‘® redhat.

Red Hat AMQ 7.2

Using the AMQ C++ Client

For Use with AMQ Clients 2.3

Last Updated: 2019-03-18

Red Hat AMQ 7.2 Using the AMQ C++ Client

For Use with AMQ Clients 2.3

Legal Notice
Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution—Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to install and configure the client, run hands-on examples, and use your
client with other AMQ components.

Table of Contents

CHAPTER 1. OVERVIEW et er it e e e nanans

1.1. KEY FEATURES
1.2. SUPPORTED STANDARDS AND PROTOCOLS
1.3. SUPPORTED CONFIGURATIONS
1.4. TERMS AND CONCEPTS
1.5. DOCUMENT CONVENTIONS
The sudo command
About the use of file paths in this document

CHAPTER 2. INSTALLATIONot e it e e e nanans

2.1. PREREQUISITES
2.2. INSTALLING ON RED HAT ENTERPRISE LINUX
2.3. INSTALLING ON MICROSOFT WINDOWS

CHAPTER 3. GETTING STARTEDciiiiiiii it inannns

3.1. PREPARING THE BROKER

3.2. BUILDING THE EXAMPLES

3.3. SENDING AND RECEIVING MESSAGES
Sending messages
Receiving messages

CHAPTER 4. EXAMPLES it it it e nasnannns

4.1. SENDING MESSAGES
Running the example

4.2. RECEIVING MESSAGES
Running the example

CHAPTERS5.USING THE APl ... e et e e e nanans

5.1. BASIC OPERATION
5.1.1. Handling messaging events
5.1.2. Creating a container
Setting the container identity
5.2. NETWORK CONNECTIONS
5.2.1. Connection URLs
5.2.2. Creating outgoing connections
5.2.3. Configuring reconnect
5.2.4. Configuring failover
5.3. MESSAGE DELIVERY
5.3.1. Sending messages
5.3.2. Tracking sent messages
5.3.3. Receiving messages
5.3.4. Acknowledging received messages
5.4. ERROR HANDLING
Catching exceptions
Handling connection and protocol errors
5.5. SECURITY
5.5.1. Securing connections with SSL/TLS
5.5.2. Connecting with a user and password
5.5.3. Configuring SASL authentication
5.5.4. Authenticating using Kerberos
5.6. TIMERS
5.6.1. Scheduling deferred work

Table of Contents

(o2 G) B) B &) B A

N N

........................... 15

15
15
15
15
16
16
16
16
17
18
18
18
18
19
19
19
20
21
21
21
21
22
22
22

Red Hat AMQ 7.2 Using the AMQ C++ Client

5.7. MORE INFORMATION

CHAPTER 6. FILE-BASED CONFIGURATIONt iiiiieenns

6.1. FILE LOCATIONS
6.2. FILE FORMAT
6.3. CONFIGURATION OPTIONS

CHAPTER 7. MULTITHREADING ... ittt ittt i enasnnnnanrnnns

7.1. THREADING MODEL

7.2. THREAD-SAFETY RULES

7.3. WORK QUEUES

7.4. THE WAKE PRIMITIVE

7.5. USING OLDER VERSIONS OF C++

CHAPTER 8. INTEROPERABILITY ...t e et e e canae s

8.1. INTEROPERATING WITH OTHER AMQP CLIENTS
8.2. INTEROPERATING WITH AMQ JMS
JMS message types
8.3. CONNECTING TO AMQ BROKER
8.4. CONNECTING TO AMQ INTERCONNECT

APPENDIX A. USING YOUR SUBSCRIPTIONttt

Accessing your account

Activating a subscription
Downloading zip and tar files
Registering your system for packages

23

24
24
24
25

26
26
26
26
26
27

28
32
32
32
33

34
34
34
34

Table of Contents

Red Hat AMQ 7.2 Using the AMQ C++ Client

CHAPTER 1. OVERVIEW

AMQ C++ is a library for developing messaging applications. It enables you to write C++ applications
that send and receive AMQP messages.

AMQ C++ is part of AMQ Clients, a suite of messaging libraries supporting multiple languages and
platforms. For an overview of the clients, see AMQ Clients Overview. For information about this release,
see AMQ Clients 2.3 Release Notes.

AMQ C++ is based on the Proton API from Apache Qpid.

1.1. KEY FEATURES
e An event-driven API that simplifies integration with existing applications
e SSL/TLS for secure communication
e Flexible SASL authentication
e Automatic reconnect and failover
e Seamless conversion between AMQP and language-native data types

e Access to all the features and capabilities of AMQP 1.0

1.2. SUPPORTED STANDARDS AND PROTOCOLS
AMQ C++ supports the following industry-recognized standards and network protocols:
e Version 1.0 of the Advanced Message Queueing Protocol (AMQP)
e \Versions 1.0, 1.1, and 1.2 of the Transport Layer Security (TLS) protocol, the successor to SSL

e Simple Authentication and Security Layer (SASL) mechanisms supported by Cyrus SASL,
including ANONYMOUS, PLAIN, SCRAM, EXTERNAL, and GSSAPI (Kerberos)

e Modern TCP with IPv6

1.3. SUPPORTED CONFIGURATIONS
AMQ C++ supports the following OS and language versions:

e Red Hat Enterprise Linux 6 with GNU C++, compiling as C++03 or C++0x (partial C++11
support)

e Red Hat Enterprise Linux 7 with GNU C++, compiling as C++03 or C++11
e Microsoft Windows 10 Pro with Microsoft Visual Studio 2013

e Microsoft Windows Server 2012 R2 with Microsoft Visual Studio 2013

e Microsoft Windows Server 2016 with Microsoft Visual Studio 2013

For more information, see Red Hat AMQ 7 Supported Configurations.

https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/amq_clients_overview/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/amq_clients_2.2_release_notes/
http://qpid.apache.org/
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc4422
https://www.cyrusimap.org/sasl/
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc2460
https://access.redhat.com/articles/2791941

CHAPTER 1. OVERVIEW

1.4. TERMS AND CONCEPTS

This section introduces the core API entities and describes how they operate together.

