

OpenShift Container Platform 4.12

Logging

Configuring and using logging in OpenShift Container Platform

Last Updated: 2024-05-03

Configuring and using logging in OpenShift Container Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at

http://creativecommons.org/licenses/by-sa/3.0/

. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux [®] is the registered trademark of Linus Torvalds in the United States and other countries.

Java [®] is a registered trademark of Oracle and/or its affiliates.

XFS [®] is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.

MySQL [®] is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js [®] is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack [®] Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Use logging to collect, visualize, forward, and store log data to troubleshoot issues, identify performance bottlenecks, and detect security threats in OpenShift Container Platform.

Table of Contents

CHAPTER 1. RELEASE NOTES	 18
1.1. LOGGING 5.8	18
1.1.1. Logging 5.8.6	18
1.1.1.1. Enhancements	18
1.1.1.2. Bug fixes	18
1.1.1.3. CVEs	18
1.1.2. Logging 5.8.5	19
1.1.2.1. Bug fixes	19
1.1.2.2. CVEs	20
1.1.3. Logging 5.8.4	20
1.1.3.1. Bug fixes	20
1.1.3.2. CVEs	21
1.1.4. Logging 5.8.3	22
1.1.4.1. Bug fixes	22
1.1.4.2. CVEs	22
1.1.5. Logging 5.8.2	23
1.1.5.1. Bug fixes	23
1.1.5.2. CVEs	23
1.1.6. Logging 5.8.1	23
1.1.6.1. Enhancements	23
1.1.6.1.1. Log Collection	23
1.1.6.2. Bug fixes	24
1.1.6.3. CVEs	25
1.1.7. Logging 5.8.0	27
1.1.7.1. Deprecation notice	28
1.1.7.2. Enhancements	28
1.1.7.2.1. Log Collection	28
1.1.7.2.2. Log Storage	28
1.1.7.2.3. Log Console	29
1.1.7.3. Known Issues	29
1.1.7.4. CVEs	29
1.2. LOGGING 5.7	30
1.2.1. Logging 5.7.13	30
1.2.1.1. Enhancements	30
1.2.1.2. Bug fixes	30
1.2.1.3. CVEs	30
1.2.2. Logging 5.7.12	31
1.2.2.1. Bug fixes	31
1.2.2.2. CVEs	31
1.2.3. Logging 5.7.11	32
1.2.3.1. Bug fixes	33
1.2.3.2. CVEs	33
1.2.4. Logging 5.7.10	33
1.2.4.1. Bug fix	33
1.2.4.2. CVEs	33
1.2.5. Logging 5.7.9	35
1.2.5.1. Bug fixes	35
1.2.5.2. CVEs	36
1.2.6. Logging 5.7.8	38
1.2.6.1. Bug fixes	38
1.2.6.2. CVEs	39

1.2.7. Logging 5.7.7	39
1.2.7.1. Bug fixes	39
1.2.7.2. CVEs	39
1.2.8. Logging 5.7.6	40
1.2.8.1. Bug fixes	40
1.2.8.2. CVEs	41
1.2.9. Logging 5.7.4	41
1.2.9.1. Bug fixes	41
1.2.9.2. CVEs	42
1.2.10. Logging 5.7.3	42
1.2.10.1. Bug fixes	42
1.2.10.2. CVEs	43
1.2.11. Logging 5.7.2	43
1.2.11.1. Bug fixes	43
1.2.11.2. CVEs	45
1.2.12. Logging 5.7.1	47
1.2.12.1. Bug fixes	47
1.2.12.2. CVEs	48
1.2.13. Logging 5.7.0	48
1.2.13.1. Enhancements	48
1.2.13.2. Known Issues	48
1.2.13.3. Bug fixes	48
1.2.13.4. CVEs	48
1.3. LOGGING 5.6	49
1.3.1. Logging 5.6.18	49
1.3.1.1. Enhancements	49
1.3.1.2. Bug fixes	49
1.3.1.3. CVEs	49
1.3.2. Logging 5.6.17	50
1.3.2.1. Bug fixes	50
1.3.2.2. CVEs	50
1.3.3. Logging 5.6.16	50
1.3.3.1. Bug fixes	51
1.3.3.2. CVEs	51
1.3.4. Logging 5.6.15	51
1.3.4.1. Bug fixes	51
1.3.4.2. CVEs	51
1.3.5. Logging 5.6.14	51
1.3.5.1. Bug fixes	51
1.3.5.2. CVEs	52
1.3.6. Logging 5.6.13	54
1.3.6.1. Bug fixes	54
1.3.6.2. CVEs	54
1.3.7. Logging 5.6.12	54
1.3.7.1. Bug fixes	54
1.3.7.2. CVEs	55
1.3.8. Logging 5.6.11	55
1.3.8.1. Bug fixes	55
1.3.8.2. CVEs	56
1.3.9. Logging 5.6.9	56
1.3.9.1. Bug fixes	56
1.3.9.2. CVEs	56
1.3.10. Logging 5.6.8	56
	50

1.3.10.1. Bug fixes	56
1.3.10.2. CVEs	57
1.3.11. Logging 5.6.5	57
1.3.11.1. Bug fixes	57
1.3.11.2. CVEs	58
1.3.12. Logging 5.6.4	58
1.3.12.1. Bug fixes	58
1.3.12.2. CVEs	59
1.3.13. Logging 5.6.3	59
1.3.13.1. Bug fixes	59
1.3.13.2. CVEs	60
1.3.14. Logging 5.6.2	60
1.3.14.1. Bug fixes	60
1.3.14.2. CVEs	60
1.3.15. Logging 5.6.1	61
1.3.15.1. Bug fixes	61
1.3.15.2. CVEs	61
1.3.16. Logging 5.6.0	62
1.3.16.1. Deprecation notice	62
1.3.16.2. Enhancements	62
1.3.16.3. Known Issues	62
1.3.16.4. Bug fixes	62
1.3.16.5. CVEs	64
1.4. LOGGING 5.5	64
1.4.1. Logging 5.5.18	64
1.4.1.1. Bug fixes	65
1.4.1.2. CVEs	65
1.4.2. Logging 5.5.17	65
1.4.2.1. Bug fixes	65
1.4.2.2. CVEs	65
1.4.3. Logging 5.5.16	66
1.4.3.1. Bug fixes	66
1.4.3.2. CVEs	66
1.4.4. Logging 5.5.14	66
1.4.4.1. Bug fixes	66
1.4.4.2. CVEs	66
1.4.5. Logging 5.5.13	66
1.4.5.1. Bug fixes	66
1.4.5.2. CVEs	66
1.4.6. Logging 5.5.12	67
1.4.6.1. Bug fixes	67
1.4.6.2. CVEs	67
1.4.7. Logging 5.5.11	69
1.4.7.1. Bug fixes	69
1.4.7.2. CVEs	69
1.4.8. Logging 5.5.10	71
1.4.8.1. Bug fixes	71
1.4.8.2. CVEs	71
1.4.9. Logging 5.5.9	71
	71
1.4.9.1. Bug fixes 1.4.9.2. CVEs	
	72
1.4.10. Logging 5.5.8	72
1.4.10.1. Bug fixes	72

1.4.10.2. CVEs	72
1.4.11. Logging 5.5.7	72
1.4.11.1. Bug fixes	73
1.4.11.2. CVEs	73
1.4.12. Logging 5.5.6	73
1.4.12.1. Bug fixes	73
1.4.12.2. CVEs	74
1.4.13. Logging 5.5.5	75
1.4.13.1. Bug fixes	75
1.4.13.2. CVEs	75
1.4.14. Logging 5.5.4	78
1.4.14.1. Bug fixes	78
1.4.14.2. CVEs	78
1.4.15. Logging 5.5.3	79
1.4.15.1. Bug fixes	79
1.4.15.2. CVEs	80
1.4.16. Logging 5.5.2	80
1.4.16.1. Bug fixes	80
1.4.16.2. CVEs	81
1.4.17. Logging 5.5.1	81
1.4.17.1. Enhancements	81
1.4.17.2. Bug fixes	82
1.4.17.3. CVEs	82
1.4.18. Logging 5.5.0	82
1.4.18.1. Enhancements	82
1.4.18.2. Bug fixes	83
1.4.18.3. CVEs	83
	00
CHAPTER 2. SUPPORT	85
2.1. SUPPORTED API CUSTOM RESOURCE DEFINITIONS	85
2.2. UNSUPPORTED CONFIGURATIONS	86
2.3. SUPPORT POLICY FOR UNMANAGED OPERATORS	86
2.4. COLLECTING LOGGING DATA FOR RED HAT SUPPORT	87
2.4.1. About the must-gather tool	87
2.4.2. Collecting logging data	88
CHAPTER 3. TROUBLESHOOTING LOGGING	89
3.1. VIEWING LOGGING STATUS	89
3.1.1. Viewing the status of the Red Hat OpenShift Logging Operator	89
3.1.1.1. Example condition messages	90
3.1.2. Viewing the status of logging components	93
3.2. TROUBLESHOOTING LOG FORWARDING	94
3.2.1. Redeploying Fluentd pods	94
3.2.2. Troubleshooting Loki rate limit errors	94
3.3. TROUBLESHOOTING LOGGING ALERTS	96
3.3.1. Elasticsearch cluster health status is red	96
3.3.2. Elasticsearch cluster health status is yellow	99
3.3.3. Elasticsearch node disk low watermark reached	99
3.3.4. Elasticsearch node disk high watermark reached	101
3.3.5. Elasticsearch node disk flood watermark reached	102
3.3.6. Elasticsearch JVM heap usage is high	104
3.3.7. Aggregated logging system CPU is high	104
3.3.8. Elasticsearch process CPU is high	104

 3.3.9. Elasticsearch disk space is running low 3.3.10. Elasticsearch FileDescriptor usage is high 3.4. VIEWING THE STATUS OF THE ELASTICSEARCH LOG STORE 3.4.1. Viewing the status of the Elasticsearch log store 3.4.1.1. Example condition messages 3.4.2. Viewing the status of the log store components 3.4.3. Elasticsearch cluster status 	104 105 105 106 108 110 113
 CHAPTER 4. ABOUT LOGGING 4.1. LOGGING ARCHITECTURE 4.2. ABOUT DEPLOYING LOGGING 4.2.1. Logging custom resources 4.2.2. About JSON OpenShift Container Platform Logging 4.2.3. About collecting and storing Kubernetes events 4.2.4. About troubleshooting OpenShift Container Platform Logging 4.2.5. About exporting fields 4.2.6. About event routing 	 115 116 116 117 117 117 118 118
 CHAPTER 5. INSTALLING LOGGING 5.1. INSTALLING THE RED HAT OPENSHIFT LOGGING OPERATOR BY USING THE WEB CONSOLE 5.2. CREATING A CLUSTERLOGGING OBJECT BY USING THE WEB CONSOLE 5.3. INSTALLING THE RED HAT OPENSHIFT LOGGING OPERATOR BY USING THE CLI 5.4. CREATING A CLUSTERLOGGING OBJECT BY USING THE CLI 5.5. POSTINSTALLATION TASKS 5.5.1. About the ClusterLogging custom resource 5.5.2. Configuring log storage 5.5.3. Configuring the log collector 5.5.4. Configuring the log visualizer 5.5.5. Allowing traffic between projects when network isolation is enabled 	 119 120 121 123 126 126 126 126 128 129 130
 CHAPTER 6. UPDATING LOGGING 6.1. MINOR RELEASE UPDATES 6.2. MAJOR RELEASE UPDATES 6.3. UPGRADING THE RED HAT OPENSHIFT LOGGING OPERATOR TO WATCH ALL NAMESPACES 6.4. UPDATING THE RED HAT OPENSHIFT LOGGING OPERATOR 6.5. UPDATING THE LOKI OPERATOR 6.6. UPDATING THE OPENSHIFT ELASTICSEARCH OPERATOR 	 132 132 132 133 134 134
 CHAPTER 7. VISUALIZING LOGS 7.1. ABOUT LOG VISUALIZATION 7.1.1. Configuring the log visualizer 7.1.2. Viewing logs for a resource 7.1.2.1. Viewing resource logs 7.2. LOG VISUALIZATION WITH THE WEB CONSOLE 7.2.1. Enabling the logging Console Plugin after you have installed the Red Hat OpenShift Logging Operator 	139 139 139 140 140 141
 7.2.2. Configuring the logging Console Plugin when you have the Elasticsearch log store and LokiStack insta 7.3. VIEWING CLUSTER DASHBOARDS 7.3.1. Accessing the Elasticsearch and OpenShift Logging dashboards 7.3.2. About the OpenShift Logging dashboard 7.3.3. Charts on the Logging/Elasticsearch nodes dashboard 7.4. LOG VISUALIZATION WITH KIBANA 	142
7.4.1. Defining Kibana index patterns	150

 7.4.2. Viewing cluster logs in Kibana 7.4.3. Configuring Kibana 7.4.3.1. Configuring CPU and memory limits 7.4.3.2. Scaling redundancy for the log visualizer nodes 	152 154 154 155
 CHAPTER 8. CONFIGURING YOUR LOGGING DEPLOYMENT 8.1. CONFIGURING CPU AND MEMORY LIMITS FOR LOGGING COMPONENTS 8.1.1. Configuring CPU and memory limits 8.2. CONFIGURING SYSTEMD-JOURNALD AND FLUENTD 8.2.1. Configuring systemd-journald for OpenShift Logging 	157 157 157 158 158
o.z.i. Comguning systemu-journald for OpenShirt Logging	100
CHAPTER 9. LOG COLLECTION AND FORWARDING 9.1. ABOUT LOG COLLECTION AND FORWARDING 9.1.1. Log collection	162 162 162
9.1.1.1. Log collector types	162
9.1.1.2. Log collection limitations	163
9.1.1.3. Log collector features by type	163
9.1.1.4. Collector outputs	166
9.1.2. Log forwarding	166
9.1.2.1. Log forwarding implementations	167
9.1.2.1.1. Legacy implementation	167
9.1.2.1.2. Multi log forwarder feature	167
9.1.2.2. Enabling the multi log forwarder feature for a cluster	167
9.1.2.2.1. Authorizing log collection RBAC permissions 9.2. LOG OUTPUT TYPES	168 168
9.2.1. Supported log forwarding outputs	168
9.2.2. Output type descriptions	169
9.3. ENABLING JSON LOG FORWARDING	170
9.3.1. Parsing JSON logs	170
9.3.2. Configuring JSON log data for Elasticsearch	171
9.3.3. Forwarding JSON logs to the Elasticsearch log store	173
9.3.4. Forwarding JSON logs from containers in the same pod to separate indices	174
9.4. CONFIGURING LOG FORWARDING	176
9.4.1. About forwarding logs to third-party systems	176
Fluentd log handling when the external log aggregator is unavailable	179
Supported Authorization Keys	179
9.4.1.1. Creating a Secret	180
9.4.2. Creating a log forwarder	180
9.4.3. Enabling multi-line exception detection	181
9.4.3.1. Details	182
9.4.3.2. Troubleshooting	183
9.4.4. Forwarding logs to Google Cloud Platform (GCP)	183
9.4.5. Forwarding logs to Splunk	184
9.4.6. Forwarding logs over HTTP	186
9.4.7. Forwarding application logs from specific projects	187
9.4.8. Forwarding application logs from specific pods	189
9.4.9. Overview of API audit filter	190
9.4.10. Forwarding logs to an external Loki logging system	193
9.4.11. Forwarding logs to an external Elasticsearch instance	195
9.4.12. Forwarding logs using the Fluentd forward protocol	198
9.4.12.1. Enabling nanosecond precision for Logstash to ingest data from fluentd	200
9.4.13. Forwarding logs using the syslog protocol	200
9.4.13.1. Adding log source information to message output	202

9.4.13.2. Syslog parameters	203
9.4.13.3. Additional RFC5424 syslog parameters	204
9.4.14. Forwarding logs to a Kafka broker	204
9.4.15. Forwarding logs to Amazon CloudWatch	207
9.4.15.1. Creating a secret for AWS CloudWatch with an existing AWS role	212
9.4.16. Forwarding logs to Amazon CloudWatch from STS enabled clusters	213
9.5. CONFIGURING THE LOGGING COLLECTOR	215
9.5.1. Configuring the log collector	215
9.5.2. Creating a LogFileMetricExporter resource	216
9.5.3. Configure log collector CPU and memory limits	218
9.5.4. Configuring input receivers	218
9.5.4.1. Configuring the collector to receive audit logs as an HTTP server	218
9.5.5. Advanced configuration for the Fluentd log forwarder	220
9.6. COLLECTING AND STORING KUBERNETES EVENTS	224
9.6.1. Deploying and configuring the Event Router	225
CHAPTER 10. LOG STORAGE	229
10.1. ABOUT LOG STORAGE	229
10.1.1. Log storage types	229
10.1.1.1. About the Elasticsearch log store	229
10.1.2. Querying log stores	229
10.1.3. Additional resources	230
10.2. INSTALLING LOG STORAGE	230
10.2.1. Deploying a Loki log store	230
10.2.1.1. Loki deployment sizing	230
10.2.1.2. Installing the Loki Operator by using the OpenShift Container Platform web console	231
10.2.1.3. Creating a secret for Loki object storage by using the web console	232
10.2.1.4. Creating a LokiStack custom resource by using the web console	233
10.2.1.5. Installing Loki Operator by using the CLI	234
10.2.1.6. Creating a secret for Loki object storage by using the CLI	235
10.2.1.7. Creating a LokiStack custom resource by using the CLI	236
10.2.2. Loki object storage	238
10.2.2.1. AWS storage	238
10.2.2.2. Azure storage	239
10.2.2.3. Google Cloud Platform storage	239
10.2.2.4. Minio storage	240
10.2.2.5. OpenShift Data Foundation storage	240
10.2.2.6. Swift storage	241
10.2.3. Deploying an Elasticsearch log store	242
10.2.3.1. Storage considerations for Elasticsearch	242
10.2.3.2. Installing the OpenShift Elasticsearch Operator by using the web console	243
10.2.3.3. Installing the OpenShift Elasticsearch Operator by using the CLI	244
10.2.4. Configuring log storage	246
10.3. CONFIGURING THE LOKISTACK LOG STORE	248
10.3.1. Creating a new group for the cluster-admin user role	248
10.3.2. LokiStack behavior during cluster restarts	248
10.3.3. Configuring Loki to tolerate node failure	249
10.3.4. Zone aware data replication	250
10.3.4.1. Recovering Loki pods from failed zones	250
10.3.4.1.1. Troubleshooting PVC in a terminating state	252
10.3.5. Fine grained access for Loki logs	252
10.3.5.1. Cluster wide access	253
10.3.5.2. Namespaced access	253

10.3.5.3. Custom admin group access 10.3.6. Enabling stream-based retention with Loki	254 254
10.3.7. Troubleshooting Loki rate limit errors	256
10.3.8. Configuring Loki to tolerate memberlist creation failure	258
10.3.9. Additional Resources	258
10.4. CONFIGURING THE ELASTICSEARCH LOG STORE	259
10.4.1. Configuring log storage	259
10.4.2. Forwarding audit logs to the log store	260
10.4.3. Configuring log retention time	262
10.4.4. Configuring CPU and memory requests for the log store	264
10.4.5. Configuring replication policy for the log store	266
10.4.6. Scaling down Elasticsearch pods	267
10.4.7. Configuring persistent storage for the log store	267
10.4.8. Configuring the log store for emptyDir storage	268
10.4.9. Performing an Elasticsearch rolling cluster restart	268
10.4.10. Exposing the log store service as a route	271
10.4.11. Removing unused components if you do not use the default Elasticsearch log store	274
CHAPTER 11. LOGGING ALERTS	276
11.1. DEFAULT LOGGING ALERTS	276
11.1.1. Accessing the Alerting UI in the Administrator and Developer perspectives	276
11.1.2. Vector collector alerts	276
11.1.3. Fluentd collector alerts	277
11.1.4. Elasticsearch alerting rules	277
11.1.5. Additional resources	278
CHAPTER 12. PERFORMANCE AND RELIABILITY TUNING	279
12.1. FLOW CONTROL MECHANISMS	279
12.1.1. Benefits of flow control mechanisms	279
12.1.2. Configuring rate limits	279
	279
12.1.3. Configuring log forwarder output rate limits	
12.1.4. Configuring log forwarder input rate limits	280
CHAPTER 13. SCHEDULING RESOURCES	283
13.1. USING NODE SELECTORS TO MOVE LOGGING RESOURCES	283
13.1.1. About node selectors	283
13.1.2. Loki pod placement	287
13.1.3. Configuring resources and scheduling for logging collectors	291
13.1.4. Viewing logging collector pods	292
13.1.5. Additional resources	292
13.2. USING TAINTS AND TOLERATIONS TO CONTROL LOGGING POD PLACEMENT	292
13.2.1. Understanding taints and tolerations	292
13.2.2. Loki pod placement	295
13.2.3. Using tolerations to control log collector pod placement	299
13.2.4. Configuring resources and scheduling for logging collectors	301
13.2.5. Viewing logging collector pods	302
13.2.6. Additional resources	302
CHAPTER 14. UNINSTALLING LOGGING	303
14.1. UNINSTALLING THE LOGGING	303
14.2. DELETING LOGGING PVCS	304
14.3. UNINSTALLING LOKI	304
14.4. UNINSTALLING ELASTICSEARCH	305
14.5. DELETING OPERATORS FROM A CLUSTER USING THE CLI	306

