
Red Hat 3scale API Management 2.8

Migrating 3scale

Upgrade your 3scale API Management installation.

Last Updated: 2023-06-20

Red Hat 3scale API Management 2.8 Migrating 3scale

Upgrade your 3scale API Management installation.

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides the information to upgrade your 3scale API Management installation to the
latest version.

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. 3SCALE TEMPLATE-BASED UPGRADE GUIDE: FROM 2.7 TO 2.8
1.1. GETTING READY FOR THE UPGRADE

1.1.1. Conditions for the upgrade
1.1.2. Prerequisites to perform the upgrade

1.2. UPGRADING FROM 2.7 TO 2.8 IN A TEMPLATE-BASED INSTALLATION
1.2.1. Creating a backup of the 3scale project
1.2.2. Migrating the smtp ConfigMap to system-smtp secret
1.2.3. Updating the pre-hook pod command of the system-app DeploymentConfig
1.2.4. Patching the pre-hook pod environment of the system-app DeploymentConfig
1.2.5. Patching the environment of the system-app DeploymentConfig containers
1.2.6. Patching the environment of the system-sidekiq DeploymentConfig container
1.2.7. Migrating S3 specific configuration
1.2.8. Updating 3scale version number
1.2.9. Upgrading 3scale images

1.2.9.1. Additional steps with existing DeploymentConfigs
1.2.9.1.1. backend-redis DeploymentConfig
1.2.9.1.2. system-redis DeploymentConfig
1.2.9.1.3. system-mysql DeploymentConfig
1.2.9.1.4. system-postgresql DeploymentConfig

1.2.10. Deleting smtp ConfigMap

CHAPTER 2. 3SCALE OPERATOR-BASED UPGRADE GUIDE: FROM 2.7 TO 2.8
2.1. UPGRADING 3SCALE 2.7 TO 2.8

CHAPTER 3. 3SCALE API MANAGEMENT MIGRATION GUIDE: FROM TEMPLATE TO OPERATOR-BASED
DEPLOYMENTS

3.1. GETTING READY FOR THE MIGRATION
3.2. MIGRATING 3SCALE TEMPLATE TO OPERATOR-BASED DEPLOYMENTS

3

4
4
4
4
4
5
6
7
8
9
11

12
15
16
18
18
19
19

20
20

21
21

23
23
23

Table of Contents

1

Red Hat 3scale API Management 2.8 Migrating 3scale

2

PREFACE
This guide helps you to migrate and upgrade Red Hat 3scale API Management.

To upgrade your 3scale installation from 2.7 to 2.8, there are two guides depending on the installation
type:

3scale template-based upgrade guide

3scale operator-based upgrade guide

Post-upgrade step for provisioning APIs in the Developer Portal

After a successful upgrade of 3scale, to configure OpenAPI Specification 3.0 (OAS 3.0) in the
Developer Portal, see the following: Configuring the Developer Portal with OAS 3.0 .

To migrate from a template-based to an operator-based deployment, follow the procedures listed in
Chapter 3, 3scale API Management migration guide: from template to operator-based deployments .

PREFACE

3

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/providing_apis_in_the_developer_portal/index#configuring_the_developer_portal_with_oas_3_0

CHAPTER 1. 3SCALE TEMPLATE-BASED UPGRADE GUIDE:
FROM 2.7 TO 2.8

This section contains information about upgrading Red Hat 3scale API Management from version 2.7 to
2.8, in a template-based deployment.

IMPORTANT

In order to understand the required conditions and procedure, read the entire upgrade
guide before applying the listed steps. The upgrade process disrupts the provision of the
service until the procedure finishes. Due to this disruption, make sure to have a
maintenance window.

1.1. GETTING READY FOR THE UPGRADE

This chapter describes the conditions to meet before the upgrade of 3scale. It also lists the tasks and
tools you need to have as prerequisites necessary to perform the upgrade.

1.1.1. Conditions for the upgrade

Before proceeding with the upgrade, you must consider these points:

3scale supports upgrade paths from 2.7 to 2.8 with templates on OpenShift 3.11.

Ensure your OpenShift CLI tool is configured in the same project where 3scale is deployed.

1.1.2. Prerequisites to perform the upgrade

This section describes the required tasks and tools to upgrade 3scale from 2.7 to 2.8 in a template-
based installation.

Preliminary tasks

Perform a backup of the database you are using with 3scale. The procedure of the backup is
specific to each database type and setup.

Tools

You need these tools to perform the upgrade:

3scale 2.7 deployed with templates in an OpenShift 3.11 project.

Bash shell: To run the commands detailed in the upgrade procedure.

base64: To encode and decode secret information.

jq: For JSON transformation purposes.

1.2. UPGRADING FROM 2.7 TO 2.8 IN A TEMPLATE-BASED
INSTALLATION

Follow the procedure described in this section to upgrade 3scale 2.7 to 2.8 in a template-based
installation.

Red Hat 3scale API Management 2.8 Migrating 3scale

4

To start with the upgrade, go to the project where 3scale is deployed.

$ oc project <3scale-project>

Then, follow these steps in this order:

1. Section 1.2.1, “Creating a backup of the 3scale project”

2. Section 1.2.2, “Migrating the smtp ConfigMap to system-smtp secret”

3. Section 1.2.3, “Updating the pre-hook pod command of the system-app DeploymentConfig”

4. Section 1.2.4, “Patching the pre-hook pod environment of the system-app DeploymentConfig”

5. Section 1.2.5, “Patching the environment of the system-app DeploymentConfig containers”

6. Section 1.2.6, “Patching the environment of the system-sidekiq DeploymentConfig container”

7. Section 1.2.7, “Migrating S3 specific configuration”

8. Section 1.2.8, “Updating 3scale version number”

9. Section 1.2.9, “Upgrading 3scale images”

10. Section 1.2.10, “Deleting smtp ConfigMap”

1.2.1. Creating a backup of the 3scale project

Previous step

None.

Current step

This step lists the actions necessary to create a backup of the 3scale project.

1. Depending on the database used with 3scale, set ${SYSTEM_DB} with one of the following
values:

If the database is MySQL, SYSTEM_DB=system-mysql.

If the database is PostgreSQL, SYSTEM_DB=system-postgresql.

