
Red Hat 3scale API Management 2.11

Migrating 3scale

Migrate or upgrade 3scale API Management and its components

Last Updated: 2022-12-13

Red Hat 3scale API Management 2.11 Migrating 3scale

Migrate or upgrade 3scale API Management and its components

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Migrate 3scale from a template to an operator-based installation. Also, find the information to
upgrade 3scale and its components to the latest version.

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. 3SCALE MIGRATION GUIDE: FROM TEMPLATE TO OPERATOR-BASED DEPLOYMENTS
1.1. PREREQUISITES TO PERFORM THE MIGRATION
1.2. MIGRATING 3SCALE TEMPLATE TO OPERATOR-BASED DEPLOYMENTS

CHAPTER 2. UPGRADING 3SCALE VERSION 2.10 TO VERSION 2.11 USING TEMPLATES
2.1. PREREQUISITES TO PERFORM THE UPGRADE

2.1.1. Configurations
2.1.2. Preliminary tasks
2.1.3. Tools

2.2. UPGRADING FROM 2.10 TO 2.11 IN A TEMPLATE-BASED INSTALLATION
2.2.1. Creating a backup of the 3scale project
2.2.2. Updating 3scale version number
2.2.3. Updating BACKEND_ROUTE environment variable
2.2.4. Moving ‘zync’ DeploymentConfig monitoring annotations from DeploymentConfig annotations to
PodTemplate annotations
2.2.5. Increasing backend-cron DeploymentConfig resource requirements
2.2.6. Upgrading 3scale images

2.2.6.1. Patch the system image
2.2.6.1.1. Patching the system image: 3scale with Oracle Database
2.2.6.1.2. Patching the system image: 3scale with other databases

2.2.6.2. Patch the apicast image
2.2.6.3. Patch the backend image
2.2.6.4. Patch the zync image
2.2.6.5. Patch the system-memcached image
2.2.6.6. Patch the zync-database-postgresql image
2.2.6.7. Additional image changes
2.2.6.8. Confirm image URLs

2.3. UPGRADING 3SCALE WITH AN ORACLE DATABASE IN A TEMPLATE-BASED INSTALLATION
2.3.1. Upgrading 3scale with Oracle 19c

CHAPTER 3. UPGRADING 3SCALE VERSION 2.11.0 TO VERSION 2.11.1 USING TEMPLATES
3.1. PREREQUISITES TO PERFORM THE UPGRADE

3.1.1. Configurations
3.1.2. Preliminary tasks
3.1.3. Tools

3.2. UPGRADING FROM 3SCALE 2.11.0 TO 2.11.1 IN A TEMPLATE-BASED INSTALLATION
3.2.1. Creating a backup of the 3scale project
3.2.2. Increasing backend-cron DeploymentConfig resource requirements
3.2.3. Upgrading 3scale images

3.2.3.1. Patch the system image
3.2.3.2. Patching the system image: 3scale with Oracle Database
3.2.3.3. Patching the system image: 3scale with other databases
3.2.3.4. Patch the apicast image
3.2.3.5. Patch the backend image
3.2.3.6. Patch the zync image
3.2.3.7. Patch the system-memcached image

CHAPTER 4. 3SCALE OPERATOR-BASED UPGRADE GUIDE: FROM 2.10 TO 2.11
4.1. PREREQUISITES TO PERFORM THE UPGRADE

4

5

6
6
6

7
7
7
7
7
7
8
9
9

10
11

12
12
12
13
14
15
16
16
17
17

20
21
21

24
24
24
24
24
24
25
26
26
27
27
27
27
27
27
27

29
29

Table of Contents

1

. .

4.2. UPGRADING FROM 2.10 TO 2.11 IN AN OPERATOR-BASED INSTALLATION

CHAPTER 5. APICAST OPERATOR-BASED UPGRADE GUIDE: FROM 2.10 TO 2.11
5.1. PREREQUISITES TO PERFORM THE UPGRADE
5.2. UPGRADING APICAST FROM 2.10 TO 2.11 IN AN OPERATOR-BASED INSTALLATION

29

31
31
31

Red Hat 3scale API Management 2.11 Migrating 3scale

2

Table of Contents

3

PREFACE
This guide provides the information to migrate Red Hat 3scale API Management from a template to an
operator-based installation, the details required to upgrade your 3scale installation from 2.10 to 2.11, as
well as the steps to upgrade APIcast in an operator-based deployment.

To migrate from a template-based to an operator-based deployment, refer to the procedures listed in
the 3scale migration guide.

To upgrade your 3scale On-premises deployment from 2.10 to 2.11, refer to one of the following guides
depending on the installation type:

Upgrading 3scale version 2.10 to version 2.11 using templates

Upgrading 3scale version 2.11.0 to version 2.11.1 using templates

3scale operator-based upgrade guide

To upgrade APIcast in an operator-based deployment, refer to the steps listed in the APIcast upgrade
guide.

Red Hat 3scale API Management 2.11 Migrating 3scale

4

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. 3SCALE MIGRATION GUIDE: FROM TEMPLATE
TO OPERATOR-BASED DEPLOYMENTS

This section contains information about migrating Red Hat 3scale API Management from a template-
based deployment using Red Hat OpenShift 3.11, to an operator-based deployment using Red Hat
OpenShift 4.x.

WARNING

In order to understand the required conditions and procedure, read the entire
migration guide before applying the listed steps. The migration process disrupts the
provision of the service until the procedure finishes. Due to this disruption, make
sure to have a maintenance window.

1.1. PREREQUISITES TO PERFORM THE MIGRATION

Before migrating your 3scale installation from a template to an operator-based deployment, confirm
that your deployment is supported by consulting the following guides:

Backing up 3scale a template-based deployment .

Restoring the backup in an operator-based deployment .

1.2. MIGRATING 3SCALE TEMPLATE TO OPERATOR-BASED
DEPLOYMENTS

The basic setup before migration is that 3scale points to the OCP3 domain: 3scale.example.com →
ocp3.example.com

To migrate 3scale from a template-based deployment using Red Hat OpenShift 3.11 to an operator-
based deployment using Red Hat OpenShift 4.1, follow these steps:

1. Create a 3scale backup from the template-based deployment.

2. Deploy 3scale using the operator .

3. Restore the backup in the operator-based deployment.

4. Point the 3scale WILDCARD_DOMAIN, in this case 3scale.example.com, to
ocp4.example.com.

After you have performed all the listed steps, 3scale migration from a template to an operator-based
deployment is now complete.



Red Hat 3scale API Management 2.11 Migrating 3scale

6

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.11/html-single/operating_3scale/index#backup-procedures
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.11/html-single/operating_3scale/index#procedures-to-restore-databases
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.11/html-single/operating_3scale/index#backup-procedures
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.11/html-single/installing_3scale/index#deploying-threescale-using-the-operator
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.11/html-single/operating_3scale/index#procedures-to-restore-databases

CHAPTER 2. UPGRADING 3SCALE VERSION 2.10 TO VERSION
2.11 USING TEMPLATES

You can upgrade Red Hat 3scale API Management from version 2.10 to version 2.11 using a template-
based deployment on OpenShift 3.11.

