& RedHat

Red Hat Data Grid 8.2

Upgrading Data Grid

Upgrade Data Grid to 8.2

Last Updated: 2023-11-23






Red Hat Data Grid 8.2 Upgrading Data Grid

Upgrade Data Grid to 8.2



Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Upgrade Data Grid clusters from one 8.x version to the next. You can perform rolling upgrades to
avoid downtime or offline upgrades during which Data Grid converts data for compatibility.



Table of Contents

Table of Contents

RED HAT DAT A GRID oottt ittt ettt et ettt ettt et e e aeeeaneeeaneennnesaneesaneennneeaneens 3
DATA GRID DOCUMENT ATION ittt ittt ittt et ettt et ettt e it eeaiaeeeaannnneenn, 4
DATA GRID DOWNL O ADS ot iiittttittt ettt ettt ate et eeaeeaneeeaneesnneeaneesaneennneeaneens 5
MAKING OPEN SOURCE MORE INCLUSIVE ... ittt ittt ettt ettt eeeiiaeeanns 6
CHAPTER 1. DATA GRID B UPGRADE NOTES ...ttt ittt ettt ettt eeaiaeeeannnns 7
1.1. UPGRADING TO DATA GRID 8.2 7
Upgrading deployments with Single File cache stores 7
Upgrade from 8.1 at a minimum 7
Migrating ProtoStream marshaller configuration 7
CHAPTER 2. PERFORMING ROLLING UPGRADES FORDATAGRIDSERVERS .........ciiiiiiiiieiinnnn, 9
2.1.SETTING UP TARGET CLUSTERS 9
2.1.1. Remote Cache Stores for Rolling Upgrades 9

2.2. SYNCHRONIZING DATA TO TARGET CLUSTERS 10
CHAPTER 3. MIGRATING DATABETWEEN CACHE STORES ... ittt iii e 12
3.1. CACHE STORE MIGRATOR 12
3.2. GETTING THE STORE MIGRATOR 12
3.3. CONFIGURING THE STORE MIGRATOR 13
3.3.1. Store Migrator Properties 14

3.4. MIGRATING CACHE STORES 18



Red Hat Data Grid 8.2 Upgrading Data Grid




RED HAT DATA GRID

RED HAT DATA GRID

Data Grid is a high-performance, distributed in-memory data store.

Schemaless data structure
Flexibility to store different objects as key-value pairs.
Grid-based data storage
Designed to distribute and replicate data across clusters.
Elastic scaling
Dynamically adjust the number of nodes to meet demand without service disruption.
Data interoperability

Store, retrieve, and query data in the grid from different endpoints.



Red Hat Data Grid 8.2 Upgrading Data Grid

DATA GRID DOCUMENTATION

Documentation for Data Grid is available on the Red Hat customer portal.

Data Grid 8.2 Documentation

Data Grid 8.2 Component Details
Supported Configurations for Data Grid 8.2
Data Grid 8 Feature Support

Data Grid Deprecated Features and Functionality


https://access.redhat.com/documentation/en-us/red_hat_data_grid/
https://access.redhat.com/articles/4933371
https://access.redhat.com/articles/4933551
https://access.redhat.com/articles/5637681
https://access.redhat.com/articles/5643591

DATA GRID DOWNLOADS
DATA GRID DOWNLOADS
Access the Data Grid Software Downloads on the Red Hat customer portal.

NOTE

You must have a Red Hat account to access and download Data Grid software.


https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=data.grid&downloadType=distributions

Red Hat Data Grid 8.2 Upgrading Data Grid

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.


https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. DATA GRID 8 UPGRADE NOTES

CHAPTER 1. DATA GRID 8 UPGRADE NOTES

Review the details in this section before upgrading from one Data Grid 8 version to another.

1.1. UPGRADING TO DATA GRID 8.2

Read the following information to ensure a successful upgrade from previous versions of Data Grid 8 to
8.2:

Upgrading deployments with Single File cache stores
When upgrading Data Grid to 8.2.0, caches that include a SingleFileStore persistence configuration can
encounter an issue that leads to data corruption.

This issue affects upgrades to Data Grid 8.2.0 only. As of Data Grid 8.2.1 this issue no longer occurs
during upgrade.