2. Create a back-up file with the existing DeploymentConfigs:

$ THREESCALE_DC_NAMES="apicast-production apicast-staging backend-cron backend-
listener backend-redis backend-worker system-app system-memcache ${SYSTEM_DB}
system-redis system-sidekiq system-sphinx zync zync-database zync-que"

for component in ${THREESCALE_DC_NAMES}; do oc get --export -o yaml dc
${component} > ${component}_dc.yml ; done

3. Backup all existing OpenShift resources in the project that are exported through the export all
command:

$ oc get -o yaml --export all > threescale-project-elements.yaml

CHAPTER 1. 3SCALE TEMPLATE-BASED UPGRADE GUIDE: FROM 2.7 TO 2.8

5

4. Create a back-up file with the additional elements that are not exported with the export all
command:

$ for object in rolebindings serviceaccounts secrets imagestreamtags cm
rolebindingrestrictions limitranges resourcequotas pvc templates cronjobs statefulsets hpa
deployments replicasets poddisruptionbudget endpoints
do
 oc get -o yaml --export $object > $object.yaml
done

5. Verify that all of the generated files are not empty, and that all of them have the expected
content.

Next step

Section 1.2.2, “Migrating the smtp ConfigMap to system-smtp secret”

1.2.2. Migrating the smtp ConfigMap to system-smtp secret

Previous step

Section 1.2.1, “Creating a backup of the 3scale project”

Current step

The goal of this step is to migrate the SMTP configuration of system, from a ConfigMap to a Secret.
This migration involves mailing-related aspects, because the SMTP configuration contains some
sensitive information. To protect this information, secrets are more secure than ConfigMaps.

1. Gather the current value of the app label:

$ DEPLOYED_APP_LABEL=$(oc get dc backend-listener -o json | jq
.spec.template.metadata.labels.app -r)

You can run following command to verify that DEPLOYED_APP_LABEL is not empty:

$ echo ${DEPLOYED_APP_LABEL}

2. Gather the current contents of the smtp ConfigMap:

$ CFGMAP_DATA_CONTENTS=$(oc get configmap smtp -o json | jq -r .data)

You can run following command to verify that CFGMAP_DATA_CONTENTS is not empty:

$ echo ${CFGMAP_DATA_CONTENTS}

You can confirm the value of CFGMAP_DATA_CONTENTS by running this command:

$ oc get configmap smtp -o json | jq -r .data

3. Create the system-smtp secret with the contents of the smtp ConfigMap:

$ cat <<EOF | oc create -f -
{

Red Hat 3scale API Management 2.8 Migrating 3scale

6

 "apiVersion": "v1",
 "kind": "Secret",
 "metadata": {
 "creationTimestamp": null,
 "labels": {
 "app": "${DEPLOYED_APP_LABEL}",
 "threescale_component": "system",
 "threescale_component_element": "smtp"
 },
 "name": "system-smtp"
 },
 "stringData": ${CFGMAP_DATA_CONTENTS}
}
EOF

4. Confirm that the system-smtp secret has been created by executing:

$ oc get secret system-smtp -o yaml

Verify that all data keys and associated values are the same in both system-smtp secret and
the smtp ConfigMap. Data values in the system-smtp secret are base64 encoded, so they have
to be decoded to look at the real value. For example, if a key in the secret data is named mykey
you can copy the value associated to that key and decode it with the following command to see
the real value:

$ oc get secret system-smtp -o json | jq -r .data.mykey | base64 -d

If the associated value to a key is an empty string, the result of the previous command will have
no output.

Next step

Section 1.2.3, “Updating the pre-hook pod command of the system-app DeploymentConfig”

1.2.3. Updating the pre-hook pod command of the system-app DeploymentConfig

Previous step

Section 1.2.2, “Migrating the smtp ConfigMap to system-smtp secret”

Current step

To get the latest features from 3scale, this step explains how to update the pre-hook pod command in
the system-app DeploymentConfig.

1. Within the system-app DeploymentConfig, update the pre-hook pod command to the new one
needed for this release:

oc patch dc/system-app -p '{"spec":{"strategy":{"rollingParams":{"pre":{"execNewPod":
{"command":["bash","-c","bundle exec rake boot openshift:deploy"]}}}}}}'

2. Verify that the pre-hook pod command has changed to the new value:

oc get dc system-app -o json | jq .spec.strategy.rollingParams.pre.execNewPod.command

CHAPTER 1. 3SCALE TEMPLATE-BASED UPGRADE GUIDE: FROM 2.7 TO 2.8

7

The result of the previous command should be:

[
 "bash",
 "-c",
 "bundle exec rake boot openshift:deploy"
]

Next step

Section 1.2.4, “Patching the pre-hook pod environment of the system-app DeploymentConfig”

1.2.4. Patching the pre-hook pod environment of the system-app DeploymentConfig

Previous step

Section 1.2.3, “Updating the pre-hook pod command of the system-app DeploymentConfig”

Current step

This step adds environment variables to the system-app DeploymentConfig in the pre-hook pod
environment. This addition ensures that SMTP-related environment variables point to the newly
created system-smtp secret. This addition guarantees that the variables related to the modification of
the pre-hook pod command are correctly configured.

1. Patch the pre-hook pod environment variables in the system-app DeploymentConfig:

oc get dc system-app -o json | jq 'del(.spec.strategy.rollingParams.pre.execNewPod.env[] |
select(.name == "SMTP_ADDRESS" // .name == "SMTP_USER_NAME" // .name ==
"SMTP_PASSWORD" // .name == "SMTP_DOMAIN" // .name == "SMTP_PORT" // .name
== "SMTP_AUTHENTICATION" // .name == "SMTP_OPENSSL_VERIFY_MODE")) |
.spec.strategy.rollingParams.pre.execNewPod.env +=
[{"name":"SMTP_ADDRESS","valueFrom":{"secretKeyRef":{"key":"address","name":"system-
smtp"}}},{"name":"SMTP_USER_NAME","valueFrom":{"secretKeyRef":
{"key":"username","name":"system-smtp"}}},{"name":"SMTP_PASSWORD","valueFrom":
{"secretKeyRef":{"key":"password","name":"system-smtp"}}},
{"name":"SMTP_DOMAIN","valueFrom":{"secretKeyRef":{"key":"domain","name":"system-
smtp"}}},{"name":"SMTP_PORT","valueFrom":{"secretKeyRef":{"key":"port","name":"system-
smtp"}}},{"name":"SMTP_AUTHENTICATION","valueFrom":{"secretKeyRef":
{"key":"authentication","name":"system-smtp"}}},
{"name":"SMTP_OPENSSL_VERIFY_MODE","valueFrom":{"secretKeyRef":
{"key":"openssl.verify.mode","name":"system-smtp"}}},
{"name":"MASTER_ACCESS_TOKEN","valueFrom":{"secretKeyRef":
{"key":"MASTER_ACCESS_TOKEN","name":"system-seed"}}}]' | oc apply -f -