IMPORTANT

To understand the required conditions and procedures, be sure to read the entire
upgrade guide before applying the listed steps. The upgrade process disrupts the
provision of the service until the procedure finishes. Due to this disruption, be sure to
have a maintenance window.

2.1. PREREQUISITES TO PERFORM THE UPGRADE

This section describes the required configurations, tasks, and tools to upgrade 3scale from 2.10 to 2.11 in
a template-based installation.

2.1.1. Configurations

3scale supports upgrade paths from 2.10 to 2.11 with templates on OpenShift 3.11.

2.1.2. Preliminary tasks

Ensure your OpenShift CLI tool is configured in the same project where 3scale is deployed.

Perform a backup of the database you are using with 3scale. The procedure of the backup is
specific to each database type and setup.

2.1.3. Tools

You need these tools to perform the upgrade:

3scale 2.10 deployed with templates in an OpenShift 3.11 project.

Bash shell: To run the commands detailed in the upgrade procedure.

base64: To encode and decode secret information.

jq: For JSON transformation purposes.

2.2. UPGRADING FROM 2.10 TO 2.11 IN A TEMPLATE-BASED
INSTALLATION

Follow the procedure described in this section to upgrade 3scale 2.10 to 2.11 in a template-based
installation.

To start with the upgrade, go to the project where 3scale is deployed.

$ oc project <3scale-project>

Then, follow these steps in this order:

CHAPTER 2. UPGRADING 3SCALE VERSION 2.10 TO VERSION 2.11 USING TEMPLATES

7

1. Creating a backup of the 3scale project

2. Updating 3scale version number

3. Updating BACKEND_ROUTE environment variable

4. Moving ‘zync’ DeploymentConfig monitoring annotations from DeploymentConfig annotations
to PodTemplate annotations

5. Increasing backend-cron DeploymentConfig resource requirements

6. Upgrading 3scale images

2.2.1. Creating a backup of the 3scale project

Previous step

None.

Current step

This step lists the actions necessary to create a backup of the 3scale project.

Procedure

1. Depending on the database used with 3scale, set ${SYSTEM_DB} with one of the following
values:

If the database is MySQL, SYSTEM_DB=system-mysql.

If the database is PostgreSQL, SYSTEM_DB=system-postgresql.

2. Create a backup file with the existing DeploymentConfigs:

$ THREESCALE_DC_NAMES="apicast-production apicast-staging backend-cron backend-
listener backend-redis backend-worker system-app system-memcache ${SYSTEM_DB}
system-redis system-sidekiq system-sphinx zync zync-database zync-que"

for component in ${THREESCALE_DC_NAMES}; do oc get --export -o yaml dc
${component} > ${component}_dc.yml ; done

3. Backup all existing OpenShift resources in the project that are exported through the export all
command:

$ oc get -o yaml --export all > threescale-project-elements.yaml

4. Create a backup file with the additional elements that are not exported with the export all
command:

$ for object in rolebindings serviceaccounts secrets imagestreamtags cm
rolebindingrestrictions limitranges resourcequotas pvc templates cronjobs statefulsets hpa
deployments replicasets poddisruptionbudget endpoints
do
 oc get -o yaml --export $object > $object.yaml
done

5. Verify that all of the generated files are not empty, and that all of them have the expected

Red Hat 3scale API Management 2.11 Migrating 3scale

8

5. Verify that all of the generated files are not empty, and that all of them have the expected
content.

Next step

Updating 3scale version number

2.2.2. Updating 3scale version number

Previous step

Creating a backup of the 3scale project

Current step

This step updates the 3scale release version number from 2.10 to 2.11 in the system-environment
ConfigMap. AMP_RELEASE is a ConfigMap entry referenced in some DeploymentConfig container
environments.

Procedure

1. To patch AMP_RELEASE, run this command:

$ oc patch cm system-environment --patch '{"data": {"AMP_RELEASE": "2.11"}}'

2. Confirm that the AMP_RELEASE key in the system-environment ConfigMap has the 2.11 value:

$ oc get cm system-environment -o json | jq '.data["AMP_RELEASE"]'

Next step

Updating BACKEND_ROUTE environment variable

2.2.3. Updating BACKEND_ROUTE environment variable

Previous step

Updating 3scale version number

Current step

This step updates the BACKEND_ROUTE environment variable from system-app and system-sidekiq
pods to use the backend-listener Kubernetes service instead of the OpenShift route.

Procedure

1. Update the variable in the system-app pre-hook pod by editing the system-app
DeploymentConfig:

$ oc edit dc system-app

You will enter an interactive editor session. Find the BACKEND_ROUTE environment variable in
the .spec.strategy.rollingParams.pre.execNewPod.env array section.

a. Replace the following entry:

CHAPTER 2. UPGRADING 3SCALE VERSION 2.10 TO VERSION 2.11 USING TEMPLATES

9

- name: BACKEND_ROUTE
 valueFrom:
 secretKeyRef:
 key: route_endpoint
 name: backend-listener

b. With this entry:

- name: BACKEND_ROUTE
 value: http://backend-listener:3000/internal/

Save your changes and exit the interactive editor session.

2. Update the entry on system-app containers:

$ oc set env dc/system-app BACKEND_ROUTE="http://backend-listener:3000/internal/"

This command triggers a redeployment of system-app. Wait until it is redeployed, its
corresponding new pods are ready, and the previous pods are terminated.

3. Update it on system-sidekiq container:

$ oc set env dc/system-sidekiq BACKEND_ROUTE="http://backend-listener:3000/internal/"

This command triggers a redeployment of system-sidekiq. Wait until it is redeployed, its
corresponding new pods are ready, and the previous pods are terminated.

Next step

Moving ‘zync’ DeploymentConfig monitoring annotations from DeploymentConfig annotations to
PodTemplate annotations

2.2.4. Moving ‘zync’ DeploymentConfig monitoring annotations from
DeploymentConfig annotations to PodTemplate annotations

Previous step

Updating BACKEND_ROUTE environment variable

Current step

This step moves the prometheus.io/port and prometheus.io/scrape annotations from the zync
DeploymentConfig annotations to the PodTemplate annotations.

Procedure

1. Take note of the current values for the prometheus.io/port and prometheus.io/scrape
annotations by running:

$ oc get dc zync -o json | jq .metadata.annotations

2. Add the annotations to zync DeploymentConfig’s PodTemplate annotations. If the
prometheus.io/port and prometheus.io/scrape annotation values are different than the ones
shown in the command below replace them with the values that are currently set in the zync
DeploymentConfig as shown by the previous command:

Red Hat 3scale API Management 2.11 Migrating 3scale

10

$ oc patch dc zync --patch '{"spec":{"template":{"metadata":{"annotations":
{"prometheus.io/port":"9393","prometheus.io/scrape":"true"}}}}}'

3. Remove the original annotations from the zync DeploymentConfig annotations:

$ oc annotate dc zync prometheus.io/scrape-
$ oc annotate dc zync prometheus.io/port-

This command triggers a redeployment of zync. Wait until it is redeployed, its corresponding
new pods are ready, and the previous pods are terminated.

