
Red Hat AMQ 7.2

Using AMQ Interconnect

For Use with AMQ Interconnect 1.4

Last Updated: 2019-04-23

Red Hat AMQ 7.2 Using AMQ Interconnect

For Use with AMQ Interconnect 1.4

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to install, configure, and manage AMQ Interconnect to build a large-scale
messaging network.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW
1.1. KEY FEATURES
1.2. SUPPORTED STANDARDS AND PROTOCOLS
1.3. SUPPORTED CONFIGURATIONS
1.4. THEORY OF OPERATION

1.4.1. Overview
1.4.2. Connections

1.4.2.1. Listener
1.4.2.2. Connector

1.4.3. Addresses
1.4.3.1. Mobile Addresses

1.4.3.1.1. Discovered Mobile Addresses
1.4.3.1.2. Configured Mobile Addresses

1.4.3.2. Link Route Addresses
1.4.4. Message Routing

1.4.4.1. Routing Patterns
1.4.4.2. Routing Mechanisms

1.4.4.2.1. Message Routed
1.4.4.2.2. Link Routed

1.4.4.3. Message Settlement
1.4.5. Security

1.5. DOCUMENT CONVENTIONS

CHAPTER 2. INSTALLATION

CHAPTER 3. UPGRADING AMQ INTERCONNECT

CHAPTER 4. GETTING STARTED
4.1. STARTING THE ROUTER
4.2. ROUTING MESSAGES IN A PEER-TO-PEER CONFIGURATION

4.2.1. Starting the Receiver Client
4.2.2. Sending Messages

CHAPTER 5. CONFIGURATION
5.1. ACCESSING THE ROUTER CONFIGURATION FILE
5.2. HOW THE ROUTER CONFIGURATION FILE IS STRUCTURED
5.3. METHODS FOR USING PATTERN MATCHING AND WILDCARDS

5.3.1. Pattern Matching for Addresses
5.3.2. Pattern Matching for Vhost Policy Hostnames

5.4. CHANGING A ROUTER’S CONFIGURATION
5.4.1. Making a Permanent Change to the Router’s Configuration
5.4.2. Changing the Configuration for a Running Router

5.5. DEFAULT CONFIGURATION SETTINGS
5.6. SETTING ESSENTIAL CONFIGURATION PROPERTIES

CHAPTER 6. NETWORK CONNECTIONS
6.1. LISTENING FOR INCOMING CONNECTIONS
6.2. ADDING OUTGOING CONNECTIONS
6.3. CONNECTION FAILOVER

CHAPTER 7. SECURITY
7.1. AUTHENTICATING REMOTE PEERS

7.1.1. Setting Up SSL/TLS for Encryption and Authentication

5
5
5
5
5
5
6
6
6
7
7
8
8
9
9
9
9

10
10
10
11
11

12

13

14
14
15
16
16

18
18
18
18
18
19
20
20
21
21
22

24
24
25
26

27
27
27

Table of Contents

1

. .

. .

7.1.2. Setting Up SASL for Authentication and Payload Encryption
7.1.3. Securing Incoming Connections

7.1.3.1. Adding SSL/TLS Encryption to an Incoming Connection
7.1.3.2. Adding SASL Authentication to an Incoming Connection
7.1.3.3. Adding SSL/TLS Client Authentication to an Incoming Connection
7.1.3.4. Adding SASL Payload Encryption to an Incoming Connection

7.1.4. Securing Outgoing Connections
7.1.4.1. Adding SSL/TLS Client Authentication to an Outgoing Connection
7.1.4.2. Adding SASL Authentication to an Outgoing Connection

7.1.5. Integrating with Kerberos
7.2. AUTHORIZING ACCESS TO MESSAGING RESOURCES

7.2.1. How AMQ Interconnect Enforces Connection and Resource Limits
7.2.2. Setting Global Connection Limits
7.2.3. Setting Connection and Resource Limits for Messaging Endpoints

7.2.3.1. Enabling Vhost Policies
7.2.3.2. Configuring Vhost Policies in the Router Configuration File
7.2.3.3. Configuring Vhost Policies as JSON Files
7.2.3.4. Methods for Specifying Vhost Policy Source and Target Addresses
7.2.3.5. Vhost Policy Examples

CHAPTER 8. ROUTING
8.1. COMPARISON OF MESSAGE ROUTING AND LINK ROUTING

8.1.1. When to Use Message Routing
8.1.2. When to Use Link Routing

8.2. CONFIGURING MESSAGE ROUTING
8.2.1. Addresses

8.2.1.1. Mobile Addresses
8.2.1.1.1. Discovered Mobile Addresses
8.2.1.1.2. Configured Mobile Addresses

8.2.2. Routing Patterns
8.2.3. Message Settlement
8.2.4. Routing Pattern Reliability
8.2.5. Routing Messages Between Clients
8.2.6. Routing Messages Through a Broker Queue

8.2.6.1. Configuring Waypoint Addresses
8.2.6.2. Connecting a Router to the Broker

8.2.7. Example: Routing Messages Through Broker Queues
8.2.7.1. Router Configuration
8.2.7.2. How the Messages are Routed

8.3. CONFIGURING LINK ROUTING
8.3.1. Link Route Addresses
8.3.2. Link Route Routing Patterns
8.3.3. Link Route Flow Control
8.3.4. Creating a Link Route
8.3.5. Example: Using a Link Route to Provide Client Isolation

8.3.5.1. Router Configuration
8.3.5.2. How the Client Receives Messages

CHAPTER 9. LOGGING
9.1. LOGGING MODULES

9.1.1. The DEFAULT Logging Module
9.1.2. The ROUTER Logging Module
9.1.3. The ROUTER_HELLO Logging Module

29
30
30
31
31
32
32
32
33
33
34
35
35
35
36
36
39
40
42

45
46
46
46
47
47
48
48
48
49
51
51
52
53
55
56
58
58
59
60
61
61
61
61
64
65
66

67
67
67
67
67

Red Hat AMQ 7.2 Using AMQ Interconnect

2

. .

. .

. .

. .

9.1.4. The ROUTER_LS Logging Module
9.1.5. The ROUTER_MA Logging Module
9.1.6. The MESSAGE Logging Module
9.1.7. The SERVER Logging Module
9.1.8. The AGENT Logging Module
9.1.9. The CONTAINER Logging Module
9.1.10. The ERROR Logging Module
9.1.11. The POLICY Logging Module

9.2. CONFIGURING LOGGING
9.3. VIEWING LOG ENTRIES

9.3.1. Viewing Log Entries on the Console
9.3.2. Viewing Log Entries on the CLI

CHAPTER 10. MANAGEMENT
10.1. USING AMQ CONSOLE
10.2. MONITORING AMQ INTERCONNECT USING QDSTAT

10.2.1. Syntax for Using qdstat
10.2.2. Viewing General Statistics for a Router
10.2.3. Viewing a List of Connections to a Router
10.2.4. Viewing AMQP Links Attached to a Router
10.2.5. Viewing Known Routers on a Network
10.2.6. Viewing Addresses Known to a Router
10.2.7. Viewing a Router’s Autolinks
10.2.8. Viewing the Status of a Router’s Link Routes
10.2.9. Viewing Memory Consumption Information

10.3. MANAGING AMQ INTERCONNECT USING QDMANAGE
10.3.1. Syntax for Using qdmanage
10.3.2. Managing Network Connections

10.3.2.1. Managing Listeners
10.3.2.2. Managing Connectors

10.3.3. Managing Security
10.3.3.1. Managing SSL/TLS Encryption and Authentication
10.3.3.2. Managing SASL Encryption and Authentication

10.3.4. Managing Routing
10.3.4.1. Managing Message Routing
10.3.4.2. Managing Link Routing

10.3.5. Managing Logging

CHAPTER 11. RELIABILITY
11.1. PATH REDUNDANCY
11.2. PATH REDUNDANCY AND TEMPORAL DECOUPLING
11.3. SHARDED QUEUE

APPENDIX A. USING CYRUS SASL TO PROVIDE AUTHENTICATION
A.1. GENERATING A SASL DATABASE
A.2. VIEWING USERS IN A SASL DATABASE
A.3. CONFIGURING A SASL DATABASE

APPENDIX B. USING YOUR SUBSCRIPTION
Accessing your account
Activating a subscription
Downloading zip and tar files
Registering your system for packages

68
69
70
70
71
72
72
73
73
75
75
75

76
76
76
76
76
77
78
80
82
83
84
84
85
85
86
86
88
89
89
91
92
92
94
95

97
97

101
109

113
113
113
113

115
115
115
115
115

Table of Contents

3

Red Hat AMQ 7.2 Using AMQ Interconnect

4

CHAPTER 1. OVERVIEW
AMQ Interconnect is a lightweight AMQP message router for building scalable, available, and performant
messaging networks.

AMQ Interconnect is based on Dispatch Router from the Apache Qpid™ project.

1.1. KEY FEATURES

Connects clients and brokers into an internet-scale messaging network with uniform addressing

Supports high-performance direct messaging

Uses redundant network paths to route around failures

Streamlines the management of large deployments

1.2. SUPPORTED STANDARDS AND PROTOCOLS

AMQ Interconnect supports the following industry-recognized standards and network protocols:

Version 1.0 of the Advanced Message Queueing Protocol (AMQP)

Modern TCP with IPv6

NOTE

The details of distributed transactions (XA) within AMQP are not provided in the 1.0
version of the specification. AMQ Interconnect does not support XA transactions.

1.3. SUPPORTED CONFIGURATIONS

AMQ Interconnect is supported on Red Hat Enterprise Linux 6 and 7. See Red Hat AMQ 7 Supported
Configurations for more information.

1.4. THEORY OF OPERATION

This section introduces some key concepts about AMQ Interconnect

1.4.1. Overview

AMQ Interconnect is an application layer program running as a normal user program or as a daemon.

The router accepts AMQP connections from clients and creates AMQP connections to brokers or AMQP-
based services. The router classifies incoming AMQP messages and routes the messages between
message producers and message consumers.

The router is meant to be deployed in topologies of multiple routers, preferably with redundant paths. It
uses link-state routing protocols and algorithms similar to OSPF or IS-IS from the networking world to
calculate the best path from every message source to every message destination and to recover quickly
from failures. The router relies on redundant network paths to provide continued connectivity in the face
of system or network failure.

CHAPTER 1. OVERVIEW

5

http://qpid.apache.org/index.html
http://www.amqp.org/
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc2460
https://access.redhat.com/articles/2791941

A messaging client can make a single AMQP connection into a messaging bus built with routers and,
over that connection, exchange messages with one or more message brokers connected to any router in
the network. At the same time the client can exchange messages directly with other endpoints without
involving a broker at all.

1.4.2. Connections

AMQ Interconnect connects clients, servers, AMQP services, and other routers through network
connections.

1.4.2.1. Listener

The router provides listeners that accept client connections. A client connecting to a router listener uses
the same methods that it would use to connect to a broker. From the client’s perspective the router
connection and link establishment are identical to broker connection and link establishment.

Several types of listeners are defined by their role.

Role Description

normal The connection is used for AMQP clients using normal message delivery.

inter-router The connection is assumed to be to another router in the network. Inter-router discovery
and routing protocols can only be used over inter-router connections.

route-
container

The connection is a broker or other resource that holds known addresses. The router
will use this connection to create links as necessary. The addresses are available for
routing only after the remote resource has created a connection.

1.4.2.2. Connector

The router can also be configured to create outbound connections to messaging brokers or other AMQP
entities using connectors. A connector is defined with the network address of the broker and the name or
names of the resources that are available in that broker. When a router connects to a broker through a
connector it uses the same methods a normal messaging client would use when connecting to the
broker.

Several types of connectors are defined by their role.

Role Description

normal The connection is used for AMQP clients using normal message delivery. On this
connector the router will initiate the connection but it will never create any links. Links
are to be created by the peer that accepts the connection.

inter-router The connection is assumed to be to another router in the network. Inter-router discovery
and routing protocols can only be used over inter-router connections.

route-
container

The connection is to a broker or other resource that holds known addresses. The router
will use this connection to create links as necessary. The addresses are available for
routing only after the router has created a connection to the remote resource.

Red Hat AMQ 7.2 Using AMQ Interconnect

6

1.4.3. Addresses

AMQP addresses are used to control the flow of messages across a network of routers. Addresses are
used in a number of different places in the AMQP 1.0 protocol. They can be used in a specific message
in the to and reply-to fields of a message’s properties. They are also used during the creation of links in
the address field of a source or a target.

NOTE

Addresses in this discussion refer to AMQP protocol addresses and not to TCP/IP
network addresses. TCP/IP network addresses are used by messaging clients, brokers,
and routers to create AMQP connections. AMQP protocol addresses are the names of
source and destination endpoints for messages within the messaging network.

Addresses designate various kinds of entities in a messaging network:

Endpoint processes that consume data or offer a service

Topics that match multiple consumers to multiple producers

Entities within a messaging broker:

Queues

Durable Topics

Exchanges

The syntax of an AMQP address is opaque as far as the router network is concerned. A syntactical
structure may be used by the administrator who creates addresses but the router treats them as opaque
strings.

The router maintains several classes of address based on how the address is configured or discovered.

Address Type Description

Mobile The address is a rendezvous point between senders and receivers. The router
aggregates and serializes messages from senders and distributes messages to
receivers.

Link route The address defines a private messaging path between a sender and a receiver.
The router simply passes messages between the end points.

1.4.3.1. Mobile Addresses

Routers consider addresses to be mobile such that any users of an address may be directly connected to
any router in a network and may move around the topology. In cases where messages are broadcast to
or balanced across multiple consumers, the address users may be connected to multiple routers in the
network.

Mobile addresses are rendezvous points for senders and receivers. Messages arrive at the mobile
address and are dispatched to their destinations according to the routing defined for the mobile address.
The details of these routing patterns are discussed later.

CHAPTER 1. OVERVIEW

7

Mobile addresses may be discovered during normal router operation or configured through management
settings.

1.4.3.1.1. Discovered Mobile Addresses

Mobile addresses are created when a client creates a link to a source or destination address that is
unknown to the router network.

Suppose a service provider wants to offer my-service that clients may use. The service provider must
open a receiver link with source address my-service. The router creates a mobile address my-service
and propagates the address so that it is known to every router in the network.

Later a client wants to use the service and creates a sending link with target address my-service. The
router matches the service provider’s receiver having source address my-service to the client’s sender
having target address my-service and routes messages between the two.

Any number of other clients can create links to the service as well. The clients do not have to know
where in the router network the service provider is physically located nor are the clients required to
connect to a specific router to use the service. Regardless of how many clients are using the service the
service provider needs only a single connection and link into the router network.

Another view of this same scenario is when a client tries to use the service before service provider has
connected to the network. In this case the router network creates the mobile address my-service as
before. However, since the mobile address has only client sender links and no receiver links the router
stalls the clients and prevents them from sending any messages. Later, after the service provider
connects and creates the receiver link, the router will issue credits to the clients and the messages will
begin to flow between the clients and the service.

The service provider can connect, disconnect, and reconnect from a different location without having to
change any of the clients or their connections. Imagine having the service running on a laptop. One day
the connection is from corporate headquarters and the next day the connection is from some remote
location. In this case the service provider’s computer will typically have different host IP addresses for
each connection. Using the router network the service provider connects to the router network and offers
the named service and the clients connect to the router network and consume from the named service.
The router network routes messages between the mobile addresses effectively masking host IP
addresses of the service provider and the client systems.

1.4.3.1.2. Configured Mobile Addresses

Mobile addresses may be configured using the router autoLink object. An address created via an
autoLink represents a queue, topic, or other service in an external broker. Logically the autoLink
addresses are treated by the router network as if the broker had connected to the router and offered the
services itself.

For each configured mobile address the router will create a single link to the external resource.
Messages flow between sender links and receiver links the same regardless if the mobile address was
discovered or configured.

Multiple autoLink objects may define the same address on multiple brokers. In this case the router
network creates a sharded resource split between the brokers. Any client can seamlessly send and
receive messages from either broker.

Note that the brokers do not need to be clustered or federated to receive this treatment. The brokers may
even be from different vendors or be different versions of the same broker yet still work together to
provide a larger service platform.

Red Hat AMQ 7.2 Using AMQ Interconnect

8

1.4.3.2. Link Route Addresses

Link route addresses may be configured using the router linkRoute object. An link route address
represents a queue, topic, or other service in an external broker similar to addresses configured by
autoLink objects. For link route addresses the router propagates a separate link attachment to the broker
resource for each incoming client link. The router does not automatically create any links to the broker
resource.

Using link route addresses the router network does not participate in aggregated message distribution.
The router simply passes message delivery and settlement between the two end points.

1.4.4. Message Routing

Addresses have semantics associated with them that are assigned when the address is provisioned or
discovered. The semantics of an address control how routers behave when they see the address being
used. Address semantics include the following considerations:

Routing pattern - balanced, closest, multicast

Routing mechanism - message routed, link routed

1.4.4.1. Routing Patterns

Routing patterns define the paths that a message with a mobile address can take across a network.
These routing patterns can be used for both direct routing, in which the router distributes messages
between clients without a broker, and indirect routing, in which the router enables clients to exchange
messages through a broker.

Pattern Description

Balanced An anycast method which allows multiple receivers to use the same address. In this
case, messages (or links) are routed to exactly one of the receivers and the network
attempts to balance the traffic load across the set of receivers using the same address.
This routing delivers messages to receivers based on how quickly they settle the
deliveries. Faster receivers get more messages.

Closest An anycast method in which even if there are more receivers for the same address,
every message is sent along the shortest path to reach the destination. This means that
only one receiver will get the message. Each message is delivered to the closest
receivers in terms of topology cost. If there are multiple receivers with the same lowest
cost, deliveries will be spread evenly among those receivers.

Multicast Having multiple consumers on the same address at the same time, messages are
routed such that each consumer receives one copy of the message.

1.4.4.2. Routing Mechanisms

The fact that addresses can be used in different ways suggests that message routing can be
accomplished in different ways. Before going into the specifics of the different routing mechanisms, it
would be good to first define what is meant by the term routing:

CHAPTER 1. OVERVIEW

9

In a network built of multiple, interconnected routers 'routing'
determines which connection to use to send a message directly
to its destination or one step closer to its destination.

Each router serves as the terminus of a collection of incoming and outgoing links. Some of the links are
designated for message routing, and others are designated for link routing. In both cases, the links
either connect directly to endpoints that produce and consume messages, or they connect to other
routers in the network along previously established connections.

1.4.4.2.1. Message Routed

Message routing occurs upon delivery of a message and is done based on the address in the message’s
to field.

When a delivery arrives on an incoming message-routing link, the router extracts the address from the
delivered message’s to field and looks the address up in its routing table. The lookup results in zero or
more outgoing links onto which the message shall be resent.

Message routing can also occur without an address in the message’s to field if the incoming link has a
target address. In fact, if the sender uses a link with a target address, the to field shall be ignored even if
used.

1.4.4.2.2. Link Routed

Link routing occurs when a new link is attached to the router across one of its AMQP connections. It is
done based on the target.address field of an inbound link and the source.address field of an outbound
link.

Link routing uses the same routing table that message routing uses. The difference is that the routing
occurs during the link-attach operation, and link attaches are propagated along the appropriate path to
the destination. What results is a chain of links, connected end-to-end, from source to destination. It is
similar to a virtual circuit in a telecom system.

Each router in the chain holds pairs of link termini that are tied together. The router then simply
exchanges all deliveries, delivery state changes, and link state changes between the two termini.

The endpoints that use the link chain do not see any difference in behavior between a link chain and a
single point-to-point link. All of the features available in the link protocol (flow control, transactional
delivery, and so on) are available over a routed link-chain.

1.4.4.3. Message Settlement

Messages may be delivered with varying degrees of reliability.

At most once

At least once

Exactly once

The reliability is negotiated between the client and server during link establishment. The router handles
all levels of reliability by treating messages as either pre-settled or unsettled.

Red Hat AMQ 7.2 Using AMQ Interconnect

10

Delivery Handling

Pre-settled If the arriving delivery is pre-settled (that is, fire and forget), the incoming delivery shall
be settled by the router, and the outgoing deliveries shall also be pre-settled. In other
words, the pre-settled nature of the message delivery is propagated across the network
to the message’s destination.

Unsettled Unsettled delivery is also propagated across the network. Because unsettled delivery
records cannot be discarded, the router tracks the incoming deliveries and keeps the
association of the incoming deliveries to the resulting outgoing deliveries. This kept
association allows the router to continue to propagate changes in delivery state
(settlement and disposition) back and forth along the path which the message traveled.

1.4.5. Security

AMQ Interconnect uses the SSL/TLS protocol and related certificates and SASL protocol mechanisms to
encrypt and authenticate remote peers. Router listeners act as network servers and router connectors
act as network clients. Both connection types may be configured securely with SSL/TLS and SASL.

The router Policy module is an optional authorization mechanism enforcing user connection restrictions
and AMQP resource access control.

1.5. DOCUMENT CONVENTIONS

In this document, sudo is used for any command that requires root privileges. You should always
exercise caution when using sudo, as any changes can affect the entire system.

For more information about using sudo, see The sudo Command.

CHAPTER 1. OVERVIEW

11

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Gaining_Privileges-The_sudo_Command.html

CHAPTER 2. INSTALLATION
AMQ Interconnect 1.4 is distributed as a set of RPM packages, which are available through your Red Hat
subscription.

Procedure

1. Ensure your subscription has been activated and your system is registered.
For more information about using the customer portal to activate your Red Hat subscription and
register your system for packages, see Using Your Subscription.

2. Subscribe to the required repositories:

Red Hat Enterprise Linux 6

$ sudo subscription-manager repos --enable=amq-interconnect-1-for-
rhel-6-server-rpms --enable=amq-clients-2-for-rhel-6-server-rpms

Red Hat Enterprise Linux 7

$ sudo subscription-manager repos --enable=amq-interconnect-1-for-
rhel-7-server-rpms --enable=amq-clients-2-for-rhel-7-server-rpms

3. Use the yum command to install the qpid-dispatch-router and qpid-dispatch-tools
packages and their dependencies:

$ sudo yum install qpid-dispatch-router qpid-dispatch-tools

4. Use the which command to verify that the qdrouterd executable is present.

$ which qdrouterd
/usr/sbin/qdrouterd

The qdrouterd executable should be located at /usr/sbin/qdrouterd.

Red Hat AMQ 7.2 Using AMQ Interconnect

12

CHAPTER 3. UPGRADING AMQ INTERCONNECT
You should upgrade AMQ Interconnect to the latest version to ensure that you have the latest
enhancements and fixes. The upgrade process involves installing the new AMQ Interconnect packages
and restarting your routers.

You can use these instructions to upgrade AMQ Interconnect to a new minor release or maintenance
release.

Minor Release

AMQ Interconnect periodically provides point releases, which are minor updates that include new
features, as well as bug and security fixes. If you plan to upgrade from one AMQ Interconnect point
release to another, for example, from AMQ Interconnect 1.0 to AMQ Interconnect 1.1, code changes
should not be required for applications that do not use private, unsupported, or technical preview
components.

Maintenance Release

AMQ Interconnect also periodically provides maintenance releases that contain bug fixes.
Maintenance releases increment the minor release version by the last digit, for example from 1.0.0 to
1.0.1. A maintenance release should not require code changes; however, some maintenance
releases might require configuration changes.

Prerequisites

Before performing an upgrade, you should have reviewed the release notes for the target release to
ensure that you understand the new features, enhancements, fixes, and issues. To find the release
notes for the target release, see the Red Hat Customer Portal.

Procedure

1. Upgrade the qpid-dispatch-router and qpid-dispatch-tools packages and their
dependencies:

For more information, see Chapter 2, Installation.

2. Restart each router in your router network.
To avoid disruption, you should restart each router one at a time.

This example restarts a router in Red Hat Enterprise Linux 7:

For more information about starting a router, see Section 4.1, “Starting the Router”.

$ sudo yum update qpid-dispatch-router qpid-dispatch-tools

$ systemctl restart qdrouterd.service

CHAPTER 3. UPGRADING AMQ INTERCONNECT

13

https://access.redhat.com/products/red-hat-amq

CHAPTER 4. GETTING STARTED
Before configuring AMQ Interconnect, you should understand how to start the router, how it is configured
by default, and how to use it in a simple peer-to-peer configuration.

