
OpenShift Container Platform 4.7

Metering

Configuring and using Metering in OpenShift Container Platform

Last Updated: 2022-09-29

OpenShift Container Platform 4.7 Metering

Configuring and using Metering in OpenShift Container Platform

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring and using metering in OpenShift Container
Platform.

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. ABOUT METERING
1.1. METERING OVERVIEW

1.1.1. Installing metering
1.1.2. Upgrading metering
1.1.3. Using metering
1.1.4. Troubleshooting metering
1.1.5. Debugging metering
1.1.6. Uninstalling metering
1.1.7. Metering resources

CHAPTER 2. INSTALLING METERING
2.1. PREREQUISITES
2.2. INSTALLING THE METERING OPERATOR

2.2.1. Installing metering using the web console
2.2.2. Installing metering using the CLI

2.3. INSTALLING THE METERING STACK
2.4. PREREQUISITES
2.5. VERIFYING THE METERING INSTALLATION
2.6. ADDITIONAL RESOURCES

CHAPTER 3. UPGRADING METERING
3.1. PREREQUISITES

CHAPTER 4. CONFIGURING METERING
4.1. ABOUT CONFIGURING METERING
4.2. COMMON CONFIGURATION OPTIONS

4.2.1. Resource requests and limits
4.2.2. Node selectors

4.3. CONFIGURING PERSISTENT STORAGE
4.3.1. Storing data in Amazon S3
4.3.2. Storing data in S3-compatible storage
4.3.3. Storing data in Microsoft Azure
4.3.4. Storing data in Google Cloud Storage
4.3.5. Storing data in shared volumes

4.4. CONFIGURING THE HIVE METASTORE
4.4.1. Configuring persistent volumes

4.4.1.1. Configuring the storage class for the Hive metastore
4.4.1.2. Configuring the volume size for the Hive metastore

4.4.2. Using MySQL or PostgreSQL for the Hive metastore
4.5. CONFIGURING THE REPORTING OPERATOR

4.5.1. Securing a Prometheus connection
4.5.2. Exposing the reporting API

4.5.2.1. Using OpenShift Authentication
4.5.2.1.1. Authenticate using a service account token
4.5.2.1.2. Authenticate using a username and password

4.5.2.2. Manually Configuring Authentication
4.5.2.2.1. Token authentication
4.5.2.2.2. Basic authentication with a username and password

4.6. CONFIGURE AWS BILLING CORRELATION

CHAPTER 5. REPORTS
5.1. ABOUT REPORTS

4
4
4
4
4
4
5
5
5

6
6
6
6
7
9
9

10
12

13
13

17
17
17
17
18

20
21
23
24
25
26
29
29
29
30
30
32
32
33
33
34
34
34
35
36
36

40
40

Table of Contents

1

. .

. .

. .

. .

5.1.1. Reports
5.1.1.1. Example report with a schedule
5.1.1.2. Example report without a schedule (run-once)
5.1.1.3. query
5.1.1.4. schedule

5.1.1.4.1. period
5.1.1.5. reportingStart
5.1.1.6. reportingEnd
5.1.1.7. expiration
5.1.1.8. runImmediately
5.1.1.9. inputs
5.1.1.10. Roll-up reports

5.1.1.10.1. Report status
5.2. STORAGE LOCATIONS

5.2.1. Storage location examples
5.2.2. Default storage location

CHAPTER 6. USING METERING
6.1. PREREQUISITES
6.2. WRITING REPORTS
6.3. VIEWING REPORT RESULTS

CHAPTER 7. EXAMPLES OF USING METERING
7.1. PREREQUISITES
7.2. MEASURE CLUSTER CAPACITY HOURLY AND DAILY
7.3. MEASURE CLUSTER USAGE WITH A ONE-TIME REPORT
7.4. MEASURE CLUSTER UTILIZATION USING CRON EXPRESSIONS

CHAPTER 8. TROUBLESHOOTING AND DEBUGGING METERING
8.1. TROUBLESHOOTING METERING

8.1.1. Not enough compute resources
Increasing the reporting-operator pod memory limit

8.1.2. StorageClass resource not configured
8.1.3. Secret not configured correctly

8.2. DEBUGGING METERING
8.2.1. Get reporting operator logs
8.2.2. Query Presto using presto-cli
8.2.3. Query Hive using beeline
8.2.4. Port-forward to the Hive web UI
8.2.5. Port-forward to HDFS
8.2.6. Metering Ansible Operator

8.2.6.1. Accessing Ansible logs
8.2.6.2. Checking the MeteringConfig Status
8.2.6.3. Checking MeteringConfig Events

CHAPTER 9. UNINSTALLING METERING
9.1. REMOVING THE METERING OPERATOR FROM YOUR CLUSTER
9.2. UNINSTALLING A METERING NAMESPACE
9.3. UNINSTALLING METERING CUSTOM RESOURCE DEFINITIONS

40
40
41
41

43
43
44
45
45
46
46
46
47
47
48
49

50
50
50
51

54
54
54
55
55

57
57
57
59
60
60
60
61
61

62
63
63
63
64
64
64

65
65
65
66

OpenShift Container Platform 4.7 Metering

2

Table of Contents

3

CHAPTER 1. ABOUT METERING

IMPORTANT

Metering is a deprecated feature. Deprecated functionality is still included in OpenShift
Container Platform and continues to be supported; however, it will be removed in a future
release of this product and is not recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

1.1. METERING OVERVIEW

Metering is a general purpose data analysis tool that enables you to write reports to process data from
different data sources. As a cluster administrator, you can use metering to analyze what is happening in
your cluster. You can either write your own, or use predefined SQL queries to define how you want to
process data from the different data sources you have available.

Metering focuses primarily on in-cluster metric data using Prometheus as a default data source,
enabling users of metering to do reporting on pods, namespaces, and most other Kubernetes resources.

You can install metering on OpenShift Container Platform 4.x clusters and above.

1.1.1. Installing metering

You can install metering using the CLI and the web console on OpenShift Container Platform 4.x and
above. To learn more, see installing metering.

1.1.2. Upgrading metering

You can upgrade metering by updating the Metering Operator subscription. Review the following tasks:

The MeteringConfig custom resource specifies all the configuration details for your metering
installation. When you first install the metering stack, a default MeteringConfig custom
resource is generated. Use the examples in the documentation to modify this default file.

A report custom resource provides a method to manage periodic Extract Transform and Load
(ETL) jobs using SQL queries. Reports are composed from other metering resources, such as
ReportQuery resources that provide the actual SQL query to run, and ReportDataSource
resources that define the data available to the ReportQuery and Report resources.

1.1.3. Using metering

You can use metering for writing reports and viewing report results. To learn more, see examples of
using metering.

1.1.4. Troubleshooting metering

You can use the following sections to troubleshoot specific issues with metering .

Not enough compute resources

StorageClass resource not configured

OpenShift Container Platform 4.7 Metering

4

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-install-prerequisites_installing-metering
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-about-configuring
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-about-reports
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-usage-examples
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-troubleshooting_metering-troubleshooting-debugging

Secret not configured correctly

1.1.5. Debugging metering

You can use the following sections to debug specific issues with metering .

Get reporting Operator logs

Query Presto using presto-cli

Query Hive using beeline

Port-forward to the Hive web UI

Port-forward to HDFS

Metering Ansible Operator

1.1.6. Uninstalling metering

You can remove and clean metering resources from your OpenShift Container Platform cluster. To
learn more, see uninstalling metering.

1.1.7. Metering resources

Metering has many resources which can be used to manage the deployment and installation of metering,
as well as the reporting functionality metering provides.

Metering is managed using the following custom resource definitions (CRDs):

MeteringC
onfig

Configures the metering stack for deployment. Contains customizations and configuration
options to control each component that makes up the metering stack.

Report Controls what query to use, when, and how often the query should be run, and where to store
the results.

ReportQu
ery

Contains the SQL queries used to perform analysis on the data contained within
ReportDataSource resources.

ReportDat
aSource

Controls the data available to ReportQuery and Report resources. Allows configuring access
to different databases for use within metering.

CHAPTER 1. ABOUT METERING

5

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-debugging_metering-troubleshooting-debugging
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-uninstall

CHAPTER 2. INSTALLING METERING

IMPORTANT

Metering is a deprecated feature. Deprecated functionality is still included in OpenShift
Container Platform and continues to be supported; however, it will be removed in a future
release of this product and is not recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

Review the following sections before installing metering into your cluster.

To get started installing metering, first install the Metering Operator from OperatorHub. Next, configure
your instance of metering by creating a MeteringConfig custom resource (CR). Installing the Metering
Operator creates a default MeteringConfig resource that you can modify using the examples in the
documentation. After creating your MeteringConfig resource, install the metering stack. Last, verify
your installation.

2.1. PREREQUISITES

Metering requires the following components:

A StorageClass resource for dynamic volume provisioning. Metering supports a number of
different storage solutions.

4GB memory and 4 CPU cores available cluster capacity and at least one node with 2 CPU
cores and 2GB memory capacity available.

The minimum resources needed for the largest single pod installed by metering are 2GB of
memory and 2 CPU cores.

Memory and CPU consumption may often be lower, but will spike when running reports, or
collecting data for larger clusters.

2.2. INSTALLING THE METERING OPERATOR

You can install metering by deploying the Metering Operator. The Metering Operator creates and
manages the components of the metering stack.

NOTE

You cannot create a project starting with openshift- using the web console or by using
the oc new-project command in the CLI.

NOTE

If the Metering Operator is installed using a namespace other than openshift-metering,
the metering reports are only viewable using the CLI. It is strongly suggested throughout
the installation steps to use the openshift-metering namespace.

2.2.1. Installing metering using the web console

OpenShift Container Platform 4.7 Metering

6

1

2

You can use the OpenShift Container Platform web console to install the Metering Operator.

Procedure

1. Create a namespace object YAML file for the Metering Operator with the oc create -f <file-
name>.yaml command. You must use the CLI to create the namespace. For example,
metering-namespace.yaml:

It is strongly recommended to deploy metering in the openshift-metering namespace.

Include this annotation before configuring specific node selectors for the operand pods.

2. In the OpenShift Container Platform web console, click Operators → OperatorHub. Filter for
metering to find the Metering Operator.

3. Click the Metering card, review the package description, and then click Install.

4. Select an Update Channel, Installation Mode, and Approval Strategy.

5. Click Install.

6. Verify that the Metering Operator is installed by switching to the Operators → Installed
Operators page. The Metering Operator has a Status of Succeeded when the installation is
complete.

NOTE

It might take several minutes for the Metering Operator to appear.

7. Click Metering on the Installed Operators page for Operator Details. From the Details page
you can create different resources related to metering.

To complete the metering installation, create a MeteringConfig resource to configure metering and
install the components of the metering stack.

2.2.2. Installing metering using the CLI

You can use the OpenShift Container Platform CLI to install the Metering Operator.

Procedure

1. Create a Namespace object YAML file for the Metering Operator. You must use the CLI to
create the namespace. For example, metering-namespace.yaml:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-metering 1
 annotations:
 openshift.io/node-selector: "" 2
 labels:
 openshift.io/cluster-monitoring: "true"

CHAPTER 2. INSTALLING METERING

7

1

2

1

2

It is strongly recommended to deploy metering in the openshift-metering namespace.

Include this annotation before configuring specific node selectors for the operand pods.

2. Create the Namespace object:

For example:

3. Create the OperatorGroup object YAML file. For example, metering-og:

The name is arbitrary.

Specify the openshift-metering namespace.

4. Create a Subscription object YAML file to subscribe a namespace to the Metering Operator.
This object targets the most recently released version in the redhat-operators catalog source.
For example, metering-sub.yaml:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-metering 1
 annotations:
 openshift.io/node-selector: "" 2
 labels:
 openshift.io/cluster-monitoring: "true"

$ oc create -f <file-name>.yaml

$ oc create -f openshift-metering.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: openshift-metering 1
 namespace: openshift-metering 2
spec:
 targetNamespaces:
 - openshift-metering

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: metering-ocp 1
 namespace: openshift-metering 2
spec:
 channel: "4.7" 3
 source: "redhat-operators" 4
 sourceNamespace: "openshift-marketplace"
 name: "metering-ocp"
 installPlanApproval: "Automatic" 5

OpenShift Container Platform 4.7 Metering

8

1

2

3

4

5

The name is arbitrary.

You must specify the openshift-metering namespace.

Specify 4.7 as the channel.

Specify the redhat-operators catalog source, which contains the metering-ocp package
manifests. If your OpenShift Container Platform is installed on a restricted network, also
known as a disconnected cluster, specify the name of the CatalogSource object you
created when you configured the Operator LifeCycle Manager (OLM).

Specify "Automatic" install plan approval.

2.3. INSTALLING THE METERING STACK

After adding the Metering Operator to your cluster you can install the components of metering by
installing the metering stack.

2.4. PREREQUISITES

Review the configuration options

Create a MeteringConfig resource. You can begin the following process to generate a default
MeteringConfig resource, then use the examples in the documentation to modify this default
file for your specific installation. Review the following topics to create your MeteringConfig
resource:

For configuration options, review About configuring metering.

At a minimum, you need to configure persistent storage and configure the Hive metastore.

IMPORTANT

There can only be one MeteringConfig resource in the openshift-metering namespace.
Any other configuration is not supported.

Procedure

1. From the web console, ensure you are on the Operator Details page for the Metering Operator
in the openshift-metering project. You can navigate to this page by clicking Operators →
Installed Operators, then selecting the Metering Operator.

2. Under Provided APIs, click Create Instance on the Metering Configuration card. This opens a
YAML editor with the default MeteringConfig resource file where you can define your
configuration.

NOTE

For example configuration files and all supported configuration options, review
the configuring metering documentation.

