
Red Hat CodeReady Workspaces 2.7

Administration Guide

Administering Red Hat CodeReady Workspaces 2.7

Last Updated: 2021-04-28

Red Hat CodeReady Workspaces 2.7 Administration Guide

Administering Red Hat CodeReady Workspaces 2.7

Robert Kratky
rkratky@redhat.com

Michal Maléř
mmaler@redhat.com

Fabrice Flore-Thébault
ffloreth@redhat.com

Yana Hontyk
yhontyk@redhat.com

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Information for administrators operating Red Hat CodeReady Workspaces.

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. CODEREADY WORKSPACES ARCHITECTURE OVERVIEW
1.1. UNDERSTANDING CODEREADY WORKSPACES WORKSPACE CONTROLLER

1.1.1. CodeReady Workspaces workspace controller
1.1.2. CodeReady Workspaces server
1.1.3. CodeReady Workspaces user dashboard
1.1.4. CodeReady Workspaces Devfile registry
1.1.5. CodeReady Workspaces plug-in registry
1.1.6. CodeReady Workspaces and PostgreSQL
1.1.7. CodeReady Workspaces and RH-SSO

1.2. UNDERSTANDING CODEREADY WORKSPACES WORKSPACES ARCHITECTURE
1.2.1. CodeReady Workspaces workspaces architecture
1.2.2. CodeReady Workspaces workspace components

1.2.2.1. Che Editor plug-in
1.2.2.2. CodeReady Workspaces user runtimes
1.2.2.3. CodeReady Workspaces workspace JWT proxy
1.2.2.4. CodeReady Workspaces plug-ins broker

1.2.3. CodeReady Workspaces workspace creation flow

CHAPTER 2. CALCULATING CODEREADY WORKSPACES RESOURCE REQUIREMENTS
2.1. CONTROLLER REQUIREMENTS
2.2. WORKSPACES REQUIREMENTS
2.3. A WORKSPACE EXAMPLE

CHAPTER 3. CUSTOMIZING THE REGISTRIES
3.1. UNDERSTANDING THE CODEREADY WORKSPACES REGISTRIES
3.2. BUILDING CUSTOM REGISTRY IMAGES

3.2.1. Building a custom devfile registry image
3.2.2. Building a custom plug-ins registry image

3.3. RUNNING CUSTOM REGISTRIES
3.3.1. Deploying registries in OpenShift

CHAPTER 4. RETRIEVING CODEREADY WORKSPACES LOGS
4.1. CONFIGURING SERVER LOGGING

4.1.1. Configuring log levels
4.1.2. Logger naming
4.1.3. Logging HTTP traffic

4.2. ACCESSING OPENSHIFT EVENTS ON OPENSHIFT
4.3. VIEWING THE STATE OF THE CODEREADY WORKSPACES CLUSTER DEPLOYMENT USING OPENSHIFT
4 CLI TOOLS
4.4. VIEWING CODEREADY WORKSPACES SERVER LOGS

4.4.1. Viewing the CodeReady Workspaces server logs using the OpenShift CLI
4.5. VIEWING EXTERNAL SERVICE LOGS

4.5.1. Viewing RH-SSO logs
4.5.1.1. Viewing the RH-SSO server logs
4.5.1.2. Viewing the RH-SSO client logs on Firefox
4.5.1.3. Viewing the RH-SSO client logs on Google Chrome

4.5.2. Viewing the CodeReady Workspaces database logs
4.6. VIEWING THE PLUG-IN BROKER LOGS
4.7. COLLECTING LOGS USING CRWCTL

CHAPTER 5. MONITORING CODEREADY WORKSPACES

5

6
6
6
7
7
8
8
8
8
8
9

10
10
11
11
11

12

14
14
14
18

21
21
21
21
23
24
25

28
28
28
28
28
29

29
30
30
31
31
31
31
32
32
32
33

34

Table of Contents

1

. .

. .

. .

. .

5.1. ENABLING AND EXPOSING CODEREADY WORKSPACES METRICS
5.2. COLLECTING CODEREADY WORKSPACES METRICS WITH PROMETHEUS
5.3. EXTENDING CODEREADY WORKSPACES MONITORING METRICS

CHAPTER 6. TRACING CODEREADY WORKSPACES
6.1. TRACING API
6.2. TRACING BACK END
6.3. INSTALLING THE JAEGER TRACING TOOL

6.3.1. Installing Jaeger using OperatorHub on OpenShift 4
6.3.2. Installing Jaeger using CLI on OpenShift 4

6.4. ENABLING METRICS COLLECTION
6.5. VIEWING CODEREADY WORKSPACES TRACES IN JAEGER UI
6.6. CODEREADY WORKSPACES TRACING CODEBASE OVERVIEW AND EXTENSION GUIDE

6.6.1. Tagging

CHAPTER 7. BACKUP AND DISASTER RECOVERY
7.1. EXTERNAL DATABASE SETUP

7.1.1. Configuring external PostgreSQL
7.1.2. Configuring CodeReady Workspaces to work with an external PostgreSQL

7.2. PERSISTENT VOLUMES BACKUPS
7.2.1. Recommended backup tool: Velero

CHAPTER 8. CACHING IMAGES FOR FASTER WORKSPACE START
8.1. DEFINING THE LIST OF IMAGES TO PULL
8.2. DEFINING THE MEMORY PARAMETERS FOR THE IMAGE PULLER
8.3. INSTALLING IMAGE PULLER USING THE CODEREADY WORKSPACES OPERATOR
8.4. INSTALLING IMAGE PULLER ON OPENSHIFT 4 USING OPERATORHUB
8.5. INSTALLING IMAGE PULLER ON OPENSHIFT USING OPENSHIFT TEMPLATES

CHAPTER 9. MANAGING IDENTITIES AND AUTHORIZATIONS
9.1. AUTHENTICATING USERS

9.1.1. Authenticating to the CodeReady Workspaces server
9.1.1.1. Authenticating to the CodeReady Workspaces server using OpenID

9.1.1.1.1. Obtaining the token from credentials through RH-SSO
9.1.1.1.2. Obtaining the token from the OpenShift token through RH-SSO

9.1.1.2. Authenticating to the CodeReady Workspaces server using other authentication implementations
9.1.1.3. Authenticating to the CodeReady Workspaces server using OAuth
9.1.1.4. Using Swagger or REST clients to execute queries

9.1.2. Authenticating in a CodeReady Workspaces workspace
9.1.2.1. Creating secure servers
9.1.2.2. Workspace JWT token
9.1.2.3. Machine token validation

9.2. AUTHORIZING USERS
9.2.1. CodeReady Workspaces workspace permissions
9.2.2. CodeReady Workspaces system permissions
9.2.3. manageSystem permission
9.2.4. monitorSystem permission
9.2.5. Listing CodeReady Workspaces permissions
9.2.6. Assigning CodeReady Workspaces permissions
9.2.7. Sharing CodeReady Workspaces permissions

9.3. CONFIGURING AUTHORIZATION
9.3.1. Authorization and user management
9.3.2. Configuring CodeReady Workspaces to work with RH-SSO
9.3.3. Configuring RH-SSO tokens

34
35
37

38
38
38
38
38
39
40
42
43
43

44
44
44
45
46
47

48
49
50
50
52
53

56
56
56
56
58
58
59
59
60
60
61
61

62
62
62
63
63
64
65
65
66
66
66
66
67

Red Hat CodeReady Workspaces 2.7 Administration Guide

2

9.3.4. Setting up user federation
9.3.5. Enabling authentication with social accounts and brokering

9.3.5.1. Configuring GitHub OAuth
9.3.5.2. Configuring Bitbucket Server OAuth 1

67
67
68
68

Table of Contents

3

Red Hat CodeReady Workspaces 2.7 Administration Guide

4

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. CODEREADY WORKSPACES ARCHITECTURE
OVERVIEW

Red Hat CodeReady Workspaces components are:

A central workspace controller: an always running service that manages users workspaces
through the OpenShift API.

Users workspaces: container-based IDEs that the controller stops when the user stops coding.

Figure 1.1. High-level CodeReady Workspaces architecture

When CodeReady Workspaces is installed on a OpenShift cluster, the workspace controller is the only
component that is deployed. A CodeReady Workspaces workspace is created immediately after a user
requests it.

Additional resources

Section 1.1, “Understanding CodeReady Workspaces workspace controller”

Section 1.2, “Understanding CodeReady Workspaces workspaces architecture”

1.1. UNDERSTANDING CODEREADY WORKSPACES WORKSPACE
CONTROLLER

1.1.1. CodeReady Workspaces workspace controller

The workspaces controller manages the container-based development environments: CodeReady
Workspaces workspaces. Following deployment scenarios are available:

Single-user: The deployment contains no authentication service. Development environments
are not secured. This configuration requires fewer resources. It is more adapted for local
installations.

Multi-user: This is a multi-tenant configuration. Development environments are secured, and
this configuration requires more resources. Appropriate for cloud installations.

The following diagram shows the different services that are a part of the CodeReady Workspaces

Red Hat CodeReady Workspaces 2.7 Administration Guide

6

The following diagram shows the different services that are a part of the CodeReady Workspaces
workspaces controller. Note that RH-SSO and PostgreSQL are only needed in the multi-user
configuration.

Figure 1.2. CodeReady Workspaces workspaces controller

Additional resources

Section 9.1, “Authenticating users”

1.1.2. CodeReady Workspaces server

The CodeReady Workspaces server is the central service of the workspaces controller. It is a Java web
service that exposes an HTTP REST API to manage CodeReady Workspaces workspaces and, in multi-
user mode, CodeReady Workspaces users.

Container image eclipse/che-server

Additional resources

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-
single/installation_guide/index#advanced-configuration-options-for-the-codeready-
workspaces-server-component_crw

1.1.3. CodeReady Workspaces user dashboard

The user dashboard is the landing page of Red Hat CodeReady Workspaces. It is an Angular front-end
application. CodeReady Workspaces users create, start, and manage CodeReady Workspaces
workspaces from their browsers through the user dashboard.

Container image eclipse/che-server

CHAPTER 1. CODEREADY WORKSPACES ARCHITECTURE OVERVIEW

7

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-single/installation_guide/index#advanced-configuration-options-for-the-codeready-workspaces-server-component_crw

1.1.4. CodeReady Workspaces Devfile registry

The CodeReady Workspaces devfile registry is a service that provides a list of CodeReady Workspaces
stacks to create ready-to-use workspaces. This list of stacks is used in the Dashboard → Create
Workspace window. The devfile registry runs in a container and can be deployed wherever the user
dashboard can connect.

For more information about devfile registry customization, see the Customizing devfile registry section.

Container image registry.redhat.io/codeready-
workspaces/devfileregistry-rhel8:2.7

1.1.5. CodeReady Workspaces plug-in registry

The CodeReady Workspaces plug-in registry is a service that provides the list of plug-ins and editors for
the CodeReady Workspaces workspaces. A devfile only references a plug-in that is published in a
CodeReady Workspaces plug-in registry. It runs in a container and can be deployed wherever
CodeReady Workspaces server connects.

Container image registry.redhat.io/codeready-
workspaces/pluginregistry-rhel8:2.7

1.1.6. CodeReady Workspaces and PostgreSQL

The PostgreSQL database is a prerequisite to configure CodeReady Workspaces in multi-user mode.
The CodeReady Workspaces administrator can choose to connect CodeReady Workspaces to an
existing PostgreSQL instance or let the CodeReady Workspaces deployment start a new dedicated
PostgreSQL instance.

The CodeReady Workspaces server uses the database to persist user configurations (workspaces
metadata, Git credentials). RH-SSO uses the database as its back end to persist user information.

Container image registry.redhat.io/rhel8/postgresql-96:1

1.1.7. CodeReady Workspaces and RH-SSO

RH-SSO is a prerequisite to configure CodeReady Workspaces in multi-user mode. The CodeReady
Workspaces administrator can choose to connect CodeReady Workspaces to an existing RH-SSO
instance or let the CodeReady Workspaces deployment start a new dedicated RH-SSO instance.

The CodeReady Workspaces server uses RH-SSO as an OpenID Connect (OIDC) provider to
authenticate CodeReady Workspaces users and secure access to CodeReady Workspaces resources.

Container image registry.redhat.io/rh-sso-7/sso74-openshift-
rhel8:7.4

1.2. UNDERSTANDING CODEREADY WORKSPACES WORKSPACES
ARCHITECTURE

Red Hat CodeReady Workspaces 2.7 Administration Guide

8

1.2.1. CodeReady Workspaces workspaces architecture

A CodeReady Workspaces deployment on the cluster consists of the CodeReady Workspaces server
component, a database for storing user profile and preferences, and a number of additional
deployments hosting workspaces. The CodeReady Workspaces server orchestrates the creation of
workspaces, which consist of a deployment containing the workspace containers and enabled plug-ins,
plus related components, such as:

ConfigMaps

services

endpoints

ingresses/routes

secrets

PVs

The CodeReady Workspaces workspace is a web application. It is composed of microservices running in
containers that provide all the services of a modern IDE such as an editor, language auto-completion,
and debugging tools. The IDE services are deployed with the development tools, packaged in containers
and user runtime applications, which are defined as OpenShift resources.

The source code of the projects of a CodeReady Workspaces workspace is persisted in a OpenShift
PersistentVolume. Microservices run in containers that have read-write access to the source code (IDE
services, development tools), and runtime applications have read-write access to this shared directory.

The following diagram shows the detailed components of a CodeReady Workspaces workspace.

Figure 1.3. CodeReady Workspaces workspace components

CHAPTER 1. CODEREADY WORKSPACES ARCHITECTURE OVERVIEW

9

Figure 1.3. CodeReady Workspaces workspace components

In the diagram, there are three running workspaces: two belonging to User A and one to User C. A
fourth workspace is getting provisioned where the plug-in broker is verifying and completing the
workspace configuration.

Use the devfile format to specify the tools and runtime applications of a CodeReady Workspaces
workspace.

1.2.2. CodeReady Workspaces workspace components

This section describes the components of a CodeReady Workspaces workspace.

1.2.2.1. Che Editor plug-in

A Che Editor plug-in is a CodeReady Workspaces workspace plug-in. It defines the web application that
is used as an editor in a workspace. The default CodeReady Workspaces workspace editor is Che-Theia.
It is a web-based source-code editor similar to Visual Studio Code (VS Code). It has a plug-in system
that supports VS Code extensions.

Red Hat CodeReady Workspaces 2.7 Administration Guide

10

https://github.com/eclipse/che-theia
https://code.visualstudio.com/

Source code Che-Theia

Container image eclipse/che-theia

Endpoints theia, webviews, theia-dev, theia-redirect-1,
theia-redirect-2, theia-redirect-3

Additional resources

Che-Theia

Eclipse Theia open-source project

Visual Studio Code

1.2.2.2. CodeReady Workspaces user runtimes

Use any non-terminating user container as a user runtime. An application that can be defined as a
container image or as a set of OpenShift resources can be included in a CodeReady Workspaces
workspace. This makes it easy to test applications in the CodeReady Workspaces workspace.

To test an application in the CodeReady Workspaces workspace, include the application YAML definition
used in stage or production in the workspace specification. It is a 12-factor app dev/prod parity.

Examples of user runtimes are Node.js, SpringBoot or MongoDB, and MySQL.

1.2.2.3. CodeReady Workspaces workspace JWT proxy

The JWT proxy is responsible for securing the communication of the CodeReady Workspaces
workspace services. The CodeReady Workspaces workspace JWT proxy is included in a CodeReady
Workspaces workspace only if the CodeReady Workspaces server is configured in multi-user mode.

An HTTP proxy is used to sign outgoing requests from a workspace service to the CodeReady
Workspaces server and to authenticate incoming requests from the IDE client running on a browser.