4.1. STARTING THE ROUTER

Procedure

1. To start the router with the default configuration, do one of the following:

To… ​ Enter this command… ​

Run the router as a service
in Red Hat Enterprise Linux
6

$ sudo service qdrouterd start

Run the router as a service
in Red Hat Enterprise Linux
7

$ systemctl start qdrouterd.service

Run the router as a daemon

$ qdrouterd -d

To start the router in the foreground, do not use the -d parameter.

NOTE

You can specify a different configuration file with which to start the router. For
more information, see Changing a Router’s Configuration.

The router starts, using the default configuration file stored at /etc/qpid-
dispatch/qdrouterd.conf.

2. View the log to verify the router status:

$ qdstat --log

This example shows that the router was correctly installed, is running, and is ready to route
traffic between clients:

$ qdstat --log

Fri May 20 09:38:03 2017 SERVER (info) Container Name: Router.A 1
Fri May 20 09:38:03 2017 ROUTER (info) Router started in Standalone

mode 2
Fri May 20 09:38:03 2017 ROUTER (info) Router Core thread running.
0/Router.A
Fri May 20 09:38:03 2017 ROUTER (info) In-process subscription
M/$management
Fri May 20 09:38:03 2017 AGENT (info) Activating management agent on

$_management_internal 3

Red Hat AMQ 7.2 Using AMQ Interconnect

14

1

2

3

4

5

Fri May 20 09:38:03 2017 ROUTER (info) In-process subscription
L/$management
Fri May 20 09:38:03 2017 ROUTER (info) In-process subscription
L/$_management_internal
Fri May 20 09:38:03 2017 DISPLAYNAME (info) Activating
DisplayNameService on $displayname
Fri May 20 09:38:03 2017 ROUTER (info) In-process subscription
L/$displayname
Fri May 20 09:38:03 2017 CONN_MGR (info) Configured Listener:

0.0.0.0:amqp proto=any role=normal 4
Fri May 20 09:38:03 2017 POLICY (info) Policy configured
maximumConnections: 0, policyFolder: '', access rules enabled:
'false'
Fri May 20 09:38:03 2017 POLICY (info) Policy fallback
defaultApplication is disabled
Fri May 20 09:38:03 2017 SERVER (info) Operational, 4 Threads

Running 5

The name of this router instance.

By default, the router starts in standalone mode, which means that it cannot connect to
other routers or be used in a router network.

The management agent. It provides the $management address, through which
management tools such as qdmanage and qdstat can perform create, read, update, and
delete (CRUD) operations on the router. As an AMQP endpoint, the management agent
supports all operations defined by the AMQP management specification (Draft 9).

A listener is started on all available network interfaces and listens for connections on the
standard AMQP port (5672, which is not encrypted).

Threads for handling message traffic and all other internal operations.

4.2. ROUTING MESSAGES IN A PEER-TO-PEER CONFIGURATION

This example demonstrates how the router can connect clients by receiving and sending messages
between them. It uses the router’s default configuration file and does not require a broker.

Figure 4.1. Peer-to-peer Communication

As the diagram indicates, the configuration consists of an AMQ Interconnect component with two clients
connected to it: a sender and a receiver. The receiver wants to receive messages on a specific address,
and the sender sends messages to that address.

A broker is not used in this example, so there is no "store and forward" mechanism in the middle.
Instead, the messages flow from sender to receiver only if the receiver is online, and the sender can
confirm that the messages have arrived at their destination.

CHAPTER 4. GETTING STARTED

15

https://www.oasis-open.org/committees/download.php/54441/AMQP Management v1.0 WD09

This example uses a AMQ Python client to start a receiver client, and then send five messages from the
sender client.

Prerequisites

AMQ Python must be installed before you can complete the peer-to-peer routing example. For more
information, see {ClientAmqpPythonUrl}.

Procedure

1. Start the receiver client.

2. Send messages.

4.2.1. Starting the Receiver Client

In this example, the receiver client is started first. This means that the messages will be sent as soon as
the sender client is started.

NOTE

In practice, the order in which you start senders and receivers does not matter. In both
cases, messages will be sent as soon as the receiver comes online.

Procedure

To start the receiver by using the Python receiver client, navigate to the Python examples
directory and run the simple_recv.py example:

$ cd INSTALL_DIR/examples/python/
$ python simple_recv.py -a 127.0.0.1:5672/examples -m 5

This command starts the receiver and listens on the default address
(127.0.0.1:5672/examples). The receiver is also set to receive a maximum of five
messages.

4.2.2. Sending Messages

After starting the receiver client, you can send messages from the sender. These messages will travel
through the router to the receiver.

Procedure

In a new terminal window, navigate to the Python examples directory and run the
simple_send.py example:

$ cd INSTALL_DIR/examples/python/
$ python simple_send.py -a 127.0.0.1:5672/examples -m 5

This command sends five auto-generated messages to the default address
(127.0.0.1:5672/examples) and then confirms that they were delivered and acknowledged
by the receiver:

all messages confirmed

Red Hat AMQ 7.2 Using AMQ Interconnect

16

The receiver client receives the messages and displays their content:

{u'sequence': 1L}
{u'sequence': 2L}
{u'sequence': 3L}
{u'sequence': 4L}
{u'sequence': 5L}

CHAPTER 4. GETTING STARTED

17

CHAPTER 5. CONFIGURATION
Before starting AMQ Interconnect, you should understand where the router’s configuration file is stored,
how the file is structured, and the methods you can use to modify it.

5.1. ACCESSING THE ROUTER CONFIGURATION FILE

The router’s configuration is defined in the router configuration file. You can access this file to view and
modify that configuration.

Procedure

Open the following file: /etc/qpid-dispatch/qdrouterd.conf.
When AMQ Interconnect is installed, qdrouterd.conf is installed in this directory by default.
When the router is started, it runs with the settings defined in this file.

For more information about the router configuration file (including available entities and
attributes), see the qdrouterd man page.

5.2. HOW THE ROUTER CONFIGURATION FILE IS STRUCTURED

Before you can make changes to a router configuration file, you should understand how the file is
structured.

The configuration file contains sections. A section is a configurable entity, and it contains a set of
attribute name-value pairs that define the settings for that entity. The syntax is as follows:

sectionName {
 attributeName: attributeValue
 attributeName: attributeValue
 ...
}

5.3. METHODS FOR USING PATTERN MATCHING AND WILDCARDS

The router configuration file supports pattern matching and wildcards to enable you to match multiple
values for certain attributes. However, the syntax varies based on the type of entity that you are
configuring.

5.3.1. Pattern Matching for Addresses

In some router configuration scenarios, you might need to use pattern matching to match a range of
addresses rather than a single, literal address. Address patterns match any address that corresponds to
the pattern.

An address pattern is a sequence of tokens (typically words) that are delimited by either . or /
characters. They also can contain special wildcard characters that represent words:

* represents exactly one word

represents zero or more words

Example 5.1. Address Pattern

Red Hat AMQ 7.2 Using AMQ Interconnect

18

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.html

This address contains two tokens, separated by the / delimiter:

my/address

Example 5.2. Address Pattern with Wildcard

This address contains three tokens. The * is a wildcard, representing any single word that might be
between my and address:

my/*/address

The following table shows some address patterns and examples of the addresses that would match
them:

This pattern… ​ Matches… ​ But not… ​

news/* news/europe

news/usa

news

news/usa/sports

news/# news

news/europe

news/usa/sports

europe

usa

news/europe/# news/europe

news/europe/sports

news/europe/politics/fr

news/usa

europe

news/*/sports news/europe/sports

news/usa/sports

news

news/europe/fr/sports

5.3.2. Pattern Matching for Vhost Policy Hostnames

In a vhost policy, vhost hostnames can be either literal hostnames or patterns that cover a range of
hostnames.

A hostname pattern is a sequence of words with one or more of the following wildcard characters:

* represents exactly one word

represents zero or more words

The following table shows some examples of hostname patterns:

CHAPTER 5. CONFIGURATION

19

This pattern… ​ Matches… ​ But not… ​

*.example.com www.example.com example.comsrv2.www.exa
mple.com

#.example.com example.comwww.example.
coma.b.c.d.example.com

myhost.com

www.*.test.example.com www.a.test.example.com www.test.example.comwww
.a.b.c.test.example.com

www.#.test.example.com www.test.example.comwww
.a.test.example.comwww.
a.b.c.test.example.com

test.example.com

Vhost hostname pattern matching applies the following precedence rules:

Policy pattern Precedence

Exact match High

* Medium

Low

NOTE

AMQ Interconnect does not permit you to create vhost hostname patterns that conflict
with existing patterns. This includes patterns that can be reduced to be the same as an
existing pattern. For example, you would not be able to create the #.#.#.#.com pattern
if #.com already exists.

5.4. CHANGING A ROUTER’S CONFIGURATION

You can use different methods for changing a router’s configuration based on whether the router is
currently running, and whether you want the change to take effect immediately.

Choices

Make a permanent change to the router’s configuration.

Change the configuration for a running router.

5.4.1. Making a Permanent Change to the Router’s Configuration

You can make a permanent change to the router’s configuration by editing the router’s configuration file
directly. You must restart the router for the changes to take effect, but the changes will be saved even if
the router is stopped.

Procedure

Red Hat AMQ 7.2 Using AMQ Interconnect

20

Procedure

1. Do one of the following:

Edit the default configuration file (/etc/qpid-dispatch/qdrouterd.conf).

Create a new configuration file.

2. Start (or restart) the router.
If you created a new configuration file, you must specify the path using the --conf parameter.
For example, the following command starts the router with a non-default configuration file:

$ sudo qdrouterd -d --conf /etc/qpid-dispatch/new-configuration-
file.conf

5.4.2. Changing the Configuration for a Running Router

If the router is running, you can change its configuration on the fly. The changes you make take effect
immediately, but are lost if the router is stopped.

Procedure

Use qdmanage to change the configuration.
For more information about using qdmanage, see Managing AMQ Interconnect Using
qdmanage.

5.5. DEFAULT CONFIGURATION SETTINGS

The router’s configuration file controls the way in which the router functions. The default configuration file
contains the minimum number of settings required for the router to run. As you become more familiar
with the router, you can add to or change these settings, or create your own configuration files.

When you installed AMQ Interconnect, the default configuration file was added at the following path:
/etc/qpid-dispatch/qdrouterd.conf. It includes some basic configuration settings that define
the router’s operating mode, how it listens for incoming connections, and routing patterns for the
message routing mechanism.

Default Configuration File

router {

 mode: standalone 1

 id: Router.A 2
}

listener { 3

 host: 0.0.0.0 4

 port: amqp 5

 authenticatePeer: no 6
}

address { 7
 prefix: closest
 distribution: closest
}

CHAPTER 5. CONFIGURATION

21

1

2

3

4

5

6

7

address {
 prefix: multicast
 distribution: multicast
}

address {
 prefix: unicast
 distribution: closest
}

address {
 prefix: exclusive
 distribution: closest
}

address {
 prefix: broadcast
 distribution: multicast
}

By default, the router operates in standalone mode. This means that it can only communicate with
endpoints that are directly connected to it. It cannot connect to other routers, or participate in a
router network.

The unique identifier of the router. This ID is used as the container-id (container name) at the
AMQP protocol level. It is required, and the router will not start if this attribute is not defined.

The listener entity handles incoming connections from client endpoints.

The IP address on which the router will listen for incoming connections. By default, the router is
configured to listen on all network interfaces.

The port on which the router will listen for incoming connections. By default, the default AMQP port
(5672) is specified with a symbolic service name.

Specifies whether the router should authenticate peers before they can connect to the router. By
default, peer authentication is not required.

By default, the router is configured to use the message routing mechanism. Each address entity
defines how messages that are received with a particular address prefix should be distributed.
For example, all messages with addresses that start with closest will be distributed using the
closest distribution pattern.

NOTE

If a client requests a message with an address that is not defined in the router’s
configuration file, the balanced distribution pattern will be used automatically.

5.6. SETTING ESSENTIAL CONFIGURATION PROPERTIES

The router’s default configuration settings enable the router to run with minimal configuration. However,
you may need to change some of these settings for the router to run properly in your environment.

Red Hat AMQ 7.2 Using AMQ Interconnect

22

Procedure

1. Open the router’s configuration file.
If you are changing the router’s default configuration file, the file is located at /etc/qpid-
dispatch/qdrouterd.conf.

2. To define essential router information, change the following attributes as needed in the router
section:

router {
 mode: STANDALONE/INTERIOR/EDGE
 id: ROUTER_ID
}

mode

Specify one of the following modes:

standalone - Use this mode if the router does not communicate with other routers and
is not part of a router network. When operating in this mode, the router only routes
messages between directly connected endpoints.

interior - Use this mode if the router is part of a router network and needs to
collaborate with other routers.

edge - Use this mode if the router is an edge router that will connect to a network of
interior routers.

id

The unique identifier for the router. This ID will also be the container name at the AMQP
protocol level.

For information about additional attributes, see router in the qdrouterd.conf man page.

3. If necessary for your environment, secure the router.

Set up SSL/TLS for encryption, authentication, or both

Set up SASL for authentication and payload encryption

4. Connect the router to other routers, clients, and brokers.

Add incoming connections

Add outgoing connections

5. Set up routing for your environment:

Configure the router to route messages between clients directly

Configure the router to route messages through a broker queue

Create a link route to define a private messaging path between endpoints

6. Set up logging.

CHAPTER 5. CONFIGURATION

23

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.conf.html#_router

CHAPTER 6. NETWORK CONNECTIONS
Connections define how the router communicates with clients, other routers, and brokers. You can
configure incoming connections to define how the router listens for data from clients and other routers,
and you can configure outgoing connections to define how the router sends data to other routers and
brokers.

6.1. LISTENING FOR INCOMING CONNECTIONS

AMQ Interconnect provides listeners that accept client connections. A client connecting to a router
listener uses the same methods that it would use to connect to a broker. From the client’s perspective,
the router connection and link establishment are identical to broker connection and link establishment.

Several types of listeners are defined by their role.

Role Description

normal The connection is used for AMQP clients using normal message delivery.

inter-router The connection is assumed to be to another interior router in the network. Inter-router
discovery and routing protocols can only be used over inter-router connections.

route-container The connection is a broker or other resource that holds known addresses. The router
will use this connection to create links as necessary. The addresses are available for
routing only after the remote resource has created a connection.

edge The connection is between an edge router and an interior router.

Procedure

1. In the router’s configuration file, add a listener:

listener {
 host: HOST_NAME/ADDRESS
 port: PORT_NUMBER/NAME
 ...
}

host

Either an IP address (IPv4 or IPv6) or hostname on which the router should listen for
incoming connections.

port

The port number or symbolic service name on which the router should listen for incoming
connections.

For information about additional attributes, see listener in the qdrouterd.conf man page.

2. If necessary, secure the connection.
If you have set up SSL/TLS or SASL in your environment, you can configure the router to only
accept encrypted or authenticated communication on this connection.

Red Hat AMQ 7.2 Using AMQ Interconnect

24

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.conf.html#_listener

3. If you want the router to listen for incoming connections on additional hosts or ports, configure
an additional listener entity for each host and port.

6.2. ADDING OUTGOING CONNECTIONS

You can configure AMQ Interconnect to create outbound connections to messaging brokers or other
AMQP entities using connectors. A connector is defined with the network address of the broker and the
name or names of the resources that are available in that broker. When a router connects to a broker
through a connector, it uses the same methods a normal messaging client would use when connecting to
the broker.

Several types of connectors are defined by their role.

Role Description

normal The connection is used for AMQP clients using normal message delivery. On this
connector the router will initiate the connection but it will never create any links. Links
are to be created by the peer that accepts the connection.

inter-router The connection is assumed to be to another interior router in the network. Inter-router
discovery and routing protocols can only be used over inter-router connections.

route-container The connection is to a broker or other resource that holds known addresses. The router
will use this connection to create links as necessary. The addresses are available for
routing only after the router has created a connection to the remote resource.

edge The connection is between an edge router and an interior router.

When a router connects to a broker, the broker might provide backup connection data that the router can
use if the primary connection fails. If the primary connection fails, the router attempts to reconnect by
using a combination of the primary and — if provided — backup connections in round-robin fashion until
the connection is successful. For more information about viewing the backup connection data provided
by the broker, see Section 10.3.2.2, “Managing Connectors”.

Procedure

1. In the router’s configuration file, add a connector:

connector {
 name: NAME
 host: HOST_NAME/ADDRESS
 port: PORT_NUMBER/NAME
 ...
}

name

The name of the connector. You should specify a name that describes the entity to which
the connector connects. This name is used by configured addresses (for example, a
linkRoute entity) in order to specify which connection should be used for them.

host

Either an IP address (IPv4 or IPv6) or hostname on which the router should connect.

CHAPTER 6. NETWORK CONNECTIONS

25

port

The port number or symbolic service name on which the router should connect.

For information about additional attributes, see connector in the qdrouterd.conf man page.

2. If necessary, secure the connection.
If you have set up SSL/TLS or SASL in your environment, you can configure the router to only
send encrypted or authenticated communication on this connection.

3. For each remaining router or broker to which this router should connect, configure an additional
connector entity.

6.3. CONNECTION FAILOVER

In AMQ Interconnect, a connector attempts to maintain an open network transport connection to the
configured remote host and port. If the connection cannot be established, the connector will continually
retry until the connection is established. If an established connection is lost, the connector shall
immediately attempt to re-establish the connection.

Connection Failover is a mechanism by which the remote host can provide alternate connection
information for the connector to use in the event the established connection is lost. In this case, rather
than attempting to re-establish the connection to the same host, the connector shall try the alternate
hosts as well. This is useful in the case where the remote host is formed by a cluster or array of servers
providing the same service.

AMQ Interconnect can participate in Connection Failover as both a client (initiator of transport
connections) and a server (recipient of transport connections). In the client role, connectors shall always
honor the failover lists provided by connected servers. As a server, a listener may be configured to
provide a failover list to the clients that connect to it.

Listener attribute failoverUrls is an optional component that contains a comma-separated list of URLs to
be used as backups for this listener. Each URL is of the form:

[(amqp|amqps|ws|wss)://]host_or_ip[:port]

When a client establishes a connection to this listener, it will be provided with this list of backup URLs to
be used in the event that this connection is lost.

As an example, a listener may be configured like this:

listener {
 host: primary.domain.com
 port: amqp
 failoverUrls: secondary.domain.com:20000, tertiary.domain.com
 .
 .
 .
}

Red Hat AMQ 7.2 Using AMQ Interconnect

26

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.conf.html#_connector

CHAPTER 7. SECURITY
Securing your router network involves configuring authentication and authorization. You can authenticate
and encrypt the router’s connections using SSL/TLS or SASL. Additionally, you can authorize access to
messaging resources by setting user connection restrictions and defining AMQP resource access
control.

7.1. AUTHENTICATING REMOTE PEERS

You can configure AMQ Interconnect to communicate with clients, routers, and brokers in a secure way
by authenticating and encrypting the router’s connections. AMQ Interconnect supports the following
security protocols:

SSL/TLS for certificate-based encryption and mutual authentication

SASL for authentication and payload encryption

7.1.1. Setting Up SSL/TLS for Encryption and Authentication

Before you can secure incoming and outgoing connections using SSL/TLS encryption and
authentication, you must first set up the SSL/TLS profile in the router’s configuration file.

Prerequisites

You must have the following files in PEM format:

An X.509 CA certificate (used for signing the router certificate for the SSL/TLS server
authentication feature).

A private key (with or without password protection) for the router.

An X.509 router certificate signed by the X.509 CA certificate.

Procedure

In the router’s configuration file, add an sslProfile section:

sslProfile {
 name: NAME
 ciphers: CIPHERS
 protocols: PROTOCOL
 caCertFile: PATH.pem
 certFile: PATH.pem
 privateKeyFile: PATH.pem
 password: PASSWORD/PATH_TO_PASSWORD_FILE
 ...
}

name

A name for the SSL/TLS profile. You can use this name to refer to the profile from the
incoming and outgoing connections.
For example:

name: router-ssl-profile

CHAPTER 7. SECURITY

27

ciphers

The SSL cipher suites that can be used by this SSL/TLS profile. If certain ciphers are
unsuitable for your environment, you can use this attribute to restrict them from being used.
To enable a cipher list, enter one or more cipher strings separated by colons (:).

Example 7.1. Enabling a Cipher List

ciphers:
ALL:!aNULL:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP

To see the full list of available ciphers, use the openssl ciphers command. For more
information about each cipher, see the ciphers man page.

protocols

The SSL/TLS protocols that this router can use. You can specify a list of one or more of the
following values: TLSv1, TLSv1.1, or TLSv1.2.
To specify multiple protocols, separate the protocols with a space.

Example 7.2. Specifying Multiple Protocols

This example permits the SSL/TLS profile to use TLS v1.1 and TLS v1.2 only:

protocols: TLSv1.1 TLSv1.2

If you do not specify a value, the router will use the TLS protocol specified by the system-wide
configuration.

NOTE

When setting the TLS protocol versions for the router, you should also
consider the TLS protocol version (or versions) used by your client
applications. If a subset of TLS protocol versions does not exist between a
client and the router, the client will not be able to connect to the router.

caCertFile

The absolute path to the file that contains the public certificates of trusted certificate
authorities (CA).
For example:

caCertFile: /qdrouterd/ssl_certs/ca-cert.pem

certFile

The absolute path to the file containing the PEM-formatted public certificate to be used on the
local end of any connections using this profile.
For example:

certFile: /qdrouterd/ssl_certs/router-cert-pwd.pem

Red Hat AMQ 7.2 Using AMQ Interconnect

28

https://www.openssl.org/docs/manmaster/man1/ciphers.html

privateKeyFile

The absolute path to the file containing the PEM-formatted private key for the above
certificate.
For example:

privateKeyFile: /qdrouterd/ssl_certs/router-key-pwd.pem

passwordFile or password

If the private key is password-protected, you must provide the password by either specifying
the absolute path to a file containing the password that unlocks the certificate key, or entering
the password directly in the configuration file.
For example:

password: routerKeyPassword

For information about additional sslProfile attributes, see sslProfile in the qdrouterd.conf
man page.

7.1.2. Setting Up SASL for Authentication and Payload Encryption

If you plan to use SASL to authenticate connections, you must first add the SASL attributes to the
router entity in the router’s configuration file. These attributes define a set of SASL parameters that
can be used by the router’s incoming and outgoing connections.

Prerequisites

Before you can set up SASL, you must have the following:

The SASL database is generated.

The SASL configuration file is configured.

The Cyrus SASL plugin is installed for each SASL mechanism you plan to use.
Cyrus SASL uses plugins to support specific SASL mechanisms. Before you can use a
particular SASL mechanism, the relevant plugin must be installed. For example, you need the
cyrus-sasl-plain plugin to use SASL PLAIN authentication.

To see a list of Cyrus SASL plugins in Red Hat Enterprise Linux, use the yum search cyrus-
sasl command. To install a Cyrus SASL plugin, use the yum install PLUGIN command.

Procedure

In the router’s configuration file, add the following attributes to the router section:

router {
 ...
 saslConfigDir: PATH
 saslConfigName: FILE_NAME
}

saslConfigDir

The absolute path to the SASL configuration file.

CHAPTER 7. SECURITY

29

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.conf.html#_sslprofile

For example:

saslConfigDir: /qdrouterd/security

saslConfigName

The name of the SASL configuration file. This name should not include the .conf file
extension.
For example:

saslConfigName: qdrouterd_sasl

7.1.3. Securing Incoming Connections

You can secure incoming connections by configuring each connection’s listener entity for encryption,
authentication, or both.

Prerequisites

Before securing incoming connections, the security protocols you plan to use should be set up.

Choices

Add SSL/TLS encryption

Add SASL authentication

Add SSL/TLS client authentication

Add SASL payload encryption

7.1.3.1. Adding SSL/TLS Encryption to an Incoming Connection

You can configure an incoming connection to accept encrypted connections only. By adding SSL/TLS
encryption, to connect to this router, a remote peer must first start an SSL/TLS handshake with the
router and be able to validate the server certificate received by the router during the handshake.

