
OpenShift Container Platform 4.9

Monitoring

Configuring and using the monitoring stack in OpenShift Container Platform

Last Updated: 2023-03-27

OpenShift Container Platform 4.9 Monitoring

Configuring and using the monitoring stack in OpenShift Container Platform

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring and using the Prometheus monitoring stack in
OpenShift Container Platform.

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. MONITORING OVERVIEW
1.1. ABOUT OPENSHIFT CONTAINER PLATFORM MONITORING
1.2. UNDERSTANDING THE MONITORING STACK

1.2.1. Default monitoring components
1.2.2. Default monitoring targets
1.2.3. Components for monitoring user-defined projects
1.2.4. Monitoring targets for user-defined projects

1.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM MONITORING
1.4. ADDITIONAL RESOURCES
1.5. NEXT STEPS

CHAPTER 2. CONFIGURING THE MONITORING STACK
2.1. PREREQUISITES
2.2. MAINTENANCE AND SUPPORT FOR MONITORING

2.2.1. Support considerations for monitoring
2.2.2. Support policy for monitoring Operators

2.3. PREPARING TO CONFIGURE THE MONITORING STACK
2.3.1. Creating a cluster monitoring config map
2.3.2. Creating a user-defined workload monitoring config map

2.4. CONFIGURING THE MONITORING STACK
2.5. CONFIGURABLE MONITORING COMPONENTS
2.6. MOVING MONITORING COMPONENTS TO DIFFERENT NODES
2.7. ASSIGNING TOLERATIONS TO MONITORING COMPONENTS
2.8. CONFIGURING PERSISTENT STORAGE

2.8.1. Persistent storage prerequisites
2.8.2. Configuring a local persistent volume claim
2.8.3. Resizing a persistent storage volume
2.8.4. Modifying the retention time for Prometheus metrics data

2.9. CONFIGURING REMOTE WRITE STORAGE
2.10. CONTROLLING THE IMPACT OF UNBOUND METRICS ATTRIBUTES IN USER-DEFINED PROJECTS

2.10.1. Setting a scrape sample limit for user-defined projects
2.10.2. Creating scrape sample alerts

CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES
3.1. ATTACHING ADDITIONAL LABELS TO YOUR TIME SERIES AND ALERTS
3.2. SETTING LOG LEVELS FOR MONITORING COMPONENTS
3.3. DISABLING THE DEFAULT GRAFANA DEPLOYMENT
3.4. DISABLING THE LOCAL ALERTMANAGER
3.5. NEXT STEPS

CHAPTER 4. ENABLING MONITORING FOR USER-DEFINED PROJECTS
4.1. ENABLING MONITORING FOR USER-DEFINED PROJECTS
4.2. GRANTING USERS PERMISSION TO MONITOR USER-DEFINED PROJECTS

4.2.1. Granting user permissions by using the web console
4.2.2. Granting user permissions by using the CLI

4.3. GRANTING USERS PERMISSION TO CONFIGURE MONITORING FOR USER-DEFINED PROJECTS
4.4. ACCESSING METRICS FROM OUTSIDE THE CLUSTER FOR CUSTOM APPLICATIONS
4.5. EXCLUDING A USER-DEFINED PROJECT FROM MONITORING
4.6. DISABLING MONITORING FOR USER-DEFINED PROJECTS
4.7. NEXT STEPS

CHAPTER 5. MANAGING METRICS

4
4
4
5
7
8
8
8

10
11

12
12
12
12
13
13
13
14
15
18
19
23
25
26
26
29
33
36
40
41

42

45
48
51

53
54
55

56
56
58
58
59
59
60
61
61

62

63

Table of Contents

1

. .

. .

. .

. .

5.1. UNDERSTANDING METRICS
5.2. SETTING UP METRICS COLLECTION FOR USER-DEFINED PROJECTS

5.2.1. Deploying a sample service
5.2.2. Specifying how a service is monitored

5.3. QUERYING METRICS
5.3.1. Querying metrics for all projects as a cluster administrator
5.3.2. Querying metrics for user-defined projects as a developer
5.3.3. Exploring the visualized metrics

5.4. NEXT STEPS

CHAPTER 6. MANAGING ALERTS
6.1. ACCESSING THE ALERTING UI IN THE ADMINISTRATOR AND DEVELOPER PERSPECTIVES
6.2. SEARCHING AND FILTERING ALERTS, SILENCES, AND ALERTING RULES

Understanding alert filters
Understanding silence filters
Understanding alerting rule filters
Searching and filtering alerts, silences, and alerting rules in the Developer perspective

6.3. GETTING INFORMATION ABOUT ALERTS, SILENCES, AND ALERTING RULES
6.4. MANAGING ALERTING RULES

6.4.1. Optimizing alerting for user-defined projects
6.4.2. Creating alerting rules for user-defined projects
6.4.3. Reducing latency for alerting rules that do not query platform metrics
6.4.4. Accessing alerting rules for user-defined projects
6.4.5. Listing alerting rules for all projects in a single view
6.4.6. Removing alerting rules for user-defined projects

6.5. MANAGING SILENCES
6.5.1. Silencing alerts
6.5.2. Editing silences
6.5.3. Expiring silences

6.6. SENDING NOTIFICATIONS TO EXTERNAL SYSTEMS
6.6.1. Configuring alert receivers

6.7. APPLYING A CUSTOM ALERTMANAGER CONFIGURATION
6.8. NEXT STEPS

CHAPTER 7. REVIEWING MONITORING DASHBOARDS
7.1. REVIEWING MONITORING DASHBOARDS AS A CLUSTER ADMINISTRATOR
7.2. REVIEWING MONITORING DASHBOARDS AS A DEVELOPER
7.3. NEXT STEPS

CHAPTER 8. ACCESSING THIRD-PARTY UIS
8.1. ACCESSING THIRD-PARTY MONITORING UIS BY USING THE WEB CONSOLE
8.2. ACCESSING THIRD-PARTY MONITORING UIS BY USING THE CLI

CHAPTER 9. TROUBLESHOOTING MONITORING ISSUES
9.1. INVESTIGATING WHY USER-DEFINED METRICS ARE UNAVAILABLE
9.2. DETERMINING WHY PROMETHEUS IS CONSUMING A LOT OF DISK SPACE

63
63
63
65
66
66
67
68
69

70
70
71
71
71
72
73
73
75
75
76
77
78
79
79
80
80
81

82
82
83
84
86

87
88
89
89

91
91

92

93
93
96

OpenShift Container Platform 4.9 Monitoring

2

Table of Contents

3

CHAPTER 1. MONITORING OVERVIEW

1.1. ABOUT OPENSHIFT CONTAINER PLATFORM MONITORING

OpenShift Container Platform includes a preconfigured, preinstalled, and self-updating monitoring
stack that provides monitoring for core platform components. You also have the option to enable
monitoring for user-defined projects.

A cluster administrator can configure the monitoring stack with the supported configurations. OpenShift
Container Platform delivers monitoring best practices out of the box.

A set of alerts are included by default that immediately notify cluster administrators about issues with a
cluster. Default dashboards in the OpenShift Container Platform web console include visual
representations of cluster metrics to help you to quickly understand the state of your cluster.

With the OpenShift Container Platform web console, you can view and manage metrics, alerts, and
review monitoring dashboards. OpenShift Container Platform also provides access to third-party
interfaces, such as Prometheus, Alertmanager, and Grafana.

After installing OpenShift Container Platform 4.9, cluster administrators can optionally enable
monitoring for user-defined projects. By using this feature, cluster administrators, developers, and other
users can specify how services and pods are monitored in their own projects. As a cluster administrator,
you can find answers to common problems such as user metrics unavailability and Prometheus
consuming a lot of disk space in troubleshooting monitoring issues.

1.2. UNDERSTANDING THE MONITORING STACK

The OpenShift Container Platform monitoring stack is based on the Prometheus open source project
and its wider ecosystem. The monitoring stack includes the following:

Default platform monitoring components. A set of platform monitoring components are
installed in the openshift-monitoring project by default during an OpenShift Container
Platform installation. This provides monitoring for core OpenShift Container Platform
components including Kubernetes services. The default monitoring stack also enables remote
health monitoring for clusters. These components are illustrated in the Installed by default
section in the following diagram.

Components for monitoring user-defined projects. After optionally enabling monitoring for
user-defined projects, additional monitoring components are installed in the openshift-user-
workload-monitoring project. This provides monitoring for user-defined projects. These
components are illustrated in the User section in the following diagram.

OpenShift Container Platform 4.9 Monitoring

4

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#enabling-monitoring-for-user-defined-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#configuring-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#managing-metrics
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#managing-alerts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#reviewing-monitoring-dashboards
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#accessing-third-party-uis
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#troubleshooting-monitoring-issues
https://prometheus.io/

1.2.1. Default monitoring components

By default, the OpenShift Container Platform 4.9 monitoring stack includes these components:

Table 1.1. Default monitoring stack components

Component Description

Cluster Monitoring Operator The Cluster Monitoring Operator (CMO) is a central
component of the monitoring stack. It deploys,
manages, and automatically updates Prometheus
and Alertmanager instances, Thanos Querier,
Telemeter Client, and metrics targets. The CMO is
deployed by the Cluster Version Operator (CVO).

CHAPTER 1. MONITORING OVERVIEW

5

Prometheus Operator The Prometheus Operator (PO) in the openshift-
monitoring project creates, configures, and
manages platform Prometheus instances and
Alertmanager instances. It also automatically
generates monitoring target configurations based on
Kubernetes label queries.

Prometheus Prometheus is the monitoring system on which the
OpenShift Container Platform monitoring stack is
based. Prometheus is a time-series database and a
rule evaluation engine for metrics. Prometheus sends
alerts to Alertmanager for processing.

Prometheus Adapter The Prometheus Adapter (PA in the preceding
diagram) translates Kubernetes node and pod
queries for use in Prometheus. The resource metrics
that are translated include CPU and memory
utilization metrics. The Prometheus Adapter exposes
the cluster resource metrics API for horizontal pod
autoscaling. The Prometheus Adapter is also used by
the oc adm top nodes and oc adm top pods
commands.

Alertmanager The Alertmanager service handles alerts received
from Prometheus. Alertmanager is also responsible
for sending the alerts to external notification
systems.

kube-state-metrics agent The kube-state-metrics exporter agent (KSM in
the preceding diagram) converts Kubernetes objects
to metrics that Prometheus can use.

openshift-state-metrics agent The openshift-state-metrics exporter (OSM in the
preceding diagram) expands upon kube-state-
metrics by adding metrics for OpenShift Container
Platform-specific resources.

node-exporter agent The node-exporter agent (NE in the preceding
diagram) collects metrics about every node in a
cluster. The node-exporter agent is deployed on
every node.

Thanos Querier Thanos Querier aggregates and optionally
deduplicates core OpenShift Container Platform
metrics and metrics for user-defined projects under a
single, multi-tenant interface.

Component Description

OpenShift Container Platform 4.9 Monitoring

6

Grafana The Grafana analytics platform provides dashboards
for analyzing and visualizing the metrics. The Grafana
instance that is provided with the monitoring stack,
along with its dashboards, is read-only.

Telemeter Client Telemeter Client sends a subsection of the data from
platform Prometheus instances to Red Hat to
facilitate Remote Health Monitoring for clusters.

Component Description

All of the components in the monitoring stack are monitored by the stack and are automatically updated
when OpenShift Container Platform is updated.

1.2.2. Default monitoring targets

In addition to the components of the stack itself, the default monitoring stack monitors:

CoreDNS

Elasticsearch (if Logging is installed)

etcd

Fluentd (if Logging is installed)

HAProxy

Image registry

Kubelets

Kubernetes API server

Kubernetes controller manager

Kubernetes scheduler

Metering (if Metering is installed)

OpenShift API server

OpenShift Controller Manager

Operator Lifecycle Manager (OLM)

NOTE

Each OpenShift Container Platform component is responsible for its monitoring
configuration. For problems with the monitoring of an OpenShift Container Platform
component, open a Jira issue against that component, not against the general monitoring
component.

Other OpenShift Container Platform framework components might be exposing metrics as well. For

CHAPTER 1. MONITORING OVERVIEW

7

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12332330&summary=Monitoring_issue&issuetype=1&priority=10200&versions=12385632

Other OpenShift Container Platform framework components might be exposing metrics as well. For
details, see their respective documentation.

1.2.3. Components for monitoring user-defined projects

OpenShift Container Platform 4.9 includes an optional enhancement to the monitoring stack that
enables you to monitor services and pods in user-defined projects. This feature includes the following
components:

Table 1.2. Components for monitoring user-defined projects

Component Description

Prometheus Operator The Prometheus Operator (PO) in the openshift-
user-workload-monitoring project creates,
configures, and manages Prometheus and Thanos
Ruler instances in the same project.

Prometheus Prometheus is the monitoring system through which
monitoring is provided for user-defined projects.
Prometheus sends alerts to Alertmanager for
processing.

Thanos Ruler The Thanos Ruler is a rule evaluation engine for
Prometheus that is deployed as a separate process.
In OpenShift Container Platform 4.9, Thanos Ruler
provides rule and alerting evaluation for the
monitoring of user-defined projects.

NOTE

The components in the preceding table are deployed after monitoring is enabled for
user-defined projects.

All of the components in the monitoring stack are monitored by the stack and are automatically updated
when OpenShift Container Platform is updated.

1.2.4. Monitoring targets for user-defined projects

When monitoring is enabled for user-defined projects, you can monitor:

Metrics provided through service endpoints in user-defined projects.

Pods running in user-defined projects.

1.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER
PLATFORM MONITORING

This glossary defines common terms that are used in OpenShift Container Platform architecture.

Alertmanager

Alertmanager handles alerts received from Prometheus. Alertmanager is also responsible for sending

OpenShift Container Platform 4.9 Monitoring

8

Alertmanager handles alerts received from Prometheus. Alertmanager is also responsible for sending
the alerts to external notification systems.

Alerting rules

Alerting rules contain a set of conditions that outline a particular state within a cluster. Alerts are
triggered when those conditions are true. An alerting rule can be assigned a severity that defines how
the alerts are routed.

Cluster Monitoring Operator

The Cluster Monitoring Operator (CMO) is a central component of the monitoring stack. It deploys
and manages Prometheus instances such as, the Thanos Querier, the Telemeter Client, and metrics
targets to ensure that they are up to date. The CMO is deployed by the Cluster Version Operator
(CVO).

Cluster Version Operator

The Cluster Version Operator (CVO) manages the lifecycle of cluster Operators, many of which are
installed in OpenShift Container Platform by default.

config map

A config map provides a way to inject configuration data into pods. You can reference the data
stored in a config map in a volume of type ConfigMap. Applications running in a pod can use this
data.

Container

A container is a lightweight and executable image that includes software and all its dependencies.
Containers virtualize the operating system. As a result, you can run containers anywhere from a data
center to a public or private cloud as well as a developer’s laptop.

custom resource (CR)

A CR is an extension of the Kubernetes API. You can create custom resources.

etcd

etcd is the key-value store for OpenShift Container Platform, which stores the state of all resource
objects.

Fluentd

Fluentd gathers logs from nodes and feeds them to Elasticsearch.

Kubelets

Runs on nodes and reads the container manifests. Ensures that the defined containers have started
and are running.

Kubernetes API server

Kubernetes API server validates and configures data for the API objects.

Kubernetes controller manager

Kubernetes controller manager governs the state of the cluster.

Kubernetes scheduler

Kubernetes scheduler allocates pods to nodes.

labels

Labels are key-value pairs that you can use to organize and select subsets of objects such as a pod.

Metering

Metering is a general purpose data analysis tool that enables you to write reports to process data
from different data sources.

node

A worker machine in the OpenShift Container Platform cluster. A node is either a virtual machine

CHAPTER 1. MONITORING OVERVIEW

9

A worker machine in the OpenShift Container Platform cluster. A node is either a virtual machine
(VM) or a physical machine.

Operator

The preferred method of packaging, deploying, and managing a Kubernetes application in an
OpenShift Container Platform cluster. An Operator takes human operational knowledge and
encodes it into software that is packaged and shared with customers.

Operator Lifecycle Manager (OLM)

OLM helps you install, update, and manage the lifecycle of Kubernetes native applications. OLM is an
open source toolkit designed to manage Operators in an effective, automated, and scalable way.

Persistent storage

Stores the data even after the device is shut down. Kubernetes uses persistent volumes to store the
application data.

Persistent volume claim (PVC)

You can use a PVC to mount a PersistentVolume into a Pod. You can access the storage without
knowing the details of the cloud environment.

pod

The pod is the smallest logical unit in Kubernetes. A pod is comprised of one or more containers to
run in a worker node.

Prometheus

Prometheus is the monitoring system on which the OpenShift Container Platform monitoring stack is
based. Prometheus is a time-series database and a rule evaluation engine for metrics. Prometheus
sends alerts to Alertmanager for processing.

Prometheus adapter

The Prometheus Adapter translates Kubernetes node and pod queries for use in Prometheus. The
resource metrics that are translated include CPU and memory utilization. The Prometheus Adapter
exposes the cluster resource metrics API for horizontal pod autoscaling.

