
Red Hat CodeReady Workspaces 2.0

Administration Guide

Administering Red Hat CodeReady Workspaces 2.0

Last Updated: 2020-06-04

Red Hat CodeReady Workspaces 2.0 Administration Guide

Administering Red Hat CodeReady Workspaces 2.0

Supriya Takkhi

Robert Kratky
rkratky@redhat.com

Michal Maléř
mmaler@redhat.com

Fabrice Flore-Thébault
ffloreth@redhat.com

Yana Hontyk
yhontyk@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Information for administrators operating Red Hat CodeReady Workspaces.

. .

. .

Table of Contents

CHAPTER 1. CUSTOMIZING THE DEVFILE AND PLUG-IN REGISTRIES
1.1. BUILDING AND RUNNING A CUSTOM REGISTRY IMAGE

1.1.1. Building a custom devfile registry
1.1.2. Building a custom plug-in registry
1.1.3. Deploying the registries

1.1.3.1. Deploying registries in OpenShift
1.1.3.2. Deploying registries in OpenShift

1.2. INCLUDING THE PLUG-IN BINARIES IN THE REGISTRY IMAGE
1.3. EDITING A DEVFILE AND PLUG-IN AT RUNTIME

1.3.1. Adding a plug-in at runtime
1.3.2. Adding a devfile at runtime

CHAPTER 2. RETRIEVING CODEREADY WORKSPACES LOGS
2.1. VIEWING OPENSHIFT EVENTS
2.2. VIEWING CODEREADY WORKSPACES SERVER LOGS

2.2.1. Viewing the CodeReady Workspaces server logs in the web console
2.2.2. Viewing the CodeReady Workspaces server logs on the command line

2.3. VIEWING EXTERNAL SERVICE LOGS
2.3.1. Viewing Keycloak logs

2.3.1.1. Viewing the Keycloak server logs
2.3.1.2. Viewing the Keycloak client logs on Firefox
2.3.1.3. Viewing the Keycloak client logs on Google Chrome

2.3.2. Viewing the PostgreSQL server logs
2.4. VIEWING WORKSPACES LOGS

2.4.1. Viewing Che-Theia IDE logs
2.4.1.1. Viewing Che-Theia IDE logs on the command line
2.4.1.2. Viewing Che-Theia IDE logs in the web console

2.4.2. Viewing logs from language servers and debug adapters
2.4.2.1. Checking important logs
2.4.2.2. Detecting memory problems
2.4.2.3. Logging the client-server traffic for debug adapters
2.4.2.4. Viewing logs for Python
2.4.2.5. Viewing logs for Go

2.4.2.5.1. Finding the gopath
2.4.2.5.2. Viewing the Debug Console log for Go
2.4.2.5.3. Viewing the Go logs output in the Output panel

2.4.2.6. Viewing logs for the NodeDebug NodeDebug2 adapter
2.4.2.7. Viewing logs for Typescript

2.4.2.7.1. Enabling the label switched protocol (LSP) tracing
2.4.2.7.2. Viewing the Typescript language server log
2.4.2.7.3. Viewing the Typescript logs output in the Output panel

2.4.2.8. Viewing logs for Java
2.4.2.8.1. Verifying the state of the Eclipse JDT Language Server
2.4.2.8.2. Verifying the Eclipse JDT Language Server features
2.4.2.8.3. Viewing the Java language server log
2.4.2.8.4. Logging the Java language server protocol (LSP) messages

2.4.2.9. Viewing logs for Intelephense
2.4.2.9.1. Logging the Intelephense client-server communication
2.4.2.9.2. Viewing Intelephense events in the Output panel

2.4.2.10. Viewing logs for PHP-Debug
2.4.2.11. Viewing logs for XML

5
5
5
6
7
8

10
11

12
12
12

14
14
14
15
17
17
17
17
18
18
19

20
20
20
21
22
22
23
24
24
25
25
25
26
26
26
26
27
27
27
27
28
28
28
28
28
29
29
30

Table of Contents

1

. .

. .

. .

2.4.2.11.1. Verifying the state of the XML language server
2.4.2.11.2. Checking XML language server feature flags
2.4.2.11.3. Enabling XML Language Server Protocol (LSP) tracing
2.4.2.11.4. Viewing the XML language server log

2.4.2.12. Viewing logs for YAML
2.4.2.12.1. Verifying the state of the YAML language server
2.4.2.12.2. Checking the YAML language server feature flags
2.4.2.12.3. Enabling YAML Language Server Protocol (LSP) tracing

2.4.2.13. Viewing logs for Dotnet with Omnisharp-Theia plug-in
2.4.2.13.1. Omnisharp-Theia plug-in
2.4.2.13.2. Verifying the state of the Omnisharp-Theia plug-in language server
2.4.2.13.3. Checking Omnisharp Che-Theia plug-in language server features
2.4.2.13.4. Viewing Omnisharp-Theia plug-in logs in the Output panel

2.4.2.14. Viewing logs for Dotnet with NetcoredebugOutput plug-in
2.4.2.14.1. NetcoredebugOutput plug-in
2.4.2.14.2. Verifying the state of the NetcoredebugOutput plug-in
2.4.2.14.3. Viewing NetcoredebugOutput plug-in logs in the Output panel

2.4.2.15. Viewing logs for Camel
2.4.2.15.1. Verifying the state of the Camel language server
2.4.2.15.2. Viewing Camel logs in the Output panel

2.5. VIEWING THE PLUG-IN BROKER LOGS

CHAPTER 3. MONITORING CODEREADY WORKSPACES
3.1. ENABLING CODEREADY WORKSPACES METRICS COLLECTIONS
3.2. COLLECTING CODEREADY WORKSPACES METRICS WITH PROMETHEUS

3.2.1. Prometheus terminology
3.2.2. Configuring Prometheus

3.3. VIEWING CODEREADY WORKSPACES METRICS ON GRAFANA DASHBOARDS
3.3.1. Configuring and deploying Grafana
3.3.2. Grafana dashboards overview

3.3.2.1. CodeReady Workspaces server dashboard
3.3.2.2. CodeReady Workspaces server JVM dashboard

3.4. DEVELOPING GRAFANA DASHBOARDS
3.5. EXTENDING CODEREADY WORKSPACES MONITORING METRICS

CHAPTER 4. TRACING CODEREADY WORKSPACES
4.1. TRACING API
4.2. TRACING BACKEND
4.3. ENABLING CODEREADY WORKSPACES METRICS COLLECTIONS
4.4. VIEWING CODEREADY WORKSPACES TRACES IN JAEGER UI
4.5. CODEREADY WORKSPACES TRACING CODEBASE OVERVIEW AND EXTENSION GUIDE

4.5.1. Tagging

CHAPTER 5. SECURING CODEREADY WORKSPACES
5.1. AUTHENTICATING USERS

5.1.1. Authenticating to the CodeReady Workspaces server
5.1.1.1. Authenticating to the CodeReady Workspaces server using OpenID

5.1.1.1.1. Obtaining the token from credentials through Keycloak
5.1.1.1.2. Obtaining the token from the OpenShift token through Keycloak

5.1.1.2. Authenticating to the CodeReady Workspaces server using other authentication implementations
5.1.1.3. Authenticating to the CodeReady Workspaces server using OAuth
5.1.1.4. Using Swagger or REST clients to execute queries

5.1.2. Authenticating in a workspace
5.1.2.1. Creating secure servers

30
30
31
31
31
31
32
32
33
33
33
33
33
33
33
34
34
34
34
35
35

37
37
38
38
38
39
39
39
39
46
48
49

51
51
51
51
52
53
53

54
54
54
54
55
56
57
57
58
58
59

Red Hat CodeReady Workspaces 2.0 Administration Guide

2

. .

5.1.2.2. Workspace JWT token
5.1.2.3. Machine token validation

5.2. AUTHORIZING USERS
5.2.1. workspace permissions
5.2.2. CodeReady Workspaces organization permissions
5.2.3. CodeReady Workspaces system permissions
5.2.4. manageSystem permission
5.2.5. monitorSystem permission
5.2.6. Listing CodeReady Workspaces permissions
5.2.7. Assigning CodeReady Workspaces permissions
5.2.8. Sharing CodeReady Workspaces permissions

CHAPTER 6. REMOVING USER DATA

59
60
60
60
61
61

62
63
63
64
64

65

Table of Contents

3

Red Hat CodeReady Workspaces 2.0 Administration Guide

4

CHAPTER 1. CUSTOMIZING THE DEVFILE AND PLUG-IN
REGISTRIES

CodeReady Workspaces 2.0 introduces two registries: the plug-in registry and the devfile registry. They
are static websites where the metadata of CodeReady Workspaces plug-ins and CodeReady
Workspaces devfiles is published.

The plug-in registry makes it possible to share a plug-in definition across all the users of the same
instance of CodeReady Workspaces. Only plug-ins that are published in a registry can be used in a
devfile.

The devfile registry holds the definitions of the CodeReady Workspaces stacks. These are available on
the CodeReady Workspaces user dashboard when selecting Create Workspace. It contains the list of
CodeReady Workspaces technological stack samples with example projects.

The devfile and plug-in registries run in two separate pods and are deployed when the CodeReady
Workspaces server is deployed (that is the default behavior of the Helm chart or the CodeReady
Workspaces Operator). The metadata of the plug-ins and devfiles are versioned on GitHub and follow
the CodeReady Workspaces server life cycle.

In this document, the following two ways to customize the default registries that are deployed with
CodeReady Workspaces (to modify the plug-ins or devfile metadata) are described:

1. Building a custom image of the registries

2. Running the default images but modifying them at runtime

1.1. BUILDING AND RUNNING A CUSTOM REGISTRY IMAGE

This section describes the building of registries and updating a running CodeReady Workspaces server
to point to the registries.

1.1.1. Building a custom devfile registry

This section describes how to build a custom devfiles registry. Following operations are covered:

Getting a copy of the source code necessary to build a devfiles registry.

Adding a new devfile.

Building the devfiles registry.

Procedure

1. Clone the devfile registry repository:

$ git clone git@github.com:redhat-developer/codeready-workspaces.git
$ cd codeready-workspaces/dependencies/che-devfile-registry

2. In the ./che-devfile-registry/devfiles/ directory, create a subdirectory <devfile-name>/ and add
the devfile.yaml and meta.yaml files.

File organization for a devfile

CHAPTER 1. CUSTOMIZING THE DEVFILE AND PLUG-IN REGISTRIES

5

./che-devfile-registry/devfiles/
└── <devfile-name>
 ├── devfile.yaml
 └── meta.yaml

3. Add valid content in the devfile.yaml file. For a detailed description of the devfile format, see
the Making a workspace portable using a Devfile section.

4. Ensure that the meta.yaml file conforms to the following structure:

Table 1.1. Parameters for a devfile meta.yaml

Attribute Description

description Description as it appears on the user dashboard.

displayName Name as it appears on the user dashboard.

globalMemoryLimi
t

The sum of the expected memory consumed by all the components
launched by the devfile. This number will be visible on the user dashboard.
It is informative and is not taken into account by the CodeReady
Workspaces server.

icon Link to an .svg file that is displayed on the user dashboard.

tags List of tags. Tags usually include the tools included in the stack.

