulesCommand fireCommand = new FireAllIRulesCommand();

BatchExecutionCommand batch = new
BatchExecutionCommandimpl(Arrays.asList(insertCommand, fireCommand), "ksession1");

125

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

Example server response (JSON)

{

"response”; [
{
"type": "SUCCESS",
"msg": "Container command-script-container successfully called.",
"result": {
"execution-results": {
"results™: [
{
"value": 0,
"key": "firedActivations"
}
1,

"facts": []

InsertObjectCommand

Inserts an object into the KIE session.

Table 24.2. Command attributes

Name Description Requirement
object The object to be inserted Required
out-identifier ID of the FactHandle created from the object Optional

insertion and added to the execution results

return-object Boolean to determine whether the object must be Optional
returned in the execution results (default: true)

entry-point Entry point for the insertion Optional

Example JSON request body

{

"commands": [{
"insert": {
"entry-point": "my stream”,
"object": {
"org.drools.compiler.test.Person™: {
"age": 25,
"name": "john"
}
b

"out-identifier": "john",

126

CHAPTER 24. RUNTIME COMMANDS IN RED HAT DECISION MANAGER

"return-object": false
}
}
]
}

Example Java command

Command insertObjectCommand =
CommandFactory.newlnsert(new Person("john", 25), "john", false, null);

ksession.execute(insertObjectCommand);
Example server response (JSON)

{
"response”; [
{
"type": "SUCCESS",
"msg": "Container command-script-container successfully called.",
"result": {
"execution-results": {
"results™: [],
"facts": [
{
"value": {
"org.drools.core.common.DefaultFactHandle": {
"external-form™: "0:4:436792766:-
2127720265:4:DEFAULT:NON_TRAIT ;java.util.LinkedHashMap"
}
}

key": "john"

RetractCommand

Retracts an object from the KIE session.

Table 24.3. Command attributes

Name Description Requirement
fact-handle The FactHandle associated with the object to be Required
retracted

Example JSON request body

127

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

{

"commands": [{
"retract": {
"fact-handle": "0:4:436792766:-
2127720265:4:DEFAULT:NON_TRAIT:java.util.LinkedHashMap"

}
}
]
}

Example Java command: Use FactHandleFromString

RetractCommand retractCommand = new RetractCommand();
retractCommand.setFactHandleFromString("123:234:345:456:567");

Example Java command: Use FactHandle from inserted object
I RetractCommand retractCommand = new RetractCommand(factHandle);

Example server response (JSON)

{

"response”: [

{
"type": "SUCCESS",

"msg": "Container employee-rostering successfully called.",
"result": {
"execution-results": {
"results™: [],
"facts": []

ModifyCommand

Modifies a previously inserted object in the KIE session.

Table 24.4. Command attributes

Name Description Requirement

fact-handle The FactHandle associated with the object to be Required
modified

setters List of setters for object modifications Required

Example JSON request body

|

128

CHAPTER 24. RUNTIME COMMANDS IN RED HAT DECISION MANAGER

"commands": [{
"modify": {
"fact-handle": "0:4:436792766:-
2127720265:4:DEFAULT:NON_TRAIT:java.util.LinkedHashMap",
"setters": {
"accessor": "age",
"value": 25

Example Java command

ModifyCommand modifyCommand = new ModifyCommand(factHandle);

List<Setter> setters = new ArrayList<Setter>();
setters.add(new Setterlmpl("age”, "25"));

modifyCommand.setSetters(setters);
Example server response (JSON)

{
"response": [
{

"type": "SUCCESS",

"msg": "Container employee-rostering successfully called.",

"result": {

"execution-results": {

"results™: [],
"facts": []

GetObjectCommand

Retrieves an object from a KIE session.

Table 24.5. Command attributes

Name Description Requirement

fact-handle The FactHandle associated with the object to be Required
retrieved

out-identifier ID of the FactHandle created from the object Optional

insertion and added to the execution results

129

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

Example JSON request body

{

"commands": [{
"get-object": {
"fact-handle": "0:4:436792766:-
2127720265:4:DEFAULT:NON_TRAIT:java.util.LinkedHashMap",
"out-identifier": "john"
}
}
]
}

Example Java command

GetObjectCommand getObjectCommand = new GetObjectCommand();
getObjectCommand.setFactHandleFromString("123:234:345:456:567");
getObjectCommand.setOutldentifier("john");

Example server response (JSON)

{
"response": [
{
"type": "SUCCESS",
"msg": "Container command-script-container successfully called.",
"result": {
"execution-results": {
"results™: [
{
"value": null,
"key": "john"
}
]

"’acts": 1

GetObjectsCommand

Retrieves all objects from the KIE session as a collection.

Table 24.6. Command attributes

Name Description Requirement
object-filter Filter for the objects returned from the KIE session Optional
out-identifier Identifier to be used in the execution results Optional

130

CHAPTER 24. RUNTIME COMMANDS IN RED HAT DECISION MANAGER

Example JSON request body

{

"commands": [{
"get-objects": {
"out-identifier": "objects"
}
}
]
}

Example Java command

GetObjectsCommand getObjectsCommand = new GetObjectsCommand();
getObjectsCommand.setOutldentifier("objects");

Example server response (JSON)

{

"response”; [
{
"type": "SUCCESS",
"msg": "Container command-script-container successfully called.",
"result": {
"execution-results": {
"results™: [

{

"value": [
{

"org.apache.xerces.dom.ElementNSImpl": "<?xml version=\"1.0\" encoding=\"UTF-
16\"?>\n<object xmlIns:xsi=\"http://www.w3.0rg/2001/XMLSchema-instance\" xsi:type=\"person\">
<age>25</age><name>john</name>\n <\object>"

}
{

"org.drools.compiler.test.Person": {
"name": "john",
"age": 25
}
}
]

}

key": "objects"

]

"’acts": 1

InsertElementsCommand

Inserts a list of objects into the KIE session.

Table 24.7. Command attributes

131

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

Name Description Requirement

objects The list of objects to be inserted into the KIE Required
session

out-identifier ID of the FactHandle created from the object Optional

insertion and added to the execution results

return-object Boolean to determine whether the object must be Optional
returned in the execution results. Default value:
true.

entry-point Entry point for the insertion Optional

Example JSON request body

{

"commands": [{
"insert-elements™: {
"objects": [
{
"containedObject": {
"@class": "org.drools.compiler.test.Person”,

"age": 25,
"name": "john"
}
b
{
"containedObject": {
"@class": "Person",
"age": 35,
"name": "sarah"
}
}
]
}
}

Example Java command

List<Object> objects = new ArrayList<Object>();
objects.add(new Person("john", 25));
objects.add(new Person("sarah", 35));

Command insertElementsCommand = CommandFactory.newlnsertElements(objects);

Example server response (JSON)

I (

132

CHAPTER 24. RUNTIME COMMANDS IN RED HAT DECISION MANAGER

"response”; [
{
"type": "SUCCESS",
"msg": "Container command-script-container successfully called.",
"result": {
"execution-results": {
"results™: [],
"facts": [
{
"value": {
"org.drools.core.common.DefaultFactHandle": {
"external-form™: "0:4:436792766:-
2127720265:4:DEFAULT:NON_TRAIT:java.util.LinkedHashMap"

}
b
"key": "john"
b
{
"value": {

"org.drools.core.common.DefaultFactHandle": {
"external-form": "0:4:436792766:-
2127720266:4:DEFAULT:NON_TRAIT:java.util.LinkedHashMap"

}
}

"key": "sarah"

FireAllIRulesCommand

Executes all rules in the KIE session.

Table 24.8. Command attributes

Name Description Requirement

max Maximum number of rules to be executed. The Optional
default is =1 and does not put any restriction on
execution.

out-identifier ID to be used for retrieving the number of fired Optional

rules in execution results.

agenda-filter Agenda Filter to be used for rule execution. Optional

Example JSON request body

{
I "commands” : [{

133

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

"fire-all-rules™: {
"max": 10,
"out-identifier": "firedActivations"

Example Java command

FireAllRulesCommand fireAllRulesCommand = new FireAllIRulesCommand();
fireAllIRulesCommand.setMax(10);
fireAlIRulesCommand.setOutldentifier("firedActivations");

Example server response (JSON)

{
"response": [
{

"type": "SUCCESS",

"msg": "Container command-script-container successfully called.",

"result": {

"execution-results": {
"results™: [
{
"value": 0,
"key": "firedActivations"
}
1,
"facts": []
}
}
}
]
}
QueryCommand

Executes a query defined in the KIE base.

Table 24.9. Command attributes

Name Description Requirement
name Query name. Required
out-identifier ID of the query results. The query results are added ~ Optional

in the execution results with this identifier.

arguments List of objects to be passed as a query parameter. Optional

Example JSON request body

134

CHAPTER 24. RUNTIME COMMANDS IN RED HAT DECISION MANAGER

{
"commands": [
{
"query": {
"name": "persons”,
"arguments": [],
"out-identifier": "persons”

Example Java command

QueryCommand queryCommand = new QueryCommand();
queryCommand.setName("persons");
queryCommand.setOutldentifier("persons");

Example server response (JSON)

{
"type": "SUCCESS",

"msg": "Container stateful-session successfully called.",
"result": {
"execution-results": {
"results™: [
{
"value": {
"org.drools.core.runtime.rule.impl.FlatQueryResults": {
"idFactHandleMaps": {
"type": "LIST",
"componentType": null,
"element": [
{
"type": "MAP",
"componentType": null,
"element": [
{
"value": {
"org.drools.core.common.DisconnectedFactHandle": {
"id": 1,
"identityHashCode™": 1809949690,
"objectHashCode": 1809949690,
"recency": 1,
"object": {
"org.kie.server.testing.Person": {
"fullname": "John Doe",
"age": 47
}
b
"entryPointld": "DEFAULT",
"traitType": "NON_TRAIT",
"external-form™:
"0:1:1809949690:1809949690:1:DEFAULT:NON_TRAIT:org.kie.server.testing.Person"

}

135

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

!
)
)
)
]

ey": "$person”

b
"idResultMaps": {
"type": "LIST",
"componentType": null,
"element": [
{
"type": "MAP",
"componentType": null,
"element": [
{
"value": {
"org.kie.server.testing.Person": {
"fullname": "John Doe",
"age": 47
}
}

ey": "$person”

}
]
},
"identifiers": {
"type": "SET",
"componentType": null,
"element": [
"$person”
]
}
}
}

}

ey": "persons”

1,
"facts": []
}

}
}

SetGlobalCommand

Sets an object to a global state.

Table 24.10. Command attributes

Name Description

Requirement

identifier ID of the global variable defined in the KIE base Required

136

CHAPTER 24. RUNTIME COMMANDS IN RED HAT DECISION MANAGER

Name Description Requirement
object Object to be set into the global variable Optional
out Boolean to exclude the global variable you set from Optional

the execution results

out-identifier ID of the global execution result Optional

Example JSON request body

{
"commands": |
{

"set-global": {
"identifier": "helper",
"object": {

"org.kie.server.testing.Person": {
"fullname": "kyle",
"age": 30
}
b
"out-identifier": "output"
}
}
]
}

Example Java command

SetGlobalCommand setGlobalCommand = new SetGlobalCommand();
setGlobalCommand.setldentifier("helper");
setGlobalCommand.setObject(new Person("kyle", 30));
setGlobalCommand.setOut(true);
setGlobalCommand.setOutldentifier("output");

Example server response (JSON)

{
"type": "SUCCESS",

"msg": "Container stateful-session successfully called.",
"result": {
"execution-results": {
"results™: [
{
"value": {
"org.kie.server.testing.Person": {
"fullname": "kyle",
"age": 30
}

1,
"key": "output”

137

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

}
1,

"facts": []

}
}
}

GetGlobalCommand

Retrieves a previously defined global object.

Table 24.11. Command attributes

Name Description Requirement
identifier ID of the global variable defined in the KIE base Required
out-identifier ID to be used in the execution results Optional

Example JSON request body

{
"commands": [{
"get-global": {
"identifier": "helper",
"out-identifier": "helperOutput”
}
}
]
}

Example Java command

GetGlobalCommand getGlobalCommand = new GetGlobalCommand();
getGlobalCommand.setldentifier("helper");
getGlobalCommand.setOutldentifier("helperOutput");

Example server response (JSON)

{
"response”; [
{
"type": "SUCCESS",
"msg": "Container command-script-container successfully called.",

"result": {
"execution-results": {
"results™: [
{
"value": null,
"key": "helperOutput”
}
1,
"facts": []

138

CHAPTER 24. RUNTIME COMMANDS IN RED HAT DECISION MANAGER

139

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

CHAPTER 25. PROCESS AUTOMATION MANAGER
CONTROLLER REST API FOR KIE SERVER TEMPLATES AND
INSTANCES

Red Hat Decision Manager provides a Process Automation Manager controller REST API that you can
use to interact with your KIE Server templates (configurations), KIE Server instances (remote servers),
and associated KIE containers (deployment units) in Red Hat Decision Manager without using the
Business Central user interface. This API support enables you to maintain your Red Hat Decision
Manager servers and resources more efficiently and optimize your integration and development with
Red Hat Decision Manager.

With the Process Automation Manager controller REST API, you can perform the following actions:
® Retrieve information about KIE Server templates, instances, and associated KIE containers
® Update, start, or stop KIE containers associated with KIE Server templates and instances
® Create, update, or delete KIE Server templates
® Create, update, or delete KIE Server instances
Requests to the Process Automation Manager controller REST API require the following components:

Authentication

The Process Automation Manager controller REST API requires HTTP Basic authentication or token-
based authentication for the following user roles, depending on controller type:

e rest-all user role if you installed Business Central and you want to use the built-in Process
Automation Manager controller

e Kie-server user role if you installed the headless Process Automation Manager controller
separately from Business Central

To view configured user roles for your Red Hat Decision Manager distribution, navigate to
~/$SERVER_HOME/standalone/configuration/application-roles.properties and ~/application-
users.properties.

