& RedHat

Red Hat Ansible Automation Platform
2.1

Ansible Builder Guide

Execution environment builder to create consistent and reproducible automation
execution environments for your Red Hat Ansible Automation Platform.

Last Updated: 2023-05-03






Red Hat Ansible Automation Platform 2.1 Ansible Builder Guide

Execution environment builder to create consistent and reproducible automation execution
environments for your Red Hat Ansible Automation Platform.



Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Providing Feedback: If you have a suggestion to improve this documentation, or find an error,
please contact technical support at to create an issue on the Ansible Automation Platform Jira
project using the Docs component.



Table of Contents

Table of Contents

o 8 o 3
MAKING OPEN SOURCE MORE INCLUSIVE ... it ettt iieieeeeieennnennnn, 4
CHAPTER 1. INTRODUCTION TO ANSIBLE BUILDER ...t i e 5
1.1. ABOUT ANSIBLE BUILDER 5
1.1.1. Why use Ansible Builder? 5
CHAPTER 2. USING ANSIBLE BUILDER ... i i i i i eeenees 6
2.1. INSTALLING ANSIBLE BUILDER 6
2.2. BUILDING A DEFINITION FILE 6
2.3. EXECUTING THE BUILD AND CREATING COMMANDS 7
2.4. BREAKDOWN OF DEFINITION FILE CONTENT 7
2.4.1. Build args and base image 7
2.4.2. Ansible config file path 8
2.4.3. Dependencies 8
2.4.3.1. Galaxy 8
2.4.3.2. Python 9
2.4.3.3. System 9
2.4.4. Additional custom build steps 10
2.5. OPTIONAL BUILD COMMAND ARGUMENTS 10
2.6. CREATING A CONTAINERFILE WITHOUT BUILDING AN IMAGE 10
CHAPTER 3. PUBLISHING AN AUTOMATION EXECUTION ENVIRONMENT ... ... . i, 12
3.1. PUSHING AN EXECUTION ENVIRONMENT CONTAINER IMAGE TO AUTOMATION HUB 12
3.2. PULLING FROM A PROTECTED REGISTRY 12
CHAPTER 4. BUILDING OFF OF EXISTING BASE EES PROVIDED BY RED HAT ANSIBLE AUTOMATION
P L AT F ORM Lttt e et e e e e e e e 13
4.1. GATHERING SYSTEM-LEVEL DEPENDENCIES 13
4.2. CUSTOMIZING AN EXISTING EXECUTION ENVIRONMENT IMAGE 13



Red Hat Ansible Automation Platform 2.1 Ansible Builder Guide




PREFACE

PREFACE

Use Ansible Builder to create consistent and reproducible automation execution environments for your
Red Hat Ansible Automation Platform needs.



Red Hat Ansible Automation Platform 2.1 Ansible Builder Guide

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.


https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. INTRODUCTION TO ANSIBLE BUILDER

CHAPTER 1. INTRODUCTION TO ANSIBLE BUILDER

1.1. ABOUT ANSIBLE BUILDER

Ansible Builder is a command line tool that automates the process of building automation execution
environments by using the metadata defined in various Ansible Collections, as well as by the user.

1.1.1. Why use Ansible Builder?

Before Ansible Builder was developed, Automation Platform users would potentially run against
dependency issues and multiple error messages as they attempted to create a custom virtual
environment or container that had all of their required dependencies installed.

Through the use of an easily customizable definition file, Ansible Builder installs Ansible, specified
Collections and any of its dependencies so that all of the necessary requirements to get jobs running are
fulfilled behind the scenes.



Red Hat Ansible Automation Platform 2.1 Ansible Builder Guide

CHAPTER 2. USING ANSIBLE BUILDER

2.1.INSTALLING ANSIBLE BUILDER

You can install Ansible Builder using Red Hat Subscription Management (RHSM) to attach your Red Hat
Ansible Automation Platform subscription. Attaching your Red Hat Ansible Automation Platform
subscription allows you to access subscription-only resources necessary to install ansible-builder. Once
you attach your subscription, the necessary repository for ansible-builder is automatically enabled.

NOTE

You must have valid subscriptions attached on the host before installing ansible-builder.

Procedure

1. In your terminal, run the following command to activate your Ansible Automation Platform repo:

I $ dnf config-manager --enable ansible-automation-platform-2.1-for-rhel-8-x86_64-rpms

2. Then enter the following command to install Ansible Builder:

I $ dnf install ansible-builder

2.2. BUILDING A DEFINITION FILE

Once you have Ansible Builder installed, we will need to create a definition file which Ansible Builder will
use to create your automation execution environment image. The high level process to build an
automation execution environment image is for Ansible Builder to read and validate your definition file,
then create a Containerfile, and finally pass the Containerfile to Podman which then packages and
creates your automation execution environment image. The definition file we will create for Ansible
Builder is in yaml format and contains different sections which we will discuss in further detail.

