& RedHat

Red Hat build of Eclipse Vert.x 4.1

Eclipse Vert.x 4.1 Migration Guide

For use with Eclipse Vert.x 4.1

Last Updated: 2022-03-31

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

For use with Eclipse Vert.x 4.1

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides information on how to upgrade your Eclipse Vert.x 3.x applications to Eclipse
Vert.x 4.

PREFACE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 2. ABOUT ECLIPSE VERT.X

CHAPTER 3. WHAT'S CHANGED IN ECLIPSE VERT.X 4

CHAPTER 4. CHANGES IN COMMON COMPONENTS

Table of Contents

CHAPTER 1. CONFIGURING YOUR APPLICATION TO USE ECLIPSE VERT.X

3.1. USE FUTURE METHODS FOR ASYNCHRONOUS OPERATIONS
3.2.NO DEPENDENCY ON THE JACKSON DATABIND LIBRARY
3.3. HANDLING DEPRECATIONS AND REMOVALS

4.1. CHANGES IN MESSAGING
4.1.1. Write and end methods in write streams are no longer fluent
4.1.2. MessageProducer does not extend WriteStream
4.1.3. Removed the send methods from MessageProducer
4.2. CHANGES IN EVENTBUS
4.2.1. Removed the request-response send methods in EventBus
4.3. CHANGES IN FUTURE
4.3.1. Support for multiple handlers for futures
4.3.2. Removed the completer() method in future
4.3.3. Removed the connection handler method in HTTP client request
4.4, CHANGES IN VERTICLES
4.4.1. Updates in the create verticle method
4.4.2. Updates in the factory class and methods
4.4.3. Removed the multithreaded worker verticles
4.5. CHANGES IN THREADS
4.5.1. Context affinity for non Eclipse Vert.x thread
4.6. CHANGES INHTTP
4.6.1. Generic updates in Eclipse Vert.x HTTP methods
4.6.1.1. Updates in HTTP Methods for WebSocket
4.6.1.2. Setting the number of WebSocket connections
4.6.1.3. HttpMethod is available as a interface
4.6.2. Changes in HTTP client
4.6.2.1. Migrating applications to Eclipse Vert.x web client
4.6.2.2. Migrating applications to Eclipse Vert.x HTTP client
4.6.2.2.1. Sending a simple request
4.6.2.2.2. Sending requests
4.6.2.2.3. Handling responses
4.6.2.3. Improvements in the Eclipse Vert.x HTTP client

Table of Contents

4.6.2.3.1. HTTP client request and response methods take an asynchronous handler as input argument 28

4.6.2.3.2. Removed the connection handler method from HTTP client request

4.6.2.3.3. HTTP client tunneling using the net socket method
4.6.2.3.4. New send() method in HttpClient class

4.6.2.3.5. HttpHeaders is an interface and contains MultiMap methods

4.6.2.3.6. CaselnsensitiveHeaders class is no longer public
4.6.2.3.7. Checking the version of HTTP running on the server
4.6.2.3.8. New methods in request options

4.7. CHANGES IN CONNECTION METHODS

CHAPTER 5. CHANGES IN MICROSERVICES PATTERNS

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

4.7.1. Checking if authentication is required for client
4.7.2. Upgrade SSL method uses asynchronous handler
4.8. CHANGES IN LOGGING
4.8.1. Deprecated logging classes and methods
4.8.2. Removed Log4j 1logger
4.9. CHANGES IN ECLIPSE VERT.X REACTIVE EXTENSIONS (RX)
4.9.1. Support for RxJava 3
4.9.2. Removed onComplete callback from write stream
4.10. CHANGES IN ECLIPSE VERT.X CONFIGURATION
4.10.1. New method to retrieve configuration
4.1. CHANGES IN JSON
4.11.1. Encapsulation of Jackson
4.11.2. Object mapping
4.11.3. Base64 encoder updated to Base64URL for JSON objects and arrays
4.11.4. Removed the JSON converter method from trust options
4.12. CHANGES IN ECLIPSE VERT.X WEB
4.12.1. Combined the functionality of user session handler in session handler
4.12.2. Removed the cookie interfaces
4.12.3. Favicon and error handlers use Vertx file system
4.12.4. Accessing the template engine
4.12.5. Removed the locale interface
4.12.6. Removed the acceptable locales method
4.12.7. Updated the method for mounting sub routers

4.12.8. Removed the create method with excluded strings for JWT authentication handling
4.12.9. Removed the create handler method that was used in OSGi environments

4.12.10. Removed the bridge options class

4.12.11. SockJS socket event bus does not register a clustered event by default

4.12.12. New method for adding authentication provider

4.12.13. OAuth2 authentication provider create methods require vertx as constructor argument

4.13. CHANGES IN ECLIPSE VERT.X WEB GRAPHQL

4.13.1. Updated methods to be supported on multiple language (polyglot) environments

4.13.2. Handling POST requests in Eclipse Vert.x Web GraphQL
4.14. CHANGES IN MICROMETER METRICS

4.14.1. TCP sent and received bytes are recorded as counters with equivalent HTTP request and response

summaries
4.14.2. Renamed the metrics
4.15. CHANGES IN ECLIPSE VERT.X OPENAPI
4.15.1. New module uses router builder
4.15.2. New router builder methods
4.15.3. Handling security
4.15.4. Handling common failures
4.15.5. Accessing the OpenAPI contract model
4.15.6. Validating web requests without OpenAPI
4.15.7. Updates in the Eclipse Vert.x web APl service

5.1. CHANGES IN ECLIPSE VERT.X CIRCUIT BREAKER
5.1.1. Removed execute command methods in circuit breaker
5.2. CHANGES IN ECLIPSE VERT.X SERVICE DISCOVERY

5.2.1. Removed create methods from service discovery that contain ServiceDiscovery argument

5.2.2. Service importer and exporter methods are no longer fluent
5.2.3. Kubernetes service importer is no longer registered automatically

32
32
32
32
32
32
33
33
33
34
34
34
35
36
37
37
37
37
37
38
38
38
38
38
39
39
39
40
40
40
40
40
40

41

41
43
43
44
44
44
45
45
45

47
47
47
47
47
47
47

CHAPTER 6. CHANGES IN ECLIPSE VERT.X AUTHENTICATION AND AUTHORIZATION

6.1. MIGRATING THE AUTHENTICATION APPLICATIONS
6.2. MIGRATING THE AUTHORIZATION APPLICATIONS
6.3. CHANGES IN KEY MANAGEMENT

6.3.1. Secret options class is no longer available

6.3.2. Updates in public secret keys management

6.3.3. Changes in keystore management

6.4. DEPRECATED AND REMOVED AUTHENTICATION AND AUTHORIZATION METHODS

6.4.1. List of removed authentication and authorization methods
6.4.2. List of deprecated authentication and authorization methods
6.4.3. List of deprecated authentication and authorization classes

CHAPTER 7. CHANGES IN PROTOCOLS ... i

7.1. CHANGES IN ECLIPSE VERT.X GRPC

7.1.1. New gRPC compiler plugin

7.1.2. Migrating the generated code

7.1.3. gRPC APlIs support futures
7.2. CHANGES IN ECLIPSE VERT.X MQTT

7.2.1. Some fluent methods in MQTT clients return future

7.2.2. MgttWill messages return buffer

7.2.3. Removed the deprecated MqttWill and authorization methods from MQTT
7.3. CHANGES IN ECLIPSE VERT.X SERVICE PROXY

7.3.1. Using service proxy code generator

CHAPTER 8. CHANGES IN CLIENT COMPONENTSo

8.1. CHANGES IN ECLIPSE VERT.X KAFKA CLIENT
8.1.1. AdminUtils Class is no longer available
8.1.2. Flush methods use asynchronous handler
8.2. CHANGES IN ECLIPSE VERT.X JDBC CLIENT
8.2.1. Creating a pool
8.2.2. Support for Typsesafe Config
8.2.3. Running SQL queries
8.2.3.1. Running one shot queries
8.2.3.2. Running queries on managed connections
8.2.4. Support for stored procedures
8.3. CHANGES IN ECLIPSE VERT.X MAIL CLIENT
8.3.1. MailAttachment is available as an interface
8.3.2. Mail configuration interface extends the net client options
8.4. CHANGES IN ECLIPSE VERT.X AMQP CLIENT
8.4.1. Removed methods in AMQP client that contain AmgpMessage argument
8.5. CHANGES IN ECLIPSE VERT.X MONGODB CLIENT
8.5.1. Methods removed from MongoDB client
8.6. CHANGES IN EVENTBUS JAVASCRIPT CLIENT
8.6.1. Versioning of JavaScript client
8.7. CHANGES IN ECLIPSE VERT.X REDIS CLIENT
8.7.1. Migrating existing Redis client applications to new client
8.7.1.1. Creating the client
8.7.1.2. Migrating applications to RedisAPI
8.7.1.3. Migrating applications directly to Redis client
8.7.1.4. Migrating responses
8.7.2. Updates in Eclipse Vert.x Redis client
8.7.2.1. Removed deprecated term "slave" from Redis roles and node options

CHAPTER 9. CHANGES INCLUSTERING e

Table of Contents

49
50
50

51

51
52
53
53
53
54

................... 55

55
55
56
56
57
57
57
57
58
58

................... 59

59
59
59
59
59
60

61

61

61
62
63
63
63
63
63
64
64
65
65
65
66
66
66
67
68
69
69

CHAPTER 10. MISCELLANEOUS CHANGES IN ECLIPSE VERT.X

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

9.1. CLUSTERED FLAG REMOVED FROM OPTIONS CLASSES
9.2. CHANGES IN INFINISPAN CLUSTER MANAGER

9.2.1. Updates in custom configurations
9.3. MIGRATING CLUSTERS

9.3.1. Splitting the cluster

9.3.2. Using Eclipse Vert.x EventBus Link

10.1. REMOVED THE STARTER CLASS
10.2. ISOLATED DEPLOYMENT FOR JAVA 8
10.3. REMOVED HOOK METHODS FROM ECLIPSE VERT.X CONTEXT
10.4. REMOVED THE CLONE METHODS FROM OPTIONS
10.5. REMOVED EQUALS AND HASHCODE METHODS FROM OPTIONS
10.6. NEW METHOD TO CHECK FILE CACHING
10.7. SERVICE PROVIDER INTERFACE (SPI) METRICS
10.8. REMOVED THE POOLED BUFFER METHODS
10.9. METHODS TO CREATE CLIENTS THAT HAVE NO SHARED DATA SOURCES
10.10. CHANGES IN ECLIPSE VERT.X JUNIT5
10.10.1. Support vertx-core module and updates in extensions
10.10.2. Deprecated succeeding and failing methods in Eclipse Vert.x text context

71
71
71
71
72
72

73
73
73
73
73
73
73
73
73
73
74
74
74

Table of Contents

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

PREFACE

This guide describes the updates in Eclipse Vert.x 4 release. Use the information to upgrade your Eclipse

Vert.x 3.x applications to Eclipse Vert.x 4. It provides information about the new, deprecated and
unsupported features in this release.

Depending on the modules used in your application, you can read the relevant section to know more
about the changes in Eclipse Vert.x 4.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your feedback on our documentation. To provide feedback, you can highlight the textin a
document and add comments.

This section explains how to submit feedback.

Prerequisites

® You are logged in to the Red Hat Customer Portal.
® |nthe Red Hat Customer Portal, view the document in Multi-page HTML format.

Procedure

To provide your feedback, perform the following steps:

1. Click the Feedback button in the top-right corner of the document to see existing feedback.

NOTE

The feedback feature is enabled only in the Multi-page HTML format.

2. Highlight the section of the document where you want to provide feedback.

3. Click the Add Feedback pop-up that appears near the highlighted text.
A text box appears in the feedback section on the right side of the page.

4. Enter your feedback in the text box and click Submit.
A documentation issue is created.

5. To view the issue, click the issue tracker link in the feedback view.

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. CONFIGURING YOUR APPLICATION TO USE ECLIPSE VERT.X

CHAPTER 1. CONFIGURING YOUR APPLICATION TO USE
ECLIPSE VERT.X

When you start configuring your applications to use Eclipse Vert.x, you must reference the Eclipse Vert.x
BOM (Bill of Materials) artifact in the pom.xml file at the root directory of your application. The BOM is
used to set the correct versions of the artifacts.

Prerequisites

® A Maven-based application

Procedure

1. Open the pom.xml file, add the io.vertx:vertx-dependencies artifact to the
<dependencyManagements> section. Specify the type as pom and scope as import.

<project>

<dependencyManagement>
<dependencies>
<dependency>
<groupld>io.vertx</groupld>
<artifactld>vertx-dependencies</artifactld>
<version>${vertx.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

</project>

2. Include the following properties to track the version of Eclipse Vert.x and the Eclipse Vert.x
Maven Plugin you are using.
Properties can be used to set values that change in every release. For example, versions of
product or plugins.

<project>
<properties>
<vertx.version>${vertx.version}</vertx.version>
<vertx-maven-plugin.version>${vertx-maven-plugin.version}</vertx-maven-plugin.version>
</properties>

</project>
3. Specify vertx-maven-plugin as the plugin used to package your application:
<project>

<build>
<plugins>

<plugin>

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

<groupld>io.reactiverse</groupld>
<artifactld>vertx-maven-plugin</artifactid>
<version>${vertx-maven-plugin.version}</version>
<executions>
<execution>
<id>vmp</id>
<goals>
<goal>initialize</goal>
<goal>package</goal>
</goals>
</execution>
</executions>
<configuration>
<redeploy>true</redeploy>
</configuration>
</plugin>

</plugins>
</build>

</project>

4. Include repositories and pluginRepositories to specify the repositories that contain the
artifacts and plugins to build your application:

<project>

<repositories>
<repository>
<id>redhat-ga</id>
<name>Red Hat GA Repository</name>
<url>https://maven.repository.redhat.com/ga/</url>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>redhat-ga</id>
<name>Red Hat GA Repository</name>
<url>https://maven.repository.redhat.com/ga/</url>
</pluginRepository>
</pluginRepositories>

</project>
Additional resources

® For more information about packaging your Eclipse Vert.x application, see the Vert.x Maven
Plugin documentation.

10

https://reactiverse.io/vertx-maven-plugin/#packaging

CHAPTER 2. ABOUT ECLIPSE VERT.X

CHAPTER 2. ABOUT ECLIPSE VERT.X

Eclipse Vert.x is a toolkit used for creating reactive, non-blocking, and asynchronous applications that
run on Java Virtual Machine. (JVM). It contains several components that help you create reactive
applications. It is designed to be cloud-native.

Since Eclipse Vert.x supports asynchronous applications it can be used to create applications with high
volume of messages, large event processing, HTTP interactions, and so on.

1

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

CHAPTER 3. WHAT'S CHANGED IN ECLIPSE VERT.X 4

This section explains the fundamental differences between Eclipse Vert.x 4 and 3.x releases.

3.1. USE FUTURE METHODS FOR ASYNCHRONOUS OPERATIONS

Eclipse Vert.x 4 uses futures for asynchronous operations. Every callback method has a corresponding
future method. Futures can be used to compose asynchronous operations. You can use a combination
of callback and future methods to migrate callback-based applications to Eclipse Vert.x 4. However, you
can also continue using callbacks for asynchronous operations.

The following example shows how a callback was used for asynchronous operations in Eclipse Vert.x 3.x
releases.

WebClient client = WebClient.create(vertx);
HttpRequest request = client.get("/resource");

request.send(ar -> {
if (ar.succeeded()) {
HttpResponse response = ar.result();
} else {
Throwable error = ar.cause();
}
D

The following example shows how to use callback and future methods together for asynchronous
operations in Eclipse Vert.x 4.