MESSAGE 308 STRUCTURED 308 eTIMESTAMP 308 HOSTNAME 309 IPADDR4 309 IPADDR5 309 LEVEL 309 PID 309 SERVICE 310 CHAPTER IG. TAGS 311 FLE 0FFSET OFFSET 311 CHAPTER IT. KUBERNETES 312 17.1. KUBERNETES.POD_NAME 312 17.2. KUBERNETES.POD_NAME 312 17.4. KUBERNETES.CONTAINER_INAME 312 17.4. KUBERNETES.ANDESPACE_ID 313 17.8. KUBERNETES.CONTAINER_INAME 313 17.9. KUBERNETES.ANDELTONS 313 17.9. KUBERNETES.ANDELTONS 313 17.9.2. Kubernetes.event.metadata.anme 313 17.9.2. kubernetes.event.metadata.anme 313 17.9.2. kubernetes.event.metadata.anme 313 17.9.2.1. kubernetes.event.metadata.anme 315 17.9.3.2. kubernetes.event.metadata.anme 315 17.9.3.3. kubernetes.	CHAPTER 15. LOG RECORD FIELDS	308
@TIMESTAMP 308 HOSTNAME 309 IPADDR6 309 IPADDR6 309 LEVEL 309 PID 309 SERVICE 310 CHAPTER IG. TAGS 311 FILE 311 OFFSET 311 CHAPTER IT. KUBERNETES 312 17.1. KUBERNETES.POD_NAME 312 17.3. KUBERNETES.NAMESPACE_ID 312 17.4. KUBERNETES.NAMESPACE_ID 312 17.5. KUBERNETES.NAMESPACE_ID 312 17.4. KUBERNETES.NAMESPACE_ID 312 17.5. KUBERNETES.NAMESPACE_ID 312 17.4. KUBERNETES.NAMESPACE 313 17.5. KUBERNETES.NAMESPACE 313 17.4. KUBERNETES.NAMESPACE 313 17.5. KUBERNETES.NAMESPACE 313 17.4. KUBERNETES.NAMESPACE 313 17.5. KUBERNETES.NAMESTATIONS 313 17.9.2.1. KUBERNETES.NEWERT 313 17.9.2.1. KUBERNETES.NEWERT 313 17.9.2.1. KUBERNETES.NEWERT 313 17.9.2.1.	MESSAGE	308
HOSTNAME 308 IPADDR4 309 IPADDR6 309 EVEL 309 PID 309 SERVICE 310 CHAPTER 16, TAGS 311 FILE 311 FILE 311 CHAPTER 17, KUBERNETES 312 171, KUBERNETES, POD_INAME 312 172, KUBERNETES, POD_INAME 312 173, KUBERNETES, NAMESPACE, JD 312 174, KUBERNETES, NOST 312 175, KUBERNETES, ANNOTATIONS 313 173, KUBERNETES, LABELS 313 173, KUBERNETES, LABELS 313 173, KUBERNETES, LABELS 313 174, SUBERNETES, LABELS 313 175, KUBERNETES, LABELS 313 179, SLUBERNETES, LABELS 313 179, SLUBERNETES, LABELS 313 179, SLUBERNETES, SUBERNETES, LABELS 313 179, SLUBERNETES, SUBERNETES, MERITALIABELS 313 179, SLUBERNETES, SUBERNETES, SUBERN	STRUCTURED	308
IPADDR4 309 IPADDR6 309 LEVEL 309 PID 309 SERVCE 310 CHAPTER 16, TAGS 311 FILE 311 OFFSET 312 CHAPTER 17, KUBERNETES. 312 T7, KUBERNETES.POD_NAME 312 T7, KUBERNETES.NAMESPACE_NAME 312 T7, KUBERNETES.NAMESPACE_ID 312 T7, KUBERNETES.NAMESPACE_ID 312 T7, KUBERNETES.NAMESPACE_ID 312 T7, KUBERNETES.ANAMESPACE_ID 312 T7, KUBERNETES.ANANTATIONS 313 T8, KUBERNETES.LANDATATIONS 313 T9, SUBERNETES.LABELS 313 T9, SUBERNETES.VENT 313 T9, SUBERNETES.LABELS 313 T9, SUBERNETES.VENT 313 T9, SUBERNETES.VENT 313 T9, SUBERNETES.VENT 313 T9, SUBERNETES.VENT 313 T9, SUBMERTES.EVENT 313 T9, SUBMERTES.EVENT 313 T9, SUBMERTES.EVENT 314 T9, SUBMERTES.EVENT 314 <td< td=""><td>@TIMESTAMP</td><td>308</td></td<>	@TIMESTAMP	308
IPADDR6 309 LEVEL 309 PID 309 SERVICE 310 CHAPTER 16, TAGS 311 FILE 311 FILE 311 OFFSET 312 17.1, KUBERNETES, POD_NAME 312 17.3, KUBERNETES, POD_I 312 17.4, KUBERNETES, NAMESPACE, IAME 312 17.5, KUBERNETES, NAMESPACE, IAME 312 17.6, KUBERNETES, LABELS 313 17.9, SLUBERNETES, LABELS 314 17.9, 2, kubernetes, event.imetadata anamespace 313 17.9, 3, Lubernetes, event.imetadata.seource/Version	HOSTNAME	308
LEVEL 309 PID 309 SERVICE 300 SERVICE 301 CHAPTER 16. TAGS 311 OFFSET 311 OFFSET 312 17.1. KUBERNETES.POD_NAME 312 17.2. KUBERNETES.NAMESPACE, NAME 312 17.4. KUBERNETES.NAMESPACE, NAME 312 17.4. KUBERNETES.NAMESPACE, NAME 312 17.4. KUBERNETES.NAMESPACE, NAME 312 17.4. KUBERNETES.NAMESPACE, NAME 312 17.5. KUBERNETES.NAMESPACE, NAME 312 17.6. KUBERNETES.NOTATINEN 313 17.9. KUBERNETES.NONTATIONS 313 17.9. KUBERNETES.VENT 313 17.9.1. kubernetes.event.metadata 313 17.9.2.1. kubernetes.event.metadata.aeffLink 314 17.9.2.2. kubernetes.event.metadata.aeffLink 314 17.9.2.3. kubernetes.event.metadata.aeffLink 314 17.9.3.1. kubernetes.event.involvedObject 314 17.9.3.2. kubernetes.event.involvedObject.name 315 17.9.3.3. kubernetes.event.involvedObject.apil/version 315 <	IPADDR4	309
LEVEL 309 PID 309 SERVICE 300 SERVICE 301 CHAPTER 16. TAGS 311 OFFSET 311 OFFSET 312 17.1. KUBERNETES.POD_NAME 312 17.2. KUBERNETES.NAMESPACE, NAME 312 17.4. KUBERNETES.NAMESPACE, NAME 312 17.4. KUBERNETES.NAMESPACE, NAME 312 17.4. KUBERNETES.NAMESPACE, NAME 312 17.4. KUBERNETES.NAMESPACE, NAME 312 17.5. KUBERNETES.NAMESPACE, NAME 312 17.6. KUBERNETES.NOTATINEN 313 17.9. KUBERNETES.NONTATIONS 313 17.9. KUBERNETES.VENT 313 17.9.1. kubernetes.event.metadata 313 17.9.2.1. kubernetes.event.metadata.aeffLink 314 17.9.2.2. kubernetes.event.metadata.aeffLink 314 17.9.2.3. kubernetes.event.metadata.aeffLink 314 17.9.3.1. kubernetes.event.involvedObject 314 17.9.3.2. kubernetes.event.involvedObject.name 315 17.9.3.3. kubernetes.event.involvedObject.apil/version 315 <	IPADDR6	309
PID 309 SERVICE 310 CHAPTER 16, TAGS 311 FILE 311 OFFSET 311 CHAPTER 17, KUBERNETES 312 17.1, KUBERNETES, POD_NAME 312 17.1, KUBERNETES, POD_NAME 312 17.3, KUBERNETES, NAMESPACE, JAME 312 17.4, KUBERNETES, NAMESPACE, JAME 312 17.4, KUBERNETES, NAMESPACE, JAME 312 17.4, KUBERNETES, NAMESPACE, JAME 312 17.6, KUBERNETES, CONTAINER, NAME 312 17.6, KUBERNETES, CONTAINER, NAME 313 17.9, KUBERNETES, LABELS 313 17.9, KUBERNETES, LABELS 313 17.9, KUBERNETES, LABELS 313 17.9, S. KUBERNETES, LABELS 313 17.9, S. KUBERNETES, CONTAINTER, NAME 314 17.9, S. KUBERNETES, CONTAINTER, NAME 314 17.9, S. KUBERNETE	LEVEL	309
CHAPTER 16, TAGS 311 FILE 311 OFFSET 311 CHAPTER 17, KUBERNETES. 312 C1, KUBERNETES.POD_NAME 312 17, KUBERNETES.POD_D 312 17, KUBERNETES.NAMESPACE_NAME 312 17, KUBERNETES.NAMESPACE_NAME 312 17, KUBERNETES.NAMESPACE_D 312 17, KUBERNETES.NAMESPACE_D 312 17, KUBERNETES.NAMESPACE_D 312 17, KUBERNETES.NAMESPACE_D 313 17, KUBERNETES.CONTAINER_NAME 312 17, KUBERNETES.CONTAINER_NAME 313 17, SKUBERNETES.EVENT 313 17, SUBERNETES.EVENT 313 17, 9, Z. Kubernetes.event.metadata.name 313 17, 9, 2, Kubernetes.event.metadata.namespace 313 17, 9, 2, Lubernetes.event.metadata.namespace 313 17, 9, 2, Lubernetes.event.metadata.namespace 313 17, 9, 2, Lubernetes.event.metadata.namespace 314 17, 9, 2, 2, kubernetes.event.metadata.namespace 314 17, 9, 2, 3, kubernetes.event.metadata.namespace 315 17, 9, 3, 3, kubernetes.event.movoledObject.name 315 17		309
FILE 311 OFFSET 312 cHAPTER 17. KUBERNETES 312 17.1. KUBERNETES.POD_NAME 312 17.2. KUBERNETES.POD_ID 312 17.3. KUBERNETES.NAMESPACE_NAME 312 17.4. KUBERNETES.NAMESPACE_NAME 312 17.5. KUBERNETES.NAMESPACE_NAME 312 17.5. KUBERNETES.NAMESPACE_D 312 17.5. KUBERNETES.ANOTATIONS 313 17.9. KUBERNETES.ANNOTATIONS 313 17.9. KUBERNETES.ANNOTATIONS 313 17.9. KUBERNETES.EVENT 313 17.9.1. Kubernetes.event.metadata 313 17.9.2. Kubernetes.event.metadata.name 313 17.9.2. Kubernetes.event.metadata.iname 313 17.9.2. Kubernetes.event.metadata.id 314 17.9.2.2. kubernetes.event.metadata.id 314 17.9.2.3. kubernetes.event.imvolvedObject.ima 314 17.9.3.3. kubernetes.event.involvedObject.namespace 315 17.9.3.4. kubernetes.event.involvedObject.namespace 315 17.9.3.4. kubernetes.event.involvedObject.namespace 315 17.9.3.4. kubernetes.event.involvedObject.namespace 315 17.9.3.4. kubernetes.event.involve	SERVICE	310
FILE 311 OFFSET 312 cHAPTER 17. KUBERNETES 312 17.1. KUBERNETES.POD_NAME 312 17.2. KUBERNETES.POD_ID 312 17.3. KUBERNETES.NAMESPACE_NAME 312 17.4. KUBERNETES.NAMESPACE_NAME 312 17.5. KUBERNETES.NAMESPACE_NAME 312 17.5. KUBERNETES.NAMESPACE_D 312 17.5. KUBERNETES.ANOTATIONS 313 17.9. KUBERNETES.ANNOTATIONS 313 17.9. KUBERNETES.ANNOTATIONS 313 17.9. KUBERNETES.EVENT 313 17.9.1. Kubernetes.event.metadata 313 17.9.2. Kubernetes.event.metadata.name 313 17.9.2. Kubernetes.event.metadata.iname 313 17.9.2. Kubernetes.event.metadata.id 314 17.9.2.2. kubernetes.event.metadata.id 314 17.9.2.3. kubernetes.event.imvolvedObject.ima 314 17.9.3.3. kubernetes.event.involvedObject.namespace 315 17.9.3.4. kubernetes.event.involvedObject.namespace 315 17.9.3.4. kubernetes.event.involvedObject.namespace 315 17.9.3.4. kubernetes.event.involvedObject.namespace 315 17.9.3.4. kubernetes.event.involve	CHAPTER 16 TAGS	311
OFFSET 311 CHAPTER 17. KUBERNETES 312 17.1. KUBERNETES.POD_NAME 312 17.1. KUBERNETES.POD_D 312 17.3. KUBERNETES.NAMESPACE_NAME 312 17.4. KUBERNETES.NAMESPACE_ID 312 17.5. KUBERNETES.NAMESPACE_ID 312 17.5. KUBERNETES.NAMESPACE_ID 313 17.5. KUBERNETES.NONTATIONS 313 17.6. KUBERNETES.LABELS 313 17.8. KUBERNETES.LABELS 313 17.9. KUBERNETES.LABELS 313 17.9.2. kubernetes.event.wetadata.name 313 17.9.2.1. kubernetes.event.metadata.namespace 313 17.9.2.2. kubernetes.event.metadata.selfLink 314 17.9.2.3. kubernetes.event.metadata.resourceVersion 314 17.9.3.1. kubernetes.event.involvedObject. 314 17.9.3.2. kubernetes.event.involvedObject. 314 17.9.3.3. kubernetes.event.involvedObject. 315 17.9.3.4. kubernetes.event.involvedObject. 315 17.9.3.5. kubernetes.event.involvedObject. 315 17.9.3.4. kubernetes.event.involvedObject. 316 17.9.3.4. kubernetes.event.i		
17.1. KUBERNETES.POD_ID 312 17.2. KUBERNETES.POD_ID 312 17.3. KUBERNETES.NAMESPACE_NAME 312 17.4. KUBERNETES.NAMESPACE_ID 312 17.5. KUBERNETES.CONTAINER_NAME 312 17.6. KUBERNETES.CONTAINER_NAME 312 17.6. KUBERNETES.CONTAINER_NAME 313 17.7. KUBERNETES.LABELS 313 17.9.1. Kubernetes.event.verb 313 17.9.2. kubernetes.event.metadata.name 313 17.9.2.1. kubernetes.event.metadata.namespace 313 17.9.2.2. kubernetes.event.metadata.elfLink 314 17.9.2.3. kubernetes.event.metadata.elfLink 314 17.9.2.4. kubernetes.event.metadata.elfLink 314 17.9.2.3. kubernetes.event.imetadata.elfLink 314 17.9.3.1. kubernetes.event.imetadata.elfLink 314 17.9.3.2. kubernetes.event.imvolvedObject.kind 314 17.9.3.3. kubernetes.event.involvedObject.kind 315 17.9.3.4. kubernetes.event.involvedObject.apiVersion 315 17.9.3.4. kubernetes.event.involvedObject.apiVersion 315 17.9.3.4. kubernetes.event.involvedObject.apiVersion 316 17.9.3.4. kubernetes.event.involvedObject.apiVersion 315 <		
17.1. KUBERNETES.POD_ID 312 17.2. KUBERNETES.POD_ID 312 17.3. KUBERNETES.NAMESPACE_NAME 312 17.4. KUBERNETES.NAMESPACE_ID 312 17.5. KUBERNETES.CONTAINER_NAME 312 17.6. KUBERNETES.CONTAINER_NAME 312 17.6. KUBERNETES.CONTAINER_NAME 313 17.7. KUBERNETES.LABELS 313 17.9.1. Kubernetes.event.verb 313 17.9.2. kubernetes.event.metadata.name 313 17.9.2.1. kubernetes.event.metadata.namespace 313 17.9.2.2. kubernetes.event.metadata.elfLink 314 17.9.2.3. kubernetes.event.metadata.elfLink 314 17.9.2.4. kubernetes.event.metadata.elfLink 314 17.9.2.3. kubernetes.event.imetadata.elfLink 314 17.9.3.1. kubernetes.event.imetadata.elfLink 314 17.9.3.2. kubernetes.event.imvolvedObject.kind 314 17.9.3.3. kubernetes.event.involvedObject.kind 315 17.9.3.4. kubernetes.event.involvedObject.apiVersion 315 17.9.3.4. kubernetes.event.involvedObject.apiVersion 315 17.9.3.4. kubernetes.event.involvedObject.apiVersion 316 17.9.3.4. kubernetes.event.involvedObject.apiVersion 315 <		212
17.2. KUBERNETES.POD_ID 312 17.3. KUBERNETES.NAMESPACE_NAME 312 17.4. KUBERNETES.NAMESPACE_ID 312 17.4. KUBERNETES.NAMESPACE_ID 312 17.5. KUBERNETES.CONTAINER_NAME 312 17.6. KUBERNETES.CONTAINER_NAME 313 17.7. KUBERNETES.LABELS 313 17.9. KUBERNETES.LABELS 313 17.9. KUBERNETES.EVENT 313 17.9.2. kubernetes.event.metadata.name 313 17.9.2.2. kubernetes.event.metadata.namespace 313 17.9.2.2. kubernetes.event.metadata.anamespace 314 17.9.2.2. kubernetes.event.metadata.resourceVersion 314 17.9.2.2. kubernetes.event.metadata.resourceVersion 314 17.9.2.3. kubernetes.event.involvedObject.kind 314 17.9.3.1. kubernetes.event.involvedObject.name 315 17.9.3.3. kubernetes.event.involvedObject.name 315 17.9.3.4. kubernetes.event.involvedObject.name 315 17.9.3.4. kubernetes.event.involvedObject.name 315 17.9.3.4. kubernetes.event.involvedObject.name 315 17.9.3.4. kubernetes.event.involvedObject.name 315 17.9.3.6. kubernetes.event.involvedObject.name 316 <		
17.3. KUBERNETES.NAMESPACE_ID 312 17.4. KUBERNETES.NAMESPACE_ID 312 17.5. KUBERNETES.CONTAINER_NAME 312 17.6. KUBERNETES.CONTAINER_NAME 313 17.6. KUBERNETES.CONTAINER_NAME 313 17.8. KUBERNETES.LABELS 313 17.9. KUBERNETES.LABELS 313 17.9. Lubernetes.event.verb 313 17.9.2.1. kubernetes.event.metadata.name 313 17.9.2.2. kubernetes.event.metadata.self.Link 314 17.9.2.2. kubernetes.event.metadata.self.Link 314 17.9.2.3. kubernetes.event.metadata.self.Link 314 17.9.2.5. kubernetes.event.metadata.resourceVersion 314 17.9.3.1. kubernetes.event.involvedObject 314 17.9.3.2. kubernetes.event.involvedObject.namespace 315 17.9.3.3. kubernetes.event.involvedObject.namespace 315 17.9.3.4. kubernetes.event.involvedObject.namespace 315 17.9.3.4. kubernetes.event.involvedObject.namespace 315 17.9.3.4. kubernetes.event.involvedObject.name 315 17.9.3.4. kubernetes.event.involvedObject.name 315 17.9.3.6. kubernetes.event.involvedObject.name 316 17.9.3.6. kubernetes.event.involvedObject.name </td <td>-</td> <td></td>	-	
17.4. KUBERNETES.NAMESPACE_D 312 17.5. KUBERNETES.HOST 312 17.6. KUBERNETES.CONTAINER_NAME 312 17.7. KUBERNETES.LABELS 313 17.9. KUBERNETES.LABELS 313 17.9.1. kubernetes.event.verb 313 17.9.2.1. kubernetes.event.metadata 313 17.9.2.1. kubernetes.event.metadata.name 313 17.9.2.2. kubernetes.event.metadata.admespace 313 17.9.2.3. kubernetes.event.metadata.uid 314 17.9.2.4. kubernetes.event.metadata.uid 314 17.9.2.5. kubernetes.event.metadata.uid 314 17.9.2.4. kubernetes.event.inveladbject.kind 314 17.9.3.4. kubernetes.event.involvedObject. 314 17.9.3.3. kubernetes.event.involvedObject.uid 315 17.9.3.4. kubernetes.event.involvedObject.uid 315 17.9.3.5. kubernetes.event.involvedObject.uid 315 17.9.3.6. kubernetes.event.involvedObject.uid 316	_	
17.5. KUBERNETES.HOST 312 17.6. KUBERNETES.CONTAINER_NAME 312 17.7. KUBERNETES.ANDOTATIONS 313 17.8. KUBERNETES.LABELS 313 17.9. KUBERNETES.LABELS 313 17.9. KUBERNETES.EVENT 313 17.9.2. kubernetes.event.metadata.name 313 17.9.2.2. kubernetes.event.metadata.name 313 17.9.2.3. kubernetes.event.metadata.andmespace 313 17.9.2.4. kubernetes.event.metadata.selfLink 314 17.9.2.5. kubernetes.event.metadata.resourceVersion 314 17.9.3.1. kubernetes.event.involvedObject.hind 314 17.9.3.2. kubernetes.event.involvedObject.hamespace 315 17.9.3.3. kubernetes.event.involvedObject.namespace 315 17.9.3.4. kubernetes.event.involvedObject.namespace 315 17.9.3.5. kubernetes.event.involvedObject.namespace 315 17.9.3.6. kubernetes.event.involvedObject.name 315 17.9.3.4. kubernetes.event.involvedObject.mamespace 316 17.9.3.5. kubernetes.event.involvedObject.piVersion 315 17.9.3.4. kubernetes.event.involvedObject.piSi 316 17.9.3.5. kubernetes.event.firstTimestamp 316 17.9.4. kubernetes.event.toou	-	
17.6. KUBERNETES.CONTAINER_NAME 312 17.7. KUBERNETES_ANNOTATIONS 313 17.8. KUBERNETES_LABELS 313 17.9. KUBERNETES_EVENT 313 17.9.1. kubernetes_event_metadata 313 17.9.2. kubernetes_event_metadata.aname 313 17.9.2.1. kubernetes_event_metadata.anamespace 313 17.9.2.3. kubernetes_event_metadata.anespace 313 17.9.2.4. kubernetes_event_metadata.resourceVersion 314 17.9.3. kubernetes_event_involvedObject 314 17.9.3.1. kubernetes_event_involvedObject.hind 314 17.9.3.2. kubernetes_event_involvedObject.hind 314 17.9.3.3. kubernetes_event.involvedObject.namespace 315 17.9.3.4. kubernetes_event.involvedObject.name 315 17.9.3.5. kubernetes_event.involvedObject.name 315 17.9.3.6. kubernetes_event.involvedObject.anamespace 316 17.9.3.6. kubernetes_event.involvedObject.anamespace 315 17.9.3.7. kubernetes_event.involvedObject.anamespace 315 17.9.3.4. kubernetes_event.involvedObject.anamespace 316 17.9.3.5. kubernetes_event.involvedObject.anamespace 316 17.9.3.6. kubernetes_event.involvedObject.anamespace 316 <td>-</td> <td></td>	-	
17.7. KUBERNETES.ANNOTATIONS 313 17.8. KUBERNETES.LABELS 313 17.9. KUBERNETES.EVENT 313 17.9.1. kubernetes.event.verb 313 17.9.2.1. kubernetes.event.metadata 313 17.9.2.1. kubernetes.event.metadata.name 313 17.9.2.2. kubernetes.event.metadata.anmespace 313 17.9.2.3. kubernetes.event.metadata.aselfLink 314 17.9.2.5. kubernetes.event.metadata.idi 314 17.9.2.5. kubernetes.event.involvedObject 314 17.9.3.1. kubernetes.event.involvedObject.kind 314 17.9.3.2. kubernetes.event.involvedObject.namespace 315 17.9.3.3. kubernetes.event.involvedObject.namespace 315 17.9.3.4. kubernetes.event.involvedObject.apiVersion 315 17.9.3.5. kubernetes.event.involvedObject.upiVersion 315 17.9.3.6. kubernetes.event.involvedObject.upiVersion 316 17.9.3.6. kubernetes.event.involvedObject.upiVersion 316 17.9.3.6. kubernetes.event.firstTimestamp 316 17.9.3.6. kubernetes.event.firstTimestamp 316 17.9.3.8. kubernetes.event.firstTimestamp 316 17.9.4. kubernetes.event.firstTimestamp 316 17.9.5. kubernet		
17.8. KUBERNETES.LABELS 313 17.9. KUBERNETES.EVENT 313 17.9.1. Kubernetes.event.verb 313 17.9.2. kubernetes.event.metadata 313 17.9.2. kubernetes.event.metadata.name 313 17.9.2.1. kubernetes.event.metadata.namespace 313 17.9.2.2. kubernetes.event.metadata.namespace 313 17.9.2.3. kubernetes.event.metadata.id 314 17.9.2.4. kubernetes.event.metadata.id 314 17.9.2.5. kubernetes.event.metadata.resourceVersion 314 17.9.3.1. kubernetes.event.involvedObject. 314 17.9.3.2. kubernetes.event.involvedObject.namespace 315 17.9.3.3. kubernetes.event.involvedObject.name 315 17.9.3.4. kubernetes.event.involvedObject.name 315 17.9.3.5. kubernetes.event.involvedObject.apiVersion 315 17.9.3.6. kubernetes.event.involvedObject.upiVersion 316 17.9.3.6. kubernetes.event.involvedObject.upiVersion 316 17.9.3.6. kubernetes.event.source_component 316 17.9.3.6. kubernetes.event.source_component 316 17.9.3.6. kubernetes.event.type 316 17.9.3.8. kubernetes.event.type 316 17.9.4. kubernetes.event.type<	_	
17.9. KUBERNETES.EVENT 313 17.9.1. kubernetes.event.metadata 313 17.9.2. kubernetes.event.metadata.name 313 17.9.2.1. kubernetes.event.metadata.namespace 313 17.9.2.3. kubernetes.event.metadata.aselfLink 314 17.9.2.4. kubernetes.event.metadata.resourceVersion 314 17.9.2.5. kubernetes.event.metadata.resourceVersion 314 17.9.3.1. kubernetes.event.involvedObject.kind 314 17.9.3.2. kubernetes.event.involvedObject.kind 314 17.9.3.3. kubernetes.event.involvedObject.namespace 315 17.9.3.4. kubernetes.event.involvedObject.uid 315 17.9.3.5. kubernetes.event.involvedObject.uid 315 17.9.3.6. kubernetes.event.involvedObject.apiVersion 315 17.9.3.6. kubernetes.event.involvedObject.resourceVersion 316 17.9.4. kubernetes.event.involvedObject.apiVersion 316 17.9.5. kubernetes.event.firstTimestamp 316 17.9.7. kubernetes.event.timestamp 316 17.9.8. kubernetes.event.tippe 316 17.9.9.4. kubernetes.event.tippe 316 17.9.5. kubernetes.event.tippe 316 17.9.5. kubernetes.event.fippe 316 17.9.5. k		
17.9.1. kubernetes.event.wetadata 313 17.9.2. kubernetes.event.metadata.name 313 17.9.2.1. kubernetes.event.metadata.namespace 313 17.9.2.2. kubernetes.event.metadata.selfLink 314 17.9.2.3. kubernetes.event.metadata.selfLink 314 17.9.2.4. kubernetes.event.metadata.uid 314 17.9.2.5. kubernetes.event.metadata.resourceVersion 314 17.9.2.5. kubernetes.event.involvedObject 314 17.9.3. kubernetes.event.involvedObject.namespace 315 17.9.3.2. kubernetes.event.involvedObject.name 315 17.9.3.3. kubernetes.event.involvedObject.uame 315 17.9.3.4. kubernetes.event.involvedObject.uame 315 17.9.3.5. kubernetes.event.involvedObject.uajVersion 315 17.9.3.6. kubernetes.event.involvedObject.resourceVersion 316 17.9.3.6. kubernetes.event.involvedObject.resourceVersion 316 17.9.4. kubernetes.event.involvedObject.apiVersion 316 17.9.3.8. kubernetes.event.involvedObject.apiVersion 316 17.9.4. kubernetes.event.involvedObject.apiVersion 316 17.9.5. kubernetes.event.involvedObject.apiVersion 316 17.9.4. kubernetes.event.firstTimestamp 316 17.9.5		
17.9.2. kubernetes.event.metadata 313 17.9.2.1. kubernetes.event.metadata.namespace 313 17.9.2.2. kubernetes.event.metadata.selfLink 314 17.9.2.3. kubernetes.event.metadata.selfLink 314 17.9.2.4. kubernetes.event.metadata.resourceVersion 314 17.9.2.5. kubernetes.event.metadata.resourceVersion 314 17.9.3.1. kubernetes.event.involvedObject 314 17.9.3.2. kubernetes.event.involvedObject.kind 314 17.9.3.3. kubernetes.event.involvedObject.namespace 315 17.9.3.4. kubernetes.event.involvedObject.uid 315 17.9.3.5. kubernetes.event.involvedObject.resourceVersion 315 17.9.3.6. kubernetes.event.involvedObject.resourceVersion 316 17.9.3.5. kubernetes.event.involvedObject.resourceVersion 316 17.9.4. kubernetes.event.involvedObject.resourceVersion 316 17.9.5. kubernetes.event.firstTimestamp 316 17.9.7. kubernetes.event.ount 316 17.9.8. kubernetes.event.count 316 17.9.7. kubernetes.event.ount 316 17.9.8. kubernetes.event.ount 316 17.9.9.8. kubernetes.event.ount 316 17.9.9.4. kubernetes.event.count 316		
17.9.2.1. kubernetes.event.metadata.namespace 313 17.9.2.2. kubernetes.event.metadata.selfLink 314 17.9.2.3. kubernetes.event.metadata.selfLink 314 17.9.2.5. kubernetes.event.metadata.resourceVersion 314 17.9.3.1. kubernetes.event.involvedObject. 314 17.9.3.3. kubernetes.event.involvedObject.hand 314 17.9.3.3. kubernetes.event.involvedObject.namespace 315 17.9.3.4. kubernetes.event.involvedObject.name 315 17.9.3.4. kubernetes.event.involvedObject.name 315 17.9.3.4. kubernetes.event.involvedObject.apiVersion 315 17.9.3.5. kubernetes.event.involvedObject.resourceVersion 316 17.9.3.6. kubernetes.event.involvedObject.resourceVersion 316 17.9.3.6. kubernetes.event.firstTimestamp 316 17.9.5. kubernetes.event.firstTimestamp 316 17.9.5. kubernetes.event.tount 316 17.9.5. kubernetes.event.tount 316 17.9.7. kubernetes.event.tount 316 17.9.8. kubernetes.event.tount 316 17.9.9.8. kubernetes.event.tount 316 17.9.9.8. kubernetes.event.tount 316 17.9.9.8. kubernetes.event.tount 316 17.9		
17.9.2.2. kubernetes.event.metadata.namespace 313 17.9.2.3. kubernetes.event.metadata.selfLink 314 17.9.2.4. kubernetes.event.metadata.uid 314 17.9.2.5. kubernetes.event.metadata.resourceVersion 314 17.9.3. kubernetes.event.involvedObject 314 17.9.3.1. kubernetes.event.involvedObject.kind 314 17.9.3.2. kubernetes.event.involvedObject.namespace 315 17.9.3.3. kubernetes.event.involvedObject.name 315 17.9.3.4. kubernetes.event.involvedObject.apiVersion 315 17.9.3.5. kubernetes.event.involvedObject.resourceVersion 316 17.9.3.6. kubernetes.event.involvedObject.resourceVersion 316 17.9.3.6. kubernetes.event.involvedObject.resourceVersion 316 17.9.5. kubernetes.event.firstTimestamp 316 17.9.7. kubernetes.event.firstTimestamp 316 17.9.8. kubernetes.event.type 316 17.9.9. kubernetes.event.type 318 18.1. OPENSHIFT 318 18.1. OPENSHIFT 318 18.1. OPENSHIFT 319 19.1.5.6 LOGGING API REFERENCE 319 19.1.1. Logging 5.6 API reference 319 19.1.1.1. Logging 5.6 API reference 31		
17.9.2.3. kubernetes.event.metadata.selfLink 314 17.9.2.4. kubernetes.event.metadata.uid 314 17.9.2.5. kubernetes.event.metadata.resourceVersion 314 17.9.3. kubernetes.event.involvedObject 314 17.9.3.1. kubernetes.event.involvedObject.kind 314 17.9.3.2. kubernetes.event.involvedObject.namespace 315 17.9.3.3. kubernetes.event.involvedObject.name 315 17.9.3.4. kubernetes.event.involvedObject.apiVersion 315 17.9.3.5. kubernetes.event.involvedObject.resourceVersion 315 17.9.3.6. kubernetes.event.involvedObject.resourceVersion 315 17.9.3.6. kubernetes.event.involvedObject.resourceVersion 316 17.9.5. kubernetes.event.firstTimestamp 316 17.9.7. kubernetes.event.firstTimestamp 316 17.9.8. kubernetes.event.type 316 CHAPTER 18. OPENSHIFT 318 18.1. OPENSHIFT 318 18.1. OPENSHIFT 319 19.1.5.6 LOGGING API REFERENCE 319 19.1.1. Logging 5.6 API reference 319 19.1.1.1. ClusterLogForwarder 319 19.1.1.1. spec 319		
17.9.2.4. kubernetes.event.metadata.uid31417.9.2.5. kubernetes.event.metadata.resourceVersion31417.9.3. kubernetes.event.involvedObject31417.9.3.1. kubernetes.event.involvedObject.kind31417.9.3.2. kubernetes.event.involvedObject.namespace31517.9.3.3. kubernetes.event.involvedObject.uid31517.9.3.4. kubernetes.event.involvedObject.apiVersion31517.9.3.5. kubernetes.event.involvedObject.resourceVersion31517.9.3.6. kubernetes.event.involvedObject.resourceVersion31617.9.5. kubernetes.event.involvedObject.resourceVersion31617.9.5. kubernetes.event.firstTimestamp31617.9.7. kubernetes.event.type31617.9.8. kubernetes.event.type31617.9.8. kubernetes.event.type31617.9.8. kubernetes.event.type31617.9.8. kubernetes.event.type31617.9.8. kubernetes.event.type31617.9.1.1. Logging 5.6 API REFERENCE31919.1.1.1. ClusterLogForwarder31919.1.1.1. spec319		
17.9.2.5. kubernetes.event.metadata.resourceVersion31417.9.3. kubernetes.event.involvedObject31417.9.3.1. kubernetes.event.involvedObject.kind31417.9.3.2. kubernetes.event.involvedObject.namespace31517.9.3.3. kubernetes.event.involvedObject.name31517.9.3.4. kubernetes.event.involvedObject.apiVersion31517.9.3.5. kubernetes.event.involvedObject.resourceVersion31517.9.3.6. kubernetes.event.involvedObject.resourceVersion31617.9.5. kubernetes.event.involvedObject.resourceVersion31617.9.5. kubernetes.event.firstTimestamp31617.9.7. kubernetes.event.firstTimestamp31617.9.8. kubernetes.event.type31617.9.8. kubernetes.event.type31617.9.8. kubernetes.event.type31818.1. OPENSHIFT31818.1. OPENSHIFT31919.1.5.6 LOGGING API REFERENCE31919.1.1. Logging 5.6 API reference31919.1.1.1. clusterLogForwarder31919.1.1.1. spec319		
17.9.3. kubernetes.event.involvedObject31417.9.3.1. kubernetes.event.involvedObject.kind31417.9.3.2. kubernetes.event.involvedObject.namespace31517.9.3.3. kubernetes.event.involvedObject.name31517.9.3.4. kubernetes.event.involvedObject.uid31517.9.3.5. kubernetes.event.involvedObject.apiVersion31517.9.3.6. kubernetes.event.involvedObject.resourceVersion31617.9.5. kubernetes.event.firstTimestamp31617.9.7. kubernetes.event.firstTimestamp31617.9.8. kubernetes.event.type31617.9.8. kubernetes.event.type31617.9.8. kubernetes.event.type31617.9.9.8. kubernetes.event.type31617.9.9.8. kubernetes.event.type31617.9.9.8. kubernetes.event.type31818.1. OPENSHIFT31819.1.5.6 LOGGING API REFERENCE31919.1.1.1. Logging 5.6 API reference31919.1.1.1. Logging 5.6 API reference31919.1.1.1. spec319		
17.9.3.1. kubernetes.event.involvedObject.kind 314 17.9.3.2. kubernetes.event.involvedObject.namespace 315 17.9.3.3. kubernetes.event.involvedObject.name 315 17.9.3.4. kubernetes.event.involvedObject.uid 315 17.9.3.5. kubernetes.event.involvedObject.apiVersion 315 17.9.3.6. kubernetes.event.involvedObject.resourceVersion 316 17.9.3.6. kubernetes.event.reason 316 17.9.5. kubernetes.event.firstTimestamp 316 17.9.7. kubernetes.event.firstTimestamp 316 17.9.8. kubernetes.event.type 316 17.9.8. kubernetes.event.type 318 18.1. OPENSHIFT 318 18.1. OPENSHIFT 318 18.1. OPENSHIFT 319 19.1.5.6 LOGGING API REFERENCE 319 19.1.1.6 Logging 5.6 API reference 319 19.1.1.1. clusterLogForwarder 319 19.1.1.1. spec 319		
17.9.3.2. kubernetes.event.involvedObject.namespace 315 17.9.3.3. kubernetes.event.involvedObject.name 315 17.9.3.4. kubernetes.event.involvedObject.uid 315 17.9.3.5. kubernetes.event.involvedObject.apiVersion 315 17.9.3.6. kubernetes.event.involvedObject.resourceVersion 315 17.9.4. kubernetes.event.involvedObject.resourceVersion 316 17.9.5. kubernetes.event.involvedObject.resourceVersion 316 17.9.4. kubernetes.event.firstTimestamp 316 17.9.7. kubernetes.event.count 316 17.9.8. kubernetes.event.type 318 18.1. OPENSHIFT 318 18.1. OPENSHIFT.LABELS 318 19.1.5.6 LOGGING API REFERENCE 319 19.1.1.6 uging 5.6 API reference 319 19.1.1.1. ClusterLogForwarder 319 19.1.1.1. spec 319		
17.9.3.3. kubernetes.event.involvedObject.name 315 17.9.3.4. kubernetes.event.involvedObject.apiVersion 315 17.9.3.5. kubernetes.event.involvedObject.apiVersion 315 17.9.3.6. kubernetes.event.involvedObject.resourceVersion 315 17.9.3.6. kubernetes.event.reason 316 17.9.5. kubernetes.event.source_component 316 17.9.6. kubernetes.event.firstTimestamp 316 17.9.7. kubernetes.event.type 316 17.9.8. kubernetes.event.type 316 18.1. OPENSHIFT 318 18.1. OPENSHIFT 318 19.1.5.6 LOGGING API REFERENCE 319 19.1.5.6 LOGGING API REFERENCE 319 19.1.1. Logging 5.6 API reference 319 19.1.1.1. ClusterLogForwarder 319 19.1.1.1.1. spec 319	·	
17.9.3.4. kubernetes.event.involvedObject.apiVersion 315 17.9.3.5. kubernetes.event.involvedObject.apiVersion 315 17.9.3.6. kubernetes.event.involvedObject.resourceVersion 315 17.9.4. kubernetes.event.involvedObject.resourceVersion 316 17.9.4. kubernetes.event.involvedObject.resourceVersion 316 17.9.4. kubernetes.event.eason 316 17.9.5. kubernetes.event.source_component 316 17.9.6. kubernetes.event.firstTimestamp 316 17.9.7. kubernetes.event.count 316 17.9.8. kubernetes.event.type 316 17.9.8. kubernetes.event.type 316 17.9.8. kubernetes.event.type 316 18.1. OPENSHIFT 318 18.1. OPENSHIFT 318 19.1.5.6 LOGGING API REFERENCE 319 19.1.5.6 LOGGING API REFERENCE 319 19.1.1. Logging 5.6 API reference 319 19.1.1. ClusterLogForwarder 319 19.1.1.1. spec 319	17.9.3.2. kubernetes.event.involvedObject.namespace	315
17.9.3.5. kubernetes.event.involvedObject.apiVersion 315 17.9.3.6. kubernetes.event.involvedObject.resourceVersion 315 17.9.4. kubernetes.event.reason 316 17.9.5. kubernetes.event.source_component 316 17.9.6. kubernetes.event.firstTimestamp 316 17.9.7. kubernetes.event.count 316 17.9.8. kubernetes.event.type 318 18.1. OPENSHIFT 318 19.1.1. CDESCHIFT 1.LABELS 319 19.1.1. Logging 5.6 API REFERENCE 319 19.1.1. Logging 5.6 API reference 319 19.1.1.1. ClusterLogForwarder 319 19.1.1.1. spec 319	17.9.3.3. kubernetes.event.involvedObject.name	315
17.9.3.6. kubernetes.event.involvedObject.resourceVersion 315 17.9.4. kubernetes.event.reason 316 17.9.5. kubernetes.event.source_component 316 17.9.6. kubernetes.event.firstTimestamp 316 17.9.7. kubernetes.event.count 316 17.9.8. kubernetes.event.type 316 CHAPTER 18. OPENSHIFT 318 18.1. OPENSHIFT.LABELS 318 CHAPTER 19. API REFERENCE 319 19.1.5.6 LOGGING API REFERENCE 319 19.1.1. Logging 5.6 API reference 319 19.1.1.1. clusterLogForwarder 319 19.1.1.1. spec 319	17.9.3.4. kubernetes.event.involvedObject.uid	315
17.9.4. kubernetes.event.reason 316 17.9.5. kubernetes.event.source_component 316 17.9.6. kubernetes.event.firstTimestamp 316 17.9.7. kubernetes.event.count 316 17.9.8. kubernetes.event.type 316 CHAPTER 18. OPENSHIFT 318 18.1. OPENSHIFT 318 19.1.1. LOGGING API REFERENCE 319 19.1.1.1. ClusterLogForwarder 319 19.1.1.1. spec 319	17.9.3.5. kubernetes.event.involvedObject.apiVersion	315
17.9.5. kubernetes.event.source_component 316 17.9.6. kubernetes.event.firstTimestamp 316 17.9.7. kubernetes.event.count 316 17.9.8. kubernetes.event.type 316 CHAPTER 18. OPENSHIFT 318 18.1. OPENSHIFT.LABELS 318 CHAPTER 19. API REFERENCE 319 19.1.5.6 LOGGING API REFERENCE 319 19.1.1. Logging 5.6 API reference 319 19.1.1.1. ClusterLogForwarder 319 19.1.1.1. spec 319	17.9.3.6. kubernetes.event.involvedObject.resourceVersion	315
17.9.6. kubernetes.event.firstTimestamp 316 17.9.7. kubernetes.event.count 316 17.9.8. kubernetes.event.type 316 CHAPTER 18. OPENSHIFT 318 18.1. OPENSHIFT.LABELS 318 CHAPTER 19. API REFERENCE 319 19.1.5.6 LOGGING API REFERENCE 319 19.1.1. Logging 5.6 API reference 319 19.1.1.1. ClusterLogForwarder 319 19.1.1.1. spec 319	17.9.4. kubernetes.event.reason	316
17.9.7. kubernetes.event.count31617.9.8. kubernetes.event.type316CHAPTER 18. OPENSHIFT31818.1. OPENSHIFT.LABELS318CHAPTER 19. API REFERENCE31919.1. 5.6 LOGGING API REFERENCE31919.1.1. Logging 5.6 API reference31919.1.1.1. ClusterLogForwarder31919.1.1.1. spec319	17.9.5. kubernetes.event.source_component	316
17.9.8. kubernetes.event.type316CHAPTER 18. OPENSHIFT31818.1. OPENSHIFT.LABELS318CHAPTER 19. API REFERENCE31919.1. 5.6 LOGGING API REFERENCE31919.1.1. Logging 5.6 API reference31919.1.1.1. ClusterLogForwarder31919.1.1.1. spec319	17.9.6. kubernetes.event.firstTimestamp	316
CHAPTER 18. OPENSHIFT 318 18.1. OPENSHIFT.LABELS 318 CHAPTER 19. API REFERENCE 319 19.1. 5.6 LOGGING API REFERENCE 319 19.1.1. Logging 5.6 API reference 319 19.1.1.1. ClusterLogForwarder 319 19.1.1.1. spec 319	17.9.7. kubernetes.event.count	316
18.1. OPENSHIFT.LABELS 318 CHAPTER 19. API REFERENCE 319 19.1. 5.6 LOGGING API REFERENCE 319 19.1.1. Logging 5.6 API reference 319 19.1.1.1. ClusterLogForwarder 319 19.1.1.1. spec 319	17.9.8. kubernetes.event.type	316
19.1. 5.6 LOGGING API REFERENCE 319 19.1.1. Logging 5.6 API reference 319 19.1.1.1. ClusterLogForwarder 319 19.1.1.1. spec 319		
19.1. 5.6 LOGGING API REFERENCE 319 19.1.1. Logging 5.6 API reference 319 19.1.1.1. ClusterLogForwarder 319 19.1.1.1. spec 319	CHAPTER 19. API REFERENCE	319
19.1.1. Logging 5.6 API reference 319 19.1.1.1. ClusterLogForwarder 319 19.1.1.1spec 319	19.1. 5.6 LOGGING API REFERENCE	319
19.1.1.1. ClusterLogForwarder 319 19.1.1.1.1. spec 319	19.1.1. Logging 5.6 API reference	
19.1.1.1. spec 319		319
		319
		319