Example devfile meta.yaml

5. Build the containers for the custom devfile registry:

$ docker build -t my-devfile-registry .

1.1.2. Building a custom plug-in registry

This section describes how to build a custom plug-in registry. Following operations are covered:

Getting a copy of the source code necessary to build a custom plug-in registry.

Adding a new plug-in.

Building the custom plug-in registry.

Procedure

displayName: Rust
description: Rust Stack with Rust 1.39
tags: ["Rust"]
icon: https://www.eclipse.org/che/images/logo-eclipseche.svg
globalMemoryLimit: 1686Mi

Red Hat CodeReady Workspaces 2.0 Administration Guide

6

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/end-user_guide/workspaces-overview#making-a-workspace-portable-using-a-devfile

1. Clone the plug-in registry repository:

$ git clone git@github.com:redhat-developer/codeready-workspaces.git
$ cd codeready-workspaces/dependencies/che-plugin-registry

2. In the ./che-plugin-registry/v3/plugins/ directory, create new directories <publisher>/<plugin-
name>/<plugin-version>/ and a meta.yaml file in the last directory.

File organization for a plugin

./che-plugin-registry/v3/plugins/
├── <publisher>
│ └── <plugin-name>
│ ├── <plugin-version>
│ │ └── meta.yaml
│ └── latest.txt

3. Add valid content to the meta.yaml file. See the “Using a Visual Studio Code extension in
CodeReady Workspaces” section or the README.md file in the eclipse/che-plugin-registry
repository for a detailed description of the meta.yaml file format.

4. Create a file named latest.txt with content the name of the latest <plugin-version> directory.

EXAMPLE

$ tree che-plugin-registry/v3/plugins/redhat/java/
che-plugin-registry/v3/plugins/redhat/java/
├── 0.38.0
│ └── meta.yaml
├── 0.43.0
│ └── meta.yaml
├── 0.45.0
│ └── meta.yaml
├── 0.46.0
│ └── meta.yaml
├── 0.50.0
│ └── meta.yaml
└── latest.txt
$ cat che-plugin-registry/v3/plugins/redhat/java/latest.txt
0.50.0

5. Build the containers for the custom plug-in registry:

$ docker build -t my-devfile-registry .

1.1.3. Deploying the registries

Prerequisites

The my-plug-in-registry and my-devfile-registry images used in this section are built using the docker
command. This section assumes that these images are available on the OpenShift cluster where
CodeReady Workspaces is deployed.

This is true on Minikube, for example, if before running the docker build commands, the user executed

CHAPTER 1. CUSTOMIZING THE DEVFILE AND PLUG-IN REGISTRIES

7

1

2

1

2

This is true on Minikube, for example, if before running the docker build commands, the user executed
the eval $\{minikube docker-env} command (or, the eval $\{minishift docker-env} command for
Minishift).

Otherwise, these images can be pushed to a container registry (public, such as quay.io, or the
DockerHub, or a private registry).

1.1.3.1. Deploying registries in OpenShift

Procedure

A Helm chart for the plug-in registry is available in the /kubernetes/che-plugin-registry/ directory of
the GitHub repository.

1. To deploy the plug-in registry using the Helm chart, run the following command:

NAMESPACE=<namespace-name> 1
DOMAIN=<kubernetes-cluster-domain> 2
IMAGE="my-plug-in-registry"
helm upgrade --install che-plugin-registry \
 --debug \
 --namespace $\{NAMESPACE} \
 --set global.ingressDomain=$\{DOMAIN} \
 --set chePluginRegistryImage=$\{IMAGE} \
 --set chePluginRegistryImagePullPolicy="IfNotPresent" \
 ./kubernetes/che-plugin-registry/

The default CodeReady Workspaces namespace is workspaces.

On Minikube, use $(minikube ip).mycluster.mycompany.com

2. The devfile registry also has a Helm chart in the deploy/kubernetes/che-devfile-registry/
directory of the GitHub repository. To deploy it, run the command:

NAMESPACE=<namespace-name> 1
DOMAIN=<kubernetes-cluster-domain> 2
IMAGE="my-devfile-registry"
helm upgrade --install che-devfile-registry \
 --debug \
 --namespace $\{NAMESPACE} \
 --set global.ingressDomain=$\{DOMAIN} \
 --set cheDevfileRegistryImage=$\{IMAGE} \
 --set cheDevfileRegistryImagePullPolicy="IfNotPresent" \
 ./deploy/kubernetes/che-devfile-registry/

The default CodeReady Workspaces namespace is workspaces.

On Minikube, use $(minikube ip).mycluster.mycompany.com

3. The Helm chart creates a pod, a service, and an Ingress. To get them, use app=che-plugin-
registry (or app=che-plugin-registry for the devfile registry).

$ oc get -o custom-columns=TYPE:.kind,NAME:.metadata.name \

Red Hat CodeReady Workspaces 2.0 Administration Guide

8

 -l app=che-plugin-registry pod,svc,ingress
TYPE NAME
Pod che-plugin-registry-5c7cd8d5c9-zlqlz
Service che-plugin-registry
Ingress che-plugin-registry

4. To verify that the new plug-in is correctly published to the plug-in registry, make a request to
the registry path /v3/plugins/index.json (or /devfiles/index.json for the devfile registry).

$ URL=$(oc get -o 'custom-columns=URL:.spec.rules[0].host' \
 -l app=che-plugin-registry ingress --no-headers)
$ INDEX_JSON=$(curl -sSL http://$\{URL}/v3/plugins/index.json)
$ echo $\{INDEX_JSON} | grep -A 4 -B 5 "\"name\":\"my-plug-in\""
,\{
 "id": "my-org/my-plug-in/1.0.0",
 "displayName":"This is my first {prod-short} plug-in",
 "version":"1.0.0",
 "type":"VS Code extension",
 "name":"my-plug-in",
 "description":"This plugins shows that we are able to add plugins to the registry...",
 "publisher":"my-org",
 "links": \{"self":"/v3/plugins/my-org/my-plug-in/1.0.0" }
}
--
--
,\{
 "id": "my-org/my-plug-in/latest",
 "displayName":"This is my first {prod-short} plug-in",
 "version":"latest",
 "type":"VS Code extension",
 "name":"my-plug-in",
 "description":"This plugins shows that we are able to add plugins to the registry...",
 "publisher":"my-org",
 "links": \{"self":"/v3/plugins/my-org/my-plug-in/latest" }
}

5. Verify that the CodeReady Workspaces server points to the URL of the registry. To do this,
compare the value of the CHE_WORKSPACE_PLUGIN__REGISTRY__URL parameter in the
workspaces ConfigMap (or CHE_WORKSPACE_DEVFILE__REGISTRY__URL for the
devfile registry):

$ oc get \
 -o "custom-columns=URL:.data['CHE_WORKSPACE_PLUGIN__REGISTRY__URL']" \
 --no-headers cm/che
URL
http://che-plugin-registry-che.192.168.99.100.mycluster.mycompany.com/v3

with the URL of the Ingress:

$ oc get -o 'custom-columns=URL:.spec.rules[0].host' \
 -l app=che-plugin-registry ingress --no-headers
che-plugin-registry-che.192.168.99.100.mycluster.mycompany.com

6. If they do not match, update the ConfigMap and restart the CodeReady Workspaces server.

CHAPTER 1. CUSTOMIZING THE DEVFILE AND PLUG-IN REGISTRIES

9

1

$ oc edit cm/che
(...)
$ oc scale --replicas=0 deployment/che
$ oc scale --replicas=1 deployment/che

When the new registries are deployed and the CodeReady Workspaces server is configured to
use them, the new plug-ins are available in the Plugin view of a workspace.

The new stacks are displayed in the New Workspace tab of the user dashboard.

1.1.3.2. Deploying registries in OpenShift

Procedure

An OpenShift template to deploy the plug-in registry is available in the openshift/ directory of the
GitHub repository.

1. To deploy the plug-in registry using the OpenShift template, run the following command:

NAMESPACE=<namespace-name> 1
IMAGE_NAME="my-plug-in-registry"
IMAGE_TAG="latest"
oc new-app -f openshift/che-plugin-registry.yml \
 -n "$\{NAMESPACE}" \
 -p IMAGE="$\{IMAGE_NAME}" \
 -p IMAGE_TAG="$\{IMAGE_TAG}" \
 -p PULL_POLICY="IfNotPresent"

The default CodeReady Workspaces namespace is workspaces.

2. The devfile registry has an OpenShift template in the deploy/openshift/ directory of the
GitHub repository. To deploy it, run the command:

NAMESPACE=<namespace-name> 1
IMAGE_NAME="my-devfile-registry"
IMAGE_TAG="latest"
oc new-app -f openshift/che-devfile-registry.yml \
 -n "$\{NAMESPACE}" \
 -p IMAGE="$\{IMAGE_NAME}" \
 -p IMAGE_TAG="$\{IMAGE_TAG}" \
 -p PULL_POLICY="IfNotPresent"

Red Hat CodeReady Workspaces 2.0 Administration Guide

10

1 The default CodeReady Workspaces namespace is workspaces.

3. Check if the registries are deployed successfully on OpenShift. The steps to check are similar to
the OpenShift steps. For details, see the Section 1.1.3.1, “Deploying registries in OpenShift”
section. The only difference is that, on OpenShift, Ingresses are replaced with routes.

1.2. INCLUDING THE PLUG-IN BINARIES IN THE REGISTRY IMAGE

The plug-in registry only hosts CodeReady Workspaces plug-in metadata. The binaries are usually
referred through a link in the meta.yaml file. In some cases, such as offline environments, it may be
necessary to make the binaries available inside the registry image.

This section describes how to modify a plug-in meta.yaml file to point to a local file inside the container
and rebuild a new registry that contains the modified plug-in meta.yaml file and the binary. In the
following example, the Java plug-in that refers to two remote VS Code extensions binaries is
considered.

Procedure

1. Download the binaries locally.

$ ORG=redhat
$ NAME=java11
$ VERSION=latest
$ URL_VS_CODE_EXT1="https://github.com/microsoft/vscode-java-
debug/releases/download/0.19.0/vscode-java-debug-
0.19.0.vsix[_https://github.com/microsoft/vscode-java-
debug/releases/download/0.19.0/vscode-java-debug-0.19.0.vsix_]"
$ URL_VS_CODE_EXT2="https://download.jboss.org/jbosstools/static/jdt.ls/stable/java-
0.46.0-1549.vsix[_https://download.jboss.org/jbosstools/static/jdt.ls/stable/java-0.46.0-
1549.vsix_]"
$ VS_CODE_EXT1=https://github.com/microsoft/vscode-java-
debug/releases/download/0.19.0/vscode-java-debug-0.19.0.vsix[_vscode-java-debug-
0.19.0.vsix_]
$ VS_CODE_EXT2=https://download.jboss.org/jbosstools/static/jdt.ls/stable/java-0.46.0-
1549.vsix[_java-0.46.0-1549.vsix_]
$ curl -sSL -o ./che-plugin-registry/v3/plugins/$\{ORG}/$\{NAME}/$\{VERSION}/$\
{VS_CODE_EXT1} \
 $\{URL_VS_CODE_EXT1}
$ curl -sSL -o ./che-plugin-registry/v3/plugins/$\{ORG}/$\{NAME}/$\{VERSION}/$\
{VS_CODE_EXT2} \
 $\{URL_VS_CODE_EXT2}

1. Retrieve the plug-in-registry URL.

FIXME

2. Update the URLs in the meta.yaml file, so that they point to the VS Code extension binaries
that are saved in the registry container:

$ NEW_URL_VS_CODE_EXT1=http://$\{PLUGIN_REG_URL}/v3/plugins/$\{ORG}/$\
{NAME}/$\{VERSION}/$\{VS_CODE_EXT1}
$ NEW_URL_VS_CODE_EXT2=http://$\{PLUGIN_REG_URL}/v3/plugins/$\{ORG}/$\
{NAME}/$\{VERSION}/$\{VS_CODE_EXT2}

CHAPTER 1. CUSTOMIZING THE DEVFILE AND PLUG-IN REGISTRIES

11

$ sed -i -e 's/$\{URL_PLUGIN1}/$\{NEW_URL_VS_CODE_EXT1}/g' \
 ./che-plugin-registry/v3/plugins/$\{ORG}/$\{NAME}/$\{VERSION}/meta.yaml
$ sed -i -e 's/$\{URL_PLUGIN2}/$\{NEW_URL_VS_CODE_EXT2}/g' \
 ./che-plugin-registry/v3/plugins/$\{ORG}/$\{NAME}/$\{VERSION}/meta.yaml

3. Build and deploy the plug-in registry using the instructions in the Building and running a custom
registry image section.