If you have already upgraded from an earlier version to 8.2.0, you should do the following as soon as
possible:

1. Back up any $RHDG_HOME/server/data/*.dat files.
2. Upgrade to Data Grid 8.2.1 or later.

After successful upgrade, Data Grid recovers any corrupted data and restores the Single File Store on
first start.

Cross-site replication state transfer

For caches that backup to other clusters via cross-site replication, you should perform a state transfer
after upgrading to 8.2.

From the Infinispan CLI use the site push-site-state command as follows:
I [//containers/default]> site push-site-state --cache=cacheName --site=NYC

Upgrade from 8.1at a minimum

If you are upgrading from 8.0, you must first upgrade to 8.1. Persistent data in Data Grid 8.0 is not binary
compatible with Data Grid 8.2 because user serialization contexts are separated from Data Grid
serialization contexts in 8.2. To overcome this incompatibility issue, Data Grid 8.2 automatically converts
existing persistent cache stores from Data Grid 8.1 at cluster startup. However, Data Grid does not
convert cache stores from Data Grid 8.0.

Migrating ProtoStream marshaller configuration

Data Grid 8.2 upgrades the ProtoStream library that provides marshalling capabilities. As part of the
upgrade process from Data Grid 8.1 you should also review ProtoStream migration details to avoid any
data compatibility issues that might arise from differences in how ProtoStream encodes entries as
Protobuf.

In addition the MessageMarshaller APl and the ProtoSchemaBuilder annotation are deprecated in
the ProtoStream API. You should migrate any serialization context initializers in Data Grid 8.1 to the
AutoProtoSchemaBuilder annotation as part of the upgrade to Data Grid 8.2.

Additional resources

® ProtoStream annotations


https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.2/html-single/cache_encoding_and_marshalling/#protostream-annotations_marshalling

Red Hat Data Grid 8.2 Upgrading Data Grid

® Creating serialization context initializers

® Migrating applications to the AutoProtoSchemaBuilder annotation



https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.2/html-single/cache_encoding_and_marshalling/#protostream-sci-implementations_marshalling
https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.2/html-single/migrating_to_data_grid_8/#message-marshaller-migration_application-migration

CHAPTER 2. PERFORMING ROLLING UPGRADES FOR DATA GRID SERVERS

CHAPTER 2. PERFORMING ROLLING UPGRADES FOR DATA
GRID SERVERS

Perform rolling upgrades of your Data Grid clusters to change between versions without downtime or
data loss. Rolling upgrades migrate both your Data Grid servers and your data to the target version over
Hot Rod.

21.SETTING UP TARGET CLUSTERS

Create a cluster that runs the target Data Grid version and uses a remote cache store to load data from
the source cluster.

Prerequisites

® |[nstall a Data Grid cluster with the target upgrade version.

IMPORTANT

Ensure the network properties for the target cluster do not overlap with those for the
source cluster. You should specify unique names for the target and source clusters in the
JGroups transport configuration. Depending on your environment you can also use
different network interfaces and specify port offsets to keep the target and source
clusters separate.

Procedure

1. Add a RemoteCacheStore on the target cluster for each cache you want to migrate from the
source cluster.
Remote cache stores use the Hot Rod protocol to retrieve data from remote Data Grid clusters.
When you add the remote cache store to the target cluster, it can lazily load data from the
source cluster to handle client requests.

2. Switch clients over to the target cluster so it starts handling all requests.

a. Update client configuration with the location of the target cluster.

b. Restart clients.

2.1.1. Remote Cache Stores for Rolling Upgrades

You must use specific remote cache store configuration to perform rolling upgrades, as follows:

<!-- Remote cache stores for rolling upgrades must disable passivation. -->
<persistence passivation="false">
<I-- The value of the cache attribute matches the name of a cache in the source cluster. Target
clusters load data from this cache using the remote cache store. -->
<!I-- The "protocol-version" attribute matches the Hot Rod protocol version of the source cluster. 2.5
is the minimum version and is suitable for any upgrade path. -->
<!-- You should enable segmentation for remote cache stores only if the number of segments in the
target cluster matches the number of segments for the cache in the source cluster. -->
<remote-store xmins="urn:infinispan:config:store:remote:12.1"
cache="myDistCache"
protocol-version="2.5"



