‘® redhat.

Red Hat AMQ 7.2

Using the AMQ Ruby Client

For Use with AMQ Clients 2.3

Last Updated: 2019-03-18

Red Hat AMQ 7.2 Using the AMQ Ruby Client

For Use with AMQ Clients 2.3

Legal Notice
Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution—Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to install and configure the client, run hands-on examples, and use your
client with other AMQ components.

Table of Contents

CHAPTER 1. OVERVIEW i e i et et e e aan e

1.1. KEY FEATURES
1.2. SUPPORTED STANDARDS AND PROTOCOLS
1.3. SUPPORTED CONFIGURATIONS
1.4. TERMS AND CONCEPTS
1.5. DOCUMENT CONVENTIONS
The sudo command
About the use of file paths in this document

CHAPTER 2. INSTALLATION e it e e a e aaa e

2.1. PREREQUISITES
2.2. INSTALLING ON RED HAT ENTERPRISE LINUX

CHAPTER 3. GETTINGSTARTEDcciiiii i i

3.1. PREPARING THE BROKER
3.2. RUNNING HELLO WORLD

CHAPTER 4. EXAMPLESt et et e e e e naanes

4.1. SENDING MESSAGES
Running the example

4.2. RECEIVING MESSAGES
Running the example

CHAPTER 5. INTEROPERABILITY ... ittt e e e aa e

5.1. INTEROPERATING WITH OTHER AMQP CLIENTS
5.2. INTEROPERATING WITH AMQ JMS
JMS message types
5.3. CONNECTING TO AMQ BROKER
5.4. CONNECTING TO AMQ INTERCONNECT

APPENDIX A. USING YOUR SUBSCRIPTIONccviinn,

Accessing your account

Activating a subscription
Downloading zip and tar files
Registering your system for packages

Table of Contents

a b BB OO W

(o220 <]

Red Hat AMQ 7.2 Using the AMQ Ruby Client

CHAPTER 1. OVERVIEW

CHAPTER 1. OVERVIEW

AMQ Ruby is a library for developing messaging applications. It enables you to write Ruby applications
that send and receive AMQP messages.

IMPORTANT

The AMQ Ruby client is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

AMQ Ruby is part of AMQ Clients, a suite of messaging libraries supporting multiple languages and
platforms. For an overview of the clients, see AMQ Clients Overview. For information about this release,
see AMQ Clients 2.3 Release Notes.

AMQ Ruby is based on the Proton API from Apache Qpid.

1.1. KEY FEATURES
e An event-driven API that simplifies integration with existing applications
e SSL/TLS for secure communication
e Flexible SASL authentication
e Automatic reconnect and failover
e Seamless conversion between AMQP and language-native data types

e Access to all the features and capabilities of AMQP 1.0

1.2. SUPPORTED STANDARDS AND PROTOCOLS
AMQ Ruby supports the following industry-recognized standards and network protocols:
e Version 1.0 of the Advanced Message Queueing Protocol (AMQP)
e \Versions 1.0, 1.1, and 1.2 of the Transport Layer Security (TLS) protocol, the successor to SSL

e Simple Authentication and Security Layer (SASL) mechanisms supported by Cyrus SASL,
including ANONYMOUS, PLAIN, SCRAM, EXTERNAL, and GSSAPI (Kerberos)

e Modern TCP with IPv6

1.3. SUPPORTED CONFIGURATIONS
AMQ Ruby is supported on Red Hat Enterprise Linux 7 with Ruby 2.0.

For more information, see Red Hat AMQ 7 Supported Configurations.

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/amq_clients_overview/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/amq_clients_2.2_release_notes/
http://qpid.apache.org/
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc4422
https://www.cyrusimap.org/sasl/
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc2460
https://access.redhat.com/articles/2791941

Red Hat AMQ 7.2 Using the AMQ Ruby Client

1.4. TERMS AND CONCEPTS

This section introduces the core API entities and describes how they operate together.

Table 1.1. APl terms

Entity Description

Container A top-level container of connections

Connection A channel for communication between two peers on a network
Session A context for sending and receiving messages

Sender A channel for sending messages to a target

Receiver A channel for receiving messages from a source

Source A named point of origin for messages

Target A named destination for messages

Message A mutable holder of application data

Delivery A message transfer

AMQ Ruby sends and receives messages. Messages are transferred between connected peers over
senders and receivers. Senders and receivers are established over sessions. Sessions are established
over connections. Connections are established between two uniquely identified containers. Though a
connection can have multiple sessions, often this is not needed. The API allows you to ignore sessions
unless you require them.

A sending peer creates a sender to send messages. The sender has a target that identifies a queue or
topic at the remote peer. A receiving peer creates a receiver to receive messages. The receiver has a
source that identifies a queue or topic at the remote peer.