To add a user with the kie-server role or the rest-all role or both, navigate to
~/$SERVER_HOME/bin and run the following command with the role or roles specified:

$./bin/jboss-cli.sh --commands="embed-server --std-out=echo,/subsystem=elytron/filesystem-
realm=ApplicationRealm:add-identity(identity=<USERNAME>),/subsystem=elytron/filesystem-
realm=ApplicationRealm:set-password(identity=<USERNAME>, clear=
{password='<PASSWORD>"),/subsystem=elytron/filesystem-realm=ApplicationRealm:add-
identity-attribute(identity=<USERNAME>, name=role, value=[kie-server','rest-all'])"

To configure the kie-server or rest-all user with Process Automation Manager controller access,
navigate to ~/$SERVER_HOME/standalone/configuration/standalone-full.xml, uncomment the
org.kie.server properties (if applicable), and add the controller user login credentials and controller
location (if needed):

<property name="org.kie.server.location" value="http://localhost:8080/kie-
server/services/rest/server"/>
<property name="org.kie.server.controller" value="http://localhost:8080/business-

140

5. PROCESS AUTOMATION MANAGER CONTROLLER REST API FOR KIE SERVER TEMPLATES AND INSTANCES

central/rest/controller"/>

<property name="org.kie.server.controller.user" value="baAdmin"/>
<property name="org.kie.server.controller.pwd" value="password@1"/>
<property name="org.kie.server.id" value="default-kieserver"/>

For more information about user roles and Red Hat Decision Manager installation options, see
Planning a Red Hat Decision Manager installation .

HTTP headers

The Process Automation Manager controller REST API requires the following HTTP headers for API
requests:

e Accept: Data format accepted by your requesting client:
o application/json (JSON)
o application/xml (XML, for JAXB)

e Content-Type: Data format of your POST or PUT API request data:
o application/json (JSON)

o application/xml (XML, for JAXB)

HTTP methods
The Process Automation Manager controller REST API supports the following HTTP methods for
APl requests:

® GET: Retrieves specified information from a specified resource endpoint
® POST: Updates a resource or resource instance
® PUT: Creates a resource or resource instance

e DELETE: Deletes a resource or resource instance

Base URL

The base URL for Process Automation Manager controller REST API requests is
http://SERVER:PORT/CONTROLLER/rest/, such as http://localhost:8080/business-central/rest/ if
you are using the Process Automation Manager controller built in to Business Central.

Endpoints

Process Automation Manager controller REST API endpoints, such as
/controller/management/servers/{serverTemplateld} for a specified KIE Server template, are the
URIs that you append to the Process Automation Manager controller REST API base URL to access
the corresponding server resource or type of server resource in Red Hat Decision Manager.

Example request URL for /controller/management/servers/{serverTemplateld} endpoint

http://localhost:8080/business-central/rest/controller/management/servers/default-kieserver

Request parameters and request data

Some Process Automation Manager controller REST API requests require specific parameters in the
request URL path to identify or filter specific resources and to perform specific actions. You can
append URL parameters to the endpoint in the format 2<PARAM>=<VALUE>&<PARAM>=

141

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

<VALUE>.

Example DELETE request URL with parameters

http://localhost:8080/business-central/rest/controller/server/new-kieserver-instance?
location=http://localhost:8080/kie-server/services/rest/server

HTTP POST and PUT requests may additionally require a request body or file with data to
accompany the request.

Example PUT request URL and JSON request body data

http://localhost:8080/business-central/rest/controller/management/servers/new-kieserver

"server-id": "new-kieserver",
"server-name": "new-kieserver",
"container-specs": [],
"server-config": {},
"capabilities": [

"RULE",

"PROCESS",

"PLANNING"

]
}

25.1. SENDING REQUESTS WITH THE PROCESS AUTOMATION
MANAGER CONTROLLER REST API USING A REST CLIENT OR CURL
UTILITY

The Process Automation Manager controller REST APl enables you to interact with your KIE Server
templates (configurations), KIE Server instances (remote servers), and associated KIE containers
(deployment units) in Red Hat Decision Manager without using the Business Central user interface. You
can send Process Automation Manager controller REST API requests using any REST client or curl
utility.

Prerequisites

® KI|E Server isinstalled and running.

® The Process Automation Manager controller or headless Process Automation Manager
controller is installed and running.

® You have rest-all user role access to the Process Automation Manager controller if you installed
Business Central, or kie-server user role access to the headless Process Automation Manager
controller installed separately from Business Central.

Procedure

1. ldentify the relevant API endpoint to which you want to send a request, such as [GET]
/controller/management/servers to retrieve KIE Server templates from the Process
Automation Manager controller.

142

5. PROCESS AUTOMATION MANAGER CONTROLLER REST API FOR KIE SERVER TEMPLATES AND INSTANCES

2. Ina REST client or curl utility, enter the following components for a GET request to
controller/management/servers. Adjust any request details according to your use case.
For REST client:

Authentication: Enter the user name and password of the Process Automation Manager
controller user with the rest-all role or the headless Process Automation Manager controller
user with the kie-server role.

HTTP Headers: Set the following header:
o Accept: application/json
HTTP method: Set to GET.

URL: Enter the Process Automation Manager controller REST API base URL and endpoint,
such as http://localhost:8080/business-central/rest/controller/management/servers.

For curl utility:

-u: Enter the user name and password of the Process Automation Manager controller user
with the rest-all role or the headless Process Automation Manager controller user with the
kie-server role.

-H: Set the following header:
o Accept: application/json
-X: Set to GET.

URL: Enter the Process Automation Manager controller REST APl base URL and endpoint,
such as http://localhost:8080/business-central/rest/controller/management/servers.

curl -u 'baAdmin:password@1' -H "Accept: application/json" -X GET
"http://localhost:8080/business-central/rest/controller/management/servers”

3. Execute the request and review the Process Automation Manager controller response.
Example server response (JSON):

{

"server-template": [
{
"server-id": "default-kieserver",
"server-name": "default-kieserver",
"container-specs": [
{
"container-id": "employeerostering_1.0.0-SNAPSHOT",
"container-name": "employeerostering",
"server-template-key": {
"server-id": "default-kieserver",
"server-name": "default-kieserver"
b
"release-id": {
"group-id": "employeerostering",
"artifact-id": "employeerostering",
"version™": "1.0.0-SNAPSHOT"
3

143

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

"configuration™: {
"RULE": {
"org.kie.server.controller.api.model.spec.RuleConfig": {
"pollinterval™: null,
"scannerStatus": "STOPPED"
}

|
"PROCESS": {

"org.kie.server.controller.api.model.spec.ProcessConfig": {
"runtimeStrategy": "SINGLETON",

"kbase": ",
"ksession": ",
"mergeMode": "MERGE_COLLECTIONS"
}
}
|3
"status": "STARTED"
|3
{

"container-id": "mortgage-process_1.0.0-SNAPSHOT",
"container-name": "mortgage-process”,
"server-template-key": {
"server-id": "default-kieserver",
"server-name": "default-kieserver"
3
"release-id": {
"group-id": "mortgage-process",
"artifact-id": "mortgage-process”,
"version™": "1.0.0-SNAPSHOT"
b
"configuration™: {
"RULE": {
"org.kie.server.controller.api.model.spec.RuleConfig": {
"pollinterval™: null,
"scannerStatus": "STOPPED"
}
b
"PROCESS": {

"org.kie.server.controller.api.model.spec.ProcessConfig": {
"runtimeStrategy": "PER_PROCESS_INSTANCE",

"kbase": ",
"ksession": ",
"mergeMode": "MERGE_COLLECTIONS"
}
}
|3
"status": "STARTED"
}
1,

"server-config": {},
"server-instances": [

{

"server-instance-id": "default-kieserver-instance@localhost:8080",
"server-name": "default-kieserver-instance@localhost:8080",
"server-template-id": "default-kieserver",

"server-url": "http://localhost:8080/kie-server/services/rest/server"”

144

5. PROCESS AUTOMATION MANAGER CONTROLLER REST API FOR KIE SERVER TEMPLATES AND INSTANCES

}
1,
"capabilities": [
"RULE",
"PROCESS",
"PLANNING"

]
}
]
}

4. Inyour REST client or curl utility, send another APl request with the following components for a
PUT request to /controller/management/servers/{serverTemplateld} to create a new KIE
Server template. Adjust any request details according to your use case.

For REST client:

® Authentication: Enter the user name and password of the Process Automation Manager
controller user with the rest-all role or the headless Process Automation Manager controller
user with the kie-server role.

® HTTP Headers: Set the following headers:
o Accept: application/json
o Content-Type: application/json

® HTTP method: Set to PUT.

® URL: Enter the Process Automation Manager controller REST APl base URL and endpoint,
such as http://localhost:8080/business-
central/rest/controller/management/servers/new-kieserver.

® Request body: Add a JSON request body with the configurations for the new KIE Server
template:

"server-id": "new-kieserver",
"server-name": "new-kieserver",
"container-specs": [1,
"server-config": {},
"capabilities": [

"RULE",

"PROCESS",

"PLANNING"

]
}

For curl utility:
® -u: Enter the user name and password of the Process Automation Manager controller user
with the rest-all role or the headless Process Automation Manager controller user with the

kie-server role.

® -H:Set the following headers:

o Accept: application/json

145

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

o Content-Type: application/json
e -X:Setto PUT.

® URL: Enter the Process Automation Manager controller REST APl base URL and endpoint,
such as http://localhost:8080/business-
central/rest/controller/management/servers/new-kieserver.

® -d: Add a JSON request body or file (@file.json) with the configurations for the new KIE
Server template:

curl -u 'baAdmin:password@1' -H "Accept: application/json" -H "Content-Type:
application/json" -X PUT "http://localhost:8080/business-
central/rest/controller/management/servers/new-kieserver" -d "{ \"server-id\": \"new-
kieserver\", \"server-name\": \"new-kieserver\", \"container-specs\": [], \"server-config\": {},
\"capabilities\": [\"RULE\", \"PROCESS\", \"PLANNING\"]}"

curl -u 'baAdmin:password@1' -H "Accept: application/json" -H "Content-Type:
application/json" -X PUT "http://localhost:8080/business-
central/rest/controller/management/servers/new-kieserver" -d @my-server-template-
configs.json

5. Execute the request and confirm the successful Process Automation Manager controller
response.
If you encounter request errors, review the returned error code messages and adjust your
request accordingly.

25.2. SENDING REQUESTS WITH THE PROCESS AUTOMATION
MANAGER CONTROLLER REST API USING THE SWAGGER
INTERFACE

The Process Automation Manager controller REST APl supports a Swagger web interface that you can
use instead of a standalone REST client or curl utility to interact with your KIE Server templates,
instances, and associated KIE containers in Red Hat Decision Manager without using the Business
Central user interface.

NOTE

By default, the Swagger web interface for the Process Automation Manager controller is
enabled by the org.kie.workbench.swagger.disabled=false system property. To
disable the Swagger web interface for the Process Automation Manager controller, set
this system property to true.

Prerequisites

® The Process Automation Manager controller is installed and running.

® You have rest-all user role access to the Process Automation Manager controller if you installed
Business Central, or kie-server user role access to the headless Process Automation Manager
controller installed separately from Business Central.

Procedure

146

5. PROCESS AUTOMATION MANAGER CONTROLLER REST API FOR KIE SERVER TEMPLATES AND INSTANCES

1. In a web browser, navigate to http://SERVER:PORT/CONTROLLER/docs, such as
http://localhost:8080/business-central/docs, and log in with the user name and password of
the Process Automation Manager controller user with the rest-all role or the headless Process
Automation Manager controller user with the kie-server role.

NOTE

If you are using the Process Automation Manager controller built in to Business
Central, the Swagger page associated with the Process Automation Manager
controller is identified as the "Business Central API" for Business Central REST
services. If you are using the headless Process Automation Manager controller
without Business Central, the Swagger page associated with the headless
Process Automation Manager controller is identified as the "Controller API". In
both cases, the Process Automation Manager controller REST API endpoints are
the same.

2. In the Swagger page, select the relevant API endpoint to which you want to send a request, such
as Controller :: KIE Server templates and KIE containers»> [GET]
/controller/management/servers to retrieve KIE Server templates from the Process
Automation Manager controller.

3. Click Try it outand provide any optional parameters by which you want to filter results, if
applicable.

4. In the Response content typedrop-down menu, select the desired format of the server
response, such as application/json for JSON format.

5. Click Execute and review the KIE Server response.
Example server response (JSON):

{

"server-template": [
{
"server-id": "default-kieserver",
"server-name": "default-kieserver",
"container-specs": [
{
"container-id": "employeerostering_1.0.0-SNAPSHOT",
"container-name": "employeerostering”,
"server-template-key": {
"server-id": "default-kieserver",
"server-name": "default-kieserver"
I3
"release-id": {
"group-id": "employeerostering",
"artifact-id": "employeerostering",
"version™": "1.0.0-SNAPSHOT"
3
"configuration™: {
"RULE": {
"org.kie.server.controller.api.model.spec.RuleConfig": {
"pollinterval™: null,
"scannerStatus": "STOPPED"

}
b

147

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

"PROCESS": {

"org.kie.server.controller.api.model.spec.ProcessConfig": {

"runtimeStrategy": "SINGLETON",
llkbase": llll’

"ksession": ",

"mergeMode": "MERGE_COLLECTIONS"
}

}
b
"status": "STARTED"
b
{

"container-id": "mortgage-process_1.0.0-SNAPSHOT",
"container-name": "mortgage-process”,
"server-template-key": {

"server-id": "default-kieserver",
"server-name": "default-kieserver"

|3
"release-id": {
"group-id": "mortgage-process”,
"artifact-id": "mortgage-process”,

"version": "1.0.0-SNAPSHOT"
1,

"configuration™: {
"RULE": {
"org.kie.server.controller.api.model.spec.RuleConfig": {
"pollinterval”: null,

"scannerStatus": "STOPPED"
}

1
"PROCESS": {

"org.kie.server.controller.api.model.spec.ProcessConfig": {

"runtimeStrategy": "PER_PROCESS_INSTANCE",
llkbasell: "ll’

"ksession": ",

"mergeMode": "MERGE_COLLECTIONS"
}
}
}
"status": "STARTED"
}

1,

"server-config": {},

"server-instances": [

{

"server-instance-id": "default-kieserver-instance@localhost:8080",
"server-name": "default-kieserver-instance@localhost:8080",
"server-template-id": "default-kieserver",

"server-url": "http://localhost:8080/kie-server/services/rest/server"”
}

1,
"capabilities": [
"RULE",
"PROCESS",
"PLANNING"
]

148

5. PROCESS AUTOMATION MANAGER CONTROLLER REST API FOR KIE SERVER TEMPLATES AND INSTANCES

6. In the Swagger page, navigate to the Controller :: KIE Server templates and KIE containers~
[GET] /controller/management/servers/{serverTemplateld} endpoint to send another
request to create a new KIE Server template. Adjust any request details according to your use
case.

7. Click Try it outand enter the following components for the request:

e serverTemplateld: Enter the ID of the new KIE Server template, such as new-kieserver.

® body: Set the Parameter content typeto the desired request body format, such as
application/json for JSON format, and add a request body with the configurations for the
new KIE Server template:

"server-id": "new-kieserver",
"server-name": "new-kieserver",
"container-specs": [],
"server-config": {},
"capabilities": [

"RULE",

"PROCESS",

"PLANNING"

]
}

8. In the Response content typedrop-down menu, select the desired format of the server
response, such as application/json for JSON format.

