
OpenShift Container Platform 4.9

Networking

Configuring and managing cluster networking

Last Updated: 2023-04-20

OpenShift Container Platform 4.9 Networking

Configuring and managing cluster networking

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring and managing your OpenShift Container
Platform cluster network, including DNS, ingress, and the Pod network.

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. UNDERSTANDING NETWORKING
1.1. OPENSHIFT CONTAINER PLATFORM DNS
1.2. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR

1.2.1. Comparing routes and Ingress
1.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM NETWORKING

CHAPTER 2. ACCESSING HOSTS
2.1. ACCESSING HOSTS ON AMAZON WEB SERVICES IN AN INSTALLER-PROVISIONED INFRASTRUCTURE
CLUSTER

CHAPTER 3. NETWORKING OPERATORS OVERVIEW
3.1. CLUSTER NETWORK OPERATOR
3.2. DNS OPERATOR
3.3. INGRESS OPERATOR

CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM
4.1. CLUSTER NETWORK OPERATOR
4.2. VIEWING THE CLUSTER NETWORK CONFIGURATION
4.3. VIEWING CLUSTER NETWORK OPERATOR STATUS
4.4. VIEWING CLUSTER NETWORK OPERATOR LOGS
4.5. CLUSTER NETWORK OPERATOR CONFIGURATION

4.5.1. Cluster Network Operator configuration object
defaultNetwork object configuration

Configuration for the OpenShift SDN CNI cluster network provider
Configuration for the OVN-Kubernetes CNI cluster network provider

kubeProxyConfig object configuration
4.5.2. Cluster Network Operator example configuration

4.6. ADDITIONAL RESOURCES

CHAPTER 5. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
5.1. DNS OPERATOR
5.2. CHANGING THE DNS OPERATOR MANAGEMENTSTATE
5.3. CONTROLLING DNS POD PLACEMENT
5.4. VIEW THE DEFAULT DNS
5.5. USING DNS FORWARDING
5.6. DNS OPERATOR STATUS
5.7. DNS OPERATOR LOGS

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
6.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR
6.2. THE INGRESS CONFIGURATION ASSET
6.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS

6.3.1. Ingress Controller TLS security profiles
6.3.1.1. Understanding TLS security profiles
6.3.1.2. Configuring the TLS security profile for the Ingress Controller
6.3.1.3. Configuring mutual TLS authentication

6.3.2. Ingress controller endpoint publishing strategy
6.4. VIEW THE DEFAULT INGRESS CONTROLLER
6.5. VIEW INGRESS OPERATOR STATUS
6.6. VIEW INGRESS CONTROLLER LOGS
6.7. VIEW INGRESS CONTROLLER STATUS
6.8. CONFIGURING THE INGRESS CONTROLLER

6.8.1. Setting a custom default certificate

14
14
14
15
15

18

18

19
19
19
19

20
20
20
21
21
21
22
23
23
24
25
26
27

28
28
28
29
30
30
32
32

34
34
34
34
43
43
44
46
47
49
49
49
49
50
50

Table of Contents

1

. .

. .

. .

. .

. .

6.8.2. Removing a custom default certificate
6.8.3. Scaling an Ingress Controller
6.8.4. Configuring Ingress access logging
6.8.5. Setting Ingress Controller thread count
6.8.6. Ingress Controller sharding

6.8.6.1. Configuring Ingress Controller sharding by using route labels
6.8.6.2. Configuring Ingress Controller sharding by using namespace labels

6.8.7. Configuring an Ingress Controller to use an internal load balancer
6.8.8. Configuring global access for an Ingress Controller on GCP
6.8.9. Configuring the default Ingress Controller for your cluster to be internal
6.8.10. Configuring the route admission policy
6.8.11. Using wildcard routes
6.8.12. Using X-Forwarded headers

Example use cases
6.8.13. Enabling HTTP/2 Ingress connectivity
6.8.14. Configuring the PROXY protocol for an Ingress Controller
6.8.15. Specifying an alternative cluster domain using the appsDomain option
6.8.16. Converting HTTP header case
6.8.17. Customizing HAProxy error code response pages

6.9. ADDITIONAL RESOURCES

CHAPTER 7. VERIFYING CONNECTIVITY TO AN ENDPOINT
7.1. CONNECTION HEALTH CHECKS PERFORMED
7.2. IMPLEMENTATION OF CONNECTION HEALTH CHECKS
7.3. PODNETWORKCONNECTIVITYCHECK OBJECT FIELDS

Connection log fields
7.4. VERIFYING NETWORK CONNECTIVITY FOR AN ENDPOINT

CHAPTER 8. CONFIGURING THE NODE PORT SERVICE RANGE
8.1. PREREQUISITES
8.2. EXPANDING THE NODE PORT RANGE
8.3. ADDITIONAL RESOURCES

CHAPTER 9. CONFIGURING IP FAILOVER
9.1. IP FAILOVER ENVIRONMENT VARIABLES
9.2. CONFIGURING IP FAILOVER
9.3. ABOUT VIRTUAL IP ADDRESSES
9.4. CONFIGURING CHECK AND NOTIFY SCRIPTS
9.5. CONFIGURING VRRP PREEMPTION
9.6. ABOUT VRRP ID OFFSET
9.7. CONFIGURING IP FAILOVER FOR MORE THAN 254 ADDRESSES
9.8. HIGH AVAILABILITY FOR INGRESSIP
9.9. REMOVING IP FAILOVER

CHAPTER 10. USING THE STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON A BARE METAL
CLUSTER

10.1. SUPPORT FOR STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON OPENSHIFT CONTAINER
PLATFORM

10.1.1. Example configurations using SCTP protocol
10.2. ENABLING STREAM CONTROL TRANSMISSION PROTOCOL (SCTP)
10.3. VERIFYING STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) IS ENABLED

CHAPTER 11. USING PTP HARDWARE
11.1. ABOUT PTP HARDWARE

51
52
53
55
56
56
57
58
60
61

62
63
63
64
64
66
67
68
70
72

73
73
73
73
75
76

81
81
81

82

83
84
85
88
89
91

92
92
93
93

96

96
96
97
98

101
101

OpenShift Container Platform 4.9 Networking

2

. .

11.2. ABOUT PTP
11.2.1. Elements of a PTP domain
11.2.2. Advantages of PTP over NTP

11.3. INSTALLING THE PTP OPERATOR USING THE CLI
11.4. INSTALLING THE PTP OPERATOR USING THE WEB CONSOLE
11.5. AUTOMATED DISCOVERY OF PTP NETWORK DEVICES
11.6. CONFIGURING LINUXPTP SERVICES AS ORDINARY CLOCK
11.7. CONFIGURING LINUXPTP SERVICES AS BOUNDARY CLOCK
11.8. CONFIGURING FIFO PRIORITY SCHEDULING FOR PTP HARDWARE
11.9. TROUBLESHOOTING COMMON PTP OPERATOR ISSUES
11.10. PTP HARDWARE FAST EVENT NOTIFICATIONS FRAMEWORK

11.10.1. About PTP and clock synchronization error events
11.10.2. About the PTP fast event notifications framework
11.10.3. Installing the AMQ messaging bus
11.10.4. Configuring the PTP fast event notifications publisher
11.10.5. Subscribing DU applications to PTP events REST API reference

11.10.5.1. api/cloudNotifications/v1/subscriptions
11.10.5.1.1. HTTP method

11.10.5.1.1.1. Description
11.10.5.1.2. HTTP method

11.10.5.1.2.1. Description
11.10.5.2. api/cloudNotifications/v1/subscriptions/<subscription_id>

11.10.5.2.1. HTTP method
11.10.5.2.1.1. Description

11.10.5.3. api/cloudNotifications/v1/subscriptions/status/<subscription_id>
11.10.5.3.1. HTTP method

11.10.5.3.1.1. Description
11.10.5.4. api/cloudNotifications/v1/health/

11.10.5.4.1. HTTP method
11.10.5.4.1.1. Description

11.10.6. Monitoring PTP fast event metrics using the CLI
11.10.7. Monitoring PTP fast event metrics in the web console

CHAPTER 12. NETWORK POLICY
12.1. ABOUT NETWORK POLICY

12.1.1. About network policy
12.1.2. Optimizations for network policy
12.1.3. Next steps
12.1.4. Additional resources

12.2. LOGGING NETWORK POLICY EVENTS
12.2.1. Network policy audit logging
12.2.2. Network policy audit configuration
12.2.3. Configuring network policy auditing for a cluster
12.2.4. Enabling network policy audit logging for a namespace
12.2.5. Disabling network policy audit logging for a namespace
12.2.6. Additional resources

12.3. CREATING A NETWORK POLICY
12.3.1. Creating a network policy
12.3.2. Example NetworkPolicy object
12.3.3. Additional resources

12.4. VIEWING A NETWORK POLICY
12.4.1. Viewing network policies
12.4.2. Example NetworkPolicy object

101
101
102
102
104
104
105
108
112
113
116
116
116
117
118
119

120
120
120
121
121
121
121
121
121
122
122
122
122
122
122
123

125
125
125
127
128
128
128
128
129
130
134
135
136
136
136
138
138
138
138
139

Table of Contents

3

. .

12.5. EDITING A NETWORK POLICY
12.5.1. Editing a network policy
12.5.2. Example NetworkPolicy object
12.5.3. Additional resources

12.6. DELETING A NETWORK POLICY
12.6.1. Deleting a network policy

12.7. DEFINING A DEFAULT NETWORK POLICY FOR PROJECTS
12.7.1. Modifying the template for new projects
12.7.2. Adding network policies to the new project template

12.8. CONFIGURING MULTITENANT ISOLATION WITH NETWORK POLICY
12.8.1. Configuring multitenant isolation by using network policy
12.8.2. Next steps
12.8.3. Additional resources

CHAPTER 13. MULTIPLE NETWORKS
13.1. UNDERSTANDING MULTIPLE NETWORKS

13.1.1. Usage scenarios for an additional network
13.1.2. Additional networks in OpenShift Container Platform

13.2. CONFIGURING AN ADDITIONAL NETWORK
13.2.1. Approaches to managing an additional network
13.2.2. Configuration for an additional network attachment

13.2.2.1. Configuration of an additional network through the Cluster Network Operator
13.2.2.2. Configuration of an additional network from a YAML manifest

13.2.3. Configurations for additional network types
13.2.3.1. Configuration for a bridge additional network

13.2.3.1.1. bridge configuration example
13.2.3.2. Configuration for a host device additional network

13.2.3.2.1. host-device configuration example
13.2.3.3. Configuration for an IPVLAN additional network

13.2.3.3.1. ipvlan configuration example
13.2.3.4. Configuration for a MACVLAN additional network

13.2.3.4.1. macvlan configuration example
13.2.4. Configuration of IP address assignment for an additional network

13.2.4.1. Static IP address assignment configuration
13.2.4.2. Dynamic IP address (DHCP) assignment configuration
13.2.4.3. Dynamic IP address assignment configuration with Whereabouts

13.2.5. Creating an additional network attachment with the Cluster Network Operator
13.2.6. Creating an additional network attachment by applying a YAML manifest

13.3. ABOUT VIRTUAL ROUTING AND FORWARDING
13.3.1. About virtual routing and forwarding

13.3.1.1. Benefits of secondary networks for pods for telecommunications operators
13.4. CONFIGURING MULTI-NETWORK POLICY

13.4.1. Differences between multi-network policy and network policy
13.4.2. Enabling multi-network policy for the cluster
13.4.3. Working with multi-network policy

13.4.3.1. Prerequisites
13.4.3.2. Creating a multi-network policy
13.4.3.3. Editing a multi-network policy
13.4.3.4. Viewing multi-network policies
13.4.3.5. Deleting a multi-network policy

13.4.4. Additional resources
13.5. ATTACHING A POD TO AN ADDITIONAL NETWORK

13.5.1. Adding a pod to an additional network

140
140
141

142
142
142
143
143
144
145
146
148
148

149
149
149
149
150
150
150
151
151
152
152
153
153
154
154
155
155
156
156
157
158
159
159
161

162
162
162
162
162
163
163
163
163
165
166
167
168
168
168

OpenShift Container Platform 4.9 Networking

4

. .

13.5.1.1. Specifying pod-specific addressing and routing options
13.6. REMOVING A POD FROM AN ADDITIONAL NETWORK

13.6.1. Removing a pod from an additional network
13.7. EDITING AN ADDITIONAL NETWORK

13.7.1. Modifying an additional network attachment definition
13.8. REMOVING AN ADDITIONAL NETWORK

13.8.1. Removing an additional network attachment definition
13.9. ASSIGNING A SECONDARY NETWORK TO A VRF

13.9.1. Assigning a secondary network to a VRF
13.9.1.1. Creating an additional network attachment with the CNI VRF plugin

CHAPTER 14. HARDWARE NETWORKS
14.1. ABOUT SINGLE ROOT I/O VIRTUALIZATION (SR-IOV) HARDWARE NETWORKS

14.1.1. Components that manage SR-IOV network devices
14.1.1.1. Supported platforms
14.1.1.2. Supported devices
14.1.1.3. Automated discovery of SR-IOV network devices

14.1.1.3.1. Example SriovNetworkNodeState object
14.1.1.4. Example use of a virtual function in a pod
14.1.1.5. DPDK library for use with container applications
14.1.1.6. Huge pages resource injection for Downward API

14.1.2. Next steps
14.2. INSTALLING THE SR-IOV NETWORK OPERATOR

14.2.1. Installing SR-IOV Network Operator
14.2.1.1. CLI: Installing the SR-IOV Network Operator
14.2.1.2. Web console: Installing the SR-IOV Network Operator

14.2.2. Next steps
14.3. CONFIGURING THE SR-IOV NETWORK OPERATOR

14.3.1. Configuring the SR-IOV Network Operator
14.3.1.1. SR-IOV Network Operator config custom resource
14.3.1.2. About the Network Resources Injector
14.3.1.3. About the SR-IOV Network Operator admission controller webhook
14.3.1.4. About custom node selectors
14.3.1.5. Disabling or enabling the Network Resources Injector
14.3.1.6. Disabling or enabling the SR-IOV Network Operator admission controller webhook
14.3.1.7. Configuring a custom NodeSelector for the SR-IOV Network Config daemon
14.3.1.8. Configuring the SR-IOV Network Operator for single node installations

14.3.2. Next steps
14.4. CONFIGURING AN SR-IOV NETWORK DEVICE

14.4.1. SR-IOV network node configuration object
14.4.1.1. SR-IOV network node configuration examples
14.4.1.2. Virtual function (VF) partitioning for SR-IOV devices

14.4.2. Configuring SR-IOV network devices
14.4.3. Troubleshooting SR-IOV configuration
14.4.4. Assigning an SR-IOV network to a VRF

14.4.4.1. Creating an additional SR-IOV network attachment with the CNI VRF plugin
14.4.5. Next steps

14.5. CONFIGURING AN SR-IOV ETHERNET NETWORK ATTACHMENT
14.5.1. Ethernet device configuration object

14.5.1.1. Configuration of IP address assignment for an additional network
14.5.1.1.1. Static IP address assignment configuration
14.5.1.1.2. Dynamic IP address (DHCP) assignment configuration
14.5.1.1.3. Dynamic IP address assignment configuration with Whereabouts

170
173
173
174
174
175
175
175
176
176

179
179
179
180
180
181
181

182
184
184
185
185
185
185
187
188
188
188
188
189
190
190
190
191

192
192
193
193
193
195
196
197
198
199
199
201
201
201

203
203
204
205

Table of Contents

5

. .

14.5.2. Configuring SR-IOV additional network
14.5.3. Next steps
14.5.4. Additional resources

14.6. CONFIGURING AN SR-IOV INFINIBAND NETWORK ATTACHMENT
14.6.1. InfiniBand device configuration object

14.6.1.1. Configuration of IP address assignment for an additional network
14.6.1.1.1. Static IP address assignment configuration
14.6.1.1.2. Dynamic IP address (DHCP) assignment configuration
14.6.1.1.3. Dynamic IP address assignment configuration with Whereabouts

14.6.2. Configuring SR-IOV additional network
14.6.3. Next steps
14.6.4. Additional resources

14.7. ADDING A POD TO AN SR-IOV ADDITIONAL NETWORK
14.7.1. Runtime configuration for a network attachment

14.7.1.1. Runtime configuration for an Ethernet-based SR-IOV attachment
14.7.1.2. Runtime configuration for an InfiniBand-based SR-IOV attachment

14.7.2. Adding a pod to an additional network
14.7.3. Creating a non-uniform memory access (NUMA) aligned SR-IOV pod
14.7.4. Additional resources

14.8. USING HIGH PERFORMANCE MULTICAST
14.8.1. High performance multicast
14.8.2. Configuring an SR-IOV interface for multicast

14.9. USING DPDK AND RDMA
14.9.1. Using a virtual function in DPDK mode with an Intel NIC
14.9.2. Using a virtual function in DPDK mode with a Mellanox NIC
14.9.3. Using a virtual function in RDMA mode with a Mellanox NIC
14.9.4. Additional resources

14.10. UNINSTALLING THE SR-IOV NETWORK OPERATOR
14.10.1. Uninstalling the SR-IOV Network Operator

CHAPTER 15. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER
15.1. ABOUT THE OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

15.1.1. OpenShift SDN network isolation modes
15.1.2. Supported default CNI network provider feature matrix

15.2. CONFIGURING EGRESS IPS FOR A PROJECT
15.2.1. Egress IP address assignment for project egress traffic

15.2.1.1. Considerations when using automatically assigned egress IP addresses
15.2.1.2. Considerations when using manually assigned egress IP addresses

15.2.2. Configuring automatically assigned egress IP addresses for a namespace
15.2.3. Configuring manually assigned egress IP addresses for a namespace

15.3. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT
15.3.1. How an egress firewall works in a project

15.3.1.1. Limitations of an egress firewall
15.3.1.2. Matching order for egress firewall policy rules
15.3.1.3. How Domain Name Server (DNS) resolution works

15.3.2. EgressNetworkPolicy custom resource (CR) object
15.3.2.1. EgressNetworkPolicy rules
15.3.2.2. Example EgressNetworkPolicy CR objects

15.3.3. Creating an egress firewall policy object
15.4. EDITING AN EGRESS FIREWALL FOR A PROJECT

15.4.1. Viewing an EgressNetworkPolicy object
15.5. EDITING AN EGRESS FIREWALL FOR A PROJECT

15.5.1. Editing an EgressNetworkPolicy object

206
207
207
207
207
208
208
210
211
211
212
212
212
212
213
213
214
217
218
218
218
218

220
220
223
226
229
229
229

231
231
231
231

232
232
233
233
234
235
236
237
238
239
239
240
240
241
241
242
242
242
243

OpenShift Container Platform 4.9 Networking

6

. .

15.6. REMOVING AN EGRESS FIREWALL FROM A PROJECT
15.6.1. Removing an EgressNetworkPolicy object

15.7. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD
15.7.1. About an egress router pod

15.7.1.1. Egress router modes
15.7.1.2. Egress router pod implementation
15.7.1.3. Deployment considerations
15.7.1.4. Failover configuration

15.7.2. Additional resources
15.8. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE

15.8.1. Egress router pod specification for redirect mode
15.8.2. Egress destination configuration format
15.8.3. Deploying an egress router pod in redirect mode
15.8.4. Additional resources

15.9. DEPLOYING AN EGRESS ROUTER POD IN HTTP PROXY MODE
15.9.1. Egress router pod specification for HTTP mode
15.9.2. Egress destination configuration format
15.9.3. Deploying an egress router pod in HTTP proxy mode
15.9.4. Additional resources

15.10. DEPLOYING AN EGRESS ROUTER POD IN DNS PROXY MODE
15.10.1. Egress router pod specification for DNS mode
15.10.2. Egress destination configuration format
15.10.3. Deploying an egress router pod in DNS proxy mode
15.10.4. Additional resources

15.11. CONFIGURING AN EGRESS ROUTER POD DESTINATION LIST FROM A CONFIG MAP
15.11.1. Configuring an egress router destination mappings with a config map
15.11.2. Additional resources

15.12. ENABLING MULTICAST FOR A PROJECT
15.12.1. About multicast
15.12.2. Enabling multicast between pods

15.13. DISABLING MULTICAST FOR A PROJECT
15.13.1. Disabling multicast between pods

15.14. CONFIGURING NETWORK ISOLATION USING OPENSHIFT SDN
15.14.1. Prerequisites
15.14.2. Joining projects
15.14.3. Isolating a project
15.14.4. Disabling network isolation for a project

15.15. CONFIGURING KUBE-PROXY
15.15.1. About iptables rules synchronization
15.15.2. kube-proxy configuration parameters
15.15.3. Modifying the kube-proxy configuration

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER
16.1. ABOUT THE OVN-KUBERNETES DEFAULT CONTAINER NETWORK INTERFACE (CNI) NETWORK
PROVIDER

16.1.1. OVN-Kubernetes features
16.1.2. Supported default CNI network provider feature matrix
16.1.3. OVN-Kubernetes limitations

16.2. MIGRATING FROM THE OPENSHIFT SDN CLUSTER NETWORK PROVIDER
16.2.1. Migration to the OVN-Kubernetes network provider

16.2.1.1. Considerations for migrating to the OVN-Kubernetes network provider
Namespace isolation
Egress IP addresses

243
243
244
244
244
245
245
245
246
246
246
248
248
249
249
249
250
251

252
252
252
253
254
255
255
255
256
257
257
257
259
259
259
260
260
260
261
261
261
261
262

264

264
264
264
265
266
266
266
267
267

Table of Contents

7

Egress network policies
Egress router pods
Multicast
Network policies

16.2.1.2. How the migration process works
16.2.2. Migrating to the OVN-Kubernetes default CNI network provider
16.2.3. Additional resources

16.3. ROLLING BACK TO THE OPENSHIFT SDN NETWORK PROVIDER
16.3.1. Rolling back the default CNI network provider to OpenShift SDN

16.4. CONVERTING TO IPV4/IPV6 DUAL-STACK NETWORKING
16.4.1. Converting to a dual-stack cluster network

16.5. IPSEC ENCRYPTION CONFIGURATION
16.5.1. Types of network traffic flows encrypted by IPsec

16.5.1.1. Network connectivity requirements when IPsec is enabled
16.5.2. Encryption protocol and IPsec mode
16.5.3. Security certificate generation and rotation

16.6. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT
16.6.1. How an egress firewall works in a project

16.6.1.1. Limitations of an egress firewall
16.6.1.2. Matching order for egress firewall policy rules
16.6.1.3. How Domain Name Server (DNS) resolution works

16.6.2. EgressFirewall custom resource (CR) object
16.6.2.1. EgressFirewall rules
16.6.2.2. Example EgressFirewall CR objects

16.6.3. Creating an egress firewall policy object
16.7. VIEWING AN EGRESS FIREWALL FOR A PROJECT

16.7.1. Viewing an EgressFirewall object
16.8. EDITING AN EGRESS FIREWALL FOR A PROJECT

16.8.1. Editing an EgressFirewall object
16.9. REMOVING AN EGRESS FIREWALL FROM A PROJECT

16.9.1. Removing an EgressFirewall object
16.10. CONFIGURING AN EGRESS IP ADDRESS

16.10.1. Egress IP address architectural design and implementation
16.10.1.1. Platform support
16.10.1.2. Assignment of egress IPs to pods
16.10.1.3. Assignment of egress IPs to nodes
16.10.1.4. Architectural diagram of an egress IP address configuration

16.10.2. EgressIP object
16.10.3. Labeling a node to host egress IP addresses
16.10.4. Next steps
16.10.5. Additional resources

16.11. ASSIGNING AN EGRESS IP ADDRESS
16.11.1. Assigning an egress IP address to a namespace
16.11.2. Additional resources

16.12. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD
16.12.1. About an egress router pod

16.12.1.1. Egress router modes
16.12.1.2. Egress router pod implementation
16.12.1.3. Deployment considerations
16.12.1.4. Failover configuration

16.12.2. Additional resources
16.13. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE

16.13.1. Egress router custom resource

267
268
268
268
268
270
275
276
276
280
280
282
282
283
283
283
284
284
285
286
286
286
287
287
288
289
289
290
290
290
291
291
291
291
292
292
293
294
296
297
297
297
297
298
298
298
299
299
299
300
300
300
301

OpenShift Container Platform 4.9 Networking

8

. .

. .

16.13.2. Deploying an egress router in redirect mode
16.14. ENABLING MULTICAST FOR A PROJECT

16.14.1. About multicast
16.14.2. Enabling multicast between pods

16.15. DISABLING MULTICAST FOR A PROJECT
16.15.1. Disabling multicast between pods

16.16. TRACKING NETWORK FLOWS
16.16.1. Network object configuration for tracking network flows
16.16.2. Adding destinations for network flows collectors
16.16.3. Deleting all destinations for network flows collectors
16.16.4. Additional resources

16.17. CONFIGURING HYBRID NETWORKING
16.17.1. Configuring hybrid networking with OVN-Kubernetes
16.17.2. Additional resources

CHAPTER 17. CONFIGURING ROUTES
17.1. ROUTE CONFIGURATION

17.1.1. Creating an HTTP-based route
17.1.2. Configuring route timeouts
17.1.3. HTTP Strict Transport Security

17.1.3.1. Enabling HTTP Strict Transport Security per-route
17.1.3.2. Disabling HTTP Strict Transport Security per-route
17.1.3.3. Enforcing HTTP Strict Transport Security per-domain

17.1.4. Troubleshooting throughput issues
17.1.5. Using cookies to keep route statefulness

17.1.5.1. Annotating a route with a cookie
17.1.6. Path-based routes
17.1.7. Route-specific annotations
17.1.8. Configuring the route admission policy
17.1.9. Creating a route through an Ingress object
17.1.10. Creating a route using the default certificate through an Ingress object
17.1.11. Configuring the OpenShift Container Platform Ingress Controller for dual-stack networking

17.2. SECURED ROUTES
17.2.1. Creating a re-encrypt route with a custom certificate
17.2.2. Creating an edge route with a custom certificate
17.2.3. Creating a passthrough route

CHAPTER 18. CONFIGURING INGRESS CLUSTER TRAFFIC
18.1. CONFIGURING INGRESS CLUSTER TRAFFIC OVERVIEW

18.1.1. Comparision: Fault tolerant access to external IP addresses
18.2. CONFIGURING EXTERNALIPS FOR SERVICES

18.2.1. Prerequisites
18.2.2. About ExternalIP

18.2.2.1. Configuration for ExternalIP
18.2.2.2. Restrictions on the assignment of an external IP address
18.2.2.3. Example policy objects

18.2.3. ExternalIP address block configuration
Example external IP configurations

18.2.4. Configure external IP address blocks for your cluster
18.2.5. Next steps

18.3. CONFIGURING INGRESS CLUSTER TRAFFIC USING AN INGRESS CONTROLLER
18.3.1. Using Ingress Controllers and routes
18.3.2. Prerequisites

302
305
305
306
308
308
308
309
310
311
312
312
312
313

315
315
315
316
316
317
318
319
322
322
322
323
324
331
332
334
335
337
337
338
340

341
341
341

342
342
342
343
344
345
345
346
347
348
348
348
348

Table of Contents

9

. .

18.3.3. Creating a project and service
18.3.4. Exposing the service by creating a route
18.3.5. Configuring Ingress Controller sharding by using route labels
18.3.6. Configuring Ingress Controller sharding by using namespace labels
18.3.7. Additional resources

18.4. CONFIGURING INGRESS CLUSTER TRAFFIC USING A LOAD BALANCER
18.4.1. Using a load balancer to get traffic into the cluster
18.4.2. Prerequisites
18.4.3. Creating a project and service
18.4.4. Exposing the service by creating a route
18.4.5. Creating a load balancer service

18.5. CONFIGURING INGRESS CLUSTER TRAFFIC ON AWS USING A NETWORK LOAD BALANCER
18.5.1. Replacing Ingress Controller Classic Load Balancer with Network Load Balancer
18.5.2. Configuring an Ingress Controller Network Load Balancer on an existing AWS cluster
18.5.3. Configuring an Ingress Controller Network Load Balancer on a new AWS cluster
18.5.4. Additional resources

18.6. CONFIGURING INGRESS CLUSTER TRAFFIC FOR A SERVICE EXTERNAL IP
18.6.1. Prerequisites
18.6.2. Attaching an ExternalIP to a service
18.6.3. Additional resources

18.7. CONFIGURING INGRESS CLUSTER TRAFFIC USING A NODEPORT
18.7.1. Using a NodePort to get traffic into the cluster
18.7.2. Prerequisites
18.7.3. Creating a project and service
18.7.4. Exposing the service by creating a route
18.7.5. Additional resources

CHAPTER 19. KUBERNETES NMSTATE
19.1. ABOUT THE KUBERNETES NMSTATE OPERATOR

19.1.1. Installing the Kubernetes NMState Operator
19.2. OBSERVING NODE NETWORK STATE

19.2.1. About nmstate
19.2.2. Viewing the network state of a node

19.3. UPDATING NODE NETWORK CONFIGURATION
19.3.1. About nmstate
19.3.2. Creating an interface on nodes

Additional resources
19.3.3. Confirming node network policy updates on nodes
19.3.4. Removing an interface from nodes
19.3.5. Example policy configurations for different interfaces

19.3.5.1. Example: Linux bridge interface node network configuration policy
19.3.5.2. Example: VLAN interface node network configuration policy
19.3.5.3. Example: Bond interface node network configuration policy
19.3.5.4. Example: Ethernet interface node network configuration policy
19.3.5.5. Example: Multiple interfaces in the same node network configuration policy

19.3.6. Examples: IP management
19.3.6.1. Static
19.3.6.2. No IP address
19.3.6.3. Dynamic host configuration
19.3.6.4. DNS
19.3.6.5. Static routing

19.4. TROUBLESHOOTING NODE NETWORK CONFIGURATION
19.4.1. Troubleshooting an incorrect node network configuration policy configuration

349
349
350
351
352
352
352
353
353
354
354
356
356
357
359
360
360
360
360
361
361
361

362
362
363
363

365
365
365
366
366
367
367
368
368
369
370
370
371
372
373
373
375
376
376
376
377
377
378
378
378
379

OpenShift Container Platform 4.9 Networking

10

. .

. .

. .

. .

CHAPTER 20. CONFIGURING THE CLUSTER-WIDE PROXY
20.1. PREREQUISITES
20.2. ENABLING THE CLUSTER-WIDE PROXY
20.3. REMOVING THE CLUSTER-WIDE PROXY

Additional resources

CHAPTER 21. CONFIGURING A CUSTOM PKI
21.1. CONFIGURING THE CLUSTER-WIDE PROXY DURING INSTALLATION
21.2. ENABLING THE CLUSTER-WIDE PROXY
21.3. CERTIFICATE INJECTION USING OPERATORS

CHAPTER 22. LOAD BALANCING ON RHOSP
22.1. USING THE OCTAVIA OVN LOAD BALANCER PROVIDER DRIVER WITH KURYR SDN
22.2. SCALING CLUSTERS FOR APPLICATION TRAFFIC BY USING OCTAVIA

22.2.1. Scaling clusters by using Octavia
22.2.2. Scaling clusters that use Kuryr by using Octavia

22.3. SCALING FOR INGRESS TRAFFIC BY USING RHOSP OCTAVIA
22.4. CONFIGURING AN EXTERNAL LOAD BALANCER

CHAPTER 23. LOAD BALANCING WITH METALLB
23.1. ABOUT METALLB AND THE METALLB OPERATOR

23.1.1. When to use MetalLB
23.1.2. MetalLB Operator custom resources
23.1.3. MetalLB software components
23.1.4. MetalLB concepts for layer 2 mode

23.1.4.1. Layer 2 and external traffic policy
23.1.5. Limitations and restrictions

23.1.5.1. Support for layer 2 only
23.1.5.2. Support for single stack networking
23.1.5.3. Infrastructure considerations for MetalLB
23.1.5.4. Limitations for layer 2 mode

23.1.5.4.1. Single-node bottleneck
23.1.5.4.2. Slow failover performance

23.1.5.5. Incompatibility with IP failover
23.1.6. Additional resources

23.2. INSTALLING THE METALLB OPERATOR
23.2.1. Installing from OperatorHub using the web console
23.2.2. Installing from OperatorHub using the CLI
23.2.3. Starting MetalLB on your cluster
23.2.4. Next steps

23.3. CONFIGURING METALLB ADDRESS POOLS
23.3.1. About the address pool custom resource
23.3.2. Configuring an address pool
23.3.3. Example address pool configurations

23.3.3.1. Example: IPv4 and CIDR ranges
23.3.3.2. Example: Reserve IP addresses
23.3.3.3. Example: IPv6 address pool

23.3.4. Next steps
23.4. CONFIGURING SERVICES TO USE METALLB

23.4.1. Request a specific IP address
23.4.2. Request an IP address from a specific pool
23.4.3. Accept any IP address
23.4.4. Share a specific IP address
23.4.5. Configuring a service with MetalLB

384
384
384
386
387

388
388
390
392

394
394
395
395
397
397
399

402
402
402
402
402
403
404
405
405
405
405
405
406
406
406
406
406
406
408
409
410
410
410
411

412
412
413
413
413
413
413
414
414
415
416

Table of Contents

11

. .CHAPTER 24. ASSOCIATING SECONDARY INTERFACES METRICS TO NETWORK ATTACHMENTS
24.1. EXTENDING SECONDARY NETWORK METRICS FOR MONITORING

24.1.1. Network Metrics Daemon
24.1.2. Metrics with network name

418
418
418
419

OpenShift Container Platform 4.9 Networking

12

Table of Contents

13

CHAPTER 1. UNDERSTANDING NETWORKING
Cluster Administrators have several options for exposing applications that run inside a cluster to
external traffic and securing network connections:

Service types, such as node ports or load balancers

API resources, such as Ingress and Route

By default, Kubernetes allocates each pod an internal IP address for applications running within the pod.
Pods and their containers can network, but clients outside the cluster do not have networking access.
When you expose your application to external traffic, giving each pod its own IP address means that
pods can be treated like physical hosts or virtual machines in terms of port allocation, networking,
naming, service discovery, load balancing, application configuration, and migration.

NOTE

Some cloud platforms offer metadata APIs that listen on the 169.254.169.254 IP address,
a link-local IP address in the IPv4 169.254.0.0/16 CIDR block.

This CIDR block is not reachable from the pod network. Pods that need access to these
IP addresses must be given host network access by setting the spec.hostNetwork field
in the pod spec to true.

If you allow a pod host network access, you grant the pod privileged access to the
underlying network infrastructure.

1.1. OPENSHIFT CONTAINER PLATFORM DNS

If you are running multiple services, such as front-end and back-end services for use with multiple pods,
environment variables are created for user names, service IPs, and more so the front-end pods can
communicate with the back-end services. If the service is deleted and recreated, a new IP address can
be assigned to the service, and requires the front-end pods to be recreated to pick up the updated
values for the service IP environment variable. Additionally, the back-end service must be created
before any of the front-end pods to ensure that the service IP is generated properly, and that it can be
provided to the front-end pods as an environment variable.

For this reason, OpenShift Container Platform has a built-in DNS so that the services can be reached by
the service DNS as well as the service IP/port.

1.2. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR

When you create your OpenShift Container Platform cluster, pods and services running on the cluster
are each allocated their own IP addresses. The IP addresses are accessible to other pods and services
running nearby but are not accessible to outside clients. The Ingress Operator implements the
IngressController API and is the component responsible for enabling external access to OpenShift
Container Platform cluster services.

The Ingress Operator makes it possible for external clients to access your service by deploying and
managing one or more HAProxy-based Ingress Controllers to handle routing. You can use the Ingress
Operator to route traffic by specifying OpenShift Container Platform Route and Kubernetes Ingress
resources. Configurations within the Ingress Controller, such as the ability to define
endpointPublishingStrategy type and internal load balancing, provide ways to publish Ingress
Controller endpoints.

OpenShift Container Platform 4.9 Networking

14

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

1.2.1. Comparing routes and Ingress

The Kubernetes Ingress resource in OpenShift Container Platform implements the Ingress Controller
with a shared router service that runs as a pod inside the cluster. The most common way to manage
Ingress traffic is with the Ingress Controller. You can scale and replicate this pod like any other regular
pod. This router service is based on HAProxy, which is an open source load balancer solution.

The OpenShift Container Platform route provides Ingress traffic to services in the cluster. Routes
provide advanced features that might not be supported by standard Kubernetes Ingress Controllers,
such as TLS re-encryption, TLS passthrough, and split traffic for blue-green deployments.

Ingress traffic accesses services in the cluster through a route. Routes and Ingress are the main
resources for handling Ingress traffic. Ingress provides features similar to a route, such as accepting
external requests and delegating them based on the route. However, with Ingress you can only allow
certain types of connections: HTTP/2, HTTPS and server name identification (SNI), and TLS with
certificate. In OpenShift Container Platform, routes are generated to meet the conditions specified by
the Ingress resource.

1.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER
PLATFORM NETWORKING

This glossary defines common terms that are used in the networking content.

authentication

To control access to an OpenShift Container Platform cluster, a cluster administrator can configure
user authentication and ensure only approved users access the cluster. To interact with an
OpenShift Container Platform cluster, you must authenticate to the OpenShift Container Platform
API. You can authenticate by providing an OAuth access token or an X.509 client certificate in your
requests to the OpenShift Container Platform API.

AWS Load Balancer Operator

The AWS Load Balancer (ALB) Operator deploys and manages an instance of the aws-load-
balancer-controller.

Cluster Network Operator

The Cluster Network Operator (CNO) deploys and manages the cluster network components in an
OpenShift Container Platform cluster. This includes deployment of the Container Network Interface
(CNI) default network provider plug-in selected for the cluster during installation.

config map

A config map provides a way to inject configuration data into pods. You can reference the data
stored in a config map in a volume of type ConfigMap. Applications running in a pod can use this
data.

custom resource (CR)

A CR is extension of the Kubernetes API. You can create custom resources.

DNS

Cluster DNS is a DNS server which serves DNS records for Kubernetes services. Containers started
by Kubernetes automatically include this DNS server in their DNS searches.

DNS Operator

The DNS Operator deploys and manages CoreDNS to provide a name resolution service to pods.
This enables DNS-based Kubernetes Service discovery in OpenShift Container Platform.

deployment

A Kubernetes resource object that maintains the life cycle of an application.

CHAPTER 1. UNDERSTANDING NETWORKING

15

http://www.haproxy.org/

domain

Domain is a DNS name serviced by the Ingress Controller.

egress

The process of data sharing externally through a network’s outbound traffic from a pod.

External DNS Operator

The External DNS Operator deploys and manages ExternalDNS to provide the name resolution for
services and routes from the external DNS provider to OpenShift Container Platform.

HTTP-based route

An HTTP-based route is an unsecured route that uses the basic HTTP routing protocol and exposes
a service on an unsecured application port.

Ingress

The Kubernetes Ingress resource in OpenShift Container Platform implements the Ingress Controller
with a shared router service that runs as a pod inside the cluster.

Ingress Controller

The Ingress Operator manages Ingress Controllers. Using an Ingress Controller is the most common
way to allow external access to an OpenShift Container Platform cluster.

installer-provisioned infrastructure

The installation program deploys and configures the infrastructure that the cluster runs on.

kubelet

A primary node agent that runs on each node in the cluster to ensure that containers are running in a
pod.

Kubernetes NMState Operator

The Kubernetes NMState Operator provides a Kubernetes API for performing state-driven network
configuration across the OpenShift Container Platform cluster’s nodes with NMState.

kube-proxy

Kube-proxy is a proxy service which runs on each node and helps in making services available to the
external host. It helps in forwarding the request to correct containers and is capable of performing
primitive load balancing.

load balancers

OpenShift Container Platform uses load balancers for communicating from outside the cluster with
services running in the cluster.

MetalLB Operator

As a cluster administrator, you can add the MetalLB Operator to your cluster so that when a service
of type LoadBalancer is added to the cluster, MetalLB can add an external IP address for the
service.

multicast

With IP multicast, data is broadcast to many IP addresses simultaneously.

namespaces

A namespace isolates specific system resources that are visible to all processes. Inside a namespace,
only processes that are members of that namespace can see those resources.

networking

Network information of a OpenShift Container Platform cluster.

node

A worker machine in the OpenShift Container Platform cluster. A node is either a virtual machine
(VM) or a physical machine.

OpenShift Container Platform 4.9 Networking

16

OpenShift Container Platform Ingress Operator

The Ingress Operator implements the IngressController API and is the component responsible for
enabling external access to OpenShift Container Platform services.

pod

One or more containers with shared resources, such as volume and IP addresses, running in your
OpenShift Container Platform cluster. A pod is the smallest compute unit defined, deployed, and
managed.

PTP Operator

The PTP Operator creates and manages the linuxptp services.

route

The OpenShift Container Platform route provides Ingress traffic to services in the cluster. Routes
provide advanced features that might not be supported by standard Kubernetes Ingress Controllers,
such as TLS re-encryption, TLS passthrough, and split traffic for blue-green deployments.

scaling

Increasing or decreasing the resource capacity.

service

Exposes a running application on a set of pods.

Single Root I/O Virtualization (SR-IOV) Network Operator

The Single Root I/O Virtualization (SR-IOV) Network Operator manages the SR-IOV network
devices and network attachments in your cluster.

software-defined networking (SDN)

OpenShift Container Platform uses a software-defined networking (SDN) approach to provide a
unified cluster network that enables communication between pods across the OpenShift Container
Platform cluster.

Stream Control Transmission Protocol (SCTP)

SCTP is a reliable message based protocol that runs on top of an IP network.

taint

Taints and tolerations ensure that pods are scheduled onto appropriate nodes. You can apply one or
more taints on a node.

toleration

You can apply tolerations to pods. Tolerations allow the scheduler to schedule pods with matching
taints.

web console

A user interface (UI) to manage OpenShift Container Platform.

CHAPTER 1. UNDERSTANDING NETWORKING

17

CHAPTER 2. ACCESSING HOSTS
Learn how to create a bastion host to access OpenShift Container Platform instances and access the
control plane nodes with secure shell (SSH) access.

2.1. ACCESSING HOSTS ON AMAZON WEB SERVICES IN AN
INSTALLER-PROVISIONED INFRASTRUCTURE CLUSTER

The OpenShift Container Platform installer does not create any public IP addresses for any of the
Amazon Elastic Compute Cloud (Amazon EC2) instances that it provisions for your OpenShift
Container Platform cluster. To be able to SSH to your OpenShift Container Platform hosts, you must
follow this procedure.

Procedure

1. Create a security group that allows SSH access into the virtual private cloud (VPC) created by
the openshift-install command.

2. Create an Amazon EC2 instance on one of the public subnets the installer created.

3. Associate a public IP address with the Amazon EC2 instance that you created.
Unlike with the OpenShift Container Platform installation, you should associate the Amazon EC2
instance you created with an SSH keypair. It does not matter what operating system you choose
for this instance, as it will simply serve as an SSH bastion to bridge the internet into your
OpenShift Container Platform cluster’s VPC. The Amazon Machine Image (AMI) you use does
matter. With Red Hat Enterprise Linux CoreOS (RHCOS), for example, you can provide keys via
Ignition, like the installer does.

4. After you provisioned your Amazon EC2 instance and can SSH into it, you must add the SSH key
that you associated with your OpenShift Container Platform installation. This key can be
different from the key for the bastion instance, but does not have to be.

NOTE

Direct SSH access is only recommended for disaster recovery. When the
Kubernetes API is responsive, run privileged pods instead.

5. Run oc get nodes, inspect the output, and choose one of the nodes that is a master. The
hostname looks similar to ip-10-0-1-163.ec2.internal.

6. From the bastion SSH host you manually deployed into Amazon EC2, SSH into that control
plane host. Ensure that you use the same SSH key you specified during the installation:

$ ssh -i <ssh-key-path> core@<master-hostname>

OpenShift Container Platform 4.9 Networking

18

CHAPTER 3. NETWORKING OPERATORS OVERVIEW
OpenShift Container Platform supports multiple types of networking Operators. You can manage the
cluster networking using these networking Operators.

3.1. CLUSTER NETWORK OPERATOR

The Cluster Network Operator (CNO) deploys and manages the cluster network components in an
OpenShift Container Platform cluster. This includes deployment of the Container Network Interface
(CNI) default network provider plugin selected for the cluster during installation. For more information,
see Cluster Network Operator in OpenShift Container Platform .

3.2. DNS OPERATOR

The DNS Operator deploys and manages CoreDNS to provide a name resolution service to pods. This
enables DNS-based Kubernetes Service discovery in OpenShift Container Platform. For more
information, see DNS Operator in OpenShift Container Platform .

3.3. INGRESS OPERATOR

When you create your OpenShift Container Platform cluster, pods and services running on the cluster
are each allocated IP addresses. The IP addresses are accessible to other pods and services running
nearby but are not accessible to external clients. The Ingress Operator implements the Ingress
Controller API and is responsible for enabling external access to OpenShift Container Platform cluster
services. For more information, see Ingress Operator in OpenShift Container Platform .

CHAPTER 3. NETWORKING OPERATORS OVERVIEW

19

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#cluster-network-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#dns-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-ingress

CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT
CONTAINER PLATFORM

The Cluster Network Operator (CNO) deploys and manages the cluster network components on an
OpenShift Container Platform cluster, including the Container Network Interface (CNI) default network
provider plugin selected for the cluster during installation.

4.1. CLUSTER NETWORK OPERATOR

The Cluster Network Operator implements the network API from the operator.openshift.io API group.
The Operator deploys the OpenShift SDN default Container Network Interface (CNI) network provider
plugin, or the default network provider plugin that you selected during cluster installation, by using a
daemon set.

Procedure

The Cluster Network Operator is deployed during installation as a Kubernetes Deployment.

1. Run the following command to view the Deployment status:

Example output

2. Run the following command to view the state of the Cluster Network Operator:

Example output

The following fields provide information about the status of the operator: AVAILABLE,
PROGRESSING, and DEGRADED. The AVAILABLE field is True when the Cluster Network
Operator reports an available status condition.

4.2. VIEWING THE CLUSTER NETWORK CONFIGURATION

Every new OpenShift Container Platform installation has a network.config object named cluster.

Procedure

Use the oc describe command to view the cluster network configuration:

Example output

$ oc get -n openshift-network-operator deployment/network-operator

NAME READY UP-TO-DATE AVAILABLE AGE
network-operator 1/1 1 1 56m

$ oc get clusteroperator/network

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
network 4.5.4 True False False 50m

$ oc describe network.config/cluster

OpenShift Container Platform 4.9 Networking

20

1

2

The Spec field displays the configured state of the cluster network.

The Status field displays the current state of the cluster network configuration.

4.3. VIEWING CLUSTER NETWORK OPERATOR STATUS

You can inspect the status and view the details of the Cluster Network Operator using the oc describe
command.

Procedure

Run the following command to view the status of the Cluster Network Operator:

4.4. VIEWING CLUSTER NETWORK OPERATOR LOGS

You can view Cluster Network Operator logs by using the oc logs command.

Procedure

Run the following command to view the logs of the Cluster Network Operator:

4.5. CLUSTER NETWORK OPERATOR CONFIGURATION

Name: cluster
Namespace:
Labels: <none>
Annotations: <none>
API Version: config.openshift.io/v1
Kind: Network
Metadata:
 Self Link: /apis/config.openshift.io/v1/networks/cluster
Spec: 1
 Cluster Network:
 Cidr: 10.128.0.0/14
 Host Prefix: 23
 Network Type: OpenShiftSDN
 Service Network:
 172.30.0.0/16
Status: 2
 Cluster Network:
 Cidr: 10.128.0.0/14
 Host Prefix: 23
 Cluster Network MTU: 8951
 Network Type: OpenShiftSDN
 Service Network:
 172.30.0.0/16
Events: <none>

$ oc describe clusteroperators/network

$ oc logs --namespace=openshift-network-operator deployment/network-operator

CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

21

The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO)
configuration and stored in a custom resource (CR) object that is named cluster. The CR specifies the
fields for the Network API in the operator.openshift.io API group.

The CNO configuration inherits the following fields during cluster installation from the Network API in
the Network.config.openshift.io API group and these fields cannot be changed:

clusterNetwork

IP address pools from which pod IP addresses are allocated.

serviceNetwork

IP address pool for services.

defaultNetwork.type

Cluster network provider, such as OpenShift SDN or OVN-Kubernetes.

NOTE

After cluster installation, you cannot modify the fields listed in the previous section.

You can specify the cluster network provider configuration for your cluster by setting the fields for the
defaultNetwork object in the CNO object named cluster.

4.5.1. Cluster Network Operator configuration object

The fields for the Cluster Network Operator (CNO) are described in the following table:

Table 4.1. Cluster Network Operator configuration object

Field Type Description

metadata.name string The name of the CNO object. This name is always cluster.

spec.clusterNet
work

array A list specifying the blocks of IP addresses from which pod IP
addresses are allocated and the subnet prefix length assigned to
each individual node in the cluster. For example:

This value is ready-only and inherited from the
Network.config.openshift.io object named cluster during
cluster installation.

spec:
 clusterNetwork:
 - cidr: 10.128.0.0/19
 hostPrefix: 23
 - cidr: 10.128.32.0/19
 hostPrefix: 23

OpenShift Container Platform 4.9 Networking

22

spec.serviceNet
work

array A block of IP addresses for services. The OpenShift SDN and
OVN-Kubernetes Container Network Interface (CNI) network
providers support only a single IP address block for the service
network. For example:

This value is ready-only and inherited from the
Network.config.openshift.io object named cluster during
cluster installation.

spec.defaultNet
work

object Configures the Container Network Interface (CNI) cluster
network provider for the cluster network.

spec.kubeProxy
Config

object The fields for this object specify the kube-proxy configuration. If
you are using the OVN-Kubernetes cluster network provider, the
kube-proxy configuration has no effect.

Field Type Description

defaultNetwork object configuration
The values for the defaultNetwork object are defined in the following table:

Table 4.2. defaultNetwork object

Field Type Description

type string Either OpenShiftSDN or OVNKubernetes. The
cluster network provider is selected during
installation. This value cannot be changed after
cluster installation.

NOTE

OpenShift Container Platform uses
the OpenShift SDN Container
Network Interface (CNI) cluster
network provider by default.

openshiftSDNConfig object This object is only valid for the OpenShift SDN
cluster network provider.

ovnKubernetesConfig object This object is only valid for the OVN-Kubernetes
cluster network provider.

Configuration for the OpenShift SDN CNI cluster network provider

spec:
 serviceNetwork:
 - 172.30.0.0/14

CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

23

The following table describes the configuration fields for the OpenShift SDN Container Network
Interface (CNI) cluster network provider.

Table 4.3. openshiftSDNConfig object

Field Type Description

mode string The network isolation mode for OpenShift SDN.

mtu integer The maximum transmission unit (MTU) for the VXLAN overlay
network. This value is normally configured automatically.

vxlanPort integer The port to use for all VXLAN packets. The default value is 4789.

NOTE

You can only change the configuration for your cluster network provider during cluster
installation.

Example OpenShift SDN configuration

Configuration for the OVN-Kubernetes CNI cluster network provider
The following table describes the configuration fields for the OVN-Kubernetes CNI cluster network
provider.

Table 4.4. ovnKubernetesConfig object

Field Type Description

mtu integer The maximum transmission unit (MTU) for the Geneve (Generic
Network Virtualization Encapsulation) overlay network. This
value is normally configured automatically.

genevePort integer The UDP port for the Geneve overlay network.

ipsecConfig object If the field is present, IPsec is enabled for the cluster.

policyAuditConf
ig

object Specify a configuration object for customizing network policy
audit logging. If unset, the defaults audit log settings are used.

Table 4.5. policyAuditConfig object

defaultNetwork:
 type: OpenShiftSDN
 openshiftSDNConfig:
 mode: NetworkPolicy
 mtu: 1450
 vxlanPort: 4789

OpenShift Container Platform 4.9 Networking

24

Field Type Description

rateLimit integer The maximum number of messages to generate every second
per node. The default value is 20 messages per second.

maxFileSize integer The maximum size for the audit log in bytes. The default value is
50000000 or 50 MB.

destination string One of the following additional audit log targets:

libc
The libc syslog() function of the journald process on the
host.

udp:<host>:<port>
A syslog server. Replace <host>:<port> with the host and
port of the syslog server.

unix:<file>
A Unix Domain Socket file specified by <file>.

null
Do not send the audit logs to any additional target.

syslogFacility string The syslog facility, such as kern, as defined by RFC5424. The
default value is local0.

NOTE

You can only change the configuration for your cluster network provider during cluster
installation.

Example OVN-Kubernetes configuration

kubeProxyConfig object configuration
The values for the kubeProxyConfig object are defined in the following table:

Table 4.6. kubeProxyConfig object

Field Type Description

defaultNetwork:
 type: OVNKubernetes
 ovnKubernetesConfig:
 mtu: 1400
 genevePort: 6081
 ipsecConfig: {}

CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

25

iptablesSyncPeriod string The refresh period for iptables rules. The default
value is 30s. Valid suffixes include s, m, and h and
are described in the Go time package
documentation.

NOTE

Because of performance
improvements introduced in
OpenShift Container Platform 4.3
and greater, adjusting the
iptablesSyncPeriod parameter is
no longer necessary.

proxyArguments.iptables-
min-sync-period

array The minimum duration before refreshing iptables
rules. This field ensures that the refresh does not
happen too frequently. Valid suffixes include s, m,
and h and are described in the Go time package.
The default value is:

Field Type Description

4.5.2. Cluster Network Operator example configuration

A complete CNO configuration is specified in the following example:

Example Cluster Network Operator object

kubeProxyConfig:
 proxyArguments:
 iptables-min-sync-period:
 - 0s

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 clusterNetwork: 1
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 serviceNetwork: 2
 - 172.30.0.0/16
 defaultNetwork: 3
 type: OpenShiftSDN
 openshiftSDNConfig:
 mode: NetworkPolicy
 mtu: 1450
 vxlanPort: 4789
 kubeProxyConfig:
 iptablesSyncPeriod: 30s

OpenShift Container Platform 4.9 Networking

26

https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration

1 2 3 Configured only during cluster installation.

4.6. ADDITIONAL RESOURCES

Network API in the operator.openshift.io API group

 proxyArguments:
 iptables-min-sync-period:
 - 0s

CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

27

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/api_reference/#network-operator-openshift-io-v1

CHAPTER 5. DNS OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

The DNS Operator deploys and manages CoreDNS to provide a name resolution service to pods,
enabling DNS-based Kubernetes Service discovery in OpenShift Container Platform.

5.1. DNS OPERATOR

The DNS Operator implements the dns API from the operator.openshift.io API group. The Operator
deploys CoreDNS using a daemon set, creates a service for the daemon set, and configures the kubelet
to instruct pods to use the CoreDNS service IP address for name resolution.

Procedure

The DNS Operator is deployed during installation with a Deployment object.

1. Use the oc get command to view the deployment status:

Example output

2. Use the oc get command to view the state of the DNS Operator:

Example output

AVAILABLE, PROGRESSING and DEGRADED provide information about the status of the
operator. AVAILABLE is True when at least 1 pod from the CoreDNS daemon set reports an
Available status condition.

5.2. CHANGING THE DNS OPERATOR MANAGEMENTSTATE

DNS manages the CoreDNS component to provide a name resolution service for pods and services in
the cluster. The managementState of the DNS Operator is set to Managed by default, which means
that the DNS Operator is actively managing its resources. You can change it to Unmanaged, which
means the DNS Operator is not managing its resources.

The following are use cases for changing the DNS Operator managementState:

You are a developer and want to test a configuration change to see if it fixes an issue in
CoreDNS. You can stop the DNS Operator from overwriting the fix by setting the
managementState to Unmanaged.

You are a cluster administrator and have reported an issue with CoreDNS, but need to apply a

$ oc get -n openshift-dns-operator deployment/dns-operator

NAME READY UP-TO-DATE AVAILABLE AGE
dns-operator 1/1 1 1 23h

$ oc get clusteroperator/dns

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
dns 4.1.0-0.11 True False False 92m

OpenShift Container Platform 4.9 Networking

28

You are a cluster administrator and have reported an issue with CoreDNS, but need to apply a
workaround until the issue is fixed. You can set the managementState field of the DNS
Operator to Unmanaged to apply the workaround.

Procedure

Change managementState DNS Operator:

5.3. CONTROLLING DNS POD PLACEMENT

The DNS Operator has two daemon sets: one for CoreDNS and one for managing the /etc/hosts file.
The daemon set for /etc/hosts must run on every node host to add an entry for the cluster image
registry to support pulling images. Security policies can prohibit communication between pairs of nodes,
which prevents the daemon set for CoreDNS from running on every node.

As a cluster administrator, you can use a custom node selector to configure the daemon set for
CoreDNS to run or not run on certain nodes.

Prerequisites

You installed the oc CLI.

You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

To prevent communication between certain nodes, configure the
spec.nodePlacement.nodeSelector API field:

1. Modify the DNS Operator object named default:

2. Specify a node selector that includes only control plane nodes in the
spec.nodePlacement.nodeSelector API field:

To allow the daemon set for CoreDNS to run on nodes, configure a taint and toleration:

1. Modify the DNS Operator object named default:

2. Specify a taint key and a toleration for the taint:

oc patch dns.operator.openshift.io default --type merge --patch '{"spec":
{"managementState":"Unmanaged"}}'

$ oc edit dns.operator/default

 spec:
 nodePlacement:
 nodeSelector:
 node-role.kubernetes.io/worker: ""

$ oc edit dns.operator/default

 spec:
 nodePlacement:

CHAPTER 5. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

29

1

1

2

If the taint is dns-only, it can be tolerated indefinitely. You can omit
tolerationSeconds.

5.4. VIEW THE DEFAULT DNS

Every new OpenShift Container Platform installation has a dns.operator named default.

Procedure

1. Use the oc describe command to view the default dns:

Example output

The Cluster Domain field is the base DNS domain used to construct fully qualified pod and
service domain names.

The Cluster IP is the address pods query for name resolution. The IP is defined as the 10th
address in the service CIDR range.

2. To find the service CIDR of your cluster, use the oc get command:

Example output

5.5. USING DNS FORWARDING

You can use DNS forwarding to override the forwarding configuration identified in /etc/resolv.conf on a

 tolerations:
 - effect: NoExecute
 key: "dns-only"
 operators: Equal
 value: abc
 tolerationSeconds: 3600 1

$ oc describe dns.operator/default

Name: default
Namespace:
Labels: <none>
Annotations: <none>
API Version: operator.openshift.io/v1
Kind: DNS
...
Status:
 Cluster Domain: cluster.local 1
 Cluster IP: 172.30.0.10 2
...

$ oc get networks.config/cluster -o jsonpath='{$.status.serviceNetwork}'

[172.30.0.0/16]

OpenShift Container Platform 4.9 Networking

30

1

2

3

You can use DNS forwarding to override the forwarding configuration identified in /etc/resolv.conf on a
per-zone basis by specifying which name server should be used for a given zone. If the forwarded zone is
the Ingress domain managed by OpenShift Container Platform, then the upstream name server must be
authorized for the domain.

Procedure

1. Modify the DNS Operator object named default:

This allows the Operator to create and update the ConfigMap named dns-default with
additional server configuration blocks based on Server. If none of the servers has a zone that
matches the query, then name resolution falls back to the name servers that are specified in
/etc/resolv.conf.

Sample DNS

name must comply with the rfc6335 service name syntax.

zones must conform to the definition of a subdomain in rfc1123. The cluster domain,
cluster.local, is an invalid subdomain for zones.

A maximum of 15 upstreams is allowed per forwardPlugin.

NOTE

If servers is undefined or invalid, the ConfigMap only contains the default server.

2. View the ConfigMap:

$ oc edit dns.operator/default

apiVersion: operator.openshift.io/v1
kind: DNS
metadata:
 name: default
spec:
 servers:
 - name: foo-server 1
 zones: 2
 - example.com
 forwardPlugin:
 upstreams: 3
 - 1.1.1.1
 - 2.2.2.2:5353
 - name: bar-server
 zones:
 - bar.com
 - example.com
 forwardPlugin:
 upstreams:
 - 3.3.3.3
 - 4.4.4.4:5454

CHAPTER 5. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

31

1

Sample DNS ConfigMap based on previous sample DNS

Changes to the forwardPlugin triggers a rolling update of the CoreDNS daemon set.

Additional resources

For more information on DNS forwarding, see the CoreDNS forward documentation.

5.6. DNS OPERATOR STATUS

You can inspect the status and view the details of the DNS Operator using the oc describe command.

Procedure

View the status of the DNS Operator:

5.7. DNS OPERATOR LOGS

$ oc get configmap/dns-default -n openshift-dns -o yaml

apiVersion: v1
data:
 Corefile: |
 example.com:5353 {
 forward . 1.1.1.1 2.2.2.2:5353
 }
 bar.com:5353 example.com:5353 {
 forward . 3.3.3.3 4.4.4.4:5454 1
 }
 .:5353 {
 errors
 health
 kubernetes cluster.local in-addr.arpa ip6.arpa {
 pods insecure
 upstream
 fallthrough in-addr.arpa ip6.arpa
 }
 prometheus :9153
 forward . /etc/resolv.conf {
 policy sequential
 }
 cache 30
 reload
 }
kind: ConfigMap
metadata:
 labels:
 dns.operator.openshift.io/owning-dns: default
 name: dns-default
 namespace: openshift-dns

$ oc describe clusteroperators/dns

OpenShift Container Platform 4.9 Networking

32

https://coredns.io/plugins/forward/

You can view DNS Operator logs by using the oc logs command.

Procedure

View the logs of the DNS Operator:

$ oc logs -n openshift-dns-operator deployment/dns-operator -c dns-operator

CHAPTER 5. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

33

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

6.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR

When you create your OpenShift Container Platform cluster, pods and services running on the cluster
are each allocated their own IP addresses. The IP addresses are accessible to other pods and services
running nearby but are not accessible to outside clients. The Ingress Operator implements the
IngressController API and is the component responsible for enabling external access to OpenShift
Container Platform cluster services.

The Ingress Operator makes it possible for external clients to access your service by deploying and
managing one or more HAProxy-based Ingress Controllers to handle routing. You can use the Ingress
Operator to route traffic by specifying OpenShift Container Platform Route and Kubernetes Ingress
resources. Configurations within the Ingress Controller, such as the ability to define
endpointPublishingStrategy type and internal load balancing, provide ways to publish Ingress
Controller endpoints.

6.2. THE INGRESS CONFIGURATION ASSET

The installation program generates an asset with an Ingress resource in the config.openshift.io API
group, cluster-ingress-02-config.yml.

YAML Definition of the Ingress resource

The installation program stores this asset in the cluster-ingress-02-config.yml file in the manifests/
directory. This Ingress resource defines the cluster-wide configuration for Ingress. This Ingress
configuration is used as follows:

The Ingress Operator uses the domain from the cluster Ingress configuration as the domain for
the default Ingress Controller.

The OpenShift API Server Operator uses the domain from the cluster Ingress configuration.
This domain is also used when generating a default host for a Route resource that does not
specify an explicit host.

6.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS

The ingresscontrollers.operator.openshift.io resource offers the following configuration parameters.

Parameter Description

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
 name: cluster
spec:
 domain: apps.openshiftdemos.com

OpenShift Container Platform 4.9 Networking

34

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

domain domain is a DNS name serviced by the Ingress Controller and is used to
configure multiple features:

For the LoadBalancerService endpoint publishing strategy,
domain is used to configure DNS records. See
endpointPublishingStrategy.

When using a generated default certificate, the certificate is valid for
domain and its subdomains. See defaultCertificate.

The value is published to individual Route statuses so that users know
where to target external DNS records.

The domain value must be unique among all Ingress Controllers and cannot be
updated.

If empty, the default value is ingress.config.openshift.io/cluster
.spec.domain.

replicas replicas is the desired number of Ingress Controller replicas. If not set, the
default value is 2.

endpointPublishingStr
ategy

endpointPublishingStrategy is used to publish the Ingress Controller
endpoints to other networks, enable load balancer integrations, and provide
access to other systems.

If not set, the default value is based on
infrastructure.config.openshift.io/cluster .status.platform:

AWS: LoadBalancerService (with external scope)

Azure: LoadBalancerService (with external scope)

GCP: LoadBalancerService (with external scope)

Bare metal: NodePortService

Other: HostNetwork

For most platforms, the endpointPublishingStrategy value cannot be
updated. However, on GCP, you can configure the
loadbalancer.providerParameters.gcp.clientAccess subfield.

Parameter Description

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

35

defaultCertificate The defaultCertificate value is a reference to a secret that contains the
default certificate that is served by the Ingress Controller. When Routes do not
specify their own certificate, defaultCertificate is used.

The secret must contain the following keys and data: * tls.crt: certificate file
contents * tls.key: key file contents

If not set, a wildcard certificate is automatically generated and used. The
certificate is valid for the Ingress Controller domain and subdomains, and
the generated certificate’s CA is automatically integrated with the cluster’s
trust store.

The in-use certificate, whether generated or user-specified, is automatically
integrated with OpenShift Container Platform built-in OAuth server.

namespaceSelector namespaceSelector is used to filter the set of namespaces serviced by the
Ingress Controller. This is useful for implementing shards.

routeSelector routeSelector is used to filter the set of Routes serviced by the Ingress
Controller. This is useful for implementing shards.

nodePlacement nodePlacement enables explicit control over the scheduling of the Ingress
Controller.

If not set, the defaults values are used.

NOTE

The nodePlacement parameter includes two parts,
nodeSelector and tolerations. For example:

Parameter Description

nodePlacement:
 nodeSelector:
 matchLabels:
 kubernetes.io/os: linux
 tolerations:
 - effect: NoSchedule
 operator: Exists

OpenShift Container Platform 4.9 Networking

36

tlsSecurityProfile tlsSecurityProfile specifies settings for TLS connections for Ingress
Controllers.

If not set, the default value is based on the
apiservers.config.openshift.io/cluster resource.

When using the Old, Intermediate, and Modern profile types, the effective
profile configuration is subject to change between releases. For example, given
a specification to use the Intermediate profile deployed on release X.Y.Z, an
upgrade to release X.Y.Z+1 may cause a new profile configuration to be
applied to the Ingress Controller, resulting in a rollout.

The minimum TLS version for Ingress Controllers is 1.1, and the maximum TLS
version is 1.3.

NOTE

Ciphers and the minimum TLS version of the configured
security profile are reflected in the TLSProfile status.

IMPORTANT

The Ingress Operator converts the TLS 1.0 of an Old or
Custom profile to 1.1.

clientTLS clientTLS authenticates client access to the cluster and services; as a result,
mutual TLS authentication is enabled. If not set, then client TLS is not enabled.

clientTLS has the required subfields,
spec.clientTLS.clientCertificatePolicy and spec.clientTLS.ClientCA.

The ClientCertificatePolicy subfield accepts one of the two values:
Required or Optional. The ClientCA subfield specifies a config map that is
in the openshift-config namespace. The config map should contain a CA
certificate bundle. The AllowedSubjectPatterns is an optional value that
specifies a list of regular expressions, which are matched against the
distinguished name on a valid client certificate to filter requests. The regular
expressions must use PCRE syntax. At least one pattern must match a client
certificate’s distinguished name; otherwise, the ingress controller rejects the
certificate and denies the connection. If not specified, the ingress controller
does not reject certificates based on the distinguished name.

Parameter Description

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

37

routeAdmission routeAdmission defines a policy for handling new route claims, such as
allowing or denying claims across namespaces.

namespaceOwnership describes how hostname claims across namespaces
should be handled. The default is Strict.

Strict: does not allow routes to claim the same hostname across
namespaces.

InterNamespaceAllowed: allows routes to claim different paths of
the same hostname across namespaces.

wildcardPolicy describes how routes with wildcard policies are handled by
the Ingress Controller.

WildcardsAllowed: Indicates routes with any wildcard policy are
admitted by the Ingress Controller.

WildcardsDisallowed: Indicates only routes with a wildcard policy
of None are admitted by the Ingress Controller. Updating
wildcardPolicy from WildcardsAllowed to
WildcardsDisallowed causes admitted routes with a wildcard policy
of Subdomain to stop working. These routes must be recreated to a
wildcard policy of None to be readmitted by the Ingress Controller.
WildcardsDisallowed is the default setting.

Parameter Description

OpenShift Container Platform 4.9 Networking

38

IngressControllerLoggi
ng

logging defines parameters for what is logged where. If this field is empty,
operational logs are enabled but access logs are disabled.

access describes how client requests are logged. If this field is
empty, access logging is disabled.

destination describes a destination for log messages.

type is the type of destination for logs:

Container specifies that logs should go to a sidecar
container. The Ingress Operator configures the
container, named logs, on the Ingress Controller pod and
configures the Ingress Controller to write logs to the
container. The expectation is that the administrator
configures a custom logging solution that reads logs
from this container. Using container logs means that
logs may be dropped if the rate of logs exceeds the
container runtime capacity or the custom logging
solution capacity.

Syslog specifies that logs are sent to a Syslog
endpoint. The administrator must specify an endpoint
that can receive Syslog messages. The expectation is
that the administrator has configured a custom Syslog
instance.

container describes parameters for the Container logging
destination type. Currently there are no parameters for
container logging, so this field must be empty.

syslog describes parameters for the Syslog logging
destination type:

address is the IP address of the syslog endpoint that
receives log messages.

port is the UDP port number of the syslog endpoint that
receives log messages.

facility specifies the syslog facility of log messages. If
this field is empty, the facility is local1. Otherwise, it
must specify a valid syslog facility: kern, user, mail,
daemon, auth, syslog, lpr, news, uucp, cron, auth2,
ftp, ntp, audit, alert, cron2, local0, local1, local2,
local3. local4, local5, local6, or local7.

httpLogFormat specifies the format of the log message for an
HTTP request. If this field is empty, log messages use the
implementation’s default HTTP log format. For HAProxy’s default
HTTP log format, see the HAProxy documentation.

Parameter Description

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

39

http://cbonte.github.io/haproxy-dconv/2.0/configuration.html#8.2.3

httpHeaders httpHeaders defines the policy for HTTP headers.

By setting the forwardedHeaderPolicy for the
IngressControllerHTTPHeaders, you specify when and how the Ingress
controller sets the Forwarded, X-Forwarded-For, X-Forwarded-Host, X-
Forwarded-Port, X-Forwarded-Proto, and X-Forwarded-Proto-Version
HTTP headers.

By default, the policy is set to Append.

Append specifies that the Ingress Controller appends the headers,
preserving any existing headers.

Replace specifies that the Ingress Controller sets the headers,
removing any existing headers.

IfNone specifies that the Ingress Controller sets the headers if they
are not already set.

Never specifies that the Ingress Controller never sets the headers,
preserving any existing headers.

By setting headerNameCaseAdjustments, you can specify case
adjustments that can be applied to HTTP header names. Each adjustment is
specified as an HTTP header name with the desired capitalization. For example,
specifying X-Forwarded-For indicates that the x-forwarded-for HTTP
header should be adjusted to have the specified capitalization.

These adjustments are only applied to cleartext, edge-terminated, and re-
encrypt routes, and only when using HTTP/1.

For request headers, these adjustments are applied only for routes that have
the haproxy.router.openshift.io/h1-adjust-case=true annotation. For
response headers, these adjustments are applied to all HTTP responses. If this
field is empty, no request headers are adjusted.

httpErrorCodePages httpErrorCodePages specifies custom HTTP error code response pages. By
default, an IngressController uses error pages built into the IngressController
image.

Parameter Description

OpenShift Container Platform 4.9 Networking

40

httpCaptureCookies httpCaptureCookies specifies HTTP cookies that you want to capture in
access logs. If the httpCaptureCookies field is empty, the access logs do not
capture the cookies.

For any cookie that you want to capture, the following parameters must be in
your IngressController configuration:

name specifies the name of the cookie.

maxLength specifies tha maximum length of the cookie.

matchType specifies if the field name of the cookie exactly matches
the capture cookie setting or is a prefix of the capture cookie setting.
The matchType field uses the Exact and Prefix parameters.

For example:

httpCaptureHeaders httpCaptureHeaders specifies the HTTP headers that you want to capture
in the access logs. If the httpCaptureHeaders field is empty, the access logs
do not capture the headers.

httpCaptureHeaders contains two lists of headers to capture in the access
logs. The two lists of header fields are request and response. In both lists,
the name field must specify the header name and the maxlength field must
specify the maximum length of the header. For example:

Parameter Description

 httpCaptureCookies:
 - matchType: Exact
 maxLength: 128
 name: MYCOOKIE

 httpCaptureHeaders:
 request:
 - maxLength: 256
 name: Connection
 - maxLength: 128
 name: User-Agent
 response:
 - maxLength: 256
 name: Content-Type
 - maxLength: 256
 name: Content-Length

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

41

tuningOptions tuningOptions specifies options for tuning the performance of Ingress
Controller pods.

headerBufferBytes specifies how much memory is reserved, in
bytes, for Ingress Controller connection sessions. This value must be
at least 16384 if HTTP/2 is enabled for the Ingress Controller. If not
set, the default value is 32768 bytes. Setting this field not
recommended because headerBufferBytes values that are too
small can break the Ingress Controller, and headerBufferBytes
values that are too large could cause the Ingress Controller to use
significantly more memory than necessary.

headerBufferMaxRewriteBytes specifies how much memory
should be reserved, in bytes, from headerBufferBytes for HTTP
header rewriting and appending for Ingress Controller connection
sessions. The minimum value for headerBufferMaxRewriteBytes is
4096. headerBufferBytes must be greater than
headerBufferMaxRewriteBytes for incoming HTTP requests. If
not set, the default value is 8192 bytes. Setting this field not
recommended because headerBufferMaxRewriteBytes values
that are too small can break the Ingress Controller and
headerBufferMaxRewriteBytes values that are too large could
cause the Ingress Controller to use significantly more memory than
necessary.

threadCount specifies the number of threads to create per HAProxy
process. Creating more threads allows each Ingress Controller pod to
handle more connections, at the cost of more system resources being
used. HAProxy supports up to 64 threads. If this field is empty, the
Ingress Controller uses the default value of 4 threads. The default
value can change in future releases. Setting this field is not
recommended because increasing the number of HAProxy threads
allows Ingress Controller pods to use more CPU time under load, and
prevent other pods from receiving the CPU resources they need to
perform. Reducing the number of threads can cause the Ingress
Controller to perform poorly.

clientTimeout specifies how long a connection is held open while
waiting for a client response. If unset, the default timeout is 30s.

serverFinTimeout specifies how long a connection is held open
while waiting for the server response to the client that is closing the
connection. If unset, the default timeout is 1s.

serverTimeout specifies how long a connection is held open while
waiting for a server response. If unset, the default timeout is 30s.

clientFinTimeout specifies how long a connection is held open while
waiting for the client response to the server closing the connection. If
unset, the default timeout is 1s.

tlsInspectDelay specifies how long the router can hold data to find
a matching route. Setting this value too short can cause the router to
fall back to the default certificate for edge-terminated, reencrypted,
or passthrough routes, even when using a better matched certificate.
If unset, the default inspect delay is 5s.

tunnelTimeout specifies how long a tunnel connection, including
websockets, remains open while the tunnel is idle. If unset, the default
timeout is 1h.

Parameter Description

OpenShift Container Platform 4.9 Networking

42

logEmptyRequests logEmptyRequests specifies connections for which no request is received
and logged. These empty requests come from load balancer health probes or
web browser speculative connections (preconnect) and logging these requests
can be undesirable. However, these requests can be caused by network errors,
in which case logging empty requests can be useful for diagnosing the errors.
These requests can be caused by port scans, and logging empty requests can
aid in detecting intrusion attempts. Allowed values for this field are Log and
Ignore. The default value is Log.

The LoggingPolicy type accepts either one of two values:

Log: Setting this value to Log indicates that an event should be
logged.

Ignore: Setting this value to Ignore sets the dontlognull option in
the HAproxy configuration.

HTTPEmptyRequestsP
olicy

HTTPEmptyRequestsPolicy describes how HTTP connections are handled
if the connection times out before a request is received. Allowed values for this
field are Respond and Ignore. The default value is Respond.

The HTTPEmptyRequestsPolicy type accepts either one of two values:

Respond: If the field is set to Respond, the Ingress Controller sends
an HTTP 400 or 408 response, logs the connection if access logging is
enabled, and counts the connection in the appropriate metrics.

Ignore: Setting this option to Ignore adds the http-ignore-probes
parameter in the HAproxy configuration. If the field is set to Ignore,
the Ingress Controller closes the connection without sending a
response, then logs the connection, or incrementing metrics.

These connections come from load balancer health probes or web browser
speculative connections (preconnect) and can be safely ignored. However,
these requests can be caused by network errors, so setting this field to Ignore
can impede detection and diagnosis of problems. These requests can be
caused by port scans, in which case logging empty requests can aid in detecting
intrusion attempts.

Parameter Description

NOTE

All parameters are optional.

6.3.1. Ingress Controller TLS security profiles

TLS security profiles provide a way for servers to regulate which ciphers a connecting client can use
when connecting to the server.

6.3.1.1. Understanding TLS security profiles

You can use a TLS (Transport Layer Security) security profile to define which TLS ciphers are required
by various OpenShift Container Platform components. The OpenShift Container Platform TLS security
profiles are based on Mozilla recommended configurations .

You can specify one of the following TLS security profiles for each component:

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

43

https://wiki.mozilla.org/Security/Server_Side_TLS

Table 6.1. TLS security profiles

Profile Description

Old This profile is intended for use with legacy clients or libraries. The profile
is based on the Old backward compatibility recommended configuration.

The Old profile requires a minimum TLS version of 1.0.

NOTE

For the Ingress Controller, the minimum TLS version is
converted from 1.0 to 1.1.

Intermediate This profile is the recommended configuration for the majority of clients.
It is the default TLS security profile for the Ingress Controller, kubelet,
and control plane. The profile is based on the Intermediate compatibility
recommended configuration.

The Intermediate profile requires a minimum TLS version of 1.2.

Modern This profile is intended for use with modern clients that have no need for
backwards compatibility. This profile is based on the Modern
compatibility recommended configuration.

The Modern profile requires a minimum TLS version of 1.3.

Custom This profile allows you to define the TLS version and ciphers to use.

WARNING

Use caution when using a Custom profile,
because invalid configurations can cause
problems.

NOTE

When using one of the predefined profile types, the effective profile configuration is
subject to change between releases. For example, given a specification to use the
Intermediate profile deployed on release X.Y.Z, an upgrade to release X.Y.Z+1 might
cause a new profile configuration to be applied, resulting in a rollout.

6.3.1.2. Configuring the TLS security profile for the Ingress Controller

To configure a TLS security profile for an Ingress Controller, edit the IngressController custom
resource (CR) to specify a predefined or custom TLS security profile. If a TLS security profile is not
configured, the default value is based on the TLS security profile set for the API server.



OpenShift Container Platform 4.9 Networking

44

https://wiki.mozilla.org/Security/Server_Side_TLS#Old_backward_compatibility
https://wiki.mozilla.org/Security/Server_Side_TLS#Intermediate_compatibility_.28recommended.29
https://wiki.mozilla.org/Security/Server_Side_TLS#Modern_compatibility

Sample IngressController CR that configures the Old TLS security profile

The TLS security profile defines the minimum TLS version and the TLS ciphers for TLS connections for
Ingress Controllers.

You can see the ciphers and the minimum TLS version of the configured TLS security profile in the
IngressController custom resource (CR) under Status.Tls Profile and the configured TLS security
profile under Spec.Tls Security Profile. For the Custom TLS security profile, the specific ciphers and
minimum TLS version are listed under both parameters.

NOTE

The HAProxy Ingress Controller image supports TLS 1.3 and the Modern profile.

The Ingress Operator also converts the TLS 1.0 of an Old or Custom profile to 1.1.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Edit the IngressController CR in the openshift-ingress-operator project to configure the TLS
security profile:

2. Add the spec.tlsSecurityProfile field:

Sample IngressController CR for a Custom profile

apiVersion: operator.openshift.io/v1
kind: IngressController
 ...
spec:
 tlsSecurityProfile:
 old: {}
 type: Old
 ...

$ oc edit IngressController default -n openshift-ingress-operator

apiVersion: operator.openshift.io/v1
kind: IngressController
 ...
spec:
 tlsSecurityProfile:
 type: Custom 1
 custom: 2
 ciphers: 3
 - ECDHE-ECDSA-CHACHA20-POLY1305
 - ECDHE-RSA-CHACHA20-POLY1305
 - ECDHE-RSA-AES128-GCM-SHA256
 - ECDHE-ECDSA-AES128-GCM-SHA256
 minTLSVersion: VersionTLS11
 ...

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

45

1

2

3

Specify the TLS security profile type (Old, Intermediate, or Custom). The default is
Intermediate.

Specify the appropriate field for the selected type:

old: {}

intermediate: {}

custom:

For the custom type, specify a list of TLS ciphers and minimum accepted TLS version.

3. Save the file to apply the changes.

Verification

Verify that the profile is set in the IngressController CR:

Example output

6.3.1.3. Configuring mutual TLS authentication

You can configure the Ingress Controller to enable mutual TLS (mTLS) authentication by setting a
spec.clientTLS value. The clientTLS value configures the Ingress Controller to verify client certificates.
This configuration includes setting a clientCA value, which is a reference to a config map. The config
map contains the PEM-encoded CA certificate bundle that is used to verify a client’s certificate.
Optionally, you can configure a list of certificate subject filters.