The sending of a message is called a delivery. The message is the content sent, including all metadata
such as headers and annotations. The delivery is the protocol exchange associated with the transfer of
that content.

To indicate that a delivery is complete, either the sender or the receiver settles it. When the other side
learns that it has been settled, it will no longer communicate about that delivery. The receiver can also
indicate whether it accepts or rejects the message.

1.5. DOCUMENT CONVENTIONS

This document uses the following conventions for the sudo command and file paths.

The sudo command
In this document, sudo is used for any command that requires root privileges. You should always
exercise caution when using sudo, as any changes can affect the entire system.

CHAPTER 1. OVERVIEW

For more information about using sudo, see The sudo Command.

About the use of file paths in this document

In this document, all file paths are valid for Linux, UNIX, and similar operating systems (for example,
/home/ . . .). If you are using Microsoft Windows, you should use the equivalent Microsoft Windows
paths (for example, C:\Users\...).

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Gaining_Privileges-The_sudo_Command.html

Red Hat AMQ 7.2 Using the AMQ Ruby Client

CHAPTER 2. INSTALLATION

This chapter guides you through the steps to install AMQ Ruby in your environment.

2.1. PREREQUISITES

To begin installation, use your subscription to access AMQ distribution files and repositories.

2.2. INSTALLING ON RED HAT ENTERPRISE LINUX

AMQ Ruby is distributed as a set of RPM packages for Red Hat Enterprise Linux. Follow these steps to
install them.

1. Use the subscription-manager command to subscribe to the required package repositories.

Red Hat Enterprise Linux 7

$ sudo subscription-manager repos --enable=amg-clients-2-for-rhel-7-
server-rpms

2. Use the yum command to install the rubygem-qpid_proton and rubygem-qpid_proton-
doc packages.

I $ sudo yum install rubygem-qgpid_proton rubygem-gpid_proton-doc

CHAPTER 3. GETTING STARTED

CHAPTER 3. GETTING STARTED

This chapter guides you through a simple exercise to help you get started using AMQ Ruby.

3.1. PREPARING THE BROKER

The example programs require a running broker with a queue named examples. Follow these steps to
define the queue and start the broker:

Procedure

1. Install the broker
2. Create a broker instance. Enable anonymous access.

3. Start the broker instance and check the console for any critical errors logged during startup.
$ <broker-instance-dir>/bin/artemis run
14:43:20,158 INFO
[org.apache.activemqg.artemis.integration.bootstrap] AMQ101000:

Starting ActiveMQ Artemis Server

15:01:39,686 INFO [org.apache.activemq.artemis.core.server]
AMQ221020: Started Acceptor at 0.0.0.0:5672 for protocols [AMQP]

15:01:39,691 INFO [org.apache.activemq.artemis.core.server]
AMQ221007: Server is now live

4. Use the artemis queue command to create a queue called examples.

<broker-instance-dir>/bin/artemis queue create --name examples --
auto-create-address --anycast

You are prompted to answer a series of questions. For yes or no questions, type N. Otherwise,
press Enter to accept the default value.

3.2. RUNNING HELLO WORLD

The Hello World example sends a message to the examples queue on the broker and then fetches it
back. On success it prints Hello World! to the console.

Using a new terminal window, change directory to the AMQ Ruby examples directory and run the
helloworld.rb example.

$ cd /usr/share/proton-0.27.0/examples/ruby/
$ ruby helloworld.rb amgp://127.0.0.1 examples
Hello World!

https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/getting_started_with_amq_broker/#installing-broker-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started

Red Hat AMQ 7.2 Using the AMQ Ruby Client

CHAPTER 4. EXAMPLES

This chapter demonstrates the use of AMQ Ruby through example programs.

4.1. SENDING MESSAGES

This client program connects to a server using <connection-url>, creates a sender for target
<address>, sends a message containing <message-body>, closes the connection, and exits.

Example: Sending messages
require 'gpid_proton'

class SendHandler < Qpid::Proton::MessagingHandler
def initialize(conn_url, address, message_body)
super ()

@conn_url = conn_url

@address = address

@message_body = message_body
end

def on_container_start(container)
conn = container.connect(@conn_url)
conn.open_sender (@address)

end

def on_sender_open(sender)
puts "SEND: Opened sender for target address '#
{sender.target.address}'\n"
end

def on_sendable(sender)
message = Qpid::Proton: :Message.new(@message_body)
sender.send(message)

puts "SEND: Sent message '#{message.body}'\n"

sender.close
sender.connection.close
end
end

if ARGV.size ==

conn_url, address, message_body = ARGV
else

abort "Usage: send.rb <connection-url> <address> <message-body>\n"
end

handler = SendHandler.new(conn_url, address, message_body)

container = Qpid::Proton::Container.new(handler)
container.run

Running the example

CHAPTER 4. EXAMPLES

To run the example program, copy it to a local file and invoke it using the ruby command.