9. Click Execute and confirm the successful Process Automation Manager controller response.
If you encounter request errors, review the returned error code messages and adjust your
request accordingly.

25.3. SUPPORTED PROCESS AUTOMATION MANAGER CONTROLLER
REST API ENDPOINTS

The Process Automation Manager controller REST API provides endpoints for interacting with KIE
Server templates (configurations), KIE Server instances (remote servers), and associated KIE containers
(deployment units). The Process Automation Manager controller REST API base URL is
http://SERVER:PORT/CONTROLLER/rest/. All requests require HTTP Basic authentication or token-
based authentication for the rest-all user role if you installed Business Central and you want to use the
built-in Process Automation Manager controller, or the kie-server user role if you installed the headless
Process Automation Manager controller separately from Business Central.

For the full list of Process Automation Manager controller REST APl endpoints and descriptions, use
one of the following resources:

® Controller REST API on the jBPM Documentation page (static)
® Swagger Ul for the Process Automation Manager controller REST API at

http://SERVER:PORT/CONTROLLER/docs (dynamic, requires running Process Automation
Manager controller)

149

http://jbpm.org/learn/documentation.html

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

NOTE

By default, the Swagger web interface for the Process Automation Manager
controller is enabled by the org.kie.workbench.swagger.disabled=false system
property. To disable the Swagger web interface for the Process Automation
Manager controller, set this system property to true.

If you are using the Process Automation Manager controller built in to Business
Central, the Swagger page associated with the Process Automation Manager
controller is identified as the "Business Central API" for Business Central REST
services. If you are using the headless Process Automation Manager controller
without Business Central, the Swagger page associated with the headless
Process Automation Manager controller is identified as the "Controller API". In
both cases, the Process Automation Manager controller REST API endpoints are
the same.

150

=SS AUTOMATION MANAGER CONTROLLER JAVA CLIENT API FOR KIE SERVER TEMPLATES AND INSTANCES

CHAPTER 26. PROCESS AUTOMATION MANAGER
CONTROLLER JAVA CLIENT API FORKIE SERVER
TEMPLATES AND INSTANCES

Red Hat Decision Manager provides a Process Automation Manager controller Java client API that
enables you to connect to the Process Automation Manager controller using REST or WebSocket
protocol from your Java client application. You can use the Process Automation Manager controller
Java client API as an alternative to the Process Automation Manager controller REST API to interact
with your KIE Server templates (configurations), KIE Server instances (remote servers), and associated
KIE containers (deployment units) in Red Hat Decision Manager without using the Business Central user
interface. This APl support enables you to maintain your Red Hat Decision Manager servers and
resources more efficiently and optimize your integration and development with Red Hat Decision
Manager.

With the Process Automation Manager controller Java client API, you can perform the following actions
also supported by the Process Automation Manager controller REST API:

® Retrieve information about KIE Server templates, instances, and associated KIE containers
® Update, start, or stop KIE containers associated with KIE Server templates and instances
® Create, update, or delete KIE Server templates
® Create, update, or delete KIE Server instances
Process Automation Manager controller Java client API requests require the following components:

Authentication

The Process Automation Manager controller Java client APl requires HTTP Basic authentication for
the following user roles, depending on controller type:

e rest-all user role if you installed Business Central and you want to use the built-in Process
Automation Manager controller

e Kie-server user role if you installed the headless Process Automation Manager controller
separately from Business Central

To view configured user roles for your Red Hat Decision Manager distribution, navigate to
~/$SERVER_HOME/standalone/configuration/application-roles.properties and ~/application-
users.properties.

To add a user with the kie-server role or the rest-all role or both (assuming a Keystore is already
set), navigate to ~/$SERVER_HOME/bin and run the following command with the role or roles
specified:

$./bin/jboss-cli.sh --commands="embed-server --std-out=echo,/subsystem=elytron/filesystem-
realm=ApplicationRealm:add-identity(identity=<USERNAME>),/subsystem=elytron/filesystem-
realm=ApplicationRealm:set-password(identity=<USERNAME>, clear=
{password='<PASSWORD>"),/subsystem=elytron/filesystem-realm=ApplicationRealm:add-
identity-attribute(identity=<USERNAME>, name=role, value=['rest-all','kie-server’)"

In case the Keystore is not set, then execute the following command to create a Keystore:

I $ keytool -importpassword -keystore

151

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

$SERVER_HOME/standalone/configuration/kie_keystore.jceks -keypass
<SECRETKEYPASSWORD> -alias kieserver -storepass <SECRETSTOREPASSWORD> -
storetype JCEKS

Also, add the following properties to ~/$SERVER_HOME/standalone/configuration/standalone-
full.xml:

<property name="kie.keystore.keyStoreURL"
value="file:///data/jboss/rhpam780/standalone/configuration/kie_keystore.jceks"/>

<property name="kie.keystore.keyStorePwd" value="<SECRETSTOREPASSWORD>"/>

<property name="kie.keystore.key.server.alias" value="kieserver"/>

<property name="kie.keystore.key.server.pwd" value="<SECRETKEYPASSWORD>"/>

<property name="kie.keystore.key.ctrl.alias" value="kieserver"/>

<property name="kie.keystore.key.ctrl.pwd" value="<SECRETKEYPASSWORD>"/>

To configure the kie-server or rest-all user with Process Automation Manager controller access,
navigate to ~/$SERVER_HOME/standalone/configuration/standalone-full.xml, uncomment the
org.kie.server properties (if applicable), and add the controller user login credentials and controller
location (if needed):

<property name="org.kie.server.location" value="http://localhost:8080/kie-
server/services/rest/server"/>

<property name="org.kie.server.controller" value="http://localhost:8080/business-
central/rest/controller"/>

<property name="org.kie.server.controller.user" value="<USERNAME>"/>
<property name="org.kie.server.id" value="default-kieserver"/>

For more information about user roles and Red Hat Decision Manager installation options, see
Planning a Red Hat Decision Manager installation .

Project dependencies

152

The Process Automation Manager controller Java client API requires the following dependencies on
the relevant classpath of your Java project:

<!I-- For remote execution on controller -->
<dependency>
<groupld>org.kie.server</groupld>
<artifactld>kie-server-controller-client</artifactld>
<version>${rhpam.version}</version>
</dependency>

<!l-- For REST client -->

<dependency>
<groupld>org.jboss.resteasy</groupld>
<artifactld>resteasy-client</artifactld>
<version>${resteasy.version}</version>

</dependency>

<!I-- For WebSocket client -->

<dependency>
<groupld>io.undertow</groupld>
<artifactld>undertow-websockets-jsr</artifactld>
<version>${undertow.version}</version>

</dependency>

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning

=SS AUTOMATION MANAGER CONTROLLER JAVA CLIENT API FOR KIE SERVER TEMPLATES AND INSTANCES

<!I-- For debug logging (optional) -->
<dependency>
<groupld>ch.gos.logback</groupld>
<artifactld>logback-classic</artifactld>
<version>${logback.version}</version>
</dependency>

The <version> for Red Hat Decision Manager dependencies is the Maven artifact version for Red
Hat Decision Manager currently used in your project (for example, 7.67.0.Final-redhat-00024).

NOTE

Instead of specifying a Red Hat Decision Manager <versions for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business Automation
BOM applies to both Red Hat Decision Manager and Red Hat Process Automation
Manager. When you add the BOM files, the correct versions of transitive
dependencies from the provided Maven repositories are included in the project.

Example BOM dependency:

<dependency>
<groupld>com.redhat.ba</groupld>
<artifactld>ba-platform-bom</artifactld>
<version>7.13.5.redhat-00002</version>
<scope>import</scope>
<type>pom</type>

</dependency>

For more information about the Red Hat Business Automation BOM, see What is the
mapping between RHDM product and maven library version?.

Client request configuration

All Java client requests with the Process Automation Manager controller Java client APl must define
at least the following controller communication components:

Credentials of the rest-all user if you installed Business Central, or the kie-server user if you
installed the headless Process Automation Manager controller separately from Business
Central

Process Automation Manager controller location for REST or WebSocket protocol:

o Example REST URL: http://localhost:8080/business-central/rest/controller

o Example WebSocket URL: ws://localhost:8080/headless-
controller/websocket/controller

Marshalling format for APl requests and responses (JSON or JAXB)

A KieServerControllerClient object, which serves as the entry point for starting the server
communication using the Java client API

A KieServerControllerClientFactory defining REST or WebSocket protocol and user
access

153

https://access.redhat.com/solutions/3363991

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

® The Process Automation Manager controller client service or services used, such as
listServerTemplates, getServerTemplate, or getServerinstances

The following are examples of REST and WebSocket client configurations with these components:

Client configuration example with REST

import org.kie.server.api.marshalling.MarshallingFormat;

import org.kie.server.controller.api.model.spec.ServerTemplateList;
import org.kie.server.controller.client.KieServerControllerClient;

import org.kie.server.controller.client.KieServerControllerClientFactory;

public class ListServerTemplatesExample {

private static final String URL = "http://localhost:8080/business-central/rest/controller”;
private static final String USER = "baAdmin";
private static final String PASSWORD = "password@1";

private static final MarshallingFormat FORMAT = MarshallingFormat.JSON;

public static void main(String[] args) {
KieServerControllerClient client = KieServerControllerClientFactory.newRestClient(URL,
USER,
PASSWORD);

final ServerTemplateList serverTemplateList = client.listServerTemplates();
System.out.printin(String.format("Found %s server template(s) at controller url: %s",
serverTemplateList.getServerTemplates().length,
URL));

Client configuration example with WebSocket

import org.kie.server.api.marshalling.MarshallingFormat;

import org.kie.server.controller.api.model.spec.ServerTemplateList;
import org.kie.server.controller.client.KieServerControllerClient;

import org.kie.server.controller.client.KieServerControllerClientFactory;

public class ListServerTemplatesExample {

private static final String URL = "ws://localhost:8080/my-controller/websocket/controller";
private static final String USER = "baAdmin";
private static final String PASSWORD = "password@1";

private static final MarshallingFormat FORMAT = MarshallingFormat.JSON;

public static void main(String[] args) {
KieServerControllerClient client =
KieServerControllerClientFactory.newWebSocketClient(URL,
USER,
PASSWORD);

final ServerTemplateList serverTemplateList = client.listServerTemplates();
System.out.printin(String.format("Found %s server template(s) at controller url: %s",

154

=SS AUTOMATION MANAGER CONTROLLER JAVA CLIENT API FOR KIE SERVER TEMPLATES AND INSTANCES

26.1. SENDING REQUESTS WITH THE PROCESS AUTOMATION
MANAGER CONTROLLER JAVA CLIENT API

The Process Automation Manager controller Java client APl enables you to connect to the Process
Automation Manager controller using REST or WebSocket protocols from your Java client application.

serverTemplateList.getServerTemplates().length,

URL));

You can use the Process Automation Manager controller Java client APl as an alternative to the Process

Automation Manager controller REST API to interact with your KIE Server templates (configurations),
KIE Server instances (remote servers), and associated KIE containers (deployment units) in Red Hat
Decision Manager without using the Business Central user interface.

Prerequisites

Procedure

1. Inyour client application, ensure that the following dependencies have been added to the
relevant classpath of your Java project:

KIE Server is installed and running.

The Process Automation Manager controller or headless Process Automation Manager
controller is installed and running.

You have a Java project with Red Hat Decision Manager resources.

<!I-- For remote execution on controller -->
<dependency>
<groupld>org.kie.server</groupld>
<artifactld>kie-server-controller-client</artifactld>
<version>${rhpam.version}</version>
</dependency>

<!-- For REST client -->

<dependency>
<groupld>org.jboss.resteasy</groupld>
<artifactld>resteasy-client</artifactld>
<version>${resteasy.version}</version>

</dependency>

<!I-- For WebSocket client -->

<dependency>
<groupld>io.undertow</groupld>
<artifactld>undertow-websockets-jsr</artifactld>
<version>${undertow.version}</version>

</dependency>

You have rest-all user role access to the Process Automation Manager controller if you installed
Business Central, or kie-server user role access to the headless Process Automation Manager
controller installed separately from Business Central.

155

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

<!I-- For debug logging (optional) -->
<dependency>
<groupld>ch.gos.logback</groupld>
<artifactld>logback-classic</artifactld>
<version>${logback.version}</version>
</dependency>

2. Download the Red Hat Process Automation Manager 7.13.5 Source Distributionfrom the Red
Hat Customer Portal and navigate to ~/rhpam-7.13.5-sources/src/droolsjbpm-integration-
$VERSION/kie-server-parent/kie-server-controller/kie-server-controller-
client/src/main/java/org/kie/server/controller/client to access the Process Automation
Manager controller Java clients.

3. In the ~/kie/server/controller/client folder, identify the relevant Java client implementation for
the request you want to send, such as the RestKieServerControllerClient implementation to
access client services for KIE Server templates and KIE containers in REST protocol.

4. Inyour client application, create a .java class for the APl request. The class must contain the
necessary imports, the Process Automation Manager controller location and user credentials, a
KieServerControllerClient object, and the client method to execute, such as
createServerTemplate and createContainer from the RestKieServerControllerClient
implementation. Adjust any configuration details according to your use case.