2. Verify that pre-hook pod environment has been patched by following these action points:

a. Check that MASTER_ACCESS_TOKEN has been set as a secret reference in the system-
app pre-hook pod:

oc get dc system-app -o json | jq '.spec.strategy.rollingParams.pre.execNewPod.env |
map(select(.name == "MASTER_ACCESS_TOKEN")) | length'

Expected output: 1

You can confirm that MASTER_ACCESS_TOKEN has been set correctly pointing to the

Red Hat 3scale API Management 2.8 Migrating 3scale

8

You can confirm that MASTER_ACCESS_TOKEN has been set correctly pointing to the
system-seed secret:

oc get dc system-app -o json | jq '.spec.strategy.rollingParams.pre.execNewPod.env
| map(select(.name == "MASTER_ACCESS_TOKEN"))'

Expected output:

[
 {
 "name": "MASTER_ACCESS_TOKEN",
 "valueFrom": {
 "secretKeyRef": {
 "key": "MASTER_ACCESS_TOKEN",
 "name": "system-seed"
 }
 }
 }
]

b. Check that all SMTP_* env vars have been set as a secret reference in the system-app pre-
hook pod:

oc get dc system-app -o json | jq '.spec.strategy.rollingParams.pre.execNewPod.env |
map(select(.name | contains("SMTP")))'

Each environment variable from the output list below should be a reference to the
system-smtp secret key:

SMTP_ADDRESS

SMTP_USER_NAME

SMTP_PASSWORD

SMTP_DOMAIN

SMTP_PORT

SMTP_AUTHENTICATION

SMTP_OPENSSL_VERIFY_MODE

Next step

Section 1.2.5, “Patching the environment of the system-app DeploymentConfig containers”

1.2.5. Patching the environment of the system-app DeploymentConfig containers

Previous step

Section 1.2.4, “Patching the pre-hook pod environment of the system-app DeploymentConfig”

Current step

This procedure adds and modifies environment variables to the system-app container environments. It

CHAPTER 1. 3SCALE TEMPLATE-BASED UPGRADE GUIDE: FROM 2.7 TO 2.8

9

This procedure adds and modifies environment variables to the system-app container environments. It
makes sure SMTP-related environment variables point to the newly created system-smtp secret.

1. Patch the container environment variables in system-app DeploymentConfig:

oc patch dc/system-app -p '{"spec":{"template":{"spec":{"containers":[{"name":"system-
master","env":[{"name":"SMTP_ADDRESS","valueFrom":
{"configMapKeyRef":null,"secretKeyRef":{"key":"address","name":"system-smtp"}}},
{"name":"SMTP_USER_NAME","valueFrom":{"configMapKeyRef":null,"secretKeyRef":
{"key":"username","name":"system-smtp"}}},{"name":"SMTP_PASSWORD","valueFrom":
{"configMapKeyRef":null,"secretKeyRef":{"key":"password","name":"system-smtp"}}},
{"name":"SMTP_DOMAIN","valueFrom":{"configMapKeyRef":null,"secretKeyRef":
{"key":"domain","name":"system-smtp"}}},{"name":"SMTP_PORT","valueFrom":
{"configMapKeyRef":null,"secretKeyRef":{"key":"port","name":"system-smtp"}}},
{"name":"SMTP_AUTHENTICATION","valueFrom":{"configMapKeyRef":null,"secretKeyRef":
{"key":"authentication","name":"system-smtp"}}},
{"name":"SMTP_OPENSSL_VERIFY_MODE","valueFrom":
{"configMapKeyRef":null,"secretKeyRef":{"key":"openssl.verify.mode","name":"system-
smtp"}}}]},{"name":"system-provider","env":[{"name":"SMTP_ADDRESS","valueFrom":
{"configMapKeyRef":null,"secretKeyRef":{"key":"address","name":"system-smtp"}}},
{"name":"SMTP_USER_NAME","valueFrom":{"configMapKeyRef":null,"secretKeyRef":
{"key":"username","name":"system-smtp"}}},{"name":"SMTP_PASSWORD","valueFrom":
{"configMapKeyRef":null,"secretKeyRef":{"key":"password","name":"system-smtp"}}},
{"name":"SMTP_DOMAIN","valueFrom":{"configMapKeyRef":null,"secretKeyRef":
{"key":"domain","name":"system-smtp"}}},{"name":"SMTP_PORT","valueFrom":
{"configMapKeyRef":null,"secretKeyRef":{"key":"port","name":"system-smtp"}}},
{"name":"SMTP_AUTHENTICATION","valueFrom":{"configMapKeyRef":null,"secretKeyRef":
{"key":"authentication","name":"system-smtp"}}},
{"name":"SMTP_OPENSSL_VERIFY_MODE","valueFrom":
{"configMapKeyRef":null,"secretKeyRef":{"key":"openssl.verify.mode","name":"system-
smtp"}}}]},{"name":"system-developer","env":[{"name":"SMTP_ADDRESS","valueFrom":
{"configMapKeyRef":null,"secretKeyRef":{"key":"address","name":"system-smtp"}}},
{"name":"SMTP_USER_NAME","valueFrom":{"configMapKeyRef":null,"secretKeyRef":
{"key":"username","name":"system-smtp"}}},{"name":"SMTP_PASSWORD","valueFrom":
{"configMapKeyRef":null,"secretKeyRef":{"key":"password","name":"system-smtp"}}},
{"name":"SMTP_DOMAIN","valueFrom":{"configMapKeyRef":null,"secretKeyRef":
{"key":"domain","name":"system-smtp"}}},{"name":"SMTP_PORT","valueFrom":
{"configMapKeyRef":null,"secretKeyRef":{"key":"port","name":"system-smtp"}}},
{"name":"SMTP_AUTHENTICATION","valueFrom":{"configMapKeyRef":null,"secretKeyRef":
{"key":"authentication","name":"system-smtp"}}},
{"name":"SMTP_OPENSSL_VERIFY_MODE","valueFrom":
{"configMapKeyRef":null,"secretKeyRef":{"key":"openssl.verify.mode","name":"system-
smtp"}}}]}]}}}}'

2. Verify that all SMTP_* env vars have been set as a secret reference in the system-app
containers listed here:

system-developer

oc get dc system-app -o json | jq '.spec.template.spec.containers | map(select(.name ==
"system-developer"))[].env | map(select(.name | contains("SMTP")))'

system-provider

oc get dc system-app -o json | jq '.spec.template.spec.containers | map(select(.name ==
"system-provider"))[].env | map(select(.name | contains("SMTP")))'

Red Hat 3scale API Management 2.8 Migrating 3scale

10

system-master

oc get dc system-app -o json | jq '.spec.template.spec.containers | map(select(.name ==
"system-master"))[].env | map(select(.name | contains("SMTP")))'

In these containers, the environment variable from the output list below should be a
reference to the system-smtp secret key:

SMTP_ADDRESS

SMTP_USER_NAME

SMTP_PASSWORD

SMTP_DOMAIN

SMTP_PORT

SMTP_AUTHENTICATION

SMTP_OPENSSL_VERIFY_MODE

Next step

Section 1.2.6, “Patching the environment of the system-sidekiq DeploymentConfig container”

1.2.6. Patching the environment of the system-sidekiq DeploymentConfig container

Previous step

Section 1.2.5, “Patching the environment of the system-app DeploymentConfig containers”

Current step

This procedure adds and modifies environment variables to the system-sidekiq pod environment. The
steps listed here ensure that SMTP-related environment variables point to the newly created system-
smtp secret.

