
OpenShift Container Platform 4.7

Applications

Creating and managing applications on OpenShift Container Platform

Last Updated: 2022-09-29

OpenShift Container Platform 4.7 Applications

Creating and managing applications on OpenShift Container Platform

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for the various ways to create and manage instances of user-
provisioned applications running on OpenShift Container Platform. This includes working with
projects and provisioning applications using the Open Service Broker API.

. .

. .

. .

Table of Contents

CHAPTER 1. BUILDING APPLICATIONS OVERVIEW
1.1. WORKING ON A PROJECT
1.2. WORKING ON AN APPLICATION

1.2.1. Creating an application
1.2.2. Maintaining an application
1.2.3. Deploying an application

1.3. USING THE RED HAT MARKETPLACE

CHAPTER 2. PROJECTS
2.1. WORKING WITH PROJECTS

2.1.1. Creating a project using the web console
2.1.2. Creating a project using the Developer perspective in the web console
2.1.3. Creating a project using the CLI
2.1.4. Viewing a project using the web console
2.1.5. Viewing a project using the CLI
2.1.6. Providing access permissions to your project using the Developer perspective
2.1.7. Adding to a project
2.1.8. Checking project status using the web console
2.1.9. Checking project status using the CLI
2.1.10. Deleting a project using the web console
2.1.11. Deleting a project using the CLI

2.2. CREATING A PROJECT AS ANOTHER USER
2.2.1. API impersonation
2.2.2. Impersonating a user when you create a project

2.3. CONFIGURING PROJECT CREATION
2.3.1. About project creation
2.3.2. Modifying the template for new projects
2.3.3. Disabling project self-provisioning
2.3.4. Customizing the project request message

CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT
3.1. CREATING APPLICATIONS USING THE DEVELOPER PERSPECTIVE

3.1.1. Prerequisites
3.1.2. Creating Sample applications
3.1.3. Importing a codebase from Git to create an application
3.1.4. Using the Developer Catalog to add services or components to your application
3.1.5. Additional resources

3.2. CREATING APPLICATIONS FROM INSTALLED OPERATORS
3.2.1. Creating an etcd cluster using an Operator

3.3. CREATING APPLICATIONS USING THE CLI
3.3.1. Creating an application from source code

3.3.1.1. Local
3.3.1.2. Remote
3.3.1.3. Build strategy detection
3.3.1.4. Language detection

3.3.2. Creating an application from an image
3.3.2.1. Docker Hub MySQL image
3.3.2.2. Image in a private registry
3.3.2.3. Existing image stream and optional image stream tag

3.3.3. Creating an application from a template
3.3.3.1. Template parameters

7
7
7
7
7
7
7

8
8
8
8

10
10
10
11

12
12
12
12
13
13
13
13
14
14
14
15
17

19
19
19
19

20
23
24
24
24
26
26
26
26
27
27
28
28
28
29
29
29

Table of Contents

1

. .

3.3.4. Modifying application creation
3.3.4.1. Specifying environment variables
3.3.4.2. Specifying build environment variables
3.3.4.3. Specifying labels
3.3.4.4. Viewing the output without creation
3.3.4.5. Creating objects with different names
3.3.4.6. Creating objects in a different project
3.3.4.7. Creating multiple objects
3.3.4.8. Grouping images and source in a single pod
3.3.4.9. Searching for images, templates, and other inputs

3.4. VIEWING APPLICATION COMPOSITION USING THE TOPOLOGY VIEW
3.4.1. Prerequisites
3.4.2. Viewing the topology of your application
3.4.3. Interacting with applications and components
3.4.4. Scaling application pods and checking builds and routes
3.4.5. Adding components to an existing project
3.4.6. Grouping multiple components within an application
3.4.7. Connecting components within an application and across applications

3.4.7.1. Creating a visual connection between components
3.4.7.2. Creating a binding connection between components

3.4.8. Labels and annotations used for the Topology view
3.5. EDITING APPLICATIONS

3.5.1. Prerequisites
3.5.2. Editing the source code of an application using the Developer perspective
3.5.3. Editing the application configuration using the Developer perspective

3.6. WORKING WITH HELM CHARTS USING THE DEVELOPER PERSPECTIVE
3.6.1. Understanding Helm

3.6.1.1. Key features
3.6.2. Prerequisites
3.6.3. Installing Helm charts
3.6.4. Upgrading a Helm release
3.6.5. Rolling back a Helm release
3.6.6. Uninstalling a Helm release

3.7. DELETING APPLICATIONS
3.7.1. Deleting applications using the Developer perspective

CHAPTER 4. DEPLOYMENTS
4.1. UNDERSTANDING DEPLOYMENT AND DEPLOYMENTCONFIG OBJECTS

4.1.1. Building blocks of a deployment
4.1.1.1. Replication controllers
4.1.1.2. Replica sets

4.1.2. DeploymentConfig objects
4.1.3. Deployments
4.1.4. Comparing Deployment and DeploymentConfig objects

4.1.4.1. Design
4.1.4.2. DeploymentConfig object-specific features

Automatic rollbacks
Triggers
Lifecycle hooks
Custom strategies

4.1.4.3. Deployment-specific features
Rollover
Proportional scaling

30
30
31
31
31
32
32
32
32
33
33
33
33
34
36
36
38
38
39
41

44
44
44
44
45
47
47
47
48
48
49
49
50
50
50

51
51
51
51
52
53
55
55
55
56
56
56
56
56
56
56
56

OpenShift Container Platform 4.7 Applications

2

. .

Pausing mid-rollout
4.2. MANAGING DEPLOYMENT PROCESSES

4.2.1. Managing DeploymentConfig objects
4.2.1.1. Starting a deployment
4.2.1.2. Viewing a deployment
4.2.1.3. Retrying a deployment
4.2.1.4. Rolling back a deployment
4.2.1.5. Executing commands inside a container
4.2.1.6. Viewing deployment logs
4.2.1.7. Deployment triggers

Config change deployment triggers
Image change deployment triggers
4.2.1.7.1. Setting deployment triggers

4.2.1.8. Setting deployment resources
4.2.1.9. Scaling manually
4.2.1.10. Accessing private repositories from DeploymentConfig objects
4.2.1.11. Assigning pods to specific nodes
4.2.1.12. Running a pod with a different service account

4.3. USING DEPLOYMENT STRATEGIES
4.3.1. Rolling strategy

4.3.1.1. Canary deployments
4.3.1.2. Creating a rolling deployment
4.3.1.3. Starting a rolling deployment using the Developer perspective

4.3.2. Recreate strategy
4.3.3. Starting a recreate deployment using the Developer perspective
4.3.4. Custom strategy
4.3.5. Lifecycle hooks

Pod-based lifecycle hook
4.3.5.1. Setting lifecycle hooks

4.4. USING ROUTE-BASED DEPLOYMENT STRATEGIES
4.4.1. Proxy shards and traffic splitting
4.4.2. N-1 compatibility
4.4.3. Graceful termination
4.4.4. Blue-green deployments

4.4.4.1. Setting up a blue-green deployment
4.4.5. A/B deployments

4.4.5.1. Load balancing for A/B testing
4.4.5.1.1. Managing weights of an existing route using the web console
4.4.5.1.2. Managing weights of an new route using the web console
4.4.5.1.3. Managing weights using the CLI
4.4.5.1.4. One service, multiple Deployment objects

CHAPTER 5. QUOTAS
5.1. RESOURCE QUOTAS PER PROJECT

5.1.1. Resources managed by quotas
5.1.2. Quota scopes
5.1.3. Quota enforcement
5.1.4. Requests versus limits
5.1.5. Sample resource quota definitions
5.1.6. Creating a quota

5.1.6.1. Creating object count quotas
5.1.6.2. Setting resource quota for extended resources

5.1.7. Viewing a quota

56
57
57
57
57
57
58
58
59
59
60
60
61
61

62
62
63
63
64
64
66
66
67
68
69
70
72
72
73
74
74
74
75
75
75
76
76
78
78
78
79

81
81
81

83
84
84
84
88
88
89
91

Table of Contents

3

. .

. .

. .

. .

. .

. .

5.1.8. Configuring explicit resource quotas
5.2. RESOURCE QUOTAS ACROSS MULTIPLE PROJECTS

5.2.1. Selecting multiple projects during quota creation
5.2.2. Viewing applicable cluster resource quotas
5.2.3. Selection granularity

CHAPTER 6. USING CONFIG MAPS WITH APPLICATIONS
6.1. UNDERSTANDING CONFIG MAPS

Config map restrictions
6.2. USE CASES: CONSUMING CONFIG MAPS IN PODS

6.2.1. Populating environment variables in containers by using config maps
6.2.2. Setting command-line arguments for container commands with config maps
6.2.3. Injecting content into a volume by using config maps

CHAPTER 7. MONITORING PROJECT AND APPLICATION METRICS USING THE DEVELOPER PERSPECTIVE

7.1. PREREQUISITES
7.2. MONITORING YOUR PROJECT METRICS
7.3. MONITORING YOUR APPLICATION METRICS
7.4. ADDITIONAL RESOURCES

CHAPTER 8. MONITORING APPLICATION HEALTH BY USING HEALTH CHECKS
8.1. UNDERSTANDING HEALTH CHECKS

Example probes
8.2. CONFIGURING HEALTH CHECKS USING THE CLI
8.3. MONITORING APPLICATION HEALTH USING THE DEVELOPER PERSPECTIVE
8.4. ADDING HEALTH CHECKS USING THE DEVELOPER PERSPECTIVE
8.5. EDITING HEALTH CHECKS USING THE DEVELOPER PERSPECTIVE
8.6. MONITORING HEALTH CHECK FAILURES USING THE DEVELOPER PERSPECTIVE

CHAPTER 9. IDLING APPLICATIONS
9.1. IDLING APPLICATIONS

9.1.1. Idling a single service
9.1.2. Idling multiple services

9.2. UNIDLING APPLICATIONS

CHAPTER 10. PRUNING OBJECTS TO RECLAIM RESOURCES
10.1. BASIC PRUNING OPERATIONS
10.2. PRUNING GROUPS
10.3. PRUNING DEPLOYMENT RESOURCES
10.4. PRUNING BUILDS
10.5. AUTOMATICALLY PRUNING IMAGES
10.6. MANUALLY PRUNING IMAGES

10.6.1. Image prune conditions
10.6.2. Running the image prune operation
10.6.3. Using secure or insecure connections
10.6.4. Image pruning problems

Images not being pruned
Using a secure connection against insecure registry
Using an insecure connection against a secured registry
Using the wrong certificate authority

10.7. HARD PRUNING THE REGISTRY
10.8. PRUNING CRON JOBS

CHAPTER 11. USING THE RED HAT MARKETPLACE

92
94
95
96
97

98
98
99
99
99
101
102

104
104
104
106
107

108
108
109
112
115
115
116
117

119
119
119
119
119

121
121
121
122
122
123
125
128
130
130
131
131
132
132
132
132
135

136

OpenShift Container Platform 4.7 Applications

4

11.1. RED HAT MARKETPLACE FEATURES
11.1.1. Connect OpenShift Container Platform clusters to the Marketplace
11.1.2. Install applications
11.1.3. Deploy applications from different perspectives

The Developer perspective
The Administrator perspective

136
136
136
136
136
136

Table of Contents

5

OpenShift Container Platform 4.7 Applications

6

CHAPTER 1. BUILDING APPLICATIONS OVERVIEW
Using OpenShift Container Platform, you can create, edit, delete, and manage applications using the
web console or command line interface (CLI).

1.1. WORKING ON A PROJECT

Using projects, you can organize and manage applications in isolation. You can manage the entire
project lifecycle, including creating, viewing, and deleting a project in OpenShift Container Platform.

After you create the project, you can grant or revoke access to a project for the users using the
Developer perspective. You can also edit the project configuration resource while creating a project
template that is used for automatic provisioning of new projects.

Using the CLI, you can create a project as a different user by impersonating a request to the OpenShift
Container Platform API. When you make a request to create a new project, the OpenShift Container
Platform uses an endpoint to provision the project according to a customizable template. As a cluster
administrator, you can choose to prevent an authenticated user group from self-provisioning new
projects.

1.2. WORKING ON AN APPLICATION

1.2.1. Creating an application

To create applications, you must have created a project or have access to a project with the appropriate
roles and permissions. You can create an application by using either the Developer perspective in the
web console, installed Operators, or the OpenShift Container Platform CLI. You can source the
applications to be added to the project from Git, JAR files, devfiles, or the developer catalog.

You can also use components that include source or binary code, images, and templates to create an
application by using the OpenShift Container Platform CLI. With the OpenShift Container Platform web
console, you can create an application from an Operator installed by a cluster administrator.

1.2.2. Maintaining an application

After you create the application you can use the web console to monitor your project or application
metrics. You can also edit or delete the application using the web console. When the application is
running, not all applications resources are used. As a cluster administrator, you can choose to idle these
scalable resources to reduce resource consumption.

1.2.3. Deploying an application

You can deploy your application using Deployment or DeploymentConfig objects and manage them
from the web console. You can create deployment strategies that help reduce downtime during a
change or an upgrade to the application.

You can also use Helm, a software package manager that simplifies deployment of applications and
services to OpenShift Container Platform clusters.

1.3. USING THE RED HAT MARKETPLACE

The Red Hat Marketplace is an open cloud marketplace where you can discover and access certified
software for container-based environments that run on public clouds and on-premises.

CHAPTER 1. BUILDING APPLICATIONS OVERVIEW

7

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#working-with-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#odc-providing-project-permissions-using-developer-perspective_projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#configuring-project-creation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#creating-project-other-user
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#disabling-project-self-provisioning_configuring-project-creation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#odc-creating-applications-using-developer-perspective
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#creating-apps-from-installed-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#creating-applications-using-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#odc-monitoring-project-and-application-metrics-using-developer-perspective
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#odc-editing-applications
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#odc-deleting-applications
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#idling-applications
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#what-deployments-are
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#deployment-operations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#deployment-strategies
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#odc-working-with-helm-charts-using-developer-perspective
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#red-hat-marketplace

CHAPTER 2. PROJECTS

2.1. WORKING WITH PROJECTS

A project allows a community of users to organize and manage their content in isolation from other
communities.

NOTE

Projects starting with openshift- and kube- are default projects. These projects host
cluster components that run as pods and other infrastructure components. As such,
OpenShift Container Platform does not allow you to create projects starting with
openshift- or kube- using the oc new-project command. Cluster administrators can
create these projects using the oc adm new-project command.

NOTE

You cannot assign an SCC to pods created in one of the default namespaces: default,
kube-system, kube-public, openshift-node, openshift-infra, and openshift. You cannot
use these namespaces for running pods or services.

2.1.1. Creating a project using the web console

If allowed by your cluster administrator, you can create a new project.

NOTE

Projects starting with openshift- and kube- are considered critical by OpenShift
Container Platform. As such, OpenShift Container Platform does not allow you to create
Projects starting with openshift- using the web console.

NOTE

You cannot assign an SCC to pods created in one of the default namespaces: default,
kube-system, kube-public, openshift-node, openshift-infra, and openshift. You cannot
use these namespaces for running pods or services.

Procedure

1. Navigate to Home → Projects.

2. Click Create Project.

3. Enter your project details.

4. Click Create.

2.1.2. Creating a project using the Developer perspective in the web console

You can use the Developer perspective in the OpenShift Container Platform web console to create a
project in your cluster.

NOTE

OpenShift Container Platform 4.7 Applications

8

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/authentication_and_authorization/#rbac-default-projects_using-rbac

NOTE

Projects starting with openshift- and kube- are considered critical by OpenShift
Container Platform. As such, OpenShift Container Platform does not allow you to create
projects starting with openshift- or kube- using the Developer perspective. Cluster
administrators can create these projects using the oc adm new-project command.

NOTE

You cannot assign an SCC to pods created in one of the default namespaces: default,
kube-system, kube-public, openshift-node, openshift-infra, and openshift. You cannot
use these namespaces for running pods or services.

Prerequisites

Ensure that you have the appropriate roles and permissions to create projects, applications, and
other workloads in OpenShift Container Platform.

Procedure

You can create a project using the Developer perspective, as follows:

1. Click the Project drop-down menu to see a list of all available projects. Select Create Project.

Figure 2.1. Create project

2. In the Create Project dialog box, enter a unique name, such as myproject, in the Name field.

3. Optional: Add the Display Name and Description details for the project.

4. Click Create.

5. Use the left navigation panel to navigate to the Project view and see the dashboard for your
project.

6. Optional:

Use the Project drop-down menu at the top of the screen and select all projects to list all
of the projects in your cluster.

Use the Details tab to see the project details.

CHAPTER 2. PROJECTS

9

If you have adequate permissions for a project, you can use the Project Access tab to
provide or revoke administrator, edit, and view privileges for the project.

2.1.3. Creating a project using the CLI

If allowed by your cluster administrator, you can create a new project.

NOTE

Projects starting with openshift- and kube- are considered critical by OpenShift
Container Platform. As such, OpenShift Container Platform does not allow you to create
Projects starting with openshift- or kube- using the oc new-project command. Cluster
administrators can create these Projects using the oc adm new-project command.

NOTE

You cannot assign an SCC to pods created in one of the default namespaces: default,
kube-system, kube-public, openshift-node, openshift-infra, and openshift. You cannot
use these namespaces for running pods or services.

Procedure

Run:

For example:

NOTE

The number of projects you are allowed to create might be limited by the system
administrator. After your limit is reached, you might have to delete an existing project in
order to create a new one.

2.1.4. Viewing a project using the web console

Procedure

1. Navigate to Home → Projects.

2. Select a project to view.
On this page, click Workloads to see workloads in the project.

2.1.5. Viewing a project using the CLI

When viewing projects, you are restricted to seeing only the projects you have access to view based on
the authorization policy.

$ oc new-project <project_name> \
 --description="<description>" --display-name="<display_name>"

$ oc new-project hello-openshift \
 --description="This is an example project" \
 --display-name="Hello OpenShift"

OpenShift Container Platform 4.7 Applications

10

Procedure

1. To view a list of projects, run:

2. You can change from the current project to a different project for CLI operations. The specified
project is then used in all subsequent operations that manipulate project-scoped content:

2.1.6. Providing access permissions to your project using the Developer perspective

You can use the Project view in the Developer perspective to grant or revoke access permissions to
your project.

Procedure

To add users to your project and provide Admin, Edit, or View access to them:

1. In the Developer perspective, navigate to the Project view.

2. In the Project page, select the Project Access tab.

3. Click Add Access to add a new row of permissions to the default ones.

Figure 2.2. Project permissions

4. Enter the user name, click the Select a role drop-down list, and select an appropriate role.

5. Click Save to add the new permissions.

You can also use:

$ oc get projects

$ oc project <project_name>

CHAPTER 2. PROJECTS

11

The Select a role drop-down list, to modify the access permissions of an existing user.

The Remove Access icon, to completely remove the access permissions of an existing user to
the project.

NOTE

Advanced role-based access control is managed in the Roles and Roles Binding views in
the Administrator perspective.

2.1.7. Adding to a project

Procedure

1. Select Developer from the context selector at the top of the web console navigation menu.

2. Click +Add

3. At the top of the page, select the name of the project that you want to add to.

4. Click on a method for adding to your project, and then follow the workflow.

NOTE

You can also add components to the topology using quick search.

2.1.8. Checking project status using the web console

Procedure

1. Navigate to Home → Projects.

2. Select a project to see its status.

2.1.9. Checking project status using the CLI

Procedure

1. Run:

This command provides a high-level overview of the current project, with its components and
their relationships.

2.1.10. Deleting a project using the web console

You can delete a project by using the OpenShift Container Platform web console.

NOTE

$ oc status

OpenShift Container Platform 4.7 Applications

12

NOTE

If you do not have permissions to delete the project, the Delete Project option is not
available.

Procedure

1. Navigate to Home → Projects.

2. Locate the project that you want to delete from the list of projects.

3. On the far right side of the project listing, select Delete Project from the Options menu .

4. When the Delete Project pane opens, enter the name of the project that you want to delete in
the field.

5. Click Delete.

2.1.11. Deleting a project using the CLI

When you delete a project, the server updates the project status to Terminating from Active. Then, the
server clears all content from a project that is in the Terminating state before finally removing the
project. While a project is in Terminating status, you cannot add new content to the project. Projects
can be deleted from the CLI or the web console.

Procedure

1. Run:

2.2. CREATING A PROJECT AS ANOTHER USER

Impersonation allows you to create a project as a different user.

2.2.1. API impersonation

You can configure a request to the OpenShift Container Platform API to act as though it originated
from another user. For more information, see User impersonation in the Kubernetes documentation.

2.2.2. Impersonating a user when you create a project

You can impersonate a different user when you create a project request. Because
system:authenticated:oauth is the only bootstrap group that can create project requests, you must
impersonate that group.

Procedure

To create a project request on behalf of a different user:

$ oc delete project <project_name>

$ oc new-project <project> --as=<user> \
 --as-group=system:authenticated --as-group=system:authenticated:oauth

CHAPTER 2. PROJECTS

13

https://kubernetes.io/docs/reference/access-authn-authz/authentication/#user-impersonation

2.3. CONFIGURING PROJECT CREATION

In OpenShift Container Platform, projects are used to group and isolate related objects. When a request
is made to create a new project using the web console or oc new-project command, an endpoint in
OpenShift Container Platform is used to provision the project according to a template, which can be
customized.

As a cluster administrator, you can allow and configure how developers and service accounts can create,
or self-provision, their own projects.

2.3.1. About project creation

The OpenShift Container Platform API server automatically provisions new projects based on the
project template that is identified by the projectRequestTemplate parameter in the cluster’s project
configuration resource. If the parameter is not defined, the API server creates a default template that
creates a project with the requested name, and assigns the requesting user to the admin role for that
project.

When a project request is submitted, the API substitutes the following parameters into the template:

Table 2.1. Default project template parameters

Parameter Description

PROJECT_NAME The name of the project. Required.

PROJECT_DISPLAYNAME The display name of the project. May be empty.

PROJECT_DESCRIPTION The description of the project. May be empty.

PROJECT_ADMIN_USER The user name of the administrating user.

PROJECT_REQUESTING_U
SER

The user name of the requesting user.

Access to the API is granted to developers with the self-provisioner role and the self-provisioners
cluster role binding. This role is available to all authenticated developers by default.

2.3.2. Modifying the template for new projects

As a cluster administrator, you can modify the default project template so that new projects are created
using your custom requirements.

To create your own custom project template:

Procedure

1. Log in as a user with cluster-admin privileges.

2. Generate the default project template:

$ oc adm create-bootstrap-project-template -o yaml > template.yaml

OpenShift Container Platform 4.7 Applications

14

3. Use a text editor to modify the generated template.yaml file by adding objects or modifying
existing objects.

4. The project template must be created in the openshift-config namespace. Load your modified
template:

5. Edit the project configuration resource using the web console or CLI.

Using the web console:

i. Navigate to the Administration → Cluster Settings page.

ii. Click Global Configuration to view all configuration resources.

iii. Find the entry for Project and click Edit YAML.

Using the CLI:

i. Edit the project.config.openshift.io/cluster resource:

6. Update the spec section to include the projectRequestTemplate and name parameters, and
set the name of your uploaded project template. The default name is project-request.

Project configuration resource with custom project template

7. After you save your changes, create a new project to verify that your changes were successfully
applied.

2.3.3. Disabling project self-provisioning

You can prevent an authenticated user group from self-provisioning new projects.

Procedure

1. Log in as a user with cluster-admin privileges.

2. View the self-provisioners cluster role binding usage by running the following command:

Example output

$ oc create -f template.yaml -n openshift-config

$ oc edit project.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Project
metadata:
 ...
spec:
 projectRequestTemplate:
 name: <template_name>

$ oc describe clusterrolebinding.rbac self-provisioners

CHAPTER 2. PROJECTS

15

Review the subjects in the self-provisioners section.

3. Remove the self-provisioner cluster role from the group system:authenticated:oauth.

If the self-provisioners cluster role binding binds only the self-provisioner role to the
system:authenticated:oauth group, run the following command:

If the self-provisioners cluster role binding binds the self-provisioner role to more users,
groups, or service accounts than the system:authenticated:oauth group, run the following
command:

4. Edit the self-provisioners cluster role binding to prevent automatic updates to the role.
Automatic updates reset the cluster roles to the default state.

To update the role binding using the CLI:

i. Run the following command:

ii. In the displayed role binding, set the rbac.authorization.kubernetes.io/autoupdate
parameter value to false, as shown in the following example:

To update the role binding by using a single command:

5. Log in as an authenticated user and verify that it can no longer self-provision a project:

Name: self-provisioners
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
 Kind: ClusterRole
 Name: self-provisioner
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:authenticated:oauth

$ oc patch clusterrolebinding.rbac self-provisioners -p '{"subjects": null}'

$ oc adm policy \
 remove-cluster-role-from-group self-provisioner \
 system:authenticated:oauth

$ oc edit clusterrolebinding.rbac self-provisioners

apiVersion: authorization.openshift.io/v1
kind: ClusterRoleBinding
metadata:
 annotations:
 rbac.authorization.kubernetes.io/autoupdate: "false"
 ...

$ oc patch clusterrolebinding.rbac self-provisioners -p '{ "metadata": { "annotations": {
"rbac.authorization.kubernetes.io/autoupdate": "false" } } }'

OpenShift Container Platform 4.7 Applications

16

Example output

Consider customizing this project request message to provide more helpful instructions specific
to your organization.

2.3.4. Customizing the project request message

When a developer or a service account that is unable to self-provision projects makes a project creation
request using the web console or CLI, the following error message is returned by default:

Cluster administrators can customize this message. Consider updating it to provide further instructions
on how to request a new project specific to your organization. For example:

To request a project, contact your system administrator at projectname@example.com.

To request a new project, fill out the project request form located at
https://internal.example.com/openshift-project-request.