Source code JWT proxy

Container image eclipse/che-jwtproxy

1.2.2.4. CodeReady Workspaces plug-ins broker

Plug-in brokers are special services that, given a plug-in meta.yaml file:

Gather all the information to provide a plug-in definition that the CodeReady Workspaces
server knows.

Perform preparation actions in the workspace project (download, unpack files, process
configuration).

The main goal of the plug-in broker is to decouple the CodeReady Workspaces plug-ins definitions from
the actual plug-ins that CodeReady Workspaces can support. With brokers, CodeReady Workspaces can
support different plug-ins without updating the CodeReady Workspaces server.

CHAPTER 1. CODEREADY WORKSPACES ARCHITECTURE OVERVIEW

11

https://github.com/eclipse/che-theia
https://github.com/eclipse/che-theia
https://github.com/theia-ide/theia
https://code.visualstudio.com/
https://github.com/eclipse/che-jwtproxy

The CodeReady Workspaces server starts the plug-in broker. The plug-in broker runs in the same
OpenShift project as the workspace. It has access to the plug-ins and project persistent volumes.

A plug-ins broker is defined as a container image (for example, eclipse/che-plugin-broker). The plug-in
type determines the type of the broker that is started. Two types of plug-ins are supported: Che Plugin
and Che Editor.

Source code CodeReady Workspaces Plug-in broker

Container image quay.io/eclipse/che-plugin-artifacts-broker
eclipse/che-plugin-metadata-broker

1.2.3. CodeReady Workspaces workspace creation flow

The following is a CodeReady Workspaces workspace creation flow:

1. A user starts a CodeReady Workspaces workspace defined by:

An editor (the default is Che-Theia)

A list of plug-ins (for example, Java and OpenShift tools)

A list of runtime applications

2. CodeReady Workspaces server retrieves the editor and plug-in metadata from the plug-in
registry.

Red Hat CodeReady Workspaces 2.7 Administration Guide

12

https://github.com/eclipse/che-plugin-broker

3. For every plug-in type, CodeReady Workspaces server starts a specific plug-in broker.

4. The CodeReady Workspaces plug-ins broker transforms the plug-in metadata into a Che Plugin
definition. It executes the following steps:

a. Downloads a plug-in and extracts its content.

b. Processes the plug-in meta.yaml file and sends it back to CodeReady Workspaces server in
the format of a Che Plugin.

5. CodeReady Workspaces server starts the editor and the plug-in sidecars.

6. The editor loads the plug-ins from the plug-in persistent volume.

CHAPTER 1. CODEREADY WORKSPACES ARCHITECTURE OVERVIEW

13

CHAPTER 2. CALCULATING CODEREADY WORKSPACES
RESOURCE REQUIREMENTS

This section describes how to calculate resources, such as memory and CPU, required to run Red Hat
CodeReady Workspaces.

Both the CodeReady Workspaces central controller and user workspaces consist of a set of containers.
Those containers contribute to the resources consumption in terms of CPU and RAM limits and
requests.

2.1. CONTROLLER REQUIREMENTS

The Workspace Controller consists of a set of five services running in five distinct containers. The
following table presents the default resource requirements of each of these services.

Table 2.1. ControllerServices

Pod Container name Default
memory limit

Default
memory
request

CodeReady Workspaces Server
and Dashboard

che 1 GiB 512 MiB

PostgreSQL postgres 1 GiB 512 MiB

RH-SSO keycloak 2 GiB 512 MiB

Devfile registry che-devfile-registry 256 MiB 16 MiB

Plug-in registry che-plugin-registry 256 MiB 16 MiB

These default values are sufficient when the CodeReady Workspaces Workspace Controller manages a
small amount of CodeReady Workspaces workspaces. For larger deployments, increase the memory
limit. See the https://access.redhat.com/documentation/en-
us/red_hat_codeready_workspaces/2.7/html-single/installation_guide/index#advanced-configuration-
options-for-the-codeready-workspaces-server-component_crw article for instructions on how to
override the default requests and limits. For example, the Eclipse Che hosted by Red Hat that runs on
https://workspaces.openshift.com uses 1 GB of memory.

Additional resources

Section 1.1, “Understanding CodeReady Workspaces workspace controller” .

2.2. WORKSPACES REQUIREMENTS

This section describes how to calculate the resources required for a workspace. It is the sum of the
resources required for each component of this workspace.

These examples demonstrate the necessity of a proper calculation:

A workspace with 10 active plug-ins requires more resources then the same workspace with

Red Hat CodeReady Workspaces 2.7 Administration Guide

14

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-single/installation_guide/index#advanced-configuration-options-for-the-codeready-workspaces-server-component_crw
https://workspaces.openshift.com

A workspace with 10 active plug-ins requires more resources then the same workspace with
fewer plug-ins.

A standard Java workspace requires more resources than a standard Node.js workspace
because running builds, tests, and application debugging requires more resources.

Procedure

1. Identify the workspace components explicitly specified in the components section of the
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-
single/end-user_guide/index#making-a-workspace-portable-using-a-devfile_crw.

2. Identify the implicit workspace components:

a. CodeReady Workspaces implicitly loads the default cheEditor: che-theia, and the
chePlugin that allows commands execution: che-machine-exec-plugin. To change the
default editor, add a cheEditor component section in the devfile.

b. When CodeReady Workspaces is running in multiuser mode, it loads the JWT Proxy
component. The JWT Proxy is responsible for the authentication and authorization of the
external communications of the workspace components.

3. Calculate the requirements for each component:

a. Default values:
The following table presents the default requirements for all workspace components. It also
presents the corresponding CodeReady Workspaces server property to modify the defaults
cluster-wide.

Table 2.2. Default requirements of workspace components by type

Component types CodeReady Workspaces
server property

Default
memory
limit

Default
memory
request

chePlugin che.workspace.sidec
ar.default_memory_li
mit_mb

128 MiB 64 MiB

cheEditor che.workspace.sidec
ar.default_memory_li
mit_mb

128 MiB 64 MiB

kubernetes, openshift,
dockerimage

che.workspace.defau
lt_memory_limit_mb,
che.workspace.defau
lt_memory_request_
mb

1 Gi 200 MiB

CHAPTER 2. CALCULATING CODEREADY WORKSPACES RESOURCE REQUIREMENTS

15

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-single/end-user_guide/index#making-a-workspace-portable-using-a-devfile_crw

JWT Proxy che.server.secure_ex
poser.jwtproxy.mem
ory_limit,
che.server.secure_ex
poser.jwtproxy.mem
ory_request

128 MiB 15 MiB

Component types CodeReady Workspaces
server property

Default
memory
limit

Default
memory
request

b. Custom requirements for chePlugins and cheEditors components:

i. Custom memory limit and request:
If present, the memoryLimit and memoryRequest attributes of the containers
section of the meta.yaml file define the memory limit of the chePlugins or cheEditors
components. CodeReady Workspaces automatically sets the memory request to match
the memory limit in case it is not specified explicitly.

Example 2.1. The chePlugin che-incubator/typescript/latest

meta.yaml spec section:

It results in a container with the following memory limit and request:

Memory limit 512 MiB

Memory request 256 MiB

NOTE

For IBM Power Systems (ppc64le), the memory limit for some plugins
has been increased by up to 1.5G to allow pods sufficient RAM to run. For
example, on IBM Power Systems (ppc64le), the Theia editor pod
requires 2G; the OpenShift connector pod requires 2.5G. For AMD64
and Intel 64 (x86_64) and IBM Z (s390x), memory requirements remain
lower at 512M and 1500M respectively. However, some devfiles may still
be configured to set the lower limit valid for AMD64 and Intel 64
(x86_64) and IBM Z (s390x), so to work around this, edit devfiles for
workspaces that are crashing to increase the default memoryLimit by at
least 1 - 1.5 GB.

NOTE

spec:
 containers:
 - image: docker.io/eclipse/che-remote-plugin-node:next
 name: vscode-typescript
 memoryLimit: 512Mi
 memoryRequest: 256Mi

Red Hat CodeReady Workspaces 2.7 Administration Guide

16

NOTE

How to find the meta.yaml file of chePlugin

Community plug-ins are available in the che-plugin-registry GitHub
repository in folder v3/plugins/${organization}/${name}/${version}/.

For non-community or customized plug-ins, the meta.yaml files are
available on the local OpenShift cluster at
${pluginRegistryEndpoint}/v3/plugins/${organization}/${name}/${ver
sion}/meta.yaml.

ii. Custom CPU limit and request:
CodeReady Workspaces does not set CPU limits and requests by default. However, it is
possible to configure CPU limits for the chePlugin and cheEditor types in the
meta.yaml file or in the devfile in the same way as it done for memory limits.

Example 2.2. The chePlugin che-incubator/typescript/latest

meta.yaml spec section:

It results in a container with the following CPU limit and request:

CPU limit 2 cores

CPU request 0.5 cores

To set CPU limits and requests globally, use the following dedicated environment variables:

CPU Limit CHE_WORKSPACE_SIDECAR_DEFAULT__C
PU__LIMIT__CORES

CPU Request CHE_WORKSPACE_SIDECAR_DEFAULT__C
PU__REQUEST__CORES

See also https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-
single/installation_guide/index#advanced-configuration-options-for-the-codeready-workspaces-
server-component_crw.

Note that the LimitRange object of the OpenShift project may specify defaults for CPU limits and
requests set by cluster administrators. To prevent start errors due to resources overrun, limits on
application or workspace levels must comply with those settings.

spec:
 containers:
 - image: docker.io/eclipse/che-remote-plugin-node:next
 name: vscode-typescript
 cpuLimit: 2000m
 cpuRequest: 500m

CHAPTER 2. CALCULATING CODEREADY WORKSPACES RESOURCE REQUIREMENTS

17

https://github.com/eclipse/che-plugin-registry
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-single/installation_guide/index#advanced-configuration-options-for-the-codeready-workspaces-server-component_crw

a. Custom requirements for dockerimage components
If present, the memoryLimit and memoryRequest attributes of the devfile define the memory
limit of a dockerimage container. CodeReady Workspaces automatically sets the memory
request to match the memory limit in case it is not specified explicitly.

b. Custom requirements for kubernetes or openshift components:
The referenced manifest may define the memory requirements and limits.

1. Add all requirements previously calculated.

Additional resources

Section 1.2, “Understanding CodeReady Workspaces workspaces architecture” .

2.3. A WORKSPACE EXAMPLE

This section describes a CodeReady Workspaces workspace example.

The following devfile defines the CodeReady Workspaces workspace:

This table provides the memory requirements for each workspace component:

Table 2.3. Total workspace memory requirement and limit

 - alias: maven
 type: dockerimage
 image: eclipse/maven-jdk8:latest
 memoryLimit: 1536M

apiVersion: 1.0.0
metadata:
 generateName: guestbook-nodejs-sample-
projects:
 - name: guestbook-nodejs-sample
 source:
 type: git
 location: "https://github.com/l0rd/nodejs-sample"
components:
 - type: chePlugin
 id: che-incubator/typescript/latest
 - type: kubernetes
 alias: guestbook-frontend
 reference: https://raw.githubusercontent.com/l0rd/nodejs-sample/master/kubernetes-
manifests/guestbook-frontend.deployment.yaml
 mountSources: true
 entrypoints:
 - command: ['sleep']
 args: ['infinity']

Red Hat CodeReady Workspaces 2.7 Administration Guide

18

Pod Container name Default
memory limit

Default
memory
request

Workspace theia-ide (default cheEditor) 512 MiB 512 MiB

Workspace machine-exec (default chePlugin) 128 MiB 128 MiB

Workspace vscode-typescript (chePlugin) 512 MiB 512 MiB

Workspace frontend (kubernetes) 1 GiB 512 MiB

JWT Proxy verifier 128 MiB 128 MiB

Total 2.25 GiB 1.75 GiB

The theia-ide and machine-exec components are implicitly added to the workspace, even when
not included in the devfile.

The resources required by machine-exec are the default for chePlugin.

The resources for theia-ide are specifically set in the cheEditor meta.yaml to 512 MiB as
memoryLimit.

The Typescript VS Code extension has also overridden the default memory limits. In its
meta.yaml file, the limits are explicitly specified to 512 MiB.

CodeReady Workspaces is applying the defaults for the kubernetes component type: a
memory limit of 1 GiB and a memory request of 512 MiB. This is because the kubernetes
component references a Deployment manifest that has a container specification with no
resource limits or requests.

The JWT container requires 128 MiB of memory.

Adding all together results in 1.75 GiB of memory requests with a 2.25 GiB limit.

Additional resources

Chapter 1, CodeReady Workspaces architecture overview

Kubernetes compute resources management documentation

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-
single/installation_guide/index#configuring-the-codeready-workspaces-installation_crw

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-
single/installation_guide/index#advanced-configuration-options-for-the-codeready-
workspaces-server-component_crw

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-
single/end-user_guide/index#making-a-workspace-portable-using-a-devfile_crw

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-

CHAPTER 2. CALCULATING CODEREADY WORKSPACES RESOURCE REQUIREMENTS

19

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-single/installation_guide/index#configuring-the-codeready-workspaces-installation_crw
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-single/installation_guide/index#advanced-configuration-options-for-the-codeready-workspaces-server-component_crw
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-single/end-user_guide/index#making-a-workspace-portable-using-a-devfile_crw

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-
single/end-user_guide/index#a-minimal-devfile_crw

Section 9.1, “Authenticating users”

che-plugin-registry GitHub repository

Red Hat CodeReady Workspaces 2.7 Administration Guide

20

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-single/end-user_guide/index#a-minimal-devfile_crw
https://github.com/eclipse/che-plugin-registry

CHAPTER 3. CUSTOMIZING THE REGISTRIES
This chapter describes how to build and run custom registries for CodeReady Workspaces.

3.1. UNDERSTANDING THE CODEREADY WORKSPACES REGISTRIES

CodeReady Workspaces uses two registries: the plug-ins registry and the devfile registry. They are
static websites publishing the metadata of CodeReady Workspaces plug-ins and devfiles. When built in
offline mode they also include artifacts.

The devfile and plug-in registries run in two separate Pods. Their deployment is part of the CodeReady
Workspaces installation.

The devfile and plug-in registries

The devfile registry

The devfile registry holds the definitions of the CodeReady Workspaces stacks. Stacks are available
on the CodeReady Workspaces user dashboard when selecting Create Workspace. It contains the
list of CodeReady Workspaces technological stack samples with example projects. When built in
offline mode it also contains all sample projects referenced in devfiles as zip files.

The plug-in registry

The plug-in registry makes it possible to share a plug-in definition across all the users of the same
instance of CodeReady Workspaces. When built in offline mode it also contains all plug-in or
extension artifacts.

Additional resources

Section 3.2, “Building custom registry images”

Section 3.3, “Running custom registries”

3.2. BUILDING CUSTOM REGISTRY IMAGES

3.2.1. Building a custom devfile registry image

This section describes how to build a custom devfile registry image. The procedure explains how to add a
devfile. The image contains all sample projects referenced in devfiles.

Prerequisites

A running installation of podman or docker.

Valid content for the devfile to add. See: https://access.redhat.com/documentation/en-
us/red_hat_codeready_workspaces/2.7/html-single/end-user_guide/index#making-a-
workspace-portable-using-a-devfile_crw.

Procedure

1. Clone the devfile registry repository and check out the version to deploy:

CHAPTER 3. CUSTOMIZING THE REGISTRIES

21

http://podman.io
http://docker.io
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-single/end-user_guide/index#making-a-workspace-portable-using-a-devfile_crw

$ git clone git@github.com:redhat-developer/codeready-workspaces.git
$ cd codeready-workspaces
$ git checkout crw-2.7-rhel-8

2. In the ./dependencies/che-devfile-registry/devfiles/ directory, create a subdirectory <devfile-
name>/ and add the devfile.yaml and meta.yaml files.