Table 1.1. APl terms

Entity Description

Container A top-level container of connections

Connection A channel for communication between two peers on a network
Session A context for sending and receiving messages

Sender A channel for sending messages to a target

Receiver A channel for receiving messages from a source

Source A named point of origin for messages

Target A named destination for messages

Message A mutable holder of application data

Delivery A message transfer

AMQ C++ sends and receives messages. Messages are transferred between connected peers over
senders and receivers. Senders and receivers are established over sessions. Sessions are established
over connections. Connections are established between two uniquely identified containers. Though a
connection can have multiple sessions, often this is not needed. The API allows you to ignore sessions
unless you require them.

A sending peer creates a sender to send messages. The sender has a target that identifies a queue or
topic at the remote peer. A receiving peer creates a receiver to receive messages. The receiver has a
source that identifies a queue or topic at the remote peer.

The sending of a message is called a delivery. The message is the content sent, including all metadata
such as headers and annotations. The delivery is the protocol exchange associated with the transfer of
that content.

To indicate that a delivery is complete, either the sender or the receiver settles it. When the other side
learns that it has been settled, it will no longer communicate about that delivery. The receiver can also
indicate whether it accepts or rejects the message.

1.5. DOCUMENT CONVENTIONS

This document uses the following conventions for the sudo command and file paths.

The sudo command
In this document, sudo is used for any command that requires root privileges. You should always
exercise caution when using sudo, as any changes can affect the entire system.

Red Hat AMQ 7.2 Using the AMQ C++ Client

For more information about using sudo, see The sudo Command.

About the use of file paths in this document

In this document, all file paths are valid for Linux, UNIX, and similar operating systems (for example,
/home/ . . .). If you are using Microsoft Windows, you should use the equivalent Microsoft Windows
paths (for example, C:\Users\...).

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Gaining_Privileges-The_sudo_Command.html

CHAPTER 2. INSTALLATION

CHAPTER 2. INSTALLATION

This chapter guides you through the steps to install AMQ C++ in your environment.

2.1. PREREQUISITES

To begin installation, use your subscription to access AMQ distribution files and repositories.

2.2. INSTALLING ON RED HAT ENTERPRISE LINUX

AMQ C++ is distributed as a set of RPM packages for Red Hat Enterprise Linux. Follow these steps to
install them.

1. Use the subscription-manager command to subscribe to the required package repositories.

Red Hat Enterprise Linux 6

$ sudo subscription-manager repos --enable=amg-clients-2-for-rhel-6-
server-rpms

Red Hat Enterprise Linux 7

$ sudo subscription-manager repos --enable=amg-clients-2-for-rhel-7-
server-rpms

2. Use the yum command to install the qpid-proton-cpp-devel and gpid-proton-cpp-docs
packages.

I $ sudo yum install gpid-proton-cpp-devel gpid-proton-cpp-docs
In order to compile programs using the API, you will also need to install gcc-c++, cmake, and make.

I $ sudo yum install gcc-c++ cmake make

2.3. INSTALLING ON MICROSOFT WINDOWS
AMQ C++ is distributed as an SDK zip archive for use with Visual Studio. Follow these steps to install it.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQ Clients entry in the JBOSS INTEGRATION AND AUTOMATION
category.

3. Click Red Hat AMQ Clients. The Software Downloads page opens.
4. Download the AMQ C++ Client Windows SDK zip file.

5. Extract the file contents into a directory of your choosing by right-clicking on the zip file and
selecting Extract All.

https://access.redhat.com/downloads

Red Hat AMQ 7.2 Using the AMQ C++ Client

CHAPTER 3. GETTING STARTED

This chapter guides you through a simple exercise to help you get started using AMQ C++.

3.1. PREPARING THE BROKER

The example programs require a running broker with a queue named examples. Follow these steps to
define the queue and start the broker:

Procedure

1. Install the broker

2. Create a broker instance. Enable anonymous access.

3. Start the broker instance and check the console for any critical errors logged during startup.
$ <broker-instance-dir>/bin/artemis run
:i_él1;43:20,158 INFO
[org.apache.activemqg.artemis.integration.bootstrap] AMQ101000:

Starting ActiveMQ Artemis Server

15:01:39,686 INFO [org.apache.activemq.artemis.core.server]
AMQ221020: Started Acceptor at 0.0.0.0:5672 for protocols [AMQP]

15:01:39,691 INFO [org.apache.activemq.artemis.core.server]
AMQ221007: Server is now live

4. Use the artemis queue command to create a queue called examples.

<broker-instance-dir>/bin/artemis queue create --name examples --
auto-create-address --anycast

You are prompted to answer a series of questions. For yes or no questions, type N. Otherwise,
press Enter to accept the default value.

3.2. BUILDING THE EXAMPLES
This section illustrates how to compile the example programs that come with the client API.

1. Create a directory to hold the programs. This example names it "AMQ7C++SmokeTest", but you
can use any name you like.

I $ mkdir AMQ7C++SmokeTest

2. Enter the new directory.

I $ cd AMQ7C++SmokeTest

3. Copy all the examples to this directory.

I $ cp -r /usr/share/proton-0.27.0/examples/cpp

https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/getting_started_with_amq_broker/#installing-broker-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started

CHAPTER 3. GETTING STARTED

NOTE

The example directory name depends on the version of proton we just installed -
0.27.0 is the version as of the writing of this documentation. If a different version
is actually installed, this directory name needs to be changed to reflect the actual
name installed on the system.

This example compiles all of the examples and then runs the two of interest. They can be
compiled like this:

$ cmake
$ make

NOTE

It is not recommended to use cmake in the same directory as the source being
built. This example does so for simplicity.