If the clientCA value specifies an X509v3 certificate revocation list (CRL) distribution point, the Ingress

$ oc describe IngressController default -n openshift-ingress-operator

Name: default
Namespace: openshift-ingress-operator
Labels: <none>
Annotations: <none>
API Version: operator.openshift.io/v1
Kind: IngressController
 ...
Spec:
 ...
 Tls Security Profile:
 Custom:
 Ciphers:
 ECDHE-ECDSA-CHACHA20-POLY1305
 ECDHE-RSA-CHACHA20-POLY1305
 ECDHE-RSA-AES128-GCM-SHA256
 ECDHE-ECDSA-AES128-GCM-SHA256
 Min TLS Version: VersionTLS11
 Type: Custom
 ...

OpenShift Container Platform 4.9 Networking

46

If the clientCA value specifies an X509v3 certificate revocation list (CRL) distribution point, the Ingress
Operator downloads the CRL and configures the Ingress Controller to acknowledge it. Requests that do
not provide valid certificates are rejected.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a config map that is in the openshift-config namespace:

NOTE

The config map data key must be ca-bundle.pem, and the data value must be a
CA certificate in PEM format.

2. Edit the IngressController resource in the openshift-ingress-operator project:

3. Add the spec.clientTLS field and subfields to configure mutual TLS:

Sample IngressController CR for a clientTLS profile that specifies filtering patterns

6.3.2. Ingress controller endpoint publishing strategy

NodePortService endpoint publishing strategy

The NodePortService endpoint publishing strategy publishes the Ingress Controller using a Kubernetes
NodePort service.

In this configuration, the Ingress Controller deployment uses container networking. A NodePortService
is created to publish the deployment. The specific node ports are dynamically allocated by OpenShift
Container Platform; however, to support static port allocations, your changes to the node port field of
the managed NodePortService are preserved.

Figure 6.1. Diagram of NodePortService

$ oc create configmap router-ca-certs-default --from-file=ca-bundle.pem=client-ca.crt -n
openshift-config

$ oc edit IngressController default -n openshift-ingress-operator

 apiVersion: operator.openshift.io/v1
 kind: IngressController
 metadata:
 name: default
 namespace: openshift-ingress-operator
 spec:
 clientTLS:
 clientCertificatePolicy: Required
 clientCA:
 name: router-ca-certs-default
 allowedSubjectPatterns:
 - "^/CN=example.com/ST=NC/C=US/O=Security/OU=OpenShift$"

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

47

Figure 6.1. Diagram of NodePortService

The preceding graphic shows the following concepts pertaining to OpenShift Container Platform
Ingress NodePort endpoint publishing strategy:

All the available nodes in the cluster have their own, externally accessible IP addresses. The
service running in the cluster is bound to the unique NodePort for all the nodes.

When the client connects to a node that is down, for example, by connecting the 10.0.128.4 IP
address in the graphic, the node port directly connects the client to an available node that is
running the service. In this scenario, no load balancing is required. As the image shows, the
10.0.128.4 address is down and another IP address must be used instead.

NOTE

The Ingress Operator ignores any updates to .spec.ports[].nodePort fields of the
service.

By default, ports are allocated automatically and you can access the port allocations for
integrations. However, sometimes static port allocations are necessary to integrate with
existing infrastructure which may not be easily reconfigured in response to dynamic ports.
To achieve integrations with static node ports, you can update the managed service
resource directly.

For more information, see the Kubernetes Services documentation on NodePort.

OpenShift Container Platform 4.9 Networking

48

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport

HostNetwork endpoint publishing strategy

The HostNetwork endpoint publishing strategy publishes the Ingress Controller on node ports where
the Ingress Controller is deployed.

An Ingress controller with the HostNetwork endpoint publishing strategy can have only one pod replica
per node. If you want n replicas, you must use at least n nodes where those replicas can be scheduled.
Because each pod replica requests ports 80 and 443 on the node host where it is scheduled, a replica
cannot be scheduled to a node if another pod on the same node is using those ports.

6.4. VIEW THE DEFAULT INGRESS CONTROLLER

The Ingress Operator is a core feature of OpenShift Container Platform and is enabled out of the box.

Every new OpenShift Container Platform installation has an ingresscontroller named default. It can be
supplemented with additional Ingress Controllers. If the default ingresscontroller is deleted, the
Ingress Operator will automatically recreate it within a minute.

Procedure

View the default Ingress Controller:

6.5. VIEW INGRESS OPERATOR STATUS

You can view and inspect the status of your Ingress Operator.

Procedure

View your Ingress Operator status:

6.6. VIEW INGRESS CONTROLLER LOGS

You can view your Ingress Controller logs.

Procedure

View your Ingress Controller logs:

6.7. VIEW INGRESS CONTROLLER STATUS

Your can view the status of a particular Ingress Controller.

Procedure

View the status of an Ingress Controller:

$ oc describe --namespace=openshift-ingress-operator ingresscontroller/default

$ oc describe clusteroperators/ingress

$ oc logs --namespace=openshift-ingress-operator deployments/ingress-operator

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

49

6.8. CONFIGURING THE INGRESS CONTROLLER

6.8.1. Setting a custom default certificate

As an administrator, you can configure an Ingress Controller to use a custom certificate by creating a
Secret resource and editing the IngressController custom resource (CR).

Prerequisites

You must have a certificate/key pair in PEM-encoded files, where the certificate is signed by a
trusted certificate authority or by a private trusted certificate authority that you configured in a
custom PKI.

Your certificate meets the following requirements:

The certificate is valid for the ingress domain.

The certificate uses the subjectAltName extension to specify a wildcard domain, such as
*.apps.ocp4.example.com.

You must have an IngressController CR. You may use the default one:

Example output

NOTE

If you have intermediate certificates, they must be included in the tls.crt file of the secret
containing a custom default certificate. Order matters when specifying a certificate; list
your intermediate certificate(s) after any server certificate(s).

Procedure

The following assumes that the custom certificate and key pair are in the tls.crt and tls.key files in the
current working directory. Substitute the actual path names for tls.crt and tls.key. You also may
substitute another name for custom-certs-default when creating the Secret resource and referencing
it in the IngressController CR.

NOTE

This action will cause the Ingress Controller to be redeployed, using a rolling deployment
strategy.

1. Create a Secret resource containing the custom certificate in the openshift-ingress
namespace using the tls.crt and tls.key files.

$ oc describe --namespace=openshift-ingress-operator ingresscontroller/<name>

$ oc --namespace openshift-ingress-operator get ingresscontrollers

NAME AGE
default 10m

OpenShift Container Platform 4.9 Networking

50

2. Update the IngressController CR to reference the new certificate secret:

3. Verify the update was effective:

where:

<domain>

Specifies the base domain name for your cluster.

Example output

TIP

You can alternatively apply the following YAML to set a custom default certificate:

The certificate secret name should match the value used to update the CR.

Once the IngressController CR has been modified, the Ingress Operator updates the Ingress Controller’s
deployment to use the custom certificate.

6.8.2. Removing a custom default certificate

As an administrator, you can remove a custom certificate that you configured an Ingress Controller to
use.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

$ oc --namespace openshift-ingress create secret tls custom-certs-default --cert=tls.crt --
key=tls.key

$ oc patch --type=merge --namespace openshift-ingress-operator ingresscontrollers/default \
 --patch '{"spec":{"defaultCertificate":{"name":"custom-certs-default"}}}'

$ echo Q |\
 openssl s_client -connect console-openshift-console.apps.<domain>:443 -showcerts
2>/dev/null |\
 openssl x509 -noout -subject -issuer -enddate

subject=C = US, ST = NC, L = Raleigh, O = RH, OU = OCP4, CN = *.apps.example.com
issuer=C = US, ST = NC, L = Raleigh, O = RH, OU = OCP4, CN = example.com
notAfter=May 10 08:32:45 2022 GM

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 defaultCertificate:
 name: custom-certs-default

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

51

You have installed the OpenShift CLI (oc).

You previously configured a custom default certificate for the Ingress Controller.

Procedure

To remove the custom certificate and restore the certificate that ships with OpenShift
Container Platform, enter the following command:

There can be a delay while the cluster reconciles the new certificate configuration.

Verification

To confirm that the original cluster certificate is restored, enter the following command:

where:

<domain>

Specifies the base domain name for your cluster.

Example output

6.8.3. Scaling an Ingress Controller

Manually scale an Ingress Controller to meeting routing performance or availability requirements such as
the requirement to increase throughput. oc commands are used to scale the IngressController
resource. The following procedure provides an example for scaling up the default IngressController.

NOTE

Scaling is not an immediate action, as it takes time to create the desired number of
replicas.

Procedure

1. View the current number of available replicas for the default IngressController:

Example output

$ oc patch -n openshift-ingress-operator ingresscontrollers/default \
 --type json -p $'- op: remove\n path: /spec/defaultCertificate'

$ echo Q | \
 openssl s_client -connect console-openshift-console.apps.<domain>:443 -showcerts
2>/dev/null | \
 openssl x509 -noout -subject -issuer -enddate

subject=CN = *.apps.<domain>
issuer=CN = ingress-operator@1620633373
notAfter=May 10 10:44:36 2023 GMT

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o
jsonpath='{$.status.availableReplicas}'

OpenShift Container Platform 4.9 Networking

52

1

2. Scale the default IngressController to the desired number of replicas using the oc patch
command. The following example scales the default IngressController to 3 replicas:

Example output

3. Verify that the default IngressController scaled to the number of replicas that you specified:

Example output

TIP

You can alternatively apply the following YAML to scale an Ingress Controller to three replicas:

If you need a different amount of replicas, change the replicas value.

6.8.4. Configuring Ingress access logging

You can configure the Ingress Controller to enable access logs. If you have clusters that do not receive
much traffic, then you can log to a sidecar. If you have high traffic clusters, to avoid exceeding the
capacity of the logging stack or to integrate with a logging infrastructure outside of OpenShift
Container Platform, you can forward logs to a custom syslog endpoint. You can also specify the format
for access logs.

Container logging is useful to enable access logs on low-traffic clusters when there is no existing Syslog
logging infrastructure, or for short-term use while diagnosing problems with the Ingress Controller.

Syslog is needed for high-traffic clusters where access logs could exceed the OpenShift Logging
stack’s capacity, or for environments where any logging solution needs to integrate with an existing
Syslog logging infrastructure. The Syslog use-cases can overlap.

2

$ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":{"replicas":
3}}' --type=merge

ingresscontroller.operator.openshift.io/default patched

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o
jsonpath='{$.status.availableReplicas}'

3

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 3 1

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

53

Prerequisites

Log in as a user with cluster-admin privileges.

Procedure

Configure Ingress access logging to a sidecar.

To configure Ingress access logging, you must specify a destination using
spec.logging.access.destination. To specify logging to a sidecar container, you must specify
Container spec.logging.access.destination.type. The following example is an Ingress
Controller definition that logs to a Container destination:

When you configure the Ingress Controller to log to a sidecar, the operator creates a container
named logs inside the Ingress Controller Pod:

Example output

Configure Ingress access logging to a Syslog endpoint.

To configure Ingress access logging, you must specify a destination using
spec.logging.access.destination. To specify logging to a Syslog endpoint destination, you
must specify Syslog for spec.logging.access.destination.type. If the destination type is
Syslog, you must also specify a destination endpoint using
spec.logging.access.destination.syslog.endpoint and you can specify a facility using
spec.logging.access.destination.syslog.facility. The following example is an Ingress
Controller definition that logs to a Syslog destination:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2
 logging:
 access:
 destination:
 type: Container

$ oc -n openshift-ingress logs deployment.apps/router-default -c logs

2020-05-11T19:11:50.135710+00:00 router-default-57dfc6cd95-bpmk6 router-default-
57dfc6cd95-bpmk6 haproxy[108]: 174.19.21.82:39654 [11/May/2020:19:11:50.133] public
be_http:hello-openshift:hello-openshift/pod:hello-openshift:hello-openshift:10.128.2.12:8080
0/0/1/0/1 200 142 - - --NI 1/1/0/0/0 0/0 "GET / HTTP/1.1"

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2
 logging:

OpenShift Container Platform 4.9 Networking

54

NOTE

The syslog destination port must be UDP.

Configure Ingress access logging with a specific log format.

You can specify spec.logging.access.httpLogFormat to customize the log format. The
following example is an Ingress Controller definition that logs to a syslog endpoint with IP
address 1.2.3.4 and port 10514:

Disable Ingress access logging.

To disable Ingress access logging, leave spec.logging or spec.logging.access empty:

6.8.5. Setting Ingress Controller thread count

A cluster administrator can set the thread count to increase the amount of incoming connections a
cluster can handle. You can patch an existing Ingress Controller to increase the amount of threads.

Prerequisites

 access:
 destination:
 type: Syslog
 syslog:
 address: 1.2.3.4
 port: 10514

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2
 logging:
 access:
 destination:
 type: Syslog
 syslog:
 address: 1.2.3.4
 port: 10514
 httpLogFormat: '%ci:%cp [%t] %ft %b/%s %B %bq %HM %HU %HV'

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2
 logging:
 access: null

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

55

The following assumes that you already created an Ingress Controller.

Procedure

Update the Ingress Controller to increase the number of threads:

NOTE

If you have a node that is capable of running large amounts of resources, you can
configure spec.nodePlacement.nodeSelector with labels that match the
capacity of the intended node, and configure spec.tuningOptions.threadCount
to an appropriately high value.

6.8.6. Ingress Controller sharding

As the primary mechanism for traffic to enter the cluster, the demands on the Ingress Controller, or
router, can be significant. As a cluster administrator, you can shard the routes to:

Balance Ingress Controllers, or routers, with several routes to speed up responses to changes.

Allocate certain routes to have different reliability guarantees than other routes.

Allow certain Ingress Controllers to have different policies defined.

Allow only specific routes to use additional features.

Expose different routes on different addresses so that internal and external users can see
different routes, for example.

Ingress Controller can use either route labels or namespace labels as a sharding method.

6.8.6.1. Configuring Ingress Controller sharding by using route labels

Ingress Controller sharding by using route labels means that the Ingress Controller serves any route in
any namespace that is selected by the route selector.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Procedure

1. Edit the router-internal.yaml file:

$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":
{"tuningOptions": {"threadCount": 8}}}'

cat router-internal.yaml
apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
 kind: IngressController
 metadata:
 name: sharded
 namespace: openshift-ingress-operator

OpenShift Container Platform 4.9 Networking

56

2. Apply the Ingress Controller router-internal.yaml file:

The Ingress Controller selects routes in any namespace that have the label type: sharded.

6.8.6.2. Configuring Ingress Controller sharding by using namespace labels

Ingress Controller sharding by using namespace labels means that the Ingress Controller serves any
route in any namespace that is selected by the namespace selector.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

WARNING

If you deploy the Keepalived Ingress VIP, do not deploy a non-default Ingress
Controller with value HostNetwork for the endpointPublishingStrategy
parameter. Doing so might cause issues. Use value NodePort instead of
HostNetwork for endpointPublishingStrategy.

Procedure

1. Edit the router-internal.yaml file:

Example output

 spec:
 domain: <apps-sharded.basedomain.example.net>
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 routeSelector:
 matchLabels:
 type: sharded
 status: {}
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

oc apply -f router-internal.yaml



cat router-internal.yaml

apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
 kind: IngressController
 metadata:

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

57

2. Apply the Ingress Controller router-internal.yaml file:

The Ingress Controller selects routes in any namespace that is selected by the namespace
selector that have the label type: sharded.

6.8.7. Configuring an Ingress Controller to use an internal load balancer

When creating an Ingress Controller on cloud platforms, the Ingress Controller is published by a public
cloud load balancer by default. As an administrator, you can create an Ingress Controller that uses an
internal cloud load balancer.

WARNING

If your cloud provider is Microsoft Azure, you must have at least one public load
balancer that points to your nodes. If you do not, all of your nodes will lose egress
connectivity to the internet.

IMPORTANT

If you want to change the scope for an IngressController object, you must delete and
then recreate that IngressController object. You cannot change the
.spec.endpointPublishingStrategy.loadBalancer.scope parameter after the custom
resource (CR) is created.

Figure 6.2. Diagram of LoadBalancer

 name: sharded
 namespace: openshift-ingress-operator
 spec:
 domain: <apps-sharded.basedomain.example.net>
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 namespaceSelector:
 matchLabels:
 type: sharded
 status: {}
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

oc apply -f router-internal.yaml



OpenShift Container Platform 4.9 Networking

58

Figure 6.2. Diagram of LoadBalancer

The preceding graphic shows the following concepts pertaining to OpenShift Container Platform
Ingress LoadBalancerService endpoint publishing strategy:

You can load load balance externally, using the cloud provider load balancer, or internally, using
the OpenShift Ingress Controller Load Balancer.

You can use the single IP address of the load balancer and more familiar ports, such as 8080
and 4200 as shown on the cluster depicted in the graphic.

Traffic from the external load balancer is directed at the pods, and managed by the load
balancer, as depicted in the instance of a down node. See the Kubernetes Services
documentation for implementation details.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an IngressController custom resource (CR) in a file named <name>-ingress-
controller.yaml, such as in the following example:

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

59

https://kubernetes.io/docs/concepts/services-networking/service/#internal-load-balancer

1

2

3

1

Replace <name> with a name for the IngressController object.

Specify the domain for the application published by the controller.

Specify a value of Internal to use an internal load balancer.

2. Create the Ingress Controller defined in the previous step by running the following command:

Replace <name> with the name of the IngressController object.

3. Optional: Confirm that the Ingress Controller was created by running the following command:

6.8.8. Configuring global access for an Ingress Controller on GCP

An Ingress Controller created on GCP with an internal load balancer generates an internal IP address for
the service. A cluster administrator can specify the global access option, which enables clients in any
region within the same VPC network and compute region as the load balancer, to reach the workloads
running on your cluster.

For more information, see the GCP documentation for global access.

Prerequisites

You deployed an OpenShift Container Platform cluster on GCP infrastructure.

You configured an Ingress Controller to use an internal load balancer.

You installed the OpenShift CLI (oc).

Procedure

1. Configure the Ingress Controller resource to allow global access.

NOTE

You can also create an Ingress Controller and specify the global access option.

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 namespace: openshift-ingress-operator
 name: <name> 1
spec:
 domain: <domain> 2
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: Internal 3

$ oc create -f <name>-ingress-controller.yaml 1

$ oc --all-namespaces=true get ingresscontrollers

OpenShift Container Platform 4.9 Networking

60

https://cloud.google.com/kubernetes-engine/docs/how-to/internal-load-balancing#global_access

1

a. Configure the Ingress Controller resource:

b. Edit the YAML file:

Sample clientAccess configuration to Global

Set gcp.clientAccess to Global.

c. Save the file to apply the changes.

2. Run the following command to verify that the service allows global access:

The output shows that global access is enabled for GCP with the annotation,
networking.gke.io/internal-load-balancer-allow-global-access.

6.8.9. Configuring the default Ingress Controller for your cluster to be internal

You can configure the default Ingress Controller for your cluster to be internal by deleting and
recreating it.

WARNING

If your cloud provider is Microsoft Azure, you must have at least one public load
balancer that points to your nodes. If you do not, all of your nodes will lose egress
connectivity to the internet.

IMPORTANT

If you want to change the scope for an IngressController object, you must delete and
then recreate that IngressController object. You cannot change the
.spec.endpointPublishingStrategy.loadBalancer.scope parameter after the custom
resource (CR) is created.

Prerequisites

$ oc -n openshift-ingress-operator edit ingresscontroller/default

 spec:
 endpointPublishingStrategy:
 loadBalancer:
 providerParameters:
 gcp:
 clientAccess: Global 1
 type: GCP
 scope: Internal
 type: LoadBalancerService

$ oc -n openshift-ingress edit svc/router-default -o yaml



CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

61

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Configure the default Ingress Controller for your cluster to be internal by deleting and
recreating it.

6.8.10. Configuring the route admission policy

Administrators and application developers can run applications in multiple namespaces with the same
domain name. This is for organizations where multiple teams develop microservices that are exposed on
the same hostname.

WARNING

Allowing claims across namespaces should only be enabled for clusters with trust
between namespaces, otherwise a malicious user could take over a hostname. For
this reason, the default admission policy disallows hostname claims across
namespaces.

Prerequisites

Cluster administrator privileges.

Procedure

Edit the .spec.routeAdmission field of the ingresscontroller resource variable using the
following command:

Sample Ingress Controller configuration

$ oc replace --force --wait --filename - <<EOF
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 namespace: openshift-ingress-operator
 name: default
spec:
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: Internal
EOF



$ oc -n openshift-ingress-operator patch ingresscontroller/default --patch '{"spec":
{"routeAdmission":{"namespaceOwnership":"InterNamespaceAllowed"}}}' --type=merge

OpenShift Container Platform 4.9 Networking

62

TIP

You can alternatively apply the following YAML to configure the route admission policy:

6.8.11. Using wildcard routes

The HAProxy Ingress Controller has support for wildcard routes. The Ingress Operator uses
wildcardPolicy to configure the ROUTER_ALLOW_WILDCARD_ROUTES environment variable of
the Ingress Controller.

The default behavior of the Ingress Controller is to admit routes with a wildcard policy of None, which is
backwards compatible with existing IngressController resources.

Procedure

1. Configure the wildcard policy.

a. Use the following command to edit the IngressController resource:

b. Under spec, set the wildcardPolicy field to WildcardsDisallowed or WildcardsAllowed:

6.8.12. Using X-Forwarded headers

You configure the HAProxy Ingress Controller to specify a policy for how to handle HTTP headers
including Forwarded and X-Forwarded-For. The Ingress Operator uses the HTTPHeaders field to
configure the ROUTER_SET_FORWARDED_HEADERS environment variable of the Ingress
Controller.

Procedure

1. Configure the HTTPHeaders field for the Ingress Controller.

a. Use the following command to edit the IngressController resource:

spec:
 routeAdmission:
 namespaceOwnership: InterNamespaceAllowed
...

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 routeAdmission:
 namespaceOwnership: InterNamespaceAllowed

$ oc edit IngressController

spec:
 routeAdmission:
 wildcardPolicy: WildcardsDisallowed # or WildcardsAllowed

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

63

b. Under spec, set the HTTPHeaders policy field to Append, Replace, IfNone, or Never:

Example use cases
As a cluster administrator, you can:

Configure an external proxy that injects the X-Forwarded-For header into each request before
forwarding it to an Ingress Controller.
To configure the Ingress Controller to pass the header through unmodified, you specify the
never policy. The Ingress Controller then never sets the headers, and applications receive only
the headers that the external proxy provides.

Configure the Ingress Controller to pass the X-Forwarded-For header that your external proxy
sets on external cluster requests through unmodified.
To configure the Ingress Controller to set the X-Forwarded-For header on internal cluster
requests, which do not go through the external proxy, specify the if-none policy. If an HTTP
request already has the header set through the external proxy, then the Ingress Controller
preserves it. If the header is absent because the request did not come through the proxy, then
the Ingress Controller adds the header.

As an application developer, you can:

Configure an application-specific external proxy that injects the X-Forwarded-For header.
To configure an Ingress Controller to pass the header through unmodified for an application’s
Route, without affecting the policy for other Routes, add an annotation
haproxy.router.openshift.io/set-forwarded-headers: if-none or
haproxy.router.openshift.io/set-forwarded-headers: never on the Route for the application.

NOTE

You can set the haproxy.router.openshift.io/set-forwarded-headers
annotation on a per route basis, independent from the globally set value for the
Ingress Controller.

6.8.13. Enabling HTTP/2 Ingress connectivity

You can enable transparent end-to-end HTTP/2 connectivity in HAProxy. It allows application owners
to make use of HTTP/2 protocol capabilities, including single connection, header compression, binary
streams, and more.

You can enable HTTP/2 connectivity for an individual Ingress Controller or for the entire cluster.

To enable the use of HTTP/2 for the connection from the client to HAProxy, a route must specify a
custom certificate. A route that uses the default certificate cannot use HTTP/2. This restriction is
necessary to avoid problems from connection coalescing, where the client re-uses a connection for

$ oc edit IngressController

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 httpHeaders:
 forwardedHeaderPolicy: Append

OpenShift Container Platform 4.9 Networking

64

different routes that use the same certificate.

The connection from HAProxy to the application pod can use HTTP/2 only for re-encrypt routes and
not for edge-terminated or insecure routes. This restriction is because HAProxy uses Application-Level
Protocol Negotiation (ALPN), which is a TLS extension, to negotiate the use of HTTP/2 with the back-
end. The implication is that end-to-end HTTP/2 is possible with passthrough and re-encrypt and not
with insecure or edge-terminated routes.

WARNING

Using WebSockets with a re-encrypt route and with HTTP/2 enabled on an Ingress
Controller requires WebSocket support over HTTP/2. WebSockets over HTTP/2 is a
feature of HAProxy 2.4, which is unsupported in OpenShift Container Platform at
this time.

IMPORTANT

For non-passthrough routes, the Ingress Controller negotiates its connection to the
application independently of the connection from the client. This means a client may
connect to the Ingress Controller and negotiate HTTP/1.1, and the Ingress Controller may
then connect to the application, negotiate HTTP/2, and forward the request from the
client HTTP/1.1 connection using the HTTP/2 connection to the application. This poses a
problem if the client subsequently tries to upgrade its connection from HTTP/1.1 to the
WebSocket protocol, because the Ingress Controller cannot forward WebSocket to
HTTP/2 and cannot upgrade its HTTP/2 connection to WebSocket. Consequently, if you
have an application that is intended to accept WebSocket connections, it must not allow
negotiating the HTTP/2 protocol or else clients will fail to upgrade to the WebSocket
protocol.

Procedure

Enable HTTP/2 on a single Ingress Controller.

To enable HTTP/2 on an Ingress Controller, enter the oc annotate command:

Replace <ingresscontroller_name> with the name of the Ingress Controller to annotate.

Enable HTTP/2 on the entire cluster.

To enable HTTP/2 for the entire cluster, enter the oc annotate command:

TIP



$ oc -n openshift-ingress-operator annotate ingresscontrollers/<ingresscontroller_name>
ingress.operator.openshift.io/default-enable-http2=true

$ oc annotate ingresses.config/cluster ingress.operator.openshift.io/default-enable-http2=true

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

65

TIP

You can alternatively apply the following YAML to add the annotation:

6.8.14. Configuring the PROXY protocol for an Ingress Controller

A cluster administrator can configure the PROXY protocol when an Ingress Controller uses either the
HostNetwork or NodePortService endpoint publishing strategy types. The PROXY protocol enables
the load balancer to preserve the original client addresses for connections that the Ingress Controller
receives. The original client addresses are useful for logging, filtering, and injecting HTTP headers. In the
default configuration, the connections that the Ingress Controller receives only contain the source
address that is associated with the load balancer.

This feature is not supported in cloud deployments. This restriction is because when OpenShift
Container Platform runs in a cloud platform, and an IngressController specifies that a service load
balancer should be used, the Ingress Operator configures the load balancer service and enables the
PROXY protocol based on the platform requirement for preserving source addresses.

IMPORTANT

You must configure both OpenShift Container Platform and the external load balancer
to either use the PROXY protocol or to use TCP.

WARNING

The PROXY protocol is unsupported for the default Ingress Controller with
installer-provisioned clusters on non-cloud platforms that use a Keepalived Ingress
VIP.

Prerequisites

You created an Ingress Controller.

Procedure

1. Edit the Ingress Controller resource:

2. Set the PROXY configuration:

If your Ingress Controller uses the hostNetwork endpoint publishing strategy type, set the

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
 name: cluster
 annotations:
 ingress.operator.openshift.io/default-enable-http2: "true"



$ oc -n openshift-ingress-operator edit ingresscontroller/default

OpenShift Container Platform 4.9 Networking

66

https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

If your Ingress Controller uses the hostNetwork endpoint publishing strategy type, set the
spec.endpointPublishingStrategy.hostNetwork.protocol subfield to PROXY:

Sample hostNetwork configuration to PROXY

If your Ingress Controller uses the NodePortService endpoint publishing strategy type, set
the spec.endpointPublishingStrategy.nodePort.protocol subfield to PROXY:

Sample nodePort configuration to PROXY

6.8.15. Specifying an alternative cluster domain using the appsDomain option

As a cluster administrator, you can specify an alternative to the default cluster domain for user-created
routes by configuring the appsDomain field. The appsDomain field is an optional domain for
OpenShift Container Platform to use instead of the default, which is specified in the domain field. If you
specify an alternative domain, it overrides the default cluster domain for the purpose of determining the
default host for a new route.

For example, you can use the DNS domain for your company as the default domain for routes and
ingresses for applications running on your cluster.

Prerequisites

You deployed an OpenShift Container Platform cluster.

You installed the oc command line interface.

Procedure

1. Configure the appsDomain field by specifying an alternative default domain for user-created
routes.

a. Edit the ingress cluster resource:

b. Edit the YAML file:

Sample appsDomain configuration to test.example.com

 spec:
 endpointPublishingStrategy:
 hostNetwork:
 protocol: PROXY
 type: HostNetwork

 spec:
 endpointPublishingStrategy:
 nodePort:
 protocol: PROXY
 type: NodePortService

$ oc edit ingresses.config/cluster -o yaml

apiVersion: config.openshift.io/v1
kind: Ingress

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

67

1

2

Specifies the default domain. You cannot modify the default domain after installation.

Optional: Domain for OpenShift Container Platform infrastructure to use for
application routes. Instead of the default prefix, apps, you can use an alternative prefix
like test.

2. Verify that an existing route contains the domain name specified in the appsDomain field by
exposing the route and verifying the route domain change:

NOTE

Wait for the openshift-apiserver finish rolling updates before exposing the
route.

a. Expose the route:

Example output:

6.8.16. Converting HTTP header case

HAProxy 2.2 lowercases HTTP header names by default, for example, changing Host: xyz.com to host:
xyz.com. If legacy applications are sensitive to the capitalization of HTTP header names, use the Ingress
Controller spec.httpHeaders.headerNameCaseAdjustments API field for a solution to accommodate
legacy applications until they can be fixed.

IMPORTANT

Because OpenShift Container Platform 4.9 includes HAProxy 2.2, make sure to add the
necessary configuration by using spec.httpHeaders.headerNameCaseAdjustments
before upgrading.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

metadata:
 name: cluster
spec:
 domain: apps.example.com 1
 appsDomain: <test.example.com> 2

$ oc expose service hello-openshift
route.route.openshift.io/hello-openshift exposed

$ oc get routes
NAME HOST/PORT PATH SERVICES PORT
TERMINATION WILDCARD
hello-openshift hello_openshift-<my_project>.test.example.com
hello-openshift 8080-tcp None

OpenShift Container Platform 4.9 Networking

68

1

Procedure

As a cluster administrator, you can convert the HTTP header case by entering the oc patch command or
by setting the HeaderNameCaseAdjustments field in the Ingress Controller YAML file.

Specify an HTTP header to be capitalized by entering the oc patch command.

1. Enter the oc patch command to change the HTTP host header to Host:

2. Annotate the route of the application:

The Ingress Controller then adjusts the host request header as specified.

Specify adjustments using the HeaderNameCaseAdjustments field by configuring the Ingress
Controller YAML file.

1. The following example Ingress Controller YAML adjusts the host header to Host for HTTP/1
requests to appropriately annotated routes:

Example Ingress Controller YAML

2. The following example route enables HTTP response header name case adjustments using
the haproxy.router.openshift.io/h1-adjust-case annotation:

Example route YAML

Set haproxy.router.openshift.io/h1-adjust-case to true.

$ oc -n openshift-ingress-operator patch ingresscontrollers/default --type=merge --
patch='{"spec":{"httpHeaders":{"headerNameCaseAdjustments":["Host"]}}}'

$ oc annotate routes/my-application haproxy.router.openshift.io/h1-adjust-case=true

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 httpHeaders:
 headerNameCaseAdjustments:
 - Host

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/h1-adjust-case: true 1
 name: my-application
 namespace: my-application
spec:
 to:
 kind: Service
 name: my-application

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

69

6.8.17. Customizing HAProxy error code response pages

As a cluster administrator, you can specify a custom error code response page for either 503, 404, or
both error pages. The HAProxy router serves a 503 error page when the application pod is not running
or a 404 error page when the requested URL does not exist. For example, if you customize the 503 error
code response page, then the page is served when the application pod is not running, and the default
404 error code HTTP response page is served by the HAProxy router for an incorrect route or a non-
existing route.

Custom error code response pages are specified in a config map then patched to the Ingress Controller.
The config map keys have two available file names as follows: error-page-503.http and error-page-
404.http.

Custom HTTP error code response pages must follow the HAProxy HTTP error page configuration
guidelines. Here is an example of the default OpenShift Container Platform HAProxy router http 503
error code response page. You can use the default content as a template for creating your own custom
page.

By default, the HAProxy router serves only a 503 error page when the application is not running or when
the route is incorrect or non-existent. This default behavior is the same as the behavior on OpenShift
Container Platform 4.8 and earlier. If a config map for the customization of an HTTP error code
response is not provided, and you are using a custom HTTP error code response page, the router serves
a default 404 or 503 error code response page.

NOTE

If you use the OpenShift Container Platform default 503 error code page as a template
for your customizations, the headers in the file require an editor that can use CRLF line
endings.

Procedure

1. Create a config map named my-custom-error-code-pages in the openshift-config
namespace:

IMPORTANT

If you do not specify the correct format for the custom error code response
page, a router pod outage occurs. To resolve this outage, you must delete or
correct the config map and delete the affected router pods so they can be
recreated with the correct information.

2. Patch the Ingress Controller to reference the my-custom-error-code-pages config map by
name:

The Ingress Operator copies the my-custom-error-code-pages config map from the
openshift-config namespace to the openshift-ingress namespace. The Operator names the

$ oc -n openshift-config create configmap my-custom-error-code-pages \
--from-file=error-page-503.http \
--from-file=error-page-404.http

$ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":
{"httpErrorCodePages":{"name":"my-custom-error-code-pages"}}}' --type=merge

OpenShift Container Platform 4.9 Networking

70

https://www.haproxy.com/documentation/hapee/latest/configuration/config-sections/http-errors/
https://raw.githubusercontent.com/openshift/router/master/images/router/haproxy/conf/error-page-503.http

1

config map according to the pattern, <your_ingresscontroller_name>-errorpages, in the
openshift-ingress namespace.

3. Display the copy:

Example output

NAME DATA AGE
default-errorpages 2 25s 1

The example config map name is default-errorpages because the default Ingress
Controller custom resource (CR) was patched.

4. Confirm that the config map containing the custom error response page mounts on the router
volume where the config map key is the filename that has the custom HTTP error code
response:

For 503 custom HTTP custom error code response:

For 404 custom HTTP custom error code response:

Verification

Verify your custom error code HTTP response:

1. Create a test project and application:

2. For 503 custom http error code response:

a. Stop all the pods for the application.

b. Run the following curl command or visit the route hostname in the browser:

3. For 404 custom http error code response:

a. Visit a non-existent route or an incorrect route.

b. Run the following curl command or visit the route hostname in the browser:

$ oc get cm default-errorpages -n openshift-ingress

$ oc -n openshift-ingress rsh <router_pod> cat
/var/lib/haproxy/conf/error_code_pages/error-page-503.http

$ oc -n openshift-ingress rsh <router_pod> cat
/var/lib/haproxy/conf/error_code_pages/error-page-404.http

 $ oc new-project test-ingress

$ oc new-app django-psql-example

$ curl -vk <route_hostname>

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

71

4. Check if the errorfile attribute is properly in the haproxy.config file:

6.9. ADDITIONAL RESOURCES

Configuring a custom PKI

$ curl -vk <route_hostname>

$ oc -n openshift-ingress rsh <router> cat /var/lib/haproxy/conf/haproxy.config | grep errorfile

OpenShift Container Platform 4.9 Networking

72

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-a-custom-pki

CHAPTER 7. VERIFYING CONNECTIVITY TO AN ENDPOINT
The Cluster Network Operator (CNO) runs a controller, the connectivity check controller, that performs
a connection health check between resources within your cluster. By reviewing the results of the health
checks, you can diagnose connection problems or eliminate network connectivity as the cause of an
issue that you are investigating.

7.1. CONNECTION HEALTH CHECKS PERFORMED

To verify that cluster resources are reachable, a TCP connection is made to each of the following cluster
API services:

Kubernetes API server service

Kubernetes API server endpoints

OpenShift API server service

OpenShift API server endpoints

Load balancers

To verify that services and service endpoints are reachable on every node in the cluster, a TCP
connection is made to each of the following targets:

Health check target service

Health check target endpoints

7.2. IMPLEMENTATION OF CONNECTION HEALTH CHECKS

The connectivity check controller orchestrates connection verification checks in your cluster. The results
for the connection tests are stored in PodNetworkConnectivity objects in the openshift-network-
diagnostics namespace. Connection tests are performed every minute in parallel.

The Cluster Network Operator (CNO) deploys several resources to the cluster to send and receive
connectivity health checks:

Health check source

This program deploys in a single pod replica set managed by a Deployment object. The program
consumes PodNetworkConnectivity objects and connects to the spec.targetEndpoint specified in
each object.

Health check target

A pod deployed as part of a daemon set on every node in the cluster. The pod listens for inbound
health checks. The presence of this pod on every node allows for the testing of connectivity to each
node.

7.3. PODNETWORKCONNECTIVITYCHECK OBJECT FIELDS

The PodNetworkConnectivityCheck object fields are described in the following tables.

Table 7.1. PodNetworkConnectivityCheck object fields

CHAPTER 7. VERIFYING CONNECTIVITY TO AN ENDPOINT

73

Field Type Description

metadata.name string The name of the object in the following format:
<source>-to-<target>. The destination described
by <target> includes one of following strings:

load-balancer-api-external

load-balancer-api-internal

kubernetes-apiserver-endpoint

kubernetes-apiserver-service-cluster

network-check-target

openshift-apiserver-endpoint

openshift-apiserver-service-cluster

metadata.namespace string The namespace that the object is associated with.
This value is always openshift-network-
diagnostics.

spec.sourcePod string The name of the pod where the connection check
originates, such as network-check-source-
596b4c6566-rgh92.

spec.targetEndpoint string The target of the connection check, such as
api.devcluster.example.com:6443.

spec.tlsClientCert object Configuration for the TLS certificate to use.

spec.tlsClientCert.name string The name of the TLS certificate used, if any. The
default value is an empty string.

status object An object representing the condition of the
connection test and logs of recent connection
successes and failures.

status.conditions array The latest status of the connection check and any
previous statuses.

status.failures array Connection test logs from unsuccessful attempts.

status.outages array Connect test logs covering the time periods of any
outages.

status.successes array Connection test logs from successful attempts.

The following table describes the fields for objects in the status.conditions array:

OpenShift Container Platform 4.9 Networking

74

Table 7.2. status.conditions

Field Type Description

lastTransitionTime string The time that the condition of the connection
transitioned from one status to another.

message string The details about last transition in a human readable
format.

reason string The last status of the transition in a machine readable
format.

status string The status of the condition.

type string The type of the condition.

The following table describes the fields for objects in the status.conditions array:

Table 7.3. status.outages

Field Type Description

end string The timestamp from when the connection failure is
resolved.

endLogs array Connection log entries, including the log entry
related to the successful end of the outage.

message string A summary of outage details in a human readable
format.

start string The timestamp from when the connection failure is
first detected.

startLogs array Connection log entries, including the original failure.

Connection log fields
The fields for a connection log entry are described in the following table. The object is used in the
following fields:

status.failures[]

status.successes[]

status.outages[].startLogs[]

status.outages[].endLogs[]

Table 7.4. Connection log object

CHAPTER 7. VERIFYING CONNECTIVITY TO AN ENDPOINT

75

Field Type Description

latency string Records the duration of the action.

message string Provides the status in a human readable format.

reason string Provides the reason for status in a machine readable
format. The value is one of TCPConnect,
TCPConnectError, DNSResolve, DNSError.

success boolean Indicates if the log entry is a success or failure.

time string The start time of connection check.

7.4. VERIFYING NETWORK CONNECTIVITY FOR AN ENDPOINT

As a cluster administrator, you can verify the connectivity of an endpoint, such as an API server, load
balancer, service, or pod.

Prerequisites

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

Procedure

1. To list the current PodNetworkConnectivityCheck objects, enter the following command:

Example output

$ oc get podnetworkconnectivitycheck -n openshift-network-diagnostics

NAME AGE
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-1 73m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-2 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
service-cluster 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-default-
service-cluster 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-load-balancer-api-
external 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-load-balancer-api-
internal 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-master-0 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-

OpenShift Container Platform 4.9 Networking

76

2. View the connection test logs:

a. From the output of the previous command, identify the endpoint that you want to review
the connectivity logs for.

b. To view the object, enter the following command:

where <name> specifies the name of the PodNetworkConnectivityCheck object.

Example output

ln-x5sv9rb-f76d1-4rzrp-master-1 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-master-2 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh 74m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-worker-c-n8mbf 74m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-worker-d-4hnrz 74m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-
service-cluster 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-1 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-2 74m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
service-cluster 75m

$ oc get podnetworkconnectivitycheck <name> \
 -n openshift-network-diagnostics -o yaml

apiVersion: controlplane.operator.openshift.io/v1alpha1
kind: PodNetworkConnectivityCheck
metadata:
 name: network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-
apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0
 namespace: openshift-network-diagnostics
 ...
spec:
 sourcePod: network-check-source-7c88f6d9f-hmg2f
 targetEndpoint: 10.0.0.4:6443
 tlsClientCert:
 name: ""
status:
 conditions:
 - lastTransitionTime: "2021-01-13T20:11:34Z"
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnectSuccess
 status: "True"
 type: Reachable
 failures:
 - latency: 2.241775ms

CHAPTER 7. VERIFYING CONNECTIVITY TO AN ENDPOINT

77

 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: failed
 to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443: connect:
 connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:10:34Z"
 - latency: 2.582129ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: failed
 to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443: connect:
 connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:09:34Z"
 - latency: 3.483578ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: failed
 to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443: connect:
 connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:08:34Z"
 outages:
 - end: "2021-01-13T20:11:34Z"
 endLogs:
 - latency: 2.032018ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
 tcp connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T20:11:34Z"
 - latency: 2.241775ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
 failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:
 connect: connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:10:34Z"
 - latency: 2.582129ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
 failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:
 connect: connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:09:34Z"
 - latency: 3.483578ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
 failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:
 connect: connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:08:34Z"
 message: Connectivity restored after 2m59.999789186s
 start: "2021-01-13T20:08:34Z"
 startLogs:
 - latency: 3.483578ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
 failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:

OpenShift Container Platform 4.9 Networking

78

 connect: connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:08:34Z"
 successes:
 - latency: 2.845865ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:14:34Z"
 - latency: 2.926345ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:13:34Z"
 - latency: 2.895796ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:12:34Z"
 - latency: 2.696844ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:11:34Z"
 - latency: 1.502064ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:10:34Z"
 - latency: 1.388857ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:09:34Z"
 - latency: 1.906383ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:08:34Z"
 - latency: 2.089073ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:07:34Z"
 - latency: 2.156994ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'

CHAPTER 7. VERIFYING CONNECTIVITY TO AN ENDPOINT

79

 reason: TCPConnect
 success: true
 time: "2021-01-13T21:06:34Z"
 - latency: 1.777043ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:05:34Z"

OpenShift Container Platform 4.9 Networking

80

CHAPTER 8. CONFIGURING THE NODE PORT SERVICE
RANGE

As a cluster administrator, you can expand the available node port range. If your cluster uses of a large
number of node ports, you might need to increase the number of available ports.

The default port range is 30000-32767. You can never reduce the port range, even if you first expand it
beyond the default range.

8.1. PREREQUISITES

Your cluster infrastructure must allow access to the ports that you specify within the expanded
range. For example, if you expand the node port range to 30000-32900, the inclusive port range
of 32768-32900 must be allowed by your firewall or packet filtering configuration.

8.2. EXPANDING THE NODE PORT RANGE

You can expand the node port range for the cluster.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster with a user with cluster-admin privileges.

Procedure

1. To expand the node port range, enter the following command. Replace <port> with the largest
port number in the new range.

TIP

You can alternatively apply the following YAML to update the node port range:

Example output

2. To confirm that the configuration is active, enter the following command. It can take several

$ oc patch network.config.openshift.io cluster --type=merge -p \
 '{
 "spec":
 { "serviceNodePortRange": "30000-<port>" }
 }'

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 serviceNodePortRange: "30000-<port>"

network.config.openshift.io/cluster patched

CHAPTER 8. CONFIGURING THE NODE PORT SERVICE RANGE

81

2. To confirm that the configuration is active, enter the following command. It can take several
minutes for the update to apply.

Example output

8.3. ADDITIONAL RESOURCES

Configuring ingress cluster traffic using a NodePort

Network [config.openshift.io/v1]

Service [core/v1]

$ oc get configmaps -n openshift-kube-apiserver config \
 -o jsonpath="{.data['config\.yaml']}" | \
 grep -Eo '"service-node-port-range":["[[:digit:]]+-[[:digit:]]+"]'

"service-node-port-range":["30000-33000"]

OpenShift Container Platform 4.9 Networking

82

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-ingress-cluster-traffic-nodeport
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/api_reference/#network-config-openshift-io-v1
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/api_reference/#service-core-v1

CHAPTER 9. CONFIGURING IP FAILOVER
This topic describes configuring IP failover for pods and services on your OpenShift Container Platform
cluster.

IP failover manages a pool of Virtual IP (VIP) addresses on a set of nodes. Every VIP in the set is
serviced by a node selected from the set. As long a single node is available, the VIPs are served. There is
no way to explicitly distribute the VIPs over the nodes, so there can be nodes with no VIPs and other
nodes with many VIPs. If there is only one node, all VIPs are on it.

NOTE

The VIPs must be routable from outside the cluster.

IP failover monitors a port on each VIP to determine whether the port is reachable on the node. If the
port is not reachable, the VIP is not assigned to the node. If the port is set to 0, this check is suppressed.
The check script does the needed testing.

IP failover uses Keepalived to host a set of externally accessible VIP addresses on a set of hosts. Each
VIP is only serviced by a single host at a time. Keepalived uses the Virtual Router Redundancy Protocol
(VRRP) to determine which host, from the set of hosts, services which VIP. If a host becomes
unavailable, or if the service that Keepalived is watching does not respond, the VIP is switched to
another host from the set. This means a VIP is always serviced as long as a host is available.

When a node running Keepalived passes the check script, the VIP on that node can enter the master
state based on its priority and the priority of the current master and as determined by the preemption
strategy.

A cluster administrator can provide a script through the OPENSHIFT_HA_NOTIFY_SCRIPT variable,
and this script is called whenever the state of the VIP on the node changes. Keepalived uses the master
state when it is servicing the VIP, the backup state when another node is servicing the VIP, or in the
fault state when the check script fails. The notify script is called with the new state whenever the state
changes.

You can create an IP failover deployment configuration on OpenShift Container Platform. The IP
failover deployment configuration specifies the set of VIP addresses, and the set of nodes on which to
service them. A cluster can have multiple IP failover deployment configurations, with each managing its
own set of unique VIP addresses. Each node in the IP failover configuration runs an IP failover pod, and
this pod runs Keepalived.

When using VIPs to access a pod with host networking, the application pod runs on all nodes that are
running the IP failover pods. This enables any of the IP failover nodes to become the master and service
the VIPs when needed. If application pods are not running on all nodes with IP failover, either some IP
failover nodes never service the VIPs or some application pods never receive any traffic. Use the same
selector and replication count, for both IP failover and the application pods, to avoid this mismatch.

While using VIPs to access a service, any of the nodes can be in the IP failover set of nodes, since the
service is reachable on all nodes, no matter where the application pod is running. Any of the IP failover
nodes can become master at any time. The service can either use external IPs and a service port or it can
use a NodePort.

When using external IPs in the service definition, the VIPs are set to the external IPs, and the IP failover
monitoring port is set to the service port. When using a node port, the port is open on every node in the
cluster, and the service load-balances traffic from whatever node currently services the VIP. In this case,
the IP failover monitoring port is set to the NodePort in the service definition.

CHAPTER 9. CONFIGURING IP FAILOVER

83

http://www.keepalived.org/

IMPORTANT

Setting up a NodePort is a privileged operation.

IMPORTANT

Even though a service VIP is highly available, performance can still be affected.
Keepalived makes sure that each of the VIPs is serviced by some node in the
configuration, and several VIPs can end up on the same node even when other nodes
have none. Strategies that externally load-balance across a set of VIPs can be thwarted
when IP failover puts multiple VIPs on the same node.

When you use ingressIP, you can set up IP failover to have the same VIP range as the ingressIP range.
You can also disable the monitoring port. In this case, all the VIPs appear on same node in the cluster.
Any user can set up a service with an ingressIP and have it highly available.

IMPORTANT

There are a maximum of 254 VIPs in the cluster.

9.1. IP FAILOVER ENVIRONMENT VARIABLES

The following table contains the variables used to configure IP failover.

Table 9.1. IP failover environment variables

Variable Name Default Description

OPENSHIFT_HA_MONITOR_POR
T

80 The IP failover pod tries to open a TCP connection
to this port on each Virtual IP (VIP). If connection is
established, the service is considered to be running.
If this port is set to 0, the test always passes.

OPENSHIFT_HA_NETWORK_INT
ERFACE

 The interface name that IP failover uses to send
Virtual Router Redundancy Protocol (VRRP) traffic.
The default value is eth0.

OPENSHIFT_HA_REPLICA_COU
NT

2 The number of replicas to create. This must match
spec.replicas value in IP failover deployment
configuration.

OPENSHIFT_HA_VIRTUAL_IPS The list of IP address ranges to replicate. This must
be provided. For example, 1.2.3.4-6,1.2.3.9.

OPENSHIFT_HA_VRRP_ID_OFFS
ET

0 The offset value used to set the virtual router IDs.
Using different offset values allows multiple IP
failover configurations to exist within the same
cluster. The default offset is 0, and the allowed range
is 0 through 255.

OpenShift Container Platform 4.9 Networking

84

OPENSHIFT_HA_VIP_GROUPS The number of groups to create for VRRP. If not set,
a group is created for each virtual IP range specified
with the OPENSHIFT_HA_VIP_GROUPS
variable.

OPENSHIFT_HA_IPTABLES_CHA
IN

INPUT The name of the iptables chain, to automatically add
an iptables rule to allow the VRRP traffic on. If the
value is not set, an iptables rule is not added. If the
chain does not exist, it is not created.

OPENSHIFT_HA_CHECK_SCRIP
T

 The full path name in the pod file system of a script
that is periodically run to verify the application is
operating.

OPENSHIFT_HA_CHECK_INTER
VAL

2 The period, in seconds, that the check script is run.

OPENSHIFT_HA_NOTIFY_SCRIP
T

 The full path name in the pod file system of a script
that is run whenever the state changes.

OPENSHIFT_HA_PREEMPTION preempt
_nodelay
300

The strategy for handling a new higher priority host.
The nopreempt strategy does not move master
from the lower priority host to the higher priority
host.

Variable Name Default Description

9.2. CONFIGURING IP FAILOVER

As a cluster administrator, you can configure IP failover on an entire cluster, or on a subset of nodes, as
defined by the label selector. You can also configure multiple IP failover deployment configurations in
your cluster, where each one is independent of the others.

The IP failover deployment configuration ensures that a failover pod runs on each of the nodes
matching the constraints or the label used.

This pod runs Keepalived, which can monitor an endpoint and use Virtual Router Redundancy Protocol
(VRRP) to fail over the virtual IP (VIP) from one node to another if the first node cannot reach the
service or endpoint.

For production use, set a selector that selects at least two nodes, and set replicas equal to the number
of selected nodes.

Prerequisites

You are logged in to the cluster with a user with cluster-admin privileges.

You created a pull secret.

Procedure

CHAPTER 9. CONFIGURING IP FAILOVER

85

Procedure

1. Create an IP failover service account:

2. Update security context constraints (SCC) for hostNetwork:

3. Create a deployment YAML file to configure IP failover:

Example deployment YAML for IP failover configuration

$ oc create sa ipfailover

$ oc adm policy add-scc-to-user privileged -z ipfailover
$ oc adm policy add-scc-to-user hostnetwork -z ipfailover

apiVersion: apps/v1
kind: Deployment
metadata:
 name: ipfailover-keepalived 1
 labels:
 ipfailover: hello-openshift
spec:
 strategy:
 type: Recreate
 replicas: 2
 selector:
 matchLabels:
 ipfailover: hello-openshift
 template:
 metadata:
 labels:
 ipfailover: hello-openshift
 spec:
 serviceAccountName: ipfailover
 privileged: true
 hostNetwork: true
 nodeSelector:
 node-role.kubernetes.io/worker: ""
 containers:
 - name: openshift-ipfailover
 image: quay.io/openshift/origin-keepalived-ipfailover
 ports:
 - containerPort: 63000
 hostPort: 63000
 imagePullPolicy: IfNotPresent
 securityContext:
 privileged: true
 volumeMounts:
 - name: lib-modules
 mountPath: /lib/modules
 readOnly: true
 - name: host-slash
 mountPath: /host
 readOnly: true
 mountPropagation: HostToContainer
 - name: etc-sysconfig

OpenShift Container Platform 4.9 Networking

86

 mountPath: /etc/sysconfig
 readOnly: true
 - name: config-volume
 mountPath: /etc/keepalive
 env:
 - name: OPENSHIFT_HA_CONFIG_NAME
 value: "ipfailover"
 - name: OPENSHIFT_HA_VIRTUAL_IPS 2
 value: "1.1.1.1-2"
 - name: OPENSHIFT_HA_VIP_GROUPS 3
 value: "10"
 - name: OPENSHIFT_HA_NETWORK_INTERFACE 4
 value: "ens3" #The host interface to assign the VIPs
 - name: OPENSHIFT_HA_MONITOR_PORT 5
 value: "30060"
 - name: OPENSHIFT_HA_VRRP_ID_OFFSET 6
 value: "0"
 - name: OPENSHIFT_HA_REPLICA_COUNT 7
 value: "2" #Must match the number of replicas in the deployment
 - name: OPENSHIFT_HA_USE_UNICAST
 value: "false"
 #- name: OPENSHIFT_HA_UNICAST_PEERS
 #value: "10.0.148.40,10.0.160.234,10.0.199.110"
 - name: OPENSHIFT_HA_IPTABLES_CHAIN 8
 value: "INPUT"
 #- name: OPENSHIFT_HA_NOTIFY_SCRIPT 9
 # value: /etc/keepalive/mynotifyscript.sh
 - name: OPENSHIFT_HA_CHECK_SCRIPT 10
 value: "/etc/keepalive/mycheckscript.sh"
 - name: OPENSHIFT_HA_PREEMPTION 11
 value: "preempt_delay 300"
 - name: OPENSHIFT_HA_CHECK_INTERVAL 12
 value: "2"
 livenessProbe:
 initialDelaySeconds: 10
 exec:
 command:
 - pgrep
 - keepalived
 volumes:
 - name: lib-modules
 hostPath:
 path: /lib/modules
 - name: host-slash
 hostPath:
 path: /
 - name: etc-sysconfig
 hostPath:
 path: /etc/sysconfig
 # config-volume contains the check script
 # created with `oc create configmap keepalived-checkscript --from-file=mycheckscript.sh`
 - configMap:
 defaultMode: 0755
 name: keepalived-checkscript

CHAPTER 9. CONFIGURING IP FAILOVER

87

1

2

3

4

5

6

7

8

9

10

11

12

13

The name of the IP failover deployment.

The list of IP address ranges to replicate. This must be provided. For example, 1.2.3.4-
6,1.2.3.9.

The number of groups to create for VRRP. If not set, a group is created for each virtual IP
range specified with the OPENSHIFT_HA_VIP_GROUPS variable.

The interface name that IP failover uses to send VRRP traffic. By default, eth0 is used.

The IP failover pod tries to open a TCP connection to this port on each VIP. If connection is
established, the service is considered to be running. If this port is set to 0, the test always
passes. The default value is 80.

The offset value used to set the virtual router IDs. Using different offset values allows
multiple IP failover configurations to exist within the same cluster. The default offset is 0,
and the allowed range is 0 through 255.

The number of replicas to create. This must match spec.replicas value in IP failover
deployment configuration. The default value is 2.

The name of the iptables chain to automatically add an iptables rule to allow the VRRP
traffic on. If the value is not set, an iptables rule is not added. If the chain does not exist, it
is not created, and Keepalived operates in unicast mode. The default is INPUT.

The full path name in the pod file system of a script that is run whenever the state
changes.

The full path name in the pod file system of a script that is periodically run to verify the
application is operating.

The strategy for handling a new higher priority host. The default value is preempt_delay
300, which causes a Keepalived instance to take over a VIP after 5 minutes if a lower-
priority master is holding the VIP.

The period, in seconds, that the check script is run. The default value is 2.

Create the pull secret before creating the deployment, otherwise you will get an error when
creating the deployment.

9.3. ABOUT VIRTUAL IP ADDRESSES

Keepalived manages a set of virtual IP addresses (VIP). The administrator must make sure that all of
these addresses:

Are accessible on the configured hosts from outside the cluster.

Are not used for any other purpose within the cluster.

Keepalived on each node determines whether the needed service is running. If it is, VIPs are supported

 name: config-volume
 imagePullSecrets:
 - name: openshift-pull-secret 13

OpenShift Container Platform 4.9 Networking

88

Keepalived on each node determines whether the needed service is running. If it is, VIPs are supported
and Keepalived participates in the negotiation to determine which node serves the VIP. For a node to
participate, the service must be listening on the watch port on a VIP or the check must be disabled.

NOTE

Each VIP in the set may end up being served by a different node.

9.4. CONFIGURING CHECK AND NOTIFY SCRIPTS

Keepalived monitors the health of the application by periodically running an optional user supplied check
script. For example, the script can test a web server by issuing a request and verifying the response.

When a check script is not provided, a simple default script is run that tests the TCP connection. This
default test is suppressed when the monitor port is 0.

Each IP failover pod manages a Keepalived daemon that manages one or more virtual IPs (VIP) on the
node where the pod is running. The Keepalived daemon keeps the state of each VIP for that node. A
particular VIP on a particular node may be in master, backup, or fault state.

When the check script for that VIP on the node that is in master state fails, the VIP on that node enters
the fault state, which triggers a renegotiation. During renegotiation, all VIPs on a node that are not in the
fault state participate in deciding which node takes over the VIP. Ultimately, the VIP enters the master
state on some node, and the VIP stays in the backup state on the other nodes.

When a node with a VIP in backup state fails, the VIP on that node enters the fault state. When the
check script passes again for a VIP on a node in the fault state, the VIP on that node exits the fault
state and negotiates to enter the master state. The VIP on that node may then enter either the master
or the backup state.

As cluster administrator, you can provide an optional notify script, which is called whenever the state
changes. Keepalived passes the following three parameters to the script:

$1 - group or instance

$2 - Name of the group or instance

$3 - The new state: master, backup, or fault

The check and notify scripts run in the IP failover pod and use the pod file system, not the host file
system. However, the IP failover pod makes the host file system available under the /hosts mount path.
When configuring a check or notify script, you must provide the full path to the script. The
recommended approach for providing the scripts is to use a config map.

The full path names of the check and notify scripts are added to the Keepalived configuration file,
_/etc/keepalived/keepalived.conf, which is loaded every time Keepalived starts. The scripts can be
added to the pod with a config map as follows.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

CHAPTER 9. CONFIGURING IP FAILOVER

89

1. Create the desired script and create a config map to hold it. The script has no input arguments
and must return 0 for OK and 1 for fail.
The check script, mycheckscript.sh:

2. Create the config map:

3. Add the script to the pod. The defaultMode for the mounted config map files must able to run
by using oc commands or by editing the deployment configuration. A value of 0755, 493
decimal, is typical:

NOTE

The oc set env command is whitespace sensitive. There must be no whitespace
on either side of the = sign.

TIP

#!/bin/bash
 # Whatever tests are needed
 # E.g., send request and verify response
exit 0

$ oc create configmap mycustomcheck --from-file=mycheckscript.sh

$ oc set env deploy/ipfailover-keepalived \
 OPENSHIFT_HA_CHECK_SCRIPT=/etc/keepalive/mycheckscript.sh

$ oc set volume deploy/ipfailover-keepalived --add --overwrite \
 --name=config-volume \
 --mount-path=/etc/keepalive \
 --source='{"configMap": { "name": "mycustomcheck", "defaultMode": 493}}'

OpenShift Container Platform 4.9 Networking

90

1

2
3
4

TIP

You can alternatively edit the ipfailover-keepalived deployment configuration:

In the spec.container.env field, add the OPENSHIFT_HA_CHECK_SCRIPT environment
variable to point to the mounted script file.
Add the spec.container.volumeMounts field to create the mount point.
Add a new spec.volumes field to mention the config map.
This sets run permission on the files. When read back, it is displayed in decimal, 493.

Save the changes and exit the editor. This restarts ipfailover-keepalived.

9.5. CONFIGURING VRRP PREEMPTION

When a Virtual IP (VIP) on a node leaves the fault state by passing the check script, the VIP on the node
enters the backup state if it has lower priority than the VIP on the node that is currently in the master
state. However, if the VIP on the node that is leaving fault state has a higher priority, the preemption
strategy determines its role in the cluster.

The nopreempt strategy does not move master from the lower priority VIP on the host to the higher
priority VIP on the host. With preempt_delay 300, the default, Keepalived waits the specified 300
seconds and moves master to the higher priority VIP on the host.

Prerequisites

You installed the OpenShift CLI (oc).

Procedure

To specify preemption enter oc edit deploy ipfailover-keepalived to edit the router
deployment configuration:

$ oc edit deploy ipfailover-keepalived

 spec:
 containers:
 - env:
 - name: OPENSHIFT_HA_CHECK_SCRIPT 1
 value: /etc/keepalive/mycheckscript.sh
...
 volumeMounts: 2
 - mountPath: /etc/keepalive
 name: config-volume
 dnsPolicy: ClusterFirst
...
 volumes: 3
 - configMap:
 defaultMode: 0755 4
 name: customrouter
 name: config-volume
...

$ oc edit deploy ipfailover-keepalived

CHAPTER 9. CONFIGURING IP FAILOVER

91

1 Set the OPENSHIFT_HA_PREEMPTION value:

preempt_delay 300: Keepalived waits the specified 300 seconds and moves master
to the higher priority VIP on the host. This is the default value.

nopreempt: does not move master from the lower priority VIP on the host to the
higher priority VIP on the host.

9.6. ABOUT VRRP ID OFFSET

Each IP failover pod managed by the IP failover deployment configuration, 1 pod per node or replica,
runs a Keepalived daemon. As more IP failover deployment configurations are configured, more pods are
created and more daemons join into the common Virtual Router Redundancy Protocol (VRRP)
negotiation. This negotiation is done by all the Keepalived daemons and it determines which nodes
service which virtual IPs (VIP).

Internally, Keepalived assigns a unique vrrp-id to each VIP. The negotiation uses this set of vrrp-ids,
when a decision is made, the VIP corresponding to the winning vrrp-id is serviced on the winning node.

Therefore, for every VIP defined in the IP failover deployment configuration, the IP failover pod must
assign a corresponding vrrp-id. This is done by starting at OPENSHIFT_HA_VRRP_ID_OFFSET and
sequentially assigning the vrrp-ids to the list of VIPs. The vrrp-ids can have values in the range 1..255.

When there are multiple IP failover deployment configurations, you must specify
OPENSHIFT_HA_VRRP_ID_OFFSET so that there is room to increase the number of VIPs in the
deployment configuration and none of the vrrp-id ranges overlap.

9.7. CONFIGURING IP FAILOVER FOR MORE THAN 254 ADDRESSES

IP failover management is limited to 254 groups of Virtual IP (VIP) addresses. By default OpenShift
Container Platform assigns one IP address to each group. You can use the
OPENSHIFT_HA_VIP_GROUPS variable to change this so multiple IP addresses are in each group and
define the number of VIP groups available for each Virtual Router Redundancy Protocol (VRRP)
instance when configuring IP failover.

Grouping VIPs creates a wider range of allocation of VIPs per VRRP in the case of VRRP failover events,
and is useful when all hosts in the cluster have access to a service locally. For example, when a service is
being exposed with an ExternalIP.

NOTE

As a rule for failover, do not limit services, such as the router, to one specific host. Instead,
services should be replicated to each host so that in the case of IP failover, the services
do not have to be recreated on the new host.

NOTE

...
 spec:
 containers:
 - env:
 - name: OPENSHIFT_HA_PREEMPTION 1
 value: preempt_delay 300
...

OpenShift Container Platform 4.9 Networking

92

1

NOTE

If you are using OpenShift Container Platform health checks, the nature of IP failover and
groups means that all instances in the group are not checked. For that reason, the
Kubernetes health checks must be used to ensure that services are live.

Prerequisites

You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

To change the number of IP addresses assigned to each group, change the value for the
OPENSHIFT_HA_VIP_GROUPS variable, for example:

Example Deployment YAML for IP failover configuration

If OPENSHIFT_HA_VIP_GROUPS is set to 3 in an environment with seven VIPs, it creates
three groups, assigning three VIPs to the first group, and two VIPs to the two remaining
groups.

NOTE

If the number of groups set by OPENSHIFT_HA_VIP_GROUPS is fewer than the number
of IP addresses set to fail over, the group contains more than one IP address, and all of
the addresses move as a single unit.

9.8. HIGH AVAILABILITY FOR INGRESSIP

In non-cloud clusters, IP failover and ingressIP to a service can be combined. The result is high
availability services for users that create services using ingressIP.

The approach is to specify an ingressIPNetworkCIDR range and then use the same range in creating
the ipfailover configuration.

Because IP failover can support up to a maximum of 255 VIPs for the entire cluster, the
ingressIPNetworkCIDR needs to be /24 or smaller.

9.9. REMOVING IP FAILOVER

When IP failover is initially configured, the worker nodes in the cluster are modified with an iptables rule
that explicitly allows multicast packets on 224.0.0.18 for Keepalived. Because of the change to the
nodes, removing IP failover requires running a job to remove the iptables rule and removing the virtual
IP addresses used by Keepalived.

...
 spec:
 env:
 - name: OPENSHIFT_HA_VIP_GROUPS 1
 value: "3"
...

CHAPTER 9. CONFIGURING IP FAILOVER

93

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

Procedure

1. Optional: Identify and delete any check and notify scripts that are stored as config maps:

a. Identify whether any pods for IP failover use a config map as a volume:

Example output

Namespace: default
Pod: keepalived-worker-59df45db9c-2x9mn
Volumes that use config maps:
 volume: config-volume
 configMap: mycustomcheck

b. If the preceding step provided the names of config maps that are used as volumes, delete
the config maps:

2. Identify an existing deployment for IP failover:

Example output

3. Delete the deployment:

4. Remove the ipfailover service account:

5. Run a job that removes the IP tables rule that was added when IP failover was initially
configured:

a. Create a file such as remove-ipfailover-job.yaml with contents that are similar to the
following example:

$ oc get pod -l ipfailover \
 -o jsonpath="\
{range .items[?(@.spec.volumes[*].configMap)]}
{'Namespace: '}{.metadata.namespace}
{'Pod: '}{.metadata.name}
{'Volumes that use config maps:'}
{range .spec.volumes[?(@.configMap)]} {'volume: '}{.name}
 {'configMap: '}{.configMap.name}{'\n'}{end}
{end}"

$ oc delete configmap <configmap_name>

$ oc get deployment -l ipfailover

NAMESPACE NAME READY UP-TO-DATE AVAILABLE AGE
default ipfailover 2/2 2 2 105d

$ oc delete deployment <ipfailover_deployment_name>

$ oc delete sa ipfailover

apiVersion: batch/v1

OpenShift Container Platform 4.9 Networking

94

<.> Run the job for each node in your cluster that was configured for IP failover and replace
the hostname each time.

b. Run the job:

Example output

job.batch/remove-ipfailover-2h8dm created

Verification

Confirm that the job removed the initial configuration for IP failover.

Example output

kind: Job
metadata:
 generateName: remove-ipfailover-
 labels:
 app: remove-ipfailover
spec:
 template:
 metadata:
 name: remove-ipfailover
 spec:
 containers:
 - name: remove-ipfailover
 image: quay.io/openshift/origin-keepalived-ipfailover:4.9
 command: ["/var/lib/ipfailover/keepalived/remove-failover.sh"]
 nodeSelector:
 kubernetes.io/hostname: <host_name> <.>
 restartPolicy: Never

$ oc create -f remove-ipfailover-job.yaml

$ oc logs job/remove-ipfailover-2h8dm

remove-failover.sh: OpenShift IP Failover service terminating.
 - Removing ip_vs module ...
 - Cleaning up ...
 - Releasing VIPs (interface eth0) ...

CHAPTER 9. CONFIGURING IP FAILOVER

95

CHAPTER 10. USING THE STREAM CONTROL TRANSMISSION
PROTOCOL (SCTP) ON A BARE METAL CLUSTER

As a cluster administrator, you can use the Stream Control Transmission Protocol (SCTP) on a cluster.

10.1. SUPPORT FOR STREAM CONTROL TRANSMISSION PROTOCOL
(SCTP) ON OPENSHIFT CONTAINER PLATFORM

As a cluster administrator, you can enable SCTP on the hosts in the cluster. On Red Hat Enterprise Linux
CoreOS (RHCOS), the SCTP module is disabled by default.

SCTP is a reliable message based protocol that runs on top of an IP network.

When enabled, you can use SCTP as a protocol with pods, services, and network policy. A Service object
must be defined with the type parameter set to either the ClusterIP or NodePort value.

10.1.1. Example configurations using SCTP protocol

You can configure a pod or service to use SCTP by setting the protocol parameter to the SCTP value in
the pod or service object.

In the following example, a pod is configured to use SCTP:

In the following example, a service is configured to use SCTP:

In the following example, a NetworkPolicy object is configured to apply to SCTP network traffic on port

apiVersion: v1
kind: Pod
metadata:
 namespace: project1
 name: example-pod
spec:
 containers:
 - name: example-pod
...
 ports:
 - containerPort: 30100
 name: sctpserver
 protocol: SCTP

apiVersion: v1
kind: Service
metadata:
 namespace: project1
 name: sctpserver
spec:
...
 ports:
 - name: sctpserver
 protocol: SCTP
 port: 30100
 targetPort: 30100
 type: ClusterIP

OpenShift Container Platform 4.9 Networking

96

In the following example, a NetworkPolicy object is configured to apply to SCTP network traffic on port
80 from any pods with a specific label:

10.2. ENABLING STREAM CONTROL TRANSMISSION PROTOCOL
(SCTP)

As a cluster administrator, you can load and enable the blacklisted SCTP kernel module on worker nodes
in your cluster.

Prerequisites

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a file named load-sctp-module.yaml that contains the following YAML definition:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-sctp-on-http
spec:
 podSelector:
 matchLabels:
 role: web
 ingress:
 - ports:
 - protocol: SCTP
 port: 80

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 name: load-sctp-module
 labels:
 machineconfiguration.openshift.io/role: worker
spec:
 config:
 ignition:
 version: 3.2.0
 storage:
 files:
 - path: /etc/modprobe.d/sctp-blacklist.conf
 mode: 0644
 overwrite: true
 contents:
 source: data:,
 - path: /etc/modules-load.d/sctp-load.conf
 mode: 0644
 overwrite: true
 contents:
 source: data:,sctp

CHAPTER 10. USING THE STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON A BARE METAL CLUSTER

97

2. To create the MachineConfig object, enter the following command:

3. Optional: To watch the status of the nodes while the MachineConfig Operator applies the
configuration change, enter the following command. When the status of a node transitions to
Ready, the configuration update is applied.

10.3. VERIFYING STREAM CONTROL TRANSMISSION PROTOCOL
(SCTP) IS ENABLED

You can verify that SCTP is working on a cluster by creating a pod with an application that listens for
SCTP traffic, associating it with a service, and then connecting to the exposed service.

Prerequisites

Access to the internet from the cluster to install the nc package.

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a pod starts an SCTP listener:

a. Create a file named sctp-server.yaml that defines a pod with the following YAML:

b. Create the pod by entering the following command:

2. Create a service for the SCTP listener pod.

$ oc create -f load-sctp-module.yaml

$ oc get nodes

apiVersion: v1
kind: Pod
metadata:
 name: sctpserver
 labels:
 app: sctpserver
spec:
 containers:
 - name: sctpserver
 image: registry.access.redhat.com/ubi8/ubi
 command: ["/bin/sh", "-c"]
 args:
 ["dnf install -y nc && sleep inf"]
 ports:
 - containerPort: 30102
 name: sctpserver
 protocol: SCTP

$ oc create -f sctp-server.yaml

OpenShift Container Platform 4.9 Networking

98

a. Create a file named sctp-service.yaml that defines a service with the following YAML:

b. To create the service, enter the following command:

3. Create a pod for the SCTP client.

a. Create a file named sctp-client.yaml with the following YAML:

b. To create the Pod object, enter the following command:

4. Run an SCTP listener on the server.

a. To connect to the server pod, enter the following command:

b. To start the SCTP listener, enter the following command:

apiVersion: v1
kind: Service
metadata:
 name: sctpservice
 labels:
 app: sctpserver
spec:
 type: NodePort
 selector:
 app: sctpserver
 ports:
 - name: sctpserver
 protocol: SCTP
 port: 30102
 targetPort: 30102

$ oc create -f sctp-service.yaml

apiVersion: v1
kind: Pod
metadata:
 name: sctpclient
 labels:
 app: sctpclient
spec:
 containers:
 - name: sctpclient
 image: registry.access.redhat.com/ubi8/ubi
 command: ["/bin/sh", "-c"]
 args:
 ["dnf install -y nc && sleep inf"]

$ oc apply -f sctp-client.yaml

$ oc rsh sctpserver

$ nc -l 30102 --sctp

CHAPTER 10. USING THE STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON A BARE METAL CLUSTER

99

5. Connect to the SCTP listener on the server.

a. Open a new terminal window or tab in your terminal program.

b. Obtain the IP address of the sctpservice service. Enter the following command:

c. To connect to the client pod, enter the following command:

d. To start the SCTP client, enter the following command. Replace <cluster_IP> with the
cluster IP address of the sctpservice service.

$ oc get services sctpservice -o go-template='{{.spec.clusterIP}}{{"\n"}}'

$ oc rsh sctpclient

nc <cluster_IP> 30102 --sctp

OpenShift Container Platform 4.9 Networking

100

CHAPTER 11. USING PTP HARDWARE

IMPORTANT

Precision Time Protocol (PTP) hardware with single NIC configured as boundary clock is a
Technology Preview feature only. Technology Preview features are not supported with
Red Hat production service level agreements (SLAs) and might not be functionally
complete. Red Hat does not recommend using them in production. These features
provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

11.1. ABOUT PTP HARDWARE

OpenShift Container Platform allows you use PTP hardware on your nodes. You can configure linuxptp
services on nodes that have PTP-capable hardware.

NOTE

The PTP Operator works with PTP-capable devices on clusters provisioned only on bare-
metal infrastructure.

You can use the OpenShift Container Platform console or oc CLI to install PTP by deploying the PTP
Operator. The PTP Operator creates and manages the linuxptp services and provides the following
features:

Discovery of the PTP-capable devices in the cluster.

Management of the configuration of linuxptp services.

Notification of PTP clock events that negatively affect the performance and reliability of your
application with the PTP Operator cloud-event-proxy sidecar.

11.2. ABOUT PTP

The Precision Time Protocol (PTP) is used to synchronize clocks in a network. When used in conjunction
with hardware support, PTP is capable of sub-microsecond accuracy, and is more accurate than
Network Time Protocol (NTP).

The linuxptp package includes the ptp4l and phc2sys programs for clock synchronization. ptp4l
implements the PTP boundary clock and ordinary clock. ptp4l synchronizes the PTP hardware clock to
the source clock with hardware time stamping and synchronizes the system clock to the source clock
with software time stamping. phc2sys is used for hardware time stamping to synchronize the system
clock to the PTP hardware clock on the network interface controller (NIC).

11.2.1. Elements of a PTP domain

PTP is used to synchronize multiple nodes connected in a network, with clocks for each node. The
following type of clocks can be included in configurations:

Grandmaster clock

The grandmaster clock provides standard time information to other clocks across the network and

CHAPTER 11. USING PTP HARDWARE

101

https://access.redhat.com/support/offerings/techpreview/

The grandmaster clock provides standard time information to other clocks across the network and
ensures accurate and stable synchronisation. The grandmaster clock writes time stamps and
responds to time requests from other clocks.

Ordinary clock

The ordinary clock has a single port connection that can play the role of source or destination clock,
depending on its position in the network. The ordinary clock can read and write time stamps.

Boundary clock

The boundary clock has ports in two or more communication paths and can be a source and a
destination to other destination clocks at the same time. The boundary clock works as a destination
clock upstream. The destination clock receives the timing message, adjusts for delay, and then
creates a new source time signal to pass down the network. The boundary clock produces a new
timing packet that is still correctly synced with the source clock and can reduce the number of
connected devices reporting directly to the source clock.

11.2.2. Advantages of PTP over NTP

One of the main advantages that PTP has over NTP is the hardware support present in various network
interface controllers (NIC) and network switches. The specialized hardware allows PTP to account for
delays in message transfer and improves the accuracy of time synchronization. To achieve the best
possible accuracy, it is recommended that all networking components between PTP clocks are PTP
hardware enabled.

Hardware-based PTP provides optimal accuracy, since the NIC can time stamp the PTP packets at the
exact moment they are sent and received. Compare this to software-based PTP, which requires
additional processing of the PTP packets by the operating system.

IMPORTANT

Before enabling PTP, ensure that NTP is disabled for the required nodes. You can disable
the chrony time service (chronyd) using a MachineConfig custom resource. For more
information, see Disabling chrony time service .

11.3. INSTALLING THE PTP OPERATOR USING THE CLI

As a cluster administrator, you can install the Operator by using the CLI.

Prerequisites

A cluster installed on bare-metal hardware with nodes that have hardware that supports PTP.

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. To create a namespace for the PTP Operator, enter the following command:

$ cat << EOF| oc create -f -
apiVersion: v1
kind: Namespace
metadata:
 name: openshift-ptp

OpenShift Container Platform 4.9 Networking

102

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/post-installation_configuration/#cnf-disable-chronyd_post-install-machine-configuration-tasks

2. To create an Operator group for the Operator, enter the following command:

3. Subscribe to the PTP Operator.

a. Run the following command to set the OpenShift Container Platform major and minor
version as an environment variable, which is used as the channel value in the next step.

b. To create a subscription for the PTP Operator, enter the following command:

4. To verify that the Operator is installed, enter the following command:

Example output

 annotations:
 workload.openshift.io/allowed: management
 labels:
 name: openshift-ptp
 openshift.io/cluster-monitoring: "true"
EOF

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: ptp-operators
 namespace: openshift-ptp
spec:
 targetNamespaces:
 - openshift-ptp
EOF

$ OC_VERSION=$(oc version -o yaml | grep openshiftVersion | \
 grep -o '[0-9]*[.][0-9]*' | head -1)

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: ptp-operator-subscription
 namespace: openshift-ptp
spec:
 channel: "${OC_VERSION}"
 name: ptp-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

$ oc get csv -n openshift-ptp \
 -o custom-columns=Name:.metadata.name,Phase:.status.phase

Name Phase
ptp-operator.4.4.0-202006160135 Succeeded

CHAPTER 11. USING PTP HARDWARE

103

11.4. INSTALLING THE PTP OPERATOR USING THE WEB CONSOLE

As a cluster administrator, you can install the PTP Operator using the web console.

NOTE

You have to create the namespace and Operator group as mentioned in the previous
section.

Procedure

1. Install the PTP Operator using the OpenShift Container Platform web console:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

b. Choose PTP Operator from the list of available Operators, and then click Install.

c. On the Install Operator page, under A specific namespace on the cluster select
openshift-ptp. Then, click Install.

2. Optional: Verify that the PTP Operator installed successfully:

a. Switch to the Operators → Installed Operators page.

b. Ensure that PTP Operator is listed in the openshift-ptp project with a Status of
InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the Operator does not appear as installed, to troubleshoot further:

Go to the Operators → Installed Operators page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

Go to the Workloads → Pods page and check the logs for pods in the openshift-ptp
project.

11.5. AUTOMATED DISCOVERY OF PTP NETWORK DEVICES

The PTP Operator adds the NodePtpDevice.ptp.openshift.io custom resource definition (CRD) to
OpenShift Container Platform.

The PTP Operator searchs your cluster for PTP-capable network devices on each node. It creates and
updates a NodePtpDevice custom resource (CR) object for each node that provides a compatible PTP
device.

One CR is created for each node and shares the same name as the node. The .status.devices list
provides information about the PTP devices on a node.

The following is an example of a NodePtpDevice CR created by the PTP Operator:

OpenShift Container Platform 4.9 Networking

104

1

2

3

The value for the name parameter is the same as the name of the node.