Creating and interacting with a KIE Server template and KIE containers

import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;

import org.kie.server.api.marshalling.MarshallingFormat;

import org.kie.server.api.model.KieContainerStatus;

import org.kie.server.api.model.KieScannerStatus;

import org.kie.server.api.model.Releaseld;

import org.kie.server.controller.api.model.spec.*;

import org.kie.server.controller.client.KieServerControllerClient;

import org.kie.server.controller.client.KieServerControllerClientFactory;

public class RestTemplateContainerExample {

private static final String URL = "http://localhost:8080/business-central/rest/controller”;
private static final String USER = "baAdmin";
private static final String PASSWORD = "password@1";

private static KieServerControllerClient client;

public static void main(String[] args) {

KieServerControllerClient client = KieServerControllerClientFactory.newRestClient(URL,
USER,
PASSWORD,
MarshallingFormat.JSON);

// Create server template and KIE container, start and stop KIE container, and delete

server template

ServerTemplate serverTemplate = createServerTemplate();

ContainerSpec container = createContainer(serverTemplate);

client.startContainer(container);

client.stopContainer(container);

156

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

=SS AUTOMATION MANAGER CONTROLLER JAVA CLIENT API FOR KIE SERVER TEMPLATES AND INSTANCES

client.deleteServerTemplate(serverTemplate.getld());

}

// Re-create and configure server template
protected static ServerTemplate createServerTemplate() {
ServerTemplate serverTemplate = new ServerTemplate();
serverTemplate.setld("example-client-id");
serverTemplate.setName("example-client-name");
serverTemplate.setCapabilities(Arrays.asList(Capability. PROCESS.name(),
Capability.RULE.name(),
Capability.PLANNING.name()));

client.saveServerTemplate(serverTemplate);

return serverTemplate;

}

// Re-create and configure KIE containers
protected static ContainerSpec createContainer(ServerTemplate serverTemplate){
Map<Capability, ContainerConfig> containerConfigMap = new HashMap();

ProcessConfig processConfig = new ProcessConfig("PER_PROCESS_INSTANCE",
"kieBase", "kieSession", "MERGE_COLLECTION");
containerConfigMap.put(Capability. PROCESS, processConfig);

RuleConfig ruleConfig = new RuleConfig(500l, KieScannerStatus.SCANNING);

containerConfigMap.put(Capability. RULE, ruleConfig);

Releaseld releaseld = new Releaseld("org.kie.server.testing", "stateless-session-kjar",
"1.0.0-SNAPSHOT");

ContainerSpec containerSpec = new ContainerSpec("example-container-id", "example-
client-name", serverTemplate, releaseld, KieContainerStatus.STOPPED,
containerConfigMap);

client.saveContainerSpec(serverTemplate.getld(), containerSpec);

return containerSpec;

}
}

5. Run the configured .java class from your project directory to execute the request, and review
the Process Automation Manager controller response.
If you enabled debug logging, KIE Server responds with a detailed response according to your
configured marshalling format, such as JSON. If you encounter request errors, review the
returned error code messages and adjust your Java configurations accordingly.

26.2. SUPPORTED PROCESS AUTOMATION MANAGER CONTROLLER
JAVA CLIENTS

The following are some of the Java client services available in the org.kie.server.controller.client
package of your Red Hat Decision Manager distribution. You can use these services to interact with
related resources in the Process Automation Manager controller similarly to the Process Automation
Manager controller REST API.

157

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

e KieServerControllerClient: Used as the entry point for communicating with the Process
Automation Manager controller

e RestKieServerControllerClient: Implementation used to interact with KIE Server templates
and KIE containers in REST protocol (found in ~/org/kie/server/controller/client/rest)

o WebSocketKieServerControllerClient: Implementation used to interact with KIE Server
templates and KIE containers in WebSocket protocol (found in
~/org/kie/server/controller/client/websocket)

For the full list of available Process Automation Manager controller Java clients, download the Red Hat
Process Automation Manager 7.13.5 Source Distribution from the Red Hat Customer Portal and
navigate to ~/rhpam-7.13.5-sources/src/droolsjbpm-integration-$VERSION/kie-server-parent/kie-
server-controller/kie-server-controller-client/src/main/java/org/kie/server/controller/client.

26.3. EXAMPLE REQUESTS WITH THE PROCESS AUTOMATION
MANAGER CONTROLLER JAVA CLIENT API

The following are examples of Process Automation Manager controller Java client API requests for
basic interactions with the Process Automation Manager controller. For the full list of available Process
Automation Manager controller Java clients, download the Red Hat Process Automation Manager
7.13.5 Source Distribution from the Red Hat Customer Portal and navigate to ~/rhpam-7.13.5-
sources/src/droolsjbpm-integration-$VERSION/kie-server-parent/kie-server-controller/kie-server-
controller-client/src/main/java/org/kie/server/controller/client.

Creating and interacting with KIE Server templates and KIE containers

You can use the ServerTemplate and ContainerSpec services in the REST or WebSocket Process
Automation Manager controller clients to create, dispose, and update KIE Server templates and KIE
containers, and to start and stop KIE containers, as illustrated in this example.

Example request to create and interact with a KIE Server template and KIE containers

import java.util.Arrays;
import java.util.HashMap;
import java.util. Map;

import org.kie.server.api.marshalling.MarshallingFormat;

import org.kie.server.api.model.KieContainerStatus;

import org.kie.server.api.model.KieScannerStatus;

import org.kie.server.api.model.Releaseld;

import org.kie.server.controller.api.model.spec.*;

import org.kie.server.controller.client.KieServerControllerClient;

import org.kie.server.controller.client.KieServerControllerClientFactory;

public class RestTemplateContainerExample {
private static final String URL = "http://localhost:8080/business-central/rest/controller”;
private static final String USER = "baAdmin";
private static final String PASSWORD = "password@1";
private static KieServerControllerClient client;
public static void main(String[] args) {

KieServerControllerClient client = KieServerControllerClientFactory.newRestClient(URL,
USER,

158

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

=SS AUTOMATION MANAGER CONTROLLER JAVA CLIENT API FOR KIE SERVER TEMPLATES AND INSTANCES

PASSWORD,
MarshallingFormat.JSON);

// Create server template and KIE container, start and stop KIE container, and delete server

template

ServerTemplate serverTemplate = createServerTemplate();

ContainerSpec container = createContainer(serverTemplate);

client.startContainer(container);

client.stopContainer(container);

client.deleteServerTemplate(serverTemplate.getld());

}

// Re-create and configure server template
protected static ServerTemplate createServerTemplate() {
ServerTemplate serverTemplate = new ServerTemplate();
serverTemplate.setld("example-client-id");
serverTemplate.setName("example-client-name");
serverTemplate.setCapabilities(Arrays.asList(Capability. PROCESS.name(),
Capability.RULE.name(),
Capability.PLANNING.name()));

client.saveServerTemplate(serverTemplate);

return serverTemplate;

}

// Re-create and configure KIE containers
protected static ContainerSpec createContainer(ServerTemplate serverTemplate){
Map<Capability, ContainerConfig> containerConfigMap = new HashMap();

ProcessConfig processConfig = new ProcessConfig("PER_PROCESS_INSTANCE",
"kieBase", "kieSession", "MERGE_COLLECTION");
containerConfigMap.put(Capability. PROCESS, processConfig);

RuleConfig ruleConfig = new RuleConfig(500l, KieScannerStatus.SCANNING);
containerConfigMap.put(Capability. RULE, ruleConfig);

Releaseld releaseld = new Releaseld("org.kie.server.testing", "stateless-session-kjar",
"1.0.0-SNAPSHOT");

ContainerSpec containerSpec = new ContainerSpec("example-container-id", "example-client-
name", serverTemplate, releaseld, KieContainerStatus.STOPPED, containerConfigMap);
client.saveContainerSpec(serverTemplate.getld(), containerSpec);

return containerSpec;

}
}

Listing KIE Server templates and specifying connection timeout (REST)

When you use REST protocol for Process Automation Manager controller Java client APl requests,
you can provide your own javax.ws.rs.core.Configuration specification to modify the underlying
REST client API, such as connection timeout.

Example REST request to return server templates and specify connection timeout

I import java.util.concurrent. TimeUnit;

159

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

import javax.ws.rs.core.Configuration;
import org.jboss.resteasy.client.jaxrs.ResteasyClientBuilder;

import org.kie.server.api.marshalling.MarshallingFormat;

import org.kie.server.controller.api.model.spec.ServerTemplateList;
import org.kie.server.controller.client.KieServerControllerClient;

import org.kie.server.controller.client.KieServerControllerClientFactory;

public class RESTTimeoutExample {

private static final String URL = "http://localhost:8080/business-central/rest/controller";
private static final String USER = "baAdmin";
private static final String PASSWORD = "password@1";

public static void main(String[] args) {

// Specify connection timeout
final Configuration configuration =
new ResteasyClientBuilder()
.establishConnectionTimeout(10,
TimeUnit. SECONDS)
.socketTimeout(60,
TimeUnit. SECONDS)
.getConfiguration();
KieServerControllerClient client = KieServerControllerClientFactory.newRestClient(URL,
USER,
PASSWORD,
MarshallingFormat.JSON,
configuration);

// Retrieve list of server templates
final ServerTemplateList serverTemplateList = client.listServerTemplates();
System.out.printin(String.format("Found %s server template(s) at controller url: %s",
serverTemplateList.getServerTemplates().length,
URL));

Listing KIE Server templates and specifying event notifications (WebSocket)

160

When you use WebSocket protocol for Process Automation Manager controller Java client API
requests, you can enable event notifications based on changes that happen in the particular Process
Automation Manager controller to which the client APl is connected. For example, you can receive
notifications when KIE Server templates or instances are connected to or updated in the Process
Automation Manager controller.

Example WebSocket request to return server templates and specify event notifications

import org.kie.server.api.marshalling.MarshallingFormat;

import org.kie.server.controller.api.model.events.”;

import org.kie.server.controller.api.model.spec.ServerTemplateList;
import org.kie.server.controller.client.KieServerControllerClient;

import org.kie.server.controller.client.KieServerControllerClientFactory;
import org.kie.server.controller.client.event.EventHandler;

public class WebSocketEventsExample {

=SS AUTOMATION MANAGER CONTROLLER JAVA CLIENT API FOR KIE SERVER TEMPLATES AND INSTANCES

private static final String URL = "ws://localhost:8080/my-controller/websocket/controller";
private static final String USER = "baAdmin";
private static final String PASSWORD = "password@1";

public static void main(String[] args) {
KieServerControllerClient client =
KieServerControllerClientFactory.newWebSocketClient(URL,
USER,
PASSWORD,
MarshallingFormat.JSON,
new TestEventHandler());

// Retrieve list of server templates
final ServerTemplateList serverTemplateList = client.listServerTemplates();
System.out.printin(String.format("Found %s server template(s) at controller url: %s",
serverTemplateList.getServerTemplates().length,
URL));
try {
Thread.sleep(60 * 1000);
} catch (Exception €) {
e.printStackTrace();
}
}

// Set up event notifications
static class TestEventHandler implements EventHandler {

@Override
public void onServerlnstanceConnected(ServerlnstanceConnected
serverlnstanceConnected) {
System.out.printin("serverinstanceConnected = " + serverinstanceConnected);

}

@Override
public void onServerlnstanceDeleted(ServerinstanceDeleted serverinstanceDeleted) {
System.out.printin("serverinstanceDeleted = " + serverinstanceDeleted);

}

@Override
public void onServerlnstanceDisconnected(ServerinstanceDisconnected
serverlnstanceDisconnected) {
System.out.printin("serverinstanceDisconnected = " + serverinstanceDisconnected);

}

@Override
public void onServerTemplateDeleted(ServerTemplateDeleted serverTemplateDeleted) {
System.out.printin("serverTemplateDeleted = " + serverTemplateDeleted);

}
@Override

public void onServerTemplateUpdated(ServerTemplateUpdated serverTemplateUpdated) {
System.out.printin("serverTemplateUpdated = " + serverTemplateUpdated);

}

@Override

161

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

162

}

}

public void onServerlnstanceUpdated(ServerinstanceUpdated serverinstanceUpdated) {
System.out.printin("serverinstanceUpdated =" + serverlnstanceUpdated);

}

@Override
public void onContainerSpecUpdated(ContainerSpecUpdated containerSpecUpdated) {
System.out.printin("onContainerSpecUpdated = " + containerSpecUpdated);

}

CHAPTER 27. BPMN PROCESS FLUENT API FOR BUSINESS CENTRAL PROCESSES

CHAPTER 27. BPMN PROCESS FLUENT API FOR BUSINESS
CENTRAL PROCESSES

Red Hat Decision Manager provides a BPMN process fluent APl that enables you to create business
processes using factories. You can also manually validate the business process that you created using
process fluent API. The process fluent APl is defined in the org.kie.api.fluent package.

Therefore, instead of using BPMN2 XML standard, you can use the process fluent API to create business
processes in a few lines of code.

27.1. EXAMPLE REQUESTS WITH THE BPMN PROCESS FLUENT API

The following example includes BPMN process fluent API requests for basic interactions with a business
process. For more examples, download the Red Hat Process Automation Manager 7.13.5 Source
Distribution from the Red Hat Customer Portal and navigate to ~/rhpam-7.13.5-
sources/src/droolsjbpm-knowledge-$VERSION/kie-api/src/main/java/org/kie/api/fluent.

Creating and interacting with Business Central business processes

The following example shows basic business process with a script task, an exception handler, and a
variable:

Example request to create and interact with a Business Central business process

Process process =
// Create process builder
factory.processBuilder(processld)
// package and name
.packageName("org.jbpm")
.name("My process")
// start node
.startNode(1).name("Start").done()
// Add variable of type string
.variable(var("pepe", String.class))
// Add exception handler
.exceptionHandler(lllegalArgumentException.class, Dialect. JAVA,
"System.out.printin(\"Exception\");")
// script node in Java language that prints "action”
.actionNode(2).name("Action")
.action(Dialect.JAVA,
"System.out.printin(\"Action\");").done()
// end node
.endNode(3).name("End").done()
// connections
.connection(1,
2)
.connection(2,
3)
.build();

In this example, a ProcessBuilderFactory reference is obtained and then, using
processBuilder(String processld) method, a ProcessBuilder instance is created, which is
associated with the given process Id. The ProcessBuilder instance enables you to build a definition
of the created process using the fluent API.

163

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

A business process consists of three components:

® Header: The header section contains global elements such as the name of the process,
imports, and variables.
In the previous example, the header contains the name and version of the process and the
package name.

® Nodes: The nodes section contains all the different nodes that are part of the process.
In the previous example, nodes are added to the process by calling the startNode(),
actionNode(), and endNode() methods. These methods return a specific NodeBuilder that
allows you to set the properties of that node. After the code finishes configuring that
specific node, the done() method returns the NodeContainerBuilder to add more nodes, if
necessary.

® Connections: The connections section links the nodes to create a flow chart.
In the previous example, once you add all the nodes, you must connect them by creating
connections between them. You can call the connection() method, which links the nodes.

Finally, you can call the build() method and obtain the generated process definition. The build()
method also validates the process definition and throws an exception if the process definition is not
valid.

27.2. EXAMPLE REQUESTS TO EXECUTE A BUSINESS PROCESS

Once you create a valid process definition instance, you can execute it using a combination of public and
internal KIE APIs. To execute a process, create a Resource, which is used to create a KieBase. Using the
KieBase, you can create a KieSession to execute the process.

The following example uses ProcessBuilderFactory.toBytes process to create a ByteArrayResource
resource.