Consider creating a directory for builds and run cmake there.

3.3. SENDING AND RECEIVING MESSAGES

The compiled example programs use the broker we started earlier to queue the messages between
sending and receiving.

Sending messages
e Use one of the example programs to send 10 messages to a queue named examples.

I $./simple_send -m 10

The command line option -m 10 tells the program to send 10 messages.

This outputs:

I all messages confirmed
$

By default the simple_send example connects to an AMQP listener on the same machine (IP
address 127.0.0.1, port 5672) and sends messages to the AMQP address examples. This
corresponds to the examples queue that we have configured in the AMQ Broker.

Receiving messages

e Execute the following commands as you did in the previous example.
I $./simple_recv -m 10

In this case the command line option -m 10 tells the program to exit after receiving 10
messages.

I simple_recv listening on 127.0.0.1:5672/examples

Red Hat AMQ 7.2 Using the AMQ C++ Client

{"sequence"=1}
{"sequence"=2}
{"sequence"=3}
{"sequence"=4}
{"sequence"=5}
{"sequence"=6}
{"sequence"=7}
{"sequence"=8}
{"sequence"=9}
{"sequence"=10}
$

The simple_recv example is similar to the simple_send example. It also connects to an
AMQP listener on the same machine. By default it subscribes to the AMQP address examples
and receives 100 messages.

10

CHAPTER 4. EXAMPLES

CHAPTER 4. EXAMPLES

This chapter demonstrates the use of AMQ C++ through example programs.

See the Qpid Proton C++ examples for more sample programs.

NOTE

The code presented in this guide uses C++11 features. AMQ C++ is also compatible with
C++03, but the code will require minor modifications.

4.1. SENDING MESSAGES

This client program connects to a server using <connection-url>, creates a sender for target
<address>, sends a message containing <message-body>, closes the connection, and exits.

Example: Sending messages

#include <proton/connection.hpp>
#include <proton/container.hpp>
#include <proton/message.hpp>

#include <proton/messaging_handler.hpp>
#include <proton/sender.hpp>

#include <proton/target.hpp>

#include <iostream>
#include <string>

struct send_handler : public proton::messaging_handler {
std::string conn_url_ {};
std::string address_ {};
std::string message_body_ {};

void on_container_start(proton::container& cont) override {
cont.connect(conn_url_);

}

void on_connection_open(proton::connection& conn) override {
conn.open_sender (address_);

}

void on_sender_open(proton::sender& snd) override {
std::cout << "SEND: Opened sender for target address '"
<< snd.target().address() << "'\n";

}

void on_sendable(proton::sender& snd) override {
proton: :message msg {message_body_};
snd.send(msg);

std::cout << "SEND: Sent message '" << msg.body() << "'\n";

snd.close();
snd.connection().close();

11

http://qpid.apache.org/releases/qpid-proton-0.27.0/proton/cpp/examples/index.html

Red Hat AMQ 7.2 Using the AMQ C++ Client

iy

int main(int argc, char** argv) {
if (argc !'= 4) {
std::cerr << "Usage: send <connection-url> <address> <message-

body>\n";
return 1;
}
send_handler handler {};
handler.conn_url_ = argv[1];
handler.address_ = argv[2];
handler.message_body_ = argv[3];

proton::container cont {handler};

try {
cont.run();

} catch (const std::exception& e) {
std::cerr << e.what() << "\n";
return 1;

}

return 0;

Running the example
To run the example program, copy it to a local file, compile it, and execute it from the command line.

$ g++ send.cpp -o send -std=c++11 -1stdc++ -lgpid-proton-cpp
$./send amqp://localhost queuel hello

4.2. RECEIVING MESSAGES

This client program connects to a server using <connection-url>, creates a receiver for source
<address>, and receives messages until it is terminated or it reaches <count> messages.

Example: Receiving messages

#include <proton/connection.hpp>
#include <proton/container.hpp>
#include <proton/delivery.hpp>

#include <proton/message.hpp>

#include <proton/messaging_handler.hpp>
#include <proton/receiver.hpp>

#include <proton/source.hpp>

#include <iostream>
#include <string>

struct receive_handler : public proton::messaging_handler {
std::string conn_url_ {};
std::string address_ {};
int desired_ {0};

12

CHAPTER 4. EXAMPLES

int received_ {0};

void on_container_start(proton::container& cont) override {
cont.connect(conn_url_);

}

void on_connection_open(proton::connection& conn) override {
conn.open_receiver (address_);

}

void on_receiver_open(proton::receiver& rcv) override {
std::cout << "RECEIVE: Opened receiver for source address '"
<< rcv.source().address() << "'\n";

}
void on_message(proton::delivery& dlv, proton::message& msg) override
{
std::cout << "RECEIVE: Received message '" << msg.body() << "'\n";
received_++;
if (received_ == desired_) {
dlv.receiver().close();
dlv.connection().close();
}
}
iy

int main(int argc, char** argv) {
if (argc != 3 && argc !'= 4) {
std::cerr << "Usage: receive <connection-url> <address> [<message-
count>]\n";

return 1;
}
receive_handler handler {};
handler.conn_url_ = argv[1];
handler.address_ = argv[2];

if (argc == 4) {
handler.desired_ = std::stoi(argv[3]);
}

proton::container cont {handler};

try {
cont.run();

} catch (const std::exception& e) {
std::cerr << e.what() << "\n";
return 1;

}

return 0;

Running the example

13

Red Hat AMQ 7.2 Using the AMQ C++ Client

To run the example program, copy it to a local file, compile it, and execute it from the command line.

$ g++ receive.cpp -0 receive -std=c++11 -1lstdc++ -lgpid-proton-cpp
$./receive amqgp://localhost queuel

14

CHAPTER 5. USING THE API

CHAPTER 5. USING THE API

This chapter explains how to use the AMQ C++ API to perform common messaging tasks.