The following is an example of a definition file:

Example 2.1. A definition file
version: 1

build_arg_defaults: )
ANSIBLE_GALAXY_CLI_COLLECTION_OPTS: "-v"

ansible_config: 'ansible.cfg' g

dependencies: 6
galaxy: requirements.yml
python: requirements.txt
system: bindep.ixt

additional_build_steps: )
prepend: |
RUN whoami
RUN cat /etc/os-release


https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.1/html-single/red_hat_ansible_automation_platform_installation_guide/index#proc-attaching-subscriptions_planning/

CHAPTER 2. USING ANSIBLE BUILDER

append:
- RUN echo This is a post-install command!
- RUN Is -la /etc

ﬂ Lists default values for build arguments
9 Specifies the ansible.cfg file path
9 Specifies the location of various requirements files

Q Commands for additional custom build steps

For more information about these definition file parameters, please see this section.

2.3. EXECUTING THE BUILD AND CREATING COMMANDS

Prerequisites

® You have created a definition file

Procedure
To build an automation execution environment image, run:

I $ ansible-builder build

By default, Ansible Builder will look for a definition file named execution-environment.yml but a
different file path can be specified as an argument via the -f flag:

I $ ansible-builder build -f definition-file-name.yml

where definition-file-name specifies the name of your definition file.

2.4. BREAKDOWN OF DEFINITION FILE CONTENT

A definition file is necessary for building automation execution environments with Ansible Builder, as it
specifies the content which will be included in the automation execution environment container image.

The following sections breaks down the different parts of a definition file.

2.4.1. Build args and base image

The build_arg_defaults section of the definition file is a dictionary whose keys can provide default
values for arguments to Ansible Builder. See the following table for a list of values that can be used in
build_arg_defaults:

Value Description



Red Hat Ansible Automation Platform 2.1 Ansible Builder Guide

Value Description

ANSIBLE_GALAXY_CLI_COLLECTION_OPT

e Allows the user to pass the —pre flag to
S - .
enable the installation of pre-releases
collections

e -Cisthe equivalent of settingverify_ssl to
false

EE_BASE_IMAGE Specifies the parent image for the automation
execution environment, enabling a new image to be
built that is based off of an already-existing image

EE_BUILDER_IMAGE Specifies the image used for compiling-type tasks

The values given inside build_arg_defaults will be hard-coded into the Containerfile, so these values
will persist if podman build is called manually.

NOTE

If the same variable is specified in the CLI --build-arg flag, the CLI value will take higher
precedence.

2.4.2. Ansible config file path

When using an ansible.cfq file to pass a token and other settings for a private account to an automation
hub server, list the config file path (relative to where the definition file is located) as a string to enable it
as a build argument in the initial phase of the build.

The ansible.cfg file should be formatted like the following example:

[galaxy_server.automation_hub]
url=https://cloud.redhat.com/api/automation-hub/
auth_url=https://sso.redhat.com/auth/realms/redhat-external/protocol/openid-connect/token

[galaxy]
server_list = automation_hub
token=my_ah_token

| Example 2.2. Anansible.cfg file

For more information on how to download a collection from automation hub, please see the related
Ansible documentation page.

2.4.3. Dependencies

2.4.3.1. Galaxy

The galaxy entry points to a valid requirements file for the ansible-galaxy collection install -r ...
command.



CHAPTER 2. USING ANSIBLE BUILDER
The entry requirements.yml may be a relative path from the directory of the automation execution
environment definition’s folder, or an absolute path.

The content of a requirements.yml file may look like the following:

Example 2.3. Arequirements.yml file for Galaxy

collections:
- geerlingguy.java

- kubernetes.core

2.4.3.2. Python

The python entry in the definition file points to a valid requirements file for the pip install -r ...
command.

The entry requirements.txt is a file that installs extra Python requirements on top of what the
Collections already list as their Python dependencies. It may be listed as a relative path from the
from a pip freeze command:

packaging

azure-cli-core==2.11.1

directory of the automation execution environment definition’s folder, or an absolute path. The contents
of arequirements.txt file should be formatted like the following example, similar to the standard output
Example 2.4. A requirements.txt file for Python

boto>=2.49.0

botocore>=1.12.249

pytz

python-dateutil>=2.7.0

awxkit

requests>=2.4.2

xmltodict

python_version >="2.7'

collection community.vmware

google-auth

openshift>=0.6.2
requests-oauthlib
openstacksdk>=0.13
ovirt-engine-sdk-python>=4.4.10

2.4.3.3. System

The system entry in the definition points to a bindep requirements file, which will install system-level
dependencies that are outside of what the collections already include as their dependencies. It may be
listed as a relative path from the directory of the automation execution environment definition’s folder,
or an absolute path.