Next step

Increasing backend-cron DeploymentConfig resource requirements

2.2.5. Increasing backend-cron DeploymentConfig resource requirements

Previous step

Moving ‘zync’ DeploymentConfig monitoring annotations from DeploymentConfig annotations to
PodTemplate annotations

Current step

As of 3scale 2.11, backend-cron DeploymentConfig might consume more memory than earlier versions.
Use this procedure to increase the maximum memory limits from the currently set values.

The required backend-cron resource in 3scale 2.11 are:

{
 "limits": {
 "cpu": "500m",
 "memory": "500Mi"
 },
 "requests": {
 "cpu": "100m",
 "memory": "100Mi"
 }
}

If the current backend-cron deployment has no memory limits or the resource requirements are higher,
you do not need to complete the following procedure.

Procedure

1. Check the current resource requirements set for backend-cron with the following command:

If the output is empty or null it means no resource requirements are set.

2. To increase the current backend-cron resource requirements, run the following command:

$ oc get dc backend-cron -o json | jq .spec.template.spec.containers[0].resources

CHAPTER 2. UPGRADING 3SCALE VERSION 2.10 TO VERSION 2.11 USING TEMPLATES

11

This command triggers a redeployment of backend-cron. Wait until it is redeployed, its
corresponding new pods are ready, and the previous pods are terminated.

Next step

Upgrading 3scale images

2.2.6. Upgrading 3scale images

Previous step

Increasing backend-cron DeploymentConfig resource requirements

Current step

This step updates the 3scale images required for the upgrade process.

2.2.6.1. Patch the system image

1. Create the new image stream tag:

$ oc patch imagestream/amp-system --type=json -p '[{"op": "add", "path": "/spec/tags/-",
"value": {"annotations": {"openshift.io/display-name": "AMP system 2.11"}, "from": { "kind":
"DockerImage", "name": "registry.redhat.io/3scale-amp2/system-rhel7:3scale2.11"}, "name":
"2.11", "referencePolicy": {"type": "Source"}}}]'

2. To continue the procedure, consider the database used with your 3scale deployment:

If the database is Oracle DB, follow the steps listed in Patching the system image: 3scale
with Oracle Database

If the database is different from Oracle DB, follow the steps listed in Patching the system
image: 3scale with other databases

2.2.6.1.1. Patching the system image: 3scale with Oracle Database

1. To start patching the system image of 3scale with an Oracle Database, perform steps 1, 2, 4, and
8 in Building the system image .

2. Patch the system-app ImageChangeTrigger:

a. Remove the old 2.10-oracle trigger:

$ oc set triggers dc/system-app --from-image=amp-system:2.10-oracle --
containers=system-master,system-developer,system-provider --remove

b. Add the new version-specific trigger:

$ oc set triggers dc/system-app --from-image=amp-system:2.11-oracle --
containers=system-master,system-developer,system-provider

This triggers a redeployment of system-app. Wait until it is redeployed, its corresponding

$ oc patch dc backend-cron --patch '{"spec":{"template":{"spec":{"containers":
[{"name":"backend-cron","resources":{"limits":{"memory":"500Mi", "cpu": "500m"}, "requests":
{"memory":"100Mi", "cpu": "100m"}}}]}}}}'

Red Hat 3scale API Management 2.11 Migrating 3scale

12

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.11/html-single/installing_3scale/index#upgrading-threescale-with-oracle19c

This triggers a redeployment of system-app. Wait until it is redeployed, its corresponding
new pods are ready, and the old ones terminated.

3. Patch the system-sidekiq ImageChange trigger:

a. Remove the old 2.10-oracle trigger:

$ oc set triggers dc/system-sidekiq --from-image=amp-system:2.10-oracle --
containers=system-sidekiq,check-svc --remove

b. Add the new version-specific trigger:

$ oc set triggers dc/system-sidekiq --from-image=amp-system:2.11-oracle --
containers=system-sidekiq,check-svc

This triggers a redeployment of system-sidekiq. Wait until it is redeployed, its
corresponding new pods are ready, and the old ones terminated.

4. Patch the system-sphinx ImageChange trigger:

a. Remove the old 2.10-oracle trigger:

$ oc set triggers dc/system-sphinx --from-image=amp-system:2.10-oracle --
containers=system-sphinx,system-master-svc --remove

b. Add the new version-specific trigger:

$ oc set triggers dc/system-sphinx --from-image=amp-system:2.11-oracle --
containers=system-sphinx,system-master-svc

This triggers a redeployment of system-sphinx. Wait until it is redeployed, its
corresponding new pods are ready, and the old ones terminated.

5. Scale 3scale back if you scaled it down.

2.2.6.1.2. Patching the system image: 3scale with other databases

1. Patch the system-app ImageChange trigger:

a. Remove the old 2.10 trigger:

$ oc set triggers dc/system-app --from-image=amp-system:2.10 --containers=system-
master,system-developer,system-provider --remove

b. Add the new version-specific trigger:

$ oc set triggers dc/system-app --from-image=amp-system:2.11 --containers=system-
master,system-developer,system-provider

This triggers a redeployment of system-app. Wait until it is redeployed, its corresponding
new pods are ready, and the old ones terminated.

2. Patch the system-sidekiq ImageChange trigger:

a. Remove the old 2.10 trigger:

CHAPTER 2. UPGRADING 3SCALE VERSION 2.10 TO VERSION 2.11 USING TEMPLATES

13

$ oc set triggers dc/system-sidekiq --from-image=amp-system:2.10 --containers=system-
sidekiq,check-svc --remove

b. Add the new version-specific trigger:

$ oc set triggers dc/system-sidekiq --from-image=amp-system:2.11 --containers=system-
sidekiq,check-svc

This triggers a redeployment of system-sidekiq. Wait until it is redeployed, its
corresponding new pods are ready, and the old ones terminated.

3. Patch the system-sphinx ImageChange trigger:

a. Remove the old 2.10 trigger:

$ oc set triggers dc/system-sphinx --from-image=amp-system:2.10 --containers=system-
sphinx,system-master-svc --remove

b. Add the new version-specific trigger:

$ oc set triggers dc/system-sphinx --from-image=amp-system:2.11 --containers=system-
sphinx,system-master-svc

This triggers a redeployment of system-sphinx. Wait until it is redeployed, its
corresponding new pods are ready, and the old ones terminated.

2.2.6.2. Patch the apicast image

1. Patch the amp-apicast image stream:

$ oc patch imagestream/amp-apicast --type=json -p '[{"op": "add", "path": "/spec/tags/-",
"value": {"annotations": {"openshift.io/display-name": "AMP APIcast 2.11"}, "from": {"kind":
"DockerImage", "name": "registry.redhat.io/3scale-amp2/apicast-gateway-rhel8:3scale2.11"},
"name": "2.11", "referencePolicy": {"type": "Source"}}}]'

2. Patch the apicast-staging ImageChange trigger:

a. Remove the old 2.10 trigger:

$ oc set triggers dc/apicast-staging --from-image=amp-apicast:2.10 --
containers=apicast-staging --remove

b. Add the new version-specific trigger:

$ oc set triggers dc/apicast-staging --from-image=amp-apicast:2.11 --
containers=apicast-staging

This triggers a redeployment of apicast-staging. Wait until it is redeployed, its
corresponding new pods are ready, and the old ones terminated.