19.1.1.1.1.1. Туре	319
19.1.1.1.2spec.inputs[]	320
19.1.1.1.2.1. Description	320
19.1.1.2.1.1. Type	320
19.1.1.1.3spec.inputs[].application	320
19.1.1.1.3.1. Description	320
19.1.1.3.1.1. Type	320
19.1.1.1.4spec.inputs[].application.namespaces[]	321
19.1.1.1.4.1. Description	321
19.1.1.4.1.1. Type	321
19.1.1.1.5spec.inputs[].application.selector	321
19.1.1.1.5.1. Description	321
19.1.1.1.5.1.1. Type	321
19.1.1.1.6spec.inputs[].application.selector.matchLabels	321
19.1.1.1.6.1. Description	321
19.1.1.6.1.1. Type	321
19.1.1.1.7spec.outputDefaults	321
19.1.1.1.7.1. Description	321
19.1.1.7.1.1. Type	321
19.1.1.1.8spec.outputDefaults.elasticsearch	322
19.1.1.1.8.1. Description	322
19.1.1.8.1.1. Туре	322
19.1.1.1.9spec.outputs[]	322
19.1.1.1.9.1. Description	322
19.1.1.9.1.1. Type	322
19.1.1.1.10spec.outputs[].secret	323
19.1.1.1.10.1. Description	323
19.1.1.10.1.1. Type	323
19.1.1.111spec.outputs[].tls	323
19.1.1.11.1. Description	324
19.1.1.111.1.1 Type	324
19.1.1.1.12spec.pipelines[]	324
19.1.1.1.12.1. Description	324
19.1.1.1.2.1.1. Type	324
19.1.1.1.13spec.pipelines[].inputRefs[]	324
19.1.1.1.13.1. Description	325
19.1.1.1.3.1.1. Type	325
19.1.1.1.14spec.pipelines[].labels	325
19.1.1.1.14.1. Description	325
19.1.1.1.4.1.1. Type	325
19.1.1.1.15spec.pipelines[].outputRefs[]	325
19.1.1.1.15.1. Description	325
19.1.1.1.5.1.1. Type	325
19.1.1.1.6status	325
19.1.1.1.16.1. Description	325
19.1.1.1.6.1.1. Type	325
19.1.1.17status.conditions	
	325 325
19.1.1.17.1. Description	
19.1.1.17.1.1. Type	326
19.1.1.18. status.inputs	326
19.1.1.18.1. Description	326
19.1.1.18.1.1. Type	326
19.1.1.19status.outputs	326

19.1.1.19.1. Description	326
19.1.1.19.1.1. Type	326
19.1.1.1.20status.pipelines	326
19.1.1.20.1. Description	326
19.1.1.20.1.1. Type	326
19.1.1.21spec	326
19.1.1.21.1. Description	326
19.1.1.21.1.1. Type	326
19.1.1.1.22spec.collection	327
19.1.1.1.22.1. Description	327
19.1.1.22.1.1. Type	327
19.1.1.1.23spec.collection.fluentd	328
19.1.1.23.1. Description	328
19.1.1.23.1.1. Type	328
19.1.1.1.24spec.collection.fluentd.buffer	328
19.1.1.24.1. Description	328
19.1.1.24.1.1. Type	328
19.1.1.1.25spec.collection.fluentd.inFile	329
19.1.1.1.25.1. Description	329
19.1.1.1.25.1.1. Type	330
19.1.1.1.26spec.collection.logs	330
19.1.1.1.26.1. Description	330
19.1.1.1.26.1.1. Type	330
19.1.1.1.27spec.collection.logs.fluentd	330
19.1.1.1.27.1. Description	330
19.1.1.27.1.1 Type	330
19.1.1.1.28spec.collection.logs.fluentd.nodeSelector	331
19.1.1.1.28.1. Description	331
19.1.1.1.28.1.1. Type	331
19.1.1.1.29spec.collection.logs.fluentd.resources	331
19.1.1.1.29. Specicollection.logs.indentaliesources	331
19.1.1.2.9.1. Type	331
	331
19.1.1.1.30spec.collection.logs.fluentd.resources.limits 19.1.1.1.30.1. Description	
19.1.1.1.30.1. Description 19.1.1.1.30.1.1. Type	331
	331
19.1.1.1.31spec.collection.logs.fluentd.resources.requests	331
19.1.1.3.1.1. Description	331
19.1.1.1.31.1.1. Type	331
19.1.1.1.32. spec.collection.logs.fluentd.tolerations[]	331
19.1.1.1.32.1. Description	331
19.1.1.1.32.1.1. Type	331
19.1.1.1.33spec.collection.logs.fluentd.tolerations[].tolerationSeconds	332
19.1.1.1.33.1. Description	332
19.1.1.33.1.1. Туре	332
19.1.1.1.34. spec.curation	332
19.1.1.34.1. Description	332
19.1.1.34.1.1. Туре	332
19.1.1.1.35spec.curation.curator	332
19.1.1.35.1. Description	332
19.1.1.35.1.1. Туре	333
19.1.1.1.36spec.curation.curator.nodeSelector	333
19.1.1.1.36.1. Description	333
19.1.1.1.36.1.1. Type	333

19.1.1.1.37spec.curation.curator.resources	333
19.1.1.37.1. Description	333
19.1.1.1.37.1.1. Type	333
19.1.1.1.38spec.curation.curator.resources.limits	333
19.1.1.1.38.1. Description	333
19.1.1.38.1.1. Туре	334
19.1.1.1.39spec.curation.curator.resources.requests	334
19.1.1.1.39.1. Description	334
19.1.1.39.1.1. Туре	334
19.1.1.1.40spec.curation.curator.tolerations[]	334
19.1.1.40.1. Description	334
19.1.1.40.1.1. Туре	334
19.1.1.1.41spec.curation.curator.tolerations[].tolerationSeconds	334
19.1.1.41.1. Description	334
19.1.1.41.1.1. Type	334
19.1.1.1.42spec.forwarder	334
19.1.1.42.1. Description	335
19.1.1.42.1.1. Type	335
19.1.1.1.43spec.forwarder.fluentd	335
19.1.1.43.1. Description	335
19.1.1.43.1.1. Туре	335
19.1.1.1.44spec.forwarder.fluentd.buffer	335
19.1.1.44.1. Description	335
19.1.1.44.1.1. Туре	335
19.1.1.1.45spec.forwarder.fluentd.inFile	336
19.1.1.45.1. Description	336
19.1.1.45.1.1. Type	337
19.1.1.1.46spec.logStore	337
19.1.1.46.1. Description	337
19.1.1.46.1.1. Туре	337
19.1.1.1.47spec.logStore.elasticsearch	337
19.1.1.1.47.1. Description	337
19.1.1.1.47.1.1. Type	337
19.1.1.1.48spec.logStore.elasticsearch.nodeSelector	338
19.1.1.1.48.1. Description	338
19.1.1.1.48.1.1. Type	338
19.1.1.1.49spec.logStore.elasticsearch.proxy	338
19.1.1.1.49.1. Description	338
19.1.1.1.49.1.1. Type	338
19.1.1.1.50spec.logStore.elasticsearch.proxy.resources	338
19.1.1.1.50.1. Description	338
19.1.1.1.50.1.1. Type	338
19.1.1.1.51spec.logStore.elasticsearch.proxy.resources.limits	339
19.1.1.1.51.1. Description	339
19.1.1.51.1.1. Type	339
19.1.1.1.52spec.logStore.elasticsearch.proxy.resources.requests	339
19.1.1.1.52.1. Description	339
19.1.1.1.52.1.1. Type	339
19.1.1.1.53spec.logStore.elasticsearch.resources	339
19.1.1.1.53.1. Description	339
19.1.1.53.1.1. Туре	339
19.1.1.1.54spec.logStore.elasticsearch.resources.limits	339
19.1.1.1.54.1. Description	340

340
340
340
340
340
340
340
340
340
340
341
341
341
341
341
341
341
341
341
342
342
342
342
342
342
342
342
342
343
343
343
343
343
343
343
343
343
344
344
344
344
344
344
345
345
345
345
345
345
345
345
345
346

19.1.1.1.72.1. Description	346
19.1.1.72.1.1. Туре	346
19.1.1.1.73spec.visualization	346
19.1.1.73.1. Description	346
19.1.1.73.1.1. Type	346
19.1.1.1.74spec.visualization.kibana	347
19.1.1.74.1. Description	347
19.1.1.74.1.1. Type	347
19.1.1.1.75spec.visualization.kibana.nodeSelector	347
19.1.1.75.1. Description	347
19.1.1.75.1.1. Type	347
19.1.1.1.76spec.visualization.kibana.proxy	347
19.1.1.1.76.1. Description	347
19.1.1.1.76.1.1. Type	347
19.1.1.1.77spec.visualization.kibana.proxy.resources	348
19.1.1.1.77.1. Description	348
19.1.1.1.77.1.1. Type	348
19.1.1.1.78spec.visualization.kibana.proxy.resources.limits	348
19.1.1.1.78.1. Description	348
19.1.1.1.78.1.1. Type	348
19.1.1.1.79spec.visualization.kibana.proxy.resources.requests	348
19.1.1.1.79.1. Description	348
19.1.1.1.79.1.1. Type	348
19.1.1.1.80spec.visualization.kibana.replicas	348
19.1.1.1.80.1. Description	348
19.1.1.1.80.1.1. Type	348
19.1.1.1.81spec.visualization.kibana.resources	349
19.1.1.1.81.1. Description	349
19.1.1.81.1.1. Type	349
19.1.1.1.82spec.visualization.kibana.resources.limits	349
19.1.1.1.82.1. Description	349
19.1.1.1.82.1.1. Type	349
19.1.1.1.83spec.visualization.kibana.resources.requests	349
19.1.1.1.83.1. Description	349
19.1.1.1.83.1.1. Type	349
19.1.1.1.84spec.visualization.kibana.tolerations[]	349
19.1.1.1.84.1. Description	349
19.1.1.1.84.1.1. Type	349
19.1.1.1.85spec.visualization.kibana.tolerations[].tolerationSeconds	350
19.1.1.1.85.1. Description	350
19.1.1.1.85.1.1. Type	350
19.1.1.1.86status	350
19.1.1.1.86.1. Description	350
19.1.1.1.86.1.1. Type	350
19.1.1.1.87status.collection	350
19.1.1.1.87.1. Description	351
19.1.1.1.87.1.1. Type	351
19.1.1.1.88status.collection.logs	351
19.1.1.1.88.1. Description	351
19.1.1.1.88.1.1. Type	351
19.1.1.1.89status.collection.logs.fluentdStatus	351
19.1.1.1.89.1. Description	351
19.1.1.1.89.1.1. Type	351
	551

19.1.1.1.90status.collection.logs.fluentdStatus.clusterCondition	351
19.1.1.1.90.1. Description	351
19.1.1.1.90.1.1. Type	352
19.1.1.1.91status.collection.logs.fluentdStatus.nodes	352
19.1.1.1.91.1. Description	352
19.1.1.91.1.1. Type	352
19.1.1.1.92status.conditions	352
19.1.1.1.92.1. Description	352
19.1.1.1.92.1.1. Type	352
19.1.1.1.93status.curation	352
19.1.1.1.93.1. Description	352
19.1.1.1.93.1.1. Type	352
19.1.1.1.94status.curation.curatorStatus[]	352
19.1.1.1.94.1. Description	352
19.1.1.94.1.1. Type	352
19.1.1.1.95status.curation.curatorStatus[].clusterCondition	353
19.1.1.1.95.1. Description	353
19.1.1.1.95.1.1. Type	353
19.1.1.1.96status.logStore	353
19.1.1.1.96.1. Description	353
19.1.1.1.96.1.1. Type	353
19.1.1.1.97status.logStore.elasticsearchStatus[]	353
19.1.1.1.97.1. Description	353
19.1.1.1.97.1.1. Type	353
19.1.1.1.98status.logStore.elasticsearchStatus[].cluster	354
19.1.1.1.98.1. Description	354
19.1.1.1.98.1.1. Type	354
19.1.1.1.99status.logStore.elasticsearchStatus[].clusterConditions	355
19.1.1.1.99.1. Description	355
19.1.1.1.99.1.1. Type	355
19.1.1.1.100status.logStore.elasticsearchStatus[].deployments[]	355
19.1.1.100.1. Description	355
19.1.1.100.1.1. Туре	355
19.1.1.1.101status.logStore.elasticsearchStatus[].nodeConditions	355
19.1.1.101.1. Description	355
19.1.1.101.1.1. Type	355
19.1.1.1.102status.logStore.elasticsearchStatus[].pods	355
19.1.1.102.1. Description	355
19.1.1.102.1.1. Type	355
19.1.1.1.103status.logStore.elasticsearchStatus[].replicaSets[]	355
19.1.1.103.1. Description	355
19.1.1.103.1.1. Туре	355
19.1.1.1.104status.logStore.elasticsearchStatus[].statefulSets[]	355
19.1.1.104.1. Description	356
19.1.1.104.1.1. Туре	356
19.1.1.105status.visualization	356
19.1.1.105.1. Description	356
19.1.1.105.1.1. Туре	356
19.1.1.1.106status.visualization.kibanaStatus[]	356
19.1.1.106.1. Description	356
19.1.1.106.1.1. Туре	356
19.1.1.1.107status.visualization.kibanaStatus[].clusterCondition	356
19.1.1.107.1. Description	356

19.1.1.107.1.1. Type	356
19.1.1.1.108status.visualization.kibanaStatus[].replicaSets[]	357
19.1.1.108.1. Description	357
19.1.1.108.1.1. Type	357
CHAPTER 20. GLOSSARY	358

CHAPTER 1. RELEASE NOTES

1.1. LOGGING 5.8

NOTE

Logging is provided as an installable component, with a distinct release cycle from the core OpenShift Container Platform. The Red Hat OpenShift Container Platform Life Cycle Policy outlines release compatibility.

$\sim \times$
\times
XXX.
\otimes
\sim

NOTE

The **stable** channel only provides updates to the most recent release of logging. To continue receiving updates for prior releases, you must change your subscription channel to **stable-x.y**, where **x.y** represents the major and minor version of logging you have installed. For example, **stable-5.7**.

1.1.1. Logging 5.8.6

This release includes OpenShift Logging Bug Fix Release 5.8.6 Security Update and OpenShift Logging Bug Fix Release 5.8.6.

1.1.1.1. Enhancements

- Before this update, the Loki Operator did not validate the Amazon Simple Storage Service (S3) endpoint used in the storage secret. With this update, the validation process ensures the S3 endpoint is a valid S3 URL, and the **LokiStack** status updates to indicate any invalid URLs. (LOG-5392)
- Before this update, the Loki Operator configured Loki to use path-based style access for the Amazon Simple Storage Service (S3), which has been deprecated. With this update, the Loki Operator defaults to virtual-host style without users needing to change their configuration. (LOG-5402)

1.1.1.2. Bug fixes

- Before this update, the Elastisearch Operator ServiceMonitor in the openshift-operatorsredhat namespace used static token and certificate authority (CA) files for authentication, causing errors in the Prometheus Operator in the User Workload Monitoring specification on the ServiceMonitor configuration. With this update, the Elastisearch Operator ServiceMonitor in the openshift-operators-redhat namespace now references a service account token secret by a LocalReference object. This approach allows the User Workload Monitoring specifications in the Prometheus Operator to handle the Elastisearch Operator ServiceMonitor successfully. This enables Prometheus to scrape the Elastisearch Operator metrics. (LOG-5164)
- Before this update, the Loki Operator did not validate the Amazon Simple Storage Service (S3) endpoint URL format used in the storage secret. With this update, the S3 endpoint URL goes through a validation step that reflects on the status of the **LokiStack**. (LOG-5398)

1.1.1.3. CVEs

• CVE-2023-4244

- CVE-2023-5363
- CVE-2023-5717
- CVE-2023-5981
- CVE-2023-6356
- CVE-2023-6535
- CVE-2023-6536
- CVE-2023-6606
- CVE-2023-6610
- CVE-2023-6817
- CVE-2023-46218
- CVE-2023-51042
- CVE-2024-0193
- CVE-2024-0553
- CVE-2024-0567
- CVE-2024-0646

1.1.2. Logging 5.8.5

This release includes OpenShift Logging Bug Fix Release 5.8.5.