The CR is created in openshift-ptp namespace by PTP Operator.

The devices collection includes a list of the PTP capable devices discovered by the Operator on
the node.

To return a complete list of PTP capable network devices in your cluster, run the following command:

11.6. CONFIGURING LINUXPTP SERVICES AS ORDINARY CLOCK

The PTP Operator adds the PtpConfig.ptp.openshift.io custom resource definition (CRD) to
OpenShift Container Platform. You can configure the linuxptp services (ptp4l, phc2sys) by creating a
PtpConfig custom resource (CR) object.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Install the PTP Operator.

Procedure

1. Create the following PtpConfig CR, and then save the YAML in the ordinary-clock-ptp-
config.yaml file.

apiVersion: ptp.openshift.io/v1
kind: NodePtpDevice
metadata:
 creationTimestamp: "2019-11-15T08:57:11Z"
 generation: 1
 name: dev-worker-0 1
 namespace: openshift-ptp 2
 resourceVersion: "487462"
 selfLink: /apis/ptp.openshift.io/v1/namespaces/openshift-ptp/nodeptpdevices/dev-worker-0
 uid: 08d133f7-aae2-403f-84ad-1fe624e5ab3f
spec: {}
status:
 devices: 3
 - name: eno1
 - name: eno2
 - name: ens787f0
 - name: ens787f1
 - name: ens801f0
 - name: ens801f1
 - name: ens802f0
 - name: ens802f1
 - name: ens803

$ oc get NodePtpDevice -n openshift-ptp -o yaml

CHAPTER 11. USING PTP HARDWARE

105

1

2

3

4

5

6

7

8

9

10

11

12

The name of the PtpConfig CR.

Specify an array of one or more profile objects.

Specify the name of a profile object that uniquely identifies a profile object.

Specify the network interface name to use by the ptp4l service, for example ens787f1.

Specify system config options for the ptp4l service, for example -2 to select the IEEE
802.3 network transport. The options should not include the network interface name -i
<interface> and service config file -f /etc/ptp4l.conf because the network interface name
and the service config file are automatically appended.

Specify system config options for the phc2sys service, for example -a -r. If this field is
empty the PTP Operator does not start the phc2sys service.

Specify a string that contains the configuration to replace the default /etc/ptp4l.conf file.
To use the default configuration, leave the field empty.

Scheduling policy for ptp4l and phc2sys processes. Default value is SCHED_OTHER. Use
SCHED_FIFO on systems that support FIFO scheduling.

Integer value from 1-65 used to set FIFO priority for ptp4l and phc2sys processes when
ptpSchedulingPolicy is set to SCHED_FIFO. The ptpSchedulingPriority field is not used
when ptpSchedulingPolicy is set to SCHED_OTHER.

Specify an array of one or more recommend objects that define rules on how the profile
should be applied to nodes.

Specify the profile object name defined in the profile section.

Specify the priority with an integer value between 0 and 99. A larger number gets lower

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
 name: ordinary-clock-ptp-config 1
 namespace: openshift-ptp
spec:
 profile: 2
 - name: "profile1" 3
 interface: "ens787f1" 4
 ptp4lOpts: "-s -2" 5
 phc2sysOpts: "-a -r" 6
 ptp4lConf: "" 7
 ptpSchedulingPolicy: SCHED_OTHER 8
 ptpSchedulingPriority: 10 9
 recommend: 10
 - profile: "profile1" 11
 priority: 10 12
 match: 13
 - nodeLabel: "node-role.kubernetes.io/worker" 14
 nodeName: "compute-0.example.com" 15

OpenShift Container Platform 4.9 Networking

106

13

14

15

Specify the priority with an integer value between 0 and 99. A larger number gets lower
priority, so a priority of 99 is lower than a priority of 10. If a node can be matched with

Specify match rules with nodeLabel or nodeName.

Specify nodeLabel with the key of node.Labels from the node object by using the oc get
nodes --show-labels command.

Specify nodeName with node.Name from the node object by using the oc get nodes
command.

2. Create the CR by running the following command:

Verification steps

1. Check that the PtpConfig profile is applied to the node.

a. Get the list of pods in the openshift-ptp namespace by running the following command:

Example output

b. Check that the profile is correct. Examine the logs of the linuxptp daemon that
corresponds to the node you specified in the PtpConfig profile. Run the following
command:

Example output

Additional resources

For more information about FIFO priority scheduling on PTP hardware, see Configuring FIFO

$ oc create -f ordinary-clock-ptp-config.yaml

$ oc get pods -n openshift-ptp -o wide

NAME READY STATUS RESTARTS AGE IP NODE
linuxptp-daemon-4xkbb 1/1 Running 0 43m 10.1.196.24 compute-
0.example.com
linuxptp-daemon-tdspf 1/1 Running 0 43m 10.1.196.25 compute-
1.example.com
ptp-operator-657bbb64c8-2f8sj 1/1 Running 0 43m 10.129.0.61 control-
plane-1.example.com

$ oc logs linuxptp-daemon-4xkbb -n openshift-ptp -c linuxptp-daemon-container

I1115 09:41:17.117596 4143292 daemon.go:107] in applyNodePTPProfile
I1115 09:41:17.117604 4143292 daemon.go:109] updating NodePTPProfile to:
I1115 09:41:17.117607 4143292 daemon.go:110] ------------------------------------
I1115 09:41:17.117612 4143292 daemon.go:102] Profile Name: profile1
I1115 09:41:17.117616 4143292 daemon.go:102] Interface: ens787f1
I1115 09:41:17.117620 4143292 daemon.go:102] Ptp4lOpts: -s -2
I1115 09:41:17.117623 4143292 daemon.go:102] Phc2sysOpts: -a -r
I1115 09:41:17.117626 4143292 daemon.go:116] ------------------------------------

CHAPTER 11. USING PTP HARDWARE

107

For more information about FIFO priority scheduling on PTP hardware, see Configuring FIFO
priority scheduling for PTP hardware.

11.7. CONFIGURING LINUXPTP SERVICES AS BOUNDARY CLOCK

The PTP Operator adds the PtpConfig.ptp.openshift.io custom resource definition (CRD) to
OpenShift Container Platform. You can configure the linuxptp services (ptp4l, phc2sys) by creating a
PtpConfig custom resource (CR) object.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Install the PTP Operator.

Procedure

1. Create the following PtpConfig CR, and then save the YAML in the boundary-clock-ptp-
config.yaml file.

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
 name: boundary-clock-ptp-config 1
 namespace: openshift-ptp
spec:
 profile: 2
 - name: "profile1" 3
 interface: "" 4
 ptp4lOpts: "-2" 5
 ptp4lConf: | 6
 [ens1f0] 7
 masterOnly 0
 [ens1f3] 8
 masterOnly 1
 [global]
 #
 # Default Data Set
 #
 twoStepFlag 1
 #slaveOnly 1
 priority1 128
 priority2 128
 domainNumber 24
 #utc_offset 37
 clockClass 248
 clockAccuracy 0xFE
 offsetScaledLogVariance 0xFFFF
 free_running 0
 freq_est_interval 1
 dscp_event 0
 dscp_general 0

OpenShift Container Platform 4.9 Networking

108

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#cnf-configuring-fifo-priority-scheduling-for-ptp_using-ptp

 dataset_comparison G.8275.x
 G.8275.defaultDS.localPriority 128
 #
 # Port Data Set
 #
 logAnnounceInterval -3
 logSyncInterval -4
 logMinDelayReqInterval -4
 logMinPdelayReqInterval -4
 announceReceiptTimeout 3
 syncReceiptTimeout 0
 delayAsymmetry 0
 fault_reset_interval 4
 neighborPropDelayThresh 20000000
 masterOnly 0
 G.8275.portDS.localPriority 128
 #
 # Run time options
 #
 assume_two_step 0
 logging_level 6
 path_trace_enabled 0
 follow_up_info 0
 hybrid_e2e 0
 inhibit_multicast_service 0
 net_sync_monitor 0
 tc_spanning_tree 0
 tx_timestamp_timeout 10
 #was 1 (default !)
 unicast_listen 0
 unicast_master_table 0
 unicast_req_duration 3600
 use_syslog 1
 verbose 0
 summary_interval -4
 kernel_leap 1
 check_fup_sync 0
 #
 # Servo Options
 #
 pi_proportional_const 0.0
 pi_integral_const 0.0
 pi_proportional_scale 0.0
 pi_proportional_exponent -0.3
 pi_proportional_norm_max 0.7
 pi_integral_scale 0.0
 pi_integral_exponent 0.4
 pi_integral_norm_max 0.3
 step_threshold 2.0
 first_step_threshold 0.00002
 max_frequency 900000000
 clock_servo pi
 sanity_freq_limit 200000000
 ntpshm_segment 0
 #
 # Transport options

CHAPTER 11. USING PTP HARDWARE

109

1

2

3

4

5

6

7

The name of the PtpConfig CR.

Specify an array of one or more profile objects.

Specify the name of a profile object which uniquely identifies a profile object.

This field should remain empty for boundary clock.

Specify system config options for the ptp4l service, for example -2. The options should not
include the network interface name -i <interface> and service config file -f /etc/ptp4l.conf
because the network interface name and the service config file are automatically
appended.

Specify the needed configuration to start ptp4l as boundary clock. For example, ens1f0
synchronizes from a grandmaster clock and ens1f3 synchronizes connected devices.

The interface name to synchronize from.

 #
 transportSpecific 0x0
 ptp_dst_mac 01:1B:19:00:00:00
 p2p_dst_mac 01:80:C2:00:00:0E
 udp_ttl 1
 udp6_scope 0x0E
 uds_address /var/run/ptp4l
 #
 # Default interface options
 #
 clock_type BC
 network_transport UDPv4
 delay_mechanism E2E
 time_stamping hardware
 tsproc_mode filter
 delay_filter moving_median
 delay_filter_length 10
 egressLatency 0
 ingressLatency 0
 boundary_clock_jbod 0 9
 #
 # Clock description
 #
 productDescription ;;
 revisionData ;;
 manufacturerIdentity 00:00:00
 userDescription ;
 timeSource 0xA0
 phc2sysOpts: "-a -r" 10
 ptpSchedulingPolicy: SCHED_OTHER 11
 ptpSchedulingPriority: 10 12
 recommend: 13
 - profile: "profile1" 14
 priority: 10 15
 match: 16
 - nodeLabel: "node-role.kubernetes.io/worker" 17
 nodeName: "compute-0.example.com" 18

OpenShift Container Platform 4.9 Networking

110

8

9

10

11

12

13

14

15

16

17

18

The interface to synchronize devices connected to the interface.

For Intel Columbiaville 800 Series NICs, ensure boundary_clock_jbod is set to 0. For Intel
Fortville X710 Series NICs, ensure boundary_clock_jbod is set to 1.

Specify system config options for the phc2sys service, for example -a -r. If this field is
empty the PTP Operator does not start the phc2sys service.

Scheduling policy for ptp4l and phc2sys processes. Default value is SCHED_OTHER. Use
SCHED_FIFO on systems that support FIFO scheduling.

Integer value from 1-65 used to set FIFO priority for ptp4l and phc2sys processes when
ptpSchedulingPolicy is set to SCHED_FIFO. The ptpSchedulingPriority field is not used
when ptpSchedulingPolicy is set to SCHED_OTHER.

Specify an array of one or more recommend objects that define rules on how the profile
should be applied to nodes.

Specify the profile object name defined in the profile section.

Specify the priority with an integer value between 0 and 99. A larger number gets lower
priority, so a priority of 99 is lower than a priority of 10. If a node can be matched with
multiple profiles according to rules defined in the match field, the profile with the higher
priority is applied to that node.

Specify match rules with nodeLabel or nodeName.

Specify nodeLabel with the key of node.Labels from the node object by using the oc get
nodes --show-labels command.

Specify nodeName with node.Name from the node object by using the oc get nodes
command.

2. Create the CR by running the following command:

Verification steps

1. Check that the PtpConfig profile is applied to the node.

a. Get the list of pods in the openshift-ptp namespace by running the following command:

Example output

b. Check that the profile is correct. Examine the logs of the linuxptp daemon that

$ oc create -f boundary-clock-ptp-config.yaml

$ oc get pods -n openshift-ptp -o wide

NAME READY STATUS RESTARTS AGE IP NODE
linuxptp-daemon-4xkbb 1/1 Running 0 43m 10.1.196.24 compute-
0.example.com
linuxptp-daemon-tdspf 1/1 Running 0 43m 10.1.196.25 compute-
1.example.com
ptp-operator-657bbb64c8-2f8sj 1/1 Running 0 43m 10.129.0.61 control-
plane-1.example.com

CHAPTER 11. USING PTP HARDWARE

111

b. Check that the profile is correct. Examine the logs of the linuxptp daemon that
corresponds to the node you specified in the PtpConfig profile. Run the following
command:

Example output

Additional resources

For more information about FIFO priority scheduling on PTP hardware, see Configuring FIFO
priority scheduling for PTP hardware.

11.8. CONFIGURING FIFO PRIORITY SCHEDULING FOR PTP
HARDWARE

In telco or other deployment configurations that require low latency performance, PTP daemon threads
run in a constrained CPU footprint alongside the rest of the infrastructure components. By default, PTP
threads run with the SCHED_OTHER policy. Under high load, these threads might not get the
scheduling latency they require for error-free operation.

To mitigate against potential scheduling latency errors, you can configure the PTP Operator linuxptp
services to allow threads to run with a SCHED_FIFO policy. If SCHED_FIFO is set for a PtpConfig CR,
then ptp4l and phc2sys will run in the parent container under chrt with a priority set by the
ptpSchedulingPriority field of the PtpConfig CR.

NOTE

Setting ptpSchedulingPolicy is optional, and is only required if you are experiencing
latency errors.

Procedure

1. Edit the PtpConfig CR profile:

2. Change the ptpSchedulingPolicy and ptpSchedulingPriority fields:

$ oc logs linuxptp-daemon-4xkbb -n openshift-ptp -c linuxptp-daemon-container

I1115 09:41:17.117596 4143292 daemon.go:107] in applyNodePTPProfile
I1115 09:41:17.117604 4143292 daemon.go:109] updating NodePTPProfile to:
I1115 09:41:17.117607 4143292 daemon.go:110] ------------------------------------
I1115 09:41:17.117612 4143292 daemon.go:102] Profile Name: profile1
I1115 09:41:17.117616 4143292 daemon.go:102] Interface:
I1115 09:41:17.117620 4143292 daemon.go:102] Ptp4lOpts: -2
I1115 09:41:17.117623 4143292 daemon.go:102] Phc2sysOpts: -a -r
I1115 09:41:17.117626 4143292 daemon.go:116] ------------------------------------

$ oc edit PtpConfig -n openshift-ptp

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
 name: <ptp_config_name>
 namespace: openshift-ptp

OpenShift Container Platform 4.9 Networking

112

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#cnf-configuring-fifo-priority-scheduling-for-ptp_using-ptp

1

2

Scheduling policy for ptp4l and phc2sys processes. Use SCHED_FIFO on systems that
support FIFO scheduling.

Required. Sets the integer value 1-65 used to configure FIFO priority for ptp4l and
phc2sys processes.

3. Save and exit to apply the changes to the PtpConfig CR.

Verification

1. Get the name of the linuxptp-daemon pod and corresponding node where the PtpConfig CR
has been applied:

Example output

2. Check that the ptp4l process is running with the updated chrt FIFO priority:

Example output

11.9. TROUBLESHOOTING COMMON PTP OPERATOR ISSUES

Troubleshoot common problems with the PTP Operator by performing the following steps.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in as a user with cluster-admin privileges.

...
spec:
 profile:
 - name: "profile1"
...
 ptpSchedulingPolicy: SCHED_FIFO 1
 ptpSchedulingPriority: 10 2

$ oc get pods -n openshift-ptp -o wide

NAME READY STATUS RESTARTS AGE IP NODE
linuxptp-daemon-gmv2n 3/3 Running 0 1d17h 10.1.196.24 compute-
0.example.com
linuxptp-daemon-lgm55 3/3 Running 0 1d17h 10.1.196.25 compute-
1.example.com
ptp-operator-3r4dcvf7f4-zndk7 1/1 Running 0 1d7h 10.129.0.61 control-plane-
1.example.com

$ oc -n openshift-ptp logs linuxptp-daemon-lgm55 -c linuxptp-daemon-container|grep chrt

I1216 19:24:57.091872 1600715 daemon.go:285] /bin/chrt -f 65 /usr/sbin/ptp4l -f
/var/run/ptp4l.0.config -2 --summary_interval -4 -m

CHAPTER 11. USING PTP HARDWARE

113

Install the PTP Operator on a bare-metal cluster with hosts that support PTP.

Procedure

1. Check the Operator and operands are successfully deployed in the cluster for the configured
nodes.

Example output

NOTE

When the PTP fast event bus is enabled, the number of ready linuxptp-daemon
pods is 3/3. If the PTP fast event bus is not enabled, 2/2 is displayed.

2. Check that supported hardware is found in the cluster.

Example output

3. Check the available PTP network interfaces for a node:

where:

<node_name>

Specifies the node you want to query, for example, compute-0.example.com.

Example output

$ oc get pods -n openshift-ptp -o wide

NAME READY STATUS RESTARTS AGE IP NODE
linuxptp-daemon-lmvgn 3/3 Running 0 4d17h 10.1.196.24 compute-
0.example.com
linuxptp-daemon-qhfg7 3/3 Running 0 4d17h 10.1.196.25 compute-
1.example.com
ptp-operator-6b8dcbf7f4-zndk7 1/1 Running 0 5d7h 10.129.0.61 control-plane-
1.example.com

$ oc -n openshift-ptp get nodeptpdevices.ptp.openshift.io

NAME AGE
control-plane-0.example.com 10d
control-plane-1.example.com 10d
compute-0.example.com 10d
compute-1.example.com 10d
compute-2.example.com 10d

$ oc -n openshift-ptp get nodeptpdevices.ptp.openshift.io <node_name> -o yaml

apiVersion: ptp.openshift.io/v1
kind: NodePtpDevice
metadata:
 creationTimestamp: "2021-09-14T16:52:33Z"

OpenShift Container Platform 4.9 Networking

114

4. Check that the PTP interface is successfully synchronized to the primary clock by accessing the
linuxptp-daemon pod for the corresponding node.

a. Get the name of the linuxptp-daemon pod and corresponding node you want to
troubleshoot by running the following command:

Example output

b. Remote shell into the required linuxptp-daemon container:

where:

<linux_daemon_container>

is the container you want to diagnose, for example linuxptp-daemon-lmvgn.

c. In the remote shell connection to the linuxptp-daemon container, use the PTP
Management Client (pmc) tool to diagnose the network interface. Run the following pmc
command to check the sync status of the PTP device, for example ptp4l.

Example output when the node is successfully synced to the primary clock

 generation: 1
 name: compute-0.example.com
 namespace: openshift-ptp
 resourceVersion: "177400"
 uid: 30413db0-4d8d-46da-9bef-737bacd548fd
spec: {}
status:
 devices:
 - name: eno1
 - name: eno2
 - name: eno3
 - name: eno4
 - name: enp5s0f0
 - name: enp5s0f1

$ oc get pods -n openshift-ptp -o wide

NAME READY STATUS RESTARTS AGE IP NODE
linuxptp-daemon-lmvgn 3/3 Running 0 4d17h 10.1.196.24 compute-
0.example.com
linuxptp-daemon-qhfg7 3/3 Running 0 4d17h 10.1.196.25 compute-
1.example.com
ptp-operator-6b8dcbf7f4-zndk7 1/1 Running 0 5d7h 10.129.0.61 control-
plane-1.example.com

$ oc rsh -n openshift-ptp -c linuxptp-daemon-container <linux_daemon_container>

pmc -u -f /var/run/ptp4l.0.config -b 0 'GET PORT_DATA_SET'

sending: GET PORT_DATA_SET
 40a6b7.fffe.166ef0-1 seq 0 RESPONSE MANAGEMENT PORT_DATA_SET
 portIdentity 40a6b7.fffe.166ef0-1

CHAPTER 11. USING PTP HARDWARE

115

11.10. PTP HARDWARE FAST EVENT NOTIFICATIONS FRAMEWORK

IMPORTANT

PTP events with ordinary clock is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

11.10.1. About PTP and clock synchronization error events

Cloud native applications such as virtual RAN require access to notifications about hardware timing
events that are critical to the functioning of the overall network. Fast event notifications are early
warning signals about impending and real-time Precision Time Protocol (PTP) clock synchronization
events. PTP clock synchronization errors can negatively affect the performance and reliability of your
low latency application, for example, a vRAN application running in a distributed unit (DU).

Loss of PTP synchronization is a critical error for a RAN network. If synchronization is lost on a node, the
radio might be shut down and the network Over the Air (OTA) traffic might be shifted to another node
in the wireless network. Fast event notifications mitigate against workload errors by allowing cluster
nodes to communicate PTP clock sync status to the vRAN application running in the DU.

Event notifications are available to RAN applications running on the same DU node. A publish/subscribe
REST API passes events notifications to the messaging bus. Publish/subscribe messaging, or pub/sub
messaging, is an asynchronous service to service communication architecture where any message
published to a topic is immediately received by all the subscribers to the topic.

Fast event notifications are generated by the PTP Operator in OpenShift Container Platform for every
PTP-capable network interface. The events are made available using a cloud-event-proxy sidecar
container over an Advanced Message Queuing Protocol (AMQP) message bus. The AMQP message bus
is provided by the AMQ Interconnect Operator.

NOTE

PTP fast event notifications are available only for network interfaces configured to use
PTP ordinary clocks.

11.10.2. About the PTP fast event notifications framework

You can subscribe Distributed unit (DU) applications to Precision Time Protocol (PTP) fast events

 portState SLAVE
 logMinDelayReqInterval -4
 peerMeanPathDelay 0
 logAnnounceInterval -3
 announceReceiptTimeout 3
 logSyncInterval -4
 delayMechanism 1
 logMinPdelayReqInterval -4
 versionNumber 2

OpenShift Container Platform 4.9 Networking

116

https://access.redhat.com/support/offerings/techpreview/

notifications that are generated by OpenShift Container Platform with the PTP Operator and cloud-
event-proxy sidecar container. You enable the cloud-event-proxy sidecar container by setting the
enableEventPublisher field to true in the ptpOperatorConfig custom resource (CR) and specifying a
transportHost address. PTP fast events use an Advanced Message Queuing Protocol (AMQP) event
notification bus provided by the AMQ Interconnect Operator. AMQ Interconnect is a component of Red
Hat AMQ, a messaging router that provides flexible routing of messages between any AMQP-enabled
endpoints.

The cloud-event-proxy sidecar container can access the same resources as the primary vRAN
application without using any of the resources of the primary application and with no significant latency.

The fast events notifications framework uses a REST API for communication and is based on the O-RAN
REST API specification. The framework consists of a publisher, subscriber, and an AMQ messaging bus
to handle communications between the publisher and subscriber applications. The cloud-event-proxy
sidecar is a utility container that runs in a pod that is loosely coupled to the main DU application
container on the DU node. It provides an event publishing framework that allows you to subscribe DU
applications to published PTP events.

DU applications run the cloud-event-proxy container in a sidecar pattern to subscribe to PTP events.
The following workflow describes how a DU application uses PTP fast events:

1. DU application requests a subscription: The DU sends an API request to the cloud-event-
proxy sidecar to create a PTP events subscription. The cloud-event-proxy sidecar creates a
subscription resource.

2. cloud-event-proxy sidecar creates the subscription: The event resource is persisted by the
cloud-event-proxy sidecar. The cloud-event-proxy sidecar container sends an
acknowledgment with an ID and URL location to access the stored subscription resource. The
sidecar creates an AMQ messaging listener protocol for the resource specified in the
subscription.

3. DU application receives the PTP event notification: The cloud-event-proxy sidecar container
listens to the address specified in the resource qualifier. The DU events consumer processes
the message and passes it to the return URL specified in the subscription.

4. cloud-event-proxy sidecar validates the PTP event and posts it to the DU application: The
cloud-event-proxy sidecar receives the event, unwraps the cloud events object to retrieve the
data, and fetches the return URL to post the event back to the DU consumer application.

5. DU application uses the PTP event: The DU application events consumer receives and
processes the PTP event.

11.10.3. Installing the AMQ messaging bus

To pass PTP fast event notifications between publisher and subscriber on a node, you must install and
configure an AMQ messaging bus to run locally on the node. You do this by installing the AMQ
Interconnect Operator for use in the cluster.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

CHAPTER 11. USING PTP HARDWARE

117

Install the AMQ Interconnect Operator to its own amq-interconnect namespace. See Adding
the Red Hat Integration - AMQ Interconnect Operator.

Verification

1. Check that the AMQ Interconnect Operator is available and the required pods are running:

Example output

2. Check that the required linuxptp-daemon PTP event producer pods are running in the
openshift-ptp namespace.

Example output

11.10.4. Configuring the PTP fast event notifications publisher

To start using PTP fast event notifications for a network interface in your cluster, you must enable the
fast event publisher in the PTP Operator PtpOperatorConfig custom resource (CR) and configure
ptpClockThreshold values in a PtpConfig CR that you create.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in as a user with cluster-admin privileges.

Install the PTP Operator and AMQ Interconnect Operator.

Procedure

1. Modify the spec.ptpEventConfig field of the PtpOperatorConfig resource and set appropriate
values by running the following command:

$ oc get pods -n amq-interconnect

NAME READY STATUS RESTARTS AGE
amq-interconnect-645db76c76-k8ghs 1/1 Running 0 23h
interconnect-operator-5cb5fc7cc-4v7qm 1/1 Running 0 23h

$ oc get pods -n openshift-ptp

NAME READY STATUS RESTARTS AGE
linuxptp-daemon-2t78p 3/3 Running 0 12h
linuxptp-daemon-k8n88 3/3 Running 0 12h

$ oc edit PtpOperatorConfig default -n openshift-ptp

...
spec:
 daemonNodeSelector:
 node-role.kubernetes.io/worker: ""

OpenShift Container Platform 4.9 Networking

118

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q1/html/deploying_amq_interconnect_on_openshift/adding-operator-router-ocp

1

2

1

2

3

4

Set enableEventPublisher to true to enable PTP fast event notifications.

Set transportHost to the AMQ router you configured where <instance_name> and
<namespace> correspond to the AMQ Interconnect router instance name and
namespace, for example, amqp://amq-interconnect.amq-interconnect.svc.cluster.local

2. Create a PtpConfig custom resource for the PTP enabled interface, and set the required values
for ptpClockThreshold, for example:

Append --summary_interval -4 to use PTP fast events.

Required phc2sysOpts values. -m prints messages to stdout. The linuxptp-daemon
DaemonSet parses the logs and generates Prometheus metrics.

Specify a string that contains the configuration to replace the default /etc/ptp4l.conf file.
To use the default configuration, leave the field empty.

Optional. If the ptpClockThreshold stanza is not present, default values are used for the
ptpClockThreshold fields. The stanza shows default ptpClockThreshold values. The
ptpClockThreshold values configure how long after the PTP master clock is disconnected
before PTP events are triggered. holdOverTimeout is the time value in seconds before
the PTP clock event state changes to FREERUN when the PTP master clock is
disconnected. The maxOffsetThreshold and minOffsetThreshold settings configure
offset values in nanoseconds that compare against the values for CLOCK_REALTIME
(phc2sys) or master offset (ptp4l). When the ptp4l or phc2sys offset value is outside this
range, the PTP clock state is set to FREERUN. When the offset value is within this range,
the PTP clock state is set to LOCKED.

11.10.5. Subscribing DU applications to PTP events REST API reference

Use the PTP event notifications REST API to subscribe a distributed unit (DU) application to the PTP
events that are generated on the parent node.

 ptpEventConfig:
 enableEventPublisher: true 1
 transportHost: amqp://<instance_name>.<namespace>.svc.cluster.local 2

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
 name: example-ptpconfig
 namespace: openshift-ptp
spec:
 profile:
 - name: "profile1"
 interface: "enp5s0f0"
 ptp4lOpts: "-2 -s --summary_interval -4" 1
 phc2sysOpts: "-a -r -m -n 24 -N 8 -R 16" 2
 ptp4lConf: "" 3
 ptpClockThreshold: 4
 holdOverTimeout: 5
 maxOffsetThreshold: 100
 minOffsetThreshold: -100

CHAPTER 11. USING PTP HARDWARE

119

Subscribe applications to PTP events by using the resource address /cluster/node/<node_name>/ptp,
where <node_name> is the cluster node running the DU application.

Deploy your cloud-event-consumer DU application container and cloud-event-proxy sidecar container
in a separate DU application pod. The cloud-event-consumer DU application subscribes to the cloud-
event-proxy container in the application pod.

Use the following API endpoints to subscribe the cloud-event-consumer DU application to PTP events
posted by the cloud-event-proxy container at http://localhost:8089/api/cloudNotifications/v1/ in the
DU application pod:

/api/cloudNotifications/v1/subscriptions

POST: Creates a new subscription

GET: Retrieves a list of subscriptions

/api/cloudNotifications/v1/subscriptions/<subscription_id>

GET: Returns details for the specified subscription ID

api/cloudNotifications/v1/subscriptions/status/<subscription_id>

PUT: Creates a new status ping request for the specified subscription ID

/api/cloudNotifications/v1/health

GET: Returns the health status of cloudNotifications API

NOTE

9089 is the default port for the cloud-event-consumer container deployed in the
application pod. You can configure a different port for your DU application as required.

11.10.5.1. api/cloudNotifications/v1/subscriptions

11.10.5.1.1. HTTP method

GET api/cloudNotifications/v1/subscriptions

11.10.5.1.1.1. Description

Returns a list of subscriptions. If subscriptions exist, a 200 OK status code is returned along with the list
of subscriptions.

Example API response

[
 {
 "id": "75b1ad8f-c807-4c23-acf5-56f4b7ee3826",
 "endpointUri": "http://localhost:9089/event",
 "uriLocation": "http://localhost:8089/api/cloudNotifications/v1/subscriptions/75b1ad8f-c807-4c23-
acf5-56f4b7ee3826",
 "resource": "/cluster/node/compute-1.example.com/ptp"
 }
]

OpenShift Container Platform 4.9 Networking

120

11.10.5.1.2. HTTP method

POST api/cloudNotifications/v1/subscriptions

11.10.5.1.2.1. Description

Creates a new subscription. If a subscription is successfully created, or if it already exists, a 201 Created
status code is returned.

Table 11.1. Query parameters

Parameter Type

subscription data

Example payload

11.10.5.2. api/cloudNotifications/v1/subscriptions/<subscription_id>

11.10.5.2.1. HTTP method

GET api/cloudNotifications/v1/subscriptions/<subscription_id>

11.10.5.2.1.1. Description

Returns details for the subscription with ID <subscription_id>

Table 11.2. Query parameters

Parameter Type

<subscription_id> string

Example API response

11.10.5.3. api/cloudNotifications/v1/subscriptions/status/<subscription_id>

{
 "uriLocation": "http://localhost:8089/api/cloudNotifications/v1/subscriptions",
 "resource": "/cluster/node/compute-1.example.com/ptp"
}

{
 "id":"48210fb3-45be-4ce0-aa9b-41a0e58730ab",
 "endpointUri": "http://localhost:9089/event",
 "uriLocation":"http://localhost:8089/api/cloudNotifications/v1/subscriptions/48210fb3-45be-4ce0-
aa9b-41a0e58730ab",
 "resource":"/cluster/node/compute-1.example.com/ptp"
}

CHAPTER 11. USING PTP HARDWARE

121

11.10.5.3.1. HTTP method

PUT api/cloudNotifications/v1/subscriptions/status/<subscription_id>

11.10.5.3.1.1. Description

Creates a new status ping request for subscription with ID <subscription_id>. If a subscription is
present, the status request is successful and a 202 Accepted status code is returned.

Table 11.3. Query parameters

Parameter Type

<subscription_id> string

Example API response

11.10.5.4. api/cloudNotifications/v1/health/

11.10.5.4.1. HTTP method

GET api/cloudNotifications/v1/health/

11.10.5.4.1.1. Description

Returns the health status for the cloudNotifications REST API.

Example API response

11.10.6. Monitoring PTP fast event metrics using the CLI

You can monitor fast events bus metrics directly from cloud-event-proxy containers using the oc CLI.

NOTE

PTP fast event notification metrics are also available in the OpenShift Container
Platform web console.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in as a user with cluster-admin privileges.

Install and configure the PTP Operator.

Procedure

{"status":"ping sent"}

OK

OpenShift Container Platform 4.9 Networking

122

1. Get the list of active linuxptp-daemon pods.

Example output

2. Access the metrics for the required cloud-event-proxy container by running the following
command:

where:

<linuxptp-daemon>

Specifies the pod you want to query, for example, linuxptp-daemon-2t78p.

Example output

11.10.7. Monitoring PTP fast event metrics in the web console

You can monitor PTP fast event metrics in the OpenShift Container Platform web console by using the
pre-configured and self-updating Prometheus monitoring stack.

Prerequisites

Install the OpenShift Container Platform CLI oc.

Log in as a user with cluster-admin privileges.

$ oc get pods -n openshift-ptp

NAME READY STATUS RESTARTS AGE
linuxptp-daemon-2t78p 3/3 Running 0 8h
linuxptp-daemon-k8n88 3/3 Running 0 8h

$ oc exec -it <linuxptp-daemon> -n openshift-ptp -c cloud-event-proxy -- curl
127.0.0.1:9091/metrics

HELP cne_amqp_events_published Metric to get number of events published by the
transport
TYPE cne_amqp_events_published gauge
cne_amqp_events_published{address="/cluster/node/compute-
1.example.com/ptp/status",status="success"} 1041
HELP cne_amqp_events_received Metric to get number of events received by the
transport
TYPE cne_amqp_events_received gauge
cne_amqp_events_received{address="/cluster/node/compute-
1.example.com/ptp",status="success"} 1019
HELP cne_amqp_receiver Metric to get number of receiver created
TYPE cne_amqp_receiver gauge
cne_amqp_receiver{address="/cluster/node/mock",status="active"} 1
cne_amqp_receiver{address="/cluster/node/compute-1.example.com/ptp",status="active"}
1
cne_amqp_receiver{address="/cluster/node/compute-
1.example.com/redfish/event",status="active"}
...

CHAPTER 11. USING PTP HARDWARE

123

Procedure

1. Enter the following command to return the list of available PTP metrics from the cloud-event-
proxy sidecar container:

where:

<linuxptp_daemon_pod>

Specifies the pod you want to query, for example, linuxptp-daemon-2t78p.

2. Copy the name of the PTP metric you want to query from the list of returned metrics, for
example, cne_amqp_events_received.

3. In the OpenShift Container Platform web console, click Observe → Metrics.

4. Paste the PTP metric into the Expression field, and click Run queries.

Additional resources

Managing metrics

$ oc exec -it <linuxptp_daemon_pod> -n openshift-ptp -c cloud-event-proxy -- curl
127.0.0.1:9091/metrics

OpenShift Container Platform 4.9 Networking

124

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#managing-metrics-1

CHAPTER 12. NETWORK POLICY

12.1. ABOUT NETWORK POLICY

As a cluster administrator, you can define network policies that restrict traffic to pods in your cluster.

12.1.1. About network policy

In a cluster using a Kubernetes Container Network Interface (CNI) plugin that supports Kubernetes
network policy, network isolation is controlled entirely by NetworkPolicy objects. In OpenShift
Container Platform 4.9, OpenShift SDN supports using network policy in its default network isolation
mode.

NOTE

When using the OpenShift SDN cluster network provider, the following limitations apply
regarding network policies:

Network policy egress as specified by the egress field is not supported. Egress
firewall is also known as egress network policy in OpenShift SDN. This is not the
same as network policy egress.

IPBlock is supported by network policy, but without support for except clauses. If
you create a policy with an IPBlock section that includes an except clause, the
SDN pods log warnings and the entire IPBlock section of that policy is ignored.

WARNING

Network policy does not apply to the host network namespace. Pods with host
networking enabled are unaffected by network policy rules.

By default, all pods in a project are accessible from other pods and network endpoints. To isolate one or
more pods in a project, you can create NetworkPolicy objects in that project to indicate the allowed
incoming connections. Project administrators can create and delete NetworkPolicy objects within their
own project.

If a pod is matched by selectors in one or more NetworkPolicy objects, then the pod will accept only
connections that are allowed by at least one of those NetworkPolicy objects. A pod that is not selected
by any NetworkPolicy objects is fully accessible.

The following example NetworkPolicy objects demonstrate supporting different scenarios:

Deny all traffic:
To make a project deny by default, add a NetworkPolicy object that matches all pods but
accepts no traffic:



kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

CHAPTER 12. NETWORK POLICY

125

Only allow connections from the OpenShift Container Platform Ingress Controller:
To make a project allow only connections from the OpenShift Container Platform Ingress
Controller, add the following NetworkPolicy object.

Only accept connections from pods within a project:
To make pods accept connections from other pods in the same project, but reject all other
connections from pods in other projects, add the following NetworkPolicy object:

Only allow HTTP and HTTPS traffic based on pod labels:
To enable only HTTP and HTTPS access to the pods with a specific label (role=frontend in
following example), add a NetworkPolicy object similar to the following:

 name: deny-by-default
spec:
 podSelector: {}
 ingress: []

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-ingress
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: ingress
 podSelector: {}
 policyTypes:
 - Ingress

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-same-namespace
spec:
 podSelector: {}
 ingress:
 - from:
 - podSelector: {}

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-http-and-https
spec:
 podSelector:
 matchLabels:
 role: frontend
 ingress:
 - ports:
 - protocol: TCP

OpenShift Container Platform 4.9 Networking

126

Accept connections by using both namespace and pod selectors:
To match network traffic by combining namespace and pod selectors, you can use a
NetworkPolicy object similar to the following:

NetworkPolicy objects are additive, which means you can combine multiple NetworkPolicy objects
together to satisfy complex network requirements.

For example, for the NetworkPolicy objects defined in previous samples, you can define both allow-
same-namespace and allow-http-and-https policies within the same project. Thus allowing the pods
with the label role=frontend, to accept any connection allowed by each policy. That is, connections on
any port from pods in the same namespace, and connections on ports 80 and 443 from pods in any
namespace.

12.1.2. Optimizations for network policy

Use a network policy to isolate pods that are differentiated from one another by labels within a
namespace.

NOTE

The guidelines for efficient use of network policy rules applies to only the OpenShift SDN
cluster network provider.

It is inefficient to apply NetworkPolicy objects to large numbers of individual pods in a single
namespace. Pod labels do not exist at the IP address level, so a network policy generates a separate
Open vSwitch (OVS) flow rule for every possible link between every pod selected with a podSelector.

For example, if the spec podSelector and the ingress podSelector within a NetworkPolicy object each
match 200 pods, then 40,000 (200*200) OVS flow rules are generated. This might slow down a node.

When designing your network policy, refer to the following guidelines:

Reduce the number of OVS flow rules by using namespaces to contain groups of pods that need

 port: 80
 - protocol: TCP
 port: 443

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-pod-and-namespace-both
spec:
 podSelector:
 matchLabels:
 name: test-pods
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 project: project_name
 podSelector:
 matchLabels:
 name: test-pods

CHAPTER 12. NETWORK POLICY

127

Reduce the number of OVS flow rules by using namespaces to contain groups of pods that need
to be isolated.
NetworkPolicy objects that select a whole namespace, by using the namespaceSelector or an
empty podSelector, generate only a single OVS flow rule that matches the VXLAN virtual
network ID (VNID) of the namespace.

Keep the pods that do not need to be isolated in their original namespace, and move the pods
that require isolation into one or more different namespaces.

Create additional targeted cross-namespace network policies to allow the specific traffic that
you do want to allow from the isolated pods.

12.1.3. Next steps

Creating a network policy

Optional: Defining a default network policy

12.1.4. Additional resources

Projects and namespaces

Configuring multitenant network policy

NetworkPolicy API

12.2. LOGGING NETWORK POLICY EVENTS

As a cluster administrator, you can configure network policy audit logging for your cluster and enable
logging for one or more namespaces.

NOTE

Audit logging of network policies is available for only the OVN-Kubernetes cluster
network provider.

12.2.1. Network policy audit logging

The OVN-Kubernetes cluster network provider uses Open Virtual Network (OVN) ACLs to manage
network policy. Audit logging exposes allow and deny ACL events.

You can configure the destination for network policy audit logs, such as a syslog server or a UNIX domain
socket. Regardless of any additional configuration, an audit log is always saved to /var/log/ovn/acl-
audit-log.log on each OVN-Kubernetes pod in the cluster.

Network policy audit logging is enabled per namespace by annotating the namespace with the
k8s.ovn.org/acl-logging key as in the following example:

Example namespace annotation

kind: Namespace
apiVersion: v1
metadata:
 name: example1

OpenShift Container Platform 4.9 Networking

128

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#creating-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#default-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/authentication_and_authorization/#rbac-projects-namespaces_using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#multitenant-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/api_reference/#networkpolicy-networking-k8s-io-v1
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#about-ovn-kubernetes

The logging format is compatible with syslog as defined by RFC5424. The syslog facility is configurable
and defaults to local0. An example log entry might resemble the following:

Example ACL deny log entry

The following table describes namespace annotation values:

Table 12.1. Network policy audit logging namespace annotation

Annotation Value

k8s.ovn.org/acl-logging You must specify at least one of allow, deny, or both to enable
network policy audit logging for a namespace.

deny
Optional: Specify alert, warning, notice, info, or debug.

allow
Optional: Specify alert, warning, notice, info, or debug.

12.2.2. Network policy audit configuration

The configuration for audit logging is specified as part of the OVN-Kubernetes cluster network provider
configuration. The following YAML illustrates default values for network policy audit logging feature.

Audit logging configuration

The following table describes the configuration fields for network policy audit logging.

 annotations:
 k8s.ovn.org/acl-logging: |-
 {
 "deny": "info",
 "allow": "info"
 }

2021-06-13T19:33:11.590Z|00005|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-logging_deny-all",
verdict=drop, severity=alert:
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:39,dl_dst=0a:58:0a:80:02:37,nw_src=10.128.2.57,nw_dst=
10.128.2.55,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 defaultNetwork:
 ovnKubernetesConfig:
 policyAuditConfig:
 destination: "null"
 maxFileSize: 50
 rateLimit: 20
 syslogFacility: local0

CHAPTER 12. NETWORK POLICY

129

Table 12.2. policyAuditConfig object

Field Type Description

rateLimit integer The maximum number of messages to generate every second
per node. The default value is 20 messages per second.

maxFileSize integer The maximum size for the audit log in bytes. The default value is
50000000 or 50 MB.

destination string One of the following additional audit log targets:

libc
The libc syslog() function of the journald process on the
host.

udp:<host>:<port>
A syslog server. Replace <host>:<port> with the host and
port of the syslog server.

unix:<file>
A Unix Domain Socket file specified by <file>.

null
Do not send the audit logs to any additional target.

syslogFacility string The syslog facility, such as kern, as defined by RFC5424. The
default value is local0.

12.2.3. Configuring network policy auditing for a cluster

As a cluster administrator, you can customize network policy audit logging for your cluster.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster with a user with cluster-admin privileges.

Procedure

To customize the network policy audit logging configuration, enter the following command:

TIP

$ oc edit network.operator.openshift.io/cluster

OpenShift Container Platform 4.9 Networking

130

TIP

You can alternatively customize and apply the following YAML to configure audit logging:

Verification

1. To create a namespace with network policies complete the following steps:

a. Create a namespace for verification:

Example output

b. Enable audit logging:

c. Create network policies for the namespace:

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 defaultNetwork:
 ovnKubernetesConfig:
 policyAuditConfig:
 destination: "null"
 maxFileSize: 50
 rateLimit: 20
 syslogFacility: local0

$ cat <<EOF| oc create -f -
kind: Namespace
apiVersion: v1
metadata:
 name: verify-audit-logging
 annotations:
 k8s.ovn.org/acl-logging: '{ "deny": "alert", "allow": "alert" }'
EOF

namespace/verify-audit-logging created

$ oc annotate namespace verify-audit-logging k8s.ovn.org/acl-logging='{ "deny": "alert",
"allow": "alert" }'

namespace/verify-audit-logging annotated

$ cat <<EOF| oc create -n verify-audit-logging -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: deny-all
spec:
 podSelector:
 matchLabels:

CHAPTER 12. NETWORK POLICY

131

Example output

2. Create a pod for source traffic in the default namespace:

3. Create two pods in the verify-audit-logging namespace:

 policyTypes:
 - Ingress
 - Egress

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-same-namespace
spec:
 podSelector: {}
 policyTypes:
 - Ingress
 - Egress
 ingress:
 - from:
 - podSelector: {}
 egress:
 - to:
 - namespaceSelector:
 matchLabels:
 namespace: verify-audit-logging
EOF

networkpolicy.networking.k8s.io/deny-all created
networkpolicy.networking.k8s.io/allow-from-same-namespace created

$ cat <<EOF| oc create -n default -f -
apiVersion: v1
kind: Pod
metadata:
 name: client
spec:
 containers:
 - name: client
 image: registry.access.redhat.com/rhel7/rhel-tools
 command: ["/bin/sh", "-c"]
 args:
 ["sleep inf"]
EOF

$ for name in client server; do
cat <<EOF| oc create -n verify-audit-logging -f -
apiVersion: v1
kind: Pod
metadata:
 name: ${name}
spec:
 containers:
 - name: ${name}

OpenShift Container Platform 4.9 Networking

132

Example output

4. To generate traffic and produce network policy audit log entries, complete the following steps:

a. Obtain the IP address for pod named server in the verify-audit-logging namespace:

b. Ping the IP address from the previous command from the pod named client in the default
namespace and confirm that all packets are dropped:

Example output

c. Ping the IP address saved in the POD_IP shell environment variable from the pod named
client in the verify-audit-logging namespace and confirm that all packets are allowed:

Example output

5. Display the latest entries in the network policy audit log:

Example output

 image: registry.access.redhat.com/rhel7/rhel-tools
 command: ["/bin/sh", "-c"]
 args:
 ["sleep inf"]
EOF
done

pod/client created
pod/server created

$ POD_IP=$(oc get pods server -n verify-audit-logging -o jsonpath='{.status.podIP}')

$ oc exec -it client -n default -- /bin/ping -c 2 $POD_IP

PING 10.128.2.55 (10.128.2.55) 56(84) bytes of data.

--- 10.128.2.55 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 2041ms

$ oc exec -it client -n verify-audit-logging -- /bin/ping -c 2 $POD_IP

PING 10.128.0.86 (10.128.0.86) 56(84) bytes of data.
64 bytes from 10.128.0.86: icmp_seq=1 ttl=64 time=2.21 ms
64 bytes from 10.128.0.86: icmp_seq=2 ttl=64 time=0.440 ms

--- 10.128.0.86 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 0.440/1.329/2.219/0.890 ms

$ for pod in $(oc get pods -n openshift-ovn-kubernetes -l app=ovnkube-node --no-
headers=true | awk '{ print $1 }') ; do
 oc exec -it $pod -n openshift-ovn-kubernetes -- tail -4 /var/log/ovn/acl-audit-log.log
 done

CHAPTER 12. NETWORK POLICY

133

Example output

12.2.4. Enabling network policy audit logging for a namespace

As a cluster administrator, you can enable network policy audit logging for a namespace.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster with a user with cluster-admin privileges.

Procedure

To enable network policy audit logging for a namespace, enter the following command:

where:

<namespace>

Specifies the name of the namespace.

TIP

Defaulting container name to ovn-controller.
Use 'oc describe pod/ovnkube-node-hdb8v -n openshift-ovn-kubernetes' to see all of the
containers in this pod.
2021-06-13T19:33:11.590Z|00005|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-
logging_deny-all", verdict=drop, severity=alert:
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:39,dl_dst=0a:58:0a:80:02:37,nw_src=10.128.2.57,
nw_dst=10.128.2.55,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0
2021-06-13T19:33:12.614Z|00006|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-
logging_deny-all", verdict=drop, severity=alert:
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:39,dl_dst=0a:58:0a:80:02:37,nw_src=10.128.2.57,
nw_dst=10.128.2.55,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0
2021-06-13T19:44:10.037Z|00007|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-
logging_allow-from-same-namespace_0", verdict=allow, severity=alert:
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:3b,dl_dst=0a:58:0a:80:02:3a,nw_src=10.128.2.59,
nw_dst=10.128.2.58,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0
2021-06-13T19:44:11.037Z|00008|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-
logging_allow-from-same-namespace_0", verdict=allow, severity=alert:
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:3b,dl_dst=0a:58:0a:80:02:3a,nw_src=10.128.2.59,
nw_dst=10.128.2.58,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0

$ oc annotate namespace <namespace> \
 k8s.ovn.org/acl-logging='{ "deny": "alert", "allow": "notice" }'

OpenShift Container Platform 4.9 Networking

134

TIP

You can alternatively apply the following YAML to enable audit logging:

Example output

Verification

Display the latest entries in the network policy audit log:

Example output

12.2.5. Disabling network policy audit logging for a namespace

As a cluster administrator, you can disable network policy audit logging for a namespace.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster with a user with cluster-admin privileges.

Procedure

To disable network policy audit logging for a namespace, enter the following command:

where:

kind: Namespace
apiVersion: v1
metadata:
 name: <namespace>
 annotations:
 k8s.ovn.org/acl-logging: |-
 {
 "deny": "alert",
 "allow": "notice"
 }

namespace/verify-audit-logging annotated

$ for pod in $(oc get pods -n openshift-ovn-kubernetes -l app=ovnkube-node --no-
headers=true | awk '{ print $1 }') ; do
 oc exec -it $pod -n openshift-ovn-kubernetes -- tail -4 /var/log/ovn/acl-audit-log.log
 done

2021-06-13T19:33:11.590Z|00005|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-
logging_deny-all", verdict=drop, severity=alert:
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:39,dl_dst=0a:58:0a:80:02:37,nw_src=10.128.2.57,
nw_dst=10.128.2.55,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0

$ oc annotate --overwrite namespace <namespace> k8s.ovn.org/acl-logging={}

CHAPTER 12. NETWORK POLICY

135

<namespace>

Specifies the name of the namespace.

TIP

You can alternatively apply the following YAML to disable audit logging:

Example output

12.2.6. Additional resources

About network policy

12.3. CREATING A NETWORK POLICY

As a user with the admin role, you can create a network policy for a namespace.

12.3.1. Creating a network policy

To define granular rules describing ingress or egress network traffic allowed for namespaces in your
cluster, you can create a network policy.

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Prerequisites

Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OVN-Kubernetes network provider or the OpenShift SDN network provider with mode:
NetworkPolicy set. This mode is the default for OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy rule:

kind: Namespace
apiVersion: v1
metadata:
 name: <namespace>
 annotations:
 k8s.ovn.org/acl-logging: null

namespace/verify-audit-logging annotated

OpenShift Container Platform 4.9 Networking

136

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#about-network-policy

a. Create a <policy_name>.yaml file:

where:

<policy_name>

Specifies the network policy file name.

b. Define a network policy in the file that you just created, such as in the following examples:

Deny ingress from all pods in all namespaces

.Allow ingress from all pods in the same namespace

2. To create the network policy object, enter the following command:

where:

<policy_name>

Specifies the network policy file name.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

NOTE

$ touch <policy_name>.yaml

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-by-default
spec:
 podSelector:
 ingress: []

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-same-namespace
spec:
 podSelector:
 ingress:
 - from:
 - podSelector: {}

$ oc apply -f <policy_name>.yaml -n <namespace>

networkpolicy.networking.k8s.io/default-deny created

CHAPTER 12. NETWORK POLICY

137

1

2

3

4

NOTE

If you log in with a user with the cluster-admin role in the console, then you have a choice
of creating a network policy in any namespace in the cluster directly from the YAML view
or from a form in the web console.

12.3.2. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

The name of the NetworkPolicy object.

A selector that describes the pods to which the policy applies. The policy object can only select
pods in the project that defines the NetworkPolicy object.

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

A list of one or more destination ports on which to accept traffic.

12.3.3. Additional resources

Accessing the web console

12.4. VIEWING A NETWORK POLICY

As a user with the admin role, you can view a network policy for a namespace.

12.4.1. Viewing network policies

You can examine the network policies in a namespace.

NOTE

If you log in with a user with the cluster-admin role, then you can view any network policy
in the cluster.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-27107 1
spec:
 podSelector: 2
 matchLabels:
 app: mongodb
 ingress:
 - from:
 - podSelector: 3
 matchLabels:
 app: app
 ports: 4
 - protocol: TCP
 port: 27017

OpenShift Container Platform 4.9 Networking

138

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/web_console/#web-console

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace where the network policy exists.

Procedure

List network policies in a namespace:

To view network policy objects defined in a namespace, enter the following command:

Optional: To examine a specific network policy, enter the following command:

where:

<policy_name>

Specifies the name of the network policy to inspect.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

For example:

Output for oc describe command

12.4.2. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

$ oc get networkpolicy

$ oc describe networkpolicy <policy_name> -n <namespace>

$ oc describe networkpolicy allow-same-namespace

Name: allow-same-namespace
Namespace: ns1
Created on: 2021-05-24 22:28:56 -0400 EDT
Labels: <none>
Annotations: <none>
Spec:
 PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)
 Allowing ingress traffic:
 To Port: <any> (traffic allowed to all ports)
 From:
 PodSelector: <none>
 Not affecting egress traffic
 Policy Types: Ingress

CHAPTER 12. NETWORK POLICY

139

1

2

3

4

The name of the NetworkPolicy object.

A selector that describes the pods to which the policy applies. The policy object can only select
pods in the project that defines the NetworkPolicy object.

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

A list of one or more destination ports on which to accept traffic.

12.5. EDITING A NETWORK POLICY

As a user with the admin role, you can edit an existing network policy for a namespace.

12.5.1. Editing a network policy

You can edit a network policy in a namespace.

NOTE

If you log in with a user with the cluster-admin role, then you can edit a network policy in
any namespace in the cluster.

Prerequisites

Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OVN-Kubernetes network provider or the OpenShift SDN network provider with mode:
NetworkPolicy set. This mode is the default for OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace where the network policy exists.

Procedure

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-27107 1
spec:
 podSelector: 2
 matchLabels:
 app: mongodb
 ingress:
 - from:
 - podSelector: 3
 matchLabels:
 app: app
 ports: 4
 - protocol: TCP
 port: 27017

OpenShift Container Platform 4.9 Networking

140

1. Optional: To list the network policy objects in a namespace, enter the following command:

where:

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

2. Edit the network policy object.

If you saved the network policy definition in a file, edit the file and make any necessary
changes, and then enter the following command.

where:

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

<policy_file>

Specifies the name of the file containing the network policy.

If you need to update the network policy object directly, enter the following command:

where:

<policy_name>

Specifies the name of the network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

3. Confirm that the network policy object is updated.

where:

<policy_name>

Specifies the name of the network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

12.5.2. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

$ oc get networkpolicy

$ oc apply -n <namespace> -f <policy_file>.yaml

$ oc edit networkpolicy <policy_name> -n <namespace>

$ oc describe networkpolicy <policy_name> -n <namespace>

CHAPTER 12. NETWORK POLICY

141

1

2

3

4

The name of the NetworkPolicy object.

A selector that describes the pods to which the policy applies. The policy object can only select
pods in the project that defines the NetworkPolicy object.

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

A list of one or more destination ports on which to accept traffic.

12.5.3. Additional resources

Creating a network policy

12.6. DELETING A NETWORK POLICY

As a user with the admin role, you can delete a network policy from a namespace.

12.6.1. Deleting a network policy

You can delete a network policy in a namespace.

NOTE

If you log in with a user with the cluster-admin role, then you can delete any network
policy in the cluster.

Prerequisites

Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OVN-Kubernetes network provider or the OpenShift SDN network provider with mode:
NetworkPolicy set. This mode is the default for OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-27107 1
spec:
 podSelector: 2
 matchLabels:
 app: mongodb
 ingress:
 - from:
 - podSelector: 3
 matchLabels:
 app: app
 ports: 4
 - protocol: TCP
 port: 27017

OpenShift Container Platform 4.9 Networking

142

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#creating-network-policy

You are working in the namespace where the network policy exists.

Procedure

To delete a network policy object, enter the following command:

where:

<policy_name>

Specifies the name of the network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

12.7. DEFINING A DEFAULT NETWORK POLICY FOR PROJECTS

As a cluster administrator, you can modify the new project template to automatically include network
policies when you create a new project. If you do not yet have a customized template for new projects,
you must first create one.

12.7.1. Modifying the template for new projects

As a cluster administrator, you can modify the default project template so that new projects are created
using your custom requirements.

To create your own custom project template:

Procedure

1. Log in as a user with cluster-admin privileges.

2. Generate the default project template:

3. Use a text editor to modify the generated template.yaml file by adding objects or modifying
existing objects.

4. The project template must be created in the openshift-config namespace. Load your modified
template:

5. Edit the project configuration resource using the web console or CLI.

Using the web console:

$ oc delete networkpolicy <policy_name> -n <namespace>

networkpolicy.networking.k8s.io/default-deny deleted

$ oc adm create-bootstrap-project-template -o yaml > template.yaml

$ oc create -f template.yaml -n openshift-config

CHAPTER 12. NETWORK POLICY

143

i. Navigate to the Administration → Cluster Settings page.

ii. Click Configuration to view all configuration resources.

iii. Find the entry for Project and click Edit YAML.

Using the CLI:

i. Edit the project.config.openshift.io/cluster resource:

6. Update the spec section to include the projectRequestTemplate and name parameters, and
set the name of your uploaded project template. The default name is project-request.

Project configuration resource with custom project template

7. After you save your changes, create a new project to verify that your changes were successfully
applied.

12.7.2. Adding network policies to the new project template

As a cluster administrator, you can add network policies to the default template for new projects.
OpenShift Container Platform will automatically create all the NetworkPolicy objects specified in the
template in the project.

Prerequisites

Your cluster uses a default CNI network provider that supports NetworkPolicy objects, such as
the OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the default
for OpenShift SDN.

You installed the OpenShift CLI (oc).

You must log in to the cluster with a user with cluster-admin privileges.

You must have created a custom default project template for new projects.

Procedure

1. Edit the default template for a new project by running the following command:

Replace <project_template> with the name of the default template that you configured for
your cluster. The default template name is project-request.

2. In the template, add each NetworkPolicy object as an element to the objects parameter. The

$ oc edit project.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Project
metadata:
 ...
spec:
 projectRequestTemplate:
 name: <template_name>

$ oc edit template <project_template> -n openshift-config

OpenShift Container Platform 4.9 Networking

144

1

2. In the template, add each NetworkPolicy object as an element to the objects parameter. The
objects parameter accepts a collection of one or more objects.
In the following example, the objects parameter collection includes several NetworkPolicy
objects.

3. Optional: Create a new project to confirm that your network policy objects are created
successfully by running the following commands:

a. Create a new project:

Replace <project> with the name for the project you are creating.

b. Confirm that the network policy objects in the new project template exist in the new project:

12.8. CONFIGURING MULTITENANT ISOLATION WITH NETWORK
POLICY

As a cluster administrator, you can configure your network policies to provide multitenant network
isolation.

NOTE

objects:
- apiVersion: networking.k8s.io/v1
 kind: NetworkPolicy
 metadata:
 name: allow-from-same-namespace
 spec:
 podSelector: {}
 ingress:
 - from:
 - podSelector: {}
- apiVersion: networking.k8s.io/v1
 kind: NetworkPolicy
 metadata:
 name: allow-from-openshift-ingress
 spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: ingress
 podSelector: {}
 policyTypes:
 - Ingress
...

$ oc new-project <project> 1

$ oc get networkpolicy
NAME POD-SELECTOR AGE
allow-from-openshift-ingress <none> 7s
allow-from-same-namespace <none> 7s

CHAPTER 12. NETWORK POLICY

145

NOTE

If you are using the OpenShift SDN cluster network provider, configuring network policies
as described in this section provides network isolation similar to multitenant mode but
with network policy mode set.

12.8.1. Configuring multitenant isolation by using network policy

You can configure your project to isolate it from pods and services in other project namespaces.

Prerequisites

Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OVN-Kubernetes network provider or the OpenShift SDN network provider with mode:
NetworkPolicy set. This mode is the default for OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

Procedure

1. Create the following NetworkPolicy objects:

a. A policy named allow-from-openshift-ingress.

NOTE

policy-group.network.openshift.io/ingress: "" is the preferred namespace
selector label for OpenShift SDN. You can use the
network.openshift.io/policy-group: ingress namespace selector label, but
this is a legacy label.

b. A policy named allow-from-openshift-monitoring:

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-ingress
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 policy-group.network.openshift.io/ingress: ""
 podSelector: {}
 policyTypes:
 - Ingress
EOF

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy

OpenShift Container Platform 4.9 Networking

146

c. A policy named allow-same-namespace:

2. Optional: To confirm that the network policies exist in your current project, enter the following
command:

Example output

metadata:
 name: allow-from-openshift-monitoring
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: monitoring
 podSelector: {}
 policyTypes:
 - Ingress
EOF

$ cat << EOF| oc create -f -
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-same-namespace
spec:
 podSelector:
 ingress:
 - from:
 - podSelector: {}
EOF

$ oc describe networkpolicy

Name: allow-from-openshift-ingress
Namespace: example1
Created on: 2020-06-09 00:28:17 -0400 EDT
Labels: <none>
Annotations: <none>
Spec:
 PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)
 Allowing ingress traffic:
 To Port: <any> (traffic allowed to all ports)
 From:
 NamespaceSelector: network.openshift.io/policy-group: ingress
 Not affecting egress traffic
 Policy Types: Ingress

Name: allow-from-openshift-monitoring
Namespace: example1
Created on: 2020-06-09 00:29:57 -0400 EDT
Labels: <none>
Annotations: <none>
Spec:

CHAPTER 12. NETWORK POLICY

147

12.8.2. Next steps

Defining a default network policy

12.8.3. Additional resources

OpenShift SDN network isolation modes

 PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)
 Allowing ingress traffic:
 To Port: <any> (traffic allowed to all ports)
 From:
 NamespaceSelector: network.openshift.io/policy-group: monitoring
 Not affecting egress traffic
 Policy Types: Ingress

OpenShift Container Platform 4.9 Networking

148

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#default-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-openshift-sdn-modes_about-openshift-sdn

CHAPTER 13. MULTIPLE NETWORKS

13.1. UNDERSTANDING MULTIPLE NETWORKS

In Kubernetes, container networking is delegated to networking plugins that implement the Container
Network Interface (CNI).

OpenShift Container Platform uses the Multus CNI plugin to allow chaining of CNI plugins. During cluster
installation, you configure your default pod network. The default network handles all ordinary network
traffic for the cluster. You can define an additional network based on the available CNI plugins and attach
one or more of these networks to your pods. You can define more than one additional network for your
cluster, depending on your needs. This gives you flexibility when you configure pods that deliver network
functionality, such as switching or routing.

13.1.1. Usage scenarios for an additional network

You can use an additional network in situations where network isolation is needed, including data plane
and control plane separation. Isolating network traffic is useful for the following performance and
security reasons:

Performance

You can send traffic on two different planes to manage how much traffic is along each plane.

Security

You can send sensitive traffic onto a network plane that is managed specifically for security
considerations, and you can separate private data that must not be shared between tenants or
customers.

All of the pods in the cluster still use the cluster-wide default network to maintain connectivity across
the cluster. Every pod has an eth0 interface that is attached to the cluster-wide pod network. You can
view the interfaces for a pod by using the oc exec -it <pod_name> -- ip a command. If you add
additional network interfaces that use Multus CNI, they are named net1, net2, …​, netN.

To attach additional network interfaces to a pod, you must create configurations that define how the
interfaces are attached. You specify each interface by using a NetworkAttachmentDefinition custom
resource (CR). A CNI configuration inside each of these CRs defines how that interface is created.

13.1.2. Additional networks in OpenShift Container Platform

OpenShift Container Platform provides the following CNI plugins for creating additional networks in
your cluster:

bridge: Configure a bridge-based additional network to allow pods on the same host to
communicate with each other and the host.

host-device: Configure a host-device additional network to allow pods access to a physical
Ethernet network device on the host system.

ipvlan: Configure an ipvlan-based additional network to allow pods on a host to communicate
with other hosts and pods on those hosts, similar to a macvlan-based additional network. Unlike
a macvlan-based additional network, each pod shares the same MAC address as the parent
physical network interface.

macvlan: Configure a macvlan-based additional network to allow pods on a host to
communicate with other hosts and pods on those hosts by using a physical network interface.

CHAPTER 13. MULTIPLE NETWORKS

149

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-multus-bridge-object_configuring-additional-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-multus-host-device-object_configuring-additional-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-multus-ipvlan-object_configuring-additional-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-multus-macvlan-object_configuring-additional-network

Each pod that is attached to a macvlan-based additional network is provided a unique MAC
address.

SR-IOV: Configure an SR-IOV based additional network to allow pods to attach to a virtual
function (VF) interface on SR-IOV capable hardware on the host system.

13.2. CONFIGURING AN ADDITIONAL NETWORK

As a cluster administrator, you can configure an additional network for your cluster. The following
network types are supported:

Bridge

Host device

IPVLAN

MACVLAN

13.2.1. Approaches to managing an additional network

You can manage the life cycle of an additional network by two approaches. Each approach is mutually
exclusive and you can only use one approach for managing an additional network at a time. For either
approach, the additional network is managed by a Container Network Interface (CNI) plugin that you
configure.

For an additional network, IP addresses are provisioned through an IP Address Management (IPAM) CNI
plugin that you configure as part of the additional network. The IPAM plugin supports a variety of IP
address assignment approaches including DHCP and static assignment.

Modify the Cluster Network Operator (CNO) configuration: The CNO automatically creates and
manages the NetworkAttachmentDefinition object. In addition to managing the object
lifecycle the CNO ensures a DHCP is available for an additional network that uses a DHCP
assigned IP address.

Applying a YAML manifest: You can manage the additional network directly by creating an
NetworkAttachmentDefinition object. This approach allows for the chaining of CNI plugins.

13.2.2. Configuration for an additional network attachment

An additional network is configured via the NetworkAttachmentDefinition API in the k8s.cni.cncf.io
API group.

IMPORTANT

Do not store any sensitive information or a secret in the NetworkAttachmentDefinition
object because this information is accessible by the project administration user.

The configuration for the API is described in the following table:

Table 13.1. NetworkAttachmentDefinition API fields

OpenShift Container Platform 4.9 Networking

150

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#about-sriov
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-multus-bridge-object_configuring-additional-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-multus-host-device-object_configuring-additional-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-multus-ipvlan-object_configuring-additional-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-multus-macvlan-object_configuring-additional-network

1

2

3

4

Field Type Description

metadata.name string The name for the additional network.

metadata.namespace string The namespace that the object is associated with.

spec.config string The CNI plugin configuration in JSON format.

13.2.2.1. Configuration of an additional network through the Cluster Network Operator

The configuration for an additional network attachment is specified as part of the Cluster Network
Operator (CNO) configuration.

The following YAML describes the configuration parameters for managing an additional network with
the CNO:

Cluster Network Operator configuration

An array of one or more additional network configurations.

The name for the additional network attachment that you are creating. The name must be unique
within the specified namespace.

The namespace to create the network attachment in. If you do not specify a value, then the default
namespace is used.

A CNI plugin configuration in JSON format.

13.2.2.2. Configuration of an additional network from a YAML manifest

The configuration for an additional network is specified from a YAML configuration file, such as in the
following example:

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 # ...
 additionalNetworks: 1
 - name: <name> 2
 namespace: <namespace> 3
 rawCNIConfig: |- 4
 {
 ...
 }
 type: Raw

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:

CHAPTER 13. MULTIPLE NETWORKS

151

1

2

The name for the additional network attachment that you are creating.

A CNI plugin configuration in JSON format.

13.2.3. Configurations for additional network types

The specific configuration fields for additional networks is described in the following sections.

13.2.3.1. Configuration for a bridge additional network

The following object describes the configuration parameters for the bridge CNI plugin:

Table 13.2. Bridge CNI plugin JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

name string The value for the name parameter you provided previously for
the CNO configuration.

type string

bridge string Specify the name of the virtual bridge to use. If the bridge
interface does not exist on the host, it is created. The default
value is cni0.

ipam object The configuration object for the IPAM CNI plugin. The plugin
manages IP address assignment for the attachment definition.

ipMasq boolean Set to true to enable IP masquerading for traffic that leaves the
virtual network. The source IP address for all traffic is rewritten
to the bridge’s IP address. If the bridge does not have an IP
address, this setting has no effect. The default value is false.

isGateway boolean Set to true to assign an IP address to the bridge. The default
value is false.

isDefaultGatewa
y

boolean Set to true to configure the bridge as the default gateway for
the virtual network. The default value is false. If
isDefaultGateway is set to true, then isGateway is also set
to true automatically.

 name: <name> 1
spec:
 config: |- 2
 {
 ...
 }

OpenShift Container Platform 4.9 Networking

152

forceAddress boolean Set to true to allow assignment of a previously assigned IP
address to the virtual bridge. When set to false, if an IPv4
address or an IPv6 address from overlapping subsets is assigned
to the virtual bridge, an error occurs. The default value is false.

hairpinMode boolean Set to true to allow the virtual bridge to send an Ethernet frame
back through the virtual port it was received on. This mode is
also known as reflective relay. The default value is false.

promiscMode boolean Set to true to enable promiscuous mode on the bridge. The
default value is false.

vlan string Specify a virtual LAN (VLAN) tag as an integer value. By default,
no VLAN tag is assigned.

mtu string Set the maximum transmission unit (MTU) to the specified value.
The default value is automatically set by the kernel.

Field Type Description

13.2.3.1.1. bridge configuration example

The following example configures an additional network named bridge-net:

13.2.3.2. Configuration for a host device additional network

NOTE

Specify your network device by setting only one of the following parameters: device,
hwaddr, kernelpath, or pciBusID.

The following object describes the configuration parameters for the host-device CNI plugin:

Table 13.3. Host device CNI plugin JSON configuration object

{
 "cniVersion": "0.3.1",
 "name": "work-network",
 "type": "bridge",
 "isGateway": true,
 "vlan": 2,
 "ipam": {
 "type": "dhcp"
 }
}

CHAPTER 13. MULTIPLE NETWORKS

153

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

name string The value for the name parameter you provided previously for
the CNO configuration.

type string The name of the CNI plugin to configure: host-device.

device string Optional: The name of the device, such as eth0.

hwaddr string Optional: The device hardware MAC address.

kernelpath string Optional: The Linux kernel device path, such as
/sys/devices/pci0000:00/0000:00:1f.6.

pciBusID string Optional: The PCI address of the network device, such as
0000:00:1f.6.

13.2.3.2.1. host-device configuration example

The following example configures an additional network named hostdev-net:

13.2.3.3. Configuration for an IPVLAN additional network

The following object describes the configuration parameters for the IPVLAN CNI plugin:

Table 13.4. IPVLAN CNI plugin JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

name string The value for the name parameter you provided previously for
the CNO configuration.

type string The name of the CNI plugin to configure: ipvlan.

mode string The operating mode for the virtual network. The value must be
l2, l3, or l3s. The default value is l2.

{
 "cniVersion": "0.3.1",
 "name": "work-network",
 "type": "host-device",
 "device": "eth1"
}

OpenShift Container Platform 4.9 Networking

154

master string The Ethernet interface to associate with the network
attachment. If a master is not specified, the interface for the
default network route is used.

mtu integer Set the maximum transmission unit (MTU) to the specified value.
The default value is automatically set by the kernel.

ipam object The configuration object for the IPAM CNI plugin. The plugin
manages IP address assignment for the attachment definition.

Do not specify dhcp. Configuring IPVLAN with DHCP is not
supported because IPVLAN interfaces share the MAC address
with the host interface.

Field Type Description

13.2.3.3.1. ipvlan configuration example

The following example configures an additional network named ipvlan-net:

13.2.3.4. Configuration for a MACVLAN additional network

The following object describes the configuration parameters for the macvlan CNI plugin:

Table 13.5. MACVLAN CNI plugin JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

name string The value for the name parameter you provided previously for
the CNO configuration.

{
 "cniVersion": "0.3.1",
 "name": "work-network",
 "type": "ipvlan",
 "master": "eth1",
 "mode": "l3",
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "192.168.10.10/24"
 }
]
 }
}

CHAPTER 13. MULTIPLE NETWORKS

155

type string The name of the CNI plugin to configure: macvlan.

mode string Configures traffic visibility on the virtual network. Must be either
bridge, passthru, private, or vepa. If a value is not provided,
the default value is bridge.

master string The host network interface to associate with the newly created
macvlan interface. If a value is not specified, then the default
route interface is used.

mtu string The maximum transmission unit (MTU) to the specified value.
The default value is automatically set by the kernel.

ipam object The configuration object for the IPAM CNI plugin. The plugin
manages IP address assignment for the attachment definition.

Field Type Description

NOTE

If you specify the master key for the plugin configuration, use a different physical
network interface than the one that is associated with your primary network plugin to
avoid possible conflicts.

13.2.3.4.1. macvlan configuration example

The following example configures an additional network named macvlan-net:

13.2.4. Configuration of IP address assignment for an additional network

The IP address management (IPAM) Container Network Interface (CNI) plugin provides IP addresses
for other CNI plugins.

You can use the following IP address assignment types:

Static assignment.

Dynamic assignment through a DHCP server. The DHCP server you specify must be reachable
from the additional network.

Dynamic assignment through the Whereabouts IPAM CNI plugin.

{
 "cniVersion": "0.3.1",
 "name": "macvlan-net",
 "type": "macvlan",
 "master": "eth1",
 "mode": "bridge",
 "ipam": {
 "type": "dhcp"
 }
}

OpenShift Container Platform 4.9 Networking

156

13.2.4.1. Static IP address assignment configuration

The following table describes the configuration for static IP address assignment:

Table 13.6. ipam static configuration object

Field Type Description

type string The IPAM address type. The value static is required.

addresses array An array of objects specifying IP addresses to assign to the
virtual interface. Both IPv4 and IPv6 IP addresses are supported.

routes array An array of objects specifying routes to configure inside the pod.

dns array Optional: An array of objects specifying the DNS configuration.

The addresses array requires objects with the following fields:

Table 13.7. ipam.addresses[] array

Field Type Description

address string An IP address and network prefix that you specify. For example,
if you specify 10.10.21.10/24, then the additional network is
assigned an IP address of 10.10.21.10 and the netmask is
255.255.255.0.

gateway string The default gateway to route egress network traffic to.

Table 13.8. ipam.routes[] array

Field Type Description

dst string The IP address range in CIDR format, such as 192.168.17.0/24
or 0.0.0.0/0 for the default route.

gw string The gateway where network traffic is routed.

Table 13.9. ipam.dns object

Field Type Description

nameservers array An of array of one or more IP addresses for to send DNS queries
to.

domain array The default domain to append to a hostname. For example, if
the domain is set to example.com, a DNS lookup query for
example-host is rewritten as example-host.example.com.

CHAPTER 13. MULTIPLE NETWORKS

157

search array An array of domain names to append to an unqualified
hostname, such as example-host, during a DNS lookup query.

Field Type Description

Static IP address assignment configuration example

13.2.4.2. Dynamic IP address (DHCP) assignment configuration

The following JSON describes the configuration for dynamic IP address address assignment with DHCP.

RENEWAL OF DHCP LEASES

A pod obtains its original DHCP lease when it is created. The lease must be periodically
renewed by a minimal DHCP server deployment running on the cluster.

To trigger the deployment of the DHCP server, you must create a shim network
attachment by editing the Cluster Network Operator configuration, as in the following
example:

Example shim network attachment definition

{
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "191.168.1.7/24"
 }
]
 }
}

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks:
 - name: dhcp-shim
 namespace: default
 type: Raw
 rawCNIConfig: |-
 {
 "name": "dhcp-shim",
 "cniVersion": "0.3.1",
 "type": "bridge",
 "ipam": {
 "type": "dhcp"
 }
 }
 # ...

OpenShift Container Platform 4.9 Networking

158

Table 13.10. ipam DHCP configuration object

Field Type Description

type string The IPAM address type. The value dhcp is required.

Dynamic IP address (DHCP) assignment configuration example

13.2.4.3. Dynamic IP address assignment configuration with Whereabouts

The Whereabouts CNI plugin allows the dynamic assignment of an IP address to an additional network
without the use of a DHCP server.

The following table describes the configuration for dynamic IP address assignment with Whereabouts:

Table 13.11. ipam whereabouts configuration object

Field Type Description

type string The IPAM address type. The value whereabouts is required.

range string An IP address and range in CIDR notation. IP addresses are
assigned from within this range of addresses.

exclude array Optional: A list of zero ore more IP addresses and ranges in
CIDR notation. IP addresses within an excluded address range
are not assigned.

Dynamic IP address assignment configuration example that uses Whereabouts

13.2.5. Creating an additional network attachment with the Cluster Network
Operator

The Cluster Network Operator (CNO) manages additional network definitions. When you specify an

{
 "ipam": {
 "type": "dhcp"
 }
}

{
 "ipam": {
 "type": "whereabouts",
 "range": "192.0.2.192/27",
 "exclude": [
 "192.0.2.192/30",
 "192.0.2.196/32"
]
 }
}

CHAPTER 13. MULTIPLE NETWORKS

159

The Cluster Network Operator (CNO) manages additional network definitions. When you specify an
additional network to create, the CNO creates the NetworkAttachmentDefinition object automatically.

IMPORTANT

Do not edit the NetworkAttachmentDefinition objects that the Cluster Network
Operator manages. Doing so might disrupt network traffic on your additional network.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. To edit the CNO configuration, enter the following command:

2. Modify the CR that you are creating by adding the configuration for the additional network that
you are creating, as in the following example CR.

3. Save your changes and quit the text editor to commit your changes.

Verification

Confirm that the CNO created the NetworkAttachmentDefinition object by running the

$ oc edit networks.operator.openshift.io cluster

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 # ...
 additionalNetworks:
 - name: tertiary-net
 namespace: project2
 type: Raw
 rawCNIConfig: |-
 {
 "cniVersion": "0.3.1",
 "name": "tertiary-net",
 "type": "ipvlan",
 "master": "eth1",
 "mode": "l2",
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "192.168.1.23/24"
 }
]
 }
 }

OpenShift Container Platform 4.9 Networking

160

Confirm that the CNO created the NetworkAttachmentDefinition object by running the
following command. There might be a delay before the CNO creates the object.

where:

<namespace>

Specifies the namespace for the network attachment that you added to the CNO
configuration.

Example output

13.2.6. Creating an additional network attachment by applying a YAML manifest

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a YAML file with your additional network configuration, such as in the following example:

2. To create the additional network, enter the following command:

where:

<file>

Specifies the name of the file contained the YAML manifest.

$ oc get network-attachment-definitions -n <namespace>

NAME AGE
test-network-1 14m

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
 name: next-net
spec:
 config: |-
 {
 "cniVersion": "0.3.1",
 "name": "work-network",
 "type": "host-device",
 "device": "eth1",
 "ipam": {
 "type": "dhcp"
 }
 }

$ oc apply -f <file>.yaml

CHAPTER 13. MULTIPLE NETWORKS

161

13.3. ABOUT VIRTUAL ROUTING AND FORWARDING

13.3.1. About virtual routing and forwarding

Virtual routing and forwarding (VRF) devices combined with IP rules provide the ability to create virtual
routing and forwarding domains. VRF reduces the number of permissions needed by CNF, and provides
increased visibility of the network topology of secondary networks. VRF is used to provide multi-tenancy
functionality, for example, where each tenant has its own unique routing tables and requires different
default gateways.

Processes can bind a socket to the VRF device. Packets through the binded socket use the routing table
associated with the VRF device. An important feature of VRF is that it impacts only OSI model layer 3
traffic and above so L2 tools, such as LLDP, are not affected. This allows higher priority IP rules such as
policy based routing to take precedence over the VRF device rules directing specific traffic.

13.3.1.1. Benefits of secondary networks for pods for telecommunications operators

In telecommunications use cases, each CNF can potentially be connected to multiple different networks
sharing the same address space. These secondary networks can potentially conflict with the cluster’s
main network CIDR. Using the CNI VRF plugin, network functions can be connected to different
customers' infrastructure using the same IP address, keeping different customers isolated. IP addresses
are overlapped with OpenShift Container Platform IP space. The CNI VRF plugin also reduces the
number of permissions needed by CNF and increases the visibility of network topologies of secondary
networks.

13.4. CONFIGURING MULTI-NETWORK POLICY

As a cluster administrator, you can configure network policy for additional networks.

NOTE

You can specify multi-network policy for only macvlan additional networks. Other types
of additional networks, such as ipvlan, are not supported.

13.4.1. Differences between multi-network policy and network policy

Although the MultiNetworkPolicy API implements the NetworkPolicy API, there are several important
differences:

You must use the MultiNetworkPolicy API:

You must use the multi-networkpolicy resource name when using the CLI to interact with
multi-network policies. For example, you can view a multi-network policy object with the oc get
multi-networkpolicy <name> command where <name> is the name of a multi-network policy.