3. Patch the apicast-production ImageChange trigger:

a. Remove the old 2.10 trigger:

Red Hat 3scale API Management 2.11 Migrating 3scale

14

$ oc set triggers dc/apicast-production --from-image=amp-apicast:2.10 --
containers=apicast-production,system-master-svc --remove

b. Add the new version-specific trigger:

$ oc set triggers dc/apicast-production --from-image=amp-apicast:2.11 --
containers=apicast-production,system-master-svc

This triggers a redeployment of apicast-production. Wait until it is redeployed, its
corresponding new pods are ready, and the old ones terminated.

2.2.6.3. Patch the backend image

1. Patch the amp-backend image stream:

$ oc patch imagestream/amp-backend --type=json -p '[{"op": "add", "path": "/spec/tags/-",
"value": {"annotations": {"openshift.io/display-name": "AMP Backend 2.11"}, "from": {"kind":
"DockerImage", "name": "registry.redhat.io/3scale-amp2/backend-rhel8:3scale2.11"}, "name":
"2.11", "referencePolicy": {"type": "Source"}}}]'

2. Patch the backend-listener ImageChange trigger:

a. Remove the old 2.10 trigger:

$ oc set triggers dc/backend-listener --from-image=amp-backend:2.10 --
containers=backend-listener --remove

b. Add the new version-specific trigger:

$ oc set triggers dc/backend-listener --from-image=amp-backend:2.11 --
containers=backend-listener

This triggers a redeployment of backend-listener. Wait until it is redeployed, its
corresponding new pods are ready, and the old ones terminated.

3. Patch the backend-worker ImageChange trigger:

a. Remove the old 2.10 trigger:

$ oc set triggers dc/backend-worker --from-image=amp-backend:2.10 --
containers=backend-worker,backend-redis-svc --remove

b. Add the new version-specific trigger:

$ oc set triggers dc/backend-worker --from-image=amp-backend:2.11 --
containers=backend-worker,backend-redis-svc

This triggers a redeployment of backend-worker. Wait until it is redeployed, its
corresponding new pods are ready, and the old ones terminated.

4. Patch the backend-cron ImageChange trigger:

a. Remove the old 2.10 trigger:

CHAPTER 2. UPGRADING 3SCALE VERSION 2.10 TO VERSION 2.11 USING TEMPLATES

15

$ oc set triggers dc/backend-cron --from-image=amp-backend:2.10 --
containers=backend-cron,backend-redis-svc --remove

b. Add the new version-specific trigger:

$ oc set triggers dc/backend-cron --from-image=amp-backend:2.11 --
containers=backend-cron,backend-redis-svc

This command triggers a redeployment of backend-cron. Wait until it is redeployed, its
corresponding new pods are ready, and the previous pods are terminated.

2.2.6.4. Patch the zync image

1. Patch the amp-zync image stream:

$ oc patch imagestream/amp-zync --type=json -p '[{"op": "add", "path": "/spec/tags/-", "value":
{"annotations": {"openshift.io/display-name": "AMP Zync 2.11"}, "from": { "kind":
"DockerImage", "name": "registry.redhat.io/3scale-amp2/zync-rhel8:3scale2.11"}, "name":
"2.11", "referencePolicy": {"type": "Source"}}}]'

2. Patch the zync ImageChange trigger:

a. Remove the old 2.10 trigger:

$ oc set triggers dc/zync --from-image=amp-zync:2.10 --containers=zync,zync-db-svc --
remove

b. Add the new version-specific trigger:

$ oc set triggers dc/zync --from-image=amp-zync:2.11 --containers=zync,zync-db-svc

This triggers a redeployment of zync. Wait until it is redeployed, its corresponding new pods
are ready, and the old ones terminated.

3. Patch the zync-que ImageChange trigger:

a. Remove the old 2.10 trigger:

$ oc set triggers dc/zync-que --from-image=amp-zync:2.10 --containers=que --remove

b. Add the new version-specific trigger:

$ oc set triggers dc/zync-que --from-image=amp-zync:2.11 --containers=que

This triggers a redeployment of zync-que. Wait until it is redeployed, its corresponding new
pods are ready, and the old ones terminated.

2.2.6.5. Patch the system-memcached image

1. Patch the system-memcached image stream:

$ oc patch imagestream/system-memcached --type=json -p '[{"op": "add", "path":
"/spec/tags/-", "value": {"annotations": {"openshift.io/display-name": "System 2.11

Red Hat 3scale API Management 2.11 Migrating 3scale

16

Memcached"}, "from": { "kind": "DockerImage", "name": "registry.redhat.io/3scale-
amp2/memcached-rhel7:3scale2.11"}, "name": "2.11", "referencePolicy": {"type": "Source"}}}]'

2. Patch the system-memcache ImageChange trigger:

a. Remove the old 2.10 trigger:

$ oc set triggers dc/system-memcache --from-image=system-memcached:2.10 --
containers=memcache --remove

b. Add the new version-specific trigger:

$ oc set triggers dc/system-memcache --from-image=system-memcached:2.11 --
containers=memcache

This triggers a redeployment of the system-memcache DeploymentConfig. Wait until it is
redeployed, its corresponding new pods are ready, and the old ones terminated.

2.2.6.6. Patch the zync-database-postgresql image

1. Patch the zync-database-postgresql image stream:

$ oc patch imagestream/zync-database-postgresql --type=json -p '[{"op": "add", "path":
"/spec/tags/-", "value": {"annotations": {"openshift.io/display-name": "Zync 2.11 PostgreSQL"},
"from": { "kind": "DockerImage", "name": "registry.redhat.io/rhscl/postgresql-10-rhel7"},
"name": "2.11", "referencePolicy": {"type": "Source"}}}]'

This patch command updates the zync-database-postgresql image stream to contain the
2.11 tag. You can verify that the 2.11 tag has been created with these steps:

a. Run this command:

$ oc get is zync-database-postgresql

b. Check that the Tags column shows the 2.11 tag.

2. Patch the zync-database ImageChange trigger:

a. Remove the old 2.10 trigger:

$ oc set triggers dc/zync-database --from-image=zync-database-postgresql:2.10 --
containers=postgresql --remove

b. Add the new version-specific trigger:

$ oc set triggers dc/zync-database --from-image=zync-database-postgresql:2.11 --
containers=postgresql

In case there are new updates on the image, this patch might also trigger a redeployment of
the zync-database DeploymentConfig. If this happens, wait until the new pods are
redeployed and ready, and the old pods are terminated.