Procedure

In the router’s configuration file, add the following attributes to the connection’s listener entity:

listener {
 ...
 sslProfile: SSL_PROFILE_NAME
 requireSsl: yes
}

sslProfile

The name of the SSL/TLS profile you set up.

requireSsl

Enter yes to require all clients connecting to the router on this connection to use encryption.

Red Hat AMQ 7.2 Using AMQ Interconnect

30

7.1.3.2. Adding SASL Authentication to an Incoming Connection

You can configure an incoming connection to authenticate the client using SASL. You can use SASL
authentication with or without SSL/TLS encryption.

Procedure

In the router’s configuration file, add the following attributes to the connection’s listener
section:

listener {
 ...
 authenticatePeer: yes
 saslMechanisms: MECHANISMS
}

authenticatePeer

Set this attribute to yes to require the router to authenticate the identity of a remote peer
before it can use this incoming connection.

saslMechanisms

The SASL authentication mechanism (or mechanisms) to use for peer authentication. You
can choose any of the Cyrus SASL authentication mechanisms except for ANONYMOUS. To
specify multiple authentication mechanisms, separate each mechanism with a space.
For a full list of supported Cyrus SASL authentication mechanisms, see Authentication
Mechanisms.

7.1.3.3. Adding SSL/TLS Client Authentication to an Incoming Connection

You can configure an incoming connection to authenticate the client using SSL/TLS.

The base SSL/TLS configuration provides content encryption and server authentication, which means
that remote peers can verify the router’s identity, but the router cannot verify a peer’s identity.

However, you can require an incoming connection to use SSL/TLS client authentication, which means
that remote peers must provide an additional certificate to the router during the SSL/TLS handshake. By
using this certificate, the router can verify the client’s identity without using a username and password.

You can use SSL/TLS client authentication with or without SASL authentication.

Procedure

In the router’s configuration, file, add the following attribute to the connection’s listener entity:

listener {
 ...
 authenticatePeer: yes
}

authenticatePeer

Set this attribute to yes to require the router to authenticate the identity of a remote peer
before it can use this incoming connection.

CHAPTER 7. SECURITY

31

https://www.cyrusimap.org/sasl/sasl/authentication_mechanisms.html

7.1.3.4. Adding SASL Payload Encryption to an Incoming Connection

If you do not use SSL/TLS, you can still encrypt the incoming connection by using SASL payload
encryption.

Procedure

In the router’s configuration file, add the following attributes to the connection’s listener
section:

listener {
 ...
 requireEncryption: yes
 saslMechanisms: MECHANISMS
}

requireEncryption

Set this attribute to yes to require the router to use SASL payload encryption for the
connection.

saslMechanisms

The SASL mechanism to use. You can choose any of the Cyrus SASL authentication
mechanisms. To specify multiple authentication mechanisms, separate each mechanism with
a space.
For a full list of supported Cyrus SASL authentication mechanisms, see Authentication
Mechanisms.

7.1.4. Securing Outgoing Connections

You can secure outgoing connections by configuring each connection’s connector entity for
encryption, authentication, or both.

Prerequisites

Before securing outgoing connections, the security protocols you plan to use should be set up.

Choices

Add SSL/TLS authentication

Add SASL authentication

7.1.4.1. Adding SSL/TLS Client Authentication to an Outgoing Connection

If an outgoing connection connects to an external client configured with mutual authentication, you
should ensure that the outgoing connection is configured to provide the external client with a valid
security certificate during the SSL/TLS handshake.

You can use SSL/TLS client authentication with or without SASL authentication.

Procedure

In the router’s configuration file, add the sslProfile attribute to the connection’s connector
entity:

Red Hat AMQ 7.2 Using AMQ Interconnect

32

https://www.cyrusimap.org/sasl/sasl/authentication_mechanisms.html

connector {
 ...
 sslProfile: SSL_PROFILE_NAME
}

sslProfile

The name of the SSL/TLS profile you set up.

7.1.4.2. Adding SASL Authentication to an Outgoing Connection

You can configure an outgoing connection to provide authentication credentials to the external container.
You can use SASL authentication with or without SSL/TLS encryption.

Procedure

In the router’s configuration file, add the saslMechanisms attribute to the connection’s
connector entity:

connector {
 ...
 saslMechanisms: MECHANISMS
 saslUsername: USERNAME
 saslPassword: PASSWORD
}

saslMechanisms

One or more SASL mechanisms to use to authenticate the router to the external container.
You can choose any of the Cyrus SASL authentication mechanisms. To specify multiple
authentication mechanisms, separate each mechanism with a space.
For a full list of supported Cyrus SASL authentication mechanisms, see Authentication
Mechanisms.

saslUsername

If any of the SASL mechanisms uses username/password authentication, then provide the
username to connect to the external container.

saslPassword

If any of the SASL mechanisms uses username/password authentication, then provide the
password to connect to the external container.

7.1.5. Integrating with Kerberos

By using the GSSAPI SASL mechanism, you can configure AMQ Interconnect to authenticate incoming
connections using Kerberos.

Prerequisites

A Kerberos infrastructure must be deployed in your environment.

In the Kerberos environment, a service principal of amqp/HOSTNAME@REALM must be
configured.
This is the service principal that AMQ Interconnect uses.

CHAPTER 7. SECURITY

33

https://www.cyrusimap.org/sasl/sasl/authentication_mechanisms.html

The cyrus-sasl-gssapi package must be installed on each client and router host machine.

SASL must be set up for AMQ Interconnect.

Procedure

1. On the router’s host machine, open the /etc/sasl2/qdrouterd.conf configuration file.

Example 7.3. An /etc/sasl2/qdrouterd.conf Configuration File

pwcheck_method: auxprop
auxprop_plugin: sasldb
sasldb_path: qdrouterd.sasldb
keytab: /etc/krb5.keytab
mech_list: ANONYMOUS DIGEST-MD5 EXTERNAL PLAIN GSSAPI

2. Verify the following:

The mech_list attribute contains the GSSAPI mechanism.

The keytab attribute points to the location of the keytab file.

3. Open the router’s configuration file.

4. For each incoming connection that should use Kerberos for authentication, set the router’s
listener to use the GSSAPI mechanism.

Example 7.4. A listener in the Router Configuration File

listener {
 ...
 authenticatePeer: yes
 saslMechanisms: GSSAPI
}

For more information about these attributes, see Section 7.1.3.2, “Adding SASL Authentication
to an Incoming Connection”.

7.2. AUTHORIZING ACCESS TO MESSAGING RESOURCES

You can configure policies to secure messaging resources in your messaging environment. Policies
ensure that only authorized users can access messaging endpoints through the router network, and that
the resources on those endpoints are used in an authorized way.

AMQ Interconnect provides the following types of policies:

Global policies

Settings for the router. A global policy defines the maximum number of incoming user connections for
the router (across all messaging endpoints), and defines how the router should use vhost policies.

Vhost policies

Red Hat AMQ 7.2 Using AMQ Interconnect

34

Connection and AMQP resource limits for a messaging endpoint (called an AMQP virtual host, or
vhost). A vhost policy defines what a client can access on a messaging endpoint over a particular
connection.

The resource limits defined in global and vhost policies are applied to user connections only. The limits
do not affect inter-router connections or router connections that are outbound to waypoints.

7.2.1. How AMQ Interconnect Enforces Connection and Resource Limits

AMQ Interconnect uses policies to determine whether to permit a connection, and if it is permitted, to
apply the appropriate resource limits.

When a client creates a connection to the router, the router first determines whether to allow or deny the
connection. This decision is based on the following criteria:

Whether the connection will exceed the router’s global connection limit (defined in the global
policy)

Whether the connection will exceed the vhost’s connection limits (defined in the vhost policy that
matches the host to which the connection is directed)

If the connection is allowed, the router assigns the user (the authenticated user name from the
connection) to a user group, and enforces the user group’s resource limits for the lifetime of the
connection.

7.2.2. Setting Global Connection Limits

You can set the incoming connection limit for the router. This limit defines the total number of concurrent
client connections that can be open for this router.

Procedure

In the router configuration file, add a policy section and set the maxConnections.

policy {
 maxConnections: 10000
}

maxConnections

This limit is always enforced, even if no other policy settings have been defined. The limit is
applied to all incoming connections regardless of remote host, authenticated user, or targeted
vhost. The default (and the maximum) value is 65535.

7.2.3. Setting Connection and Resource Limits for Messaging Endpoints

You can define the connection limit and AMQP resource limits for a messaging endpoint by configuring a
vhost policy. Vhost policies define what resources clients are permitted to access on a messaging
endpoint over a particular connection.

CHAPTER 7. SECURITY

35

NOTE

A vhost is typically the name of the host to which the client connection is directed. For
example, if a client application opens a connection to the
amqp://mybroker.example.com:5672/queue01 URL, the vhost would be
mybroker.example.com.

You can create vhost policies using either of the following methods:

Configure vhost policies directly in the router configuration file

Configure vhost policies as JSON files

7.2.3.1. Enabling Vhost Policies

You must enable the router to use vhost policies before you can create the policies.

Procedure

In the router configuration file, add a policy section if one does not exist, and enable vhost
policies for the router.

policy {
 ...
 enableVhostPolicy: true
 enableVhostNamePatterns: true | false
 defaultVhost: $default
}

enableVhostPolicy

Enables the router to enforce the connection denials and resource limits defined in the
configured vhost policies. The default is false, which means that the router will not enforce
any vhost policies.

enableVhostNamePatterns

Enables pattern matching for vhost hostnames. If set to true, you can use wildcards to
specify a range of hostnames for a vhost. If set to false, vhost hostnames are treated as
literal strings. This means that you must specify the exact hostname for each vhost. The
default is false.

defaultVhost

The name of the default vhost policy, which is applied to any connection for which a vhost
policy has not been configured. The default is $default. If defaultVhost is not defined,
then default vhost processing is disabled.

7.2.3.2. Configuring Vhost Policies in the Router Configuration File

You can configure vhost policies in the router configuration file by configuring vhost entities. However,
if multiple routers in your router network should be configured with the same vhost configuration, you will
need to add the vhost configuration to each router’s configuration file.

Prerequisites

Vhost policies must be enabled for the router. For more information, see Section 7.2.3.1, “Enabling Vhost
Policies”.

Red Hat AMQ 7.2 Using AMQ Interconnect

36

Procedure

1. Add a vhost section and define the connection limits for the messaging endpoint.
The connection limits apply to all users that are connected to the vhost. These limits control the
number of users that can be connected simultaneously to the vhost.

vhost {
 hostname: example.com
 maxConnections: 10000
 maxConnectionsPerUser: 100
 maxConnectionsPerHost: 100
 allowUnknownUser: true
 ...
}

hostname

The literal hostname of the vhost (the messaging endpoint) or a pattern that matches the
vhost hostname. This vhost policy will be applied to any client connection that is directed to
the hostname that you specify. This name must be unique; you can only have one vhost
policy per hostname.
If enableVhostNamePatterns is set to true, you can use wildcards to specify a pattern
that matches a range of hostnames. For more information, see Section 5.3.2, “Pattern
Matching for Vhost Policy Hostnames”.

maxConnections

The global maximum number of concurrent client connections allowed for this vhost. The
default is 65535.

maxConnectionsPerUser

The maximum number of concurrent client connections allowed for any user. The default is
65535.

maxConnectionsPerHost

The maximum number of concurrent client connections allowed for any remote host (the host
from which the client is connecting). The default is 65535.

allowUnknownUser

Whether unknown users (users who are not members of a defined user group) are allowed to
connect to the vhost. Unknown users are assigned to the $default user group and receive
$default settings. The default is false, which means that unknown users are not allowed.

2. In the vhost section, beneath the connection settings that you added, add a groups entity to
define the resource limits.
You define resource limits by user group. A user group specifies the messaging resources the
members of the group are allowed to access.

Example 7.5. User Groups in a Vhost Policy

This example shows three user groups: admin, developers, and $default:

vhost {
 ...
 groups: {
 admin: {
 users: admin1, admin2

CHAPTER 7. SECURITY

37

 remoteHosts: 127.0.0.1, ::1
 sources: *
 targets: *
 }
 developers: {
 users: dev1, dev2, dev3
 remoteHosts: *
 sources: myqueue1, myqueue2
 targets: myqueue1, myqueue2
 }
 $default: {
 remoteHosts: *
 allowDynamicSource: true,
 allowAdminStatusUpdate: true,
 sources: myqueue1, myqueue2
 targets: myqueue1, myqueue2
 }
 }
}

users

A list of authenticated users for this user group. Use commas to separate multiple users.
A user may belong to only one vhost user group.

remoteHosts

A list of remote hosts from which the users may connect. A host can be a hostname, IP
address, or IP address range. Use commas to separate multiple hosts. To allow access
from all remote hosts, specify a wildcard *. To deny access from all remote hosts, leave
this attribute blank.

allowDynamicSource

If true, connections from users in this group are permitted to attach receivers to dynamic
sources. This permits creation of listners to temporary addresses or termporary queues. If
false, use of dynamic sources is forbidden.

allowAdminStatusUpdate

If true, connections from users in this group are permitted to modify the adminStatus of
connections. This permits termination of sender or receiver connections. If false, the users
of this group are prohibited from terminating any connections. Inter-router connections
can never be terminated by any user under any circumstance. Defaults to true, no policy
required.

allowWaypointLinks

If true, connections from users in this group are permitted to attach links using waypoint
capabilities. This allows endpoints to act as waypoints (i.e. brokers) without the need for
configuring auto-links. If false, use of waypoint capabilities is forbidden.

allowDynamicLinkRoutes

If true, connections from users in this group may dynamically create connection-scoped
link route destinations. This allows endpoints to act as link route destinations (i.e. brokers)
without the need for configuring link-routes. If false, creation of dynamic link route
destintations is forbidden.

sources | sourcePattern

A list of AMQP source addresses from which users in this group may receive messages.
Use sources to specify one or more literal addresses. To specify multiple addresses,
use a comma-separated list. To prevent users in this group from receiving messages

Red Hat AMQ 7.2 Using AMQ Interconnect

38

from any addresses, leave this attribute blank. To allow access to an address specific to a
particular user, specify the ${user} token. For more information, see Section 7.2.3.4,
“Methods for Specifying Vhost Policy Source and Target Addresses”.

Alternatively, you can use sourcePattern to match one or more addresses that
correspond to a pattern. A pattern is a sequence of words delimited by either a . or /
character. You can use wildcard characters to represent a word. The * character matches
exactly one word, and the # character matches any sequence of zero or more words.

To specify multiple address ranges, use a comma-separated list of address patterns. For
more information, see Router Address Pattern Matching. To allow access to address
ranges that are specific to a particular user, specify the ${user} token. For more
information, see Section 7.2.3.4, “Methods for Specifying Vhost Policy Source and Target
Addresses”.

targets | targetPattern

A list of AMQP target addresses from which users in this group may send messages. You
can specify multiple AMQP addresses and use user name substitution and address
patterns the same way as with source addresses.

3. If necessary, add any advanced user group settings to the vhost user groups.
The advanced user group settings enable you to define resource limits based on the AMQP
connection open, session begin, and link attach phases of the connection. For more information,
see vhost in the qdrouterd.conf man page.

7.2.3.3. Configuring Vhost Policies as JSON Files

As an alternative to using the router configuration file, you can configure vhost policies in JSON files. If
you have multiple routers that need to share the same vhost configuration, you can put the vhost
configuration JSON files in a location accessible to each router, and then configure the routers to apply
the vhost policies defined in these JSON files.

Prerequisites

Vhost policies must be enabled for the router. For more information, see Section 7.2.3.1,
“Enabling Vhost Policies”.

Procedure

1. In the router configuration file, specify the directory where you want to store the vhost policy
definition JSON files.

policy {
 ...
 policyDir: DIRECTORY_PATH
}

policyDir

The absolute path to the directory that holds vhost policy definition files in JSON format. The
router processes all of the vhost policies in each JSON file that is in this directory.

2. In the vhost policy definition directory, create a JSON file for each vhost policy.

CHAPTER 7. SECURITY

39

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.conf.html#_vhost

Example 7.6. Vhost Policy Definition JSON File

For more information about these attributes, see Section 7.2.3.2, “Configuring Vhost Policies
in the Router Configuration File”.

7.2.3.4. Methods for Specifying Vhost Policy Source and Target Addresses

If you want to allow or deny access to multiple addresses on a vhost, there are several methods you can
use to match multiple addresses without having to specify each address individually.

The following table describes the methods you can use to specify multiple source and target addresses
for a vhost:

To… ​ Do this… ​

Allow all users in the user group
to access all source or target
addresses on the vhost

Use a * wildcard character.

Example 7.7. Receive from Any Address

sources: *

[
 ["vhost", {
 "hostname": "example.com",
 "maxConnections": 10000,
 "maxConnectionsPerUser": 100,
 "maxConnectionsPerHost": 100,
 "allowUnknownUser": true,
 "groups": {
 "admin": {
 "users": ["admin1", "admin2"],
 "remoteHosts": ["127.0.0.1", "::1"],
 "sources": "*",
 "targets": "*"
 },
 "developers": {
 "users": ["dev1", "dev2", "dev3"],
 "remoteHosts": "*",
 "sources": ["myqueue1", "myqueue2"],
 "targets": ["myqueue1", "myqueue2"]
 },
 "$default": {
 "remoteHosts": "*",
 "allowDynamicSource": true,
 "sources": ["myqueue1", "myqueue2"],
 "targets": ["myqueue1", "myqueue2"]
 }
 }
 }]
]

Red Hat AMQ 7.2 Using AMQ Interconnect

40

Prevent all users in the user
group from accessing all source
or target addresses on the vhost

Do not specify a value.

Example 7.8. Prohibit Message Transfers to All Addresses

targets:

To… ​ Do this… ​

CHAPTER 7. SECURITY

41

Allow access to some resources
specific to each user

Use the ${user} username substitution token. You can use this token
with source, target, sourcePattern, and targetPattern.

NOTE

You can only specify the ${user} token once in an
AMQP address name or pattern. If there are multiple
tokens in an address, only the leftmost token will be
substituted.

Example 7.9. Receive from a User-Specific Address

This definition allows the users in the user group to receive messages
from any address that meets any of the following rules:

Starts with the prefix tmp_ and ends with the user name

Starts with the prefix temp followed by any additional
characters

Starts with the user name, is followed by -home-, and ends
with any additional characters

sources: tmp_${user}, temp*, ${user}-home-*

Example 7.10. User-Specific Address Patterns

This definition allows the users in the user group to receive messages
from any address that meets any of the following rules:

Starts with the prefix tmp and ends with the user name

Starts with the prefix temp followed by zero or more
additional characters

Starts with the user name, is followed by home, and ends
with one or more additional characters

sourcePattern: tmp.${user}, temp/#,
${user}.home/*

NOTE

In an address pattern (sourcePattern or
targetPattern), the username substitution token
must be either the first or last token in the pattern. The
token must also be alone within its delimited field, which
means that it cannot be concatenated with literal text
prefixes or suffixes.

To… ​ Do this… ​

7.2.3.5. Vhost Policy Examples

Red Hat AMQ 7.2 Using AMQ Interconnect

42

1

2

3

4

5

6

7

8

9

10

These examples demonstrate how to use vhost policies to authorize access to messaging resources.

Example 7.11. Defining Basic Resource Limits for a Messaging Endpoint

In this example, a vhost policy defines resource limits for clients connecting to the example.com
host.

The rules defined in this vhost policy will be applied to any user connecting to example.com.

Each user can open up to 10 connections to the vhost.

Any user can connect to this vhost. Users that are not part of the admin group are assigned to
the $default group.

If the admin1 or admin2 user connects to the vhost, they are assigned to the admin user
group.

Users in the admin user group must connect from localhost. If the admin user attempts to
connect from any other host, the connection will be denied.

Users in the admin user group can receive from any address offered by the vhost.

Users in the admin user group can send to any address offered by the vhost.

Any non-admin user is permitted to connect from any host.

Non-admin users are permitted to receive messages from any addresses that start with the
news, sports, or chat prefixes.

Non-admin users are permitted to send messages to any addresses that start with the chat
prefix.

[
 ["vhost", {

 "hostname": "example.com", 1

 "maxConnectionsPerUser": 10, 2

 "allowUnknownUser": true, 3
 "groups": {
 "admin": {

 "users": ["admin1", "admin2"], 4

 "remoteHosts": ["127.0.0.1", "::1"], 5

 "sources": "*", 6

 "targets": "*" 7
 },
 "$default": {

 "remoteHosts": "*", 8

 "sources": ["news*", "sports*" "chat*"], 9

 "targets": "chat*" 10
 }
 }
 }]
]

CHAPTER 7. SECURITY

43

1

2

3

4

5

6

7

Example 7.12. Limiting Memory Consumption

By using the advanced vhost policy attributes, you can control how much system buffer memory a
user connection can potentially consume.

In this example, a stock trading site provides services for stock traders. However, the site must also
accept high-capacity, automated data feeds from stock exchanges. To prevent trading activity from
consuming memory needed for the feeds, a larger amount of system buffer memory is allotted to the
feeds than to the traders.

This example uses the maxSessions and maxSessionWindow attributes to set the buffer memory
consumption limits for each AMQP session. These settings are passed directly to the AMQP
connection and session negotiations, and do not require any processing cycles on the router.

This example does not show the vhost policy settings that are unrelated to buffer allocation.

The rules defined in this vhost policy will be applied to any user connecting to traders.com.

The traders group includes trader1, trader2, and any other user defined in the list.

At most, 5,000,000 bytes of data can be in flight on each session.

Only one session per connection is allowed.

The feeds group includes two users.

At most, 1,200,000,000 bytes of data can be in flight on each session.

Up to three sessions per connection are allowed.

[
 ["vhost", {

 "hostname": "traders.com", 1
 "groups": {
 "traders": {

 "users": ["trader1", "trader2"], 2
 "maxFrameSize": 10000,

 "maxSessionWindow": 5000000, 3

 "maxSessions": 1 4
 },
 "feeds": {

 "users": ["nyse-feed", "nasdaq-feed"], 5
 "maxFrameSize": 60000,

 "maxSessionWindow": 1200000000, 6

 "maxSessions": 3 7
 }
 }
 }]
]

Red Hat AMQ 7.2 Using AMQ Interconnect

44

CHAPTER 8. ROUTING
Routing is the process by which messages are delivered to their destinations. To accomplish this, AMQ
Interconnect provides two routing mechanisms: message routing and link routing.

Message routing

Routing is performed on messages as producers send them to a router. When a message arrives on
a router, the router routes the message and its settlement based on the message’s address and
routing pattern.

Figure 8.1. Message Routing

In this diagram, the message producer attaches a link to the router, and then sends a message over
the link. When the router receives the message, it identifies the message’s destination based on the
message’s address, and then uses its routing table to determine the best route to deliver the message
either to its destination or to the next hop in the route. All dispositions (including settlement) are
propagated along the same path that the original message transfer took. Flow control is handled
between the sender and the router, and then between the router and the receiver.

Link routing

Routing is performed on link-attach frames, which are chained together to form a virtual messaging
path that directly connects a sender and receiver. Once a link route is established, the transfer of
message deliveries, flow frames, and dispositions is performed across the link route.

Figure 8.2. Link Routing

In this diagram, a router is connected to clients and to a broker, and it provides a link route to a queue
on the broker (my_queue). The sender connects to the router, and the router propagates the link-
attaches to the broker to form a direct link between the sender and the broker. The sender can begin

CHAPTER 8. ROUTING

45

sending messages to the queue, and the router passes the deliveries along the link route directly to
the broker queue.

8.1. COMPARISON OF MESSAGE ROUTING AND LINK ROUTING

While you can use either message routing or link routing to deliver messages to a destination, they differ
in several important ways. Understanding these differences will enable you to choose the proper routing
approach for any particular use case.

8.1.1. When to Use Message Routing

Message routing is the default routing mechanism. You can use it to route messages on a per-message
basis between clients directly (direct-routed messaging), or to and from broker queues (brokered
messaging).