Example request to execute a process

// Build resource from Process
KieResources resources = ServiceRegistry.getinstance().get(KieResources.class);
Resource res = resources
.newByteArrayResource(factory.toBytes(process))
.setSourcePath("/tmp/processFactory.bpmn2"); // source path or target path must be
set to be added into kbase
// Build kie base from this resource using KIE API
KieServices ks = KieServices.Factory.get();
KieRepository kr = ks.getRepository();
KieFileSystem kfs = ks.newKieFileSystem();
kfs.write(res);
KieBuilder kb = ks.newKieBuilder(kfs);
kb.buildAll(); // kieModule is automatically deployed to KieRepository if successfully built.
KieContainer kContainer = ks.newKieContainer(kr.getDefaultReleaseld());
KieBase kbase = kContainer.getKieBase();
// Create kie session using KieBase
KieSessionConfiguration conf = ...;
Environment env =;
KieSession ksession = kbase.newKieSession(conf,env);
// execute process using same process Id that is used to obtain ProcessBuilder instance
ksession.startProcess(processld)

164

CHAPTER 28. KNOWLEDGE STORE REST API FOR BUSINESS CENTRAL SPACES AND PROJECTS

CHAPTER 28. KNOWLEDGE STORE REST API FOR BUSINESS
CENTRAL SPACES AND PROJECTS

Red Hat Decision Manager provides a Knowledge Store REST API that you can use to interact with your
projects and spaces in Red Hat Decision Manager without using the Business Central user interface. The
Knowledge Store is the artifact repository for assets in Red Hat Decision Manager. This API support
enables you to facilitate and automate maintenance of Business Central projects and spaces.

With the Knowledge Store REST API, you can perform the following actions:

® Retrieve information about all projects and spaces

® Create, update, or delete projects and spaces

® Build, deploy, and test projects

® Retrieve information about previous Knowledge Store REST API requests, or jobs
Knowledge Store REST API requests require the following components:

Authentication

The Knowledge Store REST API requires HTTP Basic authentication or token-based authentication
for the user role rest-all. To view configured user roles for your Red Hat Decision Manager
distribution, navigate to ~/$SERVER_HOME/standalone/configuration/application-
roles.properties and ~/application-users.properties.

To add a user with the rest-all role, navigate to ~/$SERVER_HOME/bin and run the following
command:

$./bin/jboss-cli.sh --commands="embed-server --std-out=echo,/subsystem=elytron/filesystem-
realm=ApplicationRealm:add-identity(identity=<USERNAME>),/subsystem=elytron/filesystem-
realm=ApplicationRealm:set-password(identity=<USERNAME>, clear=
{password='<PASSWORD>"),/subsystem=elytron/filesystem-realm=ApplicationRealm:add-
identity-attribute(identity=<USERNAME>, name=role, value=['rest-all)"

For more information about user roles and Red Hat Decision Manager installation options, see
Planning a Red Hat Decision Manager installation .

HTTP headers
The Knowledge Store REST API requires the following HTTP headers for API requests:
e Accept: Data format accepted by your requesting client:
o application/json (JSON)
e Content-Type: Data format of your POST or PUT API request data:
o application/json (JSON)
HTTP methods
The Knowledge Store REST API supports the following HTTP methods for API requests:

® GET: Retrieves specified information from a specified resource endpoint

® POST: Creates or updates a resource

165

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

® PUT: Updates a resource
® DELETE: Deletes a resource

Base URL

The base URL for Knowledge Store REST API requests is http:/SERVER:PORT/business-
central/rest/, such as http://localhost:8080/business-central/rest/.

NOTE

The REST API base URL for the Knowledge Store and for the Process Automation
Manager controller built in to Business Central are the same because both are
considered part of Business Central REST services.

Endpoints

Knowledge Store REST API endpoints, such as /spaces/{spaceName} for a specified space, are the
URIs that you append to the Knowledge Store REST API base URL to access the corresponding
resource or type of resource in Red Hat Decision Manager.

Example request URL for /spaces/{spaceName} endpoint

http://localhost:8080/business-central/rest/spaces/MySpace

Request data

HTTP POST requests in the Knowledge Store REST API may require a JSON request body with data
to accompany the request.

Example POST request URL and JSON request body data

http://localhost:8080/business-central/rest/spaces/MySpace/projects

"name": "Employee_Rostering",

"groupld": "employeerostering",

"version": "1.0.0-SNAPSHOT",

"description™: "Employee rostering problem optimisation using Planner. Assigns employees to
shifts based on their skill."

}

28.1. SENDING REQUESTS WITH THE KNOWLEDGE STORE REST API
USING A REST CLIENT OR CURL UTILITY
The Knowledge Store REST API enables you to interact with your projects and spaces in Red Hat

Decision Manager without using the Business Central user interface. You can send Knowledge Store
REST API requests using any REST client or curl utility.

Prerequisites

® Business Central is installed and running.

® You have rest-all user role access to Business Central.

166

CHAPTER 28. KNOWLEDGE STORE REST API FOR BUSINESS CENTRAL SPACES AND PROJECTS

Procedure

1. ldentify the relevant API endpoint to which you want to send a request, such as [GET] /spaces
to retrieve spaces in Business Central.

2. Ina REST client or curl utility, enter the following components for a GET request to /spaces.
Adjust any request details according to your use case.
For REST client:

e Authentication: Enter the user name and password of the Business Central user with the
rest-all role.

e HTTP Headers: Set the following header:
o Accept: application/json
® HTTP method: Set to GET.

® URL: Enter the Knowledge Store REST API base URL and endpoint, such as
http://localhost:8080/business-central/rest/spaces.

For curl utility:
® -u: Enter the user name and password of the Business Central user with the rest-all role.
® -H:Set the following header:
o Accept: application/json
e -X:Setto GET.

® URL: Enter the Knowledge Store REST API base URL and endpoint, such as
http://localhost:8080/business-central/rest/spaces.

curl -u 'baAdmin:password@1' -H "Accept: application/json" -X GET
"http://localhost:8080/business-central/rest/spaces”

3. Execute the request and review the KIE Server response.
Example server response (JSON):

[
{
"name": "MySpace",
"description”: null,
"projects": [
{
"name": "Employee_Rostering",
"spaceName": "MySpace",
"groupld": "employeerostering",
"version": "1.0.0-SNAPSHOT",
"description™: "Employee rostering problem optimisation using Planner. Assigns
employees to shifts based on their skill.",
"publicURIs": [
{
"protocol": "git",
"uri": "git://localhost:9418/MySpace/example-Employee_Rostering"

167

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

}
{

"protocol": "ssh",
"uri": "ssh://localhost:8001/MySpace/example-Employee_Rostering"

"name": "Mortgage_Process",

"spaceName": "MySpace",

"groupld": "mortgage-process”,

"version": "1.0.0-SNAPSHOT",

"description™: "Getting started loan approval process in BPMN2, decision table, business
rules, and forms.",

"publicURIs": [
{
"protocol": "git",
"uri": "git://localhost:9418/MySpace/example-Mortgage _Process”
|3
{

"protocol": "ssh",
"uri": "ssh://localhost:8001/MySpace/example-Mortgage_Process”

}
]
}
1,

"owner": "admin",
"defaultGroupld": "com.myspace"
b
{
"name": "MySpace2",
"description”: null,
"projects™: [
{
"name": "IT_Orders",
"spaceName": "MySpace",
"groupld": "itorders",
"version": "1.0.0-SNAPSHOT",
"description™: "Case Management IT Orders project",

"publicURIs": [
{
"protocol": "git",
"uri": "git://localhost:9418/MySpace/example-IT_Orders-1"
|3
{

"protocol": "ssh",
"uri": "ssh://localhost:8001/MySpace/example-IT_Orders-1"

}
]
}
1,

"owner": "admin",
"defaultGroupld": "com.myspace"

}
]

168

CHAPTER 28. KNOWLEDGE STORE REST API FOR BUSINESS CENTRAL SPACES AND PROJECTS

4. Inyour REST client or curl utility, send another APl request with the following components for a
POST request to /spaces/{spaceName}/projects to create a project within a space. Adjust any
request details according to your use case.

For REST client:

e Authentication: Enter the user name and password of the Business Central user with the
rest-all role.

® HTTP Headers: Set the following header:
o Accept: application/json
o Accept-Language: en-US
o Content-Type: application/json

® HTTP method: Set to POST.

® URL: Enter the Knowledge Store REST API base URL and endpoint, such as
http://localhost:8080/business-central/rest/spaces/MySpace/projects.

® Request body: Add a JSON request body with the identification data for the new project:

"name": "Employee_Rostering",

"groupld": "employeerostering",

"version": "1.0.0-SNAPSHOT",

"description™: "Employee rostering problem optimisation using Planner. Assigns employees
to shifts based on their skill."

}

For curl utility:

® -u: Enter the user name and password of the Business Central user with the rest-all role.

® -H:Set the following headers:
o Accept: application/json
o Accept-Language: en-US (If not defined, the default locale from the JVM is reflected)
o Content-Type: application/json

e -X:Setto POST.

® URL: Enter the Knowledge Store REST API base URL and endpoint, such as
http://localhost:8080/business-central/rest/spaces/MySpace/projects.

® -d: Add a JSON request body or file (@file.json) with the identification data for the new
project:

curl -u 'baAdmin:password@1' -H "Accept: application/json" -H "Accept-Language: en-US" -
H "Content-Type: application/json" -X POST "http://localhost:8080/business-
central/rest/spaces/MySpace/projects” -d "{ \"name\": \"Employee_Rostering\", \"groupld\":
\"employeerostering\", \"version\": \"1.0.0-SNAPSHOT\", \"description\": \"Employee rostering
problem optimisation using Planner. Assigns employees to shifts based on their skill.\"}"

169

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

curl -u 'baAdmin:password@1' -H "Accept: application/json" -H "Accept-Language: en-US" -
H "Content-Type: application/json" -X POST "http://localhost:8080/business-
central/rest/spaces/MySpace/projects” -d @my-project.json

5. Execute the request and review the KIE Server response.
Example server response (JSON):

"jobld": "1541017411591-6",

"status": "APPROVED",

"spaceName": "MySpace",

"projectName": "Employee_Rostering",

"projectGroupld": "employeerostering",

"projectVersion": "1.0.0-SNAPSHOT",

"description™: "Employee rostering problem optimisation using Planner. Assigns employees
to shifts based on their skill."

}

If you encounter request errors, review the returned error code messages and adjust your
request accordingly.

28.2. SUPPORTED KNOWLEDGE STORE REST API ENDPOINTS

The Knowledge Store REST API provides endpoints for managing spaces and projects in Red Hat
Decision Manager and for retrieving information about previous Knowledge Store REST API requests, or
jobs.

28.2.1. Spaces

The Knowledge Store REST API supports the following endpoints for managing spaces in Business
Central. The Knowledge Store REST API base URL is http://SERVER:PORT/business-central/rest/. All
requests require HTTP Basic authentication or token-based authentication for the rest-all user role.

[GET] /spaces

Returns all spaces in Business Central.

Example server response (JSON)

[
{
"name": "MySpace",
"description”: null,
"projects": [
{
"name": "Employee_Rostering",
"spaceName": "MySpace",
"groupld": "employeerostering",
"version": "1.0.0-SNAPSHOT",
"description™: "Employee rostering problem optimisation using Planner. Assigns employees to
shifts based on their skill.",
"publicURIs": [
{
"protocol": "git",
"uri": "git://localhost:9418/MySpace/example-Employee_Rostering"

170

CHAPTER 28. KNOWLEDGE STORE REST API FOR BUSINESS CENTRAL SPACES AND PROJECTS

}
{

"protocol": "ssh",
"uri": "ssh://localhost:8001/MySpace/example-Employee_Rostering"

"name": "Mortgage_Process",

"spaceName": "MySpace",

"groupld": "mortgage-process”,

"version": "1.0.0-SNAPSHOT",

"description™: "Getting started loan approval process in BPMN2, decision table, business
rules, and forms.",

"publicURIs": [
{
"protocol": "git",
"uri": "git://localhost:9418/MySpace/example-Mortgage_Process”
|3
{

"protocol": "ssh",
"uri": "ssh://localhost:8001/MySpace/example-Mortgage_Process”

}
]
}
],

"owner": "admin",
"defaultGroupld": "com.myspace"
b
{
"name": "MySpace2",
"description”: null,
"projects™: [
{
"name": "IT_Orders",
"spaceName": "MySpace",
"groupld": "itorders",
"version": "1.0.0-SNAPSHOT",
"description™: "Case Management IT Orders project",

"publicURIs": [
{
"protocol": "git",
"uri": "git://localhost:9418/MySpace/example-IT_Orders-1"
|3
{

"protocol": "ssh",
"uri": "ssh://localhost:8001/MySpace/example-IT_Orders-1"

}
]
}
],

"owner": "admin",
"defaultGroupld": "com.myspace"

}
]

171

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

[GET] /spaces/{spaceName}

Returns information about a specified space.

Table 28.1. Request parameters

Name Description Type Requirement
spaceNam Name of the space to be retrieved String Required
e

Example server response (JSON)

{
"name": "MySpace",
"description”: null,
"projects™: [
{
"name": "Mortgage_Process",
"spaceName": "MySpace",
"groupld": "mortgage-process”,
"version": "1.0.0-SNAPSHOT",
"description™: "Getting started loan approval process in BPMN2, decision table, business rules,
and forms.",
"publicURIs": [
{
"protocol": "git",
"uri": "git://localhost:9418/MySpace/example-Mortgage _Process”
b
{

"protocol": "ssh",
"uri": "ssh://localhost:8001/MySpace/example-Mortgage_Process”

"name": "Employee_Rostering",
"spaceName": "MySpace",
"groupld": "employeerostering",
"version": "1.0.0-SNAPSHOT",
"description™: "Employee rostering problem optimisation using Planner. Assigns employees to
shifts based on their skill.",
"publicURIs": [
{
"protocol": "git",
"uri": "git://localhost:9418/MySpace/example-Employee_Rostering"
b
{

"protocol": "ssh",
"uri": "ssh://localhost:8001/MySpace/example-Employee_Rostering"

}
]
}
{

"name": "Evaluation_Process",

172

CHAPTER 28. KNOWLEDGE STORE REST API FOR BUSINESS CENTRAL SPACES AND PROJECTS

"spaceName": "MySpace",
"groupld": "evaluation",
"version": "1.0.0-SNAPSHOT",
"description™: "Getting started Business Process for evaluating employees”,
"publicURIs": [
{
"protocol": "git",
"uri": "git://localhost:9418/MySpace/example-Evaluation_Process"
b
{

"protocol": "ssh",
"uri": "ssh://localhost:8001/MySpace/example-Evaluation_Process"

"name": "IT_Orders",
"spaceName": "MySpace",
"groupld": "itorders",
"version": "1.0.0-SNAPSHOT",
"description™: "Case Management IT Orders project",
"publicURIs": [
{
"protocol": "git",
"uri": "git://localhost:9418/MySpace/example-IT_Orders"
b
{

"protocol": "ssh",
"uri": "ssh://localhost:8001/MySpace/example-IT_Orders"

}
]
}
],

"owner": "admin",
"defaultGroupld": "com.myspace"

}

[POST] /spaces

Creates a space in Business Central.