Red Hat Data Grid 8.2 Upgrading Data Grid

hotrod-wrapping="true"
raw-values="true"
segmented="false">

<!I-- Configures authentication and encryption according to the security realm of the source
cluster. -->
<security>

<authentication server-name="infinispan">
<digest username="admin"
password="changeme"
realm="default"/>
</authentication>

</security>
<I-- Points to the location of the source cluster. -->
<remote-server host="127.0.0.1" port="11222"/>
</remote-store>
</persistence>

Reference

® Remote cache store configuration schema
® RemoteStore

® RemoteStoreConfigurationBuilder

2.2. SYNCHRONIZING DATA TO TARGET CLUSTERS

When your target cluster is running and handling client requests using a remote cache store to load data
on demand, you can synchronize data from the source cluster to the target cluster.

This operation reads data from the source cluster and writes it to the target cluster. Data migrates to all
nodes in the target cluster in parallel, with each node receiving a subset of the data. You must perform
the synchronization for each cache in your Data Grid configuration.

Procedure

10

1. Start the synchronization operation for each cache in your Data Grid configuration that you

want to migrate to the target cluster.

Use the Data Grid REST API and invoke POST requests with the ?action=sync- data
parameter. For example, to synchronize data in a cache named "myCache" from a source cluster
to a target cluster, do the following:

I POST /v2/caches/myCache?action=sync-data

When the operation completes, Data Grid responds with the total number of entries copied to
the target cluster.

Alternatively, you can use JMX by invoking synchronizeData(migratorName=hotrod) on the
RollingUpgradeManager MBean.

. Disconnect each node in the target cluster from the source cluster.

For example, to disconnect the "myCache" cache from the source cluster, invoke the following
POST request:


https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.2/configdocs/infinispan-cachestore-remote-config-12.1.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.2/api/org/infinispan/persistence/remote/RemoteStore.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.2/api/org/infinispan/persistence/remote/configuration/RemoteStoreConfigurationBuilder.html

CHAPTER 2. PERFORMING ROLLING UPGRADES FOR DATA GRID SERVERS

I POST /v2/caches/myCache?action=disconnect-source

To use JMX, invoke disconnectSource(migratorName=hotrod) on the
RollingUpgradeManager MBean.

Next steps

After you synchronize all data from the source cluster, the rolling upgrade process is complete. You can
now decommission the source cluster.

1



Red Hat Data Grid 8.2 Upgrading Data Grid

CHAPTER 3. MIGRATING DATA BETWEEN CACHE STORES

Data Grid provides a Java utility for migrating persisted data between cache stores.

In the case of upgrading Data Grid, functional differences between major versions do not allow
backwards compatibility between cache stores. You can use StoreMigrator to convert your data so that
it is compatible with the target version.

For example, upgrading to Data Grid 8.0 changes the default marshaller to Protostream. In previous
Data Grid versions, cache stores use a binary format that is not compatible with the changes to
marshalling. This means that Data Grid 8.0 cannot read from cache stores with previous Data Grid
versions.

In other cases Data Grid versions deprecate or remove cache store implementations, such as JDBC
Mixed and Binary stores. You can use StoreMigrator in these cases to convert to different cache store
implementations.

3.1. CACHE STORE MIGRATOR

Data Grid provides the StoreMigrator.java utility that recreates data for the latest Data Grid cache
store implementations.

StoreMigrator takes a cache store from a previous version of Data Grid as source and uses a cache
store implementation as target.

When you run StoreMigrator, it creates the target cache with the cache store type that you define using
the EmbeddedCacheManager interface. StoreMigrator then loads entries from the source store into

memory and then puts them into the target cache.

StoreMigrator also lets you migrate data from one type of cache store to another. For example, you can
migrate from a JDBC String-Based cache store to a Single File cache store.

IMPORTANT
StoreMigrator cannot migrate data from segmented cache stores to:

® Non-segmented cache store.

® Segmented cache stores that have a different number of segments.

3.2. GETTING THE STORE MIGRATOR

StoreMigrator is available as part of the Data Grid tools library, infinispan-tools, and is included in the
Maven repository.