To customize the project request message:

Procedure

1. Edit the project configuration resource using the web console or CLI.

Using the web console:

i. Navigate to the Administration → Cluster Settings page.

ii. Click Global Configuration to view all configuration resources.

iii. Find the entry for Project and click Edit YAML.

Using the CLI:

i. Log in as a user with cluster-admin privileges.

ii. Edit the project.config.openshift.io/cluster resource:

2. Update the spec section to include the projectRequestMessage parameter and set the value
to your custom message:

Project configuration resource with custom project request message

$ oc new-project test

Error from server (Forbidden): You may not request a new project via this API.

You may not request a new project via this API.

$ oc edit project.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Project
metadata:

CHAPTER 2. PROJECTS

17

For example:

3. After you save your changes, attempt to create a new project as a developer or service account
that is unable to self-provision projects to verify that your changes were successfully applied.

 ...
spec:
 projectRequestMessage: <message_string>

apiVersion: config.openshift.io/v1
kind: Project
metadata:
 ...
spec:
 projectRequestMessage: To request a project, contact your system administrator at
projectname@example.com.

OpenShift Container Platform 4.7 Applications

18

CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT

3.1. CREATING APPLICATIONS USING THE DEVELOPER PERSPECTIVE

The Developer perspective in the web console provides you the following options from the +Add view
to create applications and associated services and deploy them on OpenShift Container Platform:

From Git: Use this option to import an existing codebase in a Git repository to create, build, and
deploy an application on OpenShift Container Platform.

Container Image: Use existing images from an image stream or registry to deploy it on to
OpenShift Container Platform.

From Dockerfile: Import a dockerfile from your Git repository to build and deploy an application.

YAML: Use the editor to add YAML or JSON definitions to create and modify resources.

From Catalog: Explore the Developer Catalog to select the required applications, services, or
source to image builders and add it to your project.

Database: See the Developer Catalog to select the required database service and add it to
your application.

Operator Backed: Explore the Developer Catalog to select and deploy the required Operator-
managed service.

Helm Chart: Explore the Developer Catalog to select the required Helm chart to simplify
deployment of applications and services.

Note that certain options, such as Pipelines, Event Source, and Import Virtual Machines, are displayed
only when the OpenShift Pipelines Operator, OpenShift Serverless Operator, and OpenShift
Virtualization Operator are installed, respectively.

3.1.1. Prerequisites

To create applications using the Developer perspective ensure that:

You have logged in to the web console .

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

To create serverless applications, in addition to the preceding prerequisites, ensure that:

You have installed the OpenShift Serverless Operator .

You have created a KnativeServing resource in the knative-serving namespace.

3.1.2. Creating Sample applications

You can use the basic sample applications in the +Add flow of the Developer perspective to create,
build, and deploy applications quickly.

The following procedure explains the Samples option in the Developer perspective to create a sample
application.

Procedure

CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT

19

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cicd/#op-installing-pipelines-operator-in-web-console_installing-pipelines
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/serverless/#serverless-install-web-console_install-serverless-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/openshift_virtualization/#virt-subscribing-to-the-catalog_installing-virt-web
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/web_console/#web-console
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/authentication_and_authorization/#default-roles_using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/serverless/#install-serverless-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/serverless/#installing-knative-serving

Procedure

1. In the +Add view, click Samples to see the Samples page.

2. On the Samples page, select one of the available sample applications to see the Create
Sample Application form.

3. In the Create Sample Application Form:

In the Name field, the deployment name is displayed by default. You can modify this name
as required.

In the Builder Image Version, a builder image is selected by default. You can modify this
image version by using the Builder Image Version drop-down list.

A sample Git repository URL is added by default.

4. Click Create to create the sample application. The build status of the sample application is
displayed on the Topology view. After the sample application is created, you can see the
deployment added to the application.

3.1.3. Importing a codebase from Git to create an application

You can use the Developer perspective to create, build, and deploy an application on OpenShift
Container Platform using an existing codebase in GitHub.

The following procedure walks you through the From Git option in the Developer perspective to create
an application.

Procedure

1. In the +Add view, click From Git to see the Import from git form.

2. In the Git section, enter the Git repository URL for the codebase you want to use to create an
application. For example, enter the URL of this sample Node.js application
https://github.com/sclorg/nodejs-ex. The URL is then validated.

3. Optional: You can click Show Advanced Git Options to add details such as:

Git Reference to point to code in a specific branch, tag, or commit to be used to build the
application.

Context Dir to specify the subdirectory for the application source code you want to use to
build the application.

Source Secret to create a Secret Name with credentials for pulling your source code from
a private repository.

4. In the Builder section, after the URL is validated, an appropriate builder image is detected,
indicated by a star, and automatically selected. For the https://github.com/sclorg/nodejs-ex
Git URL, the Node.js builder image is selected by default. If a builder image is not auto-detected,
select a builder image. If required, you can change the version using the Builder Image Version
drop-down list.

5. In the General section:

a. In the Application field, enter a unique name for the application grouping, for example,

OpenShift Container Platform 4.7 Applications

20

https://github.com/sclorg/nodejs-ex

a. In the Application field, enter a unique name for the application grouping, for example,
myapp. Ensure that the application name is unique in a namespace.

b. The Name field to identify the resources created for this application is automatically
populated based on the Git repository URL if there are no existing applications. If there are
existing applications, you can choose to deploy the component within an existing
application, create a new application, or keep the component unassigned.

NOTE

The resource name must be unique in a namespace. Modify the resource
name if you get an error.

6. In the Resources section, select:

Deployment, to create an application in plain Kubernetes style.

Deployment Config, to create an OpenShift style application.

Knative Service, to create a microservice.

NOTE

The Knative Service option is displayed in the Import from git form only if the
Serverless Operator is installed in your cluster. For further details refer to
documentation on installing OpenShift Serverless.

7. In the Pipelines section, select Add Pipeline, and then click Show Pipeline Visualization to see
the pipeline for the application.

8. In the Advanced Options section, the Create a route to the application is selected by default
so that you can access your application using a publicly available URL. You can clear the check
box if you do not want to expose your application on a public route.

9. Optional: You can use the following advanced options to further customize your application:

Routing

By clicking the Routing link, you can perform the following actions:

Customize the hostname for the route.

Specify the path the router watches.

Select the target port for the traffic from the drop-down list.

Secure your route by selecting the Secure Route check box. Select the required TLS
termination type and set a policy for insecure traffic from the respective drop-down lists.

NOTE

For serverless applications, the Knative service manages all the routing
options above. However, you can customize the target port for traffic, if
required. If the target port is not specified, the default port of 8080 is used.

CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT

21

Health Checks

Click the Health Checks link to add Readiness, Liveness, and Startup probes to your application. All
the probes have prepopulated default data; you can add the probes with the default data or
customize it as required.
To customize the health probes:

Click Add Readiness Probe, if required, modify the parameters to check if the container is
ready to handle requests, and select the check mark to add the probe.

Click Add Liveness Probe, if required, modify the parameters to check if a container is still
running, and select the check mark to add the probe.

Click Add Startup Probe, if required, modify the parameters to check if the application
within the container has started, and select the check mark to add the probe.
For each of the probes, you can specify the request type - HTTP GET, Container
Command, or TCP Socket, from the drop-down list. The form changes as per the selected
request type. You can then modify the default values for the other parameters, such as the
success and failure thresholds for the probe, number of seconds before performing the first
probe after the container starts, frequency of the probe, and the timeout value.

Build Configuration and Deployment

Click the Build Configuration and Deployment links to see the respective configuration options.
Some options are selected by default; you can customize them further by adding the necessary
triggers and environment variables.
For serverless applications, the Deployment option is not displayed as the Knative configuration
resource maintains the desired state for your deployment instead of a DeploymentConfig.

Scaling

Click the Scaling link to define the number of pods or instances of the application you want to deploy
initially.
If you are creating a Knative service, you can also configure the following settings:

Set the upper and lower limit for the number of pods that can be set by the autoscaler. If the
lower limit is not specified, it defaults to zero.

Define the soft limit for the required number of concurrent requests per instance of the
application at a given time. It is the recommended configuration for autoscaling. If not
specified, it takes the value specified in the cluster configuration.

Define the hard limit for the number of concurrent requests allowed per instance of the
application at a given time. This is configured in the revision template. If not specified, it
defaults to the value specified in the cluster configuration.

Resource Limit

Click the Resource Limit link to set the amount of CPU and Memory resources a container is
guaranteed or allowed to use when running.

Labels

Click the Labels link to add custom labels to your application.

1. Click Create to create the application and see its build status in the Topology view.

3.1.4. Using the Developer Catalog to add services or components to your

OpenShift Container Platform 4.7 Applications

22

3.1.4. Using the Developer Catalog to add services or components to your
application

You use the Developer Catalog to deploy applications and services based on Operator backed services
such as Databases, Builder Images, and Helm Charts. The Developer Catalog contains a collection of
application components, services, event sources, or source-to-image builders that you can add to your
project. Cluster administrators can customize the content made available in the catalog.

Procedure

1. In the Developer perspective, navigate to the +Add → From Catalog to view all the available
services in the Developer Catalog.

2. Under All Items, select the kind of service or the component you need to add to your project.
For this example, select Databases to list all the database services and then click MariaDB to
see the details for the service.

Figure 3.1. Developer Catalog

3. Click Instantiate Template to see an automatically populated template with details for the
MariaDB service, and then click Create to create and view the MariaDB service in the Topology
view.

Figure 3.2. MariaDB in Topology

CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT

23

Figure 3.2. MariaDB in Topology

3.1.5. Additional resources

For more information about Knative routing settings for OpenShift Serverless, see Routing.

For more information about Knative autoscaling settings for OpenShift Serverless, see
Autoscaling.

For information about domain mapping settings for OpenShift Serverless, see Configuring a
custom domain for a Knative service.

3.2. CREATING APPLICATIONS FROM INSTALLED OPERATORS

Operators are a method of packaging, deploying, and managing a Kubernetes application. You can
create applications on OpenShift Container Platform using Operators that have been installed by a
cluster administrator.

This guide walks developers through an example of creating applications from an installed Operator
using the OpenShift Container Platform web console.

Additional resources

See the Operators guide for more on how Operators work and how the Operator Lifecycle
Manager is integrated in OpenShift Container Platform.

3.2.1. Creating an etcd cluster using an Operator

This procedure walks through creating a new etcd cluster using the etcd Operator, managed by
Operator Lifecycle Manager (OLM).

OpenShift Container Platform 4.7 Applications

24

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/serverless/#serverless-configuring-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/serverless/#serverless-autoscaling-developer
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/serverless/#serverless-custom-domains
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-what-operators-are

Prerequisites

Access to an OpenShift Container Platform 4.7 cluster.

The etcd Operator already installed cluster-wide by an administrator.

Procedure

1. Create a new project in the OpenShift Container Platform web console for this procedure. This
example uses a project called my-etcd.

2. Navigate to the Operators → Installed Operators page. The Operators that have been installed
to the cluster by the cluster administrator and are available for use are shown here as a list of
cluster service versions (CSVs). CSVs are used to launch and manage the software provided by
the Operator.

TIP

You can get this list from the CLI using:

3. On the Installed Operators page, click the etcd Operator to view more details and available
actions.
As shown under Provided APIs, this Operator makes available three new resource types,
including one for an etcd Cluster (the EtcdCluster resource). These objects work similar to the
built-in native Kubernetes ones, such as Deployment or ReplicaSet, but contain logic specific
to managing etcd.

4. Create a new etcd cluster:

a. In the etcd Cluster API box, click Create instance.

b. The next screen allows you to make any modifications to the minimal starting template of an
EtcdCluster object, such as the size of the cluster. For now, click Create to finalize. This
triggers the Operator to start up the pods, services, and other components of the new etcd
cluster.

5. Click on the example etcd cluster, then click the Resources tab to see that your project now
contains a number of resources created and configured automatically by the Operator.
Verify that a Kubernetes service has been created that allows you to access the database from
other pods in your project.

6. All users with the edit role in a given project can create, manage, and delete application
instances (an etcd cluster, in this example) managed by Operators that have already been
created in the project, in a self-service manner, just like a cloud service. If you want to enable
additional users with this ability, project administrators can add the role using the following
command:

You now have an etcd cluster that will react to failures and rebalance data as pods become unhealthy or
are migrated between nodes in the cluster. Most importantly, cluster administrators or developers with
proper access can now easily use the database with their applications.

$ oc get csv

$ oc policy add-role-to-user edit <user> -n <target_project>

CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT

25

3.3. CREATING APPLICATIONS USING THE CLI

You can create an OpenShift Container Platform application from components that include source or
binary code, images, and templates by using the OpenShift Container Platform CLI.

The set of objects created by new-app depends on the artifacts passed as input: source repositories,
images, or templates.

3.3.1. Creating an application from source code

With the new-app command you can create applications from source code in a local or remote Git
repository.

The new-app command creates a build configuration, which itself creates a new application image from
your source code. The new-app command typically also creates a Deployment object to deploy the
new image, and a service to provide load-balanced access to the deployment running your image.

OpenShift Container Platform automatically detects whether the pipeline or source build strategy
should be used, and in the case of source builds, detects an appropriate language builder image.

3.3.1.1. Local

To create an application from a Git repository in a local directory:

NOTE

If you use a local Git repository, the repository must have a remote named origin that
points to a URL that is accessible by the OpenShift Container Platform cluster. If there is
no recognized remote, running the new-app command will create a binary build.

3.3.1.2. Remote

To create an application from a remote Git repository:

To create an application from a private remote Git repository:

NOTE

If you use a private remote Git repository, you can use the --source-secret flag to
specify an existing source clone secret that will get injected into your build config to
access the repository.

You can use a subdirectory of your source code repository by specifying a --context-dir flag. To create
an application from a remote Git repository and a context subdirectory:

$ oc new-app /<path to source code>

$ oc new-app https://github.com/sclorg/cakephp-ex

$ oc new-app https://github.com/youruser/yourprivaterepo --source-secret=yoursecret

OpenShift Container Platform 4.7 Applications

26

Also, when specifying a remote URL, you can specify a Git branch to use by appending #
<branch_name> to the end of the URL:

3.3.1.3. Build strategy detection

If a Jenkins file exists in the root or specified context directory of the source repository when creating a
new application, OpenShift Container Platform generates a pipeline build strategy. Otherwise, it
generates a source build strategy.

Override the build strategy by setting the --strategy flag to either pipeline or source.

NOTE

The oc command requires that files containing build sources are available in a remote Git
repository. For all source builds, you must use git remote -v.

3.3.1.4. Language detection

If you use the source build strategy, new-app attempts to determine the language builder to use by the
presence of certain files in the root or specified context directory of the repository:

Table 3.1. Languages detected by new-app

Language Files

dotnet project.json, *.csproj

jee pom.xml

nodejs app.json, package.json

perl cpanfile, index.pl

php composer.json, index.php

python requirements.txt, setup.py

ruby Gemfile, Rakefile, config.ru

scala build.sbt

golang Godeps, main.go

After a language is detected, new-app searches the OpenShift Container Platform server for image

$ oc new-app https://github.com/sclorg/s2i-ruby-container.git \
 --context-dir=2.0/test/puma-test-app

$ oc new-app https://github.com/openshift/ruby-hello-world.git#beta4

$ oc new-app /home/user/code/myapp --strategy=docker

CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT

27

After a language is detected, new-app searches the OpenShift Container Platform server for image
stream tags that have a supports annotation matching the detected language, or an image stream that
matches the name of the detected language. If a match is not found, new-app searches the Docker Hub
registry for an image that matches the detected language based on name.

You can override the image the builder uses for a particular source repository by specifying the image,
either an image stream or container specification, and the repository with a ~ as a separator. Note that if
this is done, build strategy detection and language detection are not carried out.

For example, to use the myproject/my-ruby imagestream with the source in a remote repository:

To use the openshift/ruby-20-centos7:latest container image stream with the source in a local
repository:

NOTE

Language detection requires the Git client to be locally installed so that your repository
can be cloned and inspected. If Git is not available, you can avoid the language detection
step by specifying the builder image to use with your repository with the <image>~
<repository> syntax.

The -i <image> <repository> invocation requires that new-app attempt to clone
repository to determine what type of artifact it is, so this will fail if Git is not available.

The -i <image> --code <repository> invocation requires new-app clone repository to
determine whether image should be used as a builder for the source code, or deployed
separately, as in the case of a database image.

3.3.2. Creating an application from an image

You can deploy an application from an existing image. Images can come from image streams in the
OpenShift Container Platform server, images in a specific registry, or images in the local Docker server.

The new-app command attempts to determine the type of image specified in the arguments passed to
it. However, you can explicitly tell new-app whether the image is a container image using the --docker-
image argument or an image stream using the -i|--image-stream argument.

NOTE

If you specify an image from your local Docker repository, you must ensure that the same
image is available to the OpenShift Container Platform cluster nodes.

3.3.2.1. Docker Hub MySQL image

Create an application from the Docker Hub MySQL image, for example:

3.3.2.2. Image in a private registry

$ oc new-app myproject/my-ruby~https://github.com/openshift/ruby-hello-world.git

$ oc new-app openshift/ruby-20-centos7:latest~/home/user/code/my-ruby-app

$ oc new-app mysql

OpenShift Container Platform 4.7 Applications

28

https://registry.hub.docker.com

Create an application using an image in a private registry, specify the full container image specification:

3.3.2.3. Existing image stream and optional image stream tag

Create an application from an existing image stream and optional image stream tag:

3.3.3. Creating an application from a template

You can create an application from a previously stored template or from a template file, by specifying
the name of the template as an argument. For example, you can store a sample application template and
use it to create an application.

Upload an application template to your current project’s template library. The following example uploads
an application template from a file called examples/sample-app/application-template-stibuild.json:

Then create a new application by referencing the application template. In this example, the template
name is ruby-helloworld-sample:

To create a new application by referencing a template file in your local file system, without first storing it
in OpenShift Container Platform, use the -f|--file argument. For example:

3.3.3.1. Template parameters

When creating an application based on a template, use the -p|--param argument to set parameter values
that are defined by the template:

You can store your parameters in a file, then use that file with --param-file when instantiating a
template. If you want to read the parameters from standard input, use --param-file=-. The following is an
example file called helloworld.params:

Reference the parameters in the file when instantiating a template:

$ oc new-app myregistry:5000/example/myimage

$ oc new-app my-stream:v1

$ oc create -f examples/sample-app/application-template-stibuild.json

$ oc new-app ruby-helloworld-sample

$ oc new-app -f examples/sample-app/application-template-stibuild.json

$ oc new-app ruby-helloworld-sample \
 -p ADMIN_USERNAME=admin -p ADMIN_PASSWORD=mypassword

ADMIN_USERNAME=admin
ADMIN_PASSWORD=mypassword

$ oc new-app ruby-helloworld-sample --param-file=helloworld.params

CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT

29

3.3.4. Modifying application creation

The new-app command generates OpenShift Container Platform objects that build, deploy, and run the
application that is created. Normally, these objects are created in the current project and assigned
names that are derived from the input source repositories or the input images. However, with new-app
you can modify this behavior.

Table 3.2. new-app output objects

Object Description

BuildConfig A BuildConfig object is created for each source repository that is specified in the
command line. The BuildConfig object specifies the strategy to use, the source
location, and the build output location.

ImageStreams For the BuildConfig object, two image streams are usually created. One represents
the input image. With source builds, this is the builder image. With Docker builds, this is
the FROM image. The second one represents the output image. If a container image
was specified as input to new-app, then an image stream is created for that image as
well.

DeploymentCon
fig

A DeploymentConfig object is created either to deploy the output of a build, or a
specified image. The new-app command creates emptyDir volumes for all Docker
volumes that are specified in containers included in the resulting DeploymentConfig
object .

Service The new-app command attempts to detect exposed ports in input images. It uses the
lowest numeric exposed port to generate a service that exposes that port. To expose a
different port, after new-app has completed, simply use the oc expose command to
generate additional services.

Other Other objects can be generated when instantiating templates, according to the
template.

3.3.4.1. Specifying environment variables

When generating applications from a template, source, or an image, you can use the -e|--env argument
to pass environment variables to the application container at run time:

The variables can also be read from file using the --env-file argument. The following is an example file
called postgresql.env:

Read the variables from the file:

$ oc new-app openshift/postgresql-92-centos7 \
 -e POSTGRESQL_USER=user \
 -e POSTGRESQL_DATABASE=db \
 -e POSTGRESQL_PASSWORD=password

POSTGRESQL_USER=user
POSTGRESQL_DATABASE=db
POSTGRESQL_PASSWORD=password

OpenShift Container Platform 4.7 Applications

30

Additionally, environment variables can be given on standard input by using --env-file=-:

NOTE

Any BuildConfig objects created as part of new-app processing are not updated with
environment variables passed with the -e|--env or --env-file argument.

3.3.4.2. Specifying build environment variables

When generating applications from a template, source, or an image, you can use the --build-env
argument to pass environment variables to the build container at run time:

The variables can also be read from a file using the --build-env-file argument. The following is an
example file called ruby.env:

Read the variables from the file:

Additionally, environment variables can be given on standard input by using --build-env-file=-:

3.3.4.3. Specifying labels

When generating applications from source, images, or templates, you can use the -l|--label argument to
add labels to the created objects. Labels make it easy to collectively select, configure, and delete
objects associated with the application.

3.3.4.4. Viewing the output without creation

To see a dry-run of running the new-app command, you can use the -o|--output argument with a yaml
or json value. You can then use the output to preview the objects that are created or redirect it to a file
that you can edit. After you are satisfied, you can use oc create to create the OpenShift Container
Platform objects.

To output new-app artifacts to a file, run the following:

$ oc new-app openshift/postgresql-92-centos7 --env-file=postgresql.env

$ cat postgresql.env | oc new-app openshift/postgresql-92-centos7 --env-file=-

$ oc new-app openshift/ruby-23-centos7 \
 --build-env HTTP_PROXY=http://myproxy.net:1337/ \
 --build-env GEM_HOME=~/.gem

HTTP_PROXY=http://myproxy.net:1337/
GEM_HOME=~/.gem

$ oc new-app openshift/ruby-23-centos7 --build-env-file=ruby.env

$ cat ruby.env | oc new-app openshift/ruby-23-centos7 --build-env-file=-

$ oc new-app https://github.com/openshift/ruby-hello-world -l name=hello-world

CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT

31

Edit the file:

Create a new application by referencing the file:

3.3.4.5. Creating objects with different names

Objects created by new-app are normally named after the source repository, or the image used to
generate them. You can set the name of the objects produced by adding a --name flag to the
command:

3.3.4.6. Creating objects in a different project

Normally, new-app creates objects in the current project. However, you can create objects in a different
project by using the -n|--namespace argument:

3.3.4.7. Creating multiple objects

The new-app command allows creating multiple applications specifying multiple parameters to new-
app. Labels specified in the command line apply to all objects created by the single command.
Environment variables apply to all components created from source or images.

To create an application from a source repository and a Docker Hub image:

NOTE

If a source code repository and a builder image are specified as separate arguments,
new-app uses the builder image as the builder for the source code repository. If this is
not the intent, specify the required builder image for the source using the ~ separator.

3.3.4.8. Grouping images and source in a single pod

The new-app command allows deploying multiple images together in a single pod. To specify which
images to group together, use the + separator. The --group command line argument can also be used to
specify the images that should be grouped together. To group the image built from a source repository
with other images, specify its builder image in the group:

$ oc new-app https://github.com/openshift/ruby-hello-world \
 -o yaml > myapp.yaml

$ vi myapp.yaml

$ oc create -f myapp.yaml

$ oc new-app https://github.com/openshift/ruby-hello-world --name=myapp

$ oc new-app https://github.com/openshift/ruby-hello-world -n myproject

$ oc new-app https://github.com/openshift/ruby-hello-world mysql

$ oc new-app ruby+mysql

OpenShift Container Platform 4.7 Applications

32

To deploy an image built from source and an external image together:

3.3.4.9. Searching for images, templates, and other inputs

To search for images, templates, and other inputs for the oc new-app command, add the --search and
--list flags. For example, to find all of the images or templates that include PHP:

3.4. VIEWING APPLICATION COMPOSITION USING THE TOPOLOGY
VIEW

The Topology view in the Developer perspective of the web console provides a visual representation of
all the applications within a project, their build status, and the components and services associated with
them.

3.4.1. Prerequisites

To view your applications in the Topology view and interact with them, ensure that:

You have logged in to the web console .

You have the appropriate roles and permissions in a project to create applications and other
workloads in OpenShift Container Platform.

You have created and deployed an application on OpenShift Container Platform using the
Developer perspective.

You are in the Developer perspective.

3.4.2. Viewing the topology of your application

You can navigate to the Topology view using the left navigation panel in the Developer perspective.
After you deploy an application, you are directed automatically to the Graph view where you can see the
status of the application pods, quickly access the application on a public URL, access the source code to
modify it, and see the status of your last build. You can zoom in and out to see more details for a
particular application.

The Topology view also provides you the option to monitor your applications using the List view. Use

the List view icon () to see a list of all your applications and use the Graph view icon ()
to switch back to the graph view.

You can customize the views as required using the following:

Use the Find by name field to find the required components. Search results may appear outside
of the visible area; click Fit to Screen from the lower-left toolbar to resize the Topology view to
show all components.

$ oc new-app \
 ruby~https://github.com/openshift/ruby-hello-world \
 mysql \
 --group=ruby+mysql

$ oc new-app --search php

CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/web_console/#web-console
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/authentication_and_authorization/#default-roles_using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#odc-creating-applications-using-developer-perspective
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/web_console/#about-developer-perspective_web-console-overview

Use the Display Options drop-down list to configure the Topology view of the various
application groupings. The options are available depending on the types of components
deployed in the project:

Mode (Connectivity or Consumption)

Connectivity: Select to show all the connections between the different nodes in the
topology.