To demonstrate this, the following is an example bindep.txt file that adds the libxmlI2 and subversion
packages to a container:


https://docs.opendev.org/opendev/bindep/latest/readme.html

Red Hat Ansible Automation Platform 2.1 Ansible Builder Guide

Example 2.5. Abindep.txt file

libxml2-devel [platform:rpm]
subversion [platform:rpm]

2.4.4. Additional custom build steps

The prepend and append commands may be specified in the additional_build_steps section. These
will add commands to the Containerfile which will run either before or after the main build steps are
executed.

The syntax for additional_build_steps must be one of the following:

® a multi-line string

Example 2.6. A multi-line string entry

RUN whoami
RUN cat /etc/os-release

® galist

Example 2.7. A list entry

- RUN echo This is a post-install command!
- RUN Is -la /etc

2.5. OPTIONAL BUILD COMMAND ARGUMENTS

The -t flag will give your automation execution environment image a specific name. For example, the
following command will build an image named my_first_ee_image:

I $ ansible-builder build -t my_first_ee_image
If you have multiple definition files, you can specify which one to use by utilizing the -f flag:
I $ ansible-builder build -f another-definition-file.yml -t another_ee_image

In the example above, Ansible Builder will use the specifications provided in the file another-definition-
file.yml instead of the default execution-environment.yml to build an automation execution
environment image named another_ee_image.

For other specifications and flags that are possible to use with the build command, enter ansible-
builder build --help to see a list of additional options.

2.6. CREATING A CONTAINERFILE WITHOUT BUILDING AN IMAGE

To create a shareable Containerfile without building an image from it, run:

10



CHAPTER 2. USING ANSIBLE BUILDER

I $ ansible-builder create

1



Red Hat Ansible Automation Platform 2.1 Ansible Builder Guide

CHAPTER 3. PUBLISHING AN AUTOMATION EXECUTION
ENVIRONMENT

3.1. PUSHING AN EXECUTION ENVIRONMENT CONTAINER IMAGE TO
AUTOMATION HUB

Prerequisite

® You have execution environment permissions in automation hub allowing you to create new
containers or push to an existing container.

A container registry is a repository for storing container images. Once you have built an automation
execution environment image, you'll be ready to push that container image to the registry portion of

your instance of automation hub.

With your automation hub URL on hand, run the following command to log in to Podman, substituting
your username, password, and automation hub URL:

I $ podman login -u=username -p=password automation-hub-url

Once you're logged in to Podman, run the following command to push your container image to the
container registry on automation hub:

I $ podman push automation-hub-urllee-image-name

NOTE

The automation execution environment image name is specified by the -t argument to
the ansible-builder build command. If you did not specify a custom image name using
the -t flag, the default image tag is ansible-execution-env:latest.

3.2. PULLING FROM A PROTECTED REGISTRY

To pull container images from a password or token-protected registry, create a credential in automation
controller:

Procedure

1. Navigate to automation controller.
2. In the side-menu bar, click Resources — Credentials.
3. Click Add to create a new credential.
4. Supply an authorization URL, username, and password. Click Save.

For more information, please reference the Pulling from Protected Registries section of the Execution
Environment documentation.

12



HAPTER 4. BUILDING OFF OF EXISTING BASE EES PROVIDED BY RED HAT ANSIBLE AUTOMATION PLATFORM

CHAPTER 4. BUILDING OFF OF EXISTING BASE EES
PROVIDED BY RED HAT ANSIBLE AUTOMATION PLATFORM

4.1. GATHERING SYSTEM-LEVEL DEPENDENCIES

The bindep format provides a way of specifying cross-platform requirements. A minimum expectation is
that the collection(s) specify necessary requirements for [platform:rpm].

Below is an example of content from a valid bindep.txt file:

Example 4.1. Abindep.txt file

subversion [platform:rpm]

python38-devel [platform:rpm compile]
git-Ifs [platform:rpm]

Entries from multiple collections will be combined into a single file. This will be processed by bindep and
then passed to dnf. Only requirements with no profiles or no runtime requirements will be installed to the
image.