3. Enter your MeteringConfig resource into the YAML editor and click Create.

The MeteringConfig resource begins to create the necessary resources for your metering stack. You

CHAPTER 2. INSTALLING METERING

9

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-about-configuring
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-about-configuring
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-configure-persistent-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-configure-hive-metastore
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-about-configuring

The MeteringConfig resource begins to create the necessary resources for your metering stack. You
can now move on to verifying your installation.

2.5. VERIFYING THE METERING INSTALLATION

You can verify the metering installation by performing any of the following checks:

Check the Metering Operator ClusterServiceVersion (CSV) resource for the metering version.
This can be done through either the web console or CLI.

Procedure (UI)

1. Navigate to Operators → Installed Operators in the openshift-metering namespace.

2. Click Metering Operator.

3. Click Subscription for Subscription Details.

4. Check the Installed Version.

Procedure (CLI)

Check the Metering Operator CSV in the openshift-metering namespace:

Example output

Check that all required pods in the openshift-metering namespace are created. This can be
done through either the web console or CLI.

NOTE

Many pods rely on other components to function before they themselves can be
considered ready. Some pods may restart if other pods take too long to start.
This is to be expected during the Metering Operator installation.

Procedure (UI)

Navigate to Workloads → Pods in the metering namespace and verify that pods are being
created. This can take several minutes after installing the metering stack.

Procedure (CLI)

Check that all required pods in the openshift-metering namespace are created:

$ oc --namespace openshift-metering get csv

NAME DISPLAY VERSION REPLACES
PHASE
elasticsearch-operator.4.7.0-202006231303.p0 OpenShift Elasticsearch Operator
4.7.0-202006231303.p0 Succeeded
metering-operator.v4.7.0 Metering 4.7.0
Succeeded

OpenShift Container Platform 4.7 Metering

10

Example output

Verify that the ReportDataSource resources are beginning to import data, indicated by a valid
timestamp in the EARLIEST METRIC column. This might take several minutes. Filter out the "-
raw" ReportDataSource resources, which do not import data:

Example output

After all pods are ready and you have verified that data is being imported, you can begin using metering
to collect data and report on your cluster.

$ oc -n openshift-metering get pods

NAME READY STATUS RESTARTS AGE
hive-metastore-0 2/2 Running 0 3m28s
hive-server-0 3/3 Running 0 3m28s
metering-operator-68dd64cfb6-2k7d9 2/2 Running 0 5m17s
presto-coordinator-0 2/2 Running 0 3m9s
reporting-operator-5588964bf8-x2tkn 2/2 Running 0 2m40s

$ oc get reportdatasources -n openshift-metering | grep -v raw

NAME EARLIEST METRIC NEWEST METRIC IMPORT
START IMPORT END LAST IMPORT TIME AGE
node-allocatable-cpu-cores 2019-08-05T16:52:00Z 2019-08-05T18:52:00Z
2019-08-05T16:52:00Z 2019-08-05T18:52:00Z 2019-08-05T18:54:45Z 9m50s
node-allocatable-memory-bytes 2019-08-05T16:51:00Z 2019-08-05T18:51:00Z
2019-08-05T16:51:00Z 2019-08-05T18:51:00Z 2019-08-05T18:54:45Z 9m50s
node-capacity-cpu-cores 2019-08-05T16:51:00Z 2019-08-05T18:29:00Z
2019-08-05T16:51:00Z 2019-08-05T18:29:00Z 2019-08-05T18:54:39Z 9m50s
node-capacity-memory-bytes 2019-08-05T16:52:00Z 2019-08-05T18:41:00Z
2019-08-05T16:52:00Z 2019-08-05T18:41:00Z 2019-08-05T18:54:44Z 9m50s
persistentvolumeclaim-capacity-bytes 2019-08-05T16:51:00Z 2019-08-05T18:29:00Z
2019-08-05T16:51:00Z 2019-08-05T18:29:00Z 2019-08-05T18:54:43Z 9m50s
persistentvolumeclaim-phase 2019-08-05T16:51:00Z 2019-08-05T18:29:00Z
2019-08-05T16:51:00Z 2019-08-05T18:29:00Z 2019-08-05T18:54:28Z 9m50s
persistentvolumeclaim-request-bytes 2019-08-05T16:52:00Z 2019-08-05T18:30:00Z
2019-08-05T16:52:00Z 2019-08-05T18:30:00Z 2019-08-05T18:54:34Z 9m50s
persistentvolumeclaim-usage-bytes 2019-08-05T16:52:00Z 2019-08-05T18:30:00Z
2019-08-05T16:52:00Z 2019-08-05T18:30:00Z 2019-08-05T18:54:36Z 9m49s
pod-limit-cpu-cores 2019-08-05T16:52:00Z 2019-08-05T18:30:00Z 2019-
08-05T16:52:00Z 2019-08-05T18:30:00Z 2019-08-05T18:54:26Z 9m49s
pod-limit-memory-bytes 2019-08-05T16:51:00Z 2019-08-05T18:40:00Z 2019-
08-05T16:51:00Z 2019-08-05T18:40:00Z 2019-08-05T18:54:30Z 9m49s
pod-persistentvolumeclaim-request-info 2019-08-05T16:51:00Z 2019-08-05T18:40:00Z
2019-08-05T16:51:00Z 2019-08-05T18:40:00Z 2019-08-05T18:54:37Z 9m49s
pod-request-cpu-cores 2019-08-05T16:51:00Z 2019-08-05T18:18:00Z 2019-
08-05T16:51:00Z 2019-08-05T18:18:00Z 2019-08-05T18:54:24Z 9m49s
pod-request-memory-bytes 2019-08-05T16:52:00Z 2019-08-05T18:08:00Z
2019-08-05T16:52:00Z 2019-08-05T18:08:00Z 2019-08-05T18:54:32Z 9m49s
pod-usage-cpu-cores 2019-08-05T16:52:00Z 2019-08-05T17:57:00Z 2019-
08-05T16:52:00Z 2019-08-05T17:57:00Z 2019-08-05T18:54:10Z 9m49s
pod-usage-memory-bytes 2019-08-05T16:52:00Z 2019-08-05T18:08:00Z
2019-08-05T16:52:00Z 2019-08-05T18:08:00Z 2019-08-05T18:54:20Z 9m49s

CHAPTER 2. INSTALLING METERING

11

2.6. ADDITIONAL RESOURCES

For more information on configuration steps and available storage platforms, see Configuring
persistent storage.

For the steps to configure Hive, see Configuring the Hive metastore.

OpenShift Container Platform 4.7 Metering

12

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-configure-persistent-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-configure-hive-metastore

CHAPTER 3. UPGRADING METERING

IMPORTANT

Metering is a deprecated feature. Deprecated functionality is still included in OpenShift
Container Platform and continues to be supported; however, it will be removed in a future
release of this product and is not recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

You can upgrade metering to 4.7 by updating the Metering Operator subscription.

3.1. PREREQUISITES

The cluster is updated to 4.7.

The Metering Operator is installed from OperatorHub.

NOTE

You must upgrade the Metering Operator to 4.7 manually. Metering does not
upgrade automatically if you selected the "Automatic" Approval Strategy in a
previous installation.

The MeteringConfig custom resource is configured.

The metering stack is installed.

Ensure that metering status is healthy by checking that all pods are ready.

IMPORTANT

Potential data loss can occur if you modify your metering storage configuration after
installing or upgrading metering.

Procedure

1. Click Operators → Installed Operators from the web console.

2. Select the openshift-metering project.

3. Click Metering Operator.

4. Click Subscription → Channel.

5. In the Change Subscription Update Channel window, select 4.7 and click Save.

NOTE

Wait several seconds to allow the subscription to update before proceeding to
the next step.

CHAPTER 3. UPGRADING METERING

13

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-install-operator_installing-metering
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-about-configuring
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-install-metering-stack_installing-metering

6. Click Operators → Installed Operators.
The Metering Operator is shown as 4.7. For example:

Metering
4.7.0-202007012112.p0 provided by Red Hat, Inc

Verification

You can verify the metering upgrade by performing any of the following checks:

Check the Metering Operator cluster service version (CSV) for the new metering version. This
can be done through either the web console or CLI.

Procedure (UI)

1. Navigate to Operators → Installed Operators in the metering namespace.

2. Click Metering Operator.

3. Click Subscription for Subscription Details.

4. Check the Installed Version for the upgraded metering version. The Starting Version
shows the metering version prior to upgrading.

Procedure (CLI)

Check the Metering Operator CSV:

Example output for metering upgrade from 4.6 to 4.7

Check that all required pods in the openshift-metering namespace are created. This can be
done through either the web console or CLI.

NOTE

Many pods rely on other components to function before they themselves can be
considered ready. Some pods may restart if other pods take too long to start.
This is to be expected during the Metering Operator upgrade.

Procedure (UI)

Navigate to Workloads → Pods in the metering namespace and verify that pods are being
created. This can take several minutes after upgrading the metering stack.

Procedure (CLI)

Check that all required pods in the openshift-metering namespace are created:

$ oc get csv | grep metering

NAME DISPLAY VERSION REPLACES
PHASE
metering-operator.4.7.0-202007012112.p0 Metering 4.7.0-202007012112.p0
metering-operator.4.6.0-202007012112.p0 Succeeded

OpenShift Container Platform 4.7 Metering

14

Example output

Verify that the ReportDataSource resources are importing new data, indicated by a valid
timestamp in the NEWEST METRIC column. This might take several minutes. Filter out the "-
raw" ReportDataSource resources, which do not import data:

Timestamps in the NEWEST METRIC column indicate that ReportDataSource resources are
beginning to import new data.

Example output

$ oc -n openshift-metering get pods

NAME READY STATUS RESTARTS AGE
hive-metastore-0 2/2 Running 0 3m28s
hive-server-0 3/3 Running 0 3m28s
metering-operator-68dd64cfb6-2k7d9 2/2 Running 0 5m17s
presto-coordinator-0 2/2 Running 0 3m9s
reporting-operator-5588964bf8-x2tkn 2/2 Running 0 2m40s

$ oc get reportdatasources -n openshift-metering | grep -v raw

NAME EARLIEST METRIC NEWEST METRIC IMPORT
START IMPORT END LAST IMPORT TIME AGE
node-allocatable-cpu-cores 2020-05-18T21:10:00Z 2020-05-19T19:52:00Z
2020-05-18T19:11:00Z 2020-05-19T19:52:00Z 2020-05-19T19:56:44Z 23h
node-allocatable-memory-bytes 2020-05-18T21:10:00Z 2020-05-19T19:52:00Z
2020-05-18T19:11:00Z 2020-05-19T19:52:00Z 2020-05-19T19:52:07Z 23h
node-capacity-cpu-cores 2020-05-18T21:10:00Z 2020-05-19T19:52:00Z
2020-05-18T19:11:00Z 2020-05-19T19:52:00Z 2020-05-19T19:56:52Z 23h
node-capacity-memory-bytes 2020-05-18T21:10:00Z 2020-05-19T19:57:00Z
2020-05-18T19:10:00Z 2020-05-19T19:57:00Z 2020-05-19T19:57:03Z 23h
persistentvolumeclaim-capacity-bytes 2020-05-18T21:09:00Z 2020-05-19T19:52:00Z
2020-05-18T19:11:00Z 2020-05-19T19:52:00Z 2020-05-19T19:56:46Z 23h
persistentvolumeclaim-phase 2020-05-18T21:10:00Z 2020-05-19T19:52:00Z
2020-05-18T19:11:00Z 2020-05-19T19:52:00Z 2020-05-19T19:52:36Z 23h
persistentvolumeclaim-request-bytes 2020-05-18T21:10:00Z 2020-05-19T19:57:00Z
2020-05-18T19:10:00Z 2020-05-19T19:57:00Z 2020-05-19T19:57:03Z 23h
persistentvolumeclaim-usage-bytes 2020-05-18T21:09:00Z 2020-05-19T19:52:00Z
2020-05-18T19:11:00Z 2020-05-19T19:52:00Z 2020-05-19T19:52:02Z 23h
pod-limit-cpu-cores 2020-05-18T21:10:00Z 2020-05-19T19:57:00Z 2020-
05-18T19:10:00Z 2020-05-19T19:57:00Z 2020-05-19T19:57:02Z 23h
pod-limit-memory-bytes 2020-05-18T21:10:00Z 2020-05-19T19:58:00Z 2020-
05-18T19:11:00Z 2020-05-19T19:58:00Z 2020-05-19T19:59:06Z 23h
pod-persistentvolumeclaim-request-info 2020-05-18T21:10:00Z 2020-05-19T19:52:00Z
2020-05-18T19:11:00Z 2020-05-19T19:52:00Z 2020-05-19T19:52:07Z 23h
pod-request-cpu-cores 2020-05-18T21:10:00Z 2020-05-19T19:58:00Z 2020-
05-18T19:11:00Z 2020-05-19T19:58:00Z 2020-05-19T19:58:57Z 23h
pod-request-memory-bytes 2020-05-18T21:10:00Z 2020-05-19T19:52:00Z
2020-05-18T19:11:00Z 2020-05-19T19:52:00Z 2020-05-19T19:55:32Z 23h
pod-usage-cpu-cores 2020-05-18T21:09:00Z 2020-05-19T19:52:00Z 2020-
05-18T19:11:00Z 2020-05-19T19:52:00Z 2020-05-19T19:54:55Z 23h
pod-usage-memory-bytes 2020-05-18T21:08:00Z 2020-05-19T19:52:00Z
2020-05-18T19:11:00Z 2020-05-19T19:52:00Z 2020-05-19T19:55:00Z 23h

CHAPTER 3. UPGRADING METERING

15

After all pods are ready and you have verified that new data is being imported, metering continues to
collect data and report on your cluster. Review a previously scheduled report or create a run-once
metering report to confirm the metering upgrade.

report-ns-pvc-usage
5h36m
report-ns-pvc-usage-hourly

OpenShift Container Platform 4.7 Metering

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-example-report-with-schedule_metering-about-reports
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-example-report-without-schedule_metering-about-reports

CHAPTER 4. CONFIGURING METERING

4.1. ABOUT CONFIGURING METERING

IMPORTANT

Metering is a deprecated feature. Deprecated functionality is still included in OpenShift
Container Platform and continues to be supported; however, it will be removed in a future
release of this product and is not recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

The MeteringConfig custom resource specifies all the configuration details for your metering
installation. When you first install the metering stack, a default MeteringConfig custom resource is
generated. Use the examples in the documentation to modify this default file. Keep in mind the following
key points:

At a minimum, you need to configure persistent storage and configure the Hive metastore.