Consumption: Select to show the resource consumption for all nodes in the topology.

Expand group

Virtual Machines: Toggle to show or hide the virtual machines.

Application Groupings: Clear to condense the application groups into cards with an
overview of an application group and alerts associated with it.

Helm Releases: Clear to condense the components deployed as Helm Release into
cards with an overview of a given release.

Knative Services: Clear to condense the Knative Service components into cards with an
overview of a given component.

Operator Groupings: Clear to condense the components deployed with an Operator
into cards with an overview of the given group.

Show elements based on Pod Count or Labels

Pod Count: Select to show the number of pods of a component in the component icon.

Labels: Toggle to show or hide the component labels.

3.4.3. Interacting with applications and components

The Topology view in the Developer perspective of the web console provides the following options to
interact with applications and components:

Click Open URL () to see your application exposed by the route on a public URL.

Click Edit Source code to access your source code and modify it.

NOTE

This feature is available only when you create applications using the From Git,
From Catalog, and the From Dockerfile options.

Hover your cursor over the lower left icon on the pod to see the name of the latest build and its
status. The status of the application build is indicated as New (), Pending (), Running (

), Completed (), Failed (), and Canceled ().

The status or phase of the pod is indicated by different colors and tooltips as:

Running (): The pod is bound to a node and all of the containers are created. At least
one container is still running or is in the process of starting or restarting.

OpenShift Container Platform 4.7 Applications

34

Not Ready (): The pods which are running multiple containers, not all containers are
ready.

Warning(): Containers in pods are being terminated, however termination did not
succeed. Some containers may be other states.

Failed(): All containers in the pod terminated but least one container has terminated in
failure. That is, the container either exited with non-zero status or was terminated by the
system.

Pending(): The pod is accepted by the Kubernetes cluster, but one or more of the
containers has not been set up and made ready to run. This includes time a pod spends
waiting to be scheduled as well as the time spent downloading container images over the
network.

Succeeded(): All containers in the pod terminated successfully and will not be restarted.

Terminating(): When a pod is being deleted, it is shown as Terminating by some
kubectl commands. Terminating status is not one of the pod phases. A pod is granted a
graceful termination period, which defaults to 30 seconds.

Unknown(): The state of the pod could not be obtained. This phase typically occurs due
to an error in communicating with the node where the pod should be running.

After you create an application and an image is deployed, the status is shown as Pending. After
the application is built, it is displayed as Running.

Figure 3.3. Application topology

The application resource name is appended with indicators for the different types of resource
objects as follows:

CJ: CronJob

D: Deployment

DC: DeploymentConfig

CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT

35

DS: DaemonSet

J: Job

P: Pod

SS: StatefulSet

 (Knative): A serverless application

NOTE

Serverless applications take some time to load and display on the Graph
view. When you deploy a serverless application, it first creates a service
resource and then a revision. After that, it is deployed and displayed on the
Graph view. If it is the only workload, you might be redirected to the Add
page. After the revision is deployed, the serverless application is displayed on
the Graph view.

3.4.4. Scaling application pods and checking builds and routes

The Topology view provides the details of the deployed components in the Overview panel. You can
use the Overview and Resources tabs to scale the application pods, check build status, services, and
routes as follows:

Click on the component node to see the Overview panel to the right. Use the Overview tab to:

Scale your pods using the up and down arrows to increase or decrease the number of
instances of the application manually. For serverless applications, the pods are
automatically scaled down to zero when idle and scaled up depending on the channel traffic.

Check the Labels, Annotations, and Status of the application.

Click the Resources tab to:

See the list of all the pods, view their status, access logs, and click on the pod to see the pod
details.

See the builds, their status, access logs, and start a new build if needed.

See the services and routes used by the component.

For serverless applications, the Resources tab provides information on the revision, routes, and
the configurations used for that component.

3.4.5. Adding components to an existing project

Procedure

1. Click Add to Project () next to left navigation pane or press Ctrl+Space

2. Search for the component and select Create or press Enter to add the component to the
project and see it in the topology Graph view.

Figure 3.4. Adding component via quick search

OpenShift Container Platform 4.7 Applications

36

Figure 3.4. Adding component via quick search

Alternatively, you can also use the Import from Git, Container Image, Database, From Catalog,
Operator Backed, Helm Charts, Samples, or Upload JAR file options in the context menu by right-
clicking in the topology Graph view to add a component to your project.

Figure 3.5. Context menu to add services

CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT

37

3.4.6. Grouping multiple components within an application

You can use the +Add view to add multiple components or services to your project and use the
topology Graph view to group applications and resources within an application group.

Prerequisites

You have created and deployed minimum two or more components on OpenShift Container
Platform using the Developer perspective.

Procedure

To add a service to the existing application group, press Shift+ drag it to the existing application
group. Dragging a component and adding it to an application group adds the required labels to
the component.

Figure 3.6. Application grouping

Alternatively, you can also add the component to an application as follows:

1. Click the service pod to see the Overview panel to the right.

2. Click the Actions drop-down menu and select Edit Application Grouping.

3. In the Edit Application Grouping dialog box, click the Application drop-down list, and select an
appropriate application group.

4. Click Save to add the service to the application group.

3.4.7. Connecting components within an application and across applications

In addition to grouping multiple components within an application, you can also use the Topology view

OpenShift Container Platform 4.7 Applications

38

In addition to grouping multiple components within an application, you can also use the Topology view
to connect components with each other. You can either use a binding connector or a visual one to
connect components.

A binding connection between the components can be established only if the target node is an
Operator-backed service. This is indicated by the Create a binding connector tool-tip which appears
when you drag an arrow to such a target node. When an application is connected to a service using a
binding connector a service binding request is created. Then, the Service Binding Operator controller
uses an intermediate secret to inject the necessary binding data into the application deployment as
environment variables. After the request is successful, the application is redeployed establishing an
interaction between the connected components.

A visual connector establishes only a visual connection between the components, depicting an intent to
connect. No interaction between the components is established. If the target node is not an Operator-
backed service the Create a visual connector tool-tip is displayed when you drag an arrow to a target
node.

3.4.7.1. Creating a visual connection between components

You can depict an intent to connect application components using the visual connector.

This procedure walks through an example of creating a visual connection between a MongoDB service
and a Node.js application.

Prerequisites

Ensure that you have created and deployed a Node.js application using the Developer
perspective.

Ensure that you have created and deployed a MongoDB service using the Developer
perspective.

Procedure

1. Hover over the MongoDB service to see a dangling arrow on the node.

Figure 3.7. Connector

CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT

39

Figure 3.7. Connector

2. Click and drag the arrow towards the Node.js component to connect the MongoDB service with
it.

3. Click on the MongoDB service to see the Overview Panel. In the Annotations section, click the
edit icon to see the Key = app.openshift.io/connects-to and Value =
[{"apiVersion":"apps.openshift.io/v1","kind":"DeploymentConfig","name":"nodejs-ex"}]
annotation added to the service.

Similarly you can create other applications and components and establish connections between them.

Figure 3.8. Connecting multiple applications

OpenShift Container Platform 4.7 Applications

40

Figure 3.8. Connecting multiple applications

3.4.7.2. Creating a binding connection between components

IMPORTANT

Service Binding is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

NOTE

Currently, a few specific Operators like the etcd and the PostgresSQL Database
Operator’s service instances are bindable.

You can establish a binding connection with Operator-backed components.

This procedure walks through an example of creating a binding connection between a PostgreSQL
Database service and a Node.js application. To create a binding connection with a service that is backed
by the PostgreSQL Database Operator, you must first add the Red Hat-provided PostgreSQL
Database Operator to the OperatorHub using a CatalogSource resource, and then install the
Operator. The PostreSQL Database Operator then creates and manages the Database resource, which
exposes the binding information in secrets, config maps, status, and spec attributes.

CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT

41

https://access.redhat.com/support/offerings/techpreview/

Prerequisites

Ensure that you have created and deployed a Node.js application using the Developer
perspective.

Ensure that you have installed the Service Binding Operator from OperatorHub.

Procedure

1. Create a CatalogSource resource that adds the PostgresSQL Database Operator provided by
Red Hat to the OperatorHub.

a. In the +Add view, click the YAML option to see the Import YAML screen.

b. Add the following YAML file to apply the CatalogSource resource:

c. Click Create to create the CatalogSource resource in your cluster.

2. Install the Red Hat-provided PostgreSQL Database Operator:

a. In the Administrator perspective of the console, navigate to Operators → OperatorHub.

b. In the Database category, select the PostgreSQL Database Operator and install it.

3. Create a database (DB) instance for the application:

a. Switch to the Developer perspective and ensure that you are in the appropriate project, for
example, test-project.

b. In the +Add view, click the YAML option to see the Import YAML screen.

c. Add the service instance YAML in the editor and click Create to deploy the service.
Following is an example of what the service YAML will look like:

A DB instance is now deployed in the Topology view.

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: sample-db-operators
 namespace: openshift-marketplace
spec:
 sourceType: grpc
 image: quay.io/redhat-developer/sample-db-operators-olm:v1
 displayName: Sample DB OLM registry
 updateStrategy:
 registryPoll:
 interval: 30m

apiVersion: postgresql.baiju.dev/v1alpha1
kind: Database
metadata:
 name: db-demo
spec:
 image: docker.io/postgres
 imageName: postgres
 dbName: db-demo

OpenShift Container Platform 4.7 Applications

42

4. In the Topology view, hover over the Node.js component to see a dangling arrow on the node.

5. Click and drag the arrow towards the db-demo-postgresql service to make a binding
connection with the Node.js application. A service binding request is created and the Service
Binding Operator controller injects the DB connection information into the application
deployment as environment variables. After the request is successful, the application is
redeployed and the connection is established.

Figure 3.9. Binding connector

NOTE

You can also use the context menu by dragging the dangling arrow to add and create a
binding connection to an operator-backed service.

Figure 3.10. Context menu to create binding connection

CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT

43

3.4.8. Labels and annotations used for the Topology view

The Topology view uses the following labels and annotations:

Icon displayed in the node

Icons in the node are defined by looking for matching icons using the app.openshift.io/runtime label,
followed by the app.kubernetes.io/name label. This matching is done using a predefined set of
icons.

Link to the source code editor or the source

The app.openshift.io/vcs-uri annotation is used to create links to the source code editor.

Node Connector

The app.openshift.io/connects-to annotation is used to connect the nodes.

App grouping

The app.kubernetes.io/part-of=<appname> label is used to group the applications, services, and
components.

For detailed information on the labels and annotations OpenShift Container Platform applications must
use, see Guidelines for labels and annotations for OpenShift applications .

3.5. EDITING APPLICATIONS

You can edit the configuration and the source code of the application you create using the Topology
view.

3.5.1. Prerequisites

You have the appropriate roles and permissions in a project to create and modify applications in
OpenShift Container Platform.

You have created and deployed an application on OpenShift Container Platform using the
Developer perspective.

You have logged in to the web console and have switched to the Developer perspective.

3.5.2. Editing the source code of an application using the Developer perspective

You can use the Topology view in the Developer perspective to edit the source code of your
application.

Procedure

In the Topology view, click the Edit Source code icon, displayed at the bottom-right of the
deployed application, to access your source code and modify it.

NOTE

This feature is available only when you create applications using the From Git,
From Catalog, and the From Dockerfile options.

OpenShift Container Platform 4.7 Applications

44

https://github.com/redhat-developer/app-labels/blob/master/labels-annotation-for-openshift.adoc
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/authentication_and_authorization/#default-roles_using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#odc-creating-applications-using-developer-perspective
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/web_console/#web-console
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/web_console/#about-developer-perspective_web-console-overview

If the Eclipse Che Operator is installed in your cluster, a Che workspace () is created and
you are directed to the workspace to edit your source code. If it is not installed, you will be

directed to the Git repository () your source code is hosted in.

3.5.3. Editing the application configuration using the Developer perspective

You can use the Topology view in the Developer perspective to edit the configuration of your
application.

NOTE

Currently, only configurations of applications created by using the From Git, Container
Image, From Catalog, or From Dockerfile options in the Add workflow of the Developer
perspective can be edited. Configurations of applications created by using the CLI or the
YAML option from the Add workflow cannot be edited.

Prerequisites

Ensure that you have created an application using the From Git, Container Image, From Catalog, or
From Dockerfile options in the Add workflow.

Procedure

1. After you have created an application and it is displayed in the Topology view, right-click the
application to see the edit options available.

Figure 3.11. Edit application

CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT

45

Figure 3.11. Edit application

2. Click Edit application-name to see the Add workflow you used to create the application. The
form is pre-populated with the values you had added while creating the application.

3. Edit the necessary values for the application.

NOTE

You cannot edit the Name field in the General section, the CI/CD pipelines, or
the Create a route to the application field in the Advanced Options section.

4. Click Save to restart the build and deploy a new image.

Figure 3.12. Edit and redeploy application

OpenShift Container Platform 4.7 Applications

46

Figure 3.12. Edit and redeploy application

3.6. WORKING WITH HELM CHARTS USING THE DEVELOPER
PERSPECTIVE

3.6.1. Understanding Helm

Helm is a software package manager that simplifies deployment of applications and services to
OpenShift Container Platform clusters.

Helm uses a packaging format called charts. A Helm chart is a collection of files that describes the
OpenShift Container Platform resources.

A running instance of the chart in a cluster is called a release. A new release is created every time a chart
is installed on the cluster.

Each time a chart is installed, or a release is upgraded or rolled back, an incremental revision is created.

3.6.1.1. Key features

Helm provides the ability to:

Search through a large collection of charts stored in the chart repository.

Modify existing charts.

Create your own charts with OpenShift Container Platform or Kubernetes resources.

Package and share your applications as charts.

You can use the Developer perspective in the web console to select and install a chart from the Helm

CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT

47

You can use the Developer perspective in the web console to select and install a chart from the Helm
charts listed in the Developer Catalog. You can create a Helm release using these charts, upgrade,
rollback, and uninstall the release.

3.6.2. Prerequisites

You have logged in to the web console and have switched to the Developer perspective.

3.6.3. Installing Helm charts

You can use either the Developer perspective or the CLI to create Helm releases and see them in the
Developer perspective of the web console.

Procedure

To create Helm releases from the Helm charts provided in the Developer Catalog:

1. In the Developer perspective, navigate to the +Add view and select a project. Then click Helm
Chart option to see all the Helm Charts in the Developer Catalog.

2. Select a chart and read the description, README, and other details about the chart.

3. Click Install Helm Chart.

Figure 3.13. Helm charts in developer catalog

4. In the Install Helm Chart page:

a. Enter a unique name for the release in the Release Name field.

b. Select the required chart version from the Chart Version drop-down list.

c. Configure your Helm chart by using the Form View or the YAML View.

NOTE

Where available, you can switch between the YAML View and Form View.
The data is persisted when switching between the views.

OpenShift Container Platform 4.7 Applications

48

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/web_console/#about-developer-perspective_web-console-overview

d. Click Install to create a Helm release. You will be redirected to the Topology view where the
release is displayed. If the Helm chart has release notes, the chart is pre-selected and the
right panel displays the release notes for that release.

You can upgrade, rollback, or uninstall a Helm release by using the Actions button on the side panel or
by right-clicking a Helm release.

3.6.4. Upgrading a Helm release

You can upgrade a Helm release to upgrade to a new chart version or update your release configuration.

Procedure

1. In the Topology view, select the Helm release to see the side panel.

2. Click Actions → Upgrade Helm Release.

3. In the Upgrade Helm Release page, select the Chart Version you want to upgrade to, and then
click Upgrade to create another Helm release. The Helm Releases page displays the two
revisions.

3.6.5. Rolling back a Helm release

If a release fails, you can rollback the Helm release to a previous version.

Procedure

To rollback a release using the Helm view:

1. In the Developer perspective, navigate to the Helm view to see the Helm Releases in the
namespace.

2. Click the Options menu adjoining the listed release, and select Rollback.

3. In the Rollback Helm Release page, select the Revision you want to rollback to and click
Rollback.

4. In the Helm Releases page, click on the chart to see the details and resources for that release.

5. Go to the Revision History tab to see all the revisions for the chart.

Figure 3.14. Helm revision history

CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT

49

6. If required, you can further use the Options menu adjoining a particular revision and
select the revision to rollback to.

3.6.6. Uninstalling a Helm release

Procedure

1. In the Topology view, right-click the Helm release and select Uninstall Helm Release.

2. In the confirmation prompt, enter the name of the chart and click Uninstall.

3.7. DELETING APPLICATIONS

You can delete applications created in your project.

3.7.1. Deleting applications using the Developer perspective

You can delete an application and all of its associated components using the Topology view in the
Developer perspective:

1. Click the application you want to delete to see the side panel with the resource details of the
application.

2. Click the Actions drop-down menu displayed on the upper right of the panel, and select Delete
Application to see a confirmation dialog box.

3. Enter the name of the application and click Delete to delete it.

You can also right-click the application you want to delete and click Delete Application to delete it.

OpenShift Container Platform 4.7 Applications

50

CHAPTER 4. DEPLOYMENTS

4.1. UNDERSTANDING DEPLOYMENT AND DEPLOYMENTCONFIG
OBJECTS

The Deployment and DeploymentConfig API objects in OpenShift Container Platform provide two
similar but different methods for fine-grained management over common user applications. They are
composed of the following separate API objects:

A DeploymentConfig or Deployment object, either of which describes the desired state of a
particular component of the application as a pod template.

DeploymentConfig objects involve one or more replication controllers, which contain a point-
in-time record of the state of a deployment as a pod template. Similarly, Deployment objects
involve one or more replica sets, a successor of replication controllers.

One or more pods, which represent an instance of a particular version of an application.

4.1.1. Building blocks of a deployment

Deployments and deployment configs are enabled by the use of native Kubernetes API objects
ReplicaSet and ReplicationController, respectively, as their building blocks.

Users do not have to manipulate replication controllers, replica sets, or pods owned by
DeploymentConfig objects or deployments. The deployment systems ensure changes are propagated
appropriately.

TIP

If the existing deployment strategies are not suited for your use case and you must run manual steps
during the lifecycle of your deployment, then you should consider creating a custom deployment
strategy.

The following sections provide further details on these objects.

4.1.1.1. Replication controllers

A replication controller ensures that a specified number of replicas of a pod are running at all times. If
pods exit or are deleted, the replication controller acts to instantiate more up to the defined number.
Likewise, if there are more running than desired, it deletes as many as necessary to match the defined
amount.

A replication controller configuration consists of:

The number of replicas desired, which can be adjusted at run time.

A Pod definition to use when creating a replicated pod.

A selector for identifying managed pods.

A selector is a set of labels assigned to the pods that are managed by the replication controller. These
labels are included in the Pod definition that the replication controller instantiates. The replication
controller uses the selector to determine how many instances of the pod are already running in order to
adjust as needed.

The replication controller does not perform auto-scaling based on load or traffic, as it does not track

CHAPTER 4. DEPLOYMENTS

51

1

2

3

4

5

The replication controller does not perform auto-scaling based on load or traffic, as it does not track
either. Rather, this requires its replica count to be adjusted by an external auto-scaler.

The following is an example definition of a replication controller:

The number of copies of the pod to run.

The label selector of the pod to run.

A template for the pod the controller creates.

Labels on the pod should include those from the label selector.

The maximum name length after expanding any parameters is 63 characters.

4.1.1.2. Replica sets

Similar to a replication controller, a ReplicaSet is a native Kubernetes API object that ensures a
specified number of pod replicas are running at any given time. The difference between a replica set and
a replication controller is that a replica set supports set-based selector requirements whereas a
replication controller only supports equality-based selector requirements.

NOTE

Only use replica sets if you require custom update orchestration or do not require updates
at all. Otherwise, use deployments. Replica sets can be used independently, but are used
by deployments to orchestrate pod creation, deletion, and updates. Deployments
manage their replica sets automatically, provide declarative updates to pods, and do not
have to manually manage the replica sets that they create.

The following is an example ReplicaSet definition:

apiVersion: v1
kind: ReplicationController
metadata:
 name: frontend-1
spec:
 replicas: 1 1
 selector: 2
 name: frontend
 template: 3
 metadata:
 labels: 4
 name: frontend 5
 spec:
 containers:
 - image: openshift/hello-openshift
 name: helloworld
 ports:
 - containerPort: 8080
 protocol: TCP
 restartPolicy: Always

OpenShift Container Platform 4.7 Applications

52

1

2

3

A label query over a set of resources. The result of matchLabels and matchExpressions are
logically conjoined.

Equality-based selector to specify resources with labels that match the selector.

Set-based selector to filter keys. This selects all resources with key equal to tier and value equal to
frontend.

4.1.2. DeploymentConfig objects

Building on replication controllers, OpenShift Container Platform adds expanded support for the
software development and deployment lifecycle with the concept of DeploymentConfig objects. In the
simplest case, a DeploymentConfig object creates a new replication controller and lets it start up pods.

However, OpenShift Container Platform deployments from DeploymentConfig objects also provide
the ability to transition from an existing deployment of an image to a new one and also define hooks to
be run before or after creating the replication controller.

The DeploymentConfig deployment system provides the following capabilities:

A DeploymentConfig object, which is a template for running applications.

Triggers that drive automated deployments in response to events.

User-customizable deployment strategies to transition from the previous version to the new
version. A strategy runs inside a pod commonly referred as the deployment process.

A set of hooks (lifecycle hooks) for executing custom behavior in different points during the
lifecycle of a deployment.

apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: frontend-1
 labels:
 tier: frontend
spec:
 replicas: 3
 selector: 1
 matchLabels: 2
 tier: frontend
 matchExpressions: 3
 - {key: tier, operator: In, values: [frontend]}
 template:
 metadata:
 labels:
 tier: frontend
 spec:
 containers:
 - image: openshift/hello-openshift
 name: helloworld
 ports:
 - containerPort: 8080
 protocol: TCP
 restartPolicy: Always

CHAPTER 4. DEPLOYMENTS

53

Versioning of your application to support rollbacks either manually or automatically in case of
deployment failure.

Manual replication scaling and autoscaling.

When you create a DeploymentConfig object, a replication controller is created representing the
DeploymentConfig object’s pod template. If the deployment changes, a new replication controller is
created with the latest pod template, and a deployment process runs to scale down the old replication
controller and scale up the new one.

Instances of your application are automatically added and removed from both service load balancers
and routers as they are created. As long as your application supports graceful shutdown when it receives
the TERM signal, you can ensure that running user connections are given a chance to complete
normally.

The OpenShift Container Platform DeploymentConfig object defines the following details:

1. The elements of a ReplicationController definition.

2. Triggers for creating a new deployment automatically.

3. The strategy for transitioning between deployments.

4. Lifecycle hooks.

Each time a deployment is triggered, whether manually or automatically, a deployer pod manages the
deployment (including scaling down the old replication controller, scaling up the new one, and running
hooks). The deployment pod remains for an indefinite amount of time after it completes the
deployment to retain its logs of the deployment. When a deployment is superseded by another, the
previous replication controller is retained to enable easy rollback if needed.

Example DeploymentConfig definition

apiVersion: apps.openshift.io/v1
kind: DeploymentConfig
metadata:
 name: frontend
spec:
 replicas: 5
 selector:
 name: frontend
 template: { ... }
 triggers:
 - type: ConfigChange 1
 - imageChangeParams:
 automatic: true
 containerNames:
 - helloworld
 from:
 kind: ImageStreamTag
 name: hello-openshift:latest
 type: ImageChange 2
 strategy:
 type: Rolling 3

OpenShift Container Platform 4.7 Applications

54

1

2

3

A configuration change trigger results in a new replication controller whenever changes are
detected in the pod template of the deployment configuration.

An image change trigger causes a new deployment to be created each time a new version of the
backing image is available in the named image stream.

The default Rolling strategy makes a downtime-free transition between deployments.

4.1.3. Deployments

Kubernetes provides a first-class, native API object type in OpenShift Container Platform called
Deployment. Deployment objects serve as a descendant of the OpenShift Container Platform-specific
DeploymentConfig object.

Like DeploymentConfig objects, Deployment objects describe the desired state of a particular
component of an application as a pod template. Deployments create replica sets, which orchestrate pod
lifecycles.

For example, the following deployment definition creates a replica set to bring up one hello-openshift
pod:

Deployment definition

4.1.4. Comparing Deployment and DeploymentConfig objects

Both Kubernetes Deployment objects and OpenShift Container Platform-provided
DeploymentConfig objects are supported in OpenShift Container Platform; however, it is
recommended to use Deployment objects unless you need a specific feature or behavior provided by
DeploymentConfig objects.

The following sections go into more detail on the differences between the two object types to further
help you decide which type to use.

4.1.4.1. Design

apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello-openshift
spec:
 replicas: 1
 selector:
 matchLabels:
 app: hello-openshift
 template:
 metadata:
 labels:
 app: hello-openshift
 spec:
 containers:
 - name: hello-openshift
 image: openshift/hello-openshift:latest
 ports:
 - containerPort: 80

CHAPTER 4. DEPLOYMENTS

55

One important difference between Deployment and DeploymentConfig objects is the properties of
the CAP theorem that each design has chosen for the rollout process. DeploymentConfig objects
prefer consistency, whereas Deployments objects take availability over consistency.

For DeploymentConfig objects, if a node running a deployer pod goes down, it will not get replaced.
The process waits until the node comes back online or is manually deleted. Manually deleting the node
also deletes the corresponding pod. This means that you can not delete the pod to unstick the rollout,
as the kubelet is responsible for deleting the associated pod.

However, deployment rollouts are driven from a controller manager. The controller manager runs in high
availability mode on masters and uses leader election algorithms to value availability over consistency.
During a failure it is possible for other masters to act on the same deployment at the same time, but this
issue will be reconciled shortly after the failure occurs.

4.1.4.2. DeploymentConfig object-specific features

Automatic rollbacks
Currently, deployments do not support automatically rolling back to the last successfully deployed
replica set in case of a failure.