2.2.6.7. Additional image changes

CHAPTER 2. UPGRADING 3SCALE VERSION 2.10 TO VERSION 2.11 USING TEMPLATES

17

If one or more of the following DeploymentConfigs are available in your 3scale 2.10 installation, click the
links that apply to obtain more information on how to proceed:

backend-redis DeploymentConfig

system-redis DeploymentConfig

system-mysql DeploymentConfig

system-postgresql DeploymentConfig

backend-redis DeploymentConfig

If the backend-redis DeploymentConfig exists in your current 3scale installation, patch the redis image
for backend-redis:

1. Patch the backend-redis image stream:

$ oc patch imagestream/backend-redis --type=json -p '[{"op": "add", "path": "/spec/tags/-",
"value": {"annotations": {"openshift.io/display-name": "Backend 2.11 Redis"}, "from": { "kind":
"DockerImage", "name": "registry.redhat.io/rhscl/redis-5-rhel7:5"}, "name": "2.11",
"referencePolicy": {"type": "Source"}}}]'

This patch updates the backend-redis image stream to contain the 2.11 tag. With the command
below, you can confirm that the tag has been created if the Tags column shows 2.11:

$ oc get is backend-redis

2. Patch the backend-redis ImageChange trigger:

a. Remove the old 2.10 trigger:

$ oc set triggers dc/backend-redis --from-image=backend-redis:2.10 --
containers=backend-redis --remove

b. For 3scale 2.11 redis image is upgraded from Redis 3 to 5, which contains a different binary
path to Redis. The backend-redis deployment container command must be updated to use
the new path. Note: Applying this change will temporarily leave the backend-redis
deployment in an error state until you add the new version-specific trigger in the next
substep:

$ oc patch dc backend-redis --patch '{"spec":{"template":{"spec":{"containers":
[{"name":"backend-redis","command":["/opt/rh/rh-redis5/root/usr/bin/redis-server"]}]}}}}'

c. Add the new version-specific trigger:

$ oc set triggers dc/backend-redis --from-image=backend-redis:2.11 --
containers=backend-redis

In case there are new updates on the image, this patch might also trigger a redeployment of
the backend-redis DeploymentConfig. If this happens, wait until the new pods are
redeployed and ready, and the old pods are terminated.

system-redis DeploymentConfig

Red Hat 3scale API Management 2.11 Migrating 3scale

18

If the system-redis DeploymentConfig exists in your current 3scale installation, patch the redis image
for system-redis.

1. Patch the system-redis image stream:

$ oc patch imagestream/system-redis --type=json -p '[{"op": "add", "path": "/spec/tags/-",
"value": {"annotations": {"openshift.io/display-name": "System 2.11 Redis"}, "from": { "kind":
"DockerImage", "name": "registry.redhat.io/rhscl/redis-5-rhel7:5"}, "name": "2.11",
"referencePolicy": {"type": "Source"}}}]'

This patch updates the system-redis image stream to contain the 2.11 tag. With the command
below, you can confirm that the tag has been created if the Tags column shows 2.11:

$ oc get is system-redis

2. Patch the system-redis ImageChange trigger:

a. Remove the old 2.10 trigger:

$ oc set triggers dc/system-redis --from-image=system-redis:2.10 --containers=system-
redis --remove

b. For 3scale 2.11 redis image is upgraded from Redis 3 to 5, which contains a different binary
path to Redis. The system-redis deployment container command must be updated to use
the new path. Note: Applying this change will temporarily leave the system-redis
deployment in an error state until you add the new version-specific trigger in the next
substep:

$ oc patch dc system-redis --patch '{"spec":{"template":{"spec":{"containers":
[{"name":"system-redis","command":["/opt/rh/rh-redis5/root/usr/bin/redis-server"]}]}}}}'

c. Add the new version-specific trigger:

$ oc set triggers dc/system-redis --from-image=system-redis:2.11 --containers=system-
redis

In case there are new updates on the image, this patch might also trigger a redeployment of
the system-redis DeploymentConfig. If this happens, wait until the new pods are
redeployed and ready, and the old pods are terminated.

system-mysql DeploymentConfig

If the system-mysql DeploymentConfig exists in your current 3scale installation, patch the MySQL
image for system-mysql.

1. Patch the system-mysql image stream:

$ oc patch imagestream/system-mysql --type=json -p '[{"op": "add", "path": "/spec/tags/-",
"value": {"annotations": {"openshift.io/display-name": "System 2.11 MySQL"}, "from": { "kind":
"DockerImage", "name": "registry.redhat.io/rhscl/mysql-57-rhel7:5.7"}, "name": "2.11",
"referencePolicy": {"type": "Source"}}}]'

This patch updates the system-mysql image stream to contain the 2.11 tag. With the command
below, you can confirm that the tag has been created if the Tags column shows 2.11:

CHAPTER 2. UPGRADING 3SCALE VERSION 2.10 TO VERSION 2.11 USING TEMPLATES

19

$ oc get is system-mysql

2. Patch the system-mysql ImageChange trigger:

a. Remove the old 2.10 trigger:

$ oc set triggers dc/system-mysql --from-image=system-mysql:2.10 --
containers=system-mysql --remove

b. Add the new version-specific trigger:

$ oc set triggers dc/system-mysql --from-image=system-mysql:2.11 --
containers=system-mysql

In case there are new updates on the image, this patch might also trigger a redeployment of
the system-mysql DeploymentConfig. If this happens, wait until the new pods are
redeployed and ready, and the old pods are terminated.

system-postgresql DeploymentConfig

If the system-postgresql DeploymentConfig exists in your current 3scale installation, patch the
PostgreSQL image for system-postgresql.

1. Patch the system-postgresql image stream:

$ oc patch imagestream/system-postgresql --type=json -p '[{"op": "add", "path": "/spec/tags/-
", "value": {"annotations": {"openshift.io/display-name": "System 2.11 PostgreSQL"}, "from": {
"kind": "DockerImage", "name": "registry.redhat.io/rhscl/postgresql-10-rhel7"}, "name": "2.11",
"referencePolicy": {"type": "Source"}}}]'

This patch updates the system-postgresql image stream to contain the 2.11 tag. With the
command below, you can confirm that the tag has been created if the Tags column shows 2.11:

$ oc get is system-postgresql

2. Patch the system-postgresql ImageChange trigger:

a. Remove the old 2.10 trigger:

$ oc set triggers dc/system-postgresql --from-image=system-postgresql:2.10 --
containers=system-postgresql --remove

b. Add the new version-specific trigger:

$ oc set triggers dc/system-postgresql --from-image=system-postgresql:2.11 --
containers=system-postgresql

In case there are new updates on the image, this patch might also trigger a redeployment of
the system-postgresql DeploymentConfig. If this happens, wait until the new pods are
redeployed and ready, and the old pods are terminated.