Most default configuration settings work, but larger deployments or highly customized
deployments should review all configuration options carefully.

Some configuration options can not be modified after installation.

For configuration options that can be modified after installation, make the changes in your
MeteringConfig custom resource and reapply the file.

4.2. COMMON CONFIGURATION OPTIONS

IMPORTANT

Metering is a deprecated feature. Deprecated functionality is still included in OpenShift
Container Platform and continues to be supported; however, it will be removed in a future
release of this product and is not recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

4.2.1. Resource requests and limits

You can adjust the CPU, memory, or storage resource requests and/or limits for pods and volumes. The
default-resource-limits.yaml below provides an example of setting resource request and limits for
each component.

apiVersion: metering.openshift.io/v1
kind: MeteringConfig
metadata:
 name: "operator-metering"
spec:
 reporting-operator:

CHAPTER 4. CONFIGURING METERING

17

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-configure-persistent-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-configure-hive-metastore

4.2.2. Node selectors

You can run the metering components on specific sets of nodes. Set the nodeSelector on a metering

 spec:
 resources:
 limits:
 cpu: 1
 memory: 500Mi
 requests:
 cpu: 500m
 memory: 100Mi
 presto:
 spec:
 coordinator:
 resources:
 limits:
 cpu: 4
 memory: 4Gi
 requests:
 cpu: 2
 memory: 2Gi

 worker:
 replicas: 0
 resources:
 limits:
 cpu: 8
 memory: 8Gi
 requests:
 cpu: 4
 memory: 2Gi

 hive:
 spec:
 metastore:
 resources:
 limits:
 cpu: 4
 memory: 2Gi
 requests:
 cpu: 500m
 memory: 650Mi
 storage:
 class: null
 create: true
 size: 5Gi
 server:
 resources:
 limits:
 cpu: 1
 memory: 1Gi
 requests:
 cpu: 500m
 memory: 500Mi

OpenShift Container Platform 4.7 Metering

18

1 2 3 4 5

You can run the metering components on specific sets of nodes. Set the nodeSelector on a metering
component to control where the component is scheduled. The node-selectors.yaml file below provides
an example of setting node selectors for each component.

NOTE

Add the openshift.io/node-selector: "" namespace annotation to the metering
namespace YAML file before configuring specific node selectors for the operand pods.
Specify "" as the annotation value.

Add a nodeSelector parameter with the appropriate value to the component you want
to move. You can use a nodeSelector in the format shown or use key-value pairs, based

on the value specified for the node.

NOTE

Add the openshift.io/node-selector: "" namespace annotation to the metering
namespace YAML file before configuring specific node selectors for the operand pods.
When the openshift.io/node-selector annotation is set on the project, the value is used
in preference to the value of the spec.defaultNodeSelector field in the cluster-wide
Scheduler object.

Verification

You can verify the metering node selectors by performing any of the following checks:

apiVersion: metering.openshift.io/v1
kind: MeteringConfig
metadata:
 name: "operator-metering"
spec:
 reporting-operator:
 spec:
 nodeSelector:
 "node-role.kubernetes.io/infra": "" 1

 presto:
 spec:
 coordinator:
 nodeSelector:
 "node-role.kubernetes.io/infra": "" 2
 worker:
 nodeSelector:
 "node-role.kubernetes.io/infra": "" 3
 hive:
 spec:
 metastore:
 nodeSelector:
 "node-role.kubernetes.io/infra": "" 4
 server:
 nodeSelector:
 "node-role.kubernetes.io/infra": "" 5

CHAPTER 4. CONFIGURING METERING

19

Verify that all pods for metering are correctly scheduled on the IP of the node that is configured
in the MeteringConfig custom resource:

1. Check all pods in the openshift-metering namespace:

The output shows the NODE and corresponding IP for each pod running in the openshift-
metering namespace.

Example output

2. Compare the nodes in the openshift-metering namespace to each node NAME in your
cluster:

Example output

Verify that the node selector configuration in the MeteringConfig custom resource does not
interfere with the cluster-wide node selector configuration such that no metering operand pods
are scheduled.

Check the cluster-wide Scheduler object for the spec.defaultNodeSelector field, which
shows where pods are scheduled by default:

4.3. CONFIGURING PERSISTENT STORAGE

IMPORTANT

$ oc --namespace openshift-metering get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
hive-metastore-0 1/2 Running 0 4m33s 10.129.2.26 ip-10-0-210-
167.us-east-2.compute.internal <none> <none>
hive-server-0 2/3 Running 0 4m21s 10.128.2.26 ip-10-0-150-
175.us-east-2.compute.internal <none> <none>
metering-operator-964b4fb55-4p699 2/2 Running 0 7h30m 10.131.0.33 ip-
10-0-189-6.us-east-2.compute.internal <none> <none>
nfs-server 1/1 Running 0 7h30m 10.129.2.24 ip-10-0-210-
167.us-east-2.compute.internal <none> <none>
presto-coordinator-0 2/2 Running 0 4m8s 10.131.0.35 ip-10-0-
189-6.us-east-2.compute.internal <none> <none>
reporting-operator-869b854c78-8g2x5 1/2 Running 0 7h27m 10.128.2.25 ip-
10-0-150-175.us-east-2.compute.internal <none> <none>

$ oc get nodes

NAME STATUS ROLES AGE VERSION
ip-10-0-147-106.us-east-2.compute.internal Ready master 14h v1.20.0+6025c28
ip-10-0-150-175.us-east-2.compute.internal Ready worker 14h v1.20.0+6025c28
ip-10-0-175-23.us-east-2.compute.internal Ready master 14h v1.20.0+6025c28
ip-10-0-189-6.us-east-2.compute.internal Ready worker 14h v1.20.0+6025c28
ip-10-0-205-158.us-east-2.compute.internal Ready master 14h v1.20.0+6025c28
ip-10-0-210-167.us-east-2.compute.internal Ready worker 14h v1.20.0+6025c28

$ oc get schedulers.config.openshift.io cluster -o yaml

OpenShift Container Platform 4.7 Metering

20

1

2

3

IMPORTANT

Metering is a deprecated feature. Deprecated functionality is still included in OpenShift
Container Platform and continues to be supported; however, it will be removed in a future
release of this product and is not recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

Metering requires persistent storage to persist data collected by the Metering Operator and to store the
results of reports. A number of different storage providers and storage formats are supported. Select
your storage provider and modify the example configuration files to configure persistent storage for
your metering installation.

4.3.1. Storing data in Amazon S3

Metering can use an existing Amazon S3 bucket or create a bucket for storage.

NOTE

Metering does not manage or delete any S3 bucket data. You must manually clean up S3
buckets that are used to store metering data.

Procedure

1. Edit the spec.storage section in the s3-storage.yaml file:

Example s3-storage.yaml file

Specify the name of the bucket where you would like to store your data. Optional: Specify
the path within the bucket.

Specify the region of your bucket.

The name of a secret in the metering namespace containing the AWS credentials in the
data.aws-access-key-id and data.aws-secret-access-key fields. See the example Secret
object below for more details.

apiVersion: metering.openshift.io/v1
kind: MeteringConfig
metadata:
 name: "operator-metering"
spec:
 storage:
 type: "hive"
 hive:
 type: "s3"
 s3:
 bucket: "bucketname/path/" 1
 region: "us-west-1" 2
 secretName: "my-aws-secret" 3
 # Set to false if you want to provide an existing bucket, instead of
 # having metering create the bucket on your behalf.
 createBucket: true 4

CHAPTER 4. CONFIGURING METERING

21

4

object below for more details.

Set this field to false if you want to provide an existing S3 bucket, or if you do not want to
provide IAM credentials that have CreateBucket permissions.

2. Use the following Secret object as a template:

Example AWS Secret object

NOTE

The values of the aws-access-key-id and aws-secret-access-key must be
base64 encoded.

3. Create the secret:

NOTE

This command automatically base64 encodes your aws-access-key-id and aws-
secret-access-key values.

The aws-access-key-id and aws-secret-access-key credentials must have read and write access to
the bucket. The following aws/read-write.json file shows an IAM policy that grants the required
permissions:

Example aws/read-write.json file

apiVersion: v1
kind: Secret
metadata:
 name: my-aws-secret
data:
 aws-access-key-id: "dGVzdAo="
 aws-secret-access-key: "c2VjcmV0Cg=="

$ oc create secret -n openshift-metering generic my-aws-secret \
 --from-literal=aws-access-key-id=my-access-key \
 --from-literal=aws-secret-access-key=my-secret-key

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "1",
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:DeleteObject",
 "s3:GetObject",
 "s3:HeadBucket",
 "s3:ListBucket",
 "s3:ListMultipartUploadParts",
 "s3:PutObject"

OpenShift Container Platform 4.7 Metering

22

If spec.storage.hive.s3.createBucket is set to true or unset in your s3-storage.yaml file, then you
should use the aws/read-write-create.json file that contains permissions for creating and deleting
buckets:

Example aws/read-write-create.json file

4.3.2. Storing data in S3-compatible storage

You can use S3-compatible storage such as Noobaa.

Procedure

1. Edit the spec.storage section in the s3-compatible-storage.yaml file:

Example s3-compatible-storage.yaml file

],
 "Resource": [
 "arn:aws:s3:::operator-metering-data/*",
 "arn:aws:s3:::operator-metering-data"
]
 }
]
}

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "1",
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:DeleteObject",
 "s3:GetObject",
 "s3:HeadBucket",
 "s3:ListBucket",
 "s3:CreateBucket",
 "s3:DeleteBucket",
 "s3:ListMultipartUploadParts",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::operator-metering-data/*",
 "arn:aws:s3:::operator-metering-data"
]
 }
]
}

apiVersion: metering.openshift.io/v1
kind: MeteringConfig
metadata:
 name: "operator-metering"

CHAPTER 4. CONFIGURING METERING

23

1

2

3

Specify the name of your S3-compatible bucket.

Specify the endpoint for your storage.

The name of a secret in the metering namespace containing the AWS credentials in the
data.aws-access-key-id and data.aws-secret-access-key fields. See the example Secret
object below for more details.

2. Use the following Secret object as a template:

Example S3-compatible Secret object

4.3.3. Storing data in Microsoft Azure

To store data in Azure blob storage, you must use an existing container.

Procedure

1. Edit the spec.storage section in the azure-blob-storage.yaml file:

Example azure-blob-storage.yaml file

spec:
 storage:
 type: "hive"
 hive:
 type: "s3Compatible"
 s3Compatible:
 bucket: "bucketname" 1
 endpoint: "http://example:port-number" 2
 secretName: "my-aws-secret" 3

apiVersion: v1
kind: Secret
metadata:
 name: my-aws-secret
data:
 aws-access-key-id: "dGVzdAo="
 aws-secret-access-key: "c2VjcmV0Cg=="

apiVersion: metering.openshift.io/v1
kind: MeteringConfig
metadata:
 name: "operator-metering"
spec:
 storage:
 type: "hive"
 hive:
 type: "azure"
 azure:
 container: "bucket1" 1
 secretName: "my-azure-secret" 2
 rootDirectory: "/testDir" 3

OpenShift Container Platform 4.7 Metering

24

1

2

3

1

2

Specify the container name.

Specify a secret in the metering namespace. See the example Secret object below for
more details.

Optional: Specify the directory where you would like to store your data.

2. Use the following Secret object as a template:

Example Azure Secret object

3. Create the secret:

4.3.4. Storing data in Google Cloud Storage

To store your data in Google Cloud Storage, you must use an existing bucket.

Procedure

1. Edit the spec.storage section in the gcs-storage.yaml file:

Example gcs-storage.yaml file

Specify the name of the bucket. You can optionally specify the directory within the bucket
where you would like to store your data.

Specify a secret in the metering namespace. See the example Secret object below for

apiVersion: v1
kind: Secret
metadata:
 name: my-azure-secret
data:
 azure-storage-account-name: "dGVzdAo="
 azure-secret-access-key: "c2VjcmV0Cg=="

$ oc create secret -n openshift-metering generic my-azure-secret \
 --from-literal=azure-storage-account-name=my-storage-account-name \
 --from-literal=azure-secret-access-key=my-secret-key

apiVersion: metering.openshift.io/v1
kind: MeteringConfig
metadata:
 name: "operator-metering"
spec:
 storage:
 type: "hive"
 hive:
 type: "gcs"
 gcs:
 bucket: "metering-gcs/test1" 1
 secretName: "my-gcs-secret" 2

CHAPTER 4. CONFIGURING METERING

25

Specify a secret in the metering namespace. See the example Secret object below for
more details.

2. Use the following Secret object as a template:

Example Google Cloud Storage Secret object

3. Create the secret:

4.3.5. Storing data in shared volumes

Metering does not configure storage by default. However, you can use any ReadWriteMany persistent
volume (PV) or any storage class that provisions a ReadWriteMany PV for metering storage.

NOTE

NFS is not recommended to use in production. Using an NFS server on RHEL as a storage
back end can fail to meet metering requirements and to provide the performance that is
needed for the Metering Operator to work appropriately.