Prometheus Operator

The Prometheus Operator (PO) in the openshift-monitoring project creates, configures, and
manages platform Prometheus and Alertmanager instances. It also automatically generates
monitoring target configurations based on Kubernetes label queries.

Silences

A silence can be applied to an alert to prevent notifications from being sent when the conditions for
an alert are true. You can mute an alert after the initial notification, while you work on resolving the
underlying issue.

storage

OpenShift Container Platform supports many types of storage, both for on-premise and cloud
providers. You can manage container storage for persistent and non-persistent data in an OpenShift
Container Platform cluster.

Thanos Ruler

The Thanos Ruler is a rule evaluation engine for Prometheus that is deployed as a separate process.
In OpenShift Container Platform, Thanos Ruler provides rule and alerting evaluation for the
monitoring of user-defined projects.

web console

A user interface (UI) to manage OpenShift Container Platform.

1.4. ADDITIONAL RESOURCES

OpenShift Container Platform 4.9 Monitoring

10

About remote health monitoring

Granting users permission to monitor user-defined projects

1.5. NEXT STEPS

Configuring the monitoring stack

CHAPTER 1. MONITORING OVERVIEW

11

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/support/#about-remote-health-monitoring
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#granting-users-permission-to-monitor-user-defined-projects_enabling-monitoring-for-user-defined-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#configuring-the-monitoring-stack

CHAPTER 2. CONFIGURING THE MONITORING STACK
The OpenShift Container Platform 4 installation program provides only a low number of configuration
options before installation. Configuring most OpenShift Container Platform framework components,
including the cluster monitoring stack, happens post-installation.

This section explains what configuration is supported, shows how to configure the monitoring stack, and
demonstrates several common configuration scenarios.

2.1. PREREQUISITES

The monitoring stack imposes additional resource requirements. Consult the computing
resources recommendations in Scaling the Cluster Monitoring Operator and verify that you
have sufficient resources.

2.2. MAINTENANCE AND SUPPORT FOR MONITORING

The supported way of configuring OpenShift Container Platform Monitoring is by configuring it using the
options described in this document. Do not use other configurations, as they are unsupported.
Configuration paradigms might change across Prometheus releases, and such cases can only be
handled gracefully if all configuration possibilities are controlled. If you use configurations other than
those described in this section, your changes will disappear because the cluster-monitoring-operator
reconciles any differences. The Operator resets everything to the defined state by default and by
design.

2.2.1. Support considerations for monitoring

The following modifications are explicitly not supported:

Creating additional ServiceMonitor, PodMonitor, and PrometheusRule objects in the
openshift-* and kube-* projects.

Modifying any resources or objects deployed in the openshift-monitoring or openshift-user-
workload-monitoring projects. The resources created by the OpenShift Container Platform
monitoring stack are not meant to be used by any other resources, as there are no guarantees
about their backward compatibility.

NOTE

The Alertmanager configuration is deployed as a secret resource in the
openshift-monitoring project. To configure additional routes for Alertmanager,
you need to decode, modify, and then encode that secret. This procedure is a
supported exception to the preceding statement.

Modifying resources of the stack. The OpenShift Container Platform monitoring stack
ensures its resources are always in the state it expects them to be. If they are modified, the stack
will reset them.

Deploying user-defined workloads to openshift-*, and kube-* projects. These projects are
reserved for Red Hat provided components and they should not be used for user-defined
workloads.

Modifying the monitoring stack Grafana instance.

Installing custom Prometheus instances on OpenShift Container Platform. A custom

OpenShift Container Platform 4.9 Monitoring

12

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/scalability_and_performance/#scaling-cluster-monitoring-operator

Installing custom Prometheus instances on OpenShift Container Platform. A custom
instance is a Prometheus custom resource (CR) managed by the Prometheus Operator.

Enabling symptom based monitoring by using the Probe custom resource definition (CRD)
in Prometheus Operator.

Modifying Alertmanager configurations by using the AlertmanagerConfig CRD in
Prometheus Operator.

NOTE

Backward compatibility for metrics, recording rules, or alerting rules is not guaranteed.

2.2.2. Support policy for monitoring Operators

Monitoring Operators ensure that OpenShift Container Platform monitoring resources function as
designed and tested. If Cluster Version Operator (CVO) control of an Operator is overridden, the
Operator does not respond to configuration changes, reconcile the intended state of cluster objects, or
receive updates.

While overriding CVO control for an Operator can be helpful during debugging, this is unsupported and
the cluster administrator assumes full control of the individual component configurations and upgrades.

Overriding the Cluster Version Operator

The spec.overrides parameter can be added to the configuration for the CVO to allow administrators
to provide a list of overrides to the behavior of the CVO for a component. Setting the
spec.overrides[].unmanaged parameter to true for a component blocks cluster upgrades and alerts
the administrator after a CVO override has been set:

WARNING

Setting a CVO override puts the entire cluster in an unsupported state and prevents
the monitoring stack from being reconciled to its intended state. This impacts the
reliability features built into Operators and prevents updates from being received.
Reported issues must be reproduced after removing any overrides for support to
proceed.

2.3. PREPARING TO CONFIGURE THE MONITORING STACK

You can configure the monitoring stack by creating and updating monitoring config maps.

2.3.1. Creating a cluster monitoring config map

To configure core OpenShift Container Platform monitoring components, you must create the cluster-
monitoring-config ConfigMap object in the openshift-monitoring project.

NOTE

Disabling ownership via cluster version overrides prevents upgrades. Please remove overrides before
continuing.



CHAPTER 2. CONFIGURING THE MONITORING STACK

13

NOTE

When you save your changes to the cluster-monitoring-config ConfigMap object, some
or all of the pods in the openshift-monitoring project might be redeployed. It can
sometimes take a while for these components to redeploy.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Check whether the cluster-monitoring-config ConfigMap object exists:

2. If the ConfigMap object does not exist:

a. Create the following YAML manifest. In this example the file is called cluster-monitoring-
config.yaml:

b. Apply the configuration to create the ConfigMap object:

2.3.2. Creating a user-defined workload monitoring config map

To configure the components that monitor user-defined projects, you must create the user-workload-
monitoring-config ConfigMap object in the openshift-user-workload-monitoring project.

NOTE

When you save your changes to the user-workload-monitoring-config ConfigMap
object, some or all of the pods in the openshift-user-workload-monitoring project
might be redeployed. It can sometimes take a while for these components to redeploy.
You can create and configure the config map before you first enable monitoring for
user-defined projects, to prevent having to redeploy the pods often.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

$ oc -n openshift-monitoring get configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |

$ oc apply -f cluster-monitoring-config.yaml

OpenShift Container Platform 4.9 Monitoring

14

Procedure

1. Check whether the user-workload-monitoring-config ConfigMap object exists:

2. If the user-workload-monitoring-config ConfigMap object does not exist:

a. Create the following YAML manifest. In this example the file is called user-workload-
monitoring-config.yaml:

b. Apply the configuration to create the ConfigMap object:

NOTE

Configurations applied to the user-workload-monitoring-config
ConfigMap object are not activated unless a cluster administrator has
enabled monitoring for user-defined projects.

Additional resources

Enabling monitoring for user-defined projects

2.4. CONFIGURING THE MONITORING STACK

In OpenShift Container Platform 4.9, you can configure the monitoring stack using the cluster-
monitoring-config or user-workload-monitoring-config ConfigMap objects. Config maps configure
the Cluster Monitoring Operator (CMO), which in turn configures the components of the stack.

Prerequisites

If you are configuring core OpenShift Container Platform monitoring components:

You have access to the cluster as a user with the cluster-admin role.

You have created the cluster-monitoring-config ConfigMap object.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin role, or as a user with the
user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring
project.

You have created the user-workload-monitoring-config ConfigMap object.

$ oc -n openshift-user-workload-monitoring get configmap user-workload-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |

$ oc apply -f user-workload-monitoring-config.yaml

CHAPTER 2. CONFIGURING THE MONITORING STACK

15

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#enabling-monitoring-for-user-defined-projects

1

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object.

To configure core OpenShift Container Platform monitoring components:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

b. Add your configuration under data/config.yaml as a key-value pair
<component_name>: <component_configuration>:

Substitute <component> and <configuration_for_the_component> accordingly.

The following example ConfigMap object configures a persistent volume claim (PVC)
for Prometheus. This relates to the Prometheus instance that monitors core OpenShift
Container Platform components only:

Defines the Prometheus component and the subsequent lines define its
configuration.

To configure components that monitor user-defined projects:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 <component>:
 <configuration_for_the_component>

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s: 1
 volumeClaimTemplate:
 spec:
 storageClassName: fast
 volumeMode: Filesystem
 resources:
 requests:
 storage: 40Gi

OpenShift Container Platform 4.9 Monitoring

16

1

2

3

4

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Add your configuration under data/config.yaml as a key-value pair
<component_name>: <component_configuration>:

Substitute <component> and <configuration_for_the_component> accordingly.

The following example ConfigMap object configures a data retention period and
minimum container resource requests for Prometheus. This relates to the Prometheus
instance that monitors user-defined projects only:

Defines the Prometheus component and the subsequent lines define its
configuration.

Configures a twenty-four hour data retention period for the Prometheus instance
that monitors user-defined projects.

Defines a minimum resource request of 200 millicores for the Prometheus
container.

Defines a minimum pod resource request of 2 GiB of memory for the Prometheus
container.

NOTE

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>:
 <configuration_for_the_component>

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus: 1
 retention: 24h 2
 resources:
 requests:
 cpu: 200m 3
 memory: 2Gi 4

CHAPTER 2. CONFIGURING THE MONITORING STACK

17

NOTE

The Prometheus config map component is called prometheusK8s in the
cluster-monitoring-config ConfigMap object and prometheus in the
user-workload-monitoring-config ConfigMap object.

2. Save the file to apply the changes to the ConfigMap object. The pods affected by the new
configuration are restarted automatically.

NOTE

Configurations applied to the user-workload-monitoring-config ConfigMap
object are not activated unless a cluster administrator has enabled monitoring for
user-defined projects.

WARNING

When changes are saved to a monitoring config map, the pods and other
resources in the related project might be redeployed. The running
monitoring processes in that project might also be restarted.

Additional resources

See Preparing to configure the monitoring stack for steps to create monitoring config maps

Enabling monitoring for user-defined projects

2.5. CONFIGURABLE MONITORING COMPONENTS

This table shows the monitoring components you can configure and the keys used to specify the
components in the cluster-monitoring-config and user-workload-monitoring-config ConfigMap
objects:

Table 2.1. Configurable monitoring components

Component cluster-monitoring-config
config map key

user-workload-monitoring-
config config map key

Prometheus Operator prometheusOperator prometheusOperator

Prometheus prometheusK8s prometheus

Alertmanager alertmanagerMain

kube-state-metrics kubeStateMetrics

openshift-state-metrics openshiftStateMetrics



OpenShift Container Platform 4.9 Monitoring

18

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#preparing-to-configure-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#enabling-monitoring-for-user-defined-projects

Grafana grafana

Telemeter Client telemeterClient

Prometheus Adapter k8sPrometheusAdapter

Thanos Querier thanosQuerier

Thanos Ruler thanosRuler

Component cluster-monitoring-config
config map key

user-workload-monitoring-
config config map key

NOTE

The Prometheus key is called prometheusK8s in the cluster-monitoring-config
ConfigMap object and prometheus in the user-workload-monitoring-config
ConfigMap object.

2.6. MOVING MONITORING COMPONENTS TO DIFFERENT NODES

You can move any of the monitoring stack components to specific nodes.

Prerequisites

If you are configuring core OpenShift Container Platform monitoring components:

You have access to the cluster as a user with the cluster-admin role.

You have created the cluster-monitoring-config ConfigMap object.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin role, or as a user with the
user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring
project.

You have created the user-workload-monitoring-config ConfigMap object.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object:

To move a component that monitors core OpenShift Container Platform projects:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

CHAPTER 2. CONFIGURING THE MONITORING STACK

19

b. Specify the nodeSelector constraint for the component under data/config.yaml:

Substitute <component> accordingly and substitute <node_key>: <node_value> with
the map of key-value pairs that specifies a group of destination nodes. Often, only a
single key-value pair is used.

The component can only run on nodes that have each of the specified key-value pairs
as labels. The nodes can have additional labels as well.

IMPORTANT

Many of the monitoring components are deployed by using multiple pods
across different nodes in the cluster to maintain high availability. When
moving monitoring components to labeled nodes, ensure that enough
matching nodes are available to maintain resilience for the component. If
only one label is specified, ensure that enough nodes contain that label
to distribute all of the pods for the component across separate nodes.
Alternatively, you can specify multiple labels each relating to individual
nodes.

NOTE

If monitoring components remain in a Pending state after configuring
the nodeSelector constraint, check the pod logs for errors relating to
taints and tolerations.

For example, to move monitoring components for core OpenShift Container Platform
projects to specific nodes that are labeled nodename: controlplane1, nodename:
worker1, nodename: worker2, and nodename: worker2, use:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 <component>:
 nodeSelector:
 <node_key>: <node_value>
 <node_key>: <node_value>
 <...>

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusOperator:
 nodeSelector:
 nodename: controlplane1
 prometheusK8s:

OpenShift Container Platform 4.9 Monitoring

20

To move a component that monitors user-defined projects:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Specify the nodeSelector constraint for the component under data/config.yaml:

Substitute <component> accordingly and substitute <node_key>: <node_value> with
the map of key-value pairs that specifies the destination nodes. Often, only a single
key-value pair is used.

The component can only run on nodes that have each of the specified key-value pairs

 nodeSelector:
 nodename: worker1
 nodename: worker2
 alertmanagerMain:
 nodeSelector:
 nodename: worker1
 nodename: worker2
 kubeStateMetrics:
 nodeSelector:
 nodename: worker1
 grafana:
 nodeSelector:
 nodename: worker1
 telemeterClient:
 nodeSelector:
 nodename: worker1
 k8sPrometheusAdapter:
 nodeSelector:
 nodename: worker1
 nodename: worker2
 openshiftStateMetrics:
 nodeSelector:
 nodename: worker1
 thanosQuerier:
 nodeSelector:
 nodename: worker1
 nodename: worker2

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>:
 nodeSelector:
 <node_key>: <node_value>
 <node_key>: <node_value>
 <...>

CHAPTER 2. CONFIGURING THE MONITORING STACK

21

The component can only run on nodes that have each of the specified key-value pairs
as labels. The nodes can have additional labels as well.

IMPORTANT

Many of the monitoring components are deployed by using multiple pods
across different nodes in the cluster to maintain high availability. When
moving monitoring components to labeled nodes, ensure that enough
matching nodes are available to maintain resilience for the component. If
only one label is specified, ensure that enough nodes contain that label
to distribute all of the pods for the component across separate nodes.
Alternatively, you can specify multiple labels each relating to individual
nodes.

NOTE

If monitoring components remain in a Pending state after configuring
the nodeSelector constraint, check the pod logs for errors relating to
taints and tolerations.

For example, to move monitoring components for user-defined projects to specific
worker nodes labeled nodename: worker1, nodename: worker2, and nodename:
worker2, use:

2. Save the file to apply the changes. The components affected by the new configuration are
moved to the new nodes automatically.

NOTE

Configurations applied to the user-workload-monitoring-config ConfigMap
object are not activated unless a cluster administrator has enabled monitoring for
user-defined projects.

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheusOperator:
 nodeSelector:
 nodename: worker1
 prometheus:
 nodeSelector:
 nodename: worker1
 nodename: worker2
 thanosRuler:
 nodeSelector:
 nodename: worker1
 nodename: worker2

OpenShift Container Platform 4.9 Monitoring

22

WARNING

When changes are saved to a monitoring config map, the pods and other
resources in the related project might be redeployed. The running
monitoring processes in that project might also be restarted.

Additional resources

See Preparing to configure the monitoring stack for steps to create monitoring config maps

Enabling monitoring for user-defined projects

Understanding how to update labels on nodes

Placing pods on specific nodes using node selectors

See the Kubernetes documentation for details on the nodeSelector constraint

2.7. ASSIGNING TOLERATIONS TO MONITORING COMPONENTS

You can assign tolerations to any of the monitoring stack components to enable moving them to tainted
nodes.

Prerequisites

If you are configuring core OpenShift Container Platform monitoring components:

You have access to the cluster as a user with the cluster-admin role.

You have created the cluster-monitoring-config ConfigMap object.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin role, or as a user with the
user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring
project.

You have created the user-workload-monitoring-config ConfigMap object.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object:

To assign tolerations to a component that monitors core OpenShift Container Platform
projects:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:



$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

CHAPTER 2. CONFIGURING THE MONITORING STACK

23

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#preparing-to-configure-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#enabling-monitoring-for-user-defined-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/nodes/#nodes-nodes-working-updating_nodes-nodes-working
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/nodes/#nodes-scheduler-node-selectors
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector

b. Specify tolerations for the component:

Substitute <component> and <toleration_specification> accordingly.