WebClient client = WebClient.create(vertx);
HttpRequest request = client.get("/resource");

Future<HttpResponse> response = request.send();

response.onComplete(ar -> {
if (ar.succeeded()) {
HttpResponse response = ar.result();
} else {
Throwable failure = ar.cause();
}
i

Error handling is better with futures. In callbacks, you have to handle failures at every stage of the
composition, whereas in futures you can handle the failure once in the end. In basic applications, you may
not notice distinct difference between using callbacks and futures.

The following example shows how callbacks can be used to compose two asynchronous operations. You
can see that the error is handled at every composition.

client.get("/resource1").send(ar1 -> {
if (ar1.succeeded()) {
HttpResponse response = ar.result();
JsonObject json = response.body();
client.put("/resource2").sendJsonObject(ar2 -> {
if (ar2.succeeded()) {

12

CHAPTER 3. WHAT'S CHANGED IN ECLIPSE VERT.X 4

// Handle final result
} else {
Throwable failure2 = ar.cause();
}
1;
} else {
Throwable failure1 = ar.cause();
}
1

The following example shows how callbacks and futures can be used to compose two asynchronous
operations in Eclipse Vert.x 4. The error is handled only once in the end.

Future<HttpResponse> fut1 = client.get("/resource1").send();

Future<HttpResponse> fut2 = fut1.compose(response ->
client.put("/resource2").sendJsonObject(response.body()));

fut2.onComplete(ar -> {
if (ar.succeeded()) {
// Handle final result
} else {
Throwable failure = ar.cause();

}
hE
3.2.NO DEPENDENCY ON THE JACKSON DATABIND LIBRARY

The JSON features in Eclipse Vert.x depend on Jackson library. Jackson Databind library enables object
mapping of JSON.

In Eclipse Vert.x 4, Jackson Databind is an optional Maven dependency. If you want to use this
dependency, you must explicitly add it in the classpath.

e |f you are object mapping JSON, then you must explicitly add the dependency in your project
descriptor in the com.fasterxml.jackson.core:jackson-databind jar.

<dependencies>

<dependency>
<groupld>com.fasterxml.jackson.core</groupld>
<artifactld>jackson-databind</artifactld>
</dependency>

</dependencies>

In future, if you decide not to use object mapping of JSON, you can remove this dependency.

e |f you are not object mapping JSON, the Jackson Databind library is not required. You can run
your applications without this jar.

3.3. HANDLING DEPRECATIONS AND REMOVALS

13

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

Some features and functions have been deprecated or removed in Eclipse Vert.x 4. Before you migrate
your applications to Eclipse Vert.x 4, check for deprecations and removals.

® Some APIs were deprecated in an Eclipse Vert.x 3.x release and new equivalent APIs were
provided in that release.

® The deprecated APIs have been removed in Eclipse Vert.x 4.

If your application uses a deprecated API, you should update your application to use the new API. This
helps in migrating applications to the latest version of the product.

The Java compiler generates warnings when deprecated APIs are used. You can use the compiler to
check for deprecated methods while migrating applications to Eclipse Vert.x 4.

The following example shows an EventBus method that was deprecated in an Eclipse Vert.x 3.x releases.

// Send was deprecated in Vert.x 3.x release
vertx.eventBus().send("some-address”, "hello world", ar -> {
// Handle response here

h;

The method send(String,String,Handler<AsyncResult<Message>>) has been replaced in Eclipse
Vert.x 4 with the method request(String,String,Handler<AsyncResult<Message>>).

The following example shows how to update your application to use the new method.

/ New method can be used in Vert.x 3.x and Vert.x 4.x releases
vertx.eventBus().request("some-address", "hello world", ar -> {
/ Handle response here

h;

14

CHAPTER 4. CHANGES IN COMMON COMPONENTS

CHAPTER 4. CHANGES IN COMMON COMPONENTS

This section explains the changes in basic Eclipse Vert.x components.

4.1. CHANGES IN MESSAGING

This section explains the changes in the messaging methods.

4.1.1. Write and end methods in write streams are no longer fluent

The WriteStream<T>.write() and WriteStream<T>.end() methods are no longer fluent.
® \Write and end callback methods return void.
® Other write and end methods return Future<Voids.

This is a breaking change. Update your applications if you have used the fluent aspect for write streams.

4.1.2. MessageProducer does not extend WriteStream

The MessageProducer interface does not extend the WriteStream interface.

In the previous releases of Eclipse Vert.x, the MessageProducer interface extended the WriteStream
interface. The MessageProducer interface provided limited support for message back-pressure.
Credit leaks would result in a reduction of credits in the message producer. If these leaks used all the
credits, messages would not be sent.

However, MessageConsumer will continue to extend ReadStream. When MessageConsumer is

paused and the pending message queue is full, the messages are dropped. This continues the
integration with Rx generators to build message consuming pipelines.

4.1.3. Removed the send methods from MessageProducer
The send methods in the MessageProducer interface have been removed.

Use the methods MessageProducer<T>.write(T) instead of MessageProducer<T>.send(T) and
EventBus.request(String,Object,Handler) instead of MessageProducer.send(T,Handler).

4.2. CHANGES IN EVENTBUS

The following section describes the changes in EventBus.

4.2.1. Removed the request-response send methods in EventBus

The EventBus.send(..., Handler<AsyncResult<Message<T>>>) and Message.reply(...,
Handler<AsyncResult<Message<T>>>) methods have been removed. These methods would have
caused overloading issues in Eclipse Vert.x 4. The version of the method returning
Future<Message<T>> would collide with the fire and forget version.

The request-response messaging pattern should use the new request and replyAndRequest methods.

e Use the method EventBus.request(..., Handler<AsyncResult<Message<T>>>) instead of
EventBus.send(..., Handler<AsyncResult<Message<T>>>) to send a message.

15

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

® Use the method Message.replyAndRequest(..., Handler<AsyncResult<Message<T>>>)
instead of Message.reply(..., Handler<AsyncResult<Message<T>>>) to reply to the
message.

The following example shows the request and reply to a message in Eclipse Vert.x 3.x releases.

Request

I eventBus.send("the-address", body, ar -> ...);
Reply

eventBus.consumer("the-address", message -> {
message.reply(body, ar -> ...);

hE

The following example shows the request and reply to a message in Eclipse Vert.x 4.

Request

I eventBus.request("the-address", body, ar -> ...);
Reply

eventBus.consumer("the-address", message -> {
message.replyAndRequest(body, ar -> ...);

hE

4.3. CHANGES IN FUTURE

This section explains the changes in future.

4.3.1. Support for multiple handlers for futures

From Eclipse Vert.x 4 onward, multiple handlers are supported for a future. The Future<T>.setHandler()
method used to set a single handler and has been removed. Use Future<T>.onComplete(),
Future<T>.onSuccess(), and Future<T>.onFailure() methods instead to call handlers on completion,
success, and failure results of an action.

The following example shows how to call a handler in Eclipse Vert.x 3.x releases.

Future<String> fut = getSomeFuture();
fut.setHandler(ar -> ...);

The following example shows how to call the new Future<T>.onComplete() method in Eclipse Vert.x 4.

Future<String> fut = getSomeFuture();
fut.onComplete(ar -> ...);

4.3.2. Removed the completer() method in future

16

CHAPTER 4. CHANGES IN COMMON COMPONENTS
In earlier releases of Eclipse Vert.x, you would use the Future.completer() method to access

Handler<AsyncResult<T>>, which was associated with the Future.

In Eclipse Vert.x 4, the Future<T>.completer() method has been removed. Future<T> directly extends
Handler<AsyncResult<T>>. You can access all the handler methods using the Future object. The
Future object is also a handler.

4.3.3. Removed the connection handler method in HTTP client request

The HttpClientRequest.connectionHandler() method has been removed. Use
HttpClient.connectionHandler() method instead to call connection handlers for client requests in your
application.

The following example shows how the HttpClientRequest.connectionHandler() method was used in
Eclipse Vert.x 3.x releases.

client.request().connectionHandler(conn -> {
/I Connection related code
})-end();

The following example shows you how to use the new HttpClient.connectionHandler() method in
Eclipse Vert.x 4.

client.connectionHandler(conn -> {
/I Connection related code

hE

4.4. CHANGES IN VERTICLES

This section explains the changes in the verticles.

4.4.1. Updates in the create verticle method

In earlier releases of Eclipse Vert.x, VerticleFactory.createVerticle() method synchronously instantiated
a verticle. From Eclipse Vert.x 4 onward, the method asynchronously instantiates the verticle and
returns the callback Callable<Verticle> instead of the single verticle instance. This improvement
enables the application to call this method once and invoke the returned callable multiple times for
creating multiple instances.

The following code shows how verticles were instantiated in Eclipse Vert.x 3.x releases.

I Verticle createVerticle(String verticleName, ClassLoader classLoader) throws Exception;

The following code shows how verticles are instantiated in Eclipse Vert.x 4.

I void createVerticle(String verticleName, ClassLoader classLoader, Promise<Callable<Verticle>>
promise);

4.4.2. Updates in the factory class and methods

The VerticleFactory class has been simplified. The class does not require initial resolution of an identifier
because the factory can instead use nested deployment to deploy the verticle.

17

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

If your existing applications use factories, in Eclipse Vert.x 4 you can update the code to use a callable
when a promise completes or fails. The callable can be called several times.

The following example shows existing factories in an Eclipse Vert.x 3.x application.

I return new MyVerticle();

The following example shows how to update existing factories to use promise in Eclipse Vert.x 4.

I promise.complete(() -> new MyVerticle());

Use the Vertx.executeBlocking() method, if you want the factory to block code. When the factory
receives the blocking code, it should resolve the promise and get the verticle instances from the
promise.

4.4.3. Removed the multithreaded worker verticles

Multi-threaded worker verticle deployment option has been removed. This feature could only be used
with Eclipse Vert.x event-bus. Other Eclipse Vert.x components such as HTTP did not support the
feature.

Use the unordered Vertx.executeBlocking() method to achieve the same functionality as multi-
threaded worker deployment.

4.5. CHANGES IN THREADS

This section explains the changes in threads.

4.5.1. Context affinity for non Eclipse Vert.x thread

The Vertx.getOrCreateContext() method creates a single context for each non Eclipse Vert.x thread.
The non Eclipse Vert.x threads are associated with a context the first time a context is created. In earlier
releases, a new context was created each time the method was called from a non Eclipse Vert.x thread.

new Thread(() -> {
assertSame(vertx.getOrCreateContext(), vertx.getOrCreateContext());
}).start();

This change does not affect your applications, unless your application implicitly relies on a new context
to be created with each invocation.

In the following example the n blocks run concurrently as each blocking code is called on a different
context.

for (inti=0;i < n;i++) {
vertx.executeBlocking(block, handler);

}

To get the same results in Eclipse Vert.x 4, you must update the code:

for (int i = 0;i < n;i++) {
vertx.executeBlocking(block, false, handler);

}

18

CHAPTER 4. CHANGES IN COMMON COMPONENTS

4.6. CHANGES IN HTTP

This section explains the changes in HTTP methods.

4.6.1. Generic updates in Eclipse Vert.x HTTP methods

The following section describes the miscellaneous updates in Eclipse Vert.x HTTP methods.

4.6.1.1. Updates in HTTP Methods for WebSocket
The changes in WebSocket are:

® The usage of the term WebSocket in method names was inconsistent. The method names had
incorrect capitalization, for example, Websocket, instead of WebSocket. The methods that had
inconsistent usage of WebSocket in the following classes have been removed. Use the new
methods that have correct capitalization instead.

o The following methods in HttpServerOptions class have been removed.

Removed methods New methods

getMaxWebsocketFrameSize()

setMaxWebsocketFrameSize()

getMaxWebsocketMessageSize()

setMaxWebsocketMessageSize()

getPerFrameWebsocketCompressionS
upported()

setPerFrameWebsocketCompressionS
upported()

getPerMessageWebsocketCompressio
nSupported()

setPerMessageWebsocketCompressio
nSupported()

getWebsocketAllowServerNoContext()

setWebsocketAllowServerNoContext()

getWebsocketCompressionLevel()

setWebsocketCompressionLevel()

getWebsocketPreferredClientNoContex

t()

getMaxWebSocketFrameSize()

setMaxWebSocketFrameSize()

getMaxWebSocketMessageSize()

setMaxWebSocketMessageSize()

getPerFrameWebSocketCompressionS
upported()

setPerFrameWebSocketCompressionS
upported()

getPerMessageWebSocketCompressio
nSupported()

setPerMessageWebSocketCompressio
nSupported()

getWebSocketAllowServerNoContext()

setWebSocketAllowServerNoContext()

getWebSocketCompressionLevel()

setWebSocketCompressionLevel()

getWebSocketPreferredClientNoContex
t()

19

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

Removed methods New methods

setWebsocketPreferredClientNoContex setWebSocketPreferredClientNoContex

t() t()

getWebsocketSubProtocols() getWebSocketSubProtocols()

setWebsocketSubProtocols() setWebSocketSubProtocols()

The new methods for WebSocket subprotocols use List<String> data type instead of a
comma separated string to store items.

o The following methods in HttpClientOptions class have been removed.

Removed Methods

Replacing Methods

getTryUsePerMessageWebsocketComp
ression()

setTryUsePerMessageWebsocketComp
ression()

getTryWebsocketDeflateFrameCompre
ssion()

getWebsocketCompressionAllowClient
NoContext()

setWebsocketCompressionAllowClient
NoContext()

getWebsocketCompressionLevel()

setWebsocketCompressionLevel()

getWebsocketCompressionRequestSer
verNoContext()

setWebsocketCompressionRequestSer
verNoContext()

getTryUsePerMessageWebSocketCom
pression()

setTryUsePerMessageWebSocketComp
ression()

getTryWebSocketDeflateFrameCompre
ssion()

getWebSocketCompressionAllowClient
NoContext()

setWebSocketCompressionAllowClient
NoContext()

getWebSocketCompressionLevel()

setWebSocketCompressionLevel()

getWebSocketCompressionRequestSer
verNoContext()

setWebSocketCompressionRequestSer
verNoContext()

o The following handler methods in HttpServer class have been removed.

CHAPTER 4. CHANGES IN COMMON COMPONENTS

Deprecated Methods New Methods

websocketHandler() webSocketHandler()

websocketStream() webSocketStream()

o WebsocketRejectedException is deprecated. The methods throw
UpgradeRejectedException instead.

e The HttpClient webSocket() methods use Handler<AsyncResult<WebSocket>> instead of
Handler or Handler<Throwable>.

® The number of overloaded methods to connect an HTTP client to a WebSocket has also been
reduced by using the methods in WebSocketConnectOptions class.

® The HttpServerRequest.upgrade() method has been removed. This method was synchronous.
Use the new method HttpServerRequest.toWebSocket() instead. This new method is
asynchronous.

The following example shows the use of synchronous method in Eclipse Vert.x 3.x.

/I 3.x
server.requestHandler(req -> {
WebSocket ws = req.upgrade();

hE

The following example shows the use of asynchronous method in Eclipse Vert.x 4.

/I 4.x

server.requestHandler(req -> {
Future<WebSocket> fut = req.toWebSocket();
fut.onSuccess(ws -> {
h;

D

4.6.1.2. Setting the number of WebSocket connections

In Eclipse Vert.x 3.x, you could use the the HTTP client pool size to define the maximum number of
WebSocket connections in an application. The value accessor methods
HttpClientOptions.maxPoolSize() were used to get and set the WebSocket connections. The default
number of connections was set to 4 for each endpoint.

The following example shows how WebSocket connections are set in Eclipse Vert.x 3.x.