1.3. EDITING A DEVFILE AND PLUG-IN AT RUNTIME

An alternative to building a custom registry image is to:

1. Start a registry

2. Modify its content at runtime

This approach is simpler and faster. But the modifications are lost as soon as the container is deleted.

1.3.1. Adding a plug-in at runtime

Procedure

To add a plug-in:

1. Get the name of the OpenShift pod that hosts the plug-in registry container. To do this, filter
the app=che-plugin-registry label:

$ PLUGIN_REG_POD=$(oc get -o custom-columns=NAME:.metadata.name \
 --no-headers -l app=che-plugin-registry pod)

2. Create the new plug-in directory in the plug-in registry container, if it does not exist:

$ ORG="my-org"
$ PLUGIN="my-plug-in"
$ VERSION="1.0.1"
$ oc exec ${PLUGIN_REG_POD} -i -t -- \
 mkdir -p /var/www/html/v3/plugins/${ORG}/${PLUGIN}/${VERSION}

3. Copy the meta.yaml file in the container:

LOCAL_META="${PWD}/meta.yaml"
$ oc cp "${LOCAL_META}" \
 ${PLUGIN_REG_POD}:/var/www/html/v3/plugins/${ORG}/${PLUGIN}/${VERSION}

4. Update the index.json file of the registry:

$ oc exec ${PLUGIN_REG_POD} -i -t -- \
 /var/www/html/index_v2.sh v3 > /var/www/html/v3/plugins/index.json

5. The new plug-in can now be used from a CodeReady Workspaces instance.

1.3.2. Adding a devfile at runtime

Red Hat CodeReady Workspaces 2.0 Administration Guide

12

Procedure

To add a devfile:

1. Get the name of the OpenShift pod that hosts the devfile registry container. To do this, filter
the app=che-devfile-registry label:

$ DEVFILE_REG_POD=$(oc get -o custom-columns=NAME:.metadata.name \
 --no-headers -l app=che-devfile-registry pod)

2. Create the new devfile directory in the devfile registry container, if it does not exist.

$ STACK="my-stack"
$ oc exec $\{DEVFILE_REG_POD} -i -t -- \
 mkdir -p /var/www/html/devfiles/$\{STACK}

3. Copy the devfile.yaml file and the meta.yaml file to the container.

$ LOCAL_META="$(PWD)/meta.yaml"
$ LOCAL_DEVFILE="$(PWD)/devfile.yaml"
$ oc cp "$\{LOCAL_META}" \
 $\{DEVFILE_REG_POD}:/var/www/html/devfiles/$\{STACK}
$ oc cp "$\{LOCAL_DEVFILE}" \
 $\{DEVFILE_REG_POD}:/var/www/html/devfiles/$\{STACK}

4. Update the index.json file of the registry.

$ oc exec $\{DEVFILE_REG_POD} -i -t -- \
 /var/www/html/index.sh > /var/www/html/devfiles/index.json

CHAPTER 1. CUSTOMIZING THE DEVFILE AND PLUG-IN REGISTRIES

13

CHAPTER 2. RETRIEVING CODEREADY WORKSPACES LOGS
This is a catalog of the location and instructions to retrieve application logs (for administrators and for
users).

2.1. VIEWING OPENSHIFT EVENTS

This section describes how to view the Kubenertes events.

Prerequisites

A running OpenShift Web Console.

Procedure

1. In the OpenShift Web Console, click the Monitoring tab in the left panel.

2. To view the list of all events, click the View Details button in the top-right corner.

3. The details of the events will be displayed.

Additional resources

For a list of OpenShift events, see Comprehensive List of Events in OpenShift documentation .

2.2. VIEWING CODEREADY WORKSPACES SERVER LOGS

Red Hat CodeReady Workspaces 2.0 Administration Guide

14

https://docs.openshift.com/container-platform/3.6/dev_guide/events.html#events-reference

This section describes how to view the CodeReady Workspaces server logs on the console and on the
command line.

2.2.1. Viewing the CodeReady Workspaces server logs in the web console

This section describes how to view the CodeReady Workspaces server logs in the OpenShift web
console.

Procedure

1. In the OpenShift Web Console, click Applications > Deployments.

2. In the Filter by label search field, type workspaces to see the CodeReady Workspaces server
log.

3. Click the View log link for the active CodeReady Workspaces deployment.

CHAPTER 2. RETRIEVING CODEREADY WORKSPACES LOGS

15

4. The following log is displayed.

5. Search the log for CodeReady Workspaces-server related diagnostics, error information, and
information reported by other server components.

Red Hat CodeReady Workspaces 2.0 Administration Guide

16

2.2.2. Viewing the CodeReady Workspaces server logs on the command line

This section describes how to view the CodeReady Workspaces server logs on the command line.

Procedure

1. In the terminal, run the following command to get the pods:

$ oc get pods

EXAMPLE

$ oc get pods
NAME READY STATUS RESTARTS AGE
che-11-j4w2b 1/1 Running 0 3m

2. To get the logs for a deployment, run the following command:

$ oc logs <name-of-pod>

EXAMPLE

$ oc logs che-11-j4w2b

2.3. VIEWING EXTERNAL SERVICE LOGS

This section describes how the view the logs from external services related to CodeReady Workspaces
server.

2.3.1. Viewing Keycloak logs

The Keycloak OpenID provider consists of two parts: Server and IDE. It writes its diagnostics or error
information to several logs.

2.3.1.1. Viewing the Keycloak server logs

This section describes how to view the Keycloak OpenID provider server logs.

Procedure

1. In the OpenShift Web Console, click Deployments.

2. In the Filter by label search field, type keycloak to see the Keycloak logs.

3. In the Deployment Configs section, click on the keycloak link to open it.

4. In the History tab, click the View log link for the active Keycloak deployment.

5. The Keycloak logs are displayed.

6. To view the Keycloak IDE server diagnostics or error related messages, search for keycloak in

CHAPTER 2. RETRIEVING CODEREADY WORKSPACES LOGS

17

6. To view the Keycloak IDE server diagnostics or error related messages, search for keycloak in
the log.

Additional resources

See the Section 2.2, “Viewing CodeReady Workspaces server logs” for diagnostics and error
messages related to the Keycloak IDE Server.

2.3.1.2. Viewing the Keycloak client logs on Firefox

This section describes how to view the Keycloak IDE client diagnostics or error information in the Firefox
WebConsole.

Procedure

Click Menu > WebDeveloper > WebConsole.

2.3.1.3. Viewing the Keycloak client logs on Google Chrome

This section describes how to view the Keycloak IDE client diagnostics or error information in the Google
Chrome Console tab.

Procedure

1. Click on Menu > More Tools > Developer Tools.

2. Click on the Console tab.

Red Hat CodeReady Workspaces 2.0 Administration Guide

18

2.3.2. Viewing the PostgreSQL server logs

This section describes how to view the PostgreSQL server logs.

Procedure

1. In the OpenShift Web Console, click Deployments.

2. In the Find by label search field, type postgres to see the PostgreSQL logs. Click postgres
deployment to open it.

3. Click the View log link for the active PostgreSQL deployment.

4. The logs are displayed.

5. To see PostgreSQL server diagnostics or error related messages, search postgresql through
the log.

CHAPTER 2. RETRIEVING CODEREADY WORKSPACES LOGS

19

Additional resources

Some diagnostics or error messages related to the PostgreSQL server can be found in the
active CodeReady Workspaces deployment log. For details to access the active CodeReady
Workspaces deployments logs, see the Section 2.2, “Viewing CodeReady Workspaces server
logs” section.

2.4. VIEWING WORKSPACES LOGS

This section describes how to view workspaces logs.

2.4.1. Viewing Che-Theia IDE logs

This section describes how to view Che-Theia IDE logs, on the command line and in the OpenShift web
console.

2.4.1.1. Viewing Che-Theia IDE logs on the command line

This section describes how to view Che-Theia IDE logs on the command line.

Procedure

1. Run the following command to get the list of all the pods:

$ oc get pods

EXAMPLE

Red Hat CodeReady Workspaces 2.0 Administration Guide

20

EXAMPLE

$ oc get pods
NAME READY STATUS RESTARTS AGE
che-9-xz6g8 1/1 Running 1 15h
workspace0zqb2ew3py4srthh.go-cli-549cdcf69-9n4w2 4/4 Running 0 1h

2. Run the following command to get the list of all the containers in the particular pod:

$ oc get pods <name-of-pod> -o

EXAMPLE

$ oc get pods workspace0zqb2ew3py4srthh.go-cli-549cdcf69-9n4w2 -o
jsonpath='\{.spec.containers[*].name}'
> go-cli che-machine-exechr7 theia-idexzb vscode-gox3r

3. Get logs from the theia/ide container:

$ oc logs -f <name-of-container> -c

EXAMPLE

$ oc logs -f workspace0zqb2ew3py4srthh.go-cli-549cdcf69-9n4w2 -c
theia-idexzb

2.4.1.2. Viewing Che-Theia IDE logs in the web console

This section describes how to view Che-Theia IDE logs in the OpenShift web console.

Procedure

To view Che-Theia IDE logs on the console:

1. In the OpenShift Web Console, click Overview.

2. Search for the particular deployment, click on the context menu on the right side of the
deployment, and click View Logs.

CHAPTER 2. RETRIEVING CODEREADY WORKSPACES LOGS

21

3. In the drop-down list, click theia-ide.

2.4.2. Viewing logs from language servers and debug adapters

2.4.2.1. Checking important logs

This section describes how to check important logs.

Procedure

1. In the OpenShift web console, click Applications → Pods to see a list of all the active

Red Hat CodeReady Workspaces 2.0 Administration Guide

22

1. In the OpenShift web console, click Applications → Pods to see a list of all the active
workspaces.

2. Click on the name of the running pod where the workspace is running. The pod screen contains
the list of all containers with additional information.

3. Choose a container and click on the container name.

TIP

The most important logs are the theia-ide container and the plug-ins container logs.