For example, oc adm taint nodes node1 key1=value1:NoSchedule adds a taint to
node1 with the key key1 and the value value1. This prevents monitoring components
from deploying pods on node1 unless a toleration is configured for that taint. The
following example configures the alertmanagerMain component to tolerate the
example taint:

To assign tolerations to a component that monitors user-defined projects:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Specify tolerations for the component:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 <component>:
 tolerations:
 <toleration_specification>

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 alertmanagerMain:
 tolerations:
 - key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoSchedule"

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>:
 tolerations:
 <toleration_specification>

OpenShift Container Platform 4.9 Monitoring

24

Substitute <component> and <toleration_specification> accordingly.

For example, oc adm taint nodes node1 key1=value1:NoSchedule adds a taint to
node1 with the key key1 and the value value1. This prevents monitoring components
from deploying pods on node1 unless a toleration is configured for that taint. The
following example configures the thanosRuler component to tolerate the example
taint:

2. Save the file to apply the changes. The new component placement configuration is applied
automatically.

NOTE

Configurations applied to the user-workload-monitoring-config ConfigMap
object are not activated unless a cluster administrator has enabled monitoring for
user-defined projects.

WARNING

When changes are saved to a monitoring config map, the pods and other
resources in the related project might be redeployed. The running
monitoring processes in that project might also be restarted.

Additional resources

See Preparing to configure the monitoring stack for steps to create monitoring config maps

Enabling monitoring for user-defined projects

See the OpenShift Container Platform documentation on taints and tolerations

See the Kubernetes documentation on taints and tolerations

2.8. CONFIGURING PERSISTENT STORAGE

Running cluster monitoring with persistent storage means that your metrics are stored to a persistent

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 thanosRuler:
 tolerations:
 - key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoSchedule"



CHAPTER 2. CONFIGURING THE MONITORING STACK

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#preparing-to-configure-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#enabling-monitoring-for-user-defined-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/nodes/#nodes-scheduler-taints-tolerations
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

volume (PV) and can survive a pod being restarted or recreated. This is ideal if you require your metrics
or alerting data to be guarded from data loss. For production environments, it is highly recommended to
configure persistent storage. Because of the high IO demands, it is advantageous to use local storage.

NOTE

See Recommended configurable storage technology .

2.8.1. Persistent storage prerequisites

Dedicate sufficient local persistent storage to ensure that the disk does not become full. How
much storage you need depends on the number of pods. For information on system
requirements for persistent storage, see Prometheus database storage requirements.

Make sure you have a persistent volume (PV) ready to be claimed by the persistent volume
claim (PVC), one PV for each replica. Because Prometheus has two replicas and Alertmanager
has three replicas, you need five PVs to support the entire monitoring stack. The PVs should be
available from the Local Storage Operator. This does not apply if you enable dynamically
provisioned storage.

Use Filesystem as the storage type value for the volumeMode parameter when you configure
the persistent volume.

Configure local persistent storage.

NOTE

If you use a local volume for persistent storage, do not use a raw block volume,
which is described with volumeMode: Block in the LocalVolume object.
Prometheus cannot use raw block volumes.

2.8.2. Configuring a local persistent volume claim

For monitoring components to use a persistent volume (PV), you must configure a persistent volume
claim (PVC).

Prerequisites

If you are configuring core OpenShift Container Platform monitoring components:

You have access to the cluster as a user with the cluster-admin role.

You have created the cluster-monitoring-config ConfigMap object.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin role, or as a user with the
user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring
project.

You have created the user-workload-monitoring-config ConfigMap object.

You have installed the OpenShift CLI (oc).

Procedure

OpenShift Container Platform 4.9 Monitoring

26

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/scalability_and_performance/#recommended-configurable-storage-technology_persistent-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/scalability_and_performance/#prometheus-database-storage-requirements_cluster-monitoring-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/storage/#persistent-storage-using-local-volume

Procedure

1. Edit the ConfigMap object:

To configure a PVC for a component that monitors core OpenShift Container Platform
projects:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

b. Add your PVC configuration for the component under data/config.yaml:

See the Kubernetes documentation on PersistentVolumeClaims for information on how
to specify volumeClaimTemplate.

The following example configures a PVC that claims local persistent storage for the
Prometheus instance that monitors core OpenShift Container Platform components:

In the above example, the storage class created by the Local Storage Operator is called
local-storage.

The following example configures a PVC that claims local persistent storage for
Alertmanager:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 <component>:
 volumeClaimTemplate:
 spec:
 storageClassName: <storage_class>
 resources:
 requests:
 storage: <amount_of_storage>

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 40Gi

CHAPTER 2. CONFIGURING THE MONITORING STACK

27

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

To configure a PVC for a component that monitors user-defined projects:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Add your PVC configuration for the component under data/config.yaml:

See the Kubernetes documentation on PersistentVolumeClaims for information on how
to specify volumeClaimTemplate.

The following example configures a PVC that claims local persistent storage for the
Prometheus instance that monitors user-defined projects:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 alertmanagerMain:
 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 10Gi

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>:
 volumeClaimTemplate:
 spec:
 storageClassName: <storage_class>
 resources:
 requests:
 storage: <amount_of_storage>

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 volumeClaimTemplate:

OpenShift Container Platform 4.9 Monitoring

28

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

In the above example, the storage class created by the Local Storage Operator is called
local-storage.

The following example configures a PVC that claims local persistent storage for Thanos
Ruler:

NOTE

Storage requirements for the thanosRuler component depend on the
number of rules that are evaluated and how many samples each rule
generates.

2. Save the file to apply the changes. The pods affected by the new configuration are restarted
automatically and the new storage configuration is applied.

NOTE

Configurations applied to the user-workload-monitoring-config ConfigMap
object are not activated unless a cluster administrator has enabled monitoring for
user-defined projects.

WARNING

When changes are saved to a monitoring config map, the pods and other
resources in the related project might be redeployed. The running
monitoring processes in that project might also be restarted.

2.8.3. Resizing a persistent storage volume

 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 40Gi

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 thanosRuler:
 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 10Gi



CHAPTER 2. CONFIGURING THE MONITORING STACK

29

OpenShift Container Platform does not support resizing an existing persistent storage volume used by
StatefulSet resources, even if the underlying StorageClass resource used supports persistent volume
sizing. Therefore, even if you update the storage field for an existing persistent volume claim (PVC) with
a larger size, this setting will not be propagated to the associated persistent volume (PV).

However, resizing a PV is still possible by using a manual process. If you want to resize a PV for a
monitoring component such as Prometheus, Thanos Ruler, or Alertmanager, you can update the
appropriate config map in which the component is configured. Then, patch the PVC, and delete and
orphan the pods. Orphaning the pods recreates the StatefulSet resource immediately and automatically
updates the size of the volumes mounted in the pods with the new PVC settings. No service disruption
occurs during this process.

Prerequisites

You have installed the OpenShift CLI (oc).

If you are configuring core OpenShift Container Platform monitoring components:

You have access to the cluster as a user with the cluster-admin role.

You have created the cluster-monitoring-config ConfigMap object.

You have configured at least one PVC for core OpenShift Container Platform monitoring
components.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin role, or as a user with the
user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring
project.

You have created the user-workload-monitoring-config ConfigMap object.

You have configured at least one PVC for components that monitor user-defined projects.

Procedure

1. Edit the ConfigMap object:

To resize a PVC for a component that monitors core OpenShift Container Platform
projects:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

b. Add a new storage size for the PVC configuration for the component under
data/config.yaml:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:

OpenShift Container Platform 4.9 Monitoring

30

1

2

3

Specify the core monitoring component.

Specify the storage class.

Specify the new size for the storage volume.

The following example configures a PVC that sets the local persistent storage to 100
gigabytes for the Prometheus instance that monitors core OpenShift Container
Platform components:

The following example configures a PVC that sets the local persistent storage for
Alertmanager to 40 gigabytes:

To resize a PVC for a component that monitors user-defined projects:

NOTE

 config.yaml: |
 <component>: 1
 volumeClaimTemplate:
 spec:
 storageClassName: <storage_class> 2
 resources:
 requests:
 storage: <amount_of_storage> 3

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 100Gi

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 alertmanagerMain:
 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 40Gi

CHAPTER 2. CONFIGURING THE MONITORING STACK

31

1

2

3

NOTE

You can resize the volumes for the Thanos Ruler and Prometheus instances
that monitor user-defined projects.

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Update the PVC configuration for the monitoring component under data/config.yaml:

Specify the core monitoring component.

Specify the storage class.

Specify the new size for the storage volume.

The following example configures the PVC size to 100 gigabytes for the Prometheus
instance that monitors user-defined projects:

The following example sets the PVC size to 20 gigabytes for Thanos Ruler:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>: 1
 volumeClaimTemplate:
 spec:
 storageClassName: <storage_class> 2
 resources:
 requests:
 storage: <amount_of_storage> 3

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 100Gi

OpenShift Container Platform 4.9 Monitoring

32

NOTE

Storage requirements for the thanosRuler component depend on the
number of rules that are evaluated and how many samples each rule
generates.

2. Save the file to apply the changes. The pods affected by the new configuration restart
automatically.

WARNING

When you save changes to a monitoring config map, the pods and other
resources in the related project might be redeployed. The monitoring
processes running in that project might also be restarted.

3. Manually patch every PVC with the updated storage request. The following example resizes the
storage size for the Prometheus component in the openshift-monitoring namespace to 100Gi:

4. Delete the underlying StatefulSet with the --cascade=orphan parameter:

2.8.4. Modifying the retention time for Prometheus metrics data

By default, the OpenShift Container Platform monitoring stack configures the retention time for
Prometheus data to be 15 days. You can modify the retention time to change how soon the data is
deleted.

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 thanosRuler:
 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 20Gi



$ for p in $(oc -n openshift-monitoring get pvc -l app.kubernetes.io/name=prometheus -o
jsonpath='{range .items[*]}{.metadata.name} {end}'); do \
 oc -n openshift-monitoring patch pvc/${p} --patch '{"spec": {"resources": {"requests":
{"storage":"100Gi"}}}}'; \
 done

$ oc delete statefulset -l app.kubernetes.io/name=prometheus --cascade=orphan

CHAPTER 2. CONFIGURING THE MONITORING STACK

33

Prerequisites

If you are configuring core OpenShift Container Platform monitoring components:

You have access to the cluster as a user with the cluster-admin role.

You have created the cluster-monitoring-config ConfigMap object.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin role, or as a user with the
user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring
project.

You have created the user-workload-monitoring-config ConfigMap object.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object:

To modify the retention time for the Prometheus instance that monitors core
OpenShift Container Platform projects:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

b. Add your retention time configuration under data/config.yaml:

Substitute <time_specification> with a number directly followed by ms (milliseconds),
s (seconds), m (minutes), h (hours), d (days), w (weeks), or y (years).

The following example sets the retention time to 24 hours for the Prometheus instance
that monitors core OpenShift Container Platform components:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 retention: <time_specification>

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:

OpenShift Container Platform 4.9 Monitoring

34

To modify the retention time for the Prometheus instance that monitors user-defined
projects:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Add your retention time configuration under data/config.yaml:

Substitute <time_specification> with a number directly followed by ms (milliseconds),
s (seconds), m (minutes), h (hours), d (days), w (weeks), or y (years).

The following example sets the retention time to 24 hours for the Prometheus instance
that monitors user-defined projects:

2. Save the file to apply the changes. The pods affected by the new configuration are restarted
automatically.

NOTE

Configurations applied to the user-workload-monitoring-config ConfigMap
object are not activated unless a cluster administrator has enabled monitoring for
user-defined projects.

 config.yaml: |
 prometheusK8s:
 retention: 24h

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 retention: <time_specification>

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 retention: 24h

CHAPTER 2. CONFIGURING THE MONITORING STACK

35

WARNING

When changes are saved to a monitoring config map, the pods and other
resources in the related project might be redeployed. The running
monitoring processes in that project might also be restarted.

Additional resources

See Preparing to configure the monitoring stack for steps to create monitoring config maps

Enabling monitoring for user-defined projects

Understanding persistent storage

Optimizing storage

2.9. CONFIGURING REMOTE WRITE STORAGE

You can configure remote write storage to enable Prometheus to send ingested metrics to remote
systems for long-term storage. Doing so has no impact on how or for how long Prometheus stores
metrics.

Prerequisites

If you are configuring core OpenShift Container Platform monitoring components:

You have access to the cluster as a user with the cluster-admin role.

You have created the cluster-monitoring-config ConfigMap object.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin role or as a user with the
user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring
project.

You have created the user-workload-monitoring-config ConfigMap object.

You have installed the OpenShift CLI (oc).

You have set up a remote write compatible endpoint (such as Thanos) and know the endpoint
URL. See the Prometheus remote endpoints and storage documentation for information about
endpoints that are compatible with the remote write feature.

You have set up authentication credentials for the remote write endpoint.

CAUTION

To reduce security risks, avoid sending metrics to an endpoint via unencrypted HTTP or without
using authentication.



OpenShift Container Platform 4.9 Monitoring

36

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#preparing-to-configure-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#enabling-monitoring-for-user-defined-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/storage/#understanding-persistent-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/scalability_and_performance/#optimizing-storage
https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage

Procedure

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring project:

2. Add a remoteWrite: section under data/config.yaml/prometheusK8s.

3. Add an endpoint URL and authentication credentials in this section:

For endpoint_authentication_credentials substitute the credentials for the endpoint.
Currently supported authentication methods are basic authentication (basicAuth) and client
TLS (tlsConfig) authentication.

The following example configures basic authentication:

Substitute <usernameSecret> and <passwordSecret> accordingly.

The following sample shows basic authentication configured with remoteWriteAuth for the
name values and user and password for the key values. These values contain the endpoint
authentication credentials:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://remote-write.endpoint"
 <endpoint_authentication_credentials>

basicAuth:
 username:
 <usernameSecret>
 password:
 <passwordSecret>

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://remote-write.endpoint"
 basicAuth:
 username:
 name: remoteWriteAuth
 key: user

CHAPTER 2. CONFIGURING THE MONITORING STACK

37

The following example configures client TLS authentication:

Substitute <caSecret>, <certSecret>, and <keySecret> accordingly.

The following sample shows a TLS authentication configuration using selfsigned-mtls-
bundle for the name values and ca.crt for the ca key value, client.crt for the cert key
value, and client.key for the keySecret key value:

4. Add write relabel configuration values after the authentication credentials:

 password:
 name: remoteWriteAuth
 key: password

tlsConfig:
 ca:
 <caSecret>
 cert:
 <certSecret>
 keySecret:
 <keySecret>

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://remote-write.endpoint"
 tlsConfig:
 ca:
 secret:
 name: selfsigned-mtls-bundle
 key: ca.crt
 cert:
 secret:
 name: selfsigned-mtls-bundle
 key: client.crt
 keySecret:
 name: selfsigned-mtls-bundle
 key: client.key

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:

OpenShift Container Platform 4.9 Monitoring

38

For <write_relabel_configs> substitute a list of write relabel configurations for metrics that
you want to send to the remote endpoint.

The following sample shows how to forward a single metric called my_metric:

See the Prometheus relabel_config documentation for information about write relabel
configuration options.

5. If required, configure remote write for the Prometheus instance that monitors user-defined
projects by changing the name and namespace metadata values as follows:

NOTE

The Prometheus config map component is called prometheusK8s in the
cluster-monitoring-config ConfigMap object and prometheus in the user-
workload-monitoring-config ConfigMap object.

6. Save the file to apply the changes to the ConfigMap object. The pods affected by the new
configuration restart automatically.

NOTE

 - url: "https://remote-write.endpoint"
 <endpoint_authentication_credentials>
 <write_relabel_configs>

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://remote-write.endpoint"
 writeRelabelConfigs:
 - sourceLabels: [__name__]
 regex: 'my_metric'
 action: keep

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 remoteWrite:
 - url: "https://remote-write.endpoint"
 <endpoint_authentication_credentials>
 <write_relabel_configs>

CHAPTER 2. CONFIGURING THE MONITORING STACK

39

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#relabel_config

NOTE

Configurations applied to the user-workload-monitoring-config ConfigMap
object are not activated unless a cluster administrator has enabled monitoring for
user-defined projects.

WARNING

Saving changes to a monitoring ConfigMap object might redeploy the
pods and other resources in the related project. Saving changes might also
restart the running monitoring processes in that project.

Additional resources

See Setting up remote write compatible endpoints for steps to create a remote write
compatible endpoint (such as Thanos).

See Tuning remote write settings for information about how to optimize remote write settings
for different use cases.

For information about additional optional fields, please refer to the API documentation.

2.10. CONTROLLING THE IMPACT OF UNBOUND METRICS
ATTRIBUTES IN USER-DEFINED PROJECTS

Developers can create labels to define attributes for metrics in the form of key-value pairs. The number
of potential key-value pairs corresponds to the number of possible values for an attribute. An attribute
that has an unlimited number of potential values is called an unbound attribute. For example, a
customer_id attribute is unbound because it has an infinite number of possible values.

Every assigned key-value pair has a unique time series. The use of many unbound attributes in labels
can result in an exponential increase in the number of time series created. This can impact Prometheus
performance and can consume a lot of disk space.