Other NFS implementations on the marketplace might not have these issues, such as a
Parallel Network File System (pNFS). pNFS is an NFS implementation with distributed
and parallel capability. Contact the individual NFS implementation vendor for more
information on any testing that was possibly completed against OpenShift Container
Platform core components.

Procedure

1. Modify the shared-storage.yaml file to use a ReadWriteMany persistent volume for storage:

apiVersion: v1
kind: Secret
metadata:
 name: my-gcs-secret
data:
 gcs-service-account.json: "c2VjcmV0Cg=="

$ oc create secret -n openshift-metering generic my-gcs-secret \
 --from-file gcs-service-account.json=/path/to/my/service-account-key.json

apiVersion: metering.openshift.io/v1
kind: MeteringConfig
metadata:
 name: "operator-metering"
spec:
 storage:
 type: "hive"
 hive:
 type: "sharedPVC"
 sharedPVC:
 claimName: "metering-nfs" 1
 # Uncomment the lines below to provision a new PVC using the specified storageClass.
2

OpenShift Container Platform 4.7 Metering

26

1

2

1

Select one of the configuration options below:

Set storage.hive.sharedPVC.claimName to the name of an existing ReadWriteMany
persistent volume claim (PVC). This configuration is necessary if you do not have dynamic
volume provisioning or want to have more control over how the persistent volume is
created.

Set storage.hive.sharedPVC.createPVC to true and set the
storage.hive.sharedPVC.storageClass to the name of a storage class with
ReadWriteMany access mode. This configuration uses dynamic volume provisioning to
create a volume automatically.

2. Create the following resource objects that are required to deploy an NFS server for metering.
Use the oc create -f <file-name>.yaml command to create the object YAML files.

a. Configure a PersistentVolume resource object:

Example nfs_persistentvolume.yaml file

Must exactly match the [kind: StorageClass].metadata.name field value.

b. Configure a Pod resource object with the nfs-server role:

Example nfs_server.yaml file

 # createPVC: true
 # storageClass: "my-nfs-storage-class"
 # size: 5Gi

apiVersion: v1
kind: PersistentVolume
metadata:
 name: nfs
 labels:
 role: nfs-server
spec:
 capacity:
 storage: 5Gi
 accessModes:
 - ReadWriteMany
 storageClassName: nfs-server 1
 nfs:
 path: "/"
 server: REPLACEME
 persistentVolumeReclaimPolicy: Delete

apiVersion: v1
kind: Pod
metadata:
 name: nfs-server
 labels:
 role: nfs-server
spec:
 containers:

CHAPTER 4. CONFIGURING METERING

27

1 Install your NFS server image.

c. Configure a Service resource object with the nfs-server role:

Example nfs_service.yaml file

d. Configure a StorageClass resource object:

Example nfs_storageclass.yaml file

Must exactly match the [kind: PersistentVolume].spec.storageClassName field

 - name: nfs-server
 image: <image_name> 1
 imagePullPolicy: IfNotPresent
 ports:
 - name: nfs
 containerPort: 2049
 securityContext:
 privileged: true
 volumeMounts:
 - mountPath: "/mnt/data"
 name: local
 volumes:
 - name: local
 emptyDir: {}

apiVersion: v1
kind: Service
metadata:
 name: nfs-service
 labels:
 role: nfs-server
spec:
 ports:
 - name: 2049-tcp
 port: 2049
 protocol: TCP
 targetPort: 2049
 selector:
 role: nfs-server
 sessionAffinity: None
 type: ClusterIP

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: nfs-server 1
provisioner: example.com/nfs
parameters:
 archiveOnDelete: "false"
reclaimPolicy: Delete
volumeBindingMode: Immediate

OpenShift Container Platform 4.7 Metering

28

1 Must exactly match the [kind: PersistentVolume].spec.storageClassName field
value.

WARNING

Configuration of your NFS storage, and any relevant resource objects, will vary
depending on the NFS server image that you use for metering storage.

4.4. CONFIGURING THE HIVE METASTORE

IMPORTANT

Metering is a deprecated feature. Deprecated functionality is still included in OpenShift
Container Platform and continues to be supported; however, it will be removed in a future
release of this product and is not recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

Hive metastore is responsible for storing all the metadata about the database tables created in Presto
and Hive. By default, the metastore stores this information in a local embedded Derby database in a
persistent volume attached to the pod.

Generally, the default configuration of the Hive metastore works for small clusters, but users may wish
to improve performance or move storage requirements out of cluster by using a dedicated SQL
database for storing the Hive metastore data.

4.4.1. Configuring persistent volumes

By default, Hive requires one persistent volume to operate.

hive-metastore-db-data is the main persistent volume claim (PVC) required by default. This PVC is
used by the Hive metastore to store metadata about tables, such as table name, columns, and location.
Hive metastore is used by Presto and the Hive server to look up table metadata when processing
queries. You remove this requirement by using MySQL or PostgreSQL for the Hive metastore database.

To install, Hive metastore requires that dynamic volume provisioning is enabled in a storage class, a
persistent volume of the correct size must be manually pre-created, or you use a pre-existing MySQL or
PostgreSQL database.

4.4.1.1. Configuring the storage class for the Hive metastore

To configure and specify a storage class for the hive-metastore-db-data persistent volume claim,
specify the storage class in your MeteringConfig custom resource. An example storage section with the
class field is included in the metastore-storage.yaml file below.



apiVersion: metering.openshift.io/v1

CHAPTER 4. CONFIGURING METERING

29

1

1

Uncomment this line and replace null with the name of the storage class to use. Leaving the value
null will cause metering to use the default storage class for the cluster.

4.4.1.2. Configuring the volume size for the Hive metastore

Use the metastore-storage.yaml file below as a template to configure the volume size for the Hive
metastore.

Replace the value for size with your desired capacity. The example file shows "5Gi".

4.4.2. Using MySQL or PostgreSQL for the Hive metastore

The default installation of metering configures Hive to use an embedded Java database called Derby.
This is unsuited for larger environments and can be replaced with either a MySQL or PostgreSQL
database. Use the following example configuration files if your deployment requires a MySQL or
PostgreSQL database for Hive.

There are three configuration options you can use to control the database that is used by Hive
metastore: url, driver, and secretName.

Create your MySQL or Postgres instance with a user name and password. Then create a secret by using
the OpenShift CLI (oc) or a YAML file. The secretName you create for this secret must map to the
spec.hive.spec.config.db.secretName field in the MeteringConfig object resource.

Procedure

kind: MeteringConfig
metadata:
 name: "operator-metering"
spec:
 hive:
 spec:
 metastore:
 storage:
 # Default is null, which means using the default storage class if it exists.
 # If you wish to use a different storage class, specify it here
 # class: "null" 1
 size: "5Gi"

apiVersion: metering.openshift.io/v1
kind: MeteringConfig
metadata:
 name: "operator-metering"
spec:
 hive:
 spec:
 metastore:
 storage:
 # Default is null, which means using the default storage class if it exists.
 # If you wish to use a different storage class, specify it here
 # class: "null"
 size: "5Gi" 1

OpenShift Container Platform 4.7 Metering

30

1

2

3

1

2

1. Create a secret using the OpenShift CLI (oc) or by using a YAML file:

Create a secret by using the following command:

Create a secret by using a YAML file. For example:

The name of the secret.

Base64 encoded database user name.

Base64 encoded database password.

2. Create a configuration file to use a MySQL or PostgreSQL database for Hive:

To use a MySQL database for Hive, use the example configuration file below. Metering
supports configuring the internal Hive metastore to use the MySQL server versions 5.6, 5.7,
and 8.0.

NOTE

When configuring Metering to work with older MySQL server versions, such
as 5.6 or 5.7, you might need to add the enabledTLSProtocols JDBC URL
parameter when configuring the internal Hive metastore.

To use the TLS v1.2 cipher suite, set url to "jdbc:mysql://<hostname>:
<port>/<schema>?enabledTLSProtocols=TLSv1.2".

The name of the secret containing the base64-encrypted user name and password
database credentials.

You can pass additional JDBC parameters using the spec.hive.config.url. For more details,

$ oc --namespace openshift-metering create secret generic <YOUR_SECRETNAME> --
from-literal=username=<YOUR_DATABASE_USERNAME> --from-literal=password=
<YOUR_DATABASE_PASSWORD>

apiVersion: v1
kind: Secret
metadata:
 name: <YOUR_SECRETNAME> 1
data:
 username: <BASE64_ENCODED_DATABASE_USERNAME> 2
 password: <BASE64_ENCODED_DATABASE_PASSWORD> 3

spec:
 hive:
 spec:
 metastore:
 storage:
 create: false
 config:
 db:
 url: "jdbc:mysql://mysql.example.com:3306/hive_metastore" 1
 driver: "com.mysql.cj.jdbc.Driver"
 secretName: "REPLACEME" 2

CHAPTER 4. CONFIGURING METERING

31

https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-usagenotes-known-issues-limitations.html

You can pass additional JDBC parameters using the spec.hive.config.url. For more details,
see the MySQL Connector/J 8.0 documentation.

To use a PostgreSQL database for Hive, use the example configuration file below:

You can pass additional JDBC parameters using the spec.hive.config.url. For more details,
see the PostgreSQL JDBC driver documentation.

4.5. CONFIGURING THE REPORTING OPERATOR

IMPORTANT

Metering is a deprecated feature. Deprecated functionality is still included in OpenShift
Container Platform and continues to be supported; however, it will be removed in a future
release of this product and is not recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

The Reporting Operator is responsible for collecting data from Prometheus, storing the metrics in
Presto, running report queries against Presto, and exposing their results via an HTTP API. Configuring
the Reporting Operator is primarily done in your MeteringConfig custom resource.

4.5.1. Securing a Prometheus connection

When you install metering on OpenShift Container Platform, Prometheus is available at
https://prometheus-k8s.openshift-monitoring.svc:9091/.

To secure the connection to Prometheus, the default metering installation uses the OpenShift
Container Platform certificate authority (CA). If your Prometheus instance uses a different CA, you can
inject the CA through a config map. You can also configure the Reporting Operator to use a specified
bearer token to authenticate with Prometheus.

Procedure

Inject the CA that your Prometheus instance uses through a config map. For example:

spec:
 hive:
 spec:
 metastore:
 storage:
 create: false
 config:
 db:
 url: "jdbc:postgresql://postgresql.example.com:5432/hive_metastore"
 driver: "org.postgresql.Driver"
 username: "REPLACEME"
 password: "REPLACEME"

spec:
 reporting-operator:
 spec:

OpenShift Container Platform 4.7 Metering

32

https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-reference-configuration-properties.html
https://jdbc.postgresql.org/documentation/head/connect.html#connection-parameters
https://prometheus-k8s.openshift-monitoring.svc:9091/

Alternatively, to use the system certificate authorities for publicly valid certificates, set both
useServiceAccountCA and configMap.enabled to false.

Specify a bearer token to authenticate with Prometheus. For example:

4.5.2. Exposing the reporting API

On OpenShift Container Platform the default metering installation automatically exposes a route,
making the reporting API available. This provides the following features:

Automatic DNS

Automatic TLS based on the cluster CA

Also, the default installation makes it possible to use the OpenShift service for serving certificates to
protect the reporting API with TLS. The OpenShift OAuth proxy is deployed as a sidecar container for
the Reporting Operator, which protects the reporting API with authentication.

4.5.2.1. Using OpenShift Authentication

By default, the reporting API is secured with TLS and authentication. This is done by configuring the
Reporting Operator to deploy a pod containing both the Reporting Operator’s container, and a sidecar
container running OpenShift auth-proxy.

To access the reporting API, the Metering Operator exposes a route. Once that route has been installed,
you can run the following command to get the route’s hostname.

 config:
 prometheus:
 certificateAuthority:
 useServiceAccountCA: false
 configMap:
 enabled: true
 create: true
 name: reporting-operator-certificate-authority-config
 filename: "internal-ca.crt"
 value: |
 -----BEGIN CERTIFICATE-----
 (snip)
 -----END CERTIFICATE-----

spec:
 reporting-operator:
 spec:
 config:
 prometheus:
 metricsImporter:
 auth:
 useServiceAccountToken: false
 tokenSecret:
 enabled: true
 create: true
 value: "abc-123"

CHAPTER 4. CONFIGURING METERING

33

Next, set up authentication using either a service account token or basic authentication with a username
and password.

4.5.2.1.1. Authenticate using a service account token

With this method, you use the token in the Reporting Operator’s service account, and pass that bearer
token to the Authorization header in the following command:

Be sure to replace the name=[Report Name] and format=[Format] parameters in the URL above. The
format parameter can be json, csv, or tabular.

4.5.2.1.2. Authenticate using a username and password

Metering supports configuring basic authentication using a username and password combination, which
is specified in the contents of an htpasswd file. By default, a secret containing empty htpasswd data is
created. You can, however, configure the reporting-operator.spec.authProxy.htpasswd.data and
reporting-operator.spec.authProxy.htpasswd.createSecret keys to use this method.

Once you have specified the above in your MeteringConfig resource, you can run the following
command:

Be sure to replace testuser:password123 with a valid username and password combination.

4.5.2.2. Manually Configuring Authentication

To manually configure, or disable OAuth in the Reporting Operator, you must set spec.tls.enabled:
false in your MeteringConfig resource.

WARNING

This also disables all TLS and authentication between the Reporting Operator,
Presto, and Hive. You would need to manually configure these resources yourself.

Authentication can be enabled by configuring the following options. Enabling authentication configures
the Reporting Operator pod to run the OpenShift auth-proxy as a sidecar container in the pod. This
adjusts the ports so that the reporting API isn’t exposed directly, but instead is proxied to via the auth-
proxy sidecar container.