/1l 3.x
I options.setMaxPoolSize(30); / Maximum connection is set to 30 for each endpoint

However, in Eclipse Vert.x 4, there is no pooling of WebSocket TCP connections, because the
connections are closed after use. The applications use a different pool for HTTP requests. Use the value
accessor methods HitpClientOptions.maxWebSockets() to get and set the WebSocket connections.
The default number of connections is set to 50 for each endpoint.

21

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

The following example shows how to set WebSocket connections in Eclipse Vert.x 4.

/I 4.x
I options.setMaxWebSockets(30); // Maximum connection is set to 30 for each endpoint

4.6.1.3. HttpMethod is available as a interface

HttpMethod is available as a new interface.

In earlier releases of Eclipse Vert.x, HttpMethod was declared as an enumerated data type. As an
enumeration, it limited the extensibility of HTTP. Further, it prevented serving other HTTP methods with
this type directly. You had to use the HttpMethod.OTHER value along with the rawMethod attribute

during server and client HTTP requests.

If you are using HttpMethod enumerated data type in a switch block, you can use the following code to
migrate your applications to Eclipse Vert.x 4.

The following example shows a switch block in Eclipse Vert.x 3.x releases.

switch (method) {
case GET:

break;

case OTHER:
String s = request.getRawMethod();
if (s.equals("PROPFIND") {

}else ...

}

The following example shows a switch block in Eclipse Vert.x 4.

switch (method.name()) {
case "GET":

break;
case "PROPFIND";

break;

}

You can also use the following code in Eclipse Vert.x 4.

HttpMethod PROPFIND = HttpMethod.valueOf("PROPFIND"):;
if (method == HitpMethod.GET) {

} else if (method.equals(PROPFIND)) {

} éise {

}...

22

CHAPTER 4. CHANGES IN COMMON COMPONENTS

If you are using HttpMethod.OTHER value in your applications, use the following code to migrate the
application to Eclipse Vert.x 4.

The following example shows you the code in Eclipse Vert.x 3.x releases.

I client.request(HttpMethod.OTHER, ...).setRawName("PROPFIND");

The following example shows you the code in Eclipse Vert.x 4.

I client.request(HttpMethod.valueOf("PROPFIND"), ...);

4.6.2. Changes in HTTP client

This section describes the changes in HTTP client.
The following types of Eclipse Vert.x clients are available:

Eclipse Vert.x web client

Use the Eclipse Vert.x web client when your applications are web oriented. For example, REST,
encoding and decoding HTTP payloads, interpreting the HTTP status response code, and so on.

Eclipse Vert.x HTTP client

Use the Eclipse Vert.x HTTP client when your applications are used as HTTP proxy. For example, as an
API gateway. The HTTP client has been updated and improved in Eclipse Vert.x 4.

NOTE

Eclipse Vert.x web client is based on Eclipse Vert.x HTTP client.

4.6.2.1. Migrating applications to Eclipse Vert.x web client

The web client was available from Eclipse Vert.x 3.4.0 release. There is no change in the web client in
Eclipse Vert.x 4.

The client provides simplified HTTP interactions and some additional features, such as HTTP session,
JSON encoding and decoding, response predicates, which are not available in the Eclipse Vertx HTTP
Client.

The following example shows how to use HTTP client in Eclipse Vert.x 3.x releases.

HttpClientRequest request = client.get(80, "example.com”, "/", response -> {
int statusCode = response.statusCode();
response.exceptionHandler(err -> {
// Handle connection error, for example, connection closed
E
response.bodyHandler(body -> {
// Handle body entirely

Bk
hE

request.exceptionHandler(err -> {
// Handle connection error OR response error

Ik

request.end();

23

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

The following example shows how to migrate an application to web client in Eclipse Vert.x 3.x and
Eclipse Vert.x 4 releases.

client.get(80, "example.com”, "/some-uri")
.send(ar -> {
if (ar.suceeded()) {
HitpResponse<Buffer> response = ar.result();
// Handle response
} else{
// Handle error

}
b;

4.6.2.2. Migrating applications to Eclipse Vert.x HTTP client

The HTTP client has fine grained control over HTTP interactions and focuses on the HTTP protocol.
The HTTP client has been updated and improved in Eclipse Vert.x 4:

® Simplified APIs with fewer interactions

® Robust error handling

® Support for connection reset for HTTP/1
The updates in HTTP client APIs are:

® The methods in HttpClientRequest such as, get(), delete(), put() have been removed. Use the
method HttpClientRequest> request(HttpMethod method, ...) instead.

e HittpClientRequest instance is created when a request or response is possible. For example, an
HttpClientRequest instance is created when the client connects to the server or a connection is
reused from the pool.

4.6.2.2.1. Sending a simple request

The following example shows how to send a GET request in Eclipse Vert.x 3.x releases.

HttpClientRequest request = client.get(80, "example.com”, "/", response -> {
int statusCode = response.statusCode();
response.exceptionHandler(err -> {
// Handle connection error, for example, connection closed
hE
response.bodyHandler(body -> {
// Handle body entirely

Bk
hE

request.exceptionHandler(err -> {
// Handle connection error OR response error

Ik

request.end();

The following example shows how to send a GET request in Eclipse Vert.x 4.

I client.request(HttpMethod.GET, 80, "example.com", "/", ar -> {

24

CHAPTER 4. CHANGES IN COMMON COMPONENTS

if (ar.succeeded()) {
HttpClientRequest = ar.result();
request.send(ar2 -> {
if (ar2.succeeded()) {
HttpClientResponse = ar2.result();
int statusCode = response.statusCode();
response.body(ar3 -> {
if (ar8.succeeded()) {
Buffer body = ar3.result();
// Handle body entirely
}else {
// Handle server error, for example, connection closed
}
1
} else {
// Handle server error, for example, connection closed
}
1;
} else {
// Connection error, for example, invalid server or invalid SSL certificate
}
1

You can see that error handling is better in the new HTTP client.

The following example shows how to use future composition in a GET operation in Eclipse Vert.x 4.

Future<Buffer> fut = client.request(HttpMethod.GET, 80, "example.com”, "/")
.compose(request -> request.send().compose(response -> {
int statusCode = response.statusCode();
if (statusCode == 200) {
return response.body();
}else {
return Future.failedFuture("Unexpectd status code");

hE

fut.onComplete(ar -> {
if (ar.succeeded()) {
Buffer body = ar.result();
// Handle body entirely
} else {
// Handle error
}
D

Future composition improves exception handling. The example checks if the status code is 200,
otherwise it returns an error.

25

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

WARNING
A When you use the HTTP client with futures, the HttpClientResponse() method

starts emitting buffers as soon as it receives a response. To avoid this, ensure that
the future composition occurs either on the event-loop (as shown in the example)
or it should pause and resume the response.

4.6.2.2.2. Sending requests

In Eclipse Vert.x 3.x releases, you could use the end() method to send requests.

I request.end();

You could also send a body in the request.

I request.end(Buffer.buffer("hello world));

Since HttpClientRequest is a Writestream<Buffer>, you could also use a pipe to stream the request.

writeStream.pipeTo(request, ar -> {
if (ar.succeeded()) {
// Sent the stream

}
hE

In Eclipse Vert.x 4, you can perform all the operations shown in the examples using the get() method.
You can also use the new send() method to perform these operations. You can pass a buffer, a string, or
a ReadStream as input to the send() method. The method returns an HttpClientResponse instance.

// Send a request and process the response
request.onComplete(ar -> {
if (ar.succeeded()) {
HttpClientResponse response = ar.result();
// Handle the response

}
)

request.end();

// The new send method combines all the operations
request.send(ar -> {
if (ar.succeeded()) {
HttpClientResponse response = ar.result();
// Handle the response

N

4.6.2.2.3. Handling responses

The HttpClientResponse interface has been updated and improved with the following methods:

26

CHAPTER 4. CHANGES IN COMMON COMPONENTS

body() method

The body() method returns an asynchronous buffer. Use the body() method instead of
bodyHandler().

The following example shows how to use the bodyHandler() method to get the request body.

response.bodyHandler(body -> {
// Process the request body
D
response.exceptionHandler(err -> {
// Could not get the request body

h;

The following example shows how to use the body() method to get the request body.

response.body(ar -> {
if (ar.succeeded()) {
// Process the request body
} else {
// Could not get the request body
}
D

end() method

The end() method returns a future when a response is fully received successfully or failed. The
method removes the response body. Use this method instead of endHandler() method.
The following example shows how to use the endHandler() method.

response.endHandler(v -> {
// Response ended

i
response.exceptionHandler(err -> {

// Response failed, something went wrong

h;

The following example shows how to use the end() method.

response.end(ar -> {
if (ar.succeeded()) {
// Response ended
} else {
// Response failed, something went wrong
}
D

You can also handle the response with methods such as, onSucces(), compose(), bodyHandler() and
so on. The following examples demonstrate handling responses using the onSuccess() method.

The following example shows how to use HTTP client with the result() method in Eclipse Vert.x 3.x
releases.

HitpClient client = vertx.createHttpClient(options);

27

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

client.request(HttpMethod.GET, 8443, "localhost", "/")
.onSuccess(request -> {
request.onSuccess(resp -> {

//Code to handle HTTP response
};
};

The following example shows how to use HTTP client with the result() method in Eclipse Vert.x 4.

HitpClient client = vertx.createHttpClient(options);

client.request(HttpMethod.GET, 8443, "localhost", "/")
.onSuccess(request -> {
request.response().onSuccess(resp -> {

//Code to handle HTTP response
};
};
4.6.2.3. Improvements in the Eclipse Vert.x HTTP client

This section describes the improvements in HTTP client.

4.6.2.3.1. HTTP client request and response methods take an asynchronous handler as input
argument

The HttpClient and HitpClientRequest methods have been updated to use asynchronous handlers. The
methods take Handler<AsyncResult<HttpClientResponse>> as input instead of
Handler<HttpClientResponse>.

In earlier releases of Eclipse Vert.x, the HttpClient methods getNow(), optionsNow() and headNow()
used to return HitpClientRequest, that you had to further send to perform a request. The getNow(),
optionsNow() and headNow() methods have been removed. In Eclipse Vert.x 4, you can directly send a
request with the required information using Handler<AsyncResult<HttpClientResponse>>.

The following examples show how to send a request in Eclipse Vert.x 3.x.

® To perform a GET operation:

Future<HttpClientResponse> f1 = client.get(8080, "localhost", "/uri", HttpHeaders.set("foo",
"barll));
® To POST with a buffer body:

Future<HttpClientResponse> f2 = client.post(8080, "localhost", "/uri", HitpHeaders.set("foo",
"bar"), Buffer.buffer("some-data"));

® To POST with a streaming body:

Future<HttpClientResponse> f3 = client.post(8080, "localhost", "/uri", HitpHeaders.set("foo",
"bar"), asyncFile);

28

CHAPTER 4. CHANGES IN COMMON COMPONENTS

In Eclipse Vert.x 4, you can use the requests methods to create an HitpClientRequest instance. These
methods can be used in basic interactions such as:

® Sending the request headers

e HTTP/2 specific operations such as setting a push handler, setting stream priority, pings, and so
on.

® Creating a NetSocket tunnel

® Providing fine grained write control

® Resetting a stream

® Handling 100 continue headers manually

The following example shows you how to create an HTTPClientRequest in Eclipse Vert.x 4.

client.request(HttpMethod.GET, 8080, "example.com”, "/resource", ar -> {
if (ar.succeeded()) {
HttpClientRequest request = ar.result();
request.putHeader("content-type", "application/json")
request.send(new JsonObject().put("hello”, "world"))
.onSuccess(response -> {
/7
}).onFailure(err -> {
/7
h;
}
}

4.6.2.3.2. Removed the connection handler method from HTTP client request

The HttpClientRequest.connectionHandler() method has been removed. Use
HttpClient.connectionHandler() method instead to call connection handlers for client requests in your
application.

The following example shows how the HttpClientRequest.connectionHandler() method was used in
Eclipse Vert.x 3.x releases.

client.request().connectionHandler(conn -> {
// Connection related code
})-end();

The following example shows you how to use the new HttpClient.connectionHandler() method.

client.connectionHandler(conn -> {
// Connection related code

h;
4.6.2.3.3. HTTP client tunneling using the net socket method

HTTP tunnels can be created using the HttpClientResponse.netSocket() method. In Eclipse Vert.x 4
this method has been updated.

29

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

To get a net socket for the connection of the request, send a socket handler in the request. The handler
is called when the HTTP response header is received. The socket is ready for tunneling and can send and
receive buffers.

The following example shows how to get net socket for a connection in Eclipse Vert.x 3.x releases.

client.request(HttpMethod. CONNECT, uri, ar -> {
if (ar.succeeded()) {
HttpClientResponse response = ar.result();
if (response.statusCode() == 200) {
NetSocket so = response.netSocket();

}
}
})-end();

The following example shows how to get net socket for a connection in Eclipse Vert.x 4.

client.request(HttpMethod.CONNECT, uri, ar -> {
}).netSocket(ar -> {
if (ar.succeeded()) {
// Got a response with a 200 status code
NetSocket so = ar.result();
// Go for tunneling

}
})-end();

4.6.2.3.4. New send() method inHttpClient class

A new send() method is available in the HttpClient class.

The following code shows how to send a request in Eclipse Vert.x 4.

Future<HttpClientResponse> f1 = client.send(HttpMethod.GET, 8080, "localhost", "/uri",
HttpHeaders.set("foo", "bar"));

4.6.2.3.5. HttpHeaders is an interface and containsMultiMap methods

In Eclipse Vert.x 4, HttpHeaders is an interface. In earlier releases of Eclipse Vert.x, HttpHeaders was a
class.

The following new MultiMap methods have been added in the HttpHeaders interface. Use these
methods to create MultiMap instances.

o MultiMap.headers()
o MultiMap.set(CharSequence name, CharSequence value)
o MultiMap.set(String name, String value)
The following example shows how MultiMap instances were created in Eclipse Vert.x 3.x releases.

I MultiMap headers = MultiMap.caselnsensitiveMultiMap();

The following examples show how to create MultiMap instances in Eclipse Vert.x 4.

30

CHAPTER 4. CHANGES IN COMMON COMPONENTS

I MultiMap headers = HttpHeaders.headers();

I MultiMap headers = HttpHeaders.set("content-type", "application.data");

4.6.2.3.6. CaselnsensitiveHeaders class is no longer public

The CaselnsensitiveHeaders class is no longer public. Use the MultiMap.caselnsensitiveMultiMap()
method to create a multi-map implementation with case insensitive keys.

The following example shows how CaselnsensitiveHeaders method was used in Eclipse Vert.x 3.x
releases.

I CaselnsensitiveHeaders headers = new CaselnsensitiveHeaders();

The following examples show how MultiMap method is used in Eclipse Vert.x 4.

I MultiMap multiMap = MultiMap#caselnsensitiveMultiMap();

OR

I MultiMap headers = HttpHeaders.headers();

4.6.2.3.7. Checking the version of HTTP running on the server

In earlier releases of Eclipse Vert.x, the version of HTTP running on a server was checked only if the
application explicitly called the HttpServerRequest.version() method. If the HTTP version was
HTTP/1.x, the method would return the 501 HTTP status, and close the connection.

From Eclipse Vert.x 4 onward, before a request is sent to the server, the HTTP version on the server is
automatically checked by calling the HttpServerRequest.version() method. The method returns the
HTTP version instead of throwing an exception when an invalid HTTP version is found.

4.6.2.3.8. New methods in request options

In Eclipse Vert.x 4, the following new methods are available in the RequestOptions class:
® Header
® FollowRedirects
® Timeout

The following example shows how to use the new methods.

client.request(HttpMethod.GET, 8080, "example.com”, "/resource", ar -> {
if (ar.succeeded()) {
HttpClientRequest request = ar.result();
request.putHeader("content-type", "application/json")
request.send(new JsonObject().put("hello”, "world"))
.onSuccess(response -> {
/"
}).onFailure(err -> {
/7

31

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

b;
}
)

4.7. CHANGES IN CONNECTION METHODS

This section explains the changes in connection methods.