You must specify an annotation with the name of the network attachment definition that
defines the macvlan additional network:

apiVersion: k8s.cni.cncf.io/v1beta1
kind: MultiNetworkPolicy

apiVersion: k8s.cni.cncf.io/v1beta1
kind: MultiNetworkPolicy

OpenShift Container Platform 4.9 Networking

162

where:

<network_name>

Specifies the name of a network attachment definition.

13.4.2. Enabling multi-network policy for the cluster

As a cluster administrator, you can enable multi-network policy support on your cluster.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster with a user with cluster-admin privileges.

Procedure

1. Create the multinetwork-enable-patch.yaml file with the following YAML:

2. Configure the cluster to enable multi-network policy:

Example output

13.4.3. Working with multi-network policy

As a cluster administrator, you can create, edit, view, and delete multi-network policies.

13.4.3.1. Prerequisites

You have enabled multi-network policy support for your cluster.

13.4.3.2. Creating a multi-network policy

To define granular rules describing ingress or egress network traffic allowed for namespaces in your
cluster, you can create a multi-network policy.

metadata:
 annotations:
 k8s.v1.cni.cncf.io/policy-for: <network_name>

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 useMultiNetworkPolicy: true

$ oc patch network.operator.openshift.io cluster --type=merge --patch-file=multinetwork-
enable-patch.yaml

network.operator.openshift.io/cluster patched

CHAPTER 13. MULTIPLE NETWORKS

163

Prerequisites

Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OVN-Kubernetes network provider or the OpenShift SDN network provider with mode:
NetworkPolicy set. This mode is the default for OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

You are working in the namespace that the multi-network policy applies to.

Procedure

1. Create a policy rule:

a. Create a <policy_name>.yaml file:

where:

<policy_name>

Specifies the multi-network policy file name.

b. Define a multi-network policy in the file that you just created, such as in the following
examples:

Deny ingress from all pods in all namespaces

where

<network_name>

Specifies the name of a network attachment definition.

Allow ingress from all pods in the same namespace

$ touch <policy_name>.yaml

apiVersion: k8s.cni.cncf.io/v1beta1
kind: MultiNetworkPolicy
metadata:
 name: deny-by-default
 annotations:
 k8s.v1.cni.cncf.io/policy-for: <network_name>
spec:
 podSelector:
 ingress: []

apiVersion: k8s.cni.cncf.io/v1beta1
kind: MultiNetworkPolicy
metadata:
 name: allow-same-namespace
 annotations:
 k8s.v1.cni.cncf.io/policy-for: <network_name>
spec:

OpenShift Container Platform 4.9 Networking

164

where

<network_name>

Specifies the name of a network attachment definition.

2. To create the multi-network policy object, enter the following command:

where:

<policy_name>

Specifies the multi-network policy file name.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

NOTE

If you log in with a user with the cluster-admin role in the console, then you have a choice
of creating a network policy in any namespace in the cluster directly from the YAML view
or from a form in the web console.

13.4.3.3. Editing a multi-network policy

You can edit a multi-network policy in a namespace.

Prerequisites

Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OVN-Kubernetes network provider or the OpenShift SDN network provider with mode:
NetworkPolicy set. This mode is the default for OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

You are working in the namespace where the multi-network policy exists.

Procedure

1. Optional: To list the multi-network policy objects in a namespace, enter the following command:

 podSelector:
 ingress:
 - from:
 - podSelector: {}

$ oc apply -f <policy_name>.yaml -n <namespace>

multinetworkpolicy.k8s.cni.cncf.io/default-deny created

CHAPTER 13. MULTIPLE NETWORKS

165

where:

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

2. Edit the multi-network policy object.

If you saved the multi-network policy definition in a file, edit the file and make any necessary
changes, and then enter the following command.

where:

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

<policy_file>

Specifies the name of the file containing the network policy.

If you need to update the multi-network policy object directly, enter the following
command:

where:

<policy_name>

Specifies the name of the network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

3. Confirm that the multi-network policy object is updated.

where:

<policy_name>

Specifies the name of the multi-network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

13.4.3.4. Viewing multi-network policies

You can examine the multi-network policies in a namespace.

$ oc get multi-networkpolicy

$ oc apply -n <namespace> -f <policy_file>.yaml

$ oc edit multi-networkpolicy <policy_name> -n <namespace>

$ oc describe multi-networkpolicy <policy_name> -n <namespace>

OpenShift Container Platform 4.9 Networking

166

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

You are working in the namespace where the multi-network policy exists.

Procedure

List multi-network policies in a namespace:

To view multi-network policy objects defined in a namespace, enter the following command:

Optional: To examine a specific multi-network policy, enter the following command:

where:

<policy_name>

Specifies the name of the multi-network policy to inspect.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

13.4.3.5. Deleting a multi-network policy

You can delete a multi-network policy in a namespace.

Prerequisites

Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OVN-Kubernetes network provider or the OpenShift SDN network provider with mode:
NetworkPolicy set. This mode is the default for OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

You are working in the namespace where the multi-network policy exists.

Procedure

To delete a multi-network policy object, enter the following command:

where:

<policy_name>

Specifies the name of the multi-network policy.

$ oc get multi-networkpolicy

$ oc describe multi-networkpolicy <policy_name> -n <namespace>

$ oc delete multi-networkpolicy <policy_name> -n <namespace>

CHAPTER 13. MULTIPLE NETWORKS

167

1

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

13.4.4. Additional resources

About network policy

Understanding multiple networks

Configuring a macvlan network

13.5. ATTACHING A POD TO AN ADDITIONAL NETWORK

As a cluster user you can attach a pod to an additional network.

13.5.1. Adding a pod to an additional network

You can add a pod to an additional network. The pod continues to send normal cluster-related network
traffic over the default network.

When a pod is created additional networks are attached to it. However, if a pod already exists, you
cannot attach additional networks to it.

The pod must be in the same namespace as the additional network.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster.

Procedure

1. Add an annotation to the Pod object. Only one of the following annotation formats can be used:

a. To attach an additional network without any customization, add an annotation with the
following format. Replace <network> with the name of the additional network to associate
with the pod:

To specify more than one additional network, separate each network with a comma. Do
not include whitespace between the comma. If you specify the same additional
network multiple times, that pod will have multiple network interfaces attached to that
network.

b. To attach an additional network with customizations, add an annotation with the following

multinetworkpolicy.k8s.cni.cncf.io/default-deny deleted

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: <network>[,<network>,...] 1

OpenShift Container Platform 4.9 Networking

168

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#about-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#understanding-multiple-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-multus-macvlan-object_configuring-additional-network

1

2

3

b. To attach an additional network with customizations, add an annotation with the following
format:

Specify the name of the additional network defined by a
NetworkAttachmentDefinition object.

Specify the namespace where the NetworkAttachmentDefinition object is defined.

Optional: Specify an override for the default route, such as 192.168.17.1.

2. To create the pod, enter the following command. Replace <name> with the name of the pod.

3. Optional: To Confirm that the annotation exists in the Pod CR, enter the following command,
replacing <name> with the name of the pod.

In the following example, the example-pod pod is attached to the net1 additional network:

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [
 {
 "name": "<network>", 1
 "namespace": "<namespace>", 2
 "default-route": ["<default-route>"] 3
 }
]

$ oc create -f <name>.yaml

$ oc get pod <name> -o yaml

$ oc get pod example-pod -o yaml
apiVersion: v1
kind: Pod
metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: macvlan-bridge
 k8s.v1.cni.cncf.io/networks-status: |- 1
 [{
 "name": "openshift-sdn",
 "interface": "eth0",
 "ips": [
 "10.128.2.14"
],
 "default": true,
 "dns": {}
 },{
 "name": "macvlan-bridge",
 "interface": "net1",
 "ips": [
 "20.2.2.100"
],
 "mac": "22:2f:60:a5:f8:00",

CHAPTER 13. MULTIPLE NETWORKS

169

1

1

The k8s.v1.cni.cncf.io/networks-status parameter is a JSON array of objects. Each
object describes the status of an additional network attached to the pod. The annotation
value is stored as a plain text value.

13.5.1.1. Specifying pod-specific addressing and routing options

When attaching a pod to an additional network, you may want to specify further properties about that
network in a particular pod. This allows you to change some aspects of routing, as well as specify static
IP addresses and MAC addresses. To accomplish this, you can use the JSON formatted annotations.

Prerequisites

The pod must be in the same namespace as the additional network.

Install the OpenShift CLI (oc).

You must log in to the cluster.

Procedure

To add a pod to an additional network while specifying addressing and/or routing options, complete the
following steps:

1. Edit the Pod resource definition. If you are editing an existing Pod resource, run the following
command to edit its definition in the default editor. Replace <name> with the name of the Pod
resource to edit.

2. In the Pod resource definition, add the k8s.v1.cni.cncf.io/networks parameter to the pod
metadata mapping. The k8s.v1.cni.cncf.io/networks accepts a JSON string of a list of objects
that reference the name of NetworkAttachmentDefinition custom resource (CR) names in
addition to specifying additional properties.

Replace <network> with a JSON object as shown in the following examples. The single
quotes are required.

3. In the following example the annotation specifies which network attachment will have the
default route, using the default-route parameter.

 "dns": {}
 }]
 name: example-pod
 namespace: default
spec:
 ...
status:
 ...

$ oc edit pod <name>

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: '[<network>[,<network>,...]]' 1

OpenShift Container Platform 4.9 Networking

170

1

2

The name key is the name of the additional network to associate with the pod.

The default-route key specifies a value of a gateway for traffic to be routed over if no
other routing entry is present in the routing table. If more than one default-route key is
specified, this will cause the pod to fail to become active.

The default route will cause any traffic that is not specified in other routes to be routed to the gateway.

IMPORTANT

Setting the default route to an interface other than the default network interface for
OpenShift Container Platform may cause traffic that is anticipated for pod-to-pod
traffic to be routed over another interface.

To verify the routing properties of a pod, the oc command may be used to execute the ip command
within a pod.

NOTE

You may also reference the pod’s k8s.v1.cni.cncf.io/networks-status to see which
additional network has been assigned the default route, by the presence of the default-
route key in the JSON-formatted list of objects.

To set a static IP address or MAC address for a pod you can use the JSON formatted annotations. This
requires you create networks that specifically allow for this functionality. This can be specified in a
rawCNIConfig for the CNO.

1. Edit the CNO CR by running the following command:

apiVersion: v1
kind: Pod
metadata:
 name: example-pod
 annotations:
 k8s.v1.cni.cncf.io/networks: '
 {
 "name": "net1"
 },
 {
 "name": "net2", 1
 "default-route": ["192.0.2.1"] 2
 }'
spec:
 containers:
 - name: example-pod
 command: ["/bin/bash", "-c", "sleep 2000000000000"]
 image: centos/tools

$ oc exec -it <pod_name> -- ip route

$ oc edit networks.operator.openshift.io cluster

CHAPTER 13. MULTIPLE NETWORKS

171

1

2

3

1

2

3

4

5

The following YAML describes the configuration parameters for the CNO:

Cluster Network Operator YAML configuration

Specify a name for the additional network attachment that you are creating. The name must be
unique within the specified namespace.

Specify the namespace to create the network attachment in. If you do not specify a value, then the
default namespace is used.

Specify the CNI plugin configuration in JSON format, which is based on the following template.

The following object describes the configuration parameters for utilizing static MAC address and IP
address using the macvlan CNI plugin:

macvlan CNI plugin JSON configuration object using static IP and MAC address

Specifies the name for the additional network attachment to create. The name must be unique
within the specified namespace.

Specifies an array of CNI plugin configurations. The first object specifies a macvlan plugin
configuration and the second object specifies a tuning plugin configuration.

Specifies that a request is made to enable the static IP address functionality of the CNI plugin
runtime configuration capabilities.

Specifies the interface that the macvlan plugin uses.

Specifies that a request is made to enable the static MAC address functionality of a CNI plugin.

name: <name> 1
namespace: <namespace> 2
rawCNIConfig: '{ 3
 ...
}'
type: Raw

{
 "cniVersion": "0.3.1",
 "name": "<name>", 1
 "plugins": [{ 2
 "type": "macvlan",
 "capabilities": { "ips": true }, 3
 "master": "eth0", 4
 "mode": "bridge",
 "ipam": {
 "type": "static"
 }
 }, {
 "capabilities": { "mac": true }, 5
 "type": "tuning"
 }]
}

OpenShift Container Platform 4.9 Networking

172

1

2

3

The above network attachment can be referenced in a JSON formatted annotation, along with keys to
specify which static IP and MAC address will be assigned to a given pod.

Edit the pod with:

macvlan CNI plugin JSON configuration object using static IP and MAC address

Use the <name> as provided when creating the rawCNIConfig above.

Provide an IP address including the subnet mask.

Provide the MAC address.

NOTE

Static IP addresses and MAC addresses do not have to be used at the same time, you
may use them individually, or together.

To verify the IP address and MAC properties of a pod with additional networks, use the oc command to
execute the ip command within a pod.

13.6. REMOVING A POD FROM AN ADDITIONAL NETWORK

As a cluster user you can remove a pod from an additional network.

13.6.1. Removing a pod from an additional network

You can remove a pod from an additional network only by deleting the pod.

Prerequisites

An additional network is attached to the pod.

Install the OpenShift CLI (oc).

$ oc edit pod <name>

apiVersion: v1
kind: Pod
metadata:
 name: example-pod
 annotations:
 k8s.v1.cni.cncf.io/networks: '[
 {
 "name": "<name>", 1
 "ips": ["192.0.2.205/24"], 2
 "mac": "CA:FE:C0:FF:EE:00" 3
 }
]'

$ oc exec -it <pod_name> -- ip a

CHAPTER 13. MULTIPLE NETWORKS

173

Log in to the cluster.

Procedure

To delete the pod, enter the following command:

<name> is the name of the pod.

<namespace> is the namespace that contains the pod.

13.7. EDITING AN ADDITIONAL NETWORK

As a cluster administrator you can modify the configuration for an existing additional network.

13.7.1. Modifying an additional network attachment definition

As a cluster administrator, you can make changes to an existing additional network. Any existing pods
attached to the additional network will not be updated.

Prerequisites

You have configured an additional network for your cluster.

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

To edit an additional network for your cluster, complete the following steps:

1. Run the following command to edit the Cluster Network Operator (CNO) CR in your default text
editor:

2. In the additionalNetworks collection, update the additional network with your changes.

3. Save your changes and quit the text editor to commit your changes.

4. Optional: Confirm that the CNO updated the NetworkAttachmentDefinition object by running
the following command. Replace <network-name> with the name of the additional network to
display. There might be a delay before the CNO updates the NetworkAttachmentDefinition
object to reflect your changes.

For example, the following console output displays a NetworkAttachmentDefinition object that
is named net1:

$ oc delete pod <name> -n <namespace>

$ oc edit networks.operator.openshift.io cluster

$ oc get network-attachment-definitions <network-name> -o yaml

$ oc get network-attachment-definitions net1 -o go-template='{{printf "%s\n" .spec.config}}'
{ "cniVersion": "0.3.1", "type": "macvlan",

OpenShift Container Platform 4.9 Networking

174

1

13.8. REMOVING AN ADDITIONAL NETWORK

As a cluster administrator you can remove an additional network attachment.

13.8.1. Removing an additional network attachment definition

As a cluster administrator, you can remove an additional network from your OpenShift Container
Platform cluster. The additional network is not removed from any pods it is attached to.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

To remove an additional network from your cluster, complete the following steps:

1. Edit the Cluster Network Operator (CNO) in your default text editor by running the following
command:

2. Modify the CR by removing the configuration from the additionalNetworks collection for the
network attachment definition you are removing.

If you are removing the configuration mapping for the only additional network attachment
definition in the additionalNetworks collection, you must specify an empty collection.

3. Save your changes and quit the text editor to commit your changes.

4. Optional: Confirm that the additional network CR was deleted by running the following
command:

13.9. ASSIGNING A SECONDARY NETWORK TO A VRF

"master": "ens5",
"mode": "bridge",
"ipam": {"type":"static","routes":[{"dst":"0.0.0.0/0","gw":"10.128.2.1"}],"addresses":
[{"address":"10.128.2.100/23","gateway":"10.128.2.1"}],"dns":{"nameservers":
["172.30.0.10"],"domain":"us-west-2.compute.internal","search":["us-west-
2.compute.internal"]}} }

$ oc edit networks.operator.openshift.io cluster

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks: [] 1

$ oc get network-attachment-definition --all-namespaces

CHAPTER 13. MULTIPLE NETWORKS

175

13.9.1. Assigning a secondary network to a VRF

As a cluster administrator, you can configure an additional network for your VRF domain by using the
CNI VRF plugin. The virtual network created by this plugin is associated with a physical interface that
you specify.

NOTE

Applications that use VRFs need to bind to a specific device. The common usage is to use
the SO_BINDTODEVICE option for a socket. SO_BINDTODEVICE binds the socket to a
device that is specified in the passed interface name, for example, eth1. To use
SO_BINDTODEVICE, the application must have CAP_NET_RAW capabilities.

Using a VRF through the ip vrf exec command is not supported in OpenShift Container
Platform pods. To use VRF, bind applications directly to the VRF interface.

13.9.1.1. Creating an additional network attachment with the CNI VRF plugin

The Cluster Network Operator (CNO) manages additional network definitions. When you specify an
additional network to create, the CNO creates the NetworkAttachmentDefinition custom resource
(CR) automatically.

NOTE

Do not edit the NetworkAttachmentDefinition CRs that the Cluster Network Operator
manages. Doing so might disrupt network traffic on your additional network.

To create an additional network attachment with the CNI VRF plugin, perform the following procedure.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in to the OpenShift cluster as a user with cluster-admin privileges.

Procedure

1. Create the Network custom resource (CR) for the additional network attachment and insert the
rawCNIConfig configuration for the additional network, as in the following example CR. Save
the YAML as the file additional-network-attachment.yaml.

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
 spec:
 additionalNetworks:
 - name: test-network-1
 namespace: additional-network-1
 type: Raw
 rawCNIConfig: '{
 "cniVersion": "0.3.1",
 "name": "macvlan-vrf",
 "plugins": [1

OpenShift Container Platform 4.9 Networking

176

1

2

3

4

plugins must be a list. The first item in the list must be the secondary network
underpinning the VRF network. The second item in the list is the VRF plugin configuration.

type must be set to vrf.

vrfname is the name of the VRF that the interface is assigned to. If it does not exist in the
pod, it is created.

Optional. table is the routing table ID. By default, the tableid parameter is used. If it is not
specified, the CNI assigns a free routing table ID to the VRF.

NOTE

VRF functions correctly only when the resource is of type netdevice.

2. Create the Network resource:

3. Confirm that the CNO created the NetworkAttachmentDefinition CR by running the following
command. Replace <namespace> with the namespace that you specified when configuring the
network attachment, for example, additional-network-1.

Example output

NOTE

There might be a delay before the CNO creates the CR.

 {
 "type": "macvlan", 2
 "master": "eth1",
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "191.168.1.23/24"
 }
]
 }
 },
 {
 "type": "vrf",
 "vrfname": "example-vrf-name", 3
 "table": 1001 4
 }]
 }'

$ oc create -f additional-network-attachment.yaml

$ oc get network-attachment-definitions -n <namespace>

NAME AGE
additional-network-1 14m

CHAPTER 13. MULTIPLE NETWORKS

177

Verifying that the additional VRF network attachment is successful

To verify that the VRF CNI is correctly configured and the additional network attachment is attached, do
the following:

1. Create a network that uses the VRF CNI.

2. Assign the network to a pod.

3. Verify that the pod network attachment is connected to the VRF additional network. Remote
shell into the pod and run the following command:

Example output

4. Confirm the VRF interface is master of the secondary interface:

Example output

$ ip vrf show

Name Table

red 10

$ ip link

5: net1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master red
state UP mode

OpenShift Container Platform 4.9 Networking

178

CHAPTER 14. HARDWARE NETWORKS

14.1. ABOUT SINGLE ROOT I/O VIRTUALIZATION (SR-IOV) HARDWARE
NETWORKS

The Single Root I/O Virtualization (SR-IOV) specification is a standard for a type of PCI device
assignment that can share a single device with multiple pods.

SR-IOV can segment a compliant network device, recognized on the host node as a physical function
(PF), into multiple virtual functions (VFs). The VF is used like any other network device. The SR-IOV
network device driver for the device determines how the VF is exposed in the container:

netdevice driver: A regular kernel network device in the netns of the container

vfio-pci driver: A character device mounted in the container

You can use SR-IOV network devices with additional networks on your OpenShift Container Platform
cluster installed on bare metal or Red Hat OpenStack Platform (RHOSP) infrastructure for applications
that require high bandwidth or low latency.

You can enable SR-IOV on a node by using the following command:

14.1.1. Components that manage SR-IOV network devices

The SR-IOV Network Operator creates and manages the components of the SR-IOV stack. It performs
the following functions:

Orchestrates discovery and management of SR-IOV network devices

Generates NetworkAttachmentDefinition custom resources for the SR-IOV Container
Network Interface (CNI)

Creates and updates the configuration of the SR-IOV network device plugin

Creates node specific SriovNetworkNodeState custom resources

Updates the spec.interfaces field in each SriovNetworkNodeState custom resource

The Operator provisions the following components:

SR-IOV network configuration daemon

A daemon set that is deployed on worker nodes when the SR-IOV Network Operator starts. The
daemon is responsible for discovering and initializing SR-IOV network devices in the cluster.

SR-IOV Network Operator webhook

A dynamic admission controller webhook that validates the Operator custom resource and sets
appropriate default values for unset fields.

SR-IOV Network resources injector

A dynamic admission controller webhook that provides functionality for patching Kubernetes pod
specifications with requests and limits for custom network resources such as SR-IOV VFs. The SR-
IOV network resources injector adds the resource field to only the first container in a pod
automatically.

$ oc label node <node_name> feature.node.kubernetes.io/network-sriov.capable="true"

CHAPTER 14. HARDWARE NETWORKS

179

SR-IOV network device plugin

A device plugin that discovers, advertises, and allocates SR-IOV network virtual function (VF)
resources. Device plugins are used in Kubernetes to enable the use of limited resources, typically in
physical devices. Device plugins give the Kubernetes scheduler awareness of resource availability, so
that the scheduler can schedule pods on nodes with sufficient resources.

SR-IOV CNI plugin

A CNI plugin that attaches VF interfaces allocated from the SR-IOV network device plugin directly
into a pod.

SR-IOV InfiniBand CNI plugin

A CNI plugin that attaches InfiniBand (IB) VF interfaces allocated from the SR-IOV network device
plugin directly into a pod.

NOTE

The SR-IOV Network resources injector and SR-IOV Network Operator webhook are
enabled by default and can be disabled by editing the default SriovOperatorConfig CR.
Use caution when disabling the SR-IOV Network Operator Admission Controller
webhook. You can disable the webhook under specific circumstances, such as
troubleshooting, or if you want to use unsupported devices.

14.1.1.1. Supported platforms

The SR-IOV Network Operator is supported on the following platforms:

Bare metal

Red Hat OpenStack Platform (RHOSP)

14.1.1.2. Supported devices

OpenShift Container Platform supports the following network interface controllers:

Table 14.1. Supported network interface controllers

Manufacturer Model Vendor ID Device ID

Broadcom BCM57414 14e4 16d7

Broadcom BCM57508 14e4 1750

Intel X710 8086 1572

Intel XL710 8086 1583

Intel XXV710 8086 158b

Intel E810-CQDA2 8086 1592

Intel E810-2CQDA2 8086 1592

OpenShift Container Platform 4.9 Networking

180

Intel E810-XXVDA2 8086 159b

Intel E810-XXVDA4 8086 1593

Mellanox MT27700 Family [ConnectX‑4] 15b3 1013

Mellanox MT27710 Family [ConnectX‑4 Lx] 15b3 1015

Mellanox MT27800 Family [ConnectX‑5] 15b3 1017

Mellanox MT28880 Family [ConnectX‑5 Ex] 15b3 1019

Mellanox MT28908 Family [ConnectX‑6] 15b3 101b

Mellanox MT2894 Family [ConnectX‑6 Lx] 15b3 101f

Manufacturer Model Vendor ID Device ID

NOTE

For the most up-to-date list of supported cards and compatible OpenShift Container
Platform versions available, see Openshift Single Root I/O Virtualization (SR-IOV) and
PTP hardware networks Support Matrix.

14.1.1.3. Automated discovery of SR-IOV network devices

The SR-IOV Network Operator searches your cluster for SR-IOV capable network devices on worker
nodes. The Operator creates and updates a SriovNetworkNodeState custom resource (CR) for each
worker node that provides a compatible SR-IOV network device.

The CR is assigned the same name as the worker node. The status.interfaces list provides information
about the network devices on a node.

IMPORTANT

Do not modify a SriovNetworkNodeState object. The Operator creates and manages
these resources automatically.

14.1.1.3.1. Example SriovNetworkNodeState object

The following YAML is an example of a SriovNetworkNodeState object created by the SR-IOV Network
Operator:

An SriovNetworkNodeState object

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodeState
metadata:
 name: node-25 1
 namespace: openshift-sriov-network-operator

CHAPTER 14. HARDWARE NETWORKS

181

https://access.redhat.com/articles/6954499

1

2

The value of the name field is the same as the name of the worker node.

The interfaces stanza includes a list of all of the SR-IOV devices discovered by the Operator on
the worker node.

14.1.1.4. Example use of a virtual function in a pod

You can run a remote direct memory access (RDMA) or a Data Plane Development Kit (DPDK)

 ownerReferences:
 - apiVersion: sriovnetwork.openshift.io/v1
 blockOwnerDeletion: true
 controller: true
 kind: SriovNetworkNodePolicy
 name: default
spec:
 dpConfigVersion: "39824"
status:
 interfaces: 2
 - deviceID: "1017"
 driver: mlx5_core
 mtu: 1500
 name: ens785f0
 pciAddress: "0000:18:00.0"
 totalvfs: 8
 vendor: 15b3
 - deviceID: "1017"
 driver: mlx5_core
 mtu: 1500
 name: ens785f1
 pciAddress: "0000:18:00.1"
 totalvfs: 8
 vendor: 15b3
 - deviceID: 158b
 driver: i40e
 mtu: 1500
 name: ens817f0
 pciAddress: 0000:81:00.0
 totalvfs: 64
 vendor: "8086"
 - deviceID: 158b
 driver: i40e
 mtu: 1500
 name: ens817f1
 pciAddress: 0000:81:00.1
 totalvfs: 64
 vendor: "8086"
 - deviceID: 158b
 driver: i40e
 mtu: 1500
 name: ens803f0
 pciAddress: 0000:86:00.0
 totalvfs: 64
 vendor: "8086"
 syncStatus: Succeeded

OpenShift Container Platform 4.9 Networking

182

You can run a remote direct memory access (RDMA) or a Data Plane Development Kit (DPDK)
application in a pod with SR-IOV VF attached.

This example shows a pod using a virtual function (VF) in RDMA mode:

Pod spec that uses RDMA mode

The following example shows a pod with a VF in DPDK mode:

Pod spec that uses DPDK mode

apiVersion: v1
kind: Pod
metadata:
 name: rdma-app
 annotations:
 k8s.v1.cni.cncf.io/networks: sriov-rdma-mlnx
spec:
 containers:
 - name: testpmd
 image: <RDMA_image>
 imagePullPolicy: IfNotPresent
 securityContext:
 runAsUser: 0
 capabilities:
 add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"]
 command: ["sleep", "infinity"]

apiVersion: v1
kind: Pod
metadata:
 name: dpdk-app
 annotations:
 k8s.v1.cni.cncf.io/networks: sriov-dpdk-net
spec:
 containers:
 - name: testpmd
 image: <DPDK_image>
 securityContext:
 runAsUser: 0
 capabilities:
 add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"]
 volumeMounts:
 - mountPath: /dev/hugepages
 name: hugepage
 resources:
 limits:
 memory: "1Gi"
 cpu: "2"
 hugepages-1Gi: "4Gi"
 requests:
 memory: "1Gi"
 cpu: "2"
 hugepages-1Gi: "4Gi"
 command: ["sleep", "infinity"]

CHAPTER 14. HARDWARE NETWORKS

183

14.1.1.5. DPDK library for use with container applications

An optional library, app-netutil, provides several API methods for gathering network information about a
pod from within a container running within that pod.

This library can assist with integrating SR-IOV virtual functions (VFs) in Data Plane Development Kit
(DPDK) mode into the container. The library provides both a Golang API and a C API.

Currently there are three API methods implemented:

GetCPUInfo()

This function determines which CPUs are available to the container and returns the list.

GetHugepages()

This function determines the amount of huge page memory requested in the Pod spec for each
container and returns the values.

GetInterfaces()

This function determines the set of interfaces in the container and returns the list. The return value
includes the interface type and type-specific data for each interface.

The repository for the library includes a sample Dockerfile to build a container image, dpdk-app-centos.
The container image can run one of the following DPDK sample applications, depending on an
environment variable in the pod specification: l2fwd, l3wd or testpmd. The container image provides an
example of integrating the app-netutil library into the container image itself. The library can also
integrate into an init container. The init container can collect the required data and pass the data to an
existing DPDK workload.

14.1.1.6. Huge pages resource injection for Downward API

When a pod specification includes a resource request or limit for huge pages, the Network Resources
Injector automatically adds Downward API fields to the pod specification to provide the huge pages
information to the container.

The Network Resources Injector adds a volume that is named podnetinfo and is mounted at
/etc/podnetinfo for each container in the pod. The volume uses the Downward API and includes a file
for huge pages requests and limits. The file naming convention is as follows:

/etc/podnetinfo/hugepages_1G_request_<container-name>

/etc/podnetinfo/hugepages_1G_limit_<container-name>

/etc/podnetinfo/hugepages_2M_request_<container-name>

/etc/podnetinfo/hugepages_2M_limit_<container-name>

The paths specified in the previous list are compatible with the app-netutil library. By default, the library
is configured to search for resource information in the /etc/podnetinfo directory. If you choose to
specify the Downward API path items yourself manually, the app-netutil library searches for the
following paths in addition to the paths in the previous list.

 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

OpenShift Container Platform 4.9 Networking

184

https://github.com/openshift/app-netutil

/etc/podnetinfo/hugepages_request

/etc/podnetinfo/hugepages_limit

/etc/podnetinfo/hugepages_1G_request

/etc/podnetinfo/hugepages_1G_limit

/etc/podnetinfo/hugepages_2M_request

/etc/podnetinfo/hugepages_2M_limit

As with the paths that the Network Resources Injector can create, the paths in the preceding list can
optionally end with a _<container-name> suffix.

14.1.2. Next steps

Installing the SR-IOV Network Operator

Optional: Configuring the SR-IOV Network Operator

Configuring an SR-IOV network device

If you use OpenShift Virtualization: Connecting a virtual machine to an SR-IOV network

Configuring an SR-IOV network attachment

Adding a pod to an SR-IOV additional network

14.2. INSTALLING THE SR-IOV NETWORK OPERATOR

You can install the Single Root I/O Virtualization (SR-IOV) Network Operator on your cluster to manage
SR-IOV network devices and network attachments.

14.2.1. Installing SR-IOV Network Operator

As a cluster administrator, you can install the SR-IOV Network Operator by using the OpenShift
Container Platform CLI or the web console.

14.2.1.1. CLI: Installing the SR-IOV Network Operator

As a cluster administrator, you can install the Operator using the CLI.

Prerequisites

A cluster installed on bare-metal hardware with nodes that have hardware that supports SR-
IOV.

Install the OpenShift CLI (oc).

An account with cluster-admin privileges.

Procedure

1. To create the openshift-sriov-network-operator namespace, enter the following command:

CHAPTER 14. HARDWARE NETWORKS

185

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#installing-sriov-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-sriov-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-sriov-device
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/virtualization/#virt-attaching-vm-to-sriov-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-sriov-net-attach
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#add-pod

2. To create an OperatorGroup CR, enter the following command:

3. Subscribe to the SR-IOV Network Operator.

a. Run the following command to get the OpenShift Container Platform major and minor
version. It is required for the channel value in the next step.

b. To create a Subscription CR for the SR-IOV Network Operator, enter the following
command:

4. To verify that the Operator is installed, enter the following command:

Example output

$ cat << EOF| oc create -f -
apiVersion: v1
kind: Namespace
metadata:
 name: openshift-sriov-network-operator
 annotations:
 workload.openshift.io/allowed: management
EOF

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: sriov-network-operators
 namespace: openshift-sriov-network-operator
spec:
 targetNamespaces:
 - openshift-sriov-network-operator
EOF

$ OC_VERSION=$(oc version -o yaml | grep openshiftVersion | \
 grep -o '[0-9]*[.][0-9]*' | head -1)

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: sriov-network-operator-subscription
 namespace: openshift-sriov-network-operator
spec:
 channel: "${OC_VERSION}"
 name: sriov-network-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

$ oc get csv -n openshift-sriov-network-operator \
 -o custom-columns=Name:.metadata.name,Phase:.status.phase

OpenShift Container Platform 4.9 Networking

186

14.2.1.2. Web console: Installing the SR-IOV Network Operator

As a cluster administrator, you can install the Operator using the web console.

Prerequisites

A cluster installed on bare-metal hardware with nodes that have hardware that supports SR-
IOV.

Install the OpenShift CLI (oc).

An account with cluster-admin privileges.

Procedure

1. Install the SR-IOV Network Operator:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

b. Select SR-IOV Network Operator from the list of available Operators, and then click
Install.

c. On the Install Operator page, under Installed Namespace, select Operator
recommended Namespace.

d. Click Install.

2. Verify that the SR-IOV Network Operator is installed successfully:

a. Navigate to the Operators → Installed Operators page.

b. Ensure that SR-IOV Network Operator is listed in the openshift-sriov-network-operator
project with a Status of InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the Operator does not appear as installed, to troubleshoot further:

Inspect the Operator Subscriptions and Install Plans tabs for any failure or errors
under Status.

Navigate to the Workloads → Pods page and check the logs for pods in the openshift-
sriov-network-operator project.

Check the namespace of the YAML file. If the annotation is missing, you can add the
annotation workload.openshift.io/allowed=management to the Operator namespace
with the following command:

Name Phase
sriov-network-operator.4.9.0-202110121402 Succeeded

CHAPTER 14. HARDWARE NETWORKS

187

NOTE

For single-node OpenShift clusters, the annotation
workload.openshift.io/allowed=management is required for the
namespace.

14.2.2. Next steps

Optional: Configuring the SR-IOV Network Operator

14.3. CONFIGURING THE SR-IOV NETWORK OPERATOR

The Single Root I/O Virtualization (SR-IOV) Network Operator manages the SR-IOV network devices
and network attachments in your cluster.

14.3.1. Configuring the SR-IOV Network Operator

IMPORTANT

Modifying the SR-IOV Network Operator configuration is not normally necessary. The
default configuration is recommended for most use cases. Complete the steps to modify
the relevant configuration only if the default behavior of the Operator is not compatible
with your use case.

The SR-IOV Network Operator adds the SriovOperatorConfig.sriovnetwork.openshift.io
CustomResourceDefinition resource. The Operator automatically creates a SriovOperatorConfig
custom resource (CR) named default in the openshift-sriov-network-operator namespace.

NOTE

The default CR contains the SR-IOV Network Operator configuration for your cluster. To
change the Operator configuration, you must modify this CR.

14.3.1.1. SR-IOV Network Operator config custom resource

The fields for the sriovoperatorconfig custom resource are described in the following table:

Table 14.2. SR-IOV Network Operator config custom resource

Field Type Description

metadata.name string Specifies the name of the SR-IOV Network Operator instance.
The default value is default. Do not set a different value.

metadata.name
space

string Specifies the namespace of the SR-IOV Network Operator
instance. The default value is openshift-sriov-network-
operator. Do not set a different value.

$ oc annotate ns/openshift-sriov-network-operator
workload.openshift.io/allowed=management

OpenShift Container Platform 4.9 Networking

188

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-sriov-operator

spec.configDae
monNodeSelect
or

string Specifies the node selection to control scheduling the SR-IOV
Network Config Daemon on selected nodes. By default, this field
is not set and the Operator deploys the SR-IOV Network Config
daemon set on worker nodes.

spec.disableDra
in

boolean Specifies whether to disable the node draining process or enable
the node draining process when you apply a new policy to
configure the NIC on a node. Setting this field to true facilitates
software development and installing OpenShift Container
Platform on a single node. By default, this field is not set.

For single-node clusters, set this field to true after installing the
Operator. This field must remain set to true.

spec.enableInje
ctor

boolean Specifies whether to enable or disable the Network Resources
Injector daemon set. By default, this field is set to true.

spec.enableOpe
ratorWebhook

boolean Specifies whether to enable or disable the Operator Admission
Controller webhook daemon set. By default, this field is set to
true.

spec.logLevel integer Specifies the log verbosity level of the Operator. Set to 0 to
show only the basic logs. Set to 2 to show all the available logs.
By default, this field is set to 2.

Field Type Description

14.3.1.2. About the Network Resources Injector

The Network Resources Injector is a Kubernetes Dynamic Admission Controller application. It provides
the following capabilities:

Mutation of resource requests and limits in a pod specification to add an SR-IOV resource name
according to an SR-IOV network attachment definition annotation.

Mutation of a pod specification with a Downward API volume to expose pod annotations, labels,
and huge pages requests and limits. Containers that run in the pod can access the exposed
information as files under the /etc/podnetinfo path.

By default, the Network Resources Injector is enabled by the SR-IOV Network Operator and runs as a
daemon set on all control plane nodes. The following is an example of Network Resources Injector pods
running in a cluster with three control plane nodes:

Example output

$ oc get pods -n openshift-sriov-network-operator

NAME READY STATUS RESTARTS AGE
network-resources-injector-5cz5p 1/1 Running 0 10m
network-resources-injector-dwqpx 1/1 Running 0 10m
network-resources-injector-lktz5 1/1 Running 0 10m

CHAPTER 14. HARDWARE NETWORKS

189

14.3.1.3. About the SR-IOV Network Operator admission controller webhook

The SR-IOV Network Operator Admission Controller webhook is a Kubernetes Dynamic Admission
Controller application. It provides the following capabilities:

Validation of the SriovNetworkNodePolicy CR when it is created or updated.

Mutation of the SriovNetworkNodePolicy CR by setting the default value for the priority and
deviceType fields when the CR is created or updated.

By default the SR-IOV Network Operator Admission Controller webhook is enabled by the Operator and
runs as a daemon set on all control plane nodes.

NOTE

Use caution when disabling the SR-IOV Network Operator Admission Controller
webhook. You can disable the webhook under specific circumstances, such as
troubleshooting, or if you want to use unsupported devices.

The following is an example of the Operator Admission Controller webhook pods running in a cluster
with three control plane nodes:

Example output

14.3.1.4. About custom node selectors

The SR-IOV Network Config daemon discovers and configures the SR-IOV network devices on cluster
nodes. By default, it is deployed to all the worker nodes in the cluster. You can use node labels to
specify on which nodes the SR-IOV Network Config daemon runs.

14.3.1.5. Disabling or enabling the Network Resources Injector

To disable or enable the Network Resources Injector, which is enabled by default, complete the following
procedure.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

You must have installed the SR-IOV Network Operator.

Procedure

Set the enableInjector field. Replace <value> with false to disable the feature or true to

$ oc get pods -n openshift-sriov-network-operator

NAME READY STATUS RESTARTS AGE
operator-webhook-9jkw6 1/1 Running 0 16m
operator-webhook-kbr5p 1/1 Running 0 16m
operator-webhook-rpfrl 1/1 Running 0 16m

OpenShift Container Platform 4.9 Networking

190

Set the enableInjector field. Replace <value> with false to disable the feature or true to
enable the feature.

TIP

You can alternatively apply the following YAML to update the Operator:

14.3.1.6. Disabling or enabling the SR-IOV Network Operator admission controller webhook

To disable or enable the admission controller webhook, which is enabled by default, complete the
following procedure.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

You must have installed the SR-IOV Network Operator.

Procedure

Set the enableOperatorWebhook field. Replace <value> with false to disable the feature or
true to enable it:

TIP

You can alternatively apply the following YAML to update the Operator:

$ oc patch sriovoperatorconfig default \
 --type=merge -n openshift-sriov-network-operator \
 --patch '{ "spec": { "enableInjector": <value> } }'

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
 name: default
 namespace: openshift-sriov-network-operator
spec:
 enableInjector: <value>

$ oc patch sriovoperatorconfig default --type=merge \
 -n openshift-sriov-network-operator \
 --patch '{ "spec": { "enableOperatorWebhook": <value> } }'

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
 name: default
 namespace: openshift-sriov-network-operator
spec:
 enableOperatorWebhook: <value>

CHAPTER 14. HARDWARE NETWORKS

191

14.3.1.7. Configuring a custom NodeSelector for the SR-IOV Network Config daemon

The SR-IOV Network Config daemon discovers and configures the SR-IOV network devices on cluster
nodes. By default, it is deployed to all the worker nodes in the cluster. You can use node labels to
specify on which nodes the SR-IOV Network Config daemon runs.

To specify the nodes where the SR-IOV Network Config daemon is deployed, complete the following
procedure.

IMPORTANT

When you update the configDaemonNodeSelector field, the SR-IOV Network Config
daemon is recreated on each selected node. While the daemon is recreated, cluster users
are unable to apply any new SR-IOV Network node policy or create new SR-IOV pods.

Procedure

To update the node selector for the operator, enter the following command:

Replace <node_label> with a label to apply as in the following example: "node-
role.kubernetes.io/worker": "".

TIP

You can alternatively apply the following YAML to update the Operator:

14.3.1.8. Configuring the SR-IOV Network Operator for single node installations

By default, the SR-IOV Network Operator drains workloads from a node before every policy change.
The Operator performs this action to ensure that there no workloads using the virtual functions before
the reconfiguration.

For installations on a single node, there are no other nodes to receive the workloads. As a result, the
Operator must be configured not to drain the workloads from the single node.

IMPORTANT

$ oc patch sriovoperatorconfig default --type=json \
 -n openshift-sriov-network-operator \
 --patch '[{
 "op": "replace",
 "path": "/spec/configDaemonNodeSelector",
 "value": {<node_label>}
 }]'

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
 name: default
 namespace: openshift-sriov-network-operator
spec:
 configDaemonNodeSelector:
 <node_label>

OpenShift Container Platform 4.9 Networking

192

IMPORTANT

After performing the following procedure to disable draining workloads, you must remove
any workload that uses an SR-IOV network interface before you change any SR-IOV
network node policy.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

You must have installed the SR-IOV Network Operator.

Procedure

To set the disableDrain field to true, enter the following command:

TIP

You can alternatively apply the following YAML to update the Operator:

14.3.2. Next steps

Configuring an SR-IOV network device

14.4. CONFIGURING AN SR-IOV NETWORK DEVICE

You can configure a Single Root I/O Virtualization (SR-IOV) device in your cluster.

14.4.1. SR-IOV network node configuration object

You specify the SR-IOV network device configuration for a node by creating an SR-IOV network node
policy. The API object for the policy is part of the sriovnetwork.openshift.io API group.

The following YAML describes an SR-IOV network node policy:

$ oc patch sriovoperatorconfig default --type=merge \
 -n openshift-sriov-network-operator \
 --patch '{ "spec": { "disableDrain": true } }'

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
 name: default
 namespace: openshift-sriov-network-operator
spec:
 disableDrain: true

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: <name> 1

CHAPTER 14. HARDWARE NETWORKS

193

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-sriov-device

1

2

3

4

5

6

7

8

9

10

The name for the custom resource object.

The namespace where the SR-IOV Network Operator is installed.

The resource name of the SR-IOV network device plugin. You can create multiple SR-IOV network
node policies for a resource name.

The node selector specifies the nodes to configure. Only SR-IOV network devices on the selected
nodes are configured. The SR-IOV Container Network Interface (CNI) plugin and device plugin are
deployed on selected nodes only.

Optional: The priority is an integer value between 0 and 99. A smaller value receives higher priority.
For example, a priority of 10 is a higher priority than 99. The default value is 99.

Optional: The maximum transmission unit (MTU) of the virtual function. The maximum MTU value
can vary for different network interface controller (NIC) models.

Optional: Set needVhostNet to true to mount the /dev/vhost-net device in the pod. Use the
mounted /dev/vhost-net device with Data Plane Development Kit (DPDK) to forward traffic to the
kernel network stack.

The number of the virtual functions (VF) to create for the SR-IOV physical network device. For an
Intel network interface controller (NIC), the number of VFs cannot be larger than the total VFs
supported by the device. For a Mellanox NIC, the number of VFs cannot be larger than 128.

The NIC selector identifies the device for the Operator to configure. You do not have to specify
values for all the parameters. It is recommended to identify the network device with enough
precision to avoid selecting a device unintentionally.

If you specify rootDevices, you must also specify a value for vendor, deviceID, or pfNames. If you
specify both pfNames and rootDevices at the same time, ensure that they refer to the same
device. If you specify a value for netFilter, then you do not need to specify any other parameter
because a network ID is unique.

Optional: The vendor hexadecimal code of the SR-IOV network device. The only allowed values are
8086 and 15b3.

 namespace: openshift-sriov-network-operator 2
spec:
 resourceName: <sriov_resource_name> 3
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true" 4
 priority: <priority> 5
 mtu: <mtu> 6
 needVhostNet: false 7
 numVfs: <num> 8
 nicSelector: 9
 vendor: "<vendor_code>" 10
 deviceID: "<device_id>" 11
 pfNames: ["<pf_name>", ...] 12
 rootDevices: ["<pci_bus_id>", ...] 13
 netFilter: "<filter_string>" 14
 deviceType: <device_type> 15
 isRdma: false 16
 linkType: <link_type> 17

OpenShift Container Platform 4.9 Networking

194

11

12

13

14

15

16

17

8086 and 15b3.
Optional: The device hexadecimal code of the SR-IOV network device. For example, 101b is the
device ID for a Mellanox ConnectX-6 device.

Optional: An array of one or more physical function (PF) names for the device.

Optional: An array of one or more PCI bus addresses for the PF of the device. Provide the address
in the following format: 0000:02:00.1.

Optional: The platform-specific network filter. The only supported platform is Red Hat OpenStack
Platform (RHOSP). Acceptable values use the following format: openstack/NetworkID:xxxxxxxx-
xxxx-xxxx-xxxx-xxxxxxxxxxxx. Replace xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx with the value
from the /var/config/openstack/latest/network_data.json metadata file.

Optional: The driver type for the virtual functions. The only allowed values are netdevice and vfio-
pci. The default value is netdevice.

For a Mellanox NIC to work in DPDK mode on bare metal nodes, use the netdevice driver type and
set isRdma to true.

Optional: Configures whether to enable remote direct memory access (RDMA) mode. The default
value is false.

If the isRdma parameter is set to true, you can continue to use the RDMA-enabled VF as a normal
network device. A device can be used in either mode.

Set isRdma to true and additionally set needVhostNet to true to configure a Mellanox NIC for
use with Fast Datapath DPDK applications.

Optional: The link type for the VFs. The default value is eth for Ethernet. Change this value to ib
for InfiniBand.

When linkType is set to ib, isRdma is automatically set to true by the SR-IOV Network Operator
webhook. When linkType is set to ib, deviceType should not be set to vfio-pci.

Do not set linkType to eth for SriovNetworkNodePolicy, because this can lead to an incorrect
number of available devices reported by the device plug-in.

14.4.1.1. SR-IOV network node configuration examples

The following example describes the configuration for an InfiniBand device:

Example configuration for an InfiniBand device

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-ib-net-1
 namespace: openshift-sriov-network-operator
spec:
 resourceName: ibnic1
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 numVfs: 4
 nicSelector:
 vendor: "15b3"

CHAPTER 14. HARDWARE NETWORKS

195

1

2

The following example describes the configuration for an SR-IOV network device in a RHOSP virtual
machine:

Example configuration for an SR-IOV device in a virtual machine

The numVfs field is always set to 1 when configuring the node network policy for a virtual machine.

The netFilter field must refer to a network ID when the virtual machine is deployed on RHOSP.
Valid values for netFilter are available from an SriovNetworkNodeState object.

14.4.1.2. Virtual function (VF) partitioning for SR-IOV devices

In some cases, you might want to split virtual functions (VFs) from the same physical function (PF) into
multiple resource pools. For example, you might want some of the VFs to load with the default driver
and the remaining VFs load with the vfio-pci driver. In such a deployment, the pfNames selector in your
SriovNetworkNodePolicy custom resource (CR) can be used to specify a range of VFs for a pool using
the following format: <pfname>#<first_vf>-<last_vf>.

For example, the following YAML shows the selector for an interface named netpf0 with VF 2 through 7:

netpf0 is the PF interface name.

2 is the first VF index (0-based) that is included in the range.

7 is the last VF index (0-based) that is included in the range.

You can select VFs from the same PF by using different policy CRs if the following requirements are
met:

The numVfs value must be identical for policies that select the same PF.

 deviceID: "101b"
 rootDevices:
 - "0000:19:00.0"
 linkType: ib
 isRdma: true

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-sriov-net-openstack-1
 namespace: openshift-sriov-network-operator
spec:
 resourceName: sriovnic1
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 numVfs: 1 1
 nicSelector:
 vendor: "15b3"
 deviceID: "101b"
 netFilter: "openstack/NetworkID:ea24bd04-8674-4f69-b0ee-fa0b3bd20509" 2

pfNames: ["netpf0#2-7"]

OpenShift Container Platform 4.9 Networking

196

The VF index must be in the range of 0 to <numVfs>-1. For example, if you have a policy with
numVfs set to 8, then the <first_vf> value must not be smaller than 0, and the <last_vf> must
not be larger than 7.

The VFs ranges in different policies must not overlap.

The <first_vf> must not be larger than the <last_vf>.

The following example illustrates NIC partitioning for an SR-IOV device.

The policy policy-net-1 defines a resource pool net-1 that contains the VF 0 of PF netpf0 with the
default VF driver. The policy policy-net-1-dpdk defines a resource pool net-1-dpdk that contains the
VF 8 to 15 of PF netpf0 with the vfio VF driver.

Policy policy-net-1:

Policy policy-net-1-dpdk:

14.4.2. Configuring SR-IOV network devices

The SR-IOV Network Operator adds the SriovNetworkNodePolicy.sriovnetwork.openshift.io
CustomResourceDefinition to OpenShift Container Platform. You can configure an SR-IOV network
device by creating a SriovNetworkNodePolicy custom resource (CR).

NOTE

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-net-1
 namespace: openshift-sriov-network-operator
spec:
 resourceName: net1
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 numVfs: 16
 nicSelector:
 pfNames: ["netpf0#0-0"]
 deviceType: netdevice

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-net-1-dpdk
 namespace: openshift-sriov-network-operator
spec:
 resourceName: net1dpdk
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 numVfs: 16
 nicSelector:
 pfNames: ["netpf0#8-15"]
 deviceType: vfio-pci

CHAPTER 14. HARDWARE NETWORKS

197

NOTE

When applying the configuration specified in a SriovNetworkNodePolicy object, the SR-
IOV Operator might drain the nodes, and in some cases, reboot nodes.

It might take several minutes for a configuration change to apply.

Prerequisites

You installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You have installed the SR-IOV Network Operator.

You have enough available nodes in your cluster to handle the evicted workload from drained
nodes.

You have not selected any control plane nodes for SR-IOV network device configuration.

Procedure

1. Create an SriovNetworkNodePolicy object, and then save the YAML in the <name>-sriov-
node-network.yaml file. Replace <name> with the name for this configuration.

2. Optional: Label the SR-IOV capable cluster nodes with
SriovNetworkNodePolicy.Spec.NodeSelector if they are not already labeled. For more
information about labeling nodes, see "Understanding how to update labels on nodes".

3. Create the SriovNetworkNodePolicy object:

where <name> specifies the name for this configuration.

After applying the configuration update, all the pods in sriov-network-operator namespace
transition to the Running status.

4. To verify that the SR-IOV network device is configured, enter the following command. Replace
<node_name> with the name of a node with the SR-IOV network device that you just
configured.

Additional resources

Understanding how to update labels on nodes .

14.4.3. Troubleshooting SR-IOV configuration

After following the procedure to configure an SR-IOV network device, the following sections address
some error conditions.

To display the state of nodes, run the following command:

$ oc create -f <name>-sriov-node-network.yaml

$ oc get sriovnetworknodestates -n openshift-sriov-network-operator <node_name> -o
jsonpath='{.status.syncStatus}'

OpenShift Container Platform 4.9 Networking

198

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/nodes/#nodes-nodes-working-updating_nodes-nodes-working

where: <node_name> specifies the name of a node with an SR-IOV network device.

Error output: Cannot allocate memory

When a node indicates that it cannot allocate memory, check the following items:

Confirm that global SR-IOV settings are enabled in the BIOS for the node.

Confirm that VT-d is enabled in the BIOS for the node.

14.4.4. Assigning an SR-IOV network to a VRF

As a cluster administrator, you can assign an SR-IOV network interface to your VRF domain by using the
CNI VRF plugin.

To do this, add the VRF configuration to the optional metaPlugins parameter of the SriovNetwork
resource.

NOTE

Applications that use VRFs need to bind to a specific device. The common usage is to use
the SO_BINDTODEVICE option for a socket. SO_BINDTODEVICE binds the socket to a
device that is specified in the passed interface name, for example, eth1. To use
SO_BINDTODEVICE, the application must have CAP_NET_RAW capabilities.

Using a VRF through the ip vrf exec command is not supported in OpenShift Container
Platform pods. To use VRF, bind applications directly to the VRF interface.

14.4.4.1. Creating an additional SR-IOV network attachment with the CNI VRF plugin

The SR-IOV Network Operator manages additional network definitions. When you specify an additional
SR-IOV network to create, the SR-IOV Network Operator creates the NetworkAttachmentDefinition
custom resource (CR) automatically.

NOTE

Do not edit NetworkAttachmentDefinition custom resources that the SR-IOV Network
Operator manages. Doing so might disrupt network traffic on your additional network.

To create an additional SR-IOV network attachment with the CNI VRF plugin, perform the following
procedure.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in to the OpenShift Container Platform cluster as a user with cluster-admin privileges.

Procedure

$ oc get sriovnetworknodestates -n openshift-sriov-network-operator <node_name>

"lastSyncError": "write /sys/bus/pci/devices/0000:3b:00.1/sriov_numvfs: cannot allocate memory"

CHAPTER 14. HARDWARE NETWORKS

199

1

2

1

1. Create the SriovNetwork custom resource (CR) for the additional SR-IOV network attachment
and insert the metaPlugins configuration, as in the following example CR. Save the YAML as
the file sriov-network-attachment.yaml.

type must be set to vrf.

vrfname is the name of the VRF that the interface is assigned to. If it does not exist in the
pod, it is created.

2. Create the SriovNetwork resource:

Verifying that the NetworkAttachmentDefinition CR is successfully created

Confirm that the SR-IOV Network Operator created the NetworkAttachmentDefinition CR by
running the following command.

Replace <namespace> with the namespace that you specified when configuring the
network attachment, for example, additional-sriov-network-1.

Example output

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: example-network
 namespace: additional-sriov-network-1
spec:
 ipam: |
 {
 "type": "host-local",
 "subnet": "10.56.217.0/24",
 "rangeStart": "10.56.217.171",
 "rangeEnd": "10.56.217.181",
 "routes": [{
 "dst": "0.0.0.0/0"
 }],
 "gateway": "10.56.217.1"
 }
 vlan: 0
 resourceName: intelnics
 metaPlugins : |
 {
 "type": "vrf", 1
 "vrfname": "example-vrf-name" 2
 }

$ oc create -f sriov-network-attachment.yaml

$ oc get network-attachment-definitions -n <namespace> 1

NAME AGE
additional-sriov-network-1 14m

OpenShift Container Platform 4.9 Networking

200

NOTE

There might be a delay before the SR-IOV Network Operator creates the CR.

Verifying that the additional SR-IOV network attachment is successful

To verify that the VRF CNI is correctly configured and the additional SR-IOV network attachment is
attached, do the following:

1. Create an SR-IOV network that uses the VRF CNI.

2. Assign the network to a pod.

3. Verify that the pod network attachment is connected to the SR-IOV additional network.
Remote shell into the pod and run the following command:

Example output

4. Confirm the VRF interface is master of the secondary interface:

Example output

14.4.5. Next steps

Configuring an SR-IOV network attachment

14.5. CONFIGURING AN SR-IOV ETHERNET NETWORK ATTACHMENT

You can configure an Ethernet network attachment for an Single Root I/O Virtualization (SR-IOV)
device in the cluster.

14.5.1. Ethernet device configuration object

You can configure an Ethernet network device by defining an SriovNetwork object.

The following YAML describes an SriovNetwork object:

$ ip vrf show

Name Table

red 10

$ ip link

...
5: net1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master red
state UP mode
...

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:

CHAPTER 14. HARDWARE NETWORKS

201

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-sriov-net-attach

1

2

3

4

5

6

7

8

9

10

11

A name for the object. The SR-IOV Network Operator creates a NetworkAttachmentDefinition
object with same name.

The namespace where the SR-IOV Network Operator is installed.

The value for the spec.resourceName parameter from the SriovNetworkNodePolicy object that
defines the SR-IOV hardware for this additional network.

The target namespace for the SriovNetwork object. Only pods in the target namespace can
attach to the additional network.

Optional: A Virtual LAN (VLAN) ID for the additional network. The integer value must be from 0 to
4095. The default value is 0.

Optional: The spoof check mode of the VF. The allowed values are the strings "on" and "off".

IMPORTANT

You must enclose the value you specify in quotes or the object is rejected by the
SR-IOV Network Operator.

A configuration object for the IPAM CNI plugin as a YAML block scalar. The plugin manages IP
address assignment for the attachment definition.

Optional: The link state of virtual function (VF). Allowed value are enable, disable and auto.

Optional: A maximum transmission rate, in Mbps, for the VF.

Optional: A minimum transmission rate, in Mbps, for the VF. This value must be less than or equal to
the maximum transmission rate.

NOTE

Intel NICs do not support the minTxRate parameter. For more information, see
BZ#1772847.

Optional: An IEEE 802.1p priority level for the VF. The default value is 0.

 name: <name> 1
 namespace: openshift-sriov-network-operator 2
spec:
 resourceName: <sriov_resource_name> 3
 networkNamespace: <target_namespace> 4
 vlan: <vlan> 5
 spoofChk: "<spoof_check>" 6
 ipam: |- 7
 {}
 linkState: <link_state> 8
 maxTxRate: <max_tx_rate> 9
 minTxRate: <min_tx_rate> 10
 vlanQoS: <vlan_qos> 11
 trust: "<trust_vf>" 12
 capabilities: <capabilities> 13

OpenShift Container Platform 4.9 Networking

202

https://bugzilla.redhat.com/show_bug.cgi?id=1772847

12

13

Optional: The trust mode of the VF. The allowed values are the strings "on" and "off".

IMPORTANT

You must enclose the value that you specify in quotes, or the SR-IOV Network
Operator rejects the object.

Optional: The capabilities to configure for this additional network. You can specify "{ "ips": true }"
to enable IP address support or "{ "mac": true }" to enable MAC address support.

14.5.1.1. Configuration of IP address assignment for an additional network

The IP address management (IPAM) Container Network Interface (CNI) plugin provides IP addresses
for other CNI plugins.

You can use the following IP address assignment types:

Static assignment.

Dynamic assignment through a DHCP server. The DHCP server you specify must be reachable
from the additional network.

Dynamic assignment through the Whereabouts IPAM CNI plugin.

14.5.1.1.1. Static IP address assignment configuration

The following table describes the configuration for static IP address assignment:

Table 14.3. ipam static configuration object

Field Type Description

type string The IPAM address type. The value static is required.

addresses array An array of objects specifying IP addresses to assign to the
virtual interface. Both IPv4 and IPv6 IP addresses are supported.

routes array An array of objects specifying routes to configure inside the pod.

dns array Optional: An array of objects specifying the DNS configuration.

The addresses array requires objects with the following fields:

Table 14.4. ipam.addresses[] array

Field Type Description

address string An IP address and network prefix that you specify. For example,
if you specify 10.10.21.10/24, then the additional network is
assigned an IP address of 10.10.21.10 and the netmask is
255.255.255.0.

CHAPTER 14. HARDWARE NETWORKS

203

gateway string The default gateway to route egress network traffic to.

Field Type Description

Table 14.5. ipam.routes[] array

Field Type Description

dst string The IP address range in CIDR format, such as 192.168.17.0/24
or 0.0.0.0/0 for the default route.

gw string The gateway where network traffic is routed.

Table 14.6. ipam.dns object

Field Type Description

nameservers array An of array of one or more IP addresses for to send DNS queries
to.

domain array The default domain to append to a hostname. For example, if
the domain is set to example.com, a DNS lookup query for
example-host is rewritten as example-host.example.com.

search array An array of domain names to append to an unqualified
hostname, such as example-host, during a DNS lookup query.

Static IP address assignment configuration example

14.5.1.1.2. Dynamic IP address (DHCP) assignment configuration

The following JSON describes the configuration for dynamic IP address address assignment with DHCP.

RENEWAL OF DHCP LEASES

{
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "191.168.1.7/24"
 }
]
 }
}

OpenShift Container Platform 4.9 Networking

204

RENEWAL OF DHCP LEASES

A pod obtains its original DHCP lease when it is created. The lease must be periodically
renewed by a minimal DHCP server deployment running on the cluster.

The SR-IOV Network Operator does not create a DHCP server deployment; The Cluster
Network Operator is responsible for creating the minimal DHCP server deployment.

To trigger the deployment of the DHCP server, you must create a shim network
attachment by editing the Cluster Network Operator configuration, as in the following
example:

Example shim network attachment definition

Table 14.7. ipam DHCP configuration object

Field Type Description

type string The IPAM address type. The value dhcp is required.

Dynamic IP address (DHCP) assignment configuration example

14.5.1.1.3. Dynamic IP address assignment configuration with Whereabouts

The Whereabouts CNI plugin allows the dynamic assignment of an IP address to an additional network
without the use of a DHCP server.

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks:
 - name: dhcp-shim
 namespace: default
 type: Raw
 rawCNIConfig: |-
 {
 "name": "dhcp-shim",
 "cniVersion": "0.3.1",
 "type": "bridge",
 "ipam": {
 "type": "dhcp"
 }
 }
 # ...

{
 "ipam": {
 "type": "dhcp"
 }
}

CHAPTER 14. HARDWARE NETWORKS

205

The following table describes the configuration for dynamic IP address assignment with Whereabouts:

Table 14.8. ipam whereabouts configuration object

Field Type Description

type string The IPAM address type. The value whereabouts is required.

range string An IP address and range in CIDR notation. IP addresses are
assigned from within this range of addresses.

exclude array Optional: A list of zero ore more IP addresses and ranges in
CIDR notation. IP addresses within an excluded address range
are not assigned.

Dynamic IP address assignment configuration example that uses Whereabouts

14.5.2. Configuring SR-IOV additional network

You can configure an additional network that uses SR-IOV hardware by creating an SriovNetwork
object. When you create an SriovNetwork object, the SR-IOV Network Operator automatically creates
a NetworkAttachmentDefinition object.

NOTE

Do not modify or delete an SriovNetwork object if it is attached to any pods in a running
state.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a SriovNetwork object, and then save the YAML in the <name>.yaml file, where
<name> is a name for this additional network. The object specification might resemble the
following example:

{
 "ipam": {
 "type": "whereabouts",
 "range": "192.0.2.192/27",
 "exclude": [
 "192.0.2.192/30",
 "192.0.2.196/32"
]
 }
}

apiVersion: sriovnetwork.openshift.io/v1

OpenShift Container Platform 4.9 Networking

206

2. To create the object, enter the following command:

where <name> specifies the name of the additional network.

3. Optional: To confirm that the NetworkAttachmentDefinition object that is associated with the
SriovNetwork object that you created in the previous step exists, enter the following command.
Replace <namespace> with the networkNamespace you specified in the SriovNetwork object.

14.5.3. Next steps

Adding a pod to an SR-IOV additional network

14.5.4. Additional resources

Configuring an SR-IOV network device

14.6. CONFIGURING AN SR-IOV INFINIBAND NETWORK ATTACHMENT

You can configure an InfiniBand (IB) network attachment for an Single Root I/O Virtualization (SR-IOV)
device in the cluster.

14.6.1. InfiniBand device configuration object

You can configure an InfiniBand (IB) network device by defining an SriovIBNetwork object.

The following YAML describes an SriovIBNetwork object:

kind: SriovNetwork
metadata:
 name: attach1
 namespace: openshift-sriov-network-operator
spec:
 resourceName: net1
 networkNamespace: project2
 ipam: |-
 {
 "type": "host-local",
 "subnet": "10.56.217.0/24",
 "rangeStart": "10.56.217.171",
 "rangeEnd": "10.56.217.181",
 "gateway": "10.56.217.1"
 }

$ oc create -f <name>.yaml

$ oc get net-attach-def -n <namespace>

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovIBNetwork
metadata:
 name: <name> 1
 namespace: openshift-sriov-network-operator 2
spec:

CHAPTER 14. HARDWARE NETWORKS

207

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#add-pod
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-sriov-device

1

2

3

4

5

6

7

A name for the object. The SR-IOV Network Operator creates a NetworkAttachmentDefinition
object with same name.

The namespace where the SR-IOV Operator is installed.

The value for the spec.resourceName parameter from the SriovNetworkNodePolicy object that
defines the SR-IOV hardware for this additional network.

The target namespace for the SriovIBNetwork object. Only pods in the target namespace can
attach to the network device.

Optional: A configuration object for the IPAM CNI plugin as a YAML block scalar. The plugin
manages IP address assignment for the attachment definition.

Optional: The link state of virtual function (VF). Allowed values are enable, disable and auto.

Optional: The capabilities to configure for this network. You can specify "{ "ips": true }" to enable
IP address support or "{ "infinibandGUID": true }" to enable IB Global Unique Identifier (GUID)
support.

14.6.1.1. Configuration of IP address assignment for an additional network

The IP address management (IPAM) Container Network Interface (CNI) plugin provides IP addresses
for other CNI plugins.

You can use the following IP address assignment types:

Static assignment.

Dynamic assignment through a DHCP server. The DHCP server you specify must be reachable
from the additional network.

Dynamic assignment through the Whereabouts IPAM CNI plugin.

14.6.1.1.1. Static IP address assignment configuration

The following table describes the configuration for static IP address assignment:

Table 14.9. ipam static configuration object

Field Type Description

type string The IPAM address type. The value static is required.

addresses array An array of objects specifying IP addresses to assign to the
virtual interface. Both IPv4 and IPv6 IP addresses are supported.

 resourceName: <sriov_resource_name> 3
 networkNamespace: <target_namespace> 4
 ipam: |- 5
 {}
 linkState: <link_state> 6
 capabilities: <capabilities> 7

OpenShift Container Platform 4.9 Networking

208

routes array An array of objects specifying routes to configure inside the pod.

dns array Optional: An array of objects specifying the DNS configuration.

Field Type Description

The addresses array requires objects with the following fields:

Table 14.10. ipam.addresses[] array

Field Type Description

address string An IP address and network prefix that you specify. For example,
if you specify 10.10.21.10/24, then the additional network is
assigned an IP address of 10.10.21.10 and the netmask is
255.255.255.0.

gateway string The default gateway to route egress network traffic to.

Table 14.11. ipam.routes[] array

Field Type Description

dst string The IP address range in CIDR format, such as 192.168.17.0/24
or 0.0.0.0/0 for the default route.

gw string The gateway where network traffic is routed.

Table 14.12. ipam.dns object

Field Type Description

nameservers array An of array of one or more IP addresses for to send DNS queries
to.

domain array The default domain to append to a hostname. For example, if
the domain is set to example.com, a DNS lookup query for
example-host is rewritten as example-host.example.com.

search array An array of domain names to append to an unqualified
hostname, such as example-host, during a DNS lookup query.

Static IP address assignment configuration example

{
 "ipam": {
 "type": "static",
 "addresses": [

CHAPTER 14. HARDWARE NETWORKS

209

14.6.1.1.2. Dynamic IP address (DHCP) assignment configuration

The following JSON describes the configuration for dynamic IP address address assignment with DHCP.

RENEWAL OF DHCP LEASES

A pod obtains its original DHCP lease when it is created. The lease must be periodically
renewed by a minimal DHCP server deployment running on the cluster.

To trigger the deployment of the DHCP server, you must create a shim network
attachment by editing the Cluster Network Operator configuration, as in the following
example:

Example shim network attachment definition

Table 14.13. ipam DHCP configuration object

Field Type Description

type string The IPAM address type. The value dhcp is required.

Dynamic IP address (DHCP) assignment configuration example

 {
 "address": "191.168.1.7/24"
 }
]
 }
}

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks:
 - name: dhcp-shim
 namespace: default
 type: Raw
 rawCNIConfig: |-
 {
 "name": "dhcp-shim",
 "cniVersion": "0.3.1",
 "type": "bridge",
 "ipam": {
 "type": "dhcp"
 }
 }
 # ...

{
 "ipam": {

OpenShift Container Platform 4.9 Networking

210

14.6.1.1.3. Dynamic IP address assignment configuration with Whereabouts

The Whereabouts CNI plugin allows the dynamic assignment of an IP address to an additional network
without the use of a DHCP server.

The following table describes the configuration for dynamic IP address assignment with Whereabouts:

Table 14.14. ipam whereabouts configuration object

Field Type Description

type string The IPAM address type. The value whereabouts is required.

range string An IP address and range in CIDR notation. IP addresses are
assigned from within this range of addresses.

exclude array Optional: A list of zero ore more IP addresses and ranges in
CIDR notation. IP addresses within an excluded address range
are not assigned.

Dynamic IP address assignment configuration example that uses Whereabouts

14.6.2. Configuring SR-IOV additional network

You can configure an additional network that uses SR-IOV hardware by creating an SriovIBNetwork
object. When you create an SriovIBNetwork object, the SR-IOV Network Operator automatically
creates a NetworkAttachmentDefinition object.

NOTE

Do not modify or delete an SriovIBNetwork object if it is attached to any pods in a
running state.

Prerequisites

Install the OpenShift CLI (oc).

 "type": "dhcp"
 }
}

{
 "ipam": {
 "type": "whereabouts",
 "range": "192.0.2.192/27",
 "exclude": [
 "192.0.2.192/30",
 "192.0.2.196/32"
]
 }
}

CHAPTER 14. HARDWARE NETWORKS

211

Log in as a user with cluster-admin privileges.

Procedure

1. Create a SriovIBNetwork object, and then save the YAML in the <name>.yaml file, where
<name> is a name for this additional network. The object specification might resemble the
following example:

2. To create the object, enter the following command:

where <name> specifies the name of the additional network.

3. Optional: To confirm that the NetworkAttachmentDefinition object that is associated with the
SriovIBNetwork object that you created in the previous step exists, enter the following
command. Replace <namespace> with the networkNamespace you specified in the
SriovIBNetwork object.

14.6.3. Next steps

Adding a pod to an SR-IOV additional network

14.6.4. Additional resources

Configuring an SR-IOV network device

14.7. ADDING A POD TO AN SR-IOV ADDITIONAL NETWORK

You can add a pod to an existing Single Root I/O Virtualization (SR-IOV) network.

14.7.1. Runtime configuration for a network attachment

When attaching a pod to an additional network, you can specify a runtime configuration to make specific

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovIBNetwork
metadata:
 name: attach1
 namespace: openshift-sriov-network-operator
spec:
 resourceName: net1
 networkNamespace: project2
 ipam: |-
 {
 "type": "host-local",
 "subnet": "10.56.217.0/24",
 "rangeStart": "10.56.217.171",
 "rangeEnd": "10.56.217.181",
 "gateway": "10.56.217.1"
 }

$ oc create -f <name>.yaml

$ oc get net-attach-def -n <namespace>

OpenShift Container Platform 4.9 Networking

212

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#add-pod
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-sriov-device

1

2

3

When attaching a pod to an additional network, you can specify a runtime configuration to make specific
customizations for the pod. For example, you can request a specific MAC hardware address.

You specify the runtime configuration by setting an annotation in the pod specification. The annotation
key is k8s.v1.cni.cncf.io/networks, and it accepts a JSON object that describes the runtime
configuration.

14.7.1.1. Runtime configuration for an Ethernet-based SR-IOV attachment

The following JSON describes the runtime configuration options for an Ethernet-based SR-IOV
network attachment.

The name of the SR-IOV network attachment definition CR.

Optional: The MAC address for the SR-IOV device that is allocated from the resource type defined
in the SR-IOV network attachment definition CR. To use this feature, you also must specify {
"mac": true } in the SriovNetwork object.

Optional: IP addresses for the SR-IOV device that is allocated from the resource type defined in
the SR-IOV network attachment definition CR. Both IPv4 and IPv6 addresses are supported. To
use this feature, you also must specify { "ips": true } in the SriovNetwork object.

Example runtime configuration

14.7.1.2. Runtime configuration for an InfiniBand-based SR-IOV attachment

[
 {
 "name": "<name>", 1
 "mac": "<mac_address>", 2
 "ips": ["<cidr_range>"] 3
 }
]

apiVersion: v1
kind: Pod
metadata:
 name: sample-pod
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [
 {
 "name": "net1",
 "mac": "20:04:0f:f1:88:01",
 "ips": ["192.168.10.1/24", "2001::1/64"]
 }
]
spec:
 containers:
 - name: sample-container
 image: <image>
 imagePullPolicy: IfNotPresent
 command: ["sleep", "infinity"]

CHAPTER 14. HARDWARE NETWORKS

213

1

2

3

The following JSON describes the runtime configuration options for an InfiniBand-based SR-IOV
network attachment.

The name of the SR-IOV network attachment definition CR.

The InfiniBand GUID for the SR-IOV device. To use this feature, you also must specify {
"infinibandGUID": true } in the SriovIBNetwork object.

The IP addresses for the SR-IOV device that is allocated from the resource type defined in the
SR-IOV network attachment definition CR. Both IPv4 and IPv6 addresses are supported. To use
this feature, you also must specify { "ips": true } in the SriovIBNetwork object.

Example runtime configuration

14.7.2. Adding a pod to an additional network

You can add a pod to an additional network. The pod continues to send normal cluster-related network
traffic over the default network.

When a pod is created additional networks are attached to it. However, if a pod already exists, you
cannot attach additional networks to it.

The pod must be in the same namespace as the additional network.

NOTE

[
 {
 "name": "<network_attachment>", 1
 "infiniband-guid": "<guid>", 2
 "ips": ["<cidr_range>"] 3
 }
]

apiVersion: v1
kind: Pod
metadata:
 name: sample-pod
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [
 {
 "name": "ib1",
 "infiniband-guid": "c2:11:22:33:44:55:66:77",
 "ips": ["192.168.10.1/24", "2001::1/64"]
 }
]
spec:
 containers:
 - name: sample-container
 image: <image>
 imagePullPolicy: IfNotPresent
 command: ["sleep", "infinity"]

OpenShift Container Platform 4.9 Networking

214

1

NOTE

The SR-IOV Network Resource Injector adds the resource field to the first container in a
pod automatically.

If you are using an Intel network interface controller (NIC) in Data Plane Development Kit
(DPDK) mode, only the first container in your pod is configured to access the NIC. Your
SR-IOV additional network is configured for DPDK mode if the deviceType is set to vfio-
pci in the SriovNetworkNodePolicy object.

You can work around this issue by either ensuring that the container that needs access to
the NIC is the first container defined in the Pod object or by disabling the Network
Resource Injector. For more information, see BZ#1990953.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster.

Install the SR-IOV Operator.

Create either an SriovNetwork object or an SriovIBNetwork object to attach the pod to.

Procedure

1. Add an annotation to the Pod object. Only one of the following annotation formats can be used:

a. To attach an additional network without any customization, add an annotation with the
following format. Replace <network> with the name of the additional network to associate
with the pod:

To specify more than one additional network, separate each network with a comma. Do
not include whitespace between the comma. If you specify the same additional
network multiple times, that pod will have multiple network interfaces attached to that
network.

b. To attach an additional network with customizations, add an annotation with the following
format:

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: <network>[,<network>,...] 1

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [
 {
 "name": "<network>", 1
 "namespace": "<namespace>", 2
 "default-route": ["<default-route>"] 3
 }
]

CHAPTER 14. HARDWARE NETWORKS

215

https://bugzilla.redhat.com/show_bug.cgi?id=1990953

1

2

3

1

Specify the name of the additional network defined by a
NetworkAttachmentDefinition object.

Specify the namespace where the NetworkAttachmentDefinition object is defined.

Optional: Specify an override for the default route, such as 192.168.17.1.

2. To create the pod, enter the following command. Replace <name> with the name of the pod.

3. Optional: To Confirm that the annotation exists in the Pod CR, enter the following command,
replacing <name> with the name of the pod.

In the following example, the example-pod pod is attached to the net1 additional network:

The k8s.v1.cni.cncf.io/networks-status parameter is a JSON array of objects. Each
object describes the status of an additional network attached to the pod. The annotation
value is stored as a plain text value.

$ oc create -f <name>.yaml

$ oc get pod <name> -o yaml

$ oc get pod example-pod -o yaml
apiVersion: v1
kind: Pod
metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: macvlan-bridge
 k8s.v1.cni.cncf.io/networks-status: |- 1
 [{
 "name": "openshift-sdn",
 "interface": "eth0",
 "ips": [
 "10.128.2.14"
],
 "default": true,
 "dns": {}
 },{
 "name": "macvlan-bridge",
 "interface": "net1",
 "ips": [
 "20.2.2.100"
],
 "mac": "22:2f:60:a5:f8:00",
 "dns": {}
 }]
 name: example-pod
 namespace: default
spec:
 ...
status:
 ...

OpenShift Container Platform 4.9 Networking

216

1

2

3

4

14.7.3. Creating a non-uniform memory access (NUMA) aligned SR-IOV pod

You can create a NUMA aligned SR-IOV pod by restricting SR-IOV and the CPU resources allocated
from the same NUMA node with restricted or single-numa-node Topology Manager polices.

Prerequisites

You have installed the OpenShift CLI (oc).

You have configured the CPU Manager policy to static. For more information on CPU Manager,
see the "Additional resources" section.

You have configured the Topology Manager policy to single-numa-node.

NOTE

When single-numa-node is unable to satisfy the request, you can configure the
Topology Manager policy to restricted.

Procedure

1. Create the following SR-IOV pod spec, and then save the YAML in the <name>-sriov-
pod.yaml file. Replace <name> with a name for this pod.
The following example shows an SR-IOV pod spec:

Replace <name> with the name of the SR-IOV network attachment definition CR.

Replace <image> with the name of the sample-pod image.

To create the SR-IOV pod with guaranteed QoS, set memory limits equal to memory
requests.

To create the SR-IOV pod with guaranteed QoS, set cpu limits equals to cpu requests.

2. Create the sample SR-IOV pod by running the following command:

apiVersion: v1
kind: Pod
metadata:
 name: sample-pod
 annotations:
 k8s.v1.cni.cncf.io/networks: <name> 1
spec:
 containers:
 - name: sample-container
 image: <image> 2
 command: ["sleep", "infinity"]
 resources:
 limits:
 memory: "1Gi" 3
 cpu: "2" 4
 requests:
 memory: "1Gi"
 cpu: "2"

CHAPTER 14. HARDWARE NETWORKS

217

1 Replace <filename> with the name of the file you created in the previous step.

3. Confirm that the sample-pod is configured with guaranteed QoS.

4. Confirm that the sample-pod is allocated with exclusive CPUs.

5. Confirm that the SR-IOV device and CPUs that are allocated for the sample-pod are on the
same NUMA node.

14.7.4. Additional resources

Configuring an SR-IOV Ethernet network attachment

Configuring an SR-IOV InfiniBand network attachment

Using CPU Manager

14.8. USING HIGH PERFORMANCE MULTICAST

You can use multicast on your Single Root I/O Virtualization (SR-IOV) hardware network.

14.8.1. High performance multicast

The OpenShift SDN default Container Network Interface (CNI) network provider supports multicast
between pods on the default network. This is best used for low-bandwidth coordination or service
discovery, and not high-bandwidth applications. For applications such as streaming media, like Internet
Protocol television (IPTV) and multipoint videoconferencing, you can utilize Single Root I/O
Virtualization (SR-IOV) hardware to provide near-native performance.

When using additional SR-IOV interfaces for multicast:

Multicast packages must be sent or received by a pod through the additional SR-IOV interface.

The physical network which connects the SR-IOV interfaces decides the multicast routing and
topology, which is not controlled by OpenShift Container Platform.

14.8.2. Configuring an SR-IOV interface for multicast

The follow procedure creates an example SR-IOV interface for multicast.

Prerequisites

Install the OpenShift CLI (oc).

$ oc create -f <filename> 1

$ oc describe pod sample-pod

$ oc exec sample-pod -- cat /sys/fs/cgroup/cpuset/cpuset.cpus

$ oc exec sample-pod -- cat /sys/fs/cgroup/cpuset/cpuset.cpus

OpenShift Container Platform 4.9 Networking

218

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-sriov-device
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-sriov-ib-attach
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/scalability_and_performance/#using-cpu-manager

1 2

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

1. Create a SriovNetworkNodePolicy object:

2. Create a SriovNetwork object:

If you choose to configure DHCP as IPAM, ensure that you provision the following default
routes through your DHCP server: 224.0.0.0/5 and 232.0.0.0/5. This is to override the
static multicast route set by the default network provider.