Example 3.1. File organization for a devfile

./dependencies/che-devfile-registry/devfiles/
└── <devfile-name>
 ├── devfile.yaml
 └── meta.yaml

3. Add valid content in the devfile.yaml file. For a detailed description of the devfile format, see
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-
single/end-user_guide/index#making-a-workspace-portable-using-a-devfile_crw.

4. Ensure that the meta.yaml file conforms to the following structure:

Table 3.1. Parameters for a devfile meta.yaml

Attribute Description

description Description as it appears on the user dashboard.

displayName Name as it appears on the user dashboard.

globalMemoryLimi
t

The sum of the expected memory consumed by all the components
launched by the devfile. This number will be visible on the user dashboard.
It is informative and is not taken into account by the CodeReady
Workspaces server.

icon Link to an .svg file that is displayed on the user dashboard.

tags List of tags. Tags usually include the tools included in the stack.

Example 3.2. Example devfile meta.yaml

5. Build a custom devfile registry image:

$ cd dependencies/che-devfile-registry
$./build.sh --organization <my-org> \

displayName: Rust
description: Rust Stack with Rust 1.39
tags: ["Rust"]
icon: https://www.eclipse.org/che/images/logo-eclipseche.svg
globalMemoryLimit: 1686Mi

Red Hat CodeReady Workspaces 2.7 Administration Guide

22

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-single/end-user_guide/index#making-a-workspace-portable-using-a-devfile_crw

 --registry <my-registry> \
 --tag <my-tag>

NOTE

To display full options for the build.sh script, use the --help parameter.

Additional resources

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-
single/end-user_guide/index#making-a-workspace-portable-using-a-devfile_crw.

Section 3.3, “Running custom registries” .

3.2.2. Building a custom plug-ins registry image

This section describes how to build a custom plug-ins registry image. The procedure explains how to add
a plug-in. The image contains plug-ins or extensions metadata.

Prerequisites

NodeJS 12.x

A running version of yarn. See: Installing Yarn .

./node_modules/.bin is in the PATH environment variable.

A running installation of podman or docker.

Valid content for the meta.yaml file describing the plug-in to add. See:
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-
single/end-user_guide/index#proc_publishing-metadata-for-a-vs-code-extension_crw.

Procedure

1. Clone the plug-ins registry repository and check out the version to deploy:

$ git clone git@github.com:redhat-developer/codeready-workspaces.git
$ cd codeready-workspaces
$ git checkout crw-2.7-rhel-8

2. In the ./dependencies/che-plugin-registry/v3/plugins/ directory, create new directories
<publisher>/<plugin-name>/<plugin-version>/ and a meta.yaml file in the last directory.

Example 3.3. File organization for a plugin

./dependencies/che-plugin-registry/v3/plugins/
├── <publisher>
│ └── <plugin-name>
│ ├── <plugin-version>
│ │ └── meta.yaml
│ └── latest.txt

CHAPTER 3. CUSTOMIZING THE REGISTRIES

23

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-single/end-user_guide/index#making-a-workspace-portable-using-a-devfile_crw
https://yarnpkg.com/getting-started/install
http://podman.io
http://docker.io
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-single/end-user_guide/index#proc_publishing-metadata-for-a-vs-code-extension_crw

3. Add valid content to the meta.yaml file. See: https://access.redhat.com/documentation/en-
us/red_hat_codeready_workspaces/2.7/html-single/end-user_guide/index#proc_publishing-
metadata-for-a-vs-code-extension_crw.

4. Create a file named latest.txt with content the name of the latest <plugin-version> directory.

Example 3.4. Example plug-in files tree

$ tree che-plugin-registry/v3/plugins/redhat/java/
che-plugin-registry/v3/plugins/redhat/java/
├── 0.38.0
│ └── meta.yaml
├── 0.43.0
│ └── meta.yaml
├── 0.45.0
│ └── meta.yaml
├── 0.46.0
│ └── meta.yaml
├── 0.50.0
│ └── meta.yaml
└── latest.txt
$ cat che-plugin-registry/v3/plugins/redhat/java/latest.txt
0.50.0

5. Build a custom plug-ins registry image:

$ cd dependencies/che-plugin-registry
$./build.sh --organization <my-org> \
 --registry <my-registry> \
 --tag <my-tag>

NOTE

To display full options for the build.sh script, use the --help parameter. To
include the plug-in binaries in the registry image, add the --offline parameter.

Additional resources

Section 3.3, “Running custom registries” .

3.3. RUNNING CUSTOM REGISTRIES

Prerequisites

The my-plug-in-registry and my-devfile-registry images used in this section are built using the docker
command. This section assumes that these images are available on the OpenShift cluster where
CodeReady Workspaces is deployed.

These images can be then pushed to:

A public container registry such as quay.io, or the DockerHub.

A private registry.

Red Hat CodeReady Workspaces 2.7 Administration Guide

24

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-single/end-user_guide/index#proc_publishing-metadata-for-a-vs-code-extension_crw

1

1

3.3.1. Deploying registries in OpenShift

Procedure

An OpenShift template to deploy the plug-in registry is available in the deploy/openshift/ directory of
the GitHub repository.

1. To deploy the plug-in registry using the OpenShift template, run the following command:

NAMESPACE=<namespace-name> 1
IMAGE_NAME="my-plug-in-registry"
IMAGE_TAG="latest"
oc new-app -f openshift/che-plugin-registry.yml \
 -n "$\{NAMESPACE}" \
 -p IMAGE="$\{IMAGE_NAME}" \
 -p IMAGE_TAG="$\{IMAGE_TAG}" \
 -p PULL_POLICY="Always"

If installed using crwctl, the default CodeReady Workspaces project is openshift-
workspaces. The OperatorHub installation method deploys CodeReady Workspaces to
the users current project.

2. The devfile registry has an OpenShift template in the deploy/openshift/ directory of the
GitHub repository. To deploy it, run the command:

NAMESPACE=<namespace-name> 1
IMAGE_NAME="my-devfile-registry"
IMAGE_TAG="latest"
oc new-app -f openshift/che-devfile-registry.yml \
 -n "$\{NAMESPACE}" \
 -p IMAGE="$\{IMAGE_NAME}" \
 -p IMAGE_TAG="$\{IMAGE_TAG}" \
 -p PULL_POLICY="Always"

If installed using crwctl, the default CodeReady Workspaces project is openshift-
workspaces. The OperatorHub installation method deploys CodeReady Workspaces to
the users current project.

Verification steps

1. The <plug-in> plug-in is available in the plug-in registry.

Example 3.5. Find <plug-in> requesting the plug-in registry API.

$ URL=$(oc get route -l app=che,component=plugin-registry \
 -o 'custom-columns=URL:.spec.host' --no-headers)
$ INDEX_JSON=$(curl -sSL http://${URL}/v3/plugins/index.json)
$ echo ${INDEX_JSON} | jq '.[] | select(.name == "<plug-in>")'

2. The <devfile> devfile is available in the devfile registry.

Example 3.6. Find <devfile> requesting the devfile registry API.

CHAPTER 3. CUSTOMIZING THE REGISTRIES

25

$ URL=$(oc get route -l app=che,component=devfile-registry \
 -o 'custom-columns=URL:.spec.host' --no-headers)
$ INDEX_JSON=$(curl -sSL http://${URL}/v3/plugins/index.json)
$ echo ${INDEX_JSON} | jq '.[] | select(.name == "<devfile>")'

3. CodeReady Workspaces server points to the URL of the plug-in registry.

Example 3.7. Compare the value of the
CHE_WORKSPACE_PLUGIN__REGISTRY__URL parameter in the che ConfigMap with
the URL of the plug-in registry route.

Get the value of the CHE_WORKSPACE_PLUGIN__REGISTRY__URL parameter in
the che ConfigMap.

$ oc get cm/che \
 -o "custom-columns=URL:.data['CHE_WORKSPACE_PLUGIN__REGISTRY__URL']" \
 --no-headers

Get the URL of the plug-in registry route.

$ oc get route -l app=che,component=plugin-registry \
 -o 'custom-columns=URL: .spec.host' --no-headers

4. CodeReady Workspaces server points to the URL of the devfile registry.

Example 3.8. Compare the value of the
CHE_WORKSPACE_DEVFILE__REGISTRY__URL parameter in the che ConfigMap with
the URL of the devfile registry route.

Get the value of the CHE_WORKSPACE_DEVFILE__REGISTRY__URL parameter in
the che ConfigMap.

$ oc get cm/che \
 -o "custom-columns=URL:.data['CHE_WORKSPACE_DEVFILE__REGISTRY__URL']" \
 --no-headers

Get the URL of the devfile registry route.

$ oc get route -l app=che,component=devfile-registry \
 -o 'custom-columns=URL: .spec.host' --no-headers

5. If the values do not match, update the ConfigMap and restart the CodeReady Workspaces
server.

$ oc edit cm/codeready
(...)
$ oc scale --replicas=0 deployment/codeready
$ oc scale --replicas=1 deployment/codeready

1. The plug-ins are available in the completion to chePlugin components in Devfile tab of a

Red Hat CodeReady Workspaces 2.7 Administration Guide

26

1. The plug-ins are available in the completion to chePlugin components in Devfile tab of a
workspace details.

1. The plug-ins are available in the Plugin Theia view of a workspace.

2. The devfiles are available in the Get Started and Create Custom Workspace tab of the user
dashboard.

CHAPTER 3. CUSTOMIZING THE REGISTRIES

27

CHAPTER 4. RETRIEVING CODEREADY WORKSPACES LOGS
For information about obtaining various types of logs in CodeReady Workspaces, see the following
sections:

Section 4.1, “Configuring server logging”

Section 4.2, “Accessing OpenShift events on OpenShift”

Section 4.4, “Viewing CodeReady Workspaces server logs”

Section 4.5, “Viewing external service logs”

Section 4.6, “Viewing the plug-in broker logs”

Section 4.7, “Collecting logs using crwctl”

4.1. CONFIGURING SERVER LOGGING

It is possible to fine-tune the log levels of individual loggers available in the CodeReady Workspaces
server.

The log level of the whole CodeReady Workspaces server is configured globally using the cheLogLevel
configuration property of the Operator. To set the global log level in installations not managed by the
Operator, specify the CHE_LOG_LEVEL environment variable in the che ConfigMap.

It is possible to configure the log levels of the individual loggers in the CodeReady Workspaces server
using the CHE_LOGGER_CONFIG environment variable.

4.1.1. Configuring log levels

The format of the value of the CHE_LOGGER_CONFIG property is a list of comma-separated key-
value pairs, where keys are the names of the loggers as seen in the CodeReady Workspaces server log
output and values are the required log levels.

In Operator-based deployments, the CHE_LOGGER_CONFIG variable is specified under the
customCheProperties of the custom resource.

For example, the following snippet would make the WorkspaceManager produce the DEBUG log
messages.

4.1.2. Logger naming

The names of the loggers follow the class names of the internal server classes that use those loggers.

4.1.3. Logging HTTP traffic

It is possible to log the HTTP traffic between the CodeReady Workspaces server and the API server of

...
server:
 customCheProperties:
 CHE_LOGGER_CONFIG: "org.eclipse.che.api.workspace.server.WorkspaceManager=DEBUG"

Red Hat CodeReady Workspaces 2.7 Administration Guide

28

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-single/installation_guide/index#checluster-custom-resources-fields-reference_crw

It is possible to log the HTTP traffic between the CodeReady Workspaces server and the API server of
the Kubernetes or OpenShift cluster. To do that, one has to set the che.infra.request-logging logger to
the TRACE level.

4.2. ACCESSING OPENSHIFT EVENTS ON OPENSHIFT

For high-level monitoring of OpenShift projects, view the OpenShift events that the project performs.

This section describes how to access these events in the OpenShift web console.

Prerequisites

A running OpenShift web console.

Procedure

1. In the left panel of the OpenShift web console, click the Home → Events.

2. To view the list of all events for a particular project, select the project from the list.

3. The details of the events for the current project are displayed.

Additional resources

For a list of OpenShift events, see Comprehensive List of Events in OpenShift documentation .

4.3. VIEWING THE STATE OF THE CODEREADY WORKSPACES
CLUSTER DEPLOYMENT USING OPENSHIFT 4 CLI TOOLS

This section describes how to view the state of the CodeReady Workspaces cluster deployment using
OpenShift 4 CLI tools.

Prerequisites

An instance of Red Hat CodeReady Workspaces running on OpenShift.

An installation of the OpenShift command-line tool, oc.

Procedure

1. Run the following commands to select the crw project:

$ oc project <project_name>

2. Run the following commands to get the name and status of the Pods running in the selected
project:

$ oc get pods

...
server:
 customCheProperties:
 CHE_LOGGER_CONFIG: "che.infra.request-logging=TRACE"

CHAPTER 4. RETRIEVING CODEREADY WORKSPACES LOGS

29

https://docs.openshift.com/container-platform/3.6/dev_guide/events.html#events-reference

3. Check that the status of all the Pods is Running.

Example 4.1. Pods with status Running

NAME READY STATUS RESTARTS AGE
codeready-8495f4946b-jrzdc 0/1 Running 0 86s
codeready-operator-578765d954-99szc 1/1 Running 0 42m
keycloak-74fbfb9654-g9vp5 1/1 Running 0 4m32s
postgres-5d579c6847-w6wx5 1/1 Running 0 5m14s

4. To see the state of the CodeReady Workspaces cluster deployment, run:

$ oc logs --tail=10 -f `(oc get pods -o name | grep operator)`

Example 4.2. Logs of the Operator:

time="2019-07-12T09:48:29Z" level=info msg="Exec successfully completed"
time="2019-07-12T09:48:29Z" level=info msg="Updating eclipse-che CR with status:
provisioned with OpenShift identity provider: true"
time="2019-07-12T09:48:29Z" level=info msg="Custom resource eclipse-che updated"
time="2019-07-12T09:48:29Z" level=info msg="Creating a new object: ConfigMap, name:
che"
time="2019-07-12T09:48:29Z" level=info msg="Creating a new object: ConfigMap, name:
custom"
time="2019-07-12T09:48:29Z" level=info msg="Creating a new object: Deployment,
name: che"
time="2019-07-12T09:48:30Z" level=info msg="Updating eclipse-che CR with status:
CodeReady Workspaces API: Unavailable"
time="2019-07-12T09:48:30Z" level=info msg="Custom resource eclipse-che updated"
time="2019-07-12T09:48:30Z" level=info msg="Waiting for deployment che. Default
timeout: 420 seconds"

4.4. VIEWING CODEREADY WORKSPACES SERVER LOGS

This section describes how to view the CodeReady Workspaces server logs using the command line.

4.4.1. Viewing the CodeReady Workspaces server logs using the OpenShift CLI

This section describes how to view the CodeReady Workspaces server logs using the OpenShift CLI
(command line interface).

Procedure

1. In the terminal, run the following command to get the Pods:

$ oc get pods

Example

Red Hat CodeReady Workspaces 2.7 Administration Guide

30

$ oc get pods
NAME READY STATUS RESTARTS AGE
codeready-11-j4w2b 1/1 Running 0 3m

2. To get the logs for a deployment, run the following command:

$ oc logs <name-of-pod>

Example

$ oc logs codeready-11-j4w2b

4.5. VIEWING EXTERNAL SERVICE LOGS

This section describes how the view the logs from external services related to CodeReady Workspaces
server.

4.5.1. Viewing RH-SSO logs

The RH-SSO OpenID provider consists of two parts: Server and IDE. It writes its diagnostics or error
information to several logs.

4.5.1.1. Viewing the RH-SSO server logs

This section describes how to view the RH-SSO OpenID provider server logs.