1.1.2.1. Bug fixes

- Before this update, the configuration of the Loki Operator's ServiceMonitor could match many Kubernetes services, resulting in the Loki Operator's metrics being collected multiple times.
 With this update, the configuration of ServiceMonitor now only matches the dedicated metrics service. (LOG-5250)
- Before this update, the Red Hat build pipeline did not use the existing build details in Loki builds and omitted information such as revision, branch, and version. With this update, the Red Hat build pipeline now adds these details to the Loki builds, fixing the issue. (LOG-5201)
- Before this update, the Loki Operator checked if the pods were running to decide if the LokiStack was ready. With this update, it also checks if the pods are ready, so that the readiness of the LokiStack reflects the state of its components. (LOG-5171)
- Before this update, running a query for log metrics caused an error in the histogram. With this update, the histogram toggle function and the chart are disabled and hidden because the histogram doesn't work with log metrics. (LOG-5044)
- Before this update, the Loki and Elasticsearch bundle had the wrong maxOpenShiftVersion, resulting in IncompatibleOperatorsInstalled alerts. With this update, including 4.16 as the maxOpenShiftVersion property in the bundle fixes the issue. (LOG-5272)

- Before this update, the build pipeline did not include linker flags for the build date, causing Loki builds to show empty strings for **buildDate** and **goVersion**. With this update, adding the missing linker flags in the build pipeline fixes the issue. (LOG-5274)
- Before this update, a bug in LogQL parsing left out some line filters from the query. With this update, the parsing now includes all the line filters while keeping the original query unchanged. (LOG-5270)
- Before this update, the Loki Operator ServiceMonitor in the openshift-operators-redhat namespace used static token and CA files for authentication, causing errors in the Prometheus Operator in the User Workload Monitoring spec on the ServiceMonitor configuration. With this update, the Loki Operator ServiceMonitor in openshift-operators-redhat namespace now references a service account token secret by a LocalReference object. This approach allows the User Workload Monitoring spec in the Prometheus Operator to handle the Loki Operator ServiceMonitor successfully, enabling Prometheus to scrape the Loki Operator metrics. (LOG-5240)

1.1.2.2. CVEs

- CVE-2023-5363
- CVE-2023-5981
- CVE-2023-6135
- CVE-2023-46218
- CVE-2023-48795
- CVE-2023-51385
- CVE-2024-0553
- CVE-2024-0567
- CVE-2024-24786
- CVE-2024-28849

1.1.3. Logging 5.8.4

This release includes OpenShift Logging Bug Fix Release 5.8.4 .

1.1.3.1. Bug fixes

- Before this update, the developer console's logs did not account for the current namespace, resulting in query rejection for users without cluster-wide log access. With this update, all supported OCP versions ensure correct namespace inclusion. (LOG-4905)
- Before this update, the Cluster Logging Operator deployed **ClusterRoles** supporting LokiStack deployments only when the default log output was LokiStack. With this update, the roles are split into two groups: read and write. The write roles deploys based on the setting of the default log storage, just like all the roles used to do before. The read roles deploys based on whether the logging console plugin is active. (LOG-4987)
- Before this update, multiple **ClusterLogForwarders** defining the same input receiver name had

their service endlessly reconciled because of changing **ownerReferences** on one service. With this update, each receiver input will have its own service named with the convention of **<CLF.Name>-<input.Name>**. (LOG-5009)

- Before this update, the **ClusterLogForwarder** did not report errors when forwarding logs to cloudwatch without a secret. With this update, the following error message appears when forwarding logs to cloudwatch without a secret: **secret must be provided for cloudwatch output**. (LOG-5021)
- Before this update, the **log_forwarder_input_info** included **application**, **infrastructure**, and **audit** input metric points. With this update, **http** is also added as a metric point. (LOG-5043)

1.1.3.2. CVEs

- CVE-2021-35937
- CVE-2021-35938
- CVE-2021-35939
- CVE-2022-3545
- CVE-2022-24963
- CVE-2022-36402
- CVE-2022-41858
- CVE-2023-2166
- CVE-2023-2176
- CVE-2023-3777
- CVE-2023-3812
- CVE-2023-4015
- CVE-2023-4622
- CVE-2023-4623
- CVE-2023-5178
- CVE-2023-5363
- CVE-2023-5388
- CVE-2023-5633
- CVE-2023-6679
- CVE-2023-7104
- CVE-2023-27043
- CVE-2023-38409

- CVE-2023-40283
- CVE-2023-42753
- CVE-2023-43804
- CVE-2023-45803
- CVE-2023-46813
- CVE-2024-20918
- CVE-2024-20919
- CVE-2024-20921
- CVE-2024-20926
- CVE-2024-20945
- CVE-2024-20952

1.1.4. Logging 5.8.3

This release includes Logging Bug Fix 5.8.3 and Logging Security Fix 5.8.3

1.1.4.1. Bug fixes

- Before this update, when configured to read a custom S3 Certificate Authority the Loki Operator would not automatically update the configuration when the name of the ConfigMap or the contents changed. With this update, the Loki Operator is watching for changes to the ConfigMap and automatically updates the generated configuration. (LOG-4969)
- Before this update, Loki outputs configured without a valid URL caused the collector pods to crash. With this update, outputs are subject to URL validation, resolving the issue. (LOG-4822)
- Before this update the Cluster Logging Operator would generate collector configuration fields for outputs that did not specify a secret to use the service account bearer token. With this update, an output does not require authentication, resolving the issue. (LOG-4962)
- Before this update, the tls.insecureSkipVerify field of an output was not set to a value of true without a secret defined. With this update, a secret is no longer required to set this value. (LOG-4963)
- Before this update, output configurations allowed the combination of an insecure (HTTP) URL with TLS authentication. With this update, outputs configured for TLS authentication require a secure (HTTPS) URL. (LOG-4893)

1.1.4.2. CVEs

- CVE-2021-35937
- CVE-2021-35938
- CVE-2021-35939

- CVE-2023-7104
- CVE-2023-27043
- CVE-2023-48795
- CVE-2023-51385
- CVE-2024-0553

1.1.5. Logging 5.8.2

This release includes OpenShift Logging Bug Fix Release 5.8.2.

1.1.5.1. Bug fixes

- Before this update, the LokiStack ruler pods would not format the IPv6 pod IP in HTTP URLs used for cross pod communication, causing querying rules and alerts through the Prometheuscompatible API to fail. With this update, the LokiStack ruler pods encapsulate the IPv6 pod IP in square brackets, resolving the issue. (LOG-4890)
- Before this update, the developer console logs did not account for the current namespace, resulting in query rejection for users without cluster-wide log access. With this update, namespace inclusion has been corrected, resolving the issue. (LOG-4947)
- Before this update, the logging view plugin of the OpenShift Container Platform web console did not allow for custom node placement and tolerations. With this update, defining custom node placements and tolerations has been added to the logging view plugin of the OpenShift Container Platform web console. (LOG-4912)

1.1.5.2. CVEs

- CVE-2022-44638
- CVE-2023-1192
- CVE-2023-5345
- CVE-2023-20569
- CVE-2023-26159
- CVE-2023-39615
- CVE-2023-45871

1.1.6. Logging 5.8.1

This release includes OpenShift Logging Bug Fix Release 5.8.1 and OpenShift Logging Bug Fix Release 5.8.1 Kibana.

1.1.6.1. Enhancements

1.1.6.1.1. Log Collection

- With this update, while configuring Vector as a collector, you can add logic to the Red Hat OpenShift Logging Operator to use a token specified in the secret in place of the token associated with the service account. (LOG-4780)
- With this update, the **BoltDB Shipper** Loki dashboards are now renamed to **Index** dashboards. (LOG-4828)

1.1.6.2. Bug fixes

- Before this update, the **ClusterLogForwarder** created empty indices after enabling the parsing of JSON logs, even when the rollover conditions were not met. With this update, the **ClusterLogForwarder** skips the rollover when the **write-index** is empty. (LOG-4452)
- Before this update, the Vector set the **default** log level incorrectly. With this update, the correct log level is set by improving the enhancement of regular expression, or **regexp**, for log level detection. (LOG-4480)
- Before this update, during the process of creating index patterns, the default alias was missing from the initial index in each log output. As a result, Kibana users were unable to create index patterns by using OpenShift Elasticsearch Operator. This update adds the missing aliases to OpenShift Elasticsearch Operator, resolving the issue. Kibana users can now create index patterns that include the **{app,infra,audit}-000001** indexes. (LOG-4683)
- Before this update, Fluentd collector pods were in a **CrashLoopBackOff** state due to binding of the Prometheus server on IPv6 clusters. With this update, the collectors work properly on IPv6 clusters. (LOG-4706)
- Before this update, the Red Hat OpenShift Logging Operator would undergo numerous reconciliations whenever there was a change in the **ClusterLogForwarder**. With this update, the Red Hat OpenShift Logging Operator disregards the status changes in the collector daemonsets that triggered the reconciliations. (LOG-4741)
- Before this update, the Vector log collector pods were stuck in the **CrashLoopBackOff** state on {ibm-power-title} machines. With this update, the Vector log collector pods start successfully on {ibm-power-title} architecture machines. (LOG-4768)
- Before this update, forwarding with a legacy forwarder to an internal LokiStack would produce SSL certificate errors using Fluentd collector pods. With this update, the log collector service account is used by default for authentication, using the associated token and **ca.crt**. (LOG-4791)
- Before this update, forwarding with a legacy forwarder to an internal LokiStack would produce SSL certificate errors using Vector collector pods. With this update, the log collector service account is used by default for authentication and also using the associated token and **ca.crt**. (LOG-4852)
- Before this fix, IPv6 addresses would not be parsed correctly after evaluating a host or multiple hosts for placeholders. With this update, IPv6 addresses are correctly parsed. (LOG-4811)
- Before this update, it was necessary to create a ClusterRoleBinding to collect audit permissions for HTTP receiver inputs. With this update, it is not necessary to create the ClusterRoleBinding because the endpoint already depends upon the cluster certificate authority. (LOG-4815)
- Before this update, the Loki Operator did not mount a custom CA bundle to the ruler pods. As a result, during the process to evaluate alerting or recording rules, object storage access failed. With this update, the Loki Operator mounts the custom CA bundle to all ruler pods. The ruler

pods can download logs from object storage to evaluate alerting or recording rules. (LOG-4836)

- Before this update, while removing the inputs.receiver section in the ClusterLogForwarder, the HTTP input services and its associated secrets were not deleted. With this update, the HTTP input resources are deleted when not needed. (LOG-4612)
- Before this update, the **ClusterLogForwarder** indicated validation errors in the status, but the outputs and the pipeline status did not accurately reflect the specific issues. With this update, the pipeline status displays the validation failure reasons correctly in case of misconfigured outputs, inputs, or filters. (LOG-4821)
- Before this update, changing a **LogQL** query that used controls such as time range or severity changed the label matcher operator defining it like a regular expression. With this update, regular expression operators remain unchanged when updating the query. (LOG-4841)

1.1.6.3. CVEs

- CVE-2007-4559
- CVE-2021-3468
- CVE-2021-3502
- CVE-2021-3826
- CVE-2021-43618
- CVE-2022-3523
- CVE-2022-3565
- CVE-2022-3594
- CVE-2022-4285
- CVE-2022-38457
- CVE-2022-40133
- CVE-2022-40982
- CVE-2022-41862
- CVE-2022-42895
- CVE-2023-0597
- CVE-2023-1073
- CVE-2023-1074
- CVE-2023-1075
- CVE-2023-1076
- CVE-2023-1079

- CVE-2023-1206
- CVE-2023-1249
- CVE-2023-1252
- CVE-2023-1652
- CVE-2023-1855
- CVE-2023-1981
- CVE-2023-1989
- CVE-2023-2731
- CVE-2023-3138
- CVE-2023-3141
- CVE-2023-3161
- CVE-2023-3212
- CVE-2023-3268
- CVE-2023-3316
- CVE-2023-3358
- CVE-2023-3576
- CVE-2023-3609
- CVE-2023-3772
- CVE-2023-3773
- CVE-2023-4016
- CVE-2023-4128
- CVE-2023-4155
- CVE-2023-4194
- CVE-2023-4206
- CVE-2023-4207
- CVE-2023-4208
- CVE-2023-4273
- CVE-2023-4641
- CVE-2023-22745

- CVE-2023-26545
- CVE-2023-26965
- CVE-2023-26966
- CVE-2023-27522
- CVE-2023-29491
- CVE-2023-29499
- CVE-2023-30456
- CVE-2023-31486
- CVE-2023-32324
- CVE-2023-32573
- CVE-2023-32611
- CVE-2023-32665
- CVE-2023-33203
- CVE-2023-33285
- CVE-2023-33951
- CVE-2023-33952
- CVE-2023-34241
- CVE-2023-34410
- CVE-2023-35825
- CVE-2023-36054
- CVE-2023-37369
- CVE-2023-38197
- CVE-2023-38545
- CVE-2023-38546
- CVE-2023-39191
- CVE-2023-39975
- CVE-2023-44487

1.1.7. Logging 5.8.0

This release includes OpenShift Logging Bug Fix Release 5.8.0 and OpenShift Logging Bug Fix Release 5.8.0 Kibana.

1.1.7.1. Deprecation notice

In Logging 5.8, Elasticsearch, Fluentd, and Kibana are deprecated and are planned to be removed in Logging 6.0, which is expected to be shipped alongside a future release of OpenShift Container Platform. Red Hat will provide critical and above CVE bug fixes and support for these components during the current release lifecycle, but these components will no longer receive feature enhancements. The Vector-based collector provided by the Red Hat OpenShift Logging Operator and LokiStack provided by the Loki Operator are the preferred Operators for log collection and storage. We encourage all users to adopt the Vector and Loki log stack, as this will be the stack that will be enhanced going forward.

1.1.7.2. Enhancements

1.1.7.2.1. Log Collection

- With this update, the LogFileMetricExporter is no longer deployed with the collector by default. You must manually create a **LogFileMetricExporter** custom resource (CR) to generate metrics from the logs produced by running containers. If you do not create the **LogFileMetricExporter** CR, you may see a **No datapoints found** message in the OpenShift Container Platform web console dashboard for **Produced Logs**. (LOG-3819)
- With this update, you can deploy multiple, isolated, and RBAC-protected **ClusterLogForwarder** custom resource (CR) instances in any namespace. This allows independent groups to forward desired logs to any destination while isolating their configuration from other collector deployments. (LOG-1343)

IMPORTANT

In order to support multi-cluster log forwarding in additional namespaces other than the **openshift-logging** namespace, you must update the Red Hat OpenShift Logging Operator to watch all namespaces. This functionality is supported by default in new Red Hat OpenShift Logging Operator version 5.8 installations.

- With this update, you can use the flow control or rate limiting mechanism to limit the volume of log data that can be collected or forwarded by dropping excess log records. The input limits prevent poorly-performing containers from overloading the Logging and the output limits put a ceiling on the rate of logs shipped to a given data store. (LOG-884)
- With this update, you can configure the log collector to look for HTTP connections and receive logs as an HTTP server, also known as a webhook. (LOG-4562)
- With this update, you can configure audit polices to control which Kubernetes and OpenShift API server events are forwarded by the log collector. (LOG-3982)

1.1.7.2.2. Log Storage

......

1

..

- With this update, LokiStack administrators can have more fine-grained control over who can access which logs by granting access to logs on a namespace basis. (LOG-3841)
- With this update, the Loki Operator introduces **PodDisruptionBudget** configuration on LokiStack deployments to ensure normal operations during OpenShift Container Platform cluster restarts by keeping ingestion and the query path available. (LOG-3839)

. .

c

- With this update, the reliability of existing LokiStack installations are seamlessly improved by applying a set of default Affinity and Anti-Affinity policies. (LOG-3840)
- With this update, you can manage zone-aware data replication as an administrator in LokiStack, in order to enhance reliability in the event of a zone failure. (LOG-3266)
- With this update, a new supported small-scale LokiStack size of 1x.extra-small is introduced for OpenShift Container Platform clusters hosting a few workloads and smaller ingestion volumes (up to 100GB/day). (LOG-4329)
- With this update, the LokiStack administrator has access to an official Loki dashboard to inspect the storage performance and the health of each component. (LOG-4327)

1.1.7.2.3. Log Console

- With this update, you can enable the Logging Console Plugin when Elasticsearch is the default Log Store. (LOG-3856)
- With this update, OpenShift Container Platform application owners can receive notifications for application log-based alerts on the OpenShift Container Platform web console **Developer** perspective for OpenShift Container Platform version 4.14 and later. (LOG-3548)

1.1.7.3. Known Issues

- Currently, Splunk log forwarding might not work after upgrading to version 5.8 of the Red Hat OpenShift Logging Operator. This issue is caused by transitioning from OpenSSL version 1.1.1 to version 3.0.7. In the newer OpenSSL version, there is a default behavior change, where connections to TLS 1.2 endpoints are rejected if they do not expose the RFC 5746 extension. As a workaround, enable TLS 1.3 support on the TLS terminating load balancer in front of the Splunk HEC (HTTP Event Collector) endpoint. Splunk is a third-party system and this should be configured from the Splunk end.
- Currently, there is a flaw in handling multiplexed streams in the HTTP/2 protocol, where you can repeatedly make a request for a new multiplex stream and immediately send an **RST_STREAM** frame to cancel it. This created extra work for the server set up and tore down the streams, resulting in a denial of service due to server resource consumption. There is currently no workaround for this issue. (LOG-4609)
- Currently, when using FluentD as the collector, the collector pod cannot start on the OpenShift Container Platform IPv6-enabled cluster. The pod logs produce the **fluentd pod [error]:** unexpected error error_class=SocketError error="getaddrinfo: Name or service not known error. There is currently no workaround for this issue. (LOG-4706)
- Currently, the log alert is not available on an IPv6-enabled cluster. There is currently no workaround for this issue. (LOG-4709)
- Currently, **must-gather** cannot gather any logs on a FIPS-enabled cluster, because the required OpenSSL library is not available in the **cluster-logging-rhel9-operator**. There is currently no workaround for this issue. (LOG-4403)
- Currently, when deploying the logging version 5.8 on a FIPS-enabled cluster, the collector pods cannot start and are stuck in **CrashLoopBackOff** status, while using FluentD as a collector. There is currently no workaround for this issue. (LOG-3933)

1.1.7.4. CVEs

• CVE-2023-40217

1.2. LOGGING 5.7

NOTE

Logging is provided as an installable component, with a distinct release cycle from the core OpenShift Container Platform. The Red Hat OpenShift Container Platform Life Cycle Policy outlines release compatibility.

NOTE

The **stable** channel only provides updates to the most recent release of logging. To continue receiving updates for prior releases, you must change your subscription channel to **stable-x.y**, where **x.y** represents the major and minor version of logging you have installed. For example, **stable-5.7**.

1.2.1. Logging 5.7.13

This release includes OpenShift Logging Bug Fix 5.7.13.

1.2.1.1. Enhancements

- Before this update, the Loki Operator configured Loki to use path-based style access for the Amazon Simple Storage Service (S3), which has been deprecated. With this update, the Loki Operator defaults to virtual-host style without users needing to change their configuration. (LOG-5403)
- Before this update, the Loki Operator did not validate the Amazon Simple Storage Service (S3) endpoint used in the storage secret. With this update, the validation process ensures the S3 endpoint is a valid S3 URL, and the LokiStack status updates to indicate any invalid URLs. (LOG-5393)

1.2.1.2. Bug fixes

- Before this update, the Elastisearch Operator ServiceMonitor in the openshift-operatorsredhat namespace used static token and certificate authority (CA) files for authentication, causing errors in the Prometheus Operator in the User Workload Monitoring specification on the ServiceMonitor configuration. With this update, the Elastisearch Operator ServiceMonitor in the openshift-operators-redhat namespace now references a service account token secret by a LocalReference object. This approach allows the User Workload Monitoring specifications in the Prometheus Operator to handle the Elastisearch Operator ServiceMonitor successfully. This enables Prometheus to scrape the Elastisearch Operator metrics. (LOG-5243)
- Before this update, the Loki Operator did not validate the Amazon Simple Storage Service (S3) endpoint URL format used in the storage secret. With this update, the S3 endpoint URL goes through a validation step that reflects on the status of the **LokiStack**. (LOG-5399)

1.2.1.3. CVEs

- CVE-2021-33631
- CVE-2021-43618

- CVE-2022-38096
- CVE-2022-48624
- CVE-2023-6546
- CVE-2023-6931
- CVE-2023-28322
- CVE-2023-38546
- CVE-2023-46218
- CVE-2023-51042
- CVE-2024-0565
- CVE-2024-1086

1.2.2. Logging 5.7.12

This release includes OpenShift Logging Bug Fix 5.7.12.

1.2.2.1. Bug fixes

- Before this update, the Loki Operator checked if the pods were running to decide if the LokiStack was ready. With this update, it also checks if the pods are ready, so that the readiness of the LokiStack reflects the state of its components. (LOG-5172)
- Before this update, the Red Hat build pipeline didn't use the existing build details in Loki builds and omitted information such as revision, branch, and version. With this update, the Red Hat build pipeline now adds these details to the Loki builds, fixing the issue. (LOG-5202)
- Before this update, the configuration of the Loki Operator's ServiceMonitor could match many Kubernetes services, resulting in the Loki Operator's metrics being collected multiple times. With this update, the configuration of ServiceMonitor now only matches the dedicated metrics service. (LOG-5251)
- Before this update, the build pipeline did not include linker flags for the build date, causing Loki builds to show empty strings for **buildDate** and **goVersion**. With this update, adding the missing linker flags in the build pipeline fixes the issue. (LOG-5275)
- Before this update, the Loki Operator ServiceMonitor in the openshift-operators-redhat namespace used static token and CA files for authentication, causing errors in the Prometheus Operator in the User Workload Monitoring spec on the ServiceMonitor configuration. With this update, the Loki Operator ServiceMonitor in openshift-operators-redhat namespace now references a service account token secret by a LocalReference object. This approach allows the User Workload Monitoring spec in the Prometheus Operator to handle the Loki Operator ServiceMonitor successfully, enabling Prometheus to scrape the Loki Operator metrics. (LOG-5241)

1.2.2.2. CVEs

• CVE-2021-35937

- CVE-2021-35938
- CVE-2021-35939
- CVE-2022-3545
- CVE-2022-41858
- CVE-2023-1073
- CVE-2023-1838
- CVE-2023-2166
- CVE-2023-2176
- CVE-2023-4623
- CVE-2023-4921
- CVE-2023-5717
- CVE-2023-6135
- CVE-2023-6356
- CVE-2023-6535
- CVE-2023-6536
- CVE-2023-6606
- CVE-2023-6610
- CVE-2023-6817
- CVE-2023-7104
- CVE-2023-27043
- CVE-2023-40283
- CVE-2023-45871
- CVE-2023-46813
- CVE-2023-48795
- CVE-2023-51385
- CVE-2024-0553
- CVE-2024-0646
- CVE-2024-24786

1.2.3. Logging 5.7.11

This release includes Logging Bug Fix 5.7.11.

1.2.3.1. Bug fixes

• Before this update, when configured to read a custom S3 Certificate Authority, the Loki Operator would not automatically update the configuration when the name of the **ConfigMap** object or the contents changed. With this update, the Loki Operator now watches for changes to the **ConfigMap** object and automatically updates the generated configuration. (LOG-4968)

1.2.3.2. CVEs

• CVE-2023-39326

1.2.4. Logging 5.7.10

This release includes OpenShift Logging Bug Fix Release 5.7.10.

1.2.4.1. Bug fix

Before this update, the LokiStack ruler pods would not format the IPv6 pod IP in HTTP URLs used for cross pod communication, causing querying rules and alerts through the Prometheus-compatible API to fail. With this update, the LokiStack ruler pods encapsulate the IPv6 pod IP in square brackets, resolving the issue. (LOG-4891)

1.2.4.2. CVEs

- CVE-2007-4559
- CVE-2021-43975
- CVE-2022-3594
- CVE-2022-3640
- CVE-2022-4285
- CVE-2022-4744
- CVE-2022-28388
- CVE-2022-38457
- CVE-2022-40133
- CVE-2022-40982
- CVE-2022-41862
- CVE-2022-42895
- CVE-2022-45869
- CVE-2022-45887
- CVE-2022-48337

- CVE-2022-48339
- CVE-2023-0458
- CVE-2023-0590
- CVE-2023-0597
- CVE-2023-1073
- CVE-2023-1074
- CVE-2023-1075
- CVE-2023-1079
- CVE-2023-1118
- CVE-2023-1206
- CVE-2023-1252
- CVE-2023-1382
- CVE-2023-1855
- CVE-2023-1989
- CVE-2023-1998
- CVE-2023-2513
- CVE-2023-3138
- CVE-2023-3141
- CVE-2023-3161
- CVE-2023-3212
- CVE-2023-3268
- CVE-2023-3446
- CVE-2023-3609
- CVE-2023-3611
- CVE-2023-3772
- CVE-2023-3817
- CVE-2023-4016
- CVE-2023-4128
- CVE-2023-4132

- CVE-2023-4155
- CVE-2023-4206
- CVE-2023-4207
- CVE-2023-4208
- CVE-2023-4641
- CVE-2023-4732
- CVE-2023-5678
- CVE-2023-22745
- CVE-2023-23455
- CVE-2023-26545
- CVE-2023-28328
- CVE-2023-28772
- CVE-2023-30456
- CVE-2023-31084
- CVE-2023-31436
- CVE-2023-31486
- CVE-2023-33203
- CVE-2023-33951
- CVE-2023-33952
- CVE-2023-35823
- CVE-2023-35824
- CVE-2023-35825
- CVE-2023-38037
- CVE-2024-0443

1.2.5. Logging 5.7.9

This release includes OpenShift Logging Bug Fix Release 5.7.9.