Cluster administrators can use the following measures to control the impact of unbound metrics
attributes in user-defined projects:

Limit the number of samples that can be accepted per target scrape in user-defined projects

Create alerts that fire when a scrape sample threshold is reached or when the target cannot be
scraped

NOTE

Limiting scrape samples can help prevent the issues caused by adding many unbound
attributes to labels. Developers can also prevent the underlying cause by limiting the
number of unbound attributes that they define for metrics. Using attributes that are
bound to a limited set of possible values reduces the number of potential key-value pair
combinations.



OpenShift Container Platform 4.9 Monitoring

40

https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage
https://prometheus.io/docs/practices/remote_write/#remote-write-tuning

1

2.10.1. Setting a scrape sample limit for user-defined projects

You can limit the number of samples that can be accepted per target scrape in user-defined projects.

WARNING

If you set a sample limit, no further sample data is ingested for that target scrape
after the limit is reached.

Prerequisites

You have access to the cluster as a user with the cluster-admin role, or as a user with the user-
workload-monitoring-config-edit role in the openshift-user-workload-monitoring project.

You have created the user-workload-monitoring-config ConfigMap object.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

2. Add the enforcedSampleLimit configuration to data/config.yaml to limit the number of
samples that can be accepted per target scrape in user-defined projects:

A value is required if this parameter is specified. This enforcedSampleLimit example limits
the number of samples that can be accepted per target scrape in user-defined projects to
50,000.

3. Save the file to apply the changes. The limit is applied automatically.

NOTE

Configurations applied to the user-workload-monitoring-config ConfigMap
object are not activated unless a cluster administrator has enabled monitoring for
user-defined projects.



$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 enforcedSampleLimit: 50000 1

CHAPTER 2. CONFIGURING THE MONITORING STACK

41

WARNING

When changes are saved to the user-workload-monitoring-config
ConfigMap object, the pods and other resources in the openshift-user-
workload-monitoring project might be redeployed. The running
monitoring processes in that project might also be restarted.

2.10.2. Creating scrape sample alerts

You can create alerts that notify you when:

The target cannot be scraped or is not available for the specified for duration

A scrape sample threshold is reached or is exceeded for the specified for duration

Prerequisites

You have access to the cluster as a user with the cluster-admin role, or as a user with the user-
workload-monitoring-config-edit role in the openshift-user-workload-monitoring project.

You have enabled monitoring for user-defined projects.

You have created the user-workload-monitoring-config ConfigMap object.

You have limited the number of samples that can be accepted per target scrape in user-defined
projects, by using enforcedSampleLimit.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a YAML file with alerts that inform you when the targets are down and when the
enforced sample limit is approaching. The file in this example is called monitoring-stack-
alerts.yaml:



apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
 labels:
 prometheus: k8s
 role: alert-rules
 name: monitoring-stack-alerts 1
 namespace: ns1 2
spec:
 groups:
 - name: general.rules
 rules:
 - alert: TargetDown 3
 annotations:
 message: '{{ printf "%.4g" $value }}% of the {{ $labels.job }}/{{ $labels.service
 }} targets in {{ $labels.namespace }} namespace are down.' 4

OpenShift Container Platform 4.9 Monitoring

42

1

2

3

4

5

6

7

8

9

10

11

Defines the name of the alerting rule.

Specifies the user-defined project where the alerting rule will be deployed.

The TargetDown alert will fire if the target cannot be scraped or is not available for the for
duration.

The message that will be output when the TargetDown alert fires.

The conditions for the TargetDown alert must be true for this duration before the alert is
fired.

Defines the severity for the TargetDown alert.

The ApproachingEnforcedSamplesLimit alert will fire when the defined scrape sample
threshold is reached or exceeded for the specified for duration.

The message that will be output when the ApproachingEnforcedSamplesLimit alert
fires.

The threshold for the ApproachingEnforcedSamplesLimit alert. In this example the alert
will fire when the number of samples per target scrape has exceeded 80% of the enforced
sample limit of 50000. The for duration must also have passed before the alert will fire. The
<number> in the expression scrape_samples_scraped/<number> > <threshold> must
match the enforcedSampleLimit value defined in the user-workload-monitoring-config
ConfigMap object.

The conditions for the ApproachingEnforcedSamplesLimit alert must be true for this
duration before the alert is fired.

Defines the severity for the ApproachingEnforcedSamplesLimit alert.

2. Apply the configuration to the user-defined project:

Additional resources

Creating a user-defined workload monitoring config map

 expr: 100 * (count(up == 0) BY (job, namespace, service) / count(up) BY (job,
 namespace, service)) > 10
 for: 10m 5
 labels:
 severity: warning 6
 - alert: ApproachingEnforcedSamplesLimit 7
 annotations:
 message: '{{ $labels.container }} container of the {{ $labels.pod }} pod in the {{
$labels.namespace }} namespace consumes {{ $value | humanizePercentage }} of the
samples limit budget.' 8
 expr: scrape_samples_scraped/50000 > 0.8 9
 for: 10m 10
 labels:
 severity: warning 11

$ oc apply -f monitoring-stack-alerts.yaml

CHAPTER 2. CONFIGURING THE MONITORING STACK

43

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#creating-user-defined-workload-monitoring-configmap_configuring-the-monitoring-stack

Enabling monitoring for user-defined projects

See Determining why Prometheus is consuming a lot of disk space for steps to query which
metrics have the highest number of scrape samples

OpenShift Container Platform 4.9 Monitoring

44

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#enabling-monitoring-for-user-defined-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#determining-why-prometheus-is-consuming-disk-space_troubleshooting-monitoring-issues

CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER
INSTANCES

The OpenShift Container Platform monitoring stack includes a local Alertmanager instance that routes
alerts from Prometheus. You can add external Alertmanager instances by configuring the cluster-
monitoring-config config map in either the openshift-monitoring project or the user-workload-
monitoring-config project.

If you add the same external Alertmanager configuration for multiple clusters and disable the local
instance for each cluster, you can then manage alert routing for multiple clusters by using a single
external Alertmanager instance.

Prerequisites

You have installed the OpenShift CLI (oc).

If you are configuring core OpenShift Container Platform monitoring components in the
openshift-monitoring project:

You have access to the cluster as a user with the cluster-admin role.

You have created the cluster-monitoring-config config map.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin role, or as a user with the
user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring
project.

You have created the user-workload-monitoring-config config map.

Procedure

1. Edit the ConfigMap object.

To configure additional Alertmanagers for routing alerts from core OpenShift
Container Platform projects:

a. Edit the cluster-monitoring-config config map in the openshift-monitoring project:

b. Add an additionalAlertmanagerConfigs: section under
data/config.yaml/prometheusK8s.

c. Add the configuration details for additional Alertmanagers in this section:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |

CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES

45

For <alertmanager_specification>, substitute authentication and other configuration
details for additional Alertmanager instances. Currently supported authentication
methods are bearer token (bearerToken) and client TLS (tlsConfig). The following
sample config map configures an additional Alertmanager using a bearer token with
client TLS authentication:

To configure additional Alertmanager instances for routing alerts from user-defined
projects:

a. Edit the user-workload-monitoring-config config map in the openshift-user-
workload-monitoring project:

b. Add a <component>/additionalAlertmanagerConfigs: section under
data/config.yaml/.

c. Add the configuration details for additional Alertmanagers in this section:

 prometheusK8s:
 additionalAlertmanagerConfigs:
 - <alertmanager_specification>

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 additionalAlertmanagerConfigs:
 - scheme: https
 pathPrefix: /
 timeout: "30s"
 apiVersion: v1
 bearerToken:
 name: alertmanager-bearer-token
 key: token
 tlsConfig:
 key:
 name: alertmanager-tls
 key: tls.key
 cert:
 name: alertmanager-tls
 key: tls.crt
 ca:
 name: alertmanager-tls
 key: tls.ca
 staticConfigs:
 - external-alertmanager1-remote.com
 - external-alertmanager1-remote2.com

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1

OpenShift Container Platform 4.9 Monitoring

46

For <component>, substitute one of two supported external Alertmanager
components: prometheus or thanosRuler.

For <alertmanager_specification>, substitute authentication and other configuration
details for additional Alertmanager instances. Currently supported authentication
methods are bearer token (bearerToken) and client TLS (tlsConfig). The following
sample config map configures an additional Alertmanager using Thanos Ruler with a
bearer token and client TLS authentication:

NOTE

Configurations applied to the user-workload-monitoring-config
ConfigMap object are not activated unless a cluster administrator has
enabled monitoring for user-defined projects.

kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>:
 additionalAlertmanagerConfigs:
 - <alertmanager_specification>

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 thanosRuler:
 additionalAlertmanagerConfigs:
 - scheme: https
 pathPrefix: /
 timeout: "30s"
 apiVersion: v1
 bearerToken:
 name: alertmanager-bearer-token
 key: token
 tlsConfig:
 key:
 name: alertmanager-tls
 key: tls.key
 cert:
 name: alertmanager-tls
 key: tls.crt
 ca:
 name: alertmanager-tls
 key: tls.ca
 staticConfigs:
 - external-alertmanager1-remote.com
 - external-alertmanager1-remote2.com

CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES

47

1

2. Save the file to apply the changes to the ConfigMap object. The new component placement
configuration is applied automatically.

3.1. ATTACHING ADDITIONAL LABELS TO YOUR TIME SERIES AND
ALERTS

Using the external labels feature of Prometheus, you can attach custom labels to all time series and
alerts leaving Prometheus.

Prerequisites

If you are configuring core OpenShift Container Platform monitoring components:

You have access to the cluster as a user with the cluster-admin role.

You have created the cluster-monitoring-config ConfigMap object.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin role, or as a user with the
user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring
project.

You have created the user-workload-monitoring-config ConfigMap object.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object:

To attach custom labels to all time series and alerts leaving the Prometheus instance
that monitors core OpenShift Container Platform projects:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

b. Define a map of labels you want to add for every metric under data/config.yaml:

Substitute <key>: <value> with a map of key-value pairs where <key> is a unique
name for the new label and <value> is its value.

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 externalLabels:
 <key>: <value> 1

OpenShift Container Platform 4.9 Monitoring

48

1

WARNING

Do not use prometheus or prometheus_replica as key names,
because they are reserved and will be overwritten.

For example, to add metadata about the region and environment to all time series and
alerts, use:

To attach custom labels to all time series and alerts leaving the Prometheus instance
that monitors user-defined projects:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Define a map of labels you want to add for every metric under data/config.yaml:

Substitute <key>: <value> with a map of key-value pairs where <key> is a unique
name for the new label and <value> is its value.



apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 externalLabels:
 region: eu
 environment: prod

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 externalLabels:
 <key>: <value> 1

CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES

49

WARNING

Do not use prometheus or prometheus_replica as key names,
because they are reserved and will be overwritten.

NOTE

In the openshift-user-workload-monitoring project, Prometheus
handles metrics and Thanos Ruler handles alerting and recording rules.
Setting externalLabels for prometheus in the user-workload-
monitoring-config ConfigMap object will only configure external labels
for metrics and not for any rules.

For example, to add metadata about the region and environment to all time series and
alerts related to user-defined projects, use:

2. Save the file to apply the changes. The new configuration is applied automatically.

NOTE

Configurations applied to the user-workload-monitoring-config ConfigMap
object are not activated unless a cluster administrator has enabled monitoring for
user-defined projects.

WARNING

When changes are saved to a monitoring config map, the pods and other
resources in the related project might be redeployed. The running
monitoring processes in that project might also be restarted.

Additional resources

See Preparing to configure the monitoring stack for steps to create monitoring config maps



apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 externalLabels:
 region: eu
 environment: prod



OpenShift Container Platform 4.9 Monitoring

50

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#preparing-to-configure-the-monitoring-stack

Enabling monitoring for user-defined projects

See Preparing to configure the monitoring stack for steps to create monitoring config maps

3.2. SETTING LOG LEVELS FOR MONITORING COMPONENTS

You can configure the log level for Alertmanager, Prometheus Operator, Prometheus, Thanos Querier,
and Thanos Ruler.

The following log levels can be applied to the relevant component in the cluster-monitoring-config
and user-workload-monitoring-config ConfigMap objects:

debug. Log debug, informational, warning, and error messages.

info. Log informational, warning, and error messages.

warn. Log warning and error messages only.

error. Log error messages only.

The default log level is info.

Prerequisites

If you are setting a log level for Alertmanager, Prometheus Operator, Prometheus, or
Thanos Querier in the openshift-monitoring project:

You have access to the cluster as a user with the cluster-admin role.

You have created the cluster-monitoring-config ConfigMap object.

If you are setting a log level for Prometheus Operator, Prometheus, or Thanos Ruler in the
openshift-user-workload-monitoring project:

You have access to the cluster as a user with the cluster-admin role, or as a user with the
user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring
project.

You have created the user-workload-monitoring-config ConfigMap object.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object:

To set a log level for a component in the openshift-monitoring project:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

b. Add logLevel: <log_level> for a component under data/config.yaml:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1

CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES

51

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#enabling-monitoring-for-user-defined-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#preparing-to-configure-the-monitoring-stack

1

2

1

2

The monitoring stack component for which you are setting a log level. For default
platform monitoring, available component values are prometheusK8s,
alertmanagerMain, prometheusOperator, and thanosQuerier.

The log level to set for the component. The available values are error, warn, info,
and debug. The default value is info.

To set a log level for a component in the openshift-user-workload-monitoring project:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Add logLevel: <log_level> for a component under data/config.yaml:

The monitoring stack component for which you are setting a log level. For user
workload monitoring, available component values are prometheus,
prometheusOperator, and thanosRuler.

The log level to set for the component. The available values are error, warn, info,
and debug. The default value is info.

2. Save the file to apply the changes. The pods for the component restarts automatically when you
apply the log-level change.

NOTE

Configurations applied to the user-workload-monitoring-config ConfigMap
object are not activated unless a cluster administrator has enabled monitoring for
user-defined projects.

kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 <component>: 1
 logLevel: <log_level> 2

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>: 1
 logLevel: <log_level> 2

OpenShift Container Platform 4.9 Monitoring

52

WARNING

When changes are saved to a monitoring config map, the pods and other
resources in the related project might be redeployed. The running
monitoring processes in that project might also be restarted.

3. Confirm that the log-level has been applied by reviewing the deployment or pod configuration
in the related project. The following example checks the log level in the prometheus-operator
deployment in the openshift-user-workload-monitoring project:

Example output

4. Check that the pods for the component are running. The following example lists the status of
pods in the openshift-user-workload-monitoring project:

NOTE

If an unrecognized loglevel value is included in the ConfigMap object, the pods
for the component might not restart successfully.

Additional resources

See Preparing to configure the monitoring stack for steps to create monitoring config maps

Enabling monitoring for user-defined projects

3.3. DISABLING THE DEFAULT GRAFANA DEPLOYMENT

By default, a read-only Grafana instance is deployed with a collection of dashboards displaying cluster
metrics. The Grafana instance is not user-configurable.

You can disable the Grafana deployment, causing the associated resources to be deleted from the
cluster. You might do this if you do not need these dashboards and want to conserve resources in your
cluster. You will still be able to view metrics and dashboards included in the web console. Grafana can be
safely enabled again at any time.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have created the cluster-monitoring-config ConfigMap object.



$ oc -n openshift-user-workload-monitoring get deploy prometheus-operator -o yaml | grep
"log-level"

 - --log-level=debug

$ oc -n openshift-user-workload-monitoring get pods

CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES

53

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#preparing-to-configure-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#enabling-monitoring-for-user-defined-projects

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring project:

2. Add enabled: false for the grafana component under data/config.yaml:

3. Save the file to apply the changes. The resources will begin to be removed automatically when
you apply the change.

WARNING

This change results in some components, including Prometheus and the
Thanos Querier, being restarted. This might lead to previously collected
metrics being lost if you have not yet followed the steps in the "Configuring
persistent storage" section.

4. Check that the Grafana pod is no longer running. The following example lists the status of pods
in the openshift-monitoring project:

NOTE

It may take a few minutes after applying the change for these pods to terminate.

Additional resources

See Preparing to configure the monitoring stack for steps to create monitoring config maps

3.4. DISABLING THE LOCAL ALERTMANAGER

A local Alertmanager that routes alerts from Prometheus instances is enabled by default in the
openshift-monitoring project of the OpenShift Container Platform monitoring stack.

If you do not need the local Alertmanager, you can disable it by configuring the cluster-monitoring-

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 grafana:
 enabled: false



$ oc -n openshift-monitoring get pods

OpenShift Container Platform 4.9 Monitoring

54

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#preparing-to-configure-the-monitoring-stack

If you do not need the local Alertmanager, you can disable it by configuring the cluster-monitoring-
config config map in the openshift-monitoring project.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have created the cluster-monitoring-config config map.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the cluster-monitoring-config config map in the openshift-monitoring project:

2. Add enabled: false for the alertmanagerMain component under data/config.yaml:

3. Save the file to apply the changes. The Alertmanager instance is disabled automatically when
you apply the change.

Additional resources

Prometheus Alertmanager documentation

Managing alerts

3.5. NEXT STEPS

Enabling monitoring for user-defined projects

Learn about remote health reporting and, if necessary, opt out of it

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 alertmanagerMain:
 enabled: false

CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES

55

https://prometheus.io/docs/alerting/latest/alertmanager/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#enabling-monitoring-for-user-defined-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/support/#opting-out-remote-health-reporting_opting-out-remote-health-reporting

CHAPTER 4. ENABLING MONITORING FOR USER-DEFINED
PROJECTS

In OpenShift Container Platform 4.9, you can enable monitoring for user-defined projects in addition to
the default platform monitoring. You can now monitor your own projects in OpenShift Container
Platform without the need for an additional monitoring solution. Using this new feature centralizes
monitoring for core platform components and user-defined projects.