Triggers
Deployments have an implicit config change trigger in that every change in the pod template of a
deployment automatically triggers a new rollout. If you do not want new rollouts on pod template
changes, pause the deployment:

Lifecycle hooks
Deployments do not yet support any lifecycle hooks.

Custom strategies
Deployments do not support user-specified custom deployment strategies yet.

4.1.4.3. Deployment-specific features

Rollover
The deployment process for Deployment objects is driven by a controller loop, in contrast to
DeploymentConfig objects which use deployer pods for every new rollout. This means that the
Deployment object can have as many active replica sets as possible, and eventually the deployment
controller will scale down all old replica sets and scale up the newest one.

DeploymentConfig objects can have at most one deployer pod running, otherwise multiple deployers
end up conflicting while trying to scale up what they think should be the newest replication controller.
Because of this, only two replication controllers can be active at any point in time. Ultimately, this
translates to faster rapid rollouts for Deployment objects.

Proportional scaling
Because the deployment controller is the sole source of truth for the sizes of new and old replica sets
owned by a Deployment object, it is able to scale ongoing rollouts. Additional replicas are distributed
proportionally based on the size of each replica set.

DeploymentConfig objects cannot be scaled when a rollout is ongoing because the controller will end
up having issues with the deployer process about the size of the new replication controller.

Pausing mid-rollout

Deployments can be paused at any point in time, meaning you can also pause ongoing rollouts. On the

$ oc rollout pause deployments/<name>

OpenShift Container Platform 4.7 Applications

56

https://en.wikipedia.org/wiki/CAP_theorem

Deployments can be paused at any point in time, meaning you can also pause ongoing rollouts. On the
other hand, you cannot pause deployer pods currently, so if you try to pause a deployment in the middle
of a rollout, the deployer process will not be affected and will continue until it finishes.

4.2. MANAGING DEPLOYMENT PROCESSES

4.2.1. Managing DeploymentConfig objects

DeploymentConfig objects can be managed from the OpenShift Container Platform web console’s
Workloads page or using the oc CLI. The following procedures show CLI usage unless otherwise stated.

4.2.1.1. Starting a deployment

You can start a rollout to begin the deployment process of your application.

Procedure

1. To start a new deployment process from an existing DeploymentConfig object, run the
following command:

NOTE

If a deployment process is already in progress, the command displays a message
and a new replication controller will not be deployed.

4.2.1.2. Viewing a deployment

You can view a deployment to get basic information about all the available revisions of your application.

Procedure

1. To show details about all recently created replication controllers for the provided
DeploymentConfig object, including any currently running deployment process, run the
following command:

2. To view details specific to a revision, add the --revision flag:

3. For more detailed information about a DeploymentConfig object and its latest revision, use the
oc describe command:

4.2.1.3. Retrying a deployment

If the current revision of your DeploymentConfig object failed to deploy, you can restart the
deployment process.

$ oc rollout latest dc/<name>

$ oc rollout history dc/<name>

$ oc rollout history dc/<name> --revision=1

$ oc describe dc <name>

CHAPTER 4. DEPLOYMENTS

57

Procedure

1. To restart a failed deployment process:

If the latest revision of it was deployed successfully, the command displays a message and the
deployment process is not retried.

NOTE

Retrying a deployment restarts the deployment process and does not create a
new deployment revision. The restarted replication controller has the same
configuration it had when it failed.

4.2.1.4. Rolling back a deployment

Rollbacks revert an application back to a previous revision and can be performed using the REST API, the
CLI, or the web console.

Procedure

1. To rollback to the last successful deployed revision of your configuration:

The DeploymentConfig object’s template is reverted to match the deployment revision
specified in the undo command, and a new replication controller is started. If no revision is
specified with --to-revision, then the last successfully deployed revision is used.

2. Image change triggers on the DeploymentConfig object are disabled as part of the rollback to
prevent accidentally starting a new deployment process soon after the rollback is complete.
To re-enable the image change triggers:

NOTE

Deployment configs also support automatically rolling back to the last successful revision
of the configuration in case the latest deployment process fails. In that case, the latest
template that failed to deploy stays intact by the system and it is up to users to fix their
configurations.

4.2.1.5. Executing commands inside a container

You can add a command to a container, which modifies the container’s startup behavior by overruling
the image’s ENTRYPOINT. This is different from a lifecycle hook, which instead can be run once per
deployment at a specified time.

Procedure

1. Add the command parameters to the spec field of the DeploymentConfig object. You can

$ oc rollout retry dc/<name>

$ oc rollout undo dc/<name>

$ oc set triggers dc/<name> --auto

OpenShift Container Platform 4.7 Applications

58

1. Add the command parameters to the spec field of the DeploymentConfig object. You can
also add an args field, which modifies the command (or the ENTRYPOINT if command does
not exist).

For example, to execute the java command with the -jar and /opt/app-
root/springboots2idemo.jar arguments:

4.2.1.6. Viewing deployment logs

Procedure

1. To stream the logs of the latest revision for a given DeploymentConfig object:

If the latest revision is running or failed, the command returns the logs of the process that is
responsible for deploying your pods. If it is successful, it returns the logs from a pod of your
application.

2. You can also view logs from older failed deployment processes, if and only if these processes
(old replication controllers and their deployer pods) exist and have not been pruned or deleted
manually:

4.2.1.7. Deployment triggers

A DeploymentConfig object can contain triggers, which drive the creation of new deployment
processes in response to events inside the cluster.

spec:
 containers:
 - name: <container_name>
 image: 'image'
 command:
 - '<command>'
 args:
 - '<argument_1>'
 - '<argument_2>'
 - '<argument_3>'

spec:
 containers:
 - name: example-spring-boot
 image: 'image'
 command:
 - java
 args:
 - '-jar'
 - /opt/app-root/springboots2idemo.jar

$ oc logs -f dc/<name>

$ oc logs --version=1 dc/<name>

CHAPTER 4. DEPLOYMENTS

59

1

WARNING

If no triggers are defined on a DeploymentConfig object, a config change trigger is
added by default. If triggers are defined as an empty field, deployments must be
started manually.

Config change deployment triggers
The config change trigger results in a new replication controller whenever configuration changes are
detected in the pod template of the DeploymentConfig object.

NOTE

If a config change trigger is defined on a DeploymentConfig object, the first replication
controller is automatically created soon after the DeploymentConfig object itself is
created and it is not paused.

Config change deployment trigger

Image change deployment triggers
The image change trigger results in a new replication controller whenever the content of an image
stream tag changes (when a new version of the image is pushed).

Image change deployment trigger

If the imageChangeParams.automatic field is set to false, the trigger is disabled.

With the above example, when the latest tag value of the origin-ruby-sample image stream changes
and the new image value differs from the current image specified in the DeploymentConfig object’s
helloworld container, a new replication controller is created using the new image for the helloworld
container.

NOTE



triggers:
 - type: "ConfigChange"

triggers:
 - type: "ImageChange"
 imageChangeParams:
 automatic: true 1
 from:
 kind: "ImageStreamTag"
 name: "origin-ruby-sample:latest"
 namespace: "myproject"
 containerNames:
 - "helloworld"

OpenShift Container Platform 4.7 Applications

60

1

2

3

NOTE

If an image change trigger is defined on a DeploymentConfig object (with a config
change trigger and automatic=false, or with automatic=true) and the image stream tag
pointed by the image change trigger does not exist yet, the initial deployment process
will automatically start as soon as an image is imported or pushed by a build to the image
stream tag.

4.2.1.7.1. Setting deployment triggers

Procedure

1. You can set deployment triggers for a DeploymentConfig object using the oc set triggers
command. For example, to set a image change trigger, use the following command:

4.2.1.8. Setting deployment resources

A deployment is completed by a pod that consumes resources (memory, CPU, and ephemeral storage)
on a node. By default, pods consume unbounded node resources. However, if a project specifies default
container limits, then pods consume resources up to those limits.

NOTE

The minimum memory limit for a deployment is 12 MB. If a container fails to start due to a
Cannot allocate memory pod event, the memory limit is too low. Either increase or
remove the memory limit. Removing the limit allows pods to consume unbounded node
resources.

You can also limit resource use by specifying resource limits as part of the deployment strategy.
Deployment resources can be used with the recreate, rolling, or custom deployment strategies.

Procedure

1. In the following example, each of resources, cpu, memory, and ephemeral-storage is optional:

cpu is in CPU units: 100m represents 0.1 CPU units (100 * 1e-3).

memory is in bytes: 256Mi represents 268435456 bytes (256 * 2 ^ 20).

ephemeral-storage is in bytes: 1Gi represents 1073741824 bytes (2 ^ 30).

However, if a quota has been defined for your project, one of the following two items is required:

$ oc set triggers dc/<dc_name> \
 --from-image=<project>/<image>:<tag> -c <container_name>

type: "Recreate"
resources:
 limits:
 cpu: "100m" 1
 memory: "256Mi" 2
 ephemeral-storage: "1Gi" 3

CHAPTER 4. DEPLOYMENTS

61

1

A resources section set with an explicit requests:

The requests object contains the list of resources that correspond to the list of
resources in the quota.

A limit range defined in your project, where the defaults from the LimitRange object apply
to pods created during the deployment process.

To set deployment resources, choose one of the above options. Otherwise, deploy pod creation
fails, citing a failure to satisfy quota.

Additional resources

For more information about resource limits and requests, see Understanding managing
application memory.

4.2.1.9. Scaling manually

In addition to rollbacks, you can exercise fine-grained control over the number of replicas by manually
scaling them.

NOTE

Pods can also be auto-scaled using the oc autoscale command.

Procedure

1. To manually scale a DeploymentConfig object, use the oc scale command. For example, the
following command sets the replicas in the frontend DeploymentConfig object to 3.

The number of replicas eventually propagates to the desired and current state of the
deployment configured by the DeploymentConfig object frontend.

4.2.1.10. Accessing private repositories from DeploymentConfig objects

You can add a secret to your DeploymentConfig object so that it can access images from a private
repository. This procedure shows the OpenShift Container Platform web console method.

Procedure

1. Create a new project.

2. From the Workloads page, create a secret that contains credentials for accessing a private
image repository.

 type: "Recreate"
 resources:
 requests: 1
 cpu: "100m"
 memory: "256Mi"
 ephemeral-storage: "1Gi"

$ oc scale dc frontend --replicas=3

OpenShift Container Platform 4.7 Applications

62

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/nodes/#nodes-cluster-resource-configure-about_nodes-cluster-resource-configure

3. Create a DeploymentConfig object.

4. On the DeploymentConfig object editor page, set the Pull Secret and save your changes.

4.2.1.11. Assigning pods to specific nodes

You can use node selectors in conjunction with labeled nodes to control pod placement.

Cluster administrators can set the default node selector for a project in order to restrict pod placement
to specific nodes. As a developer, you can set a node selector on a Pod configuration to restrict nodes
even further.

Procedure

1. To add a node selector when creating a pod, edit the Pod configuration, and add the
nodeSelector value. This can be added to a single Pod configuration, or in a Pod template:

Pods created when the node selector is in place are assigned to nodes with the specified labels.
The labels specified here are used in conjunction with the labels added by a cluster
administrator.

For example, if a project has the type=user-node and region=east labels added to a project by
the cluster administrator, and you add the above disktype: ssd label to a pod, the pod is only
ever scheduled on nodes that have all three labels.

NOTE

Labels can only be set to one value, so setting a node selector of region=west in
a Pod configuration that has region=east as the administrator-set default,
results in a pod that will never be scheduled.

4.2.1.12. Running a pod with a different service account

You can run a pod with a service account other than the default.

Procedure

1. Edit the DeploymentConfig object:

2. Add the serviceAccount and serviceAccountName parameters to the spec field, and specify
the service account you want to use:

apiVersion: v1
kind: Pod
spec:
 nodeSelector:
 disktype: ssd
...

$ oc edit dc/<deployment_config>

spec:
 securityContext: {}
 serviceAccount: <service_account>

CHAPTER 4. DEPLOYMENTS

63

4.3. USING DEPLOYMENT STRATEGIES

A deployment strategy is a way to change or upgrade an application. The aim is to make the change
without downtime in a way that the user barely notices the improvements.

Because the end user usually accesses the application through a route handled by a router, the
deployment strategy can focus on DeploymentConfig object features or routing features. Strategies
that focus on the deployment impact all routes that use the application. Strategies that use router
features target individual routes.

Many deployment strategies are supported through the DeploymentConfig object, and some
additional strategies are supported through router features. Deployment strategies are discussed in this
section.

Choosing a deployment strategy

Consider the following when choosing a deployment strategy:

Long-running connections must be handled gracefully.

Database conversions can be complex and must be done and rolled back along with the
application.

If the application is a hybrid of microservices and traditional components, downtime might be
required to complete the transition.

You must have the infrastructure to do this.

If you have a non-isolated test environment, you can break both new and old versions.

A deployment strategy uses readiness checks to determine if a new pod is ready for use. If a readiness
check fails, the DeploymentConfig object retries to run the pod until it times out. The default timeout
is 10m, a value set in TimeoutSeconds in dc.spec.strategy.*params.

4.3.1. Rolling strategy

A rolling deployment slowly replaces instances of the previous version of an application with instances of
the new version of the application. The rolling strategy is the default deployment strategy used if no
strategy is specified on a DeploymentConfig object.

A rolling deployment typically waits for new pods to become ready via a readiness check before scaling
down the old components. If a significant issue occurs, the rolling deployment can be aborted.

When to use a rolling deployment:

When you want to take no downtime during an application update.

When your application supports having old code and new code running at the same time.

A rolling deployment means you have both old and new versions of your code running at the same time.
This typically requires that your application handle N-1 compatibility.

Example rolling strategy definition

 serviceAccountName: <service_account>

OpenShift Container Platform 4.7 Applications

64

1

2

3

4

5

6

The time to wait between individual pod updates. If unspecified, this value defaults to 1.

The time to wait between polling the deployment status after update. If unspecified, this value
defaults to 1.

The time to wait for a scaling event before giving up. Optional; the default is 600. Here, giving up
means automatically rolling back to the previous complete deployment.

maxSurge is optional and defaults to 25% if not specified. See the information below the following
procedure.

maxUnavailable is optional and defaults to 25% if not specified. See the information below the
following procedure.

pre and post are both lifecycle hooks.

The rolling strategy:

1. Executes any pre lifecycle hook.

2. Scales up the new replication controller based on the surge count.

3. Scales down the old replication controller based on the max unavailable count.

4. Repeats this scaling until the new replication controller has reached the desired replica count
and the old replication controller has been scaled to zero.

5. Executes any post lifecycle hook.

IMPORTANT

When scaling down, the rolling strategy waits for pods to become ready so it can decide
whether further scaling would affect availability. If scaled up pods never become ready,
the deployment process will eventually time out and result in a deployment failure.

The maxUnavailable parameter is the maximum number of pods that can be unavailable during the
update. The maxSurge parameter is the maximum number of pods that can be scheduled above the
original number of pods. Both parameters can be set to either a percentage (e.g., 10%) or an absolute
value (e.g., 2). The default value for both is 25%.

These parameters allow the deployment to be tuned for availability and speed. For example:

maxUnavailable*=0 and maxSurge*=20% ensures full capacity is maintained during the

strategy:
 type: Rolling
 rollingParams:
 updatePeriodSeconds: 1 1
 intervalSeconds: 1 2
 timeoutSeconds: 120 3
 maxSurge: "20%" 4
 maxUnavailable: "10%" 5
 pre: {} 6
 post: {}

CHAPTER 4. DEPLOYMENTS

65

maxUnavailable*=0 and maxSurge*=20% ensures full capacity is maintained during the
update and rapid scale up.

maxUnavailable*=10% and maxSurge*=0 performs an update using no extra capacity (an in-
place update).

maxUnavailable*=10% and maxSurge*=10% scales up and down quickly with some potential
for capacity loss.

Generally, if you want fast rollouts, use maxSurge. If you have to take into account resource quota and
can accept partial unavailability, use maxUnavailable.

4.3.1.1. Canary deployments

All rolling deployments in OpenShift Container Platform are canary deployments ; a new version (the
canary) is tested before all of the old instances are replaced. If the readiness check never succeeds, the
canary instance is removed and the DeploymentConfig object will be automatically rolled back.

The readiness check is part of the application code and can be as sophisticated as necessary to ensure
the new instance is ready to be used. If you must implement more complex checks of the application
(such as sending real user workloads to the new instance), consider implementing a custom deployment
or using a blue-green deployment strategy.

4.3.1.2. Creating a rolling deployment

Rolling deployments are the default type in OpenShift Container Platform. You can create a rolling
deployment using the CLI.

Procedure

1. Create an application based on the example deployment images found in Quay.io:

2. If you have the router installed, make the application available via a route or use the service IP
directly.

3. Browse to the application at deployment-example.<project>.<router_domain> to verify you
see the v1 image.

4. Scale the DeploymentConfig object up to three replicas:

5. Trigger a new deployment automatically by tagging a new version of the example as the latest
tag:

6. In your browser, refresh the page until you see the v2 image.

7. When using the CLI, the following command shows how many pods are on version 1 and how

$ oc new-app quay.io/openshifttest/deployment-example:latest

$ oc expose svc/deployment-example

$ oc scale dc/deployment-example --replicas=3

$ oc tag deployment-example:v2 deployment-example:latest

OpenShift Container Platform 4.7 Applications

66

https://quay.io/repository/openshifttest/deployment-example

7. When using the CLI, the following command shows how many pods are on version 1 and how
many are on version 2. In the web console, the pods are progressively added to v2 and removed
from v1:

During the deployment process, the new replication controller is incrementally scaled up. After the new
pods are marked as ready (by passing their readiness check), the deployment process continues.

If the pods do not become ready, the process aborts, and the deployment rolls back to its previous
version.

4.3.1.3. Starting a rolling deployment using the Developer perspective

Prerequisites

Ensure that you are in the Developer perspective of the web console.

Ensure that you have created an application using the Add view and see it deployed in the
Topology view.

Procedure

To start a rolling deployment to upgrade an application:

1. In the Topology view of the Developer perspective, click on the application node to see the
Overview tab in the side panel. Note that the Update Strategy is set to the default Rolling
strategy.

2. In the Actions drop-down menu, select Start Rollout to start a rolling update. The rolling
deployment spins up the new version of the application and then terminates the old one.

Figure 4.1. Rolling update

$ oc describe dc deployment-example

CHAPTER 4. DEPLOYMENTS

67

1

2

Figure 4.1. Rolling update

Additional resources

Creating and deploying applications on OpenShift Container Platform using the Developer
perspective

Viewing the applications in your project, verifying their deployment status, and interacting with
them in the Topology view

4.3.2. Recreate strategy

The recreate strategy has basic rollout behavior and supports lifecycle hooks for injecting code into the
deployment process.

Example recreate strategy definition

recreateParams are optional.

pre, mid, and post are lifecycle hooks.

strategy:
 type: Recreate
 recreateParams: 1
 pre: {} 2
 mid: {}
 post: {}

OpenShift Container Platform 4.7 Applications

68

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#odc-creating-applications-using-developer-perspective
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#odc-viewing-application-composition-using-topology-view

The recreate strategy:

1. Executes any pre lifecycle hook.

2. Scales down the previous deployment to zero.

3. Executes any mid lifecycle hook.

4. Scales up the new deployment.

5. Executes any post lifecycle hook.

IMPORTANT

During scale up, if the replica count of the deployment is greater than one, the first
replica of the deployment will be validated for readiness before fully scaling up the
deployment. If the validation of the first replica fails, the deployment will be considered a
failure.

When to use a recreate deployment:

When you must run migrations or other data transformations before your new code starts.

When you do not support having new and old versions of your application code running at the
same time.

When you want to use a RWO volume, which is not supported being shared between multiple
replicas.

A recreate deployment incurs downtime because, for a brief period, no instances of your application are
running. However, your old code and new code do not run at the same time.

4.3.3. Starting a recreate deployment using the Developer perspective

You can switch the deployment strategy from the default rolling update to a recreate update using the
Developer perspective in the web console.

Prerequisites

Ensure that you are in the Developer perspective of the web console.

Ensure that you have created an application using the Add view and see it deployed in the
Topology view.

Procedure

To switch to a recreate update strategy and to upgrade an application:

1. In the Actions drop-down menu, select Edit Deployment Config to see the deployment
configuration details of the application.

2. In the YAML editor, change the spec.strategy.type to Recreate and click Save.

3. In the Topology view, select the node to see the Overview tab in the side panel. The Update
Strategy is now set to Recreate.

4. Use the Actions drop-down menu to select Start Rollout to start an update using the recreate

CHAPTER 4. DEPLOYMENTS

69

4. Use the Actions drop-down menu to select Start Rollout to start an update using the recreate
strategy. The recreate strategy first terminates pods for the older version of the application and
then spins up pods for the new version.

Figure 4.2. Recreate update

Additional resources

Creating and deploying applications on OpenShift Container Platform using the Developer
perspective

Viewing the applications in your project, verifying their deployment status, and interacting with
them in the Topology view

4.3.4. Custom strategy

The custom strategy allows you to provide your own deployment behavior.

Example custom strategy definition

strategy:

OpenShift Container Platform 4.7 Applications

70

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#odc-creating-applications-using-developer-perspective
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#odc-viewing-application-composition-using-topology-view

In the above example, the organization/strategy container image provides the deployment behavior.
The optional command array overrides any CMD directive specified in the image’s Dockerfile. The
optional environment variables provided are added to the execution environment of the strategy
process.

Additionally, OpenShift Container Platform provides the following environment variables to the
deployment process:

Environment variable Description

OPENSHIFT_DEPLOYMENT_
NAME

The name of the new deployment, a replication controller.

OPENSHIFT_DEPLOYMENT_
NAMESPACE

The name space of the new deployment.

The replica count of the new deployment will initially be zero. The responsibility of the strategy is to
make the new deployment active using the logic that best serves the needs of the user.

Alternatively, use the customParams object to inject the custom deployment logic into the existing
deployment strategies. Provide a custom shell script logic and call the openshift-deploy binary. Users
do not have to supply their custom deployer container image; in this case, the default OpenShift
Container Platform deployer image is used instead:

This results in following deployment:

 type: Custom
 customParams:
 image: organization/strategy
 command: ["command", "arg1"]
 environment:
 - name: ENV_1
 value: VALUE_1

strategy:
 type: Rolling
 customParams:
 command:
 - /bin/sh
 - -c
 - |
 set -e
 openshift-deploy --until=50%
 echo Halfway there
 openshift-deploy
 echo Complete

Started deployment #2
--> Scaling up custom-deployment-2 from 0 to 2, scaling down custom-deployment-1 from 2 to 0
(keep 2 pods available, don't exceed 3 pods)
 Scaling custom-deployment-2 up to 1
--> Reached 50% (currently 50%)
Halfway there

CHAPTER 4. DEPLOYMENTS

71

1

If the custom deployment strategy process requires access to the OpenShift Container Platform API or
the Kubernetes API the container that executes the strategy can use the service account token available
inside the container for authentication.

4.3.5. Lifecycle hooks

The rolling and recreate strategies support lifecycle hooks, or deployment hooks, which allow behavior to
be injected into the deployment process at predefined points within the strategy:

Example pre lifecycle hook

execNewPod is a pod-based lifecycle hook.

Every hook has a failure policy, which defines the action the strategy should take when a hook failure is
encountered:

Abort The deployment process will be considered a failure if the hook fails.

Retry The hook execution should be retried until it succeeds.

Ignore Any hook failure should be ignored and the deployment should proceed.

Hooks have a type-specific field that describes how to execute the hook. Currently, pod-based hooks
are the only supported hook type, specified by the execNewPod field.

Pod-based lifecycle hook
Pod-based lifecycle hooks execute hook code in a new pod derived from the template in a
DeploymentConfig object.

The following simplified example deployment uses the rolling strategy. Triggers and some other minor
details are omitted for brevity:

--> Scaling up custom-deployment-2 from 1 to 2, scaling down custom-deployment-1 from 2 to 0
(keep 2 pods available, don't exceed 3 pods)
 Scaling custom-deployment-1 down to 1
 Scaling custom-deployment-2 up to 2
 Scaling custom-deployment-1 down to 0
--> Success
Complete

pre:
 failurePolicy: Abort
 execNewPod: {} 1

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
 name: frontend
spec:
 template:
 metadata:
 labels:

OpenShift Container Platform 4.7 Applications

72

1

2

3

4

The helloworld name refers to spec.template.spec.containers[0].name.

This command overrides any ENTRYPOINT defined by the openshift/origin-ruby-sample image.

env is an optional set of environment variables for the hook container.

volumes is an optional set of volume references for the hook container.

In this example, the pre hook will be executed in a new pod using the openshift/origin-ruby-sample
image from the helloworld container. The hook pod has the following properties:

The hook command is /usr/bin/command arg1 arg2.

The hook container has the CUSTOM_VAR1=custom_value1 environment variable.

The hook failure policy is Abort, meaning the deployment process fails if the hook fails.

The hook pod inherits the data volume from the DeploymentConfig object pod.

4.3.5.1. Setting lifecycle hooks

You can set lifecycle hooks, or deployment hooks, for a deployment using the CLI.

Procedure

1. Use the oc set deployment-hook command to set the type of hook you want: --pre, --mid, or --
post. For example, to set a pre-deployment hook:

 name: frontend
 spec:
 containers:
 - name: helloworld
 image: openshift/origin-ruby-sample
 replicas: 5
 selector:
 name: frontend
 strategy:
 type: Rolling
 rollingParams:
 pre:
 failurePolicy: Abort
 execNewPod:
 containerName: helloworld 1
 command: ["/usr/bin/command", "arg1", "arg2"] 2
 env: 3
 - name: CUSTOM_VAR1
 value: custom_value1
 volumes:
 - data 4

$ oc set deployment-hook dc/frontend \
 --pre -c helloworld -e CUSTOM_VAR1=custom_value1 \
 --volumes data --failure-policy=abort -- /usr/bin/command arg1 arg2

CHAPTER 4. DEPLOYMENTS

73

4.4. USING ROUTE-BASED DEPLOYMENT STRATEGIES

Deployment strategies provide a way for the application to evolve. Some strategies use Deployment
objects to make changes that are seen by users of all routes that resolve to the application. Other
advanced strategies, such as the ones described in this section, use router features in conjunction with
Deployment objects to impact specific routes.