3. Create a pod with multicast application:

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-example
 namespace: openshift-sriov-network-operator
spec:
 resourceName: example
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 numVfs: 4
 nicSelector:
 vendor: "8086"
 pfNames: ['ens803f0']
 rootDevices: ['0000:86:00.0']

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: net-example
 namespace: openshift-sriov-network-operator
spec:
 networkNamespace: default
 ipam: | 1
 {
 "type": "host-local", 2
 "subnet": "10.56.217.0/24",
 "rangeStart": "10.56.217.171",
 "rangeEnd": "10.56.217.181",
 "routes": [
 {"dst": "224.0.0.0/5"},
 {"dst": "232.0.0.0/5"}
],
 "gateway": "10.56.217.1"
 }
 resourceName: example

apiVersion: v1
kind: Pod
metadata:
 name: testpmd

CHAPTER 14. HARDWARE NETWORKS

219

1 The NET_ADMIN capability is required only if your application needs to assign the
multicast IP address to the SR-IOV interface. Otherwise, it can be omitted.

14.9. USING DPDK AND RDMA

The containerized Data Plane Development Kit (DPDK) application is supported on OpenShift Container
Platform. You can use Single Root I/O Virtualization (SR-IOV) network hardware with the Data Plane
Development Kit (DPDK) and with remote direct memory access (RDMA).

For information on supported devices, refer to Supported devices.

14.9.1. Using a virtual function in DPDK mode with an Intel NIC

Prerequisites

Install the OpenShift CLI (oc).

Install the SR-IOV Network Operator.

Log in as a user with cluster-admin privileges.

Procedure

1. Create the following SriovNetworkNodePolicy object, and then save the YAML in the intel-
dpdk-node-policy.yaml file.

 namespace: default
 annotations:
 k8s.v1.cni.cncf.io/networks: nic1
spec:
 containers:
 - name: example
 image: rhel7:latest
 securityContext:
 capabilities:
 add: ["NET_ADMIN"] 1
 command: ["sleep", "infinity"]

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: intel-dpdk-node-policy
 namespace: openshift-sriov-network-operator
spec:
 resourceName: intelnics
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 priority: <priority>
 numVfs: <num>
 nicSelector:
 vendor: "8086"
 deviceID: "158b"

OpenShift Container Platform 4.9 Networking

220

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#supported-devices_about-sriov

1

1

Specify the driver type for the virtual functions to vfio-pci.

NOTE

See the Configuring SR-IOV network devices section for a detailed explanation
on each option in SriovNetworkNodePolicy.

When applying the configuration specified in a SriovNetworkNodePolicy object,
the SR-IOV Operator may drain the nodes, and in some cases, reboot nodes. It
may take several minutes for a configuration change to apply. Ensure that there
are enough available nodes in your cluster to handle the evicted workload
beforehand.

After the configuration update is applied, all the pods in openshift-sriov-
network-operator namespace will change to a Running status.

2. Create the SriovNetworkNodePolicy object by running the following command:

3. Create the following SriovNetwork object, and then save the YAML in the intel-dpdk-
network.yaml file.

Specify a configuration object for the ipam CNI plugin as a YAML block scalar. The plugin
manages IP address assignment for the attachment definition.

NOTE

See the "Configuring SR-IOV additional network" section for a detailed
explanation on each option in SriovNetwork.

An optional library, app-netutil, provides several API methods for gathering network information
about a container’s parent pod.

4. Create the SriovNetwork object by running the following command:

 pfNames: ["<pf_name>", ...]
 rootDevices: ["<pci_bus_id>", "..."]
 deviceType: vfio-pci 1

$ oc create -f intel-dpdk-node-policy.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: intel-dpdk-network
 namespace: openshift-sriov-network-operator
spec:
 networkNamespace: <target_namespace>
 ipam: |-
... 1
 vlan: <vlan>
 resourceName: intelnics

CHAPTER 14. HARDWARE NETWORKS

221

1

2

3

4

5

5. Create the following Pod spec, and then save the YAML in the intel-dpdk-pod.yaml file.

Specify the same target_namespace where the SriovNetwork object intel-dpdk-network
is created. If you would like to create the pod in a different namespace, change
target_namespace in both the Pod spec and the SriovNetowrk object.

Specify the DPDK image which includes your application and the DPDK library used by
application.

Specify additional capabilities required by the application inside the container for
hugepage allocation, system resource allocation, and network interface access.

Mount a hugepage volume to the DPDK pod under /dev/hugepages. The hugepage
volume is backed by the emptyDir volume type with the medium being Hugepages.

Optional: Specify the number of DPDK devices allocated to DPDK pod. This resource
request and limit, if not explicitly specified, will be automatically added by the SR-IOV
network resource injector. The SR-IOV network resource injector is an admission controller

$ oc create -f intel-dpdk-network.yaml

apiVersion: v1
kind: Pod
metadata:
 name: dpdk-app
 namespace: <target_namespace> 1
 annotations:
 k8s.v1.cni.cncf.io/networks: intel-dpdk-network
spec:
 containers:
 - name: testpmd
 image: <DPDK_image> 2
 securityContext:
 runAsUser: 0
 capabilities:
 add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"] 3
 volumeMounts:
 - mountPath: /dev/hugepages 4
 name: hugepage
 resources:
 limits:
 openshift.io/intelnics: "1" 5
 memory: "1Gi"
 cpu: "4" 6
 hugepages-1Gi: "4Gi" 7
 requests:
 openshift.io/intelnics: "1"
 memory: "1Gi"
 cpu: "4"
 hugepages-1Gi: "4Gi"
 command: ["sleep", "infinity"]
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

OpenShift Container Platform 4.9 Networking

222

6

7

1

component managed by the SR-IOV Operator. It is enabled by default and can be disabled
by setting enableInjector option to false in the default SriovOperatorConfig CR.

Specify the number of CPUs. The DPDK pod usually requires exclusive CPUs to be
allocated from the kubelet. This is achieved by setting CPU Manager policy to static and
creating a pod with Guaranteed QoS.

Specify hugepage size hugepages-1Gi or hugepages-2Mi and the quantity of hugepages
that will be allocated to the DPDK pod. Configure 2Mi and 1Gi hugepages separately.
Configuring 1Gi hugepage requires adding kernel arguments to Nodes. For example,
adding kernel arguments default_hugepagesz=1GB, hugepagesz=1G and
hugepages=16 will result in 16*1Gi hugepages be allocated during system boot.

6. Create the DPDK pod by running the following command:

14.9.2. Using a virtual function in DPDK mode with a Mellanox NIC

Prerequisites

Install the OpenShift CLI (oc).

Install the SR-IOV Network Operator.

Log in as a user with cluster-admin privileges.

Procedure

1. Create the following SriovNetworkNodePolicy object, and then save the YAML in the mlx-
dpdk-node-policy.yaml file.

Specify the device hex code of the SR-IOV network device. The only allowed values for
Mellanox cards are 1015, 1017.

$ oc create -f intel-dpdk-pod.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: mlx-dpdk-node-policy
 namespace: openshift-sriov-network-operator
spec:
 resourceName: mlxnics
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 priority: <priority>
 numVfs: <num>
 nicSelector:
 vendor: "15b3"
 deviceID: "1015" 1
 pfNames: ["<pf_name>", ...]
 rootDevices: ["<pci_bus_id>", "..."]
 deviceType: netdevice 2
 isRdma: true 3

CHAPTER 14. HARDWARE NETWORKS

223

2

3

1

Specify the driver type for the virtual functions to netdevice. Mellanox SR-IOV VF can
work in DPDK mode without using the vfio-pci device type. VF device appears as a kernel

Enable RDMA mode. This is required by Mellanox cards to work in DPDK mode.

NOTE

See the Configuring SR-IOV network devices section for detailed explanation
on each option in SriovNetworkNodePolicy.

When applying the configuration specified in a SriovNetworkNodePolicy object,
the SR-IOV Operator may drain the nodes, and in some cases, reboot nodes. It
may take several minutes for a configuration change to apply. Ensure that there
are enough available nodes in your cluster to handle the evicted workload
beforehand.

After the configuration update is applied, all the pods in the openshift-sriov-
network-operator namespace will change to a Running status.

2. Create the SriovNetworkNodePolicy object by running the following command:

3. Create the following SriovNetwork object, and then save the YAML in the mlx-dpdk-
network.yaml file.

Specify a configuration object for the ipam CNI plugin as a YAML block scalar. The plugin
manages IP address assignment for the attachment definition.

NOTE

See the "Configuring SR-IOV additional network" section for a detailed
explanation on each option in SriovNetwork.

An optional library, app-netutil, provides several API methods for gathering network information
about a container’s parent pod.

4. Create the SriovNetworkNodePolicy object by running the following command:

$ oc create -f mlx-dpdk-node-policy.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: mlx-dpdk-network
 namespace: openshift-sriov-network-operator
spec:
 networkNamespace: <target_namespace>
 ipam: |- 1
...
 vlan: <vlan>
 resourceName: mlxnics

$ oc create -f mlx-dpdk-network.yaml

OpenShift Container Platform 4.9 Networking

224

1

2

3

4

5

5. Create the following Pod spec, and then save the YAML in the mlx-dpdk-pod.yaml file.

Specify the same target_namespace where SriovNetwork object mlx-dpdk-network is
created. If you would like to create the pod in a different namespace, change
target_namespace in both Pod spec and SriovNetowrk object.

Specify the DPDK image which includes your application and the DPDK library used by
application.

Specify additional capabilities required by the application inside the container for
hugepage allocation, system resource allocation, and network interface access.

Mount the hugepage volume to the DPDK pod under /dev/hugepages. The hugepage
volume is backed by the emptyDir volume type with the medium being Hugepages.

Optional: Specify the number of DPDK devices allocated to the DPDK pod. This resource
request and limit, if not explicitly specified, will be automatically added by SR-IOV network
resource injector. The SR-IOV network resource injector is an admission controller
component managed by SR-IOV Operator. It is enabled by default and can be disabled by
setting the enableInjector option to false in the default SriovOperatorConfig CR.

apiVersion: v1
kind: Pod
metadata:
 name: dpdk-app
 namespace: <target_namespace> 1
 annotations:
 k8s.v1.cni.cncf.io/networks: mlx-dpdk-network
spec:
 containers:
 - name: testpmd
 image: <DPDK_image> 2
 securityContext:
 runAsUser: 0
 capabilities:
 add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"] 3
 volumeMounts:
 - mountPath: /dev/hugepages 4
 name: hugepage
 resources:
 limits:
 openshift.io/mlxnics: "1" 5
 memory: "1Gi"
 cpu: "4" 6
 hugepages-1Gi: "4Gi" 7
 requests:
 openshift.io/mlxnics: "1"
 memory: "1Gi"
 cpu: "4"
 hugepages-1Gi: "4Gi"
 command: ["sleep", "infinity"]
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

CHAPTER 14. HARDWARE NETWORKS

225

6

7

Specify the number of CPUs. The DPDK pod usually requires exclusive CPUs be allocated
from kubelet. This is achieved by setting CPU Manager policy to static and creating a pod

Specify hugepage size hugepages-1Gi or hugepages-2Mi and the quantity of hugepages
that will be allocated to DPDK pod. Configure 2Mi and 1Gi hugepages separately.
Configuring 1Gi hugepage requires adding kernel arguments to Nodes.

6. Create the DPDK pod by running the following command:

14.9.3. Using a virtual function in RDMA mode with a Mellanox NIC

IMPORTANT

RDMA over Converged Ethernet (RoCE) is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

RDMA over Converged Ethernet (RoCE) is the only supported mode when using RDMA on OpenShift
Container Platform.

Prerequisites

Install the OpenShift CLI (oc).

Install the SR-IOV Network Operator.

Log in as a user with cluster-admin privileges.

Procedure

1. Create the following SriovNetworkNodePolicy object, and then save the YAML in the mlx-
rdma-node-policy.yaml file.

$ oc create -f mlx-dpdk-pod.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: mlx-rdma-node-policy
 namespace: openshift-sriov-network-operator
spec:
 resourceName: mlxnics
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 priority: <priority>
 numVfs: <num>
 nicSelector:

OpenShift Container Platform 4.9 Networking

226

https://access.redhat.com/support/offerings/techpreview/

1

2

3

1

Specify the device hex code of SR-IOV network device. The only allowed values for
Mellanox cards are 1015, 1017.

Specify the driver type for the virtual functions to netdevice.

Enable RDMA mode.

NOTE

See the Configuring SR-IOV network devices section for a detailed explanation
on each option in SriovNetworkNodePolicy.

When applying the configuration specified in a SriovNetworkNodePolicy object,
the SR-IOV Operator may drain the nodes, and in some cases, reboot nodes. It
may take several minutes for a configuration change to apply. Ensure that there
are enough available nodes in your cluster to handle the evicted workload
beforehand.

After the configuration update is applied, all the pods in the openshift-sriov-
network-operator namespace will change to a Running status.

2. Create the SriovNetworkNodePolicy object by running the following command:

3. Create the following SriovNetwork object, and then save the YAML in the mlx-rdma-
network.yaml file.

Specify a configuration object for the ipam CNI plugin as a YAML block scalar. The plugin
manages IP address assignment for the attachment definition.

NOTE

 vendor: "15b3"
 deviceID: "1015" 1
 pfNames: ["<pf_name>", ...]
 rootDevices: ["<pci_bus_id>", "..."]
 deviceType: netdevice 2
 isRdma: true 3

$ oc create -f mlx-rdma-node-policy.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: mlx-rdma-network
 namespace: openshift-sriov-network-operator
spec:
 networkNamespace: <target_namespace>
 ipam: |- 1
...
 vlan: <vlan>
 resourceName: mlxnics

CHAPTER 14. HARDWARE NETWORKS

227

1

2

NOTE

See the "Configuring SR-IOV additional network" section for a detailed
explanation on each option in SriovNetwork.

An optional library, app-netutil, provides several API methods for gathering network information
about a container’s parent pod.

4. Create the SriovNetworkNodePolicy object by running the following command:

5. Create the following Pod spec, and then save the YAML in the mlx-rdma-pod.yaml file.

Specify the same target_namespace where SriovNetwork object mlx-rdma-network is
created. If you would like to create the pod in a different namespace, change
target_namespace in both Pod spec and SriovNetowrk object.

Specify the RDMA image which includes your application and RDMA library used by
application.

$ oc create -f mlx-rdma-network.yaml

apiVersion: v1
kind: Pod
metadata:
 name: rdma-app
 namespace: <target_namespace> 1
 annotations:
 k8s.v1.cni.cncf.io/networks: mlx-rdma-network
spec:
 containers:
 - name: testpmd
 image: <RDMA_image> 2
 securityContext:
 runAsUser: 0
 capabilities:
 add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"] 3
 volumeMounts:
 - mountPath: /dev/hugepages 4
 name: hugepage
 resources:
 limits:
 memory: "1Gi"
 cpu: "4" 5
 hugepages-1Gi: "4Gi" 6
 requests:
 memory: "1Gi"
 cpu: "4"
 hugepages-1Gi: "4Gi"
 command: ["sleep", "infinity"]
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

OpenShift Container Platform 4.9 Networking

228

3

4

5

6

Specify additional capabilities required by the application inside the container for
hugepage allocation, system resource allocation, and network interface access.

Mount the hugepage volume to RDMA pod under /dev/hugepages. The hugepage volume
is backed by the emptyDir volume type with the medium being Hugepages.

Specify number of CPUs. The RDMA pod usually requires exclusive CPUs be allocated
from the kubelet. This is achieved by setting CPU Manager policy to static and create pod
with Guaranteed QoS.

Specify hugepage size hugepages-1Gi or hugepages-2Mi and the quantity of hugepages
that will be allocated to the RDMA pod. Configure 2Mi and 1Gi hugepages separately.
Configuring 1Gi hugepage requires adding kernel arguments to Nodes.

6. Create the RDMA pod by running the following command:

14.9.4. Additional resources

Configuring an SR-IOV Ethernet network attachment .

The app-netutil library, provides several API methods for gathering network information about a
container’s parent pod.

14.10. UNINSTALLING THE SR-IOV NETWORK OPERATOR

To uninstall the SR-IOV Network Operator, you must delete any running SR-IOV workloads, uninstall the
Operator, and delete the webhooks that the Operator used.

14.10.1. Uninstalling the SR-IOV Network Operator

As a cluster administrator, you can uninstall the SR-IOV Network Operator.

Prerequisites

You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

You have the SR-IOV Network Operator installed.

Procedure

1. Delete all SR-IOV custom resources (CRs):

2. Follow the instructions in the "Deleting Operators from a cluster" section to remove the SR-IOV

$ oc create -f mlx-rdma-pod.yaml

$ oc delete sriovnetwork -n openshift-sriov-network-operator --all

$ oc delete sriovnetworknodepolicy -n openshift-sriov-network-operator --all

$ oc delete sriovibnetwork -n openshift-sriov-network-operator --all

CHAPTER 14. HARDWARE NETWORKS

229

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-sriov-net-attach
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-sriov-app-netutil_about-sriov

2. Follow the instructions in the "Deleting Operators from a cluster" section to remove the SR-IOV
Network Operator from your cluster.

3. Delete the SR-IOV custom resource definitions that remain in the cluster after the SR-IOV
Network Operator is uninstalled:

4. Delete the SR-IOV webhooks:

5. Delete the SR-IOV Network Operator namespace:

Additional resources

Deleting Operators from a cluster

$ oc delete crd sriovibnetworks.sriovnetwork.openshift.io

$ oc delete crd sriovnetworknodepolicies.sriovnetwork.openshift.io

$ oc delete crd sriovnetworknodestates.sriovnetwork.openshift.io

$ oc delete crd sriovnetworkpoolconfigs.sriovnetwork.openshift.io

$ oc delete crd sriovnetworks.sriovnetwork.openshift.io

$ oc delete crd sriovoperatorconfigs.sriovnetwork.openshift.io

$ oc delete mutatingwebhookconfigurations network-resources-injector-config

$ oc delete MutatingWebhookConfiguration sriov-operator-webhook-config

$ oc delete ValidatingWebhookConfiguration sriov-operator-webhook-config

$ oc delete namespace openshift-sriov-network-operator

OpenShift Container Platform 4.9 Networking

230

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/operators/#olm-deleting-operators-from-a-cluster

CHAPTER 15. OPENSHIFT SDN DEFAULT CNI NETWORK
PROVIDER

15.1. ABOUT THE OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

OpenShift Container Platform uses a software-defined networking (SDN) approach to provide a unified
cluster network that enables communication between pods across the OpenShift Container Platform
cluster. This pod network is established and maintained by the OpenShift SDN, which configures an
overlay network using Open vSwitch (OVS).

15.1.1. OpenShift SDN network isolation modes

OpenShift SDN provides three SDN modes for configuring the pod network:

Network policy mode allows project administrators to configure their own isolation policies using
NetworkPolicy objects. Network policy is the default mode in OpenShift Container Platform
4.9.

Multitenant mode provides project-level isolation for pods and services. Pods from different
projects cannot send packets to or receive packets from pods and services of a different
project. You can disable isolation for a project, allowing it to send network traffic to all pods and
services in the entire cluster and receive network traffic from those pods and services.

Subnet mode provides a flat pod network where every pod can communicate with every other
pod and service. The network policy mode provides the same functionality as subnet mode.

15.1.2. Supported default CNI network provider feature matrix

OpenShift Container Platform offers two supported choices, OpenShift SDN and OVN-Kubernetes, for
the default Container Network Interface (CNI) network provider. The following table summarizes the
current feature support for both network providers:

Table 15.1. Default CNI network provider feature comparison

Feature OpenShift SDN OVN-Kubernetes

Egress IPs Supported Supported

Egress firewall [1] Supported Supported

Egress router Supported Supported [2]

IPsec encryption Not supported Supported

IPv6 Not supported Supported [3]

Kubernetes network policy Partially supported [4] Supported

Kubernetes network policy logs Not supported Supported

CHAPTER 15. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

231

Multicast Supported Supported

Feature OpenShift SDN OVN-Kubernetes

1. Egress firewall is also known as egress network policy in OpenShift SDN. This is not the same as
network policy egress.

2. Egress router for OVN-Kubernetes supports only redirect mode.

3. IPv6 is supported only on bare metal clusters.

4. Network policy for OpenShift SDN does not support egress rules and some ipBlock rules.

15.2. CONFIGURING EGRESS IPS FOR A PROJECT

As a cluster administrator, you can configure the OpenShift SDN default Container Network Interface
(CNI) network provider to assign one or more egress IP addresses to a project.

15.2.1. Egress IP address assignment for project egress traffic

By configuring an egress IP address for a project, all outgoing external connections from the specified
project will share the same, fixed source IP address. External resources can recognize traffic from a
particular project based on the egress IP address. An egress IP address assigned to a project is different
from the egress router, which is used to send traffic to specific destinations.

Egress IP addresses are implemented as additional IP addresses on the primary network interface of the
node and must be in the same subnet as the node’s primary IP address.

IMPORTANT

Egress IP addresses must not be configured in any Linux network configuration files, such
as ifcfg-eth0.

Egress IPs on Amazon Web Services (AWS), Google Cloud Platform (GCP), and Azure
are supported only on OpenShift Container Platform version 4.10 and later.

Allowing additional IP addresses on the primary network interface might require extra
configuration when using some cloud or virtual machines solutions.

You can assign egress IP addresses to namespaces by setting the egressIPs parameter of the
NetNamespace object. After an egress IP is associated with a project, OpenShift SDN allows you to
assign egress IPs to hosts in two ways:

In the automatically assigned approach, an egress IP address range is assigned to a node.

In the manually assigned approach, a list of one or more egress IP address is assigned to a node.

Namespaces that request an egress IP address are matched with nodes that can host those egress IP
addresses, and then the egress IP addresses are assigned to those nodes. If the egressIPs parameter is
set on a NetNamespace object, but no node hosts that egress IP address, then egress traffic from the
namespace will be dropped.

High availability of nodes is automatic. If a node that hosts an egress IP address is unreachable and

OpenShift Container Platform 4.9 Networking

232

there are nodes that are able to host that egress IP address, then the egress IP address will move to a
new node. When the unreachable node comes back online, the egress IP address automatically moves
to balance egress IP addresses across nodes.

IMPORTANT

The following limitations apply when using egress IP addresses with the OpenShift SDN
cluster network provider:

You cannot use manually assigned and automatically assigned egress IP
addresses on the same nodes.

If you manually assign egress IP addresses from an IP address range, you must
not make that range available for automatic IP assignment.

You cannot share egress IP addresses across multiple namespaces using the
OpenShift SDN egress IP address implementation. If you need to share IP
addresses across namespaces, the OVN-Kubernetes cluster network provider
egress IP address implementation allows you to span IP addresses across
multiple namespaces.

NOTE

If you use OpenShift SDN in multitenant mode, you cannot use egress IP addresses with
any namespace that is joined to another namespace by the projects that are associated
with them. For example, if project1 and project2 are joined by running the oc adm pod-
network join-projects --to=project1 project2 command, neither project can use an
egress IP address. For more information, see BZ#1645577.

15.2.1.1. Considerations when using automatically assigned egress IP addresses

When using the automatic assignment approach for egress IP addresses the following considerations
apply:

You set the egressCIDRs parameter of each node’s HostSubnet resource to indicate the
range of egress IP addresses that can be hosted by a node. OpenShift Container Platform sets
the egressIPs parameter of the HostSubnet resource based on the IP address range you
specify.

If the node hosting the namespace’s egress IP address is unreachable, OpenShift Container Platform
will reassign the egress IP address to another node with a compatible egress IP address range. The
automatic assignment approach works best for clusters installed in environments with flexibility in
associating additional IP addresses with nodes.

15.2.1.2. Considerations when using manually assigned egress IP addresses

This approach is used for clusters where there can be limitations on associating additional IP addresses
with nodes such as in public cloud environments.

When using the manual assignment approach for egress IP addresses the following considerations apply:

You set the egressIPs parameter of each node’s HostSubnet resource to indicate the IP
addresses that can be hosted by a node.

Multiple egress IP addresses per namespace are supported.

If a namespace has multiple egress IP addresses and those addresses are hosted on multiple nodes, the

CHAPTER 15. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

233

https://bugzilla.redhat.com/show_bug.cgi?id=1645577

If a namespace has multiple egress IP addresses and those addresses are hosted on multiple nodes, the
following additional considerations apply:

If a pod is on a node that is hosting an egress IP address, that pod always uses the egress IP
address on the node.

If a pod is not on a node that is hosting an egress IP address, that pod uses an egress IP address
at random.

15.2.2. Configuring automatically assigned egress IP addresses for a namespace

In OpenShift Container Platform you can enable automatic assignment of an egress IP address for a
specific namespace across one or more nodes.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Update the NetNamespace object with the egress IP address using the following JSON:

where:

<project_name>

Specifies the name of the project.

<ip_address>

Specifies one or more egress IP addresses for the egressIPs array.

For example, to assign project1 to an IP address of 192.168.1.100 and project2 to an IP address
of 192.168.1.101:

NOTE

Because OpenShift SDN manages the NetNamespace object, you can make
changes only by modifying the existing NetNamespace object. Do not create a
new NetNamespace object.

2. Indicate which nodes can host egress IP addresses by setting the egressCIDRs parameter for

 $ oc patch netnamespace <project_name> --type=merge -p \
 '{
 "egressIPs": [
 "<ip_address>"
]
 }'

$ oc patch netnamespace project1 --type=merge -p \
 '{"egressIPs": ["192.168.1.100"]}'
$ oc patch netnamespace project2 --type=merge -p \
 '{"egressIPs": ["192.168.1.101"]}'

OpenShift Container Platform 4.9 Networking

234

2. Indicate which nodes can host egress IP addresses by setting the egressCIDRs parameter for
each host using the following JSON:

where:

<node_name>

Specifies a node name.

<ip_address_range>

Specifies an IP address range in CIDR format. You can specify more than one address range
for the egressCIDRs array.

For example, to set node1 and node2 to host egress IP addresses in the range 192.168.1.0 to
192.168.1.255:

OpenShift Container Platform automatically assigns specific egress IP addresses to available
nodes in a balanced way. In this case, it assigns the egress IP address 192.168.1.100 to node1 and
the egress IP address 192.168.1.101 to node2 or vice versa.

15.2.3. Configuring manually assigned egress IP addresses for a namespace

In OpenShift Container Platform you can associate one or more egress IP addresses with a namespace.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Update the NetNamespace object by specifying the following JSON object with the desired IP
addresses:

where:

$ oc patch hostsubnet <node_name> --type=merge -p \
 '{
 "egressCIDRs": [
 "<ip_address_range>", "<ip_address_range>"
]
 }'

$ oc patch hostsubnet node1 --type=merge -p \
 '{"egressCIDRs": ["192.168.1.0/24"]}'
$ oc patch hostsubnet node2 --type=merge -p \
 '{"egressCIDRs": ["192.168.1.0/24"]}'

 $ oc patch netnamespace <project_name> --type=merge -p \
 '{
 "egressIPs": [
 "<ip_address>"
]
 }'

CHAPTER 15. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

235

<project_name>

Specifies the name of the project.

<ip_address>

Specifies one or more egress IP addresses for the egressIPs array.

For example, to assign the project1 project to the IP addresses 192.168.1.100 and
192.168.1.101:

To provide high availability, set the egressIPs value to two or more IP addresses on different
nodes. If multiple egress IP addresses are set, then pods use all egress IP addresses roughly
equally.

NOTE

Because OpenShift SDN manages the NetNamespace object, you can make
changes only by modifying the existing NetNamespace object. Do not create a
new NetNamespace object.

2. Manually assign the egress IP to the node hosts. Set the egressIPs parameter on the
HostSubnet object on the node host. Using the following JSON, include as many IP addresses
as you want to assign to that node host:

where:

<node_name>

Specifies a node name.

<ip_address>

Specifies an IP address. You can specify more than one IP address for the egressIPs array.

For example, to specify that node1 should have the egress IPs 192.168.1.100, 192.168.1.101,
and 192.168.1.102:

In the previous example, all egress traffic for project1 will be routed to the node hosting the
specified egress IP, and then connected through Network Address Translation (NAT) to that IP
address.

15.3. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT

$ oc patch netnamespace project1 --type=merge \
 -p '{"egressIPs": ["192.168.1.100","192.168.1.101"]}'

$ oc patch hostsubnet <node_name> --type=merge -p \
 '{
 "egressIPs": [
 "<ip_address>",
 "<ip_address>"
]
 }'

$ oc patch hostsubnet node1 --type=merge -p \
 '{"egressIPs": ["192.168.1.100", "192.168.1.101", "192.168.1.102"]}'

OpenShift Container Platform 4.9 Networking

236

As a cluster administrator, you can create an egress firewall for a project that restricts egress traffic
leaving your OpenShift Container Platform cluster.

15.3.1. How an egress firewall works in a project

As a cluster administrator, you can use an egress firewall to limit the external hosts that some or all pods
can access from within the cluster. An egress firewall supports the following scenarios:

A pod can only connect to internal hosts and cannot initiate connections to the public internet.

A pod can only connect to the public internet and cannot initiate connections to internal hosts
that are outside the OpenShift Container Platform cluster.

A pod cannot reach specified internal subnets or hosts outside the OpenShift Container
Platform cluster.

A pod can connect to only specific external hosts.

For example, you can allow one project access to a specified IP range but deny the same access to a
different project. Or you can restrict application developers from updating from Python pip mirrors, and
force updates to come only from approved sources.

NOTE

Egress firewall does not apply to the host network namespace. Pods with host networking
enabled are unaffected by egress firewall rules.

You configure an egress firewall policy by creating an EgressNetworkPolicy custom resource (CR)
object. The egress firewall matches network traffic that meets any of the following criteria:

An IP address range in CIDR format

A DNS name that resolves to an IP address

IMPORTANT

CHAPTER 15. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

237

1
2
3

IMPORTANT

If your egress firewall includes a deny rule for 0.0.0.0/0, access to your OpenShift
Container Platform API servers is blocked. To ensure that pods can continue to access
the OpenShift Container Platform API servers, you must include the IP address range
that the API servers listen on in your egress firewall rules, as in the following example:

The namespace for the egress firewall.
The IP address range that includes your OpenShift Container Platform API servers.
A global deny rule prevents access to the OpenShift Container Platform API servers.

To find the IP address for your API servers, run oc get ep kubernetes -n default.

For more information, see BZ#1988324.

IMPORTANT

You must have OpenShift SDN configured to use either the network policy or multitenant
mode to configure an egress firewall.

If you use network policy mode, an egress firewall is compatible with only one policy per
namespace and will not work with projects that share a network, such as global projects.

WARNING

Egress firewall rules do not apply to traffic that goes through routers. Any user with
permission to create a Route CR object can bypass egress firewall policy rules by
creating a route that points to a forbidden destination.

15.3.1.1. Limitations of an egress firewall

An egress firewall has the following limitations:

No project can have more than one EgressNetworkPolicy object.

apiVersion: network.openshift.io/v1
kind: EgressNetworkPolicy
metadata:
 name: default
 namespace: <namespace> 1
spec:
 egress:
 - to:
 cidrSelector: <api_server_address_range> 2
 type: Allow
...
 - to:
 cidrSelector: 0.0.0.0/0 3
 type: Deny



OpenShift Container Platform 4.9 Networking

238

https://bugzilla.redhat.com/show_bug.cgi?id=1988324

A maximum of one EgressNetworkPolicy object with a maximum of 1,000 rules can be defined
per project.

The default project cannot use an egress firewall.

When using the OpenShift SDN default Container Network Interface (CNI) network provider in
multitenant mode, the following limitations apply:

Global projects cannot use an egress firewall. You can make a project global by using the oc
adm pod-network make-projects-global command.

Projects merged by using the oc adm pod-network join-projects command cannot use an
egress firewall in any of the joined projects.

Violating any of these restrictions results in a broken egress firewall for the project, and might cause all
external network traffic to be dropped.

An Egress Firewall resource can be created in the kube-node-lease, kube-public, kube-system,
openshift and openshift- projects.

15.3.1.2. Matching order for egress firewall policy rules

The egress firewall policy rules are evaluated in the order that they are defined, from first to last. The
first rule that matches an egress connection from a pod applies. Any subsequent rules are ignored for
that connection.

15.3.1.3. How Domain Name Server (DNS) resolution works

If you use DNS names in any of your egress firewall policy rules, proper resolution of the domain names
is subject to the following restrictions:

Domain name updates are polled based on a time-to-live (TTL) duration. By default, the
duration is 30 seconds. When the egress firewall controller queries the local name servers for a
domain name, if the response includes a TTL that is less than 30 seconds, the controller sets the
duration to the returned value. If the TTL in the response is greater than 30 minutes, the
controller sets the duration to 30 minutes. If the TTL is between 30 seconds and 30 minutes,
the controller ignores the value and sets the duration to 30 seconds.

The pod must resolve the domain from the same local name servers when necessary. Otherwise
the IP addresses for the domain known by the egress firewall controller and the pod can be
different. If the IP addresses for a hostname differ, the egress firewall might not be enforced
consistently.

Because the egress firewall controller and pods asynchronously poll the same local name server,
the pod might obtain the updated IP address before the egress controller does, which causes a
race condition. Due to this current limitation, domain name usage in EgressNetworkPolicy
objects is only recommended for domains with infrequent IP address changes.

NOTE

CHAPTER 15. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

239

1

2

1

2

3

4

NOTE

The egress firewall always allows pods access to the external interface of the node that
the pod is on for DNS resolution.

If you use domain names in your egress firewall policy and your DNS resolution is not
handled by a DNS server on the local node, then you must add egress firewall rules that
allow access to your DNS server’s IP addresses. if you are using domain names in your
pods.

15.3.2. EgressNetworkPolicy custom resource (CR) object

You can define one or more rules for an egress firewall. A rule is either an Allow rule or a Deny rule, with
a specification for the traffic that the rule applies to.

The following YAML describes an EgressNetworkPolicy CR object:

EgressNetworkPolicy object

A name for your egress firewall policy.

A collection of one or more egress network policy rules as described in the following section.

15.3.2.1. EgressNetworkPolicy rules

The following YAML describes an egress firewall rule object. The egress stanza expects an array of one
or more objects.

Egress policy rule stanza

The type of rule. The value must be either Allow or Deny.

A stanza describing an egress traffic match rule. A value for either the cidrSelector field or the
dnsName field for the rule. You cannot use both fields in the same rule.

An IP address range in CIDR format.

A domain name.

apiVersion: network.openshift.io/v1
kind: EgressNetworkPolicy
metadata:
 name: <name> 1
spec:
 egress: 2
 ...

egress:
- type: <type> 1
 to: 2
 cidrSelector: <cidr> 3
 dnsName: <dns_name> 4

OpenShift Container Platform 4.9 Networking

240

1

15.3.2.2. Example EgressNetworkPolicy CR objects

The following example defines several egress firewall policy rules:

A collection of egress firewall policy rule objects.

15.3.3. Creating an egress firewall policy object

As a cluster administrator, you can create an egress firewall policy object for a project.

IMPORTANT

If the project already has an EgressNetworkPolicy object defined, you must edit the
existing policy to make changes to the egress firewall rules.

Prerequisites

A cluster that uses the OpenShift SDN default Container Network Interface (CNI) network
provider plugin.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

1. Create a policy rule:

a. Create a <policy_name>.yaml file where <policy_name> describes the egress policy rules.

b. In the file you created, define an egress policy object.

2. Enter the following command to create the policy object. Replace <policy_name> with the
name of the policy and <project> with the project that the rule applies to.

In the following example, a new EgressNetworkPolicy object is created in a project named

apiVersion: network.openshift.io/v1
kind: EgressNetworkPolicy
metadata:
 name: default
spec:
 egress: 1
 - type: Allow
 to:
 cidrSelector: 1.2.3.0/24
 - type: Allow
 to:
 dnsName: www.example.com
 - type: Deny
 to:
 cidrSelector: 0.0.0.0/0

$ oc create -f <policy_name>.yaml -n <project>

CHAPTER 15. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

241

In the following example, a new EgressNetworkPolicy object is created in a project named
project1:

Example output

3. Optional: Save the <policy_name>.yaml file so that you can make changes later.

15.4. EDITING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can modify network traffic rules for an existing egress firewall.

15.4.1. Viewing an EgressNetworkPolicy object

You can view an EgressNetworkPolicy object in your cluster.

Prerequisites

A cluster using the OpenShift SDN default Container Network Interface (CNI) network provider
plugin.

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

You must log in to the cluster.

Procedure

1. Optional: To view the names of the EgressNetworkPolicy objects defined in your cluster, enter
the following command:

2. To inspect a policy, enter the following command. Replace <policy_name> with the name of
the policy to inspect.

Example output

15.5. EDITING AN EGRESS FIREWALL FOR A PROJECT

$ oc create -f default.yaml -n project1

egressnetworkpolicy.network.openshift.io/v1 created

$ oc get egressnetworkpolicy --all-namespaces

$ oc describe egressnetworkpolicy <policy_name>

Name: default
Namespace: project1
Created: 20 minutes ago
Labels: <none>
Annotations: <none>
Rule: Allow to 1.2.3.0/24
Rule: Allow to www.example.com
Rule: Deny to 0.0.0.0/0

OpenShift Container Platform 4.9 Networking

242

As a cluster administrator, you can modify network traffic rules for an existing egress firewall.

15.5.1. Editing an EgressNetworkPolicy object

As a cluster administrator, you can update the egress firewall for a project.

Prerequisites

A cluster using the OpenShift SDN default Container Network Interface (CNI) network provider
plugin.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

1. Find the name of the EgressNetworkPolicy object for the project. Replace <project> with the
name of the project.

2. Optional: If you did not save a copy of the EgressNetworkPolicy object when you created the
egress network firewall, enter the following command to create a copy.

Replace <project> with the name of the project. Replace <name> with the name of the object.
Replace <filename> with the name of the file to save the YAML to.

3. After making changes to the policy rules, enter the following command to replace the
EgressNetworkPolicy object. Replace <filename> with the name of the file containing the
updated EgressNetworkPolicy object.

15.6. REMOVING AN EGRESS FIREWALL FROM A PROJECT

As a cluster administrator, you can remove an egress firewall from a project to remove all restrictions on
network traffic from the project that leaves the OpenShift Container Platform cluster.

15.6.1. Removing an EgressNetworkPolicy object

As a cluster administrator, you can remove an egress firewall from a project.

Prerequisites

A cluster using the OpenShift SDN default Container Network Interface (CNI) network provider
plugin.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

$ oc get -n <project> egressnetworkpolicy

$ oc get -n <project> egressnetworkpolicy <name> -o yaml > <filename>.yaml

$ oc replace -f <filename>.yaml

CHAPTER 15. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

243

Procedure

1. Find the name of the EgressNetworkPolicy object for the project. Replace <project> with the
name of the project.

2. Enter the following command to delete the EgressNetworkPolicy object. Replace <project>
with the name of the project and <name> with the name of the object.

15.7. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD

15.7.1. About an egress router pod

The OpenShift Container Platform egress router pod redirects traffic to a specified remote server from
a private source IP address that is not used for any other purpose. An egress router pod can send
network traffic to servers that are set up to allow access only from specific IP addresses.

NOTE

The egress router pod is not intended for every outgoing connection. Creating large
numbers of egress router pods can exceed the limits of your network hardware. For
example, creating an egress router pod for every project or application could exceed the
number of local MAC addresses that the network interface can handle before reverting to
filtering MAC addresses in software.

IMPORTANT

The egress router image is not compatible with Amazon AWS, Azure Cloud, or any other
cloud platform that does not support layer 2 manipulations due to their incompatibility
with macvlan traffic.

15.7.1.1. Egress router modes

In redirect mode , an egress router pod configures iptables rules to redirect traffic from its own IP
address to one or more destination IP addresses. Client pods that need to use the reserved source IP
address must be modified to connect to the egress router rather than connecting directly to the
destination IP.

In HTTP proxy mode , an egress router pod runs as an HTTP proxy on port 8080. This mode only works for
clients that are connecting to HTTP-based or HTTPS-based services, but usually requires fewer
changes to the client pods to get them to work. Many programs can be told to use an HTTP proxy by
setting an environment variable.

In DNS proxy mode , an egress router pod runs as a DNS proxy for TCP-based services from its own IP
address to one or more destination IP addresses. To make use of the reserved, source IP address, client
pods must be modified to connect to the egress router pod rather than connecting directly to the
destination IP address. This modification ensures that external destinations treat traffic as though it
were coming from a known source.

Redirect mode works for all services except for HTTP and HTTPS. For HTTP and HTTPS services, use

$ oc get -n <project> egressnetworkpolicy

$ oc delete -n <project> egressnetworkpolicy <name>

OpenShift Container Platform 4.9 Networking

244

Redirect mode works for all services except for HTTP and HTTPS. For HTTP and HTTPS services, use
HTTP proxy mode. For TCP-based services with IP addresses or domain names, use DNS proxy mode.

15.7.1.2. Egress router pod implementation

The egress router pod setup is performed by an initialization container. That container runs in a
privileged context so that it can configure the macvlan interface and set up iptables rules. After the
initialization container finishes setting up the iptables rules, it exits. Next the egress router pod
executes the container to handle the egress router traffic. The image used varies depending on the
egress router mode.

The environment variables determine which addresses the egress-router image uses. The image
configures the macvlan interface to use EGRESS_SOURCE as its IP address, with
EGRESS_GATEWAY as the IP address for the gateway.

Network Address Translation (NAT) rules are set up so that connections to the cluster IP address of the
pod on any TCP or UDP port are redirected to the same port on IP address specified by the
EGRESS_DESTINATION variable.

If only some of the nodes in your cluster are capable of claiming the specified source IP address and
using the specified gateway, you can specify a nodeName or nodeSelector to identify which nodes are
acceptable.

15.7.1.3. Deployment considerations

An egress router pod adds an additional IP address and MAC address to the primary network interface
of the node. As a result, you might need to configure your hypervisor or cloud provider to allow the
additional address.

Red Hat OpenStack Platform (RHOSP)

If you deploy OpenShift Container Platform on RHOSP, you must allow traffic from the IP and MAC
addresses of the egress router pod on your OpenStack environment. If you do not allow the traffic,
then communication will fail :

Red Hat Virtualization (RHV)

If you are using RHV, you must select No Network Filter for the Virtual network interface controller
(vNIC).

VMware vSphere

If you are using VMware vSphere, see the VMware documentation for securing vSphere standard
switches. View and change VMware vSphere default settings by selecting the host virtual switch from
the vSphere Web Client.

Specifically, ensure that the following are enabled:

MAC Address Changes

Forged Transits

Promiscuous Mode Operation

15.7.1.4. Failover configuration
To avoid downtime, you can deploy an egress router pod with a Deployment resource, as in the

$ openstack port set --allowed-address \
 ip_address=<ip_address>,mac_address=<mac_address> <neutron_port_uuid>

CHAPTER 15. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

245

https://access.redhat.com/solutions/2803331
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/administration_guide/chap-logical_networks#Explanation_of_Settings_in_the_VM_Interface_Profile_Window
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-3507432E-AFEA-4B6B-B404-17A020575358.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-942BD3AA-731B-4A05-8196-66F2B4BF1ACB.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-7DC6486F-5400-44DF-8A62-6273798A2F80.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-92F3AB1F-B4C5-4F25-A010-8820D7250350.html

1

2

To avoid downtime, you can deploy an egress router pod with a Deployment resource, as in the
following example. To create a new Service object for the example deployment, use the oc expose
deployment/egress-demo-controller command.

Ensure that replicas is set to 1, because only one pod can use a given egress source IP address at
any time. This means that only a single copy of the router runs on a node.

Specify the Pod object template for the egress router pod.

15.7.2. Additional resources

Deploying an egress router in redirection mode

Deploying an egress router in HTTP proxy mode

Deploying an egress router in DNS proxy mode

15.8. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE

As a cluster administrator, you can deploy an egress router pod that is configured to redirect traffic to
specified destination IP addresses.

15.8.1. Egress router pod specification for redirect mode

Define the configuration for an egress router pod in the Pod object. The following YAML describes the
fields for the configuration of an egress router pod in redirect mode:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: egress-demo-controller
spec:
 replicas: 1 1
 selector:
 matchLabels:
 name: egress-router
 template:
 metadata:
 name: egress-router
 labels:
 name: egress-router
 annotations:
 pod.network.openshift.io/assign-macvlan: "true"
 spec: 2
 initContainers:
 ...
 containers:
 ...

apiVersion: v1
kind: Pod
metadata:
 name: egress-1

OpenShift Container Platform 4.9 Networking

246

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#deploying-egress-router-layer3-redirection
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#deploying-egress-router-http-redirection
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#deploying-egress-router-dns-redirection

1

2

3

4

The annotation tells OpenShift Container Platform to create a macvlan network interface on the
primary network interface controller (NIC) and move that macvlan interface into the pod’s network
namespace. You must include the quotation marks around the "true" value. To have OpenShift
Container Platform create the macvlan interface on a different NIC interface, set the annotation
value to the name of that interface. For example, eth1.

IP address from the physical network that the node is on that is reserved for use by the egress
router pod. Optional: You can include the subnet length, the /24 suffix, so that a proper route to the
local subnet is set. If you do not specify a subnet length, then the egress router can access only the
host specified with the EGRESS_GATEWAY variable and no other hosts on the subnet.

Same value as the default gateway used by the node.

External server to direct traffic to. Using this example, connections to the pod are redirected to
203.0.113.25, with a source IP address of 192.168.12.99.

Example egress router pod specification

 labels:
 name: egress-1
 annotations:
 pod.network.openshift.io/assign-macvlan: "true" 1
spec:
 initContainers:
 - name: egress-router
 image: registry.redhat.io/openshift4/ose-egress-router
 securityContext:
 privileged: true
 env:
 - name: EGRESS_SOURCE 2
 value: <egress_router>
 - name: EGRESS_GATEWAY 3
 value: <egress_gateway>
 - name: EGRESS_DESTINATION 4
 value: <egress_destination>
 - name: EGRESS_ROUTER_MODE
 value: init
 containers:
 - name: egress-router-wait
 image: registry.redhat.io/openshift4/ose-pod

apiVersion: v1
kind: Pod
metadata:
 name: egress-multi
 labels:
 name: egress-multi
 annotations:
 pod.network.openshift.io/assign-macvlan: "true"
spec:
 initContainers:
 - name: egress-router
 image: registry.redhat.io/openshift4/ose-egress-router
 securityContext:

CHAPTER 15. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

247

15.8.2. Egress destination configuration format

When an egress router pod is deployed in redirect mode, you can specify redirection rules by using one
or more of the following formats:

<port> <protocol> <ip_address> - Incoming connections to the given <port> should be
redirected to the same port on the given <ip_address>. <protocol> is either tcp or udp.

<port> <protocol> <ip_address> <remote_port> - As above, except that the connection is
redirected to a different <remote_port> on <ip_address>.

<ip_address> - If the last line is a single IP address, then any connections on any other port will
be redirected to the corresponding port on that IP address. If there is no fallback IP address
then connections on other ports are rejected.

In the example that follows several rules are defined:

The first line redirects traffic from local port 80 to port 80 on 203.0.113.25.

The second and third lines redirect local ports 8080 and 8443 to remote ports 80 and 443 on
203.0.113.26.

The last line matches traffic for any ports not specified in the previous rules.

Example configuration

15.8.3. Deploying an egress router pod in redirect mode

In redirect mode , an egress router pod sets up iptables rules to redirect traffic from its own IP address to
one or more destination IP addresses. Client pods that need to use the reserved source IP address
must be modified to connect to the egress router rather than connecting directly to the destination IP.

 privileged: true
 env:
 - name: EGRESS_SOURCE
 value: 192.168.12.99/24
 - name: EGRESS_GATEWAY
 value: 192.168.12.1
 - name: EGRESS_DESTINATION
 value: |
 80 tcp 203.0.113.25
 8080 tcp 203.0.113.26 80
 8443 tcp 203.0.113.26 443
 203.0.113.27
 - name: EGRESS_ROUTER_MODE
 value: init
 containers:
 - name: egress-router-wait
 image: registry.redhat.io/openshift4/ose-pod

80 tcp 203.0.113.25
8080 tcp 203.0.113.26 80
8443 tcp 203.0.113.26 443
203.0.113.27

OpenShift Container Platform 4.9 Networking

248

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an egress router pod.

2. To ensure that other pods can find the IP address of the egress router pod, create a service to
point to the egress router pod, as in the following example:

Your pods can now connect to this service. Their connections are redirected to the
corresponding ports on the external server, using the reserved egress IP address.

15.8.4. Additional resources

Configuring an egress router destination mappings with a ConfigMap

15.9. DEPLOYING AN EGRESS ROUTER POD IN HTTP PROXY MODE

As a cluster administrator, you can deploy an egress router pod configured to proxy traffic to specified
HTTP and HTTPS-based services.

15.9.1. Egress router pod specification for HTTP mode

Define the configuration for an egress router pod in the Pod object. The following YAML describes the
fields for the configuration of an egress router pod in HTTP mode:

apiVersion: v1
kind: Service
metadata:
 name: egress-1
spec:
 ports:
 - name: http
 port: 80
 - name: https
 port: 443
 type: ClusterIP
 selector:
 name: egress-1

apiVersion: v1
kind: Pod
metadata:
 name: egress-1
 labels:
 name: egress-1
 annotations:
 pod.network.openshift.io/assign-macvlan: "true" 1
spec:
 initContainers:

CHAPTER 15. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

249

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-egress-router-configmap

1

2

3

4

The annotation tells OpenShift Container Platform to create a macvlan network interface on the
primary network interface controller (NIC) and move that macvlan interface into the pod’s network
namespace. You must include the quotation marks around the "true" value. To have OpenShift
Container Platform create the macvlan interface on a different NIC interface, set the annotation
value to the name of that interface. For example, eth1.

IP address from the physical network that the node is on that is reserved for use by the egress
router pod. Optional: You can include the subnet length, the /24 suffix, so that a proper route to the
local subnet is set. If you do not specify a subnet length, then the egress router can access only the
host specified with the EGRESS_GATEWAY variable and no other hosts on the subnet.

Same value as the default gateway used by the node.

A string or YAML multi-line string specifying how to configure the proxy. Note that this is specified
as an environment variable in the HTTP proxy container, not with the other environment variables
in the init container.

15.9.2. Egress destination configuration format

When an egress router pod is deployed in HTTP proxy mode, you can specify redirection rules by using
one or more of the following formats. Each line in the configuration specifies one group of connections
to allow or deny:

An IP address allows connections to that IP address, such as 192.168.1.1.

A CIDR range allows connections to that CIDR range, such as 192.168.1.0/24.

A hostname allows proxying to that host, such as www.example.com.

A domain name preceded by *. allows proxying to that domain and all of its subdomains, such as
*.example.com.

A ! followed by any of the previous match expressions denies the connection instead.

If the last line is *, then anything that is not explicitly denied is allowed. Otherwise, anything that

 - name: egress-router
 image: registry.redhat.io/openshift4/ose-egress-router
 securityContext:
 privileged: true
 env:
 - name: EGRESS_SOURCE 2
 value: <egress-router>
 - name: EGRESS_GATEWAY 3
 value: <egress-gateway>
 - name: EGRESS_ROUTER_MODE
 value: http-proxy
 containers:
 - name: egress-router-pod
 image: registry.redhat.io/openshift4/ose-egress-http-proxy
 env:
 - name: EGRESS_HTTP_PROXY_DESTINATION 4
 value: |-
 ...
 ...

OpenShift Container Platform 4.9 Networking

250

1

If the last line is *, then anything that is not explicitly denied is allowed. Otherwise, anything that
is not allowed is denied.

You can also use * to allow connections to all remote destinations.

Example configuration

15.9.3. Deploying an egress router pod in HTTP proxy mode

In HTTP proxy mode , an egress router pod runs as an HTTP proxy on port 8080. This mode only works for
clients that are connecting to HTTP-based or HTTPS-based services, but usually requires fewer
changes to the client pods to get them to work. Many programs can be told to use an HTTP proxy by
setting an environment variable.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an egress router pod.

2. To ensure that other pods can find the IP address of the egress router pod, create a service to
point to the egress router pod, as in the following example:

Ensure the http port is set to 8080.

3. To configure the client pod (not the egress proxy pod) to use the HTTP proxy, set the
http_proxy or https_proxy variables:

!*.example.com
!192.168.1.0/24
192.168.2.1
*

apiVersion: v1
kind: Service
metadata:
 name: egress-1
spec:
 ports:
 - name: http-proxy
 port: 8080 1
 type: ClusterIP
 selector:
 name: egress-1

apiVersion: v1
kind: Pod
metadata:
 name: app-1
 labels:

CHAPTER 15. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

251

1 The service created in the previous step.

NOTE

Using the http_proxy and https_proxy environment variables is not necessary
for all setups. If the above does not create a working setup, then consult the
documentation for the tool or software you are running in the pod.

15.9.4. Additional resources

Configuring an egress router destination mappings with a ConfigMap

15.10. DEPLOYING AN EGRESS ROUTER POD IN DNS PROXY MODE

As a cluster administrator, you can deploy an egress router pod configured to proxy traffic to specified
DNS names and IP addresses.

15.10.1. Egress router pod specification for DNS mode

Define the configuration for an egress router pod in the Pod object. The following YAML describes the
fields for the configuration of an egress router pod in DNS mode:

 name: app-1
spec:
 containers:
 env:
 - name: http_proxy
 value: http://egress-1:8080/ 1
 - name: https_proxy
 value: http://egress-1:8080/
 ...

apiVersion: v1
kind: Pod
metadata:
 name: egress-1
 labels:
 name: egress-1
 annotations:
 pod.network.openshift.io/assign-macvlan: "true" 1
spec:
 initContainers:
 - name: egress-router
 image: registry.redhat.io/openshift4/ose-egress-router
 securityContext:
 privileged: true
 env:
 - name: EGRESS_SOURCE 2
 value: <egress-router>
 - name: EGRESS_GATEWAY 3
 value: <egress-gateway>
 - name: EGRESS_ROUTER_MODE
 value: dns-proxy

OpenShift Container Platform 4.9 Networking

252

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-egress-router-configmap

1

2

3

4

5

The annotation tells OpenShift Container Platform to create a macvlan network interface on the
primary network interface controller (NIC) and move that macvlan interface into the pod’s network
namespace. You must include the quotation marks around the "true" value. To have OpenShift
Container Platform create the macvlan interface on a different NIC interface, set the annotation
value to the name of that interface. For example, eth1.

IP address from the physical network that the node is on that is reserved for use by the egress
router pod. Optional: You can include the subnet length, the /24 suffix, so that a proper route to the
local subnet is set. If you do not specify a subnet length, then the egress router can access only the
host specified with the EGRESS_GATEWAY variable and no other hosts on the subnet.

Same value as the default gateway used by the node.

Specify a list of one or more proxy destinations.

Optional: Specify to output the DNS proxy log output to stdout.

15.10.2. Egress destination configuration format

When the router is deployed in DNS proxy mode, you specify a list of port and destination mappings. A
destination may be either an IP address or a DNS name.

An egress router pod supports the following formats for specifying port and destination mappings:

Port and remote address

You can specify a source port and a destination host by using the two field format: <port>
<remote_address>.

The host can be an IP address or a DNS name. If a DNS name is provided, DNS resolution occurs at
runtime. For a given host, the proxy connects to the specified source port on the destination host when
connecting to the destination host IP address.

Port and remote address pair example

Port, remote address, and remote port

You can specify a source port, a destination host, and a destination port by using the three field
format: <port> <remote_address> <remote_port>.

 containers:
 - name: egress-router-pod
 image: registry.redhat.io/openshift4/ose-egress-dns-proxy
 securityContext:
 privileged: true
 env:
 - name: EGRESS_DNS_PROXY_DESTINATION 4
 value: |-
 ...
 - name: EGRESS_DNS_PROXY_DEBUG 5
 value: "1"
 ...

80 172.16.12.11
100 example.com

CHAPTER 15. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

253

The three field format behaves identically to the two field version, with the exception that the
destination port can be different than the source port.

Port, remote address, and remote port example

15.10.3. Deploying an egress router pod in DNS proxy mode

In DNS proxy mode , an egress router pod acts as a DNS proxy for TCP-based services from its own IP
address to one or more destination IP addresses.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an egress router pod.

2. Create a service for the egress router pod:

a. Create a file named egress-router-service.yaml that contains the following YAML. Set
spec.ports to the list of ports that you defined previously for the
EGRESS_DNS_PROXY_DESTINATION environment variable.

For example:

8080 192.168.60.252 80
8443 web.example.com 443

apiVersion: v1
kind: Service
metadata:
 name: egress-dns-svc
spec:
 ports:
 ...
 type: ClusterIP
 selector:
 name: egress-dns-proxy

apiVersion: v1
kind: Service
metadata:
 name: egress-dns-svc
spec:
 ports:
 - name: con1
 protocol: TCP
 port: 80
 targetPort: 80
 - name: con2
 protocol: TCP

OpenShift Container Platform 4.9 Networking

254

b. To create the service, enter the following command:

Pods can now connect to this service. The connections are proxied to the corresponding
ports on the external server, using the reserved egress IP address.

15.10.4. Additional resources

Configuring an egress router destination mappings with a ConfigMap

15.11. CONFIGURING AN EGRESS ROUTER POD DESTINATION LIST
FROM A CONFIG MAP

As a cluster administrator, you can define a ConfigMap object that specifies destination mappings for
an egress router pod. The specific format of the configuration depends on the type of egress router
pod. For details on the format, refer to the documentation for the specific egress router pod.

15.11.1. Configuring an egress router destination mappings with a config map

For a large or frequently-changing set of destination mappings, you can use a config map to externally
maintain the list. An advantage of this approach is that permission to edit the config map can be
delegated to users without cluster-admin privileges. Because the egress router pod requires a
privileged container, it is not possible for users without cluster-admin privileges to edit the pod
definition directly.

NOTE

The egress router pod does not automatically update when the config map changes. You
must restart the egress router pod to get updates.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a file containing the mapping data for the egress router pod, as in the following example:

Egress routes for Project "Test", version 3

80 tcp 203.0.113.25

8080 tcp 203.0.113.26 80
8443 tcp 203.0.113.26 443

 port: 100
 targetPort: 100
 type: ClusterIP
 selector:
 name: egress-dns-proxy

$ oc create -f egress-router-service.yaml

CHAPTER 15. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

255

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-egress-router-configmap

Fallback
203.0.113.27

You can put blank lines and comments into this file.

2. Create a ConfigMap object from the file:

In the previous command, the egress-routes value is the name of the ConfigMap object to
create and my-egress-destination.txt is the name of the file that the data is read from.

TIP

You can alternatively apply the following YAML to create the config map:

3. Create an egress router pod definition and specify the configMapKeyRef stanza for the
EGRESS_DESTINATION field in the environment stanza:

15.11.2. Additional resources

Redirect mode

HTTP proxy mode

$ oc delete configmap egress-routes --ignore-not-found

$ oc create configmap egress-routes \
 --from-file=destination=my-egress-destination.txt

apiVersion: v1
kind: ConfigMap
metadata:
 name: egress-routes
data:
 destination: |
 # Egress routes for Project "Test", version 3

 80 tcp 203.0.113.25

 8080 tcp 203.0.113.26 80
 8443 tcp 203.0.113.26 443

 # Fallback
 203.0.113.27

...
env:
- name: EGRESS_DESTINATION
 valueFrom:
 configMapKeyRef:
 name: egress-routes
 key: destination
...

OpenShift Container Platform 4.9 Networking

256

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-egress-router-dest-var_deploying-egress-router-layer3-redirection
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-egress-router-dest-var_deploying-egress-router-http-redirection

DNS proxy mode

15.12. ENABLING MULTICAST FOR A PROJECT

15.12.1. About multicast

With IP multicast, data is broadcast to many IP addresses simultaneously.

IMPORTANT

At this time, multicast is best used for low-bandwidth coordination or service discovery
and not a high-bandwidth solution.

Multicast traffic between OpenShift Container Platform pods is disabled by default. If you are using the
OpenShift SDN default Container Network Interface (CNI) network provider, you can enable multicast
on a per-project basis.

When using the OpenShift SDN network plugin in networkpolicy isolation mode:

Multicast packets sent by a pod will be delivered to all other pods in the project, regardless of
NetworkPolicy objects. Pods might be able to communicate over multicast even when they
cannot communicate over unicast.

Multicast packets sent by a pod in one project will never be delivered to pods in any other
project, even if there are NetworkPolicy objects that allow communication between the
projects.

When using the OpenShift SDN network plugin in multitenant isolation mode:

Multicast packets sent by a pod will be delivered to all other pods in the project.

Multicast packets sent by a pod in one project will be delivered to pods in other projects only if
each project is joined together and multicast is enabled in each joined project.

15.12.2. Enabling multicast between pods

You can enable multicast between pods for your project.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Run the following command to enable multicast for a project. Replace <namespace> with the
namespace for the project you want to enable multicast for.

Verification

$ oc annotate netnamespace <namespace> \
 netnamespace.network.openshift.io/multicast-enabled=true

CHAPTER 15. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

257

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-egress-router-dest-var_deploying-egress-router-dns-redirection

To verify that multicast is enabled for a project, complete the following procedure:

1. Change your current project to the project that you enabled multicast for. Replace <project>
with the project name.

2. Create a pod to act as a multicast receiver:

3. Create a pod to act as a multicast sender:

4. In a new terminal window or tab, start the multicast listener.

a. Get the IP address for the Pod:

b. Start the multicast listener by entering the following command:

$ oc project <project>

$ cat <<EOF| oc create -f -
apiVersion: v1
kind: Pod
metadata:
 name: mlistener
 labels:
 app: multicast-verify
spec:
 containers:
 - name: mlistener
 image: registry.access.redhat.com/ubi8
 command: ["/bin/sh", "-c"]
 args:
 ["dnf -y install socat hostname && sleep inf"]
 ports:
 - containerPort: 30102
 name: mlistener
 protocol: UDP
EOF

$ cat <<EOF| oc create -f -
apiVersion: v1
kind: Pod
metadata:
 name: msender
 labels:
 app: multicast-verify
spec:
 containers:
 - name: msender
 image: registry.access.redhat.com/ubi8
 command: ["/bin/sh", "-c"]
 args:
 ["dnf -y install socat && sleep inf"]
EOF

$ POD_IP=$(oc get pods mlistener -o jsonpath='{.status.podIP}')

OpenShift Container Platform 4.9 Networking

258

1

5. Start the multicast transmitter.

a. Get the pod network IP address range:

b. To send a multicast message, enter the following command:

If multicast is working, the previous command returns the following output:

15.13. DISABLING MULTICAST FOR A PROJECT

15.13.1. Disabling multicast between pods

You can disable multicast between pods for your project.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Disable multicast by running the following command:

The namespace for the project you want to disable multicast for.

15.14. CONFIGURING NETWORK ISOLATION USING OPENSHIFT SDN

When your cluster is configured to use the multitenant isolation mode for the OpenShift SDN CNI
plugin, each project is isolated by default. Network traffic is not allowed between pods or services in
different projects in multitenant isolation mode.

You can change the behavior of multitenant isolation for a project in two ways:

You can join one or more projects, allowing network traffic between pods and services in

$ oc exec mlistener -i -t -- \
 socat UDP4-RECVFROM:30102,ip-add-membership=224.1.0.1:$POD_IP,fork
EXEC:hostname

$ CIDR=$(oc get Network.config.openshift.io cluster \
 -o jsonpath='{.status.clusterNetwork[0].cidr}')

$ oc exec msender -i -t -- \
 /bin/bash -c "echo | socat STDIO UDP4-
DATAGRAM:224.1.0.1:30102,range=$CIDR,ip-multicast-ttl=64"

mlistener

$ oc annotate netnamespace <namespace> \ 1
 netnamespace.network.openshift.io/multicast-enabled-

CHAPTER 15. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

259

You can join one or more projects, allowing network traffic between pods and services in
different projects.

You can disable network isolation for a project. It will be globally accessible, accepting network
traffic from pods and services in all other projects. A globally accessible project can access pods
and services in all other projects.

15.14.1. Prerequisites

You must have a cluster configured to use the OpenShift SDN Container Network Interface
(CNI) plugin in multitenant isolation mode.

15.14.2. Joining projects

You can join two or more projects to allow network traffic between pods and services in different
projects.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

1. Use the following command to join projects to an existing project network:

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option to specify projects based upon an associated label.

2. Optional: Run the following command to view the pod networks that you have joined together:

Projects in the same pod-network have the same network ID in the NETID column.

15.14.3. Isolating a project

You can isolate a project so that pods and services in other projects cannot access its pods and
services.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

To isolate the projects in the cluster, run the following command:

$ oc adm pod-network join-projects --to=<project1> <project2> <project3>

$ oc get netnamespaces

$ oc adm pod-network isolate-projects <project1> <project2>

OpenShift Container Platform 4.9 Networking

260

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option to specify projects based upon an associated label.

15.14.4. Disabling network isolation for a project

You can disable network isolation for a project.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Run the following command for the project:

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option to specify projects based upon an associated label.

15.15. CONFIGURING KUBE-PROXY

The Kubernetes network proxy (kube-proxy) runs on each node and is managed by the Cluster Network
Operator (CNO). kube-proxy maintains network rules for forwarding connections for endpoints
associated with services.

15.15.1. About iptables rules synchronization

The synchronization period determines how frequently the Kubernetes network proxy (kube-proxy)
syncs the iptables rules on a node.

A sync begins when either of the following events occurs:

An event occurs, such as service or endpoint is added to or removed from the cluster.

The time since the last sync exceeds the sync period defined for kube-proxy.

15.15.2. kube-proxy configuration parameters

You can modify the following kubeProxyConfig parameters.

NOTE

Because of performance improvements introduced in OpenShift Container Platform 4.3
and greater, adjusting the iptablesSyncPeriod parameter is no longer necessary.

Table 15.2. Parameters

$ oc adm pod-network make-projects-global <project1> <project2>

CHAPTER 15. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

261

Parameter Description Values Defaul
t

iptablesSyncPeriod The refresh period for
iptables rules.

A time interval, such as 30s or
2m. Valid suffixes include s,
m, and h and are described in
the Go time package
documentation.

30s

proxyArguments.iptables-
min-sync-period

The minimum duration before
refreshing iptables rules. This
parameter ensures that the
refresh does not happen too
frequently. By default, a
refresh starts as soon as a
change that affects iptables
rules occurs.

A time interval, such as 30s or
2m. Valid suffixes include s,
m, and h and are described in
the Go time package

0s

15.15.3. Modifying the kube-proxy configuration

You can modify the Kubernetes network proxy configuration for your cluster.

Prerequisites

Install the OpenShift CLI (oc).

Log in to a running cluster with the cluster-admin role.

Procedure

1. Edit the Network.operator.openshift.io custom resource (CR) by running the following
command:

2. Modify the kubeProxyConfig parameter in the CR with your changes to the kube-proxy
configuration, such as in the following example CR:

3. Save the file and exit the text editor.
The syntax is validated by the oc command when you save the file and exit the editor. If your
modifications contain a syntax error, the editor opens the file and displays an error message.

$ oc edit network.operator.openshift.io cluster

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 kubeProxyConfig:
 iptablesSyncPeriod: 30s
 proxyArguments:
 iptables-min-sync-period: ["30s"]

OpenShift Container Platform 4.9 Networking

262

https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration

4. Enter the following command to confirm the configuration update:

Example output

5. Optional: Enter the following command to confirm that the Cluster Network Operator accepted
the configuration change:

Example output

The AVAILABLE field is True when the configuration update is applied successfully.

$ oc get networks.operator.openshift.io -o yaml

apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
 kind: Network
 metadata:
 name: cluster
 spec:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 defaultNetwork:
 type: OpenShiftSDN
 kubeProxyConfig:
 iptablesSyncPeriod: 30s
 proxyArguments:
 iptables-min-sync-period:
 - 30s
 serviceNetwork:
 - 172.30.0.0/16
 status: {}
kind: List

$ oc get clusteroperator network

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
network 4.1.0-0.9 True False False 1m

CHAPTER 15. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

263

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK
PROVIDER

16.1. ABOUT THE OVN-KUBERNETES DEFAULT CONTAINER
NETWORK INTERFACE (CNI) NETWORK PROVIDER

The OpenShift Container Platform cluster uses a virtualized network for pod and service networks. The
OVN-Kubernetes Container Network Interface (CNI) plugin is a network provider for the default cluster
network. OVN-Kubernetes is based on Open Virtual Network (OVN) and provides an overlay-based
networking implementation. A cluster that uses the OVN-Kubernetes network provider also runs Open
vSwitch (OVS) on each node. OVN configures OVS on each node to implement the declared network
configuration.

16.1.1. OVN-Kubernetes features

The OVN-Kubernetes Container Network Interface (CNI) cluster network provider implements the
following features:

Uses OVN (Open Virtual Network) to manage network traffic flows. OVN is a community
developed, vendor-agnostic network virtualization solution.

Implements Kubernetes network policy support, including ingress and egress rules.

Uses the Geneve (Generic Network Virtualization Encapsulation) protocol rather than VXLAN
to create an overlay network between nodes.

16.1.2. Supported default CNI network provider feature matrix

OpenShift Container Platform offers two supported choices, OpenShift SDN and OVN-Kubernetes, for
the default Container Network Interface (CNI) network provider. The following table summarizes the
current feature support for both network providers:

Table 16.1. Default CNI network provider feature comparison

Feature OVN-Kubernetes OpenShift SDN

Egress IPs Supported Supported

Egress firewall [1] Supported Supported

Egress router Supported [2] Supported

IPsec encryption Supported Not supported

IPv6 Supported [3] Not supported

Kubernetes network policy Supported Partially supported [4]

Kubernetes network policy logs Supported Not supported

OpenShift Container Platform 4.9 Networking

264

Multicast Supported Supported

Feature OVN-Kubernetes OpenShift SDN

1. Egress firewall is also known as egress network policy in OpenShift SDN. This is not the same as
network policy egress.

2. Egress router for OVN-Kubernetes supports only redirect mode.

3. IPv6 is supported only on bare metal clusters.

4. Network policy for OpenShift SDN does not support egress rules and some ipBlock rules.

16.1.3. OVN-Kubernetes limitations

The OVN-Kubernetes Container Network Interface (CNI) cluster network provider has the following
limitations:

OVN-Kubernetes does not support setting the external traffic policy or internal traffic policy for
a Kubernetes service to local. The default value, cluster, is supported for both parameters. This
limitation can affect you when you add a service of type LoadBalancer, NodePort, or add a
service with an external IP.

The sessionAffinityConfig.clientIP.timeoutSeconds service has no effect in an OpenShift
OVN environment, but does in an OpenShift SDN environment. This incompatibility can make it
difficult for users to migrate from OpenShift SDN to OVN.

For clusters configured for dual-stack networking, both IPv4 and IPv6 traffic must use the
same network interface as the default gateway. If this requirement is not met, pods on the host
in the ovnkube-node daemon set enter the CrashLoopBackOff state. If you display a pod with
a command such as oc get pod -n openshift-ovn-kubernetes -l app=ovnkube-node -o yaml,
the status field contains more than one message about the default gateway, as shown in the
following output:

The only resolution is to reconfigure the host networking so that both IP families use the same
network interface for the default gateway.

For clusters configured for dual-stack networking, both the IPv4 and IPv6 routing tables must
contain the default gateway. If this requirement is not met, pods on the host in the ovnkube-
node daemon set enter the CrashLoopBackOff state. If you display a pod with a command
such as oc get pod -n openshift-ovn-kubernetes -l app=ovnkube-node -o yaml, the status
field contains more than one message about the default gateway, as shown in the following
output:

I1006 16:09:50.985852 60651 helper_linux.go:73] Found default gateway interface br-ex
192.168.127.1
I1006 16:09:50.985923 60651 helper_linux.go:73] Found default gateway interface ens4
fe80::5054:ff:febe:bcd4
F1006 16:09:50.985939 60651 ovnkube.go:130] multiple gateway interfaces detected: br-ex
ens4

I0512 19:07:17.589083 108432 helper_linux.go:74] Found default gateway interface br-ex
192.168.123.1
F0512 19:07:17.589141 108432 ovnkube.go:133] failed to get default gateway interface

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

265

The only resolution is to reconfigure the host networking so that both IP families contain the
default gateway.

Additional resources

Configuring an egress firewall for a project

About network policy

Logging network policy events

Enabling multicast for a project

IPsec encryption configuration

Network [operator.openshift.io/v1]

16.2. MIGRATING FROM THE OPENSHIFT SDN CLUSTER NETWORK
PROVIDER

As a cluster administrator, you can migrate to the OVN-Kubernetes Container Network Interface (CNI)
cluster network provider from the OpenShift SDN CNI cluster network provider.

To learn more about OVN-Kubernetes, read About the OVN-Kubernetes network provider .

16.2.1. Migration to the OVN-Kubernetes network provider

Migrating to the OVN-Kubernetes Container Network Interface (CNI) cluster network provider is a
manual process that includes some downtime during which your cluster is unreachable. Although a
rollback procedure is provided, the migration is intended to be a one-way process.

A migration to the OVN-Kubernetes cluster network provider is supported on the following platforms:

Bare metal hardware

Amazon Web Services (AWS)

Google Cloud Platform (GCP)

Microsoft Azure

Red Hat OpenStack Platform (RHOSP)

Red Hat Virtualization (RHV)

VMware vSphere

IMPORTANT

Migrating to or from the OVN-Kubernetes network plugin is not supported for managed
OpenShift cloud services such as OpenShift Dedicated and Red Hat OpenShift Service
on AWS (ROSA).

16.2.1.1. Considerations for migrating to the OVN-Kubernetes network provider

If you have more than 150 nodes in your OpenShift Container Platform cluster, then open a support case

OpenShift Container Platform 4.9 Networking

266

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-egress-firewall-ovn
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#about-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#logging-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-ovn-kubernetes-enabling-multicast
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#about-ipsec-ovn
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/api_reference/#network-operator-openshift-io-v1

If you have more than 150 nodes in your OpenShift Container Platform cluster, then open a support case
for consultation on your migration to the OVN-Kubernetes network plugin.

The subnets assigned to nodes and the IP addresses assigned to individual pods are not preserved
during the migration.

While the OVN-Kubernetes network provider implements many of the capabilities present in the
OpenShift SDN network provider, the configuration is not the same.

If your cluster uses any of the following OpenShift SDN capabilities, you must manually
configure the same capability in OVN-Kubernetes:

Namespace isolation

Egress IP addresses

Egress network policies

Egress router pods

Multicast

If your cluster uses any part of the 100.64.0.0/16 IP address range, you cannot migrate to OVN-
Kubernetes because it uses this IP address range internally.

The following sections highlight the differences in configuration between the aforementioned
capabilities in OVN-Kubernetes and OpenShift SDN.

Namespace isolation
OVN-Kubernetes supports only the network policy isolation mode.

IMPORTANT

If your cluster uses OpenShift SDN configured in either the multitenant or subnet
isolation modes, you cannot migrate to the OVN-Kubernetes network provider.

Egress IP addresses
The differences in configuring an egress IP address between OVN-Kubernetes and OpenShift SDN is
described in the following table:

Table 16.2. Differences in egress IP address configuration

OVN-Kubernetes OpenShift SDN

Create an EgressIPs object

Add an annotation on a Node object

Patch a NetNamespace object

Patch a HostSubnet object

For more information on using egress IP addresses in OVN-Kubernetes, see "Configuring an egress IP
address".

Egress network policies
The difference in configuring an egress network policy, also known as an egress firewall, between OVN-
Kubernetes and OpenShift SDN is described in the following table:

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

267

Table 16.3. Differences in egress network policy configuration

OVN-Kubernetes OpenShift SDN

Create an EgressFirewall object in a
namespace

Create an EgressNetworkPolicy object
in a namespace

For more information on using an egress firewall in OVN-Kubernetes, see "Configuring an egress firewall
for a project".

Egress router pods
OVN-Kubernetes supports egress router pods in redirect mode. OVN-Kubernetes does not support
egress router pods in HTTP proxy mode or DNS proxy mode.

When you deploy an egress router with the Cluster Network Operator, you cannot specify a node
selector to control which node is used to host the egress router pod.

Multicast
The difference between enabling multicast traffic on OVN-Kubernetes and OpenShift SDN is described
in the following table:

Table 16.4. Differences in multicast configuration

OVN-Kubernetes OpenShift SDN

Add an annotation on a Namespace
object

Add an annotation on a NetNamespace
object

For more information on using multicast in OVN-Kubernetes, see "Enabling multicast for a project".

Network policies
OVN-Kubernetes fully supports the Kubernetes NetworkPolicy API in the networking.k8s.io/v1 API
group. No changes are necessary in your network policies when migrating from OpenShift SDN.

16.2.1.2. How the migration process works

The following table summarizes the migration process by segmenting between the user-initiated steps
in the process and the actions that the migration performs in response.

Table 16.5. Migrating to OVN-Kubernetes from OpenShift SDN

User-initiated steps Migration activity

OpenShift Container Platform 4.9 Networking

268

Set the migration field of the
Network.operator.openshift.io custom resource
(CR) named cluster to OVNKubernetes. Make
sure the migration field is null before setting it to a
value.

Cluster Network Operator (CNO)
Updates the status of the
Network.config.openshift.io CR named
cluster accordingly.

Machine Config Operator (MCO)
Rolls out an update to the systemd configuration
necessary for OVN-Kubernetes; The MCO
updates a single machine per pool at a time by
default, causing the total time the migration takes
to increase with the size of the cluster.

Update the networkType field of the
Network.config.openshift.io CR. CNO

Performs the following actions:

Destroys the OpenShift SDN control
plane pods.

Deploys the OVN-Kubernetes control
plane pods.

Updates the Multus objects to reflect
the new cluster network provider.

Reboot each node in the cluster.
Cluster

As nodes reboot, the cluster assigns IP addresses
to pods on the OVN-Kubernetes cluster network.

User-initiated steps Migration activity

If a rollback to OpenShift SDN is required, the following table describes the process.

Table 16.6. Performing a rollback to OpenShift SDN

User-initiated steps Migration activity

Suspend the MCO to ensure that it does not
interrupt the migration.

The MCO stops.

Set the migration field of the
Network.operator.openshift.io custom resource
(CR) named cluster to OpenShiftSDN. Make sure
the migration field is null before setting it to a
value.

CNO
Updates the status of the
Network.config.openshift.io CR named
cluster accordingly.

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

269

Update the networkType field.
CNO

Performs the following actions:

Destroys the OVN-Kubernetes control
plane pods.

Deploys the OpenShift SDN control
plane pods.

Updates the Multus objects to reflect
the new cluster network provider.

Reboot each node in the cluster.
Cluster

As nodes reboot, the cluster assigns IP addresses
to pods on the OpenShift-SDN network.

Enable the MCO after all nodes in the cluster reboot.
MCO

Rolls out an update to the systemd configuration
necessary for OpenShift SDN; The MCO updates
a single machine per pool at a time by default, so
the total time the migration takes increases with
the size of the cluster.

User-initiated steps Migration activity

16.2.2. Migrating to the OVN-Kubernetes default CNI network provider

As a cluster administrator, you can change the default Container Network Interface (CNI) network
provider for your cluster to OVN-Kubernetes. During the migration, you must reboot every node in your
cluster.

IMPORTANT

While performing the migration, your cluster is unavailable and workloads might be
interrupted. Perform the migration only when an interruption in service is acceptable.

Prerequisites

A cluster configured with the OpenShift SDN CNI cluster network provider in the network policy
isolation mode.

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

A recent backup of the etcd database is available.

A reboot can be triggered manually for each node.

The cluster is in a known good state, without any errors.

OpenShift Container Platform 4.9 Networking

270

Procedure

1. To backup the configuration for the cluster network, enter the following command:

2. To prepare all the nodes for the migration, set the migration field on the Cluster Network
Operator configuration object by entering the following command:

NOTE

This step does not deploy OVN-Kubernetes immediately. Instead, specifying the
migration field triggers the Machine Config Operator (MCO) to apply new
machine configs to all the nodes in the cluster in preparation for the OVN-
Kubernetes deployment.

3. Optional: You can customize the following settings for OVN-Kubernetes to meet your network
infrastructure requirements:

Maximum transmission unit (MTU)

Geneve (Generic Network Virtualization Encapsulation) overlay network port

To customize either of the previously noted settings, enter and customize the following
command. If you do not need to change the default value, omit the key from the patch.

mtu

The MTU for the Geneve overlay network. This value is normally configured automatically,
but if the nodes in your cluster do not all use the same MTU, then you must set this explicitly
to 100 less than the smallest node MTU value.

port

The UDP port for the Geneve overlay network. If a value is not specified, the default is 6081.
The port cannot be the same as the VXLAN port that is used by OpenShift SDN. The default
value for the VXLAN port is 4789.