$ METERING_ROUTE_HOSTNAME=$(oc -n openshift-metering get routes metering -o json | jq -r
'.status.ingress[].host')

$ TOKEN=$(oc -n openshift-metering serviceaccounts get-token reporting-operator)
curl -H "Authorization: Bearer $TOKEN" -k
"https://$METERING_ROUTE_HOSTNAME/api/v1/reports/get?name=[Report
Name]&namespace=openshift-metering&format=[Format]"

$ curl -u testuser:password123 -k "https://$METERING_ROUTE_HOSTNAME/api/v1/reports/get?
name=[Report Name]&namespace=openshift-metering&format=[Format]"



OpenShift Container Platform 4.7 Metering

34

reporting-operator.spec.authProxy.enabled

reporting-operator.spec.authProxy.cookie.createSecret

reporting-operator.spec.authProxy.cookie.seed

You need to set reporting-operator.spec.authProxy.enabled and reporting-
operator.spec.authProxy.cookie.createSecret to true and reporting-
operator.spec.authProxy.cookie.seed to a 32-character random string.

You can generate a 32-character random string using the following command.

4.5.2.2.1. Token authentication

When the following options are set to true, authentication using a bearer token is enabled for the
reporting REST API. Bearer tokens can come from service accounts or users.

reporting-operator.spec.authProxy.subjectAccessReview.enabled

reporting-operator.spec.authProxy.delegateURLs.enabled

When authentication is enabled, the Bearer token used to query the reporting API of the user or service
account must be granted access using one of the following roles:

report-exporter

reporting-admin

reporting-viewer

metering-admin

metering-viewer

The Metering Operator is capable of creating role bindings for you, granting these permissions by
specifying a list of subjects in the spec.permissions section. For an example, see the following
advanced-auth.yaml example configuration.

$ openssl rand -base64 32 | head -c32; echo.

apiVersion: metering.openshift.io/v1
kind: MeteringConfig
metadata:
 name: "operator-metering"
spec:
 permissions:
 # anyone in the "metering-admins" group can create, update, delete, etc any
 # metering.openshift.io resources in the namespace.
 # This also grants permissions to get query report results from the reporting REST API.
 meteringAdmins:
 - kind: Group
 name: metering-admins
 # Same as above except read only access and for the metering-viewers group.
 meteringViewers:
 - kind: Group
 name: metering-viewers

CHAPTER 4. CONFIGURING METERING

35

Alternatively, you can use any role which has rules granting get permissions to reports/export. This
means get access to the export sub-resource of the Report resources in the namespace of the
Reporting Operator. For example: admin and cluster-admin.

By default, the Reporting Operator and Metering Operator service accounts both have these
permissions, and their tokens can be used for authentication.

4.5.2.2.2. Basic authentication with a username and password

For basic authentication you can supply a username and password in the reporting-
operator.spec.authProxy.htpasswd.data field. The username and password must be the same format
as those found in an htpasswd file. When set, you can use HTTP basic authentication to provide your
username and password that has a corresponding entry in the htpasswdData contents.

4.6. CONFIGURE AWS BILLING CORRELATION

IMPORTANT

 # the default serviceaccount in the namespace "my-custom-ns" can:
 # create, update, delete, etc reports.
 # This also gives permissions query the results from the reporting REST API.
 reportingAdmins:
 - kind: ServiceAccount
 name: default
 namespace: my-custom-ns
 # anyone in the group reporting-readers can get, list, watch reports, and
 # query report results from the reporting REST API.
 reportingViewers:
 - kind: Group
 name: reporting-readers
 # anyone in the group cluster-admins can query report results
 # from the reporting REST API. So can the user bob-from-accounting.
 reportExporters:
 - kind: Group
 name: cluster-admins
 - kind: User
 name: bob-from-accounting

 reporting-operator:
 spec:
 authProxy:
 # htpasswd.data can contain htpasswd file contents for allowing auth
 # using a static list of usernames and their password hashes.
 #
 # username is 'testuser' password is 'password123'
 # generated htpasswdData using: `htpasswd -nb -s testuser password123`
 # htpasswd:
 # data: |
 # testuser:{SHA}y/2sYAj5yrQIN4TL0YdPdmGNKpc=
 #
 # change REPLACEME to the output of your htpasswd command
 htpasswd:
 data: |
 REPLACEME

OpenShift Container Platform 4.7 Metering

36

1

2 3 4

IMPORTANT

Metering is a deprecated feature. Deprecated functionality is still included in OpenShift
Container Platform and continues to be supported; however, it will be removed in a future
release of this product and is not recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

Metering can correlate cluster usage information with AWS detailed billing information , attaching a
dollar amount to resource usage. For clusters running in EC2, you can enable this by modifying the
example aws-billing.yaml file below.

To enable AWS billing correlation, first ensure the AWS Cost and Usage Reports are enabled. For more
information, see Turning on the AWS Cost and Usage Report in the AWS documentation.

Update the bucket, prefix, and region to the location of your AWS Detailed billing report.

All secretName fields should be set to the name of a secret in the metering namespace
containing AWS credentials in the data.aws-access-key-id and data.aws-secret-access-key

fields. See the example secret file below for more details.

apiVersion: metering.openshift.io/v1
kind: MeteringConfig
metadata:
 name: "operator-metering"
spec:
 openshift-reporting:
 spec:
 awsBillingReportDataSource:
 enabled: true
 # Replace these with where your AWS billing reports are
 # stored in S3.
 bucket: "<your-aws-cost-report-bucket>" 1
 prefix: "<path/to/report>"
 region: "<your-buckets-region>"

 reporting-operator:
 spec:
 config:
 aws:
 secretName: "<your-aws-secret>" 2

 presto:
 spec:
 config:
 aws:
 secretName: "<your-aws-secret>" 3

 hive:
 spec:
 config:
 aws:
 secretName: "<your-aws-secret>" 4

CHAPTER 4. CONFIGURING METERING

37

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-reports-costusage.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-reports-gettingstarted-turnonreports.html

To store data in S3, the aws-access-key-id and aws-secret-access-key credentials must have read
and write access to the bucket. For an example of an IAM policy granting the required permissions, see
the aws/read-write.json file below.

apiVersion: v1
kind: Secret
metadata:
 name: <your-aws-secret>
data:
 aws-access-key-id: "dGVzdAo="
 aws-secret-access-key: "c2VjcmV0Cg=="

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "1",
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:DeleteObject",
 "s3:GetObject",
 "s3:HeadBucket",
 "s3:ListBucket",
 "s3:ListMultipartUploadParts",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::operator-metering-data/*", 1
 "arn:aws:s3:::operator-metering-data" 2
]
 }
]
}
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "1",
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:DeleteObject",
 "s3:GetObject",
 "s3:HeadBucket",
 "s3:ListBucket",
 "s3:ListMultipartUploadParts",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::operator-metering-data/*", 3
 "arn:aws:s3:::operator-metering-data" 4
]

OpenShift Container Platform 4.7 Metering

38

1 2 3 4 Replace operator-metering-data with the name of your bucket.

This can be done either pre-installation or post-installation. Disabling it post-installation can cause
errors in the Reporting Operator.

 }
]
}

CHAPTER 4. CONFIGURING METERING

39

CHAPTER 5. REPORTS

5.1. ABOUT REPORTS

IMPORTANT

Metering is a deprecated feature. Deprecated functionality is still included in OpenShift
Container Platform and continues to be supported; however, it will be removed in a future
release of this product and is not recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

A Report custom resource provides a method to manage periodic Extract Transform and Load (ETL)
jobs using SQL queries. Reports are composed from other metering resources, such as ReportQuery
resources that provide the actual SQL query to run, and ReportDataSource resources that define the
data available to the ReportQuery and Report resources.

Many use cases are addressed by the predefined ReportQuery and ReportDataSource resources that
come installed with metering. Therefore, you do not need to define your own unless you have a use case
that is not covered by these predefined resources.

5.1.1. Reports

The Report custom resource is used to manage the execution and status of reports. Metering produces
reports derived from usage data sources, which can be used in further analysis and filtering. A single
Report resource represents a job that manages a database table and updates it with new information
according to a schedule. The report exposes the data in that table via the Reporting Operator HTTP
API.

Reports with a spec.schedule field set are always running and track what time periods it has collected
data for. This ensures that if metering is shutdown or unavailable for an extended period of time, it
backfills the data starting where it left off. If the schedule is unset, then the report runs once for the time
specified by the reportingStart and reportingEnd. By default, reports wait for ReportDataSource
resources to have fully imported any data covered in the reporting period. If the report has a schedule, it
waits to run until the data in the period currently being processed has finished importing.

5.1.1.1. Example report with a schedule

The following example Report object contains information on every pod’s CPU requests, and runs every
hour, adding the last hours worth of data each time it runs.

apiVersion: metering.openshift.io/v1
kind: Report
metadata:
 name: pod-cpu-request-hourly
spec:
 query: "pod-cpu-request"
 reportingStart: "2019-07-01T00:00:00Z"
 schedule:
 period: "hourly"

OpenShift Container Platform 4.7 Metering

40

5.1.1.2. Example report without a schedule (run-once)

The following example Report object contains information on every pod’s CPU requests for all of July.
After completion, it does not run again.

5.1.1.3. query

The query field names the ReportQuery resource used to generate the report. The report query
controls the schema of the report as well as how the results are processed.

query is a required field.

Use the following command to list available ReportQuery resources:

Example output

 hourly:
 minute: 0
 second: 0

apiVersion: metering.openshift.io/v1
kind: Report
metadata:
 name: pod-cpu-request-hourly
spec:
 query: "pod-cpu-request"
 reportingStart: "2019-07-01T00:00:00Z"
 reportingEnd: "2019-07-31T00:00:00Z"

$ oc -n openshift-metering get reportqueries

NAME AGE
cluster-cpu-capacity 23m
cluster-cpu-capacity-raw 23m
cluster-cpu-usage 23m
cluster-cpu-usage-raw 23m
cluster-cpu-utilization 23m
cluster-memory-capacity 23m
cluster-memory-capacity-raw 23m
cluster-memory-usage 23m
cluster-memory-usage-raw 23m
cluster-memory-utilization 23m
cluster-persistentvolumeclaim-request 23m
namespace-cpu-request 23m
namespace-cpu-usage 23m
namespace-cpu-utilization 23m
namespace-memory-request 23m
namespace-memory-usage 23m
namespace-memory-utilization 23m
namespace-persistentvolumeclaim-request 23m
namespace-persistentvolumeclaim-usage 23m
node-cpu-allocatable 23m
node-cpu-allocatable-raw 23m
node-cpu-capacity 23m

CHAPTER 5. REPORTS

41

Report queries with the -raw suffix are used by other ReportQuery resources to build more complex
queries, and should not be used directly for reports.

namespace- prefixed queries aggregate pod CPU and memory requests by namespace, providing a list
of namespaces and their overall usage based on resource requests.

pod- prefixed queries are similar to namespace- prefixed queries but aggregate information by pod
rather than namespace. These queries include the pod’s namespace and node.

node- prefixed queries return information about each node’s total available resources.

aws- prefixed queries are specific to AWS. Queries suffixed with -aws return the same data as queries
of the same name without the suffix, and correlate usage with the EC2 billing data.

The aws-ec2-billing-data report is used by other queries, and should not be used as a standalone
report. The aws-ec2-cluster-cost report provides a total cost based on the nodes included in the
cluster, and the sum of their costs for the time period being reported on.

Use the following command to get the ReportQuery resource as YAML, and check the spec.columns
field. For example, run:

Example output

node-cpu-capacity-raw 23m
node-cpu-utilization 23m
node-memory-allocatable 23m
node-memory-allocatable-raw 23m
node-memory-capacity 23m
node-memory-capacity-raw 23m
node-memory-utilization 23m
persistentvolumeclaim-capacity 23m
persistentvolumeclaim-capacity-raw 23m
persistentvolumeclaim-phase-raw 23m
persistentvolumeclaim-request 23m
persistentvolumeclaim-request-raw 23m
persistentvolumeclaim-usage 23m
persistentvolumeclaim-usage-raw 23m
persistentvolumeclaim-usage-with-phase-raw 23m
pod-cpu-request 23m
pod-cpu-request-raw 23m
pod-cpu-usage 23m
pod-cpu-usage-raw 23m
pod-memory-request 23m
pod-memory-request-raw 23m
pod-memory-usage 23m
pod-memory-usage-raw 23m

$ oc -n openshift-metering get reportqueries namespace-memory-request -o yaml

apiVersion: metering.openshift.io/v1
kind: ReportQuery
metadata:
 name: namespace-memory-request
 labels:
 operator-metering: "true"

OpenShift Container Platform 4.7 Metering

42

5.1.1.4. schedule

The spec.schedule configuration block defines when the report runs. The main fields in the schedule
section are period, and then depending on the value of period, the fields hourly, daily, weekly, and
monthly allow you to fine-tune when the report runs.

For example, if period is set to weekly, you can add a weekly field to the spec.schedule block. The
following example will run once a week on Wednesday, at 1 PM (hour 13 in the day).

5.1.1.4.1. period

Valid values of schedule.period are listed below, and the options available to set for a given period are
also listed.

hourly

minute

second

daily

hour

minute

second

weekly

dayOfWeek

hour

spec:
 columns:
 - name: period_start
 type: timestamp
 unit: date
 - name: period_end
 type: timestamp
 unit: date
 - name: namespace
 type: varchar
 unit: kubernetes_namespace
 - name: pod_request_memory_byte_seconds
 type: double
 unit: byte_seconds

...
 schedule:
 period: "weekly"
 weekly:
 dayOfWeek: "wednesday"
 hour: 13
...