4. On the container screen, navigate to the Logs section.

EXAMPLE

The following is an output log of the sidecar container running the Java plug-in.

2.4.2.2. Detecting memory problems

This section describes how to detect memory problems related to a plug-in running out of memory. The
following are the two most common problems related to a plug-in running out of memory:

The plug-in container runs out of memory

This can happen during plug-in initialization when the container does not have enough RAM to
execute the entrypoint of the image. The user can detect this in the logs of the plug-in container. In
this case, the logs should contain OOMKilled, which implies that the processes in the container
requested more memory than is available in the container.

A process inside the container runs out of memory without the container noticing this

For example, the Java language server (Eclipse JDT Language Server, started by the vscode-java
extension) throws an OutOfMemoryException. This can happen any time after the container is
initialized, for example, when a plug-in starts a language server or when a process runs out of memory
because of the size of the project it has to handle.

To detect this problem, check the logs of the main process, which should run in the container. For

CHAPTER 2. RETRIEVING CODEREADY WORKSPACES LOGS

23

To detect this problem, check the logs of the main process, which should run in the container. For
example, to check the log file of Eclipse JDT Language Server for details, see the relevant plug-in-
specific sections.

2.4.2.3. Logging the client-server traffic for debug adapters

This section describes how to log the exchange between Che-Theia and a debug adapter into the
Output view.

Prerequisites

A debug session must be started for the Debug adapters option to appear in the list.

Procedure

1. Click File → Settings and then open Preferences.

2. Expand the Debug section in the Preferences view.

3. Set the trace preference value to true (default is false).

4. All the communication events are now logged.

5. To watch these events, click View → Output and select Debug adapters from the drop-down
list at the top-right corner of the Output view.

2.4.2.4. Viewing logs for Python

This section describes how to view logs for the Python language server.

Procedure

Navigate to the Output view and select Python in the drop-down list.

Red Hat CodeReady Workspaces 2.0 Administration Guide

24

2.4.2.5. Viewing logs for Go

This section describes how to view logs for the Go language server.

2.4.2.5.1. Finding the gopath

This section describes how to find where the GOPATH variable points to.

Procedure

Execute the Go: Current GOPATH command.

2.4.2.5.2. Viewing the Debug Console log for Go

This section describes how to view the log output from the Go debugger.

Procedure

1. Set the showLog attribute to true in the debug configuration.

2. To enable debugging output for a component, add the package to the comma-separated list
value of the logOutput attribute:

{
 "version": "0.2.0",
 "configurations": [
 {
 "type": "go",
 "showLog": true

 }
]
}

{
 "version": "0.2.0",
 "configurations": [
 {
 "type": "go",

CHAPTER 2. RETRIEVING CODEREADY WORKSPACES LOGS

25

3. The debug console prints the additional information in the debug console.

2.4.2.5.3. Viewing the Go logs output in the Output panel

This section describes how to view the Go logs output in the Output panel.

Procedure

1. Navigate to the Output view.

2. Select Go in the drop-down list.

2.4.2.6. Viewing logs for the NodeDebug NodeDebug2 adapter

NOTE

There are no specific diagnostics other than the general ones.

2.4.2.7. Viewing logs for Typescript

2.4.2.7.1. Enabling the label switched protocol (LSP) tracing

Procedure

1. To enable the tracing of messages sent to the Typescript (TS) server, in the Preferences view,
set the typescript.tsserver.trace attribute to verbose. Use this to diagnose the TS server
issues.

2. To enable logging of the TS server to a file, set the typescript.tsserver.log attribute to

 "showLog": true,
 "logOutput": "debugger,rpc,gdbwire,lldbout,debuglineerr"

 }
]
}

Red Hat CodeReady Workspaces 2.0 Administration Guide

26

2. To enable logging of the TS server to a file, set the typescript.tsserver.log attribute to
verbose. Use this log to diagnose the TS server issues. The log contains the file paths.

2.4.2.7.2. Viewing the Typescript language server log

This section describes how to view the Typescript language server log.

Procedure

1. To get the path to the log file, see the Typescript Output console:

2. To open log file, use the Open TS Server log command.

2.4.2.7.3. Viewing the Typescript logs output in the Output panel

This section describes how to view the Typescript logs output in the Output panel.

Procedure

1. Navigate to the Output view

2. Select TypeScript in the drop-down list.

2.4.2.8. Viewing logs for Java

Other than the general diagnostics, there are Language Support for Java (Eclipse JDT Language
Server) plug-in actions that the user can perform.

2.4.2.8.1. Verifying the state of the Eclipse JDT Language Server

Procedure

Check if the container running the Eclipse JDT Language Server plug-in is running the Eclipse JDT
Language Server main process.

1. Open a terminal in the container that is running the Eclipse JDT Language Server plug-in (an
example name for the container: vscode-javaxxx).

2. Inside the terminal, run the ps aux | grep jdt command to check if the Eclipse JDT Language
Server process is running in the container. If the process is running, the output should be:

usr/lib/jvm/default-jvm/bin/java --add-modules=ALL-SYSTEM --add-opens java.base/java.util

This message also shows the VSCode java extension used. If it is not running, the language

CHAPTER 2. RETRIEVING CODEREADY WORKSPACES LOGS

27

https://github.com/redhat-developer/vscode-java

This message also shows the VSCode java extension used. If it is not running, the language
server has not been started inside the container.

3. Check all logs described in Section 2.4.2.1, “Checking important logs”

2.4.2.8.2. Verifying the Eclipse JDT Language Server features

Procedure

If the Eclipse JDT Language Server process is running, check if the language server features are
working:

1. Open a Java file and use the hover or autocomplete functionality. In case of an erroneous file,
the user sees Java in the Outline view or in the Problems view.

2.4.2.8.3. Viewing the Java language server log

Procedure

The Eclipse JDT Language Server has its own workspace where it logs errors, information about
executed commands, and events.

1. To open this log file, open a terminal in the container that is running the Eclipse JDT Language
Server plug-in. You can also view the log file by running the Java: Open Java Language Server
log file command.

2. Run cat <PATH_TO_LOG_FILE> where PATH_TO_LOG_FILE is
/home/theia/.theia/workspace-
storage/<workspace_name>/redhat.java/jdt_ws/.metadata/.log.

2.4.2.8.4. Logging the Java language server protocol (LSP) messages

Procedure

To log the LSP messages to the VS Code Output view, enable tracing by setting the java.trace.server
attribute to verbose.

Additional resources

For troubleshooting instructions, see the VS Code Java Github repository .

2.4.2.9. Viewing logs for Intelephense

2.4.2.9.1. Logging the Intelephense client-server communication

Procedure

To configure the PHP Intelephense language support to log the client-server interexchange in the
Output view:

1. Click File → Settings.

2. Open the Preferences view.

3. Expand the Intelephense section and set the trace.server.verbose preference value to
verbose to see all the communication events (the default value is off).

Red Hat CodeReady Workspaces 2.0 Administration Guide

28

https://github.com/redhat-developer/vscode-java#troubleshooting

2.4.2.9.2. Viewing Intelephense events in the Output panel

This procedure describes how to view Intelephense events in the Output panel.

Procedure

1. Click View → Output

2. Select Intelephense in the drop-down list for the Output view.

2.4.2.10. Viewing logs for PHP-Debug

This procedure describes how to configure the PHP Debug plug-in to log the PHP Debug plug-in
diagnostic messages into the Debug Console view. Configure this before the start of the debug
session.

Procedure

1. In the launch.json file, add the "log": true attribute to the selected launch configuration.

2. Start the debug session.

3. The diagnostic messages are printed into the Debug Console view along with the application
output.

CHAPTER 2. RETRIEVING CODEREADY WORKSPACES LOGS

29

2.4.2.11. Viewing logs for XML

Other than the general diagnostics, there are XML plug-in specific actions that the user can perform.

2.4.2.11.1. Verifying the state of the XML language server

Procedure

1. Open a terminal in the container named vscode-xml-<xxx>.

2. Run ps aux | grep java to verify that the XML language server has started. The output should
be:

java ***/org.eclipse.ls4xml-uber.jar`

If not, see Section 2.4.2.1, “Checking important logs” .

2.4.2.11.2. Checking XML language server feature flags

Procedure

1. Check if the features are enabled. The XML plug-in provides multiple settings that can enable
and disable features:

xml.format.enabled: Enable the formatter

xml.validation.enabled: Enable the validation

xml.documentSymbols.enabled: Enable the document symbols

2. To diagnose whether the XML language server is working, create a simple XML element, such as
<hello></hello>, and confirm that it appears in the Outline panel on the right.

3. If the document symbols do not show, ensure that the xml.documentSymbols.enabled
attribute is set to true. If it is true, and there are no symbols, the language server may not be
hooked to the editor. If there are document symbols, then the language server is connected to

Red Hat CodeReady Workspaces 2.0 Administration Guide

30

the editor.

4. Ensure that the features that the user needs, are set to true in the settings (they are set to true
by default). If any of the features are not working, or not working as expected, file an issue
against the Language Server.

2.4.2.11.3. Enabling XML Language Server Protocol (LSP) tracing

Procedure

To log LSP messages to the VS Code Output view, enable tracing by setting the xml.trace.server
attribute to verbose.

2.4.2.11.4. Viewing the XML language server log

Procedure

The log from the language server can be found in the plug-in sidecar at /home/theia/.theia/workspace-
storage/<workspace_name>/redhat.vscode-xml/lsp4xml.log.

2.4.2.12. Viewing logs for YAML

This section describes the YAML plug-in specific actions that the user can perform, in addition to the
general diagnostics ones.

2.4.2.12.1. Verifying the state of the YAML language server

This section describes how to verify the state of the YAML language server.

Procedure

Check if the container running the YAML plug-in is running the YAML language server.

1. In the editor, open a terminal in the container that is running the YAML plug-in (an example
name of the container: vscode-yaml-<xxx>).

2. In the terminal, run the ps aux | grep node command. This command searches all the node
processes running in the current container.

3. Verify that a command node **/server.js is running.

CHAPTER 2. RETRIEVING CODEREADY WORKSPACES LOGS

31

https://github.com/angelozerr/lsp4xml

The node **/server.js running in the container indicates that the language server is running. If it is
not running, the language server has not started inside the container. In this case, see
Section 2.4.2.1, “Checking important logs”.

2.4.2.12.2. Checking the YAML language server feature flags

Procedure

To check the feature flags:

1. Check if the features are enabled. The YAML plug-in provides multiple settings that can
enable and disable features, such as:

yaml.format.enable: Enables the formatter

yaml.validate: Enables validation

yaml.hover: Enables the hover function

yaml.completion: Enables the completion function

2. To check if the plug-in is working, type the simplest YAML, such as hello: world, and then
open the Outline panel on the right side of the editor.

3. Verify if there are any document symbols. If yes, the language server is connected to the
editor.

4. If any feature is not working, make sure that the settings listed above are set to true (they
are set to true by default). If a feature is not working, file an issue against the Language
Server.

2.4.2.12.3. Enabling YAML Language Server Protocol (LSP) tracing

Procedure

To log LSP messages to the VS Code Output view, enable tracing by setting the yaml.trace.server

Red Hat CodeReady Workspaces 2.0 Administration Guide

32

https://github.com/redhat-developer/yaml-language-server

To log LSP messages to the VS Code Output view, enable tracing by setting the yaml.trace.server
attribute to verbose.