The most common route-based strategy is to use a blue-green deployment . The new version (the green
version) is brought up for testing and evaluation, while the users still use the stable version (the blue
version). When ready, the users are switched to the green version. If a problem arises, you can switch
back to the blue version.

A common alternative strategy is to use A/B versions that are both active at the same time and some
users use one version, and some users use the other version. This can be used for experimenting with
user interface changes and other features to get user feedback. It can also be used to verify proper
operation in a production context where problems impact a limited number of users.

A canary deployment tests the new version but when a problem is detected it quickly falls back to the
previous version. This can be done with both of the above strategies.

The route-based deployment strategies do not scale the number of pods in the services. To maintain
desired performance characteristics the deployment configurations might have to be scaled.

4.4.1. Proxy shards and traffic splitting

In production environments, you can precisely control the distribution of traffic that lands on a particular
shard. When dealing with large numbers of instances, you can use the relative scale of individual shards
to implement percentage based traffic. That combines well with a proxy shard , which forwards or splits
the traffic it receives to a separate service or application running elsewhere.

In the simplest configuration, the proxy forwards requests unchanged. In more complex setups, you can
duplicate the incoming requests and send to both a separate cluster as well as to a local instance of the
application, and compare the result. Other patterns include keeping the caches of a DR installation
warm, or sampling incoming traffic for analysis purposes.

Any TCP (or UDP) proxy could be run under the desired shard. Use the oc scale command to alter the
relative number of instances serving requests under the proxy shard. For more complex traffic
management, consider customizing the OpenShift Container Platform router with proportional
balancing capabilities.

4.4.2. N-1 compatibility

Applications that have new code and old code running at the same time must be careful to ensure that
data written by the new code can be read and handled (or gracefully ignored) by the old version of the
code. This is sometimes called schema evolution and is a complex problem.

This can take many forms: data stored on disk, in a database, in a temporary cache, or that is part of a
user’s browser session. While most web applications can support rolling deployments, it is important to
test and design your application to handle it.

For some applications, the period of time that old code and new code is running side by side is short, so
bugs or some failed user transactions are acceptable. For others, the failure pattern may result in the
entire application becoming non-functional.

One way to validate N-1 compatibility is to use an A/B deployment: run the old code and new code at the

OpenShift Container Platform 4.7 Applications

74

One way to validate N-1 compatibility is to use an A/B deployment: run the old code and new code at the
same time in a controlled way in a test environment, and verify that traffic that flows to the new
deployment does not cause failures in the old deployment.

4.4.3. Graceful termination

OpenShift Container Platform and Kubernetes give application instances time to shut down before
removing them from load balancing rotations. However, applications must ensure they cleanly terminate
user connections as well before they exit.

On shutdown, OpenShift Container Platform sends a TERM signal to the processes in the container.
Application code, on receiving SIGTERM, stop accepting new connections. This ensures that load
balancers route traffic to other active instances. The application code then waits until all open
connections are closed, or gracefully terminate individual connections at the next opportunity, before
exiting.

After the graceful termination period expires, a process that has not exited is sent the KILL signal, which
immediately ends the process. The terminationGracePeriodSeconds attribute of a pod or pod
template controls the graceful termination period (default 30 seconds) and can be customized per
application as necessary.

4.4.4. Blue-green deployments

Blue-green deployments involve running two versions of an application at the same time and moving
traffic from the in-production version (the blue version) to the newer version (the green version). You
can use a rolling strategy or switch services in a route.

Because many applications depend on persistent data, you must have an application that supports N-1
compatibility, which means it shares data and implements live migration between the database, store, or
disk by creating two copies of the data layer.

Consider the data used in testing the new version. If it is the production data, a bug in the new version
can break the production version.

4.4.4.1. Setting up a blue-green deployment

Blue-green deployments use two Deployment objects. Both are running, and the one in production
depends on the service the route specifies, with each Deployment object exposed to a different service.

NOTE

Routes are intended for web (HTTP and HTTPS) traffic, so this technique is best suited
for web applications.

You can create a new route to the new version and test it. When ready, change the service in the
production route to point to the new service and the new (green) version is live.

If necessary, you can roll back to the older (blue) version by switching the service back to the previous
version.

Procedure

1. Create two independent application components.

a. Create a copy of the example application running the v1 image under the example-blue

CHAPTER 4. DEPLOYMENTS

75

a. Create a copy of the example application running the v1 image under the example-blue
service:

b. Create a second copy that uses the v2 image under the example-green service:

2. Create a route that points to the old service:

3. Browse to the application at bluegreen-example-<project>.<router_domain> to verify you
see the v1 image.

4. Edit the route and change the service name to example-green:

5. To verify that the route has changed, refresh the browser until you see the v2 image.

4.4.5. A/B deployments

The A/B deployment strategy lets you try a new version of the application in a limited way in the
production environment. You can specify that the production version gets most of the user requests
while a limited fraction of requests go to the new version.

Because you control the portion of requests to each version, as testing progresses you can increase the
fraction of requests to the new version and ultimately stop using the previous version. As you adjust the
request load on each version, the number of pods in each service might have to be scaled as well to
provide the expected performance.

In addition to upgrading software, you can use this feature to experiment with versions of the user
interface. Since some users get the old version and some the new, you can evaluate the user’s reaction
to the different versions to inform design decisions.

For this to be effective, both the old and new versions must be similar enough that both can run at the
same time. This is common with bug fix releases and when new features do not interfere with the old.
The versions require N-1 compatibility to properly work together.

OpenShift Container Platform supports N-1 compatibility through the web console as well as the CLI.

4.4.5.1. Load balancing for A/B testing

The user sets up a route with multiple services. Each service handles a version of the application.

Each service is assigned a weight and the portion of requests to each service is the service_weight
divided by the sum_of_weights. The weight for each service is distributed to the service’s endpoints so
that the sum of the endpoint weights is the service weight.

The route can have up to four services. The weight for the service can be between 0 and 256. When the
weight is 0, the service does not participate in load-balancing but continues to serve existing persistent
connections. When the service weight is not 0, each endpoint has a minimum weight of 1. Because of

$ oc new-app openshift/deployment-example:v1 --name=example-blue

$ oc new-app openshift/deployment-example:v2 --name=example-green

$ oc expose svc/example-blue --name=bluegreen-example

$ oc patch route/bluegreen-example -p '{"spec":{"to":{"name":"example-green"}}}'

OpenShift Container Platform 4.7 Applications

76

this, a service with a lot of endpoints can end up with higher weight than intended. In this case, reduce
the number of pods to get the expected load balance weight.

Procedure

To set up the A/B environment:

1. Create the two applications and give them different names. Each creates a Deployment object.
The applications are versions of the same program; one is usually the current production version
and the other the proposed new version.

a. Create the first application. The following example creates an application called ab-
example-a:

b. Create the second application:

Both applications are deployed and services are created.

2. Make the application available externally via a route. At this point, you can expose either. It can
be convenient to expose the current production version first and later modify the route to add
the new version.

Browse to the application at ab-example-a.<project>.<router_domain> to verify that you see
the expected version.

3. When you deploy the route, the router balances the traffic according to the weights specified
for the services. At this point, there is a single service with default weight=1 so all requests go to
it. Adding the other service as an alternateBackends and adjusting the weights brings the A/B
setup to life. This can be done by the oc set route-backends command or by editing the route.
Setting the oc set route-backend to 0 means the service does not participate in load-
balancing, but continues to serve existing persistent connections.

NOTE

Changes to the route just change the portion of traffic to the various services.
You might have to scale the deployment to adjust the number of pods to handle
the anticipated loads.

To edit the route, run:

Example output

$ oc new-app openshift/deployment-example --name=ab-example-a

$ oc new-app openshift/deployment-example:v2 --name=ab-example-b

$ oc expose svc/ab-example-a

$ oc edit route <route_name>

...
metadata:
 name: route-alternate-service
 annotations:

CHAPTER 4. DEPLOYMENTS

77

4.4.5.1.1. Managing weights of an existing route using the web console

Procedure

1. Navigate to the Networking → Routes page.

2. Click the Actions menu next to the route you want to edit and select Edit Route.

3. Edit the YAML file. Update the weight to be an integer between 0 and 256 that specifies the
relative weight of the target against other target reference objects. The value 0 suppresses
requests to this back end. The default is 100. Run oc explain routes.spec.alternateBackends
for more information about the options.

4. Click Save.

4.4.5.1.2. Managing weights of an new route using the web console

1. Navigate to the Networking → Routes page.

2. Click Create Route.

3. Enter the route Name.

4. Select the Service.

5. Click Add Alternate Service.

6. Enter a value for Weight and Alternate Service Weight. Enter a number between 0 and 255
that depicts relative weight compared with other targets. The default is 100.

7. Select the Target Port.

8. Click Create.

4.4.5.1.3. Managing weights using the CLI

Procedure

1. To manage the services and corresponding weights load balanced by the route, use the oc set
route-backends command:

 haproxy.router.openshift.io/balance: roundrobin
spec:
 host: ab-example.my-project.my-domain
 to:
 kind: Service
 name: ab-example-a
 weight: 10
 alternateBackends:
 - kind: Service
 name: ab-example-b
 weight: 15
...

OpenShift Container Platform 4.7 Applications

78

For example, the following sets ab-example-a as the primary service with weight=198 and ab-
example-b as the first alternate service with a weight=2:

This means 99% of traffic is sent to service ab-example-a and 1% to service ab-example-b.

This command does not scale the deployment. You might be required to do so to have enough
pods to handle the request load.

2. Run the command with no flags to verify the current configuration:

Example output

3. To alter the weight of an individual service relative to itself or to the primary service, use the --
adjust flag. Specifying a percentage adjusts the service relative to either the primary or the first
alternate (if you specify the primary). If there are other backends, their weights are kept
proportional to the changed.
The following example alters the weight of ab-example-a and ab-example-b services:

Alternatively, alter the weight of a service by specifying a percentage:

By specifying + before the percentage declaration, you can adjust a weighting relative to the
current setting. For example:

The --equal flag sets the weight of all services to 100:

The --zero flag sets the weight of all services to 0. All requests then return with a 503 error.

NOTE

Not all routers may support multiple or weighted backends.

4.4.5.1.4. One service, multiple Deployment objects

$ oc set route-backends ROUTENAME \
 [--zero|--equal] [--adjust] SERVICE=WEIGHT[%] [...] [options]

$ oc set route-backends ab-example ab-example-a=198 ab-example-b=2

$ oc set route-backends ab-example

NAME KIND TO WEIGHT
routes/ab-example Service ab-example-a 198 (99%)
routes/ab-example Service ab-example-b 2 (1%)

$ oc set route-backends ab-example --adjust ab-example-a=200 ab-example-b=10

$ oc set route-backends ab-example --adjust ab-example-b=5%

$ oc set route-backends ab-example --adjust ab-example-b=+15%

$ oc set route-backends ab-example --equal

CHAPTER 4. DEPLOYMENTS

79

Procedure

1. Create a new application, adding a label ab-example=true that will be common to all shards:

The application is deployed and a service is created. This is the first shard.

2. Make the application available via a route, or use the service IP directly:

3. Browse to the application at ab-example-<project_name>.<router_domain> to verify you see
the v1 image.

4. Create a second shard based on the same source image and label as the first shard, but with a
different tagged version and unique environment variables:

5. At this point, both sets of pods are being served under the route. However, because both
browsers (by leaving a connection open) and the router (by default, through a cookie) attempt
to preserve your connection to a back-end server, you might not see both shards being
returned to you.
To force your browser to one or the other shard:

a. Use the oc scale command to reduce replicas of ab-example-a to 0.

Refresh your browser to show v2 and shard B (in red).

b. Scale ab-example-a to 1 replica and ab-example-b to 0:

Refresh your browser to show v1 and shard A (in blue).

6. If you trigger a deployment on either shard, only the pods in that shard are affected. You can
trigger a deployment by changing the SUBTITLE environment variable in either Deployment
object:

or

$ oc new-app openshift/deployment-example --name=ab-example-a --as-deployment-
config=true --labels=ab-example=true --env=SUBTITLE\=shardA
$ oc delete svc/ab-example-a

$ oc expose deployment ab-example-a --name=ab-example --selector=ab-example\=true
$ oc expose service ab-example

$ oc new-app openshift/deployment-example:v2 \
 --name=ab-example-b --labels=ab-example=true \
 SUBTITLE="shard B" COLOR="red" --as-deployment-config=true
$ oc delete svc/ab-example-b

$ oc scale dc/ab-example-a --replicas=0

$ oc scale dc/ab-example-a --replicas=1; oc scale dc/ab-example-b --replicas=0

$ oc edit dc/ab-example-a

$ oc edit dc/ab-example-b

OpenShift Container Platform 4.7 Applications

80

CHAPTER 5. QUOTAS

5.1. RESOURCE QUOTAS PER PROJECT

A resource quota, defined by a ResourceQuota object, provides constraints that limit aggregate
resource consumption per project. It can limit the quantity of objects that can be created in a project by
type, as well as the total amount of compute resources and storage that might be consumed by
resources in that project.

This guide describes how resource quotas work, how cluster administrators can set and manage
resource quotas on a per project basis, and how developers and cluster administrators can view them.

5.1.1. Resources managed by quotas

The following describes the set of compute resources and object types that can be managed by a
quota.

NOTE

A pod is in a terminal state if status.phase in (Failed, Succeeded) is true.

Table 5.1. Compute resources managed by quota

Resource Name Description

cpu The sum of CPU requests across all pods in a non-terminal state cannot exceed
this value. cpu and requests.cpu are the same value and can be used
interchangeably.

memory The sum of memory requests across all pods in a non-terminal state cannot
exceed this value. memory and requests.memory are the same value and
can be used interchangeably.

ephemeral-storage The sum of local ephemeral storage requests across all pods in a non-terminal
state cannot exceed this value. ephemeral-storage and
requests.ephemeral-storage are the same value and can be used
interchangeably.

requests.cpu The sum of CPU requests across all pods in a non-terminal state cannot exceed
this value. cpu and requests.cpu are the same value and can be used
interchangeably.

requests.memory The sum of memory requests across all pods in a non-terminal state cannot
exceed this value. memory and requests.memory are the same value and
can be used interchangeably.

requests.ephemeral-
storage

The sum of ephemeral storage requests across all pods in a non-terminal state
cannot exceed this value. ephemeral-storage and requests.ephemeral-
storage are the same value and can be used interchangeably.

CHAPTER 5. QUOTAS

81

limits.cpu The sum of CPU limits across all pods in a non-terminal state cannot exceed
this value.

limits.memory The sum of memory limits across all pods in a non-terminal state cannot exceed
this value.

limits.ephemeral-
storage

The sum of ephemeral storage limits across all pods in a non-terminal state
cannot exceed this value.

Resource Name Description

Table 5.2. Storage resources managed by quota

Resource Name Description

requests.storage The sum of storage requests across all persistent volume claims in any state
cannot exceed this value.

persistentvolumeclaim
s

The total number of persistent volume claims that can exist in the project.

<storage-class-
name>.storageclass.st
orage.k8s.io/requests.
storage

The sum of storage requests across all persistent volume claims in any state
that have a matching storage class, cannot exceed this value.

<storage-class-
name>.storageclass.st
orage.k8s.io/persistent
volumeclaims

The total number of persistent volume claims with a matching storage class
that can exist in the project.

Table 5.3. Object counts managed by quota

Resource Name Description

pods The total number of pods in a non-terminal state that can exist in the project.

replicationcontrollers The total number of ReplicationControllers that can exist in the project.

resourcequotas The total number of resource quotas that can exist in the project.

services The total number of services that can exist in the project.

services.loadbalancers The total number of services of type LoadBalancer that can exist in the
project.

services.nodeports The total number of services of type NodePort that can exist in the project.

OpenShift Container Platform 4.7 Applications

82

secrets The total number of secrets that can exist in the project.

configmaps The total number of ConfigMap objects that can exist in the project.

persistentvolumeclaim
s

The total number of persistent volume claims that can exist in the project.

openshift.io/imagestre
ams

The total number of imagestreams that can exist in the project.

Resource Name Description

5.1.2. Quota scopes

Each quota can have an associated set of scopes. A quota only measures usage for a resource if it
matches the intersection of enumerated scopes.

Adding a scope to a quota restricts the set of resources to which that quota can apply. Specifying a
resource outside of the allowed set results in a validation error.

Scope Description

Terminating Match pods where spec.activeDeadlineSeconds
>= 0.

NotTerminating Match pods where spec.activeDeadlineSeconds
is nil.

BestEffort Match pods that have best effort quality of service
for either cpu or memory.

NotBestEffort Match pods that do not have best effort quality of
service for cpu and memory.

A BestEffort scope restricts a quota to limiting the following resources:

pods

A Terminating, NotTerminating, and NotBestEffort scope restricts a quota to tracking the following
resources:

pods

memory

requests.memory

limits.memory

cpu

CHAPTER 5. QUOTAS

83

requests.cpu

limits.cpu

ephemeral-storage

requests.ephemeral-storage

limits.ephemeral-storage

5.1.3. Quota enforcement

After a resource quota for a project is first created, the project restricts the ability to create any new
resources that may violate a quota constraint until it has calculated updated usage statistics.

After a quota is created and usage statistics are updated, the project accepts the creation of new
content. When you create or modify resources, your quota usage is incremented immediately upon the
request to create or modify the resource.

When you delete a resource, your quota use is decremented during the next full recalculation of quota
statistics for the project. A configurable amount of time determines how long it takes to reduce quota
usage statistics to their current observed system value.

If project modifications exceed a quota usage limit, the server denies the action, and an appropriate
error message is returned to the user explaining the quota constraint violated, and what their currently
observed usage statistics are in the system.

5.1.4. Requests versus limits

When allocating compute resources, each container might specify a request and a limit value each for
CPU, memory, and ephemeral storage. Quotas can restrict any of these values.

If the quota has a value specified for requests.cpu or requests.memory, then it requires that every
incoming container make an explicit request for those resources. If the quota has a value specified for
limits.cpu or limits.memory, then it requires that every incoming container specify an explicit limit for
those resources.

5.1.5. Sample resource quota definitions

core-object-counts.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: core-object-counts
spec:
 hard:
 configmaps: "10" 1
 persistentvolumeclaims: "4" 2
 replicationcontrollers: "20" 3
 secrets: "10" 4
 services: "10" 5
 services.loadbalancers: "2" 6

OpenShift Container Platform 4.7 Applications

84

1

2

3

4

5

6

1

1

2

3

4

5

6

The total number of ConfigMap objects that can exist in the project.

The total number of persistent volume claims (PVCs) that can exist in the project.

The total number of replication controllers that can exist in the project.

The total number of secrets that can exist in the project.

The total number of services that can exist in the project.

The total number of services of type LoadBalancer that can exist in the project.

openshift-object-counts.yaml

The total number of image streams that can exist in the project.

compute-resources.yaml

The total number of pods in a non-terminal state that can exist in the project.

Across all pods in a non-terminal state, the sum of CPU requests cannot exceed 1 core.

Across all pods in a non-terminal state, the sum of memory requests cannot exceed 1Gi.

Across all pods in a non-terminal state, the sum of ephemeral storage requests cannot exceed 2Gi.

Across all pods in a non-terminal state, the sum of CPU limits cannot exceed 2 cores.

Across all pods in a non-terminal state, the sum of memory limits cannot exceed 2Gi.

apiVersion: v1
kind: ResourceQuota
metadata:
 name: openshift-object-counts
spec:
 hard:
 openshift.io/imagestreams: "10" 1

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources
spec:
 hard:
 pods: "4" 1
 requests.cpu: "1" 2
 requests.memory: 1Gi 3
 requests.ephemeral-storage: 2Gi 4
 limits.cpu: "2" 5
 limits.memory: 2Gi 6
 limits.ephemeral-storage: 4Gi 7

CHAPTER 5. QUOTAS

85

7

1

2

1

2

3

4

Across all pods in a non-terminal state, the sum of ephemeral storage limits cannot exceed 4Gi.

besteffort.yaml

The total number of pods in a non-terminal state with BestEffort quality of service that can exist in
the project.

Restricts the quota to only matching pods that have BestEffort quality of service for either
memory or CPU.

compute-resources-long-running.yaml

The total number of pods in a non-terminal state.

Across all pods in a non-terminal state, the sum of CPU limits cannot exceed this value.

Across all pods in a non-terminal state, the sum of memory limits cannot exceed this value.

Restricts the quota to only matching pods where spec.activeDeadlineSeconds is set to nil. Build
pods fall under NotTerminating unless the RestartNever policy is applied.

compute-resources-time-bound.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: besteffort
spec:
 hard:
 pods: "1" 1
 scopes:
 - BestEffort 2

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources-long-running
spec:
 hard:
 pods: "4" 1
 limits.cpu: "4" 2
 limits.memory: "2Gi" 3
 scopes:
 - NotTerminating 4

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources-time-bound
spec:
 hard:

OpenShift Container Platform 4.7 Applications

86

1

2

3

4

1

2

3

4

5

6

7

The total number of pods in a terminating state.

Across all pods in a terminating state, the sum of CPU limits cannot exceed this value.

Across all pods in a terminating state, the sum of memory limits cannot exceed this value.

Restricts the quota to only matching pods where spec.activeDeadlineSeconds >=0. For example,
this quota charges for build or deployer pods, but not long running pods like a web server or
database.

storage-consumption.yaml

The total number of persistent volume claims in a project

Across all persistent volume claims in a project, the sum of storage requested cannot exceed this
value.

Across all persistent volume claims in a project, the sum of storage requested in the gold storage
class cannot exceed this value.

Across all persistent volume claims in a project, the sum of storage requested in the silver storage
class cannot exceed this value.

Across all persistent volume claims in a project, the total number of claims in the silver storage class
cannot exceed this value.

Across all persistent volume claims in a project, the sum of storage requested in the bronze storage
class cannot exceed this value. When this is set to 0, it means bronze storage class cannot request
storage.

Across all persistent volume claims in a project, the sum of storage requested in the bronze storage
class cannot exceed this value. When this is set to 0, it means bronze storage class cannot create
claims.

 pods: "2" 1
 limits.cpu: "1" 2
 limits.memory: "1Gi" 3
 scopes:
 - Terminating 4

apiVersion: v1
kind: ResourceQuota
metadata:
 name: storage-consumption
spec:
 hard:
 persistentvolumeclaims: "10" 1
 requests.storage: "50Gi" 2
 gold.storageclass.storage.k8s.io/requests.storage: "10Gi" 3
 silver.storageclass.storage.k8s.io/requests.storage: "20Gi" 4
 silver.storageclass.storage.k8s.io/persistentvolumeclaims: "5" 5
 bronze.storageclass.storage.k8s.io/requests.storage: "0" 6
 bronze.storageclass.storage.k8s.io/persistentvolumeclaims: "0" 7

CHAPTER 5. QUOTAS

87

1

5.1.6. Creating a quota

You can create a quota to constrain resource usage in a given project.

Procedure

1. Define the quota in a file.

2. Use the file to create the quota and apply it to a project:

For example:

5.1.6.1. Creating object count quotas

You can create an object count quota for all standard namespaced resource types on OpenShift
Container Platform, such as BuildConfig and DeploymentConfig objects. An object quota count places
a defined quota on all standard namespaced resource types.

When using a resource quota, an object is charged against the quota upon creation. These types of
quotas are useful to protect against exhaustion of resources. The quota can only be created if there are
enough spare resources within the project.

Procedure

To configure an object count quota for a resource:

1. Run the following command:

The <resource> variable is the name of the resource, and <group> is the API group, if
applicable. Use the oc api-resources command for a list of resources and their associated
API groups.

For example:

Example output

This example limits the listed resources to the hard limit in each project in the cluster.

2. Verify that the quota was created:

$ oc create -f <file> [-n <project_name>]

$ oc create -f core-object-counts.yaml -n demoproject

$ oc create quota <name> \
 --hard=count/<resource>.<group>=<quota>,count/<resource>.<group>=<quota> 1

$ oc create quota test \
 --
hard=count/deployments.extensions=2,count/replicasets.extensions=4,count/pods=3,count/secr
ets=4

resourcequota "test" created

OpenShift Container Platform 4.7 Applications

88

Example output

5.1.6.2. Setting resource quota for extended resources

Overcommitment of resources is not allowed for extended resources, so you must specify requests and
limits for the same extended resource in a quota. Currently, only quota items with the prefix requests.
is allowed for extended resources. The following is an example scenario of how to set resource quota for
the GPU resource nvidia.com/gpu.

Procedure

1. Determine how many GPUs are available on a node in your cluster. For example:

Example output

In this example, 2 GPUs are available.