5.1. BASIC OPERATION

5.1.1. Handling messaging events

AMQ C++ is an asynchronous event-driven API. To define how the application handles events, the user
implements callback methods on the messaging_handler class. These methods are then called as
network activity or timers trigger new events.

Example: Handling messaging events

struct example_handler : public proton::messaging_handler {
void on_container_start(proton::container& cont) override {
std::cout << "The container has started\n";

}

void on_sendable(proton::sender& snd) override {
std::cout << "A message can be sent\n";

}
void on_message(proton::delivery& dlv, proton::message& msg) override
{
std::cout << "A message is received\n";
}
iy

These are only a few common-case events. The full set is documented in the API reference.

5.1.2. Creating a container

The container is the top-level API object. It is the entry point for creating connections, and it is
responsible for running the main event loop. It is often constructed with a global event handler.

Example: Creating a container

int main() {
example_handler handler {};
proton::container cont {handler};
cont.run();

Setting the container identity

Each container instance has a unique identity called the container ID. When AMQ C++ makes a
connection, it sends the container ID to the remote peer. To set the container ID, pass it to the
proton: :container constructor.

Example: Setting the container identity

I proton::container cont {handler, "job-processor-3"};

15

https://qpid.apache.org/releases/qpid-proton-0.27.0/proton/cpp/api/classproton_1_1messaging__handler.html

Red Hat AMQ 7.2 Using the AMQ C++ Client

If the user does not set the ID, the library will generate a UUID when the container is constucted.

5.2. NETWORK CONNECTIONS

5.2.1. Connection URLs

Connection URLs encode the information used to establish new connections.

Connection URL syntax

I scheme://host[:port]

e Scheme - The connection transport, either amqgp for unencrypted TCP or amgps for TCP with
SSL/TLS encryption.

e Host - The remote network host. The value can be a hostname or a numeric IP address. IPv6
addresses must be enclosed in square brackets.

e Port- The remote network port. This value is optional. The default value is 5672 for the amqp
scheme and 5671 for the amqps scheme.

Connection URL examples

amgps://example.com
amgps://example.net:56720
amgp://127.0.0.1
amgp://[::1]:2000

5.2.2. Creating outgoing connections

To connect to a remote server, call the container: :connect () method with a connection URL. This
is typically done inside the messaging_handler: :on_container_start () method.

Example: Creating outgoing connections

class example_handler : public proton::messaging_handler {
void on_container_start(proton::container& cont) override {
cont.connect("amqp://example.com");

}

void on_connection_open(proton::connection& conn) override {
std::cout << "The connection is open\n";

}
iy

See the Section 5.5, “Security” section for information about creating secure connections.

5.2.3. Configuring reconnect

Reconnect allows a client to recover from lost connections. It is used to ensure that the components in a
distributed system reestablish communication after temporary network or component failures.

16

CHAPTER 5. USING THE API

AMQ C++ disables reconnect by default. To enable it, set the reconnect connection option to an
instance of the reconnect_options class.

Example: Enabling reconnect

proton::connection_options opts {};
proton: :reconnect_options ropts {};

opts.reconnect(ropts);

container.connect("amgp://example.com", opts);

With reconnect enabled, if a connection is lost or a connection attempt fails, the client will try again after
a brief delay. The delay increases exponentially for each new attempt.

To control the delays between connection attempts, set the delay, delay_multiplier, and
max_delay options. All durations are specified in milliseconds.

To limit the number of reconnect attempts, set the max_attempts option. Setting it to 0 removes any
limit.

Example: Configuring reconnect

proton::connection_options opts {};
proton::reconnect_options ropts {};

ropts.delay(proton: :duration(10));
ropts.delay_multiplier(2.0);
ropts.max_delay(proton: :duration: : FOREVER);
ropts.max_attempts(0);

opts.reconnect(ropts);

container.connect("amgp://example.com", opts);

5.2.4. Configuring failover

AMQ C++ allows you to configure multiple connection endpoints. If connecting to one fails, the client
attempts to connect to the next in the list. If the list is exhausted, the process starts over.

To specify alternate connection endpoints, set the failover_urls reconnect option to a list of
connection URLs.

Example: Configuring failover

std::vector<std::string> failover_urls = {
"amgp://backupl.example.com",
"amgp://backup2.example.com"

iy

proton::connection_options opts {};
proton::reconnect_options ropts {};

opts.reconnect(ropts);

17

Red Hat AMQ 7.2 Using the AMQ C++ Client

ropts.failover_urls(failover_urls);

container.connect("amqgp://primary.example.com", opts);

5.3. MESSAGE DELIVERY

5.3.1. Sending messages

To send a message, override the on_sendable event handler and call the sender: : send () method.
The sendable event fires when the proton: : sender has enough credit to send at least one
message.

Example: Sending messages

struct example_handler : public proton::messaging_handler {
void on_container_start(proton::container& cont) override {
proton::connection conn = cont.connect("amqp://example.com");
conn.open_sender("jobs");

}

void on_sendable(proton::sender& snd) override {
proton::message msg {"job-1"};
snd.send(msg) ;

iy

5.3.2. Tracking sent messages

When a message is sent, the sender can keep a reference to the tracker object representing the
transfer. After the message is delivered, the receiver accepts or rejects it. The sender is notified of the
outcome for each tracked delivery.

To monitor the outcome of a sent message, override the on_tracker_accept and
on_tracker_reject event handlers and map the delivery state update to the tracker returned from
send().

Example: Tracking sent messages

void on_sendable(proton::sender& snd) override {
proton::message msg {"job-1"};
proton::tracker trk = snd.send(msg);

}

void on_tracker_accept(proton::tracker& trk) override {
std: :cout << "Delivery for " << trk << " 1is accepted\n";

}

void on_tracker_reject(proton::tracker& trk) override {
std: :cout << "Delivery for " << trk << " 1is rejected\n";

}

5.3.3. Receiving messages

18

CHAPTER 5. USING THE API

To receive messages, create a receiver and override the on_message event handler.