2.2.6.8. Confirm image URLs

Confirm that all the image URLs of the DeploymentConfigs contain the new image registry URLs with a

Red Hat 3scale API Management 2.11 Migrating 3scale

20

Confirm that all the image URLs of the DeploymentConfigs contain the new image registry URLs with a
hash added at the end of each URL address:

$ THREESCALE_DC_NAMES="apicast-production apicast-staging backend-cron backend-listener
backend-redis backend-worker system-app system-memcache system-mysql system-redis system-
sidekiq system-sphinx zync zync-database zync-que"
for component in ${THREESCALE_DC_NAMES}; do echo -n "${component} image: " && oc get dc
$component -o json | jq .spec.template.spec.containers[0].image ; done

Next step

None. After you have performed all the listed steps, 3scale upgrade from 2.10 to 2.11 in a template-based
deployment is now complete.

2.3. UPGRADING 3SCALE WITH AN ORACLE DATABASE IN A
TEMPLATE-BASED INSTALLATION

This section explains how to update Red Hat 3scale API Management when you are using a 3scale
system image with an Oracle Database, in a template-based installation with OpenShift 3.11.

Prerequisites

A 3scale installation with the Oracle Database. See Setting up your 3scale system image with an Oracle
Database.

To upgrade your 3scale system image with an Oracle Database in a template-based installation,
perform the procedure below:

Upgrading 3scale with Oracle 19c

2.3.1. Upgrading 3scale with Oracle 19c

This procedure guides you through an Oracle Database 19c update for 3scale 2.11 from an existing 3scale
2.10 installation.

IMPORTANT: Loss of connection to the database can potentially corrupt 3scale. Make a backup before
proceeding to perform the upgrade. For more information see the Oracle Database documentation:
Oracle Database Backup and Recovery User’s Guide .

Prerequisites

A 3scale 2.10 installation.

An Oracle Database 19c installation.

For more information about configuring 3scale with Oracle, see Preparing the Oracle
Database.

Procedure

1. Download 3scale OpenShift templates from the GitHub repository and extract the archive:

2. Place your Oracle Database Instant Client Package files into the 3scale-amp-openshift-

tar -xzf 3scale-amp-openshift-templates-3scale-2.11.1-GA.tar.gz

CHAPTER 2. UPGRADING 3SCALE VERSION 2.10 TO VERSION 2.11 USING TEMPLATES

21

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.11/html-single/installing_3scale/index#setting-up-threescale-with-oracle-database
https://docs.oracle.com/database/121/BRADV/title.htm
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.11/html-single/installing_3scale/index#preparing-the-oracle-database
https://github.com/3scale/3scale-amp-openshift-templates/archive/refs/tags/3scale-2.11.1-GA.tar.gz

2. Place your Oracle Database Instant Client Package files into the 3scale-amp-openshift-
templates-3scale-2.11.1-GA/amp/system-oracle/oracle-client-files directory.

3. Run the oc process command with the -f option and specify the build.yml OpenShift template:

$ oc process -f build.yml | oc apply -f -

4. Run the oc new-app command with the -f option to indicate the amp.yml OpenShift template,
and the -p option to specify the WILDCARD_DOMAIN parameter with the domain of your
OpenShift cluster:

$ oc new-app -f amp.yml -p WILDCARD_DOMAIN=mydomain.com

NOTE

The following steps are optional. Use them if you remove
ORACLE_SYSTEM_PASSWORD after the installation or a system upgrade.

5. Enter the following oc patch commands, replacing SYSTEM_PASSWORD with the Oracle
Database system password you set up in Preparing the Oracle Database:

$ oc patch dc/system-app -p '[{"op": "add", "path":
"/spec/strategy/rollingParams/pre/execNewPod/env/-", "value": {"name":
"ORACLE_SYSTEM_PASSWORD", "value": "SYSTEM_PASSWORD"}}]' --type=json

$ oc patch dc/system-app -p '{"spec": {"strategy": {"rollingParams": {"post":{"execNewPod":
{"env": [{"name": "ORACLE_SYSTEM_PASSWORD", "value":
"SYSTEM_PASSWORD"}]}}}}}}'

6. Enter the following command, replacing DATABASE_URL to point to your Oracle Database,
specified in Preparing the Oracle Database:

$ oc patch secret/system-database -p '{"stringData": {"URL": "DATABASE_URL"}}'

7. Enter the oc start-build command to build the new system image:

$ oc start-build 3scale-amp-system-oracle --from-dir=.

8. Wait until the build completes. To see the state of the build, run the following command:

$ oc get build <build-name> -o jsonpath="{.status.phase}"

a. Wait until the build is in a Complete state.

9. Once you have set up your 3scale system image with your Oracle Database, remove
ORACLE_SYSTEM_PASSWORD from the system-app DeploymentConfig. It is not necessary
again until you upgrade to a new version of 3scale.

$ oc set env dc/system-app ORACLE_SYSTEM_PASSWORD-

Additional resources

For more information about 3scale and Oracle Database support, see Red Hat 3scale API Management

Red Hat 3scale API Management 2.11 Migrating 3scale

22

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.11/html-single/installing_3scale/index#preparing-the-oracle-database
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.11/html-single/installing_3scale/index#preparing-the-oracle-database

For more information about 3scale and Oracle Database support, see Red Hat 3scale API Management
Supported Configurations.

CHAPTER 2. UPGRADING 3SCALE VERSION 2.10 TO VERSION 2.11 USING TEMPLATES

23

https://access.redhat.com/articles/2798521

CHAPTER 3. UPGRADING 3SCALE VERSION 2.11.0 TO
VERSION 2.11.1 USING TEMPLATES

You can upgrade Red Hat 3scale API Management from version 2.11.0 to version 2.11.1 using a template-
based deployment on OpenShift 3.11.

IMPORTANT

To understand the required conditions and procedures, be sure to read the entire
upgrade guide before applying the listed steps. The upgrade process disrupts the
provision of the service until the procedure finishes. Due to this disruption, be sure to
have a maintenance window.

3.1. PREREQUISITES TO PERFORM THE UPGRADE

This section describes the required configurations, tasks, and tools to upgrade 3scale from 2.11.0 to 2.11.1
in a template-based installation.

3.1.1. Configurations

3scale supports upgrade paths from 2.11.0 to 2.11.1 with templates on OpenShift 3.11.

3.1.2. Preliminary tasks

Ensure your OpenShift CLI tool is configured in the same project where 3scale is deployed.

Perform a backup of the database you are using with 3scale. The procedure of the backup is
specific to each database type and setup.

3.1.3. Tools

You need these tools to perform the upgrade:

3scale 2.11.0 deployed with templates in an OpenShift 3.11 project.

Bash shell: To run the commands detailed in the upgrade procedure.

base64: To encode and decode secret information.

jq: For JSON transformation purposes.

3.2. UPGRADING FROM 3SCALE 2.11.0 TO 2.11.1 IN A TEMPLATE-BASED
INSTALLATION

Follow the procedure described in this section to upgrade 3scale 2.11.0 to 2.11.1 in a template-based
installation.

To start with the upgrade, go to the project where 3scale is deployed.

$ oc project <3scale-project>

Then, follow these steps in this order:

Red Hat 3scale API Management 2.11 Migrating 3scale

24

1. Creating a backup of the 3scale project

2. Increasing backend-cron DeploymentConfig resource requirements

3. Upgrading 3scale images

3.2.1. Creating a backup of the 3scale project

Previous step

None.