1.2.5.1. Bug fixes

• Before this fix, IPv6 addresses would not be parsed correctly after evaluating a host or multiple hosts for placeholders. With this update, IPv6 addresses are correctly parsed. (LOG-4281)

- Before this update, the Vector failed to start on IPv4-only nodes. As a result, it failed to create a listener for its metrics endpoint with the following error: Failed to start Prometheus exporter: TCP bind failed: Address family not supported by protocol (os error 97). With this update, the Vector operates normally on IPv4-only nodes. (LOG-4589)
- Before this update, during the process of creating index patterns, the default alias was missing from the initial index in each log output. As a result, Kibana users were unable to create index patterns by using OpenShift Elasticsearch Operator. This update adds the missing aliases to OpenShift Elasticsearch Operator, resolving the issue. Kibana users can now create index patterns that include the **{app,infra,audit}-000001** indexes. (LOG-4806)
- Before this update, the Loki Operator did not mount a custom CA bundle to the ruler pods. As a result, during the process to evaluate alerting or recording rules, object storage access failed. With this update, the Loki Operator mounts the custom CA bundle to all ruler pods. The ruler pods can download logs from object storage to evaluate alerting or recording rules. (LOG-4837)
- Before this update, changing a LogQL query using controls such as time range or severity changed the label matcher operator as though it was defined like a regular expression. With this update, regular expression operators remain unchanged when updating the query. (LOG-4842)
- Before this update, the Vector collector deployments relied upon the default retry and buffering behavior. As a result, the delivery pipeline backed up trying to deliver every message when the availability of an output was unstable. With this update, the Vector collector deployments limit the number of message retries and drop messages after the threshold has been exceeded. (LOG-4536)

1.2.5.2. CVEs

- CVE-2007-4559
- CVE-2021-43975
- CVE-2022-3594
- CVE-2022-3640
- CVE-2022-4744
- CVE-2022-28388
- CVE-2022-38457
- CVE-2022-40133
- CVE-2022-40982
- CVE-2022-41862
- CVE-2022-42895
- CVE-2022-45869
- CVE-2022-45887
- CVE-2022-48337

- CVE-2022-48339
- CVE-2023-0458
- CVE-2023-0590
- CVE-2023-0597
- CVE-2023-1073
- CVE-2023-1074
- CVE-2023-1075
- CVE-2023-1079
- CVE-2023-1118
- CVE-2023-1206
- CVE-2023-1252
- CVE-2023-1382
- CVE-2023-1855
- CVE-2023-1981
- CVE-2023-1989
- CVE-2023-1998
- CVE-2023-2513
- CVE-2023-3138
- CVE-2023-3141
- CVE-2023-3161
- CVE-2023-3212
- CVE-2023-3268
- CVE-2023-3609
- CVE-2023-3611
- CVE-2023-3772
- CVE-2023-4016
- CVE-2023-4128
- CVE-2023-4132
- CVE-2023-4155

- CVE-2023-4206
- CVE-2023-4207
- CVE-2023-4208
- CVE-2023-4641
- CVE-2023-4732
- CVE-2023-22745
- CVE-2023-23455
- CVE-2023-26545
- CVE-2023-28328
- CVE-2023-28772
- CVE-2023-30456
- CVE-2023-31084
- CVE-2023-31436
- CVE-2023-31486
- CVE-2023-32324
- CVE-2023-33203
- CVE-2023-33951
- CVE-2023-33952
- CVE-2023-34241
- CVE-2023-35823
- CVE-2023-35824
- CVE-2023-35825

1.2.6. Logging 5.7.8

This release includes OpenShift Logging Bug Fix Release 5.7.8.

1.2.6.1. Bug fixes

- Before this update, there was a potential conflict when the same name was used for the
 outputRefs and inputRefs parameters in the ClusterLogForwarder custom resource (CR). As
 a result, the collector pods entered in a CrashLoopBackOff status. With this update, the output
 labels contain the OUTPUT_prefix to ensure a distinction between output labels and pipeline
 names. (LOG-4383)
- Before this update, while configuring the JSON log parser, if you did not set the

structuredTypeKey or **structuredTypeName** parameters for the Cluster Logging Operator, no alert would display about an invalid configuration. With this update, the Cluster Logging Operator informs you about the configuration issue. (LOG-4441)

- Before this update, if the **hecToken** key was missing or incorrect in the secret specified for a Splunk output, the validation failed because the Vector forwarded logs to Splunk without a token. With this update, if the **hecToken** key is missing or incorrect, the validation fails with the **A non-empty hecToken entry is required** error message. (LOG-4580)
- Before this update, selecting a date from the **Custom time range** for logs caused an error in the web console. With this update, you can select a date from the time range model in the web console successfully. (LOG-4684)

1.2.6.2. CVEs

- CVE-2023-40217
- CVE-2023-44487

1.2.7. Logging 5.7.7

This release includes OpenShift Logging Bug Fix Release 5.7.7.

1.2.7.1. Bug fixes

- Before this update, FluentD normalized the logs emitted by the EventRouter differently from Vector. With this update, the Vector produces log records in a consistent format. (LOG-4178)
- Before this update, there was an error in the query used for the **FluentD Buffer Availability** graph in the metrics dashboard created by the Cluster Logging Operator as it showed the minimum buffer usage. With this update, the graph shows the maximum buffer usage and is now renamed to **FluentD Buffer Usage**. (LOG-4555)
- Before this update, deploying a LokiStack on IPv6-only or dual-stack OpenShift Container Platform clusters caused the LokiStack memberlist registration to fail. As a result, the distributor pods went into a crash loop. With this update, an administrator can enable IPv6 by setting the **lokistack.spec.hashRing.memberlist.enableIPv6:** value to **true**, which resolves the issue. (LOG-4569)
- Before this update, the log collector relied on the default configuration settings for reading the container log lines. As a result, the log collector did not read the rotated files efficiently. With this update, there is an increase in the number of bytes read, which allows the log collector to efficiently process rotated files. (LOG-4575)
- Before this update, the unused metrics in the Event Router caused the container to fail due to excessive memory usage. With this update, there is reduction in the memory usage of the Event Router by removing the unused metrics. (LOG-4686)

1.2.7.2. CVEs

- CVE-2023-0800
- CVE-2023-0801
- CVE-2023-0802

- CVE-2023-0803
- CVE-2023-0804
- CVE-2023-2002
- CVE-2023-3090
- CVE-2023-3390
- CVE-2023-3776
- CVE-2023-4004
- CVE-2023-4527
- CVE-2023-4806
- CVE-2023-4813
- CVE-2023-4863
- CVE-2023-4911
- CVE-2023-5129
- CVE-2023-20593
- CVE-2023-29491
- CVE-2023-30630
- CVE-2023-35001
- CVE-2023-35788

1.2.8. Logging 5.7.6

This release includes OpenShift Logging Bug Fix Release 5.7.6.

1.2.8.1. Bug fixes

- Before this update, the collector relied on the default configuration settings for reading the container log lines. As a result, the collector did not read the rotated files efficiently. With this update, there is an increase in the number of bytes read, which allows the collector to efficiently process rotated files. (LOG-4501)
- Before this update, when users pasted a URL with predefined filters, some filters did not reflect. With this update, the UI reflects all the filters in the URL. (LOG-4459)
- Before this update, forwarding to Loki using custom labels generated an error when switching from Fluentd to Vector. With this update, the Vector configuration sanitizes labels in the same way as Fluentd to ensure the collector starts and correctly processes labels. (LOG-4460)
- Before this update, the Observability Logs console search field did not accept special characters that it should escape. With this update, it is escaping special characters properly in the query. (LOG-4456)

- Before this update, the following warning message appeared while sending logs to Splunk: **Timestamp was not found.** With this update, the change overrides the name of the log field used to retrieve the Timestamp and sends it to Splunk without warning. (LOG-4413)
- Before this update, the CPU and memory usage of Vector was increasing over time. With this update, the Vector configuration now contains the **expire_metrics_secs=60** setting to limit the lifetime of the metrics and cap the associated CPU usage and memory footprint. (LOG-4171)
- Before this update, the LokiStack gateway cached authorized requests very broadly. As a result, this caused wrong authorization results. With this update, LokiStack gateway caches on a more fine-grained basis which resolves this issue. (LOG-4393)
- Before this update, the Fluentd runtime image included builder tools which were unnecessary at runtime. With this update, the builder tools are removed, resolving the issue. (LOG-4467)

1.2.8.2. CVEs

- CVE-2023-3899
- CVE-2023-4456
- CVE-2023-32360
- CVE-2023-34969

1.2.9. Logging 5.7.4

This release includes OpenShift Logging Bug Fix Release 5.7.4.

1.2.9.1. Bug fixes

- Before this update, when forwarding logs to CloudWatch, a **namespaceUUID** value was not appended to the **logGroupName** field. With this update, the **namespaceUUID** value is included, so a **logGroupName** in CloudWatch appears as **logGroupName: vectorcw.b443fb9e-bd4c-4b6a-b9d3-c0097f9ed286**. (LOG-2701)
- Before this update, when forwarding logs over HTTP to an off-cluster destination, the Vector collector was unable to authenticate to the cluster-wide HTTP proxy even though correct credentials were provided in the proxy URL. With this update, the Vector log collector can now authenticate to the cluster-wide HTTP proxy. (LOG-3381)
- Before this update, the Operator would fail if the Fluentd collector was configured with Splunk as an output, due to this configuration being unsupported. With this update, configuration validation rejects unsupported outputs, resolving the issue. (LOG-4237)
- Before this update, when the Vector collector was updated an **enabled = true** value in the TLS configuration for AWS Cloudwatch logs and the GCP Stackdriver caused a configuration error. With this update, **enabled = true** value will be removed for these outputs, resolving the issue. (LOG-4242)
- Before this update, the Vector collector occasionally panicked with the following error message in its log: thread 'vector-worker' panicked at 'all branches are disabled and there is no else branch', src/kubernetes/reflector.rs:26:9. With this update, the error has been resolved. (LOG-4275)
- Before this update, an issue in the Loki Operator caused the **alert-manager** configuration for

the application tenant to disappear if the Operator was configured with additional options for that tenant. With this update, the generated Loki configuration now contains both the custom and the auto-generated configuration. (LOG-4361)

- Before this update, when multiple roles were used to authenticate using STS with AWS Cloudwatch forwarding, a recent update caused the credentials to be non-unique. With this update, multiple combinations of STS roles and static credentials can once again be used to authenticate with AWS Cloudwatch. (LOG-4368)
- Before this update, Loki filtered label values for active streams but did not remove duplicates, making Grafana's Label Browser unusable. With this update, Loki filters out duplicate label values for active streams, resolving the issue. (LOG-4389)
- Pipelines with no **name** field specified in the **ClusterLogForwarder** custom resource (CR) stopped working after upgrading to OpenShift Logging 5.7. With this update, the error has been resolved. (LOG-4120)

1.2.9.2. CVEs

- CVE-2022-25883
- CVE-2023-22796

1.2.10. Logging 5.7.3

This release includes OpenShift Logging Bug Fix Release 5.7.3.

1.2.10.1. Bug fixes

- Before this update, when viewing logs within the OpenShift Container Platform web console, cached files caused the data to not refresh. With this update the bootstrap files are not cached, resolving the issue. (LOG-4100)
- Before this update, the Loki Operator reset errors in a way that made identifying configuration problems difficult to troubleshoot. With this update, errors persist until the configuration error is resolved. (LOG-4156)
- Before this update, the LokiStack ruler did not restart after changes were made to the **RulerConfig** custom resource (CR). With this update, the Loki Operator restarts the ruler pods after the **RulerConfig** CR is updated. (LOG-4161)
- Before this update, the vector collector terminated unexpectedly when input match label values contained a / character within the **ClusterLogForwarder**. This update resolves the issue by quoting the match label, enabling the collector to start and collect logs. (LOG-4176)
- Before this update, the Loki Operator terminated unexpectedly when a **LokiStack** CR defined tenant limits, but not global limits. With this update, the Loki Operator can process **LokiStack** CRs without global limits, resolving the issue. (LOG-4198)
- Before this update, Fluentd did not send logs to an Elasticsearch cluster when the private key provided was passphrase-protected. With this update, Fluentd properly handles passphrase-protected private keys when establishing a connection with Elasticsearch. (LOG-4258)
- Before this update, clusters with more than 8,000 namespaces caused Elasticsearch to reject queries because the list of namespaces was larger than the **http.max_header_size** setting. With this update, the default value for header size has been increased, resolving the issue.

(LOG-4277)

- Before this update, label values containing a / character within the **ClusterLogForwarder** CR would cause the collector to terminate unexpectedly. With this update, slashes are replaced with underscores, resolving the issue. (LOG-4095)
- Before this update, the Cluster Logging Operator terminated unexpectedly when set to an unmanaged state. With this update, a check to ensure that the **ClusterLogging** resource is in the correct Management state before initiating the reconciliation of the **ClusterLogForwarder** CR, resolving the issue. (LOG-4177)
- Before this update, when viewing logs within the OpenShift Container Platform web console, selecting a time range by dragging over the histogram didn't work on the aggregated logs view inside the pod detail. With this update, the time range can be selected by dragging on the histogram in this view. (LOG-4108)
- Before this update, when viewing logs within the OpenShift Container Platform web console, queries longer than 30 seconds timed out. With this update, the timeout value can be configured in the configmap/logging-view-plugin. (LOG-3498)
- Before this update, when viewing logs within the OpenShift Container Platform web console, clicking the **more data available** option loaded more log entries only the first time it was clicked. With this update, more entries are loaded with each click. (OU-188)
- Before this update, when viewing logs within the OpenShift Container Platform web console, clicking the streaming option would only display the streaming logs message without showing the actual logs. With this update, both the message and the log stream are displayed correctly. (OU-166)

1.2.10.2. CVEs

- CVE-2020-24736
- CVE-2022-48281
- CVE-2023-1667
- CVE-2023-2283
- CVE-2023-24329
- CVE-2023-26115
- CVE-2023-26136
- CVE-2023-26604
- CVE-2023-28466

1.2.11. Logging 5.7.2

This release includes OpenShift Logging Bug Fix Release 5.7.2.

1.2.11.1. Bug fixes

- Before this update, it was not possible to delete the **openshift-logging** namespace directly due to the presence of a pending finalizer. With this update, the finalizer is no longer utilized, enabling direct deletion of the namespace. (LOG-3316)
- Before this update, the **run.sh** script would display an incorrect **chunk_limit_size** value if it was changed according to the OpenShift Container Platform documentation. However, when setting the **chunk_limit_size** via the environment variable **\$BUFFER_SIZE_LIMIT**, the script would show the correct value. With this update, the **run.sh** script now consistently displays the correct **chunk_limit_size** value in both scenarios. (LOG-3330)
- Before this update, the OpenShift Container Platform web console's logging view plugin did not allow for custom node placement or tolerations. This update adds the ability to define node placement and tolerations for the logging view plugin. (LOG-3749)
- Before this update, the Cluster Logging Operator encountered an Unsupported Media Type exception when trying to send logs to DataDog via the Fluentd HTTP Plugin. With this update, users can seamlessly assign the content type for log forwarding by configuring the HTTP header Content-Type. The value provided is automatically assigned to the **content_type** parameter within the plugin, ensuring successful log transmission. (LOG-3784)
- Before this update, when the **detectMultilineErrors** field was set to **true** in the **ClusterLogForwarder** custom resource (CR), PHP multi-line errors were recorded as separate log entries, causing the stack trace to be split across multiple messages. With this update, multi-line error detection for PHP is enabled, ensuring that the entire stack trace is included in a single log message. (LOG-3878)
- Before this update, **ClusterLogForwarder** pipelines containing a space in their name caused the Vector collector pods to continuously crash. With this update, all spaces, dashes (-), and dots (.) in pipeline names are replaced with underscores (_). (LOG-3945)
- Before this update, the **log_forwarder_output** metric did not include the **http** parameter. This update adds the missing parameter to the metric. (LOG-3997)
- Before this update, Fluentd did not identify some multi-line JavaScript client exceptions when they ended with a colon. With this update, the Fluentd buffer name is prefixed with an underscore, resolving the issue. (LOG-4019)
- Before this update, when configuring log forwarding to write to a Kafka output topic which matched a key in the payload, logs dropped due to an error. With this update, Fluentd's buffer name has been prefixed with an underscore, resolving the issue.(LOG-4027)
- Before this update, the LokiStack gateway returned label values for namespaces without applying the access rights of a user. With this update, the LokiStack gateway applies permissions to label value requests, resolving the issue. (LOG-4049)
- Before this update, the Cluster Logging Operator API required a certificate to be provided by a secret when the **tls.insecureSkipVerify** option was set to **true**. With this update, the Cluster Logging Operator API no longer requires a certificate to be provided by a secret in such cases. The following configuration has been added to the Operator's CR:

tls.verify_certificate = false tls.verify_hostname = false

(LOG-3445)

- Before this update, the LokiStack route configuration caused queries running longer than 30 seconds to timeout. With this update, the LokiStack global and per-tenant **queryTimeout** settings affect the route timeout settings, resolving the issue. (LOG-4052)
- Before this update, a prior fix to remove defaulting of the **collection.type** resulted in the Operator no longer honoring the deprecated specs for resource, node selections, and tolerations. This update modifies the Operator behavior to always prefer the **collection.logs** spec over those of **collection**. This varies from previous behavior that allowed using both the preferred fields and deprecated fields but would ignore the deprecated fields when **collection.type** was populated. (LOG-4185)
- Before this update, the Vector log collector did not generate TLS configuration for forwarding logs to multiple Kafka brokers if the broker URLs were not specified in the output. With this update, TLS configuration is generated appropriately for multiple brokers. (LOG-4163)
- Before this update, the option to enable passphrase for log forwarding to Kafka was unavailable. This limitation presented a security risk as it could potentially expose sensitive information. With this update, users now have a seamless option to enable passphrase for log forwarding to Kafka. (LOG-3314)
- Before this update, Vector log collector did not honor the tlsSecurityProfile settings for outgoing TLS connections. After this update, Vector handles TLS connection settings appropriately. (LOG-4011)
- Before this update, not all available output types were included in the **log_forwarder_output_info** metrics. With this update, metrics contain Splunk and Google Cloud Logging data which was missing previously. (LOG-4098)
- Before this update, when follow_inodes was set to true, the Fluentd collector could crash on file rotation. With this update, the follow_inodes setting does not crash the collector. (LOG-4151)
- Before this update, the Fluentd collector could incorrectly close files that should be watched because of how those files were tracked. With this update, the tracking parameters have been corrected. (LOG-4149)
- Before this update, forwarding logs with the Vector collector and naming a pipeline in the **ClusterLogForwarder** instance **audit**, **application** or **infrastructure** resulted in collector pods staying in the **CrashLoopBackOff** state with the following error in the collector log:

ERROR vector::cli: Configuration error. error=redefinition of table transforms.audit for key transforms.audit

After this update, pipeline names no longer clash with reserved input names, and pipelines can be named **audit**, **application** or **infrastructure**. (LOG-4218)

- Before this update, when forwarding logs to a syslog destination with the Vector collector and setting the addLogSource flag to true, the following extra empty fields were added to the forwarded messages: namespace_name=, container_name=, and pod_name=. With this update, these fields are no longer added to journal logs. (LOG-4219)
- Before this update, when a structuredTypeKey was not found, and a structuredTypeName was not specified, log messages were still parsed into structured object. With this update, parsing of logs is as expected. (LOG-4220)

- CVE-2021-26341
- CVE-2021-33655
- CVE-2021-33656
- CVE-2022-1462
- CVE-2022-1679
- CVE-2022-1789
- CVE-2022-2196
- CVE-2022-2663
- CVE-2022-3028
- CVE-2022-3239
- CVE-2022-3522
- CVE-2022-3524
- CVE-2022-3564
- CVE-2022-3566
- CVE-2022-3567
- CVE-2022-3619
- CVE-2022-3623
- CVE-2022-3625
- CVE-2022-3627
- CVE-2022-3628
- CVE-2022-3707
- CVE-2022-3970
- CVE-2022-4129
- CVE-2022-20141
- CVE-2022-25147
- CVE-2022-25265
- CVE-2022-30594
- CVE-2022-36227
- CVE-2022-39188

- CVE-2022-39189
- CVE-2022-41218
- CVE-2022-41674
- CVE-2022-42703
- CVE-2022-42720
- CVE-2022-42721
- CVE-2022-42722
- CVE-2022-43750
- CVE-2022-47929
- CVE-2023-0394
- CVE-2023-0461
- CVE-2023-1195
- CVE-2023-1582
- CVE-2023-2491
- CVE-2023-22490
- CVE-2023-23454
- CVE-2023-23946
- CVE-2023-25652
- CVE-2023-25815
- CVE-2023-27535
- CVE-2023-29007

1.2.12. Logging 5.7.1

This release includes: OpenShift Logging Bug Fix Release 5.7.1.

1.2.12.1. Bug fixes

- Before this update, the presence of numerous noisy messages within the Cluster Logging Operator pod logs caused reduced log readability, and increased difficulty in identifying important system events. With this update, the issue is resolved by significantly reducing the noisy messages within Cluster Logging Operator pod logs. (LOG-3482)
- Before this update, the API server would reset the value for the **CollectorSpec.Type** field to **vector**, even when the custom resource used a different value. This update removes the default for the **CollectorSpec.Type** field to restore the previous behavior. (LOG-4086)

- Before this update, a time range could not be selected in the OpenShift Container Platform web console by clicking and dragging over the logs histogram. With this update, clicking and dragging can be used to successfully select a time range. (LOG-4501)
- Before this update, clicking on the **Show Resources** link in the OpenShift Container Platform web console did not produce any effect. With this update, the issue is resolved by fixing the functionality of the "Show Resources" link to toggle the display of resources for each log entry. (LOG-3218)

1.2.12.2. CVEs

- CVE-2023-21930
- CVE-2023-21937
- CVE-2023-21938
- CVE-2023-21939
- CVE-2023-21954
- CVE-2023-21967
- CVE-2023-21968
- CVE-2023-28617

1.2.13. Logging 5.7.0

This release includes OpenShift Logging Bug Fix Release 5.7.0.

1.2.13.1. Enhancements

With this update, you can enable logging to detect multi-line exceptions and reassemble them into a single log entry.

To enable logging to detect multi-line exceptions and reassemble them into a single log entry, ensure that the **ClusterLogForwarder** Custom Resource (CR) contains a **detectMultilineErrors** field, with a value of **true**.

1.2.13.2. Known Issues

None.

1.2.13.3. Bug fixes

• Before this update, the **nodeSelector** attribute for the Gateway component of the LokiStack did not impact node scheduling. With this update, the **nodeSelector** attribute works as expected. (LOG-3713)

1.2.13.4. CVEs

- CVE-2023-1999
- CVE-2023-28617

1.3. LOGGING 5.6

NOTE

Logging is provided as an installable component, with a distinct release cycle from the core OpenShift Container Platform. The Red Hat OpenShift Container Platform Life Cycle Policy outlines release compatibility.

NOTE

The **stable** channel only provides updates to the most recent release of logging. To continue receiving updates for prior releases, you must change your subscription channel to **stable-x.y**, where **x.y** represents the major and minor version of logging you have installed. For example, **stable-5.7**.

1.3.1. Logging 5.6.18

This release includes OpenShift Logging Bug Fix 5.6.18

1.3.1.1. Enhancements

- Before this update, Loki Operator set up Loki to use path-based style access for the Amazon Simple Storage Service (S3), which has been deprecated. With this update, the Loki Operator defaults to virtual-host style without users needing to change their configuration. (LOG-5404)
- Before this update, the Loki Operator did not validate the Amazon Simple Storage Service (S3) endpoint used in the storage secret. With this update, the validation process ensures the S3 endpoint is a valid S3 URL, and the LokiStack status updates to indicate any invalid URLs. (LOG-5396)

1.3.1.2. Bug fixes

- Before this update, the Elastisearch Operator ServiceMonitor in the openshift-operatorsredhat namespace used static token and certificate authority (CA) files for authentication, causing errors in the Prometheus Operator in the User Workload Monitoring specification on the ServiceMonitor configuration. With this update, the Elastisearch Operator ServiceMonitor in the openshift-operators-redhat namespace now references a service account token secret by a LocalReference object. This approach allows the User Workload Monitoring specifications in the Prometheus Operator to handle the Elastisearch Operator ServiceMonitor successfully. This enables Prometheus to scrape the Elastisearch Operator metrics. (LOG-5244)
- Before this update, the Loki Operator did not validate the Amazon Simple Storage Service (S3) endpoint URL format used in the storage secret. With this update, the S3 endpoint URL goes through a validation step that reflects on the status of the **LokiStack**. (LOG-5400)

1.3.1.3. CVEs

- CVE-2021-33631
- CVE-2021-43618
- CVE-2022-38096
- CVE-2022-48624

- CVE-2023-6546
- CVE-2023-6931
- CVE-2023-28322
- CVE-2023-38546
- CVE-2023-46218
- CVE-2023-51042
- CVE-2024-0565
- CVE-2024-1086

1.3.2. Logging 5.6.17

This release includes OpenShift Logging Bug Fix 5.6.17

1.3.2.1. Bug fixes

- Before this update, the Red Hat build pipeline did not use the existing build details in Loki builds and omitted information such as revision, branch, and version. With this update, the Red Hat build pipeline now adds these details to the Loki builds, fixing the issue. (LOG-5203)
- Before this update, the configuration of the **ServiceMonitor** by Loki Operator could match many Kubernetes services, which led to Loki Operator's metrics being collected multiple times. With this update, the **ServiceMonitor** setup now only matches the dedicated metrics service. (LOG-5252)
- Before this update, the build pipeline did not include linker flags for the build date, causing Loki builds to show empty strings for **buildDate** and **goVersion**. With this update, adding the missing linker flags in the build pipeline fixes the issue. (LOG-5276)
- Before this update, the Loki Operator ServiceMonitor in the openshift-operators-redhat namespace used static token and CA files for authentication, causing errors in the Prometheus Operator in the User Workload Monitoring spec on the ServiceMonitor configuration. With this update, the Loki Operator ServiceMonitor in openshift-operators-redhat namespace now references a service account token secret by a LocalReference object. This approach allows the User Workload Monitoring spec in the Prometheus Operator to handle the Loki Operator ServiceMonitor successfully, enabling Prometheus to scrape the Loki Operator metrics. (LOG-5242)

1.3.2.2. CVEs

- CVE-2021-35937
- CVE-2021-35938
- CVE-2021-35939
- CVE-2024-24786

1.3.3. Logging 5.6.16

This release includes Logging Bug Fix 5.6.16

1.3.3.1. Bug fixes

• Before this update, when configured to read a custom S3 Certificate Authority the Loki Operator would not automatically update the configuration when the name of the ConfigMap or the contents changed. With this update, the Loki Operator is watching for changes to the ConfigMap and automatically updates the generated configuration. (LOG-4967)

1.3.3.2. CVEs

1.3.4. Logging 5.6.15

This release includes OpenShift Logging Bug Fix Release 5.6.15.

1.3.4.1. Bug fixes

Before this update, the LokiStack ruler pods would not format the IPv6 pod IP in HTTP URLs used for cross pod communication, causing querying rules and alerts through the Prometheus-compatible API to fail. With this update, the LokiStack ruler pods encapsulate the IPv6 pod IP in square brackets, resolving the issue. (LOG-4892)

1.3.4.2. CVEs

- CVE-2021-3468
- CVE-2023-3446
- CVE-2023-3817
- CVE-2023-5678
- CVE-2023-38469
- CVE-2023-38470
- CVE-2023-38471
- CVE-2023-38472
- CVE-2023-38473

1.3.5. Logging 5.6.14

This release includes OpenShift Logging Bug Fix Release 5.6.14.

1.3.5.1. Bug fixes

• Before this update, during the process of creating index patterns, the default alias was missing from the initial index in each log output. As a result, Kibana users were unable to create index patterns by using OpenShift Elasticsearch Operator. This update adds the missing aliases to OpenShift Elasticsearch Operator, resolving the issue. Kibana users can now create index patterns that include the **{app,infra,audit}-000001** indexes. (LOG-4807)

Before this update, the Loki Operator did not mount a custom CA bundle to the ruler pods. As a result, during the process to evaluate alerting or recording rules, object storage access failed. With this update, the Loki Operator mounts the custom CA bundle to all ruler pods. The ruler pods can download logs from object storage to evaluate alerting or recording rules. (LOG-4838)

1.3.5.2. CVEs

- CVE-2007-4559
- CVE-2021-43975
- CVE-2022-3594
- CVE-2022-3640
- CVE-2022-4744
- CVE-2022-28388
- CVE-2022-38457
- CVE-2022-40133
- CVE-2022-40982
- CVE-2022-41862
- CVE-2022-42895
- CVE-2022-45869
- CVE-2022-45887
- CVE-2022-48337
- CVE-2022-48339
- CVE-2023-0458
- CVE-2023-0590
- CVE-2023-0597
- CVE-2023-1073
- CVE-2023-1074
- CVE-2023-1075
- CVE-2023-1079
- CVE-2023-1118
- CVE-2023-1206
- CVE-2023-1252

- CVE-2023-1382
- CVE-2023-1855
- CVE-2023-1981
- CVE-2023-1989
- CVE-2023-1998
- CVE-2023-2513
- CVE-2023-3138
- CVE-2023-3141
- CVE-2023-3161
- CVE-2023-3212
- CVE-2023-3268
- CVE-2023-3609
- CVE-2023-3611
- CVE-2023-3772
- CVE-2023-4016
- CVE-2023-4128
- CVE-2023-4132
- CVE-2023-4155
- CVE-2023-4206
- CVE-2023-4207
- CVE-2023-4208
- CVE-2023-4641
- CVE-2023-4732
- CVE-2023-22745
- CVE-2023-23455
- CVE-2023-26545
- CVE-2023-28328
- CVE-2023-28772
- CVE-2023-30456

- CVE-2023-31084
- CVE-2023-31436
- CVE-2023-31486
- CVE-2023-32324
- CVE-2023-33203
- CVE-2023-33951
- CVE-2023-33952
- CVE-2023-34241
- CVE-2023-35823
- CVE-2023-35824
- CVE-2023-35825

1.3.6. Logging 5.6.13

This release includes OpenShift Logging Bug Fix Release 5.6.13.