2. Set a quota in the namespace nvidia. In this example, the quota is 1:

Example output

$ oc describe quota test

Name: test
Namespace: quota
Resource Used Hard
-------- ---- ----
count/deployments.extensions 0 2
count/pods 0 3
count/replicasets.extensions 0 4
count/secrets 0 4

oc describe node ip-172-31-27-209.us-west-2.compute.internal | egrep
'Capacity|Allocatable|gpu'

 openshift.com/gpu-accelerator=true
Capacity:
 nvidia.com/gpu: 2
Allocatable:
 nvidia.com/gpu: 2
 nvidia.com/gpu 0 0

cat gpu-quota.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: gpu-quota
 namespace: nvidia
spec:
 hard:
 requests.nvidia.com/gpu: 1

CHAPTER 5. QUOTAS

89

3. Create the quota:

Example output

4. Verify that the namespace has the correct quota set:

Example output

5. Define a pod that asks for a single GPU. The following example definition file is called gpu-
pod.yaml:

6. Create the pod:

7. Verify that the pod is running:

oc create -f gpu-quota.yaml

resourcequota/gpu-quota created

oc describe quota gpu-quota -n nvidia

Name: gpu-quota
Namespace: nvidia
Resource Used Hard
-------- ---- ----
requests.nvidia.com/gpu 0 1

apiVersion: v1
kind: Pod
metadata:
 generateName: gpu-pod-
 namespace: nvidia
spec:
 restartPolicy: OnFailure
 containers:
 - name: rhel7-gpu-pod
 image: rhel7
 env:
 - name: NVIDIA_VISIBLE_DEVICES
 value: all
 - name: NVIDIA_DRIVER_CAPABILITIES
 value: "compute,utility"
 - name: NVIDIA_REQUIRE_CUDA
 value: "cuda>=5.0"
 command: ["sleep"]
 args: ["infinity"]
 resources:
 limits:
 nvidia.com/gpu: 1

oc create -f gpu-pod.yaml

oc get pods

OpenShift Container Platform 4.7 Applications

90

Example output

8. Verify that the quota Used counter is correct:

Example output

9. Attempt to create a second GPU pod in the nvidia namespace. This is technically available on
the node because it has 2 GPUs:

Example output

This Forbidden error message is expected because you have a quota of 1 GPU and this pod
tried to allocate a second GPU, which exceeds its quota.

5.1.7. Viewing a quota

You can view usage statistics related to any hard limits defined in a project’s quota by navigating in the
web console to the project’s Quota page.

You can also use the CLI to view quota details.

Procedure

1. Get the list of quotas defined in the project. For example, for a project called demoproject:

Example output

2. Describe the quota you are interested in, for example the core-object-counts quota:

NAME READY STATUS RESTARTS AGE
gpu-pod-s46h7 1/1 Running 0 1m

oc describe quota gpu-quota -n nvidia

Name: gpu-quota
Namespace: nvidia
Resource Used Hard
-------- ---- ----
requests.nvidia.com/gpu 1 1

oc create -f gpu-pod.yaml

Error from server (Forbidden): error when creating "gpu-pod.yaml": pods "gpu-pod-f7z2w" is
forbidden: exceeded quota: gpu-quota, requested: requests.nvidia.com/gpu=1, used:
requests.nvidia.com/gpu=1, limited: requests.nvidia.com/gpu=1

$ oc get quota -n demoproject

NAME AGE
besteffort 11m
compute-resources 2m
core-object-counts 29m

CHAPTER 5. QUOTAS

91

Example output

5.1.8. Configuring explicit resource quotas

Configure explicit resource quotas in a project request template to apply specific resource quotas in
new projects.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Install the OpenShift CLI (oc).

Procedure

1. Add a resource quota definition to a project request template:

If a project request template does not exist in a cluster:

a. Create a bootstrap project template and output it to a file called template.yaml:

b. Add a resource quota definition to template.yaml. The following example defines a
resource quota named 'storage-consumption'. The definition must be added before the
parameters: section in the template:

$ oc describe quota core-object-counts -n demoproject

Name: core-object-counts
Namespace: demoproject
Resource Used Hard
-------- ---- ----
configmaps 3 10
persistentvolumeclaims 0 4
replicationcontrollers 3 20
secrets 9 10
services 2 10

$ oc adm create-bootstrap-project-template -o yaml > template.yaml

- apiVersion: v1
 kind: ResourceQuota
 metadata:
 name: storage-consumption
 namespace: ${PROJECT_NAME}
 spec:
 hard:
 persistentvolumeclaims: "10" 1
 requests.storage: "50Gi" 2
 gold.storageclass.storage.k8s.io/requests.storage: "10Gi" 3
 silver.storageclass.storage.k8s.io/requests.storage: "20Gi" 4
 silver.storageclass.storage.k8s.io/persistentvolumeclaims: "5" 5
 bronze.storageclass.storage.k8s.io/requests.storage: "0" 6
 bronze.storageclass.storage.k8s.io/persistentvolumeclaims: "0" 7

OpenShift Container Platform 4.7 Applications

92

1

2

3

4

5

6

7

The total number of persistent volume claims in a project.

Across all persistent volume claims in a project, the sum of storage requested
cannot exceed this value.

Across all persistent volume claims in a project, the sum of storage requested in
the gold storage class cannot exceed this value.

Across all persistent volume claims in a project, the sum of storage requested in
the silver storage class cannot exceed this value.

Across all persistent volume claims in a project, the total number of claims in the
silver storage class cannot exceed this value.

Across all persistent volume claims in a project, the sum of storage requested in
the bronze storage class cannot exceed this value. When this value is set to 0, the
bronze storage class cannot request storage.

Across all persistent volume claims in a project, the sum of storage requested in
the bronze storage class cannot exceed this value. When this value is set to 0, the
bronze storage class cannot create claims.

c. Create a project request template from the modified template.yaml file in the
openshift-config namespace:

NOTE

To include the configuration as a kubectl.kubernetes.io/last-applied-
configuration annotation, add the --save-config option to the oc create
command.

By default, the template is called project-request.

If a project request template already exists within a cluster:

NOTE

If you declaratively or imperatively manage objects within your cluster by
using configuration files, edit the existing project request template through
those files instead.

a. List templates in the openshift-config namespace:

b. Edit an existing project request template:

c. Add a resource quota definition, such as the preceding storage-consumption example,

$ oc create -f template.yaml -n openshift-config

$ oc get templates -n openshift-config

$ oc edit template <project_request_template> -n openshift-config

CHAPTER 5. QUOTAS

93

c. Add a resource quota definition, such as the preceding storage-consumption example,
into the existing template. The definition must be added before the parameters:
section in the template.

2. If you created a project request template, reference it in the cluster’s project configuration
resource:

a. Access the project configuration resource for editing:

By using the web console:

i. Navigate to the Administration → Cluster Settings page.

ii. Click Global Configuration to view all configuration resources.

iii. Find the entry for Project and click Edit YAML.

By using the CLI:

i. Edit the project.config.openshift.io/cluster resource:

b. Update the spec section of the project configuration resource to include the
projectRequestTemplate and name parameters. The following example references the
default project request template name project-request:

3. Verify that the resource quota is applied when projects are created:

a. Create a project:

b. List the project’s resource quotas:

c. Describe the resource quota in detail:

5.2. RESOURCE QUOTAS ACROSS MULTIPLE PROJECTS

A multi-project quota, defined by a ClusterResourceQuota object, allows quotas to be shared across
multiple projects. Resources used in each selected project are aggregated and that aggregate is used to
limit resources across all the selected projects.

This guide describes how cluster administrators can set and manage resource quotas across multiple

$ oc edit project.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Project
metadata:
 ...
spec:
 projectRequestTemplate:
 name: project-request

$ oc new-project <project_name>

$ oc get resourcequotas

$ oc describe resourcequotas <resource_quota_name>

OpenShift Container Platform 4.7 Applications

94

1

2

This guide describes how cluster administrators can set and manage resource quotas across multiple
projects.

5.2.1. Selecting multiple projects during quota creation

When creating quotas, you can select multiple projects based on annotation selection, label selection, or
both.

Procedure

1. To select projects based on annotations, run the following command:

This creates the following ClusterResourceQuota object:

The ResourceQuotaSpec object that will be enforced over the selected projects.

A simple key-value selector for annotations.

$ oc create clusterquota for-user \
 --project-annotation-selector openshift.io/requester=<user_name> \
 --hard pods=10 \
 --hard secrets=20

apiVersion: quota.openshift.io/v1
kind: ClusterResourceQuota
metadata:
 name: for-user
spec:
 quota: 1
 hard:
 pods: "10"
 secrets: "20"
 selector:
 annotations: 2
 openshift.io/requester: <user_name>
 labels: null 3
status:
 namespaces: 4
 - namespace: ns-one
 status:
 hard:
 pods: "10"
 secrets: "20"
 used:
 pods: "1"
 secrets: "9"
 total: 5
 hard:
 pods: "10"
 secrets: "20"
 used:
 pods: "1"
 secrets: "9"

CHAPTER 5. QUOTAS

95

3

4

5

1

2

A label selector that can be used to select projects.

A per-namespace map that describes current quota usage in each selected project.

The aggregate usage across all selected projects.

This multi-project quota document controls all projects requested by <user_name> using the
default project request endpoint. You are limited to 10 pods and 20 secrets.

2. Similarly, to select projects based on labels, run this command:

Both clusterresourcequota and clusterquota are aliases of the same command. for-
name is the name of the ClusterResourceQuota object.

To select projects by label, provide a key-value pair by using the format --project-label-
selector=key=value.

This creates the following ClusterResourceQuota object definition:

5.2.2. Viewing applicable cluster resource quotas

A project administrator is not allowed to create or modify the multi-project quota that limits his or her
project, but the administrator is allowed to view the multi-project quota documents that are applied to
his or her project. The project administrator can do this via the AppliedClusterResourceQuota
resource.

Procedure

1. To view quotas applied to a project, run:

Example output

$ oc create clusterresourcequota for-name \ 1
 --project-label-selector=name=frontend \ 2
 --hard=pods=10 --hard=secrets=20

apiVersion: quota.openshift.io/v1
kind: ClusterResourceQuota
metadata:
 creationTimestamp: null
 name: for-name
spec:
 quota:
 hard:
 pods: "10"
 secrets: "20"
 selector:
 annotations: null
 labels:
 matchLabels:
 name: frontend

$ oc describe AppliedClusterResourceQuota

OpenShift Container Platform 4.7 Applications

96

5.2.3. Selection granularity

Because of the locking consideration when claiming quota allocations, the number of active projects
selected by a multi-project quota is an important consideration. Selecting more than 100 projects under
a single multi-project quota can have detrimental effects on API server responsiveness in those
projects.

Name: for-user
Namespace: <none>
Created: 19 hours ago
Labels: <none>
Annotations: <none>
Label Selector: <null>
AnnotationSelector: map[openshift.io/requester:<user-name>]
Resource Used Hard
-------- ---- ----
pods 1 10
secrets 9 20

CHAPTER 5. QUOTAS

97

1

2

CHAPTER 6. USING CONFIG MAPS WITH APPLICATIONS
Config maps allow you to decouple configuration artifacts from image content to keep containerized
applications portable.

The following sections define config maps and how to create and use them.

For information on creating config maps, see Creating and using config maps .

6.1. UNDERSTANDING CONFIG MAPS

Many applications require configuration using some combination of configuration files, command line
arguments, and environment variables. In OpenShift Container Platform, these configuration artifacts
are decoupled from image content to keep containerized applications portable.

The ConfigMap object provides mechanisms to inject containers with configuration data while keeping
containers agnostic of OpenShift Container Platform. A config map can be used to store fine-grained
information like individual properties or coarse-grained information like entire configuration files or
JSON blobs.

The ConfigMap API object holds key-value pairs of configuration data that can be consumed in pods or
used to store configuration data for system components such as controllers. For example:

ConfigMap Object Definition

Contains the configuration data.

Points to a file that contains non-UTF8 data, for example, a binary Java keystore file. Enter the file
data in Base 64.

NOTE

You can use the binaryData field when you create a config map from a binary file, such as
an image.

Configuration data can be consumed in pods in a variety of ways. A config map can be used to:

kind: ConfigMap
apiVersion: v1
metadata:
 creationTimestamp: 2016-02-18T19:14:38Z
 name: example-config
 namespace: default
data: 1
 example.property.1: hello
 example.property.2: world
 example.property.file: |-
 property.1=value-1
 property.2=value-2
 property.3=value-3
binaryData:
 bar: L3Jvb3QvMTAw 2

OpenShift Container Platform 4.7 Applications

98

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/nodes/#creating-and-using-config-maps

1

2

3 4

Populate environment variable values in containers

Set command-line arguments in a container

Populate configuration files in a volume

Users and system components can store configuration data in a config map.

A config map is similar to a secret, but designed to more conveniently support working with strings that
do not contain sensitive information.

Config map restrictions
A config map must be created before its contents can be consumed in pods.

Controllers can be written to tolerate missing configuration data. Consult individual components
configured by using config maps on a case-by-case basis.

ConfigMap objects reside in a project.

They can only be referenced by pods in the same project.

The Kubelet only supports the use of a config map for pods it gets from the API server.

This includes any pods created by using the CLI, or indirectly from a replication controller. It does not
include pods created by using the OpenShift Container Platform node’s --manifest-url flag, its --config
flag, or its REST API because these are not common ways to create pods.

6.2. USE CASES: CONSUMING CONFIG MAPS IN PODS

The following sections describe some uses cases when consuming ConfigMap objects in pods.

6.2.1. Populating environment variables in containers by using config maps

Config maps can be used to populate individual environment variables in containers or to populate
environment variables in containers from all keys that form valid environment variable names.

As an example, consider the following config map:

ConfigMap with two environment variables

Name of the config map.

The project in which the config map resides. Config maps can only be referenced by pods in the
same project.

Environment variables to inject.

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config 1
 namespace: default 2
data:
 special.how: very 3
 special.type: charm 4

CHAPTER 6. USING CONFIG MAPS WITH APPLICATIONS

99

1

2

1

2

3 5

ConfigMap with one environment variable

Name of the config map.

Environment variable to inject.

Procedure

You can consume the keys of this ConfigMap in a pod using configMapKeyRef sections.

Sample Pod specification configured to inject specific environment variables

Stanza to pull the specified environment variables from a ConfigMap.

Name of a Pod environment variable that you are injecting a key’s value into.

Name of the ConfigMap to pull specific environment variables from.

apiVersion: v1
kind: ConfigMap
metadata:
 name: env-config 1
 namespace: default
data:
 log_level: INFO 2

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env: 1
 - name: SPECIAL_LEVEL_KEY 2
 valueFrom:
 configMapKeyRef:
 name: special-config 3
 key: special.how 4
 - name: SPECIAL_TYPE_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config 5
 key: special.type 6
 optional: true 7
 envFrom: 8
 - configMapRef:
 name: env-config 9
 restartPolicy: Never

OpenShift Container Platform 4.7 Applications

100

4 6

7

8

9

Environment variable to pull from the ConfigMap.

Makes the environment variable optional. As optional, the Pod will be started even if the
specified ConfigMap and keys do not exist.

Stanza to pull all environment variables from a ConfigMap.

Name of the ConfigMap to pull all environment variables from.

When this Pod is run, the Pod logs will include the following output:

SPECIAL_LEVEL_KEY=very
log_level=INFO

NOTE

SPECIAL_TYPE_KEY=charm is not listed in the example output because optional: true
is set.

6.2.2. Setting command-line arguments for container commands with config maps

A config map can also be used to set the value of the commands or arguments in a container. This is
accomplished by using the Kubernetes substitution syntax $(VAR_NAME). Consider the following config
map:

Procedure

To inject values into a command in a container, you must consume the keys you want to use as
environment variables, as in the consuming ConfigMaps in environment variables use case. Then
you can refer to them in a container’s command using the $(VAR_NAME) syntax.

Sample Pod specification configured to inject specific environment variables

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config
 namespace: default
data:
 special.how: very
 special.type: charm

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "echo $(SPECIAL_LEVEL_KEY) $(SPECIAL_TYPE_KEY)"]
1

 env:

CHAPTER 6. USING CONFIG MAPS WITH APPLICATIONS

101

1 Inject the values into a command in a container using the keys you want to use as
environment variables.

When this pod is run, the output from the echo command run in the test-container container is
as follows:

very charm

6.2.3. Injecting content into a volume by using config maps

You can inject content into a volume by using config maps.

Example ConfigMap custom resource (CR)

Procedure

You have a couple different options for injecting content into a volume by using config maps.

The most basic way to inject content into a volume by using a config map is to populate the
volume with files where the key is the file name and the content of the file is the value of the
key:

 - name: SPECIAL_LEVEL_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: special.how
 - name: SPECIAL_TYPE_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: special.type
 restartPolicy: Never

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config
 namespace: default
data:
 special.how: very
 special.type: charm

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "cat", "/etc/config/special.how"]
 volumeMounts:
 - name: config-volume

OpenShift Container Platform 4.7 Applications

102

1

1

File containing key.

When this pod is run, the output of the cat command will be:

very

You can also control the paths within the volume where config map keys are projected:

Path to config map key.

When this pod is run, the output of the cat command will be:

very

 mountPath: /etc/config
 volumes:
 - name: config-volume
 configMap:
 name: special-config 1
 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "cat", "/etc/config/path/to/special-key"]
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 volumes:
 - name: config-volume
 configMap:
 name: special-config
 items:
 - key: special.how
 path: path/to/special-key 1
 restartPolicy: Never

CHAPTER 6. USING CONFIG MAPS WITH APPLICATIONS

103

CHAPTER 7. MONITORING PROJECT AND APPLICATION
METRICS USING THE DEVELOPER PERSPECTIVE

The Monitoring view in the Developer perspective provides options to monitor your project or
application metrics, such as CPU, memory, and bandwidth usage, and network related information.

7.1. PREREQUISITES

You have created and deployed applications on OpenShift Container Platform .

You have logged in to the web console and have switched to the Developer perspective.

7.2. MONITORING YOUR PROJECT METRICS

After you create applications in your project and deploy them, you can use the Developer perspective in
the web console to see the metrics for your project.

Procedure

1. On the left navigation panel of the Developer perspective, click Monitoring to see the
Dashboard, Metrics, Alerts, and Events for your project.

Use the Dashboard tab to see graphs depicting the CPU, memory, and bandwidth
consumption and network related information, such as the rate of transmitted and received
packets and the rate of dropped packets.

Figure 7.1. Monitoring dashboard

Use the following options to see further details:

Select a workload from the All Workloads list to see the filtered metrics for the
selected workload.

Select an option from the Time Range list to determine the time frame for the data
being captured.

Select an option from the Refresh Interval list to determine the time period after which
the data is refreshed.

Hover your cursor over the graphs to see specific details for your pod.

Click on any of the graphs displayed to see the details for that particular metric in the

OpenShift Container Platform 4.7 Applications

104

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#odc-creating-applications-using-developer-perspective
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/web_console/#web-console
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/web_console/#about-developer-perspective_web-console-overview

Click on any of the graphs displayed to see the details for that particular metric in the
Metrics page.

Use the Metrics tab to query for the required project metric.

Figure 7.2. Monitoring metrics

a. In the Select Query list, select an option to filter the required details for your project.
The filtered metrics for all the application pods in your project are displayed in the
graph. The pods in your project are also listed below.

b. From the list of pods, clear the colored square boxes to remove the metrics for specific
pods to further filter your query result.

c. Click Show PromQL to see the Prometheus query. You can further modify this query
with the help of prompts to customize the query and filter the metrics you want to see
for that namespace.

d. Use the drop-down list to set a time range for the data being displayed. You can click
Reset Zoom to reset it to the default time range.

e. Optionally, in the Select Query list, select Custom Query to create a custom
Prometheus query and filter relevant metrics.

Use the Alerts tab to see the rules that trigger alerts for the applications in your project,
identify the alerts firing in the project, and silence them if required.

Figure 7.3. Monitoring alerts

Use the Filter list to filter the alerts by their Alert State and Severity.

CHAPTER 7. MONITORING PROJECT AND APPLICATION METRICS USING THE DEVELOPER PERSPECTIVE

105

Click on an alert to go to the details page for that alert. In the Alerts Details page, you
can click View Metrics to see the metrics for the alert.

Use the Notifications toggle adjoining an alert rule to silence all the alerts for that rule,
and then select the duration for which the alerts will be silenced from the Silence for
list. You must have the permissions to edit alerts to see the Notifications toggle.

Use the Options menu adjoining an alert rule to see the details of the alerting
rule.

Use the Events tab to see the events for your project.

Figure 7.4. Monitoring events

You can filter the displayed events using the following options:

In the Resources list, select a resource to see events for that resource.

In the All Types list, select a type of event to see events relevant to that type.

Search for specific events using the Filter events by names or messages field.

7.3. MONITORING YOUR APPLICATION METRICS

After you create applications in your project and deploy them, you can use the Topology view in the
Developer perspective to see the alerts and metrics for your application. Critical and warning alerts for
your application are indicated on the workload node in the Topology view.

Procedure

To see the alerts for your workload:

1. In the Topology view, click the workload to see the workload details in the right panel.

2. Click the Monitoring tab to see the critical and warning alerts for the application; graphs for
metrics, such as CPU, memory, and bandwidth usage; and all the events for the application.

NOTE

OpenShift Container Platform 4.7 Applications

106

NOTE

Only critical and warning alerts in the Firing state are displayed in the Topology
view. Alerts in the Silenced, Pending and Not Firing states are not displayed.

Figure 7.5. Monitoring application metrics

a. Click the alert listed in the right panel to see the alert details in the Alert Details page.

b. Click any of the charts to go to the Metrics tab to see the detailed metrics for the
application.

c. Click View monitoring dashboard to see the monitoring dashboard for that application.

7.4. ADDITIONAL RESOURCES

Monitoring overview

CHAPTER 7. MONITORING PROJECT AND APPLICATION METRICS USING THE DEVELOPER PERSPECTIVE

107

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/monitoring/#monitoring-overview

CHAPTER 8. MONITORING APPLICATION HEALTH BY USING
HEALTH CHECKS

In software systems, components can become unhealthy due to transient issues such as temporary
connectivity loss, configuration errors, or problems with external dependencies. OpenShift Container
Platform applications have a number of options to detect and handle unhealthy containers.

8.1. UNDERSTANDING HEALTH CHECKS

A health check periodically performs diagnostics on a running container using any combination of the
readiness, liveness, and startup health checks.

You can include one or more probes in the specification for the pod that contains the container which
you want to perform the health checks.

NOTE

If you want to add or edit health checks in an existing pod, you must edit the pod
DeploymentConfig object or use the Developer perspective in the web console. You
cannot use the CLI to add or edit health checks for an existing pod.

Readiness probe

A readiness probe determines if a container is ready to accept service requests. If the readiness
probe fails for a container, the kubelet removes the pod from the list of available service endpoints.
After a failure, the probe continues to examine the pod. If the pod becomes available, the kubelet
adds the pod to the list of available service endpoints.

Liveness health check

A liveness probe determines if a container is still running. If the liveness probe fails due to a condition
such as a deadlock, the kubelet kills the container. The pod then responds based on its restart policy.
For example, a liveness probe on a pod with a restartPolicy of Always or OnFailure kills and restarts
the container.

Startup probe

A startup probe indicates whether the application within a container is started. All other probes are
disabled until the startup succeeds. If the startup probe does not succeed within a specified time
period, the kubelet kills the container, and the container is subject to the pod restartPolicy.
Some applications can require additional startup time on their first initialization. You can use a
startup probe with a liveness or readiness probe to delay that probe long enough to handle lengthy
start-up time using the failureThreshold and periodSeconds parameters.

For example, you can add a startup probe, with a failureThreshold of 30 failures and a
periodSeconds of 10 seconds (30 * 10s = 300s) for a maximum of 5 minutes, to a liveness probe.
After the startup probe succeeds the first time, the liveness probe takes over.

You can configure liveness, readiness, and startup probes with any of the following types of tests:

HTTP GET: When using an HTTP GET test, the test determines the healthiness of the container
by using a web hook. The test is successful if the HTTP response code is between 200 and 399.
You can use an HTTP GET test with applications that return HTTP status codes when
completely initialized.

OpenShift Container Platform 4.7 Applications

108

Container Command: When using a container command test, the probe executes a command
inside the container. The probe is successful if the test exits with a 0 status.

TCP socket: When using a TCP socket test, the probe attempts to open a socket to the
container. The container is only considered healthy if the probe can establish a connection. You
can use a TCP socket test with applications that do not start listening until initialization is
complete.

You can configure several fields to control the behavior of a probe:

initialDelaySeconds: The time, in seconds, after the container starts before the probe can be
scheduled. The default is 0.

periodSeconds: The delay, in seconds, between performing probes. The default is 10. This value
must be greater than timeoutSeconds.

timeoutSeconds: The number of seconds of inactivity after which the probe times out and the
container is assumed to have failed. The default is 1. This value must be lower than
periodSeconds.

successThreshold: The number of times that the probe must report success after a failure to
reset the container status to successful. The value must be 1 for a liveness probe. The default is
1.

failureThreshold: The number of times that the probe is allowed to fail. The default is 3. After
the specified attempts:

for a liveness probe, the container is restarted

for a readiness probe, the pod is marked Unready

for a startup probe, the container is killed and is subject to the pod’s restartPolicy

Example probes
The following are samples of different probes as they would appear in an object specification.

Sample readiness probe with a container command readiness probe in a pod spec

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: health-check
 name: my-application
...
spec:
 containers:
 - name: goproxy-app 1
 args:
 image: k8s.gcr.io/goproxy:0.1 2
 readinessProbe: 3
 exec: 4
 command: 5
 - cat
 - /tmp/healthy
...

CHAPTER 8. MONITORING APPLICATION HEALTH BY USING HEALTH CHECKS

109

1

2

3

4

5

1

2

3

4

5

6

The container name.

The container image to deploy.

A readiness probe.

A container command test.

The commands to execute on the container.

Sample container command startup probe and liveness probe with container command
tests in a pod spec

The container name.

Specify the container image to deploy.

A liveness probe.

An HTTP GET test.

The internet scheme: HTTP or HTTPS. The default value is HTTP.

The port on which the container is listening.

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: health-check
 name: my-application
...
spec:
 containers:
 - name: goproxy-app 1
 args:
 image: k8s.gcr.io/goproxy:0.1 2
 livenessProbe: 3
 httpGet: 4
 scheme: HTTPS 5
 path: /healthz
 port: 8080 6
 httpHeaders:
 - name: X-Custom-Header
 value: Awesome
 startupProbe: 7
 httpGet: 8
 path: /healthz
 port: 8080 9
 failureThreshold: 30 10
 periodSeconds: 10 11
...