4.7.1. Checking if authentication is required for client

The NetServerOptions.isClientAuthRequired() method has been removed. Use the getClientAuth()
== ClientAuth.REQUIRED enumerated type to check if client authentication is required.

The following example shows how to use a switch statement to check if authentication of the client is
required.

switch (options.getClientAuth()) {

case REQUIRED:

/... behavior same as in releases prior to {VertX} {v4}
break;

default:

// fallback statement...

}

The following example shows how to use the check if authentication of the client is required in Eclipse
Vert.x 4.

if (options.getClientAuth() == ClientAuth.REQUIRED) {
/I behavior in releases prior to {VertX} {v4}

4.7.2. Upgrade SSL method uses asynchronous handler

The NetSocket.upgradeToSsl() method has been updated to use Handler<AsyncResult> instead of
Handler. The handler is used to check if the channel has been successfully upgraded to SSL or TLS.

4.8. CHANGES IN LOGGING

This section explains the changes in logging.

4.8.1. Deprecated logging classes and methods

The logging classes Logger and LoggerFactory along with their methods have been deprecated. These
logging classes and methods will be removed in a future release.

4.8.2. Removed Log4j 1logger

The Log4j 1loggeris no longer available. However, if you want to use Log4j 1logger, it is available with
SLF4J.

4.9. CHANGES IN ECLIPSE VERT.X REACTIVE EXTENSIONS (RX)

32

CHAPTER 4. CHANGES IN COMMON COMPONENTS

This section describes the changes in Reactive Extensions (Rx) in Eclipse Vert.x. Eclipse Vert.x uses the
RxJava library.

4.9.1. Support for RxJava 3

From Eclipse Vert.x 4.1.0, RxJava 3 is supported.

® Anew rxified APl is available in the io.vertx.rxjava3 package.

® |ntegration with Eclipse Vert.x JUnit5 is provided by the vertx-junits-rx-java3 binding.
To upgrade to RxJava 3, you must make the following changes:

® |n the pom.xml file, under <dependency> change the RxJava 1and 2 bindings from vertx-rx-
java or vertx-rx-java2 to vertx-rx-java3.

® |nyour application, update the imports from io.vertx.reactivex.* to io.vertx.rxjava3.*.

® |nyour application, update the imports for RxJava 3 types also. For more information, see
What’s new section in RxJava 3 documentation.

4.9.2. Removed onComplete callback from write stream

The WriteStreamSubscriber.onComplete() callback has been removed. This callback was invoked if
WriteStream had pending streams of data to be written.

In Eclipse Vert.x 4, use the callbacks WriteStreamSubscriber.onWriteStreamEnd() and
WriteStreamSubscriber.onWriteStreamError() instead. These callbacks are called after
WriteStream.end() is complete.

I WriteStreamSubscriber<Buffer> subscriber = writeStream.toSubscriber();

The following example shows how to create the adapter from a WriteStream in Eclipse Vert.x 3.x
releases.

subscriber.onComplete(() -> {
// Called after writeStream.end() is invoked, even if operation has not completed

hE

The following examples show how to create the adapter from a WriteStream using the new callback
methods in Eclipse Vert.x 4 release:

subscriber.onWriteStreamEnd(() -> {
// Called after writeStream.end() is invoked and completes successfully

hE

subscriber.onWriteStreamError(() -> {
// Called after writeStream.end() is invoked and fails

hE

4.10. CHANGES IN ECLIPSE VERT.X CONFIGURATION

The following section describes the changes in Eclipse Vert.x configuration.

33

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

4.10.1. New method to retrieve configuration

The method ConfigRetriever.getConfigAsFuture() has been removed. Use the method
retriever.getConfig() instead.

The following example shows how configuration was retrieved in Eclipse Vert.x 3.x releases.
I Future<dsonObject> fut = ConfigRetriever. getConfigAsFuture(retriever);
The following example shows how to retrieve configuration in Eclipse Vert.x 4.

I fut = retriever.getConfig();

4.11. CHANGES IN JSON

This section describes changes in JSON.

4.11.1. Encapsulation of Jackson

All the methods in the JSON class that implement Jackson types have been removed. Use the following
methods instead:

Removed Fields/Methods New methods

Json.mapper() field DatabindCodec.mapper()
Json.prettyMapper() field DatabindCodec.prettyMapper()
Json.decodeValue(Buffer, JacksonCodec.decodeValue(Buffer,
TypeReference<T>) TypeReference)
Json.decodeValue(String, JacksonCodec.decodeValue(String,
TypeReference<T>) TypeReference)

For example, use the following code:

® When using Jackson TypeReference:

o In Eclipse Vert.x 3.x releases:
I List<Foo> foo1 = Json.decodeValue(json, new TypeReference<List<Foo>>() {});
o In Eclipse Vert.x 4 release:

List<Foo> foo2 = io.vertx.core.json.jackson.JacksonCodec.decodeValue(json, new
TypeReference<List<Foo>>() {});

e Referencing an ObjectMapper:

o In Eclipse Vert.x 3.x releases:

34

(o}

I ObjectMapper mapper = Json.mapper;

In Eclipse Vert.x 4 release:

CHAPTER 4. CHANGES IN COMMON COMPONENTS

I mapper = io.vertx.core.json.jackson.DatabindCodec.mapper();

® Setting an ObjectMapper:

(o}

In Eclipse Vert.x 3.x releases:

I Json.mapper = someMapper;

o From Eclipse Vert.x 4 onward, you cannot write a mapper instance. You should use your own
static mapper or configure the Databind.mapper() instance.

4.11.2. Object mapping

In earlier releases, the Jackson core and Jackson databind dependencies were required at runtime.

From Eclipse Vert.x 4 onward, only the Jackson core dependency is required.

You will require the Jackson databind dependency only if you are object mapping JSON. In this case, you
must explicitly add the dependency in your project descriptor in the

com.fasterxml.jackson.core:jackson-databind jar.

The following methods are supported for the mentioned types.

® Methods

(o}

(o}

JsonObject.mapFrom(Object)
JsonObject.mapTo(Class)
Json.decodeValue(Buffer, Class)
Json.decodeValue(String, Class)
Json.encode(Object)
Json.encodePrettily(Object)

Json.encodeToBuffer(Object)

® Type

(o}

JsonObject and JsonArray
Map and List

Number

Boolean

Enum

byte[] and Buffer

35

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

o Instant
The following methods are supported only with Jackson bind:
e JsonObject.mapTo(Object)

o JsonObject.mapFrom(Object)

4.11.3. Base64 encoder updated to Base64URL for JSON objects and arrays

The Eclipse Vert.x JSON types implement RFC-7493. In earlier releases of Eclipse Vert.x, the
implementation incorrectly used Base64 encoder instead of Base64URL. This has been fixed in Eclipse
Vert.x 4, and Base64URL encoder is used in the JSON types.

If you want to continue using the Base64 encoder in Eclipse Vert.x 4, you can use the configuration flag
legacy. The following example shows how to set the configuration flag in Eclipse Vert.x 4.

I java -Dvertx.json.base64=legacy ...

During your migration from Eclipse Vert.x 3.x to Eclipse Vert.x 4 if you have partially migrated your
applications, then you will have applications on both version 3 and 4. In such cases where you have two
versions of Eclipse Vert.x you can use the following utility to convert the Base64 string to Base64URL.

public String toBase64(String base64Url) {
return base64Url
.replace('+', '-")
.replace('/',"_);

}

public String toBase64Url(String base64) {
return base64
.replace(’-', '+')
.replace('_", '");

}

You must use the utility methods in the following scenarios:
e Handling integration while migrating from Eclipse Vert.x 3.x releases to Eclipse Vert.x 4.
® Handling interoperability with other systems that use Base64 strings.

Use the following example code to convert a Base64URL to Base64 encoder.

String base64url = someJdsonObject.getString("base64encodedElement”)
String base64 = toBase64(baseb4url);

The helper functions toBase64 and toBase64Url enable only JSON migrations. If you use object
mapping to automatically map JSON objects to a Java POJO in your applications, then you must create
a custom object mapper to convert the Base64 string to Base64URL.

The following example shows you how to create a object mapper with custom Base64 decoder.

// simple deserializer from Base64 to byte[]
class ByteArrayDeserializer extends JsonDeserializer<byte[]> {
ByteArrayDeserializer() {

36

CHAPTER 4. CHANGES IN COMMON COMPONENTS

}

public byte[] deserialize(JsonParser p, DeserializationContext ctxt) {
String text = p.getText();
return Base64.getDecoder()
.decode(text);

}
}

/...

ObjectMapper mapper = new ObjectMapper();

// create a custom module to address the Base64 decoding
SimpleModule module = new SimpleModule();
module.addDeserializer(byte[].class, new ByteArrayDeserializer());
mapper.registerModule(module);

// JSON to POJO with custom deserializer

mapper.readValue(json, MyClass.class);

4.11.4. Removed the JSON converter method from trust options

The TrustOptions.todSON method has been removed.

4.12. CHANGES IN ECLIPSE VERT.X WEB

The following section describes the changes in Eclipse Vert.x web.

4.12.1. Combined the functionality of user session handler in session handler

In earlier releases of Eclipse Vert.x, you had to specify both the UserSessionHandler and
SessionHandler handlers when working in a session.

To simplify the process, in Eclipse Vert.x 4, the UserSessionHandler class has been removed and its

functionality has been added in the SessionHandler class. In Eclipse Vert.x 4, to work with sessions you
must specify only one handler.

4.12.2. Removed the cookie interfaces

The following cookie interfaces have been removed:
e jo.vertx.ext.web.Cookie
e jo.vertx.ext.web.handler.CookieHandler

Use the io.vertx.core.http.Cookie interface instead.

4.12.3. Favicon and error handlers use Vertx file system
The create methods in FaviconHandler and ErrorHandler have been updated. You must passa Vertx

instance object in the create methods. These methods access file system. Passing the Vertx object
ensures consistent access to files using the 'Vertx' file system.

37

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

The following example shows how create methods were used in Eclipse Vert.x 3.x releases.

FaviconHandler.create();
ErrorHandler.create();

The following example shows how create methods should be used in Eclipse Vert.x 4.

FaviconHandler.create(vertx);
ErrorHandler.create(vertx);

4.12.4. Accessing the template engine

Use the method TemplateEngine.unwrap() to access the template engine. You can then apply
customizations and configurations to the template.

The following methods that are used to get and set the engine configurations have been deprecated.
Use the TemplateEngine.unwrap() method instead.

o HandlebarsTemplateEngine.getHandlebars()

e HandlebarsTemplateEngine.getResolvers()

o HandlebarsTemplateEngine.setResolvers()

e JadeTemplateEngine.getJadeConfiguration()

e ThymeleafTemplateEngine.getThymeleafTemplateEngine()

o ThymeleafTemplateEngine.setMode()

4.12.5. Removed the locale interface

The io.vertx.ext.web.Locale interface has been removed. Use the io.vertx.ext.web.LanguageHeader
interface instead.

4.12.6. Removed the acceptable locales method

The RoutingContext.acceptableLocales() method has been removed. Use the
RoutingContext.acceptableLanguages() method instead.

4.12.7. Updated the method for mounting sub routers

In earlier releases of Eclipse Vert.x, the Router.mountSubRouter() method incorrectly returned a

Router. This has been fixed, and the method now returns a Route.

4.12.8. Removed the create method with excluded strings for JWT authentication
handling

The JWTAuthHandler.create(JWTAuth authProvider, String skip) method has been removed. Use
the JWTAuthHandler.create(JWTAuth authProvider) method instead.

The following example shows how JWT authentication handler was created in Eclipse Vert.x 3.x releases.

38

CHAPTER 4. CHANGES IN COMMON COMPONENTS

router
// protect everything but "/excluded/path”
.route().handler(JWTAuthHandler(jwtAuth, "/excluded/path")

The following example shows how JWT authentication handler was created in Eclipse Vert.x 4.

router
.route("/excluded/path").handler(/* public access to "/excluded/path" %)
// protect everything
.route().handler(JWTAuthHandler(jwtAuth)

4.12.9. Removed the create handler method that was used in OSGi environments

In Eclipse Vert.x 4, OSGi environment is no longer supported. The StaticHandler.create(String,
ClassLoader) method has been removed because the method was used in the OSGi environment.

If you have used this method in your applications, then in Eclipse Vert.x 4 you can either add the
resources to the application classpath or serve resources from the file system.

4.12.10. Removed the bridge options class

The sockjs.BridgeOptions class has been removed. Use the new sockjs.SockJSBridgeOptions class
instead. The sockjs.SockJSBridgeOptions class contains all the options that are required to configure
the event bus bridge.

There is no change in the behavior of the new class, except that the name of the data object class has
changed.

In previous releases, when you used sockjs.BridgeOptions class to add new bridges, there were a lot of
duplicate configurations. The new class contains all the possible common configurations, and removes
duplicate configurations.

4.12.11. SockJS socket event bus does not register a clustered event by default

SockJSSocket no longer registers a clustered event bus consumer by default. If you want to write to the
socket using the event bus, you must enable the writeHandler in SockdSHandlerOptions. When you
enable the writeHandler, the event bus consumer is set to local by default.

Router router = Router.router(vertx);
SockJSHandlerOptions options = new SockJSHandlerOptions()
.setRegisterWriteHandler(true); // enable the event bus consumer registration
SockJSHandler sockdSHandler = SockdSHandler.create(vertx, options);
router.mountSubRouter("/myapp", sockJSHandler.socketHandler(sockJSSocket -> {
// Retrieve the writeHandlerlD and store it (For example, in a local map)
String writeHandlerID = sockJSSocket.writeHandlerID();

N

You can configure the event bus consumer to a cluster.

SockJSHandlerOptions options = new SockJSHandlerOptions()
.setRegisterWriteHandler(true) // enable the event bus consumer registration
.setLocalWriteHandler(false) // register a clustered event bus consumer

39

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

4.12.12. New method for adding authentication provider

The SessionHandler.setAuthProvider(AuthProvider) method has been deprecated. Use the
SessionHandler.addAuthProvider() method instead. The new method allows an application to work
with multiple authentication providers and link the session objects to these authentication providers.

4.12.13. OAuth2 authentication provider create methods require vertx as constructor
argument

From Eclipse Vert.x 4, OAuth2Auth.create(Vertx vertx) method requires vertx as a constructor
argument. The vertx argument uses a secure non-blocking random number generator to generate
nonce which ensures better security for applications.

4.13. CHANGES IN ECLIPSE VERT.X WEB GRAPHQL

The following section describes the changes in Eclipse Vert.x Web GraphQL.

IMPORTANT

Eclipse Vert.x Web GraphQL is provided as Technology Preview only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs),
might not be functionally complete, and Red Hat does not recommend to use them for
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

See Technology Preview Features Support Scope on the Red Hat Customer Portal for
information about the support scope for Technology Preview features.

4.13.1. Updated methods to be supported on multiple language (polyglot)
environments

The following methods have been updated and are now supported on polyglot environments: *
UploadScalar is now a factory, use the method UploadScalar.create() instead.

e VertxBatchLoader is now a factory, use the method
io.vertx.ext.web.handler.graphgql.dataloader.VertxBatchLoader.create() instead.

e VertxDataFetcher is now a factory, use the method
io.vertx.ext.web.handler.graphql.schema.VertxDataFetcher.create() instead.

e VertxPropertyDataFetcher is now a factory, use the method
io.vertx.ext.web.handler.graphql.schema.VertxPropertyDataFetcher.create() instead.