Procedure

1. In the OpenShift Web Console, click Deployments.

2. In the Filter by label search field, type keycloak to see the RH-SSO logs.

3. In the Deployment Configs section, click the keycloak link to open it.

4. In the History tab, click the View log link for the active RH-SSO deployment.

5. The RH-SSO logs are displayed.

Additional resources

See the Section 4.4, “Viewing CodeReady Workspaces server logs” for diagnostics and error
messages related to the RH-SSO IDE Server.

4.5.1.2. Viewing the RH-SSO client logs on Firefox

This section describes how to view the RH-SSO IDE client diagnostics or error information in the Firefox
WebConsole.

Procedure

Click Menu > WebDeveloper > WebConsole.

CHAPTER 4. RETRIEVING CODEREADY WORKSPACES LOGS

31

4.5.1.3. Viewing the RH-SSO client logs on Google Chrome

This section describes how to view the RH-SSO IDE client diagnostics or error information in the Google
Chrome Console tab.

Procedure

1. Click Menu > More Tools > Developer Tools.

2. Click the Console tab.

4.5.2. Viewing the CodeReady Workspaces database logs

This section describes how to view the database logs in CodeReady Workspaces, such as PostgreSQL
server logs.

Procedure

1. In the OpenShift Web Console, click Deployments.

2. In the Find by label search field, type:

app=che and press Enter

component=postgres and press Enter
The OpenShift Web Console now searches base on those two keys and displays
PostgreSQL logs.

3. Click postgres deployment to open it.

4. Click the View log link for the active PostgreSQL deployment.
The OpenShift Web Console displays the database logs.

Additional resources

Some diagnostics or error messages related to the PostgreSQL server can be found in the
active CodeReady Workspaces deployment log. For details to access the active CodeReady
Workspaces deployments logs, see the Section 4.4, “Viewing CodeReady Workspaces server
logs” section.

4.6. VIEWING THE PLUG-IN BROKER LOGS

This section describes how to view the plug-in broker logs.

The che-plugin-broker Pod itself is deleted when its work is complete. Therefore, its event logs are only
available while the workspace is starting.

Procedure

To see logged events from temporary Pods:

1. Start a CodeReady Workspaces workspace.

2. From the main OpenShift Container Platform screen, go to Workload → Pods.

3. Use the OpenShift terminal console located in the Pod’s Terminal tab

Red Hat CodeReady Workspaces 2.7 Administration Guide

32

Verification step

OpenShift terminal console displays the plug-in broker logs while the workspace is starting

4.7. COLLECTING LOGS USING CRWCTL

It is possible to get all Red Hat CodeReady Workspaces logs from a OpenShift cluster using the crwctl
tool.

crwctl server:deploy automatically starts collecting Red Hat CodeReady Workspaces servers
logs during installation of Red Hat CodeReady Workspaces

crwctl server:logs collects existing Red Hat CodeReady Workspaces server logs

crwctl workspace:logs collects workspace logs

CHAPTER 4. RETRIEVING CODEREADY WORKSPACES LOGS

33

CHAPTER 5. MONITORING CODEREADY WORKSPACES
This chapter describes how to configure CodeReady Workspaces to expose metrics and how to build an
example monitoring stack with external tools to process data exposed as metrics by CodeReady
Workspaces.

5.1. ENABLING AND EXPOSING CODEREADY WORKSPACES METRICS

This section describes how to enable and expose CodeReady Workspaces metrics.

Procedure

1. Set the CHE_METRICS_ENABLED=true environment variable, which will expose the 8087 port
as a service on the che-master host.

When Red Hat CodeReady Workspaces is installed from the OperatorHub, the environment variable is
set automatically if the default CheCluster CR is used:

Red Hat CodeReady Workspaces 2.7 Administration Guide

34

5.2. COLLECTING CODEREADY WORKSPACES METRICS WITH
PROMETHEUS

This section describes how to use the Prometheus monitoring system to collect, store and query metrics
about CodeReady Workspaces.

spec:
 metrics:
 enable: true

CHAPTER 5. MONITORING CODEREADY WORKSPACES

35

1

2

3

4

Prerequisites

CodeReady Workspaces is exposing metrics on port 8087. See Enabling and exposing che
metrics.

Prometheus 2.9.1 or higher is running. The Prometheus console is running on port 9090 with a
corresponding service and route. See First steps with Prometheus.

Procedure

Configure Prometheus to scrape metrics from the 8087 port:

Prometheus configuration example

Rate, at which a target is scraped.

Rate, at which recording and alerting rules are re-checked (not used in the system at the
moment).

Resources Prometheus monitors. In the default configuration, there is a single job called
che, which scrapes the time series data exposed by the CodeReady Workspaces server.

Scrape metrics from the 8087 port.

Verification steps

Use the Prometheus console to query and view metrics.
Metrics are available at: http://<che-server-url>:9090/metrics.

For more information, see Using the expression browser in the Prometheus documentation.

Additional resources

First steps with Prometheus.

Configuring Prometheus.

Querying Prometheus.

Prometheus metric types.

apiVersion: v1
kind: ConfigMap
metadata:
 name: prometheus-config
data:
 prometheus.yml: |-
 global:
 scrape_interval: 5s 1
 evaluation_interval: 5s 2
 scrape_configs: 3
 - job_name: 'che'
 static_configs:
 - targets: ['[che-host]:8087'] 4

Red Hat CodeReady Workspaces 2.7 Administration Guide

36

https://prometheus.io/docs/introduction/first_steps/
https://prometheus.io/docs/introduction/first_steps/#using-the-expression-browser
https://prometheus.io/docs/introduction/first_steps/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/concepts/metric_types/

5.3. EXTENDING CODEREADY WORKSPACES MONITORING METRICS

This section describes how to create a metric or a group of metrics to extend the monitoring metrics
that CodeReady Workspaces is exposing.

CodeReady Workspaces has two major modules metrics:

che-core-metrics-core — contains core metrics module

che-core-api-metrics — contains metrics that are dependent on core CodeReady Workspaces
components, such as workspace or user managers

Procedure

Create a class that extends the MeterBinder class. This allows to register the created metric in
the overridden bindTo(MeterRegistry registry) method.
The following is an example of a metric that has a function that supplies the value for it:

Example metric

Alternatively, the metric can be stored with a reference and updated manually in other place in
the code.

Additional resources

Metric and label naming for Prometheus

Metric types for Prometheus

public class UserMeterBinder implements MeterBinder {

 private final UserManager userManager;

 @Inject
 public UserMeterBinder(UserManager userManager) {
 this.userManager = userManager;
 }

 @Override
 public void bindTo(MeterRegistry registry) {
 Gauge.builder("che.user.total", this::count)
 .description("Total amount of users")
 .register(registry);
 }

 private double count() {
 try {
 return userManager.getTotalCount();
 } catch (ServerException e) {
 return Double.NaN;
 }
 }

CHAPTER 5. MONITORING CODEREADY WORKSPACES

37

https://prometheus.io/docs/practices/naming/
https://prometheus.io/docs/concepts/metric_types/

CHAPTER 6. TRACING CODEREADY WORKSPACES
Tracing helps gather timing data to troubleshoot latency problems in microservice architectures and
helps to understand a complete transaction or workflow as it propagates through a distributed system.
Every transaction may reflect performance anomalies in an early phase when new services are being
introduced by independent teams.

Tracing the CodeReady Workspaces application may help analyze the execution of various operations,
such as workspace creations, workspace startup, breaking down the duration of sub-operations
executions, helping finding bottlenecks and improve the overall state of the platform.

Tracers live in applications. They record timing and metadata about operations that take place. They
often instrument libraries, so that their use is transparent to users. For example, an instrumented web
server records when it received a request and when it sent a response. The trace data collected is called
a span. A span has a context that contains information such as trace and span identifiers and other kinds
of data that can be propagated down the line.

6.1. TRACING API

CodeReady Workspaces utilizes OpenTracing API - a vendor-neutral framework for instrumentation.
This means that if a developer wants to try a different tracing back end, then instead of repeating the
whole instrumentation process for the new distributed tracing system, the developer can simply change
the configuration of the tracer back end.

6.2. TRACING BACK END

By default, CodeReady Workspaces uses Jaeger as the tracing back end. Jaeger was inspired by Dapper
and OpenZipkin, and it is a distributed tracing system released as open source by Uber Technologies.
Jaeger extends a more complex architecture for a larger scale of requests and performance.

6.3. INSTALLING THE JAEGER TRACING TOOL

The following sections describe the installation methods for the Jaeger tracing tool. Jaeger can then be
used for gathering metrics in CodeReady Workspaces.

Installation methods available:

Section 6.3.1, “Installing Jaeger using OperatorHub on OpenShift 4”

Section 6.3.2, “Installing Jaeger using CLI on OpenShift 4”

For tracing a CodeReady Workspaces instance using Jaeger, version 1.12.0 or above is required. For
additional information about Jaeger, see the Jaeger website.

6.3.1. Installing Jaeger using OperatorHub on OpenShift 4

This section provide information about using Jaeger tracing tool for testing an evaluation purposes in
production.

To install the Jaeger tracing tool from the OperatorHub interface in OpenShift Container Platform,
follow the instructions below.

Prerequisites

Red Hat CodeReady Workspaces 2.7 Administration Guide

38

https://opentracing.io/
https://www.jaegertracing.io/docs/latest/

The user is logged in to the OpenShift Container Platform Web Console.

A CodeReady Workspaces instance is available in a project.

Procedure

1. Open the OpenShift Container Platform console.

2. From the left menu of the main OpenShift Container Platform screen, navigate to Operators →
OperatorHub.

3. In the Search by keyword search bar, type Jaeger Operator.

4. Click the Jaeger Operator tile.

5. Click the Install button in the Jaeger Operator pop-up window.

6. Select the installation method: A specific project on the cluster where the CodeReady
Workspaces is deployed and leave the rest in its default values.

7. Click the Subscribe button.

8. From the left menu of the main OpenShift Container Platform screen, navigate to the
Operators → Installed Operators section.

9. Red Hat CodeReady Workspaces is displayed as an Installed Operator, as indicated by the
InstallSucceeded status.

10. Click the Jaeger Operator name in the list of installed Operators.

11. Navigate to the Overview tab.

12. In the Conditions sections at the bottom of the page, wait for this message: install strategy
completed with no errors.

13. Jaeger Operator and additional Elasticsearch Operator is installed.

14. Navigate to the Operators → Installed Operators section.

15. Click Jaeger Operator in the list of installed Operators.

16. The Jaeger Cluster page is displayed.

17. In the lower left corner of the window, click Create Instance

18. Click Save.

19. OpenShift creates the Jaeger cluster jaeger-all-in-one-inmemory.

20. Follow the steps in Enabling metrics collection to finish the procedure.

6.3.2. Installing Jaeger using CLI on OpenShift 4

This section provide information about using Jaeger tracing tool for testing an evaluation purposes.

To install the Jaeger tracing tool from a CodeReady Workspaces project in OpenShift Container
Platform, follow the instructions in this section.

CHAPTER 6. TRACING CODEREADY WORKSPACES

39

Prerequisites

The user is logged in to the OpenShift Container Platform web console.

A instance of CodeReady Workspaces in an OpenShift Container Platform cluster.

Procedure

1. In the CodeReady Workspaces installation project of the OpenShift Container Platform cluster,
use the oc client to create a new application for the Jaeger deployment.

$ oc new-app -f / ${CHE_LOCAL_GIT_REPO}/deploy/openshift/templates/jaeger-all-in-one-
template.yml:

--> Deploying template "<project_name>/jaeger-template-all-in-one" for "/home/user/crw-
projects/crw/deploy/openshift/templates/jaeger-all-in-one-template.yml" to project
<project_name>

 Jaeger (all-in-one)

 Jaeger Distributed Tracing Server (all-in-one)

 * With parameters:
 * Jaeger Service Name=jaeger
 * Image version=latest
 * Jaeger Zipkin Service Name=zipkin

--> Creating resources ...
 deployment.apps "jaeger" created
 service "jaeger-query" created
 service "jaeger-collector" created
 service "jaeger-agent" created
 service "zipkin" created
 route.route.openshift.io "jaeger-query" created
--> Success
 Access your application using the route: 'jaeger-query-<project_name>.apps.ci-ln-
whx0352-d5d6b.origin-ci-int-aws.dev.rhcloud.com'
 Run 'oc status' to view your app.

2. Using the Workloads → Deployments from the left menu of main OpenShift Container
Platform screen, monitor the Jaeger deployment until it finishes successfully.

3. Select Networking → Routes from the left menu of the main OpenShift Container Platform
screen, and click the URL link to access the Jaeger dashboard.

4. Follow the steps in Enabling metrics collection to finish the procedure.

6.4. ENABLING METRICS COLLECTION

Prerequisites

Installed Jaeger v1.12.0 or above. See instructions at Section 6.3, “Installing the Jaeger tracing
tool”

Procedure

Red Hat CodeReady Workspaces 2.7 Administration Guide

40

For Jaeger tracing to work, enable the following environment variables in your CodeReady Workspaces
deployment:

To enable the following environment variables:

1. In the yaml source code of the CodeReady Workspaces deployment, add the following
configuration variables under spec.server.customCheProperties.

2. Edit the JAEGER_ENDPOINT value to match the name of the Jaeger collector service in your
deployment.
From the left menu of the main OpenShift Container Platform screen, obtain the value of
JAEGER_ENDPOINT by navigation to Networking → Services. Alternatively, execute the
following oc command:

$ oc get services

The requested value is included in the service name that contains the collector string.

Additional resources

For additional information about custom environment properties and how to define them in
CheCluster Custom Resource, see https://access.redhat.com/documentation/en-
us/red_hat_codeready_workspaces/2.7/html-single/installation_guide/index#advanced-
configuration-options-for-the-codeready-workspaces-server-component_crw.

For custom configuration of Jaeger, see the list of Jaeger client environment variables .

Activating CodeReady Workspaces tracing modules
CHE_TRACING_ENABLED=true

Following variables are the basic Jaeger client library configuration.
JAEGER_ENDPOINT="http://jaeger-collector:14268/api/traces"

Service name
JAEGER_SERVICE_NAME="che-server"

URL to remote sampler
JAEGER_SAMPLER_MANAGER_HOST_PORT="jaeger:5778"

Type and param of sampler (constant sampler for all traces)
JAEGER_SAMPLER_TYPE="const"
JAEGER_SAMPLER_PARAM="1"

Maximum queue size of reporter
JAEGER_REPORTER_MAX_QUEUE_SIZE="10000"

customCheProperties:
 CHE_TRACING_ENABLED: 'true'
 JAEGER_SAMPLER_TYPE: const
 DEFAULT_JAEGER_REPORTER_MAX_QUEUE_SIZE: '10000'
 JAEGER_SERVICE_NAME: che-server
 JAEGER_ENDPOINT: 'http://jaeger-collector:14268/api/traces'
 JAEGER_SAMPLER_MANAGER_HOST_PORT: 'jaeger:5778'
 JAEGER_SAMPLER_PARAM: '1'

CHAPTER 6. TRACING CODEREADY WORKSPACES

41

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-single/installation_guide/index#advanced-configuration-options-for-the-codeready-workspaces-server-component_crw
https://github.com/jaegertracing/jaeger-client-go#user-content-environment-variables

6.5. VIEWING CODEREADY WORKSPACES TRACES IN JAEGER UI

This section demonstrates how to utilize the Jaeger UI to overview traces of CodeReady Workspaces
operations.

Procedure

In this example, the CodeReady Workspaces instance has been running for some time and one
workspace start has occurred.

To inspect the trace of the workspace start:

1. In the Search panel on the left, filter spans by the operation name (span name), tags, or time
and duration.

Figure 6.1. Using Jaeger UI to trace CodeReady Workspaces

2. Select the trace to expand it and show the tree of nested spans and additional information
about the highlighted span, such as tags or durations.