Message routing is best suited to the following requirements:

Default, basic message routing.
AMQ Interconnect automatically routes messages by default, so manual configuration is only
required if you want routing behavior that is different than the default.

Message-based routing patterns.
Message routing supports both anycast and multicast routing patterns. You can load-balance
individual messages across multiple consumers, and multicast (or fan-out) messages to multiple
subscribers.

Sharding messages across multiple broker instances when message delivery order is not
important.
Sharding messages from one producer might cause that producer’s messages to be received in
a different order than the order in which they were sent.

Message routing is not suitable for any of the following requirements:

Dedicated path through the router network.
For inter-router transfers, all message deliveries are placed on the same inter-router link. This
means that the traffic for one address might affect the delivery of the traffic for another address.

Granular, end-to-end flow control.
With message routing, end-to-end flow control is based on the settlement of deliveries and
therefore might not be optimal in every case.

Transaction support.

Server-side selectors.

8.1.2. When to Use Link Routing

Link routing requires more detailed configuration than message routing as well as an AMQP container
that can accept incoming link-attaches (typically a broker). However, link routing enables you to satisfy
more advanced use cases than message routing.

You can use link routing if you need to meet any of the following requirements:

Dedicated path through the router network.

Red Hat AMQ 7.2 Using AMQ Interconnect

46

With link routing, each link route has dedicated inter-router links through the network. Each link
has its own dedicated message buffers, which means that the address will not have "head-of-
line" blocking issues with other addresses.

Sharding messages across multiple broker instances with guaranteed delivery order.
Link routing to a sharded queue preserves the delivery order of the producer’s messages by
causing all messages on that link to go to the same broker instance.

End-to-end flow control.
Flow control is "real" in that credits flow across the link route from the receiver to the sender.

Transaction support.
Link routing supports local transactions to a single broker. Distributed transactions are not
supported.

Server-side selectors.
With a link route, consumers can provide server-side selectors for broker subscriptions.

8.2. CONFIGURING MESSAGE ROUTING

With message routing, routing is performed on messages as producers send them to a router. When a
message arrives on a router, the router routes the message and its settlement based on the message’s
address and routing pattern.

With message routing, you can do the following:

Route messages between clients (direct-routed, or brokerless messaging)
This involves configuring an address with a routing pattern. All messages sent to the address will
be routed based on the routing pattern.

Route messages through a broker queue (brokered messaging)
This involves configuring a waypoint address to identify the broker queue and then connecting
the router to the broker. All messages sent to the waypoint address will be routed to the broker
queue.

8.2.1. Addresses

Addresses determine how messages flow through your router network. An address designates an
endpoint in your messaging network, such as:

Endpoint processes that consume data or offer a service

Topics that match multiple consumers to multiple producers

Entities within a messaging broker:

Queues

Durable Topics

Exchanges

When a router receives a message, it uses the message’s address to determine where to send the
message (either its destination or one step closer to its destination).

CHAPTER 8. ROUTING

47

8.2.1.1. Mobile Addresses

Routers consider addresses to be mobile such that any users of an address may be directly connected to
any router in a network and may move around the topology. In cases where messages are broadcast to
or balanced across multiple consumers, the address users may be connected to multiple routers in the
network.

Mobile addresses are rendezvous points for senders and receivers. Messages arrive at the mobile
address and are dispatched to their destinations according to the routing defined for the mobile address.
The details of these routing patterns are discussed later.

Mobile addresses may be discovered during normal router operation or configured through management
settings.

8.2.1.1.1. Discovered Mobile Addresses

Mobile addresses are created when a client creates a link to a source or destination address that is
unknown to the router network.

Suppose a service provider wants to offer my-service that clients may use. The service provider must
open a receiver link with source address my-service. The router creates a mobile address my-service
and propagates the address so that it is known to every router in the network.

Later a client wants to use the service and creates a sending link with target address my-service. The
router matches the service provider’s receiver having source address my-service to the client’s sender
having target address my-service and routes messages between the two.

Any number of other clients can create links to the service as well. The clients do not have to know
where in the router network the service provider is physically located nor are the clients required to
connect to a specific router to use the service. Regardless of how many clients are using the service the
service provider needs only a single connection and link into the router network.

Another view of this same scenario is when a client tries to use the service before service provider has
connected to the network. In this case the router network creates the mobile address my-service as
before. However, since the mobile address has only client sender links and no receiver links the router
stalls the clients and prevents them from sending any messages. Later, after the service provider
connects and creates the receiver link, the router will issue credits to the clients and the messages will
begin to flow between the clients and the service.

The service provider can connect, disconnect, and reconnect from a different location without having to
change any of the clients or their connections. Imagine having the service running on a laptop. One day
the connection is from corporate headquarters and the next day the connection is from some remote
location. In this case the service provider’s computer will typically have different host IP addresses for
each connection. Using the router network the service provider connects to the router network and offers
the named service and the clients connect to the router network and consume from the named service.
The router network routes messages between the mobile addresses effectively masking host IP
addresses of the service provider and the client systems.

8.2.1.1.2. Configured Mobile Addresses

Mobile addresses may be configured using the router autoLink object. An address created via an
autoLink represents a queue, topic, or other service in an external broker. Logically the autoLink
addresses are treated by the router network as if the broker had connected to the router and offered the
services itself.

Red Hat AMQ 7.2 Using AMQ Interconnect

48

For each configured mobile address the router will create a single link to the external resource.
Messages flow between sender links and receiver links the same regardless if the mobile address was
discovered or configured.

Multiple autoLink objects may define the same address on multiple brokers. In this case the router
network creates a sharded resource split between the brokers. Any client can seamlessly send and
receive messages from either broker.

Note that the brokers do not need to be clustered or federated to receive this treatment. The brokers may
even be from different vendors or be different versions of the same broker yet still work together to
provide a larger service platform.

8.2.2. Routing Patterns

Routing patterns define the paths that a message with a mobile address can take across a network.
These routing patterns can be used for both direct routing, in which the router distributes messages
between clients without a broker, and indirect routing, in which the router enables clients to exchange
messages through a broker.

Routing patterns fall into two categories: Anycast (Balanced and Closest) and Multicast. There is no
concept of "unicast" in which there is only one consumer for an address.

Anycast distribution delivers each message to one consumer whereas multicast distribution delivers
each message to all consumers.

Each address has one of the following routing patterns, which define the path that a message with the
address can take across the messaging network:

Balanced

An anycast method that allows multiple consumers to use the same address. Each message is
delivered to a single consumer only, and AMQ Interconnect attempts to balance the traffic load across
the router network.
If multiple consumers are attached to the same address, each router determines which outbound path
should receive a message by considering each path’s current number of unsettled deliveries. This
means that more messages will be delivered along paths where deliveries are settled at higher rates.

NOTE

AMQ Interconnect neither measures nor uses message settlement time to determine
which outbound path to use.

In this scenario, the messages are spread across both receivers regardless of path length:

CHAPTER 8. ROUTING

49

Figure 8.3. Balanced Message Routing

Closest

An anycast method in which every message is sent along the shortest path to reach the destination,
even if there are other consumers for the same address.
AMQ Interconnect determines the shortest path based on the topology cost to reach each of the
consumers. If there are multiple consumers with the same lowest cost, messages will be spread
evenly among those consumers.

In this scenario, all messages sent by Sender will be delivered to Receiver 1:

Figure 8.4. Closest Message Routing

Multicast

Messages are sent to all consumers attached to the address. Each consumer will receive one copy of
the message.
In this scenario, all messages are sent to all receivers:

Figure 8.5. Multicast Message Routing

Red Hat AMQ 7.2 Using AMQ Interconnect

50

8.2.3. Message Settlement

Message settlement is negotiated between the producer and the router when the producer establishes a
link to the router. Depending on the settlement pattern, messages might be delivered with any of the
following degrees of reliability:

At most once

At least once

Exactly once

AMQ Interconnect treats all messages as either pre-settled or unsettled, and it is responsible for
propagating the settlement of each message it routes.

Pre-settled

Sometimes called fire and forget, the router settles the incoming and outgoing deliveries and
propagates the settlement to the message’s destination. However, it does not guarantee delivery.

Unsettled

The router propagates the settlement between the sender and receiver, and guarantees one of the
following outcomes:

The message is delivered and settled, with the consumer’s disposition indicated.

The delivery is settled with a disposition of RELEASED.
This means that the message did not reach its destination.

The delivery is settled with a disposition of MODIFIED.
This means that the message might or might not have reached its destination. The delivery is
considered to be "in-doubt" and should be re-sent if "at least once" delivery is required.

The link, session, or connection to AMQ Interconnect was dropped, and all deliveries are "in-
doubt".

8.2.4. Routing Pattern Reliability

The following table describes the levels of reliability provided by each routing pattern:

Routing pattern Reliable?

CHAPTER 8. ROUTING

51

Anycast (Balanced or Closest) Yes, when the message deliveries are unsettled.

There is a reliability contract that the router network abides by when
delivering unsettled messages to anycast addresses. For every such
delivery sent by a producer, the router network guarantees that one of the
following outcomes will occur:

The delivery shall be settled with ACCEPTED or REJECTED
disposition where the disposition is supplied by the consumer.

The delivery shall be settled with RELEASED disposition, meaning
that the message was not delivered to any consumer.

The delivery shall be settled with MODIFIED disposition, meaning
that the message may have been delivered to a consumer but
should be considered in-doubt and re-sent.

The connection to the producer shall be dropped, signifying that all
unsettled deliveries should now be considered in-doubt by the
producer and later re-sent.

Multicast No.

If a producer sends an unsettled delivery, the disposition may be
ACCEPTED or RELEASED.

If ACCEPTED, there is no guarantee that the message was
delivered to any consumer.

If RELEASED, the message was definitely not delivered to any
consumer.

Routing pattern Reliable?

8.2.5. Routing Messages Between Clients

You can route messages between clients without using a broker. In a brokerless scenario (sometimes
called direct-routed messaging), AMQ Interconnect routes messages between clients directly.

To route messages between clients, you configure an address with a routing distribution pattern. When a
router receives a message with this address, the message is routed to its destination or destinations
based on the address’s routing distribution pattern.

Procedure

1. In the router’s configuration file, add an address section:

address {
 prefix: ADDRESS_PREFIX
 distribution: balanced|closest|multicast
 ...
}

Red Hat AMQ 7.2 Using AMQ Interconnect

52

prefix | pattern

The address or group of addresses to which the address settings should be applied. You can
specify a prefix to match an exact address or beginning segment of an address. Alternatively,
you can specify a pattern to match an address using wildcards.
A prefix matches either an exact address or the beginning segment within an address that is
delimited by either a . or / character. For example, the prefix my_address would match the
address my_address as well as my_address.1 and my_address/1. However, it would
not match my_address1.

A pattern matches an address that corresponds to a pattern. A pattern is a sequence of words
delimited by either a . or / character. You can use wildcard characters to represent a word.
The * character matches exactly one word, and the # character matches any sequence of
zero or more words.

The * and # characters are reserved as wildcards. Therefore, you should not use them in the
message address.

For more information about creating address patterns, see Section 5.3.1, “Pattern Matching
for Addresses”.

NOTE

You can convert a prefix value to a pattern by appending /# to it. For
example, the prefix a/b/c is equivalent to the pattern a/b/c/#.

distribution

The message distribution pattern. The default is balanced, but you can specify any of the
following options:

balanced - Messages sent to the address will be routed to one of the receivers, and the
routing network will attempt to balance the traffic load based on the rate of settlement.

closest - Messages sent to the address are sent on the shortest path to reach the
destination. It means that if there are multiple receivers for the same address, only the
closest one will receive the message.

multicast - Messages are sent to all receivers that are attached to the address in a
publish/subscribe model.
For more information about message distribution patterns, see Routing Patterns.

For information about additional attributes, see address in the qdrouterd.conf man page.

2. Add the same address section to any other routers that need to use the address.
The address that you added to this router configuration file only controls how this router
distributes messages sent to the address. If you have additional routers in your router network
that should distribute messages for this address, then you must add the same address section
to each of their configuration files.

8.2.6. Routing Messages Through a Broker Queue

CHAPTER 8. ROUTING

53

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.conf.html#_address

You can route messages to and from a broker queue to provide clients with access to the queue through
a router. In this scenario, clients connect to a router to send and receive messages, and the router routes
the messages to or from the broker queue.

You can route messages to a queue hosted on a single broker, or route messages to a sharded queue
distributed across multiple brokers.

Figure 8.6. Brokered Messaging

In this diagram, the sender connects to the router and sends messages to my_queue. The router
attaches an outgoing link to the broker, and then sends the messages to my_queue. Later, the receiver
connects to the router and requests messages from my_queue. The router attaches an incoming link to
the broker to receive the messages from my_queue, and then delivers them to the receiver.

You can also route messages to a sharded queue, which is a single, logical queue comprised of
multiple, underlying physical queues. Using queue sharding, it is possible to distribute a single queue
over multiple brokers. Clients can connect to any of the brokers that hold a shard to send and receive
messages.

Figure 8.7. Brokered Messaging with Sharded Queue

In this diagram, a sharded queue (my_queue) is distributed across two brokers. The router is connected

Red Hat AMQ 7.2 Using AMQ Interconnect

54

to the clients and to both brokers. The sender connects to the router and sends messages to my_queue.
The router attaches an outgoing link to each broker, and then sends messages to each shard (by default,
the routing distribution is balanced). Later, the receiver connects to the router and requests all of the
messages from my_queue. The router attaches an incoming link to one of the brokers to receive the
messages from my_queue, and then delivers them to the receiver.

Procedure

1. Add a waypoint address.
This address identifies the queue to which you want to route messages.

2. Add autolinks to connect the router to the broker.
Autolinks connect the router to the broker queue identified by the waypoint address.

3. If the queue is sharded, add autolinks for each additional broker that hosts a shard.

8.2.6.1. Configuring Waypoint Addresses

A waypoint address identifies a queue on a broker to which you want to route messages. You need to
configure the waypoint address on each router that needs to use the address. For example, if a client is
connected to Router A to send messages to the broker queue, and another client is connected to Router
B to receive those messages, then you would need to configure the waypoint address on both Router A
and Router B.

Prerequisites

An incoming connection (listener) to which the clients can connect should be configured. This
connection defines how the producers and consumers connect to the router to send and receive
messages. For more information, see Adding Incoming Connections.

Procedure

Create waypoint addresses on each router that needs to use the address:

address {
 prefix: ADDRESS_PREFIX
 waypoint: yes
}

prefix | pattern

The address prefix or pattern that matches the broker queue to which you want to send
messages. You can specify a prefix to match an exact address or beginning segment of an
address. Alternatively, you can specify a pattern to match an address using wildcards.
A prefix matches either an exact address or the beginning segment within an address that is
delimited by either a . or / character. For example, the prefix my_address would match the
address my_address as well as my_address.1 and my_address/1. However, it would
not match my_address1.

A pattern matches an address that corresponds to a pattern. A pattern is a sequence of words
delimited by either a . or / character. You can use wildcard characters to represent a word.
The * character matches exactly one word, and the # character matches any sequence of
zero or more words.

The * and # characters are reserved as wildcards. Therefore, you should not use them in the
message address.

CHAPTER 8. ROUTING

55

For more information about creating address patterns, see Section 5.3.1, “Pattern Matching
for Addresses”.

NOTE

You can convert a prefix value to a pattern by appending /# to it. For
example, the prefix a/b/c is equivalent to the pattern a/b/c/#.

waypoint

Set this attribute to yes so that the router handles messages sent to this address as a
waypoint.

8.2.6.2. Connecting a Router to the Broker

After you add waypoint addresses to identify the broker queue, you must connect a router to the broker
using autolinks.

With autolinks, client traffic is handled on the router, not the broker. Clients attach their links to the router,
and then the router uses internal autolinks to connect to the queue on the broker. Therefore, the queue
will always have a single producer and a single consumer regardless of how many clients are attached to
the router.

NOTE

If the connection to the broker fails, AMQ Interconnect automatically attempts to
reestablish the connection and reroute message deliveries to any available alternate
destinations. However, some deliveries could be returned to the sender with a RELEASED
or MODIFIED disposition. Therefore, you should ensure that your clients can handle these
deliveries appropriately (generally by resending them).

1. If this router is different than the router that is connected to the clients, then add the waypoint
address.

2. Add an outgoing connection to the broker:

connector {
 name: NAME
 host: HOST_NAME/ADDRESS
 port: PORT_NUMBER/NAME
 role: route-container
 ...
}

name

The name of the connector. Specify a name that describes the broker.

host

Either an IP address (IPv4 or IPv6) or hostname on which the router should connect to the
broker.

port

The port number or symbolic service name on which the router should connect to the broker.

role

Red Hat AMQ 7.2 Using AMQ Interconnect

56

Specify route-container to indicate that this connection is for an external container
(broker).

For information about additional attributes, see connector in the qdrouterd.conf man page.

3. If you want to send messages to the broker queue, create an outgoing autolink to the broker
queue:

autoLink {
 addr: ADDRESS
 connection: CONNECTOR_NAME
 direction: out
 ...
}

addr

The address of the broker queue. When the autolink is created, it will be attached to this
address.

externalAddr

An optional alternate address for the broker queue. You use an external address if the broker
queue should have a different address than that which the sender uses. In this scenario,
senders send messages to the addr address, and then the router routes them to the broker
queue represented by the externalAddr address.

connection | containerID

How the router should connect to the broker. You can specify either an outgoing connection
(connection) or the container ID of the broker (containerID).

direction

Set this attribute to out to specify that this autolink can send messages from the router to the
broker.

For information about additional attributes, see autoLink in the qdrouterd.conf man page.

4. If you want to receive messages from the broker queue, create an incoming autolink from the
broker queue:

autoLink {
 addr: ADDRESS
 connection: CONNECTOR_NAME
 direction: in
 ...
}

addr

The address of the broker queue. When the autolink is created, it will be attached to this
address.

externalAddr

An optional alternate address for the broker queue. You use an external address if the broker
queue should have a different address than that which the receiver uses. In this scenario,
receivers receive messages from the addr address, and the router retrieves them from the
broker queue represented by the externalAddr address.

connection | containerID

CHAPTER 8. ROUTING

57

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.conf.html#_connector
https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.conf.html#_autolink

How the router should connect to the broker. You can specify either an outgoing connection
(connection) or the container ID of the broker (containerID).

direction

Set this attribute to in to specify that this autolink can receive messages from the broker to
the router.

For information about additional attributes, see autoLink in the qdrouterd.conf man page.

8.2.7. Example: Routing Messages Through Broker Queues

This example shows how waypoints and autolinks can route messages through a pair of queues on a
broker.

8.2.7.1. Router Configuration

connector { 1
 name: broker
 role: route-container
 host: 198.51.100.1
 port: 61617
 saslMechanisms: ANONYMOUS
}

address { 2
 prefix: queue
 waypoint: yes
}

autoLink { 3
 addr: queue.first
 direction: in
 connection: broker
}

autoLink { 4
 addr: queue.first
 direction: out
 connection: broker
}

autoLink { 5
 addr: queue.second
 direction: in
 connection: broker
}

autoLink { 6
 addr: queue.second
 direction: out
 connection: broker
}

Red Hat AMQ 7.2 Using AMQ Interconnect

58

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.conf.html#_autolink

1

2

3

4

5

6

The outgoing connection from the router to the broker. The route-container role enables the
router to connect to an external AMQP container (in this case, a broker).

The namespace queue on the broker to which the router should route messages. All addresses that
start with queue will be routed to a queue on the broker.

The incoming autolink from queue.first on the broker to the router.

The outgoing autolink from the router to queue.first on the broker.

The incoming autolink from queue.second on the broker to the router.

The outgoing autolink from the router to queue.second on the broker.

8.2.7.2. How the Messages are Routed

Initially, when the broker is offline, the autolinks are inactive.

$ qdstat --autolinks
AutoLinks
 addr dir phs extAddr link status lastErr
 ==
 queue.first in 1 inactive
 queue.first out 0 inactive
 queue.second in 1 inactive
 queue.second out 0 inactive

Once the broker is online, the autolinks attempt to activate. In this case, the broker starts with the
queue.first queue only, and the queue.first autolinks become active. The queue.second
autolinks are in a failed state, because the queue.second queue does not exist on the broker.

$ qdstat --autolinks
AutoLinks
 addr dir phs extAddr link status lastErr

==
=
 queue.first in 1 6 active
 queue.first out 0 7 active
 queue.second in 1 failed Node not found:
queue.second
 queue.second out 0 failed Node not found:
queue.second

The producer now connects to the router and sends three messages to queue.first.

$ python simple_send.py -a 127.0.0.1/queue.first -m3
all messages confirmed

The router’s address statistics show that the messages were delivered to the queue.

$ qdstat -a
Router Addresses

CHAPTER 8. ROUTING

59

 class addr phs distrib in-proc local remote cntnr in
out thru to-proc from-proc

==
==============================
 mobile queue.first 1 balanced 0 0 0 0 0
0 0 0 0
 mobile queue.first 0 balanced 0 1 0 0 3
3 0 0 0

The queue.first address appears twice in the output: once for each phase of the address. Phase 0 is
for routing messages from producers to the outgoing autolink. Phase 1 is for routing messages from the
incoming autolink to the subscribed consumers. In this case, Phase 0 of the address has counted three
messages in the in column (the messages that arrived on the router from the producer), and three
messages in the out column (the messages that were sent from the router to the broker queue).

The consumer now connects to the router and receives the three messages from queue.first.

$ python simple_recv.py -a 127.0.0.1:5672/queue.first -m3
{u'sequence': int32(1)}
{u'sequence': int32(2)}
{u'sequence': int32(3)}

The router’s address statistics now show that all three messages were received by the consumer from
the broker queue.

$ qdstat -a
Router Addresses
 class addr phs distrib in-proc local remote cntnr in
out thru to-proc from-proc

==
==============================
 mobile queue.first 1 balanced 0 0 0 0 3
3 0 0 0
 mobile queue.first 0 balanced 0 1 0 0 3
3 0 0 0

The command output shows that Phase 1 of the address was used to deliver all three messages from the
queue to the consumer.

NOTE

Even in a multi-router network, and with multiple producers and consumers for
queue.first, all deliveries are routed through the queue on the connected broker.

8.3. CONFIGURING LINK ROUTING

Link routing provides an alternative strategy for brokered messaging. A link route represents a private
messaging path between a sender and a receiver in which the router passes the messages between end
points. You can think of a link route as a "virtual connection" or "tunnel" that travels from a sender,
through the router network, to a receiver.

Red Hat AMQ 7.2 Using AMQ Interconnect

60

With link routing, routing is performed on link-attach frames, which are chained together to form a virtual
messaging path that directly connects a sender and receiver. Once a link route is established, the
transfer of message deliveries, flow frames, and dispositions is performed across the link route.

8.3.1. Link Route Addresses

A link route address represents a broker queue, topic, or other service. When a client attaches a link
route address to a router, the router propagates a link attachment to the broker resource identified by the
address.

Using link route addresses, the router network does not participate in aggregated message distribution.
The router simply passes message delivery and settlement between the two end points.

8.3.2. Link Route Routing Patterns

Routing patterns are not used with link routing, because there is a direct link between the sender and
receiver. The router only makes a routing decision when it receives the initial link-attach request frame.
Once the link is established, the router passes the messages along the link in a balanced distribution.

8.3.3. Link Route Flow Control

Unlike message routing, with link routing, the sender and receiver handle flow control directly: the
receiver grants link credits, which is the number of messages it is able to receive. The router sends them
directly to the sender, and then the sender sends the messages based on the credits that the receiver
granted.

8.3.4. Creating a Link Route

Link routes establish a link between a sender and a receiver that travels through a router. You can
configure inward and outward link routes to enable the router to receive link-attaches from clients and to
send them to a particular destination.

With link routing, client traffic is handled on the broker, not the router. Clients have a direct link through
the router to a broker’s queue. Therefore, each client is a separate producer or consumer.

NOTE

If the connection to the broker fails, the routed links are detached, and the router will
attempt to reconnect to the broker (or its backup). Once the connection is reestablished,
the link route to the broker will become reachable again.