Current step

This step lists the actions necessary to create a backup of the 3scale project.

Procedure

1. Depending on the database used with 3scale, set ${SYSTEM_DB} with one of the following
values:

If the database is MySQL, SYSTEM_DB=system-mysql.

If the database is PostgreSQL, SYSTEM_DB=system-postgresql.

2. Create a backup file with the existing DeploymentConfigs:

$ THREESCALE_DC_NAMES="apicast-production apicast-staging backend-cron backend-
listener backend-redis backend-worker system-app system-memcache ${SYSTEM_DB}
system-redis system-sidekiq system-sphinx zync zync-database zync-que"

for component in ${THREESCALE_DC_NAMES}; do oc get --export -o yaml dc
${component} > ${component}_dc.yml ; done

3. Backup all existing OpenShift resources in the project that are exported through the export all
command:

$ oc get -o yaml --export all > threescale-project-elements.yaml

4. Create a backup file with the additional elements that are not exported with the export all
command:

$ for object in rolebindings serviceaccounts secrets imagestreamtags cm
rolebindingrestrictions limitranges resourcequotas pvc templates cronjobs statefulsets hpa
deployments replicasets poddisruptionbudget endpoints
do
 oc get -o yaml --export $object > $object.yaml
done

5. Verify that all of the generated files are not empty, and that all of them have the expected
content.

Next step

Increasing backend-cron DeploymentConfig resource requirements

CHAPTER 3. UPGRADING 3SCALE VERSION 2.11.0 TO VERSION 2.11.1 USING TEMPLATES

25

3.2.2. Increasing backend-cron DeploymentConfig resource requirements

Previous step

Creating a backup of the 3scale project

Current step

In this release backend-cron DeploymentConfig has potentially more resources usage. Use this
procedure to increase the resource requirements from the currently set values.

The required backend-cron resource in 3scale 2.11.1 are:

{
 "limits": {
 "cpu": "500m",
 "memory": "500Mi"
 },
 "requests": {
 "cpu": "100m",
 "memory": "100Mi"
 }
}

If the current backend-cron deployment has no memory limits or the resource requirements are higher,
you do not need to complete the following procedure.

Procedure

1. Check the current resource requirements set for backend-cron with the following command:

If the output is empty or null it means no resource requirements are set.

2. To increase the current backend-cron resource requirements, run the following command:

This command triggers a redeployment of backend-cron. Wait until it is redeployed, its
corresponding new pods are ready, and the previous pods are terminated.

Next step

Upgrading 3scale images

3.2.3. Upgrading 3scale images

Previous step

Increasing backend-cron DeploymentConfig resource requirements

Current step

$ oc get dc backend-cron -o json | jq .spec.template.spec.containers[0].resources

$ oc patch dc backend-cron --patch '{"spec":{"template":{"spec":{"containers":
[{"name":"backend-cron","resources":{"limits":{"memory":"500Mi", "cpu": "500m"}, "requests":
{"memory":"100Mi", "cpu": "100m"}}}]}}}}'

Red Hat 3scale API Management 2.11 Migrating 3scale

26

This step updates the 3scale images required for the upgrade process.

3.2.3.1. Patch the system image

1. To continue the procedure, consider the database used with your 3scale deployment:

If the database is Oracle DB, follow the steps listed in Patching the system image: 3scale
with Oracle Database

If the database is different from Oracle DB, follow the steps listed in Patching the system
image: 3scale with other databases

3.2.3.2. Patching the system image: 3scale with Oracle Database

1. To start patching the system image of 3scale with an Oracle Database, perform steps 1, 2, 4, and
8 in Building the system image .

2. Import the latest amp-system Oracle Database image:

3.2.3.3. Patching the system image: 3scale with other databases

Import the latest system-app image:

3.2.3.4. Patch the apicast image

Import the latest amp-apicast image:

oc import-image amp-apicast:2.11

3.2.3.5. Patch the backend image

Import the latest amp-backend image:

oc import-image amp-backend:2.11

3.2.3.6. Patch the zync image

Import the latest amp-zync image:

oc import-image amp-zync:2.11

3.2.3.7. Patch the system-memcached image

Import the latest system-memcached image:

oc import-image system-memcached:2.11

oc import-image amp-system:2.11-oracle

oc import-image amp-system:2.11

CHAPTER 3. UPGRADING 3SCALE VERSION 2.11.0 TO VERSION 2.11.1 USING TEMPLATES

27

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.11/html-single/installing_3scale/index#upgrading-threescale-with-oracle19c

Next step

None. After you have performed all the listed steps, 3scale upgrade from 2.11.0 to 2.11.1 in a template-
based deployment is now complete.

Red Hat 3scale API Management 2.11 Migrating 3scale

28

CHAPTER 4. 3SCALE OPERATOR-BASED UPGRADE GUIDE:
FROM 2.10 TO 2.11

Upgrade Red Hat 3scale API Management from version 2.10 to 2.11, in an operator-based installation to
manage 3scale on OpenShift 4.x.

To automatically obtain a micro-release of 3scale, make sure automatic updates is on. To check this, see
Setting up the 3scale operator for micro releases .

IMPORTANT

In order to understand the required conditions and procedure, read the entire upgrade
guide before applying the listed steps. The upgrade process disrupts the provision of the
service until the procedure finishes. Due to this disruption, make sure to have a
maintenance window.

4.1. PREREQUISITES TO PERFORM THE UPGRADE

This section describes the required configurations to upgrade 3scale from 2.10 to 2.11 in an operator-
based installation.

An OpenShift Container Platform (OCP) 4.6, 4.7, or 4.8 cluster with administrator access.

You must perform the upgrade of 3scale from 2.10 to 2.11 before upgrading to OCP 4.9.

Note: If you upgrade OCP to 4.9 or greater before upgrading 3scale you will get a non-
working installation.

3scale 2.10 previously deployed via the 3scale operator.

Make sure the latest CSV of the threescale-2.10 channel is in use. To check it:

If the approval setting for the subscription is automatic you should already be in the latest
CSV version of the channel.

If the approval setting for the subscription is manual make sure you approve all pending
InstallPlans and have the latest CSV version.

Keep in mind if there is a pending install plan, there might be more pending install plans,
which will only be shown after the existing pending plan has been installed.

4.2. UPGRADING FROM 2.10 TO 2.11 IN AN OPERATOR-BASED
INSTALLATION

To upgrade 3scale from version 2.10 to 2.11 in an operator-based deployment:

1. Log in to the OCP console using the account with administrator privileges.

2. Select the project where the 3scale-operator has been deployed.

3. Click Operators > Installed Operators.

4. Select Red Hat Integration - 3scale > Subscription > Channel.

5. Edit the channel of the subscription by selecting threescale-2.11 and save the changes.

CHAPTER 4. 3SCALE OPERATOR-BASED UPGRADE GUIDE: FROM 2.10 TO 2.11

29

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.11/html-single/installing_3scale/index#setting-up-for-micro-releases

This will start the upgrade process.