Figure 6.2. Expanded tracing tree

6.6. CODEREADY WORKSPACES TRACING CODEBASE OVERVIEW

Red Hat CodeReady Workspaces 2.7 Administration Guide

42

6.6. CODEREADY WORKSPACES TRACING CODEBASE OVERVIEW
AND EXTENSION GUIDE

The core of the tracing implementation for CodeReady Workspaces is in the che-core-tracing-core and
che-core-tracing-web modules.

All HTTP requests to the tracing API have their own trace. This is done by TracingFilter from the
OpenTracing library, which is bound for the whole server application. Adding a @Traced annotation to
methods causes the TracingInterceptor to add tracing spans for them.

6.6.1. Tagging

Spans may contain standard tags, such as operation name, span origin, error, and other tags that may
help users with querying and filtering spans. Workspace-related operations (such as starting or stopping
workspaces) have additional tags, including userId, workspaceID, and stackId. Spans created by
TracingFilter also have an HTTP status code tag.

Declaring tags in a traced method is done statically by setting fields from the TracingTags class:

TracingTags is a class where all commonly used tags are declared, as respective AnnotationAware tag
implementations.

Additional resources

For more information about how to use Jaeger UI, visit Jaeger documentation: Jaeger Getting Started
Guide.

TracingTags.WORKSPACE_ID.set(workspace.getId());

CHAPTER 6. TRACING CODEREADY WORKSPACES

43

https://github.com/opentracing-contrib/java-web-servlet-filter
https://www.jaegertracing.io/docs/1.12/getting-started/

CHAPTER 7. BACKUP AND DISASTER RECOVERY
This section describes aspects of the CodeReady Workspaces backup and disaster recovery.

Section 7.1, “External database setup”

Section 7.2, “Persistent Volumes backups”

7.1. EXTERNAL DATABASE SETUP

The PostgreSQL database is used by the CodeReady Workspaces server for persisting data about the
state of CodeReady Workspaces. It contains information about user accounts, workspaces, preferences,
and other details.

By default, the CodeReady Workspaces Operator creates and manages the database deployment.

However, the CodeReady Workspaces Operator does not support full life-cycle capabilities, such as
backups and recovery.

For a business-critical setup, configure an external database with the following recommended disaster-
recovery options:

High Availability (HA)

Point In Time Recovery (PITR)

Configure an external PostgreSQL instance on-premises or use a cloud service, such as Amazon
Relational Database Service (Amazon RDS). With Amazon RDS, it is possible to deploy production
databases in a Multi-Availability Zone configuration for a resilient disaster recovery strategy with daily
and on-demand snapshots.

The recommended configuration of the example database is:

Parameter Value

Instance class db.t2.small

vCPU 1

RAM 2 GB

Multi-az true, 2 replicas

Engine version 9.6.11

TLS enabled

Automated backups enabled (30 days)

7.1.1. Configuring external PostgreSQL

Red Hat CodeReady Workspaces 2.7 Administration Guide

44

1

2

3

1

1

2

3

Procedure

1. Use the following SQL script to create user and database for the CodeReady Workspaces
server to persist workspaces metadata etc:

CREATE USER <database-user> WITH PASSWORD '<database-password>' 1 2
CREATE DATABASE <database> 3
GRANT ALL PRIVILEGES ON DATABASE <database> TO <database-user>
ALTER USER <database-user> WITH SUPERUSER

CodeReady Workspaces server database username

CodeReady Workspaces server database password

CodeReady Workspaces server database name

2. Use the following SQL script to create database for RH-SSO back end to persist user
information:

CREATE USER keycloak WITH PASSWORD '<identity-database-password>' 1
CREATE DATABASE keycloak
GRANT ALL PRIVILEGES ON DATABASE keycloak TO keycloak

RH-SSO database password

7.1.2. Configuring CodeReady Workspaces to work with an external PostgreSQL

Prerequisites

The oc tool is available.

Procedure

1. Pre-create a project for CodeReady Workspaces:

$ oc create namespace openshift-workspaces

2. Create a secret to store CodeReady Workspaces server database credentials:

$ oc create secret generic <server-database-credentials> \ 1
--from-literal=user=<database-user> \ 2
--from-literal=password=<database-password> \ 3
-n openshift-workspaces

Secret name to store CodeReady Workspaces server database credentials

CodeReady Workspaces server database username

CodeReady Workspaces server database password

3. Create a secret to store RH-SSO database credentials:

CHAPTER 7. BACKUP AND DISASTER RECOVERY

45

1

2

1

2

3

4

5

$ oc create secret generic <identity-database-credentials> \ 1
--from-literal=password=<identity-database-password> \ 2
-n openshift-workspaces

Secret name to store RH-SSO database credentials

RH-SSO database password

4. Deploy Red Hat CodeReady Workspaces by executing the crwctl command with applying a
patch. For example:

$ crwctl server:deploy --che-operator-cr-patch-yaml=patch.yaml ...

patch.yaml should contain the following to make the Operator skip deploying a database and pass
connection details of an existing database to a CodeReady Workspaces server:

External database hostname

External database port

Secret name with CodeReady Workspaces server database credentials

CodeReady Workspaces server database name

Secret name with RH-SSO database credentials

Additional resources

PostgreSQL

RDS

7.2. PERSISTENT VOLUMES BACKUPS

Persistent Volumes (PVs) store the CodeReady Workspaces workspace data similarly to how workspace
data is stored for desktop IDEs on the local hard disk drive.

To prevent data loss, back up PVs periodically. The recommended approach is to use storage-agnostic
tools for backing up and restoring OpenShift resources, including PVs.

spec:
 database:
 externalDb: true
 chePostgresHostName: <hostname> 1
 chePostgresPort: <port> 2
 chePostgresSecret: <server-database-credentials> 3
 chePostgresDb: <database> 4
spec:
 auth:
 identityProviderPostgresSecret: <identity-database-credentials> 5

Red Hat CodeReady Workspaces 2.7 Administration Guide

46

https://www.postgresql.org/
https://aws.amazon.com/rds/

7.2.1. Recommended backup tool: Velero

Velero is an open-source tool for backing up OpenShift applications and their PVs. Velero allows you to:

Deploy in the cloud or on premises.

Back up the cluster and restore in case of data loss.

Migrate cluster resources to other clusters.

Replicate a production cluster to development and testing clusters.

NOTE

Alternatively, you can use backup solutions dependent on the underlying storage system.
For example, solutions that are Gluster or Ceph-specific.

Additional resources

Persistent Volumes documentation

Gluster documentation

Ceph documentation

Velero on GitHub

CHAPTER 7. BACKUP AND DISASTER RECOVERY

47

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://www.gluster.org/
https://docs.ceph.com/docs/master/
https://github.com/vmware-tanzu/velero

CHAPTER 8. CACHING IMAGES FOR FASTER WORKSPACE
START

To improve the start time performance of CodeReady Workspaces workspaces, use the Image Puller.
The Image Puller is an additional OpenShift deployment. It creates a DaemonSet downloading and
running the relevant container images on each node. These images are already available when a
CodeReady Workspaces workspace starts.

The Image Puller loads its configuration from a ConfigMap accepting following parameters. The
installation method determines the procedure to configure the ConfigMap.

Table 8.1. Image Puller ConfigMap parameters

Parameter Usage Default

CACHING_INTERVAL_HOUR
S

DaemonSets health checks
interval in hours

"1"

CACHING_MEMORY_REQUE
ST

The memory request for each
cached image when the puller is
running. See Section 8.2,
“Defining the memory parameters
for the Image Puller”.

10Mi

CACHING_MEMORY_LIMIT The memory limit for each cached
image when the puller is running.
See Section 8.2, “Defining the
memory parameters for the
Image Puller”.

20Mi

CACHING_CPU_REQUEST The processor request for each
cached image when the puller is
running

.05 or 50 millicores

CACHING_CPU_LIMIT The processor limit for each
cached image when the puller is
running

.2 or 200 millicores

DAEMONSET_NAME Name of DaemonSet to create kubernetes-image-puller

DEPLOYMENT_NAME Name of the Deployment to
create

kubernetes-image-puller

NAMESPACE OpenShift project containing
DaemonSet to create

k8s-image-puller

IMAGES Semicolon separated list of
images to pull, in the format
<name>=<image>;… ​ See
Section 8.1, “Defining the list of
images to pull”.

Red Hat CodeReady Workspaces 2.7 Administration Guide

48

NODE_SELECTOR Node selector to apply to the
Pods created by the DaemonSet

'{}'

Parameter Usage Default

Additional resources

Section 8.1, “Defining the list of images to pull”

Section 8.2, “Defining the memory parameters for the Image Puller” .

Section 8.3, “Installing Image Puller using the CodeReady Workspaces Operator”

Section 8.4, “Installing Image Puller on OpenShift 4 using OperatorHub”

Section 8.5, “Installing Image Puller on OpenShift using OpenShift templates”

Kubernetes Image Puller source code repository

8.1. DEFINING THE LIST OF IMAGES TO PULL

Prerequisites

The curl tool is available. See curl homepage.

The jq tool is available. See jq homepage.

The yq tool is available. See yq homepage.

Procedure

1. Get the list of relevant container images.

Example 8.1. Getting the list of all relevant images for CodeReady Workspaces

$ curl -sSLo- https://raw.githubusercontent.com/redhat-developer/codeready-workspaces-
operator/crw-2.7-rhel-8/manifests/codeready-workspaces.csv.yaml | \
 yq -r '.spec.relatedImages[]'

2. Exclude from the list the container images not containing the sleep command.

Example 8.2. Images incompatibles with {image-puller-short}, missing the sleep
command

FROM scratch images.

che-machine-exec

3. Exclude from the list the container images mounting volumes in Dockerfile.

Additional resources

CHAPTER 8. CACHING IMAGES FOR FASTER WORKSPACE START

49

https://github.com/che-incubator/kubernetes-image-puller
https://curl.se/
https://stedolan.github.io/jq/
https://pypi.org/project/yq/
https://raw.githubusercontent.com/redhat-developer/codeready-workspaces-operator/crw-2.7-rhel-8/manifests/codeready-workspaces.csv.yaml

Section 8.2, “Defining the memory parameters for the Image Puller” .

Section 8.4, “Installing Image Puller on OpenShift 4 using OperatorHub”

Section 8.5, “Installing Image Puller on OpenShift using OpenShift templates”

8.2. DEFINING THE MEMORY PARAMETERS FOR THE IMAGE PULLER

Define the memory requests and limits parameters to ensure pulled containers and the platform have
enough memory to run.

Prerequisites

Section 8.1, “Defining the list of images to pull”

Procedure

1. To define the minimal value for CACHING_MEMORY_REQUEST or
CACHING_MEMORY_LIMIT, consider the necessary amount of memory required to run each
of the container images to pull.

2. To define the maximal value for CACHING_MEMORY_REQUEST or
CACHING_MEMORY_LIMIT, consider the total memory allocated to the DaemonSet Pods in
the cluster:

(memory limit) * (number of images) * (number of nodes in the cluster)

Pulling 5 images on 20 nodes, with a container memory limit of 20Mi requires 2000Mi of
memory.

Additional resources

Section 8.4, “Installing Image Puller on OpenShift 4 using OperatorHub”

Section 8.5, “Installing Image Puller on OpenShift using OpenShift templates”

8.3. INSTALLING IMAGE PULLER USING THE CODEREADY
WORKSPACES OPERATOR

This section describes how to use the CodeReady Workspaces Operator to install the Image Puller. This
is a Community-supported technology preview feature.

Prerequisites

Section 8.1, “Defining the list of images to pull”

Section 8.2, “Defining the memory parameters for the Image Puller”

Operator Lifecycle Manager and OperatorHub are available on the OpenShift instance.
OpenShift provides them starting with version 4.2.

The CodeReady Workspaces Operator is available. See
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-
single/installation_guide/index#installing-codeready-workspaces-on-openshiftt-4-using-

Red Hat CodeReady Workspaces 2.7 Administration Guide

50

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-single/installation_guide/index#installing-codeready-workspaces-on-openshiftt-4-using-operatorhub_crw

operatorhub_crw

Procedure

1. Edit the CheCluster Custom Resource and set .spec.imagePuller.enable to true

Example 8.3. Enabling Image Puller in the CheCluster Custom Resource

UNINSTALLING IMAGE PULLER USING CODEREADY WORKSPACES
OPERATOR

Edit the CheCluster Custom Resource and set .spec.imagePuller.enable to
false.

2. Edit the CheCluster Custom Resource and set the .spec.imagePuller.spec to configure the
optional Image Puller parameters for the CodeReady Workspaces Operator.

Example 8.4. Configuring Image Puller in the CheCluster Custom Resource

Verification steps

1. OpenShift creates a {image-puller-operator-id} Subscription.

2. The eclipse-che namespace contains a community supported Kubernetes Image Puller
Operator ClusterServiceVersion:

3. The eclipse-che namespace contains these deployments: kubernetes-image-puller and

apiVersion: org.eclipse.che/v1
kind: CheCluster
metadata:
 name: codeready-workspaces
spec:
 # ...
 imagePuller:
 enable: true

apiVersion: org.eclipse.che/v1
kind: CheCluster
metadata:
 name: codeready-workspaces
spec:
 ...
 imagePuller:
 enable: true
 spec:
 configMapName: <kubernetes-image-puller>
 daemonsetName: <kubernetes-image-puller>
 deploymentName: <kubernetes-image-puller>
 images: <{image-puller-images}>

$ oc get clusterserviceversions

CHAPTER 8. CACHING IMAGES FOR FASTER WORKSPACE START

51

3. The eclipse-che namespace contains these deployments: kubernetes-image-puller and
{image-puller-deployment-id}.

4. The community supported Kubernetes Image Puller Operator creates a
KubernetesImagePuller Custom Resource:

8.4. INSTALLING IMAGE PULLER ON OPENSHIFT 4 USING
OPERATORHUB

This procedure describes how to install the community supported Kubernetes Image Puller Operator on
OpenShift 4 using the Operator.

Prerequisites

An administrator account on a running instance of OpenShift 4.

Section 8.1, “Defining the list of images to pull”

Section 8.2, “Defining the memory parameters for the Image Puller” .

Procedure

1. To create an OpenShift project <kubernetes-image-puller> to host the Image Puller, open the
OpenShift web console, navigate to the Home → Projects section and click Create Project.

2. Specify the project details:

Name: <kubernetes-image-puller>

Display Name: <Image Puller>

Description: <Kubernetes Image Puller>

3. Navigate to Operators → OperatorHub.

4. Use the Filter by keyword box to search for community supported Kubernetes Image
Puller Operator. Click the community supported Kubernetes Image Puller Operator.

5. Read the description of the Operator. Click Continue → Install.

6. Select A specific project on the cluster for the Installation Mode. In the drop-down find the
OpenShift project <kubernetes-image-puller>. Click Subscribe.

7. Wait for the community supported Kubernetes Image Puller Operator to install. Click the
KubernetesImagePuller → Create instance.

8. In a redirected window with a YAML editor, make modifications to the KubernetesImagePuller
Custom Resource and click Create.

9. Navigate to the Workloads and Pods menu in the <kubernetes-image-puller> OpenShift
project. Verify that the Image Puller is available.

$ oc get deployments

$ oc get kubernetesimagepullers

Red Hat CodeReady Workspaces 2.7 Administration Guide

52

8.5. INSTALLING IMAGE PULLER ON OPENSHIFT USING OPENSHIFT
TEMPLATES

This procedure describes how to install the Kubernetes Image Puller on OpenShift using OpenShift
templates.

Prerequisites

A running OpenShift cluster.

The oc tool is available.

Section 8.1, “Defining the list of images to pull” .

Section 8.2, “Defining the memory parameters for the Image Puller” .