From the client’s perspective, the client will see the detached links (that is, the senders or
receivers), but not the failed connection. Therefore, if you want the client to reattach
dropped links in the event of a broker connection failure, you must configure this
functionality on the client. Alternatively, you can use message routing with autolinks
instead of link routing. For more information, see Routing Messages through a Broker
Queue.

Procedure

1. In the router configuration file, add an outgoing connection to the broker:

connector {
 name: NAME

CHAPTER 8. ROUTING

61

1

 host: HOST_NAME/ADDRESS
 port: PORT_NUMBER/NAME
 role: route-container
 ...
}

name

The name of the connector. You should specify a name that describes the broker.

host

Either an IP address (IPv4 or IPv6) or hostname on which the router should connect to the
broker.

port

The port number or symbolic service name on which the router should connect to the broker.

role

Specify route-container to indicate that this connection is for an external container
(broker).

For information about additional attributes, see connector in the qdrouterd.conf man page.

2. If you want clients to send local transactions to the broker, create a link route for the transaction
coordinator:

linkRoute {

 prefix: $coordinator 1
 connection: CONNECTOR_NAME
 direction: in
}

The $coordinator prefix designates this link route as a transaction coordinator. When
the client opens a transacted session, the requests to start and end the transaction are
propagated along this link route to the broker.

AMQ Interconnect does not support routing transactions to multiple brokers. If you have multiple
brokers in your environment, choose a single broker and route all transactions to it.

3. If you want clients to send messages on this link route, create an incoming link route:

linkRoute {
 prefix: ADDRESS_PREFIX
 connection: CONNECTOR_NAME
 direction: in
 ...
}

prefix | pattern

The address prefix or pattern that matches the broker queue that should be the destination
for routed link-attaches. All messages that match this prefix or pattern will be distributed
along the link route. You can specify a prefix to match an exact address or beginning
segment of an address. Alternatively, you can specify a pattern to match an address using
wildcards.
A prefix matches either an exact address or the beginning segment within an address that is

Red Hat AMQ 7.2 Using AMQ Interconnect

62

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.conf.html#_connector

delimited by either a . or / character. For example, the prefix my_address would match the
address my_address as well as my_address.1 and my_address/1. However, it would
not match my_address1.

A pattern matches an address that corresponds to a pattern. A pattern is a sequence of words
delimited by either a . or / character. You can use wildcard characters to represent a word.
The * character matches exactly one word, and the # character matches any sequence of
zero or more words.

The * and # characters are reserved as wildcards. Therefore, you should not use them in the
message address.

For more information about creating address patterns, see Section 5.3.1, “Pattern Matching
for Addresses”.

NOTE

You can convert a prefix value to a pattern by appending /# to it. For
example, the prefix a/b/c is equivalent to the pattern a/b/c/#.

connection | containerID

How the router should connect to the broker. You can specify either an outgoing connection
(connection) or the container ID of the broker (containerID).
If multiple brokers are connected to the router through this connection, requests for
addresses matching the link route’s prefix or pattern are balanced across the brokers.
Alternatively, if you want to specify a particular broker, use containerID and add the
broker’s container ID.

direction

Set this attribute to in to specify that clients can send messages into the router network on
this link route.

For information about additional attributes, see linkRoute in the qdrouterd.conf man page.

4. If you want clients to receive messages on this link route, create an outgoing link route:

linkRoute {
 prefix: ADDRESS_PREFIX
 connection: CONNECTOR_NAME
 direction: out
 ...
}

prefix | pattern

The address prefix or pattern that matches the broker queue from which you want to receive
routed link-attaches. All messages that match this prefix or pattern will be distributed along
the link route. You can specify a prefix to match an exact address or beginning segment of an
address. Alternatively, you can specify a pattern to match an address using wildcards.
A prefix matches either an exact address or the beginning segment within an address that is
delimited by either a . or / character. For example, the prefix my_address would match the
address my_address as well as my_address.1 and my_address/1. However, it would
not match my_address1.

CHAPTER 8. ROUTING

63

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.conf.html#_linkroute

A pattern matches an address that corresponds to a pattern. A pattern is a sequence of words
delimited by either a . or / character. You can use wildcard characters to represent a word.
The * character matches exactly one word, and the # character matches any sequence of
zero or more words.

The * and # characters are reserved as wildcards. Therefore, you should not use them in the
message address.

For more information about creating address patterns, see Section 5.3.1, “Pattern Matching
for Addresses”.

NOTE

You can convert a prefix value to a pattern by appending /# to it. For
example, the prefix a/b/c is equivalent to the pattern a/b/c/#.

connection | containerID

How the router should connect to the broker. You can specify either an outgoing connection
(connection) or the container ID of the broker (containerID).
If multiple brokers are connected to the router through this connection, requests for
addresses matching the link route’s prefix or pattern are balanced across the brokers.
Alternatively, if you want to specify a particular broker, use containerID and add the
broker’s container ID.

direction

Set this attribute to out to specify that this link route is for receivers.

For information about additional attributes, see linkRoute in the qdrouterd.conf man page.

8.3.5. Example: Using a Link Route to Provide Client Isolation

This example shows how a link route can connect a client to a message broker that is on a different
private network.

Router Network with Isolated Clients

 Public Network
 +-----------------+
 | +-----+ |
 | B1 | Rp | |
 | +/--\-+ |
 | / \ |
 | / \ |
 +----/--------\---+
 / \
 / \
 / \
 Private Net A / \ Private Net B
 +--------------/--+ +---\-------------+
 | +---/-+ | | +--\--+ | | | | |
 | B2 | Ra | | | | Rb | C1 |
 | +-----+ | | +-----+ |

Red Hat AMQ 7.2 Using AMQ Interconnect

64

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.conf.html#_linkroute

1

2

3

 | | | |
 | | | |
 +-----------------+ +-----------------+

Client C1 is constrained by firewall policy to connect to the router in its own network (Rb). However, it
can use a link route to access queues, topics, and any other AMQP services that are provided on
message brokers B1 and B2 — even though they are on different networks.

In this example, client C1 needs to receive messages from b2.event-queue, which is hosted on broker
B2 in Private Net A. A link route connects the client and broker even though neither of them is aware
that there is a router network between them.

8.3.5.1. Router Configuration

To enable client C1 to receive messages from b2.event-queue on broker B2, router Ra must be able
to do the following:

Connect to broker B2

Route links to and from broker B2

Advertise itself to the router network as a valid destination for links that have a b2.event-
queue address.

The relevant part of the configuration file for router Ra shows the following:

connector { 1
 name: broker
 role: route-container
 host: 198.51.100.1
 port: 61617
 saslMechanisms: ANONYMOUS
}

linkRoute { 2
 prefix: b2
 direction: in
 connection: broker
}

linkRoute { 3
 prefix: b2
 direction: out
 connection: broker
}

The outgoing connection from the router to broker B2. The route-container role enables the
router to connect to an external AMQP container (in this case, a broker).

The incoming link route for receiving links from client senders. Any sender with a target whose
address begins with b2 will be routed to broker B2 using the broker connector.

The outgoing link route for sending links to client receivers. Any receivers whose source address
begins with b2 will be routed to broker B2 using the broker connector.

CHAPTER 8. ROUTING

65

This configuration enables router Ra to advertise itself as a valid destination for targets and sources
starting with b2. It also enables the router to connect to broker B2, and to route links to and from queues
starting with the b2 prefix.

NOTE

While not required, routers Rp and Rb should also have the same configuration.

8.3.5.2. How the Client Receives Messages

By using the configured link route, client C1 can receive messages from broker B2 even though they are
on different networks.

Router Ra establishes a connection to broker B2. Once the connection is open, Ra tells the other routers
(Rp and Rb) that it is a valid destination for link routes to the b2 prefix. This means that sender and
receiver links attached to Rb or Rp will be routed along the shortest path to Ra, which then routes them to
broker B2.

To receive messages from the b2.event-queue on broker B2, client C1 attaches a receiver link with a
source address of b2.event-queue to its local router, Rb. Because the address matches the b2 prefix,
Rb routes the link to Rp, which is the next hop in the route to its destination. Rp routes the link to Ra,
which routes it to broker B2. Client C1 now has a receiver established, and it can begin receiving
messages.

NOTE

If broker B2 is unavailable for any reason, router Ra will not advertise itself as a
destination for b2 addresses. In this case, routers Rb and Rp will reject link attaches that
should be routed to broker B2 with an error message indicating that there is no route
available to the destination.

Red Hat AMQ 7.2 Using AMQ Interconnect

66

CHAPTER 9. LOGGING
Logging enables you to diagnose error and performance issues with AMQ Interconnect.

AMQ Interconnect consists of internal modules that provide important information about the router. For
each module, you can specify logging levels, the format of the log file, and the location to which the logs
should be written.

9.1. LOGGING MODULES

AMQ Interconnect logs are broken into different categories called logging modules. Each module
provides important information about a particular aspect of AMQ Interconnect.

9.1.1. The DEFAULT Logging Module

The default module. This module applies defaults to all of the other logging modules.

9.1.2. The ROUTER Logging Module

This module provides information and statistics about the local router. This includes how the router
connects to other routers in the network, and information about the remote destinations that are directly
reachable from the router (link routes, waypoints, autolinks, and so on).

In this example, on Router.A, the ROUTER log shows that Router.B is the next hop. It also shows the
cost for Router.A to reach the other routers on the network:

Tue Jun 7 13:28:27 2016 ROUTER (trace) Node Router.C next hop set:
Router.B
Tue Jun 7 13:28:27 2016 ROUTER (trace) Node Router.C valid origins: []
Tue Jun 7 13:28:27 2016 ROUTER (trace) Node Router.C cost: 2
Tue Jun 7 13:28:27 2016 ROUTER (trace) Node Router.B valid origins: []
Tue Jun 7 13:28:27 2016 ROUTER (trace) Node Router.B cost: 1

On Router.B, the ROUTER log provides more information about valid origins:

Tue Jun 7 13:28:25 2016 ROUTER (trace) Node Router.C cost: 1
Tue Jun 7 13:28:26 2016 ROUTER (trace) Node Router.A created: maskbit=2
Tue Jun 7 13:28:26 2016 ROUTER (trace) Node Router.A link set: link_id=1
Tue Jun 7 13:28:26 2016 ROUTER (trace) Node Router.A valid origins:
['Router.C']
Tue Jun 7 13:28:26 2016 ROUTER (trace) Node Router.A cost: 1
Tue Jun 7 13:28:27 2016 ROUTER (trace) Node Router.C valid origins:
['Router.A']

9.1.3. The ROUTER_HELLO Logging Module

This module provides information about the Hello protocol used by interior routers to exchange Hello
messages, which include information about the router’s ID and a list of its reachable neighbors (the other
routers with which this router has bidirectional connectivity).

The logs for this module are helpful for monitoring or resolving issues in the network topology, and for
determining to which other routers a router is connected, and the hop-cost for each of those connections.

CHAPTER 9. LOGGING

67

1

2

1

2

3

In this example, on Router.A, the ROUTER_HELLO log shows that it is connected to Router.B, and
that Router.B is connected to Router.A and Router.C:

Tue Jun 7 13:50:21 2016 ROUTER_HELLO (trace) RCVD: HELLO(id=Router.B

area=0 inst=1465307413 seen=['Router.A', 'Router.C']) 1
Tue Jun 7 13:50:21 2016 ROUTER_HELLO (trace) SENT: HELLO(id=Router.A

area=0 inst=1465307416 seen=['Router.B']) 2
Tue Jun 7 13:50:22 2016 ROUTER_HELLO (trace) RCVD: HELLO(id=Router.B
area=0 inst=1465307413 seen=['Router.A', 'Router.C'])
Tue Jun 7 13:50:22 2016 ROUTER_HELLO (trace) SENT: HELLO(id=Router.A
area=0 inst=1465307416 seen=['Router.B'])

Router.A received a Hello message from Router.B, which can see Router.A and Router.C.

Router.A sent a Hello message to Router.B, which is the only router it can see.

On Router.B, the ROUTER_HELLO log shows the same router topology from a different perspective:

Tue Jun 7 13:50:18 2016 ROUTER_HELLO (trace) SENT: HELLO(id=Router.B

area=0 inst=1465307413 seen=['Router.A', 'Router.C']) 1
Tue Jun 7 13:50:18 2016 ROUTER_HELLO (trace) RCVD: HELLO(id=Router.A

area=0 inst=1465307416 seen=['Router.B']) 2
Tue Jun 7 13:50:19 2016 ROUTER_HELLO (trace) RCVD: HELLO(id=Router.C

area=0 inst=1465307411 seen=['Router.B']) 3

Router.B sent a Hello message to Router.A and Router.C.

Router.B received a Hello message from Router.A, which can only see Router.B.

Router.B received a Hello message from Router.C, which can only see Router.B.

9.1.4. The ROUTER_LS Logging Module

This module provides information about link-state data between routers, including Router Advertisement
(RA), Link State Request (LSR), and Link State Update (LSU) messages.

Periodically, each router sends an LSR to the other routers and receives an LSU with the requested
information. Exchanging the above information, each router can compute the next hops in the topology,
and the related costs.

This example shows the RA, LSR, and LSU messages sent between three routers:

Tue Jun 7 14:10:02 2016 ROUTER_LS (trace) SENT: LSR(id=Router.A area=0)
to: Router.C //
Tue Jun 7 14:10:02 2016 ROUTER_LS (trace) SENT: LSR(id=Router.A area=0)
to: Router.B //
Tue Jun 7 14:10:02 2016 ROUTER_LS (trace) SENT: RA(id=Router.A area=0

inst=1465308600 ls_seq=1 mobile_seq=1) 1
Tue Jun 7 14:10:02 2016 ROUTER_LS (trace) RCVD: LSU(id=Router.B area=0
inst=1465308595 ls_seq=2 ls=LS(id=Router.B area=0 ls_seq=2 peers=

{'Router.A': 1L, 'Router.C': 1L})) 2
Tue Jun 7 14:10:02 2016 ROUTER_LS (trace) RCVD: LSR(id=Router.B area=0)

Red Hat AMQ 7.2 Using AMQ Interconnect

68

1

2

3

4

5

Tue Jun 7 14:10:02 2016 ROUTER_LS (trace) SENT: LSU(id=Router.A area=0
inst=1465308600 ls_seq=1 ls=LS(id=Router.A area=0 ls_seq=1 peers=
{'Router.B': 1}))
Tue Jun 7 14:10:02 2016 ROUTER_LS (trace) RCVD: RA(id=Router.C area=0
inst=1465308592 ls_seq=1 mobile_seq=0)
Tue Jun 7 14:10:02 2016 ROUTER_LS (trace) SENT: LSR(id=Router.A area=0)
to: Router.C
Tue Jun 7 14:10:02 2016 ROUTER_LS (trace) RCVD: LSR(id=Router.C area=0)

3
Tue Jun 7 14:10:02 2016 ROUTER_LS (trace) SENT: LSU(id=Router.A area=0 //
inst=1465308600 ls_seq=1 ls=LS(id=Router.A area=0 ls_seq=1 peers=
{'Router.B': 1}))
Tue Jun 7 14:10:02 2016 ROUTER_LS (trace) RCVD: LSU(id=Router.C area=0
inst=1465308592 ls_seq=1 ls=LS(id=Router.C area=0 ls_seq=1 peers=

{'Router.B': 1L})) 4
Tue Jun 7 14:10:03 2016 ROUTER_LS (trace) Computed next hops:

{'Router.C': 'Router.B', 'Router.B': 'Router.B'} 5
Tue Jun 7 14:10:03 2016 ROUTER_LS (trace) Computed costs: {'Router.C':
2L, 'Router.B': 1}
Tue Jun 7 14:10:03 2016 ROUTER_LS (trace) Computed valid origins:
{'Router.C': [], 'Router.B': []}

Router.A sent LSR requests and an RA advertisement to the other routers on the network.

Router.A received an LSU from Router.B, which has two peers: Router.A, and Router.C
(with a cost of 1).

Router.A received an LSR from both Router.B and Router.C, and replied with an LSU.

Router.A received an LSU from Router.C, which only has one peer: Router.B (with a cost of
1).

After the LSR and LSU messages are exchanged, Router.A computed the router topology with
the related costs.

9.1.5. The ROUTER_MA Logging Module

This module provides information about the exchange of mobile address information between routers,
including Mobile Address Request (MAR) and Mobile Address Update (MAU) messages exchanged
between routers. You can use this log to monitor the state of mobile addresses attached to each router.

This example shows the MAR and MAU messages sent between three routers:

Tue Jun 7 14:27:20 2016 ROUTER_MA (trace) SENT: MAU(id=Router.A area=0

mobile_seq=1 add=['Cmy_queue', 'Dmy_queue', 'M0my_queue_wp'] del=[]) 1
Tue Jun 7 14:27:21 2016 ROUTER_MA (trace) RCVD: MAR(id=Router.C area=0

have_seq=0) 2
Tue Jun 7 14:27:21 2016 ROUTER_MA (trace) SENT: MAU(id=Router.A area=0
mobile_seq=1 add=['Cmy_queue', 'Dmy_queue', 'M0my_queue_wp'] del=[])
Tue Jun 7 14:27:22 2016 ROUTER_MA (trace) RCVD: MAR(id=Router.B area=0

have_seq=0) 3
Tue Jun 7 14:27:22 2016 ROUTER_MA (trace) SENT: MAU(id=Router.A area=0
mobile_seq=1 add=['Cmy_queue', 'Dmy_queue', 'M0my_queue_wp'] del=[])
Tue Jun 7 14:27:39 2016 ROUTER_MA (trace) RCVD: MAU(id=Router.C area=0

CHAPTER 9. LOGGING

69

1

2

3

4

5

mobile_seq=1 add=['M0my_test'] del=[]) 4
Tue Jun 7 14:27:51 2016 ROUTER_MA (trace) RCVD: MAU(id=Router.C area=0

mobile_seq=2 add=[] del=['M0my_test']) 5

Router.A sent MAU messages to the other routers in the network to notify them about the
addresses added for my_queue and my_queue_wp.

Router.A received a MAR message in response from Router.C.

Router.A received another MAR message in response from Router.B.

Router.C sent a MAU message to notify the other routers that it added and address for my_test.

Router.C sent another MAU message to notify the other routers that it deleted the address for
my_test (because the receiver is detached).

9.1.6. The MESSAGE Logging Module

This module provides information about AMQP messages sent and received by the router, including
information about the address, body, and link. You can use this log to find high-level information about
messages on a particular router.

In this example, Router.A has sent and received some messages related to the Hello protocol, and
sent and received some other messages on a link for a mobile address:

Tue Jun 7 14:36:54 2016 MESSAGE (trace) Sending
Message{to='amqp:/_topo/0/Router.B/qdrouter'
body='\d1\00\00\00\1b\00\00\00\04\a1\02id\a1\08R'} on link
qdlink.p9XmBm19uDqx50R
Tue Jun 7 14:36:54 2016 MESSAGE (trace) Received
Message{to='amqp:/_topo/0/Router.A/qdrouter'
body='\d1\00\00\00\8e\00\00\00
\a1\06ls_se'} on link qdlink.phMsJOq7YaFsGAG
Tue Jun 7 14:36:54 2016 MESSAGE (trace) Received Message{
body='\d1\00\00\00\10\00\00\00\02\a1\08seque'} on link
qdlink.FYHqBX+TtwXZHfV
Tue Jun 7 14:36:54 2016 MESSAGE (trace) Sending Message{
body='\d1\00\00\00\10\00\00\00\02\a1\08seque'} on link
qdlink.yU1tnPs5KbMlieM
Tue Jun 7 14:36:54 2016 MESSAGE (trace) Sending
Message{to='amqp:/_local/qdhello'
body='\d1\00\00\00G\00\00\00\08\a1\04seen\d0'} on link
qdlink.p9XmBm19uDqx50R
Tue Jun 7 14:36:54 2016 MESSAGE (trace) Sending
Message{to='amqp:/_topo/0/Router.C/qdrouter'
body='\d1\00\00\00\1b\00\00\00\04\a1\02id\a1\08R'} on link
qdlink.p9XmBm19uDqx50R

9.1.7. The SERVER Logging Module

This module provides information about how the router is listening for and connecting to other containers
in the network (such as clients, routers, and brokers). This includes the state of AMQP messages sent
and received by the broker (open, begin, attach, transfer, flow, and so on), and the related content of

Red Hat AMQ 7.2 Using AMQ Interconnect

70

those messages.

For example, this log shows details about how the router handled a link attachment:

Tue Jun 7 14:39:52 2016 SERVER (trace) [2]: <- AMQP
Tue Jun 7 14:39:52 2016 SERVER (trace) [1]: <- AMQP
Tue Jun 7 14:39:52 2016 SERVER (trace) [1]:0 <- @open(16) [container-
id="Router.B", max-frame-size=16384, channel-max=32767, idle-time-
out=8000, offered-capabilities=:"ANONYMOUS-RELAY", properties=
{:product="qpid-dispatch-router", :version="0.6.0"}]
Tue Jun 7 14:39:52 2016 SERVER (trace) [1]:0 -> @begin(17) [next-
outgoing-id=0, incoming-window=15, outgoing-window=2147483647]
Tue Jun 7 14:39:52 2016 SERVER (trace) [1]:RAW:
"\x00\x00\x00\x1e\x02\x00\x00\x00\x00S\x11\xd0\x00\x00\x00\x0e\x00\x00\x00
\x04@R\x00R\x0fp\x7f\xff\xff\xff"
Tue Jun 7 14:39:52 2016 SERVER (trace) [1]:1 -> @begin(17) [next-
outgoing-id=0, incoming-window=15, outgoing-window=2147483647]
Tue Jun 7 14:39:52 2016 SERVER (trace) [1]:RAW:
"\x00\x00\x00\x1e\x02\x00\x00\x01\x00S\x11\xd0\x00\x00\x00\x0e\x00\x00\x00
\x04@R\x00R\x0fp\x7f\xff\xff\xff"
Tue Jun 7 14:39:52 2016 SERVER (trace) [1]:0 -> @attach(18)
[name="qdlink.uSSeXPSfTHhxo8d", handle=0, role=true, snd-settle-mode=2,
rcv-settle-mode=0, source=@source(40) [durable=0, expiry-policy=:"link-
detach", timeout=0, dynamic=false, capabilities=:"qd.router"],
target=@target(41) [durable=0, expiry-policy=:"link-detach", timeout=0,
dynamic=false, capabilities=:"qd.router"], initial-delivery-count=0]
Tue Jun 7 14:39:52 2016 SERVER (trace) [1]:RAW:
"\x00\x00\x00\x91\x02\x00\x00\x00\x00S\x12\xd0\x00\x00\x00\x81\x00\x00\x00
\x0a\xa1\x16qdlink.uSSeXPSfTHhxo8dR\x00AP\x02P\x00\x00S(\xd0\x00\x00\x00'\
x00\x00\x00\x0b@R\x00\xa3\x0blink-
detachR\x00B@@@@@\xa3\x09qd.router\x00S)\xd0\x00\x00\x00#\x00\x00\x00\x07@
R\x00\xa3\x0blink-detachR\x00B@\xa3\x09qd.router@@R\x00"

9.1.8. The AGENT Logging Module

This module provides information about configuration changes made to the router from either editing the
router’s configuration file or using qdmanage.