2.4.2.13. Viewing logs for Dotnet with Omnisharp-Theia plug-in

2.4.2.13.1. Omnisharp-Theia plug-in

CodeReady Workspaces uses the Omnisharp-Theia plug-in as a remote plug-in. It is located at
github.com/redhat-developer/omnisharp-theia-plugin. In case of an issue, report it, or contribute
your fix in the repository.

This plug-in registers omnisharp-roslyn as a language server and provides project dependencies
and language syntax for C# applications.

The language server runs on .Net SDK 2.2.105.

2.4.2.13.2. Verifying the state of the Omnisharp-Theia plug-in language server

Procedure

To check if the container running the Omnisharp-Theia plug-in is running OmniSharp, execute the
ps aux | grep OmniSharp.exe command. If the process is running, the following is an example
output:

/tmp/theia-unpacked/redhat-developer.che-omnisharp-
plugin.0.0.1.zcpaqpczwb.omnisharp_theia_plugin.theia/server/bin/mono
/tmp/theia-unpacked/redhat-developer.che-omnisharp-
plugin.0.0.1.zcpaqpczwb.omnisharp_theia_plugin.theia/server/omnisharp/OmniSharp.exe

If the output is different, the language server has not started inside the container. Check the logs
described in Section 2.4.2.1, “Checking important logs”.

2.4.2.13.3. Checking Omnisharp Che-Theia plug-in language server features

Procedure

If the OmniSharp.exe process is running, check if the language server features are working
by opening a .cs file and trying the hover or completion features, or opening the Problems
or Outline view.

2.4.2.13.4. Viewing Omnisharp-Theia plug-in logs in the Output panel

Procedure

If Omnisharp.exe is running, it logs all information in the Output panel. To view the logs, open the
Output view and select C# from the drop-down list.

2.4.2.14. Viewing logs for Dotnet with NetcoredebugOutput plug-in

2.4.2.14.1. NetcoredebugOutput plug-in

The NetcoredebugOutput plug-in provides netcoredbg, which implements the VS Code Debug
Adapter protocol and allows users to debug .NET applications under the .NET Core runtime.

CHAPTER 2. RETRIEVING CODEREADY WORKSPACES LOGS

33

https://github.com/redhat-developer/omnisharp-theia-plugin
https://github.com/OmniSharp/omnisharp-roslyn
https://github.com/Samsung/netcoredbg

Dotnet SDK v.2.2.105 is installed in the container where the Netcoredbg plug-in is running.

2.4.2.14.2. Verifying the state of the NetcoredebugOutput plug-in

Procedure

To test the plug-in initialization:

1. Check if there is a netcoredbg debug configuration in the launch.json file. The following is
an example debug configuration:

2. To test if it exists, test the autocompletion feature within the braces of the configuration
section of the launch.json file. If you can find netcoredbg, the Che-Theia plug-in is
correctly initialized. If not, see Section 2.4.2.1, “Checking important logs”.

2.4.2.14.3. Viewing NetcoredebugOutput plug-in logs in the Output panel

This section describes how to view NetcoredebugOutput plug-in logs in the Output panel.

Procedure

Open the Debug console.

2.4.2.15. Viewing logs for Camel

2.4.2.15.1. Verifying the state of the Camel language server

Procedure

The user can inspect the log output of the sidecar container running the Camel tooling; the Camel

{
 "type": "netcoredbg",
 "request": "launch",
 "program": "$\{workspaceFolder}/bin/Debug/<target-framework>/<project-name.dll>",
 "args": [],
 "name": ".NET Core Launch (console)",
 "stopAtEntry": false,
 "console": "internalConsole"
}

Red Hat CodeReady Workspaces 2.0 Administration Guide

34

The user can inspect the log output of the sidecar container running the Camel tooling; the Camel
tooling container is named: vscode-apache-camel<xxx>.

To verify the state of the language server:

1. Open a terminal inside the vscode-apache-camel<xxx> container.

2. Run the ps aux | grep java command. The following is an example language server process:

java -jar /tmp/vscode-unpacked/camel-tooling.vscode-apache-
camel.latest.euqhbmepxd.camel-tooling.vscode-apache-camel-
0.0.14.vsix/extension/jars/language-server.jar

3. If you cannot find it, see Section 2.4.2.1, “Checking important logs”.

2.4.2.15.2. Viewing Camel logs in the Output panel

The Camel language server is a SpringBoot application that writes its log to the $\
{java.io.tmpdir}/log-camel-lsp.out file. Typically, $\{java.io.tmpdir} points to the /tmp directory, so
the filename is /tmp/log-camel-lsp.out.

Procedure

The Camel language server logs are printed in the Output channel named Language Support for
Apache Camel.

NOTE

The output channel is created only at the first created log entry on the client side. It
may be absent when everything is going well.

2.5. VIEWING THE PLUG-IN BROKER LOGS

This section describes how to view the plug-in broker logs.

CHAPTER 2. RETRIEVING CODEREADY WORKSPACES LOGS

35

The logs from the plug-in broker are not persisted. As the Pod itself is deleted very quickly, events
will in most cases be unavailable.

Procedure

Logs are displayed to the user while the workspace is starting.

Red Hat CodeReady Workspaces 2.0 Administration Guide

36

CHAPTER 3. MONITORING CODEREADY WORKSPACES
CodeReady Workspaces can expose certain data as metrics, that can be processed by Prometheus
and Grafana stack. Prometheus is a monitoring system, that maintains the collection of metrics -
time series key-value data which can represent consumption of resources like CPU and memory,
amount of processed HTTP queries and their execution time, and CodeReady Workspaces specific
resources, such as number of users and workspaces, the start and shutdown of workspaces,
information about JsonRPC stack.

Prometheus is powered with a special query language, that allows manipulating the collected data,
and perform various binary, vector and aggregation operations with it, to help create a more
refined view on data.

While Prometheus is the central piece, responsible for scraping and storing the metrics, while
Grafana offers a front-end "facade" with tools to create a various visual representation in the form
of dashboards with various panels and graph types.

Note that this monitoring stack is not an official production-ready solution, but rather has an
introduction purpose.

Figure 3.1. The structure of CodeReady Workspaces monitoring stack

3.1. ENABLING CODEREADY WORKSPACES METRICS COLLECTIONS

Prerequisites

Installed Prometheus 2.9.1 or above. See more
https://prometheus.io/docs/introduction/first_steps/.

Installed Grafana 6.0 or above. See more at https://grafana.com/docs/installation/

Procedure

1. Set the CHE_METRICS_ENABLED=true environment variable

2. Expose the 8087 port as a service on the che-master host

CHAPTER 3. MONITORING CODEREADY WORKSPACES

37

https://prometheus.io/docs/introduction/first_steps/
https://grafana.com/docs/installation/

3. Configure Prometheus to scrape metrics from the 8087 port

4. Configure a Prometheus data source on Grafana

5. Deploy CodeReady Workspaces-specific dashboards on Grafana

3.2. COLLECTING CODEREADY WORKSPACES METRICS WITH
PROMETHEUS

Prometheus is a monitoring system that collects metrics in real time and stores them in a time
series database.

Prometheus comes with a console accessible at the 9090 port of the application pod. By default, a
template provides an existing service and a route to access it. It can be used to query and view
metrics.

3.2.1. Prometheus terminology

Prometheus offers:

counter

the simplest numerical type of metric whose value can be only increased. A typical example is
counting the amount of HTTP requests that go through the system.

gauge

numerical value that can be increased or decreased. Best suited for representing values of
objects.

histogram

a more complex metric that is suited for performing observations. Metrics are collected and
grouped in configurable buckets, which allwos to present the results, for instance, in a form of a
heatmap.

3.2.2. Configuring Prometheus

Prometheus configuration

Red Hat CodeReady Workspaces 2.0 Administration Guide

38

1

2

rate, at which a target is scraped

rate, at which recording and alerting rules are re-checked (not used in our system at the
moment)

3.3. VIEWING CODEREADY WORKSPACES METRICS ON GRAFANA
DASHBOARDS

Grafana is used for informative representation of Prometheus metrics. Providing visibility for
OpenShift, Grafana’s deployment configuration and ConfigMaps are located in the che-
monitoring.yaml configuration file.

3.3.1. Configuring and deploying Grafana

Grafana is run on port 3000 with a corresponding service and route.

Three ConfigMaps are used to configure Grafana:

grafana-datasources — configuration for Grafana datasource, a Prometheus endpoint

grafana-dashboards — configuration of Grafana dashboards and panels

grafana-dashboard-provider  — configuration of the Grafana dashboard provider API
object, which tells Grafana where to look in the file system for pre-provisioned dashboards

3.3.2. Grafana dashboards overview

CodeReady Workspaces provides several types of dashboards.

3.3.2.1. CodeReady Workspaces server dashboard

Use case: CodeReady Workspaces server-specific metrics related to CodeReady Workspaces
components, such as workspaces or users.

Figure 3.2. The General panel

- apiVersion: v1
 data:
 prometheus.yml: |-
 global:
 scrape_interval: 5s 1
 evaluation_interval: 5s 2
 scrape_configs:
 - job_name: 'che'
 static_configs:
 - targets: ['che-host:8087']
 kind: ConfigMap
 metadata:
 name: prometheus-config

CHAPTER 3. MONITORING CODEREADY WORKSPACES

39

Figure 3.2. The General panel

The General panel contains basic information, such as the total number of users and workspaces in
the CodeReady Workspaces database.

Figure 3.3. The Workspaces panel

Workspace start rate — the ratio between successful and failed started workspaces

Workspace stop rate — the ratio between successful and failed stopped workspaces

Workspace Failures — the number of workspace failures shown on the graph

Starting Workspaces — the gauge that shows the number of currently starting workspaces

Average Workspace Start Time — 1-hour average of workspace starts or fails

Average Workspace Stop Time — 1-hour average of workspace stops

Running Workspaces — the gauge that shows the number of currently running workspaces

Stopping Workspaces — the gauge that shows the number of currently stopping
workspaces

Workspaces started under 60 seconds — the percentage of workspaces started under 60
seconds

Number of Workspaces — the number of workspaces created over time

Red Hat CodeReady Workspaces 2.0 Administration Guide

40

Figure 3.4. The Users panel

Number of Users — the number of users known to CodeReady Workspaces over time

Figure 3.5. The Tomcat panel

Max number of active sessions — the max number of active sessions that have been active
at the same time

Number of current active sessions — the number of currently active sessions

Total sessions — the total number of sessions

Expired sessions — the number of sessions that have expired

Rejected sessions — the number of sessions that were not created because the maximum
number of active sessions was reached

Longest time of an expired session — the longest time (in seconds) that an expired session
had been alive

Figure 3.6. The Request panel

CHAPTER 3. MONITORING CODEREADY WORKSPACES

41

Figure 3.6. The Request panel

The Requests panel displays HTTP requests in a graph that shows the average number of requests
per minute.

Figure 3.7. The Executors panel, part 1

Threads running - the number of threads that are not terminated aka alive. May include
threads that are in a waiting or blocked state.

Threads terminated - the number of threads that was finished its execution.