NOTE

Versions of Prometheus Operator installed using Operator Lifecycle Manager (OLM) are
not compatible with user-defined monitoring. Therefore, custom Prometheus instances
installed as a Prometheus custom resource (CR) managed by the OLM Prometheus
Operator are not supported in OpenShift Container Platform.

4.1. ENABLING MONITORING FOR USER-DEFINED PROJECTS

Cluster administrators can enable monitoring for user-defined projects by setting the
enableUserWorkload: true field in the cluster monitoring ConfigMap object.

IMPORTANT

In OpenShift Container Platform 4.9 you must remove any custom Prometheus instances
before enabling monitoring for user-defined projects.

NOTE

You must have access to the cluster as a user with the cluster-admin role to enable
monitoring for user-defined projects in OpenShift Container Platform. Cluster
administrators can then optionally grant users permission to configure the components
that are responsible for monitoring user-defined projects.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

You have created the cluster-monitoring-config ConfigMap object.

You have optionally created and configured the user-workload-monitoring-config
ConfigMap object in the openshift-user-workload-monitoring project. You can add
configuration options to this ConfigMap object for the components that monitor user-defined
projects.

NOTE

Every time you save configuration changes to the user-workload-monitoring-
config ConfigMap object, the pods in the openshift-user-workload-monitoring
project are redeployed. It can sometimes take a while for these components to
redeploy. You can create and configure the ConfigMap object before you first
enable monitoring for user-defined projects, to prevent having to redeploy the
pods often.

OpenShift Container Platform 4.9 Monitoring

56

1

Procedure

1. Edit the cluster-monitoring-config ConfigMap object:

2. Add enableUserWorkload: true under data/config.yaml:

When set to true, the enableUserWorkload parameter enables monitoring for user-
defined projects in a cluster.

3. Save the file to apply the changes. Monitoring for user-defined projects is then enabled
automatically.

WARNING

When changes are saved to the cluster-monitoring-config ConfigMap
object, the pods and other resources in the openshift-monitoring project
might be redeployed. The running monitoring processes in that project
might also be restarted.

4. Check that the prometheus-operator, prometheus-user-workload and thanos-ruler-user-
workload pods are running in the openshift-user-workload-monitoring project. It might take a
short while for the pods to start:

Example output

Additional resources

Creating a cluster monitoring config map

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 enableUserWorkload: true 1



$ oc -n openshift-user-workload-monitoring get pod

NAME READY STATUS RESTARTS AGE
prometheus-operator-6f7b748d5b-t7nbg 2/2 Running 0 3h
prometheus-user-workload-0 4/4 Running 1 3h
prometheus-user-workload-1 4/4 Running 1 3h
thanos-ruler-user-workload-0 3/3 Running 0 3h
thanos-ruler-user-workload-1 3/3 Running 0 3h

CHAPTER 4. ENABLING MONITORING FOR USER-DEFINED PROJECTS

57

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#creating-cluster-monitoring-configmap_configuring-the-monitoring-stack

Configuring the monitoring stack

Granting users permission to configure monitoring for user-defined projects

4.2. GRANTING USERS PERMISSION TO MONITOR USER-DEFINED
PROJECTS

Cluster administrators can monitor all core OpenShift Container Platform and user-defined projects.

Cluster administrators can grant developers and other users permission to monitor their own projects.
Privileges are granted by assigning one of the following monitoring roles:

The monitoring-rules-view role provides read access to PrometheusRule custom resources
for a project.

The monitoring-rules-edit role grants a user permission to create, modify, and deleting
PrometheusRule custom resources for a project.

The monitoring-edit role grants the same privileges as the monitoring-rules-edit role.
Additionally, it enables a user to create new scrape targets for services or pods. With this role,
you can also create, modify, and delete ServiceMonitor and PodMonitor resources.

You can also grant users permission to configure the components that are responsible for monitoring
user-defined projects:

The user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring
project enables you to edit the user-workload-monitoring-config ConfigMap object. With this
role, you can edit the ConfigMap object to configure Prometheus, Prometheus Operator and
Thanos Ruler for user-defined workload monitoring.

This section provides details on how to assign these roles by using the OpenShift Container Platform
web console or the CLI.

4.2.1. Granting user permissions by using the web console

You can grant users permissions to monitor their own projects, by using the OpenShift Container
Platform web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

The user account that you are assigning the role to already exists.

Procedure

1. In the Administrator perspective within the OpenShift Container Platform web console,
navigate to User Management → Role Bindings → Create Binding.

2. In the Binding Type section, select the "Namespace Role Binding" type.

3. In the Name field, enter a name for the role binding.

4. In the Namespace field, select the user-defined project where you want to grant the access.

IMPORTANT

OpenShift Container Platform 4.9 Monitoring

58

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#configuring-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#granting-users-permission-to-configure-monitoring-for-user-defined-projects_enabling-monitoring-for-user-defined-projects

1

IMPORTANT

The monitoring role will be bound to the project that you apply in the
Namespace field. The permissions that you grant to a user by using this
procedure will apply only to the selected project.

5. Select monitoring-rules-view, monitoring-rules-edit, or monitoring-edit in the Role Name
list.

6. In the Subject section, select User.

7. In the Subject Name field, enter the name of the user.

8. Select Create to apply the role binding.

4.2.2. Granting user permissions by using the CLI

You can grant users permissions to monitor their own projects, by using the OpenShift CLI (oc).

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

The user account that you are assigning the role to already exists.

You have installed the OpenShift CLI (oc).

Procedure

Assign a monitoring role to a user for a project:

Substitute <role> with monitoring-rules-view, monitoring-rules-edit, or monitoring-
edit.

IMPORTANT

Whichever role you choose, you must bind it against a specific project as a cluster
administrator.

As an example, substitute <role> with monitoring-edit, <user> with johnsmith, and
<namespace> with ns1. This assigns the user johnsmith permission to set up metrics
collection and to create alerting rules in the ns1 namespace.

4.3. GRANTING USERS PERMISSION TO CONFIGURE MONITORING
FOR USER-DEFINED PROJECTS

You can grant users permission to configure monitoring for user-defined projects.

Prerequisites

$ oc policy add-role-to-user <role> <user> -n <namespace> 1

CHAPTER 4. ENABLING MONITORING FOR USER-DEFINED PROJECTS

59

You have access to the cluster as a user with the cluster-admin role.

The user account that you are assigning the role to already exists.

You have installed the OpenShift CLI (oc).

Procedure

Assign the user-workload-monitoring-config-edit role to a user in the openshift-user-
workload-monitoring project:

4.4. ACCESSING METRICS FROM OUTSIDE THE CLUSTER FOR
CUSTOM APPLICATIONS

Learn how to query Prometheus statistics from the command line when monitoring your own services.
You can access monitoring data from outside the cluster with the thanos-querier route.

Prerequisites

You deployed your own service, following the Enabling monitoring for user-defined projects
procedure.

Procedure

1. Extract a token to connect to Prometheus:

2. Extract your route host:

3. Query the metrics of your own services in the command line. For example:

The output will show you the duration that your application pods have been up.

Example output

$ oc -n openshift-user-workload-monitoring adm policy add-role-to-user \
 user-workload-monitoring-config-edit <user> \
 --role-namespace openshift-user-workload-monitoring

$ SECRET=`oc get secret -n openshift-user-workload-monitoring | grep prometheus-user-
workload-token | head -n 1 | awk '{print $1 }'`

$ TOKEN=`echo $(oc get secret $SECRET -n openshift-user-workload-monitoring -o json | jq
-r '.data.token') | base64 -d`

$ THANOS_QUERIER_HOST=`oc get route thanos-querier -n openshift-monitoring -o json |
jq -r '.spec.host'`

$ NAMESPACE=ns1

$ curl -X GET -kG "https://$THANOS_QUERIER_HOST/api/v1/query?" --data-urlencode
"query=up{namespace='$NAMESPACE'}" -H "Authorization: Bearer $TOKEN"

OpenShift Container Platform 4.9 Monitoring

60

4.5. EXCLUDING A USER-DEFINED PROJECT FROM MONITORING

Individual user-defined projects can be excluded from user workload monitoring. To do so, simply add
the openshift.io/user-monitoring label to the project’s namespace with a value of false.

Procedure

1. Add the label to the project namespace:

2. To re-enable monitoring, remove the label from the namespace:

NOTE

If there were any active monitoring targets for the project, it may take a few
minutes for Prometheus to stop scraping them after adding the label.

4.6. DISABLING MONITORING FOR USER-DEFINED PROJECTS

After enabling monitoring for user-defined projects, you can disable it again by setting
enableUserWorkload: false in the cluster monitoring ConfigMap object.

NOTE

Alternatively, you can remove enableUserWorkload: true to disable monitoring for user-
defined projects.

Procedure

1. Edit the cluster-monitoring-config ConfigMap object:

a. Set enableUserWorkload: to false under data/config.yaml:

{"status":"success","data":{"resultType":"vector","result":[{"metric":
{"__name__":"up","endpoint":"web","instance":"10.129.0.46:8080","job":"prometheus-
example-app","namespace":"ns1","pod":"prometheus-example-app-68d47c4fb6-
jztp2","service":"prometheus-example-app"},"value":[1591881154.748,"1"]}]}}

$ oc label namespace my-project 'openshift.io/user-monitoring=false'

$ oc label namespace my-project 'openshift.io/user-monitoring-'

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 enableUserWorkload: false

CHAPTER 4. ENABLING MONITORING FOR USER-DEFINED PROJECTS

61

2. Save the file to apply the changes. Monitoring for user-defined projects is then disabled
automatically.

3. Check that the prometheus-operator, prometheus-user-workload and thanos-ruler-user-
workload pods are terminated in the openshift-user-workload-monitoring project. This might
take a short while:

Example output

NOTE

The user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project is not automatically deleted when monitoring for user-
defined projects is disabled. This is to preserve any custom configurations that you may
have created in the ConfigMap object.

4.7. NEXT STEPS

Managing metrics

$ oc -n openshift-user-workload-monitoring get pod

No resources found in openshift-user-workload-monitoring project.

OpenShift Container Platform 4.9 Monitoring

62

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#managing-metrics

CHAPTER 5. MANAGING METRICS
You can collect metrics to monitor how cluster components and your own workloads are performing.

5.1. UNDERSTANDING METRICS

In OpenShift Container Platform 4.9, cluster components are monitored by scraping metrics exposed
through service endpoints. You can also configure metrics collection for user-defined projects.

You can define the metrics that you want to provide for your own workloads by using Prometheus client
libraries at the application level.

In OpenShift Container Platform, metrics are exposed through an HTTP service endpoint under the
/metrics canonical name. You can list all available metrics for a service by running a curl query against
http://<endpoint>/metrics. For instance, you can expose a route to the prometheus-example-app
example service and then run the following to view all of its available metrics:

Example output

Additional resources

See the Prometheus documentation for details on Prometheus client libraries.

5.2. SETTING UP METRICS COLLECTION FOR USER-DEFINED
PROJECTS

You can create a ServiceMonitor resource to scrape metrics from a service endpoint in a user-defined
project. This assumes that your application uses a Prometheus client library to expose metrics to the
/metrics canonical name.

This section describes how to deploy a sample service in a user-defined project and then create a
ServiceMonitor resource that defines how that service should be monitored.

5.2.1. Deploying a sample service

To test monitoring of a service in a user-defined project, you can deploy a sample service.

Procedure

1. Create a YAML file for the service configuration. In this example, it is called prometheus-
example-app.yaml.

$ curl http://<example_app_endpoint>/metrics

HELP http_requests_total Count of all HTTP requests
TYPE http_requests_total counter
http_requests_total{code="200",method="get"} 4
http_requests_total{code="404",method="get"} 2
HELP version Version information about this binary
TYPE version gauge
version{version="v0.1.0"} 1

CHAPTER 5. MANAGING METRICS

63

https://prometheus.io/docs/instrumenting/clientlibs/

2. Add the following deployment and service configuration details to the file:

This configuration deploys a service named prometheus-example-app in the user-defined ns1
project. This service exposes the custom version metric.

3. Apply the configuration to the cluster:

It takes some time to deploy the service.

4. You can check that the pod is running:

apiVersion: v1
kind: Namespace
metadata:
 name: ns1

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: prometheus-example-app
 name: prometheus-example-app
 namespace: ns1
spec:
 replicas: 1
 selector:
 matchLabels:
 app: prometheus-example-app
 template:
 metadata:
 labels:
 app: prometheus-example-app
 spec:
 containers:
 - image: ghcr.io/rhobs/prometheus-example-app:0.4.1
 imagePullPolicy: IfNotPresent
 name: prometheus-example-app

apiVersion: v1
kind: Service
metadata:
 labels:
 app: prometheus-example-app
 name: prometheus-example-app
 namespace: ns1
spec:
 ports:
 - port: 8080
 protocol: TCP
 targetPort: 8080
 name: web
 selector:
 app: prometheus-example-app
 type: ClusterIP

$ oc apply -f prometheus-example-app.yaml

OpenShift Container Platform 4.9 Monitoring

64

Example output

5.2.2. Specifying how a service is monitored

To use the metrics exposed by your service, you must configure OpenShift Container Platform
monitoring to scrape metrics from the /metrics endpoint. You can do this using a ServiceMonitor
custom resource definition (CRD) that specifies how a service should be monitored, or a PodMonitor
CRD that specifies how a pod should be monitored. The former requires a Service object, while the
latter does not, allowing Prometheus to directly scrape metrics from the metrics endpoint exposed by a
pod.

This procedure shows you how to create a ServiceMonitor resource for a service in a user-defined
project.

Prerequisites

You have access to the cluster as a user with the cluster-admin role or the monitoring-edit
role.

You have enabled monitoring for user-defined projects.

For this example, you have deployed the prometheus-example-app sample service in the ns1
project.

NOTE

The prometheus-example-app sample service does not support TLS
authentication.

Procedure

1. Create a YAML file for the ServiceMonitor resource configuration. In this example, the file is
called example-app-service-monitor.yaml.

2. Add the following ServiceMonitor resource configuration details:

$ oc -n ns1 get pod

NAME READY STATUS RESTARTS AGE
prometheus-example-app-7857545cb7-sbgwq 1/1 Running 0 81m

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 labels:
 k8s-app: prometheus-example-monitor
 name: prometheus-example-monitor
 namespace: ns1
spec:
 endpoints:
 - interval: 30s
 port: web
 scheme: http

CHAPTER 5. MANAGING METRICS

65

This defines a ServiceMonitor resource that scrapes the metrics exposed by the prometheus-
example-app sample service, which includes the version metric.

NOTE

A ServiceMonitor resource in a user-defined namespace can only discover
services in the same namespace. That is, the namespaceSelector field of the
ServiceMonitor resource is always ignored.

3. Apply the configuration to the cluster:

It takes some time to deploy the ServiceMonitor resource.

4. You can check that the ServiceMonitor resource is running:

Example output

Additional resources

Enabling monitoring for user-defined projects

How to scrape metrics using TLS in a ServiceMonitor configuration in a user-defined project

PodMonitor API

ServiceMonitor API

5.3. QUERYING METRICS

The OpenShift Container Platform monitoring dashboard enables you to run Prometheus Query
Language (PromQL) queries to examine metrics visualized on a plot. This functionality provides
information about the state of a cluster and any user-defined workloads that you are monitoring.

As a cluster administrator, you can query metrics for all core OpenShift Container Platform and user-
defined projects.

As a developer, you must specify a project name when querying metrics. You must have the required
privileges to view metrics for the selected project.

5.3.1. Querying metrics for all projects as a cluster administrator

As a cluster administrator or as a user with view permissions for all projects, you can access metrics for all

 selector:
 matchLabels:
 app: prometheus-example-app

$ oc apply -f example-app-service-monitor.yaml

$ oc -n ns1 get servicemonitor

NAME AGE
prometheus-example-monitor 81m

OpenShift Container Platform 4.9 Monitoring

66

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#enabling-monitoring-for-user-defined-projects
https://access.redhat.com/articles/6675491
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/api_reference/#podmonitor-monitoring.coreos.com/v1
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/api_reference/#servicemonitor-monitoring.coreos.com/v1

As a cluster administrator or as a user with view permissions for all projects, you can access metrics for all
default OpenShift Container Platform and user-defined projects in the Metrics UI.

NOTE

Only cluster administrators have access to the third-party UIs provided with OpenShift
Container Platform Monitoring.

Prerequisites

You have access to the cluster as a user with the cluster-admin role or with view permissions
for all projects.