4.13.2. Handling POST requests in Eclipse Vert.x Web GraphQL

In prior releases, the Eclipse Vert.x Web GraphQL handler could process its own POST requests. It did
not need Eclipse Vert.x Web BodyHandler to process the requests. However, this implementation was
susceptible to DDoS attacks.

From Eclipse Vert.x 4 onward, to process POST requests BodyHandler is required. You must install
BodyHandler before installing Eclipse Vert.x Web GraphQL handler.

4.14. CHANGES IN MICROMETER METRICS

40

https://access.redhat.com/support/offerings/techpreview

CHAPTER 4. CHANGES IN COMMON COMPONENTS
The following section describes the changes in Micrometer metrics.

4.14.1. TCP sent and received bytes are recorded as counters with equivalent HTTP
request and response summaries

In prior releases, the following metrics were recorded as distribution summaries for sockets. From
Eclipse Vert.x 4 onward, these metrics are logged as counter, which report the amount of data
exchanged.

® Netclient

o vertx_net_client_bytes read
o vertx_net_client_bytes_written

® Net server

o vertx_net_server_bytes read
o vertx_net_server_bytes_written

For these counters, equivalent distribution summaries have been introduced for HTTP. These
summaries are used to collect information about the request and response sizes.

e HTTP client

o vertx_http_client_request_bytes
o vertx_http_client_response_bytes

e HTTP server

o vertx_http_server_request_bytes

o vertx_http_server_response_bytes

4.14.2. Renamed the metrics

The following metrics have been renamed.

Old metrics name New metrics name Updated in components

*_connections *_active_connections Net client and server

HTTP client and server

*_bytesReceived * bytes_read Datagram
Net client and server

HTTP client and server

41

Old metrics name

* bytesSent

*_requests

*_requestCount_total

*_responseTime_seconds

*_responseCount_total

* wsConnections

vertx_http_client_queue_del
ay_seconds

vertx_http_client_queue_size

vertx_http_server_requestRe
setCount_total

vertx_eventbus_bytesWritten

vertx_eventbus_bytesRead

vertx_eventbus_replyFailure
s

vertx_pool_queue_delay sec
onds

vertx_pool_queue_size

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

New metrics name

* bytes_written

*_active_requests

*_requests_total

*_response_time_seconds

*_responses_total

*_active_ws_connections

vertx_http_client_queue_tim
e_seconds

vertx_http_client_queue_pen
ding

vertx_http_server_request_r
esets_total

vertx_eventbus_bytes_writte
n

vertx_eventbus_bytes read

vertx_eventbus_reply_failure
s

vertx_pool_queue_time_sec
onds

vertx_pool_queue_pending

Updated in components

Datagram
Net client and server

HTTP client and server

HTTP client

HTTP server

HTTP client

HTTP server

HTTP client

HTTP server

HTTP client

HTTP server

HTTP client

HTTP server

CHAPTER 4. CHANGES IN COMMON COMPONENTS

Old metrics name New metrics name Updated in components

vertx_pool_inUse vertx_pool_in_use

4.15. CHANGES IN ECLIPSE VERT.X OPENAPI

In Eclipse Vert.x 4, a new module vertx-web-openapi is available. Use this module alone with vertx-web
to develop contract-driven applications.

The new module works well with Eclipse Vert.x Web Router. The new module requires the following
Eclipse Vert.x dependencies:

® vertx-json-schema
e vertx-web-validation
The new module is available in the package io.vertx.ext.web.openapi.

In Eclipse Vert.x 4, the older OpenAPI module vertx-web-api-contract is supported to facilitate the
migration to the new module. It is recommended that you move to the new module vertx-web-openapi
to take advantage of the new functionality.

4.15.1. New module uses router builder

The vertx-web-openapi module uses RouterBuilder to build the Eclipse Vert.x Web router. This router
builder is similar to the router builer OpenAPI3RouterFactory in vertx-web-api-contract module.

To start working with the vertx-web-openapi module, instantiate the RouterBuilder.

RouterBuilder.create(vertx, "petstore.yaml").onComplete(ar -> {
if (ar.succeeded()) {
// Spec loaded with success
RouterBuilder routerBuilder = ar.result();
} else {
// Something went wrong during router builder initialization
Throwable exception = ar.cause();

}
hE

You can also instantiate the RouterBuilder using futures.

RouterBuilder.create(vertx, "petstore.yaml")
.onSuccess(routerBuilder -> {
// Spec loaded with success
})
.onFailure(exception -> {
// Something went wrong during router builder initialization

b;

43

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

NOTE

The vertx-web-openapi module uses the Eclipse Vert.x file system APIs to load the files.
Therefore, you do not have to specify / for the classpath resources. For example, you can
specify petstore.yamlin your application. The RouterBuilder can identify the contract
from your classpath resources.

4.15.2. New router builder methods

In most cases, you can search and replace usages of old OpenAPI3RouterFactory methods with the
new RouterBuilder methods. The following table lists a few examples of old and new methods.

Old OpenAPI3RouterFactory methods New RouterBuilder methods

routerFactory.addHandlerByOperationld("get = routerBuilder.operation("getPets").handler(h
Pets"”, handler) andler)

routerFactory.addFailureHandlerByOperation routerBuilder.operation("getPets").failureHan

Id("getPets"”, handler) dler(handler)
routerFactory.mountOperationToEventBus(" routerBuilder.operation("getPets").routeToEv
getPets", "getpets.myapplication") entBus("getpets.myapplication™)
routerFactory.addGlobalHandler(handler) routerBuilder.rootHandler(handler)
routerFactory.addBodyHandler(handler) routerBuilder.bodyHandler(handler)
routerFactory.getRouter() routerBuilder.createRouter()

Use the following syntax to access the parsed request parameters:

RequestParameters parameters =
routingContext.get(io.vertx.ext.web.validation.ValidationHandler. REQUEST_CONTEXT_KEY);
int aParam = parameters.queryParameter("aParam").getInteger();

4.15.3. Handling security

In Eclipse Vert.x 4, the methods RouterFactory.addSecurityHandler() and
OpenAPI3RouterFactory.addSecuritySchemaScopeValidator() are no longer available.

Use the RouterBuilder.securityHandler() method instead. This method accepts
io.vertx.ext.web.handler.AuthenticationHandler as an handler. The method automatically recognizes
OAuth2Handler and sets up the security schema.

The new security handlers also implement the operations defined in the OpenAPI specification.

4.15.4. Handling common failures

In vertx-web-openapi module, the following failure handlers are not available. You must set up failure
handlers using the Router.errorHandler(int, Handler) method.

44

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md#operationObject

CHAPTER 4. CHANGES IN COMMON COMPONENTS

Old methods in" vertx-web-api-contract™ module New methods in vertx-web-openapi module

routerFactory.setValidationFailureHandler(ha router.errorHandler(400, handler)
ndler)

routerBuilder.setNotimplementedFailureHan router.errorHandler(501, handler)
dler(handler)

4.15.5. Accessing the OpenAPI contract model

In Eclipse Vert.x 4, the OpenAPI contract is not mapped to plain old Java object (POJO). So, the
additional swagger-parser dependency is no longer required. You can use the getters and resolvers to
retrieve specific components of the contract.

The following example shows how to retrieve a specific component using a single operation.

I JsonObject model = routerBuilder.operation("getPets").getOperationModel();

The following example shows how to retrieve the full contract.

I JsonObject contract = routerBuilder.getOpenAPI().getOpenAPI();

The following example shows you how to resolve parts of the contract.

JsonObject petModel =
routerBuilder.getOpenAPI().getCached(JsonPointer.from("/components/schemas/Pet"));

4.15.6. Validating web requests without OpenAPI

In the vertx-web-api-contract module, you could validate HTTP requests using
HTTPRequestValidationHandler. You did not have to use OpenAPI for validations.

In Eclipse Vert.x 4, to validate HTTP requests use vertx-web-validation module. You can import this
module and validate requests without using OpenAPI. Use ValidationHandler to validate requests.

4.15.7. Updates in the Eclipse Vert.x web API service

The vertx-web-api-service module has been updated and can be used with the vertx-web-validation
module. If you are working with vertx-web-openapi module, there is no change in the web service
functionality.

However, if you do not use OpenAPI, then to use the web service module with vertx-web-validation
module you must use the RouteToEBServiceHandler class.

router.get("/api/transactions")
.handler(

ValidationHandlerBuilder.create(schemaParser)
.queryParameter(optionalParam("from", stringSchema()))
.queryParameter(optionalParam("to", stringSchema()))
.build()

45

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

)-handler(
RouteToEBServiceHandler.build(eventBus, "transactions.myapplication”, "getTransactionsList")

);

The vertx-web-api-service module does not support vertx-web-api-contract. So, when you upgrade to

Eclipse Vert.x 4, you must migrate your Eclipse Vert.x OpenAPI applications to vertx-web-openapi
module.

46

CHAPTER 5. CHANGES IN MICROSERVICES PATTERNS

CHAPTER 5. CHANGES IN MICROSERVICES PATTERNS

This section explains the changes in microservices patterns.

5.1. CHANGES IN ECLIPSE VERT.X CIRCUIT BREAKER

The following section describes the changes in Eclipse Vert.x circuit breaker.

5.1.1. Removed execute command methods in circuit breaker

The following methods have been removed from the CircuitBreaker class because they cannot be used
with futures.

Removed methods Replacing methods

CircuitBreaker.executeCommand() CircuitBreaker.execute()

CircuitBreaker.executeCommandWithFallbac CircuitBreaker.executeWithFallback()

k()

5.2. CHANGES IN ECLIPSE VERT.X SERVICE DISCOVERY

The following section describes the changes in Eclipse Vert.x service discovery.

5.2.1. Removed create methods from service discovery that contain ServiceDiscovery
argument

The following create methods in service discovery that have Handler<AmgpMessage> as an argument
have been removed. These methods cannot be used with futures.

Removed methods Replacing methods

ServiceDiscovery.create(..., ServiceDiscovery.create(Vertx)
Handler<ServiceDiscovery>
completionHandler)

ServiceDiscovery.create(..., ServiceDiscovery.create(Vertx,
Handler<ServiceDiscovery> ServiceDiscoveryOptions)
completionHandler)

5.2.2. Service importer and exporter methods are no longer fluent

The ServiceDiscovery.registerServicelmporter() and ServiceDiscovery.registerServiceExporter()
methods are no longer fluent. The methods return Future<Void>.

5.2.3. Kubernetes service importer is no longer registered automatically

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

The vertx-service-discovery-bridge-kubernetes adds the KubernetesServicelmporter discovery
bridge. The bridge imports services from Kubernetes or Openshift into the Eclipse Vert.x service
discovery.

From Eclipse Vert.x 4, this bridge is no longer registered automatically. Even if you have added the
bridge in the classpath of your Maven project, it will not be automatically registered.

You must manually register the bridge after creating the ServiceDiscovery instance.

The following example shows you how to manually register the bridge.

JsonObject defaultConf = new JsonObject();
serviceDiscovery.registerServicelmporter(new KubernetesServicelmporter(), defaultConf);

48

CHAPTER 6. CHANGES IN ECLIPSE VERT.X AUTHENTICATION AND AUTHORIZATION

CHAPTER 6. CHANGES IN ECLIPSE VERT.X AUTHENTICATION
AND AUTHORIZATION

The following sections describe the changes in Eclipse Vert.x authentication and authorization.

The Eclipse Vert.x authentication module has major updates in Eclipse Vert.x 4. The
io.vertx.ext.auth.AuthProvider interface has been split into two new interfaces:

o jo.vertx.ext.auth.authentication.AuthenticationProvider

IMPORTANT

Authentication feature is provided as Technology Preview only. Technology
Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend to use them for production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

See Technology Preview Features Support Scope on the Red Hat Customer
Portal for information about the support scope for Technology Preview features.

® jo.vertx.ext.auth.authorization.AuthorizationProvider

This update enables any provider to independently perform either authentication and authorization.

6.1. MIGRATING THE AUTHENTICATION APPLICATIONS

The authentication mechanism has changed at the result level. In earlier releases, the result was a User
object, which was provider specific. In Eclipse Vert.x 4, the result is a common implementation of
io.vertx.ext.auth.User.

The following example shows how a user was authenticated in Eclipse Vert.x 3.x releases.

JsonObject authinfo = new JsonObject()
.put("username”, "john")
.put("password", "super$ecret");

// omitting the error handling for brevity
provider.authenticate(authinfo, res -> {
if (res.succeeded()) {
// may require type casting for example on Oauth2
User user = res.result();

}
hE

The following example shows how to authenticate a user in Eclipse Vert.x 4.

JsonObject authinfo = new JsonObject()

.put("username”, "john")
.put("password", "super$ecret");

// omitting the error handling for brevity

49

https://access.redhat.com/support/offerings/techpreview

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

provider.authenticate(authinfo, res -> {
if (res.succeeded()) {
// Never needs type casting
User user = res.result();

}
hE

6.2. MIGRATING THE AUTHORIZATION APPLICATIONS

Authorization is a new feature in Eclipse Vert.x 4. In earlier releases, you could only check if a user was
authorized to perform the tasks on the User object. This meant that the provider was responsible for
both authentication and authorization of the user.

In Eclipse Vert.x 4, the User object instances are not associated with a particular authentication
provider. So you can authenticate and authorize a user using different providers. For example, you can
authenticate a user using OAuth2 and perform authorization checks against MongoDB or SQL
database.

The following example shows how an application checks if a user can use Printer #1234 in Eclipse Vert.x
3.xreleases.

// omitting the error handling for brevity
user.isAuthorized("printers:printer1234", res -> {
if (res.succeeded()) {
boolean hasAuthority = res.result();
if (hasAuthority) {
System.out.printin("User can use the printer");
}else {
System.out.printin("User cannot use the printer");

}
hE

This authorization worked for JDBC and MongoDB. However it did not work for providers such as
OAuth2, because the provider did not perform authorization checks. From Eclipse Vert.x 4, it is possible
to perform such authorization checks by using different providers.

// omitting the error handling for brevity
provider.getAuthorizations(user, res -> {
if (res.succeeded()) {
if (PermissionBasedAuthorization.create("printer1234").match(user)) {
System.out.printin("User can use the printer");
}else {
System.out.printin("User cannot use the printer");

}
hE

You can check authorizations on roles, permissions, logic operations, wildcards and any other
implementation you add.

6.3. CHANGES IN KEY MANAGEMENT

50

CHAPTER 6. CHANGES IN ECLIPSE VERT.X AUTHENTICATION AND AUTHORIZATION

In Eclipse Vert.x 4, there are major updates in handling keys. The most important change is that when a
key loads, there is no distinction between public buffer and private buffer.

The following classes have been updated:
e jo.vertx.ext.auth.KeyStoreOptions used to work with jce keystores
e jo.vertx.ext.auth.SecretOptions used to handle symmetric secrets
e jo.vertx.ext.auth.PubSecKeyOptions used to handle public secret keys

The following section describes the changes in key management.

6.3.1. Secret options class is no longer available

The SecretOptions class is no longer available. Use the new PubSecKeyOptions class instead to work
with a cryptographic key.

The following example shows how methods of SecretOptions class were used in Eclipse Vert.x 3.x
releases.

new SecretOptions()
.setType("HS256")
.setSecret("password")

The following example shows how methods of PubSecKeyOptions class should be used in Eclipse
Vert.x 4.

new PubSecKeyOptions()
.setAlgorithm("HS256")
.setSecretKey("password")

6.3.2. Updates in public secret keys management

In Eclipse Vert.x 3.x, the configuration object in public secret key management assumed that:
e Keys are configured as key-pairs.
® Key datais a PKCS8 encoded string without standard delimiters.