6. Query the pods' status on the project until you see all the new versions are running and ready
without errors:

$ oc get pods

NOTE

The pods might have temporary errors during the upgrade process.

The time required to upgrade pods can vary from 5-10 minutes.

7. After new pod versions are running, confirm a successful upgrade by logging in to the 3scale
Admin Portal and checking that it works as expected.

8. Check the status of the APIManager objects and get the YAML content by running the following
command. <myapimanager> represents the name of your APIManager:

$ oc get apimanager <myapimanager> -o yaml

The new annotations with the values should be as follows:

apps.3scale.net/apimanager-threescale-version: "2.11"
apps.3scale.net/threescale-operator-version: "0.8.0"

After you have performed all steps, 3scale upgrade from 2.10 to 2.11 in an operator-based deployment is
complete.

Red Hat 3scale API Management 2.11 Migrating 3scale

30

CHAPTER 5. APICAST OPERATOR-BASED UPGRADE GUIDE:
FROM 2.10 TO 2.11

Upgrading APIcast from 2.10 to 2.11 in an operator-based installation helps you use the APIcast API
gateway to integrate your internal and external API services with 3scale.

IMPORTANT

In order to understand the required conditions and procedure, read the entire upgrade
guide before applying the listed steps. The upgrade process disrupts the provision of the
service until the procedure finishes. Due to this disruption, make sure to have a
maintenance window.

5.1. PREREQUISITES TO PERFORM THE UPGRADE

To perform the upgrade of APIcast from 2.10 to 2.11 in an operator-based installation, the following
required prerequisites must already be in place:

An OpenShift Container Platform (OCP) 4.6, 4.7, or 4.8 cluster with administrator access.

You must perform the upgrade of APIcast from 2.10 to 2.11 before upgrading to OCP 4.9

Note: If you upgrade OCP to 4.9 or greater before upgrading APIcast you will get a non-
working installation.

APIcast 2.10 previously deployed via the APIcast operator.

Make sure the latest CSV of the threescale-2.10 channel is in use. To check it:

If the approval setting for the subscription is automatic you should already be in the latest
CSV version of the channel.

If the approval setting for the subscription is manual make sure you approve all pending
InstallPlans and have the latest CSV version.

Keep in mind if there is a pending install plan, there might be more pending install plans,
which will only be shown after the existing pending plan has been installed.

5.2. UPGRADING APICAST FROM 2.10 TO 2.11 IN AN OPERATOR-BASED
INSTALLATION

Upgrade APIcast from 2.10 to 2.11 in an operator-based installation so that APIcast can function as the
API gateway in your 3scale installation.

Procedure

1. Log in to the OCP console using the account with administrator privileges.

2. Select the project where the APIcast operator has been deployed.

3. Click Operators > Installed Operators.

4. In Subscription > Channel, select Red Hat Integration - 3scale APIcast gateway .

5. Edit the channel of the subscription by selecting the threescale-2.11 channel and save the

CHAPTER 5. APICAST OPERATOR-BASED UPGRADE GUIDE: FROM 2.10 TO 2.11

31

5. Edit the channel of the subscription by selecting the threescale-2.11 channel and save the
changes.
This will start the upgrade process.

6. Query the pods status on the project until you see all the new versions are running and ready
without errors:

$ oc get pods

NOTE

The pods might have temporary errors during the upgrade process.

The time required to upgrade pods can vary from 5-10 minutes.

7. Check the status of the APIcast objects and get the YAML content by running the following
command:

$ oc get apicast <myapicast> -o yaml

The new annotations with the values should be as follows:

apicast.apps.3scale.net/operator-version: “0.5.0”

After you have performed all the listed steps, APIcast upgrade from 2.10 to 2.11 in an operator-based
deployment is now complete.

Red Hat 3scale API Management 2.11 Migrating 3scale

32

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. 3SCALE MIGRATION GUIDE: FROM TEMPLATE TO OPERATOR-BASED DEPLOYMENTS
	1.1. PREREQUISITES TO PERFORM THE MIGRATION
	1.2. MIGRATING 3SCALE TEMPLATE TO OPERATOR-BASED DEPLOYMENTS

	CHAPTER 2. UPGRADING 3SCALE VERSION 2.10 TO VERSION 2.11 USING TEMPLATES
	2.1. PREREQUISITES TO PERFORM THE UPGRADE
	2.1.1. Configurations
	2.1.2. Preliminary tasks
	2.1.3. Tools

	2.2. UPGRADING FROM 2.10 TO 2.11 IN A TEMPLATE-BASED INSTALLATION
	2.2.1. Creating a backup of the 3scale project
	2.2.2. Updating 3scale version number
	2.2.3. Updating BACKEND_ROUTE environment variable
	2.2.4. Moving ‘zync’ DeploymentConfig monitoring annotations from DeploymentConfig annotations to PodTemplate annotations
	2.2.5. Increasing backend-cron DeploymentConfig resource requirements
	2.2.6. Upgrading 3scale images
	2.2.6.1. Patch the system image
	2.2.6.2. Patch the apicast image
	2.2.6.3. Patch the backend image
	2.2.6.4. Patch the zync image
	2.2.6.5. Patch the system-memcached image
	2.2.6.6. Patch the zync-database-postgresql image
	2.2.6.7. Additional image changes
	2.2.6.8. Confirm image URLs

	2.3. UPGRADING 3SCALE WITH AN ORACLE DATABASE IN A TEMPLATE-BASED INSTALLATION
	2.3.1. Upgrading 3scale with Oracle 19c

	CHAPTER 3. UPGRADING 3SCALE VERSION 2.11.0 TO VERSION 2.11.1 USING TEMPLATES
	3.1. PREREQUISITES TO PERFORM THE UPGRADE
	3.1.1. Configurations
	3.1.2. Preliminary tasks
	3.1.3. Tools

	3.2. UPGRADING FROM 3SCALE 2.11.0 TO 2.11.1 IN A TEMPLATE-BASED INSTALLATION
	3.2.1. Creating a backup of the 3scale project
	3.2.2. Increasing backend-cron DeploymentConfig resource requirements
	3.2.3. Upgrading 3scale images
	3.2.3.1. Patch the system image
	3.2.3.2. Patching the system image: 3scale with Oracle Database
	3.2.3.3. Patching the system image: 3scale with other databases
	3.2.3.4. Patch the apicast image
	3.2.3.5. Patch the backend image
	3.2.3.6. Patch the zync image
	3.2.3.7. Patch the system-memcached image

	CHAPTER 4. 3SCALE OPERATOR-BASED UPGRADE GUIDE: FROM 2.10 TO 2.11
	4.1. PREREQUISITES TO PERFORM THE UPGRADE
	4.2. UPGRADING FROM 2.10 TO 2.11 IN AN OPERATOR-BASED INSTALLATION

	CHAPTER 5. APICAST OPERATOR-BASED UPGRADE GUIDE: FROM 2.10 TO 2.11
	5.1. PREREQUISITES TO PERFORM THE UPGRADE
	5.2. UPGRADING APICAST FROM 2.10 TO 2.11 IN AN OPERATOR-BASED INSTALLATION