OpenShift Container Platform 4.7 Applications

110

7

8

9

10

11

1

2

3

4

5

6

7

8

A startup probe.

An HTTP GET test.

The port on which the container is listening.

The number of times to try the probe after a failure.

The number of seconds to perform the probe.

Sample liveness probe with a container command test that uses a timeout in a pod spec

The container name.

Specify the container image to deploy.

The liveness probe.

The type of probe, here a container command probe.

The command line to execute inside the container.

How often in seconds to perform the probe.

The number of consecutive successes needed to show success after a failure.

The number of times to try the probe after a failure.

Sample readiness probe and liveness probe with a TCP socket test in a deployment

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: health-check
 name: my-application
...
spec:
 containers:
 - name: goproxy-app 1
 args:
 image: k8s.gcr.io/goproxy:0.1 2
 livenessProbe: 3
 exec: 4
 command: 5
 - /bin/bash
 - '-c'
 - timeout 60 /opt/eap/bin/livenessProbe.sh
 periodSeconds: 10 6
 successThreshold: 1 7
 failureThreshold: 3 8
...

CHAPTER 8. MONITORING APPLICATION HEALTH BY USING HEALTH CHECKS

111

1

2

The readiness probe.

The liveness probe.

8.2. CONFIGURING HEALTH CHECKS USING THE CLI

To configure readiness, liveness, and startup probes, add one or more probes to the specification for
the pod that contains the container which you want to perform the health checks

NOTE

If you want to add or edit health checks in an existing pod, you must edit the pod
DeploymentConfig object or use the Developer perspective in the web console. You
cannot use the CLI to add or edit health checks for an existing pod.

Procedure

To add probes for a container:

1. Create a Pod object to add one or more probes:

kind: Deployment
apiVersion: apps/v1
...
spec:
...
 template:
 spec:
 containers:
 - resources: {}
 readinessProbe: 1
 tcpSocket:
 port: 8080
 timeoutSeconds: 1
 periodSeconds: 10
 successThreshold: 1
 failureThreshold: 3
 terminationMessagePath: /dev/termination-log
 name: ruby-ex
 livenessProbe: 2
 tcpSocket:
 port: 8080
 initialDelaySeconds: 15
 timeoutSeconds: 1
 periodSeconds: 10
 successThreshold: 1
 failureThreshold: 3
...

apiVersion: v1
kind: Pod
metadata:
 labels:

OpenShift Container Platform 4.7 Applications

112

1

2

3

4

5

6

7

8

9

10

11

12

Specify the container name.

Specify the container image to deploy.

Optional: Create a Liveness probe.

Specify a test to perform, here a TCP Socket test.

Specify the port on which the container is listening.

Specify the time, in seconds, after the container starts before the probe can be scheduled.

Specify the number of seconds to perform the probe. The default is 10. This value must be
greater than timeoutSeconds.

Specify the number of seconds of inactivity after which the probe is assumed to have
failed. The default is 1. This value must be lower than periodSeconds.

Optional: Create a Readiness probe.

Specify the type of test to perform, here an HTTP test.

Specify a host IP address. When host is not defined, the PodIP is used.

Specify HTTP or HTTPS. When scheme is not defined, the HTTP scheme is used.

 test: health-check
 name: my-application
spec:
 containers:
 - name: my-container 1
 args:
 image: k8s.gcr.io/goproxy:0.1 2
 livenessProbe: 3
 tcpSocket: 4
 port: 8080 5
 initialDelaySeconds: 15 6
 periodSeconds: 20 7
 timeoutSeconds: 10 8
 readinessProbe: 9
 httpGet: 10
 host: my-host 11
 scheme: HTTPS 12
 path: /healthz
 port: 8080 13
 startupProbe: 14
 exec: 15
 command: 16
 - cat
 - /tmp/healthy
 failureThreshold: 30 17
 periodSeconds: 20 18
 timeoutSeconds: 10 19

CHAPTER 8. MONITORING APPLICATION HEALTH BY USING HEALTH CHECKS

113

13

14

15

16

17

18

19

Specify the port on which the container is listening.

Optional: Create a Startup probe.

Specify the type of test to perform, here an Container Execution probe.

Specify the commands to execute on the container.

Specify the number of times to try the probe after a failure.

Specify the number of seconds to perform the probe. The default is 10. This value must be
greater than timeoutSeconds.

Specify the number of seconds of inactivity after which the probe is assumed to have
failed. The default is 1. This value must be lower than periodSeconds.

NOTE

If the initialDelaySeconds value is lower than the periodSeconds value, the
first Readiness probe occurs at some point between the two periods due to an
issue with timers.

The timeoutSeconds value must be lower than the periodSeconds value.

2. Create the Pod object:

3. Verify the state of the health check pod:

Example output

The following is the output of a failed probe that restarted a container:

Sample Liveness check output with unhealthy container

Example output

$ oc create -f <file-name>.yaml

$ oc describe pod health-check

Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 9s default-scheduler Successfully assigned openshift-
logging/liveness-exec to ip-10-0-143-40.ec2.internal
 Normal Pulling 2s kubelet, ip-10-0-143-40.ec2.internal pulling image
"k8s.gcr.io/liveness"
 Normal Pulled 1s kubelet, ip-10-0-143-40.ec2.internal Successfully pulled image
"k8s.gcr.io/liveness"
 Normal Created 1s kubelet, ip-10-0-143-40.ec2.internal Created container
 Normal Started 1s kubelet, ip-10-0-143-40.ec2.internal Started container

$ oc describe pod pod1

OpenShift Container Platform 4.7 Applications

114

8.3. MONITORING APPLICATION HEALTH USING THE DEVELOPER
PERSPECTIVE

You can use the Developer perspective to add three types of health probes to your container to ensure
that your application is healthy:

Use the Readiness probe to check if the container is ready to handle requests.

Use the Liveness probe to check if the container is running.

Use the Startup probe to check if the application within the container has started.

You can add health checks either while creating and deploying an application, or after you have
deployed an application.

8.4. ADDING HEALTH CHECKS USING THE DEVELOPER PERSPECTIVE

You can use the Topology view to add health checks to your deployed application.

Prerequisites:

You have switched to the Developer perspective in the web console.

You have created and deployed an application on OpenShift Container Platform using the
Developer perspective.

Procedure

1. In the Topology view, click on the application node to see the side panel. If the container does

....

Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled <unknown> Successfully
assigned aaa/liveness-http to ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
 Normal AddedInterface 47s multus Add eth0
[10.129.2.11/23]
 Normal Pulled 46s kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Successfully pulled image "k8s.gcr.io/liveness" in 773.406244ms
 Normal Pulled 28s kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Successfully pulled image "k8s.gcr.io/liveness" in 233.328564ms
 Normal Created 10s (x3 over 46s) kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Created container liveness
 Normal Started 10s (x3 over 46s) kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Started container liveness
 Warning Unhealthy 10s (x6 over 34s) kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-
snzrj Liveness probe failed: HTTP probe failed with statuscode: 500
 Normal Killing 10s (x2 over 28s) kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Container liveness failed liveness probe, will be restarted
 Normal Pulling 10s (x3 over 47s) kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Pulling image "k8s.gcr.io/liveness"
 Normal Pulled 10s kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Successfully pulled image "k8s.gcr.io/liveness" in 244.116568ms

CHAPTER 8. MONITORING APPLICATION HEALTH BY USING HEALTH CHECKS

115

1. In the Topology view, click on the application node to see the side panel. If the container does
not have health checks added to ensure the smooth running of your application, a Health
Checks notification is displayed with a link to add health checks.

2. In the displayed notification, click the Add Health Checks link.

3. Alternatively, you can also click the Actions drop-down list and select Add Health Checks. Note
that if the container already has health checks, you will see the Edit Health Checks option
instead of the add option.

4. In the Add Health Checks form, if you have deployed multiple containers, use the Container
drop-down list to ensure that the appropriate container is selected.

5. Click the required health probe links to add them to the container. Default data for the health
checks is prepopulated. You can add the probes with the default data or further customize the
values and then add them. For example, to add a Readiness probe that checks if your container
is ready to handle requests:

a. Click Add Readiness Probe, to see a form containing the parameters for the probe.

b. Click the Type drop-down list to select the request type you want to add. For example, in
this case, select Container Command to select the command that will be executed inside
the container.

c. In the Command field, add an argument cat, similarly, you can add multiple arguments for
the check, for example, add another argument /tmp/healthy.

d. Retain or modify the default values for the other parameters as required.

NOTE

The Timeout value must be lower than the Period value. The Timeout
default value is 1. The Period default value is 10.

e. Click the check mark at the bottom of the form. The Readiness Probe Added message is
displayed.

6. Click Add to add the health check. You are redirected to the Topology view and the container is
restarted.

7. In the side panel, verify that the probes have been added by clicking on the deployed pod under
the Pods section.

8. In the Pod Details page, click the listed container in the Containers section.

9. In the Container Details page, verify that the Readiness probe - Exec Command cat
/tmp/healthy has been added to the container.

8.5. EDITING HEALTH CHECKS USING THE DEVELOPER PERSPECTIVE

You can use the Topology view to edit health checks added to your application, modify them, or add
more health checks.

Prerequisites:

You have switched to the Developer perspective in the web console.

OpenShift Container Platform 4.7 Applications

116

You have created and deployed an application on OpenShift Container Platform using the
Developer perspective.

You have added health checks to your application.

Procedure

1. In the Topology view, right-click your application and select Edit Health Checks. Alternatively,
in the side panel, click the Actions drop-down list and select Edit Health Checks.

2. In the Edit Health Checks page:

To remove a previously added health probe, click the minus sign adjoining it.

To edit the parameters of an existing probe:

a. Click the Edit Probe link next to a previously added probe to see the parameters for
the probe.

b. Modify the parameters as required, and click the check mark to save your changes.

To add a new health probe, in addition to existing health checks, click the add probe links.
For example, to add a Liveness probe that checks if your container is running:

a. Click Add Liveness Probe, to see a form containing the parameters for the probe.

b. Edit the probe parameters as required.

NOTE

The Timeout value must be lower than the Period value. The Timeout
default value is 1. The Period default value is 10.

c. Click the check mark at the bottom of the form. The Liveness Probe Added message
is displayed.

3. Click Save to save your modifications and add the additional probes to your container. You are
redirected to the Topology view.

4. In the side panel, verify that the probes have been added by clicking on the deployed pod under
the Pods section.

5. In the Pod Details page, click the listed container in the Containers section.

6. In the Container Details page, verify that the Liveness probe - HTTP Get 10.129.4.65:8080/
has been added to the container, in addition to the earlier existing probes.

8.6. MONITORING HEALTH CHECK FAILURES USING THE DEVELOPER
PERSPECTIVE

In case an application health check fails, you can use the Topology view to monitor these health check
violations.

Prerequisites:

CHAPTER 8. MONITORING APPLICATION HEALTH BY USING HEALTH CHECKS

117

You have switched to the Developer perspective in the web console.

You have created and deployed an application on OpenShift Container Platform using the
Developer perspective.

You have added health checks to your application.

Procedure

1. In the Topology view, click on the application node to see the side panel.

2. Click the Monitoring tab to see the health check failures in the Events (Warning) section.

3. Click the down arrow adjoining Events (Warning) to see the details of the health check failure.

Additional resources

For details on switching to the Developer perspective in the web console, see About the
Developer perspective.

For details on adding health checks while creating and deploying an application, see Advanced
Options in the Creating applications using the Developer perspective section.

OpenShift Container Platform 4.7 Applications

118

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/web_console/#about-developer-perspective_web-console-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#odc-creating-applications-using-developer-perspective

CHAPTER 9. IDLING APPLICATIONS
Cluster administrators can idle applications to reduce resource consumption. This is useful when the
cluster is deployed on a public cloud where cost is related to resource consumption.

If any scalable resources are not in use, OpenShift Container Platform discovers and idles them by
scaling their replicas to 0. The next time network traffic is directed to the resources, the resources are
unidled by scaling up the replicas, and normal operation continues.

Applications are made of services, as well as other scalable resources, such as deployment configs. The
action of idling an application involves idling all associated resources.

9.1. IDLING APPLICATIONS

Idling an application involves finding the scalable resources (deployment configurations, replication
controllers, and others) associated with a service. Idling an application finds the service and marks it as
idled, scaling down the resources to zero replicas.

You can use the oc idle command to idle a single service, or use the --resource-names-file option to
idle multiple services.

9.1.1. Idling a single service

Procedure

1. To idle a single service, run:

9.1.2. Idling multiple services

Idling multiple services is helpful if an application spans across a set of services within a project, or when
idling multiple services in conjunction with a script to idle multiple applications in bulk within the same
project.

Procedure

1. Create a file containing a list of the services, each on their own line.

2. Idle the services using the --resource-names-file option:

NOTE

The idle command is limited to a single project. For idling applications across a cluster,
run the idle command for each project individually.

9.2. UNIDLING APPLICATIONS

Application services become active again when they receive network traffic and are scaled back up their
previous state. This includes both traffic to the services and traffic passing through routes.

$ oc idle <service>

$ oc idle --resource-names-file <filename>

CHAPTER 9. IDLING APPLICATIONS

119

Applications can also be manually unidled by scaling up the resources.

Procedure

1. To scale up a DeploymentConfig, run:

NOTE

Automatic unidling by a router is currently only supported by the default HAProxy router.

NOTE

Services do not support automatic unidling if you configure Kuryr-Kubernetes as an SDN.

NOTE

In OpenShift Container Platform 4.7, idled services do not become active again when they
receive network traffic if they were idled while the leader ovnkube-master process was
restarted or after the ovnkube-master leader changed. For more information, refer to
Idled services cannot wake up automatically after restart of ovnkube-master in Red Hat
OpenShift Container Platform 4.

$ oc scale --replicas=1 dc <dc_name>

OpenShift Container Platform 4.7 Applications

120

https://access.redhat.com/solutions/6671241

CHAPTER 10. PRUNING OBJECTS TO RECLAIM RESOURCES
Over time, API objects created in OpenShift Container Platform can accumulate in the cluster’s etcd
data store through normal user operations, such as when building and deploying applications.

Cluster administrators can periodically prune older versions of objects from the cluster that are no
longer required. For example, by pruning images you can delete older images and layers that are no
longer in use, but are still taking up disk space.

10.1. BASIC PRUNING OPERATIONS

The CLI groups prune operations under a common parent command:

This specifies:

The <object_type> to perform the action on, such as groups, builds, deployments, or images.

The <options> supported to prune that object type.

10.2. PRUNING GROUPS

To prune groups records from an external provider, administrators can run the following command:

Table 10.1. oc adm prune groups flags

Options Description

--confirm Indicate that pruning should occur, instead of performing a dry-run.

--blacklist Path to the group blacklist file.

--whitelist Path to the group whitelist file.

--sync-config Path to the synchronization configuration file.

Procedure

1. To see the groups that the prune command deletes, run the following command:

2. To perform the prune operation, add the --confirm flag:

$ oc adm prune <object_type> <options>

$ oc adm prune groups \
 --sync-config=path/to/sync/config [<options>]

$ oc adm prune groups --sync-config=ldap-sync-config.yaml

$ oc adm prune groups --sync-config=ldap-sync-config.yaml --confirm

CHAPTER 10. PRUNING OBJECTS TO RECLAIM RESOURCES

121

10.3. PRUNING DEPLOYMENT RESOURCES

You can prune resources associated with deployments that are no longer required by the system, due to
age and status.

The following command prunes replication controllers associated with DeploymentConfig objects:

Table 10.2. oc adm prune deployments flags

Option Description

--confirm Indicate that pruning should occur, instead of performing a dry-run.

--keep-complete=<N> Per the DeploymentConfig object, keep the last N replication
controllers that have a status of Complete and replica count of zero.
The default is 5.

--keep-failed=<N> Per the DeploymentConfig object, keep the last N replication
controllers that have a status of Failed and replica count of zero. The
default is 1.

--keep-younger-than=
<duration>

Do not prune any replication controller that is younger than <duration>
relative to the current time. Valid units of measurement include
nanoseconds (ns), microseconds (us), milliseconds (ms), seconds (s),
minutes (m), and hours (h). The default is 60m.

--orphans Prune all replication controllers that no longer have a
DeploymentConfig object, has status of Complete or Failed, and
has a replica count of zero.

Procedure

1. To see what a pruning operation would delete, run the following command:

2. To actually perform the prune operation, add the --confirm flag:

10.4. PRUNING BUILDS

To prune builds that are no longer required by the system due to age and status, administrators can run
the following command:

$ oc adm prune deployments [<options>]

$ oc adm prune deployments --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m

$ oc adm prune deployments --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m --confirm

$ oc adm prune builds [<options>]

OpenShift Container Platform 4.7 Applications

122

Table 10.3. oc adm prune builds flags

Option Description

--confirm Indicate that pruning should occur, instead of performing a dry-run.

--orphans Prune all builds whose build configuration no longer exists, status is
complete, failed, error, or canceled.

--keep-complete=<N> Per build configuration, keep the last N builds whose status is complete.
The default is 5.

--keep-failed=<N> Per build configuration, keep the last N builds whose status is failed,
error, or canceled. The default is 1.

--keep-younger-than=
<duration>

Do not prune any object that is younger than <duration> relative to the
current time. The default is 60m.

Procedure

1. To see what a pruning operation would delete, run the following command:

2. To actually perform the prune operation, add the --confirm flag:

NOTE

Developers can enable automatic build pruning by modifying their build configuration.

Additional resources

Performing advanced builds → Pruning builds

10.5. AUTOMATICALLY PRUNING IMAGES

Images that are no longer required by the system due to age, status, or exceed limits are automatically
pruned. Cluster administrators can configure the Pruning Custom Resource, or suspend it.

Prerequisites

Cluster administrator permissions.

Install the oc CLI.

Procedure

Verify that the object named imagepruners.imageregistry.operator.openshift.io/cluster

$ oc adm prune builds --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m

$ oc adm prune builds --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m --confirm

CHAPTER 10. PRUNING OBJECTS TO RECLAIM RESOURCES

123

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cicd/#builds-build-pruning-advanced-build-operations

1

2

3

4

5

6

7

8

Verify that the object named imagepruners.imageregistry.operator.openshift.io/cluster
contains the following spec and status fields:

schedule: CronJob formatted schedule. This is an optional field, default is daily at midnight.

suspend: If set to true, the CronJob running pruning is suspended. This is an optional field, default
is false. The initial value on new clusters is false.

keepTagRevisions: The number of revisions per tag to keep. This is an optional field, default is 3.
The initial value is 3.

keepYoungerThanDuration: Retain images younger than this duration. This is an optional field. If a
value is not specified, either keepYoungerThan or the default value 60m (60 minutes) is used.

keepYoungerThan: Deprecated. The same as keepYoungerThanDuration, but the duration is
specified as an integer in nanoseconds. This is an optional field. When keepYoungerThanDuration
is set, this field is ignored.

resources: Standard pod resource requests and limits. This is an optional field.

affinity: Standard pod affinity. This is an optional field.

nodeSelector: Standard pod node selector. This is an optional field.

spec:
 schedule: 0 0 * * * 1
 suspend: false 2
 keepTagRevisions: 3 3
 keepYoungerThanDuration: 60m 4
 keepYoungerThan: 3600000000000 5
 resources: {} 6
 affinity: {} 7
 nodeSelector: {} 8
 tolerations: [] 9
 successfulJobsHistoryLimit: 3 10
 failedJobsHistoryLimit: 3 11
status:
 observedGeneration: 2 12
 conditions: 13
 - type: Available
 status: "True"
 lastTransitionTime: 2019-10-09T03:13:45
 reason: Ready
 message: "Periodic image pruner has been created."
 - type: Scheduled
 status: "True"
 lastTransitionTime: 2019-10-09T03:13:45
 reason: Scheduled
 message: "Image pruner job has been scheduled."
 - type: Failed
 staus: "False"
 lastTransitionTime: 2019-10-09T03:13:45
 reason: Succeeded
 message: "Most recent image pruning job succeeded."

OpenShift Container Platform 4.7 Applications

124

9

10

11

12

13

tolerations: Standard pod tolerations. This is an optional field.

successfulJobsHistoryLimit: The maximum number of successful jobs to retain. Must be >= 1 to
ensure metrics are reported. This is an optional field, default is 3. The initial value is 3.

failedJobsHistoryLimit: The maximum number of failed jobs to retain. Must be >= 1 to ensure
metrics are reported. This is an optional field, default is 3. The initial value is 3.

observedGeneration: The generation observed by the Operator.

conditions: The standard condition objects with the following types:

Available: Indicates if the pruning job has been created. Reasons can be Ready or Error.

Scheduled: Indicates if the next pruning job has been scheduled. Reasons can be
Scheduled, Suspended, or Error.

Failed: Indicates if the most recent pruning job failed.

IMPORTANT

The Image Registry Operator’s behavior for managing the pruner is orthogonal to the
managementState specified on the Image Registry Operator’s ClusterOperator object.
If the Image Registry Operator is not in the Managed state, the image pruner can still be
configured and managed by the Pruning Custom Resource.

However, the managementState of the Image Registry Operator alters the behavior of
the deployed image pruner job:

Managed: the --prune-registry flag for the image pruner is set to true.

Removed: the --prune-registry flag for the image pruner is set to false, meaning
it only prunes image metatdata in etcd.

Unmanaged: the --prune-registry flag for the image pruner is set to false.

10.6. MANUALLY PRUNING IMAGES

The pruning custom resource enables automatic image pruning. However, administrators can manually
prune images that are no longer required by the system due to age, status, or exceed limits. There are
two methods to manually prune images:

Running image pruning as a Job or CronJob on the cluster.

Running the oc adm prune images command.

Prerequisites

To prune images, you must first log in to the CLI as a user with an access token. The user must
also have the system:image-pruner cluster role or greater (for example, cluster-admin).

Expose the image registry.

Procedure

To manually prune images that are no longer required by the system due to age, status, or exceed limits,

CHAPTER 10. PRUNING OBJECTS TO RECLAIM RESOURCES

125

To manually prune images that are no longer required by the system due to age, status, or exceed limits,
use one of the following methods:

Run image pruning as a Job or CronJob on the cluster by creating a YAML file for the pruner
service account, for example:

Example output

$ oc create -f <filename>.yaml

kind: List
apiVersion: v1
items:
- apiVersion: v1
 kind: ServiceAccount
 metadata:
 name: pruner
 namespace: openshift-image-registry
- apiVersion: rbac.authorization.k8s.io/v1
 kind: ClusterRoleBinding
 metadata:
 name: openshift-image-registry-pruner
 roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: system:image-pruner
 subjects:
 - kind: ServiceAccount
 name: pruner
 namespace: openshift-image-registry
- apiVersion: batch/v1beta1
 kind: CronJob
 metadata:
 name: image-pruner
 namespace: openshift-image-registry
 spec:
 schedule: "0 0 * * *"
 concurrencyPolicy: Forbid
 successfulJobsHistoryLimit: 1
 failedJobsHistoryLimit: 3
 jobTemplate:
 spec:
 template:
 spec:
 restartPolicy: OnFailure
 containers:
 - image: "quay.io/openshift/origin-cli:4.1"
 resources:
 requests:
 cpu: 1
 memory: 1Gi
 terminationMessagePolicy: FallbackToLogsOnError
 command:
 - oc
 args:

OpenShift Container Platform 4.7 Applications

126

Run the oc adm prune images [<options>] command:

Pruning images removes data from the integrated registry unless --prune-registry=false is
used.

Pruning images with the --namespace flag does not remove images, only image streams.
Images are non-namespaced resources. Therefore, limiting pruning to a particular namespace
makes it impossible to calculate its current usage.

By default, the integrated registry caches metadata of blobs to reduce the number of requests
to storage, and to increase the request-processing speed. Pruning does not update the
integrated registry cache. Images that still contain pruned layers after pruning will be broken
because the pruned layers that have metadata in the cache will not be pushed. Therefore, you
must redeploy the registry to clear the cache after pruning:

If the integrated registry uses a Redis cache, you must clean the database manually.

If redeploying the registry after pruning is not an option, then you must permanently disable the
cache.

oc adm prune images operations require a route for your registry. Registry routes are not
created by default.

The Prune images CLI configuration options table describes the options you can use with the
oc adm prune images <options> command.

Table 10.4. Prune images CLI configuration options

Option Description

--all Include images that were not pushed to the registry, but have been
mirrored by pullthrough. This is on by default. To limit the pruning
to images that were pushed to the integrated registry, pass --
all=false.

--certificate-authority The path to a certificate authority file to use when communicating
with the OpenShift Container Platform-managed registries.
Defaults to the certificate authority data from the current user’s
configuration file. If provided, a secure connection is initiated.

 - adm
 - prune
 - images
 - --certificate-authority=/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt
 - --keep-tag-revisions=5
 - --keep-younger-than=96h
 - --confirm=true
 name: image-pruner
 serviceAccountName: pruner

$ oc adm prune images [<options>]

$ oc rollout restart deployment/image-registry -n openshift-image-registry

CHAPTER 10. PRUNING OBJECTS TO RECLAIM RESOURCES

127

--confirm Indicate that pruning should occur, instead of performing a test-
run. This requires a valid route to the integrated container image
registry. If this command is run outside of the cluster network, the
route must be provided using --registry-url.

--force-insecure Use caution with this option. Allow an insecure connection to the
container registry that is hosted via HTTP or has an invalid HTTPS
certificate.

--keep-tag-revisions=<N> For each imagestream, keep up to at most N image revisions per
tag (default 3).

--keep-younger-than=
<duration>

Do not prune any image that is younger than <duration> relative
to the current time. Alternately, do not prune any image that is
referenced by any other object that is younger than <duration>
relative to the current time (default 60m).