Threads created - number of threads created by thread factory for given executor service.

Created thread/minute - Speed of thread creating for the given executor service.

Figure 3.8. The Executors panel, part 2

Red Hat CodeReady Workspaces 2.0 Administration Guide

42

Figure 3.8. The Executors panel, part 2

Executor threads active - number of threads that actively execute tasks.

Executor pool size - number of threads that actively execute tasks.

Queued task - the approximate number of tasks that are queued for execution

Queued occupancy - the percent of the queue used by the tasks that is waining for
execution.

Figure 3.9. The Executors panel, part 3

Rejected task - the number of tasks that were rejected from execution.

Rejected task/minute - the speed of task rejections

Completed tasks - the number of completed tasks

Completed tasks/minute - the speed of task execution

Figure 3.10. The Executors panel, part 4

CHAPTER 3. MONITORING CODEREADY WORKSPACES

43

Figure 3.10. The Executors panel, part 4

Task execution seconds max - 5min moving maximum of task execution

Tasks execution seconds avg - 1h moving average of task execution

Executor idle seconds max - 5min moving maximum of executor idle state.

Executor idle seconds avg - 1h moving average of executor idle state.

Figure 3.11. The Traces panel, part 1

Workspace start Max - maximum workspace start time

Workspace start Avg - 1h moving average of the workspace start time components

Workspace stop Max - maximum of workspace stop time

Workspace stop Avg - 1h moving average of the workspace stop time components

Figure 3.12. The Traces panel, part 2

Red Hat CodeReady Workspaces 2.0 Administration Guide

44

Figure 3.12. The Traces panel, part 2

OpenShiftInternalRuntime#start Max - maximum time of OpenShiftInternalRuntime#start
operation

OpenShiftInternalRuntime#start Avg - 1h moving average time of
OpenShiftInternalRuntime#start operation

Plugin Brokering Execution Max - maximum time of PluginBrokerManager#getTooling
operation

Plugin Brokering Execution Avg - 1h moving average of PluginBrokerManager#getTooling
operation

Figure 3.13. The Traces panel, part 3

OpenShiftEnvironmentProvisioner#provision Max - maximum time of
OpenShiftEnvironmentProvisioner#provision operation

OpenShiftEnvironmentProvisioner#provision Avg -1h moving average of
OpenShiftEnvironmentProvisioner#provision operation

Plugin Brokering Execution Max - maximum time of PluginBrokerManager#getTooling
components execution time

Plugin Brokering Execution Avg - 1h moving average of time of
PluginBrokerManager#getTooling components execution time

Figure 3.14. The Traces panel, part 4

CHAPTER 3. MONITORING CODEREADY WORKSPACES

45

Figure 3.14. The Traces panel, part 4

WaitMachinesStart Max - maximim time of WaitMachinesStart operations

WaitMachinesStart Avg - 1h moving average time of WaitMachinesStart operations

OpenShiftInternalRuntime#startMachines Max - maximim time of
OpenShiftInternalRuntime#startMachines operations

OpenShiftInternalRuntime#startMachines Avg - 1h moving average of the time of
OpenShiftInternalRuntime#startMachines operations

Figure 3.15. The Workspace detailed panel

The Workspace Detailed panel contains heat maps, which illustrate the average time of workspace
starts or fails. The row shows some period of time.

3.3.2.2. CodeReady Workspaces server JVM dashboard

Use case: JVM metrics of the CodeReady Workspaces server, such as JVM memory or classloading.

Figure 3.16. CodeReady Workspaces server JVM dashboard

Red Hat CodeReady Workspaces 2.0 Administration Guide

46

Figure 3.16. CodeReady Workspaces server JVM dashboard

Figure 3.17. Quick Facts

Figure 3.18. JVM Memory

Figure 3.19. JVM Misc

Figure 3.20. JVM Memory Pools (heap)

CHAPTER 3. MONITORING CODEREADY WORKSPACES

47

Figure 3.20. JVM Memory Pools (heap)

Figure 3.21. JVM Memory Pools (Non-Heap)

Figure 3.22. Garbage Collection

Figure 3.23. Classloading

Figure 3.24. Buffer Pools

3.4. DEVELOPING GRAFANA DASHBOARDS

Grafana offers the possibility to add custom panels.

Procedure

To add a custom panel, use the New dashboard view.

1. In the first section, define Queries to. Use the Prometheus Query Language to construct a
specific metric, as well as to modify it with various aggregation operators.

Figure 3.25. New Grafana dashboard: Queries to

Red Hat CodeReady Workspaces 2.0 Administration Guide

48

Figure 3.25. New Grafana dashboard: Queries to

2. In the Visualisation section, choose a metric to be shown in the following visual in the form
of a graph, gauge, heatmap, or others.

Figure 3.26. New Grafana dashboard: Visualization

3. Save changes to the dashboard by clicking the Save button, and copy and paste the JSON
code to the deployment.

4. Load changes in the configuration of a running Grafana deployment. First remove the
deployment:

$ oc process -f che-monitoring.yaml | oc delete -f -

Then redeploy your Grafana with the new configuration:

$ oc process -f che-monitoring.yaml | oc apply -f - | oc rollout latest grafana

3.5. EXTENDING CODEREADY WORKSPACES MONITORING METRICS

There are two major modules for metrics:

CHAPTER 3. MONITORING CODEREADY WORKSPACES

49

che-core-metrics-core — contains core metrics module

che-core-api-metrics — contains metrics that are dependent on core CodeReady
Workspaces components, such as workspace or user managers

Procedure

To create a metric or a group of metrics, you need a class that extends the MeterBinder class. This
allows to register the created metric in the overriden bindTo(MeterRegistry registry) method.

The following is an example of a metric that has a function that supplies the value for it:

Example metric

Alternatively, the metric can be stored with a reference and updated manually in some other place
in the code.

Additional resources

For more information about the types of metrics and naming conventions, visit Prometheus
documentation:

Naming practices

Metric types

public class UserMeterBinder implements MeterBinder {

 private final UserManager userManager;

 @Inject
 public UserMeterBinder(UserManager userManager) {
 this.userManager = userManager;
 }

 @Override
 public void bindTo(MeterRegistry registry) {
 Gauge.builder("che.user.total", this::count)
 .description("Total amount of users")
 .register(registry);
 }

 private double count() {
 try {
 return userManager.getTotalCount();
 } catch (ServerException e) {
 return Double.NaN;
 }
 }

Red Hat CodeReady Workspaces 2.0 Administration Guide

50

https://prometheus.io/docs/practices/naming/
https://prometheus.io/docs/concepts/metric_types/

CHAPTER 4. TRACING CODEREADY WORKSPACES
Tracing helps gather timing data to troubleshoot latency problems in microservice architectures
and helps to understand a complete transaction or workflow as it propagates through a distributed
system. Every transaction may reflect performance anomalies in an early phase when new services
are being introduced by independent teams.

Tracing the CodeReady Workspaces application may help analyse the execution of various
operations, such as workspace creations, workspace startup, breaking down the duration of sub-
operations executions, helping finding bottlenecks and improve the overall state of the platform.

Tracers live in applications. They record timing and metadata about operations that take place.
They often instrument libraries, so that their use is transparent to users. For example, an
instrumented web server records when it received a request and when it sent a response. The trace
data collected is called a span. A span has a context that contains information such as trace and
span identifiers and other kinds of data that can be propagated down the line.

4.1. TRACING API

CodeReady Workspaces utilizes Opentracing API - a vendor-neutral framework for
instrumentation. This means that if a developer wants to try a different tracing backend, then
instead of repeating the whole instrumentation process for the new distributed tracing system, the
developer can simply change the configuration of the tracer backend.

4.2. TRACING BACKEND

By default, CodeReady Workspaces uses Jaeger as the tracing backend. Jaeger was inspired by
Dapper and OpenZipkin, and it is a distributed tracing system released as open source by Uber
Technologies. Jaeger extends a more complex architecture for a larger scale of requests and
performance.

4.3. ENABLING CODEREADY WORKSPACES METRICS COLLECTIONS

Prerequisites

Installed Jaeger v1.12.0 or above. See instructions at Get up and running with Jaeger in your
local environment.

Procedure

1. Enable the following environment variables for CodeReady Workspaces deployment:

Activating {prod-short} tracing modules
CHE_TRACING_ENABLED=true

Following variables are the basic Jaeger client library configuration.
JAEGER_ENDPOINT="http://jaeger-collector:14268/api/traces"

Service name
JAEGER_SERVICE_NAME="che-server"

URL to remote sampler
JAEGER_SAMPLER_MANAGER_HOST_PORT="jaeger:5778"

CHAPTER 4. TRACING CODEREADY WORKSPACES

51

https://www.jaegertracing.io/docs/1.12/getting-started/

Additional resources

List of all Jaeger client environment variables

4.4. VIEWING CODEREADY WORKSPACES TRACES IN JAEGER UI

This section demonstrates how to utilize the Jaeger UI to overview traces of CodeReady
Workspaces operations.

Procedure

In this example, the CodeReady Workspaces instance has been running for some time and one
workspace start has occured.

To inspect the trace of the workspace start:

1. In the Search panel on the left, filter spans by the operation name (span name), tags, or
time and duration.

Figure 4.1. Using Jaeger UI to trace CodeReady Workspaces

2. Select the trace to expand it and show the tree of nested spans, as well as additional
information about the highlighted span, such as tags or durations.

Figure 4.2. Expanded tracing tree

Type and param of sampler (constant sampler for all traces)
JAEGER_SAMPLER_TYPE="const"
JAEGER_SAMPLER_PARAM="1"

Maximum queue size of reporter
JAEGER_REPORTER_MAX_QUEUE_SIZE="10000"

Red Hat CodeReady Workspaces 2.0 Administration Guide

52

https://github.com/jaegertracing/jaeger-client-go#environment-variables

Figure 4.2. Expanded tracing tree

4.5. CODEREADY WORKSPACES TRACING CODEBASE OVERVIEW
AND EXTENSION GUIDE

The core of the tracing implementation for CodeReady Workspaces is in the che-core-tracing-core
and che-core-tracing-web modules.

All HTTP requests to the tracing API have their own trace. This is done by TracingFilter from the
OpenTracing library, which is bound for the whole server application. Adding a @Traced annotation
to methods causes the TracingInterceptor to add tracing spans for them.

4.5.1. Tagging

Spans may contain standard tags, such as operation name, span origin, error, as well as others that
may help users with querying and filtering spans. Workspace-related operations (such as starting
or stopping workspaces) have additional tags, including userId, workspaceId, and stackId. Spans
created by TracingFilter also have an HTTP status code tag.

Declaring tags in a traced method is done statically by setting fields from the TracingTags class:

TracingTags is a class where all commonly used tags are declared, as respective AnnotationAware
tag implementations.

Additional resources

For more information about how to use Jaeger UI, visit Jaeger documentation: Jaeger Getting
Started Guide.

TracingTags.WORKSPACE_ID.set(workspace.getId());

CHAPTER 4. TRACING CODEREADY WORKSPACES

53

https://github.com/opentracing-contrib/java-web-servlet-filter
https://www.jaegertracing.io/docs/1.12/getting-started/

CHAPTER 5. SECURING CODEREADY WORKSPACES
This section describes all aspects of user authentication, types of authentication, and permissions
models on the CodeReady Workspaces server and its workspaces.