I $ ruby send.rb amgp://localhost queuel hello

4.2. RECEIVING MESSAGES

This client program connects to a server using <connection-url>, creates a receiver for source
<address>, and receives messages until it is terminated or it reaches <count> messages.

Example: Receiving messages
require 'gpid_proton'

class ReceiveHandler < Qpid::Proton::MessagingHandler
def initialize(conn_url, address, desired)
super ()

@conn_url = conn_url
@address = address

@desired = desired
@received = 0
end

def on_container_start(container)
conn = container.connect(@conn_url)
conn.open_receiver (@address)

end

def on_receiver_open(receiver)
puts "RECEIVE: Opened receiver for source address '#
{receiver.source.address}'\n"
end

def on_message(delivery, message)
puts "RECEIVE: Received message '#{message.body}'\n"

@received += 1

if @received == @desired
delivery.receiver.close
delivery.receiver.connection.close
end
end
end

if ARGV.size > 1

conn_url, address = ARGV[0..1]
else

abort "Usage: receive.rb <connection-url> <address> [<message-count>]\n"
end

begin
desired = Integer (ARGV[2])
rescue TypeError

Red Hat AMQ 7.2 Using the AMQ Ruby Client

desired = 0
end

handler = ReceiveHandler.new(conn_url, address, desired)
container = Qpid::Proton::Container.new(handler)
container.run

Running the example
To run the example program, copy it to a local file and invoke it using the ruby command.

I $ ruby receive.rb amqgp://localhost queuel

10

CHAPTER 5. INTEROPERABILITY

CHAPTER 5. INTEROPERABILITY

This chapter discusses how to use AMQ Ruby in combination with other AMQ components. For an
overview of the compatibility of AMQ components, see the product introduction.

5.1. INTEROPERATING WITH OTHER AMQP CLIENTS

AMQP messages are composed using the AMQP type system. This common format is one of the
reasons AMQP clients in different languages are able to interoperate with each other.

When sending messages, AMQ Ruby automatically converts language-native types to AMQP-encoded
data. When receiving messages, the reverse conversion takes place.

NOTE

More information about AMQP types is available at the interactive type reference
maintained by the Apache Qpid project.

Table 5.1. AMQP types

AMQP type Description

null An empty value

boolean A true or false value

char A single Unicode character
string A sequence of Unicode characters
binary A sequence of bytes

byte A signed 8-bit integer

short A signed 16-bit integer

int A signed 32-bit integer

long A signed 64-bit integer
ubyte An unsigned 8-bit integer
ushort An unsigned 16-bit integer
uint An unsigned 32-bit integer
ulong An unsigned 64-bit integer
float A 32-bit floating point number

11

https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/introducing_red_hat_amq_7/#component_compatibility
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#toc
http://qpid.apache.org/amqp/type-reference.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-null
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-boolean
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-char
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-string
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-binary
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-short
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-int
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-long
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-ubyte
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-ushort
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-uint
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-ulong
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-float

Red Hat AMQ 7.2 Using the AMQ Ruby Client

AMQP type Description

double A 64-bit floating point number

array A sequence of values of a single type

list A sequence of values of variable type

map A mapping from distinct keys to values

uuid A universally unique identifier

symbol A 7-bit ASCII string from a constrained domain
timestamp An absolute point in time

Table 5.2. AMQ Ruby types before encoding and after decoding

AMQP type AMQ Ruby type before encoding AMQ Ruby type after decoding
null nil nil

boolean true, false true, false
char - String
string String String
binary - String

byte - Integer
short - Integer

int - Integer
long Integer Integer
ubyte - Integer
ushort - Integer
uint - Integer
ulong - Integer

12

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-double
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-array
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-list
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-map
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-uuid
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-timestamp

AMQP type AMQ Ruby type before encoding

float - Float
double Float Float
array - Array
list Array Array
map Hash Hash
symbol Symbol Symbol
timestamp Date, Time Time

Table 5.3. AMQ Ruby and other AMQ client types (1 of 2)

AMQ Ruby type before encoding

nil

true, false

String

Integer

Float

Array

Hash

Symbol

Date, Time

AMQ C++ type

nullptr

bool

std: :string

int64_t

double

std: :vector

std: :map

proton: :symbol

proton::timestamp

Table 5.4. AMQ Ruby and other AMQ client types (2 of 2)

AMQ Ruby type before encoding

nil

true, false

AMQ .NET type

null

System.Boolean

CHAPTER 5. INTEROPERABILITY

AMQ Ruby type after decoding

AMQ JavaScript type

null

boolean

string

number

number

Array

object

string

number

AMQ Python type

None

bool

Red Hat AMQ 7.2 Using the AMQ Ruby Client

AMQ Ruby type before encoding AMQ .NET type AMQ Python type
String System.String unicode
Integer System.Int64 long

Float System.Double float

Array Amqgp .List list

Hash Amqp . Map dict

Symbol Amqp .Symbol str

Date, Time System.DateTime long

5.2. INTEROPERATING WITH AMQ JMS

AMQP defines a standard mapping to the JMS messaging model. This section discusses the various
aspects of that mapping. For more information, see the AMQ JMS Interoperability chapter.