The following example shows how to configure key pair in Eclipse Vert.x 3.x.

new PubSecKeyOptions()
.setPublicKey(
// remove the PEM boundaries
pubPemString
.replaceAll("-----BEGIN PUBLIC KEY----")
.replaceAll("-----END PUBLIC KEY----"))
.setSecretKey(
// remove the PEM boundaries
secPemString
.replaceAll("-----BEGIN PUBLIC KEY----")
.replaceAll("-----END PUBLIC KEY----"));

In Eclipse Vert.x 4, you must specify both the public and private key.

51

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

The following example shows how to configure key pair in Eclipse Vert.x 4.

PubSecKeyOptions pubKey =
new PubSecKeyOptions()
// the buffer is the exact contents of the PEM file and had boundaries included in it
.setBuffer(pubPemString);

PubSecKeyOptions secKey =
new PubSecKeyOptions()
// the buffer is the exact contents of the PEM file and had boundaries included in it
.setBuffer(secPemString);

You can now handle X509 certificates using PubSecKeyOptions.

PubSecKeyOptions x509Certificate =
new PubSecKeyOptions()
// the buffer is the exact contents of the PEM file and had boundaries included in it
.setBuffer(x509PemString);

6.3.3. Changes in keystore management

In Eclipse Vert.x 3.x, KeyStoreOptions assumes that the keystore format is jeceks, and the stored
password is the same as the password of the key. As jceks is a proprietary format, it is recommended to
use a standard format, such as JDK, instead.

When you use KeyStoreOptions in Eclipse Vert.x 4, you can specify a store type. For example, store
types such as PKCSI11, PKCS12, and so on can be set. The default store type is jceks.

In Eclipse Vert.x 3.x, all keystore entries would share the same password, that is, the keystore password.
In Eclipse Vert.x 4, each keystore entry can have a dedicated password. If you do not want to set
password for each keystore entry, you can configure the keystore password as the default password for
all entries.

The following example shows how to load a jeeks keystore in Eclipse Vert.x 3.x.

new KeyStoreOptions()
.setPath("path/to/keystore.jks")
.setPassword("keystore-password");

In Eclipse Vert.x 4, the default format is assumed to be the default format configured by JDK. The
format is PKCS12 in Java 9 and above.

The following example shows how to load a jeeks keystore in Eclipse Vert.x 4.

new KeyStoreOptions()
.setPath("path/to/keystore.jks")
// Modern JDKs use ‘jceks™ keystore. But this type is not the default
// If the type is not set to “jceks’ then probably ‘pkcs12” will be used
.setType("jceks")
.setPassword("keystore-password")
// optionally if your keys have different passwords
// and if a key specific id is not provided it defaults to
// the keystore password
.putPasswordProtection("key-id", "key-specific-password");

52

CHAPTER 6. CHANGES IN ECLIPSE VERT.X AUTHENTICATION AND AUTHORIZATION

6.4. DEPRECATED AND REMOVED AUTHENTICATION AND

AUTHORIZATION METHODS

The following sections list methods deprecated and removed for authentication and authorization.

6.4.1. List of removed authentication and authorization methods

The following methods have been removed:

Removed methods Replacing methods

OAuth2Auth.createKeycloak()

OAuth2Auth.create(Vertx, OAuth2FlowType,
OAuth2ClientOptions)()

OAuth2Auth.create(Vertx, OAuth2FlowType)

User.isAuthorised()

User.setAuthProvider()

AccessToken.refreshToken()

io.vertx.ext.auth.jwt.JWTOptions data object

Oauth2ClientOptions.isUseAuthorizationHea
der()

Oauth2ClientOptions.scopeSeparator()

KeycloakAuth.create(vertx, JsonObject) ()

OAuth2Auth.create(vertx, new
OAuth2ClientOptions().setFlow(YOUR_DESI
RED_FLOW))

OAuth2Auth.create(vertx, new
OAuth2ClientOptions().setFlow(YOUR_DESI
RED_FLOW))

User.isAuthorized()

No replacing method

AccessToken.opaqueRefreshToken()

io.vertx.ext.jwt.JWTOptions data object

No replacing method

No replacing method

6.4.2. List of deprecated authentication and authorization methods

The following methods have been deprecated:

Deprecated methods Replacing methods

OAuth2Auth.decodeToken()

OAuth2Auth.introspectToken()

OAuth2Auth.getFlowType()

OAuth2Auth.loadJWK()

AuthProvider.authenticate()

AuthProvider.authenticate()

No replacing method

OAuth2Auth.jwkSet()

53

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

Deprecated methods Replacing methods

Oauth2ClientOptions.isUseAuthorizationHea No replacing method
der()

6.4.3. List of deprecated authentication and authorization classes

The following classes have been deprecated:

Deprecated class Replacing class

AbstractUser Create user objects using the °
User.create(JsonObject) ™ method.

AuthOptions No replacing class

JDBCAuthOptions JDBCAuthenticationOptions for authentication
and JDBCAuthorizationOptions for authorization

JDBCHashStrategy No replacing class

OAuth2RBAC AuthorizationProvider
Oauth2Response Recommended to use WebClient class
KeycloakHelper No replacing class

54

CHAPTER 7. CHANGES IN PROTOCOLS

CHAPTER 7. CHANGES IN PROTOCOLS

This section explains the changes in networking protocols.

7.1. CHANGES IN ECLIPSE VERT.X GRPC

The following section describes the changes in Eclipse Vert.x gRPC.

7.1.1. New gRPC compiler plugin

In Eclipse Vert.x 4, the module protoc-gen-grpc-java is no longer available. This module was a fork of
the official gRPC compiler. In earlier releases of Eclipse Vert.x, you had to work with this fork. This fork is
maintained by the Eclipse project. Working with the fork was complex.

In previous releases, to work with gRPC, the following details were added to pom.xml file.

<l-- Vert.x 3.x -->
<plugin>
<groupld>org.xolstice.maven.plugins</groupld>
<artifactld>protobuf-maven-plugin</artifactid>
<configuration>
<protocArtifact>com.google.protobuf:protoc:3.2.0:exe:${os.detected.classifier}</protocArtifact>
<pluginld>grpc-java</pluginid>
<!-- NOTE: the gav coordinates point to the 3.x only compiler fork -->
<pluginArtifactsio.vertx:protoc-gen-grpc-
java:${vertx.grpc.version}:exe:${os.detected.classifier}</pluginArtifact>
</configuration>

</plugin>

In Eclipse Vert.x 4, a new gRPC compiler plugin is available. This plugin uses the official gRPC compiler
instead of the fork. To work with the new gRPC plugin, add the following details to pom.xml file.

<l-- Vert.x 4.x -->
<plugin>
<groupld>org.xolstice.maven.plugins</groupld>
<artifactld>protobuf-maven-plugin</artifactid>
<configuration>
<protocArtifact>com.google.protobuf:protoc:3.2.0:exe:${os.detected.classifier}</protocArtifact>
<pluginld>grpc-java</pluginld>
<!-- NOTE: the gav coordinates point to the official compiler -->
<pluginArtifactsio.grpc:protoc-gen-grpc-
java:${vertx.grpc.version}:exe:${os.detected.classifier}</pluginArtifact>
<protocPlugins>
<Il-- NEW: a plugin is added to generate the Vert.x specific code -->
<protocPlugin>
<id>vertx-grpc-protoc-plugin</id>
<groupld>io.vertx</groupld>
<artifactld>vertx-grpc-protoc-plugin</artifactid>
<version>${vertx.version}</version>
<mainClass>io.vertx.grpc.protoc.plugin.VertxGrpcGenerator</mainClass>
</protocPlugin>
</protocPlugins>

55

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

</configuration>

</plugin>

7.1.2. Migrating the generated code

In Eclipse Vert.x 4, the new compiler is used. When the new gRPC plugin is used, the generated code is
not written in the same source file. This is because the compiler does not allow custom code generation
on its base class. The plugins must generate a new class with a different name to save the code.

In earlier releases of Eclipse Vert.x, the older gRPC plugin would write the generated code in the same
source file.

For example, if you have the following descriptor:

service Greeter {
rpc SayHello (HelloRequest) returns (HelloReply) {}

}

In Eclipse Vert.x 3.x, the code would be generated in the GreeterGrpc class.

// 3.x
GreeterGrpc.GreeterVertxImplBase service =
new GreeterGrpc.GreeterVertximplBase() {

}

In Eclipse Vert.x 4, the code is generated in the VertxGreeterGrpc class.

/4.x
VertxGreeterGrpc.GreeterVertxImplBase service =
new VertxGreeterGrpc.GreeterVertximplBase() {

}

7.1.3. gRPC APIs support futures

In Eclipse Vert.x 4, the gRPC APlIs support futures. The gRPC plugin generates promisified APls. These
APIs use the standard Eclipse Vert.x input and output arguments, which makes it easier to create
standard Eclipse Vert.x applications.

The following example shows the use of promise in Eclipse Vert.x 3.x.

// 3.x
GreeterGrpc.GreeterVertxImplBase service =
new GreeterGrpc.GreeterVertximplBase() {
@Override
public void sayHello(HelloRequest request, Promise<HelloReply> future) {
future.complete(
HelloReply.newBuilder().setMessage(request.getName()).build());

56

CHAPTER 7. CHANGES IN PROTOCOLS

The following example shows the use of futures in Eclipse Vert.x 4.

/4.x
VertxGreeterGrpc.GreeterVertxImplBase service =
new VertxGreeterGrpc.GreeterVertximplBase() {
@Override
public Future<HelloReply> sayHello(HelloRequest request) {
return Future.succeededFuture(
HelloReply.newBuilder()
.setMessage(request.getName())
.build());

7.2. CHANGES IN ECLIPSE VERT.X MQTT

The following section describes the changes in Eclipse Vert.x MQTT.

7.2.1. Some fluent methods in MQTT clients return future

Some fluent methods in MqttClient class return Future instead of being fluent. For example, methods
such as, MqttClient.connect(), MgttClient.disconnect(), MqttClient.publish() return future in Eclipse

Vert.x 4.

The following example shows the use of publish() method in Eclipse Vert.x 3.x releases.

client
.publish("hello", Buffer.buffer("hello"), MqttQoS.EXACTLY_ONCE, false, false)
.publish("hello", Buffer.buffer("hello"), MqttQoS.AT_LEAST_ONCE, false, false);

The following example shows the use of publish() method in Eclipse Vert.x 4 release.

client.publish("hello", Buffer.buffer("hello"), MqttQoS.EXACTLY_ONCE, false, false);
client.publish("hello", Buffer.buffer("hello"), MqttQoS.AT_LEAST_ONCE, false, false);

7.2.2. MqttWill messages return buffer

The MqttWill data object wraps a string message as an Eclipse Vert.x buffer instead of a byte array.

7.2.3. Removed the deprecated Mqttwill and authorization methods from MQTT

The following MQTT methods have been removed:

Removed methods Replacing methods
MqttWill.willMessage() MqttWill.getWillMessage()
MqttWill.willTopic() MqttWill.getWillTopic()
MqttWill.willQos() MqttWill.getWillQos()

57

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

MqttAuth.username() MqttAuth.getUsername()
MqttAuth.password() MqttAuth.getPassword()

MqttClientOptions.setKeepAliveTimeSecond MqttClientOptions.setKeepAlivelnterval()
s()

7.3. CHANGES IN ECLIPSE VERT.X SERVICE PROXY

The following section describes the changes in service proxy.

7.3.1. Using service proxy code generator

The ServiceProxyProcessor class has been removed.

To use the service proxy code generator, you must import vertx-codegen with processor classifier in
your classpath:

<dependencies>
<dependency>
<groupld>io.vertx</groupld>
<artifactld>vertx-codegen</artifactld>
<classifier>processor</classifier>
</dependency>
<dependency>
<groupld>io.vertx</groupld>
<artifactld>vertx-service-proxy</artifactld>
</dependency>
</dependencies>

Service proxy reuses io.vertx.codegen.CodeGenProcessor from vertx-codegen to start the code
generation of service proxy and handler.

58

CHAPTER 8. CHANGES IN CLIENT COMPONENTS

CHAPTER 8. CHANGES IN CLIENT COMPONENTS

This section explains the changes in Eclipse Vert.x clients.

8.1. CHANGES IN ECLIPSE VERT.X KAFKA CLIENT

The following section describes the changes in Eclipse Vert.x Kafka client.

8.1.1. AdminUtils Class is no longer available

The AdminUtils class is no longer available. Use the new KafkaAdminClient class instead to perform
administrative operations on a Kafka cluster.

8.1.2. Flush methods use asynchronous handler

The flush methods in KafkaProducer class use Handler<AsyncResult<Void>> instead of
Handler<Void>.

8.2. CHANGES IN ECLIPSE VERT.X JDBC CLIENT
From Eclipse Vert.x 4, the JDBC client supports SQL client. The SQL common module has also been
merged in JDBC client, that is, io.vertx:vertx-sql-common merged in io.vertx:vertx-jdbc-client
module. You will have to remove the io.vertx:vertx-sql-common dependency file because
io.vertx:vertx-jdbc-client will include it. With the merging of SQL common client, all the database APIs
have been consolidated into the JDBC client.
In Eclipse Vert.x 4, the SQL client has been updated to include the following clients:

® Reactive PostgreSQL client. In earlier releases, it included a reactive PostgreSQL client.

® Reactive MySQL client

® Reactive DB2 client

® Continues to include reactive PostgreSQL client. This client was available in Eclipse Vert.x 3.x
releases as well.

® Existing JDBC client now includes both the JDBC client APl and the SQL client API
The reactive implementations use the database network protocols. This makes them resource-efficient.

JDBC calls to database are blocking calls. The JDBC client uses worker threads to make these calls non-
blocking.

The following section describes the changes in Eclipse Vert.x JDBC client.

8.2.1. Creating a pool

In Eclipse Vert.x 4, you can create a pool using the JDBC client APIs. In earlier releases, you could create
only clients. You could not create pools.

The following example shows how to create a client in Eclipse Vert.x 3.x.

59

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

/' 3.x
I SQLClient client = JDBCClient.create(vertx, jsonConfig);

The following example shows how to create a pool in Eclipse Vert.x 4.

/' 4.x
I JDBCPool pool = JDBCPool.pool(vertx, jsonConfig);

NOTE

Though the Eclipse Vert.x 3.x APIs are supported in Eclipse Vert.x 4, it is recommended
that you use the new JDBC client APIs in your applications.

A pool enables you to perform simple queries. You do not need to manage connections for simple
queries. However, for complex queries or multiple queries, you must manage your connections.

The following example shows how to manage connections for queries in Eclipse Vert.x 3.x.

// 3.x
client.getConnection(res -> {
if (res.succeeded()) {
SQLConnection connection = res.result();
// Important, do not forget to return the connection
connection.close();
} else {
// Failed to get connection
}
;i

The following example shows how to manage connections for queries in Eclipse Vert.x 4.

/4.x
pool
.getConnection()
.onFailure(e -> {
// Failed to get a connection
})
.onSuccess(conn -> {
// Important, do not forget to return the connection
conn.close();

D;

8.2.2. Support for Typsesafe Config

You can use jsonConfig for configurations. However, using the jsonConfig may sometimes result in
errors. To avoid these errors, the JDBC client introduces Typesafe Config.

The following example shows the basic structure of a Typesafe Config.

// 4.x ONLY!!!

JDBCPool pool = JDBCPool.pool(
vertx,
// configure the connection

60

CHAPTER 8. CHANGES IN CLIENT COMPONENTS

new JDBCConnectOptions()
// H2 connection string
.setddbcUrl("jdbc:h2:~/test")
// username
.setUser("sa")
// password
.setPassword(""),

// configure the pool

new PoolOptions()
.setMaxSize(16)

);

NOTE

To use Typesafe Config, you must include the agroal connection pool in your project. The
pool does not expose many configuration options and makes the configuration easy to
use.