Table 28.2. Request parameters

Name Description Type Requirement

body The name, description, owner, Request Required
defaultGroupld, and any other components ~ body
of the new space

Example request body (JSON)

{

"name": "NewSpace",
"description": "My new space.",

173

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

"owner": "admin",
"defaultGroupld": "com.newspace"

}

Example server response (JSON)

"jobld": "1541016978154-3",
"status": "APPROVED",
"spaceName": "NewSpace",
"owner": "admin",
"defaultGroupld": "com.newspace",
"description™: "My new space."

[PUT] /spaces
Updates description, owner, and defaultGroupld of a space in Business Central.

Example request body (JSON)

"name": "MySpace",

"description™: "This is updated description”,
"owner": "admin",

"defaultGroupld": "com.updatedGroupld"

Example server response (JSON)

"jobld": "1592214574454-1",

"status": "APPROVED",

"spaceName": "MySpace",

"owner": "admin",

"defaultGroupld": "com.updatedGroupld",
"description™: "This is updated description”

[DELETE] /spaces/{spaceName}

Deletes a specified space from Business Central.

Table 28.3. Request parameters

Name Description Type Requirement
spaceNam Name of the space to be deleted String Required
e

Example server response (JSON)

|

174

CHAPTER 28. KNOWLEDGE STORE REST API FOR BUSINESS CENTRAL SPACES AND PROJECTS

"jobld": "1541127032997-8",
"status": "APPROVED",
"spaceName": "MySpace",
"owner": "admin",

"description™: "My deleted space.",
"repositories": null

28.2.2. Projects

The Knowledge Store REST API supports the following endpoints for managing, building, and deploying
projects in Business Central. The Knowledge Store REST API base URL is
http://SERVER:PORT/business-central/rest/. All requests require HTTP Basic authentication or token-
based authentication for the rest-all user role.

[GET] /spaces/{spaceName}/projects

Returns projects in a specified space.

Table 28.4. Request parameters

Name Description Type Requirement
spaceNam Name of the space for which you are String Required
e retrieving projects

Example server response (JSON)

"name": "Mortgage_Process",

"spaceName": "MySpace",

"groupld": "mortgage-process”,

"version": "1.0.0-SNAPSHOT",

"description™: "Getting started loan approval process in BPMN2, decision table, business rules,

and forms.",
"publicURIs": [
{
"protocol": "git",

"uri": "git://localhost:9418/MySpace/example-Mortgage_Process”
|3
{

"protocol": "ssh",
"uri": "ssh://localhost:8001/MySpace/example-Mortgage_Process”

"name": "Employee_Rostering",

"spaceName": "MySpace",

"groupld": "employeerostering",

"version": "1.0.0-SNAPSHOT",

"description™: "Employee rostering problem optimisation using Planner. Assigns employees to
shifts based on their skill.",

175

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

"publicURIs": [
{
"protocol": "git",
"uri": "git://localhost:9418/MySpace/example-Employee_Rostering"
13
{

"protocol": "ssh",
"uri": "ssh://localhost:8001/MySpace/example-Employee_Rostering"

"name": "Evaluation_Process",
"spaceName": "MySpace",
"groupld": "evaluation",
"version": "1.0.0-SNAPSHOT",
"description™: "Getting started Business Process for evaluating employees”,
"publicURIs": [
{
"protocol": "git",
"uri": "git://localhost:9418/MySpace/example-Evaluation_Process"
b
{

"protocol": "ssh",
"uri": "ssh://localhost:8001/MySpace/example-Evaluation_Process"

"name": "IT_Orders",
"spaceName": "MySpace",
"groupld": "itorders",
"version": "1.0.0-SNAPSHOT",
"description™: "Case Management IT Orders project",
"publicURIs": [
{
"protocol": "git",
"uri": "git://localhost:9418/MySpace/example-IT_Orders"
b
{

"protocol": "ssh",
"uri": "ssh://localhost:8001/MySpace/example-IT_Orders"

}
]
}
]

[GET] /spaces/{spaceName}/projects/{projectName}

Returns information about a specified project in a specified space.

Table 28.5. Request parameters

176

CHAPTER 28. KNOWLEDGE STORE REST API FOR BUSINESS CENTRAL SPACES AND PROJECTS

Name Description Type Requirement
spaceNam Name of the space where the project is String Required

e located

projectNa Name of the project to be retrieved String Required

me

Example server response (JSON)

{

"name": "Employee_Rostering",
"spaceName": "MySpace",
"groupld": "employeerostering",
"version": "1.0.0-SNAPSHOT",
"description™: "Employee rostering problem optimisation using Planner. Assigns employees to
shifts based on their skill.",
"publicURIs": [
{
"protocol": "git",
"uri": "git://localhost:9418/MySpace/example-Employee_Rostering"
b
{

"protocol": "ssh",
"uri": "ssh://localhost:8001/MySpace/example-Employee_Rostering"

}
]
}

[POST] /spaces/{spaceName}/projects

Creates a project in a specified space.

Table 28.6. Request parameters

Name Description Type Requirement
spaceNam Name of the space in which the new project String Required

e will be created

body The name, groupld, version, description, Request Required

and any other components of the new project body

Example request body (JSON)

{

"name": "Employee_Rostering",
"groupld": "employeerostering",
"version": "1.0.0-SNAPSHOT",

177

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

"description™: "Employee rostering problem optimisation using Planner. Assigns employees to
shifts based on their skill."

}

Example server response (JSON)

"jobld": "1541017411591-6",

"status": "APPROVED",

"spaceName": "MySpace",

"projectName": "Employee_Rostering",

"projectGroupld": "employeerostering",

"projectVersion": "1.0.0-SNAPSHOT",

"description™: "Employee rostering problem optimisation using Planner. Assigns employees to
shifts based on their skill."

}

[DELETE] /spaces/{spaceName}/projects/{projectName}

Deletes a specified project from a specified space.

Table 28.7. Request parameters

Name Description Type Requirement
spaceNam Name of the space where the project is String Required

e located

projectNa Name of the project to be deleted String Required

me

Example server response (JSON)

"jobld": "1541128617727-10",

"status": "APPROVED",
"projectName": "Employee_Rostering",
"spaceName": "MySpace"

[POST] /spaces/{spaceName}/git/clone

Clones a project into a specified space from a specified Git address.

Table 28.8. Request parameters

Name Description Type Requirement
spaceNam Name of the space to which you are cloning a String Required
e project

178

CHAPTER 28. KNOWLEDGE STORE REST API FOR BUSINESS CENTRAL SPACES AND PROJECTS

Name Description Type Requirement

body The name, description, and Git repository Request Required
userName, password, and gitURL for the body
project to be cloned

Example request body (JSON)

{

"name": "Employee_Rostering",

"description™: "Employee rostering problem optimisation using Planner. Assigns employees to
shifts based on their skill.",

"userName": "baAdmin",

"password": "password@1",

"gitURL": "git://localhost:9418/MySpace/example-Employee_Rostering"
}

Example server response (JSON)

{
"jobld": "1541129488547-13",

"status": "APPROVED",
"cloneProjectRequest": {
"name": "Employee_Rostering",
"description™: "Employee rostering problem optimisation using Planner. Assigns employees to
shifts based on their skill.",
"userName": "baAdmin",
"password": "password@1",
"gitURL": "qgit://localhost:9418/MySpace/example-Employee_Rostering"
b
"spaceName": "MySpace2"

}

[POST] /spaces/{spaceName}/projects/{projectName}/maven/compile

Compiles a specified project in a specified space (equivalent to mvn compile).

Table 28.9. Request parameters

Name Description Type Requirement
spaceNam Name of the space where the project is String Required

e located

projectNa Name of the project to be compiled String Required

me

Example server response (JSON)

{
"jobld": "1541128617727-10",

179

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

"status": "APPROVED",
"projectName": "Employee_Rostering",
"spaceName": "MySpace"

}

[POST] /spaces/{spaceName}/projects/{projectName}l/maven/test

Tests a specified project in a specified space (equivalent to mvn test).

Table 28.10. Request parameters

Name Description Type Requirement
spaceNam Name of the space where the project is String Required

e located

projectNa Name of the project to be tested String Required

me

Example server response (JSON)

{
"jobld": "1541132591595-19",
"status": "APPROVED",
"projectName": "Employee_Rostering",
"spaceName": "MySpace"

}

[POST] /spaces/{spaceName}/projects/{projectName}/maven/install

Installs a specified project in a specified space (equivalent to mvn install).

Table 28.11. Request parameters

Name Description Type Requirement
spaceNam Name of the space where the project is String Required

e located

projectNa Name of the project to be installed String Required

me

Example server response (JSON)

{
"jobld": "1541132668987-20",
"status": "APPROVED",
"projectName": "Employee_Rostering",
"spaceName": "MySpace"

}

180

CHAPTER 28. KNOWLEDGE STORE REST API FOR BUSINESS CENTRAL SPACES AND PROJECTS

[POST] /spaces/{spaceName}/projects/{projectName}/maven/deploy

Deploys a specified project in a specified space (equivalent to mvn deploy).

Table 28.12. Request parameters

Name Description Type Requirement
spaceNam Name of the space where the project is String Required

e located

projectNa Name of the project to be deployed String Required

me

Example server response (JSON)

"jobld": "1541132816435-21",

"status": "APPROVED",
"projectName": "Employee_Rostering",
"spaceName": "MySpace"

28.2.3. Jobs (APl requests)

All POST and DELETE requests in the Knowledge Store REST API return a job ID associated with each
request, in addition to the returned request details. You can use a job ID to view the request status or

delete a sent request.

Knowledge Store REST API requests, or jobs, can have the following statuses:

Table 28.13. Job statuses (APl request statuses)

Status Description

ACCEPTED

BAD_REQUEST

RESOURCE_NOT_E
XIST

DUPLICATE_RESOU
RCE

SERVER_ERROR

SUCCESS

FAIL

The request was accepted and is being processed.

The request contained incorrect content and was not accepted.

The requested resource (path) does not exist.

The resource already exists.

An error occurred in KIE Server.

The request finished successfully.

The request failed.

181

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

Status Description

APPROVED The request was approved.
DENIED The request was denied.
GONE The job ID for the request could not be found due to one of the following reasons:

® The request was explicitly removed.

® The request finished and has been deleted from a status cache. A
request is removed from a status cache after the cache has reached its
maximum capacity.

® The request never existed.

The Knowledge Store REST API supports the following endpoints for retrieving or deleting sent API
requests. The Knowledge Store REST API base URL is http:/SERVER:PORT/business-central/rest/.
All requests require HTTP Basic authentication or token-based authentication for the rest-all user role.

[GET] /jobs/{jobld}

Returns the status of a specified job (a previously sent API request).

Table 28.14. Request parameters
Name Description Type Requirement

jobld ID of the job to be retrieved (example: String Required
1541010216919-1)

Example server response (JSON)

"status": "SUCCESS",

"jobld": "1541010216919-1",

"result": null,

"lastModified": 1541010218352,

"detailedResult": [

"level:INFO, path:null, text:Build of module 'Mortgage_Process' (requested by system)

completed.\n Build: SUCCESSFUL"

]
}

[DELETE] /jobs/{jobld}

Deletes a specified job (a previously sent APl request). If the job is not being processed yet, this
request removes the job from the job queue. This request does not cancel or stop an ongoing job.

Table 28.15. Request parameters

182

CHAPTER 28. KNOWLEDGE STORE REST API FOR BUSINESS CENTRAL SPACES AND PROJECTS

Name Description Type Requirement

jobld ID of the job to be deleted (example: String Required
1541010216919-1)

Example server response (JSON)

"status": "GONE",

"jobld": "1541010216919-1",

"result": null,

"lastModified": 1541132054916,

"detailedResult": [

"level:INFO, path:null, text:Build of module 'Mortgage_Process' (requested by system)

completed.\n Build: SUCCESSFUL"

]
}

28.2.4. Branches

The Knowledge Store REST API supports the following endpoints for managing branches in Business
Central. The Knowledge Store REST API base URL is http://SERVER:PORT/business-central/rest/. All
requests require HTTP Basic authentication or token-based authentication for the rest-all user role.

[GET] /spaces/{spaceName}/projects/{projectName}/branches

Returns all branches in a specified project and space.

Table 28.16. Request parameters

Name Description Type Requirement
spaceNam Name of the space for which you are String Required

e retrieving projects

projectNa Name of the project for which you are String Required

me retrieving branches

Example server response (JSON)

[
{

"name":"master"

}
]

[POST] /spaces/{spaceName}/projects/{projectNamel}/branches

Adds a specified branch in a specified project and space.

183

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

Table 28.17. Request parameters

Name Description Requirement

spaceNam Name of the space where the project is String Required

e located

projectNa Name of the project in which the new branch String Required

me needs to be created

body The newBranchName and Request Required
baseBranchName of a project body

Example request body (JSON)

{

"newBranchName": "branch01",
"baseBranchName": "master"

}

Example server response (JSON)

"jobld": "1576175811141-3",
"status": "APPROVED",
"spaceName": "Spacei123",

"projectName": "ProjABC",
"newBranchName": "b1",
"baseBranchName": "master",
"userldentifier": "bc"

[DELETE] /spaces/{spaceName}/projects/{projectName}l/branches/{branchName}

Deletes a specified branch in a specified project and space.

Table 28.18. Request parameters

Name Description Requirement

spaceNam Name of the space where the project is String Required
e located

projectNa Name of the project where the branch is String Required
me located

branchNa Name of the branch to be deleted String Required
me

Example server response (JSON)

184

CHAPTER 28. KNOWLEDGE STORE REST API FOR BUSINESS CENTRAL SPACES AND PROJECTS

"jobld": "1576175811421-5",
"status": "APPROVED",
"spaceName": "Space123",

"projectName": "ProjABC",
"branchName": "b1",
"userldentifier": "bc"

[POST] /spaces/{spaceName}/projects/{projectName}/branches/{branchName}/maven/compile

Compiles a specified branch in a specified project and space. If branchName is not specified, then
request applies to the master branch.

Table 28.19. Request parameters

Name Description Requirement
spaceNam Name of the space where the project is String Required

e located

projectNa Name of the project where the branch is String Required

me located

branchNa Name of the branch to be compiled String Required

me

Example server response (JSON)

"jobld": "1576175811233-4",
"status": "APPROVED",
"spaceName": "Space123",
"projectName": "ProjABC",
"branchName": "b1",

[POST] /spaces/{spaceName}/projects/{projectName}/branches/{branchName}l/maven/install

Installs a specified branch in a specified project and space. If branchName is not specified, then
request applies to the master branch.