Example patch command to update mtu field

$ oc get Network.config.openshift.io cluster -o yaml > cluster-openshift-sdn.yaml

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "migration": {"networkType": "OVNKubernetes" } } }'

$ oc patch Network.operator.openshift.io cluster --type=merge \
 --patch '{
 "spec":{
 "defaultNetwork":{
 "ovnKubernetesConfig":{
 "mtu":<mtu>,
 "genevePort":<port>
 }}}}'

$ oc patch Network.operator.openshift.io cluster --type=merge \
 --patch '{
 "spec":{
 "defaultNetwork":{

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

271

4. As the MCO updates machines in each machine config pool, it reboots each node one by one.
You must wait until all the nodes are updated. Check the machine config pool status by entering
the following command:

A successfully updated node has the following status: UPDATED=true, UPDATING=false,
DEGRADED=false.

NOTE

By default, the MCO updates one machine per pool at a time, causing the total
time the migration takes to increase with the size of the cluster.

5. Confirm the status of the new machine configuration on the hosts:

a. To list the machine configuration state and the name of the applied machine configuration,
enter the following command:

Example output

Verify that the following statements are true:

The value of machineconfiguration.openshift.io/state field is Done.

The value of the machineconfiguration.openshift.io/currentConfig field is equal to
the value of the machineconfiguration.openshift.io/desiredConfig field.

b. To confirm that the machine config is correct, enter the following command:

where <config_name> is the name of the machine config from the
machineconfiguration.openshift.io/currentConfig field.

The machine config must include the following update to the systemd configuration:

c. If a node is stuck in the NotReady state, investigate the machine config daemon pod logs

 "ovnKubernetesConfig":{
 "mtu":1200
 }}}}'

$ oc get mcp

$ oc describe node | egrep "hostname|machineconfig"

kubernetes.io/hostname=master-0
machineconfiguration.openshift.io/currentConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/desiredConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/reason:
machineconfiguration.openshift.io/state: Done

$ oc get machineconfig <config_name> -o yaml | grep ExecStart

ExecStart=/usr/local/bin/configure-ovs.sh OVNKubernetes

OpenShift Container Platform 4.9 Networking

272

c. If a node is stuck in the NotReady state, investigate the machine config daemon pod logs
and resolve any errors.

i. To list the pods, enter the following command:

Example output

The names for the config daemon pods are in the following format: machine-config-
daemon-<seq>. The <seq> value is a random five character alphanumeric sequence.

ii. Display the pod log for the first machine config daemon pod shown in the previous
output by enter the following command:

where pod is the name of a machine config daemon pod.

iii. Resolve any errors in the logs shown by the output from the previous command.

6. To start the migration, configure the OVN-Kubernetes cluster network provider by using one of
the following commands:

To specify the network provider without changing the cluster network IP address block,
enter the following command:

To specify a different cluster network IP address block, enter the following command:

$ oc get pod -n openshift-machine-config-operator

NAME READY STATUS RESTARTS AGE
machine-config-controller-75f756f89d-sjp8b 1/1 Running 0 37m
machine-config-daemon-5cf4b 2/2 Running 0 43h
machine-config-daemon-7wzcd 2/2 Running 0 43h
machine-config-daemon-fc946 2/2 Running 0 43h
machine-config-daemon-g2v28 2/2 Running 0 43h
machine-config-daemon-gcl4f 2/2 Running 0 43h
machine-config-daemon-l5tnv 2/2 Running 0 43h
machine-config-operator-79d9c55d5-hth92 1/1 Running 0 37m
machine-config-server-bsc8h 1/1 Running 0 43h
machine-config-server-hklrm 1/1 Running 0 43h
machine-config-server-k9rtx 1/1 Running 0 43h

$ oc logs <pod> -n openshift-machine-config-operator

$ oc patch Network.config.openshift.io cluster \
 --type='merge' --patch '{ "spec": { "networkType": "OVNKubernetes" } }'

$ oc patch Network.config.openshift.io cluster \
 --type='merge' --patch '{
 "spec": {
 "clusterNetwork": [
 {
 "cidr": "<cidr>",
 "hostPrefix": <prefix>
 }
],

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

273

where cidr is a CIDR block and prefix is the slice of the CIDR block apportioned to each
node in your cluster. You cannot use any CIDR block that overlaps with the 100.64.0.0/16
CIDR block because the OVN-Kubernetes network provider uses this block internally.

IMPORTANT

You cannot change the service network address block during the migration.

7. Verify that the Multus daemon set rollout is complete before continuing with subsequent steps:

The name of the Multus pods is in the form of multus-<xxxxx> where <xxxxx> is a random
sequence of letters. It might take several moments for the pods to restart.

Example output

8. To complete the migration, reboot each node in your cluster. For example, you can use a bash
script similar to the following example. The script assumes that you can connect to each host by
using ssh and that you have configured sudo to not prompt for a password.

If ssh access is not available, you might be able to reboot each node through the management
portal for your infrastructure provider.

9. Confirm that the migration succeeded:

a. To confirm that the CNI cluster network provider is OVN-Kubernetes, enter the following
command. The value of status.networkType must be OVNKubernetes.

b. To confirm that the cluster nodes are in the Ready state, enter the following command:

c. To confirm that your pods are not in an error state, enter the following command:

 "networkType": "OVNKubernetes"
 }
 }'

$ oc -n openshift-multus rollout status daemonset/multus

Waiting for daemon set "multus" rollout to finish: 1 out of 6 new pods have been updated...
...
Waiting for daemon set "multus" rollout to finish: 5 of 6 updated pods are available...
daemon set "multus" successfully rolled out

#!/bin/bash

for ip in $(oc get nodes -o jsonpath='{.items[*].status.addresses[?
(@.type=="InternalIP")].address}')
do
 echo "reboot node $ip"
 ssh -o StrictHostKeyChecking=no core@$ip sudo shutdown -r -t 3
done

$ oc get network.config/cluster -o jsonpath='{.status.networkType}{"\n"}'

$ oc get nodes

OpenShift Container Platform 4.9 Networking

274

If pods on a node are in an error state, reboot that node.

d. To confirm that all of the cluster Operators are not in an abnormal state, enter the following
command:

The status of every cluster Operator must be the following: AVAILABLE="True",
PROGRESSING="False", DEGRADED="False". If a cluster Operator is not available or
degraded, check the logs for the cluster Operator for more information.

10. Complete the following steps only if the migration succeeds and your cluster is in a good state:

a. To remove the migration configuration from the CNO configuration object, enter the
following command:

b. To remove custom configuration for the OpenShift SDN network provider, enter the
following command:

c. To remove the OpenShift SDN network provider namespace, enter the following command:

16.2.3. Additional resources

Configuration parameters for the OVN-Kubernetes default CNI network provider

Backing up etcd

About network policy

OVN-Kubernetes capabilities

Configuring an egress IP address

Configuring an egress firewall for a project

Enabling multicast for a project

OpenShift SDN capabilities

Configuring egress IPs for a project

Configuring an egress firewall for a project

Enabling multicast for a project

$ oc get pods --all-namespaces -o wide --sort-by='{.spec.nodeName}'

$ oc get co

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "migration": null } }'

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "defaultNetwork": { "openshiftSDNConfig": null } } }'

$ oc delete namespace openshift-sdn

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

275

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-operator-configuration-parameters-for-ovn-sdn_cluster-network-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/backup_and_restore/#backup-etcd
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#about-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-egress-ips-ovn
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-egress-firewall-ovn
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-ovn-kubernetes-enabling-multicast
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#assigning-egress-ips
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-egress-firewall
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#enabling-multicast

Network [operator.openshift.io/v1]

16.3. ROLLING BACK TO THE OPENSHIFT SDN NETWORK PROVIDER

As a cluster administrator, you can rollback to the OpenShift SDN Container Network Interface (CNI)
cluster network provider from the OVN-Kubernetes CNI cluster network provider if the migration to
OVN-Kubernetes is unsuccessful.

16.3.1. Rolling back the default CNI network provider to OpenShift SDN

As a cluster administrator, you can rollback your cluster to the OpenShift SDN Container Network
Interface (CNI) cluster network provider. During the rollback, you must reboot every node in your
cluster.

IMPORTANT

Only rollback to OpenShift SDN if the migration to OVN-Kubernetes fails.

Prerequisites

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

A cluster installed on infrastructure configured with the OVN-Kubernetes CNI cluster network
provider.

Procedure

1. Stop all of the machine configuration pools managed by the Machine Config Operator (MCO):

Stop the master configuration pool:

Stop the worker machine configuration pool:

2. To start the migration, set the cluster network provider back to OpenShift SDN by entering the
following commands:

3. Optional: You can customize the following settings for OpenShift SDN to meet your network
infrastructure requirements:

Maximum transmission unit (MTU)

$ oc patch MachineConfigPool master --type='merge' --patch \
 '{ "spec": { "paused": true } }'

$ oc patch MachineConfigPool worker --type='merge' --patch \
 '{ "spec":{ "paused" :true } }'

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "migration": { "networkType": "OpenShiftSDN" } } }'

$ oc patch Network.config.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "networkType": "OpenShiftSDN" } }'

OpenShift Container Platform 4.9 Networking

276

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/api_reference/#network-operator-openshift-io-v1

VXLAN port

To customize either or both of the previously noted settings, customize and enter the following
command. If you do not need to change the default value, omit the key from the patch.

mtu

The MTU for the VXLAN overlay network. This value is normally configured automatically,
but if the nodes in your cluster do not all use the same MTU, then you must set this explicitly
to 50 less than the smallest node MTU value.

port

The UDP port for the VXLAN overlay network. If a value is not specified, the default is 4789.
The port cannot be the same as the Geneve port that is used by OVN-Kubernetes. The
default value for the Geneve port is 6081.

Example patch command

4. Wait until the Multus daemon set rollout completes.

The name of the Multus pods is in form of multus-<xxxxx> where <xxxxx> is a random
sequence of letters. It might take several moments for the pods to restart.

Example output

5. To complete the rollback, reboot each node in your cluster. For example, you could use a bash
script similar to the following. The script assumes that you can connect to each host by using
ssh and that you have configured sudo to not prompt for a password.

$ oc patch Network.operator.openshift.io cluster --type=merge \
 --patch '{
 "spec":{
 "defaultNetwork":{
 "openshiftSDNConfig":{
 "mtu":<mtu>,
 "vxlanPort":<port>
 }}}}'

$ oc patch Network.operator.openshift.io cluster --type=merge \
 --patch '{
 "spec":{
 "defaultNetwork":{
 "openshiftSDNConfig":{
 "mtu":1200
 }}}}'

$ oc -n openshift-multus rollout status daemonset/multus

Waiting for daemon set "multus" rollout to finish: 1 out of 6 new pods have been updated...
...
Waiting for daemon set "multus" rollout to finish: 5 of 6 updated pods are available...
daemon set "multus" successfully rolled out

#!/bin/bash

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

277

If ssh access is not available, you might be able to reboot each node through the management
portal for your infrastructure provider.

6. After the nodes in your cluster have rebooted, start all of the machine configuration pools:

Start the master configuration pool:

Start the worker configuration pool:

As the MCO updates machines in each config pool, it reboots each node.

By default the MCO updates a single machine per pool at a time, so the time that the migration
requires to complete grows with the size of the cluster.

7. Confirm the status of the new machine configuration on the hosts:

a. To list the machine configuration state and the name of the applied machine configuration,
enter the following command:

Example output

Verify that the following statements are true:

The value of machineconfiguration.openshift.io/state field is Done.

The value of the machineconfiguration.openshift.io/currentConfig field is equal to
the value of the machineconfiguration.openshift.io/desiredConfig field.

b. To confirm that the machine config is correct, enter the following command:

for ip in $(oc get nodes -o jsonpath='{.items[*].status.addresses[?
(@.type=="InternalIP")].address}')
do
 echo "reboot node $ip"
 ssh -o StrictHostKeyChecking=no core@$ip sudo shutdown -r -t 3
done

$ oc patch MachineConfigPool master --type='merge' --patch \
 '{ "spec": { "paused": false } }'

$ oc patch MachineConfigPool worker --type='merge' --patch \
 '{ "spec": { "paused": false } }'

$ oc describe node | egrep "hostname|machineconfig"

kubernetes.io/hostname=master-0
machineconfiguration.openshift.io/currentConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/desiredConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/reason:
machineconfiguration.openshift.io/state: Done

$ oc get machineconfig <config_name> -o yaml

OpenShift Container Platform 4.9 Networking

278

where <config_name> is the name of the machine config from the
machineconfiguration.openshift.io/currentConfig field.

8. Confirm that the migration succeeded:

a. To confirm that the default CNI network provider is OVN-Kubernetes, enter the following
command. The value of status.networkType must be OpenShiftSDN.

b. To confirm that the cluster nodes are in the Ready state, enter the following command:

c. If a node is stuck in the NotReady state, investigate the machine config daemon pod logs
and resolve any errors.

i. To list the pods, enter the following command:

Example output

The names for the config daemon pods are in the following format: machine-config-
daemon-<seq>. The <seq> value is a random five character alphanumeric sequence.

ii. To display the pod log for each machine config daemon pod shown in the previous
output, enter the following command:

where pod is the name of a machine config daemon pod.

iii. Resolve any errors in the logs shown by the output from the previous command.

d. To confirm that your pods are not in an error state, enter the following command:

If pods on a node are in an error state, reboot that node.

$ oc get network.config/cluster -o jsonpath='{.status.networkType}{"\n"}'

$ oc get nodes

$ oc get pod -n openshift-machine-config-operator

NAME READY STATUS RESTARTS AGE
machine-config-controller-75f756f89d-sjp8b 1/1 Running 0 37m
machine-config-daemon-5cf4b 2/2 Running 0 43h
machine-config-daemon-7wzcd 2/2 Running 0 43h
machine-config-daemon-fc946 2/2 Running 0 43h
machine-config-daemon-g2v28 2/2 Running 0 43h
machine-config-daemon-gcl4f 2/2 Running 0 43h
machine-config-daemon-l5tnv 2/2 Running 0 43h
machine-config-operator-79d9c55d5-hth92 1/1 Running 0 37m
machine-config-server-bsc8h 1/1 Running 0 43h
machine-config-server-hklrm 1/1 Running 0 43h
machine-config-server-k9rtx 1/1 Running 0 43h

$ oc logs <pod> -n openshift-machine-config-operator

$ oc get pods --all-namespaces -o wide --sort-by='{.spec.nodeName}'

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

279

9. Complete the following steps only if the migration succeeds and your cluster is in a good state:

a. To remove the migration configuration from the Cluster Network Operator configuration
object, enter the following command:

b. To remove the OVN-Kubernetes configuration, enter the following command:

c. To remove the OVN-Kubernetes network provider namespace, enter the following
command:

16.4. CONVERTING TO IPV4/IPV6 DUAL-STACK NETWORKING

As a cluster administrator, you can convert your IPv4 single-stack cluster to a dual-network cluster
network that supports IPv4 and IPv6 address families. After converting to dual-stack, all newly created
pods are dual-stack enabled.

NOTE

A dual-stack network is supported on clusters provisioned on bare metal, IBM Power
infrastructure, and single node OpenShift clusters.

16.4.1. Converting to a dual-stack cluster network

As a cluster administrator, you can convert your single-stack cluster network to a dual-stack cluster
network.

NOTE

After converting to dual-stack networking only newly created pods are assigned IPv6
addresses. Any pods created before the conversion must be recreated to receive an IPv6
address.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

Your cluster uses the OVN-Kubernetes cluster network provider.

The cluster nodes have IPv6 addresses.

Procedure

1. To specify IPv6 address blocks for the cluster and service networks, create a file containing the

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "migration": null } }'

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "defaultNetwork": { "ovnKubernetesConfig":null } } }'

$ oc delete namespace openshift-ovn-kubernetes

OpenShift Container Platform 4.9 Networking

280

1

2

1. To specify IPv6 address blocks for the cluster and service networks, create a file containing the
following YAML:

Specify an object with the cidr and hostPrefix fields. The host prefix must be 64 or
greater. The IPv6 CIDR prefix must be large enough to accommodate the specified host
prefix.

Specify an IPv6 CIDR with a prefix of 112. Kubernetes uses only the lowest 16 bits. For a
prefix of 112, IP addresses are assigned from 112 to 128 bits.

2. To patch the cluster network configuration, enter the following command:

where:

file

Specifies the name of the file you created in the previous step.

Example output

Verification

Complete the following step to verify that the cluster network recognizes the IPv6 address blocks that
you specified in the previous procedure.

1. Display the network configuration:

Example output

- op: add
 path: /spec/clusterNetwork/-
 value: 1
 cidr: fd01::/48
 hostPrefix: 64
- op: add
 path: /spec/serviceNetwork/-
 value: fd02::/112 2

$ oc patch network.config.openshift.io cluster \
 --type='json' --patch-file <file>.yaml

network.config.openshift.io/cluster patched

$ oc describe network

Status:
 Cluster Network:
 Cidr: 10.128.0.0/14
 Host Prefix: 23
 Cidr: fd01::/48
 Host Prefix: 64
 Cluster Network MTU: 1400
 Network Type: OVNKubernetes

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

281

16.5. IPSEC ENCRYPTION CONFIGURATION

With IPsec enabled, all network traffic between nodes on the OVN-Kubernetes Container Network
Interface (CNI) cluster network travels through an encrypted tunnel.

IPsec is disabled by default.

NOTE

IPsec encryption can be enabled only during cluster installation and cannot be disabled
after it is enabled. For installation documentation, refer to Selecting a cluster installation
method and preparing it for users.

16.5.1. Types of network traffic flows encrypted by IPsec

With IPsec enabled, only the following network traffic flows between pods are encrypted:

Traffic between pods on different nodes on the cluster network

Traffic from a pod on the host network to a pod on the cluster network

The following traffic flows are not encrypted:

Traffic between pods on the same node on the cluster network

Traffic between pods on the host network

Traffic from a pod on the cluster network to a pod on the host network

The encrypted and unencrypted flows are illustrated in the following diagram:

 Service Network:
 172.30.0.0/16
 fd02::/112

OpenShift Container Platform 4.9 Networking

282

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installing-preparing

16.5.1.1. Network connectivity requirements when IPsec is enabled

You must configure the network connectivity between machines to allow OpenShift Container Platform
cluster components to communicate. Each machine must be able to resolve the hostnames of all other
machines in the cluster.

Table 16.7. Ports used for all-machine to all-machine communications

Protocol Port Description

UDP 500 IPsec IKE packets

4500 IPsec NAT-T packets

ESP N/A IPsec Encapsulating Security Payload (ESP)

16.5.2. Encryption protocol and IPsec mode

The encrypt cipher used is AES-GCM-16-256. The integrity check value (ICV) is 16 bytes. The key length
is 256 bits.

The IPsec mode used is Transport mode, a mode that encrypts end-to-end communication by adding an
Encapsulated Security Payload (ESP) header to the IP header of the original packet and encrypts the
packet data. OpenShift Container Platform does not currently use or support IPsec Tunnel mode for
pod-to-pod communication.

16.5.3. Security certificate generation and rotation

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

283

The Cluster Network Operator (CNO) generates a self-signed X.509 certificate authority (CA) that is
used by IPsec for encryption. Certificate signing requests (CSRs) from each node are automatically
fulfilled by the CNO.

The CA is valid for 10 years. The individual node certificates are valid for 5 years and are automatically
rotated after 4 1/2 years elapse.

16.6. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can create an egress firewall for a project that restricts egress traffic
leaving your OpenShift Container Platform cluster.

16.6.1. How an egress firewall works in a project

As a cluster administrator, you can use an egress firewall to limit the external hosts that some or all pods
can access from within the cluster. An egress firewall supports the following scenarios:

A pod can only connect to internal hosts and cannot initiate connections to the public internet.

A pod can only connect to the public internet and cannot initiate connections to internal hosts
that are outside the OpenShift Container Platform cluster.

A pod cannot reach specified internal subnets or hosts outside the OpenShift Container
Platform cluster.

A pod can connect to only specific external hosts.

For example, you can allow one project access to a specified IP range but deny the same access to a
different project. Or you can restrict application developers from updating from Python pip mirrors, and
force updates to come only from approved sources.

NOTE

Egress firewall does not apply to the host network namespace. Pods with host networking
enabled are unaffected by egress firewall rules.

You configure an egress firewall policy by creating an EgressFirewall custom resource (CR) object. The
egress firewall matches network traffic that meets any of the following criteria:

An IP address range in CIDR format

A DNS name that resolves to an IP address

A port number

A protocol that is one of the following protocols: TCP, UDP, and SCTP

IMPORTANT

OpenShift Container Platform 4.9 Networking

284

1
2
3

IMPORTANT

If your egress firewall includes a deny rule for 0.0.0.0/0, access to your OpenShift
Container Platform API servers is blocked. To ensure that pods can continue to access
the OpenShift Container Platform API servers, you must include the IP address range
that the API servers listen on in your egress firewall rules, as in the following example:

The namespace for the egress firewall.
The IP address range that includes your OpenShift Container Platform API servers.
A global deny rule prevents access to the OpenShift Container Platform API servers.

To find the IP address for your API servers, run oc get ep kubernetes -n default.

For more information, see BZ#1988324.

WARNING

Egress firewall rules do not apply to traffic that goes through routers. Any user with
permission to create a Route CR object can bypass egress firewall policy rules by
creating a route that points to a forbidden destination.

16.6.1.1. Limitations of an egress firewall

An egress firewall has the following limitations:

No project can have more than one EgressFirewall object.

A maximum of one EgressFirewall object with a maximum of 8,000 rules can be defined per
project.

If you are using the OVN-Kubernetes network plugin with shared gateway mode in Red Hat
OpenShift Networking, return ingress replies are affected by egress firewall rules. If the egress
firewall rules drop the ingress reply destination IP, the traffic is dropped.

Violating any of these restrictions results in a broken egress firewall for the project, and might cause all

apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:
 name: default
 namespace: <namespace> 1
spec:
 egress:
 - to:
 cidrSelector: <api_server_address_range> 2
 type: Allow
...
 - to:
 cidrSelector: 0.0.0.0/0 3
 type: Deny



CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

285

https://bugzilla.redhat.com/show_bug.cgi?id=1988324

Violating any of these restrictions results in a broken egress firewall for the project, and might cause all
external network traffic to be dropped.

An Egress Firewall resource can be created in the kube-node-lease, kube-public, kube-system,
openshift and openshift- projects.

16.6.1.2. Matching order for egress firewall policy rules

The egress firewall policy rules are evaluated in the order that they are defined, from first to last. The
first rule that matches an egress connection from a pod applies. Any subsequent rules are ignored for
that connection.

16.6.1.3. How Domain Name Server (DNS) resolution works

If you use DNS names in any of your egress firewall policy rules, proper resolution of the domain names
is subject to the following restrictions:

Domain name updates are polled based on a time-to-live (TTL) duration. By default, the
duration is 30 minutes. When the egress firewall controller queries the local name servers for a
domain name, if the response includes a TTL and the TTL is less than 30 minutes, the controller
sets the duration for that DNS name to the returned value. Each DNS name is queried after the
TTL for the DNS record expires.

The pod must resolve the domain from the same local name servers when necessary. Otherwise
the IP addresses for the domain known by the egress firewall controller and the pod can be
different. If the IP addresses for a hostname differ, the egress firewall might not be enforced
consistently.

Because the egress firewall controller and pods asynchronously poll the same local name server,
the pod might obtain the updated IP address before the egress controller does, which causes a
race condition. Due to this current limitation, domain name usage in EgressFirewall objects is
only recommended for domains with infrequent IP address changes.

NOTE

The egress firewall always allows pods access to the external interface of the node that
the pod is on for DNS resolution.

If you use domain names in your egress firewall policy and your DNS resolution is not
handled by a DNS server on the local node, then you must add egress firewall rules that
allow access to your DNS server’s IP addresses. if you are using domain names in your
pods.

16.6.2. EgressFirewall custom resource (CR) object

You can define one or more rules for an egress firewall. A rule is either an Allow rule or a Deny rule, with
a specification for the traffic that the rule applies to.

The following YAML describes an EgressFirewall CR object:

EgressFirewall object

apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:

OpenShift Container Platform 4.9 Networking

286

1

2

1

2

3

4

5

1

2

The name for the object must be default.

A collection of one or more egress network policy rules as described in the following section.

16.6.2.1. EgressFirewall rules

The following YAML describes an egress firewall rule object. The egress stanza expects an array of one
or more objects.

Egress policy rule stanza

The type of rule. The value must be either Allow or Deny.

A stanza describing an egress traffic match rule that specifies the cidrSelector field or the
dnsName field. You cannot use both fields in the same rule.

An IP address range in CIDR format.

A DNS domain name.

Optional: A stanza describing a collection of network ports and protocols for the rule.

Ports stanza

A network port, such as 80 or 443. If you specify a value for this field, you must also specify a value
for protocol.

A network protocol. The value must be either TCP, UDP, or SCTP.

16.6.2.2. Example EgressFirewall CR objects

The following example defines several egress firewall policy rules:

 name: <name> 1
spec:
 egress: 2
 ...

egress:
- type: <type> 1
 to: 2
 cidrSelector: <cidr> 3
 dnsName: <dns_name> 4
 ports: 5
 ...

ports:
- port: <port> 1
 protocol: <protocol> 2

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

287

1 A collection of egress firewall policy rule objects.

The following example defines a policy rule that denies traffic to the host at the 172.16.1.1 IP address, if
the traffic is using either the TCP protocol and destination port 80 or any protocol and destination port
443.

16.6.3. Creating an egress firewall policy object

As a cluster administrator, you can create an egress firewall policy object for a project.

IMPORTANT

If the project already has an EgressFirewall object defined, you must edit the existing
policy to make changes to the egress firewall rules.

Prerequisites

A cluster that uses the OVN-Kubernetes default Container Network Interface (CNI) network
provider plugin.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:
 name: default
spec:
 egress: 1
 - type: Allow
 to:
 cidrSelector: 1.2.3.0/24
 - type: Deny
 to:
 cidrSelector: 0.0.0.0/0

apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:
 name: default
spec:
 egress:
 - type: Deny
 to:
 cidrSelector: 172.16.1.1
 ports:
 - port: 80
 protocol: TCP
 - port: 443

OpenShift Container Platform 4.9 Networking

288

1. Create a policy rule:

a. Create a <policy_name>.yaml file where <policy_name> describes the egress policy rules.

b. In the file you created, define an egress policy object.

2. Enter the following command to create the policy object. Replace <policy_name> with the
name of the policy and <project> with the project that the rule applies to.

In the following example, a new EgressFirewall object is created in a project named project1:

Example output

3. Optional: Save the <policy_name>.yaml file so that you can make changes later.

16.7. VIEWING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can list the names of any existing egress firewalls and view the traffic
rules for a specific egress firewall.

16.7.1. Viewing an EgressFirewall object

You can view an EgressFirewall object in your cluster.

Prerequisites

A cluster using the OVN-Kubernetes default Container Network Interface (CNI) network
provider plugin.

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

You must log in to the cluster.

Procedure

1. Optional: To view the names of the EgressFirewall objects defined in your cluster, enter the
following command:

2. To inspect a policy, enter the following command. Replace <policy_name> with the name of
the policy to inspect.

Example output

$ oc create -f <policy_name>.yaml -n <project>

$ oc create -f default.yaml -n project1

egressfirewall.k8s.ovn.org/v1 created

$ oc get egressfirewall --all-namespaces

$ oc describe egressfirewall <policy_name>

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

289

16.8. EDITING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can modify network traffic rules for an existing egress firewall.

16.8.1. Editing an EgressFirewall object

As a cluster administrator, you can update the egress firewall for a project.

Prerequisites

A cluster using the OVN-Kubernetes default Container Network Interface (CNI) network
provider plugin.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

1. Find the name of the EgressFirewall object for the project. Replace <project> with the name of
the project.

2. Optional: If you did not save a copy of the EgressFirewall object when you created the egress
network firewall, enter the following command to create a copy.

Replace <project> with the name of the project. Replace <name> with the name of the object.
Replace <filename> with the name of the file to save the YAML to.

3. After making changes to the policy rules, enter the following command to replace the
EgressFirewall object. Replace <filename> with the name of the file containing the updated
EgressFirewall object.

16.9. REMOVING AN EGRESS FIREWALL FROM A PROJECT

As a cluster administrator, you can remove an egress firewall from a project to remove all restrictions on
network traffic from the project that leaves the OpenShift Container Platform cluster.

Name: default
Namespace: project1
Created: 20 minutes ago
Labels: <none>
Annotations: <none>
Rule: Allow to 1.2.3.0/24
Rule: Allow to www.example.com
Rule: Deny to 0.0.0.0/0

$ oc get -n <project> egressfirewall

$ oc get -n <project> egressfirewall <name> -o yaml > <filename>.yaml

$ oc replace -f <filename>.yaml

OpenShift Container Platform 4.9 Networking

290

16.9.1. Removing an EgressFirewall object

As a cluster administrator, you can remove an egress firewall from a project.

Prerequisites

A cluster using the OVN-Kubernetes default Container Network Interface (CNI) network
provider plugin.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

1. Find the name of the EgressFirewall object for the project. Replace <project> with the name of
the project.

2. Enter the following command to delete the EgressFirewall object. Replace <project> with the
name of the project and <name> with the name of the object.

16.10. CONFIGURING AN EGRESS IP ADDRESS

As a cluster administrator, you can configure the OVN-Kubernetes default Container Network Interface
(CNI) network provider to assign one or more egress IP addresses to a namespace, or to specific pods in
a namespace.

16.10.1. Egress IP address architectural design and implementation

The OpenShift Container Platform egress IP address functionality allows you to ensure that the traffic
from one or more pods in one or more namespaces has a consistent source IP address for services
outside the cluster network.

For example, you might have a pod that periodically queries a database that is hosted on a server
outside of your cluster. To enforce access requirements for the server, a packet filtering device is
configured to allow traffic only from specific IP addresses. To ensure that you can reliably allow access
to the server from only that specific pod, you can configure a specific egress IP address for the pod that
makes the requests to the server.

An egress IP address is implemented as an additional IP address on the primary network interface of a
node and must be in the same subnet as the primary IP address of the node. The additional IP address
must not be assigned to any other node in the cluster.

In some cluster configurations, application pods and ingress router pods run on the same node. If you
configure an egress IP address for an application project in this scenario, the IP address is not used when
you send a request to a route from the application project.

16.10.1.1. Platform support

Support for the egress IP address functionality on various platforms is summarized in the following

$ oc get -n <project> egressfirewall

$ oc delete -n <project> egressfirewall <name>

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

291

Support for the egress IP address functionality on various platforms is summarized in the following
table:

IMPORTANT

The egress IP address implementation is not compatible with Amazon Web Services
(AWS), Azure Cloud, or any other public cloud platform incompatible with the automatic
layer 2 network manipulation required by the egress IP feature.

Platform Supported

Bare metal Yes

vSphere Yes

Red Hat OpenStack Platform (RHOSP) No

Public cloud No

16.10.1.2. Assignment of egress IPs to pods

To assign one or more egress IPs to a namespace or specific pods in a namespace, the following
conditions must be satisfied:

At least one node in your cluster must have the k8s.ovn.org/egress-assignable: "" label.

An EgressIP object exists that defines one or more egress IP addresses to use as the source IP
address for traffic leaving the cluster from pods in a namespace.

IMPORTANT

If you create EgressIP objects prior to labeling any nodes in your cluster for egress IP
assignment, OpenShift Container Platform might assign every egress IP address to the
first node with the k8s.ovn.org/egress-assignable: "" label.

To ensure that egress IP addresses are widely distributed across nodes in the cluster,
always apply the label to the nodes you intent to host the egress IP addresses before
creating any EgressIP objects.

16.10.1.3. Assignment of egress IPs to nodes

When creating an EgressIP object, the following conditions apply to nodes that are labeled with the
k8s.ovn.org/egress-assignable: "" label:

An egress IP address is never assigned to more than one node at a time.

An egress IP address is equally balanced between available nodes that can host the egress IP
address.

If the spec.EgressIPs array in an EgressIP object specifies more than one IP address, the
following conditions apply:

OpenShift Container Platform 4.9 Networking

292

No node will ever host more than one of the specified IP addresses.

Traffic is balanced roughly equally between the specified IP addresses for a given
namespace.

If a node becomes unavailable, any egress IP addresses assigned to it are automatically
reassigned, subject to the previously described conditions.

When a pod matches the selector for multiple EgressIP objects, there is no guarantee which of the
egress IP addresses that are specified in the EgressIP objects is assigned as the egress IP address for
the pod.

Additionally, if an EgressIP object specifies multiple egress IP addresses, there is no guarantee which of
the egress IP addresses might be used. For example, if a pod matches a selector for an EgressIP object
with two egress IP addresses, 10.10.20.1 and 10.10.20.2, either might be used for each TCP connection
or UDP conversation.

16.10.1.4. Architectural diagram of an egress IP address configuration

The following diagram depicts an egress IP address configuration. The diagram describes four pods in
two different namespaces running on three nodes in a cluster. The nodes are assigned IP addresses
from the 192.168.126.0/18 CIDR block on the host network.

Node 1

meta:
name: node1
labels:
k8s.ovn.org/egress-assignable: ""

Both Node 1 and Node 3 are labeled with k8s.ovn.org/egress-assignable: "" and thus available for the
assignment of egress IP addresses.

The dashed lines in the diagram depict the traffic flow from pod1, pod2, and pod3 traveling through the
pod network to egress the cluster from Node 1 and Node 3. When an external service receives traffic
from any of the pods selected by the example EgressIP object, the source IP address is either
192.168.126.10 or 192.168.126.102. The traffic is balanced roughly equally between these two nodes.

The following resources from the diagram are illustrated in detail:

Namespace objects

The namespaces are defined in the following manifest:

Namespace objects

apiVersion: v1
kind: Namespace
metadata:
 name: namespace1
 labels:
 env: prod

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

293

EgressIP object

The following EgressIP object describes a configuration that selects all pods in any namespace with
the env label set to prod. The egress IP addresses for the selected pods are 192.168.126.10 and
192.168.126.102.

EgressIP object

For the configuration in the previous example, OpenShift Container Platform assigns both egress IP
addresses to the available nodes. The status field reflects whether and where the egress IP
addresses are assigned.

16.10.2. EgressIP object

The following YAML describes the API for the EgressIP object. The scope of the object is cluster-wide;
it is not created in a namespace.

apiVersion: v1
kind: Namespace
metadata:
 name: namespace2
 labels:
 env: prod

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: egressips-prod
spec:
 egressIPs:
 - 192.168.126.10
 - 192.168.126.102
 namespaceSelector:
 matchLabels:
 env: prod
status:
 items:
 - node: node1
 egressIP: 192.168.126.10
 - node: node3
 egressIP: 192.168.126.102

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: <name> 1
spec:
 egressIPs: 2
 - <ip_address>
 namespaceSelector: 3

OpenShift Container Platform 4.9 Networking

294

1

2

3

4

1

1

The name for the EgressIPs object.

An array of one or more IP addresses.

One or more selectors for the namespaces to associate the egress IP addresses with.

Optional: One or more selectors for pods in the specified namespaces to associate egress IP
addresses with. Applying these selectors allows for the selection of a subset of pods within a
namespace.

The following YAML describes the stanza for the namespace selector:

Namespace selector stanza

One or more matching rules for namespaces. If more than one match rule is provided, all matching
namespaces are selected.

The following YAML describes the optional stanza for the pod selector:

Pod selector stanza

Optional: One or more matching rules for pods in the namespaces that match the specified
namespaceSelector rules. If specified, only pods that match are selected. Others pods in the
namespace are not selected.

In the following example, the EgressIP object associates the 192.168.126.11 and 192.168.126.102
egress IP addresses with pods that have the app label set to web and are in the namespaces that have
the env label set to prod:

Example EgressIP object

 ...
 podSelector: 4
 ...

namespaceSelector: 1
 matchLabels:
 <label_name>: <label_value>

podSelector: 1
 matchLabels:
 <label_name>: <label_value>

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: egress-group1
spec:
 egressIPs:
 - 192.168.126.11
 - 192.168.126.102
 podSelector:

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

295

1

In the following example, the EgressIP object associates the 192.168.127.30 and 192.168.127.40
egress IP addresses with any pods that do not have the environment label set to development:

Example EgressIP object

16.10.3. Labeling a node to host egress IP addresses

You can apply the k8s.ovn.org/egress-assignable="" label to a node in your cluster so that OpenShift
Container Platform can assign one or more egress IP addresses to the node.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster as a cluster administrator.

Procedure

To label a node so that it can host one or more egress IP addresses, enter the following
command:

The name of the node to label.

TIP

 matchLabels:
 app: web
 namespaceSelector:
 matchLabels:
 env: prod

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: egress-group2
spec:
 egressIPs:
 - 192.168.127.30
 - 192.168.127.40
 namespaceSelector:
 matchExpressions:
 - key: environment
 operator: NotIn
 values:
 - development

$ oc label nodes <node_name> k8s.ovn.org/egress-assignable="" 1

OpenShift Container Platform 4.9 Networking

296

TIP

You can alternatively apply the following YAML to add the label to a node:

16.10.4. Next steps

Assigning egress IPs

16.10.5. Additional resources

LabelSelector meta/v1

LabelSelectorRequirement meta/v1

16.11. ASSIGNING AN EGRESS IP ADDRESS

As a cluster administrator, you can assign an egress IP address for traffic leaving the cluster from a
namespace or from specific pods in a namespace.

16.11.1. Assigning an egress IP address to a namespace

You can assign one or more egress IP addresses to a namespace or to specific pods in a namespace.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster as a cluster administrator.

Configure at least one node to host an egress IP address.

Procedure

1. Create an EgressIP object:

a. Create a <egressips_name>.yaml file where <egressips_name> is the name of the
object.

b. In the file that you created, define an EgressIP object, as in the following example:

apiVersion: v1
kind: Node
metadata:
 labels:
 k8s.ovn.org/egress-assignable: ""
 name: <node_name>

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: egress-project1
spec:
 egressIPs:
 - 192.168.127.10

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

297

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#assigning-egress-ips-ovn
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/api_reference/#labelselector-meta-v1
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/api_reference/#labelselectorrequirement-meta-v1

1

1

2. To create the object, enter the following command.

Replace <egressips_name> with the name of the object.

Example output

3. Optional: Save the <egressips_name>.yaml file so that you can make changes later.

4. Add labels to the namespace that requires egress IP addresses. To add a label to the
namespace of an EgressIP object defined in step 1, run the following command:

Replace <namespace> with the namespace that requires egress IP addresses.

16.11.2. Additional resources

Configuring egress IP addresses

16.12. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD

16.12.1. About an egress router pod

The OpenShift Container Platform egress router pod redirects traffic to a specified remote server from
a private source IP address that is not used for any other purpose. An egress router pod can send
network traffic to servers that are set up to allow access only from specific IP addresses.

NOTE

The egress router pod is not intended for every outgoing connection. Creating large
numbers of egress router pods can exceed the limits of your network hardware. For
example, creating an egress router pod for every project or application could exceed the
number of local MAC addresses that the network interface can handle before reverting to
filtering MAC addresses in software.

IMPORTANT

The egress router image is not compatible with Amazon AWS, Azure Cloud, or any other
cloud platform that does not support layer 2 manipulations due to their incompatibility
with macvlan traffic.

 - 192.168.127.11
 namespaceSelector:
 matchLabels:
 env: qa

$ oc apply -f <egressips_name>.yaml 1

egressips.k8s.ovn.org/<egressips_name> created

$ oc label ns <namespace> env=qa 1

OpenShift Container Platform 4.9 Networking

298

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-egress-ips-ovn

16.12.1.1. Egress router modes

In redirect mode , an egress router pod configures iptables rules to redirect traffic from its own IP
address to one or more destination IP addresses. Client pods that need to use the reserved source IP
address must be modified to connect to the egress router rather than connecting directly to the
destination IP.

NOTE

The egress router CNI plugin supports redirect mode only. This is a difference with the
egress router implementation that you can deploy with OpenShift SDN. Unlike the egress
router for OpenShift SDN, the egress router CNI plugin does not support HTTP proxy
mode or DNS proxy mode.

16.12.1.2. Egress router pod implementation

The egress router implementation uses the egress router Container Network Interface (CNI) plugin. The
plugin adds a secondary network interface to a pod.

An egress router is a pod that has two network interfaces. For example, the pod can have eth0 and net1
network interfaces. The eth0 interface is on the cluster network and the pod continues to use the
interface for ordinary cluster-related network traffic. The net1 interface is on a secondary network and
has an IP address and gateway for that network. Other pods in the OpenShift Container Platform
cluster can access the egress router service and the service enables the pods to access external
services. The egress router acts as a bridge between pods and an external system.

Traffic that leaves the egress router exits through a node, but the packets have the MAC address of the
net1 interface from the egress router pod.

When you add an egress router custom resource, the Cluster Network Operator creates the following
objects:

The network attachment definition for the net1 secondary network interface of the pod.

A deployment for the egress router.

If you delete an egress router custom resource, the Operator deletes the two objects in the preceding
list that are associated with the egress router.

16.12.1.3. Deployment considerations

An egress router pod adds an additional IP address and MAC address to the primary network interface
of the node. As a result, you might need to configure your hypervisor or cloud provider to allow the
additional address.

Red Hat OpenStack Platform (RHOSP)

If you deploy OpenShift Container Platform on RHOSP, you must allow traffic from the IP and MAC
addresses of the egress router pod on your OpenStack environment. If you do not allow the traffic,
then communication will fail :

Red Hat Virtualization (RHV)

If you are using RHV, you must select No Network Filter for the Virtual network interface controller

$ openstack port set --allowed-address \
 ip_address=<ip_address>,mac_address=<mac_address> <neutron_port_uuid>

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

299

https://access.redhat.com/solutions/2803331

If you are using RHV, you must select No Network Filter for the Virtual network interface controller
(vNIC).

VMware vSphere

If you are using VMware vSphere, see the VMware documentation for securing vSphere standard
switches. View and change VMware vSphere default settings by selecting the host virtual switch from
the vSphere Web Client.

Specifically, ensure that the following are enabled:

MAC Address Changes

Forged Transits

Promiscuous Mode Operation

16.12.1.4. Failover configuration

To avoid downtime, the Cluster Network Operator deploys the egress router pod as a deployment
resource. The deployment name is egress-router-cni-deployment. The pod that corresponds to the
deployment has a label of app=egress-router-cni.

To create a new service for the deployment, use the oc expose deployment/egress-router-cni-
deployment --port <port_number> command or create a file like the following example:

16.12.2. Additional resources

Deploying an egress router in redirection mode

16.13. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE

As a cluster administrator, you can deploy an egress router pod to redirect traffic to specified
destination IP addresses from a reserved source IP address.

The egress router implementation uses the egress router Container Network Interface (CNI) plugin.

apiVersion: v1
kind: Service
metadata:
 name: app-egress
spec:
 ports:
 - name: tcp-8080
 protocol: TCP
 port: 8080
 - name: tcp-8443
 protocol: TCP
 port: 8443
 - name: udp-80
 protocol: UDP
 port: 80
 type: ClusterIP
 selector:
 app: egress-router-cni

OpenShift Container Platform 4.9 Networking

300

https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/administration_guide/chap-logical_networks#Explanation_of_Settings_in_the_VM_Interface_Profile_Window
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-3507432E-AFEA-4B6B-B404-17A020575358.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-942BD3AA-731B-4A05-8196-66F2B4BF1ACB.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-7DC6486F-5400-44DF-8A62-6273798A2F80.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-92F3AB1F-B4C5-4F25-A010-8820D7250350.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#deploying-egress-router-ovn-redirection

16.13.1. Egress router custom resource

Define the configuration for an egress router pod in an egress router custom resource. The following
YAML describes the fields for the configuration of an egress router in redirect mode:

<.> Optional: The namespace field specifies the namespace to create the egress router in. If you do not
specify a value in the file or on the command line, the default namespace is used.

<.> The addresses field specifies the IP addresses to configure on the secondary network interface.

<.> The ip field specifies the reserved source IP address and netmask from the physical network that the
node is on to use with egress router pod. Use CIDR notation to specify the IP address and netmask.

<.> The gateway field specifies the IP address of the network gateway.

<.> Optional: The redirectRules field specifies a combination of egress destination IP address, egress
router port, and protocol. Incoming connections to the egress router on the specified port and protocol
are routed to the destination IP address.

<.> Optional: The targetPort field specifies the network port on the destination IP address. If this field is
not specified, traffic is routed to the same network port that it arrived on.

<.> The protocol field supports TCP, UDP, or SCTP.

<.> Optional: The fallbackIP field specifies a destination IP address. If you do not specify any redirect
rules, the egress router sends all traffic to this fallback IP address. If you specify redirect rules, any
connections to network ports that are not defined in the rules are sent by the egress router to this
fallback IP address. If you do not specify this field, the egress router rejects connections to network ports
that are not defined in the rules.

apiVersion: network.operator.openshift.io/v1
kind: EgressRouter
metadata:
 name: <egress_router_name>
 namespace: <namespace> <.>
spec:
 addresses: [<.>
 {
 ip: "<egress_router>", <.>
 gateway: "<egress_gateway>" <.>
 }
]
 mode: Redirect
 redirect: {
 redirectRules: [<.>
 {
 destinationIP: "<egress_destination>",
 port: <egress_router_port>,
 targetPort: <target_port>, <.>
 protocol: <network_protocol> <.>
 },
 ...
],
 fallbackIP: "<egress_destination>" <.>
 }

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

301

Example egress router specification

16.13.2. Deploying an egress router in redirect mode

You can deploy an egress router to redirect traffic from its own reserved source IP address to one or
more destination IP addresses.

After you add an egress router, the client pods that need to use the reserved source IP address must be
modified to connect to the egress router rather than connecting directly to the destination IP.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

apiVersion: network.operator.openshift.io/v1
kind: EgressRouter
metadata:
 name: egress-router-redirect
spec:
 networkInterface: {
 macvlan: {
 mode: "Bridge"
 }
 }
 addresses: [
 {
 ip: "192.168.12.99/24",
 gateway: "192.168.12.1"
 }
]
 mode: Redirect
 redirect: {
 redirectRules: [
 {
 destinationIP: "10.0.0.99",
 port: 80,
 protocol: UDP
 },
 {
 destinationIP: "203.0.113.26",
 port: 8080,
 targetPort: 80,
 protocol: TCP
 },
 {
 destinationIP: "203.0.113.27",
 port: 8443,
 targetPort: 443,
 protocol: TCP
 }
]
 }

OpenShift Container Platform 4.9 Networking

302

Procedure

1. Create an egress router definition.

2. To ensure that other pods can find the IP address of the egress router pod, create a service that
uses the egress router, as in the following example:

<.> Specify the label for the egress router. The value shown is added by the Cluster Network
Operator and is not configurable.

After you create the service, your pods can connect to the service. The egress router pod
redirects traffic to the corresponding port on the destination IP address. The connections
originate from the reserved source IP address.

Verification

To verify that the Cluster Network Operator started the egress router, complete the following
procedure:

1. View the network attachment definition that the Operator created for the egress router:

The name of the network attachment definition is not configurable.

Example output

2. View the deployment for the egress router pod:

The name of the deployment is not configurable.

Example output

3. View the status of the egress router pod:

apiVersion: v1
kind: Service
metadata:
 name: egress-1
spec:
 ports:
 - name: web-app
 protocol: TCP
 port: 8080
 type: ClusterIP
 selector:
 app: egress-router-cni <.>

$ oc get network-attachment-definition egress-router-cni-nad

NAME AGE
egress-router-cni-nad 18m

$ oc get deployment egress-router-cni-deployment

NAME READY UP-TO-DATE AVAILABLE AGE
egress-router-cni-deployment 1/1 1 1 18m

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

303

Example output

4. View the logs and the routing table for the egress router pod.

a. Get the node name for the egress router pod:

b. Enter into a debug session on the target node. This step instantiates a debug pod called
<node_name>-debug:

c. Set /host as the root directory within the debug shell. The debug pod mounts the root file
system of the host in /host within the pod. By changing the root directory to /host, you can run
binaries from the executable paths of the host:

d. From within the chroot environment console, display the egress router logs:

Example output

The logging file location and logging level are not configurable when you start the egress router
by creating an EgressRouter object as described in this procedure.

$ oc get pods -l app=egress-router-cni

NAME READY STATUS RESTARTS AGE
egress-router-cni-deployment-575465c75c-qkq6m 1/1 Running 0 18m

$ POD_NODENAME=$(oc get pod -l app=egress-router-cni -o jsonpath="
{.items[0].spec.nodeName}")

$ oc debug node/$POD_NODENAME

chroot /host

cat /tmp/egress-router-log

2021-04-26T12:27:20Z [debug] Called CNI ADD
2021-04-26T12:27:20Z [debug] Gateway: 192.168.12.1
2021-04-26T12:27:20Z [debug] IP Source Addresses: [192.168.12.99/24]
2021-04-26T12:27:20Z [debug] IP Destinations: [80 UDP 10.0.0.99/30 8080 TCP
203.0.113.26/30 80 8443 TCP 203.0.113.27/30 443]
2021-04-26T12:27:20Z [debug] Created macvlan interface
2021-04-26T12:27:20Z [debug] Renamed macvlan to "net1"
2021-04-26T12:27:20Z [debug] Adding route to gateway 192.168.12.1 on macvlan interface
2021-04-26T12:27:20Z [debug] deleted default route {Ifindex: 3 Dst: <nil> Src: <nil> Gw:
10.128.10.1 Flags: [] Table: 254}
2021-04-26T12:27:20Z [debug] Added new default route with gateway 192.168.12.1
2021-04-26T12:27:20Z [debug] Added iptables rule: iptables -t nat PREROUTING -i eth0 -p
UDP --dport 80 -j DNAT --to-destination 10.0.0.99
2021-04-26T12:27:20Z [debug] Added iptables rule: iptables -t nat PREROUTING -i eth0 -p
TCP --dport 8080 -j DNAT --to-destination 203.0.113.26:80
2021-04-26T12:27:20Z [debug] Added iptables rule: iptables -t nat PREROUTING -i eth0 -p
TCP --dport 8443 -j DNAT --to-destination 203.0.113.27:443
2021-04-26T12:27:20Z [debug] Added iptables rule: iptables -t nat -o net1 -j SNAT --to-
source 192.168.12.99

OpenShift Container Platform 4.9 Networking

304

e. From within the chroot environment console, get the container ID:

Example output

f. Determine the process ID of the container. In this example, the container ID is bac9fae69ddb6:

Example output

g. Enter the network namespace of the container:

h. Display the routing table:

In the following example output, the net1 network interface is the default route. Traffic for the
cluster network uses the eth0 network interface. Traffic for the 192.168.12.0/24 network uses
the net1 network interface and originates from the reserved source IP address 192.168.12.99.
The pod routes all other traffic to the gateway at IP address 192.168.12.1. Routing for the
service network is not shown.

Example output

16.14. ENABLING MULTICAST FOR A PROJECT

16.14.1. About multicast

With IP multicast, data is broadcast to many IP addresses simultaneously.

IMPORTANT

At this time, multicast is best used for low-bandwidth coordination or service discovery
and not a high-bandwidth solution.

Multicast traffic between OpenShift Container Platform pods is disabled by default. If you are using the

crictl ps --name egress-router-cni-pod | awk '{print $1}'

CONTAINER
bac9fae69ddb6

crictl inspect -o yaml bac9fae69ddb6 | grep 'pid:' | awk '{print $2}'

68857

nsenter -n -t 68857

ip route

default via 192.168.12.1 dev net1
10.128.10.0/23 dev eth0 proto kernel scope link src 10.128.10.18
192.168.12.0/24 dev net1 proto kernel scope link src 192.168.12.99
192.168.12.1 dev net1

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

305

Multicast traffic between OpenShift Container Platform pods is disabled by default. If you are using the
OVN-Kubernetes default Container Network Interface (CNI) network provider, you can enable multicast
on a per-project basis.

16.14.2. Enabling multicast between pods

You can enable multicast between pods for your project.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Run the following command to enable multicast for a project. Replace <namespace> with the
namespace for the project you want to enable multicast for.

TIP

You can alternatively apply the following YAML to add the annotation:

Verification

To verify that multicast is enabled for a project, complete the following procedure:

1. Change your current project to the project that you enabled multicast for. Replace <project>
with the project name.

2. Create a pod to act as a multicast receiver:

$ oc annotate namespace <namespace> \
 k8s.ovn.org/multicast-enabled=true

apiVersion: v1
kind: Namespace
metadata:
 name: <namespace>
 annotations:
 k8s.ovn.org/multicast-enabled: "true"

$ oc project <project>

$ cat <<EOF| oc create -f -
apiVersion: v1
kind: Pod
metadata:
 name: mlistener
 labels:
 app: multicast-verify
spec:
 containers:
 - name: mlistener

OpenShift Container Platform 4.9 Networking

306

3. Create a pod to act as a multicast sender:

4. In a new terminal window or tab, start the multicast listener.

a. Get the IP address for the Pod:

b. Start the multicast listener by entering the following command:

5. Start the multicast transmitter.

a. Get the pod network IP address range:

b. To send a multicast message, enter the following command:

If multicast is working, the previous command returns the following output:

 image: registry.access.redhat.com/ubi8
 command: ["/bin/sh", "-c"]
 args:
 ["dnf -y install socat hostname && sleep inf"]
 ports:
 - containerPort: 30102
 name: mlistener
 protocol: UDP
EOF

$ cat <<EOF| oc create -f -
apiVersion: v1
kind: Pod
metadata:
 name: msender
 labels:
 app: multicast-verify
spec:
 containers:
 - name: msender
 image: registry.access.redhat.com/ubi8
 command: ["/bin/sh", "-c"]
 args:
 ["dnf -y install socat && sleep inf"]
EOF

$ POD_IP=$(oc get pods mlistener -o jsonpath='{.status.podIP}')

$ oc exec mlistener -i -t -- \
 socat UDP4-RECVFROM:30102,ip-add-membership=224.1.0.1:$POD_IP,fork
EXEC:hostname

$ CIDR=$(oc get Network.config.openshift.io cluster \
 -o jsonpath='{.status.clusterNetwork[0].cidr}')

$ oc exec msender -i -t -- \
 /bin/bash -c "echo | socat STDIO UDP4-
DATAGRAM:224.1.0.1:30102,range=$CIDR,ip-multicast-ttl=64"

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

307

1

16.15. DISABLING MULTICAST FOR A PROJECT

16.15.1. Disabling multicast between pods

You can disable multicast between pods for your project.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Disable multicast by running the following command:

The namespace for the project you want to disable multicast for.

TIP

You can alternatively apply the following YAML to delete the annotation:

16.16. TRACKING NETWORK FLOWS

As a cluster administrator, you can collect information about pod network flows from your cluster to
assist with the following areas:

Monitor ingress and egress traffic on the pod network.

Troubleshoot performance issues.

Gather data for capacity planning and security audits.

When you enable the collection of the network flows, only the metadata about the traffic is collected.
For example, packet data is not collected, but the protocol, source address, destination address, port
numbers, number of bytes, and other packet-level information is collected.

The data is collected in one or more of the following record formats:

mlistener

$ oc annotate namespace <namespace> \ 1
 k8s.ovn.org/multicast-enabled-

apiVersion: v1
kind: Namespace
metadata:
 name: <namespace>
 annotations:
 k8s.ovn.org/multicast-enabled: null

OpenShift Container Platform 4.9 Networking

308

NetFlow

sFlow

IPFIX

When you configure the Cluster Network Operator (CNO) with one or more collector IP addresses and
port numbers, the Operator configures Open vSwitch (OVS) on each node to send the network flows
records to each collector.

You can configure the Operator to send records to more than one type of network flow collector. For
example, you can send records to NetFlow collectors and also send records to sFlow collectors.

When OVS sends data to the collectors, each type of collector receives identical records. For example, if
you configure two NetFlow collectors, OVS on a node sends identical records to the two collectors. If
you also configure two sFlow collectors, the two sFlow collectors receive identical records. However,
each collector type has a unique record format.

Collecting the network flows data and sending the records to collectors affects performance. Nodes
process packets at a slower rate. If the performance impact is too great, you can delete the destinations
for collectors to disable collecting network flows data and restore performance.

NOTE

Enabling network flow collectors might have an impact on the overall performance of the
cluster network.

16.16.1. Network object configuration for tracking network flows

The fields for configuring network flows collectors in the Cluster Network Operator (CNO) are shown in
the following table:

Table 16.8. Network flows configuration

Field Type Description

metadata.name string The name of the CNO object. This name is always cluster.

spec.exportNet
workFlows

object One or more of netFlow, sFlow, or ipfix.

spec.exportNet
workFlows.netF
low.collectors

array A list of IP address and network port pairs for up to 10 collectors.

spec.exportNet
workFlows.sFlo
w.collectors

array A list of IP address and network port pairs for up to 10 collectors.

spec.exportNet
workFlows.ipfix.
collectors

array A list of IP address and network port pairs for up to 10 collectors.

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

309

After applying the following manifest to the CNO, the Operator configures Open vSwitch (OVS) on
each node in the cluster to send network flows records to the NetFlow collector that is listening at
192.168.1.99:2056.

Example configuration for tracking network flows

16.16.2. Adding destinations for network flows collectors

As a cluster administrator, you can configure the Cluster Network Operator (CNO) to send network
flows metadata about the pod network to a network flows collector.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

You have a network flows collector and know the IP address and port that it listens on.

Procedure

1. Create a patch file that specifies the network flows collector type and the IP address and port
information of the collectors:

2. Configure the CNO with the network flows collectors:

Example output

Verification

Verification is not typically necessary. You can run the following command to confirm that Open vSwitch
(OVS) on each node is configured to send network flows records to one or more collectors.

1. View the Operator configuration to confirm that the exportNetworkFlows field is configured:

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 exportNetworkFlows:
 netFlow:
 collectors:
 - 192.168.1.99:2056

spec:
 exportNetworkFlows:
 netFlow:
 collectors:
 - 192.168.1.99:2056

$ oc patch network.operator cluster --type merge -p "$(cat <file_name>.yaml)"

network.operator.openshift.io/cluster patched

OpenShift Container Platform 4.9 Networking

310

Example output

2. View the network flows configuration in OVS from each node:

Example output

16.16.3. Deleting all destinations for network flows collectors

As a cluster administrator, you can configure the Cluster Network Operator (CNO) to stop sending
network flows metadata to a network flows collector.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

1. Remove all network flows collectors:

$ oc get network.operator cluster -o jsonpath="{.spec.exportNetworkFlows}"

{"netFlow":{"collectors":["192.168.1.99:2056"]}}

$ for pod in $(oc get pods -n openshift-ovn-kubernetes -l app=ovnkube-node -o
jsonpath='{range@.items[*]}{.metadata.name}{"\n"}{end}');
 do ;
 echo;
 echo $pod;
 oc -n openshift-ovn-kubernetes exec -c ovnkube-node $pod \
 -- bash -c 'for type in ipfix sflow netflow ; do ovs-vsctl find $type ; done';
done

ovnkube-node-xrn4p
_uuid : a4d2aaca-5023-4f3d-9400-7275f92611f9
active_timeout : 60
add_id_to_interface : false
engine_id : []
engine_type : []
external_ids : {}
targets : ["192.168.1.99:2056"]

ovnkube-node-z4vq9
_uuid : 61d02fdb-9228-4993-8ff5-b27f01a29bd6
active_timeout : 60
add_id_to_interface : false
engine_id : []
engine_type : []
external_ids : {}
targets : ["192.168.1.99:2056"]-

...

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

311

Example output

16.16.4. Additional resources

Network [operator.openshift.io/v1]

16.17. CONFIGURING HYBRID NETWORKING

As a cluster administrator, you can configure the OVN-Kubernetes Container Network Interface (CNI)
cluster network provider to allow Linux and Windows nodes to host Linux and Windows workloads,
respectively.

16.17.1. Configuring hybrid networking with OVN-Kubernetes

You can configure your cluster to use hybrid networking with OVN-Kubernetes. This allows a hybrid
cluster that supports different node networking configurations. For example, this is necessary to run
both Linux and Windows nodes in a cluster.

IMPORTANT

You must configure hybrid networking with OVN-Kubernetes during the installation of
your cluster. You cannot switch to hybrid networking after the installation process.

Prerequisites

You defined OVNKubernetes for the networking.networkType parameter in the install-
config.yaml file. See the installation documentation for configuring OpenShift Container
Platform network customizations on your chosen cloud provider for more information.

Procedure

1. Change to the directory that contains the installation program and create the manifests:

where:

<installation_directory>

Specifies the name of the directory that contains the install-config.yaml file for your
cluster.

2. Create a stub manifest file for the advanced network configuration that is named cluster-
network-03-config.yml in the <installation_directory>/manifests/ directory:

$ oc patch network.operator cluster --type='json' \
 -p='[{"op":"remove", "path":"/spec/exportNetworkFlows"}]'

network.operator.openshift.io/cluster patched

$./openshift-install create manifests --dir <installation_directory>

$ cat <<EOF > <installation_directory>/manifests/cluster-network-03-config.yml
apiVersion: operator.openshift.io/v1
kind: Network

OpenShift Container Platform 4.9 Networking

312

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/api_reference/#network-operator-openshift-io-v1

1

2

where:

<installation_directory>

Specifies the directory name that contains the manifests/ directory for your cluster.

3. Open the cluster-network-03-config.yml file in an editor and configure OVN-Kubernetes with
hybrid networking, such as in the following example:

Specify a hybrid networking configuration

Specify the CIDR configuration used for nodes on the additional overlay network. The
hybridClusterNetwork CIDR cannot overlap with the clusterNetwork CIDR.

Specify a custom VXLAN port for the additional overlay network. This is required for
running Windows nodes in a cluster installed on vSphere, and must not be configured for
any other cloud provider. The custom port can be any open port excluding the default 4789
port. For more information on this requirement, see the Microsoft documentation on Pod-
to-pod connectivity between hosts is broken.

NOTE

Windows Server Long-Term Servicing Channel (LTSC): Windows Server 2019 is
not supported on clusters with a custom hybridOverlayVXLANPort value
because this Windows server version does not support selecting a custom VXLAN
port.

4. Save the cluster-network-03-config.yml file and quit the text editor.

5. Optional: Back up the manifests/cluster-network-03-config.yml file. The installation program
deletes the manifests/ directory when creating the cluster.

Complete any further installation configurations, and then create your cluster. Hybrid networking is
enabled when the installation process is finished.

16.17.2. Additional resources

metadata:
 name: cluster
spec:
EOF

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 defaultNetwork:
 ovnKubernetesConfig:
 hybridOverlayConfig:
 hybridClusterNetwork: 1
 - cidr: 10.132.0.0/14
 hostPrefix: 23
 hybridOverlayVXLANPort: 9898 2

CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

313

https://docs.microsoft.com/en-us/virtualization/windowscontainers/kubernetes/common-problems#pod-to-pod-connectivity-between-hosts-is-broken-on-my-kubernetes-cluster-running-on-vsphere

Understanding Windows container workloads

Enabling Windows container workloads

Installing a cluster on AWS with network customizations

Installing a cluster on Azure with network customizations

OpenShift Container Platform 4.9 Networking

314

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/windows_container_support_for_openshift/#understanding-windows-container-workloads
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/windows_container_support_for_openshift/#enabling-windows-container-workloads
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installing-aws-network-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installing-azure-network-customizations

CHAPTER 17. CONFIGURING ROUTES

17.1. ROUTE CONFIGURATION

17.1.1. Creating an HTTP-based route

A route allows you to host your application at a public URL. It can either be secure or unsecured,
depending on the network security configuration of your application. An HTTP-based route is an
unsecured route that uses the basic HTTP routing protocol and exposes a service on an unsecured
application port.

The following procedure describes how to create a simple HTTP-based route to a web application, using
the hello-openshift application as an example.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in as an administrator.

You have a web application that exposes a port and a TCP endpoint listening for traffic on the
port.

Procedure

1. Create a project called hello-openshift by running the following command:

2. Create a pod in the project by running the following command:

3. Create a service called hello-openshift by running the following command:

4. Create an unsecured route to the hello-openshift application by running the following
command:

If you examine the resulting Route resource, it should look similar to the following:

YAML definition of the created unsecured route:

$ oc new-project hello-openshift

$ oc create -f https://raw.githubusercontent.com/openshift/origin/master/examples/hello-
openshift/hello-pod.json

$ oc expose pod/hello-openshift

$ oc expose svc hello-openshift

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: hello-openshift
spec:

CHAPTER 17. CONFIGURING ROUTES

315

1

2

1

<Ingress_Domain> is the default ingress domain name. The ingresses.config/cluster
object is created during the installation and cannot be changed. If you want to specify a
different domain, you can specify an alternative cluster domain using the appsDomain
option.

targetPort is the target port on pods that is selected by the service that this route points
to.

NOTE

To display your default ingress domain, run the following command:

17.1.2. Configuring route timeouts

You can configure the default timeouts for an existing route when you have services in need of a low
timeout, which is required for Service Level Availability (SLA) purposes, or a high timeout, for cases with
a slow back end.

Prerequisites

You need a deployed Ingress Controller on a running cluster.

Procedure

1. Using the oc annotate command, add the timeout to the route:

Supported time units are microseconds (us), milliseconds (ms), seconds (s), minutes (m),
hours (h), or days (d).

The following example sets a timeout of two seconds on a route named myroute:

17.1.3. HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) policy is a security enhancement, which signals to the browser
client that only HTTPS traffic is allowed on the route host. HSTS also optimizes web traffic by signaling
HTTPS transport is required, without using HTTP redirects. HSTS is useful for speeding up interactions
with websites.

When HSTS policy is enforced, HSTS adds a Strict Transport Security header to HTTP and HTTPS

 host: hello-openshift-hello-openshift.<Ingress_Domain> 1
 port:
 targetPort: 8080 2
 to:
 kind: Service
 name: hello-openshift

$ oc get ingresses.config/cluster -o jsonpath={.spec.domain}

$ oc annotate route <route_name> \
 --overwrite haproxy.router.openshift.io/timeout=<timeout><time_unit> 1

$ oc annotate route myroute --overwrite haproxy.router.openshift.io/timeout=2s

OpenShift Container Platform 4.9 Networking

316

1

When HSTS policy is enforced, HSTS adds a Strict Transport Security header to HTTP and HTTPS
responses from the site. You can use the insecureEdgeTerminationPolicy value in a route to redirect
HTTP to HTTPS. When HSTS is enforced, the client changes all requests from the HTTP URL to HTTPS
before the request is sent, eliminating the need for a redirect.

Cluster administrators can configure HSTS to do the following:

Enable HSTS per-route

Disable HSTS per-route

Enforce HSTS per-domain, for a set of domains, or use namespace labels in combination with
domains

IMPORTANT

HSTS works only with secure routes, either edge-terminated or re-encrypt. The
configuration is ineffective on HTTP or passthrough routes.

17.1.3.1. Enabling HTTP Strict Transport Security per-route

HTTP strict transport security (HSTS) is implemented in the HAProxy template and applied to edge and
re-encrypt routes that have the haproxy.router.openshift.io/hsts_header annotation.

Prerequisites

You are logged in to the cluster with a user with administrator privileges for the project.

You installed the oc CLI.

Procedure

To enable HSTS on a route, add the haproxy.router.openshift.io/hsts_header value to the
edge-terminated or re-encrypt route. You can use the oc annotate tool to do this by running
the following command:

In this example, the maximum age is set to 31536000 ms, which is approximately eight and
a half hours.

NOTE

In this example, the equal sign (=) is in quotes. This is required to properly
execute the annotate command.

Example route configured with an annotation

$ oc annotate route <route_name> -n <namespace> --overwrite=true
"haproxy.router.openshift.io/hsts_header"="max-age=31536000;\ 1
includeSubDomains;preload"

apiVersion: route.openshift.io/v1
kind: Route
metadata:

CHAPTER 17. CONFIGURING ROUTES

317

1

2

3

Required. max-age measures the length of time, in seconds, that the HSTS policy is in
effect. If set to 0, it negates the policy.

Optional. When included, includeSubDomains tells the client that all subdomains of the
host must have the same HSTS policy as the host.

Optional. When max-age is greater than 0, you can add preload in
haproxy.router.openshift.io/hsts_header to allow external services to include this site in
their HSTS preload lists. For example, sites such as Google can construct a list of sites that
have preload set. Browsers can then use these lists to determine which sites they can
communicate with over HTTPS, even before they have interacted with the site. Without
preload set, browsers must have interacted with the site over HTTPS, at least once, to get
the header.

17.1.3.2. Disabling HTTP Strict Transport Security per-route

To disable HTTP strict transport security (HSTS) per-route, you can set the max-age value in the route
annotation to 0.

Prerequisites

You are logged in to the cluster with a user with administrator privileges for the project.

You installed the oc CLI.

Procedure

To disable HSTS, set the max-age value in the route annotation to 0, by entering the following
command:

TIP

You can alternatively apply the following YAML to create the config map:

Example of disabling HSTS per-route

 annotations:
 haproxy.router.openshift.io/hsts_header: max-age=31536000;includeSubDomains;preload
1 2 3

...
spec:
 host: def.abc.com
 tls:
 termination: "reencrypt"
 ...
 wildcardPolicy: "Subdomain"

$ oc annotate route <route_name> -n <namespace> --overwrite=true
"haproxy.router.openshift.io/hsts_header"="max-age=0"

metadata:
 annotations:
 haproxy.router.openshift.io/hsts_header: max-age=0

OpenShift Container Platform 4.9 Networking

318

To disable HSTS for every route in a namespace, enter the followinf command:

Verification

1. To query the annotation for all routes, enter the following command:

Example output

17.1.3.3. Enforcing HTTP Strict Transport Security per-domain

To enforce HTTP Strict Transport Security (HSTS) per-domain for secure routes, add a
requiredHSTSPolicies record to the Ingress spec to capture the configuration of the HSTS policy.

If you configure a requiredHSTSPolicy to enforce HSTS, then any newly created route must be
configured with a compliant HSTS policy annotation.

NOTE

To handle upgraded clusters with non-compliant HSTS routes, you can update the
manifests at the source and apply the updates.

NOTE

You cannot use oc expose route or oc create route commands to add a route in a
domain that enforces HSTS, because the API for these commands does not accept
annotations.

IMPORTANT

HSTS cannot be applied to insecure, or non-TLS routes, even if HSTS is requested for all
routes globally.

Prerequisites

You are logged in to the cluster with a user with administrator privileges for the project.

You installed the oc CLI.

Procedure

1. Edit the Ingress config file:

$ oc annotate <route> --all -n <namespace> --overwrite=true
"haproxy.router.openshift.io/hsts_header"="max-age=0"

$ oc get route --all-namespaces -o go-template='{{range .items}}{{if .metadata.annotations}}
{{$a := index .metadata.annotations "haproxy.router.openshift.io/hsts_header"}}{{$n :=
.metadata.name}}{{with $a}}Name: {{$n}} HSTS: {{$a}}{{"\n"}}{{else}}{{""}}{{end}}{{end}}
{{end}}'

Name: routename HSTS: max-age=0

CHAPTER 17. CONFIGURING ROUTES

319

1

2 7

3

4

5

Example HSTS policy

Required. requiredHSTSPolicies are validated in order, and the first matching
domainPatterns applies.

Required. You must specify at least one domainPatterns hostname. Any number of
domains can be listed. You can include multiple sections of enforcing options for different
domainPatterns.

Optional. If you include namespaceSelector, it must match the labels of the project where
the routes reside, to enforce the set HSTS policy on the routes. Routes that only match the
namespaceSelector and not the domainPatterns are not validated.

Required. max-age measures the length of time, in seconds, that the HSTS policy is in
effect. This policy setting allows for a smallest and largest max-age to be enforced.

The largestMaxAge value must be between 0 and 2147483647. It can be left
unspecified, which means no upper limit is enforced.

The smallestMaxAge value must be between 0 and 2147483647. Enter 0 to disable
HSTS for troubleshooting, otherwise enter 1 if you never want HSTS to be disabled. It
can be left unspecified, which means no lower limit is enforced.

Optional. Including preload in haproxy.router.openshift.io/hsts_header allows external
services to include this site in their HSTS preload lists. Browsers can then use these lists to
determine which sites they can communicate with over HTTPS, before they have

$ oc edit ingresses.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
 name: cluster
spec:
 domain: 'hello-openshift-default.apps.username.devcluster.openshift.com'
 requiredHSTSPolicies: 1
 - domainPatterns: 2
 - '*hello-openshift-default.apps.username.devcluster.openshift.com'
 - '*hello-openshift-default2.apps.username.devcluster.openshift.com'
 namespaceSelector: 3
 matchLabels:
 myPolicy: strict
 maxAge: 4
 smallestMaxAge: 1
 largestMaxAge: 31536000
 preloadPolicy: RequirePreload 5
 includeSubDomainsPolicy: RequireIncludeSubDomains 6
 - domainPatterns: 7
 - 'abc.example.com'
 - '*xyz.example.com'
 namespaceSelector:
 matchLabels: {}
 maxAge: {}
 preloadPolicy: NoOpinion
 includeSubDomainsPolicy: RequireNoIncludeSubDomains

OpenShift Container Platform 4.9 Networking

320

6

determine which sites they can communicate with over HTTPS, before they have
interacted with the site. Without preload set, browsers need to interact at least once with
the site to get the header. preload can be set with one of the following:

RequirePreload: preload is required by the RequiredHSTSPolicy.

RequireNoPreload: preload is forbidden by the RequiredHSTSPolicy.

NoOpinion: preload does not matter to the RequiredHSTSPolicy.

Optional. includeSubDomainsPolicy can be set with one of the following:

RequireIncludeSubDomains: includeSubDomains is required by the
RequiredHSTSPolicy.

RequireNoIncludeSubDomains: includeSubDomains is forbidden by the
RequiredHSTSPolicy.

NoOpinion: includeSubDomains does not matter to the RequiredHSTSPolicy.

2. You can apply HSTS to all routes in the cluster or in a particular namespace by entering the oc
annotate command.

To apply HSTS to all routes in the cluster, enter the oc annotate command. For example:

To apply HSTS to all routes in a particular namespace, enter the oc annotate command.
For example:

Verification

You can review the HSTS policy you configured. For example:

To review the maxAge set for required HSTS policies, enter the following command:

To review the HSTS annotations on all routes, enter the following command:

Example output

$ oc annotate route --all --all-namespaces --overwrite=true
"haproxy.router.openshift.io/hsts_header"="max-age=31536000"

$ oc annotate route --all -n my-namespace --overwrite=true
"haproxy.router.openshift.io/hsts_header"="max-age=31536000"

$ oc get clusteroperator/ingress -n openshift-ingress-operator -o jsonpath='{range
.spec.requiredHSTSPolicies[*]}{.spec.requiredHSTSPolicies.maxAgePolicy.largestMaxAge}
{"\n"}{end}'

$ oc get route --all-namespaces -o go-template='{{range .items}}{{if .metadata.annotations}}
{{$a := index .metadata.annotations "haproxy.router.openshift.io/hsts_header"}}{{$n :=
.metadata.name}}{{with $a}}Name: {{$n}} HSTS: {{$a}}{{"\n"}}{{else}}{{""}}{{end}}{{end}}
{{end}}'

Name: <_routename_> HSTS: max-age=31536000;preload;includeSubDomains

CHAPTER 17. CONFIGURING ROUTES

321

1

17.1.4. Troubleshooting throughput issues

Sometimes applications deployed through OpenShift Container Platform can cause network throughput
issues such as unusually high latency between specific services.

Use the following methods to analyze performance issues if pod logs do not reveal any cause of the
problem:

Use a packet analyzer, such as ping or tcpdump to analyze traffic between a pod and its node.
For example, run the tcpdump tool on each pod while reproducing the behavior that led to the
issue. Review the captures on both sides to compare send and receive timestamps to analyze
the latency of traffic to and from a pod. Latency can occur in OpenShift Container Platform if a
node interface is overloaded with traffic from other pods, storage devices, or the data plane.

podip is the IP address for the pod. Run the oc get pod <pod_name> -o wide command
to get the IP address of a pod.

tcpdump generates a file at /tmp/dump.pcap containing all traffic between these two pods.
Ideally, run the analyzer shortly before the issue is reproduced and stop the analyzer shortly
after the issue is finished reproducing to minimize the size of the file. You can also run a packet
analyzer between the nodes (eliminating the SDN from the equation) with:

Use a bandwidth measuring tool, such as iperf, to measure streaming throughput and UDP
throughput. Run the tool from the pods first, then from the nodes, to locate any bottlenecks.

For information on installing and using iperf, see this Red Hat Solution .

17.1.5. Using cookies to keep route statefulness

OpenShift Container Platform provides sticky sessions, which enables stateful application traffic by
ensuring all traffic hits the same endpoint. However, if the endpoint pod terminates, whether through
restart, scaling, or a change in configuration, this statefulness can disappear.

OpenShift Container Platform can use cookies to configure session persistence. The Ingress controller
selects an endpoint to handle any user requests, and creates a cookie for the session. The cookie is
passed back in the response to the request and the user sends the cookie back with the next request in
the session. The cookie tells the Ingress Controller which endpoint is handling the session, ensuring that
client requests use the cookie so that they are routed to the same pod.

NOTE

Cookies cannot be set on passthrough routes, because the HTTP traffic cannot be seen.
Instead, a number is calculated based on the source IP address, which determines the
backend.

If backends change, the traffic can be directed to the wrong server, making it less sticky.
If you are using a load balancer, which hides source IP, the same number is set for all
connections and traffic is sent to the same pod.

17.1.5.1. Annotating a route with a cookie

$ tcpdump -s 0 -i any -w /tmp/dump.pcap host <podip 1> && host <podip 2> 1

$ tcpdump -s 0 -i any -w /tmp/dump.pcap port 4789

OpenShift Container Platform 4.9 Networking

322

http://www.tcpdump.org/
https://access.redhat.com/solutions/33103

You can set a cookie name to overwrite the default, auto-generated one for the route. This allows the
application receiving route traffic to know the cookie name. By deleting the cookie it can force the next
request to re-choose an endpoint. So, if a server was overloaded it tries to remove the requests from
the client and redistribute them.

Procedure

1. Annotate the route with the specified cookie name:

where:

<route_name>

Specifies the name of the route.

<cookie_name>

Specifies the name for the cookie.

For example, to annotate the route my_route with the cookie name my_cookie:

2. Capture the route hostname in a variable:

where:

<route_name>

Specifies the name of the route.

3. Save the cookie, and then access the route:

Use the cookie saved by the previous command when connecting to the route:

17.1.6. Path-based routes

Path-based routes specify a path component that can be compared against a URL, which requires that
the traffic for the route be HTTP based. Thus, multiple routes can be served using the same hostname,
each with a different path. Routers should match routes based on the most specific path to the least.
However, this depends on the router implementation.

The following table shows example routes and their accessibility:

Table 17.1. Route availability

$ oc annotate route <route_name> router.openshift.io/cookie_name="<cookie_name>"

$ oc annotate route my_route router.openshift.io/cookie_name="my_cookie"

$ ROUTE_NAME=$(oc get route <route_name> -o jsonpath='{.spec.host}')

$ curl $ROUTE_NAME -k -c /tmp/cookie_jar

$ curl $ROUTE_NAME -k -b /tmp/cookie_jar

CHAPTER 17. CONFIGURING ROUTES

323

1

Route When Compared to Accessible

www.example.com/test www.example.com/test Yes

www.example.com No

www.example.com/test and
www.example.com

www.example.com/test Yes

www.example.com Yes

www.example.com www.example.com/text Yes (Matched by the host, not the
route)

www.example.com Yes

An unsecured route with a path

The path is the only added attribute for a path-based route.

NOTE

Path-based routing is not available when using passthrough TLS, as the router does not
terminate TLS in that case and cannot read the contents of the request.

17.1.7. Route-specific annotations

The Ingress Controller can set the default options for all the routes it exposes. An individual route can
override some of these defaults by providing specific configurations in its annotations. Red Hat does not
support adding a route annotation to an operator-managed route.

IMPORTANT

To create a whitelist with multiple source IPs or subnets, use a space-delimited list. Any
other delimiter type causes the list to be ignored without a warning or error message.

Table 17.2. Route annotations

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: route-unsecured
spec:
 host: www.example.com
 path: "/test" 1
 to:
 kind: Service
 name: service-name

OpenShift Container Platform 4.9 Networking

324

Variable Description Environment variable used as
default

haproxy.router.openshift.io/b
alance

Sets the load-balancing
algorithm. Available options are
random, source, roundrobin,
and leastconn. The default value
is random.

ROUTER_TCP_BALANCE_S
CHEME for passthrough routes.
Otherwise, use
ROUTER_LOAD_BALANCE_
ALGORITHM.

haproxy.router.openshift.io/d
isable_cookies

Disables the use of cookies to
track related connections. If set to
'true' or 'TRUE', the balance
algorithm is used to choose which
back-end serves connections for
each incoming HTTP request.

router.openshift.io/cookie_n
ame

Specifies an optional cookie to
use for this route. The name must
consist of any combination of
upper and lower case letters,
digits, "_", and "-". The default is
the hashed internal key name for
the route.

haproxy.router.openshift.io/p
od-concurrent-connections

Sets the maximum number of
connections that are allowed to a
backing pod from a router.
Note: If there are multiple pods,
each can have this many
connections. If you have multiple
routers, there is no coordination
among them, each may connect
this many times. If not set, or set
to 0, there is no limit.

haproxy.router.openshift.io/r
ate-limit-connections

Setting 'true' or 'TRUE' enables
rate limiting functionality which is
implemented through stick-tables
on the specific backend per route.
Note: Using this annotation
provides basic protection against
distributed denial-of-service
(DDoS) attacks.

haproxy.router.openshift.io/r
ate-limit-
connections.concurrent-tcp

Limits the number of concurrent
TCP connections made through
the same source IP address. It
accepts a numeric value.
Note: Using this annotation
provides basic protection against
distributed denial-of-service
(DDoS) attacks.