In this example, on Router.A, address, linkRoute, and autoLink entities were added to the
router’s configuration file. When the router was started, the AGENT module applied these changes, and
they are now viewable in the log:

Tue Jun 7 15:07:32 2016 AGENT (debug) Add entity:
ConnectorEntity(addr=127.0.0.1, allowRedirect=True, cost=1,
host=127.0.0.1, identity=connector/127.0.0.1:5672:BROKER,
idleTimeoutSeconds=16, maxFrameSize=65536, name=BROKER, port=5672,
role=route-container, stripAnnotations=both,
type=org.apache.qpid.dispatch.connector, verifyHostname=True)
Tue Jun 7 15:07:32 2016 AGENT (debug) Add entity:
RouterConfigAddressEntity(distribution=closest,
identity=router.config.address/0, name=router.config.address/0,
prefix=my_address, type=org.apache.qpid.dispatch.router.config.address,
waypoint=False)
Tue Jun 7 15:07:32 2016 AGENT (debug) Add entity:
RouterConfigAddressEntity(distribution=balanced,

CHAPTER 9. LOGGING

71

identity=router.config.address/1, name=router.config.address/1,
prefix=my_queue_wp, type=org.apache.qpid.dispatch.router.config.address,
waypoint=True)
Tue Jun 7 15:07:32 2016 AGENT (debug) Add entity:
RouterConfigLinkrouteEntity(connection=BROKER, direction=in,
distribution=linkBalanced, identity=router.config.linkRoute/0,
name=router.config.linkRoute/0, prefix=my_queue,
type=org.apache.qpid.dispatch.router.config.linkRoute)
Tue Jun 7 15:07:32 2016 AGENT (debug) Add entity:
RouterConfigLinkrouteEntity(connection=BROKER, direction=out,
distribution=linkBalanced, identity=router.config.linkRoute/1,
name=router.config.linkRoute/1, prefix=my_queue,
type=org.apache.qpid.dispatch.router.config.linkRoute)
Tue Jun 7 15:07:32 2016 AGENT (debug) Add entity:
RouterConfigAutolinkEntity(addr=my_queue_wp, connection=BROKER,
direction=in, identity=router.config.autoLink/0,
name=router.config.autoLink/0,
type=org.apache.qpid.dispatch.router.config.autoLink)
Tue Jun 7 15:07:32 2016 AGENT (debug) Add entity:
RouterConfigAutolinkEntity(addr=my_queue_wp, connection=BROKER,
direction=out, identity=router.config.autoLink/1,
name=router.config.autoLink/1,
type=org.apache.qpid.dispatch.router.config.autoLink)

9.1.9. The CONTAINER Logging Module

This module provides information about the nodes related to the router. This includes only the AMQP
relay node.

Tue Jun 7 14:46:18 2016 CONTAINER (trace) Container Initialized
Tue Jun 7 14:46:18 2016 CONTAINER (trace) Node Type Registered - router
Tue Jun 7 14:46:18 2016 CONTAINER (trace) Node of type 'router' installed
as default node

9.1.10. The ERROR Logging Module

This module provides detailed information about error conditions encountered during execution.

In this example, Router.A failed to start when an incorrect path was specified for the router’s
configuration file:

$ sudo qdrouterd --conf xxx
Wed Jun 15 09:53:28 2016 ERROR (error) Python: Exception: Cannot load
configuration file xxx: [Errno 2] No such file or directory: 'xxx'
Wed Jun 15 09:53:28 2016 ERROR (error) Traceback (most recent call last):
 File "/usr/lib/qpid-
dispatch/python/qpid_dispatch_internal/management/config.py", line 155, in
configure_dispatch
 config = Config(filename)
 File "/usr/lib/qpid-
dispatch/python/qpid_dispatch_internal/management/config.py", line 41, in
__init__
 self.load(filename, raw_json)
 File "/usr/lib/qpid-

Red Hat AMQ 7.2 Using AMQ Interconnect

72

dispatch/python/qpid_dispatch_internal/management/config.py", line 123, in
load
 with open(source) as f:
Exception: Cannot load configuration file xxx: [Errno 2] No such file or
directory: 'xxx'

Wed Jun 15 09:53:28 2016 MAIN (critical) Router start-up failed: Python:
Exception: Cannot load configuration file xxx: [Errno 2] No such file or
directory: 'xxx'
qdrouterd: Python: Exception: Cannot load configuration file xxx: [Errno
2] No such file or directory: 'xxx'

9.1.11. The POLICY Logging Module

This module provides information about policies that have been configured for the router.

In this example, Router.A has no limits on maximum connections, and the default application policy is
disabled:

Tue Jun 7 15:07:32 2016 POLICY (info) Policy configured
maximumConnections: 0, policyFolder: '', access rules enabled: 'false'
Tue Jun 7 15:07:32 2016 POLICY (info) Policy fallback defaultApplication
is disabled

9.2. CONFIGURING LOGGING

You can specify the types of events that should be logged, the format of the log entries, and where those
entries should be sent.

Procedure

1. In the router’s configuration file, add a log section to set the default logging properties:

log {
 module: DEFAULT
 enable: LOGGING_LEVEL
 includeTimestamp: yes
 ...
}

module

Specify DEFAULT.

enable

The logging level. You can specify any of the following levels (from lowest to highest):

trace - provides the most information, but significantly affects system performance

debug - useful for debugging, but affects system performance

info - provides general information without affecting system performance

notice - provides general information, but is less verbose than info

CHAPTER 9. LOGGING

73

warning - provides information about issues you should be aware of, but which are not
errors

error - error conditions that you should address

critical - critical system issues that you must address immediately

To specify multiple levels, use a comma-separated list. You can also use + to specify a level
and all levels above it. For example, trace,debug,warning+ enables trace, debug,
warning, error, and critical levels. For default logging, you should typically use the info+ or
notice+ level. These levels will provide general information, warnings, and errors for all
modules without affecting the performance of AMQ Interconnect.

includeTimestamp

Set this to yes to include the timestamp in all logs.

For information about additional log attributes, see log in the qdrouterd.conf man page.

2. Add an additional log section for each logging module that should not follow the default logging
configuration:

log {
 module: MODULE_NAME
 enable: LOGGING_LEVEL
 ...
}

module

The name of the module for which you are configuring logging. For a list of valid modules,
see Section 9.1, “Logging Modules”.

enable

The logging level. You can specify any of the following levels (from lowest to highest):

trace - provides the most information, but significantly affects system performance

debug - useful for debugging, but affects system performance

info - provides general information without affecting system performance

notice - provides general information, but is less verbose than info

warning - provides information about issues you should be aware of, but which are not
errors

error - error conditions that you should address

critical - critical system issues that you must address immediately

To specify multiple levels, use a comma-separated list. You can also use + to specify a level
and all levels above it. For example, trace,debug,warning+ enables trace, debug,
warning, error, and critical levels. For default logging, you should typically use the info+ or
notice+ level. These levels will provide general information, warnings, and errors for all
modules without affecting the performance of AMQ Interconnect.

Red Hat AMQ 7.2 Using AMQ Interconnect

74

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.conf.html#_log

For information about additional log attributes, see log in the qdrouterd.conf man page.

9.3. VIEWING LOG ENTRIES

You may need to view log entries to diagnose errors, performance problems, and other important issues.
A log entry consists of an optional timestamp, the logging module, the logging level, and the log
message.

9.3.1. Viewing Log Entries on the Console

By default, log entries are logged to the console, and you can view them there. However, if the output
attribute is set for a particular logging module, then you can find those log entries in the specified
location (stderr, syslog, or a file).

9.3.2. Viewing Log Entries on the CLI

You can use the qdstat tool to view a list of recent log entries.

Procedure

Use the qdstat --log command to view recent log entries.
You can use the --limit parameter to limit the number of log entries that are displayed. For
more information about qdstat, see qdstat man page.

This example displays the last three log entries for Router.A:

$ qdstat --log --limit=3 -r ROUTER.A
Wed Jun 7 17:49:32 2017 ROUTER (none) Core action 'link_deliver'
Wed Jun 7 17:49:32 2017 ROUTER (none) Core action 'send_to'
Wed Jun 7 17:49:32 2017 SERVER (none) [2]:0 -> @flow(19) [next-
incoming-id=1, incoming-window=61, next-outgoing-id=0, outgoing-
window=2147483647, handle=0, delivery-count=1, link-credit=250,
drain=false]

CHAPTER 9. LOGGING

75

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.conf.html#_log
https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdstat.html

CHAPTER 10. MANAGEMENT
You can manage AMQ Interconnect using both graphical and command-line tools.

AMQ Console

A graphical tool for monitoring and managing AMQ brokers and routers.

qdstat

A command-line tool for monitoring the status of AMQ Interconnect routers.

qdmanage

A command-line tool for viewing and updating the configuration of AMQ Interconnect routers.

10.1. USING AMQ CONSOLE

If you prefer to use a graphic interface to manage AMQ, you can use AMQ Console. AMQ Console is a
web console included in the AMQ Broker installation, and it enables you to use a web browser to
manage AMQ Broker and AMQ Interconnect.

For more information, see Using AMQ Console.

10.2. MONITORING AMQ INTERCONNECT USING QDSTAT

You can use qdstat to view the status of routers on your router network. For example, you can view
information about the attached links and configured addresses, available connections, and nodes in the
router network.

10.2.1. Syntax for Using qdstat

You can use qdstat with the following syntax:

$ qdstat OPTION [CONNECTION_OPTIONS] [SECURE_CONNECTION_OPTIONS]

This specifies:

An option for the type of information to view.

One or more optional connection_options to specify a router for which to view the
information.
If you do not specify a connection option, qdstat connects to the router listening on localhost
and the default AMQP port (5672).

The secure_connection_options if the router for which you want to view information only
accepts secure connections.

For more information about qdstat, see the qdstat man page.

10.2.2. Viewing General Statistics for a Router

You can view information about a router in the router network, such as its working mode and ID.

Procedure

Red Hat AMQ 7.2 Using AMQ Interconnect

76

https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/using_amq_console/
https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdstat.html

Use the following command:

$ qdstat -g [CONNECTION_OPTIONS]

This example shows general statistics for the local router:

$ qdstat -g
Router Statistics
 attr value
 ===
 Version 1.2.0
 Mode standalone
 Router Id Router.A
 Link Routes 0
 Auto Links 0
 Links 2
 Nodes 0
 Addresses 4
 Connections 1
 Presettled Count 0
 Dropped Presettled Count 0
 Accepted Count 2
 Rejected Count 0
 Released Count 0
 Modified Count 0
 Ingress Count 2
 Egress Count 1
 Transit Count 0
 Deliveries from Route Container 0
 Deliveries to Route Container 0

10.2.3. Viewing a List of Connections to a Router

You can view:

Connections from clients (sender/receiver)

Connections from and to other routers in the network

Connections to other containers (such as brokers)

Connections from the tool itself

Procedure

Use this command:

$ qdstat -c [CONNECTION_OPTIONS]

For more information about the fields displayed by this command, see the qdstat -c output
columns.

In this example, two clients are connected to Router.A. Router.A is connected to Router.B
and a broker.

CHAPTER 10. MANAGEMENT

77

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdstat.html#_qdstat_c

1

2

3 4

5

1

Viewing the connections on Router.A displays the following:

$ qdstat -c -r Router.A
Connections
id host container
role dir security authentication tenant
==
==
 2 127.0.0.1:5672

route-container out no-security anonymous-user 1
 10 127.0.0.1:5001 Router.B

inter-router out no-security anonymous-user 2
 12 localhost.localdomain:42972 161211fe-ba9e-4726-9996-
52d6962d1276 normal in no-security anonymous-user

3
 14 localhost.localdomain:42980 a35fcc78-63d9-4bed-b57c-
053969c38fda normal in no-security anonymous-user

4
 15 localhost.localdomain:42982 0a03aa5b-7c45-4500-8b38-
db81d01ce651 normal in no-security anonymous-user

5

This connection shows that Router.A is connected to a broker, because the role is
route-container, and the dir is out.

Router.A is also connected to another router on the network (the role is inter-
router), establishing an output connection (the dir is out).

These connections show that two clients are connected to Router.A, because the role
is normal, and the dir is in.

The connection from qdstat to Router.A. This is the connection that qdstat uses to
query Router.A and display the command output.

Router.A is connected to Router.B. Viewing the connections on Router.B displays the
following:

$ qdstat -c -r Router.B
Connections
id host container role dir
security authentication tenant
==
================================
 1 localhost.localdomain:51848 Router.A inter-router in no-

security anonymous-user 1

This connection shows that Router.B is connected to Router.A through an incoming
connection (the role is inter-router and the dir is in). There is not a connection
from qdstat to Router.B, because the command was run from Router.A and
forwarded to Router.B.

10.2.4. Viewing AMQP Links Attached to a Router

Red Hat AMQ 7.2 Using AMQ Interconnect

78

You can view a list of AMQP links attached to the router from clients (sender/receiver), from or to other
routers into the network, to other containers (for example, brokers), and from the tool itself.

Procedure

Use this command:

$ qdstat -l [CONNECTION_OPTIONS]

For more information about the fields displayed by this command, see the qdstat -l output
columns.

In this example, Router.A is connected to both Router.B and a broker. A link route is
configured for the my_queue queue and waypoint (with autolinks), and for the my_queue_wp
queue on the broker. In addition, there is a receiver connected to my_address (message
routing based), another to my_queue, and the a third one to my_queue_wp.

In this configuration, the router uses only one connection to the broker for both the waypoints
(related to my_queue_wp) and the link route (related to my_queue).

Viewing the links displays the following:

$ qdstat -l
Router Links
 type dir conn id id peer class addr
phs cap undel unsett del presett psdrop acc rej rel mod
admin oper

==
==
==============
 router-control in 2 7
250 0 0 2876 0 0 0 0 0 0

enabled up 1
 router-control out 2 8 local qdhello
250 0 0 2716 0 0 0 0 0 0
enabled up
 inter-router in 2 9
250 0 0 1 0 0 0 0 0 0
enabled up
 inter-router out 2 10
250 0 0 1 0 0 0 0 0 0
enabled up
 endpoint in 1 11 mobile my_queue_wp
1 250 0 0 3 0 0 0 0 0 0

enabled up 2
 endpoint out 1 12 mobile my_queue_wp
0 250 0 0 3 0 0 0 0 0 0
enabled up
 endpoint out 4 15 mobile my_address
0 250 0 0 0 0 0 0 0 0 0

enabled up 3
 endpoint out 6 18 19
250 0 0 1 0 0 0 0 0 0

enabled up 4

CHAPTER 10. MANAGEMENT

79

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdstat.html#_qdstat_l

1

2

3

4

5

6

 endpoint in 1 19 18
0 0 0 1 0 0 0 0 0 0

enabled up 5
 endpoint out 19 40 mobile my_queue_wp
1 250 0 0 1 0 0 0 0 0 0

enabled up 6
 endpoint in 24 48 mobile $management
0 250 0 0 1 0 0 0 0 0 0
enabled up
 endpoint out 24 49 local
temp.mx5HxzUe2Eddw_s 250 0 0 0 0 0
0 0 0 0 enabled up

The conn id 2 connection has four links (in both directions) for inter-router
communications with Router.B, such as control messages and normal message-routed
deliveries.

There are two autolinks (conn id 1) for the waypoint for my_queue_wp. There is an
incoming (id 11) and outgoing (id 12) link to the broker, and another out link (id 40)
to the receiver.

A mobile link for my_address. The dir is out related to the receiver attached to it.

The out link from the router to the receiver for my_queue. This enables the router to
deliver messages to the receiver.

The in link to the router for my_queue. This enables the router to get messages from
my_queue so that they can be sent to the receiver on the out link.

The remaining links are related to the $management address and are used by qdstat to
receive the information that is displayed by this command.

10.2.5. Viewing Known Routers on a Network

To see the topology of the router network, you can view known routers on the network.

Procedure

Use this command:

$ qdstat -n [CONNECTION_OPTIONS]

For more information about the fields displayed by this command, see the qdstat -n output
columns.

In this example, Router.A is connected to Router.B, which is connected to Router.C.
Viewing the router topology on Router.A shows the following:

$ qdstat -n -r Router.A
Routers in the Network
 router-id next-hop link cost neighbors valid-
origins

==

Red Hat AMQ 7.2 Using AMQ Interconnect

80

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdstat.html#_qdstat_n

1

2

3

======

 Router.A (self) - ['Router.B'] [] 1

 Router.B - 0 1 ['Router.A', 'Router.C'] [] 2

 Router.C Router.B - 2 ['Router.B'] [] 3

Router.A has one neighbor: Router.B.

Router.B is connected to Router.A and Router.C over link 0. The cost for
Router.A to reach Router.B is 1, because the two routers are connected directly.

Router.C is connected to Router.B, but not to Router.A. The cost for Router.A to
reach Router.C is 2, because messages would have to pass through Router.B as the
next-hop.

Router.B shows a different view of the router topology:

$ qdstat -n -v -r Router.B
Routers in the Network
 router-id next-hop link cost neighbors valid-
origins

==
======
 Router.A - 0 1 ['Router.B']
['Router.C']
 Router.B (self) - ['Router.A', 'Router.C'] []
 Router.C - 1 1 ['Router.B']
['Router.A']

The neighbors list is the same when viewed on Router.B. However, from the perspective of
Router.B, the destinations on Router.A and Router.C both have a cost of 1. This is
because Router.B is connected to Router.A and Router.C through links.

The valid-origins column shows that starting from Router.C, Router.B has the best path
to reach Router.A. Likewise, starting from Router.A, Router.B has the best path to reach
Router.C.

Finally, Router.C shows the following details about the router topology:

$ qdstat -n -v -r Router.C
Routers in the Network
 router-id next-hop link cost neighbors valid-
origins

==
======
 Router.A Router.B - 2 ['Router.B'] []
 Router.B - 0 1 ['Router.A', 'Router.C'] []
 Router.C (self) - ['Router.B'] []

Due to a symmetric topology, the Router.C perspective of the topology is very similar to the
Router.A perspective. The primary difference is the cost: the cost to reach Router.B is 1,
because the two routers are connected. However, the cost to reach Router.A is 2, because the

CHAPTER 10. MANAGEMENT

81

messages would have to pass through Router.B as the next-hop.

10.2.6. Viewing Addresses Known to a Router

You can view message-routed and link-routed addresses known to a router.

Procedure

Use the following command:

$ qdstat -a [CONNECTION_OPTIONS]

For more information about the fields displayed by this command, see the qdstat -a output
columns.

In this example, Router.A is connected to both Router.B and a broker. The broker has two
queues:

my_queue (with a link route on Router.A)

my_queue_wp (with a waypoint and autolinks configured on Router.A)

In addition, there are three receivers: one connected to my_address for message routing,
another connected to my_queue, and the last one connected to my_queue_wp.

Viewing the addresses displays the following information:

$ qdstat -a
Router Addresses
 class addr phs distrib in-proc
local remote cntnr in out thru to-proc from-proc

==
==
 local $_management_internal closest 1 0
0 0 0 0 0 0 0
 local $displayname closest 1 0
0 0 0 0 0 0 0
 mobile $management 0 closest 1 0
0 0 8 0 0 8 0
 local $management closest 1 0
0 0 0 0 0 0 0
 router Router.B closest 0 0

1 0 0 0 5 0 5 1
 mobile my_address 0 closest 0 1

0 0 1 1 0 0 0 2
 link-in my_queue linkBalanced 0 0

0 1 0 0 0 0 0 3
 link-out my_queue linkBalanced 0 0
0 1 0 0 0 0 0
 mobile my_queue_wp 1 balanced 0 1

0 0 1 1 0 0 0 4
 mobile my_queue_wp 0 balanced 0 1
0 0 1 1 0 0 0
 local qdhello flood 1 1

Red Hat AMQ 7.2 Using AMQ Interconnect

82

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdstat.html#_qdstat_a

1

2

3

4

5

0 0 0 0 0 741 706 5
 local qdrouter flood 1 0
0 0 0 0 0 4 0
 topo qdrouter flood 1 0
1 0 0 0 27 28 28
 local qdrouter.ma multicast 1 0
0 0 0 0 0 1 0
 topo qdrouter.ma multicast 1 0
1 0 0 0 2 0 3
 local temp.IJSoXoY_lX0TiDE closest 0 1
0 0 0 0 0 0 0

An address related to Router.B with a remote at 1. This is the consumer from
Router.B.

The my_address address has one local consumer, which is related to the single receiver
attached on that address. The in and out fields are both 1, which means that one
message has traveled through this address using the closest distribution method.

The incoming link route for the my_queue address. This address has one locally-attached
container (cntnr) as a destination (in this case, the broker). The following entry is the
outgoing link for the same address.

The incoming autolink for the my_queue_wp address and configured waypoint. There is
one local consumer (local) for the attached receiver. The following entry is the outgoing
autolink for the same address. A single message has traveled through the autolinks.

The qdhello, qdrouter, and qdrouter.ma addresses are used to periodically update
the network topology and deliver router control messages. These updates are made
automatically through the inter-router protocol, and are based on all of the messages the
routers have exchanged. In this case, the distribution method (distrib) for each address
is either flood or multicast to ensure the control messages reach all of the routers in the
network.

10.2.7. Viewing a Router’s Autolinks

You can view a list of the autolinks that are associated with waypoint addresses for a node on another
container (such as a broker).

Procedure

Use the following command:

$ qdstat --autolinks [CONNECTION_OPTIONS]

For more information about the fields displayed by this command, see the qdstat --autolinks
output columns.

In this example, a router is connected to a broker. The broker has a queue called
my_queue_wp, to which the router is configured with a waypoint and autolinks. Viewing the
autolinks displays the following:

$ qdstat --autolinks

CHAPTER 10. MANAGEMENT

83

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdstat.html#_qdstat_autolinks

1

2

1

2

AutoLinks
 addr dir phs link status lastErr
 ==

 my_queue_wp in 1 4 active 1

 my_queue_wp out 0 5 active 2

The incoming autolink from my_queue_wp. As indicated by the status field, the link is
active, because the broker is running and the connection for the link is already established
(as indicated by the link field).

The outgoing autlink to my_queue_wp. Like the incoming link, it is active and has an
established connection.

10.2.8. Viewing the Status of a Router’s Link Routes

You can view the status of each incoming and outgoing link route.

Procedure

Use the following command:

$ qdstat --linkroutes [CONNECTION_OPTIONS]

For more information about the fields displayed by this command, see the qdstat --linkroutes
output columns.

In this example, a router is connected to a broker. The router is configured with a link route to
the my_queue queue on the broker. Viewing the link routes displays the following:

$ qdstat --linkroutes
Link Routes
 prefix dir distrib status
 =====================================

 my_queue in linkBalanced active 1

 my_queue out linkBalanced active 2

The incoming link route from my_queue to the router. This route is currently active,
because the broker is running.

The outgoing link from the router to my_queue. This route is also currently active.

10.2.9. Viewing Memory Consumption Information

If you need to perform debugging or tracing for a router, you can view information about its memory
consumption.

Procedure

Use the following command:

$ qdstat -m [CONNECTION_OPTIONS]

Red Hat AMQ 7.2 Using AMQ Interconnect

84

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdstat.html#_qdstat_linkroutes

This command displays information about allocated objects, their size, and their usage by
application threads:

$ qdstat -m
Types
 type size batch thread-max total in-
threads rebal-in rebal-out

==
=======================
 qd_bitmask_t 24 64 128 64 64
0 0
 qd_buffer_t 536 16 32 80 80
0 0
 qd_composed_field_t 64 64 128 256 256
0 0
 qd_composite_t 112 64 128 320 320
0 0
 ...

10.3. MANAGING AMQ INTERCONNECT USING QDMANAGE

You can use qdmanage to view and modify the configuration of a running router at runtime. Specifically,
qdmanage enables you to create, read, update, and delete the sections and attributes in the router’s
configuration file without having to restart the router.

NOTE

The qdmanage tool implements the AMQP management specification, which means that
you can use it with any standard AMQP-managed endpoint, not just with AMQ
Interconnect.

10.3.1. Syntax for Using qdmanage

You can use qdmanage with the following syntax:

$ qdmanage [CONNECTION_OPTIONS] OPERATION [OPTIONS]

This specifies:

One or more optional connection_options to specify the router on which to perform the
operation, or to supply security credentials if the router only accepts secure connections.
If you do not specify any connection options, qdmanage connects to the router listening on
localhost and the default AMQP port (5672).

The operation to perform on the router.

One or more optional options to specify a configuration entity on which to perform the
operation or how to format the command output.

When you enter a qdmanage command, it is executed as an AMQP management operation request,
and then the response is returned as command output in JSON format.

CHAPTER 10. MANAGEMENT

85

For example, the following command executes a query operation on a router, and then returns the
response in JSON format:

$ qdmanage query --type listener
[
 {
 "stripAnnotations": "both",
 "addr": "127.0.0.1",
 "multiTenant": false,
 "requireSsl": false,
 "idleTimeoutSeconds": 16,
 "saslMechanisms": "ANONYMOUS",
 "maxFrameSize": 16384,
 "requireEncryption": false,
 "host": "0.0.0.0",
 "cost": 1,
 "role": "normal",
 "http": false,
 "maxSessions": 32768,
 "authenticatePeer": false,
 "type": "org.apache.qpid.dispatch.listener",
 "port": "amqp",
 "identity": "listener/0.0.0.0:amqp",
 "name": "listener/0.0.0.0:amqp"
 }
]

For more information about qdmanage, see the qdmanage man page.