1.3.6.1. Bug fixes

None.

1.3.6.2. CVEs

- CVE-2023-40217
- CVE-2023-44487

1.3.7. Logging 5.6.12

This release includes OpenShift Logging Bug Fix Release 5.6.12.

1.3.7.1. Bug fixes

- Before this update, deploying a LokiStack on IPv6-only or dual-stack OpenShift Container Platform clusters caused the LokiStack memberlist registration to fail. As a result, the distributor pods went into a crash loop. With this update, an administrator can enable IPv6 by setting the **lokistack.spec.hashRing.memberlist.enableIPv6:** value to **true**, which resolves the issue. Currently, the log alert is not available on an IPv6-enabled cluster. (LOG-4570)
- Before this update, there was an error in the query used for the **FluentD Buffer Availability** graph in the metrics dashboard created by the Cluster Logging Operator as it showed the minimum buffer usage. With this update, the graph shows the maximum buffer usage and is now renamed to **FluentD Buffer Usage**. (LOG-4579)

• Before this update, the unused metrics in the Event Router caused the container to fail due to excessive memory usage. With this update, there is reduction in the memory usage of the Event Router by removing the unused metrics. (LOG-4687)

1.3.7.2. CVEs

- CVE-2023-0800
- CVE-2023-0801
- CVE-2023-0802
- CVE-2023-0803
- CVE-2023-0804
- CVE-2023-2002
- CVE-2023-3090
- CVE-2023-3390
- CVE-2023-3776
- CVE-2023-4004
- CVE-2023-4527
- CVE-2023-4806
- CVE-2023-4813
- CVE-2023-4863
- CVE-2023-4911
- CVE-2023-5129
- CVE-2023-20593
- CVE-2023-29491
- CVE-2023-30630
- CVE-2023-35001
- CVE-2023-35788

1.3.8. Logging 5.6.11

This release includes OpenShift Logging Bug Fix Release 5.6.11.

1.3.8.1. Bug fixes

• Before this update, the LokiStack gateway cached authorized requests very broadly. As a result, this caused wrong authorization results. With this update, LokiStack gateway caches on a more fine-grained basis which resolves this issue. (LOG-4435)

1.3.8.2. CVEs

- CVE-2023-3899
- CVE-2023-32360
- CVE-2023-34969

1.3.9. Logging 5.6.9

This release includes OpenShift Logging Bug Fix Release 5.6.9.

1.3.9.1. Bug fixes

- Before this update, when multiple roles were used to authenticate using STS with AWS Cloudwatch forwarding, a recent update caused the credentials to be non-unique. With this update, multiple combinations of STS roles and static credentials can once again be used to authenticate with AWS Cloudwatch. (LOG-4084)
- Before this update, the Vector collector occasionally panicked with the following error message in its log: **thread 'vector-worker' panicked at 'all branches are disabled and there is no else branch', src/kubernetes/reflector.rs:26:9**. With this update, the error has been resolved. (LOG-4276)
- Before this update, Loki filtered label values for active streams but did not remove duplicates, making Grafana's Label Browser unusable. With this update, Loki filters out duplicate label values for active streams, resolving the issue. (LOG-4390)

1.3.9.2. CVEs

- CVE-2020-24736
- CVE-2022-48281
- CVE-2023-1667
- CVE-2023-2283
- CVE-2023-24329
- CVE-2023-26604
- CVE-2023-28466
- CVE-2023-32233

1.3.10. Logging 5.6.8

This release includes OpenShift Logging Bug Fix Release 5.6.8 .

1.3.10.1. Bug fixes

• Before this update, the vector collector terminated unexpectedly when input match label values contained a / character within the **ClusterLogForwarder**. This update resolves the issue by quoting the match label, enabling the collector to start and collect logs. (LOG-4091)

- Before this update, when viewing logs within the OpenShift Container Platform web console, clicking the **more data available** option loaded more log entries only the first time it was clicked. With this update, more entries are loaded with each click. (OU-187)
- Before this update, when viewing logs within the OpenShift Container Platform web console, clicking the **streaming** option would only display the **streaming logs** message without showing the actual logs. With this update, both the message and the log stream are displayed correctly. (OU-189)
- Before this update, the Loki Operator reset errors in a way that made identifying configuration problems difficult to troubleshoot. With this update, errors persist until the configuration error is resolved. (LOG-4158)
- Before this update, clusters with more than 8,000 namespaces caused Elasticsearch to reject queries because the list of namespaces was larger than the **http.max_header_size** setting. With this update, the default value for header size has been increased, resolving the issue. (LOG-4278)

1.3.10.2. CVEs

- CVE-2020-24736
- CVE-2022-48281
- CVE-2023-1667
- CVE-2023-2283
- CVE-2023-24329
- CVE-2023-26604
- CVE-2023-28466

1.3.11. Logging 5.6.5

This release includes OpenShift Logging Bug Fix Release 5.6.5.

1.3.11.1. Bug fixes

- Before this update, the template definitions prevented Elasticsearch from indexing some labels and namespace_labels, causing issues with data ingestion. With this update, the fix replaces dots and slashes in labels to ensure proper ingestion, effectively resolving the issue. (LOG-3419)
- Before this update, if the Logs page of the OpenShift Web Console failed to connect to the LokiStack, a generic error message was displayed, providing no additional context or troubleshooting suggestions. With this update, the error message has been enhanced to include more specific details and recommendations for troubleshooting. (LOG-3750)
- Before this update, time range formats were not validated, leading to errors selecting a custom date range. With this update, time formats are now validated, enabling users to select a valid range. If an invalid time range format is selected, an error message is displayed to the user. (LOG-3583)

- Before this update, when searching logs in Loki, even if the length of an expression did not exceed 5120 characters, the query would fail in many cases. With this update, query authorization label matchers have been optimized, resolving the issue. (LOG-3480)
- Before this update, the Loki Operator failed to produce a memberlist configuration that was sufficient for locating all the components when using a memberlist for private IPs. With this update, the fix ensures that the generated configuration includes the advertised port, allowing for successful lookup of all components. (LOG-4008)

1.3.11.2. CVEs

- CVE-2022-4269
- CVE-2022-4378
- CVE-2023-0266
- CVE-2023-0361
- CVE-2023-0386
- CVE-2023-27539
- CVE-2023-28120

1.3.12. Logging 5.6.4

This release includes OpenShift Logging Bug Fix Release 5.6.4.

1.3.12.1. Bug fixes

- Before this update, when LokiStack was deployed as the log store, the logs generated by Loki pods were collected and sent to LokiStack. With this update, the logs generated by Loki are excluded from collection and will not be stored. (LOG-3280)
- Before this update, when the query editor on the Logs page of the OpenShift Web Console was empty, the drop-down menus did not populate. With this update, if an empty query is attempted, an error message is displayed and the drop-down menus now populate as expected. (LOG-3454)
- Before this update, when the tls.insecureSkipVerify option was set to true, the Cluster Logging Operator would generate incorrect configuration. As a result, the operator would fail to send data to Elasticsearch when attempting to skip certificate validation. With this update, the Cluster Logging Operator generates the correct TLS configuration even when tls.insecureSkipVerify is enabled. As a result, data can be sent successfully to Elasticsearch even when attempting to skip certificate validation. (LOG-3475)
- Before this update, when structured parsing was enabled and messages were forwarded to multiple destinations, they were not deep copied. This resulted in some of the received logs including the structured message, while others did not. With this update, the configuration generation has been modified to deep copy messages before JSON parsing. As a result, all received messages now have structured messages included, even when they are forwarded to multiple destinations. (LOG-3640)

- Before this update, if the **collection** field contained **{}** it could result in the Operator crashing. With this update, the Operator will ignore this value, allowing the operator to continue running smoothly without interruption. (LOG-3733)
- Before this update, the **nodeSelector** attribute for the Gateway component of LokiStack did not have any effect. With this update, the **nodeSelector** attribute functions as expected. (LOG-3783)
- Before this update, the static LokiStack memberlist configuration relied solely on private IP networks. As a result, when the OpenShift Container Platform cluster pod network was configured with a public IP range, the LokiStack pods would crashloop. With this update, the LokiStack administrator now has the option to use the pod network for the memberlist configuration. This resolves the issue and prevents the LokiStack pods from entering a crashloop state when the OpenShift Container Platform cluster pod network is configured with a public IP range. (LOG-3814)
- Before this update, if the **tls.insecureSkipVerify** field was set to **true**, the Cluster Logging Operator would generate an incorrect configuration. As a result, the Operator would fail to send data to Elasticsearch when attempting to skip certificate validation. With this update, the Operator generates the correct TLS configuration even when **tls.insecureSkipVerify** is enabled. As a result, data can be sent successfully to Elasticsearch even when attempting to skip certificate validation. (LOG-3838)
- Before this update, if the Cluster Logging Operator (CLO) was installed without the Elasticsearch Operator, the CLO pod would continuously display an error message related to the deletion of Elasticsearch. With this update, the CLO now performs additional checks before displaying any error messages. As a result, error messages related to Elasticsearch deletion are no longer displayed in the absence of the Elasticsearch Operator.(LOG-3763)

1.3.12.2. CVEs

- CVE-2022-4304
- CVE-2022-4450
- CVE-2023-0215
- CVE-2023-0286
- CVE-2023-0767
- CVE-2023-23916

1.3.13. Logging 5.6.3

This release includes OpenShift Logging Bug Fix Release 5.6.3.

1.3.13.1. Bug fixes

- Before this update, the operator stored gateway tenant secret information in a config map. With this update, the operator stores this information in a secret. (LOG-3717)
- Before this update, the Fluentd collector did not capture OAuth login events stored in /var/log/auth-server/audit.log. With this update, Fluentd captures these OAuth login events, resolving the issue. (LOG-3729)

1.3.13.2. CVEs

- CVE-2020-10735
- CVE-2021-28861
- CVE-2022-2873
- CVE-2022-4415
- CVE-2022-40897
- CVE-2022-41222
- CVE-2022-43945
- CVE-2022-45061
- CVE-2022-48303

1.3.14. Logging 5.6.2

This release includes OpenShift Logging Bug Fix Release 5.6.2.

1.3.14.1. Bug fixes

- Before this update, the collector did not set **level** fields correctly based on priority for systemd logs. With this update, **level** fields are set correctly. (LOG-3429)
- Before this update, the Operator incorrectly generated incompatibility warnings on OpenShift Container Platform 4.12 or later. With this update, the Operator max OpenShift Container Platform version value has been corrected, resolving the issue. (LOG-3584)
- Before this update, creating a **ClusterLogForwarder** custom resource (CR) with an output value of **default** did not generate any errors. With this update, an error warning that this value is invalid generates appropriately. (LOG-3437)
- Before this update, when the **ClusterLogForwarder** custom resource (CR) had multiple pipelines configured with one output set as **default**, the collector pods restarted. With this update, the logic for output validation has been corrected, resolving the issue. (LOG-3559)
- Before this update, collector pods restarted after being created. With this update, the deployed collector does not restart on its own. (LOG-3608)
- Before this update, patch releases removed previous versions of the Operators from the catalog. This made installing the old versions impossible. This update changes bundle configurations so that previous releases of the same minor version stay in the catalog. (LOG-3635)

1.3.14.2. CVEs

- CVE-2022-23521
- CVE-2022-40303
- CVE-2022-40304

- CVE-2022-41903
- CVE-2022-47629
- CVE-2023-21835
- CVE-2023-21843

1.3.15. Logging 5.6.1

This release includes OpenShift Logging Bug Fix Release 5.6.1.

1.3.15.1. Bug fixes

- Before this update, the compactor would report TLS certificate errors from communications with the querier when retention was active. With this update, the compactor and querier no longer communicate erroneously over HTTP. (LOG-3494)
- Before this update, the Loki Operator would not retry setting the status of the **LokiStack** CR, which caused stale status information. With this update, the Operator retries status information updates on conflict. (LOG-3496)
- Before this update, the Loki Operator Webhook server caused TLS errors when the kubeapiserver-operator Operator checked the webhook validity. With this update, the Loki Operator Webhook PKI is managed by the Operator Lifecycle Manager (OLM), resolving the issue. (LOG-3510)
- Before this update, the LokiStack Gateway Labels Enforcer generated parsing errors for valid LogQL queries when using combined label filters with boolean expressions. With this update, the LokiStack LogQL implementation supports label filters with boolean expression and resolves the issue. (LOG-3441), (LOG-3397)
- Before this update, records written to Elasticsearch would fail if multiple label keys had the same prefix and some keys included dots. With this update, underscores replace dots in label keys, resolving the issue. (LOG-3463)
- Before this update, the **Red Hat OpenShift Logging** Operator was not available for OpenShift Container Platform 4.10 clusters because of an incompatibility between OpenShift Container Platform console and the logging-view-plugin. With this update, the plugin is properly integrated with the OpenShift Container Platform 4.10 admin console. (LOG-3447)
- Before this update the reconciliation of the **ClusterLogForwarder** custom resource would incorrectly report a degraded status of pipelines that reference the default logstore. With this update, the pipeline validates properly.(LOG-3477)

1.3.15.2. CVEs

- CVE-2021-46848
- CVE-2022-3821
- CVE-2022-35737
- CVE-2022-42010
- CVE-2022-42011

- CVE-2022-42012
- CVE-2022-42898
- CVE-2022-43680
- CVE-2021-35065
- CVE-2022-46175

1.3.16. Logging 5.6.0

This release includes OpenShift Logging Release 5.6.

1.3.16.1. Deprecation notice

In logging version 5.6, Fluentd is deprecated and is planned to be removed in a future release. Red Hat will provide bug fixes and support for this feature during the current release lifecycle, but this feature will no longer receive enhancements and will be removed. As an alternative to Fluentd, you can use Vector instead.

1.3.16.2. Enhancements

- With this update, Logging is compliant with OpenShift Container Platform cluster-wide cryptographic policies. (LOG-895)
- With this update, you can declare per-tenant, per-stream, and global policies retention policies through the LokiStack custom resource, ordered by priority. (LOG-2695)
- With this update, Splunk is an available output option for log forwarding. (LOG-2913)
- With this update, Vector replaces Fluentd as the default Collector. (LOG-2222)
- With this update, the **Developer** role can access the per-project workload logs they are assigned to within the Log Console Plugin on clusters running OpenShift Container Platform 4.11 and higher. (LOG-3388)
- With this update, logs from any source contain a field **openshift.cluster_id**, the unique identifier of the cluster in which the Operator is deployed. You can view the **clusterID** value by using the following command:

\$ oc get clusterversion/version -o jsonpath='{.spec.clusterID}{"\n"}'

(LOG-2715)

1.3.16.3. Known Issues

• Before this update, Elasticsearch would reject logs if multiple label keys had the same prefix and some keys included the . character. This fixes the limitation of Elasticsearch by replacing . in the label keys with _. As a workaround for this issue, remove the labels that cause errors, or add a namespace to the label. (LOG-3463)

1.3.16.4. Bug fixes

- -

- Before this update, if you deleted the Kibana Custom Resource, the OpenShift Container Platform web console continued displaying a link to Kibana. With this update, removing the Kibana Custom Resource also removes that link. (LOG-2993)
- Before this update, a user was not able to view the application logs of namespaces they have access to. With this update, the Loki Operator automatically creates a cluster role and cluster role binding allowing users to read application logs. (LOG-3072)
- Before this update, the Operator removed any custom outputs defined in the **ClusterLogForwarder** custom resource when using LokiStack as the default log storage. With this update, the Operator merges custom outputs with the default outputs when processing the **ClusterLogForwarder** custom resource. (LOG-3090)
- Before this update, the CA key was used as the volume name for mounting the CA into Loki, causing error states when the CA Key included non-conforming characters, such as dots. With this update, the volume name is standardized to an internal string which resolves the issue. (LOG-3331)
- Before this update, a default value set within the LokiStack Custom Resource Definition, caused an inability to create a LokiStack instance without a **ReplicationFactor** of **1**. With this update, the operator sets the actual value for the size used. (LOG-3296)
- Before this update, Vector parsed the message field when JSON parsing was enabled without also defining structuredTypeKey or structuredTypeName values. With this update, a value is required for either structuredTypeKey or structuredTypeName when writing structured logs to Elasticsearch. (LOG-3195)
- Before this update, the secret creation component of the Elasticsearch Operator modified internal secrets constantly. With this update, the existing secret is properly handled. (LOG-3161)
- Before this update, the Operator could enter a loop of removing and recreating the collector daemonset while the Elasticsearch or Kibana deployments changed their status. With this update, a fix in the status handling of the Operator resolves the issue. (LOG-3157)
- Before this update, Kibana had a fixed **24h** OAuth cookie expiration time, which resulted in 401 errors in Kibana whenever the **accessTokenInactivityTimeout** field was set to a value lower than **24h**. With this update, Kibana's OAuth cookie expiration time synchronizes to the **accessTokenInactivityTimeout**, with a default value of **24h**. (LOG-3129)
- Before this update, the Operators general pattern for reconciling resources was to try and create before attempting to get or update which would lead to constant HTTP 409 responses after creation. With this update, Operators first attempt to retrieve an object and only create or update it if it is either missing or not as specified. (LOG-2919)
- Before this update, the **.level** and `.structure.level ` fields in Fluentd could contain different values. With this update, the values are the same for each field. (LOG-2819)
- Before this update, the Operator did not wait for the population of the trusted CA bundle and deployed the collector a second time once the bundle updated. With this update, the Operator waits briefly to see if the bundle has been populated before it continues the collector deployment. (LOG-2789)
- Before this update, logging telemetry info appeared twice when reviewing metrics. With this update, logging telemetry info displays as expected. (LOG-2315)
- Before this update, Fluentd pod logs contained a warning message after enabling the JSON parsing addition. With this update, that warning message does not appear. (LOG-1806)

- Before this update, the **must-gather** script did not complete because **oc** needs a folder with write permission to build its cache. With this update, **oc** has write permissions to a folder, and the **must-gather** script completes successfully. (LOG-3446)
- Before this update the log collector SCC could be superseded by other SCCs on the cluster, rendering the collector unusable. This update sets the priority of the log collector SCC so that it takes precedence over the others. (LOG-3235)
- Before this update, Vector was missing the field **sequence**, which was added to fluentd as a way to deal with a lack of actual nanoseconds precision. With this update, the field **openshift.sequence** has been added to the event logs. (LOG-3106)

1.3.16.5. CVEs

- CVE-2020-36518
- CVE-2021-46848
- CVE-2022-2879
- CVE-2022-2880
- CVE-2022-27664
- CVE-2022-32190
- CVE-2022-35737
- CVE-2022-37601
- CVE-2022-41715
- CVE-2022-42003
- CVE-2022-42004
- CVE-2022-42010
- CVE-2022-42011
- CVE-2022-42012
- CVE-2022-42898
- CVE-2022-43680

1.4. LOGGING 5.5

NOTE

Logging is provided as an installable component, with a distinct release cycle from the core OpenShift Container Platform. The Red Hat OpenShift Container Platform Life Cycle Policy outlines release compatibility.

1.4.1. Logging 5.5.18

This release includes OpenShift Logging Bug Fix Release 5.5.18.

1.4.1.1. Bug fixes

None.

1.4.1.2. CVEs

- CVE-2023-40217
- CVE-2023-44487

1.4.2. Logging 5.5.17

This release includes OpenShift Logging Bug Fix Release 5.5.17.

1.4.2.1. Bug fixes

• Before this update, the unused metrics in the Event Router caused the container to fail due to excessive memory usage. With this update, there is reduction in the memory usage of the Event Router by removing the unused metrics. (LOG-4688)

1.4.2.2. CVEs

- CVE-2023-0800
- CVE-2023-0801
- CVE-2023-0802
- CVE-2023-0803
- CVE-2023-0804
- CVE-2023-2002
- CVE-2023-3090
- CVE-2023-3341
- CVE-2023-3390
- CVE-2023-3776
- CVE-2023-4004
- CVE-2023-4527
- CVE-2023-4806
- CVE-2023-4813
- CVE-2023-4863
- CVE-2023-4911

- CVE-2023-5129
- CVE-2023-20593
- CVE-2023-29491
- CVE-2023-30630
- CVE-2023-35001
- CVE-2023-35788

1.4.3. Logging 5.5.16

This release includes OpenShift Logging Bug Fix Release 5.5.16.

1.4.3.1. Bug fixes

• Before this update, the LokiStack gateway cached authorized requests very broadly. As a result, this caused wrong authorization results. With this update, LokiStack gateway caches on a more fine-grained basis which resolves this issue. (LOG-4434)

1.4.3.2. CVEs

- CVE-2023-3899
- CVE-2023-32360
- CVE-2023-34969

1.4.4. Logging 5.5.14

This release includes OpenShift Logging Bug Fix Release 5.5.14 .

1.4.4.1. Bug fixes

• Before this update, the Vector collector occasionally panicked with the following error message in its log: **thread 'vector-worker' panicked at 'all branches are disabled and there is no else branch', src/kubernetes/reflector.rs:26:9**. With this update, the error does not show in the Vector collector. (LOG-4279)

1.4.4.2. CVEs

• CVE-2023-2828

1.4.5. Logging 5.5.13

This release includes OpenShift Logging Bug Fix Release 5.5.13.

1.4.5.1. Bug fixes

None.

1.4.5.2. CVEs

- CVE-2023-1999
- CVE-2020-24736
- CVE-2022-48281
- CVE-2023-1667
- CVE-2023-2283
- CVE-2023-24329
- CVE-2023-26604
- CVE-2023-28466

1.4.6. Logging 5.5.12

This release includes OpenShift Logging Bug Fix Release 5.5.12.

1.4.6.1. Bug fixes

None.

1.4.6.2. CVEs

- CVE-2021-26341
- CVE-2021-33655
- CVE-2021-33656
- CVE-2022-1462
- CVE-2022-1679
- CVE-2022-1789
- CVE-2022-2196
- CVE-2022-2663
- CVE-2022-3028
- CVE-2022-3239
- CVE-2022-3522
- CVE-2022-3524
- CVE-2022-3564
- CVE-2022-3566
- CVE-2022-3567
- CVE-2022-3619

- CVE-2022-3623
- CVE-2022-3625
- CVE-2022-3627
- CVE-2022-3628
- CVE-2022-3707
- CVE-2022-3970
- CVE-2022-4129
- CVE-2022-20141
- CVE-2022-25147
- CVE-2022-25265
- CVE-2022-30594
- CVE-2022-35252
- CVE-2022-36227
- CVE-2022-39188
- CVE-2022-39189
- CVE-2022-41218
- CVE-2022-41674
- CVE-2022-42703
- CVE-2022-42720
- CVE-2022-42721
- CVE-2022-42722
- CVE-2022-43552
- CVE-2022-43750
- CVE-2022-47929
- CVE-2023-0394
- CVE-2023-0461
- CVE-2023-1195
- CVE-2023-1582
- CVE-2023-2491

- CVE-2023-22490
- CVE-2023-23454
- CVE-2023-23946
- CVE-2023-25652
- CVE-2023-25815
- CVE-2023-27535
- CVE-2023-29007

1.4.7. Logging 5.5.11

This release includes OpenShift Logging Bug Fix Release 5.5.11.

1.4.7.1. Bug fixes

- Before this update, a time range could not be selected in the OpenShift Container Platform web console by clicking and dragging over the logs histogram. With this update, clicking and dragging can be used to successfully select a time range. (LOG-4102)
- Before this update, clicking on the **Show Resources** link in the OpenShift Container Platform web console did not produce any effect. With this update, the issue is resolved by fixing the functionality of the **Show Resources** link to toggle the display of resources for each log entry. (LOG-4117)

1.4.7.2. CVEs

- CVE-2021-26341
- CVE-2021-33655
- CVE-2021-33656
- CVE-2022-1462
- CVE-2022-1679
- CVE-2022-1789
- CVE-2022-2196
- CVE-2022-2663
- CVE-2022-2795
- CVE-2022-3028
- CVE-2022-3239
- CVE-2022-3522
- CVE-2022-3524

- CVE-2022-3564
- CVE-2022-3566
- CVE-2022-3567
- CVE-2022-3619
- CVE-2022-3623
- CVE-2022-3625
- CVE-2022-3627
- CVE-2022-3628
- CVE-2022-3707
- CVE-2022-3970
- CVE-2022-4129
- CVE-2022-20141
- CVE-2022-24765
- CVE-2022-25265
- CVE-2022-29187
- CVE-2022-30594
- CVE-2022-36227
- CVE-2022-39188
- CVE-2022-39189
- CVE-2022-39253
- CVE-2022-39260
- CVE-2022-41218
- CVE-2022-41674
- CVE-2022-42703
- CVE-2022-42720
- CVE-2022-42721
- CVE-2022-42722
- CVE-2022-43750
- CVE-2022-47929

- CVE-2023-0394
- CVE-2023-0461
- CVE-2023-1195
- CVE-2023-1582
- CVE-2023-2491
- CVE-2023-23454
- CVE-2023-27535

1.4.8. Logging 5.5.10

This release includes OpenShift Logging Bug Fix Release 5.5.10.

1.4.8.1. Bug fixes

• Before this update, the logging view plugin of the OpenShift Web Console showed only an error text when the LokiStack was not reachable. After this update the plugin shows a proper error message with details on how to fix the unreachable LokiStack. (LOG-2874)

1.4.8.2. CVEs

- CVE-2022-4304
- CVE-2022-4450
- CVE-2023-0215
- CVE-2023-0286
- CVE-2023-0361
- CVE-2023-23916

1.4.9. Logging 5.5.9

This release includes OpenShift Logging Bug Fix Release 5.5.9.

1.4.9.1. Bug fixes

- Before this update, a problem with the Fluentd collector caused it to not capture OAuth login events stored in /var/log/auth-server/audit.log. This led to incomplete collection of login events from the OAuth service. With this update, the Fluentd collector now resolves this issue by capturing all login events from the OAuth service, including those stored in /var/log/auth-server/audit.log, as expected.(LOG-3730)
- Before this update, when structured parsing was enabled and messages were forwarded to multiple destinations, they were not deep copied. This resulted in some of the received logs including the structured message, while others did not. With this update, the configuration

generation has been modified to deep copy messages before JSON parsing. As a result, all received logs now have structured messages included, even when they are forwarded to multiple destinations.(LOG-3767)

1.4.9.2. CVEs

- CVE-2022-4304
- CVE-2022-4450
- CVE-2022-41717
- CVE-2023-0215
- CVE-2023-0286
- CVE-2023-0767
- CVE-2023-23916

1.4.10. Logging 5.5.8

This release includes OpenShift Logging Bug Fix Release 5.5.8.