1. Patch the environment variables of system-sidekiq DeploymentConfig:

oc patch dc/system-sidekiq -p '{"spec":{"template":{"spec":{"containers":[{"name":"system-
sidekiq","env":[{"name":"SMTP_ADDRESS","valueFrom":
{"configMapKeyRef":null,"secretKeyRef":{"key":"address","name":"system-smtp"}}},
{"name":"SMTP_USER_NAME","valueFrom":{"configMapKeyRef":null,"secretKeyRef":
{"key":"username","name":"system-smtp"}}},{"name":"SMTP_PASSWORD","valueFrom":
{"configMapKeyRef":null,"secretKeyRef":{"key":"password","name":"system-smtp"}}},
{"name":"SMTP_DOMAIN","valueFrom":{"configMapKeyRef":null,"secretKeyRef":
{"key":"domain","name":"system-smtp"}}},{"name":"SMTP_PORT","valueFrom":
{"configMapKeyRef":null,"secretKeyRef":{"key":"port","name":"system-smtp"}}},
{"name":"SMTP_AUTHENTICATION","valueFrom":{"configMapKeyRef":null,"secretKeyRef":
{"key":"authentication","name":"system-smtp"}}},
{"name":"SMTP_OPENSSL_VERIFY_MODE","valueFrom":
{"configMapKeyRef":null,"secretKeyRef":{"key":"openssl.verify.mode","name":"system-
smtp"}}}]}]}}}}'

CHAPTER 1. 3SCALE TEMPLATE-BASED UPGRADE GUIDE: FROM 2.7 TO 2.8

11

2. Confirm that all SMTP_* environment variables have been set as a secret reference:

oc get dc system-sidekiq -o json | jq '.spec.template.spec.containers | map(select(.name ==
"system-sidekiq"))[].env | map(select(.name | contains("SMTP")))'

Each environment variable from the output list below should be a reference to the system-
smtp secret key:

SMTP_ADDRESS

SMTP_USER_NAME

SMTP_PASSWORD

SMTP_DOMAIN

SMTP_PORT

SMTP_AUTHENTICATION

SMTP_OPENSSL_VERIFY_MODE

Next step

If you deployed 3scale 2.7 with Amazon Simple Storage Service (Amazon S3) by using the amp-
s3 template, Section 1.2.2, “Migrating the smtp ConfigMap to system-smtp secret”.

If you have not installed the amp-s3 template in 3scale 2.7, Section 1.2.8, “Updating 3scale
version number”

1.2.7. Migrating S3 specific configuration

NOTE

If you installed the amp-s3 template in 3scale 2.7, follow the instructions of this step.
Otherwise, continue the upgrade with the next step: Section 1.2.8, “Updating 3scale
version number”

Previous step

Section 1.2.6, “Patching the environment of the system-sidekiq DeploymentConfig container”

Current step

This step lists the tasks to migrate the configuration specific to S3, from the system-environment
ConfigMap to the aws-auth secret.

1. Add the values into the existing aws-auth secret:

oc patch secret aws-auth --patch "{\"stringData\": $(oc get configmap system-environment -o
json | jq '.data | {"AWS_BUCKET": .AWS_BUCKET, "AWS_REGION": .AWS_REGION } ')}"

Confirm that the keys and its values have been added to the aws-auth secret. These values
are base64 encoded:

Red Hat 3scale API Management 2.8 Migrating 3scale

12

oc get secret aws-auth -o yaml

2. Patch the pre-hook pod environment variables from system-app DeploymentConfig:

oc get dc system-app -o json | jq 'del(.spec.strategy.rollingParams.pre.execNewPod.env[] |
select(.name == "AWS_BUCKET" // .name == "AWS_REGION")) |
.spec.strategy.rollingParams.pre.execNewPod.env +=
[{"name":"AWS_BUCKET","valueFrom":{"secretKeyRef":
{"key":"AWS_BUCKET","name":"aws-auth"}}},{"name":"AWS_REGION","valueFrom":
{"secretKeyRef":{"key":"AWS_REGION","name":"aws-auth"}}},
{"name":"AWS_PROTOCOL","valueFrom":{"secretKeyRef":
{"key":"AWS_PROTOCOL","name":"aws-auth", "optional": true}}},
{"name":"AWS_HOSTNAME","valueFrom":{"secretKeyRef":
{"key":"AWS_HOSTNAME","name":"aws-auth", "optional": true}}},
{"name":"AWS_PATH_STYLE","valueFrom":{"secretKeyRef":
{"key":"AWS_PATH_STYLE","name":"aws-auth", "optional": true}}}]' | oc apply -f -

Check that all AWS_* environment variables have been set as a secret reference in the
system-app pre-hook pod:

oc get dc system-app -o json | jq '.spec.strategy.rollingParams.pre.execNewPod.env |
map(select(.name | contains("AWS")))'

Each environment variable from the output list below should be a reference to the aws-
auth secret key:

AWS_ACCESS_KEY_ID

AWS_SECRET_ACCESS_KEY

AWS_BUCKET

AWS_REGION

AWS_PROTOCOL

AWS_HOSTNAME

AWS_PATH_STYLE

3. Patch the containers environment variables in system-app DeploymentConfig:

oc patch dc/system-app -p '{"spec":{"template":{"spec":{"containers":[{"name":"system-
master","env":[{"name":"AWS_BUCKET","valueFrom":
{"configMapKeyRef":null,"secretKeyRef":{"key":"AWS_BUCKET","name":"aws-auth"}}},
{"name":"AWS_REGION","valueFrom":{"configMapKeyRef":null,"secretKeyRef":
{"key":"AWS_REGION","name":"aws-auth"}}},{"name":"AWS_PROTOCOL","valueFrom":
{"secretKeyRef":{"key":"AWS_PROTOCOL","name":"aws-auth", "optional": true}}},
{"name":"AWS_HOSTNAME","valueFrom":{"secretKeyRef":
{"key":"AWS_HOSTNAME","name":"aws-auth", "optional": true}}},
{"name":"AWS_PATH_STYLE","valueFrom":{"secretKeyRef":
{"key":"AWS_PATH_STYLE","name":"aws-auth", "optional": true}}}]},{"name":"system-
provider","env":[{"name":"AWS_BUCKET","valueFrom":
{"configMapKeyRef":null,"secretKeyRef":{"key":"AWS_BUCKET","name":"aws-auth"}}},
{"name":"AWS_REGION","valueFrom":{"configMapKeyRef":null,"secretKeyRef":