Procedure

e Configure your pom.xml for StoreMigrator as follows:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance
xsi:schemalocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

12



CHAPTER 3. MIGRATING DATA BETWEEN CACHE STORES

<modelVersion>4.0.0</modelVersion>

<groupld>org.infinispan.example</groupld>
<artifactld>jdbc-migrator-example</artifactld>
<version>1.0-SNAPSHOT</version>

<dependencies>
<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-tools</artifactld>
</dependency>
<!I-- Additional dependencies -->
</dependencies>

<build>
<plugins>
<plugin>
<groupld>org.codehaus.mojo</groupld>
<artifactld>exec-maven-plugin</artifactld>
<version>1.2.1</version>
<executions>
<execution>
<goals>
<goal>java</goal>
</goals>
</execution>
</executions>
<configuration>
<mainClass>org.infinispan.tools.store.migrator.StoreMigrator</mainClass>
<arguments>
<argument>path/to/migrator.properties</argument>
</arguments>
</configuration>
</plugin>
</plugins>
</build>
</project>

3.3. CONFIGURING THE STORE MIGRATOR

Set properties for source and target cache stores in a migrator.properties file.

Procedure
1. Create a migrator.properties file.
2. Configure the source cache store in migrator.properties.

a. Prepend all configuration properties with source. as in the following example:

source.type=SOFT_INDEX_FILE_STORE
source.cache_name=myCache
source.location=/path/to/source/sifs

3. Configure the target cache store in migrator.properties.

13



Red Hat Data Grid 8.2 Upgrading Data Grid

a. Prepend all configuration properties with target. as in the following example:

target.type=SINGLE_FILE_STORE
target.cache_name=myCache
target.location=/path/to/target/sfs.dat

3.3.1. Store Migrator Properties

Configure source and target cache stores in a StoreMigrator properties.

Table 3.1. Cache Store Type Property

Property Description Required/Optional

type Specifies the type of cache store Required
type for a source or target.

.type=JDBC_STRING
.type=JDBC_BINARY
.type=JDBC_MIXED
.type=LEVELDB
.type=ROCKSDB
type=SINGLE_FILE_STORE

type=SOFT_INDEX_FILE_ST
ORE

type=JDBC_MIXED

Table 3.2. Common Properties

Property Description Example Value Required/Optional
cache_name Names the cache that .cache_name=myCa Required
the store backs. che

14



CHAPTER 3. MIGRATING DATA BETWEEN CACHE STORES

Property Description Example Value Required/Optional

segment_count Specifies the number of .segment_count=256  Optional
segments for target
cache stores that can
use segmentation.

The number of
segments must match
clustering.hash.num
Segments in the Data
Grid configuration.

In other words, the
number of segments for
a cache store must
match the number of
segments for the
corresponding cache. If
the number of segments
is not the same, Data
Grid cannot read data
from the cache store.

Table 3.3. JDBC Properties

Property Description Required/Optional

dialect Specifies the dialect of the Required
underlying database.

version Specifies the marshaller version Required for source stores only.
for source cache stores. Set one
of the fo”owing values: For example: source.version=9

* 8 for Data Grid 7.2.x

* 9 for Data Grid 7.3.x

*10 Data Grid 8.x

marshaller.class Specifies a custom marshaller Required if using custom
class. marshallers.
marshaller.externalizers Specifies a comma-separated list Optional
of custom

AdvancedExternalizer
implementations to load in this
format: [id]:<Externalizer
class>

15



Red Hat Data Grid 8.2 Upgrading Data Grid

Property Description Required/Optional
connection_pool.connection Specifies the JDBC connection Required

_url URL.

connection_pool.driver_clas Specifies the class of the JDBC Required

S driver.

connection_pool.username Specifies a database username. Required
connection_pool.password Specifies a password for the Required

database username.

db.major_version Sets the database major version. Optional
db.minor_version Sets the database minor version. Optional
db.disable_upsert Disables database upsert. Optional
db.disable_indexing Specifies if table indexes are Optional
created.

table.string.table_name_prefi = Specifies additional prefixes for Optional
X the table name.

table.string. Specifies the column name. Required

<id|data|timestamp>.name

table.string. Specifies the column type. Required
<id|data|timestamp>.type

key_to_string_mapper Specifies the Optional
TwoWayKey2StringMapper
class.