8.2.3. Running SQL queries

This section shows you how to run queries in the JDBC client.

8.2.3.1. Running one shot queries

The following example shows how to run queries without managing the connection in Eclipse Vert.x 3.x.

// 3.x
client.query("SELECT * FROM user WHERE emp_id > ?", new JsonArray().add(1000), res -> {
if (res.succeeded()) {
ResultSet rs = res2.result();
// You can use these results in your application
}
i

The following example shows how to run queries without managing the connection in Eclipse Vert.x 4.

/4.x
pool
.preparedQuery("SELECT * FROM user WHERE emp_id > ?")
// the emp id to look up
.execute(Tuple.of(1000))
.onSuccess(rows -> {
for (Row row : rows) {
System.out.printin(row.getString("FIRST_NAME"));
}
};

8.2.3.2. Running queries on managed connections

The following example shows how to run queries on managed connections in Eclipse Vert.x 4.

pool
.getConnection()

61

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

.onFailure(e -> {
// Failed to get a connection
})
.onSuccess(conn -> {
conn
.query("SELECT * FROM user")
.execute()
.onFailure(e -> {
// Handle the failure
// Important, do not forget to return the connection
conn.close();
}
.onSuccess(rows -> {
for (Row row : rows) {
System.out.printin(row.getString("FIRST_NAME"));
}
// Important, do not forget to return the connection
conn.close();
1;
};

8.2.4. Support for stored procedures

Stored procedures are supported in the JDBC client.

The following example shows how to pass IN arguments in Eclipse Vert.x 3.x.

// 3.x
connection.callWithParams(
"{ call new_customer(?, ?) }",
new JsonArray().add("John").add("Doe"),
null,
res -> {
if (res.succeeded()) {
// Success!
}else {
// Failed!
}
b;

The following example shows how to pass IN arguments in Eclipse Vert.x 4.

/4.

client
.preparedQuery("{call new_customer(?, ?)}")
.execute(Tuple.of("Paulo”, "Lopes"))
.onSuccess(rows -> {

b
In Eclipse Vert.x 3.x, the support for combining the IN and OUT arguments was very limited due to the
available types. In Eclipse Vert.x 4, the pool is type safe and can handle the combination of IN and OUT

arguments. You can also use INOUT parameters in your applications.

The following example shows handling of arguments in Eclipse Vert.x 3.x.

62

CHAPTER 8. CHANGES IN CLIENT COMPONENTS

// 3.x
connection.callWithParams(
"{ call customer_lastname(?, ?) }",
new JsonArray().add("John"),
new JsonArray().addNull().add("VARCHAR"),
res -> {
if (res.succeeded()) {
ResultSet result = res.result();
}else {
// Failed!

}
hE

The following example shows handling of arguments in Eclipse Vert.x 4.

/4.

client
preparedQuery("{call customer_lastname(?, ?)}")
.execute(Tuple.of("John", SqlOutParam.OUT(JDBCType.VARCHAR)))
.onSuccess(rows -> {

};
In the JDBC client, the data types have been updated.

® Foranargument of type OUT, you can specify its return type. In the example, the OUT
argument is specified as type VARCHAR which is a JDBC constant.

® The types are not bound by JSON limitations. You can now use database specific types instead
of text constants for the type name.

8.3. CHANGES IN ECLIPSE VERT.X MAIL CLIENT

The following section describes the changes in Eclipse Vert.x mail client.

8.3.1. MailAttachment is available as an interface

From Eclipse Vert.x 4 onwards, MailAttachment is available as an interface. It enables you to use the
mail attachment functionality in a stream. In earlier releases of Eclipse Vert.x, MailAttachment was
available as a class and attachment for mails was represented as a data object.

8.3.2. Mail configuration interface extends the net client options

MailConfig interface extends the NetClientOptions interface. Due to this extension, mail configuration
also supports the proxy setting of the NetClient.

8.4. CHANGES IN ECLIPSE VERT.X AMQP CLIENT

The following section describes the changes in Eclipse Vert.x AMQP client.

8.4.1. Removed methods in AMQP client that contain AmgpMessage argument

63

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

The AMQP client methods that had Handler<AmgpMessage> as an argument have been removed. In
earlier releases, you could set this handler on ReadStream<AmgpMessage>. However, if you migrate
your applications to use futures, such methods cannot be used.

Removed methods Replacing methods
AmgqpClient.createReceiver(String address, AmqpClient createReceiver(String address,
Handler<AmgpMessage> messageHandler, Handler<AsyncResult<AmqgpReceiver>>
.ex) completionHandler)

AmgpConnection createReceiver(..., AmgpConnection createReceiver(String
Handler<AsyncResult<AmqpReceiver>> address,

completionHandler) Handler<AsyncResult<AmqgpReceiver>>

completionHandler)

AmgpConnection createReceiver(.., AmgpConnection createReceiver(String
Handler<AmgpMessage> messageHandler, address,
Handler<AsyncResult<AmqgpReceiver>> Handler<AsyncResult<AmqgpReceiver>>
completionHandler) completionHandler)

8.5. CHANGES IN ECLIPSE VERT.X MONGODB CLIENT

The following section describes the changes in Eclipse Vert.x MongoDB client.

8.5.1. Methods removed from MongoDB client

The following methods have been removed from MongoClient class.

Removed methods Replacing methods

MongoClient.update() MongoClient.updateCollection()

MongoClient.updateWithOptions() MongoClient.updateCollectionWithOptions()

MongoClient.replace() MongoClient.replaceDocuments()

MongoClient.replaceWithOptions() MongoClient.replaceDocumentsWithOptions(
)

MongoClient.remove() MongoClient.removeDocuments()

MongoClient.removeWithOptions() MongoClient.removeDocumentsWithOptions(
)

MongoClient.removeOne() MongoClient.removeDocument()

MongoClient.removeOneWithOptions() MongoClient.removeDocumentsWithOptions(
)

64

CHAPTER 8. CHANGES IN CLIENT COMPONENTS

8.6. CHANGES IN EVENTBUS JAVASCRIPT CLIENT

In Eclipse Vert.x 4, the EventBus JavaScript client module is available in a new location. You will have to
update your build systems to use the module from the new location.

In Eclipse Vert.x 3.x, the event bus JavaScript client was available in various locations, for example:
® Maven Central
e NPM
® PBower.io
e CDNJS
® webjars

In Eclipse Vert.x 4, the JavaScript client is available only in npm. The EventBus JavaScript client module
can be accessed from the following locations:

e CDN

® npm packages
Use the following code in your build scripts to access the module.

o JSON scripts

{

"devDependencies": {
"@vertx/eventbus-bridge-client.js": "1.0.0-1"

}
}

o XML scripts

<dependency>
<groupld>org.webjars.npm</groupld>
<artifactld>vertx__eventbus-bridge-client.js</artifactld>
<version>1.0.0-1</version>

</dependency>

8.6.1. Versioning of JavaScript client

Before Eclipse Vert.x 4, every Eclipse Vert.x release included a new release of the JavaScript client.
However, from Eclipse Vert.x 4 onward, a new version of JavaScript client will be available in npm only if

there changes in the client. You do not need to update your client application for every Eclipse Vert.x
release, unless there is a version change.

8.7. CHANGES IN ECLIPSE VERT.X REDIS CLIENT

In Eclipse Vert.x 4, use the Redis class to work with Redis client. The class RedisClientis no longer
available.

NOTE

65

https://repo1.maven.org/maven2/io/vertx/vertx-web/3.9.4/vertx-web-3.9.4-client.js
https://www.npmjs.com/package/vertx3-eventbus-client
https://bower.io/search/?q=vertx3-eventbus-client
https://cdnjs.com/libraries/vertx
https://www.webjars.org
https://unpkg.io/@vertx/eventbus-bridge-client.js@1.0.0/vertx-eventbus.js
https://www.npmjs.com/package/@vertx/eventbus-bridge-client.js

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

To help you migrate your applications from RedisClient to Redis class, a helper class RedisAPl s
available. RedisAPI enables you to replicate the functionality similar to RedisClient class.

The new class contains all the enhancements in protocols and Redis server features. Use the new class
to:

Work with all Redis commands

® Connect to single servers

® Connect to high availability servers where Redis Sentinel is enabled
e Connect to cluster configurations of Redis

® [Execute requests in Redis extensions

® Communicate with both RESP2 and RESP3 server protocol servers

8.7.1. Migrating existing Redis client applications to new client

You can migrate your existing applications to new Redis client directly or use the helper class RedisAPI
to migrate your applications in two steps.

Before migrating the applications you must create the client.

8.7.1.1. Creating the client

The following example shows how a Redis client was created in Eclipse Vert.x 3.x releases.

// Create the redis client (3.x)
RedisClient client = RedisClient
.create(vertx, new RedisOptions().setHost(host));

The following example shows how to create a Redis client in Eclipse Vert.x 4.

// Create the redis client (4.x)
Redis client = Redis
.createClient(
vertx,
"redis://server.address:port");

In Eclipse Vert.x 4, the client uses the following standard connection string syntax:

I redis[s]./[[user].password@]server[.port]/[database]

8.7.1.2. Migrating applications to RedisAPI
Using the 'RedisAPI" you can now decide how to manage the connection:

® You can let the client manage the connection for you using a pool.

66

CHAPTER 8. CHANGES IN CLIENT COMPONENTS

® You can control the connection by requesting a new connection. You must ensure to close or

return the connection when done.
You must create the client and then update the applications to handle requests.

The following example shows how to handle requests after creating the client in Eclipse Vert.x 3.x
releases.

// Using 3.x
// omitting the error handling for brevity
client.set("key", "value", s -> {
if (s.succeeded()) {
System.out.printin("key stored");
client.get("key", g -> {
if (s.succeeded()) {
System.out.printin("Retrieved value: " + s.result());

The following example shows how to handle requests after creating the client in Eclipse Vert.x 4. The

example uses a list for setting the key-value pairs instead of hard coding options. See Redis SET
command for more information on arguments available for the command.

// Using 4.x
// omitting the error handling for brevity

// 1. Wrap the client into a RedisAPI
api = RedisAPl.api(client);

// 2. Use the typed API
api.set(
Arrays.asList("key", "value"), s -> {
if (s.succeeded()) {
System.out.printin("key stored");
client.get("key", g -> {
if (s.succeeded()) {
System.out.printin("Retrieved value: " + s.result());

};
}
Wk
8.7.1.3. Migrating applications directly to Redis client
When you migrate to the new Redis client directly:
® You can use all the new Redis commands.

® You can use extensions.

® You may reduce a few conversions from helper class to new client, which might improve the
performance of your application.

https://redis.io/commands/set

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

You must create the client and then update the applications to handle requests.

The following example shows how to set and get requests after creating the client in Eclipse Vert.x 3.x
releases.

// Using 3.x
// omitting the error handling for brevity
client.set("key", "value", s -> {
if (s.succeeded()) {
System.out.printin("key stored");
client.get("key", g -> {
if (s.succeeded()) {
System.out.printin("Retrieved value: " + s.result());

The following example shows how to handle requests after creating the client in Eclipse Vert.x 4.

// Using 4.x
// omitting the error handling for brevity

import static io.vertx.redis.client. Request.cmd;
import static io.vertx.redis.client. Command.*;

client.send(cmd(SET).arg("key").arg("value"), s -> {
if (s.succeeded()) {
System.out.printin("key stored");
client.send(cmd(GET).arg("key"), g -> {
if (s.succeeded()) {
System.out.printin("Retrieved value: " + s.result());

D;
}
hE

In Eclipse Vert.x 4, all the interactions use the send(Request) method.

8.7.1.4. Migrating responses

In Eclipse Vert.x 3., the client used to hardcode all known commands till Redis 5, and the responses were
also typed according to the command.

In the new client, the commands are not hardcoded. The responses are of the type Response. The new
wire protocol has more range of types.

In older client, a response would be of following types:
e null
e Long

e String

68

CHAPTER 8. CHANGES IN CLIENT COMPONENTS

e JsonArray

o JsonObject (For INFO and HMGET array responses)
In the new client, the response is of following types:

e null

® Response
The Response object has type converters. For example, converters such as:

® toString()

e tolnteger()

e toBoolean()

e toBuffer()
If the received data is not of the requested type, then the type converters convert it to the closet
possible data type. When the conversion to a particular type is not possible, the
UnsupportedOperationException is thrown. For example, conversion from String to List or Map is not
possible.

You can also handle collections, because the Response object implements the Iterable interface.

The following example shows how to perform a MGET request.

// Using 4.x
// omitting the error handling for brevity

import static io.vertx.redis.client. Request.cmd;
import static io.vertx.redis.client. Command.*;

client.send(cmd(MGET).arg("key1").arg("key2").arg("key3"), mget -> {
mget.result()
.forEach(value -> {
// Use the single value

8.7.2. Updates in Eclipse Vert.x Redis client

This section describes changes in Redis client.

8.7.2.1. Removed deprecated term "slave" from Redis roles and node options

The deprecated term "slave" has been replaced with "replica” in Redis roles and node options.

Roles

The following example shows the usage of SLAVE role in Eclipse Vert.x 3.x releases.

// Before (3.x)
Redis.createClient(
rule.vertx(),
new RedisOptions()

69

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

.setType(RedisClientType.SENTINEL)
.addConnectionString("redis://localhost:5000")
.setMasterName("sentinel7000")
.setRole(RedisRole.SLAVE));

The following example shows the usage of REPLICA role in Eclipse Vert.x 4.

/I After (4.x)
Redis.createClient(
rule.vertx(),
new RedisOptions()
.setType(RedisClientType.SENTINEL)
.addConnectionString("redis://localhost:5000")
.setMasterName("sentinel7000")
.setRole(RedisRole.REPLICA));

Node options

The following example shows you usage of node type RedisSlaves in Eclipse Vert.x 3.x releases.

// Before (3.9)
options.setUseSlaves(RedisSlaves);

The following example shows you usage of node type RedisReplicas in Eclipse Vert.x 4.

/I After (4.X)
options.setUseReplicas(RedisReplicas);

70

CHAPTER 9. CHANGES IN CLUSTERING

CHAPTER 9. CHANGES IN CLUSTERING

This section explains the changes in clustering.

9.1. CLUSTERED FLAG REMOVED FROM OPTIONS CLASSES

The methods and boolean value that were used to specify, get, and set clustering in Eclipse Vert.x
applications have been removed from VertxOptions and EventBusOptions classes.

9.2. CHANGES IN INFINISPAN CLUSTER MANAGER

The following section describes the changes in the Infinispan cluster manager.

9.2.1. Updates in custom configurations

The Infinispan cluster manager is based on Infinispan 12.

In Eclipse Vert.x 4, the clustering SPI has been redesigned. The subscription data model has changed. As
a result of this, Eclipse Vert.x 3.x nodes and Eclipse Vert.x 4 nodes cannot be added together in the
same Infinispan cluster.

The Eclipse Vert.x applications are not impacted by this change as the EventBus and SharedData APIs
remain the same.

If you had a custom Infinispan configuration file in your Eclipse Vert.x 3.x application:
® Change the __vertx.subs cache type to replicated instead of distributed.

® Add the replicated cache __vertx.nodelnfo.

<cache-container default-cache="distributed-cache">

<distributed-cache name="distributed-cache"/>

<replicated-cache name="__vertx.subs"/>

<replicated-cache name="__vertx.halnfo"/>

<replicated-cache name="__vertx.nodelnfo"/>

<distributed-cache-configuration name="__vertx.distributed.cache.configuration"/>
</cache-container>

If you run an Eclipse Vert.x cluster on Openshift, the infinispan-cloud JAR is no longer needed. The
JAR has been removed from the dependencies section of the build file. The configuration files that were
bundled in this JAR are now included in the infinispan-core JAR.