CHAPTER 1. 3SCALE TEMPLATE-BASED UPGRADE GUIDE: FROM 2.7 TO 2.8

13

{"key":"AWS_REGION","name":"aws-auth"}}},{"name":"AWS_PROTOCOL","valueFrom":
{"secretKeyRef":{"key":"AWS_PROTOCOL","name":"aws-auth", "optional": true}}},
{"name":"AWS_HOSTNAME","valueFrom":{"secretKeyRef":
{"key":"AWS_HOSTNAME","name":"aws-auth", "optional": true}}},
{"name":"AWS_PATH_STYLE","valueFrom":{"secretKeyRef":
{"key":"AWS_PATH_STYLE","name":"aws-auth", "optional": true}}}]},{"name":"system-
developer","env":[{"name":"AWS_BUCKET","valueFrom":
{"configMapKeyRef":null,"secretKeyRef":{"key":"AWS_BUCKET","name":"aws-auth"}}},
{"name":"AWS_REGION","valueFrom":{"configMapKeyRef":null,"secretKeyRef":
{"key":"AWS_REGION","name":"aws-auth"}}},{"name":"AWS_PROTOCOL","valueFrom":
{"secretKeyRef":{"key":"AWS_PROTOCOL","name":"aws-auth", "optional": true}}},
{"name":"AWS_HOSTNAME","valueFrom":{"secretKeyRef":
{"key":"AWS_HOSTNAME","name":"aws-auth", "optional": true}}},
{"name":"AWS_PATH_STYLE","valueFrom":{"secretKeyRef":
{"key":"AWS_PATH_STYLE","name":"aws-auth", "optional": true}}}]}]}}}}'

Verify that all AWS_* environment variables have been set as a secret reference in the three
containers of system-app.

system-developer:

oc get dc system-app -o json | jq '.spec.template.spec.containers | map(select(.name ==
"system-developer"))[].env | map(select(.name | contains("AWS")))'

system-master:

oc get dc system-app -o json | jq '.spec.template.spec.containers | map(select(.name ==
"system-master"))[].env | map(select(.name | contains("AWS")))'

system-provider

oc get dc system-app -o json | jq '.spec.template.spec.containers | map(select(.name ==
"system-provider"))[].env | map(select(.name | contains("AWS")))'

For all the three containers, each environment variable from the output list below should be
a reference to the aws-auth secret key:

AWS_ACCESS_KEY_ID

AWS_SECRET_ACCESS_KEY

AWS_BUCKET

AWS_REGION

AWS_PROTOCOL

AWS_HOSTNAME

AWS_PATH_STYLE

4. Patch the container environment variables in system-sidekiq DeploymentConfig:

oc patch dc/system-sidekiq -p '{"spec":{"template":{"spec":{"containers":[{"name":"system-
sidekiq","env":[{"name":"AWS_BUCKET","valueFrom":

Red Hat 3scale API Management 2.8 Migrating 3scale

14

{"configMapKeyRef":null,"secretKeyRef":{"key":"AWS_BUCKET","name":"aws-auth"}}},
{"name":"AWS_REGION","valueFrom":{"configMapKeyRef":null,"secretKeyRef":
{"key":"AWS_REGION","name":"aws-auth"}}},{"name":"AWS_PROTOCOL","valueFrom":
{"secretKeyRef":{"key":"AWS_PROTOCOL","name":"aws-auth", "optional": true}}},
{"name":"AWS_HOSTNAME","valueFrom":{"secretKeyRef":
{"key":"AWS_HOSTNAME","name":"aws-auth", "optional": true}}},
{"name":"AWS_PATH_STYLE","valueFrom":{"secretKeyRef":
{"key":"AWS_PATH_STYLE","name":"aws-auth", "optional": true}}}]}]}}}}'

Verify that all AWS_* environment variables have been set as a secret reference:

oc get dc system-sidekiq -o json | jq '.spec.template.spec.containers | map(select(.name
== "system-sidekiq"))[].env | map(select(.name | contains("AWS")))'

Each environment variable from the output list below should be a reference to the aws-
auth secret key:

AWS_ACCESS_KEY_ID

AWS_SECRET_ACCESS_KEY

AWS_BUCKET

AWS_REGION

AWS_PROTOCOL

AWS_HOSTNAME

AWS_PATH_STYLE

5. Delete the unused system-environment ConfigMap keys:

oc patch configmap system-environment --patch '{"data": {"AWS_BUCKET": null,
"AWS_REGION": null}}'

Next step

Section 1.2.8, “Updating 3scale version number”

1.2.8. Updating 3scale version number

Previous step

If you installed the amp-s3 template in 3scale 2.7, Section 1.2.2, “Migrating the smtp ConfigMap
to system-smtp secret”.

If you have not installed the amp-s3 template in 3scale 2.7, Section 1.2.6, “Patching the
environment of the system-sidekiq DeploymentConfig container”

Current step

This step updates the 3scale release version number from 2.7 to 2.8 in the system-environment
ConfigMap. AMP_RELEASE is a ConfigMap entry referenced in some DeploymentConfig container
environments.

CHAPTER 1. 3SCALE TEMPLATE-BASED UPGRADE GUIDE: FROM 2.7 TO 2.8

15

1. To patch AMP_RELEASE, run this command:

oc patch cm system-environment --patch '{"data": {"AMP_RELEASE": "2.8"}}'

2. Verify that the AMP_RELEASE key in the system-environment ConfigMap has the 2.8 value:

oc get cm system-environment -o json | jq .data.AMP_RELEASE

Next step

Section 1.2.9, “Upgrading 3scale images”

1.2.9. Upgrading 3scale images

Previous step

Section 1.2.8, “Updating 3scale version number”

Current step

This step updates the 3scale images required for the upgrade process.

1. Patch the amp-system image stream:
To patch the amp-system image stream, you need to consider the database used with your
3scale deployment.