CHAPTER 5. REPORTS

43

minute

second

monthly

dayOfMonth

hour

minute

second

cron

expression

Generally, the hour, minute, second fields control when in the day the report runs, and
dayOfWeek/dayOfMonth control what day of the week, or day of month the report runs on, if it is a
weekly or monthly report period.

For each of these fields, there is a range of valid values:

hour is an integer value between 0-23.

minute is an integer value between 0-59.

second is an integer value between 0-59.

dayOfWeek is a string value that expects the day of the week (spelled out).

dayOfMonth is an integer value between 1-31.

For cron periods, normal cron expressions are valid:

expression: "*/5 * * * *"

5.1.1.5. reportingStart

To support running a report against existing data, you can set the spec.reportingStart field to a
RFC3339 timestamp to tell the report to run according to its schedule starting from reportingStart
rather than the current time.

NOTE

Setting the spec.reportingStart field to a specific time will result in the Reporting
Operator running many queries in succession for each interval in the schedule that is
between the reportingStart time and the current time. This could be thousands of
queries if the period is less than daily and the reportingStart is more than a few months
back. If reportingStart is left unset, the report will run at the next full reportingPeriod
after the time the report is created.

As an example of how to use this field, if you had data already collected dating back to January 1st, 2019
that you want to include in your Report object, you can create a report with the following values:

OpenShift Container Platform 4.7 Metering

44

https://tools.ietf.org/html/rfc3339#section-5.8

5.1.1.6. reportingEnd

To configure a report to only run until a specified time, you can set the spec.reportingEnd field to an
RFC3339 timestamp. The value of this field will cause the report to stop running on its schedule after it
has finished generating reporting data for the period covered from its start time until reportingEnd.

Because a schedule will most likely not align with the reportingEnd, the last period in the schedule will
be shortened to end at the specified reportingEnd time. If left unset, then the report will run forever, or
until a reportingEnd is set on the report.

For example, if you want to create a report that runs once a week for the month of July:

5.1.1.7. expiration

Add the expiration field to set a retention period on a scheduled metering report. You can avoid
manually removing the report by setting the expiration duration value. The retention period is equal to
the Report object creationDate plus the expiration duration. The report is removed from the cluster at
the end of the retention period if no other reports or report queries depend on the expiring report.
Deleting the report from the cluster can take several minutes.

NOTE

Setting the expiration field is not recommended for roll-up or aggregated reports. If a
report is depended upon by other reports or report queries, then the report is not
removed at the end of the retention period. You can view the report-operator logs at
debug level for the timing output around a report retention decision.

For example, the following scheduled report is deleted 30 minutes after the creationDate of the report:

apiVersion: metering.openshift.io/v1
kind: Report
metadata:
 name: pod-cpu-request-hourly
spec:
 query: "pod-cpu-request"
 schedule:
 period: "hourly"
 reportingStart: "2019-01-01T00:00:00Z"

apiVersion: metering.openshift.io/v1
kind: Report
metadata:
 name: pod-cpu-request-hourly
spec:
 query: "pod-cpu-request"
 schedule:
 period: "weekly"
 reportingStart: "2019-07-01T00:00:00Z"
 reportingEnd: "2019-07-31T00:00:00Z"

apiVersion: metering.openshift.io/v1
kind: Report
metadata:

CHAPTER 5. REPORTS

45

https://tools.ietf.org/html/rfc3339#section-5.8

1

1

2

Valid time units for the expiration duration are ns, us (or µs), ms, s, m, and h.

NOTE

The expiration retention period for a Report object is not precise and works on the order
of several minutes, not nanoseconds.

5.1.1.8. runImmediately

When runImmediately is set to true, the report runs immediately. This behavior ensures that the report
is immediately processed and queued without requiring additional scheduling parameters.

NOTE

When runImmediately is set to true, you must set a reportingEnd and reportingStart
value.

5.1.1.9. inputs

The spec.inputs field of a Report object can be used to override or set values defined in a
ReportQuery resource’s spec.inputs field.

spec.inputs is a list of name-value pairs:

The name of an input must exist in the ReportQuery’s inputs list.

The value of the input must be the correct type for the input’s type.

5.1.1.10. Roll-up reports

Report data is stored in the database much like metrics themselves, and therefore, can be used in
aggregated or roll-up reports. A simple use case for a roll-up report is to spread the time required to
produce a report over a longer period of time. This is instead of requiring a monthly report to query and
add all data over an entire month. For example, the task can be split into daily reports that each run over
1/30 of the data.

A custom roll-up report requires a custom report query. The ReportQuery resource template processor
provides a reportTableName function that can get the necessary table name from a Report object’s
metadata.name.

 name: pod-cpu-request-hourly
spec:
 query: "pod-cpu-request"
 schedule:
 period: "weekly"
 reportingStart: "2020-09-01T00:00:00Z"
 expiration: "30m" 1

spec:
 inputs:
 - name: "NamespaceCPUUsageReportName" 1
 value: "namespace-cpu-usage-hourly" 2

OpenShift Container Platform 4.7 Metering

46

Below is a snippet taken from a built-in query:

pod-cpu.yaml

Example aggregated-report.yaml roll-up report

5.1.1.10.1. Report status

The execution of a scheduled report can be tracked using its status field. Any errors occurring during the
preparation of a report will be recorded here.

The status field of a Report object currently has two fields:

conditions: Conditions is a list of conditions, each of which have a type, status, reason, and
message field. Possible values of a condition’s type field are Running and Failure, indicating
the current state of the scheduled report. The reason indicates why its condition is in its
current state with the status being either true, false or, unknown. The message provides a
human readable indicating why the condition is in the current state. For detailed information on
the reason values, see pkg/apis/metering/v1/util/report_util.go.

lastReportTime: Indicates the time metering has collected data up to.

5.2. STORAGE LOCATIONS

IMPORTANT

spec:
...
 inputs:
 - name: ReportingStart
 type: time
 - name: ReportingEnd
 type: time
 - name: NamespaceCPUUsageReportName
 type: Report
 - name: PodCpuUsageRawDataSourceName
 type: ReportDataSource
 default: pod-cpu-usage-raw
...

 query: |
...
 {|- if .Report.Inputs.NamespaceCPUUsageReportName |}
 namespace,
 sum(pod_usage_cpu_core_seconds) as pod_usage_cpu_core_seconds
 FROM {| .Report.Inputs.NamespaceCPUUsageReportName | reportTableName |}
...

spec:
 query: "namespace-cpu-usage"
 inputs:
 - name: "NamespaceCPUUsageReportName"
 value: "namespace-cpu-usage-hourly"

CHAPTER 5. REPORTS

47

https://github.com/operator-framework/operator-metering/blob/master/pkg/apis/metering/v1/util/report_util.go#L10

1

2

3

IMPORTANT

Metering is a deprecated feature. Deprecated functionality is still included in OpenShift
Container Platform and continues to be supported; however, it will be removed in a future
release of this product and is not recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

A StorageLocation custom resource configures where data will be stored by the Reporting Operator.
This includes the data collected from Prometheus, and the results produced by generating a Report
custom resource.

You only need to configure a StorageLocation custom resource if you want to store data in multiple
locations, like multiple S3 buckets or both S3 and HDFS, or if you wish to access a database in Hive and
Presto that was not created by metering. For most users this is not a requirement, and the
documentation on configuring metering is sufficient to configure all necessary storage components.

5.2.1. Storage location examples

The following example shows the built-in local storage option, and is configured to use Hive. By default,
data is stored wherever Hive is configured to use storage, such as HDFS, S3, or a ReadWriteMany
persistent volume claim (PVC).

Local storage example

If the hive section is present, then the StorageLocation resource will be configured to store data
in Presto by creating the table using the Hive server. Only databaseName and
unmanagedDatabase are required fields.

The name of the database within hive.

If true, the StorageLocation resource will not be actively managed, and the databaseName is
expected to already exist in Hive. If false, the Reporting Operator will create the database in Hive.

The following example uses an AWS S3 bucket for storage. The prefix is appended to the bucket name
when constructing the path to use.

Remote storage example

apiVersion: metering.openshift.io/v1
kind: StorageLocation
metadata:
 name: hive
 labels:
 operator-metering: "true"
spec:
 hive: 1
 databaseName: metering 2
 unmanagedDatabase: false 3

apiVersion: metering.openshift.io/v1
kind: StorageLocation

OpenShift Container Platform 4.7 Metering

48

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-about-configuring

1 Optional: The filesystem URL for Presto and Hive to use for the database. This can be an hdfs:// or
s3a:// filesystem URL.

There are additional optional fields that can be specified in the hive section:

defaultTableProperties: Contains configuration options for creating tables using Hive.

fileFormat: The file format used for storing files in the filesystem. See the Hive Documentation
on File Storage Format for a list of options and more details.

rowFormat: Controls the Hive row format. This controls how Hive serializes and deserializes
rows. See the Hive Documentation on Row Formats and SerDe for more details.

5.2.2. Default storage location

If an annotation storagelocation.metering.openshift.io/is-default exists and is set to true on a
StorageLocation resource, then that resource becomes the default storage resource. Any components
with a storage configuration option where the storage location is not specified will use the default
storage resource. There can be only one default storage resource. If more than one resource with the
annotation exists, an error is logged because the Reporting Operator cannot determine the default.

Default storage example

metadata:
 name: example-s3-storage
 labels:
 operator-metering: "true"
spec:
 hive:
 databaseName: example_s3_storage
 unmanagedDatabase: false
 location: "s3a://bucket-name/path/within/bucket" 1

apiVersion: metering.openshift.io/v1
kind: StorageLocation
metadata:
 name: example-s3-storage
 labels:
 operator-metering: "true"
 annotations:
 storagelocation.metering.openshift.io/is-default: "true"
spec:
 hive:
 databaseName: example_s3_storage
 unmanagedDatabase: false
 location: "s3a://bucket-name/path/within/bucket"

CHAPTER 5. REPORTS

49

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-StorageFormatsStorageFormatsRowFormat,StorageFormat,andSerDe
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-RowFormats&SerDe
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-RowFormats&SerDe

CHAPTER 6. USING METERING

IMPORTANT

Metering is a deprecated feature. Deprecated functionality is still included in OpenShift
Container Platform and continues to be supported; however, it will be removed in a future
release of this product and is not recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

6.1. PREREQUISITES

Install Metering

Review the details about the available options that can be configured for a report and how they
function.

6.2. WRITING REPORTS

Writing a report is the way to process and analyze data using metering.

To write a report, you must define a Report resource in a YAML file, specify the required parameters,
and create it in the openshift-metering namespace.

Prerequisites

Metering is installed.

Procedure

1. Change to the openshift-metering project:

2. Create a Report resource as a YAML file:

a. Create a YAML file with the following content:

$ oc project openshift-metering

apiVersion: metering.openshift.io/v1
kind: Report
metadata:
 name: namespace-cpu-request-2019 1
 namespace: openshift-metering
spec:
 reportingStart: '2019-01-01T00:00:00Z'
 reportingEnd: '2019-12-30T23:59:59Z'
 query: namespace-cpu-request 2
 runImmediately: true 3

OpenShift Container Platform 4.7 Metering

50

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-install-operator_installing-metering
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-about-reports

2

1

3

The query specifies the ReportQuery resources used to generate the report. Change
this based on what you want to report on. For a list of options, run oc get

Use a descriptive name about what the report does for metadata.name. A good name
describes the query, and the schedule or period you used.

Set runImmediately to true for it to run with whatever data is available, or set it to
false if you want it to wait for reportingEnd to pass.

b. Run the following command to create the Report resource:

Example output

3. You can list reports and their Running status with the following command:

Example output

6.3. VIEWING REPORT RESULTS

Viewing a report’s results involves querying the reporting API route and authenticating to the API using
your OpenShift Container Platform credentials. Reports can be retrieved as JSON, CSV, or Tabular
formats.

Prerequisites

Metering is installed.

To access report results, you must either be a cluster administrator, or you need to be granted
access using the report-exporter role in the openshift-metering namespace.

Procedure

1. Change to the openshift-metering project:

2. Query the reporting API for results:

a. Create a variable for the metering reporting-api route then get the route:

$ oc create -f <file-name>.yaml

report.metering.openshift.io/namespace-cpu-request-2019 created

$ oc get reports

NAME QUERY SCHEDULE RUNNING FAILED LAST
REPORT TIME AGE
namespace-cpu-request-2019 namespace-cpu-request Finished 2019-12-
30T23:59:59Z 26s

$ oc project openshift-metering

$ meteringRoute="$(oc get routes metering -o jsonpath='{.spec.host}')"

CHAPTER 6. USING METERING

51

b. Get the token of your current user to be used in the request:

c. Set reportName to the name of the report you created:

d. Set reportFormat to one of csv, json, or tabular to specify the output format of the API
response:

e. To get the results, use curl to make a request to the reporting API for your report:

Example output with reportName=namespace-cpu-request-2019 and
reportFormat=csv

$ echo "$meteringRoute"

$ token="$(oc whoami -t)"

$ reportName=namespace-cpu-request-2019

$ reportFormat=csv

$ curl --insecure -H "Authorization: Bearer ${token}"
"https://${meteringRoute}/api/v1/reports/get?
name=${reportName}&namespace=openshift-metering&format=$reportFormat"

period_start,period_end,namespace,pod_request_cpu_core_seconds
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-
apiserver,11745.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-apiserver-
operator,261.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-
authentication,522.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-
authentication-operator,261.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-cloud-
credential-operator,261.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-cluster-
machine-approver,261.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-cluster-
node-tuning-operator,3385.800000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-cluster-
samples-operator,261.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-cluster-
version,522.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-
console,522.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-console-
operator,261.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-controller-
manager,7830.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-controller-
manager-operator,261.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-
dns,34372.800000

OpenShift Container Platform 4.7 Metering

52

2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-dns-
operator,261.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-
etcd,23490.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-image-
registry,5993.400000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-
ingress,5220.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-ingress-
operator,261.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-kube-
apiserver,12528.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-kube-
apiserver-operator,261.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-kube-
controller-manager,8613.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-kube-
controller-manager-operator,261.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-machine-
api,1305.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-machine-
config-operator,9637.800000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-
metering,19575.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-
monitoring,6256.800000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-network-
operator,261.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-
sdn,94503.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-service-
ca,783.000000
2019-01-01 00:00:00 +0000 UTC,2019-12-30 23:59:59 +0000 UTC,openshift-service-ca-
operator,261.000000

CHAPTER 6. USING METERING

53

1

CHAPTER 7. EXAMPLES OF USING METERING

IMPORTANT

Metering is a deprecated feature. Deprecated functionality is still included in OpenShift
Container Platform and continues to be supported; however, it will be removed in a future
release of this product and is not recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

Use the following example reports to get started measuring capacity, usage, and utilization in your
cluster. These examples showcase the various types of reports metering offers, along with a selection of
the predefined queries.