Procedure

1. Clone the Image Puller repository and get in the directory containing the OpenShift templates:

$ git clone https://github.com/che-incubator/kubernetes-image-puller
$ cd kubernetes-image-puller/deploy/openshift

2. Configure the app.yaml, configmap.yaml and serviceaccount.yaml OpenShift templates
using following parameters:

Table 8.2. Image Puller OpenShift templates parameters in app.yaml

Value Usage Default

DEPLOYMENT_NAME The value of
DEPLOYMENT_NAME in
the ConfigMap

kubernetes-image-puller

IMAGE Image used for the
kubernetes-image-puller
deployment

registry.redhat.io/coderea
dy-
workspaces/imagepuller-
rhel8:2.7

IMAGE_TAG The image tag to pull latest

SERVICEACCOUNT_NAM
E

The name of the
ServiceAccount created and
used by the deployment

{image-puller-
serviceaccount-name}

Table 8.3. Image Puller OpenShift templates parameters in configmap.yaml

Value Usage Default

CHAPTER 8. CACHING IMAGES FOR FASTER WORKSPACE START

53

CACHING_CPU_LIMIT The value of
CACHING_CPU_LIMIT in
the ConfigMap

.2

CACHING_CPU_REQUES
T

The value of
CACHING_CPU_REQUES
T in the ConfigMap

.05

CACHING_INTERVAL_HO
URS

The value of
CACHING_INTERVAL_HO
URS in the ConfigMap

"1"

CACHING_MEMORY_LIMI
T

The value of
CACHING_MEMORY_LIMI
T in the ConfigMap

"20Mi"`

CACHING_MEMORY_REQ
UEST

The value of
CACHING_MEMORY_REQ
UEST in the ConfigMap

"10Mi"

DAEMONSET_NAME The value of
DAEMONSET_NAME in the
ConfigMap

kubernetes-image-puller

DEPLOYMENT_NAME The value of
DEPLOYMENT_NAME in
the ConfigMap

kubernetes-image-puller

IMAGES The value of IMAGES in the
ConfigMap

{image-puller-images}

NODE_SELECTOR The value of
NODE_SELECTOR in the
ConfigMap

"{}"

Value Usage Default

Table 8.4. Image Puller OpenShift templates parameters in serviceaccount.yaml

Value Usage Default

SERVICEACCOUNT_NAM
E

The name of the
ServiceAccount created and
used by the deployment

{image-puller-
serviceaccount-name}

3. Create an OpenShift project to host the Image Puller:

$ oc new-project <kubernetes-image-puller>

Red Hat CodeReady Workspaces 2.7 Administration Guide

54

4. Process and apply the templates to install the puller:

$ oc process -f serviceaccount.yaml | oc apply -f -
$ oc process -f configmap.yaml | oc apply -f -
$ oc process -f app.yaml | oc apply -f -

Verification steps

1. Verify the existence of a <kubernetes-image-puller> deployment and a <kubernetes-image-
puller> DaemonSet. The DaemonSet needs to have a Pod for each node in the cluster:

2. Verify the values of the <kubernetes-image-puller> ConfigMap.

$ oc get deployment,daemonset,pod --namespace <kubernetes-image-puller>

$ oc get configmap <kubernetes-image-puller> --output yaml

CHAPTER 8. CACHING IMAGES FOR FASTER WORKSPACE START

55

CHAPTER 9. MANAGING IDENTITIES AND AUTHORIZATIONS
This section describes different aspects of managing identities and authorizations of Red Hat
CodeReady Workspaces.

Section 9.1, “Authenticating users”

Section 9.2, “Authorizing users”

Section 9.3, “Configuring authorization”

Section 9.3.5.2, “Configuring Bitbucket Server OAuth 1”

Section 9.3.5.2, “Configuring Bitbucket Server OAuth 1”

9.1. AUTHENTICATING USERS

This document covers all aspects of user authentication in Red Hat CodeReady Workspaces, both on
the CodeReady Workspaces server and in workspaces. This includes securing all REST API endpoints,
WebSocket or JSON RPC connections, and some web resources.

All authentication types use the JWT open standard as a container for transferring user identity
information. In addition, CodeReady Workspaces server authentication is based on the OpenID Connect
protocol implementation, which is provided by default by RH-SSO.

Authentication in workspaces implies the issuance of self-signed per-workspace JWT tokens and their
verification on a dedicated service based on JWTProxy.

9.1.1. Authenticating to the CodeReady Workspaces server

9.1.1.1. Authenticating to the CodeReady Workspaces server using OpenID

OpenID authentication on the CodeReady Workspaces server implies the presence of an external
OpenID Connect provider and has the following main steps:

Authenticate the user through a JWT token that is retrieved from an HTTP request or, in case of
a missing or invalid token, redirect the user to the RH-SSO login page.

Send authentication tokens in an Authorization header. In limited cases, when it is impossible to
use the Authorization header, the token can be sent in the token query parameter. Example:
OAuth authentication initialization.

Compose an internal subject object that represents the current user inside the CodeReady
Workspaces server code.

NOTE

The only supported and tested OpenID provider is RH-SSO.

Procedure

To authenticate to the CodeReady Workspaces server using OpenID authentication:

1. Request the OpenID settings service where clients can find all the necessary URLs and

Red Hat CodeReady Workspaces 2.7 Administration Guide

56

https://jwt.io/introduction/
https://openid.net/connect/
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/
https://github.com/eclipse/che-jwtproxy/

1. Request the OpenID settings service where clients can find all the necessary URLs and
properties of the OpenId provider, such as jwks.endpoint, token.endpoint, logout.endpoint,
realm.name, or client_id returned in the JSON format.

2. The service URL is \https://codeready-<openshift_deployment_name>.
<domain_name>/api/keycloak/settings, and it is only available in the CodeReady Workspaces
multiuser mode. The presence of the service in the URL confirms that the authentication is
enabled in the current deployment.
Example output:

The service allows downloading the JavaScript client library to interact with the provider using
the \https://codeready-<openshift_deployment_name>.
<domain_name>/api/keycloak/OIDCKeycloak.js URL.

3. Redirect the user to the appropriate provider’s login page with all the necessary parameters,
including client_id and the return redirection path. This can be done with any client library (JS
or Java).

4. When the user is logged in to the provider, the client side-code is obtained, and the JWT token
has validated the token, the creation of the subject begins.

The verification of the token signature occurs in two main steps:

1. Authentication: The token is extracted from the Authorization header or from the token query
parameter and is parsed using the public key retrieved from the provider. In case of expired,
invalid, or malformed tokens, a 403 error is sent to the user. The minimal use of the query
parameter is recommended, due to its support limitations or complete removal in upcoming
versions.
If the validation is successful, the parsed form of the token is passed to the environment
initialization step:

2. Environment initialization: The filter extracts data from the JWT token claims, creates the user
in the local database if it is not yet available, and constructs the subject object and sets it into
the per-request EnvironmentContext object, which is statically accessible everywhere.
If the request was made using only a JWT token, the following single authentication filter is
used:

org.eclipse.che.multiuser.machine.authentication.server.MachineLoginFilter: The filter finds
the user that the userId token belongs to, retrieves the user instance, and sets the principal to
the session. The CodeReady Workspaces server-to-server requests are performed using a
dedicated request factory that signs every request with the current subject token obtained from
the EnvironmentContext object.

NOTE

{
 "che.keycloak.token.endpoint": "http://172.19.20.9:5050/auth/realms/che/protocol/openid-
connect/token",
 "che.keycloak.profile.endpoint": "http://172.19.20.9:5050/auth/realms/che/account",
 "che.keycloak.client_id": "che-public",
 "che.keycloak.auth_server_url": "http://172.19.20.9:5050/auth",
 "che.keycloak.password.endpoint":
"http://172.19.20.9:5050/auth/realms/che/account/password",
 "che.keycloak.logout.endpoint": "http://172.19.20.9:5050/auth/realms/che/protocol/openid-
connect/logout",
 "che.keycloak.realm": "che"
}

CHAPTER 9. MANAGING IDENTITIES AND AUTHORIZATIONS

57

1

2

3

1

2

NOTE

Providing user-specific data

Since RH-SSO may store user-specific information (first and last name, phone number,
job title), there is a special implementation of the ProfileDao that can provide this data
to consumers. The implementation is read-only, so users cannot perform create and
update operations.

9.1.1.1.1. Obtaining the token from credentials through RH-SSO

Clients that cannot run JavaScript or other clients (such as command-line clients or Selenium tests)
must request the authorization token directly from RH-SSO.

To obtain the token, send a request to the token endpoint with the username and password credentials.
This request can be schematically described as the following cURL request:

$ curl --insecure --data "grant_type=password&client_id=codeready-
public&username=<USERNAME>&password=<PASSWORD>" \ 1 2
https://<keyckloak_host>/auth/realms/codeready/protocol/openid-connect/token 3

Red Hat CodeReady Workspaces username

Red Hat CodeReady Workspaces user’s password

RH-SSO host

The CodeReady Workspaces dashboard uses a customized RH-SSO login page and an authentication
mechanism based on grant_type=authorization_code. It is a two-step authentication process:

1. Logging in and obtaining the authorization code.

2. Obtaining the token using this authorization code.

9.1.1.1.2. Obtaining the token from the OpenShift token through RH-SSO

When CodeReady Workspaces was installed on OpenShift using the Operator, and the OpenShift OAuth
integration is enabled, as it is by default, the user’s CodeReady Workspaces authentication token can be
retrieved from the user’s OpenShift token.

To retrieve the authentication token from the OpenShift token, send a schematically described cURL
request to the OpenShift token endpoint:

$ curl --insecure -X POST \
-d "client_id=codeready-public" \
-d "subject_token=<USER_OPENSHIFT_TOKEN>" \ 1
-d "subject_issuer=<OPENSHIFT_IDENTITY_PROVIDER_NAME>" \ 2
--data-urlencode "grant_type=urn:ietf:params:oauth:grant-type:token-exchange" \
--data-urlencode "subject_token_type=urn:ietf:params:oauth:token-type:access_token" \
https://<KEYCKLOAK_HOST>/auth/realms/codeready/protocol/openid-connect/token 3

The token retrieved by the end-user with the command oc whoami --show-token

openshift-v4 for OpenShift 4.x and openshift-v3 for OpenShift 3.11

Red Hat CodeReady Workspaces 2.7 Administration Guide

58

3 RH-SSO host

WARNING

Before using this token exchange feature, it is required for an end user to be
interactively logged in at least once to the CodeReady Workspaces Dashboard
using the OpenShift login page. This step is needed to link the OpenShift and RH-
SSO user accounts properly and set the required user profile information.

9.1.1.2. Authenticating to the CodeReady Workspaces server using other authentication
implementations

This procedure describes how to use an OpenID Connect (OIDC) authentication implementation other
than RH-SSO.

Procedure

1. Update the authentication configuration parameters that are stored in the
multiuser.properties file (such as client ID, authentication URL, realm name).

2. Write a single filter or a chain of filters to validate tokens, create the user in the CodeReady
Workspaces dashboard, and compose the subject object.

3. If the new authorization provider supports the OpenID protocol, use the OIDC JS client library
available at the settings endpoint because it is decoupled from specific implementations.

4. If the selected provider stores additional data about the user (first and last name, job title), it is
recommended to write a provider-specific ProfileDao implementation that provides this
information.

9.1.1.3. Authenticating to the CodeReady Workspaces server using OAuth

For easy user interaction with third-party services, the CodeReady Workspaces server supports OAuth
authentication. OAuth tokens are also used for GitHub-related plug-ins.

OAuth authentication has two main flows:

delegated

Default. Delegates OAuth authentication to RH-SSO server.

embedded

Uses built-in CodeReady Workspaces server mechanism to communicate with OAuth providers.

To switch between the two implementations, use the
che.oauth.service_mode=<embedded|delegated> configuration property.

The main REST endpoint in the OAuth API is /api/oauth, which contains:

An authentication method, /authenticate, that the OAuth authentication flow can start with.



CHAPTER 9. MANAGING IDENTITIES AND AUTHORIZATIONS

59

A callback method, /callback, to process callbacks from the provider.

A token GET method, /token, to retrieve the current user’s OAuth token.

A token DELETE method, /token, to invalidated the current user’s OAuth token.

A GET method, /, to get the list of configured identity providers.

9.1.1.4. Using Swagger or REST clients to execute queries

The user’s RH-SSO token is used to execute queries to the secured API on the user’s behalf through
REST clients. A valid token must be attached as the Request header or the ?token=$token query
parameter.

Access the CodeReady Workspaces Swagger interface at \https://codeready-
<openshift_deployment_name>.<domain_name>/swagger. The user must be signed in through RH-
SSO, so that the access token is included in the Request header.

9.1.2. Authenticating in a CodeReady Workspaces workspace

Workspace containers may contain services that must be protected with authentication. Such protected
services are called secure. To secure these services, use a machine authentication mechanism.

JWT tokens avoid the need to pass RH-SSO tokens to workspace containers (which can be insecure).
Also, RH-SSO tokens may have a relatively shorter lifetime and require periodic renewals or refreshes,
which is difficult to manage and keep in sync with the same user session tokens on clients.

Figure 9.1. Authentication inside a workspace

Red Hat CodeReady Workspaces 2.7 Administration Guide

60

Figure 9.1. Authentication inside a workspace

9.1.2.1. Creating secure servers

To create secure servers in CodeReady Workspaces workspaces, set the secure attribute of the
endpoint to true in the dockerimage type component in the devfile.

Devfile snippet for a secure server

9.1.2.2. Workspace JWT token

Workspace tokens are JSON web tokens (JWT) that contain the following information in their claims:

uid: The ID of the user who owns this token

uname: The name of the user who owns this token

wsid: The ID of a workspace which can be queried with this token

components:
 - type: dockerimage
 endpoints:
 - attributes:
 secure: 'true'

CHAPTER 9. MANAGING IDENTITIES AND AUTHORIZATIONS

61

https://jwt.io/

Every user is provided with a unique personal token for each workspace. The structure of a token and
the signature are different than they are in RH-SSO. The following is an example token view:

The SHA-256 cipher with the RSA algorithm is used for signing JWT tokens. It is not configurable. Also,
there is no public service that distributes the public part of the key pair with which the token is signed.

9.1.2.3. Machine token validation

The validation of machine tokens (JWT tokens) is performed using a dedicated per-workspace service
with JWTProxy running on it in a separate Pod. When the workspace starts, this service receives the
public part of the SHA key from the CodeReady Workspaces server. A separate verification endpoint is
created for each secure server. When traffic comes to that endpoint, JWTProxy tries to extract the
token from the cookies or headers and validates it using the public-key part.

To query the CodeReady Workspaces server, a workspace server can use the machine token provided in
the CHE_MACHINE_TOKEN environment variable. This token is the user’s who starts the workspace.
The scope of such requests is restricted to the current workspace only. The list of allowed operations is
also strictly limited.

9.2. AUTHORIZING USERS

User authorization in CodeReady Workspaces is based on the permissions model. Permissions are used
to control the allowed actions of users and establish a security model. Every request is verified for the
presence of the required permission in the current user subject after it passes authentication. You can
control resources managed by CodeReady Workspaces and allow certain actions by assigning
permissions to users.

Permissions can be applied to the following entities:

Workspace

System

All permissions can be managed using the provided REST API. The APIs are documented using Swagger
at \https://codeready-<openshift_deployment_name>.<domain_name>/swagger/#!/permissions.

9.2.1. CodeReady Workspaces workspace permissions

The user who creates a workspace is the workspace owner. By default, the workspace owner has the

Header
{
 "alg": "RS512",
 "kind": "machine_token"
}
Payload
{
 "wsid": "workspacekrh99xjenek3h571",
 "uid": "b07e3a58-ed50-4a6e-be17-fcf49ff8b242",
 "uname": "john",
 "jti": "06c73349-2242-45f8-a94c-722e081bb6fd"
}
Signature
{
 "value": "RSASHA256(base64UrlEncode(header) + . + base64UrlEncode(payload))"
}

Red Hat CodeReady Workspaces 2.7 Administration Guide

62

The user who creates a workspace is the workspace owner. By default, the workspace owner has the
following permissions: read, use, run, configure, setPermissions, and delete. Workspace owners can
invite users into the workspace and control workspace permissions for other users.