4.2. CUSTOMIZING AN EXISTING EXECUTION ENVIRONMENT IMAGE
Ansible Controller ships with three default execution environments:
® Ansible 2.9 - no collections are installed other than Controller modules

® Minimal - contains the latest Ansible 2.12 release along with Ansible Runner, but contains no
collections or other additional content

® EE Supported - contains all Red Hat-supported content
While these environments cover many automation use cases, you can add additional items to customize

these containers for your specific needs. The following procedure adds the kubernetes.core collection
to the ee-minimal default image:

Procedure
1. Login to registry.redhat.io via Podman:
I $ podman login -u="[username]" -p="[token/hash]" registry.redhat.io
2. Pull an Automation Execution Environment image

I podman pull registry.redhat.io/ansible-automation-platform-21/ee-minimal-rhel8:latest

3. Configure your Ansible Builder files to specify any additional content to add to the new
execution environment image which is based off of ee-minimal.

a. For example, to add the Kubernetes Core Collection from Galaxy to the image, fill out the
requirements.yml file as such:

13


https://galaxy.ansible.com/kubernetes/core

Red Hat Ansible Automation Platform 2.1 Ansible Builder Guide

collections:
- kubernetes.core

b. For more information on definition files and their content, refer to to definition file
breakdown section.

4. In the execution environment definition file, specify the filepath to the original ee-minimal
container in the EE_BASE_IMAGE field. In doing so, your final execution-environment.yml file

will look like the following:

EE_BASE_IMAGE: 'example.registry.com/my-base-ee'

dependencies:

Example 4.2. A customized execution-environment.yml file
version: 1
build_arg_defaults:

galaxy: requirements.yml

NOTE

Since this example uses the community version of kubernetes.core and not a

certified collection from automation hub, we do not need to create an
ansible.cfg nor reference that in our definition file.

5. Build the new execution environment image using the following command:

I $ ansible-builder build -t registry.redhat.io/[username]/new-ee

where [username] specifies your username, and new-ee specifies the name of your new

container image.

a. Use the podman images command to confirm that your new container image is in that list:

Example 4.3. Output of apodman images command with the imagenew-ee

REPOSITORY TAG IMAGEID CREATED SIZE
localhost/new-ee latest f5509587efbb 3 minutes ago 769 MB

6. Verify your newly-created execution environment image via Ansible Navigator

7. Tag the image for use in your automation hub:

$ podman tag registry.redhat.io/_[username] /_new-ee_ [automation-hub-IP-
address]/_[username]_/_new-ee__

8. Login to your automation hub using Podman:

14



HAPTER 4. BUILDING OFF OF EXISTING BASE EES PROVIDED BY RED HAT ANSIBLE AUTOMATION PLATFORM

NOTE
You must have admin or appropriate container repository permissions for
automation hub to push a container. See Managing containers in private

automation hub in the Red Hat Ansible Automation Platform documentation for
more information.

I $ podman login -u="[username]" -p="[token/hash]" [automation-hub-IP-address]

9. Push yourimage to the container registry in automation hub:

I $ podman push [automation-hub-IP-address]/_[username]_/_new-ee_

10. Pull your new image into your automation controller instance:

a. Navigate to automation controller.
b. From the side-navigational bar, click Administration = Execution Environments.

. Click Add.

(@]

d. Enter the appropriate information then click Save to pull in the new image.

NOTE

if your instance of automation hub is password or token protected, ensure
that you have the appropriate container registry credential set up.

15


https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. INTRODUCTION TO ANSIBLE BUILDER
	1.1. ABOUT ANSIBLE BUILDER
	1.1.1. Why use Ansible Builder?


	CHAPTER 2. USING ANSIBLE BUILDER
	2.1. INSTALLING ANSIBLE BUILDER
	2.2. BUILDING A DEFINITION FILE
	2.3. EXECUTING THE BUILD AND CREATING COMMANDS
	2.4. BREAKDOWN OF DEFINITION FILE CONTENT
	2.4.1. Build args and base image
	2.4.2. Ansible config file path
	2.4.3. Dependencies
	2.4.3.1. Galaxy
	2.4.3.2. Python
	2.4.3.3. System

	2.4.4. Additional custom build steps

	2.5. OPTIONAL BUILD COMMAND ARGUMENTS
	2.6. CREATING A CONTAINERFILE WITHOUT BUILDING AN IMAGE

	CHAPTER 3. PUBLISHING AN AUTOMATION EXECUTION ENVIRONMENT
	3.1. PUSHING AN EXECUTION ENVIRONMENT CONTAINER IMAGE TO AUTOMATION HUB
	3.2. PULLING FROM A PROTECTED REGISTRY

	CHAPTER 4. BUILDING OFF OF EXISTING BASE EES PROVIDED BY RED HAT ANSIBLE AUTOMATION PLATFORM
	4.1. GATHERING SYSTEM-LEVEL DEPENDENCIES
	4.2. CUSTOMIZING AN EXISTING EXECUTION ENVIRONMENT IMAGE