If 3scale is deployed with Oracle Database, perform these steps to build the system image
with an Oracle Database: 1, 2, 4, 8 and 9.

If the database is different from Oracle DB, use this command:

oc patch imagestream/amp-system --type=json -p '[{"op": "add", "path": "/spec/tags/-",
"value": {"annotations": {"openshift.io/display-name": "AMP system 2.8"}, "from": { "kind":
"DockerImage", "name": "registry.redhat.io/3scale-amp2/system-rhel7:3scale2.8"},
"name": "2.8", "referencePolicy": {"type": "Source"}}}]'
oc patch imagestream/amp-system --type=json -p '[{"op": "add", "path": "/spec/tags/-",
"value": {"annotations": {"openshift.io/display-name": "AMP system (latest)"}, "from": {
"kind": "ImageStreamTag", "name": "2.8"}, "name": "latest", "referencePolicy": {"type":
"Source"}}}]'

This triggers redeployments of system-app, system-sphinx and system-sidekiq
DeploymentConfigs. Wait until they are redeployed, its corresponding new pods are ready,
and the old ones terminated.

2. Patch the amp-apicast image stream:

oc patch imagestream/amp-apicast --type=json -p '[{"op": "add", "path": "/spec/tags/-",
"value": {"annotations": {"openshift.io/display-name": "AMP APIcast 2.8"}, "from": { "kind":
"DockerImage", "name": "registry.redhat.io/3scale-amp2/apicast-gateway-rhel8:3scale2.8"},
"name": "2.8", "referencePolicy": {"type": "Source"}}}]'
oc patch imagestream/amp-apicast --type=json -p '[{"op": "add", "path": "/spec/tags/-",
"value": {"annotations": {"openshift.io/display-name": "AMP APIcast (latest)"}, "from": { "kind":
"ImageStreamTag", "name": "2.8"}, "name": "latest", "referencePolicy": {"type": "Source"}}}]'

This triggers redeployments of apicast-production and apicast-staging DeploymentConfigs.

Red Hat 3scale API Management 2.8 Migrating 3scale

16

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#building-the-system-image

This triggers redeployments of apicast-production and apicast-staging DeploymentConfigs.
Wait until they are redeployed, its corresponding new pods are ready, and the old ones
terminated.

3. Patch the amp-backend image stream:

oc patch imagestream/amp-backend --type=json -p '[{"op": "add", "path": "/spec/tags/-",
"value": {"annotations": {"openshift.io/display-name": "AMP Backend 2.8"}, "from": { "kind":
"DockerImage", "name": "registry.redhat.io/3scale-amp2/backend-rhel7:3scale2.8"}, "name":
"2.8", "referencePolicy": {"type": "Source"}}}]'
oc patch imagestream/amp-backend --type=json -p '[{"op": "add", "path": "/spec/tags/-",
"value": {"annotations": {"openshift.io/display-name": "AMP Backend (latest)"}, "from": {
"kind": "ImageStreamTag", "name": "2.8"}, "name": "latest", "referencePolicy": {"type":
"Source"}}}]'

This triggers redeployments of backend-listener, backend-worker, and backend-cron
DeploymentConfigs. Wait until they are redeployed, its corresponding new pods are ready, and
the old ones terminated.

4. Patch the amp-zync image stream:

oc patch imagestream/amp-zync --type=json -p '[{"op": "add", "path": "/spec/tags/-", "value":
{"annotations": {"openshift.io/display-name": "AMP Zync 2.8"}, "from": { "kind":
"DockerImage", "name": "registry.redhat.io/3scale-amp2/zync-rhel7:3scale2.8"}, "name":
"2.8", "referencePolicy": {"type": "Source"}}}]'
oc patch imagestream/amp-zync --type=json -p '[{"op": "add", "path": "/spec/tags/-", "value":
{"annotations": {"openshift.io/display-name": "AMP Zync (latest)"}, "from": { "kind":
"ImageStreamTag", "name": "2.8"}, "name": "latest", "referencePolicy": {"type": "Source"}}}]'

This triggers redeployments of zync and zync-que DeploymentConfigs. Wait until they are
redeployed, its corresponding new pods are ready, and the old ones terminated.

5. Patch the system-memcached ImageStream:

oc patch imagestream/system-memcached --type=json -p '[{"op": "add", "path": "/spec/tags/-
", "value": {"annotations": {"openshift.io/display-name": "System 2.8 Memcached"}, "from": {
"kind": "DockerImage", "name": "registry.redhat.io/3scale-amp2/memcached-
rhel7:3scale2.8"}, "name": "2.8", "referencePolicy": {"type": "Source"}}}]'
oc patch imagestream/system-memcached --type=json -p '[{"op": "add", "path": "/spec/tags/-
", "value": {"annotations": {"openshift.io/display-name": "System Memcached (latest)"}, "from":
{ "kind": "ImageStreamTag", "name": "2.8"}, "name": "latest", "referencePolicy": {"type":
"Source"}}}]'

This triggers redeployment of the system-memcache DeploymentConfig. Wait until it is
redeployed, its corresponding new pods are ready, and the old ones terminated.

6. Patch the zync-database-postgresql image stream:

oc patch imagestream/zync-database-postgresql --type=json -p '[{"op": "add", "path":
"/spec/tags/-", "value": {"annotations": {"openshift.io/display-name": "Zync 2.8 PostgreSQL"},
"from": { "kind": "DockerImage", "name": "registry.redhat.io/rhscl/postgresql-10-rhel7"},
"name": "2.8", "referencePolicy": {"type": "Source"}}}]'
oc patch imagestream/zync-database-postgresql --type=json -p '[{"op": "add", "path":
"/spec/tags/-", "value": {"annotations": {"openshift.io/display-name": "Zync PostgreSQL
(latest)"}, "from": { "kind": "ImageStreamTag", "name": "2.8"}, "name": "latest",
"referencePolicy": {"type": "Source"}}}]'

CHAPTER 1. 3SCALE TEMPLATE-BASED UPGRADE GUIDE: FROM 2.7 TO 2.8

17

This patch command updates the zync-database-postgresql image stream to contain the
2.8 tag. You can verify that the 2.8 tag has been created by executing:

oc get is/zync-database-postgresql

Then, check that the tags column shows the 2.8 tag.

This patch might also trigger a redeployment of the zync-database DeploymentConfig, in
case there are new updates on the image. If this happens, wait until the new pods are
redeployed and ready, and the old pods terminated.