You have installed the OpenShift CLI (oc).

Procedure

1. In the Administrator perspective within the OpenShift Container Platform web console, select
Observe → Metrics.

2. Select Insert Metric at Cursor to view a list of predefined queries.

3. To create a custom query, add your Prometheus Query Language (PromQL) query to the
Expression field.

4. To add multiple queries, select Add Query.

5. To delete a query, select next to the query, then choose Delete query.

6. To disable a query from being run, select next to the query and choose Disable query.

7. Select Run Queries to run the queries that you have created. The metrics from the queries are
visualized on the plot. If a query is invalid, the UI shows an error message.

NOTE

Queries that operate on large amounts of data might time out or overload the
browser when drawing time series graphs. To avoid this, select Hide graph and
calibrate your query using only the metrics table. Then, after finding a feasible
query, enable the plot to draw the graphs.

8. Optional: The page URL now contains the queries you ran. To use this set of queries again in the
future, save this URL.

Additional resources

See the Prometheus query documentation for more information about creating PromQL
queries.

5.3.2. Querying metrics for user-defined projects as a developer

CHAPTER 5. MANAGING METRICS

67

https://prometheus.io/docs/prometheus/latest/querying/basics/

You can access metrics for a user-defined project as a developer or as a user with view permissions for
the project.

In the Developer perspective, the Metrics UI includes some predefined CPU, memory, bandwidth, and
network packet queries for the selected project. You can also run custom Prometheus Query Language
(PromQL) queries for CPU, memory, bandwidth, network packet and application metrics for the project.

NOTE

Developers can only use the Developer perspective and not the Administrator
perspective. As a developer, you can only query metrics for one project at a time.
Developers cannot access the third-party UIs provided with OpenShift Container
Platform monitoring that are for core platform components. Instead, use the Metrics UI
for your user-defined project.

Prerequisites

You have access to the cluster as a developer or as a user with view permissions for the project
that you are viewing metrics for.

You have enabled monitoring for user-defined projects.

You have deployed a service in a user-defined project.

You have created a ServiceMonitor custom resource definition (CRD) for the service to define
how the service is monitored.

Procedure

1. From the Developer perspective in the OpenShift Container Platform web console, select
Observe → Metrics.

2. Select the project that you want to view metrics for in the Project: list.

3. Choose a query from the Select Query list, or run a custom PromQL query by selecting Show
PromQL.

NOTE

In the Developer perspective, you can only run one query at a time.

Additional resources

See the Prometheus query documentation for more information about creating PromQL
queries.

Additional resources

See the Querying metrics for user-defined projects as a developer for details on accessing non-
cluster metrics as a developer or a privileged user

5.3.3. Exploring the visualized metrics

After running the queries, the metrics are displayed on an interactive plot. The X-axis in the plot

OpenShift Container Platform 4.9 Monitoring

68

https://prometheus.io/docs/prometheus/latest/querying/basics/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#querying-metrics-for-user-defined-projects-as-a-developer_managing-metrics

After running the queries, the metrics are displayed on an interactive plot. The X-axis in the plot
represents time and the Y-axis represents metrics values. Each metric is shown as a colored line on the
graph. You can manipulate the plot interactively and explore the metrics.

Procedure

In the Administrator perspective:

1. Initially, all metrics from all enabled queries are shown on the plot. You can select which metrics
are shown.

NOTE

By default, the query table shows an expanded view that lists every metric and its
current value. You can select ˅ to minimize the expanded view for a query.

To hide all metrics from a query, click for the query and click Hide all series.

To hide a specific metric, go to the query table and click the colored square near the metric
name.

2. To zoom into the plot and change the time range, do one of the following:

Visually select the time range by clicking and dragging on the plot horizontally.

Use the menu in the left upper corner to select the time range.

3. To reset the time range, select Reset Zoom.

4. To display outputs for all queries at a specific point in time, hold the mouse cursor on the plot at
that point. The query outputs will appear in a pop-up box.

5. To hide the plot, select Hide Graph.

In the Developer perspective:

1. To zoom into the plot and change the time range, do one of the following:

Visually select the time range by clicking and dragging on the plot horizontally.

Use the menu in the left upper corner to select the time range.

2. To reset the time range, select Reset Zoom.

3. To display outputs for all queries at a specific point in time, hold the mouse cursor on the plot at
that point. The query outputs will appear in a pop-up box.

Additional resources

See the Querying metrics section on using the PromQL interface

5.4. NEXT STEPS

Managing alerts

CHAPTER 5. MANAGING METRICS

69

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#querying-metrics_managing-metrics
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#managing-alerts

CHAPTER 6. MANAGING ALERTS
In OpenShift Container Platform 4.9, the Alerting UI enables you to manage alerts, silences, and alerting
rules.

Alerting rules. Alerting rules contain a set of conditions that outline a particular state within a
cluster. Alerts are triggered when those conditions are true. An alerting rule can be assigned a
severity that defines how the alerts are routed.

Alerts. An alert is fired when the conditions defined in an alerting rule are true. Alerts provide a
notification that a set of circumstances are apparent within an OpenShift Container Platform
cluster.

Silences. A silence can be applied to an alert to prevent notifications from being sent when the
conditions for an alert are true. You can mute an alert after the initial notification, while you work
on resolving the underlying issue.

NOTE

The alerts, silences, and alerting rules that are available in the Alerting UI relate to the
projects that you have access to. For example, if you are logged in with cluster-admin
privileges, you can access all alerts, silences, and alerting rules.

If you are a non-administator user, you can create and silence alerts if you are assigned
the following user roles:

The cluster-monitoring-view role, which allows you to access Alertmanager

The monitoring-alertmanager-edit role, which permits you to create and silence
alerts in the Administrator perspective in the web console

The monitoring-rules-edit role, which permits you to create and silence alerts in
the Developer perspective in the web console

6.1. ACCESSING THE ALERTING UI IN THE ADMINISTRATOR AND
DEVELOPER PERSPECTIVES

The Alerting UI is accessible through the Administrator perspective and the Developer perspective in
the OpenShift Container Platform web console.

In the Administrator perspective, select Observe → Alerting. The three main pages in the
Alerting UI in this perspective are the Alerts, Silences, and Alerting Rules pages.

In the Developer perspective, select Observe → <project_name> → Alerts. In this perspective,
alerts, silences, and alerting rules are all managed from the Alerts page. The results shown in
the Alerts page are specific to the selected project.

NOTE

In the Developer perspective, you can select from core OpenShift Container Platform
and user-defined projects that you have access to in the Project: list. However, alerts,
silences, and alerting rules relating to core OpenShift Container Platform projects are not
displayed if you do not have cluster-admin privileges.

OpenShift Container Platform 4.9 Monitoring

70

6.2. SEARCHING AND FILTERING ALERTS, SILENCES, AND ALERTING
RULES

You can filter the alerts, silences, and alerting rules that are displayed in the Alerting UI. This section
provides a description of each of the available filtering options.

Understanding alert filters
In the Administrator perspective, the Alerts page in the Alerting UI provides details about alerts
relating to default OpenShift Container Platform and user-defined projects. The page includes a
summary of severity, state, and source for each alert. The time at which an alert went into its current
state is also shown.

You can filter by alert state, severity, and source. By default, only Platform alerts that are Firing are
displayed. The following describes each alert filtering option:

Alert State filters:

Firing. The alert is firing because the alert condition is true and the optional for duration
has passed. The alert will continue to fire as long as the condition remains true.

Pending. The alert is active but is waiting for the duration that is specified in the alerting
rule before it fires.

Silenced. The alert is now silenced for a defined time period. Silences temporarily mute
alerts based on a set of label selectors that you define. Notifications will not be sent for
alerts that match all the listed values or regular expressions.

Severity filters:

Critical. The condition that triggered the alert could have a critical impact. The alert
requires immediate attention when fired and is typically paged to an individual or to a critical
response team.

Warning. The alert provides a warning notification about something that might require
attention to prevent a problem from occurring. Warnings are typically routed to a ticketing
system for non-immediate review.

Info. The alert is provided for informational purposes only.

None. The alert has no defined severity.

You can also create custom severity definitions for alerts relating to user-defined projects.

Source filters:

Platform. Platform-level alerts relate only to default OpenShift Container Platform
projects. These projects provide core OpenShift Container Platform functionality.

User. User alerts relate to user-defined projects. These alerts are user-created and are
customizable. User-defined workload monitoring can be enabled post-installation to
provide observability into your own workloads.

Understanding silence filters
In the Administrator perspective, the Silences page in the Alerting UI provides details about silences
applied to alerts in default OpenShift Container Platform and user-defined projects. The page includes
a summary of the state of each silence and the time at which a silence ends.

CHAPTER 6. MANAGING ALERTS

71

You can filter by silence state. By default, only Active and Pending silences are displayed. The following
describes each silence state filter option:

Silence State filters:

Active. The silence is active and the alert will be muted until the silence is expired.

Pending. The silence has been scheduled and it is not yet active.

Expired. The silence has expired and notifications will be sent if the conditions for an alert
are true.

Understanding alerting rule filters
In the Administrator perspective, the Alerting Rules page in the Alerting UI provides details about
alerting rules relating to default OpenShift Container Platform and user-defined projects. The page
includes a summary of the state, severity, and source for each alerting rule.

You can filter alerting rules by alert state, severity, and source. By default, only Platform alerting rules
are displayed. The following describes each alerting rule filtering option:

Alert State filters:

Firing. The alert is firing because the alert condition is true and the optional for duration
has passed. The alert will continue to fire as long as the condition remains true.

Pending. The alert is active but is waiting for the duration that is specified in the alerting
rule before it fires.

Silenced. The alert is now silenced for a defined time period. Silences temporarily mute
alerts based on a set of label selectors that you define. Notifications will not be sent for
alerts that match all the listed values or regular expressions.

Not Firing. The alert is not firing.

Severity filters:

Critical. The conditions defined in the alerting rule could have a critical impact. When true,
these conditions require immediate attention. Alerts relating to the rule are typically paged
to an individual or to a critical response team.

Warning. The conditions defined in the alerting rule might require attention to prevent a
problem from occurring. Alerts relating to the rule are typically routed to a ticketing system
for non-immediate review.

Info. The alerting rule provides informational alerts only.

None. The alerting rule has no defined severity.

You can also create custom severity definitions for alerting rules relating to user-defined
projects.

Source filters:

Platform. Platform-level alerting rules relate only to default OpenShift Container Platform
projects. These projects provide core OpenShift Container Platform functionality.

User. User-defined workload alerting rules relate to user-defined projects. These alerting

OpenShift Container Platform 4.9 Monitoring

72

User. User-defined workload alerting rules relate to user-defined projects. These alerting
rules are user-created and are customizable. User-defined workload monitoring can be
enabled post-installation to provide observability into your own workloads.

Searching and filtering alerts, silences, and alerting rules in the Developer perspective
In the Developer perspective, the Alerts page in the Alerting UI provides a combined view of alerts and
silences relating to the selected project. A link to the governing alerting rule is provided for each
displayed alert.

In this view, you can filter by alert state and severity. By default, all alerts in the selected project are
displayed if you have permission to access the project. These filters are the same as those described for
the Administrator perspective.

6.3. GETTING INFORMATION ABOUT ALERTS, SILENCES, AND
ALERTING RULES

The Alerting UI provides detailed information about alerts and their governing alerting rules and silences.

Prerequisites

You have access to the cluster as a developer or as a user with view permissions for the project
that you are viewing metrics for.

Procedure

To obtain information about alerts in the Administrator perspective:

1. Open the OpenShift Container Platform web console and navigate to the Observe → Alerting
→ Alerts page.

2. Optional: Search for alerts by name using the Name field in the search list.

3. Optional: Filter alerts by state, severity, and source by selecting filters in the Filter list.

4. Optional: Sort the alerts by clicking one or more of the Name, Severity, State, and Source
column headers.

5. Select the name of an alert to navigate to its Alert Details page. The page includes a graph that
illustrates alert time series data. It also provides information about the alert, including:

A description of the alert

Messages associated with the alerts

Labels attached to the alert

A link to its governing alerting rule

Silences for the alert, if any exist

To obtain information about silences in the Administrator perspective:

1. Navigate to the Observe → Alerting → Silences page.

2. Optional: Filter the silences by name using the Search by name field.

3. Optional: Filter silences by state by selecting filters in the Filter list. By default, Active and

CHAPTER 6. MANAGING ALERTS

73

3. Optional: Filter silences by state by selecting filters in the Filter list. By default, Active and
Pending filters are applied.

4. Optional: Sort the silences by clicking one or more of the Name, Firing Alerts, and State column
headers.

5. Select the name of a silence to navigate to its Silence Details page. The page includes the
following details:

Alert specification

Start time

End time

Silence state

Number and list of firing alerts

To obtain information about alerting rules in the Administrator perspective:

1. Navigate to the Observe → Alerting → Alerting Rules page.

2. Optional: Filter alerting rules by state, severity, and source by selecting filters in the Filter list.

3. Optional: Sort the alerting rules by clicking one or more of the Name, Severity, Alert State, and
Source column headers.

4. Select the name of an alerting rule to navigate to its Alerting Rule Details page. The page
provides the following details about the alerting rule:

Alerting rule name, severity, and description

The expression that defines the condition for firing the alert

The time for which the condition should be true for an alert to fire

A graph for each alert governed by the alerting rule, showing the value with which the alert is
firing

A table of all alerts governed by the alerting rule

To obtain information about alerts, silences, and alerting rules in the Developer perspective:

1. Navigate to the Observe → <project_name> → Alerts page.

2. View details for an alert, silence, or an alerting rule:

Alert Details can be viewed by selecting > to the left of an alert name and then selecting
the alert in the list.

Silence Details can be viewed by selecting a silence in the Silenced By section of the Alert
Details page. The Silence Details page includes the following information:

Alert specification

Start time

End time

OpenShift Container Platform 4.9 Monitoring

74

Silence state

Number and list of firing alerts

Alerting Rule Details can be viewed by selecting View Alerting Rule in the menu on
the right of an alert in the Alerts page.

NOTE

Only alerts, silences, and alerting rules relating to the selected project are displayed in the
Developer perspective.

6.4. MANAGING ALERTING RULES

OpenShift Container Platform monitoring ships with a set of default alerting rules. As a cluster
administrator, you can view the default alerting rules.

In OpenShift Container Platform 4.9, you can create, view, edit, and remove alerting rules in user-
defined projects.

Alerting rule considerations

The default alerting rules are used specifically for the OpenShift Container Platform cluster.

Some alerting rules intentionally have identical names. They send alerts about the same event
with different thresholds, different severity, or both.

Inhibition rules prevent notifications for lower severity alerts that are firing when a higher
severity alert is also firing.

6.4.1. Optimizing alerting for user-defined projects

You can optimize alerting for your own projects by considering the following recommendations when
creating alerting rules:

Minimize the number of alerting rules that you create for your project. Create alerting rules
that notify you of conditions that impact you. It is more difficult to notice relevant alerts if you
generate many alerts for conditions that do not impact you.

Create alerting rules for symptoms instead of causes. Create alerting rules that notify you of
conditions regardless of the underlying cause. The cause can then be investigated. You will
need many more alerting rules if each relates only to a specific cause. Some causes are then
likely to be missed.

Plan before you write your alerting rules. Determine what symptoms are important to you and
what actions you want to take if they occur. Then build an alerting rule for each symptom.

Provide clear alert messaging. State the symptom and recommended actions in the alert
message.

Include severity levels in your alerting rules. The severity of an alert depends on how you need
to react if the reported symptom occurs. For example, a critical alert should be triggered if a
symptom requires immediate attention by an individual or a critical response team.

CHAPTER 6. MANAGING ALERTS

75

Optimize alert routing. Deploy an alerting rule directly on the Prometheus instance in the
openshift-user-workload-monitoring project if the rule does not query default OpenShift
Container Platform metrics. This reduces latency for alerting rules and minimizes the load on
monitoring components.

WARNING

Default OpenShift Container Platform metrics for user-defined projects
provide information about CPU and memory usage, bandwidth statistics,
and packet rate information. Those metrics cannot be included in an
alerting rule if you route the rule directly to the Prometheus instance in the
openshift-user-workload-monitoring project. Alerting rule optimization
should be used only if you have read the documentation and have a
comprehensive understanding of the monitoring architecture.

Additional resources

See the Prometheus alerting documentation for further guidelines on optimizing alerts

See Monitoring overview for details about OpenShift Container Platform 4.9 monitoring
architecture

6.4.2. Creating alerting rules for user-defined projects

You can create alerting rules for user-defined projects. Those alerting rules will fire alerts based on the
values of chosen metrics.

Prerequisites

You have enabled monitoring for user-defined projects.

You are logged in as a user that has the monitoring-rules-edit role for the project where you
want to create an alerting rule.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a YAML file for alerting rules. In this example, it is called example-app-alerting-
rule.yaml.