Table 28.20. Request parameters

Name Description Type Requirement
spaceNam Name of the space where the project is String Required

e located

projectNa Name of the project where the branch is String Required

me located

185

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

Name Description Type Requirement
branchNa Name of the branch to be installed String Required
me

Example server response (JSON)

"jobld": "1576175811233-4",
"status": "APPROVED",
"spaceName": "Space123",
"projectName": "ProjABC",
"branchName": "b1",

[POST] /spaces/{spaceName}/projects/{projectName}/branches/{branchName}/maven/test

Tests a specified branch in a specified project and space. If branchName is not specified, then
request applies to the master branch.

Table 28.21. Request parameters

Name Description Type Requirement
spaceNam Name of the space where the project located String Required

e

projectNa Name of the project where the branch is String Required

me located

branchNa Name of the branch to be tested String Required

me

Example server response (JSON)

"jobld": "1576175811233-4",
"status": "APPROVED",
"spaceName": "Space123",
"projectName": "ProjABC",
"branchName": "b1",

[POST] /spaces/{spaceName}/projects/{projectName}/branches/{branchName}/maven/deploy

Deploys a specified branch in a specified project and space. If branchName is not specified, then
request applies to the master branch.

Table 28.22. Request parameters

186

CHAPTER 28. KNOWLEDGE STORE REST API FOR BUSINESS CENTRAL SPACES AND PROJECTS

Name Description Type Requirement
spaceNam Name of the space where the project is String Required

e located

projectNa Name of the project where the branch is String Required

me located

branchNa Name of the branch to be deployed String Required

me

Example server response (JSON)

"jobld": "1576175811233-4",
"status": "APPROVED",
"spaceName": "Space123",
"projectName": "ProjABC",
"branchName": "b1",

187

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

CHAPTER 29. SECURITY MANAGEMENT REST API FOR
BUSINESS CENTRAL GROUPS, ROLES, AND USERS

Red Hat Decision Manager provides a Security Management REST API that you can use to manage the
groups, roles, and users in Red Hat Decision Manager without using the Business Central user interface.
This APl support enables you to facilitate and automate management of Business Central groups, roles,
users, and granted permissions.

With the Security Management REST API, you can perform the following actions:
® Retrieve information about all groups, roles, users, and their granted permissions
® Create, update, or delete groups and users
e Update granted permissions for groups, roles, and users
® Retrieve information about groups and roles assigned to the users
Security Management REST API requests require the following components:

Authentication

The Security Management REST API requires HTTP Basic authentication or token-based
authentication for the user role admin. To view configured user roles for your Red Hat Decision
Manager distribution, navigate to ~/$SERVER_HOME/standalone/configuration/application-
roles.properties and ~/application-users.properties.

To add a user with the admin role, navigate to ~/$SERVER_HOME/bin and run the following
command:

$./bin/jboss-cli.sh --commands="embed-server --std-out=echo,/subsystem=elytron/filesystem-
realm=ApplicationRealm:add-identity(identity=<USERNAME>),/subsystem=elytron/filesystem-
realm=ApplicationRealm:set-password(identity=<USERNAME>, clear=
{password='<PASSWORD>"),/subsystem=elytron/filesystem-realm=ApplicationRealm:add-
identity-attribute(identity=<USERNAME>, name=role, value=['admin’)"

For more information about user roles and Red Hat Decision Manager installation options, see
Planning a Red Hat Decision Manager installation .

HTTP headers
The Security Management REST API requires the following HTTP headers for APl requests:
e Accept: Data format accepted by your requesting client:
o application/json (JSON)
e Content-Type: Data format of your POST or PUT API request data:
o application/json (JSON)
HTTP methods
The Security Management REST API supports the following HTTP methods for APl requests:

® GET: Retrieves specified information from a specified resource endpoint

® POST: Creates or updates a resource

188

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning

CHAPTER 29. SECURITY MANAGEMENT REST API FOR BUSINESS CENTRAL GROUPS, ROLES, AND USERS

® PUT: Updates a resource
® DELETE: Deletes a resource

Base URL

The base URL for Security Management REST API requests is http://SERVER:PORT/business-
central/rest/, such as http://localhost:8080/business-central/rest/.

NOTE

The REST API base URL for the Security Management, Knowledge Store, and Process
Automation Manager controller built into Business Central are the same because all
are considered part of Business Central REST services.

Endpoints

Security Management REST APl endpoints, such as /users/{userName} for a specified user, are the
URIs that you append to the Security Management REST API base URL to access the corresponding
resource or type of resource in Red Hat Decision Manager.

Example request URL for /users/{userName} endpoint

http://localhost:8080/business-central/rest/users/newUser

Request data

HTTP POST requests in the Security Management REST APl may require a JSON request body with
data to accompany the request.

Example POST request URL and JSON request body data

http://localhost:8080/business-central/rest/users/newUser/groups

[

"newGroup"

]

29.1. SENDING REQUESTS WITH THE SECURITY MANAGEMENT REST
APIUSING A REST CLIENT OR CURL UTILITY

The Security Management REST API enables you to manage the groups, roles, and users in Red Hat
Decision Manager without using the Business Central user interface. You can send Security
Management REST API requests using any REST client or curl utility.

Prerequisites

® Business Central is installed and running.

® You have admin user role access to Business Central.

Procedure

189

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

1. ldentify the relevant AP| endpoint to which you want to send a request, such as [GET] /groups
to retrieve groups in Business Central.

2. Ina REST client or curl utility, enter the following components for a GET request to /groups.
Adjust any request details according to your use case.
For REST client:

e Authentication: Enter the user name and password of the Business Central user with the
adminrole.

® HTTP Headers: Set the following header:
o Accept: application/json
® HTTP method: Set to GET.

® URL: Enter the Security Management REST API base URL and endpoint, such as
http://localhost:8080/business-central/rest/groups.

For curl utility:
® -u: Enter the user name and password of the Business Central user with the admin role.
® -H:Set the following header:
o Accept: application/json
® -X:Setto GET.

® URL: Enter the Security Management REST APl base URL and endpoint, such as
http://localhost:8080/business-central/rest/groups.

curl -u 'baAdmin:password@1' -H "Accept: application/json" -X GET
"http://localhost:8080/business-central/rest/groups”

3. Execute the request and review the KIE Server response.
Example server response (JSON):

[
{
"group1”
b
{
"group2"
}
]

4. Inyour REST client or curl utility, send another APl request with the following components for a
POST request to /users/{userName}/groups to update the groups assigned to a user. Adjust
any request details according to your use case.

For REST client:

e Authentication: Enter the user name and password of the Business Central user with the
admin role.

® HTTP Headers: Set the following header:

190

CHAPTER 29. SECURITY MANAGEMENT REST API FOR BUSINESS CENTRAL GROUPS, ROLES, AND USERS

o Accept: application/json
o Content-Type: application/json
® HTTP method: Set to POST.

® URL: Enter the Security Management REST API base URL and endpoint, such as
http://localhost:8080/business-central/rest/users/newUser/groups.

® Request body: Add a JSON request body with the identification data for the new group:

[

"newGroup"

]

For curl utility:
® -u: Enter the user name and password of the Business Central user with the admin role.
® -H:Set the following headers:
o Accept: application/json
o Content-Type: application/json
e -X:Setto POST.

® URL: Enter the Security Management REST API base URL and endpoint, such as
http://localhost:8080/business-central/rest/users/newUser/groups.

® -d: Add a JSON request body or file (@file.json) with the identification data for the new
group:

curl -u 'baAdmin:password@1' -H "Accept: application/json" -H "Content-Type:
application/json" -X POST "http://localhost:8080/business-central/rest/users/newUser/groups”
-d "["newGroup""

curl -u 'baAdmin:password@1' -H "Accept: application/json" -H "Content-Type:
application/json" -X POST "http://localhost:8080/business-central/rest/users/newUser/groups”
-d @user-groups.json

5. Execute the request and review the KIE Server response.
Example server response (JSON):

{
"status": "OK",

"message": "Groups [newGroup] are assigned successfully to user wbadmin"

}

If you encounter request errors, review the returned error code messages and adjust your
request accordingly.

29.2. SUPPORTED SECURITY MANAGEMENT REST API ENDPOINTS

191

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

The Security Management REST API provides endpoints for managing groups, roles, users, and
permissions in Business Central. It includes the security and permission management tasks that an
administrator can also perform using the Security Management page in Business Central.

29.2.1. Groups

The Security Management REST API supports the following endpoints for managing groups in Business
Central. The Security Management REST API base URL is http://SERVER:PORT/business-
central/rest/. All requests require HTTP Basic authentication or token-based authentication for the
admin user role.

[GET] /groups

Returns all groups in Business Central.

Example server response (JSON)

[POST] /groups

Creates a group in Business Central. A group must have at least one user assigned.

Table 29.1. Request parameters

Name Description Type Requirement

body Name of the group and users assigned to the Request Required
new group body

Example request body (JSON)

{

"name": "groupName",
"users": [
"userNames"

]
}

Example server response (JSON)

{
"status": "OK",

"message": "Group newGroup is created successfully."

}

192

CHAPTER 29. SECURITY MANAGEMENT REST API FOR BUSINESS CENTRAL GROUPS, ROLES, AND USERS

[DELETE] /groups/{groupName}

Deletes a specified group from Business Central.

Table 29.2. Request parameters

Name Description Type Requirement
groupNam Name of the group to be deleted String Required
e

Example server response (JSON)

{

"status": "OK",
"message": "Group newGroup is deleted successfully."
}
29.2.2. Roles

The Security Management REST API supports the following endpoints for managing roles in Business
Central. The Security Management REST API base URL is http://SERVER:PORT/business-
central/rest/. All requests require HTTP Basic authentication or token-based authentication for the
admin user role.

[GET] /roles

Returns all roles in Business Central.

Example server response (JSON)

"name": "process-admin”

"name": "manager"

"name": "admin"

29.2.3. Users

The Security Management REST API supports the following endpoints for managing users in Business
Central. The Security Management REST APl base URL is http://SERVER:PORT/business-
central/rest/. All requests require HTTP Basic authentication or token-based authentication for the
admin user role.

[GET] /users

Returns all users in Business Central.

193

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

Example server response (JSON)

[

"newUser",
"usert”,
"user2",

[GET] /users/{userName}/groups

Returns all groups assigned to a specified user.

Table 29.3. Request parameters

Name Description Type Requirement

userName Name of the user for whom you are retrieving String Required
assigned groups

Example server response (JSON)

[GET] /users/{userNamel}/roles

Returns all roles assigned to a specified user.

Table 29.4. Request parameters

Name Description Type Requirement

userName Name of the user for whom you are retrieving String Required
assigned roles

Example server response (JSON)

"name": "process-admin”

"name": "manager"

194

CHAPTER 29. SECURITY MANAGEMENT REST API FOR BUSINESS CENTRAL GROUPS, ROLES, AND USERS

"name": "admin"

}
]

[POST] /users

Creates a specified user with specified roles and groups.

Example request body (JSON)

{

"name": "newUser",
"roles": [
"admin",
"developer"

]1
"groups": [
"groupi”,
"group2"
]
}

Example server response (JSON)

{
"status": "OK",

"message": "User newUser is created successfully."

}

[Post] /users/{userName}l/changePassword

Changes the password of a specified user.

Table 29.5. Request parameters

Name Description Type Requirement

userName Name of the user for whom you are changing String Required
the password

Example request command

curl -u 'baAdmin:password@1' -H "Accept: application/json" -H "Content-Type: application/json" -
X POST "http://localhost:8080/business-central/rest/users/newUser/changePassword" -d
newpassword

Example server response (JSON)

{
"status": "OK",

"message": "Password for newUser has been updated successfully."

}

195

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

[DELETE] /users/{userName}

Deletes a specified user from Business Central.

Table 29.6. Request parameters
Name Description Type Requirement

userName Name of the user to be deleted String Required

Example server response (JSON)

{
"status": "OK",

"message": "User newUser is deleted successfully."

}

[POST] /users/{userName}/groups

Overrides the existing groups assigned to a specified user with new groups.

Table 29.7. Request parameters

Name Description Type Requirement
userName Name of the user for whom you are updating String Required
groups

Example request body (JSON)

[

"newGroup"

]

Example server response (JSON)

{
"status": "OK",

"message": "Groups [newGroup] are assigned successfully to user wbadmin"

}

[POST] /users/{userName}/roles

Overrides the existing roles assigned to a specified user with new roles.

Table 29.8. Request parameters

Name Description Type Requirement

userName Name of the user for whom you are updating String Required
roles

196

CHAPTER 29. SECURITY MANAGEMENT REST API FOR BUSINESS CENTRAL GROUPS, ROLES, AND USERS

Example request body (JSON)

[

"admin"

]

Example server response (JSON)

{
"status": "OK",
"message": "Roles [admin] are assigned successfully to user wbadmin"

}

29.2.4. Permissions

The Security Management REST API supports the following endpoints for managing permissions
granted to the groups, roles, and users in Business Central. The Security Management REST API base
URL is http://SERVER:PORT/business-central/rest/. All requests require HTTP Basic authentication or
token-based authentication for the admin user role.

[GET] /groups/{groupName}/permissions

Returns all permissions granted to a specified group.

Table 29.9. Request parameters

Name Description Type Requirement
groupNam Name of the group for whom you are String Required
e retrieving permissions

Example server response (JSON)

{

"homePage": "HomePerspective",
"priority": -10,
"project”: {
"read": {
"access": false,
"exceptions": []

b
If

"spaces": {
"read": {
"access": true,
"exceptions": [
"MySpace"
]

}
}

"editor": {

197

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

"read": {

"access": false,

"exceptions": [
"GuidedDecisionTreeEditorPresenter”
]

b

"create": null,
"update": null,
"delete": null,
"build": null
b
"pages": {
"read": {
"access": true,
"exceptions": []
}

b

"workbench": {

"editDataObject": false,
"plannerAvailable": false,
"editGlobalPreferences": false,
"editProfilePreferences": false,
"accessDataTransfer": false,
"jarDownload": true,
"editGuidedDecisionTableColumns": true

}
}

uild": null

[GET] /roles/{roleName}/permissions

Returns all permissions granted to a specified role.

Table 29.10. Request parameters

Name Description Type Requirement
roleName Name of the role for whom you are retrieving String Required
permissions

Example server response (JSON)

{

"homePage": "HomePerspective",
"priority": -10,
"project”: {
"read": {
"access": false,
"exceptions": []

b
IF

"spaces": {
"read": {

198

CHAPTER 29. SECURITY MANAGEMENT REST API FOR BUSINESS CENTRAL GROUPS, ROLES, AND USERS

"access": true,
"exceptions": [
"MySpace"
]

2

b

"editor": {

"read": {
"access": false,
"exceptions": [
"GuidedDecisionTreeEditorPresenter”
]

b

"create": null,
"update": null,
"delete": null,
"build": null
b
"pages": {
"read": {
"access": true,
"exceptions": []
}

b

"workbench": {

"editDataObject": false,
"plannerAvailable": false,
"editGlobalPreferences": false,
"editProfilePreferences": false,
"accessDataTransfer": false,
"jarDownload": true,
"editGuidedDecisionTableColumns": true

uild": null

[GET] /users/{userName}/permissions

Returns all permissions granted to a specified user.