Example: Receiving messages

struct example_handler : public proton::messaging_handler {
void on_container_start(proton::container& cont) override {
proton::connection conn = cont.connect("amqp://example.com");
conn.open_receiver("johs");

}
void on_message(proton::delivery& dlv, proton::message& msg) override
{
std::cout << "Received message '" << msg.body() << "'\n";
}
iy

5.3.4. Acknowledging received messages

To explicitly accept or reject a delivery, use the delivery: :accept() ordelivery::reject()
methods in the on_message event handler.

Example: Acknowledging received messages

void on_message(proton::delivery& dlv, proton::message& msg) override {

try {
process_message(msg);

dlv.accept();
} catch (std::exception& e) {
dlv.reject();

}

By default, if you do not explicity acknowledge a delivery, then the library accepts it after on_message
returns. To disable this behavior, set the auto_accept receiver option to false.

5.4. ERROR HANDLING
Errors in AMQ C++ can be handled in two different ways.
e Catching exceptions
e Overriding virtual functions to handle AMQP protocol or connection errors
Catching exceptions
Catching exceptions is the most basic, but least granular, way to handle errors. If an error is not handled
using an override in a handler routine, an exception will be thrown and can be caught and handled. An

exception thrown in this way will be thrown by the container’s run method.

All of the exceptions that can be thrown by AMQ C++ are descended from proton: :error, which in
turn is a subclass of std: : runtime_error (which is a subclass of std: :exception).

The code example below illustrates how a block could be written to catch any exception thrown from
AMQ C++.

19

Red Hat AMQ 7.2 Using the AMQ C++ Client

Example: API-Specific exception handling

try {
// Something that might throw an exception

} catch (proton::error& e) {

// Handle Proton-specific problems here
} catch (std::exception& e) {

// Handle more general problems here

}

If you require no API-specific exception handling, you only need to catch std: :exception since
proton: :error descends from it.

Example: General exception handling

int main() {

try {
// Something that might throw an exception

} catch (std::exception& e) {
std::cerr << "Caught exception: " << e.what() << std::endl;

}

NOTE

Because all exceptions in a C++ program descend from std: :exception, you can
write a code block to wrap your main method and display information about any
std: :exception errors.

Handling connection and protocol errors
You can handle protocol-level errors by overriding the following messaging_handler methods:

e on_transport_error(proton: :transport&)

e on_connection_error(proton: :connection&)
e on_session_error(proton: :session&)

e on_receiver_error(proton::receiver&)

e on_sender_error(proton::sender&)

These event handling routines are called whenever there is an error condition with the specific object
that is in the event. After calling the error handler, the appropriate close handler will also be called.

If not overridden the default error handler will be called with an indication of the error condition that
occurred.

There is also a default error handler:
e on_error(proton::error_condition&)

If one of the more specific error handlers is not overridden, this will be called.

20

CHAPTER 5. USING THE API

NOTE

As the close handlers will be called in the event of any error, only error itself need be
handled within the error handler. Resource clean up can be managed by close handlers. If
there is no error handling that is specific to a particular object it is typical to use the
general on_error handler and not have a more specific handler.

5.5. SECURITY

5.5.1. Securing connections with SSL/TLS

AMQ C++ uses SSL/TLS to encrypt communication between clients and servers.

To connect to a remote server with SSL/TLS, use a connection URL with the amgps scheme.

Example: Enabling SSL/TLS

I container.connect("amqps://example.com");

5.5.2. Connecting with a user and password

AMQ C++ can authenticate connections with a user and password.

To specify the credentials used for authentication, set the user and password options on the connect
method.

Example: Connecting with a user and password

proton::connection_options opts {};
opts.user("alice");
opts.password("secret");

container.connect("amgps://example.com", opts);

5.5.3. Configuring SASL authentication

AMQ C++ uses the SASL protocol to perform authentication. SASL can use a number of different
authentication mechanisms. When two network peers connect, they exchange their allowed
mechanisms, and the strongest mechanism allowed by both is selected.

NOTE

The client uses Cyrus SASL to perform authentication. Cyrus SASL uses plug-ins to
support specific SASL mechanisms. Before you can use a particular SASL mechanism,
the relevant plug-in must be installed. For example, you need the cyrus-sasl-plain
plug-in in order to use SASL PLAIN authentication.

To see a list of Cyrus SASL plug-ins in Red Hat Enterprise Linux, use the yum search
cyrus-sasl command. To install a Cyrus SASL plug-in, use the yum install PLUG-
IN command.

By default, AMQ C++ allows all of the mechanisms supported by the local SASL library configuration. To

21

Red Hat AMQ 7.2 Using the AMQ C++ Client

restrict the allowed mechanisms and thereby control what mechanisms can be negotiated, use the
sasl _allowed_mechs connection option. It takes a string containing a space-separated list of
mechanism names.

Example: Configuring SASL authentication

proton::connection_options opts {};
opts.sasl _allowed_mechs("ANONYMOUS");

container.connect("amgps://example.com", opts);

This example forces the connection to authenticate using the ANONYMOUS mechanism even if the server
we connect to offers other options. Valid mechanisms include ANONYMOUS, PLAIN, SCRAM-SHA-256,
SCRAM-SHA-1, GSSAPI, and EXTERNAL.

AMQ C++ enables SASL by default. To disable it, set the sas1l_enabled connection option to false.

Example: Disabling SASL

proton::connection_options opts {};
opts.sasl _enabled(false);

container.connect("amgps://example.com", opts);

5.5.4. Authenticating using Kerberos

Kerberos is a network protocol for centrally managed authentication based on the exchange of encrypted
tickets. See Using Kerberos for more information.