--prune-over-size-limit Prune each image that exceeds the smallest limit defined in the
same project. This flag cannot be combined with --keep-tag-
revisions nor --keep-younger-than.

--registry-url The address to use when contacting the registry. The command
attempts to use a cluster-internal URL determined from managed
images and image streams. In case it fails (the registry cannot be
resolved or reached), an alternative route that works needs to be
provided using this flag. The registry hostname can be prefixed by
https:// or http://, which enforces particular connection protocol.

--prune-registry In conjunction with the conditions stipulated by the other options,
this option controls whether the data in the registry corresponding
to the OpenShift Container Platform image API object is pruned.
By default, image pruning processes both the image API objects
and corresponding data in the registry.

This option is useful when you are only concerned with removing
etcd content, to reduce the number of image objects but are not
concerned with cleaning up registry storage, or if you intend to do
that separately by hard pruning the registry during an appropriate
maintenance window for the registry.

Option Description

10.6.1. Image prune conditions

You can apply conditions to your manually pruned images.

To remove any image managed by OpenShift Container Platform, or images with the
annotation openshift.io/image.managed:

Created at least --keep-younger-than minutes ago and are not currently referenced by any:

Pods created less than --keep-younger-than minutes ago

OpenShift Container Platform 4.7 Applications

128

Image streams created less than --keep-younger-than minutes ago

Running pods

Pending pods

Replication controllers

Deployments

Deployment configs

Replica sets

Build configurations

Builds

--keep-tag-revisions most recent items in stream.status.tags[].items

That are exceeding the smallest limit defined in the same project and are not currently
referenced by any:

Running pods

Pending pods

Replication controllers

Deployments

Deployment configs

Replica sets

Build configurations

Builds

There is no support for pruning from external registries.

When an image is pruned, all references to the image are removed from all image streams that
have a reference to the image in status.tags.

Image layers that are no longer referenced by any images are removed.

NOTE

The --prune-over-size-limit flag cannot be combined with the --keep-tag-revisions flag
nor the --keep-younger-than flags. Doing so returns information that this operation is
not allowed.

Separating the removal of OpenShift Container Platform image API objects and image data from the
registry by using --prune-registry=false, followed by hard pruning the registry, can narrow timing
windows and is safer when compared to trying to prune both through one command. However, timing
windows are not completely removed.

CHAPTER 10. PRUNING OBJECTS TO RECLAIM RESOURCES

129

For example, you can still create a pod referencing an image as pruning identifies that image for pruning.
You should still keep track of an API object created during the pruning operations that might reference
images so that you can mitigate any references to deleted content.

Re-doing the pruning without the --prune-registry option or with --prune-registry=true does not lead
to pruning the associated storage in the image registry for images previously pruned by --prune-
registry=false. Any images that were pruned with --prune-registry=false can only be deleted from
registry storage by hard pruning the registry.

10.6.2. Running the image prune operation

Procedure

1. To see what a pruning operation would delete:

a. Keeping up to three tag revisions, and keeping resources (images, image streams, and
pods) younger than 60 minutes:

b. Pruning every image that exceeds defined limits:

2. To perform the prune operation with the options from the previous step:

10.6.3. Using secure or insecure connections

The secure connection is the preferred and recommended approach. It is done over HTTPS protocol
with a mandatory certificate verification. The prune command always attempts to use it if possible. If it
is not possible, in some cases it can fall-back to insecure connection, which is dangerous. In this case,
either certificate verification is skipped or plain HTTP protocol is used.

The fall-back to insecure connection is allowed in the following cases unless --certificate-authority is
specified:

1. The prune command is run with the --force-insecure option.

2. The provided registry-url is prefixed with the http:// scheme.

3. The provided registry-url is a local-link address or localhost.

4. The configuration of the current user allows for an insecure connection. This can be caused by
the user either logging in using --insecure-skip-tls-verify or choosing the insecure connection
when prompted.

IMPORTANT

$ oc adm prune images --keep-tag-revisions=3 --keep-younger-than=60m

$ oc adm prune images --prune-over-size-limit

$ oc adm prune images --keep-tag-revisions=3 --keep-younger-than=60m --confirm

$ oc adm prune images --prune-over-size-limit --confirm

OpenShift Container Platform 4.7 Applications

130

IMPORTANT

If the registry is secured by a certificate authority different from the one used by
OpenShift Container Platform, it must be specified using the --certificate-authority flag.
Otherwise, the prune command fails with an error.

10.6.4. Image pruning problems

Images not being pruned
If your images keep accumulating and the prune command removes just a small portion of what you
expect, ensure that you understand the image prune conditions that must apply for an image to be
considered a candidate for pruning.

Ensure that images you want removed occur at higher positions in each tag history than your chosen tag
revisions threshold. For example, consider an old and obsolete image named sha:abz. By running the
following command in namespace N, where the image is tagged, the image is tagged three times in a
single image stream named myapp:

Example output

When default options are used, the image is never pruned because it occurs at position 0 in a history of
myapp:v2.1-may-2016 tag. For an image to be considered for pruning, the administrator must either:

Specify --keep-tag-revisions=0 with the oc adm prune images command.

WARNING

This action removes all the tags from all the namespaces with underlying
images, unless they are younger or they are referenced by objects younger
than the specified threshold.

Delete all the istags where the position is below the revision threshold, which means
myapp:v2.1 and myapp:v2.1-may-2016.

Move the image further in the history, either by running new builds pushing to the same istag, or
by tagging other image. This is not always desirable for old release tags.

Tags having a date or time of a particular image’s build in their names should be avoided, unless the
image must be preserved for an undefined amount of time. Such tags tend to have just one image in
their history, which prevents them from ever being pruned.

$ oc get is -n N -o go-template='{{range $isi, $is := .items}}{{range $ti, $tag := $is.status.tags}}'\
 '{{range $ii, $item := $tag.items}}{{if eq $item.image "'"sha:abz"\
 $'"}}{{$is.metadata.name}}:{{$tag.tag}} at position {{$ii}} out of {{len $tag.items}}\n'\
 '{{end}}{{end}}{{end}}{{end}}'

myapp:v2 at position 4 out of 5
myapp:v2.1 at position 2 out of 2
myapp:v2.1-may-2016 at position 0 out of 1



CHAPTER 10. PRUNING OBJECTS TO RECLAIM RESOURCES

131

Using a secure connection against insecure registry
If you see a message similar to the following in the output of the oc adm prune images command, then
your registry is not secured and the oc adm prune images client attempts to use a secure connection:

The recommended solution is to secure the registry. Otherwise, you can force the client to use
an insecure connection by appending --force-insecure to the command; however, this is not
recommended.

Using an insecure connection against a secured registry
If you see one of the following errors in the output of the oc adm prune images command, it means
that your registry is secured using a certificate signed by a certificate authority other than the one used
by oc adm prune images client for connection verification:

By default, the certificate authority data stored in the user’s configuration files is used; the same is true
for communication with the master API.

Use the --certificate-authority option to provide the right certificate authority for the container image
registry server.

Using the wrong certificate authority
The following error means that the certificate authority used to sign the certificate of the secured
container image registry is different from the authority used by the client:

Make sure to provide the right one with the flag --certificate-authority.

As a workaround, the --force-insecure flag can be added instead. However, this is not recommended.

Additional resources

Accessing the registry

Exposing the registry

See Image Registry Operator in OpenShift Container Platform for information on how to create
a registry route.

10.7. HARD PRUNING THE REGISTRY

The OpenShift Container Registry can accumulate blobs that are not referenced by the OpenShift
Container Platform cluster’s etcd. The basic pruning images procedure, therefore, is unable to operate
on them. These are called orphaned blobs.

Orphaned blobs can occur from the following scenarios:

error: error communicating with registry: Get https://172.30.30.30:5000/healthz: http: server gave
HTTP response to HTTPS client

error: error communicating with registry: Get http://172.30.30.30:5000/healthz: malformed HTTP
response "\x15\x03\x01\x00\x02\x02"
error: error communicating with registry: [Get https://172.30.30.30:5000/healthz: x509: certificate
signed by unknown authority, Get http://172.30.30.30:5000/healthz: malformed HTTP response
"\x15\x03\x01\x00\x02\x02"]

error: error communicating with registry: Get https://172.30.30.30:5000/: x509: certificate signed by
unknown authority

OpenShift Container Platform 4.7 Applications

132

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/registry/#accessing-the-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/registry/#securing-exposing-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/registry/#configuring-registry-operator

Manually deleting an image with oc delete image <sha256:image-id> command, which only
removes the image from etcd, but not from the registry’s storage.

Pushing to the registry initiated by daemon failures, which causes some blobs to get uploaded,
but the image manifest (which is uploaded as the very last component) does not. All unique
image blobs become orphans.

OpenShift Container Platform refusing an image because of quota restrictions.

The standard image pruner deleting an image manifest, but is interrupted before it deletes the
related blobs.

A bug in the registry pruner, which fails to remove the intended blobs, causing the image objects
referencing them to be removed and the blobs becoming orphans.

Hard pruning the registry, a separate procedure from basic image pruning, allows cluster administrators
to remove orphaned blobs. You should hard prune if you are running out of storage space in your
OpenShift Container Registry and believe you have orphaned blobs.

This should be an infrequent operation and is necessary only when you have evidence that significant
numbers of new orphans have been created. Otherwise, you can perform standard image pruning at
regular intervals, for example, once a day (depending on the number of images being created).

Procedure

To hard prune orphaned blobs from the registry:

1. Log in.
Log in to the cluster with the CLI as kubeadmin or another privileged user that has access to
the openshift-image-registry namespace.

2. Run a basic image prune.
Basic image pruning removes additional images that are no longer needed. The hard prune does
not remove images on its own. It only removes blobs stored in the registry storage. Therefore,
you should run this just before the hard prune.

3. Switch the registry to read-only mode.
If the registry is not running in read-only mode, any pushes happening at the same time as the
prune will either:

fail and cause new orphans, or

succeed although the images cannot be pulled (because some of the referenced blobs were
deleted).

Pushes will not succeed until the registry is switched back to read-write mode. Therefore, the
hard prune must be carefully scheduled.

To switch the registry to read-only mode:

a. In configs.imageregistry.operator.openshift.io/cluster, set spec.readOnly to true:

4. Add the system:image-pruner role.

The service account used to run the registry instances requires additional permissions to list

$ oc patch configs.imageregistry.operator.openshift.io/cluster -p '{"spec":
{"readOnly":true}}' --type=merge

CHAPTER 10. PRUNING OBJECTS TO RECLAIM RESOURCES

133

The service account used to run the registry instances requires additional permissions to list
some resources.

a. Get the service account name:

b. Add the system:image-pruner cluster role to the service account:

5. Optional: Run the pruner in dry-run mode.
To see how many blobs would be removed, run the hard pruner in dry-run mode. No changes
are actually made. The following example references an image registry pod called image-
registry-3-vhndw:

Alternatively, to get the exact paths for the prune candidates, increase the logging level:

Example output

$ service_account=$(oc get -n openshift-image-registry \
 -o jsonpath='{.spec.template.spec.serviceAccountName}' deploy/image-registry)

$ oc adm policy add-cluster-role-to-user \
 system:image-pruner -z \
 ${service_account} -n openshift-image-registry

$ oc -n openshift-image-registry exec pod/image-registry-3-vhndw -- /bin/sh -c
'/usr/bin/dockerregistry -prune=check'

$ oc -n openshift-image-registry exec pod/image-registry-3-vhndw -- /bin/sh -c
'REGISTRY_LOG_LEVEL=info /usr/bin/dockerregistry -prune=check'

time="2017-06-22T11:50:25.066156047Z" level=info msg="start prune (dry-run mode)"
distribution_version="v2.4.1+unknown" kubernetes_version=v1.6.1+$Format:%h$
openshift_version=unknown
time="2017-06-22T11:50:25.092257421Z" level=info msg="Would delete blob:
sha256:00043a2a5e384f6b59ab17e2c3d3a3d0a7de01b2cabeb606243e468acc663fa5"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:25.092395621Z" level=info msg="Would delete blob:
sha256:0022d49612807cb348cabc562c072ef34d756adfe0100a61952cbcb87ee6578a"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:25.092492183Z" level=info msg="Would delete blob:
sha256:0029dd4228961086707e53b881e25eba0564fa80033fbbb2e27847a28d16a37c"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:26.673946639Z" level=info msg="Would delete blob:
sha256:ff7664dfc213d6cc60fd5c5f5bb00a7bf4a687e18e1df12d349a1d07b2cf7663"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:26.674024531Z" level=info msg="Would delete blob:
sha256:ff7a933178ccd931f4b5f40f9f19a65be5eeeec207e4fad2a5bafd28afbef57e"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:26.674675469Z" level=info msg="Would delete blob:
sha256:ff9b8956794b426cc80bb49a604a0b24a1553aae96b930c6919a6675db3d5e06"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
...
Would delete 13374 blobs
Would free up 2.835 GiB of disk space
Use -prune=delete to actually delete the data

OpenShift Container Platform 4.7 Applications

134

6. Run the hard prune.
Execute the following command inside one running instance of a image-registry pod to run the
hard prune. The following example references an image registry pod called image-registry-3-
vhndw:

Example output

7. Switch the registry back to read-write mode.
After the prune is finished, the registry can be switched back to read-write mode. In
configs.imageregistry.operator.openshift.io/cluster, set spec.readOnly to false:

10.8. PRUNING CRON JOBS

Cron jobs can perform pruning of successful jobs, but might not properly handle failed jobs. Therefore,
the cluster administrator should perform regular cleanup of jobs manually. They should also restrict the
access to cron jobs to a small group of trusted users and set appropriate quota to prevent the cron job
from creating too many jobs and pods.

Additional resources

Running tasks in pods using jobs

Resource quotas across multiple projects

Using RBAC to define and apply permissions

$ oc -n openshift-image-registry exec pod/image-registry-3-vhndw -- /bin/sh -c
'/usr/bin/dockerregistry -prune=delete'

Deleted 13374 blobs
Freed up 2.835 GiB of disk space

$ oc patch configs.imageregistry.operator.openshift.io/cluster -p '{"spec":{"readOnly":false}}' -
-type=merge

CHAPTER 10. PRUNING OBJECTS TO RECLAIM RESOURCES

135

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/nodes/#nodes-nodes-jobs_nodes-nodes-jobs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#setting-quotas-across-multiple-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/authentication_and_authorization/#using-rbac

CHAPTER 11. USING THE RED HAT MARKETPLACE
The Red Hat Marketplace is an open cloud marketplace that makes it easy to discover and access
certified software for container-based environments that run on public clouds and on-premises.

11.1. RED HAT MARKETPLACE FEATURES

Cluster administrators can use the Red Hat Marketplace to manage software on OpenShift Container
Platform, give developers self-service access to deploy application instances, and correlate application
usage against a quota.

11.1.1. Connect OpenShift Container Platform clusters to the Marketplace

Cluster administrators can install a common set of applications on OpenShift Container Platform
clusters that connect to the Marketplace. They can also use the Marketplace to track cluster usage
against subscriptions or quotas. Users that they add by using the Marketplace have their product usage
tracked and billed to their organization.

During the cluster connection process, a Marketplace Operator is installed that updates the image
registry secret, manages the catalog, and reports application usage.

11.1.2. Install applications

Cluster administrators can install Marketplace applications from within OperatorHub in OpenShift
Container Platform, or from the Marketplace web application.

You can access installed applications from the web console by clicking Operators > Installed Operators.

11.1.3. Deploy applications from different perspectives

You can deploy Marketplace applications from the web console’s Administrator and Developer
perspectives.

The Developer perspective
Developers can access newly installed capabilities by using the Developer perspective.

For example, after a database Operator is installed, a developer can create an instance from the catalog
within their project. Database usage is aggregated and reported to the cluster administrator.

This perspective does not include Operator installation and application usage tracking.

The Administrator perspective
Cluster administrators can access Operator installation and application usage information from the
Administrator perspective.

They can also launch application instances by browsing custom resource definitions (CRDs) in the
Installed Operators list.

OpenShift Container Platform 4.7 Applications

136

https://marketplace.redhat.com
https://marketplace.redhat.com/en-us/documentation/getting-started
https://marketplace.redhat.com/en-us/documentation/clusters
https://marketplace.redhat.com/en-us/documentation/operators
https://marketplace.redhat.com

	Table of Contents
	CHAPTER 1. BUILDING APPLICATIONS OVERVIEW
	1.1. WORKING ON A PROJECT
	1.2. WORKING ON AN APPLICATION
	1.2.1. Creating an application
	1.2.2. Maintaining an application
	1.2.3. Deploying an application

	1.3. USING THE RED HAT MARKETPLACE

	CHAPTER 2. PROJECTS
	2.1. WORKING WITH PROJECTS
	2.1.1. Creating a project using the web console
	2.1.2. Creating a project using the Developer perspective in the web console
	2.1.3. Creating a project using the CLI
	2.1.4. Viewing a project using the web console
	2.1.5. Viewing a project using the CLI
	2.1.6. Providing access permissions to your project using the Developer perspective
	2.1.7. Adding to a project
	2.1.8. Checking project status using the web console
	2.1.9. Checking project status using the CLI
	2.1.10. Deleting a project using the web console
	2.1.11. Deleting a project using the CLI

	2.2. CREATING A PROJECT AS ANOTHER USER
	2.2.1. API impersonation
	2.2.2. Impersonating a user when you create a project

	2.3. CONFIGURING PROJECT CREATION
	2.3.1. About project creation
	2.3.2. Modifying the template for new projects
	2.3.3. Disabling project self-provisioning
	2.3.4. Customizing the project request message

	CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT
	3.1. CREATING APPLICATIONS USING THE DEVELOPER PERSPECTIVE
	3.1.1. Prerequisites
	3.1.2. Creating Sample applications
	3.1.3. Importing a codebase from Git to create an application
	3.1.4. Using the Developer Catalog to add services or components to your application
	3.1.5. Additional resources

	3.2. CREATING APPLICATIONS FROM INSTALLED OPERATORS
	3.2.1. Creating an etcd cluster using an Operator

	3.3. CREATING APPLICATIONS USING THE CLI
	3.3.1. Creating an application from source code
	3.3.1.1. Local
	3.3.1.2. Remote
	3.3.1.3. Build strategy detection
	3.3.1.4. Language detection

	3.3.2. Creating an application from an image
	3.3.2.1. Docker Hub MySQL image
	3.3.2.2. Image in a private registry
	3.3.2.3. Existing image stream and optional image stream tag

	3.3.3. Creating an application from a template
	3.3.3.1. Template parameters

	3.3.4. Modifying application creation
	3.3.4.1. Specifying environment variables
	3.3.4.2. Specifying build environment variables
	3.3.4.3. Specifying labels
	3.3.4.4. Viewing the output without creation
	3.3.4.5. Creating objects with different names
	3.3.4.6. Creating objects in a different project
	3.3.4.7. Creating multiple objects
	3.3.4.8. Grouping images and source in a single pod
	3.3.4.9. Searching for images, templates, and other inputs

	3.4. VIEWING APPLICATION COMPOSITION USING THE TOPOLOGY VIEW
	3.4.1. Prerequisites
	3.4.2. Viewing the topology of your application
	3.4.3. Interacting with applications and components
	3.4.4. Scaling application pods and checking builds and routes
	3.4.5. Adding components to an existing project
	3.4.6. Grouping multiple components within an application
	3.4.7. Connecting components within an application and across applications
	3.4.7.1. Creating a visual connection between components
	3.4.7.2. Creating a binding connection between components

	3.4.8. Labels and annotations used for the Topology view

	3.5. EDITING APPLICATIONS
	3.5.1. Prerequisites
	3.5.2. Editing the source code of an application using the Developer perspective
	3.5.3. Editing the application configuration using the Developer perspective

	3.6. WORKING WITH HELM CHARTS USING THE DEVELOPER PERSPECTIVE
	3.6.1. Understanding Helm
	3.6.1.1. Key features

	3.6.2. Prerequisites
	3.6.3. Installing Helm charts
	3.6.4. Upgrading a Helm release
	3.6.5. Rolling back a Helm release
	3.6.6. Uninstalling a Helm release

	3.7. DELETING APPLICATIONS
	3.7.1. Deleting applications using the Developer perspective

	CHAPTER 4. DEPLOYMENTS
	4.1. UNDERSTANDING DEPLOYMENT AND DEPLOYMENTCONFIG OBJECTS
	4.1.1. Building blocks of a deployment
	4.1.1.1. Replication controllers
	4.1.1.2. Replica sets

	4.1.2. DeploymentConfig objects
	4.1.3. Deployments
	4.1.4. Comparing Deployment and DeploymentConfig objects
	4.1.4.1. Design
	4.1.4.2. DeploymentConfig object-specific features
	4.1.4.3. Deployment-specific features

	4.2. MANAGING DEPLOYMENT PROCESSES
	4.2.1. Managing DeploymentConfig objects
	4.2.1.1. Starting a deployment
	4.2.1.2. Viewing a deployment
	4.2.1.3. Retrying a deployment
	4.2.1.4. Rolling back a deployment
	4.2.1.5. Executing commands inside a container
	4.2.1.6. Viewing deployment logs
	4.2.1.7. Deployment triggers
	4.2.1.8. Setting deployment resources
	4.2.1.9. Scaling manually
	4.2.1.10. Accessing private repositories from DeploymentConfig objects
	4.2.1.11. Assigning pods to specific nodes
	4.2.1.12. Running a pod with a different service account

	4.3. USING DEPLOYMENT STRATEGIES
	4.3.1. Rolling strategy
	4.3.1.1. Canary deployments
	4.3.1.2. Creating a rolling deployment
	4.3.1.3. Starting a rolling deployment using the Developer perspective

	4.3.2. Recreate strategy
	4.3.3. Starting a recreate deployment using the Developer perspective
	4.3.4. Custom strategy
	4.3.5. Lifecycle hooks
	Pod-based lifecycle hook
	4.3.5.1. Setting lifecycle hooks

	4.4. USING ROUTE-BASED DEPLOYMENT STRATEGIES
	4.4.1. Proxy shards and traffic splitting
	4.4.2. N-1 compatibility
	4.4.3. Graceful termination
	4.4.4. Blue-green deployments
	4.4.4.1. Setting up a blue-green deployment

	4.4.5. A/B deployments
	4.4.5.1. Load balancing for A/B testing

	CHAPTER 5. QUOTAS
	5.1. RESOURCE QUOTAS PER PROJECT
	5.1.1. Resources managed by quotas
	5.1.2. Quota scopes
	5.1.3. Quota enforcement
	5.1.4. Requests versus limits
	5.1.5. Sample resource quota definitions
	5.1.6. Creating a quota
	5.1.6.1. Creating object count quotas
	5.1.6.2. Setting resource quota for extended resources

	5.1.7. Viewing a quota
	5.1.8. Configuring explicit resource quotas

	5.2. RESOURCE QUOTAS ACROSS MULTIPLE PROJECTS
	5.2.1. Selecting multiple projects during quota creation
	5.2.2. Viewing applicable cluster resource quotas
	5.2.3. Selection granularity

	CHAPTER 6. USING CONFIG MAPS WITH APPLICATIONS
	6.1. UNDERSTANDING CONFIG MAPS
	Config map restrictions

	6.2. USE CASES: CONSUMING CONFIG MAPS IN PODS
	6.2.1. Populating environment variables in containers by using config maps
	6.2.2. Setting command-line arguments for container commands with config maps
	6.2.3. Injecting content into a volume by using config maps

	CHAPTER 7. MONITORING PROJECT AND APPLICATION METRICS USING THE DEVELOPER PERSPECTIVE
	7.1. PREREQUISITES
	7.2. MONITORING YOUR PROJECT METRICS
	7.3. MONITORING YOUR APPLICATION METRICS
	7.4. ADDITIONAL RESOURCES

	CHAPTER 8. MONITORING APPLICATION HEALTH BY USING HEALTH CHECKS
	8.1. UNDERSTANDING HEALTH CHECKS
	Example probes

	8.2. CONFIGURING HEALTH CHECKS USING THE CLI
	8.3. MONITORING APPLICATION HEALTH USING THE DEVELOPER PERSPECTIVE
	8.4. ADDING HEALTH CHECKS USING THE DEVELOPER PERSPECTIVE
	8.5. EDITING HEALTH CHECKS USING THE DEVELOPER PERSPECTIVE
	8.6. MONITORING HEALTH CHECK FAILURES USING THE DEVELOPER PERSPECTIVE

	CHAPTER 9. IDLING APPLICATIONS
	9.1. IDLING APPLICATIONS
	9.1.1. Idling a single service
	9.1.2. Idling multiple services

	9.2. UNIDLING APPLICATIONS

	CHAPTER 10. PRUNING OBJECTS TO RECLAIM RESOURCES
	10.1. BASIC PRUNING OPERATIONS
	10.2. PRUNING GROUPS
	10.3. PRUNING DEPLOYMENT RESOURCES
	10.4. PRUNING BUILDS
	10.5. AUTOMATICALLY PRUNING IMAGES
	10.6. MANUALLY PRUNING IMAGES
	10.6.1. Image prune conditions
	10.6.2. Running the image prune operation
	10.6.3. Using secure or insecure connections
	10.6.4. Image pruning problems
	Images not being pruned
	Using a secure connection against insecure registry
	Using an insecure connection against a secured registry
	Using the wrong certificate authority

	10.7. HARD PRUNING THE REGISTRY
	10.8. PRUNING CRON JOBS

	CHAPTER 11. USING THE RED HAT MARKETPLACE
	11.1. RED HAT MARKETPLACE FEATURES
	11.1.1. Connect OpenShift Container Platform clusters to the Marketplace
	11.1.2. Install applications
	11.1.3. Deploy applications from different perspectives
	The Developer perspective
	The Administrator perspective