9.3. MIGRATING CLUSTERS

It is important to decide the migration strategy for your codebase. This is because you cannot add
Eclipse Vert.x 3.x nodes and Eclipse Vert.x 4 nodes together in a single cluster for the following reasons:

® Cluster manager upgrades - Major version upgrades in cluster managers prevent backward
compatibility.

® Subscription data changes - Eclipse Vert.x has changed the format of the EventBus
subscription data stored in cluster managers.

71

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

® Transport protocol changes - Eclipse Vert.x has changed some fields in the message transport
protocol in the cluster.

If you have an Eclipse Vert.x cluster for a single application or for some closely related microservices, you
can migrate the entire codebase to the new cluster at one time.

However, if you cannot migrate the codebase at one time, use the recommendations in this section to
migrate an Eclipse Vert.x 3.x codebase to Eclipse Vert.x 4.

9.3.1. Splitting the cluster

If you have a cluster where different teams have deployed verticles for their applications, you can
consider splitting the Eclipse Vert.x 3.x cluster into smaller ones. Note that after splitting the cluster, the
separated components will not be able to communicate using the clustering features. You can split the
cluster using the following components:

® EventBus request and reply - HTTP or RESTful web services, gRPC

® EventBus send and publish - Messaging systems, Postgres LISTEN and NOTIFY, Redis Pub and
Sub

® Shared Data - Redis, Infinispan

After you split the cluster, each team can move to Eclipse Vert.x 4 when they are ready or if required.

9.3.2. Using Eclipse Vert.x EventBus Link

If you cannot split your cluster, then use Vert.x EventBus Link to migrate your codebase incrementally.

Vert.x EventBus Link is a tool that connects an Eclipse Vert.x 3.x clustered EventBus to an Eclipse Vert.x
4 clustered EventBus.

' WARNING
A The migration of shared data API, that is, maps, counters and locks is not supported.

The tool creates an EventBusLink object that implements the EventBus interface. An instance of
EventBusLink is created on at least one node of each cluster. The instance is created by providing a set
of addresses and its behavior depends on the message paradigm:

® fire and forget and request and reply - The message is sent to the remote cluster.

® publish - The message is sent to both this cluster and the remote cluster.

The Eclipse Vert.x EventBus Link creates a WebSocket server to receive messages and uses a
WebSocket client to send them.

See the sections get started and using for more details.

72

https://github.com/vert-x3/vertx-eventbus-link
https://github.com/vert-x3/vertx-eventbus-link#getting-started
https://github.com/vert-x3/vertx-eventbus-link#using

CHAPTER 10. MISCELLANEOUS CHANGES IN ECLIPSE VERT.X

CHAPTER 10. MISCELLANEOUS CHANGES IN ECLIPSE VERT.X

The following section describes miscellaneous changes in Eclipse Vert.x 4.

10.1. REMOVED THE sTARTER CLASS

The Starter class has been removed. Use the Launcher class instead to start your Eclipse Vert.x
applications without the main() method.

10.2. ISOLATED DEPLOYMENT FOR JAVA 8

Eclipse Vert.x 4 supports Java 11. This Java version does not support isolated class loading. In Eclipse
Vert.x 4, isolated class loading will be supported for Java 8.

10.3. REMOVED HOOK METHODS FROM ECLIPSE VERT. X CONTEXT
The methods Context.addCloseHook() and Context.removeCloseHook() methods have been

removed from the Context class. These methods have been moved to the internal interface
InternalContext.

10.4. REMOVED THE CLONE METHODS FROM OPTIONS
The methods KeyCertOptions.clone(), TrustOptions.clone(), and SSLEngineOptions.clone() have

been removed. Use the methods KeyCertOptions.copy(), TrustOptions.copy(), and
SSLEngineOptions.copy() instead.

10.5. REMOVED EQUALS AND HASHCODE METHODS FROM OPTIONS

The VertxOptions.equals() and VertxOptions.hashCode() methods have been removed.

10.6. NEW METHOD TO CHECK FILE CACHING
The VertxOptions.fileResolverCachingEnabled() method has been removed. Use

FileSystemOptions.isFileCachingEnabled() method instead to check if file caching has been enabled
to resolve classpaths.

10.7. SERVICE PROVIDER INTERFACE (SPI) METRICS

The Metrics.isEnabled() method has been removed. The Service Provider Interface (SPI) metrics will
return a null object to indicate that metrics are not enabled.

10.8. REMOVED THE POOLED BUFFER METHODS

The pooled buffer methods TCPSSLOptions.isUsePooledBuffers() and
TCPSSLOptions.setUsePooledBuffers() have been removed.

10.9. METHODS TO CREATE CLIENTS THAT HAVE NO SHARED DATA
SOURCES

73

Red Hat build of Eclipse Vert.x 4.1 Eclipse Vert.x 4.1 Migration Guide

Use the following new methods to create clients that do not have shared data sources with other clients.
These methods maintain their own data sources.

Deprecated Methods New Methods

MongoClient.createNonShared() MongoClient.create()
JDBCClient.createNonShared() wJDBCClient.create()
CassandraClient.createNonShared() CassandraClient.create()
MailClient.createNonShared() MailClient.create()

10.10. CHANGES IN ECLIPSE VERT.X JUNIT5

The following section describes the changes in Eclipse Vert.x JUnit5.

10.10.1. Support vertx-core module and updates in extensions

The vertx-core module has been updated to use a service provider interface for parameter injection.
This change resulted in following updates in JUnit5:

® You must call the Vertx parameter before any parameter that requires it for creation. For
example, when injecting a WebClient.

e vertx-junit5 module supports only the vertx-core module.

® reactiverse-junit5-extensions module hosts extensions that contain extra parameter types,
such as, WebClient.

® RxJavaland 2 bindings are now available as vertx-junits-rx-java and vertx-junit5-rx-java2
modules in the vertx-junit5-extensions repository.
From Eclipse Vert.x 4.1.0, the RxJava 3 binding vertx-junit5-rx-java3 is available.

10.10.2. Deprecated succeeding and failing methods in Eclipse Vert.x text context

The VertxTestContext.succeeding() and VertxTestContext.failing() methods have been deprecated.
Use VertxTestContext.succeedingThenComplete() and VertxTestContext.failingThenComplete()
methods instead.

74

	Table of Contents
	PREFACE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. CONFIGURING YOUR APPLICATION TO USE ECLIPSE VERT.X
	CHAPTER 2. ABOUT ECLIPSE VERT.X
	CHAPTER 3. WHAT’S CHANGED IN ECLIPSE VERT.X 4
	3.1. USE FUTURE METHODS FOR ASYNCHRONOUS OPERATIONS
	3.2. NO DEPENDENCY ON THE JACKSON DATABIND LIBRARY
	3.3. HANDLING DEPRECATIONS AND REMOVALS

	CHAPTER 4. CHANGES IN COMMON COMPONENTS
	4.1. CHANGES IN MESSAGING
	4.1.1. Write and end methods in write streams are no longer fluent
	4.1.2. MessageProducer does not extend WriteStream
	4.1.3. Removed the send methods from MessageProducer

	4.2. CHANGES IN EVENTBUS
	4.2.1. Removed the request-response send methods in EventBus

	4.3. CHANGES IN FUTURE
	4.3.1. Support for multiple handlers for futures
	4.3.2. Removed the completer() method in future
	4.3.3. Removed the connection handler method in HTTP client request

	4.4. CHANGES IN VERTICLES
	4.4.1. Updates in the create verticle method
	4.4.2. Updates in the factory class and methods
	4.4.3. Removed the multithreaded worker verticles

	4.5. CHANGES IN THREADS
	4.5.1. Context affinity for non Eclipse Vert.x thread

	4.6. CHANGES IN HTTP
	4.6.1. Generic updates in Eclipse Vert.x HTTP methods
	4.6.1.1. Updates in HTTP Methods for WebSocket
	4.6.1.2. Setting the number of WebSocket connections
	4.6.1.3. HttpMethod is available as a interface

	4.6.2. Changes in HTTP client
	4.6.2.1. Migrating applications to Eclipse Vert.x web client
	4.6.2.2. Migrating applications to Eclipse Vert.x HTTP client
	4.6.2.3. Improvements in the Eclipse Vert.x HTTP client

	4.7. CHANGES IN CONNECTION METHODS
	4.7.1. Checking if authentication is required for client
	4.7.2. Upgrade SSL method uses asynchronous handler

	4.8. CHANGES IN LOGGING
	4.8.1. Deprecated logging classes and methods
	4.8.2. Removed Log4j 1 logger

	4.9. CHANGES IN ECLIPSE VERT.X REACTIVE EXTENSIONS (RX)
	4.9.1. Support for RxJava 3
	4.9.2. Removed onComplete callback from write stream

	4.10. CHANGES IN ECLIPSE VERT.X CONFIGURATION
	4.10.1. New method to retrieve configuration

	4.11. CHANGES IN JSON
	4.11.1. Encapsulation of Jackson
	4.11.2. Object mapping
	4.11.3. Base64 encoder updated to Base64URL for JSON objects and arrays
	4.11.4. Removed the JSON converter method from trust options

	4.12. CHANGES IN ECLIPSE VERT.X WEB
	4.12.1. Combined the functionality of user session handler in session handler
	4.12.2. Removed the cookie interfaces
	4.12.3. Favicon and error handlers use Vertx file system
	4.12.4. Accessing the template engine
	4.12.5. Removed the locale interface
	4.12.6. Removed the acceptable locales method
	4.12.7. Updated the method for mounting sub routers
	4.12.8. Removed the create method with excluded strings for JWT authentication handling
	4.12.9. Removed the create handler method that was used in OSGi environments
	4.12.10. Removed the bridge options class
	4.12.11. SockJS socket event bus does not register a clustered event by default
	4.12.12. New method for adding authentication provider
	4.12.13. OAuth2 authentication provider create methods require vertx as constructor argument

	4.13. CHANGES IN ECLIPSE VERT.X WEB GRAPHQL
	4.13.1. Updated methods to be supported on multiple language (polyglot) environments
	4.13.2. Handling POST requests in Eclipse Vert.x Web GraphQL

	4.14. CHANGES IN MICROMETER METRICS
	4.14.1. TCP sent and received bytes are recorded as counters with equivalent HTTP request and response summaries
	4.14.2. Renamed the metrics

	4.15. CHANGES IN ECLIPSE VERT.X OPENAPI
	4.15.1. New module uses router builder
	4.15.2. New router builder methods
	4.15.3. Handling security
	4.15.4. Handling common failures
	4.15.5. Accessing the OpenAPI contract model
	4.15.6. Validating web requests without OpenAPI
	4.15.7. Updates in the Eclipse Vert.x web API service

	CHAPTER 5. CHANGES IN MICROSERVICES PATTERNS
	5.1. CHANGES IN ECLIPSE VERT.X CIRCUIT BREAKER
	5.1.1. Removed execute command methods in circuit breaker

	5.2. CHANGES IN ECLIPSE VERT.X SERVICE DISCOVERY
	5.2.1. Removed create methods from service discovery that contain ServiceDiscovery argument
	5.2.2. Service importer and exporter methods are no longer fluent
	5.2.3. Kubernetes service importer is no longer registered automatically

	CHAPTER 6. CHANGES IN ECLIPSE VERT.X AUTHENTICATION AND AUTHORIZATION
	6.1. MIGRATING THE AUTHENTICATION APPLICATIONS
	6.2. MIGRATING THE AUTHORIZATION APPLICATIONS
	6.3. CHANGES IN KEY MANAGEMENT
	6.3.1. Secret options class is no longer available
	6.3.2. Updates in public secret keys management
	6.3.3. Changes in keystore management

	6.4. DEPRECATED AND REMOVED AUTHENTICATION AND AUTHORIZATION METHODS
	6.4.1. List of removed authentication and authorization methods
	6.4.2. List of deprecated authentication and authorization methods
	6.4.3. List of deprecated authentication and authorization classes

	CHAPTER 7. CHANGES IN PROTOCOLS
	7.1. CHANGES IN ECLIPSE VERT.X GRPC
	7.1.1. New gRPC compiler plugin
	7.1.2. Migrating the generated code
	7.1.3. gRPC APIs support futures

	7.2. CHANGES IN ECLIPSE VERT.X MQTT
	7.2.1. Some fluent methods in MQTT clients return future
	7.2.2. MqttWill messages return buffer
	7.2.3. Removed the deprecated MqttWill and authorization methods from MQTT

	7.3. CHANGES IN ECLIPSE VERT.X SERVICE PROXY
	7.3.1. Using service proxy code generator

	CHAPTER 8. CHANGES IN CLIENT COMPONENTS
	8.1. CHANGES IN ECLIPSE VERT.X KAFKA CLIENT
	8.1.1. AdminUtils Class is no longer available
	8.1.2. Flush methods use asynchronous handler

	8.2. CHANGES IN ECLIPSE VERT.X JDBC CLIENT
	8.2.1. Creating a pool
	8.2.2. Support for Typsesafe Config
	8.2.3. Running SQL queries
	8.2.3.1. Running one shot queries
	8.2.3.2. Running queries on managed connections

	8.2.4. Support for stored procedures

	8.3. CHANGES IN ECLIPSE VERT.X MAIL CLIENT
	8.3.1. MailAttachment is available as an interface
	8.3.2. Mail configuration interface extends the net client options

	8.4. CHANGES IN ECLIPSE VERT.X AMQP CLIENT
	8.4.1. Removed methods in AMQP client that contain AmqpMessage argument

	8.5. CHANGES IN ECLIPSE VERT.X MONGODB CLIENT
	8.5.1. Methods removed from MongoDB client

	8.6. CHANGES IN EVENTBUS JAVASCRIPT CLIENT
	8.6.1. Versioning of JavaScript client

	8.7. CHANGES IN ECLIPSE VERT.X REDIS CLIENT
	8.7.1. Migrating existing Redis client applications to new client
	8.7.1.1. Creating the client
	8.7.1.2. Migrating applications to RedisAPI
	8.7.1.3. Migrating applications directly to Redis client
	8.7.1.4. Migrating responses

	8.7.2. Updates in Eclipse Vert.x Redis client
	8.7.2.1. Removed deprecated term "slave" from Redis roles and node options

	CHAPTER 9. CHANGES IN CLUSTERING
	9.1. CLUSTERED FLAG REMOVED FROM OPTIONS CLASSES
	9.2. CHANGES IN INFINISPAN CLUSTER MANAGER
	9.2.1. Updates in custom configurations

	9.3. MIGRATING CLUSTERS
	9.3.1. Splitting the cluster
	9.3.2. Using Eclipse Vert.x EventBus Link

	CHAPTER 10. MISCELLANEOUS CHANGES IN ECLIPSE VERT.X
	10.1. REMOVED THE STARTER CLASS
	10.2. ISOLATED DEPLOYMENT FOR JAVA 8
	10.3. REMOVED HOOK METHODS FROM ECLIPSE VERT.X CONTEXT
	10.4. REMOVED THE CLONE METHODS FROM OPTIONS
	10.5. REMOVED EQUALS AND HASHCODE METHODS FROM OPTIONS
	10.6. NEW METHOD TO CHECK FILE CACHING
	10.7. SERVICE PROVIDER INTERFACE (SPI) METRICS
	10.8. REMOVED THE POOLED BUFFER METHODS
	10.9. METHODS TO CREATE CLIENTS THAT HAVE NO SHARED DATA SOURCES
	10.10. CHANGES IN ECLIPSE VERT.X JUNIT5
	10.10.1. Support vertx-core module and updates in extensions
	10.10.2. Deprecated succeeding and failing methods in Eclipse Vert.x text context