1.4.10.1. Bug fixes

 Before this update, the **priority** field was missing from **systemd** logs due to an error in how the collector set **level** fields. With this update, these fields are set correctly, resolving the issue. (LOG-3630)

1.4.10.2. CVEs

- CVE-2020-10735
- CVE-2021-28861
- CVE-2022-2873
- CVE-2022-4415
- CVE-2022-24999
- CVE-2022-40897
- CVE-2022-41222
- CVE-2022-41717
- CVE-2022-43945
- CVE-2022-45061
- CVE-2022-48303

1.4.11. Logging 5.5.7

This release includes OpenShift Logging Bug Fix Release 5.5.7.

1.4.11.1. Bug fixes

- Before this update, the LokiStack Gateway Labels Enforcer generated parsing errors for valid LogQL queries when using combined label filters with boolean expressions. With this update, the LokiStack LogQL implementation supports label filters with boolean expression and resolves the issue. (LOG-3534)
- Before this update, the **ClusterLogForwarder** custom resource (CR) did not pass TLS credentials for syslog output to Fluentd, resulting in errors during forwarding. With this update, credentials pass correctly to Fluentd, resolving the issue. (LOG-3533)

1.4.11.2. CVEs

CVE-2021-46848CVE-2022-3821CVE-2022-35737CVE-2022-42010CVE-2022-42011CVE-2022-42012CVE-2022-42898CVE-2022-43680

1.4.12. Logging 5.5.6

This release includes OpenShift Logging Bug Fix Release 5.5.6.

1.4.12.1. Bug fixes

- Before this update, the Pod Security admission controller added the label podSecurityLabelSync = true to the openshift-logging namespace. This resulted in our specified security labels being overwritten, and as a result Collector pods would not start. With this update, the label podSecurityLabelSync = false preserves security labels. Collector pods deploy as expected. (LOG-3340)
- Before this update, the Operator installed the console view plugin, even when it was not enabled on the cluster. This caused the Operator to crash. With this update, if an account for a cluster does not have the console view enabled, the Operator functions normally and does not install the console view. (LOG-3407)
- Before this update, a prior fix to support a regression where the status of the Elasticsearch deployment was not being updated caused the Operator to crash unless the **Red Hat** Elasticsearch Operator was deployed. With this update, that fix has been reverted so the Operator is now stable but re-introduces the previous issue related to the reported status.
 (LOG-3428)
- Before this update, the Loki Operator only deployed one replica of the LokiStack gateway regardless of the chosen stack size. With this update, the number of replicas is correctly configured according to the selected size. (LOG-3478)
- Before this update, records written to Elasticsearch would fail if multiple label keys had the same prefix and some keys included dots. With this update, underscores replace dots in label keys, resolving the issue. (LOG-3341)
- Before this update, the logging view plugin contained an incompatible feature for certain versions of OpenShift Container Platform. With this update, the correct release stream of the plugin resolves the issue. (LOG-3467)
- Before this update, the reconciliation of the **ClusterLogForwarder** custom resource would incorrectly report a degraded status of one or more pipelines causing the collector pods to

restart every 8-10 seconds. With this update, reconciliation of the **ClusterLogForwarder** custom resource processes correctly, resolving the issue. (LOG-3469)

- Before this change the spec for the **outputDefaults** field of the ClusterLogForwarder custom resource would apply the settings to every declared Elasticsearch output type. This change corrects the behavior to match the enhancement specification where the setting specifically applies to the default managed Elasticsearch store. (LOG-3342)
- Before this update, the OpenShift CLI (oc) **must-gather** script did not complete because the OpenShift CLI (oc) needs a folder with write permission to build its cache. With this update, the OpenShift CLI (oc) has write permissions to a folder, and the **must-gather** script completes successfully. (LOG-3472)
- Before this update, the Loki Operator webhook server caused TLS errors. With this update, the Loki Operator webhook PKI is managed by the Operator Lifecycle Manager's dynamic webhook management resolving the issue. (LOG-3511)

1.4.12.2. CVEs

- CVE-2021-46848
- CVE-2022-2056
- CVE-2022-2057
- CVE-2022-2058
- CVE-2022-2519
- CVE-2022-2520
- CVE-2022-2521
- CVE-2022-2867
- CVE-2022-2868
- CVE-2022-2869
- CVE-2022-2953
- CVE-2022-2964
- CVE-2022-4139
- CVE-2022-35737
- CVE-2022-42010
- CVE-2022-42011
- CVE-2022-42012
- CVE-2022-42898
- CVE-2022-43680

1.4.13. Logging 5.5.5

This release includes OpenShift Logging Bug Fix Release 5.5.5 .

1.4.13.1. Bug fixes

- Before this update, Kibana had a fixed **24h** OAuth cookie expiration time, which resulted in 401 errors in Kibana whenever the **accessTokenInactivityTimeout** field was set to a value lower than **24h**. With this update, Kibana's OAuth cookie expiration time synchronizes to the **accessTokenInactivityTimeout**, with a default value of **24h**. (LOG-3305)
- Before this update, Vector parsed the message field when JSON parsing was enabled without also defining structuredTypeKey or structuredTypeName values. With this update, a value is required for either structuredTypeKey or structuredTypeName when writing structured logs to Elasticsearch. (LOG-3284)
- Before this update, the **FluentdQueueLengthIncreasing** alert could fail to fire when there was a cardinality issue with the set of labels returned from this alert expression. This update reduces labels to only include those required for the alert. (LOG-3226)
- Before this update, Loki did not have support to reach an external storage in a disconnected cluster. With this update, proxy environment variables and proxy trusted CA bundles are included in the container image to support these connections. (LOG-2860)
- Before this update, OpenShift Container Platform web console users could not choose the ConfigMap object that includes the CA certificate for Loki, causing pods to operate without the CA. With this update, web console users can select the config map, resolving the issue. (LOG-3310)
- Before this update, the CA key was used as volume name for mounting the CA into Loki, causing error states when the CA Key included non-conforming characters (such as dots). With this update, the volume name is standardized to an internal string which resolves the issue. (LOG-3332)

1.4.13.2. CVEs

- CVE-2016-3709
- CVE-2020-35525
- CVE-2020-35527
- CVE-2020-36516
- CVE-2020-36558
- CVE-2021-3640
- CVE-2021-30002
- CVE-2022-0168
- CVE-2022-0561
- CVE-2022-0562
- CVE-2022-0617

- CVE-2022-0854
- CVE-2022-0865
- CVE-2022-0891
- CVE-2022-0908
- CVE-2022-0909
- CVE-2022-0924
- CVE-2022-1016
- CVE-2022-1048
- CVE-2022-1055
- CVE-2022-1184
- CVE-2022-1292
- CVE-2022-1304
- CVE-2022-1355
- CVE-2022-1586
- CVE-2022-1785
- CVE-2022-1852
- CVE-2022-1897
- CVE-2022-1927
- CVE-2022-2068
- CVE-2022-2078
- CVE-2022-2097
- CVE-2022-2509
- CVE-2022-2586
- CVE-2022-2639
- CVE-2022-2938
- CVE-2022-3515
- CVE-2022-20368
- CVE-2022-21499
- CVE-2022-21618

- CVE-2022-21619
- CVE-2022-21624
- CVE-2022-21626
- CVE-2022-21628
- CVE-2022-22624
- CVE-2022-22628
- CVE-2022-22629
- CVE-2022-22662
- CVE-2022-22844
- CVE-2022-23960
- CVE-2022-24448
- CVE-2022-25255
- CVE-2022-26373
- CVE-2022-26700
- CVE-2022-26709
- CVE-2022-26710
- CVE-2022-26716
- CVE-2022-26717
- CVE-2022-26719
- CVE-2022-27404
- CVE-2022-27405
- CVE-2022-27406
- CVE-2022-27950
- CVE-2022-28390
- CVE-2022-28893
- CVE-2022-29581
- CVE-2022-30293
- CVE-2022-34903
- CVE-2022-36946

- CVE-2022-37434
- CVE-2022-39399

1.4.14. Logging 5.5.4

This release includes OpenShift Logging Bug Fix Release 5.5.4.

1.4.14.1. Bug fixes

- Before this update, an error in the query parser of the logging view plugin caused parts of the logs query to disappear if the query contained curly brackets {}. This made the queries invalid, leading to errors being returned for valid queries. With this update, the parser correctly handles these queries. (LOG-3042)
- Before this update, the Operator could enter a loop of removing and recreating the collector daemonset while the Elasticsearch or Kibana deployments changed their status. With this update, a fix in the status handling of the Operator resolves the issue. (LOG-3049)
- Before this update, no alerts were implemented to support the collector implementation of Vector. This change adds Vector alerts and deploys separate alerts, depending upon the chosen collector implementation. (LOG-3127)
- Before this update, the secret creation component of the Elasticsearch Operator modified internal secrets constantly. With this update, the existing secret is properly handled. (LOG-3138)
- Before this update, a prior refactoring of the logging **must-gather** scripts removed the expected location for the artifacts. This update reverts that change to write artifacts to the /**must-gather** folder. (LOG-3213)
- Before this update, on certain clusters, the Prometheus exporter would bind on IPv4 instead of IPv6. After this update, Fluentd detects the IP version and binds to 0.0.0.0 for IPv4 or [::] for IPv6. (LOG-3162)

1.4.14.2. CVEs

- CVE-2020-35525
- CVE-2020-35527
- CVE-2022-0494
- CVE-2022-1353
- CVE-2022-2509
- CVE-2022-2588
- CVE-2022-3515
- CVE-2022-21618
- CVE-2022-21619
- CVE-2022-21624

- CVE-2022-21626
- CVE-2022-21628
- CVE-2022-23816
- CVE-2022-23825
- CVE-2022-29900
- CVE-2022-29901
- CVE-2022-32149
- CVE-2022-37434
- CVE-2022-40674

1.4.15. Logging 5.5.3

This release includes OpenShift Logging Bug Fix Release 5.5.3 .

1.4.15.1. Bug fixes

- Before this update, log entries that had structured messages included the original message field, which made the entry larger. This update removes the message field for structured logs to reduce the increased size. (LOG-2759)
- Before this update, the collector configuration excluded logs from **collector**, **default-log-store**, and **visualization** pods, but was unable to exclude logs archived in a **.gz** file. With this update, archived logs stored as **.gz** files of **collector**, **default-log-store**, and **visualization** pods are also excluded. (LOG-2844)
- Before this update, when requests to an unavailable pod were sent through the gateway, no alert would warn of the disruption. With this update, individual alerts will generate if the gateway has issues completing a write or read request. (LOG-2884)
- Before this update, pod metadata could be altered by fluent plugins because the values passed through the pipeline by reference. This update ensures each log message receives a copy of the pod metadata so each message processes independently. (LOG-3046)
- Before this update, selecting **unknown** severity in the OpenShift Console Logs view excluded logs with a **level=unknown** value. With this update, logs without level and with **level=unknown** values are visible when filtering by **unknown** severity. (LOG-3062)
- Before this update, log records sent to Elasticsearch had an extra field named **write-index** that contained the name of the index to which the logs needed to be sent. This field is not a part of the data model. After this update, this field is no longer sent. (LOG-3075)
- With the introduction of the new built-in Pod Security Admission Controller, Pods not configured in accordance with the enforced security standards defined globally or on the namespace level cannot run. With this update, the Operator and collectors allow privileged execution and run without security audit warnings or errors. (LOG-3077)
- Before this update, the Operator removed any custom outputs defined in the **ClusterLogForwarder** custom resource when using LokiStack as the default log storage. With this update, the Operator merges custom outputs with the default outputs when processing the

ClusterLogForwarder custom resource. (LOG-3095)

1.4.15.2. CVEs

- CVE-2015-20107
- CVE-2022-0391
- CVE-2022-2526
- CVE-2022-21123
- CVE-2022-21125
- CVE-2022-21166
- CVE-2022-29154
- CVE-2022-32206
- CVE-2022-32208
- CVE-2022-34903

1.4.16. Logging 5.5.2

This release includes OpenShift Logging Bug Fix Release 5.5.2.

1.4.16.1. Bug fixes

- Before this update, alerting rules for the Fluentd collector did not adhere to the OpenShift Container Platform monitoring style guidelines. This update modifies those alerts to include the namespace label, resolving the issue. (LOG-1823)
- Before this update, the index management rollover script failed to generate a new index name whenever there was more than one hyphen character in the name of the index. With this update, index names generate correctly. (LOG-2644)
- Before this update, the Kibana route was setting a **caCertificate** value without a certificate present. With this update, no **caCertificate** value is set. (LOG-2661)
- Before this update, a change in the collector dependencies caused it to issue a warning message for unused parameters. With this update, removing unused configuration parameters resolves the issue. (LOG-2859)
- Before this update, pods created for deployments that Loki Operator created were mistakenly scheduled on nodes with non-Linux operating systems, if such nodes were available in the cluster the Operator was running in. With this update, the Operator attaches an additional nodeselector to the pod definitions which only allows scheduling the pods on Linux-based nodes. (LOG-2895)
- Before this update, the OpenShift Console Logs view did not filter logs by severity due to a LogQL parser issue in the LokiStack gateway. With this update, a parser fix resolves the issue and the OpenShift Console Logs view can filter by severity. (LOG-2908)

1...

c. . .

- Before this update, a refactoring of the Fluentd collector plugins removed the timestamp field for events. This update restores the timestamp field, sourced from the event's received time. (LOG-2923)
- Before this update, absence of a **level** field in audit logs caused an error in vector logs. With this update, the addition of a **level** field in the audit log record resolves the issue. (LOG-2961)
- Before this update, if you deleted the Kibana Custom Resource, the OpenShift Container Platform web console continued displaying a link to Kibana. With this update, removing the Kibana Custom Resource also removes that link. (LOG-3053)
- Before this update, each rollover job created empty indices when the ClusterLogForwarder custom resource had JSON parsing defined. With this update, new indices are not empty. (LOG-3063)
- Before this update, when the user deleted the LokiStack after an update to Loki Operator 5.5 resources originally created by Loki Operator 5.4 remained. With this update, the resources' owner-references point to the 5.5 LokiStack. (LOG-2945)
- Before this update, a user was not able to view the application logs of namespaces they have access to. With this update, the Loki Operator automatically creates a cluster role and cluster role binding allowing users to read application logs. (LOG-2918)
- Before this update, users with cluster-admin privileges were not able to properly view infrastructure and audit logs using the logging console. With this update, the authorization check has been extended to also recognize users in cluster-admin and dedicated-admin groups as admins. (LOG-2970)

1.4.16.2. CVEs

- CVE-2015-20107
- CVE-2022-0391
- CVE-2022-21123
- CVE-2022-21125
- CVE-2022-21166
- CVE-2022-29154
- CVE-2022-32206
- CVE-2022-32208
- CVE-2022-34903

1.4.17. Logging 5.5.1

This release includes OpenShift Logging Bug Fix Release 5.5.1.

1.4.17.1. Enhancements

- This enhancement adds an **Aggregated Logs** tab to the **Pod Details** page of the OpenShift Container Platform web console when the Logging Console Plug-in is in use. This enhancement is only available on OpenShift Container Platform 4.10 and later. (LOG-2647)
- This enhancement adds Google Cloud Logging as an output option for log forwarding. (LOG-1482)

1.4.17.2. Bug fixes

- Before this update, the Operator did not ensure that the pod was ready, which caused the cluster to reach an inoperable state during a cluster restart. With this update, the Operator marks new pods as ready before continuing to a new pod during a restart, which resolves the issue. (LOG-2745)
- Before this update, Fluentd would sometimes not recognize that the Kubernetes platform rotated the log file and would no longer read log messages. This update corrects that by setting the configuration parameter suggested by the upstream development team. (LOG-2995)
- Before this update, the addition of multi-line error detection caused internal routing to change and forward records to the wrong destination. With this update, the internal routing is correct. (LOG-2801)
- Before this update, changing the OpenShift Container Platform web console's refresh interval created an error when the **Query** field was empty. With this update, changing the interval is not an available option when the **Query** field is empty. (LOG-2917)

1.4.17.3. CVEs

- CVE-2022-1705
- CVE-2022-2526
- CVE-2022-29154
- CVE-2022-30631
- CVE-2022-32148
- CVE-2022-32206
- CVE-2022-32208

1.4.18. Logging 5.5.0

This release includes: OpenShift Logging Bug Fix Release 5.5.0.

1.4.18.1. Enhancements

• With this update, you can forward structured logs from different containers within the same pod to different indices. To use this feature, you must configure the pipeline with multi-container support and annotate the pods. (LOG-1296)

IMPORTANT

JSON formatting of logs varies by application. Because creating too many indices impacts performance, limit your use of this feature to creating indices for logs that have incompatible JSON formats. Use queries to separate logs from different namespaces, or applications with compatible JSON formats.

- With this update, you can filter logs with Elasticsearch outputs by using the Kubernetes common labels, app.kubernetes.io/component, app.kubernetes.io/managed-by, app.kubernetes.io/part-of, and app.kubernetes.io/version. Non-Elasticsearch output types can use all labels included in kubernetes.labels. (LOG-2388)
- With this update, clusters with AWS Security Token Service (STS) enabled may use STS authentication to forward logs to Amazon CloudWatch. (LOG-1976)
- With this update, the Loki Operator and Vector collector move from Technical Preview to General Availability. Full feature parity with prior releases are pending, and some APIs remain Technical Previews. See the **Logging with the LokiStack** section for details.

1.4.18.2. Bug fixes

- Before this update, clusters configured to forward logs to Amazon CloudWatch wrote rejected log files to temporary storage, causing cluster instability over time. With this update, chunk backup for all storage options has been disabled, resolving the issue. (LOG-2746)
- Before this update, the Operator was using versions of some APIs that are deprecated and planned for removal in future versions of OpenShift Container Platform. This update moves dependencies to the supported API versions. (LOG-2656)
- Before this update, multiple **ClusterLogForwarder** pipelines configured for multiline error detection caused the collector to go into a **crashloopbackoff** error state. This update fixes the issue where multiple configuration sections had the same unique ID. (LOG-2241)
- Before this update, the collector could not save non UTF-8 symbols to the Elasticsearch storage logs. With this update the collector encodes non UTF-8 symbols, resolving the issue. (LOG-2203)
- Before this update, non-latin characters displayed incorrectly in Kibana. With this update, Kibana displays all valid UTF-8 symbols correctly. (LOG-2784)

1.4.18.3. CVEs

- CVE-2021-38561
- CVE-2022-1012
- CVE-2022-1292
- CVE-2022-1586
- CVE-2022-1785
- CVE-2022-1897
- CVE-2022-1927

- CVE-2022-2068
- CVE-2022-2097
- CVE-2022-21698
- CVE-2022-30631
- CVE-2022-32250

CHAPTER 2. SUPPORT

Only the configuration options described in this documentation are supported for logging.

Do not use any other configuration options, as they are unsupported. Configuration paradigms might change across OpenShift Container Platform releases, and such cases can only be handled gracefully if all configuration possibilities are controlled. If you use configurations other than those described in this documentation, your changes will be overwritten, because Operators are designed to reconcile any differences.

NOTE

If you must perform configurations not described in the OpenShift Container Platform documentation, you must set your Red Hat OpenShift Logging Operator to **Unmanaged**. An unmanaged logging instance is not supported and does not receive updates until you return its status to **Managed**.

NOTE

Logging is provided as an installable component, with a distinct release cycle from the core OpenShift Container Platform. The Red Hat OpenShift Container Platform Life Cycle Policy outlines release compatibility.

Logging for Red Hat OpenShift is an opinionated collector and normalizer of application, infrastructure, and audit logs. It is intended to be used for forwarding logs to various supported systems.

Logging is not:

- A high scale log collection system
- Security Information and Event Monitoring (SIEM) compliant
- Historical or long term log retention or storage
- A guaranteed log sink
- Secure storage audit logs are not stored by default

2.1. SUPPORTED API CUSTOM RESOURCE DEFINITIONS

LokiStack development is ongoing. Not all APIs are currently supported.

Table 2.1. Loki API support states

CustomResourceDefinition (CRD)	ApiVersion	Support state
LokiStack	lokistack.loki.grafana.com/v1	Supported in 5.5
RulerConfig	rulerconfig.loki.grafana/v1	Supported in 5.7
AlertingRule	alertingrule.loki.grafana/v1	Supported in 5.7

CustomResourceDefinition (CRD)	ApiVersion	Support state
RecordingRule	recordingrule.loki.grafana/v1	Supported in 5.7

2.2. UNSUPPORTED CONFIGURATIONS

You must set the Red Hat OpenShift Logging Operator to the **Unmanaged** state to modify the following components:

- The **Elasticsearch** custom resource (CR)
- The Kibana deployment
- The **fluent.conf** file
- The Fluentd daemon set

You must set the OpenShift Elasticsearch Operator to the **Unmanaged** state to modify the Elasticsearch deployment files.

Explicitly unsupported cases include:

- Configuring default log rotation You cannot modify the default log rotation configuration.
- **Configuring the collected log location** You cannot change the location of the log collector output file, which by default is /**var/log/fluentd/fluentd.log**.
- **Throttling log collection**. You cannot throttle down the rate at which the logs are read in by the log collector.
- **Configuring the logging collector using environment variables** You cannot use environment variables to modify the log collector.
- **Configuring how the log collector normalizes logs**You cannot modify default log normalization.

2.3. SUPPORT POLICY FOR UNMANAGED OPERATORS

The *management state* of an Operator determines whether an Operator is actively managing the resources for its related component in the cluster as designed. If an Operator is set to an *unmanaged* state, it does not respond to changes in configuration nor does it receive updates.

While this can be helpful in non-production clusters or during debugging, Operators in an unmanaged state are unsupported and the cluster administrator assumes full control of the individual component configurations and upgrades.

An Operator can be set to an unmanaged state using the following methods:

• Individual Operator configuration

Individual Operators have a **managementState** parameter in their configuration. This can be accessed in different ways, depending on the Operator. For example, the Red Hat OpenShift Logging Operator accomplishes this by modifying a custom resource (CR) that it manages, while the Cluster Samples Operator uses a cluster-wide configuration resource.

Changing the **managementState** parameter to **Unmanaged** means that the Operator is not actively managing its resources and will take no action related to the related component. Some Operators might not support this management state as it might damage the cluster and require manual recovery.

WARNING

Changing individual Operators to the **Unmanaged** state renders that particular component and functionality unsupported. Reported issues must be reproduced in **Managed** state for support to proceed.

• Cluster Version Operator (CVO) overrides

The **spec.overrides** parameter can be added to the CVO's configuration to allow administrators to provide a list of overrides to the CVO's behavior for a component. Setting the **spec.overrides[].unmanaged** parameter to **true** for a component blocks cluster upgrades and alerts the administrator after a CVO override has been set:

Disabling ownership via cluster version overrides prevents upgrades. Please remove overrides before continuing.

WARNING

Setting a CVO override puts the entire cluster in an unsupported state. Reported issues must be reproduced after removing any overrides for support to proceed.

2.4. COLLECTING LOGGING DATA FOR RED HAT SUPPORT

When opening a support case, it is helpful to provide debugging information about your cluster to Red Hat Support.

You can use the **must-gather** tool to collect diagnostic information for project-level resources, cluster-level resources, and each of the logging components.

For prompt support, supply diagnostic information for both OpenShift Container Platform and logging.

NOTE

Do not use the **hack/logging-dump.sh** script. The script is no longer supported and does not collect data.

2.4.1. About the must-gather tool

The **oc adm must-gather** CLI command collects the information from your cluster that is most likely needed for debugging issues.

For your logging, **must-gather** collects the following information:

- Project-level resources, including pods, configuration maps, service accounts, roles, role bindings, and events at the project level
- Cluster-level resources, including nodes, roles, and role bindings at the cluster level
- OpenShift Logging resources in the **openshift-logging** and **openshift-operators-redhat** namespaces, including health status for the log collector, the log store, and the log visualizer

When you run **oc adm must-gather**, a new pod is created on the cluster. The data is collected on that pod and saved in a new directory that starts with **must-gather.local**. This directory is created in the current working directory.

2.4.2. Collecting logging data

You can use the **oc adm must-gather** CLI command to collect information about logging.

Procedure

To collect logging information with **must-gather**:

- 1. Navigate to the directory where you want to store the **must-gather** information.
- 2. Run the **oc adm must-gather** command against the logging image:

\$ oc adm must-gather --image=\$(oc -n openshift-logging get deployment.apps/clusterlogging-operator -o jsonpath='{.spec.template.spec.containers[?(@.name == "cluster-loggingoperator")].image}')

The **must-gather** tool creates a new directory that starts with **must-gather.local** within the current directory. For example: **must-gather.local.4157245944708210408**.

3. Create a compressed file from the **must-gather** directory that was just created. For example, on a computer that uses a Linux operating system, run the following command:

\$ tar -cvaf must-gather.tar.gz must-gather.local.4157245944708210408

4. Attach the compressed file to your support case on the Red Hat Customer Portal.

CHAPTER 3. TROUBLESHOOTING LOGGING

3.1. VIEWING LOGGING STATUS

You can view the status of the Red Hat OpenShift Logging Operator and other logging components.

3.1.1. Viewing the status of the Red Hat OpenShift Logging Operator

You can view the status of the Red Hat OpenShift Logging Operator.

Prerequisites

• The Red Hat OpenShift Logging Operator and OpenShift Elasticsearch Operator are installed.

Procedure

1. Change to the **openshift-logging** project by running the following command:

\$ oc project openshift-logging

2. Get the **ClusterLogging** instance status by running the following command:

\$ oc get clusterlogging instance -o yaml

Example output

```
apiVersion: logging.openshift.io/v1
kind: ClusterLogging
# ...
status: 1
 collection:
  logs:
   fluentdStatus:
     daemonSet: fluentd 2
     nodes:
      collector-2rhqp: ip-10-0-169-13.ec2.internal
      collector-6fgjh: ip-10-0-165-244.ec2.internal
      collector-6l2ff: ip-10-0-128-218.ec2.internal
      collector-54nx5: ip-10-0-139-30.ec2.internal
      collector-flpnn: ip-10-0-147-228.ec2.internal
      collector-n2frh: ip-10-0-157-45.ec2.internal
     pods:
      failed: []
      notReady: []
      ready:
      - collector-2rhqp
      - collector-54nx5
      - collector-6fgjh
      - collector-6l2ff
      - collector-flpnn
      - collector-n2frh
 logstore: 3
  elasticsearchStatus:
```

```
- ShardAllocationEnabled: all
   cluster:
    activePrimaryShards: 5
    activeShards:
                    5
    initializingShards: 0
    numDataNodes:
                          1
    numNodes:
                         1
    pendingTasks:
                         0
    relocatingShards:
                         0
    status:
                     green
    unassignedShards:
                           0
   clusterName:
                       elasticsearch
   nodeConditions:
    elasticsearch-cdm-mkkdys93-1:
   nodeCount: 1
   pods:
    client:
     failed:
     notReady:
     ready:
     - elasticsearch-cdm-mkkdys93-1-7f7c6-mjm7c
    data:
     failed:
     notReady:
     ready:
     - elasticsearch-cdm-mkkdys93-1-7f7c6-mjm7c
    master:
     failed:
     notReady:
     ready:
     - elasticsearch-cdm-mkkdys93-1-7f7c6-mjm7c
visualization: 4
  kibanaStatus:
  - deployment: kibana
   pods:
    failed: []
    notReady: []
    ready:
    - kibana-7fb4fd4cc9-f2nls
   replicaSets:
   - kibana-7fb4fd4cc9
   replicas: 1
 In the output, the cluster status fields appear in the status stanza.
 Information on the Fluentd pods.
```

Information on the Elasticsearch pods, including Elasticsearch cluster health, **green**, **yellow**, or **red**.

Information on the Kibana pods.