CHAPTER 17. CONFIGURING ROUTES

325

haproxy.router.openshift.io/r
ate-limit-connections.rate-
http

Limits the rate at which a client
with the same source IP address
can make HTTP requests. It
accepts a numeric value.
Note: Using this annotation
provides basic protection against
distributed denial-of-service
(DDoS) attacks.

haproxy.router.openshift.io/r
ate-limit-connections.rate-
tcp

Limits the rate at which a client
with the same source IP address
can make TCP connections. It
accepts a numeric value.
Note: Using this annotation
provides basic protection against
distributed denial-of-service
(DDoS) attacks.

haproxy.router.openshift.io/ti
meout

Sets a server-side timeout for the
route. (TimeUnits)

ROUTER_DEFAULT_SERVE
R_TIMEOUT

haproxy.router.openshift.io/ti
meout-tunnel

This timeout applies to a tunnel
connection, for example,
WebSocket over cleartext, edge,
reencrypt, or passthrough routes.
With cleartext, edge, or reencrypt
route types, this annotation is
applied as a timeout tunnel with
the existing timeout value. For the
passthrough route types, the
annotation takes precedence over
any existing timeout value set.

ROUTER_DEFAULT_TUNNE
L_TIMEOUT

ingresses.config/cluster
ingress.operator.openshift.io
/hard-stop-after

You can set either an
IngressController or the ingress
config . This annotation redeploys
the router and configures the HA
proxy to emit the haproxy hard-
stop-after global option, which
defines the maximum time
allowed to perform a clean soft-
stop.

ROUTER_HARD_STOP_AFT
ER

router.openshift.io/haproxy.h
ealth.check.interval

Sets the interval for the back-end
health checks. (TimeUnits)

ROUTER_BACKEND_CHEC
K_INTERVAL

Variable Description Environment variable used as
default

OpenShift Container Platform 4.9 Networking

326

haproxy.router.openshift.io/i
p_whitelist

Sets a whitelist for the route. The
whitelist is a space-separated list
of IP addresses and CIDR ranges
for the approved source
addresses. Requests from IP
addresses that are not in the
whitelist are dropped.

The maximum number of IP
addresses and CIDR ranges
allowed in a whitelist is 61.

haproxy.router.openshift.io/h
sts_header

Sets a Strict-Transport-Security
header for the edge terminated or
re-encrypt route.

haproxy.router.openshift.io/l
og-send-hostname

Sets the hostname field in the
Syslog header. Uses the
hostname of the system. log-
send-hostname is enabled by
default if any Ingress API logging
method, such as sidecar or Syslog
facility, is enabled for the router.

haproxy.router.openshift.io/r
ewrite-target

Sets the rewrite path of the
request on the backend.

router.openshift.io/cookie-
same-site

Sets a value to restrict cookies.
The values are:

Lax: cookies are transferred
between the visited site and third-
party sites.

Strict: cookies are restricted to
the visited site.

None: cookies are restricted to
the visited site.

This value is applicable to re-
encrypt and edge routes only. For
more information, see the
SameSite cookies documentation.

Variable Description Environment variable used as
default

CHAPTER 17. CONFIGURING ROUTES

327

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite

haproxy.router.openshift.io/s
et-forwarded-headers

Sets the policy for handling the
Forwarded and X-Forwarded-
For HTTP headers per route. The
values are:

append: appends the header,
preserving any existing header.
This is the default value.

replace: sets the header,
removing any existing header.

never: never sets the header, but
preserves any existing header.

if-none: sets the header if it is not
already set.

ROUTER_SET_FORWARDE
D_HEADERS

Variable Description Environment variable used as
default

NOTE

Environment variables cannot be edited.

Router timeout variables

TimeUnits are represented by a number followed by the unit: us *(microseconds), ms (milliseconds,
default), s (seconds), m (minutes), h *(hours), d (days).

The regular expression is: [1-9][0-9]*(us\|ms\|s\|m\|h\|d).

Variable Default Description

ROUTER_BACKEND_CHECK_INTE
RVAL

5000ms Length of time between subsequent
liveness checks on back ends.

ROUTER_CLIENT_FIN_TIMEOUT 1s Controls the TCP FIN timeout period for
the client connecting to the route. If the
FIN sent to close the connection does not
answer within the given time, HAProxy
closes the connection. This is harmless if
set to a low value and uses fewer
resources on the router.

ROUTER_DEFAULT_CLIENT_TIME
OUT

30s Length of time that a client has to
acknowledge or send data.

ROUTER_DEFAULT_CONNECT_TI
MEOUT

5s The maximum connection time.

OpenShift Container Platform 4.9 Networking

328

1

ROUTER_DEFAULT_SERVER_FIN_
TIMEOUT

1s Controls the TCP FIN timeout from the
router to the pod backing the route.

ROUTER_DEFAULT_SERVER_TIME
OUT

30s Length of time that a server has to
acknowledge or send data.

ROUTER_DEFAULT_TUNNEL_TIME
OUT

1h Length of time for TCP or WebSocket
connections to remain open. This timeout
period resets whenever HAProxy reloads.

ROUTER_SLOWLORIS_HTTP_KEE
PALIVE

300s Set the maximum time to wait for a new
HTTP request to appear. If this is set too
low, it can cause problems with browsers
and applications not expecting a small
keepalive value.

Some effective timeout values can be the
sum of certain variables, rather than the
specific expected timeout. For example,
ROUTER_SLOWLORIS_HTTP_KEE
PALIVE adjusts timeout http-keep-
alive. It is set to 300s by default, but
HAProxy also waits on tcp-request
inspect-delay, which is set to 5s. In this
case, the overall timeout would be 300s
plus 5s.

ROUTER_SLOWLORIS_TIMEOUT 10s Length of time the transmission of an
HTTP request can take.

RELOAD_INTERVAL 5s Allows the minimum frequency for the
router to reload and accept new changes.

ROUTER_METRICS_HAPROXY_TIM
EOUT

5s Timeout for the gathering of HAProxy
metrics.

Variable Default Description

A route setting custom timeout

Specifies the new timeout with HAProxy supported units (us, ms, s, m, h, d). If the unit is not
provided, ms is the default.

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/timeout: 5500ms 1
...

CHAPTER 17. CONFIGURING ROUTES

329

1

NOTE

Setting a server-side timeout value for passthrough routes too low can cause WebSocket
connections to timeout frequently on that route.

A route that allows only one specific IP address

A route that allows several IP addresses

A route that allows an IP address CIDR network

A route that allows both IP an address and IP address CIDR networks

A route specifying a rewrite target

Sets / as rewrite path of the request on the backend.

Setting the haproxy.router.openshift.io/rewrite-target annotation on a route specifies that the Ingress
Controller should rewrite paths in HTTP requests using this route before forwarding the requests to the
backend application. The part of the request path that matches the path specified in spec.path is
replaced with the rewrite target specified in the annotation.

The following table provides examples of the path rewriting behavior for various combinations of
spec.path, request path, and rewrite target.

Table 17.3. rewrite-target examples:

metadata:
 annotations:
 haproxy.router.openshift.io/ip_whitelist: 192.168.1.10

metadata:
 annotations:
 haproxy.router.openshift.io/ip_whitelist: 192.168.1.10 192.168.1.11 192.168.1.12

metadata:
 annotations:
 haproxy.router.openshift.io/ip_whitelist: 192.168.1.0/24

metadata:
 annotations:
 haproxy.router.openshift.io/ip_whitelist: 180.5.61.153 192.168.1.0/24 10.0.0.0/8

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/rewrite-target: / 1
...

OpenShift Container Platform 4.9 Networking

330

Route.spec.path Request path Rewrite target Forwarded request
path

/foo /foo / /

/foo /foo/ / /

/foo /foo/bar / /bar

/foo /foo/bar/ / /bar/

/foo /foo /bar /bar

/foo /foo/ /bar /bar/

/foo /foo/bar /baz /baz/bar

/foo /foo/bar/ /baz /baz/bar/

/foo/ /foo / N/A (request path does
not match route path)

/foo/ /foo/ / /

/foo/ /foo/bar / /bar

17.1.8. Configuring the route admission policy

Administrators and application developers can run applications in multiple namespaces with the same
domain name. This is for organizations where multiple teams develop microservices that are exposed on
the same hostname.

WARNING

Allowing claims across namespaces should only be enabled for clusters with trust
between namespaces, otherwise a malicious user could take over a hostname. For
this reason, the default admission policy disallows hostname claims across
namespaces.

Prerequisites

Cluster administrator privileges.

Procedure

Edit the .spec.routeAdmission field of the ingresscontroller resource variable using the



CHAPTER 17. CONFIGURING ROUTES

331

Edit the .spec.routeAdmission field of the ingresscontroller resource variable using the
following command:

Sample Ingress Controller configuration

TIP

You can alternatively apply the following YAML to configure the route admission policy:

17.1.9. Creating a route through an Ingress object

Some ecosystem components have an integration with Ingress resources but not with route resources.
To cover this case, OpenShift Container Platform automatically creates managed route objects when an
Ingress object is created. These route objects are deleted when the corresponding Ingress objects are
deleted.

Procedure

1. Define an Ingress object in the OpenShift Container Platform console or by entering the oc
create command:

YAML Definition of an Ingress

$ oc -n openshift-ingress-operator patch ingresscontroller/default --patch '{"spec":
{"routeAdmission":{"namespaceOwnership":"InterNamespaceAllowed"}}}' --type=merge

spec:
 routeAdmission:
 namespaceOwnership: InterNamespaceAllowed
...

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 routeAdmission:
 namespaceOwnership: InterNamespaceAllowed

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: frontend
 annotations:
 route.openshift.io/termination: "reencrypt" 1
spec:
 rules:
 - host: www.example.com
 http:
 paths:
 - backend:
 service:

OpenShift Container Platform 4.9 Networking

332

1 The route.openshift.io/termination annotation can be used to configure the
spec.tls.termination field of the Route as Ingress has no field for this. The accepted
values are edge, passthrough and reencrypt. All other values are silently ignored. When
the annotation value is unset, edge is the default route. The TLS certificate details must
be defined in the template file to implement the default edge route.

a. If you specify the passthrough value in the route.openshift.io/termination
annotation, set path to '' and pathType to ImplementationSpecific in the spec:

2. List your routes:

The result includes an autogenerated route whose name starts with frontend-:

If you inspect this route, it looks this:

YAML Definition of an autogenerated route

 name: frontend
 port:
 number: 443
 path: /
 pathType: Prefix
 tls:
 - hosts:
 - www.example.com
 secretName: example-com-tls-certificate

 spec:
 rules:
 - host: www.example.com
 http:
 paths:
 - path: ''
 pathType: ImplementationSpecific
 backend:
 service:
 name: frontend
 port:
 number: 443

$ oc apply -f ingress.yaml

$ oc get routes

NAME HOST/PORT PATH SERVICES PORT TERMINATION
WILDCARD
frontend-gnztq www.example.com frontend 443 reencrypt/Redirect None

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: frontend-gnztq
 ownerReferences:

CHAPTER 17. CONFIGURING ROUTES

333

17.1.10. Creating a route using the default certificate through an Ingress object

If you create an Ingress object without specifying any TLS configuration, OpenShift Container Platform
generates an insecure route. To create an Ingress object that generates a secure, edge-terminated
route using the default ingress certificate, you can specify an empty TLS configuration as follows.

Prerequisites

You have a service that you want to expose.

You have access to the OpenShift CLI (oc).

Procedure

1. Create a YAML file for the Ingress object. In this example, the file is called example-
ingress.yaml:

YAML definition of an Ingress object

 - apiVersion: networking.k8s.io/v1
 controller: true
 kind: Ingress
 name: frontend
 uid: 4e6c59cc-704d-4f44-b390-617d879033b6
spec:
 host: www.example.com
 path: /
 port:
 targetPort: https
 tls:
 certificate: |
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 insecureEdgeTerminationPolicy: Redirect
 key: |
 -----BEGIN RSA PRIVATE KEY-----
 [...]
 -----END RSA PRIVATE KEY-----
 termination: reencrypt
 to:
 kind: Service
 name: frontend

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: frontend
 ...
spec:
 rules:
 ...
 tls:
 - {} 1

OpenShift Container Platform 4.9 Networking

334

1

1

2

3

Use this exact syntax to specify TLS without specifying a custom certificate.

2. Create the Ingress object by running the following command:

Verification

Verify that OpenShift Container Platform has created the expected route for the Ingress object
by running the following command:

Example output

The name of the route includes the name of the Ingress object followed by a random suffix.

In order to use the default certificate, the route should not specify spec.certificate.

The route should specify the edge termination policy.

17.1.11. Configuring the OpenShift Container Platform Ingress Controller for dual-
stack networking

If your OpenShift Container Platform cluster is configured for IPv4 and IPv6 dual-stack networking,
your cluster is externally reachable by OpenShift Container Platform routes.

The Ingress Controller automatically serves services that have both IPv4 and IPv6 endpoints, but you
can configure the Ingress Controller for single-stack or dual-stack services.

Prerequisites

You deployed an OpenShift Container Platform cluster on bare metal.

You installed the OpenShift CLI (oc).

Procedure

1. To have the Ingress Controller serve traffic over IPv4/IPv6 to a workload, you can create a

$ oc create -f example-ingress.yaml

$ oc get routes -o yaml

apiVersion: v1
items:
- apiVersion: route.openshift.io/v1
 kind: Route
 metadata:
 name: frontend-j9sdd 1
 ...
 spec:
 ...
 tls: 2
 insecureEdgeTerminationPolicy: Redirect
 termination: edge 3
 ...

CHAPTER 17. CONFIGURING ROUTES

335

1

2

3

1. To have the Ingress Controller serve traffic over IPv4/IPv6 to a workload, you can create a
service YAML file or modify an existing service YAML file by setting the ipFamilies and
ipFamilyPolicy fields. For example:

Sample service YAML file

In a dual-stack instance, there are two different clusterIPs provided.

For a single-stack instance, enter IPv4 or IPv6. For a dual-stack instance, enter both IPv4
and IPv6.

For a single-stack instance, enter SingleStack. For a dual-stack instance, enter
RequireDualStack.

These resources generate corresponding endpoints. The Ingress Controller now watches
endpointslices.

2. To view endpoints, enter the following command:

apiVersion: v1
kind: Service
metadata:
 creationTimestamp: yyyy-mm-ddT00:00:00Z
 labels:
 name: <service_name>
 manager: kubectl-create
 operation: Update
 time: yyyy-mm-ddT00:00:00Z
 name: <service_name>
 namespace: <namespace_name>
 resourceVersion: "<resource_version_number>"
 selfLink: "/api/v1/namespaces/<namespace_name>/services/<service_name>"
 uid: <uid_number>
spec:
 clusterIP: 172.30.0.0/16
 clusterIPs: 1
 - 172.30.0.0/16
 - <second_IP_address>
 ipFamilies: 2
 - IPv4
 - IPv6
 ipFamilyPolicy: RequireDualStack 3
 ports:
 - port: 8080
 protocol: TCP
 targetport: 8080
 selector:
 name: <namespace_name>
 sessionAffinity: None
 type: ClusterIP
status:
 loadbalancer: {}

$ oc get endpoints

OpenShift Container Platform 4.9 Networking

336

3. To view endpointslices, enter the following command:

Additional resources

Specifying an alternative cluster domain using the appsDomain option

17.2. SECURED ROUTES

Secure routes provide the ability to use several types of TLS termination to serve certificates to the
client. The following sections describe how to create re-encrypt, edge, and passthrough routes with
custom certificates.

IMPORTANT

If you create routes in Microsoft Azure through public endpoints, the resource names are
subject to restriction. You cannot create resources that use certain terms. For a list of
terms that Azure restricts, see Resolve reserved resource name errors in the Azure
documentation.

17.2.1. Creating a re-encrypt route with a custom certificate

You can configure a secure route using reencrypt TLS termination with a custom certificate by using the
oc create route command.

Prerequisites

You must have a certificate/key pair in PEM-encoded files, where the certificate is valid for the
route host.

You may have a separate CA certificate in a PEM-encoded file that completes the certificate
chain.

You must have a separate destination CA certificate in a PEM-encoded file.

You must have a service that you want to expose.

NOTE

Password protected key files are not supported. To remove a passphrase from a key file,
use the following command:

Procedure

This procedure creates a Route resource with a custom certificate and reencrypt TLS termination. The
following assumes that the certificate/key pair are in the tls.crt and tls.key files in the current working
directory. You must also specify a destination CA certificate to enable the Ingress Controller to trust the
service’s certificate. You may also specify a CA certificate if needed to complete the certificate chain.

$ oc get endpointslices

$ openssl rsa -in password_protected_tls.key -out tls.key

CHAPTER 17. CONFIGURING ROUTES

337

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-ingress
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-reserved-resource-name

Substitute the actual path names for tls.crt, tls.key, cacert.crt, and (optionally) ca.crt. Substitute the
name of the Service resource that you want to expose for frontend. Substitute the appropriate
hostname for www.example.com.

Create a secure Route resource using reencrypt TLS termination and a custom certificate:

If you examine the resulting Route resource, it should look similar to the following:

YAML Definition of the Secure Route

See oc create route reencrypt --help for more options.

17.2.2. Creating an edge route with a custom certificate

You can configure a secure route using edge TLS termination with a custom certificate by using the oc
create route command. With an edge route, the Ingress Controller terminates TLS encryption before
forwarding traffic to the destination pod. The route specifies the TLS certificate and key that the
Ingress Controller uses for the route.

Prerequisites

You must have a certificate/key pair in PEM-encoded files, where the certificate is valid for the
route host.

$ oc create route reencrypt --service=frontend --cert=tls.crt --key=tls.key --dest-ca-
cert=destca.crt --ca-cert=ca.crt --hostname=www.example.com

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: frontend
spec:
 host: www.example.com
 to:
 kind: Service
 name: frontend
 tls:
 termination: reencrypt
 key: |-
 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----
 certificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 caCertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 destinationCACertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

OpenShift Container Platform 4.9 Networking

338

You may have a separate CA certificate in a PEM-encoded file that completes the certificate
chain.

You must have a service that you want to expose.

NOTE

Password protected key files are not supported. To remove a passphrase from a key file,
use the following command:

Procedure

This procedure creates a Route resource with a custom certificate and edge TLS termination. The
following assumes that the certificate/key pair are in the tls.crt and tls.key files in the current working
directory. You may also specify a CA certificate if needed to complete the certificate chain. Substitute
the actual path names for tls.crt, tls.key, and (optionally) ca.crt. Substitute the name of the service that
you want to expose for frontend. Substitute the appropriate hostname for www.example.com.

Create a secure Route resource using edge TLS termination and a custom certificate.

If you examine the resulting Route resource, it should look similar to the following:

YAML Definition of the Secure Route

See oc create route edge --help for more options.

$ openssl rsa -in password_protected_tls.key -out tls.key

$ oc create route edge --service=frontend --cert=tls.crt --key=tls.key --ca-cert=ca.crt --
hostname=www.example.com

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: frontend
spec:
 host: www.example.com
 to:
 kind: Service
 name: frontend
 tls:
 termination: edge
 key: |-
 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----
 certificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 caCertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

CHAPTER 17. CONFIGURING ROUTES

339

1

2

3

17.2.3. Creating a passthrough route

You can configure a secure route using passthrough termination by using the oc create route
command. With passthrough termination, encrypted traffic is sent straight to the destination without
the router providing TLS termination. Therefore no key or certificate is required on the route.

Prerequisites

You must have a service that you want to expose.

Procedure

Create a Route resource:

If you examine the resulting Route resource, it should look similar to the following:

A Secured Route Using Passthrough Termination

The name of the object, which is limited to 63 characters.

The termination field is set to passthrough. This is the only required tls field.

Optional insecureEdgeTerminationPolicy. The only valid values are None, Redirect, or
empty for disabled.

The destination pod is responsible for serving certificates for the traffic at the endpoint. This is
currently the only method that can support requiring client certificates, also known as two-way
authentication.

$ oc create route passthrough route-passthrough-secured --service=frontend --port=8080

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: route-passthrough-secured 1
spec:
 host: www.example.com
 port:
 targetPort: 8080
 tls:
 termination: passthrough 2
 insecureEdgeTerminationPolicy: None 3
 to:
 kind: Service
 name: frontend

OpenShift Container Platform 4.9 Networking

340

CHAPTER 18. CONFIGURING INGRESS CLUSTER TRAFFIC

18.1. CONFIGURING INGRESS CLUSTER TRAFFIC OVERVIEW

OpenShift Container Platform provides the following methods for communicating from outside the
cluster with services running in the cluster.

The methods are recommended, in order or preference:

If you have HTTP/HTTPS, use an Ingress Controller.

If you have a TLS-encrypted protocol other than HTTPS. For example, for TLS with the SNI
header, use an Ingress Controller.

Otherwise, use a Load Balancer, an External IP, or a NodePort.

Method Purpose

Use an Ingress Controller Allows access to HTTP/HTTPS traffic and TLS-
encrypted protocols other than HTTPS (for example,
TLS with the SNI header).

Automatically assign an external IP using a load
balancer service

Allows traffic to non-standard ports through an IP
address assigned from a pool. Most cloud platforms
offer a method to start a service with a load-balancer
IP address.

About MetalLB and the MetalLB Operator Allows traffic to a specific IP address or address from
a pool on the machine network. For bare-metal
installations or platforms that are like bare metal,
MetalLB provides a way to start a service with a
load-balancer IP address.

Manually assign an external IP to a service Allows traffic to non-standard ports through a
specific IP address.

Configure a NodePort Expose a service on all nodes in the cluster.

18.1.1. Comparision: Fault tolerant access to external IP addresses

For the communication methods that provide access to an external IP address, fault tolerant access to
the IP address is another consideration. The following features provide fault tolerant access to an
external IP address.

IP failover

IP failover manages a pool of virtual IP address for a set of nodes. It is implemented with Keepalived
and Virtual Router Redundancy Protocol (VRRP). IP failover is a layer 2 mechanism only and relies on
multicast. Multicast can have disadvantages for some networks.

MetalLB

MetalLB has a layer 2 mode, but it does not use multicast. Layer 2 mode has a disadvantage that it
transfers all traffic for an external IP address through one node.

CHAPTER 18. CONFIGURING INGRESS CLUSTER TRAFFIC

341

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-ingress-cluster-traffic-ingress-controller
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-ingress-cluster-traffic-load-balancer
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#about-metallb
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-ingress-cluster-traffic-service-external-ip
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-ingress-cluster-traffic-nodeport

Manually assigning external IP addresses

You can configure your cluster with an IP address block that is used to assign external IP addresses
to services. By default, this feature is disabled. This feature is flexible, but places the largest burden
on the cluster or network administrator. The cluster is prepared to receive traffic that is destined for
the external IP, but each customer has to decide how they want to route traffic to nodes.

18.2. CONFIGURING EXTERNALIPS FOR SERVICES

As a cluster administrator, you can designate an IP address block that is external to the cluster that can
send traffic to services in the cluster.

This functionality is generally most useful for clusters installed on bare-metal hardware.

18.2.1. Prerequisites

Your network infrastructure must route traffic for the external IP addresses to your cluster.

18.2.2. About ExternalIP

For non-cloud environments, OpenShift Container Platform supports the assignment of external IP
addresses to a Service object spec.externalIPs[] field through the ExternalIP facility. By setting this
field, OpenShift Container Platform assigns an additional virtual IP address to the service. The IP
address can be outside the service network defined for the cluster. A service configured with an
ExternalIP functions similarly to a service with type=NodePort, allowing you to direct traffic to a local
node for load balancing.

You must configure your networking infrastructure to ensure that the external IP address blocks that
you define are routed to the cluster.

OpenShift Container Platform extends the ExternalIP functionality in Kubernetes by adding the
following capabilities:

Restrictions on the use of external IP addresses by users through a configurable policy

Allocation of an external IP address automatically to a service upon request

WARNING

Disabled by default, use of ExternalIP functionality can be a security risk, because
in-cluster traffic to an external IP address is directed to that service. This could
allow cluster users to intercept sensitive traffic destined for external resources.

IMPORTANT

This feature is supported only in non-cloud deployments. For cloud deployments, use the
load balancer services for automatic deployment of a cloud load balancer to target the
endpoints of a service.

You can assign an external IP address in the following ways:



OpenShift Container Platform 4.9 Networking

342

Automatic assignment of an external IP

OpenShift Container Platform automatically assigns an IP address from the autoAssignCIDRs CIDR
block to the spec.externalIPs[] array when you create a Service object with
spec.type=LoadBalancer set. In this case, OpenShift Container Platform implements a non-cloud
version of the load balancer service type and assigns IP addresses to the services. Automatic
assignment is disabled by default and must be configured by a cluster administrator as described in
the following section.

Manual assignment of an external IP

OpenShift Container Platform uses the IP addresses assigned to the spec.externalIPs[] array when
you create a Service object. You cannot specify an IP address that is already in use by another
service.

18.2.2.1. Configuration for ExternalIP

Use of an external IP address in OpenShift Container Platform is governed by the following fields in the
Network.config.openshift.io CR named cluster:

spec.externalIP.autoAssignCIDRs defines an IP address block used by the load balancer when
choosing an external IP address for the service. OpenShift Container Platform supports only a
single IP address block for automatic assignment. This can be simpler than having to manage
the port space of a limited number of shared IP addresses when manually assigning ExternalIPs
to services. If automatic assignment is enabled, a Service object with
spec.type=LoadBalancer is allocated an external IP address.

spec.externalIP.policy defines the permissible IP address blocks when manually specifying an
IP address. OpenShift Container Platform does not apply policy rules to IP address blocks
defined by spec.externalIP.autoAssignCIDRs.

If routed correctly, external traffic from the configured external IP address block can reach service
endpoints through any TCP or UDP port that the service exposes.

IMPORTANT

As a cluster administrator, you must configure routing to externalIPs on both
OpenShiftSDN and OVN-Kubernetes network types. You must also ensure that the IP
address block you assign terminates at one or more nodes in your cluster. For more
information, see Kubernetes External IPs.

OpenShift Container Platform supports both the automatic and manual assignment of IP addresses,
and each address is guaranteed to be assigned to a maximum of one service. This ensures that each
service can expose its chosen ports regardless of the ports exposed by other services.

NOTE

To use IP address blocks defined by autoAssignCIDRs in OpenShift Container Platform,
you must configure the necessary IP address assignment and routing for your host
network.

The following YAML describes a service with an external IP address configured:

Example Service object with spec.externalIPs[] set

apiVersion: v1

CHAPTER 18. CONFIGURING INGRESS CLUSTER TRAFFIC

343

https://kubernetes.io/docs/concepts/services-networking/service/#external-ips

18.2.2.2. Restrictions on the assignment of an external IP address

As a cluster administrator, you can specify IP address blocks to allow and to reject.

Restrictions apply only to users without cluster-admin privileges. A cluster administrator can always set
the service spec.externalIPs[] field to any IP address.

You configure IP address policy with a policy object defined by specifying the spec.ExternalIP.policy
field. The policy object has the following shape:

When configuring policy restrictions, the following rules apply:

If policy={} is set, then creating a Service object with spec.ExternalIPs[] set will fail. This is the
default for OpenShift Container Platform. The behavior when policy=null is set is identical.

If policy is set and either policy.allowedCIDRs[] or policy.rejectedCIDRs[] is set, the following
rules apply:

If allowedCIDRs[] and rejectedCIDRs[] are both set, then rejectedCIDRs[] has
precedence over allowedCIDRs[].

If allowedCIDRs[] is set, creating a Service object with spec.ExternalIPs[] will succeed
only if the specified IP addresses are allowed.

If rejectedCIDRs[] is set, creating a Service object with spec.ExternalIPs[] will succeed
only if the specified IP addresses are not rejected.

kind: Service
metadata:
 name: http-service
spec:
 clusterIP: 172.30.163.110
 externalIPs:
 - 192.168.132.253
 externalTrafficPolicy: Cluster
 ports:
 - name: highport
 nodePort: 31903
 port: 30102
 protocol: TCP
 targetPort: 30102
 selector:
 app: web
 sessionAffinity: None
 type: LoadBalancer
status:
 loadBalancer:
 ingress:
 - ip: 192.168.132.253

{
 "policy": {
 "allowedCIDRs": [],
 "rejectedCIDRs": []
 }
}

OpenShift Container Platform 4.9 Networking

344

18.2.2.3. Example policy objects

The examples that follow demonstrate several different policy configurations.

In the following example, the policy prevents OpenShift Container Platform from creating any
service with an external IP address specified:

Example policy to reject any value specified for Service object spec.externalIPs[]

In the following example, both the allowedCIDRs and rejectedCIDRs fields are set.

Example policy that includes both allowed and rejected CIDR blocks

In the following example, policy is set to null. If set to null, when inspecting the configuration
object by entering oc get networks.config.openshift.io -o yaml, the policy field will not
appear in the output.

Example policy to allow any value specified for Service object spec.externalIPs[]

18.2.3. ExternalIP address block configuration

The configuration for ExternalIP address blocks is defined by a Network custom resource (CR) named
cluster. The Network CR is part of the config.openshift.io API group.

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 externalIP:
 policy: {}
 ...

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 externalIP:
 policy:
 allowedCIDRs:
 - 172.16.66.10/23
 rejectedCIDRs:
 - 172.16.66.10/24
 ...

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 externalIP:
 policy: null
 ...

CHAPTER 18. CONFIGURING INGRESS CLUSTER TRAFFIC

345

1

2

1

2

IMPORTANT

During cluster installation, the Cluster Version Operator (CVO) automatically creates a
Network CR named cluster. Creating any other CR objects of this type is not supported.

The following YAML describes the ExternalIP configuration:

Network.config.openshift.io CR named cluster

Defines the IP address block in CIDR format that is available for automatic assignment of external
IP addresses to a service. Only a single IP address range is allowed.

Defines restrictions on manual assignment of an IP address to a service. If no restrictions are
defined, specifying the spec.externalIP field in a Service object is not allowed. By default, no
restrictions are defined.

The following YAML describes the fields for the policy stanza:

Network.config.openshift.io policy stanza

A list of allowed IP address ranges in CIDR format.

A list of rejected IP address ranges in CIDR format.

Example external IP configurations
Several possible configurations for external IP address pools are displayed in the following examples:

The following YAML describes a configuration that enables automatically assigned external IP
addresses:

Example configuration with spec.externalIP.autoAssignCIDRs set

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 externalIP:
 autoAssignCIDRs: [] 1
 policy: 2
 ...

policy:
 allowedCIDRs: [] 1
 rejectedCIDRs: [] 2

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 ...

OpenShift Container Platform 4.9 Networking

346

The following YAML configures policy rules for the allowed and rejected CIDR ranges:

Example configuration with spec.externalIP.policy set

18.2.4. Configure external IP address blocks for your cluster

As a cluster administrator, you can configure the following ExternalIP settings:

An ExternalIP address block used by OpenShift Container Platform to automatically populate
the spec.clusterIP field for a Service object.

A policy object to restrict what IP addresses may be manually assigned to the spec.clusterIP
array of a Service object.

Prerequisites

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Optional: To display the current external IP configuration, enter the following command:

2. To edit the configuration, enter the following command:

3. Modify the ExternalIP configuration, as in the following example:

 externalIP:
 autoAssignCIDRs:
 - 192.168.132.254/29

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 ...
 externalIP:
 policy:
 allowedCIDRs:
 - 192.168.132.0/29
 - 192.168.132.8/29
 rejectedCIDRs:
 - 192.168.132.7/32

$ oc describe networks.config cluster

$ oc edit networks.config cluster

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster

CHAPTER 18. CONFIGURING INGRESS CLUSTER TRAFFIC

347

1 Specify the configuration for the externalIP stanza.

4. To confirm the updated ExternalIP configuration, enter the following command:

18.2.5. Next steps

Configuring ingress cluster traffic for a service external IP

18.3. CONFIGURING INGRESS CLUSTER TRAFFIC USING AN INGRESS
CONTROLLER

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses an Ingress Controller.

18.3.1. Using Ingress Controllers and routes

The Ingress Operator manages Ingress Controllers and wildcard DNS.

Using an Ingress Controller is the most common way to allow external access to an OpenShift Container
Platform cluster.

An Ingress Controller is configured to accept external requests and proxy them based on the configured
routes. This is limited to HTTP, HTTPS using SNI, and TLS using SNI, which is sufficient for web
applications and services that work over TLS with SNI.

Work with your administrator to configure an Ingress Controller to accept external requests and proxy
them based on the configured routes.

The administrator can create a wildcard DNS entry and then set up an Ingress Controller. Then, you can
work with the edge Ingress Controller without having to contact the administrators.

By default, every ingress controller in the cluster can admit any route created in any project in the
cluster.

The Ingress Controller:

Has two replicas by default, which means it should be running on two worker nodes.

Can be scaled up to have more replicas on more nodes.

NOTE

The procedures in this section require prerequisites performed by the cluster
administrator.

18.3.2. Prerequisites

spec:
 ...
 externalIP: 1
 ...

$ oc get networks.config cluster -o go-template='{{.spec.externalIP}}{{"\n"}}'

OpenShift Container Platform 4.9 Networking

348

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-ingress-cluster-traffic-service-external-ip

Before starting the following procedures, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

$ oc adm policy add-cluster-role-to-user cluster-admin username

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking
required for external systems on a different subnet is out-of-scope for this topic.

18.3.3. Creating a project and service

If the project and service that you want to expose do not exist, first create the project, then the service.

If the project and service already exist, skip to the procedure on exposing the service to create a route.

Prerequisites

Install the oc CLI and log in as a cluster administrator.

Procedure

1. Create a new project for your service by running the oc new-project command:

2. Use the oc new-app command to create your service:

3. To verify that the service was created, run the following command:

Example output

By default, the new service does not have an external IP address.

18.3.4. Exposing the service by creating a route

You can expose the service as a route by using the oc expose command.

Procedure

To expose the service:

$ oc new-project myproject

$ oc new-app nodejs:12~https://github.com/sclorg/nodejs-ex.git

$ oc get svc -n myproject

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nodejs-ex ClusterIP 172.30.197.157 <none> 8080/TCP 70s

CHAPTER 18. CONFIGURING INGRESS CLUSTER TRAFFIC

349

1. Log in to OpenShift Container Platform.

2. Log in to the project where the service you want to expose is located:

3. Run the oc expose service command to expose the route:

Example output

4. To verify that the service is exposed, you can use a tool, such as cURL, to make sure the service
is accessible from outside the cluster.

a. Use the oc get route command to find the route’s host name:

Example output

b. Use cURL to check that the host responds to a GET request:

Example output

18.3.5. Configuring Ingress Controller sharding by using route labels

Ingress Controller sharding by using route labels means that the Ingress Controller serves any route in
any namespace that is selected by the route selector.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Procedure

1. Edit the router-internal.yaml file:

$ oc project myproject

$ oc expose service nodejs-ex

route.route.openshift.io/nodejs-ex exposed

$ oc get route

NAME HOST/PORT PATH SERVICES PORT TERMINATION
WILDCARD
nodejs-ex nodejs-ex-myproject.example.com nodejs-ex 8080-tcp None

$ curl --head nodejs-ex-myproject.example.com

HTTP/1.1 200 OK
...

cat router-internal.yaml
apiVersion: v1
items:

OpenShift Container Platform 4.9 Networking

350

2. Apply the Ingress Controller router-internal.yaml file:

The Ingress Controller selects routes in any namespace that have the label type: sharded.

18.3.6. Configuring Ingress Controller sharding by using namespace labels

Ingress Controller sharding by using namespace labels means that the Ingress Controller serves any
route in any namespace that is selected by the namespace selector.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

WARNING

If you deploy the Keepalived Ingress VIP, do not deploy a non-default Ingress
Controller with value HostNetwork for the endpointPublishingStrategy
parameter. Doing so might cause issues. Use value NodePort instead of
HostNetwork for endpointPublishingStrategy.

Procedure

1. Edit the router-internal.yaml file:

Example output

- apiVersion: operator.openshift.io/v1
 kind: IngressController
 metadata:
 name: sharded
 namespace: openshift-ingress-operator
 spec:
 domain: <apps-sharded.basedomain.example.net>
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 routeSelector:
 matchLabels:
 type: sharded
 status: {}
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

oc apply -f router-internal.yaml



cat router-internal.yaml

CHAPTER 18. CONFIGURING INGRESS CLUSTER TRAFFIC

351

2. Apply the Ingress Controller router-internal.yaml file:

The Ingress Controller selects routes in any namespace that is selected by the namespace
selector that have the label type: sharded.

18.3.7. Additional resources

The Ingress Operator manages wildcard DNS. For more information, see Ingress Operator in
OpenShift Container Platform, Installing a cluster on bare metal , and Installing a cluster on
vSphere.

18.4. CONFIGURING INGRESS CLUSTER TRAFFIC USING A LOAD
BALANCER

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses a load balancer.

18.4.1. Using a load balancer to get traffic into the cluster

If you do not need a specific external IP address, you can configure a load balancer service to allow
external access to an OpenShift Container Platform cluster.

A load balancer service allocates a unique IP. The load balancer has a single edge router IP, which can be
a virtual IP (VIP), but is still a single machine for initial load balancing.

NOTE

If a pool is configured, it is done at the infrastructure level, not by a cluster administrator.

NOTE

apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
 kind: IngressController
 metadata:
 name: sharded
 namespace: openshift-ingress-operator
 spec:
 domain: <apps-sharded.basedomain.example.net>
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 namespaceSelector:
 matchLabels:
 type: sharded
 status: {}
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

oc apply -f router-internal.yaml

OpenShift Container Platform 4.9 Networking

352

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-ingress
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installing-vsphere

NOTE

The procedures in this section require prerequisites performed by the cluster
administrator.

18.4.2. Prerequisites

Before starting the following procedures, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

$ oc adm policy add-cluster-role-to-user cluster-admin username

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking
required for external systems on a different subnet is out-of-scope for this topic.

18.4.3. Creating a project and service

If the project and service that you want to expose do not exist, first create the project, then the service.

If the project and service already exist, skip to the procedure on exposing the service to create a route.

Prerequisites

Install the oc CLI and log in as a cluster administrator.

Procedure

1. Create a new project for your service by running the oc new-project command:

2. Use the oc new-app command to create your service:

3. To verify that the service was created, run the following command:

Example output

By default, the new service does not have an external IP address.

$ oc new-project myproject

$ oc new-app nodejs:12~https://github.com/sclorg/nodejs-ex.git

$ oc get svc -n myproject

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nodejs-ex ClusterIP 172.30.197.157 <none> 8080/TCP 70s

CHAPTER 18. CONFIGURING INGRESS CLUSTER TRAFFIC

353

18.4.4. Exposing the service by creating a route

You can expose the service as a route by using the oc expose command.

Procedure

To expose the service:

1. Log in to OpenShift Container Platform.

2. Log in to the project where the service you want to expose is located:

3. Run the oc expose service command to expose the route:

Example output

4. To verify that the service is exposed, you can use a tool, such as cURL, to make sure the service
is accessible from outside the cluster.

a. Use the oc get route command to find the route’s host name:

Example output

b. Use cURL to check that the host responds to a GET request:

Example output

18.4.5. Creating a load balancer service

Use the following procedure to create a load balancer service.

Prerequisites

Make sure that the project and service you want to expose exist.

Procedure

$ oc project myproject

$ oc expose service nodejs-ex

route.route.openshift.io/nodejs-ex exposed

$ oc get route

NAME HOST/PORT PATH SERVICES PORT TERMINATION
WILDCARD
nodejs-ex nodejs-ex-myproject.example.com nodejs-ex 8080-tcp None

$ curl --head nodejs-ex-myproject.example.com

HTTP/1.1 200 OK
...

OpenShift Container Platform 4.9 Networking

354

1

2

3

4

5

To create a load balancer service:

1. Log in to OpenShift Container Platform.

2. Load the project where the service you want to expose is located.

3. Open a text file on the control plane node and paste the following text, editing the file as
needed:

Sample load balancer configuration file

apiVersion: v1
kind: Service
metadata:
 name: egress-2 1
spec:
 ports:
 - name: db
 port: 3306 2
 loadBalancerIP:
 loadBalancerSourceRanges: 3
 - 10.0.0.0/8
 - 192.168.0.0/16
 type: LoadBalancer 4
 selector:
 name: mysql 5

Enter a descriptive name for the load balancer service.

Enter the same port that the service you want to expose is listening on.

Enter a list of specific IP addresses to restrict traffic through the load balancer. This field is
ignored if the cloud-provider does not support the feature.

Enter Loadbalancer as the type.

Enter the name of the service.

NOTE

To restrict traffic through the load balancer to specific IP addresses, it is
recommended to use the service.beta.kubernetes.io/load-balancer-source-
ranges annotation rather than setting the loadBalancerSourceRanges field.
With the annotation, you can more easily migrate to the OpenShift API, which will
be implemented in a future release.

4. Save and exit the file.

5. Run the following command to create the service:

$ oc project project1

$ oc create -f <file-name>

CHAPTER 18. CONFIGURING INGRESS CLUSTER TRAFFIC

355

For example:

6. Execute the following command to view the new service:

Example output

The service has an external IP address automatically assigned if there is a cloud provider
enabled.

7. On the master, use a tool, such as cURL, to make sure you can reach the service using the public
IP address:

For example:

The examples in this section use a MySQL service, which requires a client application. If you get a
string of characters with the Got packets out of order message, you are connecting with the
service:

If you have a MySQL client, log in with the standard CLI command:

Example output

18.5. CONFIGURING INGRESS CLUSTER TRAFFIC ON AWS USING A
NETWORK LOAD BALANCER

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses a Network Load Balancer (NLB), which forwards the
client’s IP address to the node. You can configure an NLB on a new or existing AWS cluster.

18.5.1. Replacing Ingress Controller Classic Load Balancer with Network Load
Balancer

$ oc create -f mysql-lb.yaml

$ oc get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
egress-2 LoadBalancer 172.30.22.226 ad42f5d8b303045-487804948.example.com
3306:30357/TCP 15m

$ curl <public-ip>:<port>

$ curl 172.29.121.74:3306

$ mysql -h 172.30.131.89 -u admin -p

Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.

MySQL [(none)]>

OpenShift Container Platform 4.9 Networking

356

You can replace an Ingress Controller that is using a Classic Load Balancer (CLB) with one that uses a
Network Load Balancer (NLB) on AWS.

WARNING

This procedure causes an expected outage that can last several minutes due to new
DNS records propagation, new load balancers provisioning, and other factors. IP
addresses and canonical names of the Ingress Controller load balancer might
change after applying this procedure.

Procedure

1. Create a file with a new default Ingress Controller. The following example assumes that your
default Ingress Controller has an External scope and no other customizations:

Example ingresscontroller.yml file

If your default Ingress Controller has other customizations, ensure that you modify the file
accordingly.

2. Force replace the Ingress Controller YAML file:

Wait until the Ingress Controller is replaced. Expect serveral of minutes of outages.

18.5.2. Configuring an Ingress Controller Network Load Balancer on an existing AWS
cluster

You can create an Ingress Controller backed by an AWS Network Load Balancer (NLB) on an existing
cluster.

Prerequisites



apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 creationTimestamp: null
 name: default
 namespace: openshift-ingress-operator
spec:
 endpointPublishingStrategy:
 loadBalancer:
 scope: External
 providerParameters:
 type: AWS
 aws:
 type: NLB
 type: LoadBalancerService

$ oc replace --force --wait -f ingresscontroller.yml

CHAPTER 18. CONFIGURING INGRESS CLUSTER TRAFFIC

357

1

2

3

You must have an installed AWS cluster.

PlatformStatus of the infrastructure resource must be AWS.

To verify that the PlatformStatus is AWS, run:

Procedure

Create an Ingress Controller backed by an AWS NLB on an existing cluster.

1. Create the Ingress Controller manifest:

Example output

Replace $my_ingress_controller with a unique name for the Ingress Controller.

Replace $my_unique_ingress_domain with a domain name that is unique among all
Ingress Controllers in the cluster. This variable must be a subdomain of the DNS name
<clustername>.<domain>.

You can replace External with Internal to use an internal NLB.

2. Create the resource in the cluster:

IMPORTANT

Before you can configure an Ingress Controller NLB on a new AWS cluster, you must
complete the Creating the installation configuration file procedure.

18.5.3. Configuring an Ingress Controller Network Load Balancer on a new AWS

$ oc get infrastructure/cluster -o jsonpath='{.status.platformStatus.type}'
AWS

 $ cat ingresscontroller-aws-nlb.yaml

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: $my_ingress_controller 1
 namespace: openshift-ingress-operator
spec:
 domain: $my_unique_ingress_domain 2
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: External 3
 providerParameters:
 type: AWS
 aws:
 type: NLB

$ oc create -f ingresscontroller-aws-nlb.yaml

OpenShift Container Platform 4.9 Networking

358

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installation-initializing_installing-aws-network-customizations

1

1

18.5.3. Configuring an Ingress Controller Network Load Balancer on a new AWS
cluster

You can create an Ingress Controller backed by an AWS Network Load Balancer (NLB) on a new cluster.

Prerequisites

Create the install-config.yaml file and complete any modifications to it.

Procedure

Create an Ingress Controller backed by an AWS NLB on a new cluster.

1. Change to the directory that contains the installation program and create the manifests:

For <installation_directory>, specify the name of the directory that contains the install-
config.yaml file for your cluster.

2. Create a file that is named cluster-ingress-default-ingresscontroller.yaml in the
<installation_directory>/manifests/ directory:

For <installation_directory>, specify the directory name that contains the manifests/
directory for your cluster.

After creating the file, several network configuration files are in the manifests/ directory, as
shown:

Example output

3. Open the cluster-ingress-default-ingresscontroller.yaml file in an editor and enter a custom
resource (CR) that describes the Operator configuration you want:

$./openshift-install create manifests --dir <installation_directory> 1

$ touch <installation_directory>/manifests/cluster-ingress-default-ingresscontroller.yaml 1

$ ls <installation_directory>/manifests/cluster-ingress-default-ingresscontroller.yaml

cluster-ingress-default-ingresscontroller.yaml

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 creationTimestamp: null
 name: default
 namespace: openshift-ingress-operator
spec:
 endpointPublishingStrategy:
 loadBalancer:
 scope: External
 providerParameters:
 type: AWS

CHAPTER 18. CONFIGURING INGRESS CLUSTER TRAFFIC

359

4. Save the cluster-ingress-default-ingresscontroller.yaml file and quit the text editor.

5. Optional: Back up the manifests/cluster-ingress-default-ingresscontroller.yaml file. The
installation program deletes the manifests/ directory when creating the cluster.

18.5.4. Additional resources

Installing a cluster on AWS with network customizations .

For more information, see Network Load Balancer support on AWS .

18.6. CONFIGURING INGRESS CLUSTER TRAFFIC FOR A SERVICE
EXTERNAL IP

You can attach an external IP address to a service so that it is available to traffic outside the cluster. This
is generally useful only for a cluster installed on bare metal hardware. The external network
infrastructure must be configured correctly to route traffic to the service.

18.6.1. Prerequisites

Your cluster is configured with ExternalIPs enabled. For more information, read Configuring
ExternalIPs for services.

NOTE

Do not use the same ExternalIP for the egress IP.

18.6.2. Attaching an ExternalIP to a service

You can attach an ExternalIP to a service. If your cluster is configured to allocate an ExternalIP
automatically, you might not need to manually attach an ExternalIP to the service.

Procedure

1. Optional: To confirm what IP address ranges are configured for use with ExternalIP, enter the
following command:

If autoAssignCIDRs is set, OpenShift Container Platform automatically assigns an ExternalIP
to a new Service object if the spec.externalIPs field is not specified.

2. Attach an ExternalIP to the service.

a. If you are creating a new service, specify the spec.externalIPs field and provide an array of
one or more valid IP addresses. For example:

 aws:
 type: NLB
 type: LoadBalancerService

$ oc get networks.config cluster -o jsonpath='{.spec.externalIP}{"\n"}'

apiVersion: v1
kind: Service

OpenShift Container Platform 4.9 Networking

360

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installing-aws-network-customizations
https://kubernetes.io/docs/concepts/services-networking/service/#aws-nlb-support
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-externalip

b. If you are attaching an ExternalIP to an existing service, enter the following command.
Replace <name> with the service name. Replace <ip_address> with a valid ExternalIP
address. You can provide multiple IP addresses separated by commas.

For example:

Example output

3. To confirm that an ExternalIP address is attached to the service, enter the following command.
If you specified an ExternalIP for a new service, you must create the service first.

Example output

18.6.3. Additional resources

Configuring ExternalIPs for services

18.7. CONFIGURING INGRESS CLUSTER TRAFFIC USING A NODEPORT

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses a NodePort.

18.7.1. Using a NodePort to get traffic into the cluster

Use a NodePort-type Service resource to expose a service on a specific port on all nodes in the cluster.
The port is specified in the Service resource’s .spec.ports[*].nodePort field.

IMPORTANT

metadata:
 name: svc-with-externalip
spec:
 ...
 externalIPs:
 - 192.174.120.10

$ oc patch svc <name> -p \
 '{
 "spec": {
 "externalIPs": ["<ip_address>"]
 }
 }'

$ oc patch svc mysql-55-rhel7 -p '{"spec":{"externalIPs":["192.174.120.10"]}}'

"mysql-55-rhel7" patched

$ oc get svc

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mysql-55-rhel7 172.30.131.89 192.174.120.10 3306/TCP 13m

CHAPTER 18. CONFIGURING INGRESS CLUSTER TRAFFIC

361

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-externalip

IMPORTANT

Using a node port requires additional port resources.

A NodePort exposes the service on a static port on the node’s IP address. NodePorts are in the 30000
to 32767 range by default, which means a NodePort is unlikely to match a service’s intended port. For
example, port 8080 may be exposed as port 31020 on the node.

The administrator must ensure the external IP addresses are routed to the nodes.

NodePorts and external IPs are independent and both can be used concurrently.

NOTE

The procedures in this section require prerequisites performed by the cluster
administrator.

18.7.2. Prerequisites

Before starting the following procedures, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

$ oc adm policy add-cluster-role-to-user cluster-admin <user_name>

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking
required for external systems on a different subnet is out-of-scope for this topic.

18.7.3. Creating a project and service

If the project and service that you want to expose do not exist, first create the project, then the service.

If the project and service already exist, skip to the procedure on exposing the service to create a route.

Prerequisites

Install the oc CLI and log in as a cluster administrator.

Procedure

1. Create a new project for your service by running the oc new-project command:

2. Use the oc new-app command to create your service:

$ oc new-project myproject

$ oc new-app nodejs:12~https://github.com/sclorg/nodejs-ex.git

OpenShift Container Platform 4.9 Networking

362

3. To verify that the service was created, run the following command:

Example output

By default, the new service does not have an external IP address.

18.7.4. Exposing the service by creating a route

You can expose the service as a route by using the oc expose command.

Procedure

To expose the service:

1. Log in to OpenShift Container Platform.

2. Log in to the project where the service you want to expose is located:

3. To expose a node port for the application, enter the following command. OpenShift Container
Platform automatically selects an available port in the 30000-32767 range.

Example output

4. Optional: To confirm the service is available with a node port exposed, enter the following
command:

Example output

5. Optional: To remove the service created automatically by the oc new-app command, enter the
following command:

18.7.5. Additional resources

$ oc get svc -n myproject

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nodejs-ex ClusterIP 172.30.197.157 <none> 8080/TCP 70s

$ oc project myproject

$ oc expose service nodejs-ex --type=NodePort --name=nodejs-ex-nodeport --
generator="service/v2"

service/nodejs-ex-nodeport exposed

$ oc get svc -n myproject

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nodejs-ex ClusterIP 172.30.217.127 <none> 3306/TCP 9m44s
nodejs-ex-ingress NodePort 172.30.107.72 <none> 3306:31345/TCP 39s

$ oc delete svc nodejs-ex

CHAPTER 18. CONFIGURING INGRESS CLUSTER TRAFFIC

363

Configuring the node port service range

OpenShift Container Platform 4.9 Networking

364

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-node-port-service-range

CHAPTER 19. KUBERNETES NMSTATE

19.1. ABOUT THE KUBERNETES NMSTATE OPERATOR

The Kubernetes NMState Operator provides a Kubernetes API for performing state-driven network
configuration across the OpenShift Container Platform cluster’s nodes with NMState. The Kubernetes
NMState Operator provides users with functionality to configure various network interface types, DNS,
and routing on cluster nodes. Additionally, the daemons on the cluster nodes periodically report on the
state of each node’s network interfaces to the API server.

IMPORTANT

Kubernetes NMState Operator is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.
You must not use Kubernetes NMState Operator in both OpenShift Container Platform
and Red Hat Virtualization (RHV) at the same time. Such configuration is unsupported.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Before you can use NMState with OpenShift Container Platform, you must install the Kubernetes
NMState Operator.

WARNING

When using OVN-Kubernetes, changing the default gateway interface is not
supported.

19.1.1. Installing the Kubernetes NMState Operator

You must install the Kubernetes NMState Operator from the web console while logged in with
administrator privileges. After it is installed, the Operator can deploy the NMState State Controller as a
daemon set across all of the cluster nodes.

Procedure

1. Select Operators → OperatorHub.

2. In the search field below All Items, enter nmstate and click Enter to search for the Kubernetes
NMState Operator.

3. Click on the Kubernetes NMState Operator search result.

4. Click on Install to open the Install Operator window.

5. Click Install to install the Operator.



CHAPTER 19. KUBERNETES NMSTATE

365

https://access.redhat.com/support/offerings/techpreview/

6. After the Operator finishes installing, click View Operator.

7. Under Provided APIs, click Create Instance to open the dialog box for creating an instance of
kubernetes-nmstate.

8. In the Name field of the dialog box, ensure the name of the instance is nmstate.

NOTE

The name restriction is a known issue. The instance is a singleton for the entire
cluster.

9. Accept the default settings and click Create to create the instance.

Summary

Once complete, the Operator has deployed the NMState State Controller as a daemon set across all of
the cluster nodes.

19.2. OBSERVING NODE NETWORK STATE

Node network state is the network configuration for all nodes in the cluster.

19.2.1. About nmstate

OpenShift Container Platform uses nmstate to report on and configure the state of the node network.
This makes it possible to modify network policy configuration, such as by creating a Linux bridge on all
nodes, by applying a single configuration manifest to the cluster.

Node networking is monitored and updated by the following objects:

NodeNetworkState

Reports the state of the network on that node.

NodeNetworkConfigurationPolicy

Describes the requested network configuration on nodes. You update the node network
configuration, including adding and removing interfaces, by applying a
NodeNetworkConfigurationPolicy manifest to the cluster.

NodeNetworkConfigurationEnactment

Reports the network policies enacted upon each node.

OpenShift Container Platform supports the use of the following nmstate interface types:

Linux Bridge

VLAN

Bond

Ethernet

NOTE

OpenShift Container Platform 4.9 Networking

366

https://nmstate.github.io/

1

2

3

NOTE

If your OpenShift Container Platform cluster uses OVN-Kubernetes as the default
Container Network Interface (CNI) provider, you cannot attach a Linux bridge or bonding
to the default interface of a host because of a change in the host network topology of
OVN-Kubernetes. As a workaround, you can use a secondary network interface
connected to your host, or switch to the OpenShift SDN default CNI provider.

19.2.2. Viewing the network state of a node

A NodeNetworkState object exists on every node in the cluster. This object is periodically updated and
captures the state of the network for that node.

Procedure

1. List all the NodeNetworkState objects in the cluster:

2. Inspect a NodeNetworkState object to view the network on that node. The output in this
example has been redacted for clarity:

Example output

The name of the NodeNetworkState object is taken from the node.

The currentState contains the complete network configuration for the node, including
DNS, interfaces, and routes.

Timestamp of the last successful update. This is updated periodically as long as the node is
reachable and can be used to evalute the freshness of the report.

19.3. UPDATING NODE NETWORK CONFIGURATION

You can update the node network configuration, such as adding or removing interfaces from nodes, by

$ oc get nns

$ oc get nns node01 -o yaml

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkState
metadata:
 name: node01 1
status:
 currentState: 2
 dns-resolver:
...
 interfaces:
...
 route-rules:
...
 routes:
...
 lastSuccessfulUpdateTime: "2020-01-31T12:14:00Z" 3

CHAPTER 19. KUBERNETES NMSTATE

367

You can update the node network configuration, such as adding or removing interfaces from nodes, by
applying NodeNetworkConfigurationPolicy manifests to the cluster.

WARNING

When using OVN-Kubernetes, changing the default gateway interface is not
supported.

19.3.1. About nmstate

OpenShift Container Platform uses nmstate to report on and configure the state of the node network.
This makes it possible to modify network policy configuration, such as by creating a Linux bridge on all
nodes, by applying a single configuration manifest to the cluster.

Node networking is monitored and updated by the following objects:

NodeNetworkState

Reports the state of the network on that node.

NodeNetworkConfigurationPolicy

Describes the requested network configuration on nodes. You update the node network
configuration, including adding and removing interfaces, by applying a
NodeNetworkConfigurationPolicy manifest to the cluster.

NodeNetworkConfigurationEnactment

Reports the network policies enacted upon each node.

OpenShift Container Platform supports the use of the following nmstate interface types:

Linux Bridge

VLAN

Bond

Ethernet

NOTE

If your OpenShift Container Platform cluster uses OVN-Kubernetes as the default
Container Network Interface (CNI) provider, you cannot attach a Linux bridge or bonding
to the default interface of a host because of a change in the host network topology of
OVN-Kubernetes. As a workaround, you can use a secondary network interface
connected to your host, or switch to the OpenShift SDN default CNI provider.

19.3.2. Creating an interface on nodes

Create an interface on nodes in the cluster by applying a NodeNetworkConfigurationPolicy manifest
to the cluster. The manifest details the requested configuration for the interface.

By default, the manifest applies to all nodes in the cluster. To add the interface to specific nodes, add



OpenShift Container Platform 4.9 Networking

368

https://nmstate.github.io/

1

2

3

4

1

By default, the manifest applies to all nodes in the cluster. To add the interface to specific nodes, add
the spec: nodeSelector parameter and the appropriate <key>:<value> for your node selector.

Procedure

1. Create the NodeNetworkConfigurationPolicy manifest. The following example configures a
Linux bridge on all worker nodes:

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes
in the cluster.

This example uses the node-role.kubernetes.io/worker: "" node selector to select all
worker nodes in the cluster.

Optional: Human-readable description for the interface.

2. Create the node network policy:

File name of the node network configuration policy manifest.

Additional resources

Example for creating multiple interfaces in the same policy

Examples of different IP management methods in policies

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: <br1-eth1-policy> 1
spec:
 nodeSelector: 2
 node-role.kubernetes.io/worker: "" 3
 desiredState:
 interfaces:
 - name: br1
 description: Linux bridge with eth1 as a port 4
 type: linux-bridge
 state: up
 ipv4:
 dhcp: true
 enabled: true
 bridge:
 options:
 stp:
 enabled: false
 port:
 - name: eth1

$ oc apply -f <br1-eth1-policy.yaml> 1

CHAPTER 19. KUBERNETES NMSTATE

369

19.3.3. Confirming node network policy updates on nodes

A NodeNetworkConfigurationPolicy manifest describes your requested network configuration for
nodes in the cluster. The node network policy includes your requested network configuration and the
status of execution of the policy on the cluster as a whole.

When you apply a node network policy, a NodeNetworkConfigurationEnactment object is created for
every node in the cluster. The node network configuration enactment is a read-only object that
represents the status of execution of the policy on that node. If the policy fails to be applied on the
node, the enactment for that node includes a traceback for troubleshooting.

Procedure

1. To confirm that a policy has been applied to the cluster, list the policies and their status:

2. Optional: If a policy is taking longer than expected to successfully configure, you can inspect the
requested state and status conditions of a particular policy:

3. Optional: If a policy is taking longer than expected to successfully configure on all nodes, you
can list the status of the enactments on the cluster:

4. Optional: To view the configuration of a particular enactment, including any error reporting for a
failed configuration:

19.3.4. Removing an interface from nodes

You can remove an interface from one or more nodes in the cluster by editing the
NodeNetworkConfigurationPolicy object and setting the state of the interface to absent.

Removing an interface from a node does not automatically restore the node network configuration to a
previous state. If you want to restore the previous state, you will need to define that node network
configuration in the policy.

If you remove a bridge or bonding interface, any node NICs in the cluster that were previously attached
or subordinate to that bridge or bonding interface are placed in a down state and become unreachable.
To avoid losing connectivity, configure the node NIC in the same policy so that it has a status of up and
either DHCP or a static IP address.

NOTE

Deleting the node network policy that added an interface does not change the
configuration of the policy on the node. Although a NodeNetworkConfigurationPolicy is
an object in the cluster, it only represents the requested configuration.
Similarly, removing an interface does not delete the policy.

$ oc get nncp

$ oc get nncp <policy> -o yaml

$ oc get nnce

$ oc get nnce <node>.<policy> -o yaml

OpenShift Container Platform 4.9 Networking

370

1

2

3

4

5

6

7

8

9

1

Procedure

1. Update the NodeNetworkConfigurationPolicy manifest used to create the interface. The
following example removes a Linux bridge and configures the eth1 NIC with DHCP to avoid
losing connectivity:

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes
in the cluster.

This example uses the node-role.kubernetes.io/worker: "" node selector to select all
worker nodes in the cluster.

Changing the state to absent removes the interface.

The name of the interface that is to be unattached from the bridge interface.

The type of interface. This example creates an Ethernet networking interface.

The requested state for the interface.

Optional: If you do not use dhcp, you can either set a static IP or leave the interface
without an IP address.

Enables ipv4 in this example.

2. Update the policy on the node and remove the interface:

File name of the policy manifest.

19.3.5. Example policy configurations for different interfaces

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: <br1-eth1-policy> 1
spec:
 nodeSelector: 2
 node-role.kubernetes.io/worker: "" 3
 desiredState:
 interfaces:
 - name: br1
 type: linux-bridge
 state: absent 4
 - name: eth1 5
 type: ethernet 6
 state: up 7
 ipv4:
 dhcp: true 8
 enabled: true 9

$ oc apply -f <br1-eth1-policy.yaml> 1

CHAPTER 19. KUBERNETES NMSTATE

371

1

2

3

4

5

6

7

8

9

10

11

19.3.5.1. Example: Linux bridge interface node network configuration policy

Create a Linux bridge interface on nodes in the cluster by applying a
NodeNetworkConfigurationPolicy manifest to the cluster.

The following YAML file is an example of a manifest for a Linux bridge interface. It includes samples
values that you must replace with your own information.

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes in the
cluster.

This example uses a hostname node selector.

Name of the interface.

Optional: Human-readable description of the interface.

The type of interface. This example creates a bridge.

The requested state for the interface after creation.

Optional: If you do not use dhcp, you can either set a static IP or leave the interface without an IP
address.

Enables ipv4 in this example.

Disables stp in this example.

The node NIC to which the bridge attaches.

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: br1-eth1-policy 1
spec:
 nodeSelector: 2
 kubernetes.io/hostname: <node01> 3
 desiredState:
 interfaces:
 - name: br1 4
 description: Linux bridge with eth1 as a port 5
 type: linux-bridge 6
 state: up 7
 ipv4:
 dhcp: true 8
 enabled: true 9
 bridge:
 options:
 stp:
 enabled: false 10
 port:
 - name: eth1 11

OpenShift Container Platform 4.9 Networking

372

1

2

3

4

5

6

7

8

9

19.3.5.2. Example: VLAN interface node network configuration policy

Create a VLAN interface on nodes in the cluster by applying a NodeNetworkConfigurationPolicy
manifest to the cluster.

The following YAML file is an example of a manifest for a VLAN interface. It includes samples values that
you must replace with your own information.

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes in the
cluster.

This example uses a hostname node selector.

Name of the interface.

Optional: Human-readable description of the interface.

The type of interface. This example creates a VLAN.

The requested state for the interface after creation.

The node NIC to which the VLAN is attached.

The VLAN tag.

19.3.5.3. Example: Bond interface node network configuration policy

Create a bond interface on nodes in the cluster by applying a NodeNetworkConfigurationPolicy
manifest to the cluster.

NOTE

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: vlan-eth1-policy 1
spec:
 nodeSelector: 2
 kubernetes.io/hostname: <node01> 3
 desiredState:
 interfaces:
 - name: eth1.102 4
 description: VLAN using eth1 5
 type: vlan 6
 state: up 7
 vlan:
 base-iface: eth1 8
 id: 102 9

CHAPTER 19. KUBERNETES NMSTATE

373

1

2

3

4

5

6

NOTE

OpenShift Container Platform only supports the following bond modes:

mode=1 active-backup

mode=2 balance-xor

mode=4 802.3ad

mode=5 balance-tlb

mode=6 balance-alb

The following YAML file is an example of a manifest for a bond interface. It includes samples values that
you must replace with your own information.

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes in the
cluster.

This example uses a hostname node selector.

Name of the interface.

Optional: Human-readable description of the interface.

The type of interface. This example creates a bond.

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: bond0-eth1-eth2-policy 1
spec:
 nodeSelector: 2
 kubernetes.io/hostname: <node01> 3
 desiredState:
 interfaces:
 - name: bond0 4
 description: Bond with ports eth1 and eth2 5
 type: bond 6
 state: up 7
 ipv4:
 dhcp: true 8
 enabled: true 9
 link-aggregation:
 mode: active-backup 10
 options:
 miimon: '140' 11
 port: 12
 - eth1
 - eth2
 mtu: 1450 13

OpenShift Container Platform 4.9 Networking

374

7

8

9

10

11

12

13

1

2

3

4

5

6

The requested state for the interface after creation.

Optional: If you do not use dhcp, you can either set a static IP or leave the interface without an IP
address.

Enables ipv4 in this example.

The driver mode for the bond. This example uses an active backup mode.

Optional: This example uses miimon to inspect the bond link every 140ms.

The subordinate node NICs in the bond.

Optional: The maximum transmission unit (MTU) for the bond. If not specified, this value is set to
1500 by default.

19.3.5.4. Example: Ethernet interface node network configuration policy

Configure an Ethernet interface on nodes in the cluster by applying a
NodeNetworkConfigurationPolicy manifest to the cluster.

The following YAML file is an example of a manifest for an Ethernet interface. It includes sample values
that you must replace with your own information.

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes in the
cluster.

This example uses a hostname node selector.

Name of the interface.

Optional: Human-readable description of the interface.

The type of interface. This example creates an Ethernet networking interface.

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: eth1-policy 1
spec:
 nodeSelector: 2
 kubernetes.io/hostname: <node01> 3
 desiredState:
 interfaces:
 - name: eth1 4
 description: Configuring eth1 on node01 5
 type: ethernet 6
 state: up 7
 ipv4:
 dhcp: true 8
 enabled: true 9

CHAPTER 19. KUBERNETES NMSTATE

375

7

8

9

The requested state for the interface after creation.

Optional: If you do not use dhcp, you can either set a static IP or leave the interface without an IP
address.

Enables ipv4 in this example.

19.3.5.5. Example: Multiple interfaces in the same node network configuration policy

You can create multiple interfaces in the same node network configuration policy. These interfaces can
reference each other, allowing you to build and deploy a network configuration by using a single policy
manifest.

The following example snippet creates a bond that is named bond10 across two NICs and a Linux bridge
that is named br1 that connects to the bond.

19.3.6. Examples: IP management

The following example configuration snippets demonstrate different methods of IP management.

These examples use the ethernet interface type to simplify the example while showing the related
context in the policy configuration. These IP management examples can be used with the other
interface types.

19.3.6.1. Static

The following snippet statically configures an IP address on the Ethernet interface:

#...
 interfaces:
 - name: bond10
 description: Bonding eth2 and eth3 for Linux bridge
 type: bond
 state: up
 link-aggregation:
 port:
 - eth2
 - eth3
 - name: br1
 description: Linux bridge on bond
 type: linux-bridge
 state: up
 bridge:
 port:
 - name: bond10
#...

...
 interfaces:
 - name: eth1
 description: static IP on eth1
 type: ethernet
 state: up
 ipv4:

OpenShift Container Platform 4.9 Networking

376

1 Replace this value with the static IP address for the interface.

19.3.6.2. No IP address

The following snippet ensures that the interface has no IP address:

19.3.6.3. Dynamic host configuration

The following snippet configures an Ethernet interface that uses a dynamic IP address, gateway
address, and DNS:

The following snippet configures an Ethernet interface that uses a dynamic IP address but does not use
a dynamic gateway address or DNS:

 dhcp: false
 address:
 - ip: 192.168.122.250 1
 prefix-length: 24
 enabled: true
...

...
 interfaces:
 - name: eth1
 description: No IP on eth1
 type: ethernet
 state: up
 ipv4:
 enabled: false
...

...
 interfaces:
 - name: eth1
 description: DHCP on eth1
 type: ethernet
 state: up
 ipv4:
 dhcp: true
 enabled: true
...

...
 interfaces:
 - name: eth1
 description: DHCP without gateway or DNS on eth1
 type: ethernet
 state: up
 ipv4:
 dhcp: true
 auto-gateway: false

CHAPTER 19. KUBERNETES NMSTATE

377

1

2

19.3.6.4. DNS

The following snippet sets DNS configuration on the host.

19.3.6.5. Static routing

The following snippet configures a static route and a static IP on interface eth1.

The static IP address for the Ethernet interface.

Next hop address for the node traffic. This must be in the same subnet as the IP address set for
the Ethernet interface.

19.4. TROUBLESHOOTING NODE NETWORK CONFIGURATION

If the node network configuration encounters an issue, the policy is automatically rolled back and the

 auto-dns: false
 enabled: true
...

...
 interfaces:
 ...
 dns-resolver:
 config:
 search:
 - example.com
 - example.org
 server:
 - 8.8.8.8
...

...
 interfaces:
 - name: eth1
 description: Static routing on eth1
 type: ethernet
 state: up
 ipv4:
 dhcp: false
 address:
 - ip: 192.0.2.251 1
 prefix-length: 24
 enabled: true
 routes:
 config:
 - destination: 198.51.100.0/24
 metric: 150
 next-hop-address: 192.0.2.1 2
 next-hop-interface: eth1
 table-id: 254
...

OpenShift Container Platform 4.9 Networking

378

If the node network configuration encounters an issue, the policy is automatically rolled back and the
enactments report failure. This includes issues such as:

The configuration fails to be applied on the host.

The host loses connection to the default gateway.

The host loses connection to the API server.

19.4.1. Troubleshooting an incorrect node network configuration policy
configuration

You can apply changes to the node network configuration across your entire cluster by applying a node
network configuration policy. If you apply an incorrect configuration, you can use the following example
to troubleshoot and correct the failed node network policy.

In this example, a Linux bridge policy is applied to an example cluster that has three control plane nodes
(master) and three compute (worker) nodes. The policy fails to be applied because it references an
incorrect interface. To find the error, investigate the available NMState resources. You can then update
the policy with the correct configuration.

Procedure

1. Create a policy and apply it to your cluster. The following example creates a simple bridge on the
ens01 interface:

Example output

2. Verify the status of the policy by running the following command:

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: ens01-bridge-testfail
spec:
 desiredState:
 interfaces:
 - name: br1
 description: Linux bridge with the wrong port
 type: linux-bridge
 state: up
 ipv4:
 dhcp: true
 enabled: true
 bridge:
 options:
 stp:
 enabled: false
 port:
 - name: ens01

$ oc apply -f ens01-bridge-testfail.yaml

nodenetworkconfigurationpolicy.nmstate.io/ens01-bridge-testfail created

CHAPTER 19. KUBERNETES NMSTATE

379

The output shows that the policy failed:

Example output

However, the policy status alone does not indicate if it failed on all nodes or a subset of nodes.

3. List the node network configuration enactments to see if the policy was successful on any of the
nodes. If the policy failed for only a subset of nodes, it suggests that the problem is with a
specific node configuration. If the policy failed on all nodes, it suggests that the problem is with
the policy.

The output shows that the policy failed on all nodes:

Example output

4. View one of the failed enactments and look at the traceback. The following command uses the
output tool jsonpath to filter the output:

This command returns a large traceback that has been edited for brevity:

Example output

$ oc get nncp

NAME STATUS
ens01-bridge-testfail FailedToConfigure

$ oc get nnce

NAME STATUS
control-plane-1.ens01-bridge-testfail FailedToConfigure
control-plane-2.ens01-bridge-testfail FailedToConfigure
control-plane-3.ens01-bridge-testfail FailedToConfigure
compute-1.ens01-bridge-testfail FailedToConfigure
compute-2.ens01-bridge-testfail FailedToConfigure
compute-3.ens01-bridge-testfail FailedToConfigure

$ oc get nnce compute-1.ens01-bridge-testfail -o jsonpath='{.status.conditions[?
(@.type=="Failing")].message}'

error reconciling NodeNetworkConfigurationPolicy at desired state apply: , failed to execute
nmstatectl set --no-commit --timeout 480: 'exit status 1' ''
...
libnmstate.error.NmstateVerificationError:
desired
=======

name: br1
type: linux-bridge
state: up
bridge:
 options:
 group-forward-mask: 0
 mac-ageing-time: 300

OpenShift Container Platform 4.9 Networking

380

 multicast-snooping: true
 stp:
 enabled: false
 forward-delay: 15
 hello-time: 2
 max-age: 20
 priority: 32768
 port:
 - name: ens01
description: Linux bridge with the wrong port
ipv4:
 address: []
 auto-dns: true
 auto-gateway: true
 auto-routes: true
 dhcp: true
 enabled: true
ipv6:
 enabled: false
mac-address: 01-23-45-67-89-AB
mtu: 1500

current
=======

name: br1
type: linux-bridge
state: up
bridge:
 options:
 group-forward-mask: 0
 mac-ageing-time: 300
 multicast-snooping: true
 stp:
 enabled: false
 forward-delay: 15
 hello-time: 2
 max-age: 20
 priority: 32768
 port: []
description: Linux bridge with the wrong port
ipv4:
 address: []
 auto-dns: true
 auto-gateway: true
 auto-routes: true
 dhcp: true
 enabled: true
ipv6:
 enabled: false
mac-address: 01-23-45-67-89-AB
mtu: 1500

difference
==========
--- desired

CHAPTER 19. KUBERNETES NMSTATE

381

The NmstateVerificationError lists the desired policy configuration, the current configuration
of the policy on the node, and the difference highlighting the parameters that do not match. In
this example, the port is included in the difference, which suggests that the problem is the port
configuration in the policy.

5. To ensure that the policy is configured properly, view the network configuration for one or all of
the nodes by requesting the NodeNetworkState object. The following command returns the
network configuration for the control-plane-1 node:

$ oc get nns control-plane-1 -o yaml

The output shows that the interface name on the nodes is ens1 but the failed policy incorrectly
uses ens01:

Example output

6. Correct the error by editing the existing policy:

Save the policy to apply the correction.

7. Check the status of the policy to ensure it updated successfully:

Example output

+++ current
@@ -13,8 +13,7 @@
 hello-time: 2
 max-age: 20
 priority: 32768
- port:
- - name: ens01
+ port: []
 description: Linux bridge with the wrong port
 ipv4:
 address: []
 line 651, in _assert_interfaces_equal\n
current_state.interfaces[ifname],\nlibnmstate.error.NmstateVerificationError:

 - ipv4:
 ...
 name: ens1
 state: up
 type: ethernet

$ oc edit nncp ens01-bridge-testfail

...
 port:
 - name: ens1

$ oc get nncp

NAME STATUS
ens01-bridge-testfail SuccessfullyConfigured

OpenShift Container Platform 4.9 Networking

382

The updated policy is successfully configured on all nodes in the cluster.

CHAPTER 19. KUBERNETES NMSTATE

383

CHAPTER 20. CONFIGURING THE CLUSTER-WIDE PROXY
Production environments can deny direct access to the internet and instead have an HTTP or HTTPS
proxy available. You can configure OpenShift Container Platform to use a proxy by modifying the Proxy
object for existing clusters or by configuring the proxy settings in the install-config.yaml file for new
clusters.

20.1. PREREQUISITES

Review the sites that your cluster requires access to and determine whether any of them must
bypass the proxy. By default, all cluster system egress traffic is proxied, including calls to the
cloud provider API for the cloud that hosts your cluster. System-wide proxy affects system
components only, not user workloads. Add sites to the Proxy object’s spec.noProxy field to
bypass the proxy if necessary.

NOTE

The Proxy object status.noProxy field is populated with the values of the
networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and
networking.serviceNetwork[] fields from your installation configuration.

For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP),
Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object
status.noProxy field is also populated with the instance metadata endpoint
(169.254.169.254).

20.2. ENABLING THE CLUSTER-WIDE PROXY

The Proxy object is used to manage the cluster-wide egress proxy. When a cluster is installed or
upgraded without the proxy configured, a Proxy object is still generated but it will have a nil spec. For
example:

A cluster administrator can configure the proxy for OpenShift Container Platform by modifying this
cluster Proxy object.

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

Prerequisites

Cluster administrator permissions

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
 name: cluster
spec:
 trustedCA:
 name: ""
status:

OpenShift Container Platform 4.9 Networking

384

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-proxy-configure-object_config-cluster-wide-proxy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#configuring-firewall

1

2

3

4

OpenShift Container Platform oc CLI tool installed

Procedure

1. Create a config map that contains any additional CA certificates required for proxying HTTPS
connections.

NOTE

You can skip this step if the proxy’s identity certificate is signed by an authority
from the RHCOS trust bundle.

a. Create a file called user-ca-bundle.yaml with the following contents, and provide the
values of your PEM-encoded certificates:

This data key must be named ca-bundle.crt.

One or more PEM-encoded X.509 certificates used to sign the proxy’s identity
certificate.

The config map name that will be referenced from the Proxy object.

The config map must be in the openshift-config namespace.

b. Create the config map from this file:

2. Use the oc edit command to modify the Proxy object:

3. Configure the necessary fields for the proxy:

apiVersion: v1
data:
 ca-bundle.crt: | 1
 <MY_PEM_ENCODED_CERTS> 2
kind: ConfigMap
metadata:
 name: user-ca-bundle 3
 namespace: openshift-config 4

$ oc create -f user-ca-bundle.yaml

$ oc edit proxy/cluster

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
 name: cluster
spec:
 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
 noProxy: example.com 3
 readinessEndpoints:

CHAPTER 20. CONFIGURING THE CLUSTER-WIDE PROXY

385

1

2

3

4

5

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

A proxy URL to use for creating HTTPS connections outside the cluster. The URL scheme
must be either http or https. Specify a URL for the proxy that supports the URL scheme.
For example, most proxies will report an error if they are configured to use https but they
only support http. This failure message may not propagate to the logs and can appear to
be a network connection failure instead. If using a proxy that listens for https connections
from the cluster, you may need to configure the cluster to accept the CAs and certificates
that the proxy uses.

A comma-separated list of destination domain names, domains, IP addresses or other
network CIDRs to exclude proxying.

Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com,
but not y.com. Use * to bypass proxy for all destinations. If you scale up workers that are
not included in the network defined by the networking.machineNetwork[].cidr field from
the installation configuration, you must add them to this list to prevent connection issues.

This field is ignored if neither the httpProxy or httpsProxy fields are set.

One or more URLs external to the cluster to use to perform a readiness check before
writing the httpProxy and httpsProxy values to status.

A reference to the config map in the openshift-config namespace that contains additional
CA certificates required for proxying HTTPS connections. Note that the config map must
already exist before referencing it here. This field is required unless the proxy’s identity
certificate is signed by an authority from the RHCOS trust bundle.

4. Save the file to apply the changes.

20.3. REMOVING THE CLUSTER-WIDE PROXY

The cluster Proxy object cannot be deleted. To remove the proxy from a cluster, remove all spec fields
from the Proxy object.

Prerequisites

Cluster administrator permissions

OpenShift Container Platform oc CLI tool installed

Procedure

1. Use the oc edit command to modify the proxy:

2. Remove all spec fields from the Proxy object. For example:

 - http://www.google.com 4
 - https://www.google.com
 trustedCA:
 name: user-ca-bundle 5

$ oc edit proxy/cluster

OpenShift Container Platform 4.9 Networking

386

3. Save the file to apply the changes.

Additional resources

Replacing the CA Bundle certificate

Proxy certificate customization

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
 name: cluster
spec: {}

CHAPTER 20. CONFIGURING THE CLUSTER-WIDE PROXY

387

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#ca-bundle-understanding_updating-ca-bundle
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#customization

CHAPTER 21. CONFIGURING A CUSTOM PKI
Some platform components, such as the web console, use Routes for communication and must trust
other components' certificates to interact with them. If you are using a custom public key infrastructure
(PKI), you must configure it so its privately signed CA certificates are recognized across the cluster.

You can leverage the Proxy API to add cluster-wide trusted CA certificates. You must do this either
during installation or at runtime.