7. If one or more of the following DeploymentConfigs exist in your 3scale 2.7 installation, click the
link for the DeploymentConfigs that apply to obtain more information on how to proceed:

Section 1.2.9.1.1, “backend-redis DeploymentConfig”

Section 1.2.9.1.2, “system-redis DeploymentConfig”

Section 1.2.9.1.3, “system-mysql DeploymentConfig”

Section 1.2.9.1.4, “system-postgresql DeploymentConfig”

8. Verify that all the image URLs of the DeploymentConfigs contain the new image registry URLs
with a hash added at the end of each URL address:

$ THREESCALE_DC_NAMES="apicast-production apicast-staging backend-cron backend-
listener backend-redis backend-worker system-app system-memcache system-mysql system-
redis system-sidekiq system-sphinx zync zync-database zync-que"

for component in ${THREESCALE_DC_NAMES}; do echo -n "${component} image: " && oc
get dc $component -o json | jq .spec.template.spec.containers[0].image ; done

Next step

Section 1.2.10, “Deleting smtp ConfigMap”

1.2.9.1. Additional steps with existing DeploymentConfigs

1.2.9.1.1. backend-redis DeploymentConfig

If the backend-redis DeploymentConfig exists in your current 3scale installation, patch the backend-
redis image stream:

oc patch imagestream/backend-redis --type=json -p '[{"op": "add", "path": "/spec/tags/-", "value":
{"annotations": {"openshift.io/display-name": "Backend 2.8 Redis"}, "from": { "kind": "DockerImage",
"name": "registry.redhat.io/rhscl/redis-32-rhel7:3.2"}, "name": "2.8", "referencePolicy": {"type":
"Source"}}}]'
oc patch imagestream/backend-redis --type=json -p '[{"op": "add", "path": "/spec/tags/-", "value":
{"annotations": {"openshift.io/display-name": "Backend Redis (latest)"}, "from": { "kind":
"ImageStreamTag", "name": "2.8"}, "name": "latest", "referencePolicy": {"type": "Source"}}}]'

This patch updates the backend-redis image stream to contain the 2.8 tag. With the command
below, you can confirm that the tag has been created if the tags column shows 2.8:

Red Hat 3scale API Management 2.8 Migrating 3scale

18

oc get is/backend-redis

This patch might also trigger a redeployment of the backend-redis DeploymentConfig in case
there are new updates on the image. If this happens, wait until the new pods are redeployed and
ready, and the old pods terminated.

Continue upgrading 3scale images.

1.2.9.1.2. system-redis DeploymentConfig

If the system-redis DeploymentConfig exists in your current 3scale installation, patch the system-
redis image stream:

oc patch imagestream/system-redis --type=json -p '[{"op": "add", "path": "/spec/tags/-", "value":
{"annotations": {"openshift.io/display-name": "System 2.8 Redis"}, "from": { "kind": "DockerImage",
"name": "registry.redhat.io/rhscl/redis-32-rhel7:3.2"}, "name": "2.8", "referencePolicy": {"type":
"Source"}}}]'
oc patch imagestream/system-redis --type=json -p '[{"op": "add", "path": "/spec/tags/-", "value":
{"annotations": {"openshift.io/display-name": "System Redis (latest)"}, "from": { "kind":
"ImageStreamTag", "name": "2.8"}, "name": "latest", "referencePolicy": {"type": "Source"}}}]'

This patch updates the system-redis image stream to contain the 2.8 tag. With the command
below, you can confirm that the tag has been created if the tags column shows 2.8:

oc get is/system-redis

This patch might also trigger a redeployment of the system-redis DeploymentConfig in case
there are new updates on the image. If this happens, wait until the new pods are redeployed and
ready, and the old pods terminated.

Continue upgrading 3scale images.

1.2.9.1.3. system-mysql DeploymentConfig

If the system-mysql DeploymentConfig exists in your current 3scale installation, patch the system-
mysql image stream:

oc patch imagestream/system-mysql --type=json -p '[{"op": "add", "path": "/spec/tags/-", "value":
{"annotations": {"openshift.io/display-name": "System 2.8 MySQL"}, "from": { "kind": "DockerImage",
"name": "registry.redhat.io/rhscl/mysql-57-rhel7:5.7"}, "name": "2.8", "referencePolicy": {"type":
"Source"}}}]'
oc patch imagestream/system-mysql --type=json -p '[{"op": "add", "path": "/spec/tags/-", "value":
{"annotations": {"openshift.io/display-name": "System MySQL (latest)"}, "from": { "kind":
"ImageStreamTag", "name": "2.8"}, "name": "latest", "referencePolicy": {"type": "Source"}}}]'

This patch updates the system-mysql image stream to contain the 2.8 tag. With the command
below, you can confirm that the tag has been created if the tags column shows 2.8:

oc get is/system-mysql

This patch might also trigger a redeployment of the system-mysql DeploymentConfig in case
there are new updates on the image. If this happens, wait until the new pods are redeployed and
ready, and the old pods terminated.

CHAPTER 1. 3SCALE TEMPLATE-BASED UPGRADE GUIDE: FROM 2.7 TO 2.8

19

Continue upgrading 3scale images.

1.2.9.1.4. system-postgresql DeploymentConfig

If the system-postgresql DeploymentConfig exists in your current 3scale installation, patch the
system-postgresql image stream:

oc patch imagestream/system-postgresql --type=json -p '[{"op": "add", "path": "/spec/tags/-", "value":
{"annotations": {"openshift.io/display-name": "System 2.8 PostgreSQL"}, "from": { "kind":
"DockerImage", "name": "registry.redhat.io/rhscl/postgresql-10-rhel7
"}, "name": "2.8", "referencePolicy": {"type": "Source"}}}]'
oc patch imagestream/system-postgresql --type=json -p '[{"op": "add", "path": "/spec/tags/-", "value":
{"annotations": {"openshift.io/display-name": "System PostgreSQL (latest)"}, "from": { "kind":
"ImageStreamTag", "name": "2.8"}, "name": "latest", "referencePolicy": {"type": "Source"}}}]'

This patch updates the system-postgresql image stream to contain the 2.8 tag. With the
command below, you can confirm that the tag has been created if the tags column shows 2.8:

oc get is/system-postgresql

This patch might also trigger a redeployment of the system-postgresql DeploymentConfig in
case there are new updates on the image. If this happens, wait until the new pods are redeployed
and ready, and the old pods terminated.

Continue upgrading 3scale images.

1.2.10. Deleting smtp ConfigMap

Previous step

Section 1.2.9, “Upgrading 3scale images”

Current step

This step removes the smtp ConfigMap, because this ConfigMap has been migrated to the system-
smtp secret.

To remove the smtp ConfigMap, run this command:

$ oc delete cm smtp

If the command does not return an error, it has worked correctly.