JMS message types

AMQ Ruby provides a single message type whose body type can vary. By contrast, the JMS API uses
different message types to represent different kinds of data. The table below indicates how particular
body types map to JMS message types.

For more explicit control of the resulting JMS message type, you can set the x-opt-jms-msg-type
message annotation. See the AMQ JMS Interoperability chapter for more information.

Table 5.5. AMQ Ruby and JMS message types

AMQ Ruby body type JMS message type

String TextMessage
nil TextMessage
- BytesMessage
Any other type ObjectMessage

5.3. CONNECTING TO AMQ BROKER

AMQ Broker is designed to interoperate with AMQP 1.0 clients. Check the following to ensure the broker
is configured for AMQP messaging.

e Port 5672 in the network firewall is open.

e The AMQ Broker AMQP acceptor is enabled. See Default acceptor settings.

14

https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/using_the_amq_jms_client/#interoperability
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/using_the_amq_jms_client/#interoperability
http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/BytesMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/ObjectMessage.html
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/configuring_amq_broker/#default-acceptor-settings-configuring

CHAPTER 5. INTEROPERABILITY

e The necessary addresses are configured on the broker. See Addresses, Queues, and Topics.

e The broker is configured to permit access from your client, and the client is configured to send
the required credentials. See Broker Security.

5.4. CONNECTING TO AMQ INTERCONNECT

AMQ Interconnect works with any AMQP 1.0 client. Check the following to ensure the components are
configured correctly.

e Port 5672 in the network firewall is open.

e The router is configured to permit access from your client, and the client is configured to send
the required credentials. See Interconnect Security.

15

https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/configuring_amq_broker/#addresses
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/configuring_amq_broker/#security
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/using_amq_interconnect/#security

Red Hat AMQ 7.2 Using the AMQ Ruby Client

APPENDIX A. USING YOUR SUBSCRIPTION

AMQ is provided through a software subscription. To manage your subscriptions, access your account at
the Red Hat Customer Portal.

Accessing your account
1. Go to access.redhat.com.
2. If you do not already have an account, create one.
3. Log in to your account.
Activating a subscription
1. Go to access.redhat.com.
2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading zip and tar files
To access zip or tar files, use the customer portal to find the relevant files for download. If you are using
RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQ entries in the JBOSS INTEGRATION AND AUTOMATION category.
3. Select the desired AMQ product. The Software Downloads page opens.

4. Click the Download link for your component.

Registering your system for packages
To install RPM packages on Red Hat Enterprise Linux, your system must be registered. If you are using
zip or tar files, this step is not required.

1. Go to access.redhat.com.

2. Navigate to Registration Assistant.

3. Select your OS version and continue to the next page.

4. Use the listed command in your system terminal to complete the registration.

To learn more see How to Register and Subscribe a System to the Red Hat Customer Portal.

Revised on 2019-03-18 15:32:55 UTC

16

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads
https://access.redhat.com
https://access.redhat.com/solutions/253273

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. KEY FEATURES
	1.2. SUPPORTED STANDARDS AND PROTOCOLS
	1.3. SUPPORTED CONFIGURATIONS
	1.4. TERMS AND CONCEPTS
	1.5. DOCUMENT CONVENTIONS
	The sudo command
	About the use of file paths in this document

	CHAPTER 2. INSTALLATION
	2.1. PREREQUISITES
	2.2. INSTALLING ON RED HAT ENTERPRISE LINUX

	CHAPTER 3. GETTING STARTED
	3.1. PREPARING THE BROKER
	3.2. RUNNING HELLO WORLD

	CHAPTER 4. EXAMPLES
	4.1. SENDING MESSAGES
	Running the example

	4.2. RECEIVING MESSAGES
	Running the example

	CHAPTER 5. INTEROPERABILITY
	5.1. INTEROPERATING WITH OTHER AMQP CLIENTS
	5.2. INTEROPERATING WITH AMQ JMS
	JMS message types

	5.3. CONNECTING TO AMQ BROKER
	5.4. CONNECTING TO AMQ INTERCONNECT

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing your account
	Activating a subscription
	Downloading zip and tar files
	Registering your system for packages