7.1. PREREQUISITES

Install metering

Review the details about writing and viewing reports .

7.2. MEASURE CLUSTER CAPACITY HOURLY AND DAILY

The following report demonstrates how to measure cluster capacity both hourly and daily. The daily
report works by aggregating the hourly report’s results.

The following report measures cluster CPU capacity every hour.

Hourly CPU capacity by cluster example

You could change this period to daily to get a daily report, but with larger data sets it is more
efficient to use an hourly report, then aggregate your hourly data into a daily report.

The following report aggregates the hourly data into a daily report.

Daily CPU capacity by cluster example

apiVersion: metering.openshift.io/v1
kind: Report
metadata:
 name: cluster-cpu-capacity-hourly
spec:
 query: "cluster-cpu-capacity"
 schedule:
 period: "hourly" 1

apiVersion: metering.openshift.io/v1
kind: Report
metadata:
 name: cluster-cpu-capacity-daily 1
spec:

OpenShift Container Platform 4.7 Metering

54

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-install-operator_installing-metering

1

2

3

1

2

3

4

To stay organized, remember to change the name of your report if you change any of the other
values.

You can also measure cluster-memory-capacity. Remember to update the query in the associated
hourly report as well.

The inputs section configures this report to aggregate the hourly report. Specifically, value:
cluster-cpu-capacity-hourly is the name of the hourly report that gets aggregated.

7.3. MEASURE CLUSTER USAGE WITH A ONE-TIME REPORT

The following report measures cluster usage from a specific starting date forward. The report only runs
once, after you save it and apply it.

CPU usage by cluster example

To stay organized, remember to change the name of your report if you change any of the other
values.

Configures the report to start using data from the reportingStart timestamp until the
reportingEnd timestamp.

Adjust your query here. You can also measure cluster usage with the cluster-memory-usage
query.

Configures the report to run immediately after saving it and applying it.

7.4. MEASURE CLUSTER UTILIZATION USING CRON EXPRESSIONS

You can also use cron expressions when configuring the period of your reports. The following report
measures cluster utilization by looking at CPU utilization from 9am-5pm every weekday.

Weekday CPU utilization by cluster example

 query: "cluster-cpu-capacity" 2
 inputs: 3
 - name: ClusterCpuCapacityReportName
 value: cluster-cpu-capacity-hourly
 schedule:
 period: "daily"

apiVersion: metering.openshift.io/v1
kind: Report
metadata:
 name: cluster-cpu-usage-2019 1
spec:
 reportingStart: '2019-01-01T00:00:00Z' 2
 reportingEnd: '2019-12-30T23:59:59Z'
 query: cluster-cpu-usage 3
 runImmediately: true 4

apiVersion: metering.openshift.io/v1

CHAPTER 7. EXAMPLES OF USING METERING

55

1

2

3

To say organized, remember to change the name of your report if you change any of the other
values.

Adjust your query here. You can also measure cluster utilization with the cluster-memory-
utilization query.

For cron periods, normal cron expressions are valid.

kind: Report
metadata:
 name: cluster-cpu-utilization-weekdays 1
spec:
 query: "cluster-cpu-utilization" 2
 schedule:
 period: "cron"
 expression: 0 0 * * 1-5 3

OpenShift Container Platform 4.7 Metering

56

CHAPTER 8. TROUBLESHOOTING AND DEBUGGING
METERING

IMPORTANT

Metering is a deprecated feature. Deprecated functionality is still included in OpenShift
Container Platform and continues to be supported; however, it will be removed in a future
release of this product and is not recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

Use the following sections to help troubleshoot and debug specific issues with metering.

In addition to the information in this section, be sure to review the following topics:

Prerequisites for installing metering.

About configuring metering

8.1. TROUBLESHOOTING METERING

A common issue with metering is pods failing to start. Pods might fail to start due to lack of resources or
if they have a dependency on a resource that does not exist, such as a StorageClass or Secret
resource.

8.1.1. Not enough compute resources

A common issue when installing or running metering is a lack of compute resources. As the cluster grows
and more reports are created, the Reporting Operator pod requires more memory. If memory usage
reaches the pod limit, the cluster considers the pod out of memory (OOM) and terminates it with an
OOMKilled status. Ensure that metering is allocated the minimum resource requirements described in
the installation prerequisites.

NOTE

The Metering Operator does not autoscale the Reporting Operator based on the load in
the cluster. Therefore, CPU usage for the Reporting Operator pod does not increase as
the cluster grows.

To determine if the issue is with resources or scheduling, follow the troubleshooting instructions
included in the Kubernetes document Managing Compute Resources for Containers.

To troubleshoot issues due to a lack of compute resources, check the following within the openshift-
metering namespace.

Prerequisites

You are currently in the openshift-metering namespace. Change to the openshift-metering
namespace by running:

CHAPTER 8. TROUBLESHOOTING AND DEBUGGING METERING

57

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-install-prerequisites_installing-metering
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-about-configuring
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#troubleshooting

1

Procedure

1. Check for metering Report resources that fail to complete and show the status of
ReportingPeriodUnmetDependencies:

Example output

2. Check the ReportDataSource resources where the NEWEST METRIC is less than the report
end date:

Example output

3. Check the health of the reporting-operator Pod resource for a high number of pod restarts:

Example output

The Reporting Operator pod is restarting at a high rate.

$ oc project openshift-metering

$ oc get reports

NAME QUERY SCHEDULE RUNNING
FAILED LAST REPORT TIME AGE
namespace-cpu-utilization-adhoc-10 namespace-cpu-utilization Finished
2020-10-31T00:00:00Z 2m38s
namespace-cpu-utilization-adhoc-11 namespace-cpu-utilization
ReportingPeriodUnmetDependencies 2m23s
namespace-memory-utilization-202010 namespace-memory-utilization
ReportingPeriodUnmetDependencies 26s
namespace-memory-utilization-202011 namespace-memory-utilization
ReportingPeriodUnmetDependencies 14s

$ oc get reportdatasource

NAME EARLIEST METRIC NEWEST METRIC IMPORT
START IMPORT END LAST IMPORT TIME AGE
...
node-allocatable-cpu-cores 2020-04-23T09:14:00Z 2020-08-31T10:07:00Z
2020-04-23T09:14:00Z 2020-10-15T17:13:00Z 2020-12-09T12:45:10Z 230d
node-allocatable-memory-bytes 2020-04-23T09:14:00Z 2020-08-30T05:19:00Z
2020-04-23T09:14:00Z 2020-10-14T08:01:00Z 2020-12-09T12:45:12Z 230d
...
pod-usage-memory-bytes 2020-04-23T09:14:00Z 2020-08-24T20:25:00Z
2020-04-23T09:14:00Z 2020-10-09T23:31:00Z 2020-12-09T12:45:12Z 230d

$ oc get pods -l app=reporting-operator

NAME READY STATUS RESTARTS AGE
reporting-operator-84f7c9b7b6-fr697 2/2 Running 542 8d 1

OpenShift Container Platform 4.7 Metering

58

1

4. Check the reporting-operator Pod resource for an OOMKilled termination:

Example output

The Reporting Operator pod was terminated due to OOM kill.

Increasing the reporting-operator pod memory limit
If you are experiencing an increase in pod restarts and OOM kill events, you can check the current
memory limit set for the Reporting Operator pod. Increasing the memory limit allows the Reporting
Operator pod to update the report data sources. If necessary, increase the memory limit in your
MeteringConfig resource by 25% - 50%.

Procedure

1. Check the current memory limits of the reporting-operator Pod resource:

Example output

$ oc describe pod/reporting-operator-84f7c9b7b6-fr697

Name: reporting-operator-84f7c9b7b6-fr697
Namespace: openshift-metering
Priority: 0
Node: ip-10-xx-xx-xx.ap-southeast-1.compute.internal/10.xx.xx.xx
...
 Ports: 8080/TCP, 6060/TCP, 8082/TCP
 Host Ports: 0/TCP, 0/TCP, 0/TCP
 State: Running
 Started: Thu, 03 Dec 2020 20:59:45 +1000
 Last State: Terminated
 Reason: OOMKilled 1
 Exit Code: 137
 Started: Thu, 03 Dec 2020 20:38:05 +1000
 Finished: Thu, 03 Dec 2020 20:59:43 +1000

$ oc describe pod reporting-operator-67d6f57c56-79mrt

Name: reporting-operator-67d6f57c56-79mrt
Namespace: openshift-metering
Priority: 0
...
 Ports: 8080/TCP, 6060/TCP, 8082/TCP
 Host Ports: 0/TCP, 0/TCP, 0/TCP
 State: Running
 Started: Tue, 08 Dec 2020 14:26:21 +1000
 Ready: True
 Restart Count: 0
 Limits:
 cpu: 1
 memory: 500Mi 1
 Requests:
 cpu: 500m

CHAPTER 8. TROUBLESHOOTING AND DEBUGGING METERING

59

1

1

The current memory limit for the Reporting Operator pod.

2. Edit the MeteringConfig resource to update the memory limit:

Example MeteringConfig resource

Add or increase memory limits within the resources field of the MeteringConfig resource.

NOTE

If there continue to be numerous OOM killed events after memory limits are
increased, this might indicate that a different issue is causing the reports to be in
a pending state.

8.1.2. StorageClass resource not configured

Metering requires that a default StorageClass resource be configured for dynamic provisioning.

See the documentation on configuring metering for information on how to check if there are any
StorageClass resources configured for the cluster, how to set the default, and how to configure
metering to use a storage class other than the default.

8.1.3. Secret not configured correctly

A common issue with metering is providing the incorrect secret when configuring your persistent
storage. Be sure to review the example configuration files and create you secret according to the
guidelines for your storage provider.

8.2. DEBUGGING METERING

 memory: 250Mi
 Environment:
...

$ oc edit meteringconfig/operator-metering

kind: MeteringConfig
metadata:
 name: operator-metering
 namespace: openshift-metering
spec:
 reporting-operator:
 spec:
 resources: 1
 limits:
 cpu: 1
 memory: 750Mi
 requests:
 cpu: 500m
 memory: 500Mi
...

OpenShift Container Platform 4.7 Metering

60

Debugging metering is much easier when you interact directly with the various components. The
sections below detail how you can connect and query Presto and Hive as well as view the dashboards of
the Presto and HDFS components.

NOTE

All of the commands in this section assume you have installed metering through
OperatorHub in the openshift-metering namespace.

8.2.1. Get reporting operator logs

Use the command below to follow the logs of the reporting-operator:

8.2.2. Query Presto using presto-cli

The following command opens an interactive presto-cli session where you can query Presto. This session
runs in the same container as Presto and launches an additional Java instance, which can create memory
limits for the pod. If this occurs, you should increase the memory request and limits of the Presto pod.

By default, Presto is configured to communicate using TLS. You must use the following command to run
Presto queries:

Once you run this command, a prompt appears where you can run queries. Use the show tables from
metering; query to view the list of tables:

Example output

$ oc -n openshift-metering logs -f "$(oc -n openshift-metering get pods -l app=reporting-operator -o
name | cut -c 5-)" -c reporting-operator

$ oc -n openshift-metering exec -it "$(oc -n openshift-metering get pods -l
app=presto,presto=coordinator -o name | cut -d/ -f2)" \
 -- /usr/local/bin/presto-cli --server https://presto:8080 --catalog hive --schema default --user root --
keystore-path /opt/presto/tls/keystore.pem

$ presto:default> show tables from metering;

 Table

 datasource_your_namespace_cluster_cpu_capacity_raw
 datasource_your_namespace_cluster_cpu_usage_raw
 datasource_your_namespace_cluster_memory_capacity_raw
 datasource_your_namespace_cluster_memory_usage_raw
 datasource_your_namespace_node_allocatable_cpu_cores
 datasource_your_namespace_node_allocatable_memory_bytes
 datasource_your_namespace_node_capacity_cpu_cores
 datasource_your_namespace_node_capacity_memory_bytes
 datasource_your_namespace_node_cpu_allocatable_raw
 datasource_your_namespace_node_cpu_capacity_raw
 datasource_your_namespace_node_memory_allocatable_raw
 datasource_your_namespace_node_memory_capacity_raw
 datasource_your_namespace_persistentvolumeclaim_capacity_bytes
 datasource_your_namespace_persistentvolumeclaim_capacity_raw

CHAPTER 8. TROUBLESHOOTING AND DEBUGGING METERING

61

8.2.3. Query Hive using beeline

The following opens an interactive beeline session where you can query Hive. This session runs in the
same container as Hive and launches an additional Java instance, which can create memory limits for the
pod. If this occurs, you should increase the memory request and limits of the Hive pod.