5.1. AUTHENTICATING USERS

This document covers all aspects of user authentication in Red Hat CodeReady Workspaces, both
on the CodeReady Workspaces server and in workspaces. This includes securing all REST API
endpoints, WebSocket or JSON RPC connections, and some web resources.

All authentication types use the JWT open standard as a container for transferring user identity
information. In addition, CodeReady Workspaces server authentication is based on the OpenID
Connect protocol implementation, which is provided by default by Keycloak.

Authentication in workspaces implies the issuance of self-signed per-workspace JWT tokens and
their verification on a dedicated service based on JWTProxy.

5.1.1. Authenticating to the CodeReady Workspaces server

5.1.1.1. Authenticating to the CodeReady Workspaces server using OpenID

OpenID authentication on the CodeReady Workspaces server implies the presence of an external
OpenID Connect provider and has the following main steps:

Authenticate the user through a JWT token that is retrieved from an HTTP request or, in
case of a missing or invalid token, redirect the user to the Keycloak login page.

Send authentication tokens in an Authorization header. In limited cases, when it is not
possible to use the Authorization header, the token can be sent in the token query
parameter. Example: OAuth authentication initialization.

Compose an internal subject object that represents the current user inside the CodeReady
Workspaces server code.

NOTE

The only supported and tested OpenID provider is Keycloak.

Procedure

To authenticate to the CodeReady Workspaces server using OpenID authentication:

1. Request the OpenID settings service where clients can find all the necessary URLs and
properties of the OpenId provider, such as jwks.endpoint, token.endpoint, logout.endpoint,
realm.name, or client_id returned in the JSON format.

2. The service URL is <che.host>:<che.port>/api/keycloak/settings, and it is only available in
the CodeReady Workspaces multi-user mode. The presence of the service in the URL
confirms that the authentication is enabled in the current deployment.
Example output:

{
 "che.keycloak.token.endpoint":

Red Hat CodeReady Workspaces 2.0 Administration Guide

54

https://jwt.io/introduction/
https://openid.net/connect/
https://www.keycloak.org/
https://www.keycloak.org/

The service allows downloading the JavaScript client library to interact with the provider
using the <che.host>:<che.port>/api/keycloak/OIDCKeycloak.js URL.

3. Redirect the user to the appropriate provider’s login page with all the necessary
parameters, including client_id and the return redirection path. This can be done with any
client library (JS or Java).

4. When the user is logged in to the provider, the client side-code is obtained, and the JWT
token has validated the token, the creation of the subject begins.

The verification of the token signature occurs in two main steps:

1. Authentication: The token is extracted from the Authorization header or from the token
query parameter and is parsed using the public key retrieved from the provider. In case of
expired, invalid, or malformed tokens, a 403 error is sent to the user. The use of the query
parameter should be minimised because its support may be limited or removed in future
versions.
If the validation is successful, the parsed form of the token is passed to the environment
initialization step:

2. Environment initialization: The filter extracts data from the JWT token claims, creates the
user in the local database if it is not yet present, and constructs the subject object and sets
it into the per-request EnvironmentContext object, which is statically accessible
everywhere.
If the request was made using only a machine token, the following single authentication
filter is used:

org.eclipse.che.multiuser.machine.authentication.server.MachineLoginFilter: The filter
finds the user that the userId token belongs to, retrieves the user instance, and sets the
principal to the session. The CodeReady Workspaces server-to-server requests are
performed using a dedicated request factory that signs every request with the current
subject token obtained from the EnvironmentContext object.

NOTE

Providing user-specific data

Since Keycloak may store user-specific information (first and last name, phone
number, job title), there is a special implementation of the ProfileDao that can
provide this data to consumers. The implementation is read-only, so users cannot
perform create and update operations.

5.1.1.1.1. Obtaining the token from credentials through Keycloak

Clients that cannot run JavaScript or other clients (such as command-line clients or Selenium

"http://172.19.20.9:5050/auth/realms/che/protocol/openid-connect/token",
 "che.keycloak.profile.endpoint": "http://172.19.20.9:5050/auth/realms/che/account",
 "che.keycloak.client_id": "che-public",
 "che.keycloak.auth_server_url": "http://172.19.20.9:5050/auth",
 "che.keycloak.password.endpoint":
"http://172.19.20.9:5050/auth/realms/che/account/password",
 "che.keycloak.logout.endpoint":
"http://172.19.20.9:5050/auth/realms/che/protocol/openid-connect/logout",
 "che.keycloak.realm": "che"
}

CHAPTER 5. SECURING CODEREADY WORKSPACES

55

Clients that cannot run JavaScript or other clients (such as command-line clients or Selenium
tests) must request the authorization token directly from Keycloak.

To obtain the token, send a request to the token endpoint with the username and password
credentials. This request can be schematically described as the following cURL request:

$ curl --data
"grant_type=password&client_id=<client_name>&username=<username>&password=<password>" \
 http://<keyckloak_host>:5050/auth/realms/<realm_name>/protocol/openid-connect/token

The CodeReady Workspaces dashboard uses a customized Keycloak login page and an
authentication mechanism based on grant_type=authorization_code. It is a two-step
authentication process:

1. Logging in and obtaining the authorization code.

2. Obtaining the token using this authorization code.

5.1.1.1.2. Obtaining the token from the OpenShift token through Keycloak

When CodeReady Workspaces has been installed on OpenShift using the Operator, and the
OpenShift OAuth integration has been enabled (it is by default), then the CodeReady Workspaces
authentication token of a user can also be retrieved from the user OpenShift token.

To do this, send a request to the token endpoint that can be schematically described as the
following cURL request:

$ curl -X POST -d "client_id=<client_name>" \
--data-urlencode "grant_type=urn:ietf:params:oauth:grant-type:token-exchange" \
-d "subject_token=<user_openshift_token>" \
 -d "subject_issuer=<openshift_identity_provider_name>" \
 --data-urlencode "subject_token_type=urn:ietf:params:oauth:token-type:access_token" \
 http://<keyckloak_host>:5050/auth/realms/<realm_name>/protocol/openid-connect/token

The default values for <openshift_identity_provider_name> are:

On OpenShift 3.11: openshift-v3

On OpenShift 4.x: openshift-v4

<user_openshift_token> is the token retrieved by the end-user with the command:

$ oc whoami --show-token

Red Hat CodeReady Workspaces 2.0 Administration Guide

56

WARNING

Before using this token exchange feature for an end user, the end user should
have logged in at least once interactively to the CodeReady Workspaces
Dashboard through the OpenShift login page. This is required to properly link
OpenShift and Keycloak user accounts, and set the required user profile
information (email, first and last names).

5.1.1.2. Authenticating to the CodeReady Workspaces server using other authentication
implementations

This procedure describes how to use an OIDC authentication implementation other than Keycloak.

Procedure

1. Update the authentication configuration parameters that are stored in the
multiuser.properties file (such as client ID, authentication URL, realm name).

2. Write a single filter or a chain of filters to validate tokens, create the user in the
CodeReady Workspaces dashboard, and compose the subject object.

3. If the new authorization provider supports the OpenID protocol, use the OIDC JS client
library available at the settings endpoint because it is decoupled from specific
implementations.

4. If the selected provider stores additional data about the user (first and last name, job title),
it is recommended to write a provider-specific ProfileDao implementation that provides
this information.

5.1.1.3. Authenticating to the CodeReady Workspaces server using OAuth

For easy user interaction with third-party services, the CodeReady Workspaces server supports
OAuth authentication. OAuth tokens are also used for GitHub-related plug-ins.

OAuth authentication has two main flows: internal and external, which is based on the Keycloak
brokering mechanism. The following are the two main OAuth API implementations:

org.eclipse.che.security.oauth.EmbeddedOAuthAPI, for the internal flow.

org.eclipse.che.multiuser.keycloak.server.oauth2.DelegatedOAuthAPI, for the external
flow.

Use the che.oauth.service_mode=<embedded|delegated> configuration property to switch
between the two implementations. The main REST endpoint in the OAuth API is
org.eclipse.che.security.oauth.OAuthAuthenticationService, which contains:

An authenticate method to start the OAuth authentication flow

A callback method to process callbacks from the provider

A token to retrieve the current user’s OAuth token



CHAPTER 5. SECURING CODEREADY WORKSPACES

57

These methods refer to the currently activated embedded or delegated OAuthAPI that does the
underlying operations, including finding the appropriate authenticator, initializing the login
process, and user forwarding.

5.1.1.4. Using Swagger or REST clients to execute queries

The user’s Keycloak token is used to execute queries to the secured API on the user’s behalf
through REST clients. A valid token must be attached as the Request header or the ?token=$token
query parameter.

Access the CodeReady Workspaces Swagger interface at http://che_host:8080/swagger. The user
must be signed in through Keycloak, so that the access token is included in the Request header.

5.1.2. Authenticating in a workspace

Workspace containers may contain services that must be protected with authentication. Such
protected services are called secure. For this purpose, a machine authentication mechanism should
be used. Machine tokens avoid the need to pass Keycloak tokens to workspace containers (which
can be insecure). Also, Keycloak tokens may have a relatively shorter lifetime and require periodic
renewals or refreshes, which is difficult to manage and keep in sync with the same user session
tokens on clients.

Figure 5.1. Authentication inside a workspace

Red Hat CodeReady Workspaces 2.0 Administration Guide

58

http://che_host:8080/swagger

5.1.2.1. Creating secure servers

To create secure servers in workspaces, set the secure attribute of the endpoint to true in the
dockerimage type component in the devfile.

5.1.2.2. Workspace JWT token

Workspace tokens are JSON web tokens (JWT) that contain the following information in their
claims:

uid: The ID of the user who owns this token

uname: The name of the user who owns this token

wsid: The ID of a workspace which can be queried with this token

Every user is provided with a unique personal token for each workspace. The structure of a token
and the signature are different than they are in Keycloak. The following is an example token view:

apiVersion: 1.0.0
metadata:
 name: petclinic-dev-environment
components:
 - type: dockerimage
 image: eclipse/maven-jdk8:latest
 volumes:
 - name: maven-repo
 containerPath: /root/.m2
 env:
 - name: ENV_VAR
 value: value
 endpoints:
 - name: maven-server
 port: 3101
 attributes:
 protocol: http
 secure: 'true'
 public: 'true'
 discoverable: 'false'
 memoryLimit: 1536M

Header
{
 "alg": "RS512",
 "kind": "machine_token"
}
Payload
{
 "wsid": "workspacekrh99xjenek3h571",
 "uid": "b07e3a58-ed50-4a6e-be17-fcf49ff8b242",
 "uname": "john",
 "jti": "06c73349-2242-45f8-a94c-722e081bb6fd"
}
Signature

CHAPTER 5. SECURING CODEREADY WORKSPACES

59

https://jwt.io/

The SHA-256 cipher with the RSA algorithm is used for signing machine tokens. It is not
configurable. Also, there is no public service that distributes the public part of the key pair with
which the token is signed.

5.1.2.3. Machine token validation

The validation of machine tokens is performed using a dedicated per-workspace service with
JWTProxy running on it in a separate pod. When the workspace starts, this service receives the
public part of the SHA key from the CodeReady Workspaces server. A separate verification
endpoint is created for each secure server. When traffic comes to that endpoint, JWTProxy tries to
extract the token from the cookies or headers and validates it using the public-key part.