Table 29.11. Request parameters

Name Description Type Requirement
userName Name of the user for whom you are retrieving String Required
permissions

Example server response (JSON)

{

"homePage": null,
"priority": null,
"project”: {
"read": {

199

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

"access": false,
"exceptions": []

}
b

"spaces": {

"read": {
"access": true,
"exceptions": [
"MySpace"
]

b

b

"editor": {

"read": {
"access": false,
"exceptions": [
"GuidedDecisionTreeEditorPresenter"
]

b

"create": null,
"update": null,
"delete": null,
"build": null
b
"pages": {

"read": {

"access": true,

"exceptions": []

b

"build": null
b
"workbench": {

"editDataObject": false,
"plannerAvailable": false,
"editGlobalPreferences": false,
"editProfilePreferences": false,
"accessDataTransfer": false,
"jarDownload": true,
"editGuidedDecisionTableColumns": true

[Post] /groups/{groupName}/permissions

Updates the permissions of a specified group.

Table 29.12. Request parameters

Name Description Type Requirement
groupNam Name of the group for whom you are String Required
e updating permissions

Example request body (JSON)

200

CHAPTER 29. SECURITY MANAGEMENT REST API FOR BUSINESS CENTRAL GROUPS, ROLES, AND USERS

{
"homepage": "HomePerspective",
"priority": 10,
"pages": {
"create": true,
"read": false,
"delete": false,
"update": false,
"exceptions": [
{
"name": "HomePerspective",
"permissions™: {
"read": true

}

]

|3

"project”: {
"create": true,
"read": true,
"delete": false,
"update": false,
"Build": false

|3

"spaces": {
"create": true,
"read": true,
"delete": false,
"update": false

|3

"editor": {
"read": true

|3

"workbench": {
"editDataObject": true,
"plannerAvailable": true,
"editGlobalPreferences": true,
"editProfilePreferences": true,
"accessDataTransfer": true,
"jarDownload": true,
"editGuidedDecisionTableColumns": true

Example server response (JSON)

{
"status": "OK",

"message": "Group newGroup permissions are updated successfully.”

}

[Post] /roles/{roleName}/permissions

Updates the permissions of a specified role.

201

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

Table 29.13. Request parameters

Name Description Type Requirement

roleName Name of the role for whom you are updating String Required
permissions

Example request body (JSON)

{

"homepage": "HomePerspective",
"priority": 10,
"pages": {
"create": true,
"read": false,
"delete": false,
"update": false,
"exceptions": [{
"name": "HomePerspective",
"permissions™: {
"read": true
}
1
b
"project”: {
"create": true,
"read": true,
"delete": false,
"update": false,
"Build": false
b
"spaces": {
"create": true,
"read": true,
"delete": false,
"update": false
b
"editor": {
"read": true
b
"workbench": {
"editDataObject": true,
"plannerAvailable": true,
"editGlobalPreferences": true,
"editProfilePreferences": true,
"accessDataTransfer": true,
"jarDownload": true,
"editGuidedDecisionTableColumns": true

Example server response (JSON)

|

202

CHAPTER 29. SECURITY MANAGEMENT REST API FOR BUSINESS CENTRAL GROUPS, ROLES, AND USERS

"status": "OK",
"message": "Role newRole permissions are updated successfully."

}

29.2.4.1. Supported permissions in Business Central

The following are available permissions in Red Hat Decision Manager. Administrators use these
permissions to allow specific actions to a group, role, or user in Business Central.

Priority

Priority is an integer that defines the precedence of users who are assigned multiple roles or groups.
The default value of priority for a new group is-100. In Business Central, you can set an integer value
as a priority, which is resolved using the following rules:

Table 29.14. Priority value table

Integer value Priority

Less than -5 VERY LOW

Between-5and O LOW

Equalto O NORMAL

Between O and 5 HIGH

Greater than 5 VERY HIGH
Home Page

Home Page indicates the default landing page for users.
Workbench

Workbench consists of the following defined permissions:

"editDataObject": true,
"plannerAvailable": true,
"editGlobalPreferences": true,
"editProfilePreferences": true,
"accessDataTransfer": true,
"jarDownload": true,
"editGuidedDecisionTableColumns": true

Pages, Editor, Spaces, and Projects

The following are possible values for the permissions based on the resource type:

o PAGES: read,create,update,delete

e EDITOR: read

203

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

e SPACES: read,create,update,delete
e PROJECT: read,create,update,delete,build

You can use following code to add exceptions to Pages, Editor, Spaces, and Projects permissions:

{
"pages": {
"read": false,
"exceptions": [

{
"resourceName": "Processlinstances”,
"permissions™: {

"read": false
}
b
{

"resourceName": "ProcessDefinitions",
"permissions™: {
"read": false

The name attribute is an identifier of a resource that you add as an exception. Use the following
REST API endpoints to get the list of possible identifiers. The REST APl base URL is
http://SERVER:PORT/business-central/rest/.

e [GET] /perspectives: Returns perspective names of all pages in Business Central
® [GET] /editors: Returns all editors in Business Central

® [GET] /spaces: Returns all spaces in Business Central

e [GET] /spaces/{spaceName}/projects: Returns projects in a specified space

Example server response for pages (JSON)

"pages": {
"create": true,
"read": false,
"exceptions": [
{
"name": "HomePerspective",
"permissions™: {
"read": true
}
}
]
}

204

CHAPTER 30. ADDITIONAL RESOURCES

CHAPTER 30. ADDITIONAL RESOURCES

® Managing and monitoring KIE Server

® Packaging and deploying an Red Hat Decision Manager project

205

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/managing_red_hat_decision_manager_and_kie_server_settings#assembly-managing-and-monitoring-execution-server
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

Red Hat Decision Manager 7.13 Deploying and managing Red Hat Decision Manager services

APPENDIX A. VERSIONING INFORMATION

Documentation last updated on Thursday, March 14th, 2024.

206

APPENDIX B. CONTACT INFORMATION

APPENDIX B. CONTACT INFORMATION

Red Hat Decision Manager documentation team: brms-docs@redhat.com

207

mailto:brms-docs@redhat.com

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	PART I. PACKAGING AND DEPLOYING A RED HAT DECISION MANAGER PROJECT
	CHAPTER 1. RED HAT DECISION MANAGER PROJECT PACKAGING
	CHAPTER 2. PROJECT DEPLOYMENT IN BUSINESS CENTRAL
	2.1. CONFIGURING KIE SERVER TO CONNECT TO BUSINESS CENTRAL
	2.2. CONFIGURING THE ENVIRONMENT MODE IN KIE SERVER AND BUSINESS CENTRAL
	2.3. CONFIGURING AN EXTERNAL MAVEN REPOSITORY FOR BUSINESS CENTRAL AND KIE SERVER
	2.4. EXPORTING A BUSINESS CENTRAL PROJECT TO AN EXTERNAL MAVEN REPOSITORY
	2.5. BUILDING AND DEPLOYING A PROJECT IN BUSINESS CENTRAL
	2.6. DEPLOYMENT UNITS IN BUSINESS CENTRAL
	2.6.1. Creating a deployment unit in Business Central
	2.6.2. Starting, stopping, and removing deployment units in Business Central
	2.6.3. KIE container aliases

	2.7. EDITING THE GAV VALUES FOR A PROJECT IN BUSINESS CENTRAL
	2.8. DUPLICATE GAV DETECTION IN BUSINESS CENTRAL
	2.8.1. Managing duplicate GAV detection settings in Business Central

	CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS CENTRAL
	3.1. CONFIGURING A KIE MODULE DESCRIPTOR FILE
	3.1.1. KIE module configuration properties
	3.1.2. KIE base attributes supported in KIE modules
	3.1.3. KIE session attributes supported in KIE modules

	3.2. PACKAGING AND DEPLOYING A RED HAT DECISION MANAGER PROJECT IN MAVEN
	3.3. PACKAGING AND DEPLOYING A RED HAT DECISION MANAGER PROJECT IN A JAVA APPLICATION
	3.4. EXECUTABLE RULE MODELS
	3.4.1. Modifying or disabling executable rule models in a Red Hat Decision Manager project

	3.5. USING A KIE SCANNER TO MONITOR AND UPDATE KIE CONTAINERS
	3.6. STARTING A SERVICE IN KIE SERVER
	3.7. STOPPING AND REMOVING A SERVICE IN KIE SERVER

	CHAPTER 4. ADDITIONAL RESOURCES
	PART II. MANAGING PROJECTS IN BUSINESS CENTRAL
	CHAPTER 5. RED HAT DECISION MANAGER PROJECTS
	CHAPTER 6. MIGRATING BUSINESS PROCESSES TO THE NEW PROCESS DESIGNER
	CHAPTER 7. MODIFYING EXISTING PROJECTS IN BUSINESS CENTRAL
	CHAPTER 8. CREATING THE MORTGAGE-PROCESS PROJECT
	8.1. MODIFYING THE MORTGAGES SAMPLE PROJECT
	8.2. CREATING A PROJECT USING ARCHETYPES

	CHAPTER 9. IMPORTING PROJECTS FROM GIT REPOSITORIES
	CHAPTER 10. REVISING PROJECT VERSIONS
	CHAPTER 11. CONFIGURING PROJECT SETTINGS
	CHAPTER 12. MULTIPLE BRANCHES IN BUSINESS CENTRAL
	12.1. CREATING BRANCHES
	12.2. SELECTING BRANCHES
	12.3. DELETING BRANCHES
	12.4. BUILDING AND DEPLOYING PROJECTS

	CHAPTER 13. CHANGE REQUESTS IN BUSINESS CENTRAL
	13.1. CREATING CHANGE REQUESTS
	13.2. WORKING WITH CHANGE REQUESTS

	PART III. MANAGING ASSETS IN BUSINESS CENTRAL
	CHAPTER 14. ASSET OVERVIEW
	CHAPTER 15. TYPES OF ASSETS
	CHAPTER 16. CREATING ASSETS
	CHAPTER 17. RENAMING, COPYING, OR DELETING ASSETS
	CHAPTER 18. MANAGING ASSET METADATA AND VERSION HISTORY
	CHAPTER 19. FILTERING ASSETS BY TAGS
	CHAPTER 20. UNLOCKING ASSETS
	PART IV. INTERACTING WITH RED HAT DECISION MANAGER USING KIE APIS
	CHAPTER 21. KIE SERVER REST API FOR KIE CONTAINERS AND BUSINESS ASSETS
	21.1. SENDING REQUESTS WITH THE KIE SERVER REST API USING A REST CLIENT OR CURL UTILITY
	21.2. SENDING REQUESTS WITH THE KIE SERVER REST API USING THE SWAGGER INTERFACE
	21.3. SUPPORTED KIE SERVER REST API ENDPOINTS
	21.3.1. REST endpoints for specific DMN models

	CHAPTER 22. KIE SERVER JAVA CLIENT API FOR KIE CONTAINERS AND BUSINESS ASSETS
	22.1. SENDING REQUESTS WITH THE KIE SERVER JAVA CLIENT API
	22.2. SUPPORTED KIE SERVER JAVA CLIENTS
	22.3. EXAMPLE REQUESTS WITH THE KIE SERVER JAVA CLIENT API

	CHAPTER 23. KIE SERVER AND KIE CONTAINER COMMANDS IN RED HAT DECISION MANAGER
	23.1. SAMPLE KIE SERVER AND KIE CONTAINER COMMANDS

	CHAPTER 24. RUNTIME COMMANDS IN RED HAT DECISION MANAGER
	24.1. SAMPLE RUNTIME COMMANDS IN RED HAT DECISION MANAGER

	CHAPTER 25. PROCESS AUTOMATION MANAGER CONTROLLER REST API FOR KIE SERVER TEMPLATES AND INSTANCES
	25.1. SENDING REQUESTS WITH THE PROCESS AUTOMATION MANAGER CONTROLLER REST API USING A REST CLIENT OR CURL UTILITY
	25.2. SENDING REQUESTS WITH THE PROCESS AUTOMATION MANAGER CONTROLLER REST API USING THE SWAGGER INTERFACE
	25.3. SUPPORTED PROCESS AUTOMATION MANAGER CONTROLLER REST API ENDPOINTS

	CHAPTER 26. PROCESS AUTOMATION MANAGER CONTROLLER JAVA CLIENT API FOR KIE SERVER TEMPLATES AND INSTANCES
	26.1. SENDING REQUESTS WITH THE PROCESS AUTOMATION MANAGER CONTROLLER JAVA CLIENT API
	26.2. SUPPORTED PROCESS AUTOMATION MANAGER CONTROLLER JAVA CLIENTS
	26.3. EXAMPLE REQUESTS WITH THE PROCESS AUTOMATION MANAGER CONTROLLER JAVA CLIENT API

	CHAPTER 27. BPMN PROCESS FLUENT API FOR BUSINESS CENTRAL PROCESSES
	27.1. EXAMPLE REQUESTS WITH THE BPMN PROCESS FLUENT API
	27.2. EXAMPLE REQUESTS TO EXECUTE A BUSINESS PROCESS

	CHAPTER 28. KNOWLEDGE STORE REST API FOR BUSINESS CENTRAL SPACES AND PROJECTS
	28.1. SENDING REQUESTS WITH THE KNOWLEDGE STORE REST API USING A REST CLIENT OR CURL UTILITY
	28.2. SUPPORTED KNOWLEDGE STORE REST API ENDPOINTS
	28.2.1. Spaces
	28.2.2. Projects
	28.2.3. Jobs (API requests)
	28.2.4. Branches

	CHAPTER 29. SECURITY MANAGEMENT REST API FOR BUSINESS CENTRAL GROUPS, ROLES, AND USERS
	29.1. SENDING REQUESTS WITH THE SECURITY MANAGEMENT REST API USING A REST CLIENT OR CURL UTILITY
	29.2. SUPPORTED SECURITY MANAGEMENT REST API ENDPOINTS
	29.2.1. Groups
	29.2.2. Roles
	29.2.3. Users
	29.2.4. Permissions
	29.2.4.1. Supported permissions in Business Central

	CHAPTER 30. ADDITIONAL RESOURCES
	APPENDIX A. VERSIONING INFORMATION
	APPENDIX B. CONTACT INFORMATION