The following permissions are associated with workspaces:

Table 9.1. CodeReady Workspaces workspace permissions

Permission Description

read Allows reading the workspace configuration.

use Allows using a workspace and interacting with it.

run Allows starting and stopping a workspace.

configure Allows defining and changing the workspace
configuration.

setPermissions Allows updating the workspace permissions for other
users.

delete Allows deleting the workspace.

9.2.2. CodeReady Workspaces system permissions

CodeReady Workspaces system permissions control aspects of the whole CodeReady Workspaces
installation. The following permissions are applicable to the system:

Table 9.2. CodeReady Workspaces system permission

Permission Description

manageSystem Allows control of the system and workspaces.

setPermissions Allows updating the permissions for users on the
system.

manageUsers Allows creating and managing users.

monitorSystem Allows accessing endpoints used for monitoring the
state of the server.

All system permissions are granted to the administrative user who is configured in the
CHE_SYSTEM_ADMIN__NAME property (the default is admin). The system permissions are granted
when the CodeReady Workspaces server starts. If the user is not present in the CodeReady Workspaces
user database, it happens after the first user’s login.

9.2.3. manageSystem permission

CHAPTER 9. MANAGING IDENTITIES AND AUTHORIZATIONS

63

Users with the manageSystem permission have access to the following services:

Path HTTP Method Description

/resource/free/ GET Get free resource limits.

/resource/free/{accountId} GET Get free resource limits for the
given account.

/resource/free/{accountId} POST Edit free resource limit for the
given account.

/resource/free/{accountId} DELETE Remove free resource limit for the
given account.

/installer/ POST Add installer to the registry.

/installer/{key} PUT Update installer in the registry.

/installer/{key} DELETE Remove installer from the
registry.

/logger/ GET Get logging configurations in the
CodeReady Workspaces server.

/logger/{name} GET Get configurations of logger by
its name in the CodeReady
Workspaces server.

/logger/{name} PUT Create logger in the CodeReady
Workspaces server.

/logger/{name} POST Edit logger in the CodeReady
Workspaces server.

/resource/{accountId}/details GET Get detailed information about
resources for the given account.

/system/stop POST Shutdown all system services,
prepare CodeReady Workspaces
to stop.

9.2.4. monitorSystem permission

Users with the monitorSystem permission have access to the following services.

Red Hat CodeReady Workspaces 2.7 Administration Guide

64

Path HTTP Method Description

/activity GET Get workspaces in a certain state
for a certain amount of time.

9.2.5. Listing CodeReady Workspaces permissions

To list CodeReady Workspaces permissions that apply to a specific resource, perform the GET
/permissions request.

To list the permissions that apply to a user, perform the GET /permissions/{domain} request.

To list the permissions that apply to all users, perform the GET /permissions/{domain}/all request.
The user must have manageSystem permissions to see this information.

The suitable domain values are:

system

organization

workspace

NOTE

The domain is optional. If no domain is specified, the API returns all possible permissions
for all the domains.

9.2.6. Assigning CodeReady Workspaces permissions

To assign permissions to a resource, perform the POST /permissions request. The suitable domain
values are:

system

organization

workspace

The following is a message body that requests permissions for a user with a userId to a workspace with a
workspaceID:

Requesting CodeReady Workspaces user permissions

{
 "actions": [
 "read",
 "use",
 "run",
 "configure",
 "setPermissions"
],

CHAPTER 9. MANAGING IDENTITIES AND AUTHORIZATIONS

65

1

2

The userId parameter is the ID of the user that has been granted certain permissions.

The instanceId parameter is the ID of the resource that retrieves the permission for all users.

9.2.7. Sharing CodeReady Workspaces permissions

A user with setPermissions privileges can share a workspace and grant read, use, run, configure, or
setPermissions privileges for other users.

Procedure

To share workspace permissions:

1. Select a workspace in the user dashboard.

2. Navigate to the Share tab and enter the email IDs of the users. Use commas or spaces as
separators for multiple emails.

9.3. CONFIGURING AUTHORIZATION

9.3.1. Authorization and user management

Red Hat CodeReady Workspaces uses RH-SSO to create, import, manage, delete, and authenticate
users. RH-SSO uses built-in authentication mechanisms and user storage. It can use third-party identity
management systems to create and authenticate users. Red Hat CodeReady Workspaces requires a
RH-SSO token when you request access to CodeReady Workspaces resources.

Local users and imported federation users must have an email address in their profile.

The default RH-SSO credentials are admin:admin. You can use the admin:admin credentials when
logging into Red Hat CodeReady Workspaces for the first time. It has system privileges.

Identifying the RH-SSO URL

Go to the OpenShift web console and to the RH-SSO project.

9.3.2. Configuring CodeReady Workspaces to work with RH-SSO

The deployment script configures RH-SSO. It creates a codeready-public client with the following
fields:

Valid Redirect URIs: Use this URL to access CodeReady Workspaces.

Web Origins

The following are common errors when configuring CodeReady Workspaces to work with RH-SSO:

Invalid redirectURI error

Occurs when you access CodeReady Workspaces at myhost, which is an alias, and your original

 "userId": "userID", 1
 "domainId": "workspace",
 "instanceId": "workspaceID" 2
}

Red Hat CodeReady Workspaces 2.7 Administration Guide

66

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/

Occurs when you access CodeReady Workspaces at myhost, which is an alias, and your original
CHE_HOST is 1.1.1.1. If this error occurs, go to the RH-SSO administration console and ensure that
the valid redirect URIs are configured.

CORS error

Occurs when you have an invalid web origin.

9.3.3. Configuring RH-SSO tokens

A user token expires after 30 minutes by default.

You can change the following RH-SSO token settings:

9.3.4. Setting up user federation

RH-SSO federates external user databases and supports LDAP and Active Directory. You can test the
connection and authenticate users before choosing a storage provider.

See the User storage federation page in RH-SSO documentation to learn how to add a provider.

See the LDAP and Active Directory page in RH-SSO documentation to specify multiple LDAP servers.

9.3.5. Enabling authentication with social accounts and brokering

RH-SSO provides built-in support for GitHub, OpenShift, and most common social networks such as
Facebook and Twitter. See RH-SSO documentation to learn how to enable Login with GitHub.

CHAPTER 9. MANAGING IDENTITIES AND AUTHORIZATIONS

67

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html/server_administration_guide/user-storage-federation
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html/server_administration_guide/user-storage-federation#ldap
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_administration_guide/index#github

1

2

3

9.3.5.1. Configuring GitHub OAuth

OAuth for GitHub allows for automatic SSH key upload to GitHub.

Prerequisites

The oc tool is available.

Procedure

Create a OAuth application in GitHub using CodeReady Workspaces URL as the value for the
application Homepage URL and RH-SSO GitHub endpoint URL as the value for Authorization
callback URL. The default values are https://codeready-openshift-workspaces.<DOMAIN>/
and https://keycloak-openshift-
workspaces.<DOMAIN>/auth/realms/codeready/broker/github/endpoint respectively, where
<DOMAIN> is OpenShift cluster domain.

1. Create a new secret in the project where CodeReady Workspaces is deployed.

$ oc apply -f - <<EOF
kind: Secret
apiVersion: v1
metadata:
 name: github-oauth-config
 namespace: <...> 1
 labels:
 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: oauth-scm-configuration
 annotations:
 che.eclipse.org/oauth-scm-server: github
type: Opaque
data:
 id: <...> 2
 secret: <...> 3
EOF

CodeReady Workspaces namespace. The default is openshift-workspaces

base64 encoded GitHub OAuth Client ID

base64 encoded GitHub OAuth Client Secret

2. If CodeReady Workspaces was already installed wait until rollout of RH-SSO component
finishes.

9.3.5.2. Configuring Bitbucket Server OAuth 1

This procedure describes how to activate OAuth 1 for Bitbucket Server to:

Use devfiles hosted on a Bitbucket Server.

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-
single/end-user_guide/index#configuring_bitbucket_authentication_crw.

Red Hat CodeReady Workspaces 2.7 Administration Guide

68

https://developer.github.com/apps/building-oauth-apps/creating-an-oauth-app
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-single/end-user_guide/index#configuring_bitbucket_authentication_crw

1

2

3

4

It enables CodeReady Workspaces to obtain and renew Bitbucket Server Personal access tokens .

Prerequisites

The oc tool is available.

Bitbucket Server is available from CodeReady Workspaces server.

Procedure

1. Generate a RSA key pair and a stripped down version of the public key:

openssl genrsa -out <private.pem> 2048
openssl rsa -in <private.pem> -pubout > <public.pub>
openssl pkcs8 -topk8 -inform pem -outform pem -nocrypt -in <private.pem> -out
<privatepkcs8.pem>
cat <public.pub> | sed 's/-----BEGIN PUBLIC KEY-----//g' | sed 's/-----END PUBLIC KEY-----
//g' | tr -d '\n' > <public-stripped.pub>

2. Generate a consumer key and a shared secret.

openssl rand -base64 24 > <bitbucket_server_consumer_key>
openssl rand -base64 24 > <bitbucket_shared_secret>

3. Create a Kubernetes Secret in CodeReady Workspaces namespace containing the consumer
and private keys.

$ oc apply -f - <<EOF
kind: Secret
apiVersion: v1
metadata:
 name: bitbucket-oauth-config
 namespace: <...> 1
 labels:
 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: oauth-scm-configuration
 annotations:
 che.eclipse.org/oauth-scm-server: bitbucket
 che.eclipse.org/scm-server-endpoint: <...> 2
type: Opaque
data:
 private.key: <...> 3
 consumer.key: <...> 4
EOF

CodeReady Workspaces namespace. The default is openshift-workspaces

Bitbucket Server URL

base64 encoded content of the <privatepkcs8.pem> file without first and last lines.

base64 encoded content of the <bitbucket_server_consumer_key> file.

CHAPTER 9. MANAGING IDENTITIES AND AUTHORIZATIONS

69

https://confluence.atlassian.com/bitbucketserver/personal-access-tokens-939515499.html

4. Configure an Application Link in Bitbucket to enable the communication from CodeReady
Workspaces to Bitbucket Server.

a. In Bitbucket Server, click the cog in the top navigation bar to navigate to Administration >
Application Links.

<<<<<<< HEAD .. Enter the application URL: <{prod-url-secure}/dashboard/> and click the Create new
link button.

a. Enter the application URL: \https://codeready-<openshift_deployment_name>.
<domain_name> and click the Create new link button. >>>>>>> 6dd3fd4d…​ Fix leftover of
prod-url-secure attribute (#1897)

a. On the warning message stating "No response was received from the URL" click the Continue
button.

a. Fill-in the Link Applications form and click the Continue button.

Application Name

<CodeReady Workspaces>

Application Type

Generic Application.

Service Provider Name

<CodeReady Workspaces>

Consumer Key

Paste the content of the <bitbucket_server_consumer_key> file.

Shared secret

Paste the content of the <bitbucket_shared_secret> file.

Request Token URL

<Bitbucket Server URL>/plugins/servlet/oauth/request-token

Access token URL

<Bitbucket Server URL>/plugins/servlet/oauth/access-token

Authorize URL

<Bitbucket Server URL>/plugins/servlet/oauth/access-token

Create incoming link

Enabled.

b. Fill-in the Link Applications form and click the Continue button.

Consumer Key

Paste the content of the <bitbucket_server_consumer_key> file.

Consumer name

<CodeReady Workspaces>

Public Key

Paste the content of the <public-stripped.pub> file.

Additional resources

Bitbucket Server overview

Red Hat CodeReady Workspaces 2.7 Administration Guide

70

https://confluence.atlassian.com/adminjiraserver/using-applinks-to-link-to-other-applications-938846918.html
https://bitbucket.org/product/enterprise

Download Bitbucket Server

Bitbucket Server Personal access tokens

How to generate public key to application link 3rd party applications

Using AppLinks to link to other applications

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-
single/end-user_guide/index#configuring_bitbucket_authentication_crw.

= Using protocol-based providers

RH-SSO supports SAML v2.0 and OpenID Connect v1.0 protocols.

= Managing users using RH-SSO

You can add, delete, and edit users in the user interface. See RH-SSO User Management for more
information.

= Configuring CodeReady Workspaces to use an external RH-SSO installation

By default, CodeReady Workspaces installation includes the deployment of a dedicated RH-SSO
instance. However, using an external RH-SSO is also possible. This option is useful when a user has an
existing RH-SSO instance with already-defined users, for example, a company-wide RH-SSO server
used by several applications.

Table 9.3. Placeholders used in examples

<provider-realm-name> Identity provider realm name intended for use by CodeReady
Workspaces

<oidc-client-name> Name of the oidc client defined in <provider-realm-name>

<auth-base-url> Base URL of the external RH-SSO server

Prerequisites

In the administration console of the external installation of RH-SSO, define a realm containing
the users intended to connect to CodeReady Workspaces:

CHAPTER 9. MANAGING IDENTITIES AND AUTHORIZATIONS

71

https://bitbucket.org/product/download
https://confluence.atlassian.com/bitbucketserver/personal-access-tokens-939515499.html
https://confluence.atlassian.com/jirakb/how-to-generate-public-key-to-application-link-3rd-party-applications-913214098.html
https://confluence.atlassian.com/adminjiraserver/using-applinks-to-link-to-other-applications-938846918.html
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-single/end-user_guide/index#configuring_bitbucket_authentication_crw
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_administration_guide/index#saml
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_administration_guide/index#oidc
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html/server_administration_guide/user_management
https://www.keycloak.org/docs/latest/server_admin/#_create-realm

In this realm, define an OIDC client that CodeReady Workspaces will use to authenticate the
users. This is an example of such a client with the correct settings:

NOTE

Red Hat CodeReady Workspaces 2.7 Administration Guide

72

https://www.keycloak.org/docs/latest/server_admin/#oidc-clients

NOTE

Client Protocol must be openid-connect.

Access Type must be public. CodeReady Workspaces only supports the
public access type.

Valid Redirect URIs must contain at least two URIs related to the
CodeReady Workspaces server, one using the http protocol and the other
https. These URIs must contain the base URL of the CodeReady Workspaces
server, followed by /* wildcards.

Web Origins must contain at least two URIs related to the CodeReady
Workspaces server, one using the http protocol and the other https. These
URIs must contain the base URL of the CodeReady Workspaces server,
without any path after the host.
The number of URIs depends on the number of installed product tools.

With CodeReady Workspaces that uses the default OpenShift OAuth support, user
authentication relies on the integration of RH-SSO with OpenShift OAuth. This allows users to
log in to CodeReady Workspaces with their OpenShift login and have their workspaces created
under personal OpenShift projects.
This requires setting up an OpenShift identity provider ins RH-SSO. When using an external RH-
SSO, set up the identity provider manually. For instructions, see the appropriate RH-SSO
documentations for either link:OpenShift 3[OpenShift 3] or link:OpenShift 4[OpenShift 4].

The configured identity provider has the options Store Tokens and Stored Tokens Readable
enabled.

Procedure

1. Set the following properties in the CheCluster Custom Resource (CR):

2. When installing CodeReady Workspaces with OpenShift OAuth support enabled, set the
following properties in the CheCluster Custom Resource (CR):

= Configuring SMTP and email notifications

spec:
 auth:
 externalIdentityProvider: true
 identityProviderURL: <auth-base-url>
 identityProviderRealm: <provider-realm-name>
 identityProviderClientId: <oidc-client-name>

spec:
 auth:
 openShiftoAuth: true
Note: only if the OpenShift identity provider alias is different from 'openshift-v3' or
'openshift-v4'
server:
 customCheProperties:
 CHE_INFRA_OPENSHIFT_OAUTH__IDENTITY__PROVIDER: <OpenShift identity
provider alias>

CHAPTER 9. MANAGING IDENTITIES AND AUTHORIZATIONS

73

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html/server_administration_guide/identity_broker#openshift_3
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html/server_administration_guide/identity_broker#openshift_4

Red Hat CodeReady Workspaces does not provide any pre-configured MTP servers.