1. Configure Kerberos in your operating system. See Configuring Kerberos to set up Kerberos on
Red Hat Enterprise Linux.

2. Enable the GSSAPI SASL mechanism in your client application.

proton::connection_options opts {};
opts.sasl_allowed_mechs("GSSAPI");

container.connect("amgps://example.com", opts);

3. Use the kinit command to authenticate your user credentials and store the resulting Kerberos
ticket.

I $ kinit USERQ@REALM

4. Run the client program.

5.6. TIMERS

AMQ C++ has the ability to execute code after a delay. You can use this to implement time-based
behaviors in your application, such as periodically scheduled work or timeouts.

5.6.1. Scheduling deferred work

22

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system-level_authentication_guide/#Using_Kerberos
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system-level_authentication_guide/#authconfig-kerberos

CHAPTER 5. USING THE API

To defer work for a fixed amount of time, use the schedule method to set the delay and register a
function defining the work.

Example: Sending a message after a delay

void on_sender_open(proton::sender& snd) override {
proton::duration interval {5 * proton::duration::SECOND};
snd.work_queue().schedule(interval, [=] { send(snd); });

}

void send(proton::sender snd) {
if (snd.credit() > 0) {
proton::message msg {"hello"};
snd.send(msg);

This example uses the schedule method on the work queue of the sender in order to establish it as the
execution context for the work.

5.7. MORE INFORMATION

For more information, see the API reference.

23

https://qpid.apache.org/releases/qpid-proton-0.27.0/proton/cpp/api

Red Hat AMQ 7.2 Using the AMQ C++ Client

CHAPTER 6. FILE-BASED CONFIGURATION

AMQ C++ can read the configuration options used to establish connections from a local file named
connect. json. This enables you to configure connections in your application at the time of
deployment.

The library attempts to read the file when the application calls the container connect method without
supplying any connection options.

NOTE

This feature is currently unavailable on Microsoft Windows.

6.1. FILE LOCATIONS

AMQ C++ searches for a file named connect . json at the following locations and in the order shown. It
stops at the first match it encounters.

1. $PWD/connect. json, where $PWD is the current working directory of the client process

2. $HOME/ .config/messaging/connect. json, where SHOME is the current user home
directory

3. /etc/messaging/connect.json

6.2. FILE FORMAT

The connect. json file contains JSON data, with additional support for JavaScript comments.
Many of the options have default values, so a simple example need only provide a few details:

Example: A simple connect. json file

"host": "example.com",
"user": "alice",
"password": "secret"

SASL and SSL/TLS options are nested under "sas1" and "t1ls" namespaces:

Example: A connect. json file with SASL and SSL/TLS options

{
"host": "example.com",
"user": "ortega",
"password": "secret",
"sasl": {
"mechanisms": ["SCRAM-SHA-1", "SCRAM-SHA-256"]
+
"tls": {

"cert": "/home/ortega/cert.pem",

24

CHAPTER 6. FILE-BASED CONFIGURATION

"key": "/home/ortega/key.pem"

6.3. CONFIGURATION OPTIONS
The option keys containing a dot (.) represent attributes nested inside a namespace.

Table 6.1. Configuration options in connect. json

Default

Value type

Description

value

scheme

host

port

user

password

sasl.mechanis
ms

sasl.allow in
secure

tls.cert

tls.key

tls.ca

tls.verify

string

string

string or
number

string

string

list or string

boolean

string

string

string

boolean

||amqpsu

"localhos
t"

||amqpsu

None

None

None
(system
defaults)

false

None

None

None

true

"amqp" for cleartext or "amqps" for SSL/TLS

The hostname or IP address of the remote host

A port number or port literal

The user name for authentication

The password for authentication

A JSON list of enabled SASL mechanisms. A bare
string represents one mechanism. If none are
specified, the client uses the default mechanisms
provided by the system.

Enable mechanisms that send cleartext passwords

The filename or database ID of the client certificate

The filename or database ID of the private key for
the client certificate

The filename or database ID of the CA certificate

Require a valid server certificate with a matching
hostname

25

Red Hat AMQ 7.2 Using the AMQ C++ Client

CHAPTER 7. MULTITHREADING

AMQ C++ supports full multithreading with C++11 and later. Limited multithreading is possible with older
versions of C++. See Section 7.5, “Using older versions of C++".

7.1. THREADING MODEL

The container object can handle multiple connections concurrently. As AMQP events occur on
connections, the container calls messaging_handler callback functions. Callbacks for any one
connection are serialized (not called concurrently), but callbacks for different connections can be safely
executed in parallel.

You can assign a handler to a connection in container: :connect() or

listen_handler: :on_accept () using the handler connection option. We recommend creating a
separate handler for each connection. That way the handler does not need locks or other
synchronization to protect it against concurrent use by library threads. If any non-library threads use the
handler concurrently, then you will need synchronization.

7.2. THREAD-SAFETY RULES

The connection, session, sender, receiver, tracker, and delivery objects are not thread-
safe and are subject to the following rules.

1. You must use them only from a messaging_handler callback or a work_queue function.
2. You must not use objects belonging to one connection from a callback for another connection.

3. You can store AMQ C++ objects in member variables for use in a later callback, provided you
respect rule two.

The message object is a value type with the same threading constraints as a standard C++ built-in type.
It cannot be concurrently modified.

7.3. WORK QUEUES

The work_queue interface provides a safe way to communicate between different connection handlers
or between non-library threads and connection handlers.

e Each connection has an associated work_queue.
e The work queue is thread-safe (C++11 or greater). Any thread can add work.
e Aworkitemis a std: :function, and bound arguments are called like an event callback.

When the library calls the work function, it will be serialized safely so that you can treat the work function
like an event callback and safely access the handler and AMQ C++ objects stored on it.

7.4. THE WAKE PRIMITIVE

The connection: :wake() method allows any thread to prompt activity on a connection by triggering
an on_connection_wake() callback. This is the only thread-safe method on connection.

wake () is a lightweight, low-level primitive for signaling between threads.