Next step

None. After you have performed all the listed steps, 3scale upgrade from 2.7 to 2.8 in a template-based
deployment is now complete.

Red Hat 3scale API Management 2.8 Migrating 3scale

20

CHAPTER 2. 3SCALE OPERATOR-BASED UPGRADE GUIDE:
FROM 2.7 TO 2.8

This section contains information about upgrading Red Hat 3scale API Management from version 2.7 to
2.8, in an operator-based deployment.

IMPORTANT

In order to understand the required conditions and procedure, read the entire upgrade
guide before applying the listed steps. The upgrade process disrupts the provision of the
service until the procedure finishes. Due to this disruption, make sure to have a
maintenance window.

Prerequisites

3scale 2.7 previously deployed via the 3scale operator.

An OpenShift Container Platform (OCP) 4.x cluster with administrator access.

2.1. UPGRADING 3SCALE 2.7 TO 2.8

To upgrade 3scale from version 2.7 to 2.8 in an operator-based deployment, use the following
procedure.

Procedure

1. Log in to the OCP console using the account with administrator privileges.

2. Select the project where the 3scale-operator has been deployed.

3. Click Operators > Installed Operators.

4. Select 3scale operator Subscription > Channel.

5. Edit the channel of the subscription by selecting the threescale-2.8 and save the changes.

This will start the upgrade process.

Wait until the upgrade process finishes for the APIManager.

6. Query the pods status on the project:

oc get pods

Wait until all the new versions are running and ready without errors.

They might have temporary errors during the upgrade process.

NOTE

Times can vary from 5-10 minutes approximately. Be sure to keep checking
the state of the pods until all of them are running, ready, and without errors.

7. Confirm the upgrade process has been successful, by logging in to the 3scale Admin Portal and

CHAPTER 2. 3SCALE OPERATOR-BASED UPGRADE GUIDE: FROM 2.7 TO 2.8

21

7. Confirm the upgrade process has been successful, by logging in to the 3scale Admin Portal and
check that it works as expected.

8. Check the status of the APIManager objects and get the YAML content by running the following
command:

oc get apimanager <myapimanager> -o yaml

a. The new annotations with the values should be shown as follows:

apps.3scale.net/apimanager-threescale-version: "2.8"
apps.3scale.net/threescale-operator-version: "0.5.0"

After you have performed all the listed steps, 3scale upgrade from 2.7 to 2.8 in an operator-
based deployment is now complete.

Red Hat 3scale API Management 2.8 Migrating 3scale

22

CHAPTER 3. 3SCALE API MANAGEMENT MIGRATION GUIDE:
FROM TEMPLATE TO OPERATOR-BASED DEPLOYMENTS

This section contains information about migrating Red Hat 3scale API Management from a template-
based deployment using Red Hat OpenShift 3.11, to an operator-based deployment using Red Hat
OpenShift 4.x.

WARNING

In order to understand the required conditions and procedure, read the entire
migration guide before applying the listed steps. The migration process disrupts the
provision of the service until the procedure finishes. Due to this disruption, make
sure to have a maintenance window.

3.1. GETTING READY FOR THE MIGRATION

Before migrating your 3scale installation from a template to an operator-based deployment, confirm
that your deployment is supported by consulting the following guides:

Backing up 3scale a template-based deployment.

Restoring the backup in an operator-based deployment.

3.2. MIGRATING 3SCALE TEMPLATE TO OPERATOR-BASED
DEPLOYMENTS

Prerequisites

Red Hat 3scale API Management 2.8 deployed in both environments.

A domain for each OpenShift cluster, and another WILDCARD_DOMAIN for 3scale. Examples:

Red Hat OpenShift 3.11 (OCP3): ocp3.example.com

Red Hat OpenShift 4.x (OCP4): ocp4.example.com

3scale: 3scale.example.com

Procedure

The basic setup before migration is that 3scale points to the OCP3 domain: 3scale.example.com →
ocp3.example.com

To migrate 3scale from a template-based deployment using Red Hat OpenShift 3.11 to an operator-
based deployment using Red Hat OpenShift 4.1, follow these steps:

1. Create a 3scale backup from the template-based deployment.

2. Deploy 3scale using the operator .



CHAPTER 3. 3SCALE API MANAGEMENT MIGRATION GUIDE: FROM TEMPLATE TO OPERATOR-BASED DEPLOYMENTS

23

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/operating_3scale/index#backup-procedures
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/operating_3scale/index#procedures-to-restore-databases
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/operating_3scale/index#backup-procedures
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#deploying-threescale-using-the-operator

3. Restore the backup in the operator-based deployment.

4. Point the 3scale WILDCARD_DOMAIN, in this case 3scale.example.com, to
ocp4.example.com.

After you have performed all the listed steps, 3scale migration from a template to an operator-based
deployment is now complete.

Red Hat 3scale API Management 2.8 Migrating 3scale

24

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/operating_3scale/index#procedures-to-restore-databases

	Table of Contents
	PREFACE
	CHAPTER 1. 3SCALE TEMPLATE-BASED UPGRADE GUIDE: FROM 2.7 TO 2.8
	1.1. GETTING READY FOR THE UPGRADE
	1.1.1. Conditions for the upgrade
	1.1.2. Prerequisites to perform the upgrade

	1.2. UPGRADING FROM 2.7 TO 2.8 IN A TEMPLATE-BASED INSTALLATION
	1.2.1. Creating a backup of the 3scale project
	1.2.2. Migrating the smtp ConfigMap to system-smtp secret
	1.2.3. Updating the pre-hook pod command of the system-app DeploymentConfig
	1.2.4. Patching the pre-hook pod environment of the system-app DeploymentConfig
	1.2.5. Patching the environment of the system-app DeploymentConfig containers
	1.2.6. Patching the environment of the system-sidekiq DeploymentConfig container
	1.2.7. Migrating S3 specific configuration
	1.2.8. Updating 3scale version number
	1.2.9. Upgrading 3scale images
	1.2.9.1. Additional steps with existing DeploymentConfigs

	1.2.10. Deleting smtp ConfigMap

	CHAPTER 2. 3SCALE OPERATOR-BASED UPGRADE GUIDE: FROM 2.7 TO 2.8
	2.1. UPGRADING 3SCALE 2.7 TO 2.8

	CHAPTER 3. 3SCALE API MANAGEMENT MIGRATION GUIDE: FROM TEMPLATE TO OPERATOR-BASED DEPLOYMENTS
	3.1. GETTING READY FOR THE MIGRATION
	3.2. MIGRATING 3SCALE TEMPLATE TO OPERATOR-BASED DEPLOYMENTS