10.3.2. Managing Network Connections

You can use qdmanage to view, create, update, and delete listeners and connectors for any router in
your router network.

10.3.2.1. Managing Listeners

Listeners define how clients can connect to a router. The following table lists the qdmanage commands
you can use to perform common operations on listeners.

For more information about the attributes you can use with these commands, see listener in the
qdrouterd.conf man page.

NOTE

The commands in this table demonstrate operations on the local router listening on
localhost and the default AMQP port (5672). If you want to perform an operation on a
different router in the router network, you must specify the necessary connection options.
For more information, see Connection Options in the qdmanage man page.

To… ​ Use this command… ​

Red Hat AMQ 7.2 Using AMQ Interconnect

86

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdmanage.html
https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.conf.html#_listener
https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdmanage.html#_connection_options

View the router’s listeners

qdmanage query --type=listener

View the roles and ports on
which the router is listening qdmanage query role port --type=listener

View the attributes configured
for a listener qdmanage read --name=LISTENER_NAME

Create a listener

qdmanage create --type=listener -
-ATTRIBUTE=VALUE ...

Create multiple listeners
1. Enter this command:

qdmanage create --stdin

2. Configure the listeners using a JSON map:

[{"type"="listener",
"ATTRIBUTE":"VALUE"...},
{"type"="listener",
"ATTRIBUTE":"VALUE"...}...]

These commands use a JSON map to create two listeners.

Update a listener

qdmanage update --type=listener -
-ATTRIBUTE=VALUE ...

Update multiple listeners
1. Enter this command:

qdmanage update --stdin

2. Configure the listeners using a JSON map:

[{"type"="listener",
"ATTRIBUTE":"VALUE"...},
{"type"="listener",
"ATTRIBUTE":"VALUE"...}...]

These commands use a JSON map to update two listeners.

Delete an attribute from a
listener qdmanage update --type=listener --ATTRIBUTE

To… ​ Use this command… ​

CHAPTER 10. MANAGEMENT

87

Delete a listener

qdmanage delete --name=LISTENER_NAME

To… ​ Use this command… ​

10.3.2.2. Managing Connectors

Connectors define how the router can connect to other endpoints in your messaging network, such as
brokers and other routers. The following table lists the qdmanage commands you can use to perform
common operations on connectors.

For more information about the attributes you can use with these commands, see connector in the
qdrouterd.conf man page.

NOTE

The commands in this table demonstrate operations on the local router listening on
localhost and the default AMQP port (5672). If you want to perform an operation on a
different router in the router network, you must specify the necessary connection options.
For more information, see Connection Options in the qdmanage man page.

To… ​ Use this command… ​

View the router’s connectors

qdmanage query --type=connector

View the roles and ports on
which the router can connect
to other endpoints

qdmanage query role port --type=connector

If the router is connected to a
broker, view the alternate
URLs on which the router can
connect to the broker if the
primary connection fails

qdmanage query failoverUrls --type=connector --
name=CONNECTOR_NAME

View the attributes configured
for a connector qdmanage read --name=CONNECTOR_NAME

Create a connector

qdmanage create --type=connector -
-ATTRIBUTE=VALUE ...

Red Hat AMQ 7.2 Using AMQ Interconnect

88

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.conf.html#_connector
https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdmanage.html#_connection_options

Create multiple connectors
1. Enter this command:

qdmanage create --stdin

2. Configure the connectors using a JSON map:

[{"type"="connector",
"ATTRIBUTE":"VALUE"...},
{"type"="connector",
"ATTRIBUTE":"VALUE"...}...]

These commands use a JSON map to create two connectors.

Update a connector

qdmanage update --type=connector -
-ATTRIBUTE=VALUE ...

Update multiple connectors
1. Enter this command:

qdmanage update --stdin

2. Configure the connectors using a JSON map:

[{"type"="connector",
"ATTRIBUTE":"VALUE"...},
{"type"="connector",
"ATTRIBUTE":"VALUE"...}...]

These commands use a JSON map to update two connectors.

Delete an attribute from a
connector qdmanage update --type=connector --ATTRIBUTE

Delete a connector

qdmanage delete --name=CONNECTOR_NAME

To… ​ Use this command… ​

10.3.3. Managing Security

AMQ Interconnect supports both SSL/TLS and SASL security protocols for encrypting and authenticating
incoming and outgoing connections for your routers. You can use qdmanage to view, create, update,
and delete security policies for any router in your router network.

10.3.3.1. Managing SSL/TLS Encryption and Authentication

AMQ Interconnect supports SSL/TLS for certificate-level encryption and mutual authentication. The
following table lists the common qdmanage commands you can use to secure incoming and outgoing
connections for a router in your router network.

CHAPTER 10. MANAGEMENT

89

For more information about the attributes you can use with these commands, see sslProfile and listener
in the qdrouterd.conf man page.

NOTE

The commands in this table demonstrate operations on the local router listening on
localhost and the default AMQP port (5672). If you want to perform an operation on a
different router in the router network, you must specify the necessary connection options.
For more information, see Connection Options in the qdmanage man page.

To… ​ Use this command… ​

View the router’s SSL/TLS
configuration qdmanage query --type=sslProfile

Set up SSL/TLS for the router

qdmanage create --type=sslProfile --name=NAME -
-ATTRIBUTE=VALUE ...

Add SSL/TLS encryption to an
incoming connection qdmanage update --name=LISTENER_NAME --

sslProfile=NAME --requireSsl=yes

Change SSL/TLS encryption
on an incoming connection qdmanage update --name=LISTENER_NAME -

-ATTRIBUTE=VALUE ...

Add SSL/TLS client
authentication to an incoming
connection

qdmanage update --name=LISTENER_NAME --
authenticatePeer=yes

Remove SSL/TLS client
authentication from an
incoming connection

qdmanage update --name=LISTENER_NAME --
authenticatePeer=no

Add SSL/TLS client
authentication to an outgoing
connection

qdmanage update --name=CONNECTOR_NAME --
sslProfile=NAME

Remove SSL/TLS client
authentication from an
outgoing connection

qdmanage update --name=CONNECTOR_NAME --
sslProfile

Delete an SSL profile

qdmanage delete --name=SSL_PROFILE_NAME

Red Hat AMQ 7.2 Using AMQ Interconnect

90

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.conf.html#_sslprofile
https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.conf.html#_listener
https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdmanage.html#_connection_options

10.3.3.2. Managing SASL Encryption and Authentication

AMQ Interconnect supports SASL for authentication and payload encryption. The following table lists the
common qdmanage commands you can use to secure incoming and outgoing connections for a router
in your router network.

For more information about the attributes you can use with these commands, see router and listener in
the qdrouterd.conf man page.

NOTE

The commands in this table demonstrate operations on the local router listening on
localhost and the default AMQP port (5672). If you want to perform an operation on a
different router in the router network, you must specify the necessary connection options.
For more information, see Connection Options in the qdmanage man page.

To… ​ Use this command… ​

Set up SASL for the router

qdmanage update --type=router --
saslConfigDir=PATH --saslConfigName=NAME

Add SASL authentication to an
incoming connection qdmanage update --name=LISTENER_NAME --

authenticatePeer=yes --saslMechanisms=MECHANISMS

Change SASL mechanisms for
an incoming connection qdmanage update --name=LISTENER_NAME --

saslMechanisms=MECHANISMS

Add SASL authentication to an
outgoing connection qdmanage update --name=CONNECTOR_NAME --

saslMechanisms=MECHANISMS --
saslUsername=USERNAME --saslPassword=PASSWORD

Change SASL mechanisms for
an outgoing connection qdmanage update --name=CONNECTOR_NAME --

saslMechanisms=MECHANISMS

Add SASL payload encryption
to an incoming connection qdmanage update --name=LISTENER_NAME --

requireEncryption=yes --
saslMechanisms=MECHANISMS

Change SASL mechanisms for
an incoming connection qdmanage update --name=LISTENER_NAME --

saslMechanisms=MECHANISMS

CHAPTER 10. MANAGEMENT

91

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.conf.html#_router
https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.conf.html#_listener
https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdmanage.html#_connection_options

Remove SASL payload
encryption from an incoming
connection

qdmanage update --name=LISTENER_NAME --
requireEncryption=no --saslMechanisms

Delete a SASL configuration

qdmanage update --type=router --saslConfigDir --
saslConfigName

To… ​ Use this command… ​

10.3.4. Managing Routing

AMQ Interconnect supports both message routing and link routing for distributing messages between
senders and receivers. You can use qdmanage to view how addresses and link routes are configured in
your environment, and define how a router should distribute messages.

10.3.4.1. Managing Message Routing

Message routing involves configuring addresses to define how AMQ Interconnect should distribute
messages. The following table lists the common qdmanage commands you can use to configure
addresses for a router in your router network.

For more information about the attributes you can use with these commands, see address and autolink
in the qdrouterd.conf man page.

NOTE

The commands in this table demonstrate operations on the local router listening on
localhost and the default AMQP port (5672). If you want to perform an operation on a
different router in the router network, you must specify the necessary connection options.
For more information, see Connection Options in the qdmanage man page.

To… ​ Use this command… ​

View addresses

qdmanage query --type=address

qdmanage read --name=ADDRESS_NAME

View address distribution
patterns qdmanage query prefix distribution --

type=address

View waypoints to broker
queues qdmanage query prefix --type=address --

waypoint=yes

Red Hat AMQ 7.2 Using AMQ Interconnect

92

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.conf.html#_address
https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.conf.html#_autolink
https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdmanage.html#_connection_options

View autolinks

qdmanage query --type=autolink

Set a distribution pattern for an
address qdmanage create --type=address --

prefix=ADDRESS_PREFIX --
distribution=DISTRIBUTION_PATTERN ...

Set distribution patterns for
multiple addresses 1. Enter this command:

qdmanage create --stdin

2. Configure the addresses using a JSON map:

[{"type":"address",
"prefix":"ADDRESS_PREFIX",
"distribution":"DISTRIBUTION_PATTERN",
"ATTRIBUTE":"VALUE", ...},
{"type":"address",
"prefix":"ADDRESS_PREFIX",
"distribution":"DISTRIBUTION_PATTERN",
"ATTRIBUTE":"VALUE", ...} ...]

These commands configure two addresses.

Connect an address to a
broker queue 1. Enter this command:

qdmanage create --stdin

2. Create an address waypoint, an incoming autolink, and an outgoing
autolink:

[{"type":"address",
"prefix":"ADDRESS_PREFIX",
"waypoint":"yes"}, {"type":"autolink",
"addr":"ADDRESS_NAME",
"connection":"CONNECTOR/LISTENER_NAME",
"direction":"in"}, {"type":"autolink",
"addr":"ADDRESS_NAME",
"connection":"CONNECTOR/LISTENER_NAME",
"direction":"out"}]

Update an address
configuration qdmanage update --name=ADDRESS_NAME -

-ATTRIBUTE=VALUE ...

To… ​ Use this command… ​

CHAPTER 10. MANAGEMENT

93

Update an autolink

qdmanage update --name=AUTOLINK_NAME -
-ATTRIBUTE=VALUE ...

Delete an address
configuration qdmanage delete --name=ADDRESS_NAME

Delete an autolink

qdmanage delete --name=AUTOLINK_NAME

To… ​ Use this command… ​

10.3.4.2. Managing Link Routing

A link route is a chain of links between a sender and receiver that provides a private messaging path.
The following table lists the common qdmanage commands you can use to view, create, update, and
delete link routes.

For more information about the attributes you can use with these commands, see the linkRoute in the
qdrouterd.conf man page.

NOTE

The commands in this table demonstrate operations on the local router listening on
localhost and the default AMQP port (5672). If you want to perform an operation on a
different router in the router network, you must specify the necessary connection options.
For more information, see Connection Options in the qdmanage man page.

To… ​ Use this command… ​

View link routes

qdmanage query --type=linkRoute

qdmanage read --name=LINK_ROUTE_NAME

Red Hat AMQ 7.2 Using AMQ Interconnect

94

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.conf.html#_linkroute
https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdmanage.html#_connection_options

Create a link route
1. Enter this command:

qdmanage create --stdin

2. Create an incoming and outgoing link route:

[{"type":"linkRoute",
"prefix":"ADDRESS_PREFIX",
"connection":"CONNECTOR/LISTENER_NAME",
"direction":"in", ...},
{"type":"linkRoute",
"prefix":"ADDRESS_PREFIX",
"connection":"CONNECTOR/LISTENER_NAME",
"direction":"out", ...}]

Update a link route

qdmanage update --name=LINK_ROUTE_NAME -
-ATTRIBUTE=VALUE ...

Delete a link route

qdmanage delete --name=INCOMING_LINK_ROUTE_NAME
qdmanage delete --name=OUTGOING_LINK_ROUTE_NAME

To… ​ Use this command… ​

10.3.5. Managing Logging

AMQ Interconnect logs are broken into different categories called logging modules. Each module
provides important information about a particular aspect of a router. The following table lists the common
qdmanage commands you can use to view and change the configuration of a logging module.

For more information about the attributes you can use with these commands, see log in the
qdrouterd.conf man page.

NOTE

The commands in this table demonstrate operations on the local router listening on
localhost and the default AMQP port (5672). If you want to perform an operation on a
different router in the router network, you must specify the necessary connection options.
For more information, see Connection Options in the qdmanage man page.

To… ​ Use this command… ​

View the logging configuration

qdmanage query --type=log

CHAPTER 10. MANAGEMENT

95

https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdrouterd.conf.html#_log
https://qpid.apache.org/releases/qpid-dispatch-1.6.0/man/qdmanage.html#_connection_options

View the logging configuration
for a logging module qdmanage read --type=log --

name=log/LOGGING_MODULE_NAME

Set the default logging
configuration qdmanage update --type=log --name=log/DEFAULT

enable=LOGGING_LEVEL includeTimestamp=yes
ATTRIBUTE=VALUE

Enable logging for a logging
module qdmanage update --type=log --

name=log/LOGGING_MODULE_NAME
enable=LOGGING_LEVEL ATTRIBUTE=VALUE ...

Change the logging
configuration for a logging
module

qdmanage update --type=log --
name=log/LOGGING_MODULE_NAME ATTRIBUTE=VALUE ...

To… ​ Use this command… ​

Red Hat AMQ 7.2 Using AMQ Interconnect

96

CHAPTER 11. RELIABILITY
In general, in a broker based architecture, the reliability feature is strictly related to the "store and
forward" mechanism offered by each broker. Thanks to persistent journals, a broker can offer fault
tolerance thus avoiding message loss; of course, it is not so true when messages are stored only in a
volatile memory.

This is completely different using AMQ Interconnect, because each router neither takes ownership of
messages nor stores them in a persistent storage. In this case, the reliability feature is offered by path
redundancy which provides the possibility to reach the destination on different paths through the router
network. In normal conditions, the best path is always chosen in terms of lowest cost but, when one or
more routers go down, the topology is revisited by all remained routers and new paths are processed in
order to reach always each destination. Of course, it means that the reliability is strictly related to the
network topology the user chooses for his solution.

Because a solution based on AMQ Interconnect could be made not only by routers but by brokers too,
the reliability is improved with persistent storage on them which add not only fault tolerance but temporal
decoupling as well; without "store and forward" feature offered by brokers, the temporal decoupling is not
possible only with routers and direct peers, both senders and receivers; the receiver must be online at
same time of the sender in order to receive messages.

11.1. PATH REDUNDANCY

Offering path redundancy means designing the network topology in a way that even when one or more
routers go down or even connections between them, each destination is always reachable following
alternate paths through the routers that are still part of the network.

Consider the following simple scenario :

a network with three routers "Router.A", "Router.B" and "Router.C".

the "Router.A" is connected to both "Router.B" and "Router.C".

the "Router.C is connected to the "Router.B".

all three routers listen for client connections.

a sender client connects to the "Router.A" in order to send messages to a receiver client.

a receiver client connects to the "Router.B" initially in order to receive messages from the sender
peer.

CHAPTER 11. RELIABILITY

97

Figure 11.1. Path Redundancy Enabled Topology

The "Router.A" configuration is something like following.

router {
 mode: interior
 id: Router.A
}

listener {
 host: 0.0.0.0
 port: 6000
 authenticatePeer: no
}

connector {
 name: INTER_ROUTER_B
 addr: 127.0.0.1
 port: 5001
 role: inter-router
}

connector {
 name: INTER_ROUTER_C
 addr: 127.0.0.1
 port: 5002
 role: inter-router
}

There is only one listener in order to accept client connections and two connector entities for connecting
to the other two routers.

The "Router.B" configuration is the following.

router {
 mode: interior
 id: Router.B
}

Red Hat AMQ 7.2 Using AMQ Interconnect

98

listener {
 addr: 0.0.0.0
 port: 5001
 authenticatePeer: no
 role: inter-router
}

listener {
 host: 0.0.0.0
 port: 6001
 authenticatePeer: no
}

It has two listener entities in order to listen for connections from clients and from other routers in the
network (in this case from the "Router.A" and "Router.C").

Finally, quite similar is the "Router.C" configuration.

router {
 mode: interior
 id: Router.C
}

listener {
 addr: 0.0.0.0
 port: 5002
 authenticatePeer: no
 role: inter-router
}

listener {
 host: 0.0.0.0
 port: 6002
 authenticatePeer: no
}

connector {
 name: INTER_ROUTER_B
 addr: 127.0.0.1
 port: 5001
 role: inter-router
}

It has two listener entities in order to listen for connections from clients and from other routers in the
network (in this case from the "Router.A") and finally it has a connector (for connecting to the "Router.B")

Consider a sender client connected to "Router.A" and attached to my_address address which start to
send messages (that is, 10 messages) and a receiver client connected to the "Router.B" and attached to
the same address.

Starting the receiver, it waits for messages with no output on the console.

$ sudo python simple_recv.py -a localhost:6001/my_queue -m 10

CHAPTER 11. RELIABILITY

99

Starting the sender, all the messages flow through "Router.A" and "Router.B" reaching the receiver; at
this point the messages are all confirmed at sender side.

$ sudo python simple_send.py -a localhost:6001/my_queue -m 10
all messages confirmed

At same time, the receivers shows the messages received through the "Router.B".

{u'sequence': 1L}
{u'sequence': 2L}
{u'sequence': 3L}
{u'sequence': 4L}
{u'sequence': 5L}
{u'sequence': 6L}
{u'sequence': 7L}
{u'sequence': 8L}
{u'sequence': 9L}
{u'sequence': 10L}

The path redundancy is provided by the other available path through the "Router.A", "Router.C" and then
"Router.B". It means that if the connection between "Router.A" and "Router.B" goes down, the alternative
path is used to reach the receiver.

Now, consider a fault on the "Router.B"; the receiver is not reachable anymore on that path but it can
connect to the "Router.C" in order to continue to receive messages from the sender which does not know
what’s happened and it can continue to send messages to the "Router.A" in order to reach the receiver.

Figure 11.2. Path Redundancy after Router Failure

The receiver is still reachable in order to get messages from the sender as displayed in the console
output.

$ sudo python simple_recv.py -a localhost:6002/my_queue -m 10
{u'sequence': 1L}
{u'sequence': 2L}
{u'sequence': 3L}
{u'sequence': 4L}
{u'sequence': 5L}
{u'sequence': 6L}
{u'sequence': 7L}

Red Hat AMQ 7.2 Using AMQ Interconnect

100

{u'sequence': 8L}
{u'sequence': 9L}
{u'sequence': 10L}

11.2. PATH REDUNDANCY AND TEMPORAL DECOUPLING

In order to have temporal decoupling in a solution based on AMQ Interconnect, adding one or more
brokers is a must for its "store and forward" feature. Choosing the right topology, it is possible to have a
solution which offers reliability with both path redundancy and permanent storing for messages.

Consider the following simple scenario :

a network with three routers "Router.A", "Router.B" and "Router.C" and finally a broker.

the "Router.A" is connected to both "Router.B" and "Router.C".

initially only the "Router.B" is connected to the broker.

all three routers listen for client connections.

a sender client connects to the "Router.A" in order to send messages to a queue in the broker.

a receiver client connects to the "Router.A" in order to get messages from the queue in the
broker.

Figure 11.3. Path Redundancy and Temporal Decoupling Enabled Topology

The receiver client can be offline when the sender starts to send messages because they’ll be stored
into the queue permanently; coming back online, the receiver can get messages from the queue itself
without message loss.

The "Router.A" configuration is something like following.

router {
 mode: interior
 id: Router.A
}

listener {

CHAPTER 11. RELIABILITY

101

 host: 0.0.0.0
 port: 6000
 authenticatePeer: no
}

connector {
 name: INTER_ROUTER_B
 addr: 127.0.0.1
 port: 5001
 role: inter-router
}

connector {
 name: INTER_ROUTER_C
 addr: 127.0.0.1
 port: 5002
 role: inter-router
}

address {
 prefix: my_queue
 waypoint: yes
}

It has a listener for accepting incoming connections from clients and two connector entities in order to
connect to the other routers. The queue named my_queue on the broker is exposed by a waypoint.

The "Router.B" configuration is the following.

router {
 mode: interior
 id: Router.B
}

listener {
 addr: 0.0.0.0
 port: 5001
 authenticatePeer: no
 role: inter-router
}

listener {
 host: 0.0.0.0
 port: 6001
 authenticatePeer: no
}

connector {
 name: BROKER
 addr: 127.0.0.1
 port: 5672
 role: route-container
}

address {
 prefix: my_queue

Red Hat AMQ 7.2 Using AMQ Interconnect

102

 waypoint: yes
}

autoLink {
 addr: my_queue
 connection: BROKER
 direction: in
}

autoLink {
 addr: my_queue
 connection: BROKER
 direction: out
}

It can accept incoming connections from clients and from other routers (in this case the "Router.A") and
connects to the broker. The queue named my_queue on the broker is exposed by a waypoint with the
related auto-links in both directions in order to send and receive messages to/from the queue itself.

Finally, the simple "Router.C" configuration.

router {
 mode: interior
 id: Router.C
}

listener {
 addr: 0.0.0.0
 port: 5002
 authenticatePeer: no
 role: inter-router
}

listener {
 host: 0.0.0.0
 port: 6002
 authenticatePeer: no
}

It can accept incoming connections from clients and from other routers (in this case the "Router.A").
Initially there is no connection between this router and the broker.

First of all, thanks to the broker and its "store and forward" feature, the sender can connect to the
"Router.A" and start to send messages even if the receiver is not online in that moment. Using the
Python sample from the Qpid Proton library, the console output is like following.

$ sudo python simple_send.py -a localhost:6000/my_queue -m 10
all messages confirmed

All messages are confirmed because they reached the queue inside the broker through "Router.A" and
"Router.B"; it is confirmed using the qdstat tool.

$ sudo qdstat -b localhost:6001 -a
Router Addresses
 class addr phs distrib in-proc local remote

CHAPTER 11. RELIABILITY

103

cntnr in out thru to-proc from-proc

==
=======================================
 local $_management_internal closest 1 0 0
0 0 0 0 0 0
 local $displayname closest 1 0 0
0 0 0 0 0 0
 mobile $management 0 closest 1 0 0
0 1 0 0 1 0
 local $management closest 1 0 0
0 0 0 0 0 0
 router Router.A closest 0 0 1
0 0 0 6 0 6
 router Router.C closest 0 0 1
0 0 0 4 0 4
 mobile my_queue 1 balanced 0 0 0
0 0 0 0 0 0
 mobile my_queue 0 balanced 0 1 0
0 0 10 0 0 0
 local qdhello flood 1 1 0
0 0 0 0 97 117
 local qdrouter flood 1 0 0
0 0 0 0 7 0
 topo qdrouter flood 1 0 2
0 0 0 8 13 9
 local qdrouter.ma multicast 1 0 0
0 0 0 0 2 0
 topo qdrouter.ma multicast 1 0 2
0 0 0 0 0 1
 local temp.7f2u0zv9_U6QC5e closest 0 1 0
0 0 0 0 0 0

For the "Router.B", there are 10 messages as output (from the router to the broker) on the my_queue
address.