Once you run this command, a prompt appears where you can run queries. Use the show tables; query
to view the list of tables:

Example output

 datasource_your_namespace_persistentvolumeclaim_phase
 datasource_your_namespace_persistentvolumeclaim_phase_raw
 datasource_your_namespace_persistentvolumeclaim_request_bytes
 datasource_your_namespace_persistentvolumeclaim_request_raw
 datasource_your_namespace_persistentvolumeclaim_usage_bytes
 datasource_your_namespace_persistentvolumeclaim_usage_raw
 datasource_your_namespace_persistentvolumeclaim_usage_with_phase_raw
 datasource_your_namespace_pod_cpu_request_raw
 datasource_your_namespace_pod_cpu_usage_raw
 datasource_your_namespace_pod_limit_cpu_cores
 datasource_your_namespace_pod_limit_memory_bytes
 datasource_your_namespace_pod_memory_request_raw
 datasource_your_namespace_pod_memory_usage_raw
 datasource_your_namespace_pod_persistentvolumeclaim_request_info
 datasource_your_namespace_pod_request_cpu_cores
 datasource_your_namespace_pod_request_memory_bytes
 datasource_your_namespace_pod_usage_cpu_cores
 datasource_your_namespace_pod_usage_memory_bytes
(32 rows)

Query 20190503_175727_00107_3venm, FINISHED, 1 node
Splits: 19 total, 19 done (100.00%)
0:02 [32 rows, 2.23KB] [19 rows/s, 1.37KB/s]

presto:default>

$ oc -n openshift-metering exec -it $(oc -n openshift-metering get pods -l app=hive,hive=server -o
name | cut -d/ -f2) \
 -c hiveserver2 -- beeline -u 'jdbc:hive2://127.0.0.1:10000/default;auth=noSasl'

$ 0: jdbc:hive2://127.0.0.1:10000/default> show tables from metering;

+--+
| tab_name |
+--+
| datasource_your_namespace_cluster_cpu_capacity_raw |
| datasource_your_namespace_cluster_cpu_usage_raw |
| datasource_your_namespace_cluster_memory_capacity_raw |
| datasource_your_namespace_cluster_memory_usage_raw |
| datasource_your_namespace_node_allocatable_cpu_cores |
| datasource_your_namespace_node_allocatable_memory_bytes |
| datasource_your_namespace_node_capacity_cpu_cores |
| datasource_your_namespace_node_capacity_memory_bytes |

OpenShift Container Platform 4.7 Metering

62

1

8.2.4. Port-forward to the Hive web UI

Run the following command to port-forward to the Hive web UI:

You can now open http://127.0.0.1:10002 in your browser window to view the Hive web interface.

8.2.5. Port-forward to HDFS

Run the following command to port-forward to the HDFS namenode:

You can now open http://127.0.0.1:9870 in your browser window to view the HDFS web interface.

Run the following command to port-forward to the first HDFS datanode:

To check other datanodes, replace hdfs-datanode-0 with the pod you want to view information on.

8.2.6. Metering Ansible Operator

Metering uses the Ansible Operator to watch and reconcile resources in a cluster environment. When

| datasource_your_namespace_node_cpu_allocatable_raw |
| datasource_your_namespace_node_cpu_capacity_raw |
| datasource_your_namespace_node_memory_allocatable_raw |
| datasource_your_namespace_node_memory_capacity_raw |
| datasource_your_namespace_persistentvolumeclaim_capacity_bytes |
| datasource_your_namespace_persistentvolumeclaim_capacity_raw |
| datasource_your_namespace_persistentvolumeclaim_phase |
| datasource_your_namespace_persistentvolumeclaim_phase_raw |
| datasource_your_namespace_persistentvolumeclaim_request_bytes |
| datasource_your_namespace_persistentvolumeclaim_request_raw |
| datasource_your_namespace_persistentvolumeclaim_usage_bytes |
| datasource_your_namespace_persistentvolumeclaim_usage_raw |
| datasource_your_namespace_persistentvolumeclaim_usage_with_phase_raw |
| datasource_your_namespace_pod_cpu_request_raw |
| datasource_your_namespace_pod_cpu_usage_raw |
| datasource_your_namespace_pod_limit_cpu_cores |
| datasource_your_namespace_pod_limit_memory_bytes |
| datasource_your_namespace_pod_memory_request_raw |
| datasource_your_namespace_pod_memory_usage_raw |
| datasource_your_namespace_pod_persistentvolumeclaim_request_info |
| datasource_your_namespace_pod_request_cpu_cores |
| datasource_your_namespace_pod_request_memory_bytes |
| datasource_your_namespace_pod_usage_cpu_cores |
| datasource_your_namespace_pod_usage_memory_bytes |
+--+
32 rows selected (13.101 seconds)
0: jdbc:hive2://127.0.0.1:10000/default>

$ oc -n openshift-metering port-forward hive-server-0 10002

$ oc -n openshift-metering port-forward hdfs-namenode-0 9870

$ oc -n openshift-metering port-forward hdfs-datanode-0 9864 1

CHAPTER 8. TROUBLESHOOTING AND DEBUGGING METERING

63

http://127.0.0.1:10002
http://127.0.0.1:9870

Metering uses the Ansible Operator to watch and reconcile resources in a cluster environment. When
debugging a failed metering installation, it can be helpful to view the Ansible logs or status of your
MeteringConfig custom resource.

8.2.6.1. Accessing Ansible logs

In the default installation, the Metering Operator is deployed as a pod. In this case, you can check the
logs of the Ansible container within this pod:

Alternatively, you can view the logs of the Operator container (replace -c ansible with -c operator) for
condensed output.

8.2.6.2. Checking the MeteringConfig Status

It can be helpful to view the .status field of your MeteringConfig custom resource to debug any recent
failures. The following command shows status messages with type Invalid:

8.2.6.3. Checking MeteringConfig Events

Check events that the Metering Operator is generating. This can be helpful during installation or
upgrade to debug any resource failures. Sort events by the last timestamp:

Example output with latest changes in the MeteringConfig resources

$ oc -n openshift-metering logs $(oc -n openshift-metering get pods -l app=metering-operator -o
name | cut -d/ -f2) -c ansible

$ oc -n openshift-metering get meteringconfig operator-metering -o=jsonpath='{.status.conditions[?
(@.type=="Invalid")].message}'

$ oc -n openshift-metering get events --field-selector involvedObject.kind=MeteringConfig --sort-
by='.lastTimestamp'

LAST SEEN TYPE REASON OBJECT MESSAGE
4m40s Normal Validating meteringconfig/operator-metering Validating the user-provided
configuration
4m30s Normal Started meteringconfig/operator-metering Configuring storage for the
metering-ansible-operator
4m26s Normal Started meteringconfig/operator-metering Configuring TLS for the metering-
ansible-operator
3m58s Normal Started meteringconfig/operator-metering Configuring reporting for the
metering-ansible-operator
3m53s Normal Reconciling meteringconfig/operator-metering Reconciling metering resources
3m47s Normal Reconciling meteringconfig/operator-metering Reconciling monitoring
resources
3m41s Normal Reconciling meteringconfig/operator-metering Reconciling HDFS resources
3m23s Normal Reconciling meteringconfig/operator-metering Reconciling Hive resources
2m59s Normal Reconciling meteringconfig/operator-metering Reconciling Presto resources
2m35s Normal Reconciling meteringconfig/operator-metering Reconciling reporting-operator
resources
2m14s Normal Reconciling meteringconfig/operator-metering Reconciling reporting resources

OpenShift Container Platform 4.7 Metering

64

CHAPTER 9. UNINSTALLING METERING

IMPORTANT

Metering is a deprecated feature. Deprecated functionality is still included in OpenShift
Container Platform and continues to be supported; however, it will be removed in a future
release of this product and is not recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

You can remove metering from your OpenShift Container Platform cluster.

NOTE

Metering does not manage or delete Amazon S3 bucket data. After uninstalling metering,
you must manually clean up S3 buckets that were used to store metering data.

9.1. REMOVING THE METERING OPERATOR FROM YOUR CLUSTER

Remove the Metering Operator from your cluster by following the documentation on deleting Operators
from a cluster.

NOTE

Removing the Metering Operator from your cluster does not remove its custom resource
definitions or managed resources. See the following sections on Uninstalling a metering
namespace and Uninstalling metering custom resource definitions for steps to remove
any remaining metering components.

9.2. UNINSTALLING A METERING NAMESPACE

Uninstall your metering namespace, for example the openshift-metering namespace, by removing the
MeteringConfig resource and deleting the openshift-metering namespace.

Prerequisites

The Metering Operator is removed from your cluster.

Procedure

1. Remove all resources created by the Metering Operator:

2. After the previous step is complete, verify that all pods in the openshift-metering namespace
are deleted or are reporting a terminating state:

3. Delete the openshift-metering namespace:

$ oc --namespace openshift-metering delete meteringconfig --all

$ oc --namespace openshift-metering get pods

CHAPTER 9. UNINSTALLING METERING

65

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-deleting-operators-from-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-uninstall_metering-uninstall
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/metering/#metering-uninstall-crds_metering-uninstall

9.3. UNINSTALLING METERING CUSTOM RESOURCE DEFINITIONS

The metering custom resource definitions (CRDs) remain in the cluster after the Metering Operator is
uninstalled and the openshift-metering namespace is deleted.

IMPORTANT

Deleting the metering CRDs disrupts any additional metering installations in other
namespaces in your cluster. Ensure that there are no other metering installations before
proceeding.

Prerequisites

The MeteringConfig custom resource in the openshift-metering namespace is deleted.

The openshift-metering namespace is deleted.

Procedure

Delete the remaining metering CRDs:

$ oc delete namespace openshift-metering

$ oc get crd -o name | grep "metering.openshift.io" | xargs oc delete

OpenShift Container Platform 4.7 Metering

66

	Table of Contents
	CHAPTER 1. ABOUT METERING
	1.1. METERING OVERVIEW
	1.1.1. Installing metering
	1.1.2. Upgrading metering
	1.1.3. Using metering
	1.1.4. Troubleshooting metering
	1.1.5. Debugging metering
	1.1.6. Uninstalling metering
	1.1.7. Metering resources

	CHAPTER 2. INSTALLING METERING
	2.1. PREREQUISITES
	2.2. INSTALLING THE METERING OPERATOR
	2.2.1. Installing metering using the web console
	2.2.2. Installing metering using the CLI

	2.3. INSTALLING THE METERING STACK
	2.4. PREREQUISITES
	2.5. VERIFYING THE METERING INSTALLATION
	2.6. ADDITIONAL RESOURCES

	CHAPTER 3. UPGRADING METERING
	3.1. PREREQUISITES

	CHAPTER 4. CONFIGURING METERING
	4.1. ABOUT CONFIGURING METERING
	4.2. COMMON CONFIGURATION OPTIONS
	4.2.1. Resource requests and limits
	4.2.2. Node selectors

	4.3. CONFIGURING PERSISTENT STORAGE
	4.3.1. Storing data in Amazon S3
	4.3.2. Storing data in S3-compatible storage
	4.3.3. Storing data in Microsoft Azure
	4.3.4. Storing data in Google Cloud Storage
	4.3.5. Storing data in shared volumes

	4.4. CONFIGURING THE HIVE METASTORE
	4.4.1. Configuring persistent volumes
	4.4.1.1. Configuring the storage class for the Hive metastore
	4.4.1.2. Configuring the volume size for the Hive metastore

	4.4.2. Using MySQL or PostgreSQL for the Hive metastore

	4.5. CONFIGURING THE REPORTING OPERATOR
	4.5.1. Securing a Prometheus connection
	4.5.2. Exposing the reporting API
	4.5.2.1. Using OpenShift Authentication
	4.5.2.2. Manually Configuring Authentication

	4.6. CONFIGURE AWS BILLING CORRELATION

	CHAPTER 5. REPORTS
	5.1. ABOUT REPORTS
	5.1.1. Reports
	5.1.1.1. Example report with a schedule
	5.1.1.2. Example report without a schedule (run-once)
	5.1.1.3. query
	5.1.1.4. schedule
	5.1.1.5. reportingStart
	5.1.1.6. reportingEnd
	5.1.1.7. expiration
	5.1.1.8. runImmediately
	5.1.1.9. inputs
	5.1.1.10. Roll-up reports

	5.2. STORAGE LOCATIONS
	5.2.1. Storage location examples
	5.2.2. Default storage location

	CHAPTER 6. USING METERING
	6.1. PREREQUISITES
	6.2. WRITING REPORTS
	6.3. VIEWING REPORT RESULTS

	CHAPTER 7. EXAMPLES OF USING METERING
	7.1. PREREQUISITES
	7.2. MEASURE CLUSTER CAPACITY HOURLY AND DAILY
	7.3. MEASURE CLUSTER USAGE WITH A ONE-TIME REPORT
	7.4. MEASURE CLUSTER UTILIZATION USING CRON EXPRESSIONS

	CHAPTER 8. TROUBLESHOOTING AND DEBUGGING METERING
	8.1. TROUBLESHOOTING METERING
	8.1.1. Not enough compute resources
	Increasing the reporting-operator pod memory limit

	8.1.2. StorageClass resource not configured
	8.1.3. Secret not configured correctly

	8.2. DEBUGGING METERING
	8.2.1. Get reporting operator logs
	8.2.2. Query Presto using presto-cli
	8.2.3. Query Hive using beeline
	8.2.4. Port-forward to the Hive web UI
	8.2.5. Port-forward to HDFS
	8.2.6. Metering Ansible Operator
	8.2.6.1. Accessing Ansible logs
	8.2.6.2. Checking the MeteringConfig Status
	8.2.6.3. Checking MeteringConfig Events

	CHAPTER 9. UNINSTALLING METERING
	9.1. REMOVING THE METERING OPERATOR FROM YOUR CLUSTER
	9.2. UNINSTALLING A METERING NAMESPACE
	9.3. UNINSTALLING METERING CUSTOM RESOURCE DEFINITIONS