2. Add an alerting rule configuration to the YAML file. For example:

NOTE

When you create an alerting rule, a project label is enforced on it if a rule with the
same name exists in another project.



apiVersion: monitoring.coreos.com/v1

OpenShift Container Platform 4.9 Monitoring

76

https://prometheus.io/docs/practices/alerting/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#monitoring-overview

This configuration creates an alerting rule named example-alert. The alerting rule fires an alert
when the version metric exposed by the sample service becomes 0.

IMPORTANT

A user-defined alerting rule can include metrics for its own project and cluster
metrics. You cannot include metrics for another user-defined project.

For example, an alerting rule for the user-defined project ns1 can have metrics
from ns1 and cluster metrics, such as the CPU and memory metrics. However,
the rule cannot include metrics from ns2.

Additionally, you cannot create alerting rules for the openshift-* core OpenShift
Container Platform projects. OpenShift Container Platform monitoring by
default provides a set of alerting rules for these projects.

3. Apply the configuration file to the cluster:

It takes some time to create the alerting rule.

6.4.3. Reducing latency for alerting rules that do not query platform metrics

If an alerting rule for a user-defined project does not query default cluster metrics, you can deploy the
rule directly on the Prometheus instance in the openshift-user-workload-monitoring project. This
reduces latency for alerting rules by bypassing Thanos Ruler when it is not required. This also helps to
minimize the overall load on monitoring components.

WARNING

Default OpenShift Container Platform metrics for user-defined projects provide
information about CPU and memory usage, bandwidth statistics, and packet rate
information. Those metrics cannot be included in an alerting rule if you deploy the
rule directly to the Prometheus instance in the openshift-user-workload-
monitoring project. The procedure outlined in this section should only be used if
you have read the documentation and have a comprehensive understanding of the
monitoring architecture.

kind: PrometheusRule
metadata:
 name: example-alert
 namespace: ns1
spec:
 groups:
 - name: example
 rules:
 - alert: VersionAlert
 expr: version{job="prometheus-example-app"} == 0

$ oc apply -f example-app-alerting-rule.yaml



CHAPTER 6. MANAGING ALERTS

77

Prerequisites

You have enabled monitoring for user-defined projects.

You are logged in as a user that has the monitoring-rules-edit role for the project where you
want to create an alerting rule.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a YAML file for alerting rules. In this example, it is called example-app-alerting-
rule.yaml.

2. Add an alerting rule configuration to the YAML file that includes a label with the key
openshift.io/prometheus-rule-evaluation-scope and value leaf-prometheus. For example:

If that label is present, the alerting rule is deployed on the Prometheus instance in the openshift-user-
workload-monitoring project. If the label is not present, the alerting rule is deployed to Thanos Ruler.

1. Apply the configuration file to the cluster:

It takes some time to create the alerting rule.

See Monitoring overview for details about OpenShift Container Platform 4.9 monitoring
architecture.

6.4.4. Accessing alerting rules for user-defined projects

To list alerting rules for a user-defined project, you must have been assigned the monitoring-rules-
view role for the project.

Prerequisites

You have enabled monitoring for user-defined projects.

You are logged in as a user that has the monitoring-rules-view role for your project.

You have installed the OpenShift CLI (oc).

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
 name: example-alert
 namespace: ns1
 labels:
 openshift.io/prometheus-rule-evaluation-scope: leaf-prometheus
spec:
 groups:
 - name: example
 rules:
 - alert: VersionAlert
 expr: version{job="prometheus-example-app"} == 0

$ oc apply -f example-app-alerting-rule.yaml

OpenShift Container Platform 4.9 Monitoring

78

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#monitoring-overview

Procedure

1. You can list alerting rules in <project>:

2. To list the configuration of an alerting rule, run the following:

6.4.5. Listing alerting rules for all projects in a single view

As a cluster administrator, you can list alerting rules for core OpenShift Container Platform and user-
defined projects together in a single view.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. In the Administrator perspective, navigate to Observe → Alerting → Alerting Rules.

2. Select the Platform and User sources in the Filter drop-down menu.

NOTE

The Platform source is selected by default.

6.4.6. Removing alerting rules for user-defined projects

You can remove alerting rules for user-defined projects.

Prerequisites

You have enabled monitoring for user-defined projects.

You are logged in as a user that has the monitoring-rules-edit role for the project where you
want to create an alerting rule.

You have installed the OpenShift CLI (oc).

Procedure

To remove rule <foo> in <namespace>, run the following:

Additional resources

See the Alertmanager documentation

$ oc -n <project> get prometheusrule

$ oc -n <project> get prometheusrule <rule> -o yaml

$ oc -n <namespace> delete prometheusrule <foo>

CHAPTER 6. MANAGING ALERTS

79

https://prometheus.io/docs/alerting/alertmanager/

6.5. MANAGING SILENCES

You can create a silence to stop receiving notifications about an alert when it is firing. It might be useful
to silence an alert after being first notified, while you resolve the underlying issue.

When creating a silence, you must specify whether it becomes active immediately or at a later time. You
must also set a duration period after which the silence expires.

You can view, edit, and expire existing silences.

6.5.1. Silencing alerts

You can either silence a specific alert or silence alerts that match a specification that you define.

Prerequisites

You are a cluster administrator and have access to the cluster as a user with the cluster-admin
cluster role.

You are a non-administator user and have access to the cluster as a user with the following user
roles:

The cluster-monitoring-view cluster role, which allows you to access Alertmanager.

The monitoring-alertmanager-edit role, which permits you to create and silence alerts in
the Administrator perspective in the web console.

The monitoring-rules-edit role, which permits you to create and silence alerts in the
Developer perspective in the web console.

Procedure

To silence a specific alert:

In the Administrator perspective:

1. Navigate to the Observe → Alerting → Alerts page of the OpenShift Container Platform
web console.

2. For the alert that you want to silence, select the in the right-hand column and select
Silence Alert. The Silence Alert form will appear with a pre-populated specification for the
chosen alert.

3. Optional: Modify the silence.

4. You must add a comment before creating the silence.

5. To create the silence, select Silence.

In the Developer perspective:

1. Navigate to the Observe → <project_name> → Alerts page in the OpenShift Container
Platform web console.

2. Expand the details for an alert by selecting > to the left of the alert name. Select the name
of the alert in the expanded view to open the Alert Details page for the alert.

OpenShift Container Platform 4.9 Monitoring

80

3. Select Silence Alert. The Silence Alert form will appear with a prepopulated specification
for the chosen alert.

4. Optional: Modify the silence.

5. You must add a comment before creating the silence.

6. To create the silence, select Silence.

To silence a set of alerts by creating an alert specification in the Administrator perspective:

1. Navigate to the Observe → Alerting → Silences page in the OpenShift Container Platform web
console.

2. Select Create Silence.

3. Set the schedule, duration, and label details for an alert in the Create Silence form. You must
also add a comment for the silence.

4. To create silences for alerts that match the label sectors that you entered in the previous step,
select Silence.

6.5.2. Editing silences

You can edit a silence, which will expire the existing silence and create a new one with the changed
configuration.

Procedure

To edit a silence in the Administrator perspective:

1. Navigate to the Observe → Alerting → Silences page.

2. For the silence you want to modify, select the in the last column and choose Edit silence.
Alternatively, you can select Actions → Edit Silence in the Silence Details page for a silence.

3. In the Edit Silence page, enter your changes and select Silence. This will expire the existing
silence and create one with the chosen configuration.

To edit a silence in the Developer perspective:

1. Navigate to the Observe → <project_name> → Alerts page.

2. Expand the details for an alert by selecting > to the left of the alert name. Select the name of
the alert in the expanded view to open the Alert Details page for the alert.

3. Select the name of a silence in the Silenced By section in that page to navigate to the Silence
Details page for the silence.

4. Select the name of a silence to navigate to its Silence Details page.

5. Select Actions → Edit Silence in the Silence Details page for a silence.

6. In the Edit Silence page, enter your changes and select Silence. This will expire the existing
silence and create one with the chosen configuration.

CHAPTER 6. MANAGING ALERTS

81

6.5.3. Expiring silences

You can expire a silence. Expiring a silence deactivates it forever.

Procedure

To expire a silence in the Administrator perspective:

1. Navigate to the Observe → Alerting → Silences page.

2. For the silence you want to modify, select the in the last column and choose Expire
silence.
Alternatively, you can select Actions → Expire Silence in the Silence Details page for a silence.

To expire a silence in the Developer perspective:

1. Navigate to the Observe → <project_name> → Alerts page.

2. Expand the details for an alert by selecting > to the left of the alert name. Select the name of
the alert in the expanded view to open the Alert Details page for the alert.

3. Select the name of a silence in the Silenced By section in that page to navigate to the Silence
Details page for the silence.

4. Select the name of a silence to navigate to its Silence Details page.

5. Select Actions → Expire Silence in the Silence Details page for a silence.

6.6. SENDING NOTIFICATIONS TO EXTERNAL SYSTEMS

In OpenShift Container Platform 4.9, firing alerts can be viewed in the Alerting UI. Alerts are not
configured by default to be sent to any notification systems. You can configure OpenShift Container
Platform to send alerts to the following receiver types:

PagerDuty

Webhook

Email

Slack

Routing alerts to receivers enables you to send timely notifications to the appropriate teams when
failures occur. For example, critical alerts require immediate attention and are typically paged to an
individual or a critical response team. Alerts that provide non-critical warning notifications might instead
be routed to a ticketing system for non-immediate review.

Checking that alerting is operational by using the watchdog alert

OpenShift Container Platform monitoring includes a watchdog alert that fires continuously.
Alertmanager repeatedly sends watchdog alert notifications to configured notification providers. The
provider is usually configured to notify an administrator when it stops receiving the watchdog alert. This
mechanism helps you quickly identify any communication issues between Alertmanager and the
notification provider.

OpenShift Container Platform 4.9 Monitoring

82

6.6.1. Configuring alert receivers

You can configure alert receivers to ensure that you learn about important issues with your cluster.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. In the Administrator perspective, navigate to Administration → Cluster Settings →
Configuration → Alertmanager.

NOTE

Alternatively, you can navigate to the same page through the notification drawer.
Select the bell icon at the top right of the OpenShift Container Platform web
console and choose Configure in the AlertmanagerReceiverNotConfigured
alert.

2. Select Create Receiver in the Receivers section of the page.

3. In the Create Receiver form, add a Receiver Name and choose a Receiver Type from the list.

4. Edit the receiver configuration:

For PagerDuty receivers:

a. Choose an integration type and add a PagerDuty integration key.

b. Add the URL of your PagerDuty installation.

c. Select Show advanced configuration if you want to edit the client and incident details
or the severity specification.

For webhook receivers:

a. Add the endpoint to send HTTP POST requests to.

b. Select Show advanced configuration if you want to edit the default option to send
resolved alerts to the receiver.

For email receivers:

a. Add the email address to send notifications to.

b. Add SMTP configuration details, including the address to send notifications from, the
smarthost and port number used for sending emails, the hostname of the SMTP server,
and authentication details.

c. Choose whether TLS is required.

d. Select Show advanced configuration if you want to edit the default option not to send
resolved alerts to the receiver or edit the body of email notifications configuration.

For Slack receivers:

CHAPTER 6. MANAGING ALERTS

83

a. Add the URL of the Slack webhook.

b. Add the Slack channel or user name to send notifications to.

c. Select Show advanced configuration if you want to edit the default option not to send
resolved alerts to the receiver or edit the icon and username configuration. You can
also choose whether to find and link channel names and usernames.

5. By default, firing alerts with labels that match all of the selectors will be sent to the receiver. If
you want label values for firing alerts to be matched exactly before they are sent to the receiver:

a. Add routing label names and values in the Routing Labels section of the form.

b. Select Regular Expression if want to use a regular expression.

c. Select Add Label to add further routing labels.

6. Select Create to create the receiver.

6.7. APPLYING A CUSTOM ALERTMANAGER CONFIGURATION

You can overwrite the default Alertmanager configuration by editing the alertmanager-main secret
inside the openshift-monitoring project.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

To change the Alertmanager configuration from the CLI:

1. Print the currently active Alertmanager configuration into file alertmanager.yaml:

2. Edit the configuration in alertmanager.yaml:

$ oc -n openshift-monitoring get secret alertmanager-main --template='{{ index .data
"alertmanager.yaml" }}' | base64 --decode > alertmanager.yaml

global:
 resolve_timeout: 5m
route:
 group_wait: 30s
 group_interval: 5m
 repeat_interval: 12h
 receiver: default
 routes:
 - matchers:
 - "alertname=Watchdog"
 repeat_interval: 5m
 receiver: watchdog
 - matchers:
 - "service=<your_service>" 1
 routes:
 - matchers:
 - <your_matching_rules> 2

OpenShift Container Platform 4.9 Monitoring

84

1

2

3

service specifies the service that fires the alerts.

<your_matching_rules> specifies the target alerts.

receiver specifies the receiver to use for the alert.

NOTE

Use the matchers key name to indicate the matchers that an alert has to fulfill to
match the node. Do not use the match or match_re key names, which are both
deprecated and planned for removal in a future release.

In addition, if you define inhibition rules, use the target_matchers key name to
indicate the target matchers and the source_matchers key name to indicate the
source matchers. Do not use the target_match, target_match_re,
source_match, or source_match_re key names, which are deprecated and
planned for removal in a future release.

The following Alertmanager configuration example configures PagerDuty as an alert receiver:

With this configuration, alerts of critical severity that are fired by the example-app service are
sent using the team-frontend-page receiver. Typically these types of alerts would be paged to
an individual or a critical response team.

3. Apply the new configuration in the file:

 receiver: <receiver> 3
receivers:
- name: default
- name: watchdog
- name: <receiver>
<receiver_configuration>

global:
 resolve_timeout: 5m
route:
 group_wait: 30s
 group_interval: 5m
 repeat_interval: 12h
 receiver: default
 routes:
 - matchers:
 - "alertname=Watchdog"
 repeat_interval: 5m
 receiver: watchdog
 - matchers: - "service=example-app" routes: - matchers: - "severity=critical"
receiver: team-frontend-page
receivers:
- name: default
- name: watchdog
- name: team-frontend-page pagerduty_configs: - service_key: "your-key"

CHAPTER 6. MANAGING ALERTS

85

To change the Alertmanager configuration from the OpenShift Container Platform web console:

1. Navigate to the Administration → Cluster Settings → Configuration → Alertmanager →
YAML page of the web console.

2. Modify the YAML configuration file.

3. Select Save.

Additional resources

See the PagerDuty official site for more information on PagerDuty

See the PagerDuty Prometheus Integration Guide to learn how to retrieve the service_key

See Alertmanager configuration for configuring alerting through different alert receivers

6.8. NEXT STEPS

Reviewing monitoring dashboards

$ oc -n openshift-monitoring create secret generic alertmanager-main --from-
file=alertmanager.yaml --dry-run=client -o=yaml | oc -n openshift-monitoring replace secret -
-filename=-

OpenShift Container Platform 4.9 Monitoring

86

https://www.pagerduty.com/
https://www.pagerduty.com/docs/guides/prometheus-integration-guide/
https://prometheus.io/docs/alerting/configuration/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#reviewing-monitoring-dashboards

CHAPTER 7. REVIEWING MONITORING DASHBOARDS
OpenShift Container Platform 4.9 provides a comprehensive set of monitoring dashboards that help
you understand the state of cluster components and user-defined workloads.

Use the Administrator perspective to access dashboards for the core OpenShift Container Platform
components, including the following items:

API performance

etcd

Kubernetes compute resources

Kubernetes network resources

Prometheus

USE method dashboards relating to cluster and node performance

Figure 7.1. Example dashboard in the Administrator perspective

Use the Developer perspective to access Kubernetes compute resources dashboards that provide the
following application metrics for a selected project:

CPU usage

Memory usage

Bandwidth information

Packet rate information

Figure 7.2. Example dashboard in the Developer perspective

CHAPTER 7. REVIEWING MONITORING DASHBOARDS

87

Figure 7.2. Example dashboard in the Developer perspective

NOTE

In the Developer perspective, you can view dashboards for only one project at a time.

7.1. REVIEWING MONITORING DASHBOARDS AS A CLUSTER
ADMINISTRATOR

In the Administrator perspective, you can view dashboards relating to core OpenShift Container
Platform cluster components.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. In the Administrator perspective in the OpenShift Container Platform web console, navigate to
Observe → Dashboards.

2. Choose a dashboard in the Dashboard list. Some dashboards, such as etcd and Prometheus
dashboards, produce additional sub-menus when selected.

3. Optional: Select a time range for the graphs in the Time Range list.

Select a pre-defined time period.

Set a custom time range by selecting Custom time range in the Time Range list.

OpenShift Container Platform 4.9 Monitoring

88

a. Input or select the From and To dates and times.

b. Click Save to save the custom time range.

4. Optional: Select a Refresh Interval.

5. Hover over each of the graphs within a dashboard to display detailed information about specific
items.

7.2. REVIEWING MONITORING DASHBOARDS AS A DEVELOPER

Use the Developer perspective to view Kubernetes compute resources dashboards of a selected
project.

Prerequisites

You have access to the cluster as a developer or as a user.

You have view permissions for the project that you are viewing the dashboard for.