To enable SMTP servers in RH-SSO:

1. Go to che realm settings > Email.

2. Specify the host, port, username, and password.

Red Hat CodeReady Workspaces uses the default theme for email templates for registration, email
confirmation, password recovery, and failed login.

= Enabling self-registration

Self-registration allows users to register themselves in a CodeReady Workspaces instance by accessing
the CodeReady Workspaces server URL.

For CodeReady Workspaces installed without OpenShift OAuth support, self-registration is disabled by
default, therefore the option to register a new user is not available on the login page.

Prerequisites

You are logged in as an administrator.

Procedure

To enable self-registration of users:

1. Navigate to the Realm Settings menu on the left and open the Login tab.

2. Set User registration option to On.

= Configuring OpenShift OAuth

For users to interact with OpenShift, they must first authenticate to the OpenShift cluster. OpenShift
OAuth is a process in which users prove themselves to a cluster through an API with obtained OAuth
access tokens.

Authentication with the https://access.redhat.com/documentation/en-
us/red_hat_codeready_workspaces/2.7/html-single/end-user_guide/index#openshift-connector-
overview_crw is a possible way for CodeReady Workspaces users to authenticate with an OpenShift
cluster.

The following section describes the OpenShift OAuth configuration options and its use with a
CodeReady Workspaces.

= Configuring OpenShift OAuth with initial user

Prerequisites

The oc tool is available.

crwctl management tool is available. See https://access.redhat.com/documentation/en-
us/red_hat_codeready_workspaces/2.7/html-single/installation_guide/index#using-the-crwctl-
management-tool_crw.

Procedure

Red Hat CodeReady Workspaces 2.7 Administration Guide

74

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-single/end-user_guide/index#openshift-connector-overview_crw
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-single/installation_guide/index#using-the-crwctl-management-tool_crw

Configure OpenShift identity providers on the cluster. See the Understanding identity provider
configuration.
When a user skips the Configuring step of OpenShift identity providers, and the OpenShift
cluster does not already contain configured identity providers, CodeReady Workspaces creates
an initial OpenShift user for the HTPasswd identity provider. Credentials of this user are stored
in the openshift-oauth-user-credentials secret, located in the openshift-workspaces
namespace.

Obtain the credentials for logging in to an OpenShift cluster and CodeReady Workspaces
instance:

1. Obtain OpenShift user name:

$ oc get secret openshift-oauth-user-credentials -n openshift-workspaces -o json | jq -r
'.data.user' | base64 -d

2. Obtain OpenShift user password:

$ oc get secret openshift-oauth-user-credentials -n openshift-workspaces -o json | jq -r
'.data.password' | base64 -d

Deploy CodeReady Workspaces using OperatorHub or the crwctl, see the crwctl server:deploy
specification chapter. OpenShift OAuth will be enabled by default.

= Configuring OpenShift OAuth without provisioning OpenShift initial OAuth user

The following procedure describes how to configure OpenShift OAuth without provisioning OpenShift
initial OAuth user.

Prerequisites

crwctl management tool is available. See https://access.redhat.com/documentation/en-
us/red_hat_codeready_workspaces/2.7/html-single/installation_guide/index#using-the-crwctl-
management-tool_crw.

Procedure

1. Deploy and update CodeReady Workspaces instance using OperatorHub and wait for the
process to finish:

$ crwctl server:deploy --che-operator-cr-patch-yaml=patch.yaml ...

patch.yaml must contain the following:

2. Set the following values in codeready-workspaces Custom Resource (CR):

spec:
 auth:
 openShiftoAuth: true
 initialOpenShiftOAuthUser: ''

spec:
 auth:
 openShiftoAuth: true

CHAPTER 9. MANAGING IDENTITIES AND AUTHORIZATIONS

75

https://docs.openshift.com/container-platform/latest/authentication/understanding-identity-provider.html#identity-provider-overview_understanding-identity-provider
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-single/installation_guide/index#installing-codeready-workspaces-on-openshiftt-4-using-operatorhub_crw
https://github.com/redhat-developer/codeready-workspaces-chectl#user-content-crwctl-serverdeploy
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-single/installation_guide/index#using-the-crwctl-management-tool_crw

= Removing OpenShift initial OAuth user

The following procedure describes how to remove OpenShift initial OAuth user provisioned by Red Hat
CodeReady Workspaces.

Prerequisites

The oc tool installed.

An instance of Red Hat CodeReady Workspaces running on OpenShift.

Logged in to OpenShift cluster using the oc tool.

Procedure

1. Update codeready-workspaces custom resource:

$ oc patch checluster codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/auth/initialOpenShiftOAuthUser", "value": false}]'

= Removing user data

== Removing user data according to GDPR

The General Data Protection Regulation (GDPR) law enforces the right for individuals to have personal
data erased.

The following procedure describes how to remove a user’s data from a cluster and the RH-SSO
database.

NOTE

The following commands use the default OpenShift project, openshift-workspaces, as a
user’s example for the -n option.

Prerequisites

A user or an administrator authorization token. To delete any other data except the data bound
to a user account, admin privileges are required. The admin is a special CodeReady Workspaces
administrator account pre-created and enabled using the CHE_SYSTEM_ADMIN__NAME and
CHE_SYSTEM_SUPER__PRIVILEGED__MODE = true Custom Resource definitions.

spec:
 server:
 customCheProperties:
 CHE_SYSTEM_SUPER__PRIVILEGED__MODE: 'true'
 CHE_SYSTEM_ADMIN__NAME: '<admin-name>'

If needed, use commands below for creating the admin user:

$ oc patch checluster codeready-workspaces \
 --type merge \

 initialOpenShiftOAuthUser: ''

Red Hat CodeReady Workspaces 2.7 Administration Guide

76

https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

 -p '{ "spec": { "server": {"customCheProperties":
{"CHE_SYSTEM_SUPER__PRIVILEGED__MODE": "true"} } }}' \
 -n openshift-workspaces

$ oc patch checluster codeready-workspaces \
 --type merge \
 -p '{ "spec": { "server": {"customCheProperties": {"CHE_SYSTEM_ADMIN__NAME":
"<admin-name>"} } }}' \
 -n openshift-workspaces

NOTE

All system permissions are granted to the administrative user who is configured in
the CHE_SYSTEM_ADMIN__NAME property (the default is admin). The
system permissions are granted when the CodeReady Workspaces server starts.
If the user is not present in the CodeReady Workspaces user database, it
happens after the first user’s login.

Authorization token privileges:

admin - Can delete all personal data of all users

user - Can delete only the data related to the user

A user or an administrator is logged in the OpenShift cluster with deployed CodeReady
Workspaces.

A user ID is obtained. Get the user ID using the commands below:

For the current user:

$ curl -X GET \
 --header 'Authorization: Bearer <user-token>' \
 'https://<codeready-<openshift_deployment_name>.<domain_name>>/api/user'

To find a user by name:

$ curl -X GET \
 --header 'Authorization: Bearer <user-token>' \
 'https://<codeready-<openshift_deployment_name>.<domain_name>>/api/user/find?
name=<username>'

To find a user by email:

$ curl -X GET \
 --header 'Authorization: Bearer <user-token>' \
 'https://<codeready-<openshift_deployment_name>.<domain_name>>/api/user/find?
email=<email>'

Example of obtaining a user ID

This example uses vparfono as a local user name.

$ curl -X GET \

CHAPTER 9. MANAGING IDENTITIES AND AUTHORIZATIONS

77

 --header 'Authorization: Bearer <user-token>' \
 'https://che-vp-che.apps.che-dev.x6e0.p1.openshiftapps.com/api/user/find?
name=vparfono'

The user ID is at the bottom of the curl command output.

{
 "name": "vparfono",
 "links": [
 {
.
.
.
 }
],
 "email": "vparfono@redhat.com",
 "id": "921b6f33-2657-407e-93a6-fb14cf2329ce"
}

Procedure

1. Update the codeready-workspaces CheCluster Custom Resource (CR) definition to permit
the removal of a user’s data from the RH-SSO database:

$ oc patch checluster/codeready-workspaces \
 --patch "{\"spec\":{\"server\":{\"customCheProperties\":
{\"CHE_KEYCLOAK_CASCADE__USER__REMOVAL__ENABLED\": \"true\"}}}}" \
 --type=merge -n openshift-workspaces

2. Remove the data using the API:

$ curl -i -X DELETE \
 --header 'Authorization: Bearer <user-token>' \
 https://<codeready-<openshift_deployment_name>.<domain_name>>/api/user/<user-id>

Verification

Running the following command returns code 204 as the API response:

$ curl -i -X DELETE \
 --header 'Authorization: Bearer <user-token>' \
 https://<codeready-<openshift_deployment_name>.<domain_name>>/api/user/<user-id>

Additional resources

To remove the data of all users, follow the instructions for
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-
single/installation_guide/index#uninstalling-codeready-workspaces_crw.

Red Hat CodeReady Workspaces 2.7 Administration Guide

78

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.7/html-single/installation_guide/index#uninstalling-codeready-workspaces_crw

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. CODEREADY WORKSPACES ARCHITECTURE OVERVIEW
	1.1. UNDERSTANDING CODEREADY WORKSPACES WORKSPACE CONTROLLER
	1.1.1. CodeReady Workspaces workspace controller
	1.1.2. CodeReady Workspaces server
	1.1.3. CodeReady Workspaces user dashboard
	1.1.4. CodeReady Workspaces Devfile registry
	1.1.5. CodeReady Workspaces plug-in registry
	1.1.6. CodeReady Workspaces and PostgreSQL
	1.1.7. CodeReady Workspaces and RH-SSO

	1.2. UNDERSTANDING CODEREADY WORKSPACES WORKSPACES ARCHITECTURE
	1.2.1. CodeReady Workspaces workspaces architecture
	1.2.2. CodeReady Workspaces workspace components
	1.2.2.1. Che Editor plug-in
	1.2.2.2. CodeReady Workspaces user runtimes
	1.2.2.3. CodeReady Workspaces workspace JWT proxy
	1.2.2.4. CodeReady Workspaces plug-ins broker

	1.2.3. CodeReady Workspaces workspace creation flow

	CHAPTER 2. CALCULATING CODEREADY WORKSPACES RESOURCE REQUIREMENTS
	2.1. CONTROLLER REQUIREMENTS
	2.2. WORKSPACES REQUIREMENTS
	2.3. A WORKSPACE EXAMPLE

	CHAPTER 3. CUSTOMIZING THE REGISTRIES
	3.1. UNDERSTANDING THE CODEREADY WORKSPACES REGISTRIES
	3.2. BUILDING CUSTOM REGISTRY IMAGES
	3.2.1. Building a custom devfile registry image
	3.2.2. Building a custom plug-ins registry image

	3.3. RUNNING CUSTOM REGISTRIES
	3.3.1. Deploying registries in OpenShift

	CHAPTER 4. RETRIEVING CODEREADY WORKSPACES LOGS
	4.1. CONFIGURING SERVER LOGGING
	4.1.1. Configuring log levels
	4.1.2. Logger naming
	4.1.3. Logging HTTP traffic

	4.2. ACCESSING OPENSHIFT EVENTS ON OPENSHIFT
	4.3. VIEWING THE STATE OF THE CODEREADY WORKSPACES CLUSTER DEPLOYMENT USING OPENSHIFT 4 CLI TOOLS
	4.4. VIEWING CODEREADY WORKSPACES SERVER LOGS
	4.4.1. Viewing the CodeReady Workspaces server logs using the OpenShift CLI

	4.5. VIEWING EXTERNAL SERVICE LOGS
	4.5.1. Viewing RH-SSO logs
	4.5.1.1. Viewing the RH-SSO server logs
	4.5.1.2. Viewing the RH-SSO client logs on Firefox
	4.5.1.3. Viewing the RH-SSO client logs on Google Chrome

	4.5.2. Viewing the CodeReady Workspaces database logs

	4.6. VIEWING THE PLUG-IN BROKER LOGS
	4.7. COLLECTING LOGS USING CRWCTL

	CHAPTER 5. MONITORING CODEREADY WORKSPACES
	5.1. ENABLING AND EXPOSING CODEREADY WORKSPACES METRICS
	5.2. COLLECTING CODEREADY WORKSPACES METRICS WITH PROMETHEUS
	5.3. EXTENDING CODEREADY WORKSPACES MONITORING METRICS

	CHAPTER 6. TRACING CODEREADY WORKSPACES
	6.1. TRACING API
	6.2. TRACING BACK END
	6.3. INSTALLING THE JAEGER TRACING TOOL
	6.3.1. Installing Jaeger using OperatorHub on OpenShift 4
	6.3.2. Installing Jaeger using CLI on OpenShift 4

	6.4. ENABLING METRICS COLLECTION
	6.5. VIEWING CODEREADY WORKSPACES TRACES IN JAEGER UI
	6.6. CODEREADY WORKSPACES TRACING CODEBASE OVERVIEW AND EXTENSION GUIDE
	6.6.1. Tagging

	CHAPTER 7. BACKUP AND DISASTER RECOVERY
	7.1. EXTERNAL DATABASE SETUP
	7.1.1. Configuring external PostgreSQL
	7.1.2. Configuring CodeReady Workspaces to work with an external PostgreSQL

	7.2. PERSISTENT VOLUMES BACKUPS
	7.2.1. Recommended backup tool: Velero

	CHAPTER 8. CACHING IMAGES FOR FASTER WORKSPACE START
	8.1. DEFINING THE LIST OF IMAGES TO PULL
	8.2. DEFINING THE MEMORY PARAMETERS FOR THE IMAGE PULLER
	8.3. INSTALLING IMAGE PULLER USING THE CODEREADY WORKSPACES OPERATOR
	8.4. INSTALLING IMAGE PULLER ON OPENSHIFT 4 USING OPERATORHUB
	8.5. INSTALLING IMAGE PULLER ON OPENSHIFT USING OPENSHIFT TEMPLATES

	CHAPTER 9. MANAGING IDENTITIES AND AUTHORIZATIONS
	9.1. AUTHENTICATING USERS
	9.1.1. Authenticating to the CodeReady Workspaces server
	9.1.1.1. Authenticating to the CodeReady Workspaces server using OpenID
	9.1.1.2. Authenticating to the CodeReady Workspaces server using other authentication implementations
	9.1.1.3. Authenticating to the CodeReady Workspaces server using OAuth
	9.1.1.4. Using Swagger or REST clients to execute queries

	9.1.2. Authenticating in a CodeReady Workspaces workspace
	9.1.2.1. Creating secure servers
	9.1.2.2. Workspace JWT token
	9.1.2.3. Machine token validation

	9.2. AUTHORIZING USERS
	9.2.1. CodeReady Workspaces workspace permissions
	9.2.2. CodeReady Workspaces system permissions
	9.2.3. manageSystem permission
	9.2.4. monitorSystem permission
	9.2.5. Listing CodeReady Workspaces permissions
	9.2.6. Assigning CodeReady Workspaces permissions
	9.2.7. Sharing CodeReady Workspaces permissions

	9.3. CONFIGURING AUTHORIZATION
	9.3.1. Authorization and user management
	9.3.2. Configuring CodeReady Workspaces to work with RH-SSO
	9.3.3. Configuring RH-SSO tokens
	9.3.4. Setting up user federation
	9.3.5. Enabling authentication with social accounts and brokering
	9.3.5.1. Configuring GitHub OAuth
	9.3.5.2. Configuring Bitbucket Server OAuth 1