NOTE

To migrate from Binary cache stores in older Data Grid versions, change table.string.* to
table.binary.\* in the following properties:

e source.table.binary.table_name_prefix

e source.table.binary.<id\|data\[timestamp>.name

e source.table.binary.<id\|data\|[timestamp>.type

# Example configuration for migrating to a JDBC String-Based cache store
target.type=STRING

16



CHAPTER 3. MIGRATING DATA BETWEEN CACHE STORES

target.cache_name=myCache

target.dialect=POSTGRES
target.marshaller.class=org.example.CustomMarshaller
target.marshaller.externalizers=25:Externalizeri,org.example.Externalizer2
target.connection_pool.connection_url=jdbc:postgresql:postgres
target.connection_pool.driver_class=org.postrgesql.Driver
target.connection_pool.username=postgres
target.connection_pool.password=redhat
target.db.major_version=9

target.db.minor_version=5

target.db.disable_upsert=false

target.db.disable_indexing=false
target.table.string.table_name_prefix=tablePrefix
target.table.string.id.name=id_column
target.table.string.data.name=datum_column
target.table.string.timestamp.name=timestamp_column
target.table.string.id.type=VARCHAR
target.table.string.data.type=bytea
target.table.string.timestamp.type=BIGINT
target.key_to_string_mapper=org.infinispan.persistence.keymappers.
DefaultTwoWayKey2StringMapper

Table 3.4. RocksDB Properties

Property Description Required/Optional
location Sets the database directory. Required
compression Specifies the compression type to ~ Optional

use.

# Example configuration for migrating from a RocksDB cache store.
source.type=ROCKSDB

source.cache_name=myCache
source.location=/path/to/rocksdb/database
source.compression=SNAPPY

Table 3.5. SingleFileStore Properties

Property Description Required/Optional

location Sets the directory that contains Required
the cache store .dat file.

# Example configuration for migrating to a Single File cache store.
target.type=SINGLE_FILE_STORE
target.cache_name=myCache

target.location=/path/to/sfs.dat

Table 3.6. SoftindexFileStore Properties

17



Red Hat Data Grid 8.2 Upgrading Data Grid

Property Description Value
Required/Optional location Sets the database directory.
Required index_location Sets the database index directory.

# Example configuration for migrating to a Soft-Index File cache store.
target.type=SOFT_INDEX_FILE_STORE
target.cache_name=myCache

target.location=path/to/sifs/database

target.location=path/to/sifs/index

3.4. MIGRATING CACHE STORES

Run StoreMigrator to migrate data from one cache store to another.

Prerequisites

® Get infinispan-tools.jar.

e Create a migrator.properties file that configures the source and target cache stores.

Procedure
e |f you build infinispan-tools.jar from source, do the following:

1. Add infinispan-tools.jar and dependencies for your source and target databases, such as
JDBC drivers, to your classpath.

2. Specify migrator.properties file as an argument for StoreMigrator.

® |f you pull infinispan-tools.jar from the Maven repository, run the following command:
mvn exec:java

18



	Table of Contents
	RED HAT DATA GRID
	DATA GRID DOCUMENTATION
	DATA GRID DOWNLOADS
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. DATA GRID 8 UPGRADE NOTES
	1.1. UPGRADING TO DATA GRID 8.2
	Upgrading deployments with Single File cache stores
	Upgrade from 8.1 at a minimum
	Migrating ProtoStream marshaller configuration


	CHAPTER 2. PERFORMING ROLLING UPGRADES FOR DATA GRID SERVERS
	2.1. SETTING UP TARGET CLUSTERS
	2.1.1. Remote Cache Stores for Rolling Upgrades

	2.2. SYNCHRONIZING DATA TO TARGET CLUSTERS

	CHAPTER 3. MIGRATING DATA BETWEEN CACHE STORES
	3.1. CACHE STORE MIGRATOR
	3.2. GETTING THE STORE MIGRATOR
	3.3. CONFIGURING THE STORE MIGRATOR
	3.3.1. Store Migrator Properties

	3.4. MIGRATING CACHE STORES