During installation, configure the cluster-wide proxy. You must define your privately signed CA
certificates in the install-config.yaml file’s additionalTrustBundle setting.
The installation program generates a ConfigMap that is named user-ca-bundle that contains
the additional CA certificates you defined. The Cluster Network Operator then creates a
trusted-ca-bundle ConfigMap that merges these CA certificates with the Red Hat Enterprise
Linux CoreOS (RHCOS) trust bundle; this ConfigMap is referenced in the Proxy object’s
trustedCA field.

At runtime, modify the default Proxy object to include your privately signed CA certificates
(part of cluster’s proxy enablement workflow). This involves creating a ConfigMap that contains
the privately signed CA certificates that should be trusted by the cluster, and then modifying
the proxy resource with the trustedCA referencing the privately signed certificates' ConfigMap.

NOTE

The installer configuration’s additionalTrustBundle field and the proxy resource’s
trustedCA field are used to manage the cluster-wide trust bundle;
additionalTrustBundle is used at install time and the proxy’s trustedCA is used at
runtime.

The trustedCA field is a reference to a ConfigMap containing the custom certificate and
key pair used by the cluster component.

21.1. CONFIGURING THE CLUSTER-WIDE PROXY DURING
INSTALLATION

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS
proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by
configuring the proxy settings in the install-config.yaml file.

Prerequisites

You have an existing install-config.yaml file.

You reviewed the sites that your cluster requires access to and determined whether any of
them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to
hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to
bypass the proxy if necessary.

NOTE

OpenShift Container Platform 4.9 Networking

388

1

2

3

4

NOTE

The Proxy object status.noProxy field is populated with the values of the
networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and
networking.serviceNetwork[] fields from your installation configuration.

For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP),
Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object
status.noProxy field is also populated with the instance metadata endpoint
(169.254.169.254).

Procedure

1. Edit your install-config.yaml file and add the proxy settings. For example:

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

A proxy URL to use for creating HTTPS connections outside the cluster.

A comma-separated list of destination domain names, IP addresses, or other network
CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For
example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all
destinations.

If provided, the installation program generates a config map that is named user-ca-bundle
in the openshift-config namespace to hold the additional CA certificates. If you provide
additionalTrustBundle and at least one proxy setting, the Proxy object is configured to
reference the user-ca-bundle config map in the trustedCA field. The Cluster Network
Operator then creates a trusted-ca-bundle config map that merges the contents
specified for the trustedCA parameter with the RHCOS trust bundle. The
additionalTrustBundle field is required unless the proxy’s identity certificate is signed by
an authority from the RHCOS trust bundle.

NOTE

The installation program does not support the proxy readinessEndpoints field.

2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings

apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
 noProxy: example.com 3
additionalTrustBundle: | 4
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...

CHAPTER 21. CONFIGURING A CUSTOM PKI

389

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings
in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still
created, but it will have a nil spec.

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

21.2. ENABLING THE CLUSTER-WIDE PROXY

The Proxy object is used to manage the cluster-wide egress proxy. When a cluster is installed or
upgraded without the proxy configured, a Proxy object is still generated but it will have a nil spec. For
example:

A cluster administrator can configure the proxy for OpenShift Container Platform by modifying this
cluster Proxy object.

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

Prerequisites

Cluster administrator permissions

OpenShift Container Platform oc CLI tool installed

Procedure

1. Create a config map that contains any additional CA certificates required for proxying HTTPS
connections.

NOTE

You can skip this step if the proxy’s identity certificate is signed by an authority
from the RHCOS trust bundle.

a. Create a file called user-ca-bundle.yaml with the following contents, and provide the
values of your PEM-encoded certificates:

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
 name: cluster
spec:
 trustedCA:
 name: ""
status:

apiVersion: v1
data:

OpenShift Container Platform 4.9 Networking

390

1

2

3

4

1

2

3

This data key must be named ca-bundle.crt.

One or more PEM-encoded X.509 certificates used to sign the proxy’s identity
certificate.

The config map name that will be referenced from the Proxy object.

The config map must be in the openshift-config namespace.

b. Create the config map from this file:

2. Use the oc edit command to modify the Proxy object:

3. Configure the necessary fields for the proxy:

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

A proxy URL to use for creating HTTPS connections outside the cluster. The URL scheme
must be either http or https. Specify a URL for the proxy that supports the URL scheme.
For example, most proxies will report an error if they are configured to use https but they
only support http. This failure message may not propagate to the logs and can appear to
be a network connection failure instead. If using a proxy that listens for https connections
from the cluster, you may need to configure the cluster to accept the CAs and certificates
that the proxy uses.

A comma-separated list of destination domain names, domains, IP addresses or other
network CIDRs to exclude proxying.

 ca-bundle.crt: | 1
 <MY_PEM_ENCODED_CERTS> 2
kind: ConfigMap
metadata:
 name: user-ca-bundle 3
 namespace: openshift-config 4

$ oc create -f user-ca-bundle.yaml

$ oc edit proxy/cluster

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
 name: cluster
spec:
 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
 noProxy: example.com 3
 readinessEndpoints:
 - http://www.google.com 4
 - https://www.google.com
 trustedCA:
 name: user-ca-bundle 5

CHAPTER 21. CONFIGURING A CUSTOM PKI

391

4

5

1

Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com,
but not y.com. Use * to bypass proxy for all destinations. If you scale up workers that are
not included in the network defined by the networking.machineNetwork[].cidr field from
the installation configuration, you must add them to this list to prevent connection issues.

This field is ignored if neither the httpProxy or httpsProxy fields are set.

One or more URLs external to the cluster to use to perform a readiness check before
writing the httpProxy and httpsProxy values to status.

A reference to the config map in the openshift-config namespace that contains additional
CA certificates required for proxying HTTPS connections. Note that the config map must
already exist before referencing it here. This field is required unless the proxy’s identity
certificate is signed by an authority from the RHCOS trust bundle.

4. Save the file to apply the changes.

21.3. CERTIFICATE INJECTION USING OPERATORS

Once your custom CA certificate is added to the cluster via ConfigMap, the Cluster Network Operator
merges the user-provided and system CA certificates into a single bundle and injects the merged
bundle into the Operator requesting the trust bundle injection.

Operators request this injection by creating an empty ConfigMap with the following label:

An example of the empty ConfigMap:

Specifies the empty ConfigMap name.

The Operator mounts this ConfigMap into the container’s local trust store.

NOTE

Adding a trusted CA certificate is only needed if the certificate is not included in the Red
Hat Enterprise Linux CoreOS (RHCOS) trust bundle.

Certificate injection is not limited to Operators. The Cluster Network Operator injects certificates across
any namespace when an empty ConfigMap is created with the config.openshift.io/inject-trusted-
cabundle=true label.

The ConfigMap can reside in any namespace, but the ConfigMap must be mounted as a volume to each
container within a pod that requires a custom CA. For example:

config.openshift.io/inject-trusted-cabundle="true"

apiVersion: v1
data: {}
kind: ConfigMap
metadata:
 labels:
 config.openshift.io/inject-trusted-cabundle: "true"
 name: ca-inject 1
 namespace: apache

OpenShift Container Platform 4.9 Networking

392

1

2

ca-bundle.crt is required as the ConfigMap key.

tls-ca-bundle.pem is required as the ConfigMap path.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-example-custom-ca-deployment
 namespace: my-example-custom-ca-ns
spec:
 ...
 spec:
 ...
 containers:
 - name: my-container-that-needs-custom-ca
 volumeMounts:
 - name: trusted-ca
 mountPath: /etc/pki/ca-trust/extracted/pem
 readOnly: true
 volumes:
 - name: trusted-ca
 configMap:
 name: trusted-ca
 items:
 - key: ca-bundle.crt 1
 path: tls-ca-bundle.pem 2

CHAPTER 21. CONFIGURING A CUSTOM PKI

393

1

CHAPTER 22. LOAD BALANCING ON RHOSP

22.1. USING THE OCTAVIA OVN LOAD BALANCER PROVIDER DRIVER
WITH KURYR SDN

If your OpenShift Container Platform cluster uses Kuryr and was installed on a Red Hat OpenStack
Platform (RHOSP) 13 cloud that was later upgraded to RHOSP 16, you can configure it to use the
Octavia OVN provider driver.

IMPORTANT

Kuryr replaces existing load balancers after you change provider drivers. This process
results in some downtime.

Prerequisites

Install the RHOSP CLI, openstack.

Install the OpenShift Container Platform CLI, oc.

Verify that the Octavia OVN driver on RHOSP is enabled.

TIP

To view a list of available Octavia drivers, on a command line, enter openstack loadbalancer
provider list.

The ovn driver is displayed in the command’s output.

Procedure

To change from the Octavia Amphora provider driver to Octavia OVN:

1. Open the kuryr-config ConfigMap. On a command line, enter:

2. In the ConfigMap, delete the line that contains kuryr-octavia-provider: default. For example:

Delete this line. The cluster will regenerate it with ovn as the value.

Wait for the Cluster Network Operator to detect the modification and to redeploy the kuryr-
controller and kuryr-cni pods. This process might take several minutes.

3. Verify that the kuryr-config ConfigMap annotation is present with ovn as its value. On a

$ oc -n openshift-kuryr edit cm kuryr-config

...
kind: ConfigMap
metadata:
 annotations:
 networkoperator.openshift.io/kuryr-octavia-provider: default 1
...

OpenShift Container Platform 4.9 Networking

394

3. Verify that the kuryr-config ConfigMap annotation is present with ovn as its value. On a
command line, enter:

The ovn provider value is displayed in the output:

4. Verify that RHOSP recreated its load balancers.

a. On a command line, enter:

A single Amphora load balancer is displayed. For example:

b. Search for ovn load balancers by entering:

The remaining load balancers of the ovn type are displayed. For example:

22.2. SCALING CLUSTERS FOR APPLICATION TRAFFIC BY USING
OCTAVIA

OpenShift Container Platform clusters that run on Red Hat OpenStack Platform (RHOSP) can use the
Octavia load balancing service to distribute traffic across multiple virtual machines (VMs) or floating IP
addresses. This feature mitigates the bottleneck that single machines or addresses create.

If your cluster uses Kuryr, the Cluster Network Operator created an internal Octavia load balancer at
deployment. You can use this load balancer for application network scaling.

If your cluster does not use Kuryr, you must create your own Octavia load balancer to use it for
application network scaling.

22.2.1. Scaling clusters by using Octavia

If you want to use multiple API load balancers, or if your cluster does not use Kuryr, create an Octavia

$ oc -n openshift-kuryr edit cm kuryr-config

...
kind: ConfigMap
metadata:
 annotations:
 networkoperator.openshift.io/kuryr-octavia-provider: ovn
...

$ openstack loadbalancer list | grep amphora

a4db683b-2b7b-4988-a582-c39daaad7981 | ostest-7mbj6-kuryr-api-loadbalancer |
84c99c906edd475ba19478a9a6690efd | 172.30.0.1 | ACTIVE | amphora

$ openstack loadbalancer list | grep ovn

2dffe783-98ae-4048-98d0-32aa684664cc | openshift-apiserver-operator/metrics |
84c99c906edd475ba19478a9a6690efd | 172.30.167.119 | ACTIVE | ovn
0b1b2193-251f-4243-af39-2f99b29d18c5 | openshift-etcd/etcd |
84c99c906edd475ba19478a9a6690efd | 172.30.143.226 | ACTIVE | ovn
f05b07fc-01b7-4673-bd4d-adaa4391458e | openshift-dns-operator/metrics |
84c99c906edd475ba19478a9a6690efd | 172.30.152.27 | ACTIVE | ovn

CHAPTER 22. LOAD BALANCING ON RHOSP

395

If you want to use multiple API load balancers, or if your cluster does not use Kuryr, create an Octavia
load balancer and then configure your cluster to use it.

Prerequisites

Octavia is available on your Red Hat OpenStack Platform (RHOSP) deployment.

Procedure

1. From a command line, create an Octavia load balancer that uses the Amphora driver:

You can use a name of your choice instead of API_OCP_CLUSTER.

2. After the load balancer becomes active, create listeners:

NOTE

To view the status of the load balancer, enter openstack loadbalancer list.

3. Create a pool that uses the round robin algorithm and has session persistence enabled:

4. To ensure that control plane machines are available, create a health monitor:

5. Add the control plane machines as members of the load balancer pool:

6. Optional: To reuse the cluster API floating IP address, unset it:

7. Add either the unset API_FIP or a new address to the created load balancer VIP:

$ openstack loadbalancer create --name API_OCP_CLUSTER --vip-subnet-id
<id_of_worker_vms_subnet>

$ openstack loadbalancer listener create --name API_OCP_CLUSTER_6443 --protocol
HTTPS--protocol-port 6443 API_OCP_CLUSTER

$ openstack loadbalancer pool create --name API_OCP_CLUSTER_pool_6443 --lb-
algorithm ROUND_ROBIN --session-persistence type=<source_IP_address> --listener
API_OCP_CLUSTER_6443 --protocol HTTPS

$ openstack loadbalancer healthmonitor create --delay 5 --max-retries 4 --timeout 10 --type
TCP API_OCP_CLUSTER_pool_6443

$ for SERVER in $(MASTER-0-IP MASTER-1-IP MASTER-2-IP)
do
 openstack loadbalancer member create --address $SERVER --protocol-port 6443
API_OCP_CLUSTER_pool_6443
done

$ openstack floating ip unset $API_FIP

$ openstack floating ip set --port $(openstack loadbalancer show -c <vip_port_id> -f value
API_OCP_CLUSTER) $API_FIP

OpenShift Container Platform 4.9 Networking

396

Your cluster now uses Octavia for load balancing.

NOTE

If Kuryr uses the Octavia Amphora driver, all traffic is routed through a single Amphora
virtual machine (VM).

You can repeat this procedure to create additional load balancers, which can alleviate the
bottleneck.

22.2.2. Scaling clusters that use Kuryr by using Octavia

If your cluster uses Kuryr, associate the API floating IP address of your cluster with the pre-existing
Octavia load balancer.

Prerequisites

Your OpenShift Container Platform cluster uses Kuryr.

Octavia is available on your Red Hat OpenStack Platform (RHOSP) deployment.

Procedure

1. Optional: From a command line, to reuse the cluster API floating IP address, unset it:

2. Add either the unset API_FIP or a new address to the created load balancer VIP:

Your cluster now uses Octavia for load balancing.

NOTE

If Kuryr uses the Octavia Amphora driver, all traffic is routed through a single Amphora
virtual machine (VM).

You can repeat this procedure to create additional load balancers, which can alleviate the
bottleneck.

22.3. SCALING FOR INGRESS TRAFFIC BY USING RHOSP OCTAVIA

You can use Octavia load balancers to scale Ingress controllers on clusters that use Kuryr.

Prerequisites

Your OpenShift Container Platform cluster uses Kuryr.

Octavia is available on your RHOSP deployment.

Procedure

$ openstack floating ip unset $API_FIP

$ openstack floating ip set --port $(openstack loadbalancer show -c <vip_port_id> -f value
${OCP_CLUSTER}-kuryr-api-loadbalancer) $API_FIP

CHAPTER 22. LOAD BALANCING ON RHOSP

397

1

2

1. To copy the current internal router service, on a command line, enter:

2. In the file external_router.yaml, change the values of metadata.name and spec.type to
LoadBalancer.

Example router file

Ensure that this value is descriptive, like router-external-default.

Ensure that this value is LoadBalancer.

NOTE

You can delete timestamps and other information that is irrelevant to load balancing.

1. From a command line, create a service from the external_router.yaml file:

2. Verify that the external IP address of the service is the same as the one that is associated with
the load balancer:

a. On a command line, retrieve the external IP address of the service:

$ oc -n openshift-ingress get svc router-internal-default -o yaml > external_router.yaml

apiVersion: v1
kind: Service
metadata:
 labels:
 ingresscontroller.operator.openshift.io/owning-ingresscontroller: default
 name: router-external-default 1
 namespace: openshift-ingress
spec:
 ports:
 - name: http
 port: 80
 protocol: TCP
 targetPort: http
 - name: https
 port: 443
 protocol: TCP
 targetPort: https
 - name: metrics
 port: 1936
 protocol: TCP
 targetPort: 1936
 selector:
 ingresscontroller.operator.openshift.io/deployment-ingresscontroller: default
 sessionAffinity: None
 type: LoadBalancer 2

$ oc apply -f external_router.yaml

$ oc -n openshift-ingress get svc

OpenShift Container Platform 4.9 Networking

398

Example output

b. Retrieve the IP address of the load balancer:

Example output

c. Verify that the addresses you retrieved in the previous steps are associated with each other
in the floating IP list:

Example output

You can now use the value of EXTERNAL-IP as the new Ingress address.

NOTE

If Kuryr uses the Octavia Amphora driver, all traffic is routed through a single Amphora
virtual machine (VM).

You can repeat this procedure to create additional load balancers, which can alleviate the
bottleneck.

22.4. CONFIGURING AN EXTERNAL LOAD BALANCER

You can configure an OpenShift Container Platform cluster on Red Hat OpenStack Platform (RHOSP)
to use an external load balancer in place of the default load balancer.

Prerequisites

On your load balancer, TCP over ports 6443, 443, and 80 must be available to any users of your
system.

Load balance the API port, 6443, between each of the control plane nodes.

Load balance the application ports, 443 and 80, between all of the compute nodes.

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
router-external-default LoadBalancer 172.30.235.33 10.46.22.161
80:30112/TCP,443:32359/TCP,1936:30317/TCP 3m38s
router-internal-default ClusterIP 172.30.115.123 <none>
80/TCP,443/TCP,1936/TCP 22h

$ openstack loadbalancer list | grep router-external

| 21bf6afe-b498-4a16-a958-3229e83c002c | openshift-ingress/router-external-default |
66f3816acf1b431691b8d132cc9d793c | 172.30.235.33 | ACTIVE | octavia |

$ openstack floating ip list | grep 172.30.235.33

| e2f80e97-8266-4b69-8636-e58bacf1879e | 10.46.22.161 | 172.30.235.33 | 655e7122-
806a-4e0a-a104-220c6e17bda6 | a565e55a-99e7-4d15-b4df-f9d7ee8c9deb |
66f3816acf1b431691b8d132cc9d793c |

CHAPTER 22. LOAD BALANCING ON RHOSP

399

On your load balancer, port 22623, which is used to serve ignition startup configurations to
nodes, is not exposed outside of the cluster.

Your load balancer must be able to access every machine in your cluster. Methods to allow this
access include:

Attaching the load balancer to the cluster’s machine subnet.

Attaching floating IP addresses to machines that use the load balancer.

IMPORTANT

External load balancing services and the control plane nodes must run on the same L2
network, and on the same VLAN when using VLANs to route traffic between the load
balancing services and the control plane nodes.

Procedure

1. Enable access to the cluster from your load balancer on ports 6443, 443, and 80.
As an example, note this HAProxy configuration:

A section of a sample HAProxy configuration

2. Add records to your DNS server for the cluster API and apps over the load balancer. For
example:

3. From a command line, use curl to verify that the external load balancer and DNS configuration
are operational.

a. Verify that the cluster API is accessible:

...
listen my-cluster-api-6443
 bind 0.0.0.0:6443
 mode tcp
 balance roundrobin
 server my-cluster-master-2 192.0.2.2:6443 check
 server my-cluster-master-0 192.0.2.3:6443 check
 server my-cluster-master-1 192.0.2.1:6443 check
listen my-cluster-apps-443
 bind 0.0.0.0:443
 mode tcp
 balance roundrobin
 server my-cluster-worker-0 192.0.2.6:443 check
 server my-cluster-worker-1 192.0.2.5:443 check
 server my-cluster-worker-2 192.0.2.4:443 check
listen my-cluster-apps-80
 bind 0.0.0.0:80
 mode tcp
 balance roundrobin
 server my-cluster-worker-0 192.0.2.7:80 check
 server my-cluster-worker-1 192.0.2.9:80 check
 server my-cluster-worker-2 192.0.2.8:80 check

<load_balancer_ip_address> api.<cluster_name>.<base_domain>
<load_balancer_ip_address> apps.<cluster_name>.<base_domain>

OpenShift Container Platform 4.9 Networking

400

a. Verify that the cluster API is accessible:

If the configuration is correct, you receive a JSON object in response:

b. Verify that cluster applications are accessible:

NOTE

You can also verify application accessibility by opening the OpenShift
Container Platform console in a web browser.

If the configuration is correct, you receive an HTTP response:

$ curl https://<loadbalancer_ip_address>:6443/version --insecure

{
 "major": "1",
 "minor": "11+",
 "gitVersion": "v1.11.0+ad103ed",
 "gitCommit": "ad103ed",
 "gitTreeState": "clean",
 "buildDate": "2019-01-09T06:44:10Z",
 "goVersion": "go1.10.3",
 "compiler": "gc",
 "platform": "linux/amd64"
}

$ curl http://console-openshift-console.apps.<cluster_name>.<base_domain> -I -L --
insecure

HTTP/1.1 302 Found
content-length: 0
location: https://console-openshift-console.apps.<cluster-name>.<base domain>/
cache-control: no-cacheHTTP/1.1 200 OK
referrer-policy: strict-origin-when-cross-origin
set-cookie: csrf-
token=39HoZgztDnzjJkq/JuLJMeoKNXlfiVv2YgZc09c3TBOBU4NI6kDXaJH1LdicNhN1UsQ
Wzon4Dor9GWGfopaTEQ==; Path=/; Secure
x-content-type-options: nosniff
x-dns-prefetch-control: off
x-frame-options: DENY
x-xss-protection: 1; mode=block
date: Tue, 17 Nov 2020 08:42:10 GMT
content-type: text/html; charset=utf-8
set-cookie:
1e2670d92730b515ce3a1bb65da45062=9b714eb87e93cf34853e87a92d6894be; path=/;
HttpOnly; Secure; SameSite=None
cache-control: private

CHAPTER 22. LOAD BALANCING ON RHOSP

401

CHAPTER 23. LOAD BALANCING WITH METALLB

23.1. ABOUT METALLB AND THE METALLB OPERATOR

As a cluster administrator, you can add the MetalLB Operator to your cluster so that when a service of
type LoadBalancer is added to the cluster, MetalLB can add a fault-tolerant external IP address for the
service. The external IP address is added to the host network for your cluster.

23.1.1. When to use MetalLB

Using MetalLB is valuable when you have a bare-metal cluster, or an infrastructure that is like bare
metal, and you want fault-tolerant access to an application through an external IP address.

You must configure your networking infrastructure to ensure that network traffic for the external IP
address is routed from clients to the host network for the cluster.

After deploying MetalLB with the MetalLB Operator, when you add a service of type LoadBalancer,
MetalLB provides a platform-native load balancer.

23.1.2. MetalLB Operator custom resources

The MetalLB Operator monitors its own namespace for two custom resources:

MetalLB

When you add a MetalLB custom resource to the cluster, the MetalLB Operator deploys MetalLB on
the cluster. The Operator only supports a single instance of the custom resource. If the instance is
deleted, the Operator removes MetalLB from the cluster.

AddressPool

MetalLB requires one or more pools of IP addresses that it can assign to a service when you add a
service of type LoadBalancer. When you add an AddressPool custom resource to the cluster, the
MetalLB Operator configures MetalLB so that it can assign IP addresses from the pool. An address
pool includes a list of IP addresses. The list can be a single IP address that is set using a range, such
as 1.1.1.1-1.1.1.1, a range specified in CIDR notation, a range specified as a starting and ending address
separated by a hyphen, or a combination of the three. An address pool requires a name. The
documentation uses names like doc-example, doc-example-reserved, and doc-example-ipv6. An
address pool specifies whether MetalLB can automatically assign IP addresses from the pool or
whether the IP addresses are reserved for services that explicitly specify the pool by name.

After you add the MetalLB custom resource to the cluster and the Operator deploys MetalLB, the
MetalLB software components, controller and speaker, begin running.

23.1.3. MetalLB software components

When you install the MetalLB Operator, the metallb-operator-controller-manager deployment starts a
pod. The pod is the implementation of the Operator. The pod monitors for changes to the MetalLB
custom resource and AddressPool custom resources.

When the Operator starts an instance of MetalLB, it starts a controller deployment and a speaker
daemon set.

controller

The Operator starts the deployment and a single pod. When you add a service of type

OpenShift Container Platform 4.9 Networking

402

The Operator starts the deployment and a single pod. When you add a service of type
LoadBalancer, Kubernetes uses the controller to allocate an IP address from an address pool. In
case of a service failure, verify you have the following entry in your controller pod logs:

Example output

speaker

The Operator starts a daemon set with one speaker pod for each node in your cluster. If the
controller allocated the IP address to the service and service is still unavailable, read the speaker
pod logs. If the speaker pod is unavailable, run the oc describe pod -n command.
For layer 2 mode, after the controller allocates an IP address for the service, each speaker pod
determines if it is on the same node as an endpoint for the service. An algorithm that involves
hashing the node name and the service name is used to select a single speaker pod to announce the
load balancer IP address. The speaker uses Address Resolution Protocol (ARP) to announce IPv4
addresses and Neighbor Discovery Protocol (NDP) to announce IPv6 addresses.

Requests for the load balancer IP address are routed to the node with the speaker that announces
the IP address. After the node receives the packets, the service proxy routes the packets to an
endpoint for the service. The endpoint can be on the same node in the optimal case, or it can be on
another node. The service proxy chooses an endpoint each time a connection is established.

23.1.4. MetalLB concepts for layer 2 mode

In layer 2 mode, the speaker pod on one node announces the external IP address for a service to the
host network. From a network perspective, the node appears to have multiple IP addresses assigned to
a network interface.

NOTE

Since layer 2 mode relies on ARP and NDP, the client must be on the same subnet of the
nodes announcing the service in order for MetalLB to work. Additionally, the IP address
assigned to the service must be on the same subnet of the network used by the client to
reach the service.

The speaker pod responds to ARP requests for IPv4 services and NDP requests for IPv6.

In layer 2 mode, all traffic for a service IP address is routed through one node. After traffic enters the
node, the service proxy for the CNI network provider distributes the traffic to all the pods for the
service.

Because all traffic for a service enters through a single node in layer 2 mode, in a strict sense, MetalLB
does not implement a load balancer for layer 2. Rather, MetalLB implements a failover mechanism for
layer 2 so that when a speaker pod becomes unavailable, a speaker pod on a different node can
announce the service IP address.

When a node becomes unavailable, failover is automatic. The speaker pods on the other nodes detect
that a node is unavailable and a new speaker pod and node take ownership of the service IP address
from the failed node.

"event":"ipAllocated","ip":"172.22.0.201","msg":"IP address assigned by controller

CHAPTER 23. LOAD BALANCING WITH METALLB

403

The preceding graphic shows the following concepts related to MetalLB:

An application is available through a service that has a cluster IP on the 172.130.0.0/16 subnet.
That IP address is accessible from inside the cluster. The service also has an external IP address
that MetalLB assigned to the service, 192.168.100.200.

Nodes 1 and 3 have a pod for the application.

The speaker daemon set runs a pod on each node. The MetalLB Operator starts these pods.

Each speaker pod is a host-networked pod. The IP address for the pod is identical to the IP
address for the node on the host network.

The speaker pod on node 1 uses ARP to announce the external IP address for the service,
192.168.100.200. The speaker pod that announces the external IP address must be on the
same node as an endpoint for the service and the endpoint must be in the Ready condition.

Client traffic is routed to the host network and connects to the 192.168.100.200 IP address.
After traffic enters the node, the service proxy sends the traffic to the application pod on the
same node or another node according to the external traffic policy that you set for the service.

If node 1 becomes unavailable, the external IP address fails over to another node. On another
node that has an instance of the application pod and service endpoint, the speaker pod begins
to announce the external IP address, 192.168.100.200 and the new node receives the client
traffic. In the diagram, the only candidate is node 3.

23.1.4.1. Layer 2 and external traffic policy

With layer 2 mode, one node in your cluster receives all the traffic for the service IP address. How your
cluster handles the traffic after it enters the node is affected by the external traffic policy.

OpenShift Container Platform 4.9 Networking

404

cluster

This is the default value for spec.externalTrafficPolicy.
With the cluster traffic policy, after the node receives the traffic, the service proxy distributes the
traffic to all the pods in your service. This policy provides uniform traffic distribution across the pods,
but it obscures the client IP address and it can appear to the application in your pods that the traffic
originates from the node rather than the client.

local

With the local traffic policy, after the node receives the traffic, the service proxy only sends traffic
to the pods on the same node. For example, if the speaker pod on node A announces the external
service IP, then all traffic is sent to node A. After the traffic enters node A, the service proxy only
sends traffic to pods for the service that are also on node A. Pods for the service that are on
additional nodes do not receive any traffic from node A. Pods for the service on additional nodes act
as replicas in case failover is needed.
This policy does not affect the client IP address. Application pods can determine the client IP address
from the incoming connections.

23.1.5. Limitations and restrictions

23.1.5.1. Support for layer 2 only

When you install and configure MetalLB on OpenShift Container Platform 4.9 with the MetalLB
Operator, support is restricted to layer 2 mode only. In comparison, the open source MetalLB project
offers load balancing for layer 2 mode and a mode for layer 3 that uses border gateway protocol (BGP).

23.1.5.2. Support for single stack networking

Although you can specify IPv4 addresses and IPv6 addresses in the same address pool, MetalLB only
assigns one IP address for the load balancer.

When MetalLB is deployed on a cluster that is configured for dual-stack networking, MetalLB assigns
one IPv4 or IPv6 address for the load balancer, depending on the IP address family of the cluster IP for
the service. For example, if the cluster IP of the service is IPv4, then MetalLB assigns an IPv4 address
for the load balancer. MetalLB does not assign an IPv4 and an IPv6 address simultaneously.

IPv6 is only supported for clusters that use the OVN-Kubernetes network provider.

23.1.5.3. Infrastructure considerations for MetalLB

MetalLB is primarily useful for on-premise, bare metal installations because these installations do not
include a native load-balancer capability. In addition to bare metal installations, installations of
OpenShift Container Platform on some infrastructures might not include a native load-balancer
capability. For example, the following infrastructures can benefit from adding the MetalLB Operator:

Bare metal

VMware vSphere

MetalLB Operator and MetalLB are supported with the OpenShift SDN and OVN-Kubernetes network
providers.

23.1.5.4. Limitations for layer 2 mode

CHAPTER 23. LOAD BALANCING WITH METALLB

405

23.1.5.4.1. Single-node bottleneck

MetalLB routes all traffic for a service through a single node, the node can become a bottleneck and
limit performance.

Layer 2 mode limits the ingress bandwidth for your service to the bandwidth of a single node. This is a
fundamental limitation of using ARP and NDP to direct traffic.

23.1.5.4.2. Slow failover performance

Failover between nodes depends on cooperation from the clients. When a failover occurs, MetalLB
sends gratuitous ARP packets to notify clients that the MAC address associated with the service IP has
changed.

Most client operating systems handle gratuitous ARP packets correctly and update their neighbor
caches promptly. When clients update their caches quickly, failover completes within a few seconds.
Clients typically fail over to a new node within 10 seconds. However, some client operating systems either
do not handle gratuitous ARP packets at all or have outdated implementations that delay the cache
update.

Recent versions of common operating systems such as Windows, macOS, and Linux implement layer 2
failover correctly. Issues with slow failover are not expected except for older and less common client
operating systems.

To minimize the impact from a planned failover on outdated clients, keep the old node running for a few
minutes after flipping leadership. The old node can continue to forward traffic for outdated clients until
their caches refresh.

During an unplanned failover, the service IPs are unreachable until the outdated clients refresh their
cache entries.

23.1.5.5. Incompatibility with IP failover

MetalLB is incompatible with the IP failover feature. Before you install the MetalLB Operator, remove IP
failover.

23.1.6. Additional resources

Comparison: Fault tolerant access to external IP addresses

Removing IP failover

23.2. INSTALLING THE METALLB OPERATOR

As a cluster administrator, you can add the MetallB Operator so that the Operator can manage the
lifecycle for an instance of MetalLB on your cluster.

The installation procedures use the metallb-system namespace. You can install the Operator and
configure custom resources in a different namespace. The Operator starts MetalLB in the same
namespace that the Operator is installed in.

MetalLB and IP failover are incompatible. If you configured IP failover for your cluster, perform the steps
to remove IP failover before you install the Operator.

23.2.1. Installing from OperatorHub using the web console

OpenShift Container Platform 4.9 Networking

406

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#overview-traffic-comparision_overview-traffic
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-ipfailover-remove_configuring-ipfailover
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-ipfailover-remove_configuring-ipfailover

You can install and subscribe to an Operator from OperatorHub using the OpenShift Container Platform
web console.

Procedure

1. Navigate in the web console to the Operators → OperatorHub page.

2. Scroll or type a keyword into the Filter by keyword box to find the Operator you want. For
example, type metallb to find the MetalLB Operator.
You can also filter options by Infrastructure Features. For example, select Disconnected if you
want to see Operators that work in disconnected environments, also known as restricted
network environments.

3. Select the Operator to display additional information.

NOTE

Choosing a Community Operator warns that Red Hat does not certify
Community Operators; you must acknowledge the warning before continuing.

4. Read the information about the Operator and click Install.

5. On the Install Operator page:

a. Select an Update Channel (if more than one is available).

b. Select Automatic or Manual approval strategy, as described earlier.

6. Click Install to make the Operator available to the selected namespaces on this OpenShift
Container Platform cluster.

a. If you selected a Manual approval strategy, the upgrade status of the subscription remains
Upgrading until you review and approve the install plan.
After approving on the Install Plan page, the subscription upgrade status moves to Up to
date.

b. If you selected an Automatic approval strategy, the upgrade status should resolve to Up to
date without intervention.

7. After the upgrade status of the subscription is Up to date, select Operators → Installed
Operators to verify that the cluster service version (CSV) of the installed Operator eventually
shows up. The Status should ultimately resolve to InstallSucceeded in the relevant namespace.

NOTE

For the All namespaces…​ installation mode, the status resolves to
InstallSucceeded in the openshift-operators namespace, but the status is
Copied if you check in other namespaces.

If it does not:

a. Check the logs in any pods in the openshift-operators project (or other relevant
namespace if A specific namespace…​ installation mode was selected) on the Workloads →
Pods page that are reporting issues to troubleshoot further.

CHAPTER 23. LOAD BALANCING WITH METALLB

407

23.2.2. Installing from OperatorHub using the CLI

Instead of using the OpenShift Container Platform web console, you can install an Operator from
OperatorHub using the CLI. Use the oc command to create or update a Subscription object.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Confirm that the MetalLB Operator is available:

Example output

2. Create the metallb-system namespace:

3. Create an Operator group custom resource in the namespace:

4. Confirm the Operator group is installed in the namespace:

Example output

$ oc get packagemanifests -n openshift-marketplace metallb-operator

NAME CATALOG AGE
metallb-operator Red Hat Operators 9h

$ cat << EOF | oc apply -f -
apiVersion: v1
kind: Namespace
metadata:
 name: metallb-system
EOF

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: metallb-operator
 namespace: metallb-system
spec:
 targetNamespaces:
 - metallb-system
EOF

$ oc get operatorgroup -n metallb-system

NAME AGE
metallb-operator 14m

OpenShift Container Platform 4.9 Networking

408

5. Subscribe to the MetalLB Operator.

a. Run the following command to get the OpenShift Container Platform major and minor
version. You use the values to set the channel value in the next step.

b. To create a subscription custom resource for the Operator, enter the following command:

6. Confirm the install plan is in the namespace:

Example output

7. To verify that the Operator is installed, enter the following command:

Example output

23.2.3. Starting MetalLB on your cluster

After you install the Operator, you need to configure a single instance of a MetalLB custom resource.
After you configure the custom resource, the Operator starts MetalLB on your cluster.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

$ OC_VERSION=$(oc version -o yaml | grep openshiftVersion | \
 grep -o '[0-9]*[.][0-9]*' | head -1)

$ cat << EOF| oc apply -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: metallb-operator-sub
 namespace: metallb-system
spec:
 channel: "${OC_VERSION}"
 name: metallb-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

$ oc get installplan -n metallb-system

NAME CSV APPROVAL APPROVED
install-wzg94 metallb-operator.4.9.0-nnnnnnnnnnnn Automatic true

$ oc get clusterserviceversion -n metallb-system \
 -o custom-columns=Name:.metadata.name,Phase:.status.phase

Name Phase
metallb-operator.4.9.0-nnnnnnnnnnnn Succeeded

CHAPTER 23. LOAD BALANCING WITH METALLB

409

Install the MetalLB Operator.

Procedure

1. Create a single instance of a MetalLB custom resource:

Verification

Confirm that the deployment for the MetalLB controller and the daemon set for the MetalLB speaker
are running.

1. Check that the deployment for the controller is running:

Example output

2. Check that the daemon set for the speaker is running:

Example output

The example output indicates 6 speaker pods. The number of speaker pods in your cluster
might differ from the example output. Make sure the output indicates one pod for each node in
your cluster.

23.2.4. Next steps

Configuring MetalLB address pools

23.3. CONFIGURING METALLB ADDRESS POOLS

As a cluster administrator, you can add, modify, and delete address pools. The MetalLB Operator uses
the address pool custom resources to set the IP addresses that MetalLB can assign to services.

23.3.1. About the address pool custom resource

$ cat << EOF | oc apply -f -
apiVersion: metallb.io/v1beta1
kind: MetalLB
metadata:
 name: metallb
 namespace: metallb-system
EOF

$ oc get deployment -n metallb-system controller

NAME READY UP-TO-DATE AVAILABLE AGE
controller 1/1 1 1 11m

$ oc get daemonset -n metallb-system speaker

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE
SELECTOR AGE
speaker 6 6 6 6 6 kubernetes.io/os=linux 18m

OpenShift Container Platform 4.9 Networking

410

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#metallb-configure-address-pools

The fields for the address pool custom resource are described in the following table.

Table 23.1. MetalLB address pool custom resource

Field Type Description

metadata.name string Specifies the name for the address pool. When you add a
service, you can specify this pool name in the
metallb.universe.tf/address-pool annotation to select an IP
address from a specific pool. The names doc-example, silver,
and gold are used throughout the documentation.

metadata.name
space

string Specifies the namespace for the address pool. Specify the same
namespace that the MetalLB Operator uses.

spec.protocol string Specifies the protocol for announcing the load balancer IP
address to peer nodes. The only supported value is layer2.

spec.autoAssig
n

boolean Optional: Specifies whether MetalLB automatically assigns IP
addresses from this pool. Specify false if you want explicitly
request an IP address from this pool with the
metallb.universe.tf/address-pool annotation. The default
value is true.

spec.addresses array Specifies a list of IP addresses for MetalLB to assign to services.
You can specify multiple ranges in a single pool. Specify each
range in CIDR notation or as starting and ending IP addresses
separated with a hyphen.

23.3.2. Configuring an address pool

As a cluster administrator, you can add address pools to your cluster to control the IP addresses that
MetaLLB can assign to load-balancer services.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a file, such as addresspool.yaml, with content like the following example:

apiVersion: metallb.io/v1alpha1
kind: AddressPool
metadata:
 namespace: metallb-system
 name: doc-example
spec:
 protocol: layer2

CHAPTER 23. LOAD BALANCING WITH METALLB

411

2. Apply the configuration for the address pool:

Verification

View the address pool:

Example output

Confirm that the address pool name, such as doc-example, and the IP address ranges appear in the
output.

23.3.3. Example address pool configurations

23.3.3.1. Example: IPv4 and CIDR ranges

You can specify a range of IP addresses in CIDR notation. You can combine CIDR notation with the
notation that uses a hyphen to separate lower and upper bounds.

 addresses:
 - 203.0.113.1-203.0.113.10
 - 203.0.113.65-203.0.113.75

$ oc apply -f addresspool.yaml

$ oc describe -n metallb-system addresspool doc-example

Name: doc-example
Namespace: metallb-system
Labels: <none>
Annotations: <none>
API Version: metallb.io/v1alpha1
Kind: AddressPool
Metadata:
 ...
Spec:
 Addresses:
 203.0.113.1-203.0.113.10
 203.0.113.65-203.0.113.75
 Auto Assign: true
 Protocol: layer2
Events: <none>

apiVersion: metallb.io/v1beta1
kind: AddressPool
metadata:
 name: doc-example-cidr
 namespace: metallb-system
spec:
 protocol: layer2
 addresses:
 - 192.168.100.0/24
 - 192.168.200.0/24
 - 192.168.255.1-192.168.255.5

OpenShift Container Platform 4.9 Networking

412

23.3.3.2. Example: Reserve IP addresses

You can set the autoAssign field to false to prevent MetalLB from automatically assigning the IP
addresses from the pool. When you add a service, you can request a specific IP address from the pool or
you can specify the pool name in an annotation to request any IP address from the pool.

23.3.3.3. Example: IPv6 address pool

You can add address pools that use IPv6. The following example shows a single IPv6 range. However,
you can specify multiple ranges in the addresses list, just like several IPv4 examples.

23.3.4. Next steps

Configuring services to use MetalLB

23.4. CONFIGURING SERVICES TO USE METALLB

As a cluster administrator, when you add a service of type LoadBalancer, you can control how MetalLB
assigns an IP address.

23.4.1. Request a specific IP address

Like some other load-balancer implementations, MetalLB accepts the spec.loadBalancerIP field in the
service specification.

If the requested IP address is within a range from any address pool, MetalLB assigns the requested IP
address. If the requested IP address is not within any range, MetalLB reports a warning.

Example service YAML for a specific IP address

apiVersion: metallb.io/v1beta1
kind: AddressPool
metadata:
 name: doc-example-reserved
 namespace: metallb-system
spec:
 protocol: layer2
 addresses:
 - 10.0.100.0/28
 autoAssign: false

apiVersion: metallb.io/v1beta1
kind: AddressPool
metadata:
 name: doc-example-ipv6
 namespace: metallb-system
spec:
 protocol: layer2
 addresses:
 - 2002:2:2::1-2002:2:2::100

apiVersion: v1
kind: Service

CHAPTER 23. LOAD BALANCING WITH METALLB

413

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#metallb-configure-services

If MetalLB cannot assign the requested IP address, the EXTERNAL-IP for the service reports
<pending> and running oc describe service <service_name> includes an event like the following
example.

Example event when MetalLB cannot assign a requested IP address

23.4.2. Request an IP address from a specific pool

To assign an IP address from a specific range, but you are not concerned with the specific IP address,
then you can use the metallb.universe.tf/address-pool annotation to request an IP address from the
specified address pool.

Example service YAML for an IP address from a specific pool

If the address pool that you specify for <address_pool_name> does not exist, MetalLB attempts to
assign an IP address from any pool that permits automatic assignment.

23.4.3. Accept any IP address
By default, address pools are configured to permit automatic assignment. MetalLB assigns an IP address

metadata:
 name: <service_name>
 annotations:
 metallb.universe.tf/address-pool: <address_pool_name>
spec:
 selector:
 <label_key>: <label_value>
 ports:
 - port: 8080
 targetPort: 8080
 protocol: TCP
 type: LoadBalancer
 loadBalancerIP: <ip_address>

 ...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning AllocationFailed 3m16s metallb-controller Failed to allocate IP for "default/invalid-
request": "4.3.2.1" is not allowed in config

apiVersion: v1
kind: Service
metadata:
 name: <service_name>
 annotations:
 metallb.universe.tf/address-pool: <address_pool_name>
spec:
 selector:
 <label_key>: <label_value>
 ports:
 - port: 8080
 targetPort: 8080
 protocol: TCP
 type: LoadBalancer

OpenShift Container Platform 4.9 Networking

414

By default, address pools are configured to permit automatic assignment. MetalLB assigns an IP address
from these address pools.

To accept any IP address from any pool that is configured for automatic assignment, no special
annotation or configuration is required.

Example service YAML for accepting any IP address

23.4.4. Share a specific IP address

By default, services do not share IP addresses. However, if you need to colocate services on a single IP
address, you can enable selective IP sharing by adding the metallb.universe.tf/allow-shared-ip
annotation to the services.

apiVersion: v1
kind: Service
metadata:
 name: <service_name>
spec:
 selector:
 <label_key>: <label_value>
 ports:
 - port: 8080
 targetPort: 8080
 protocol: TCP
 type: LoadBalancer

apiVersion: v1
kind: Service
metadata:
 name: service-http
 annotations:
 metallb.universe.tf/address-pool: doc-example
 metallb.universe.tf/allow-shared-ip: "web-server-svc" 1
spec:
 ports:
 - name: http
 port: 80 2
 protocol: TCP
 targetPort: 8080
 selector:
 <label_key>: <label_value> 3
 type: LoadBalancer
 loadBalancerIP: 172.31.249.7 4

apiVersion: v1
kind: Service
metadata:
 name: service-https
 annotations:
 metallb.universe.tf/address-pool: doc-example
 metallb.universe.tf/allow-shared-ip: "web-server-svc" 5
spec:
 ports:

CHAPTER 23. LOAD BALANCING WITH METALLB

415

1 5

2 6

3 7

4 8

Specify the same value for the metallb.universe.tf/allow-shared-ip annotation. This value is
referred to as the sharing key .

Specify different port numbers for the services.

Specify identical pod selectors if you must specify externalTrafficPolicy: local so the services
send traffic to the same set of pods. If you use the cluster external traffic policy, then the pod
selectors do not need to be identical.

Optional: If you specify the three preceding items, MetalLB might colocate the services on the
same IP address. To ensure that services share an IP address, specify the IP address to share.

By default, Kubernetes does not allow multiprotocol load balancer services. This limitation would
normally make it impossible to run a service like DNS that needs to listen on both TCP and UDP. To
work around this limitation of Kubernetes with MetalLB, create two services:

For one service, specify TCP and for the second service, specify UDP.

In both services, specify the same pod selector.

Specify the same sharing key and spec.loadBalancerIP value to colocate the TCP and UDP
services on the same IP address.

23.4.5. Configuring a service with MetalLB

You can configure a load-balancing service to use an external IP address from an address pool.

Prerequisites

Install the OpenShift CLI (oc).

Install the MetalLB Operator and start MetalLB.

Configure at least one address pool.

Configure your network to route traffic from the clients to the host network for the cluster.

Procedure

1. Create a <service_name>.yaml file. In the file, ensure that the spec.type field is set to
LoadBalancer.
Refer to the examples for information about how to request the external IP address that
MetalLB assigns to the service.

2. Create the service:

 - name: https
 port: 443 6
 protocol: TCP
 targetPort: 8080
 selector:
 <label_key>: <label_value> 7
 type: LoadBalancer
 loadBalancerIP: 172.31.249.7 8

OpenShift Container Platform 4.9 Networking

416

Example output

Verification

Describe the service:

Example output

Name: <service_name>
Namespace: default
Labels: <none>
Annotations: metallb.universe.tf/address-pool: doc-example <.>
Selector: app=service_name
Type: LoadBalancer <.>
IP Family Policy: SingleStack
IP Families: IPv4
IP: 10.105.237.254
IPs: 10.105.237.254
LoadBalancer Ingress: 192.168.100.5 <.>
Port: <unset> 80/TCP
TargetPort: 8080/TCP
NodePort: <unset> 30550/TCP
Endpoints: 10.244.0.50:8080
Session Affinity: None
External Traffic Policy: Cluster
Events: <.>
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal nodeAssigned 32m (x2 over 32m) metallb-speaker announcing from node "
<node_name>"

<.> The annotation is present if you request an IP address from a specific pool. <.> The service
type must indicate LoadBalancer. <.> The load-balancer ingress field indicates the external IP
address if the service is assigned correctly. <.> The events field indicates the node name that is
assigned to announce the external IP address. If you experience an error, the events field
indicates the reason for the error.

$ oc apply -f <service_name>.yaml

service/<service_name> created

$ oc describe service <service_name>

CHAPTER 23. LOAD BALANCING WITH METALLB

417

CHAPTER 24. ASSOCIATING SECONDARY INTERFACES
METRICS TO NETWORK ATTACHMENTS

24.1. EXTENDING SECONDARY NETWORK METRICS FOR
MONITORING

Secondary devices, or interfaces, are used for different purposes. It is important to have a way to classify
them to be able to aggregate the metrics for secondary devices with the same classification.

Exposed metrics contain the interface but do not specify where the interface originates. This is workable
when there are no additional interfaces. However, if secondary interfaces are added, it can be difficult to
use the metrics since it is hard to identify interfaces using only interface names.

When adding secondary interfaces, their names depend on the order in which they are added, and
different secondary interfaces might belong to different networks and can be used for different
purposes.

With pod_network_name_info it is possible to extend the current metrics with additional information
that identifies the interface type. In this way, it is possible to aggregate the metrics and to add specific
alarms to specific interface types.

The network type is generated using the name of the related NetworkAttachmentDefinition, that in
turn is used to differentiate different classes of secondary networks. For example, different interfaces
belonging to different networks or using different CNIs use different network attachment definition
names.

24.1.1. Network Metrics Daemon

The Network Metrics Daemon is a daemon component that collects and publishes network related
metrics.

The kubelet is already publishing network related metrics you can observe. These metrics are:

container_network_receive_bytes_total

container_network_receive_errors_total

container_network_receive_packets_total

container_network_receive_packets_dropped_total

container_network_transmit_bytes_total

container_network_transmit_errors_total

container_network_transmit_packets_total

container_network_transmit_packets_dropped_total

The labels in these metrics contain, among others:

Pod name

Pod namespace

OpenShift Container Platform 4.9 Networking

418

Interface name (such as eth0)

These metrics work well until new interfaces are added to the pod, for example via Multus, as it is not
clear what the interface names refer to.

The interface label refers to the interface name, but it is not clear what that interface is meant for. In
case of many different interfaces, it would be impossible to understand what network the metrics you are
monitoring refer to.

This is addressed by introducing the new pod_network_name_info described in the following section.

24.1.2. Metrics with network name

This daemonset publishes a pod_network_name_info gauge metric, with a fixed value of 0:

The network name label is produced using the annotation added by Multus. It is the concatenation of the
namespace the network attachment definition belongs to, plus the name of the network attachment
definition.

The new metric alone does not provide much value, but combined with the network related
container_network_* metrics, it offers better support for monitoring secondary networks.

Using a promql query like the following ones, it is possible to get a new metric containing the value and
the network name retrieved from the k8s.v1.cni.cncf.io/networks-status annotation:

pod_network_name_info{interface="net0",namespace="namespacename",network_name="nadname
space/firstNAD",pod="podname"} 0

(container_network_receive_bytes_total) + on(namespace,pod,interface) group_left(network_name) (
pod_network_name_info)
(container_network_receive_errors_total) + on(namespace,pod,interface) group_left(network_name) (
pod_network_name_info)
(container_network_receive_packets_total) + on(namespace,pod,interface)
group_left(network_name) (pod_network_name_info)
(container_network_receive_packets_dropped_total) + on(namespace,pod,interface)
group_left(network_name) (pod_network_name_info)
(container_network_transmit_bytes_total) + on(namespace,pod,interface) group_left(network_name)
(pod_network_name_info)
(container_network_transmit_errors_total) + on(namespace,pod,interface) group_left(network_name)
(pod_network_name_info)
(container_network_transmit_packets_total) + on(namespace,pod,interface)
group_left(network_name) (pod_network_name_info)
(container_network_transmit_packets_dropped_total) + on(namespace,pod,interface)
group_left(network_name)

CHAPTER 24. ASSOCIATING SECONDARY INTERFACES METRICS TO NETWORK ATTACHMENTS

419

https://github.com/intel/multus-cni

	Table of Contents
	CHAPTER 1. UNDERSTANDING NETWORKING
	1.1. OPENSHIFT CONTAINER PLATFORM DNS
	1.2. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR
	1.2.1. Comparing routes and Ingress

	1.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM NETWORKING

	CHAPTER 2. ACCESSING HOSTS
	2.1. ACCESSING HOSTS ON AMAZON WEB SERVICES IN AN INSTALLER-PROVISIONED INFRASTRUCTURE CLUSTER

	CHAPTER 3. NETWORKING OPERATORS OVERVIEW
	3.1. CLUSTER NETWORK OPERATOR
	3.2. DNS OPERATOR
	3.3. INGRESS OPERATOR

	CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	4.1. CLUSTER NETWORK OPERATOR
	4.2. VIEWING THE CLUSTER NETWORK CONFIGURATION
	4.3. VIEWING CLUSTER NETWORK OPERATOR STATUS
	4.4. VIEWING CLUSTER NETWORK OPERATOR LOGS
	4.5. CLUSTER NETWORK OPERATOR CONFIGURATION
	4.5.1. Cluster Network Operator configuration object
	defaultNetwork object configuration
	kubeProxyConfig object configuration

	4.5.2. Cluster Network Operator example configuration

	4.6. ADDITIONAL RESOURCES

	CHAPTER 5. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	5.1. DNS OPERATOR
	5.2. CHANGING THE DNS OPERATOR MANAGEMENTSTATE
	5.3. CONTROLLING DNS POD PLACEMENT
	5.4. VIEW THE DEFAULT DNS
	5.5. USING DNS FORWARDING
	5.6. DNS OPERATOR STATUS
	5.7. DNS OPERATOR LOGS

	CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	6.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR
	6.2. THE INGRESS CONFIGURATION ASSET
	6.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS
	6.3.1. Ingress Controller TLS security profiles
	6.3.1.1. Understanding TLS security profiles
	6.3.1.2. Configuring the TLS security profile for the Ingress Controller
	6.3.1.3. Configuring mutual TLS authentication

	6.3.2. Ingress controller endpoint publishing strategy

	6.4. VIEW THE DEFAULT INGRESS CONTROLLER
	6.5. VIEW INGRESS OPERATOR STATUS
	6.6. VIEW INGRESS CONTROLLER LOGS
	6.7. VIEW INGRESS CONTROLLER STATUS
	6.8. CONFIGURING THE INGRESS CONTROLLER
	6.8.1. Setting a custom default certificate
	6.8.2. Removing a custom default certificate
	6.8.3. Scaling an Ingress Controller
	6.8.4. Configuring Ingress access logging
	6.8.5. Setting Ingress Controller thread count
	6.8.6. Ingress Controller sharding
	6.8.6.1. Configuring Ingress Controller sharding by using route labels
	6.8.6.2. Configuring Ingress Controller sharding by using namespace labels

	6.8.7. Configuring an Ingress Controller to use an internal load balancer
	6.8.8. Configuring global access for an Ingress Controller on GCP
	6.8.9. Configuring the default Ingress Controller for your cluster to be internal
	6.8.10. Configuring the route admission policy
	6.8.11. Using wildcard routes
	6.8.12. Using X-Forwarded headers
	Example use cases

	6.8.13. Enabling HTTP/2 Ingress connectivity
	6.8.14. Configuring the PROXY protocol for an Ingress Controller
	6.8.15. Specifying an alternative cluster domain using the appsDomain option
	6.8.16. Converting HTTP header case
	6.8.17. Customizing HAProxy error code response pages

	6.9. ADDITIONAL RESOURCES

	CHAPTER 7. VERIFYING CONNECTIVITY TO AN ENDPOINT
	7.1. CONNECTION HEALTH CHECKS PERFORMED
	7.2. IMPLEMENTATION OF CONNECTION HEALTH CHECKS
	7.3. PODNETWORKCONNECTIVITYCHECK OBJECT FIELDS
	Connection log fields

	7.4. VERIFYING NETWORK CONNECTIVITY FOR AN ENDPOINT

	CHAPTER 8. CONFIGURING THE NODE PORT SERVICE RANGE
	8.1. PREREQUISITES
	8.2. EXPANDING THE NODE PORT RANGE
	8.3. ADDITIONAL RESOURCES

	CHAPTER 9. CONFIGURING IP FAILOVER
	9.1. IP FAILOVER ENVIRONMENT VARIABLES
	9.2. CONFIGURING IP FAILOVER
	9.3. ABOUT VIRTUAL IP ADDRESSES
	9.4. CONFIGURING CHECK AND NOTIFY SCRIPTS
	9.5. CONFIGURING VRRP PREEMPTION
	9.6. ABOUT VRRP ID OFFSET
	9.7. CONFIGURING IP FAILOVER FOR MORE THAN 254 ADDRESSES
	9.8. HIGH AVAILABILITY FOR INGRESSIP
	9.9. REMOVING IP FAILOVER

	CHAPTER 10. USING THE STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON A BARE METAL CLUSTER
	10.1. SUPPORT FOR STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON OPENSHIFT CONTAINER PLATFORM
	10.1.1. Example configurations using SCTP protocol

	10.2. ENABLING STREAM CONTROL TRANSMISSION PROTOCOL (SCTP)
	10.3. VERIFYING STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) IS ENABLED

	CHAPTER 11. USING PTP HARDWARE
	11.1. ABOUT PTP HARDWARE
	11.2. ABOUT PTP
	11.2.1. Elements of a PTP domain
	11.2.2. Advantages of PTP over NTP

	11.3. INSTALLING THE PTP OPERATOR USING THE CLI
	11.4. INSTALLING THE PTP OPERATOR USING THE WEB CONSOLE
	11.5. AUTOMATED DISCOVERY OF PTP NETWORK DEVICES
	11.6. CONFIGURING LINUXPTP SERVICES AS ORDINARY CLOCK
	11.7. CONFIGURING LINUXPTP SERVICES AS BOUNDARY CLOCK
	11.8. CONFIGURING FIFO PRIORITY SCHEDULING FOR PTP HARDWARE
	11.9. TROUBLESHOOTING COMMON PTP OPERATOR ISSUES
	11.10. PTP HARDWARE FAST EVENT NOTIFICATIONS FRAMEWORK
	11.10.1. About PTP and clock synchronization error events
	11.10.2. About the PTP fast event notifications framework
	11.10.3. Installing the AMQ messaging bus
	11.10.4. Configuring the PTP fast event notifications publisher
	11.10.5. Subscribing DU applications to PTP events REST API reference
	11.10.5.1. api/cloudNotifications/v1/subscriptions
	11.10.5.2. api/cloudNotifications/v1/subscriptions/<subscription_id>
	11.10.5.3. api/cloudNotifications/v1/subscriptions/status/<subscription_id>
	11.10.5.4. api/cloudNotifications/v1/health/

	11.10.6. Monitoring PTP fast event metrics using the CLI
	11.10.7. Monitoring PTP fast event metrics in the web console

	CHAPTER 12. NETWORK POLICY
	12.1. ABOUT NETWORK POLICY
	12.1.1. About network policy
	12.1.2. Optimizations for network policy
	12.1.3. Next steps
	12.1.4. Additional resources

	12.2. LOGGING NETWORK POLICY EVENTS
	12.2.1. Network policy audit logging
	12.2.2. Network policy audit configuration
	12.2.3. Configuring network policy auditing for a cluster
	12.2.4. Enabling network policy audit logging for a namespace
	12.2.5. Disabling network policy audit logging for a namespace
	12.2.6. Additional resources

	12.3. CREATING A NETWORK POLICY
	12.3.1. Creating a network policy
	12.3.2. Example NetworkPolicy object
	12.3.3. Additional resources

	12.4. VIEWING A NETWORK POLICY
	12.4.1. Viewing network policies
	12.4.2. Example NetworkPolicy object

	12.5. EDITING A NETWORK POLICY
	12.5.1. Editing a network policy
	12.5.2. Example NetworkPolicy object
	12.5.3. Additional resources

	12.6. DELETING A NETWORK POLICY
	12.6.1. Deleting a network policy

	12.7. DEFINING A DEFAULT NETWORK POLICY FOR PROJECTS
	12.7.1. Modifying the template for new projects
	12.7.2. Adding network policies to the new project template

	12.8. CONFIGURING MULTITENANT ISOLATION WITH NETWORK POLICY
	12.8.1. Configuring multitenant isolation by using network policy
	12.8.2. Next steps
	12.8.3. Additional resources

	CHAPTER 13. MULTIPLE NETWORKS
	13.1. UNDERSTANDING MULTIPLE NETWORKS
	13.1.1. Usage scenarios for an additional network
	13.1.2. Additional networks in OpenShift Container Platform

	13.2. CONFIGURING AN ADDITIONAL NETWORK
	13.2.1. Approaches to managing an additional network
	13.2.2. Configuration for an additional network attachment
	13.2.2.1. Configuration of an additional network through the Cluster Network Operator
	13.2.2.2. Configuration of an additional network from a YAML manifest

	13.2.3. Configurations for additional network types
	13.2.3.1. Configuration for a bridge additional network
	13.2.3.2. Configuration for a host device additional network
	13.2.3.3. Configuration for an IPVLAN additional network
	13.2.3.4. Configuration for a MACVLAN additional network

	13.2.4. Configuration of IP address assignment for an additional network
	13.2.4.1. Static IP address assignment configuration
	13.2.4.2. Dynamic IP address (DHCP) assignment configuration
	13.2.4.3. Dynamic IP address assignment configuration with Whereabouts

	13.2.5. Creating an additional network attachment with the Cluster Network Operator
	13.2.6. Creating an additional network attachment by applying a YAML manifest

	13.3. ABOUT VIRTUAL ROUTING AND FORWARDING
	13.3.1. About virtual routing and forwarding
	13.3.1.1. Benefits of secondary networks for pods for telecommunications operators

	13.4. CONFIGURING MULTI-NETWORK POLICY
	13.4.1. Differences between multi-network policy and network policy
	13.4.2. Enabling multi-network policy for the cluster
	13.4.3. Working with multi-network policy
	13.4.3.1. Prerequisites
	13.4.3.2. Creating a multi-network policy
	13.4.3.3. Editing a multi-network policy
	13.4.3.4. Viewing multi-network policies
	13.4.3.5. Deleting a multi-network policy

	13.4.4. Additional resources

	13.5. ATTACHING A POD TO AN ADDITIONAL NETWORK
	13.5.1. Adding a pod to an additional network
	13.5.1.1. Specifying pod-specific addressing and routing options

	13.6. REMOVING A POD FROM AN ADDITIONAL NETWORK
	13.6.1. Removing a pod from an additional network

	13.7. EDITING AN ADDITIONAL NETWORK
	13.7.1. Modifying an additional network attachment definition

	13.8. REMOVING AN ADDITIONAL NETWORK
	13.8.1. Removing an additional network attachment definition

	13.9. ASSIGNING A SECONDARY NETWORK TO A VRF
	13.9.1. Assigning a secondary network to a VRF
	13.9.1.1. Creating an additional network attachment with the CNI VRF plugin

	CHAPTER 14. HARDWARE NETWORKS
	14.1. ABOUT SINGLE ROOT I/O VIRTUALIZATION (SR-IOV) HARDWARE NETWORKS
	14.1.1. Components that manage SR-IOV network devices
	14.1.1.1. Supported platforms
	14.1.1.2. Supported devices
	14.1.1.3. Automated discovery of SR-IOV network devices
	14.1.1.4. Example use of a virtual function in a pod
	14.1.1.5. DPDK library for use with container applications
	14.1.1.6. Huge pages resource injection for Downward API

	14.1.2. Next steps

	14.2. INSTALLING THE SR-IOV NETWORK OPERATOR
	14.2.1. Installing SR-IOV Network Operator
	14.2.1.1. CLI: Installing the SR-IOV Network Operator
	14.2.1.2. Web console: Installing the SR-IOV Network Operator

	14.2.2. Next steps

	14.3. CONFIGURING THE SR-IOV NETWORK OPERATOR
	14.3.1. Configuring the SR-IOV Network Operator
	14.3.1.1. SR-IOV Network Operator config custom resource
	14.3.1.2. About the Network Resources Injector
	14.3.1.3. About the SR-IOV Network Operator admission controller webhook
	14.3.1.4. About custom node selectors
	14.3.1.5. Disabling or enabling the Network Resources Injector
	14.3.1.6. Disabling or enabling the SR-IOV Network Operator admission controller webhook
	14.3.1.7. Configuring a custom NodeSelector for the SR-IOV Network Config daemon
	14.3.1.8. Configuring the SR-IOV Network Operator for single node installations

	14.3.2. Next steps

	14.4. CONFIGURING AN SR-IOV NETWORK DEVICE
	14.4.1. SR-IOV network node configuration object
	14.4.1.1. SR-IOV network node configuration examples
	14.4.1.2. Virtual function (VF) partitioning for SR-IOV devices

	14.4.2. Configuring SR-IOV network devices
	14.4.3. Troubleshooting SR-IOV configuration
	14.4.4. Assigning an SR-IOV network to a VRF
	14.4.4.1. Creating an additional SR-IOV network attachment with the CNI VRF plugin

	14.4.5. Next steps

	14.5. CONFIGURING AN SR-IOV ETHERNET NETWORK ATTACHMENT
	14.5.1. Ethernet device configuration object
	14.5.1.1. Configuration of IP address assignment for an additional network

	14.5.2. Configuring SR-IOV additional network
	14.5.3. Next steps
	14.5.4. Additional resources

	14.6. CONFIGURING AN SR-IOV INFINIBAND NETWORK ATTACHMENT
	14.6.1. InfiniBand device configuration object
	14.6.1.1. Configuration of IP address assignment for an additional network

	14.6.2. Configuring SR-IOV additional network
	14.6.3. Next steps
	14.6.4. Additional resources

	14.7. ADDING A POD TO AN SR-IOV ADDITIONAL NETWORK
	14.7.1. Runtime configuration for a network attachment
	14.7.1.1. Runtime configuration for an Ethernet-based SR-IOV attachment
	14.7.1.2. Runtime configuration for an InfiniBand-based SR-IOV attachment

	14.7.2. Adding a pod to an additional network
	14.7.3. Creating a non-uniform memory access (NUMA) aligned SR-IOV pod
	14.7.4. Additional resources

	14.8. USING HIGH PERFORMANCE MULTICAST
	14.8.1. High performance multicast
	14.8.2. Configuring an SR-IOV interface for multicast

	14.9. USING DPDK AND RDMA
	14.9.1. Using a virtual function in DPDK mode with an Intel NIC
	14.9.2. Using a virtual function in DPDK mode with a Mellanox NIC
	14.9.3. Using a virtual function in RDMA mode with a Mellanox NIC
	14.9.4. Additional resources

	14.10. UNINSTALLING THE SR-IOV NETWORK OPERATOR
	14.10.1. Uninstalling the SR-IOV Network Operator

	CHAPTER 15. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER
	15.1. ABOUT THE OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER
	15.1.1. OpenShift SDN network isolation modes
	15.1.2. Supported default CNI network provider feature matrix

	15.2. CONFIGURING EGRESS IPS FOR A PROJECT
	15.2.1. Egress IP address assignment for project egress traffic
	15.2.1.1. Considerations when using automatically assigned egress IP addresses
	15.2.1.2. Considerations when using manually assigned egress IP addresses

	15.2.2. Configuring automatically assigned egress IP addresses for a namespace
	15.2.3. Configuring manually assigned egress IP addresses for a namespace

	15.3. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT
	15.3.1. How an egress firewall works in a project
	15.3.1.1. Limitations of an egress firewall
	15.3.1.2. Matching order for egress firewall policy rules
	15.3.1.3. How Domain Name Server (DNS) resolution works

	15.3.2. EgressNetworkPolicy custom resource (CR) object
	15.3.2.1. EgressNetworkPolicy rules
	15.3.2.2. Example EgressNetworkPolicy CR objects

	15.3.3. Creating an egress firewall policy object

	15.4. EDITING AN EGRESS FIREWALL FOR A PROJECT
	15.4.1. Viewing an EgressNetworkPolicy object

	15.5. EDITING AN EGRESS FIREWALL FOR A PROJECT
	15.5.1. Editing an EgressNetworkPolicy object

	15.6. REMOVING AN EGRESS FIREWALL FROM A PROJECT
	15.6.1. Removing an EgressNetworkPolicy object

	15.7. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD
	15.7.1. About an egress router pod
	15.7.1.1. Egress router modes
	15.7.1.2. Egress router pod implementation
	15.7.1.3. Deployment considerations
	15.7.1.4. Failover configuration

	15.7.2. Additional resources

	15.8. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE
	15.8.1. Egress router pod specification for redirect mode
	15.8.2. Egress destination configuration format
	15.8.3. Deploying an egress router pod in redirect mode
	15.8.4. Additional resources

	15.9. DEPLOYING AN EGRESS ROUTER POD IN HTTP PROXY MODE
	15.9.1. Egress router pod specification for HTTP mode
	15.9.2. Egress destination configuration format
	15.9.3. Deploying an egress router pod in HTTP proxy mode
	15.9.4. Additional resources

	15.10. DEPLOYING AN EGRESS ROUTER POD IN DNS PROXY MODE
	15.10.1. Egress router pod specification for DNS mode
	15.10.2. Egress destination configuration format
	15.10.3. Deploying an egress router pod in DNS proxy mode
	15.10.4. Additional resources

	15.11. CONFIGURING AN EGRESS ROUTER POD DESTINATION LIST FROM A CONFIG MAP
	15.11.1. Configuring an egress router destination mappings with a config map
	15.11.2. Additional resources

	15.12. ENABLING MULTICAST FOR A PROJECT
	15.12.1. About multicast
	15.12.2. Enabling multicast between pods

	15.13. DISABLING MULTICAST FOR A PROJECT
	15.13.1. Disabling multicast between pods

	15.14. CONFIGURING NETWORK ISOLATION USING OPENSHIFT SDN
	15.14.1. Prerequisites
	15.14.2. Joining projects
	15.14.3. Isolating a project
	15.14.4. Disabling network isolation for a project

	15.15. CONFIGURING KUBE-PROXY
	15.15.1. About iptables rules synchronization
	15.15.2. kube-proxy configuration parameters
	15.15.3. Modifying the kube-proxy configuration

	CHAPTER 16. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER
	16.1. ABOUT THE OVN-KUBERNETES DEFAULT CONTAINER NETWORK INTERFACE (CNI) NETWORK PROVIDER
	16.1.1. OVN-Kubernetes features
	16.1.2. Supported default CNI network provider feature matrix
	16.1.3. OVN-Kubernetes limitations

	16.2. MIGRATING FROM THE OPENSHIFT SDN CLUSTER NETWORK PROVIDER
	16.2.1. Migration to the OVN-Kubernetes network provider
	16.2.1.1. Considerations for migrating to the OVN-Kubernetes network provider
	16.2.1.2. How the migration process works

	16.2.2. Migrating to the OVN-Kubernetes default CNI network provider
	16.2.3. Additional resources

	16.3. ROLLING BACK TO THE OPENSHIFT SDN NETWORK PROVIDER
	16.3.1. Rolling back the default CNI network provider to OpenShift SDN

	16.4. CONVERTING TO IPV4/IPV6 DUAL-STACK NETWORKING
	16.4.1. Converting to a dual-stack cluster network

	16.5. IPSEC ENCRYPTION CONFIGURATION
	16.5.1. Types of network traffic flows encrypted by IPsec
	16.5.1.1. Network connectivity requirements when IPsec is enabled

	16.5.2. Encryption protocol and IPsec mode
	16.5.3. Security certificate generation and rotation

	16.6. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT
	16.6.1. How an egress firewall works in a project
	16.6.1.1. Limitations of an egress firewall
	16.6.1.2. Matching order for egress firewall policy rules
	16.6.1.3. How Domain Name Server (DNS) resolution works

	16.6.2. EgressFirewall custom resource (CR) object
	16.6.2.1. EgressFirewall rules
	16.6.2.2. Example EgressFirewall CR objects

	16.6.3. Creating an egress firewall policy object

	16.7. VIEWING AN EGRESS FIREWALL FOR A PROJECT
	16.7.1. Viewing an EgressFirewall object

	16.8. EDITING AN EGRESS FIREWALL FOR A PROJECT
	16.8.1. Editing an EgressFirewall object

	16.9. REMOVING AN EGRESS FIREWALL FROM A PROJECT
	16.9.1. Removing an EgressFirewall object

	16.10. CONFIGURING AN EGRESS IP ADDRESS
	16.10.1. Egress IP address architectural design and implementation
	16.10.1.1. Platform support
	16.10.1.2. Assignment of egress IPs to pods
	16.10.1.3. Assignment of egress IPs to nodes
	16.10.1.4. Architectural diagram of an egress IP address configuration

	16.10.2. EgressIP object
	16.10.3. Labeling a node to host egress IP addresses
	16.10.4. Next steps
	16.10.5. Additional resources

	16.11. ASSIGNING AN EGRESS IP ADDRESS
	16.11.1. Assigning an egress IP address to a namespace
	16.11.2. Additional resources

	16.12. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD
	16.12.1. About an egress router pod
	16.12.1.1. Egress router modes
	16.12.1.2. Egress router pod implementation
	16.12.1.3. Deployment considerations
	16.12.1.4. Failover configuration

	16.12.2. Additional resources

	16.13. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE
	16.13.1. Egress router custom resource
	16.13.2. Deploying an egress router in redirect mode

	16.14. ENABLING MULTICAST FOR A PROJECT
	16.14.1. About multicast
	16.14.2. Enabling multicast between pods

	16.15. DISABLING MULTICAST FOR A PROJECT
	16.15.1. Disabling multicast between pods

	16.16. TRACKING NETWORK FLOWS
	16.16.1. Network object configuration for tracking network flows
	16.16.2. Adding destinations for network flows collectors
	16.16.3. Deleting all destinations for network flows collectors
	16.16.4. Additional resources

	16.17. CONFIGURING HYBRID NETWORKING
	16.17.1. Configuring hybrid networking with OVN-Kubernetes
	16.17.2. Additional resources

	CHAPTER 17. CONFIGURING ROUTES
	17.1. ROUTE CONFIGURATION
	17.1.1. Creating an HTTP-based route
	17.1.2. Configuring route timeouts
	17.1.3. HTTP Strict Transport Security
	17.1.3.1. Enabling HTTP Strict Transport Security per-route
	17.1.3.2. Disabling HTTP Strict Transport Security per-route
	17.1.3.3. Enforcing HTTP Strict Transport Security per-domain

	17.1.4. Troubleshooting throughput issues
	17.1.5. Using cookies to keep route statefulness
	17.1.5.1. Annotating a route with a cookie

	17.1.6. Path-based routes
	17.1.7. Route-specific annotations
	17.1.8. Configuring the route admission policy
	17.1.9. Creating a route through an Ingress object
	17.1.10. Creating a route using the default certificate through an Ingress object
	17.1.11. Configuring the OpenShift Container Platform Ingress Controller for dual-stack networking

	17.2. SECURED ROUTES
	17.2.1. Creating a re-encrypt route with a custom certificate
	17.2.2. Creating an edge route with a custom certificate
	17.2.3. Creating a passthrough route

	CHAPTER 18. CONFIGURING INGRESS CLUSTER TRAFFIC
	18.1. CONFIGURING INGRESS CLUSTER TRAFFIC OVERVIEW
	18.1.1. Comparision: Fault tolerant access to external IP addresses

	18.2. CONFIGURING EXTERNALIPS FOR SERVICES
	18.2.1. Prerequisites
	18.2.2. About ExternalIP
	18.2.2.1. Configuration for ExternalIP
	18.2.2.2. Restrictions on the assignment of an external IP address
	18.2.2.3. Example policy objects

	18.2.3. ExternalIP address block configuration
	Example external IP configurations

	18.2.4. Configure external IP address blocks for your cluster
	18.2.5. Next steps

	18.3. CONFIGURING INGRESS CLUSTER TRAFFIC USING AN INGRESS CONTROLLER
	18.3.1. Using Ingress Controllers and routes
	18.3.2. Prerequisites
	18.3.3. Creating a project and service
	18.3.4. Exposing the service by creating a route
	18.3.5. Configuring Ingress Controller sharding by using route labels
	18.3.6. Configuring Ingress Controller sharding by using namespace labels
	18.3.7. Additional resources

	18.4. CONFIGURING INGRESS CLUSTER TRAFFIC USING A LOAD BALANCER
	18.4.1. Using a load balancer to get traffic into the cluster
	18.4.2. Prerequisites
	18.4.3. Creating a project and service
	18.4.4. Exposing the service by creating a route
	18.4.5. Creating a load balancer service

	18.5. CONFIGURING INGRESS CLUSTER TRAFFIC ON AWS USING A NETWORK LOAD BALANCER
	18.5.1. Replacing Ingress Controller Classic Load Balancer with Network Load Balancer
	18.5.2. Configuring an Ingress Controller Network Load Balancer on an existing AWS cluster
	18.5.3. Configuring an Ingress Controller Network Load Balancer on a new AWS cluster
	18.5.4. Additional resources

	18.6. CONFIGURING INGRESS CLUSTER TRAFFIC FOR A SERVICE EXTERNAL IP
	18.6.1. Prerequisites
	18.6.2. Attaching an ExternalIP to a service
	18.6.3. Additional resources

	18.7. CONFIGURING INGRESS CLUSTER TRAFFIC USING A NODEPORT
	18.7.1. Using a NodePort to get traffic into the cluster
	18.7.2. Prerequisites
	18.7.3. Creating a project and service
	18.7.4. Exposing the service by creating a route
	18.7.5. Additional resources

	CHAPTER 19. KUBERNETES NMSTATE
	19.1. ABOUT THE KUBERNETES NMSTATE OPERATOR
	19.1.1. Installing the Kubernetes NMState Operator

	19.2. OBSERVING NODE NETWORK STATE
	19.2.1. About nmstate
	19.2.2. Viewing the network state of a node

	19.3. UPDATING NODE NETWORK CONFIGURATION
	19.3.1. About nmstate
	19.3.2. Creating an interface on nodes
	Additional resources

	19.3.3. Confirming node network policy updates on nodes
	19.3.4. Removing an interface from nodes
	19.3.5. Example policy configurations for different interfaces
	19.3.5.1. Example: Linux bridge interface node network configuration policy
	19.3.5.2. Example: VLAN interface node network configuration policy
	19.3.5.3. Example: Bond interface node network configuration policy
	19.3.5.4. Example: Ethernet interface node network configuration policy
	19.3.5.5. Example: Multiple interfaces in the same node network configuration policy

	19.3.6. Examples: IP management
	19.3.6.1. Static
	19.3.6.2. No IP address
	19.3.6.3. Dynamic host configuration
	19.3.6.4. DNS
	19.3.6.5. Static routing

	19.4. TROUBLESHOOTING NODE NETWORK CONFIGURATION
	19.4.1. Troubleshooting an incorrect node network configuration policy configuration

	CHAPTER 20. CONFIGURING THE CLUSTER-WIDE PROXY
	20.1. PREREQUISITES
	20.2. ENABLING THE CLUSTER-WIDE PROXY
	20.3. REMOVING THE CLUSTER-WIDE PROXY
	Additional resources

	CHAPTER 21. CONFIGURING A CUSTOM PKI
	21.1. CONFIGURING THE CLUSTER-WIDE PROXY DURING INSTALLATION
	21.2. ENABLING THE CLUSTER-WIDE PROXY
	21.3. CERTIFICATE INJECTION USING OPERATORS

	CHAPTER 22. LOAD BALANCING ON RHOSP
	22.1. USING THE OCTAVIA OVN LOAD BALANCER PROVIDER DRIVER WITH KURYR SDN
	22.2. SCALING CLUSTERS FOR APPLICATION TRAFFIC BY USING OCTAVIA
	22.2.1. Scaling clusters by using Octavia
	22.2.2. Scaling clusters that use Kuryr by using Octavia

	22.3. SCALING FOR INGRESS TRAFFIC BY USING RHOSP OCTAVIA
	22.4. CONFIGURING AN EXTERNAL LOAD BALANCER

	CHAPTER 23. LOAD BALANCING WITH METALLB
	23.1. ABOUT METALLB AND THE METALLB OPERATOR
	23.1.1. When to use MetalLB
	23.1.2. MetalLB Operator custom resources
	23.1.3. MetalLB software components
	23.1.4. MetalLB concepts for layer 2 mode
	23.1.4.1. Layer 2 and external traffic policy

	23.1.5. Limitations and restrictions
	23.1.5.1. Support for layer 2 only
	23.1.5.2. Support for single stack networking
	23.1.5.3. Infrastructure considerations for MetalLB
	23.1.5.4. Limitations for layer 2 mode
	23.1.5.5. Incompatibility with IP failover

	23.1.6. Additional resources

	23.2. INSTALLING THE METALLB OPERATOR
	23.2.1. Installing from OperatorHub using the web console
	23.2.2. Installing from OperatorHub using the CLI
	23.2.3. Starting MetalLB on your cluster
	23.2.4. Next steps

	23.3. CONFIGURING METALLB ADDRESS POOLS
	23.3.1. About the address pool custom resource
	23.3.2. Configuring an address pool
	23.3.3. Example address pool configurations
	23.3.3.1. Example: IPv4 and CIDR ranges
	23.3.3.2. Example: Reserve IP addresses
	23.3.3.3. Example: IPv6 address pool

	23.3.4. Next steps

	23.4. CONFIGURING SERVICES TO USE METALLB
	23.4.1. Request a specific IP address
	23.4.2. Request an IP address from a specific pool
	23.4.3. Accept any IP address
	23.4.4. Share a specific IP address
	23.4.5. Configuring a service with MetalLB

	CHAPTER 24. ASSOCIATING SECONDARY INTERFACES METRICS TO NETWORK ATTACHMENTS
	24.1. EXTENDING SECONDARY NETWORK METRICS FOR MONITORING
	24.1.1. Network Metrics Daemon
	24.1.2. Metrics with network name