To query the CodeReady Workspaces server, a workspace server can use the machine token
provided in the CHE_MACHINE_TOKEN environment variable. This token is the user’s who starts
the workspace. The scope of such requests is restricted to the current workspace only. The list of
allowed operations is also strictly limited.

5.2. AUTHORIZING USERS

User authorization in CodeReady Workspaces is based on the permissions model. Permissions are
used to control the allowed actions of users and establish a security model. Every request is
verified for the presence of the required permission in the current user subject after it passes
authentication. You can control resources managed by CodeReady Workspaces and allow certain
actions by assigning permissions to users.

Permissions can be applied to the following entities:

Workspace

Organization

System

All permissions can be managed using the provided REST API. The APIs are documented using
Swagger at [{host}/swagger/#!/permissions].

5.2.1. workspace permissions

The user who creates a workspace is the workspace owner. By default, the workspace owner has
the following permissions: read, use, run, configure, setPermissions, and delete. Workspace owners
can invite users into the workspace and control workspace permissions for other users.

The following permissions are associated with workspaces:

Table 5.1. workspace permissions

Permission Description

read Allows reading the workspace configuration.

{
 "value": "RSASHA256(base64UrlEncode(header) + . + base64UrlEncode(payload))"
}

Red Hat CodeReady Workspaces 2.0 Administration Guide

60

use Allows using a workspace and interacting with it.

run Allows starting and stopping a workspace.

configure Allows defining and changing the workspace
configuration.

setPermissions Allows updating the workspace permissions for other
users.

delete Allows deleting the workspace.

Permission Description

5.2.2. CodeReady Workspaces organization permissions

An CodeReady Workspaces organization is a named set of users. The following permissions are
applicable to organizations:

Table 5.2. CodeReady Workspaces organization permissions

Permission Description

update Allows editing of the organization settings and
information.

delete Allows deleting an organization.

manageSuborganizations Allows creating and managing sub-organizations.

manageResources Allows redistribution of an organization’s resources
and defining the resource limits.

manageWorkspaces Allows creating and managing all the organization’s
workspaces.

setPermissions Allows adding and removing users and updating their
permissions.

5.2.3. CodeReady Workspaces system permissions

CodeReady Workspaces system permissions control aspects of the whole CodeReady Workspaces
installation. The following permissions are applicable to the system:

Table 5.3. CodeReady Workspaces system permission

CHAPTER 5. SECURING CODEREADY WORKSPACES

61

Permission Description

manageSystem Allows control of the system, workspaces, and
organizations.

setPermissions Allows updating the permissions for users on the
system.

manageUsers Allows creating and managing users.

monitorSystem Allows accessing endpoints used for monitoring the
state of the server.

All system permissions are granted to the administrative user who is configured in the
CHE_SYSTEM_ADMIN__NAME property (the default is admin). The system permissions are
granted when the CodeReady Workspaces server starts. If the user is not present in the
CodeReady Workspaces user database, it happens after the first user’s login.

5.2.4. manageSystem permission

Users with the manageSystem permission have access to the following services:

Path HTTP Method Description

/resource/free/ GET Get free resource limits.

/resource/free/{accountId} GET Get free resource limits for the
given account.

/resource/free/{accountId} POST Edit free resource limit for the
given account.

/resource/free/{accountId} DELETE Remove free resource limit for the
given account.

/installer/ POST Add installer to the registry.

/installer/{key} PUT Update installer in the registry.

/installer/{key} DELETE Remove installer from the
registry.

/logger/ GET Get logging configurations in the
CodeReady Workspaces server.

Red Hat CodeReady Workspaces 2.0 Administration Guide

62

/logger/{name} GET Get configurations of logger by
its name in the CodeReady
Workspaces server.

/logger/{name} PUT Create logger in the CodeReady
Workspaces server.

/logger/{name} POST Edit logger in the CodeReady
Workspaces server.

/resource/{accountId}/details GET Get detailed information about
resources for the given account.

/system/stop POST Shutdown all system services,
prepare CodeReady Workspaces
to stop.

Path HTTP Method Description

5.2.5. monitorSystem permission

Users with the monitorSystem permission have access to the following services.

Path HTTP Method Description

/activity GET Get workspaces in a certain state
for a certain amount of time.

5.2.6. Listing CodeReady Workspaces permissions

To list CodeReady Workspaces permissions that apply to a specific resource, perform the GET
/permissions request.

To list the permissions that apply to a user, perform the GET /permissions/{domain} request.

To list the permissions that apply to all users, perform the GET /permissions/{domain}/all request.
The user must have manageSystem permissions to see this information.

The suitable domain values are:

system

organization

workspace

NOTE

The domain is optional. If no domain is specified, the API returns all possible
permissions for all the domains.

CHAPTER 5. SECURING CODEREADY WORKSPACES

63

1

2

5.2.7. Assigning CodeReady Workspaces permissions

To assign permissions to a resource, perform the POST /permissions request. The suitable domain
values are:

system

organization

workspace

The following is a message body that requests permissions for a user with a userID to a workspace
with a workspaceID:

Requesting CodeReady Workspaces user permissions

The userId parameter is the ID of the user that has been granted certain permissions.

The instanceId parameter is the ID of the resource that retrieves the permission for all users.

5.2.8. Sharing CodeReady Workspaces permissions

A user with setPermissions privileges can share a workspace and grant read, use, run, configure, or
setPermissions privileges for other users.

Procedure

To share workspace permissions:

1. Select a workspace in the user dashboard.

2. Navigate to the Share tab and enter the email IDs of the users. Use commas or spaces as
separators for multiple emails.

{
 "actions": [
 "read",
 "use",
 "run",
 "configure",
 "setPermissions"
],
 "userId": "userID", 1
 "domainId": "workspace",
 "instanceId": "workspaceID" 2
}

Red Hat CodeReady Workspaces 2.0 Administration Guide

64

CHAPTER 6. REMOVING USER DATA
To remove all user data, see the CodeReady Workspaces 2.0 Installation Guide.

CHAPTER 6. REMOVING USER DATA

65

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/

	Table of Contents
	CHAPTER 1. CUSTOMIZING THE DEVFILE AND PLUG-IN REGISTRIES
	1.1. BUILDING AND RUNNING A CUSTOM REGISTRY IMAGE
	1.1.1. Building a custom devfile registry
	1.1.2. Building a custom plug-in registry
	1.1.3. Deploying the registries
	1.1.3.1. Deploying registries in OpenShift
	1.1.3.2. Deploying registries in OpenShift

	1.2. INCLUDING THE PLUG-IN BINARIES IN THE REGISTRY IMAGE
	1.3. EDITING A DEVFILE AND PLUG-IN AT RUNTIME
	1.3.1. Adding a plug-in at runtime
	1.3.2. Adding a devfile at runtime

	CHAPTER 2. RETRIEVING CODEREADY WORKSPACES LOGS
	2.1. VIEWING OPENSHIFT EVENTS
	2.2. VIEWING CODEREADY WORKSPACES SERVER LOGS
	2.2.1. Viewing the CodeReady Workspaces server logs in the web console
	2.2.2. Viewing the CodeReady Workspaces server logs on the command line

	2.3. VIEWING EXTERNAL SERVICE LOGS
	2.3.1. Viewing Keycloak logs
	2.3.1.1. Viewing the Keycloak server logs
	2.3.1.2. Viewing the Keycloak client logs on Firefox
	2.3.1.3. Viewing the Keycloak client logs on Google Chrome

	2.3.2. Viewing the PostgreSQL server logs

	2.4. VIEWING WORKSPACES LOGS
	2.4.1. Viewing Che-Theia IDE logs
	2.4.1.1. Viewing Che-Theia IDE logs on the command line
	2.4.1.2. Viewing Che-Theia IDE logs in the web console

	2.4.2. Viewing logs from language servers and debug adapters
	2.4.2.1. Checking important logs
	2.4.2.2. Detecting memory problems
	2.4.2.3. Logging the client-server traffic for debug adapters
	2.4.2.4. Viewing logs for Python
	2.4.2.5. Viewing logs for Go
	2.4.2.6. Viewing logs for the NodeDebug NodeDebug2 adapter
	2.4.2.7. Viewing logs for Typescript
	2.4.2.8. Viewing logs for Java
	2.4.2.9. Viewing logs for Intelephense
	2.4.2.10. Viewing logs for PHP-Debug
	2.4.2.11. Viewing logs for XML
	2.4.2.12. Viewing logs for YAML
	2.4.2.13. Viewing logs for Dotnet with Omnisharp-Theia plug-in
	2.4.2.14. Viewing logs for Dotnet with NetcoredebugOutput plug-in
	2.4.2.15. Viewing logs for Camel

	2.5. VIEWING THE PLUG-IN BROKER LOGS

	CHAPTER 3. MONITORING CODEREADY WORKSPACES
	3.1. ENABLING CODEREADY WORKSPACES METRICS COLLECTIONS
	3.2. COLLECTING CODEREADY WORKSPACES METRICS WITH PROMETHEUS
	3.2.1. Prometheus terminology
	3.2.2. Configuring Prometheus

	3.3. VIEWING CODEREADY WORKSPACES METRICS ON GRAFANA DASHBOARDS
	3.3.1. Configuring and deploying Grafana
	3.3.2. Grafana dashboards overview
	3.3.2.1. CodeReady Workspaces server dashboard
	3.3.2.2. CodeReady Workspaces server JVM dashboard

	3.4. DEVELOPING GRAFANA DASHBOARDS
	3.5. EXTENDING CODEREADY WORKSPACES MONITORING METRICS

	CHAPTER 4. TRACING CODEREADY WORKSPACES
	4.1. TRACING API
	4.2. TRACING BACKEND
	4.3. ENABLING CODEREADY WORKSPACES METRICS COLLECTIONS
	4.4. VIEWING CODEREADY WORKSPACES TRACES IN JAEGER UI
	4.5. CODEREADY WORKSPACES TRACING CODEBASE OVERVIEW AND EXTENSION GUIDE
	4.5.1. Tagging

	CHAPTER 5. SECURING CODEREADY WORKSPACES
	5.1. AUTHENTICATING USERS
	5.1.1. Authenticating to the CodeReady Workspaces server
	5.1.1.1. Authenticating to the CodeReady Workspaces server using OpenID
	5.1.1.2. Authenticating to the CodeReady Workspaces server using other authentication implementations
	5.1.1.3. Authenticating to the CodeReady Workspaces server using OAuth
	5.1.1.4. Using Swagger or REST clients to execute queries

	5.1.2. Authenticating in a workspace
	5.1.2.1. Creating secure servers
	5.1.2.2. Workspace JWT token
	5.1.2.3. Machine token validation

	5.2. AUTHORIZING USERS
	5.2.1. workspace permissions
	5.2.2. CodeReady Workspaces organization permissions
	5.2.3. CodeReady Workspaces system permissions
	5.2.4. manageSystem permission
	5.2.5. monitorSystem permission
	5.2.6. Listing CodeReady Workspaces permissions
	5.2.7. Assigning CodeReady Workspaces permissions
	5.2.8. Sharing CodeReady Workspaces permissions

	CHAPTER 6. REMOVING USER DATA