26

CHAPTER 7. MULTITHREADING

e |t does not carry any code or data, unlike work_queue.
e Multiple calls to wake () might be coalesced into a single on_connection_wake().

e (Callsto on_connection_wake () can occur without any application call to wake () since the
library uses wake () internally.

The semantics of wake () are similarto std: :condition_variable: :notify_one(). There will be
a wakeup, but there must be some shared application state to determine why the wakeup occurred and
what, if anything, to do about it.

Work queues are easier to use in many instances, but wake () may be useful if you already have your
own external thread-safe queues and need an efficient way to wake a connection to check them for data.

7.5. USING OLDER VERSIONS OF C++

Before C++11 there was no standard support for threading in C++. You can use AMQ C++ with threads
but with the following limitations.

e The container will not create threads. It will only use the single thread that calls
container::run().

o None of the AMQ C++ library classes are thread-safe, including container and work_queue.
You need an external lock to use container in multiple threads. The only exception is
connection: :wake(). It is thread-safe even in older C++.

The container: :schedule() and work_queue APIs accept C++11 lambda functions to define units

of work. If you are using a version of C++ that does not support lambdas, you must use the
make_work() function instead.

27

Red Hat AMQ 7.2 Using the AMQ C++ Client

CHAPTER 8. INTEROPERABILITY

This chapter discusses how to use AMQ C++ in combination with other AMQ components. For an
overview of the compatibility of AMQ components, see the product introduction.

8.1. INTEROPERATING WITH OTHER AMQP CLIENTS

AMQP messages are composed using the AMQP type system. This common format is one of the
reasons AMQP clients in different languages are able to interoperate with each other.

When sending messages, AMQ C++ automatically converts language-native types to AMQP-encoded
data. When receiving messages, the reverse conversion takes place.

NOTE

More information about AMQP types is available at the interactive type reference
maintained by the Apache Qpid project.

Table 8.1. AMQP types

AMQP type Description

null An empty value

boolean A true or false value

char A single Unicode character
string A sequence of Unicode characters
binary A sequence of bytes

byte A signed 8-bit integer

short A signed 16-bit integer

int A signed 32-bit integer

long A signed 64-bit integer
ubyte An unsigned 8-bit integer
ushort An unsigned 16-bit integer
uint An unsigned 32-bit integer
ulong An unsigned 64-bit integer
float A 32-bit floating point number

28

https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/introducing_red_hat_amq_7/#component_compatibility
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#toc
http://qpid.apache.org/amqp/type-reference.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-null
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-boolean
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-char
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-string
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-binary
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-short
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-int
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-long
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-ubyte
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-ushort
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-uint
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-ulong
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-float

AMQP type

CHAPTER 8. INTEROPERABILITY

double

array

list

map

uuid

symbol

timestamp

A 64-bit floating point number

A sequence of values of a single type

A sequence of values of variable type

A mapping from distinct keys to values

A universally unique identifier

A 7-bit ASCII string from a constrained domain

An absolute point in time

Table 8.2. AMQ C++ types before encoding and after decoding

AMQP type

null

boolean

char

string

binary

byte

short

int

long

ubyte

ushort

uint

ulong

AMQ C++ type before encoding

nullptr

bool

wchar_t

std: :string

proton: :binary

int8_t

intl16_t

int32_t

int64_t

uint8_t

uint16_t

uint32_t

uinté64_t

AMQ C++ type after decoding

nullptr

bool

wchar_t

std: :string

proton: :binary

int8_t

intl16_t

int32_t

int64_t

uint8_t

uint16_t

uint32_t

uinté64_t

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-double
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-array
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-list
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-map
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-uuid
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-timestamp

Red Hat AMQ 7.2 Using the AMQ C++ Client

AMQP type AMQ C++ type before encoding
float float

double double

list std: :vector

map std: :map

uuid proton: :uuid

symbol proton: :symbol
timestamp proton: :timestamp

Table 8.3. AMQ C++ and other AMQ client types (1 of 2)

AMQ C++ type before encoding

nullptr

bool

wchar_t

std: :string

proton: :binary

int8_t

intl16_t

int32_t

int64_t

uint8_t

uint16_t

uint32_t

uinté64_t

30

AMQ JavaScript type

null

boolean

number

string

string

number

number

number

number

number

number

number

number

AMQ C++ type after decoding

float

double

std: :vector

std: :map

proton: :uuid

proton: :symbol

proton::timestamp

AMQ .NET type

null

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

Boolean

Char

String

Byte[]

SByte

Inti6

Int32

Int64

Byte

UInt16

UInt32

UInt64

CHAPTER 8. INTEROPERABILITY

AMQ C++ type before encoding AMQ JavaScript type AMQ .NET type
float number System.Single
double number System.Double
std: :vector Array Amqgp .List

std: :map object Amqgp . Map
proton: :uuid number System.Guid
proton: :symbol string Amqp . Symbol
proton: :timestamp number System.DateTime

Table 8.4. AMQ C++ and other AMQ client types (2 of 2)

AMQ C++ type before encoding AMQ Python type AMQ Ruby type
nullptr None nil

bool bool true, false
wchar_t unicode String

std: :string unicode String
proton: :binary bytes String
int8_t int Integer
int16_t int Integer
int32_t long Integer
int64_t long Integer
uint8_t long Integer
uinti16_t long Integer
uint32_t long Integer
uint64_t long Integer

Red Hat AMQ 7.2 Using the AMQ C++ Client

AMQ C++ type before encoding AMQ Python type AMQ Ruby type
float float Float
double float Float

std: :vector list Array

std: :map dict Hash

proton: :uuid - -
proton: :symbol str Symbol

proton: :timestamp long Time

8.2. INTEROPERATING WITH AMQ JMS

AMQP defines a standard mapping to the JMS messaging model. This section discusses the various
aspects of that mapping. For more information, see the AMQ JMS Interoperability chapter.