Procedure

1. In the Developer perspective in the OpenShift Container Platform web console, navigate to
Observe → Dashboard.

2. Select a project from the Project: drop-down list.

3. Select a dashboard from the Dashboard drop-down list to see the filtered metrics.

NOTE

All dashboards produce additional sub-menus when selected, except
Kubernetes / Compute Resources / Namespace (Pods).

4. Optional: Select a time range for the graphs in the Time Range list.

Select a pre-defined time period.

Set a custom time range by selecting Custom time range in the Time Range list.

a. Input or select the From and To dates and times.

b. Click Save to save the custom time range.

5. Optional: Select a Refresh Interval.

6. Hover over each of the graphs within a dashboard to display detailed information about specific
items.

Additional resources

Monitoring project and application metrics using the Developer perspective

7.3. NEXT STEPS

CHAPTER 7. REVIEWING MONITORING DASHBOARDS

89

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/building_applications/#monitoring-project-and-application-metrics-using-developer-perspective

Accessing third-party UIs

OpenShift Container Platform 4.9 Monitoring

90

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#accessing-third-party-uis

CHAPTER 8. ACCESSING THIRD-PARTY UIS
Integrated Metrics, Alerting, and Dashboard UIs are provided in the OpenShift Container Platform web
console. See the following for details on using these integrated UIs:

Managing metrics

Managing alerts

Reviewing monitoring dashboards

OpenShift Container Platform also provides access to the Prometheus, Alertmanager, and Grafana
third-party interfaces. Dashboards for some additional platform components are included in Monitoring
→ Dashboards in the OpenShift Container Platform web console.

NOTE

Default access to the third-party monitoring interfaces might be removed in future
OpenShift Container Platform releases. Following this, you will need to use port-
forwarding to access them.

NOTE

The Grafana instance that is provided with the OpenShift Container Platform monitoring
stack, along with its dashboards, is read-only. The Grafana dashboard includes
Kubernetes and cluster-monitoring metrics only.

8.1. ACCESSING THIRD-PARTY MONITORING UIS BY USING THE WEB
CONSOLE

You can access the Alertmanager, Grafana, Prometheus, and Thanos Querier web UIs through the
OpenShift Container Platform web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. In the Administrator perspective, navigate to Networking → Routes.

NOTE

Access to the third-party Alertmanager, Grafana, Prometheus, and Thanos
Querier UIs is not available from the Developer perspective. Instead, use the
Metrics UI link in the Developer perspective, which includes some predefined
CPU, memory, bandwidth, and network packet queries for the selected project.

2. Select the openshift-monitoring project in the Project list.

3. Access a third-party monitoring UI:

Select the URL in the alertmanager-main row to open the login page for the Alertmanager

CHAPTER 8. ACCESSING THIRD-PARTY UIS

91

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#managing-metrics
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#managing-alerts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#reviewing-monitoring-dashboards

Select the URL in the alertmanager-main row to open the login page for the Alertmanager
UI.

Select the URL in the grafana row to open the login page for the Grafana UI.

Select the URL in the prometheus-k8s row to open the login page for the Prometheus UI.

Select the URL in the thanos-querier row to open the login page for the Thanos Querier UI.

4. Choose Log in with OpenShift to log in using your OpenShift Container Platform credentials.

8.2. ACCESSING THIRD-PARTY MONITORING UIS BY USING THE CLI

You can obtain URLs for the Prometheus, Alertmanager, and Grafana web UIs by using the OpenShift
CLI (oc) tool.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Run the following to list routes for the openshift-monitoring project:

Example output

2. Navigate to a HOST/PORT route by using a web browser.

3. Select Log in with OpenShift to log in using your OpenShift Container Platform credentials.

IMPORTANT

The monitoring routes are managed by the Cluster Monitoring Operator and they cannot
be modified by the user.

$ oc -n openshift-monitoring get routes

NAME HOST/PORT ...
alertmanager-main alertmanager-main-openshift-monitoring.apps._url_.openshift.com ...
grafana grafana-openshift-monitoring.apps._url_.openshift.com ...
prometheus-k8s prometheus-k8s-openshift-monitoring.apps._url_.openshift.com ...
thanos-querier thanos-querier-openshift-monitoring.apps._url_.openshift.com ...

OpenShift Container Platform 4.9 Monitoring

92

CHAPTER 9. TROUBLESHOOTING MONITORING ISSUES

9.1. INVESTIGATING WHY USER-DEFINED METRICS ARE
UNAVAILABLE

ServiceMonitor resources enable you to determine how to use the metrics exposed by a service in user-
defined projects. Follow the steps outlined in this procedure if you have created a ServiceMonitor
resource but cannot see any corresponding metrics in the Metrics UI.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

You have enabled and configured monitoring for user-defined workloads.

You have created the user-workload-monitoring-config ConfigMap object.

You have created a ServiceMonitor resource.

Procedure

1. Check that the corresponding labels match in the service and ServiceMonitor resource
configurations.

a. Obtain the label defined in the service. The following example queries the prometheus-
example-app service in the ns1 project:

Example output

b. Check that the matchLabels app label in the ServiceMonitor resource configuration
matches the label output in the preceding step:

Example output

spec:
 endpoints:
 - interval: 30s
 port: web
 scheme: http
 selector:
 matchLabels:
 app: prometheus-example-app

NOTE

$ oc -n ns1 get service prometheus-example-app -o yaml

 labels:
 app: prometheus-example-app

$ oc -n ns1 get servicemonitor prometheus-example-monitor -o yaml

CHAPTER 9. TROUBLESHOOTING MONITORING ISSUES

93

NOTE

You can check service and ServiceMonitor resource labels as a developer
with view permissions for the project.

2. Inspect the logs for the Prometheus Operator in the openshift-user-workload-monitoring
project.

a. List the pods in the openshift-user-workload-monitoring project:

Example output

b. Obtain the logs from the prometheus-operator container in the prometheus-operator
pod. In the following example, the pod is called prometheus-operator-776fcbbd56-2nbfm:

If there is a issue with the service monitor, the logs might include an error similar to this
example:

3. Review the target status for your project in the Prometheus UI directly.

a. Establish port-forwarding to the Prometheus instance in the openshift-user-workload-
monitoring project:

b. Open http://localhost:9090/targets in a web browser and review the status of the target
for your project directly in the Prometheus UI. Check for error messages relating to the
target.

4. Configure debug level logging for the Prometheus Operator in the openshift-user-
workload-monitoring project.

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

$ oc -n openshift-user-workload-monitoring get pods

NAME READY STATUS RESTARTS AGE
prometheus-operator-776fcbbd56-2nbfm 2/2 Running 0 132m
prometheus-user-workload-0 5/5 Running 1 132m
prometheus-user-workload-1 5/5 Running 1 132m
thanos-ruler-user-workload-0 3/3 Running 0 132m
thanos-ruler-user-workload-1 3/3 Running 0 132m

$ oc -n openshift-user-workload-monitoring logs prometheus-operator-776fcbbd56-
2nbfm -c prometheus-operator

level=warn ts=2020-08-10T11:48:20.906739623Z caller=operator.go:1829
component=prometheusoperator msg="skipping servicemonitor" error="it accesses file
system via bearer token file which Prometheus specification prohibits"
servicemonitor=eagle/eagle namespace=openshift-user-workload-monitoring
prometheus=user-workload

$ oc port-forward -n openshift-user-workload-monitoring pod/prometheus-user-workload-
0 9090

OpenShift Container Platform 4.9 Monitoring

94

http://localhost:9090/targets

b. Add logLevel: debug for prometheusOperator under data/config.yaml to set the log
level to debug:

c. Save the file to apply the changes.

NOTE

The prometheus-operator in the openshift-user-workload-monitoring
project restarts automatically when you apply the log-level change.

d. Confirm that the debug log-level has been applied to the prometheus-operator
deployment in the openshift-user-workload-monitoring project:

Example output

Debug level logging will show all calls made by the Prometheus Operator.

e. Check that the prometheus-operator pod is running:

NOTE

If an unrecognized Prometheus Operator loglevel value is included in the
config map, the prometheus-operator pod might not restart successfully.

f. Review the debug logs to see if the Prometheus Operator is using the ServiceMonitor
resource. Review the logs for other related errors.

Additional resources

Creating a user-defined workload monitoring config map

See Specifying how a service is monitored for details on how to create a ServiceMonitor or

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-
config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheusOperator:
 logLevel: debug

$ oc -n openshift-user-workload-monitoring get deploy prometheus-operator -o yaml |
grep "log-level"

 - --log-level=debug

$ oc -n openshift-user-workload-monitoring get pods

CHAPTER 9. TROUBLESHOOTING MONITORING ISSUES

95

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#creating-user-defined-workload-monitoring-configmap_configuring-the-monitoring-stack

See Specifying how a service is monitored for details on how to create a ServiceMonitor or
PodMonitor resource

9.2. DETERMINING WHY PROMETHEUS IS CONSUMING A LOT OF
DISK SPACE

Developers can create labels to define attributes for metrics in the form of key-value pairs. The number
of potential key-value pairs corresponds to the number of possible values for an attribute. An attribute
that has an unlimited number of potential values is called an unbound attribute. For example, a
customer_id attribute is unbound because it has an infinite number of possible values.

Every assigned key-value pair has a unique time series. The use of many unbound attributes in labels
can result in an exponential increase in the number of time series created. This can impact Prometheus
performance and can consume a lot of disk space.

You can use the following measures when Prometheus consumes a lot of disk:

Check the number of scrape samples that are being collected.

Check the time series database (TSDB) status in the Prometheus UI for more information on
which labels are creating the most time series. This requires cluster administrator privileges.

Reduce the number of unique time series that are created by reducing the number of
unbound attributes that are assigned to user-defined metrics.

NOTE

Using attributes that are bound to a limited set of possible values reduces the
number of potential key-value pair combinations.

Enforce limits on the number of samples that can be scraped across user-defined projects.
This requires cluster administrator privileges.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. In the Administrator perspective, navigate to Observe → Metrics.

2. Run the following Prometheus Query Language (PromQL) query in the Expression field. This
returns the ten metrics that have the highest number of scrape samples:

3. Investigate the number of unbound label values assigned to metrics with higher than expected
scrape sample counts.

If the metrics relate to a user-defined project, review the metrics key-value pairs
assigned to your workload. These are implemented through Prometheus client libraries at
the application level. Try to limit the number of unbound attributes referenced in your labels.

If the metrics relate to a core OpenShift Container Platform project, create a Red Hat

topk(10,count by (job)({__name__=~".+"}))

OpenShift Container Platform 4.9 Monitoring

96

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#specifying-how-a-service-is-monitored_managing-metrics

If the metrics relate to a core OpenShift Container Platform project, create a Red Hat
support case on the Red Hat Customer Portal .

4. Check the TSDB status in the Prometheus UI.

a. In the Administrator perspective, navigate to Networking → Routes.

b. Select the openshift-monitoring project in the Project list.

c. Select the URL in the prometheus-k8s row to open the login page for the Prometheus UI.

d. Choose Log in with OpenShift to log in using your OpenShift Container Platform
credentials.

e. In the Prometheus UI, navigate to Status → TSDB Status.

Additional resources

See Setting a scrape sample limit for user-defined projects for details on how to set a scrape
sample limit and create related alerting rules

Submitting a support case

CHAPTER 9. TROUBLESHOOTING MONITORING ISSUES

97

https://access.redhat.com/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#setting-a-scrape-sample-limit-for-user-defined-projects_configuring-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/support/#support-submitting-a-case_getting-support

	Table of Contents
	CHAPTER 1. MONITORING OVERVIEW
	1.1. ABOUT OPENSHIFT CONTAINER PLATFORM MONITORING
	1.2. UNDERSTANDING THE MONITORING STACK
	1.2.1. Default monitoring components
	1.2.2. Default monitoring targets
	1.2.3. Components for monitoring user-defined projects
	1.2.4. Monitoring targets for user-defined projects

	1.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM MONITORING
	1.4. ADDITIONAL RESOURCES
	1.5. NEXT STEPS

	CHAPTER 2. CONFIGURING THE MONITORING STACK
	2.1. PREREQUISITES
	2.2. MAINTENANCE AND SUPPORT FOR MONITORING
	2.2.1. Support considerations for monitoring
	2.2.2. Support policy for monitoring Operators

	2.3. PREPARING TO CONFIGURE THE MONITORING STACK
	2.3.1. Creating a cluster monitoring config map
	2.3.2. Creating a user-defined workload monitoring config map

	2.4. CONFIGURING THE MONITORING STACK
	2.5. CONFIGURABLE MONITORING COMPONENTS
	2.6. MOVING MONITORING COMPONENTS TO DIFFERENT NODES
	2.7. ASSIGNING TOLERATIONS TO MONITORING COMPONENTS
	2.8. CONFIGURING PERSISTENT STORAGE
	2.8.1. Persistent storage prerequisites
	2.8.2. Configuring a local persistent volume claim
	2.8.3. Resizing a persistent storage volume
	2.8.4. Modifying the retention time for Prometheus metrics data

	2.9. CONFIGURING REMOTE WRITE STORAGE
	2.10. CONTROLLING THE IMPACT OF UNBOUND METRICS ATTRIBUTES IN USER-DEFINED PROJECTS
	2.10.1. Setting a scrape sample limit for user-defined projects
	2.10.2. Creating scrape sample alerts

	CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES
	3.1. ATTACHING ADDITIONAL LABELS TO YOUR TIME SERIES AND ALERTS
	3.2. SETTING LOG LEVELS FOR MONITORING COMPONENTS
	3.3. DISABLING THE DEFAULT GRAFANA DEPLOYMENT
	3.4. DISABLING THE LOCAL ALERTMANAGER
	3.5. NEXT STEPS

	CHAPTER 4. ENABLING MONITORING FOR USER-DEFINED PROJECTS
	4.1. ENABLING MONITORING FOR USER-DEFINED PROJECTS
	4.2. GRANTING USERS PERMISSION TO MONITOR USER-DEFINED PROJECTS
	4.2.1. Granting user permissions by using the web console
	4.2.2. Granting user permissions by using the CLI

	4.3. GRANTING USERS PERMISSION TO CONFIGURE MONITORING FOR USER-DEFINED PROJECTS
	4.4. ACCESSING METRICS FROM OUTSIDE THE CLUSTER FOR CUSTOM APPLICATIONS
	4.5. EXCLUDING A USER-DEFINED PROJECT FROM MONITORING
	4.6. DISABLING MONITORING FOR USER-DEFINED PROJECTS
	4.7. NEXT STEPS

	CHAPTER 5. MANAGING METRICS
	5.1. UNDERSTANDING METRICS
	5.2. SETTING UP METRICS COLLECTION FOR USER-DEFINED PROJECTS
	5.2.1. Deploying a sample service
	5.2.2. Specifying how a service is monitored

	5.3. QUERYING METRICS
	5.3.1. Querying metrics for all projects as a cluster administrator
	5.3.2. Querying metrics for user-defined projects as a developer
	5.3.3. Exploring the visualized metrics

	5.4. NEXT STEPS

	CHAPTER 6. MANAGING ALERTS
	6.1. ACCESSING THE ALERTING UI IN THE ADMINISTRATOR AND DEVELOPER PERSPECTIVES
	6.2. SEARCHING AND FILTERING ALERTS, SILENCES, AND ALERTING RULES
	Understanding alert filters
	Understanding silence filters
	Understanding alerting rule filters
	Searching and filtering alerts, silences, and alerting rules in the Developer perspective

	6.3. GETTING INFORMATION ABOUT ALERTS, SILENCES, AND ALERTING RULES
	6.4. MANAGING ALERTING RULES
	6.4.1. Optimizing alerting for user-defined projects
	6.4.2. Creating alerting rules for user-defined projects
	6.4.3. Reducing latency for alerting rules that do not query platform metrics
	6.4.4. Accessing alerting rules for user-defined projects
	6.4.5. Listing alerting rules for all projects in a single view
	6.4.6. Removing alerting rules for user-defined projects

	6.5. MANAGING SILENCES
	6.5.1. Silencing alerts
	6.5.2. Editing silences
	6.5.3. Expiring silences

	6.6. SENDING NOTIFICATIONS TO EXTERNAL SYSTEMS
	6.6.1. Configuring alert receivers

	6.7. APPLYING A CUSTOM ALERTMANAGER CONFIGURATION
	6.8. NEXT STEPS

	CHAPTER 7. REVIEWING MONITORING DASHBOARDS
	7.1. REVIEWING MONITORING DASHBOARDS AS A CLUSTER ADMINISTRATOR
	7.2. REVIEWING MONITORING DASHBOARDS AS A DEVELOPER
	7.3. NEXT STEPS

	CHAPTER 8. ACCESSING THIRD-PARTY UIS
	8.1. ACCESSING THIRD-PARTY MONITORING UIS BY USING THE WEB CONSOLE
	8.2. ACCESSING THIRD-PARTY MONITORING UIS BY USING THE CLI

	CHAPTER 9. TROUBLESHOOTING MONITORING ISSUES
	9.1. INVESTIGATING WHY USER-DEFINED METRICS ARE UNAVAILABLE
	9.2. DETERMINING WHY PROMETHEUS IS CONSUMING A LOT OF DISK SPACE