Starting the receiver connected to the "Router.A", it gets all the available messages from the queue.

$ sudo python simple_recv.py -a localhost:6000/my_queue -m 10
{u'sequence': 1L}
{u'sequence': 2L}
{u'sequence': 3L}
{u'sequence': 4L}
{u'sequence': 5L}
{u'sequence': 6L}
{u'sequence': 7L}
{u'sequence': 8L}
{u'sequence': 9L}
{u'sequence': 10L}

Using the qdstat tool on the "Router.B" another time, the output is like following.

$ sudo qdstat -b localhost:6001 -a
Router Addresses
 class addr phs distrib in-proc local remote

Red Hat AMQ 7.2 Using AMQ Interconnect

104

cntnr in out thru to-proc from-proc

==
=======================================
 local $_management_internal closest 1 0 0
0 0 0 0 0 0
 local $displayname closest 1 0 0
0 0 0 0 0 0
 mobile $management 0 closest 1 0 0
0 2 0 0 2 0
 local $management closest 1 0 0
0 0 0 0 0 0
 router Router.A closest 0 0 1
0 0 0 6 0 6
 router Router.C closest 0 0 1
0 0 0 4 0 4
 mobile my_queue 1 balanced 0 0 0
0 10 0 10 0 0
 mobile my_queue 0 balanced 0 1 0
0 0 10 0 0 0
 local qdhello flood 1 1 0
0 0 0 0 156 182
 local qdrouter flood 1 0 0
0 0 0 0 7 0
 topo qdrouter flood 1 0 2
0 0 0 10 18 11
 local qdrouter.ma multicast 1 0 0
0 0 0 0 2 0
 topo qdrouter.ma multicast 1 0 2
0 0 0 0 2 1
 local temp.Xov_ZUcyti3jjXY closest 0 1 0
0 0 0 0 0 0

For the "Router.B", there are 10 messages as input (from the broker to the router) on the my_queue
address.

Now, consider a fault on the "Router.B"; in this case the broker is not reachable but it is possible to set up
path redundancy through the "Router.C".

Figure 11.4. Path Redundancy and Temporal Decoupling after Router Failure

CHAPTER 11. RELIABILITY

105

Using the qdmanage tool, it is possible to configure the waypoint on my_queue address, the related
auto-links in both directions and finally the connector instance in order to enable the connection to the
broker.

$ sudo qdmanage -b localhost:6002 create --stdin
[
{ "type":"connector", "name":"BROKER", "port":5672, "role":"route-
container" },
{ "type":"address", "prefix":"my_queue", "waypoint":"yes" },
{ "type":"autoLink", "addr":"my_queue", "connection":"BROKER",
"direction":"in" },
{ "type":"autoLink", "addr":"my_queue", "connection":"BROKER",
"direction":"out" }
]
[
 {
 "verifyHostname": true,
 "stripAnnotations": "both",
 "name": "BROKER",
 "allowRedirect": true,
 "idleTimeoutSeconds": 16,
 "maxFrameSize": 65536,
 "host": "127.0.0.1",
 "cost": 1,
 "role": "route-container",
 "maxSessions": 32768,
 "type": "org.apache.qpid.dispatch.connector",
 "port": "5672",
 "identity": "connector/127.0.0.1:5672:BROKER",
 "addr": "127.0.0.1"
 },
 {
 "name": null,
 "prefix": "my_queue",
 "ingressPhase": 0,
 "waypoint": false,
 "distribution": "balanced",
 "type": "org.apache.qpid.dispatch.router.config.address",
 "identity": "7",
 "egressPhase": 0
 },
 {
 "addr": "my_queue",
 "name": null,
 "linkRef": null,
 "type": "org.apache.qpid.dispatch.router.config.autoLink",
 "operStatus": "inactive",
 "connection": "BROKER",
 "direction": "in",
 "phase": 1,
 "lastError": null,
 "externalAddr": null,
 "identity": "8",
 "containerId": null
 },
 {

Red Hat AMQ 7.2 Using AMQ Interconnect

106

 "addr": "my_queue",
 "name": null,
 "linkRef": null,
 "type": "org.apache.qpid.dispatch.router.config.autoLink",
 "operStatus": "inactive",
 "connection": "BROKER",
 "direction": "out",
 "phase": 0,
 "lastError": null,
 "externalAddr": null,
 "identity": "9",
 "containerId": null
 }
]

The "Router.C" configuration changes in the same way as "Router.B". It can accept incoming
connections from clients and from other routers (in this case the "Router.A") and connects to the broker.
The queue named my_queue on the broker is exposed by a waypoint with the related auto-links in both
directions in order to send and receive messages to/from the queue itself.

At this point, the sender can connect to the "Router.A" for sending messages to the queue in the broker
thanks to the "Router.C".

$ sudo python simple_send.py -a localhost:6000/my_queue -m 10
all messages confirmed

All messages are confirmed because they reached the queue inside the broker through "Router.A" and
"Router.C"; it is confirmed using the qdstat tool.

$ sudo qdstat -b localhost:6002 -a
Router Addresses
 class addr phs distrib in-proc local remote
cntnr in out thru to-proc from-proc

==
=======================================
 local $_management_internal closest 1 0 0
0 0 0 0 1 1
 local $displayname closest 1 0 0
0 0 0 0 0 0
 mobile $management 0 closest 1 0 0
0 5 0 0 5 0
 local $management closest 1 0 0
0 0 0 0 0 0
 router Router.A closest 0 0 1
0 0 0 5 0 5
 mobile my_queue 0 balanced 0 1 0
0 0 10 0 0 0
 mobile my_queue 1 balanced 0 0 0
0 0 0 0 0 0
 local qdhello flood 1 1 0
0 0 0 0 665 647
 local qdrouter flood 1 0 0
0 0 0 0 8 0
 topo qdrouter flood 1 0 1

CHAPTER 11. RELIABILITY

107

0 0 0 31 52 32
 local qdrouter.ma multicast 1 0 0
0 0 0 0 1 0
 topo qdrouter.ma multicast 1 0 1
0 0 0 1 2 1
 local temp.k6UMaS4P0JmtSlL closest 0 1 0
0 0 0 0 0 0

For the "Router.C", there are 10 messages as output (from the router to the broker) on the my_queue
address.

Starting the receiver connected to the "Router.A", it gets all the available messages from the queue.

$ sudo python simple_recv.py -a localhost:6000/my_queue -m 10
{u'sequence': 1L}
{u'sequence': 2L}
{u'sequence': 3L}
{u'sequence': 4L}
{u'sequence': 5L}
{u'sequence': 6L}
{u'sequence': 7L}
{u'sequence': 8L}
{u'sequence': 9L}
{u'sequence': 10L}

Using the qdstat tool on the "Router.C" another time, the output is like following.

$ sudo qdstat -b localhost:6002 -a
Router Addresses
 class addr phs distrib in-proc local remote
cntnr in out thru to-proc from-proc

==
=======================================
 local $_management_internal closest 1 0 0
0 0 0 0 1 1
 local $displayname closest 1 0 0
0 0 0 0 0 0
 mobile $management 0 closest 1 0 0
0 6 0 0 6 0
 local $management closest 1 0 0
0 0 0 0 0 0
 router Router.A closest 0 0 1
0 0 0 5 0 5
 mobile my_queue 0 balanced 0 1 0
0 0 10 0 0 0
 mobile my_queue 1 balanced 0 0 0
0 10 0 10 0 0
 local qdhello flood 1 1 0
0 0 0 0 746 726
 local qdrouter flood 1 0 0
0 0 0 0 8 0
 topo qdrouter flood 1 0 1
0 0 0 34 55 35
 local qdrouter.ma multicast 1 0 0

Red Hat AMQ 7.2 Using AMQ Interconnect

108

0 0 0 0 1 0
 topo qdrouter.ma multicast 1 0 1
0 0 0 1 4 1
 local temp.Hso3moy3l+Sn+Fy closest 0 1 0
0 0 0 0 0 0

For the "Router.C", there are 10 messages as input (from the broker to the router) on the my_queue
address.

11.3. SHARDED QUEUE

Every broker has limits in terms of queue size but in order to overcome this problem, one possible
solution is "sharding" queues : in that way a single queue is divided in more "shards" (chunks) each on a
different broker. It means that such solution needs more than one broker instance in order to host a
shard on each of them. Of course, a sender connected to one of these brokers can send messages to
the shard hosted only on that broker. At same time, a receiver connected to a broker can get messages
from the shard that is hosted on that broker and can not see available messages in the shards hosted on
the other brokers, even if they are all parts of the same queue.

NOTE

Even if speaking about shards it is obvious that they are real queues all with same name
but on different brokers. The "shard" concept is an abstract one because finally a shard is
a real queue stored on a broker.

The big problem in this scenario, designed only with brokers, is that a receiver can be stucked on an
empty shard without reading any messages while the shards on the other brokers have messages to
deliver. it is a real problem because the receiver is interested in receiving messages from the whole
queue and it does not take care if it is shared or not. Because of this problem, the receiver sees the
queue as empty even if it is not so true due to the sharding and the messages available on the other
shards.

The above problem can be solved adding a AMQ Interconnect instance in the network in front of the
brokers and leverage on its waypoint feature with related auto-links.

Consider the following simple scenario :

a network with one router "Router.A" and two brokers.

the "Router.A" listens for clients connections and it is connected to both brokers.

the brokers host shards for a queue; each broker has one shard.

a sender client connects to the "Router.A" in order to send messages to the queue.

a receiver client connects to the "Router.A" in order to get messages from the queue.

CHAPTER 11. RELIABILITY

109

Figure 11.5. Sharded Queue Enabled Topology

With such solution and connecting to the "Router.A", sender and receiver do not know anything about
sharding; they want send and receive messages to/from the whole queue that is the only thing they are
aware of. They are both connected to the router and see only one address (related to the queue).

The "Router.A" configuration is something like following.

router {
 mode: standalone
 id: Router.A
}

listener {
 host: 0.0.0.0
 port: 6000
 authenticatePeer: no
}

connector {
 name: BROKER1
 addr: 127.0.0.1
 port: 5672
 role: route-container
}

connector {
 name: BROKER2
 addr: 127.0.0.1
 port: 5673
 role: route-container
}

address {
 prefix: my_queue
 waypoint: yes
}

autoLink {
 addr: my_queue
 connection: BROKER1
 direction: in
}

Red Hat AMQ 7.2 Using AMQ Interconnect

110

autoLink {
 addr: my_queue
 connection: BROKER1
 direction: out
}

autoLink {
 addr: my_queue
 connection: BROKER2
 direction: in
}

autoLink {
 addr: my_queue
 connection: BROKER2
 direction: out
}

The router has a listener for incoming connection from clients and two connector instances in order to
connect to both brokers. The whole queue is named my_queue hosted in terms of shards on both
brokers and the router is configured with a waypoint for that address. Finally, there are two auto-links in
both directions for that queue on both brokers.

Using the Python sample from the Qpid Proton library, the sender can connect to the "Router.A" and start
to send messages to the queue; the console output is like following.

$ sudo python simple_send.py -a localhost:6000/my_queue -m 10
all messages confirmed

All messages are confirmed because they reached the queue and, thanks to the default balanced
distribution on the address, the messages are delivered to both shards on the brokers (5 messages per
shard). Using the qdstat tool on the router, the distribution is clear.

$ sudo qdstat -b localhost:6000 -l
Router Links
 type dir conn id id peer class addr phs
cap undel unsettled deliveries admin oper

==
===
 endpoint in 1 6 mobile my_queue 1
250 0 0 0 enabled up
 endpoint out 1 7 mobile my_queue 0
250 0 0 5 enabled up
 endpoint in 2 8 mobile my_queue 1
250 0 0 0 enabled up
 endpoint out 2 9 mobile my_queue 0
250 0 0 5 enabled up
 endpoint in 8 19 mobile $management 0
250 0 0 1 enabled up
 endpoint out 8 20 local temp.qCGHruCa4UIvYrS
250 0 0 0 enabled up

CHAPTER 11. RELIABILITY

111

There are the out links (from router to brokers) for the my_queue address (id values 7 and 9) which
have each 5 deliveries. It shows messages distributed across brokers and related shards for the queue;
it is confirmed by the different connections they are tied (conn id values 1 and 2).

Starting the receiver connected to the "Router.A", it gets all the available messages from the queue.

$ sudo python simple_recv.py -a localhost:6000/my_queue -m 10
{u'sequence': 1L}
{u'sequence': 2L}
{u'sequence': 3L}
{u'sequence': 4L}
{u'sequence': 5L}
{u'sequence': 6L}
{u'sequence': 7L}
{u'sequence': 8L}
{u'sequence': 9L}
{u'sequence': 10L}

As for the sender, they are received through both the brokers and related shards. it is confirmed using
the qdstat tool.

$ sudo qdstat -b localhost:6000 -l
Router Links
 type dir conn id id peer class addr phs
cap undel unsettled deliveries admin oper

==
===
 endpoint in 1 6 mobile my_queue 1
250 0 0 5 enabled up
 endpoint out 1 7 mobile my_queue 0
250 0 0 5 enabled up
 endpoint in 2 8 mobile my_queue 1
250 0 0 5 enabled up
 endpoint out 2 9 mobile my_queue 0
250 0 0 5 enabled up
 endpoint in 10 22 mobile $management 0
250 0 0 1 enabled up
 endpoint out 10 23 local temp.HT+f3ZilGP5o3wo
250 0 0 0 enabled up

There are the in links (from brokers to router) for the my_queue address (id values 6 and 8) which have
each 5 deliveries. It shows messages distributed across brokers and related shards for the queue; it is
confirmed by the different connections they are tied (conn id values 1 and 2).

One disadvantage of sharded queues is that the receiver might receive messages "out of order" even
with very good performance.

Red Hat AMQ 7.2 Using AMQ Interconnect

112

APPENDIX A. USING CYRUS SASL TO PROVIDE
AUTHENTICATION

AMQ Interconnect uses the Cyrus SASL library for SASL authentication. Therefore, if you want to use
SASL, you must set up the Cyrus SASL database and configure it.

A.1. GENERATING A SASL DATABASE

To generate a SASL database to store credentials, enter the following command:

$ sudo saslpasswd2 -c -f SASL_DATABASE_NAME.sasldb -u DOMAIN_NAME
USER_NAME

This command creates or updates the specified SASL database, and adds the specified user name to it.
The command also prompts you for the user name’s password.

The full user name is the user name you entered plus the domain name (USER_NAME@DOMAIN_NAME).
Providing a domain name is not required when you add a user to the database, but if you do not provide
one, a default domain will be added automatically (the hostname of the machine on which the tool is
running). For example, in the command above, the full user name would be user1@domain.com.

A.2. VIEWING USERS IN A SASL DATABASE

To view the user names stored in the SASL database:

$ sudo sasldblistusers2 -f qdrouterd.sasldb
user2@domain.com: PASSWORD
user1@domain.com: PASSWORD

A.3. CONFIGURING A SASL DATABASE

To use the SASL database to provide authentication in AMQ Interconnect:

1. Open the /etc/sasl2/qdrouterd.conf configuration file.

2. Set the following attributes:

pwcheck_method: auxprop
auxprop_plugin: sasldb
sasldb_path: SASL_DATABASE_NAME
mech_list: MECHANISM1 ...

sasldb_path

The name of the SASL database to use.
For example:

sasldb_path: qdrouterd.sasldb

mech_list

APPENDIX A. USING CYRUS SASL TO PROVIDE AUTHENTICATION

113

The SASL mechanisms to enable for authentication. To add multiple mechanisms, separate
each entry with a space.
For example:

mech_list: ANONYMOUS DIGEST-MD5 EXTERNAL PLAIN

Red Hat AMQ 7.2 Using AMQ Interconnect

114

APPENDIX B. USING YOUR SUBSCRIPTION
AMQ is provided through a software subscription. To manage your subscriptions, access your account at
the Red Hat Customer Portal.

Accessing your account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading zip and tar files
To access zip or tar files, use the customer portal to find the relevant files for download. If you are using
RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQ entries in the JBOSS INTEGRATION AND AUTOMATION category.

3. Select the desired AMQ product. The Software Downloads page opens.

4. Click the Download link for your component.

Registering your system for packages
To install RPM packages on Red Hat Enterprise Linux, your system must be registered. If you are using
zip or tar files, this step is not required.

1. Go to access.redhat.com.

2. Navigate to Registration Assistant.

3. Select your OS version and continue to the next page.

4. Use the listed command in your system terminal to complete the registration.

To learn more see How to Register and Subscribe a System to the Red Hat Customer Portal.

Revised on 2019-04-23 12:09:40 UTC

APPENDIX B. USING YOUR SUBSCRIPTION

115

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads
https://access.redhat.com
https://access.redhat.com/solutions/253273

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. KEY FEATURES
	1.2. SUPPORTED STANDARDS AND PROTOCOLS
	1.3. SUPPORTED CONFIGURATIONS
	1.4. THEORY OF OPERATION
	1.4.1. Overview
	1.4.2. Connections
	1.4.2.1. Listener
	1.4.2.2. Connector

	1.4.3. Addresses
	1.4.3.1. Mobile Addresses
	1.4.3.2. Link Route Addresses

	1.4.4. Message Routing
	1.4.4.1. Routing Patterns
	1.4.4.2. Routing Mechanisms
	1.4.4.3. Message Settlement

	1.4.5. Security

	1.5. DOCUMENT CONVENTIONS

	CHAPTER 2. INSTALLATION
	CHAPTER 3. UPGRADING AMQ INTERCONNECT
	CHAPTER 4. GETTING STARTED
	4.1. STARTING THE ROUTER
	4.2. ROUTING MESSAGES IN A PEER-TO-PEER CONFIGURATION
	4.2.1. Starting the Receiver Client
	4.2.2. Sending Messages

	CHAPTER 5. CONFIGURATION
	5.1. ACCESSING THE ROUTER CONFIGURATION FILE
	5.2. HOW THE ROUTER CONFIGURATION FILE IS STRUCTURED
	5.3. METHODS FOR USING PATTERN MATCHING AND WILDCARDS
	5.3.1. Pattern Matching for Addresses
	5.3.2. Pattern Matching for Vhost Policy Hostnames

	5.4. CHANGING A ROUTER’S CONFIGURATION
	5.4.1. Making a Permanent Change to the Router’s Configuration
	5.4.2. Changing the Configuration for a Running Router

	5.5. DEFAULT CONFIGURATION SETTINGS
	5.6. SETTING ESSENTIAL CONFIGURATION PROPERTIES

	CHAPTER 6. NETWORK CONNECTIONS
	6.1. LISTENING FOR INCOMING CONNECTIONS
	6.2. ADDING OUTGOING CONNECTIONS
	6.3. CONNECTION FAILOVER

	CHAPTER 7. SECURITY
	7.1. AUTHENTICATING REMOTE PEERS
	7.1.1. Setting Up SSL/TLS for Encryption and Authentication
	7.1.2. Setting Up SASL for Authentication and Payload Encryption
	7.1.3. Securing Incoming Connections
	7.1.3.1. Adding SSL/TLS Encryption to an Incoming Connection
	7.1.3.2. Adding SASL Authentication to an Incoming Connection
	7.1.3.3. Adding SSL/TLS Client Authentication to an Incoming Connection
	7.1.3.4. Adding SASL Payload Encryption to an Incoming Connection

	7.1.4. Securing Outgoing Connections
	7.1.4.1. Adding SSL/TLS Client Authentication to an Outgoing Connection
	7.1.4.2. Adding SASL Authentication to an Outgoing Connection

	7.1.5. Integrating with Kerberos

	7.2. AUTHORIZING ACCESS TO MESSAGING RESOURCES
	7.2.1. How AMQ Interconnect Enforces Connection and Resource Limits
	7.2.2. Setting Global Connection Limits
	7.2.3. Setting Connection and Resource Limits for Messaging Endpoints
	7.2.3.1. Enabling Vhost Policies
	7.2.3.2. Configuring Vhost Policies in the Router Configuration File
	7.2.3.3. Configuring Vhost Policies as JSON Files
	7.2.3.4. Methods for Specifying Vhost Policy Source and Target Addresses
	7.2.3.5. Vhost Policy Examples

	CHAPTER 8. ROUTING
	8.1. COMPARISON OF MESSAGE ROUTING AND LINK ROUTING
	8.1.1. When to Use Message Routing
	8.1.2. When to Use Link Routing

	8.2. CONFIGURING MESSAGE ROUTING
	8.2.1. Addresses
	8.2.1.1. Mobile Addresses

	8.2.2. Routing Patterns
	8.2.3. Message Settlement
	8.2.4. Routing Pattern Reliability
	8.2.5. Routing Messages Between Clients
	8.2.6. Routing Messages Through a Broker Queue
	8.2.6.1. Configuring Waypoint Addresses
	8.2.6.2. Connecting a Router to the Broker

	8.2.7. Example: Routing Messages Through Broker Queues
	8.2.7.1. Router Configuration
	8.2.7.2. How the Messages are Routed

	8.3. CONFIGURING LINK ROUTING
	8.3.1. Link Route Addresses
	8.3.2. Link Route Routing Patterns
	8.3.3. Link Route Flow Control
	8.3.4. Creating a Link Route
	8.3.5. Example: Using a Link Route to Provide Client Isolation
	8.3.5.1. Router Configuration
	8.3.5.2. How the Client Receives Messages

	CHAPTER 9. LOGGING
	9.1. LOGGING MODULES
	9.1.1. The DEFAULT Logging Module
	9.1.2. The ROUTER Logging Module
	9.1.3. The ROUTER_HELLO Logging Module
	9.1.4. The ROUTER_LS Logging Module
	9.1.5. The ROUTER_MA Logging Module
	9.1.6. The MESSAGE Logging Module
	9.1.7. The SERVER Logging Module
	9.1.8. The AGENT Logging Module
	9.1.9. The CONTAINER Logging Module
	9.1.10. The ERROR Logging Module
	9.1.11. The POLICY Logging Module

	9.2. CONFIGURING LOGGING
	9.3. VIEWING LOG ENTRIES
	9.3.1. Viewing Log Entries on the Console
	9.3.2. Viewing Log Entries on the CLI

	CHAPTER 10. MANAGEMENT
	10.1. USING AMQ CONSOLE
	10.2. MONITORING AMQ INTERCONNECT USING QDSTAT
	10.2.1. Syntax for Using qdstat
	10.2.2. Viewing General Statistics for a Router
	10.2.3. Viewing a List of Connections to a Router
	10.2.4. Viewing AMQP Links Attached to a Router
	10.2.5. Viewing Known Routers on a Network
	10.2.6. Viewing Addresses Known to a Router
	10.2.7. Viewing a Router’s Autolinks
	10.2.8. Viewing the Status of a Router’s Link Routes
	10.2.9. Viewing Memory Consumption Information

	10.3. MANAGING AMQ INTERCONNECT USING QDMANAGE
	10.3.1. Syntax for Using qdmanage
	10.3.2. Managing Network Connections
	10.3.2.1. Managing Listeners
	10.3.2.2. Managing Connectors

	10.3.3. Managing Security
	10.3.3.1. Managing SSL/TLS Encryption and Authentication
	10.3.3.2. Managing SASL Encryption and Authentication

	10.3.4. Managing Routing
	10.3.4.1. Managing Message Routing
	10.3.4.2. Managing Link Routing

	10.3.5. Managing Logging

	CHAPTER 11. RELIABILITY
	11.1. PATH REDUNDANCY
	11.2. PATH REDUNDANCY AND TEMPORAL DECOUPLING
	11.3. SHARDED QUEUE

	APPENDIX A. USING CYRUS SASL TO PROVIDE AUTHENTICATION
	A.1. GENERATING A SASL DATABASE
	A.2. VIEWING USERS IN A SASL DATABASE
	A.3. CONFIGURING A SASL DATABASE

	APPENDIX B. USING YOUR SUBSCRIPTION
	Accessing your account
	Activating a subscription
	Downloading zip and tar files
	Registering your system for packages