JMS message types

AMQ C++ provides a single message type whose body type can vary. By contrast, the JMS API uses
different message types to represent different kinds of data. The table below indicates how particular
body types map to JMS message types.

For more explicit control of the resulting JMS message type, you can set the x-opt-jms-msg-type
message annotation. See the AMQ JMS Interoperability chapter for more information.

Table 8.5. AMQ C++ and JMS message types

AMQ C++ body type JMS message type

std::string TextMessage
nullptr TextMessage
proton: :binary BytesMessage
Any other type ObjectMessage

8.3. CONNECTING TO AMQ BROKER

AMQ Broker is designed to interoperate with AMQP 1.0 clients. Check the following to ensure the broker
is configured for AMQP messaging.

e Port 5672 in the network firewall is open.

e The AMQ Broker AMQP acceptor is enabled. See Default acceptor settings.

32

https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/using_the_amq_jms_client/#interoperability
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/using_the_amq_jms_client/#interoperability
http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/BytesMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/ObjectMessage.html
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/configuring_amq_broker/#default-acceptor-settings-configuring

CHAPTER 8. INTEROPERABILITY

e The necessary addresses are configured on the broker. See Addresses, Queues, and Topics.

e The broker is configured to permit access from your client, and the client is configured to send
the required credentials. See Broker Security.

8.4. CONNECTING TO AMQ INTERCONNECT

AMQ Interconnect works with any AMQP 1.0 client. Check the following to ensure the components are
configured correctly.

e Port 5672 in the network firewall is open.

e The router is configured to permit access from your client, and the client is configured to send
the required credentials. See Interconnect Security.

33

https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/configuring_amq_broker/#addresses
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/configuring_amq_broker/#security
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/using_amq_interconnect/#security

Red Hat AMQ 7.2 Using the AMQ C++ Client

APPENDIX A. USING YOUR SUBSCRIPTION

AMQ is provided through a software subscription. To manage your subscriptions, access your account at
the Red Hat Customer Portal.

Accessing your account
1. Go to access.redhat.com.
2. If you do not already have an account, create one.
3. Log in to your account.
Activating a subscription
1. Go to access.redhat.com.
2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading zip and tar files
To access zip or tar files, use the customer portal to find the relevant files for download. If you are using
RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQ entries in the JBOSS INTEGRATION AND AUTOMATION category.
3. Select the desired AMQ product. The Software Downloads page opens.

4. Click the Download link for your component.

Registering your system for packages
To install RPM packages on Red Hat Enterprise Linux, your system must be registered. If you are using
zip or tar files, this step is not required.

1. Go to access.redhat.com.

2. Navigate to Registration Assistant.

3. Select your OS version and continue to the next page.

4. Use the listed command in your system terminal to complete the registration.

To learn more see How to Register and Subscribe a System to the Red Hat Customer Portal.

Revised on 2019-03-18 15:32:25 UTC

34

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads
https://access.redhat.com
https://access.redhat.com/solutions/253273

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. KEY FEATURES
	1.2. SUPPORTED STANDARDS AND PROTOCOLS
	1.3. SUPPORTED CONFIGURATIONS
	1.4. TERMS AND CONCEPTS
	1.5. DOCUMENT CONVENTIONS
	The sudo command
	About the use of file paths in this document

	CHAPTER 2. INSTALLATION
	2.1. PREREQUISITES
	2.2. INSTALLING ON RED HAT ENTERPRISE LINUX
	2.3. INSTALLING ON MICROSOFT WINDOWS

	CHAPTER 3. GETTING STARTED
	3.1. PREPARING THE BROKER
	3.2. BUILDING THE EXAMPLES
	3.3. SENDING AND RECEIVING MESSAGES
	Sending messages
	Receiving messages

	CHAPTER 4. EXAMPLES
	4.1. SENDING MESSAGES
	Running the example

	4.2. RECEIVING MESSAGES
	Running the example

	CHAPTER 5. USING THE API
	5.1. BASIC OPERATION
	5.1.1. Handling messaging events
	5.1.2. Creating a container
	Setting the container identity

	5.2. NETWORK CONNECTIONS
	5.2.1. Connection URLs
	5.2.2. Creating outgoing connections
	5.2.3. Configuring reconnect
	5.2.4. Configuring failover

	5.3. MESSAGE DELIVERY
	5.3.1. Sending messages
	5.3.2. Tracking sent messages
	5.3.3. Receiving messages
	5.3.4. Acknowledging received messages

	5.4. ERROR HANDLING
	Catching exceptions
	Handling connection and protocol errors

	5.5. SECURITY
	5.5.1. Securing connections with SSL/TLS
	5.5.2. Connecting with a user and password
	5.5.3. Configuring SASL authentication
	5.5.4. Authenticating using Kerberos

	5.6. TIMERS
	5.6.1. Scheduling deferred work

	5.7. MORE INFORMATION

	CHAPTER 6. FILE-BASED CONFIGURATION
	6.1. FILE LOCATIONS
	6.2. FILE FORMAT
	6.3. CONFIGURATION OPTIONS

	CHAPTER 7. MULTITHREADING
	7.1. THREADING MODEL
	7.2. THREAD-SAFETY RULES
	7.3. WORK QUEUES
	7.4. THE WAKE PRIMITIVE
	7.5. USING OLDER VERSIONS OF C++

	CHAPTER 8. INTEROPERABILITY
	8.1. INTEROPERATING WITH OTHER AMQP CLIENTS
	8.2. INTEROPERATING WITH AMQ JMS
	JMS message types

	8.3. CONNECTING TO AMQ BROKER
	8.4. CONNECTING TO AMQ INTERCONNECT

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing your account
	Activating a subscription
	Downloading zip and tar files
	Registering your system for packages