3.1.1.1. Example condition messages

4

The following are examples of some condition messages from the **Status.Nodes** section of the **ClusterLogging** instance.

A status message similar to the following indicates a node has exceeded the configured low watermark and no shard will be allocated to this node:

Example output

```
nodes:

- conditions:

- lastTransitionTime: 2019-03-15T15:57:22Z

message: Disk storage usage for node is 27.5gb (36.74%). Shards will be not

be allocated on this node.

reason: Disk Watermark Low

status: "True"

type: NodeStorage

deploymentName: example-elasticsearch-clientdatamaster-0-1

upgradeStatus: {}
```

A status message similar to the following indicates a node has exceeded the configured high watermark and shards will be relocated to other nodes:

Example output

```
nodes:
- conditions:
- lastTransitionTime: 2019-03-15T16:04:45Z
message: Disk storage usage for node is 27.5gb (36.74%). Shards will be relocated
from this node.
reason: Disk Watermark High
status: "True"
type: NodeStorage
deploymentName: cluster-logging-operator
upgradeStatus: {}
```

A status message similar to the following indicates the Elasticsearch node selector in the CR does not match any nodes in the cluster:

Example output

Elasticsearch Status: Shard Allocation Enabled: shard allocation unknown Cluster: Active Primary Shards: 0 Active Shards: 0 Initializing Shards: 0 Num Data Nodes: 0 Num Nodes: 0 Pending Tasks: 0 Relocating Shards: 0 Status: cluster health unknown Unassigned Shards: 0 Cluster Name: elasticsearch Node Conditions: elasticsearch-cdm-mkkdys93-1:

Last Transition Time: 2019-06-26T03:37:32Z Message: 0/5 nodes are available: 5 node(s) didn't match node selector. Reason: Unschedulable Status: True Unschedulable Type: elasticsearch-cdm-mkkdys93-2: Node Count: 2 Pods: Client: Failed: Not Ready: elasticsearch-cdm-mkkdys93-1-75dd69dccd-f7f49 elasticsearch-cdm-mkkdys93-2-67c64f5f4c-n58vl Ready: Data: Failed: Not Ready: elasticsearch-cdm-mkkdys93-1-75dd69dccd-f7f49 elasticsearch-cdm-mkkdys93-2-67c64f5f4c-n58vl Ready: Master: Failed: Not Ready: elasticsearch-cdm-mkkdys93-1-75dd69dccd-f7f49 elasticsearch-cdm-mkkdys93-2-67c64f5f4c-n58vl Ready:

A status message similar to the following indicates that the requested PVC could not bind to PV:

Example output

Node Condition	IS:
elasticsearch-	cdm-mkkdys93-1:
Last Transiti	on Time: 2019-06-26T03:37:32Z
Message:	pod has unbound immediate PersistentVolumeClaims (repeated 5 times)
Reason:	Unschedulable
Status:	True
Type:	Unschedulable

A status message similar to the following indicates that the Fluentd pods cannot be scheduled because the node selector did not match any nodes:

Example output

Status: Collection: Logs: Fluentd Status: Daemon Set: fluentd Nodes: Pods: Failed: Not Ready: Ready:

3.1.2. Viewing the status of logging components

You can view the status for a number of logging components.

Prerequisites

• The Red Hat OpenShift Logging Operator and OpenShift Elasticsearch Operator are installed.

Procedure

1. Change to the **openshift-logging** project.

\$ oc project openshift-logging

2. View the status of logging environment:

\$ oc describe deployment cluster-logging-operator

Example output

Name:	cluster-logging-operator
Conditions: Type	Status Reason
Available Progressing	True MinimumReplicasAvailable g True NewReplicaSetAvailable
Events: Type Rea	Ison Age From Message
	alingReplicaSet 62m deployment-controller Scaled up replica set cluster- ator-574b8987df to 1

- 3. View the status of the logging replica set:
 - a. Get the name of a replica set:

Example output

\$ oc get replicaset

Example output

NAME DESIRED CURRENT READY AGE cluster-logging-operator-574b8987df 159m 1 1 1 elasticsearch-cdm-uhr537yu-1-6869694fb 1 157m 1 1 elasticsearch-cdm-uhr537yu-2-857b6d676f 1 156m 1 1 elasticsearch-cdm-uhr537yu-3-5b6fdd8cfd 1 1 155m 1 kibana-5bd5544f87 1 1 1 157m

b. Get the status of the replica set:

\$ oc describe replicaset cluster-logging-operator-574b8987df

Example output

Name:	cluster-logging-operator-574b8987df
	1 current / 1 desired : 1 Running / 0 Waiting / 0 Succeeded / 0 Failed
Events: Type Rea	ason Age From Message
	ccessfulCreate 66m replicaset-controller Created pod: cluster-logging- lb8987df-qjhqv

3.2. TROUBLESHOOTING LOG FORWARDING

3.2.1. Redeploying Fluentd pods

When you create a **ClusterLogForwarder** custom resource (CR), if the Red Hat OpenShift Logging Operator does not redeploy the Fluentd pods automatically, you can delete the Fluentd pods to force them to redeploy.

Prerequisites

• You have created a **ClusterLogForwarder** custom resource (CR) object.

Procedure

• Delete the Fluentd pods to force them to redeploy by running the following command:

\$ oc delete pod --selector logging-infra=collector

3.2.2. Troubleshooting Loki rate limit errors

If the Log Forwarder API forwards a large block of messages that exceeds the rate limit to Loki, Loki generates rate limit (**429**) errors.

These errors can occur during normal operation. For example, when adding the logging to a cluster that already has some logs, rate limit errors might occur while the logging tries to ingest all of the existing log entries. In this case, if the rate of addition of new logs is less than the total rate limit, the historical data is eventually ingested, and the rate limit errors are resolved without requiring user intervention.

In cases where the rate limit errors continue to occur, you can fix the issue by modifying the **LokiStack** custom resource (CR).

IMPORTANT

The **LokiStack** CR is not available on Grafana-hosted Loki. This topic does not apply to Grafana-hosted Loki servers.

Conditions

- The Log Forwarder API is configured to forward logs to Loki.
- Your system sends a block of messages that is larger than 2 MB to Loki. For example:

```
"values":[["1630410392689800468","{\"kind\":\"Event\",\"apiVersion\":\
.....
.....
.....
.....
.....
.....
\"received_at\":\"2021-08-31T11:46:32.800278+00:00\",\"version\":\"1.7.4
1.6.0\"}},\"@timestamp\":\"2021-08-
31T11:46:32.799692+00:00\",\"viaq_index_name\":\"audit-
write\",\"viaq_msg_id\":\"MzFjYjJkZjItNjY0MC00YWU4LWIwMTEtNGNmM2E5ZmViMGU4\",\"lo
g_type\":\"audit\"}"]]}]
```

• After you enter **oc logs -n openshift-logging -l component=collector**, the collector logs in your cluster show a line containing one of the following error messages:

429 Too Many Requests Ingestion rate limit exceeded

Example Vector error message

2023-08-25T16:08:49.301780Z WARN sink{component_kind="sink" component_id=default_loki_infra component_type=loki component_name=default_loki_infra}: vector::sinks::util::retries: Retrying after error. error=Server responded with an error: 429 Too Many Requests internal_log_rate_limit=true

Example Fluentd error message

2023-08-30 14:52:15 +0000 [warn]: [default_loki_infra] failed to flush the buffer. retry_times=2 next_retry_time=2023-08-30 14:52:19 +0000

chunk="604251225bf5378ed1567231a1c03b8b"

error_class=Fluent::Plugin::LokiOutput::LogPostError error="429 Too Many Requests Ingestion rate limit exceeded for user infrastructure (limit: 4194304 bytes/sec) while attempting to ingest '4082' lines totaling '7820025' bytes, reduce log volume or contact your Loki administrator to see if the limit can be increased\n"

The error is also visible on the receiving end. For example, in the LokiStack ingester pod:

Example Loki ingester error message

level=warn ts=2023-08-30T14:57:34.155592243Z caller=grpc_logging.go:43 duration=1.434942ms method=/logproto.Pusher/Push err="rpc error: code = Code(429) desc = entry with timestamp 2023-08-30 14:57:32.012778399 +0000 UTC ignored, reason: 'Per stream rate limit exceeded (limit: 3MB/sec) while attempting to ingest for stream

Procedure

2

• Update the ingestionBurstSize and ingestionRate fields in the LokiStack CR:

apiVersion: loki.grafana.com/v1 kind: LokiStack metadata:	
name: logging-loki	
namespace: openshift-logging	
spec:	
limits:	
global:	
ingestion:	
ingestionBurstSize: 16 1	
ingestionRate: 8 2	
#	

The **ingestionBurstSize** field defines the maximum local rate-limited sample size per distributor replica in MB. This value is a hard limit. Set this value to at least the maximum logs size expected in a single push request. Single requests that are larger than the **ingestionBurstSize** value are not permitted.

The **ingestionRate** field is a soft limit on the maximum amount of ingested samples per second in MB. Rate limit errors occur if the rate of logs exceeds the limit, but the collector retries sending the logs. As long as the total average is lower than the limit, the system recovers and errors are resolved without user intervention.

3.3. TROUBLESHOOTING LOGGING ALERTS

You can use the following procedures to troubleshoot logging alerts on your cluster.

3.3.1. Elasticsearch cluster health status is red

At least one primary shard and its replicas are not allocated to a node. Use the following procedure to troubleshoot this alert.

TIP

Some commands in this documentation reference an Elasticsearch pod by using a **\$ES_POD_NAME** shell variable. If you want to copy and paste the commands directly from this documentation, you must set this variable to a value that is valid for your Elasticsearch cluster.

You can list the available Elasticsearch pods by running the following command:

\$ oc -n openshift-logging get pods -l component=elasticsearch

Choose one of the pods listed and set the **\$ES_POD_NAME** variable, by running the following command:

\$ export ES_POD_NAME=<elasticsearch_pod_name>

You can now use the **\$ES_POD_NAME** variable in commands.

Procedure

1. Check the Elasticsearch cluster health and verify that the cluster **status** is red by running the following command:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME -- health

2. List the nodes that have joined the cluster by running the following command:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME \ -- es_util --query=_cat/nodes?v

3. List the Elasticsearch pods and compare them with the nodes in the command output from the previous step, by running the following command:

\$ oc -n openshift-logging get pods -l component=elasticsearch

- 4. If some of the Elasticsearch nodes have not joined the cluster, perform the following steps.
 - a. Confirm that Elasticsearch has an elected master node by running the following command and observing the output:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME \ -- es_util --query=_cat/master?v

b. Review the pod logs of the elected master node for issues by running the following command and observing the output:

\$ oc logs <elasticsearch_master_pod_name> -c elasticsearch -n openshift-logging

c. Review the logs of nodes that have not joined the cluster for issues by running the following command and observing the output:

\$

\$ oc logs <elasticsearch_node_name> -c elasticsearch -n openshift-logging

5. If all the nodes have joined the cluster, check if the cluster is in the process of recovering by running the following command and observing the output:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME \ -- es_util --query=_cat/recovery?active_only=true

If there is no command output, the recovery process might be delayed or stalled by pending tasks.

6. Check if there are pending tasks by running the following command and observing the output:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME \
 -- health | grep number_of_pending_tasks

7. If there are pending tasks, monitor their status. If their status changes and indicates that the cluster is recovering, continue waiting. The recovery time varies according to the size of the cluster and other factors. Otherwise, if the status of the pending tasks does not change, this indicates that the recovery has stalled.

8. If it seems like the recovery has stalled, check if the **cluster.routing.allocation.enable** value is set to **none**, by running the following command and observing the output:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME \ -- es_util --query=_cluster/settings?pretty

9. If the **cluster.routing.allocation.enable** value is set to **none**, set it to **all**, by running the following command:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME \
 -- es_util --query=_cluster/settings?pretty \
 -X PUT -d '{"persistent": {"cluster.routing.allocation.enable":"all"}}'

10. Check if any indices are still red by running the following command and observing the output:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME \ -- es_util --query=_cat/indices?v

- 11. If any indices are still red, try to clear them by performing the following steps.
 - a. Clear the cache by running the following command:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME \ -- es_util --query=<elasticsearch_index_name>/_cache/clear?pretty

b. Increase the max allocation retries by running the following command:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME \
-- es_util --query=<elasticsearch_index_name>/_settings?pretty \
-X PUT -d '{"index.allocation.max_retries":10}'

c. Delete all the scroll items by running the following command:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME \ -- es_util --query=_search/scroll/_all -X DELETE

d. Increase the timeout by running the following command:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME \
 -- es_util --query=<elasticsearch_index_name>/_settings?pretty \
 -X PUT -d '{"index.unassigned.node_left.delayed_timeout":"10m"}'

- 12. If the preceding steps do not clear the red indices, delete the indices individually.
 - a. Identify the red index name by running the following command:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME \ -- es_util --query=_cat/indices?v

b. Delete the red index by running the following command:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME \ -- es_util --query=<elasticsearch_red_index_name> -X DELETE

- 13. If there are no red indices and the cluster status is red, check for a continuous heavy processing load on a data node.
 - a. Check if the Elasticsearch JVM Heap usage is high by running the following command:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME \ -- es_util --query=_nodes/stats?pretty

In the command output, review the **node_name.jvm.mem.heap_used_percent** field to determine the JVM Heap usage.

b. Check for high CPU utilization. For more information about CPU utilitzation, see the OpenShift Container Platform "Reviewing monitoring dashboards" documentation.

Additional resources

- Reviewing monitoring dashboards
- Fix a red or yellow cluster status

3.3.2. Elasticsearch cluster health status is yellow

Replica shards for at least one primary shard are not allocated to nodes. Increase the node count by adjusting the **nodeCount** value in the **ClusterLogging** custom resource (CR).

Additional resources

• Fix a red or yellow cluster status

3.3.3. Elasticsearch node disk low watermark reached

Elasticsearch does not allocate shards to nodes that reach the low watermark.

TIP

Some commands in this documentation reference an Elasticsearch pod by using a **\$ES_POD_NAME** shell variable. If you want to copy and paste the commands directly from this documentation, you must set this variable to a value that is valid for your Elasticsearch cluster.

You can list the available Elasticsearch pods by running the following command:

\$ oc -n openshift-logging get pods -l component=elasticsearch

Choose one of the pods listed and set the **\$ES_POD_NAME** variable, by running the following command:

\$ export ES_POD_NAME=<elasticsearch_pod_name>

You can now use the **\$ES_POD_NAME** variable in commands.

Procedure

1. Identify the node on which Elasticsearch is deployed by running the following command:

\$ oc -n openshift-logging get po -o wide

2. Check if there are unassigned shards by running the following command:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME \ -- es_util --query=_cluster/health?pretty | grep unassigned_shards

3. If there are unassigned shards, check the disk space on each node, by running the following command:

\$ for pod in `oc -n openshift-logging get po -l component=elasticsearch -o
jsonpath='{.items[*].metadata.name}``; \
 do echo \$pod; oc -n openshift-logging exec -c elasticsearch \$pod \
 -- df -h /elasticsearch/persistent; done

4. In the command output, check the **Use** column to determine the used disk percentage on that node.

Example output

elasticsearch-cdm-kcrsda6l-1-586cc95d4f-h8zq8 Filesystem Size Used Avail Use% Mounted on /dev/nvme1n1 19G 522M 19G 3% /elasticsearch/persistent elasticsearch-cdm-kcrsda6l-2-5b548fc7b-cwwk7 Filesystem Size Used Avail Use% Mounted on /dev/nvme2n1 19G 522M 19G 3% /elasticsearch/persistent elasticsearch-cdm-kcrsda6l-3-5dfc884d99-59tjw Filesystem Size Used Avail Use% Mounted on /dev/nvme3n1 19G 528M 19G 3% /elasticsearch/persistent

If the used disk percentage is above 85%, the node has exceeded the low watermark, and shards can no longer be allocated to this node.

5. To check the current **redundancyPolicy**, run the following command:

\$ oc -n openshift-logging get es elasticsearch \
 -o jsonpath='{.spec.redundancyPolicy}'

If you are using a **ClusterLogging** resource on your cluster, run the following command:

\$ oc -n openshift-logging get cl \
 -o jsonpath='{.items[*].spec.logStore.elasticsearch.redundancyPolicy}'

If the cluster **redundancyPolicy** value is higher than the **SingleRedundancy** value, set it to the **SingleRedundancy** value and save this change.

- 6. If the preceding steps do not fix the issue, delete the old indices.
 - a. Check the status of all indices on Elasticsearch by running the following command:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME -- indices

b. Identify an old index that can be deleted.

c. Delete the index by running the following command:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME \ -- es_util --query=<elasticsearch_index_name> -X DELETE

3.3.4. Elasticsearch node disk high watermark reached

Elasticsearch attempts to relocate shards away from a node that has reached the high watermark to a node with low disk usage that has not crossed any watermark threshold limits.

To allocate shards to a particular node, you must free up some space on that node. If increasing the disk space is not possible, try adding a new data node to the cluster, or decrease the total cluster redundancy policy.

TIP

Some commands in this documentation reference an Elasticsearch pod by using a **\$ES_POD_NAME** shell variable. If you want to copy and paste the commands directly from this documentation, you must set this variable to a value that is valid for your Elasticsearch cluster.

You can list the available Elasticsearch pods by running the following command:

\$ oc -n openshift-logging get pods -l component=elasticsearch

Choose one of the pods listed and set the **\$ES_POD_NAME** variable, by running the following command:

\$ export ES_POD_NAME=<elasticsearch_pod_name>

You can now use the **\$ES_POD_NAME** variable in commands.

Procedure

1. Identify the node on which Elasticsearch is deployed by running the following command:

\$ oc -n openshift-logging get po -o wide

2. Check the disk space on each node:

\$ for pod in `oc -n openshift-logging get po -l component=elasticsearch -o
jsonpath='{.items[*].metadata.name}'`; \
 do echo \$pod; oc -n openshift-logging exec -c elasticsearch \$pod \
 -- df -h /elasticsearch/persistent; done

3. Check if the cluster is rebalancing:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME \ -- es_util --query=_cluster/health?pretty | grep relocating_shards

If the command output shows relocating shards, the high watermark has been exceeded. The default value of the high watermark is 90%.

- 4. Increase the disk space on all nodes. If increasing the disk space is not possible, try adding a new data node to the cluster, or decrease the total cluster redundancy policy.
- 5. To check the current **redundancyPolicy**, run the following command:

\$ oc -n openshift-logging get es elasticsearch \ -o jsonpath='{.spec.redundancyPolicy}'

If you are using a **ClusterLogging** resource on your cluster, run the following command:

\$ oc -n openshift-logging get cl \
 -o jsonpath='{.items[*].spec.logStore.elasticsearch.redundancyPolicy}'

If the cluster **redundancyPolicy** value is higher than the **SingleRedundancy** value, set it to the **SingleRedundancy** value and save this change.

- 6. If the preceding steps do not fix the issue, delete the old indices.
 - a. Check the status of all indices on Elasticsearch by running the following command:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME -- indices

- b. Identify an old index that can be deleted.
- c. Delete the index by running the following command:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME \ -- es_util --query=<elasticsearch_index_name> -X DELETE

3.3.5. Elasticsearch node disk flood watermark reached

Elasticsearch enforces a read-only index block on every index that has both of these conditions:

- One or more shards are allocated to the node.
- One or more disks exceed the flood stage.

Use the following procedure to troubleshoot this alert.

TIP

Some commands in this documentation reference an Elasticsearch pod by using a **\$ES_POD_NAME** shell variable. If you want to copy and paste the commands directly from this documentation, you must set this variable to a value that is valid for your Elasticsearch cluster.

You can list the available Elasticsearch pods by running the following command:

\$ oc -n openshift-logging get pods -l component=elasticsearch

Choose one of the pods listed and set the **\$ES_POD_NAME** variable, by running the following command:

\$ export ES_POD_NAME=<elasticsearch_pod_name>

You can now use the **\$ES_POD_NAME** variable in commands.

Procedure

1. Get the disk space of the Elasticsearch node:

\$ for pod in `oc -n openshift-logging get po -l component=elasticsearch -o
jsonpath='{.items[*].metadata.name}'`; \
 do echo \$pod; oc -n openshift-logging exec -c elasticsearch \$pod \
 -- df -h /elasticsearch/persistent; done

2. In the command output, check the **Avail** column to determine the free disk space on that node.

Example output

elasticsearch-cdm-kcrsda6l-1-586cc95d4f-h8zq8 Filesystem Size Used Avail Use% Mounted on /dev/nvme1n1 19G 522M 19G 3% /elasticsearch/persistent elasticsearch-cdm-kcrsda6l-2-5b548fc7b-cwwk7 Filesystem Size Used Avail Use% Mounted on /dev/nvme2n1 19G 522M 19G 3% /elasticsearch/persistent elasticsearch-cdm-kcrsda6l-3-5dfc884d99-59tjw Filesystem Size Used Avail Use% Mounted on /dev/nvme3n1 19G 528M 19G 3% /elasticsearch/persistent

- 3. Increase the disk space on all nodes. If increasing the disk space is not possible, try adding a new data node to the cluster, or decrease the total cluster redundancy policy.
- 4. To check the current redundancyPolicy, run the following command:

\$ oc -n openshift-logging get es elasticsearch \
 -o jsonpath='{.spec.redundancyPolicy}'

If you are using a **ClusterLogging** resource on your cluster, run the following command:

\$ oc -n openshift-logging get cl \
 -o jsonpath='{.items[*].spec.logStore.elasticsearch.redundancyPolicy}'

If the cluster **redundancyPolicy** value is higher than the **SingleRedundancy** value, set it to the **SingleRedundancy** value and save this change.

- 5. If the preceding steps do not fix the issue, delete the old indices.
 - a. Check the status of all indices on Elasticsearch by running the following command:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME -- indices

- b. Identify an old index that can be deleted.
- c. Delete the index by running the following command:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME \ -- es_util --query=<elasticsearch_index_name> -X DELETE

6. Continue freeing up and monitoring the disk space. After the used disk space drops below 90%, unblock writing to this node by running the following command:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME \
 -- es_util --query=_all/_settings?pretty \
 -X PUT -d '{"index.blocks.read_only_allow_delete": null}'

3.3.6. Elasticsearch JVM heap usage is high

The Elasticsearch node Java virtual machine (JVM) heap memory used is above 75%. Consider increasing the heap size.

3.3.7. Aggregated logging system CPU is high

System CPU usage on the node is high. Check the CPU of the cluster node. Consider allocating more CPU resources to the node.

3.3.8. Elasticsearch process CPU is high

Elasticsearch process CPU usage on the node is high. Check the CPU of the cluster node. Consider allocating more CPU resources to the node.

3.3.9. Elasticsearch disk space is running low

Elasticsearch is predicted to run out of disk space within the next 6 hours based on current disk usage. Use the following procedure to troubleshoot this alert.

Procedure

1. Get the disk space of the Elasticsearch node:

\$ for pod in `oc -n openshift-logging get po -l component=elasticsearch -o
jsonpath='{.items[*].metadata.name}'`; \
 do echo \$pod; oc -n openshift-logging exec -c elasticsearch \$pod \
 -- df -h /elasticsearch/persistent; done

2. In the command output, check the **Avail** column to determine the free disk space on that node.

Example output

elasticsearch-cdm-kcrsda6l-1-586cc95d4f-h8zq8 Filesystem Size Used Avail Use% Mounted on /dev/nvme1n1 19G 522M 19G 3% /elasticsearch/persistent elasticsearch-cdm-kcrsda6l-2-5b548fc7b-cwwk7 Filesystem Size Used Avail Use% Mounted on /dev/nvme2n1 19G 522M 19G 3% /elasticsearch/persistent elasticsearch-cdm-kcrsda6l-3-5dfc884d99-59tjw Filesystem Size Used Avail Use% Mounted on /dev/nvme3n1 19G 528M 19G 3% /elasticsearch/persistent

- 3. Increase the disk space on all nodes. If increasing the disk space is not possible, try adding a new data node to the cluster, or decrease the total cluster redundancy policy.
- 4. To check the current **redundancyPolicy**, run the following command:

\$ oc -n openshift-logging get es elasticsearch -o jsonpath='{.spec.redundancyPolicy}'

If you are using a **ClusterLogging** resource on your cluster, run the following command:

If the cluster **redundancyPolicy** value is higher than the **SingleRedundancy** value, set it to the **SingleRedundancy** value and save this change.

- 5. If the preceding steps do not fix the issue, delete the old indices.
 - a. Check the status of all indices on Elasticsearch by running the following command:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME -- indices

- b. Identify an old index that can be deleted.
- c. Delete the index by running the following command:

\$ oc exec -n openshift-logging -c elasticsearch \$ES_POD_NAME \ -- es_util --query=<elasticsearch_index_name> -X DELETE

Additional resources

• Fix a red or yellow cluster status

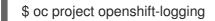
3.3.10. Elasticsearch FileDescriptor usage is high

Based on current usage trends, the predicted number of file descriptors on the node is insufficient. Check the value of **max_file_descriptors** for each node as described in the Elasticsearch File Descriptors documentation.

3.4. VIEWING THE STATUS OF THE ELASTICSEARCH LOG STORE

You can view the status of the OpenShift Elasticsearch Operator and for a number of Elasticsearch components.

3.4.1. Viewing the status of the Elasticsearch log store


You can view the status of the Elasticsearch log store.

Prerequisites

• The Red Hat OpenShift Logging Operator and OpenShift Elasticsearch Operator are installed.

Procedure

1. Change to the **openshift-logging** project by running the following command:

- 2. To view the status:
 - a. Get the name of the Elasticsearch log store instance by running the following command:

Example output

AGE NAME elasticsearch 5h9m

b. Get the Elasticsearch log store status by running the following command:

\$ oc get Elasticsearch < Elasticsearch-instance> -o yaml

For example:

\$ oc get Elasticsearch elasticsearch -n openshift-logging -o yaml

The output includes information similar to the following:

Example output

status: 1 cluster: 2 activePrimaryShards: 30 activeShards: 60 initializingShards: 0 numDataNodes: 3 numNodes: 3 pendingTasks: 0 relocatingShards: 0 status: green unassignedShards: 0 clusterHealth: "" conditions: [] 3

```
nodes: 4
- deploymentName: elasticsearch-cdm-zjf34ved-1
 upgradeStatus: {}
- deploymentName: elasticsearch-cdm-zjf34ved-2
 upgradeStatus: {}
- deploymentName: elasticsearch-cdm-zjf34ved-3
 upgradeStatus: {}
pods: 5
 client:
  failed: []
  notReady: []
  ready:
  - elasticsearch-cdm-zjf34ved-1-6d7fbf844f-sn422
  - elasticsearch-cdm-zjf34ved-2-dfbd988bc-qkzjz
  - elasticsearch-cdm-zjf34ved-3-c8f566f7c-t7zkt
 data:
  failed: []
  notReady: []
  ready:
  - elasticsearch-cdm-zjf34ved-1-6d7fbf844f-sn422
  - elasticsearch-cdm-zjf34ved-2-dfbd988bc-qkzjz
  - elasticsearch-cdm-zjf34ved-3-c8f566f7c-t7zkt
 master:
  failed: []
  notReady: []
  ready:
  - elasticsearch-cdm-zjf34ved-1-6d7fbf844f-sn422
  - elasticsearch-cdm-zjf34ved-2-dfbd988bc-qkzjz
  - elasticsearch-cdm-zjf34ved-3-c8f566f7c-t7zkt
shardAllocationEnabled: all
In the output, the cluster status fields appear in the status stanza.
The status of the Elasticsearch log store:
 • The number of active primary shards.
 • The number of active shards.
```

- The number of shards that are initializing.
- The number of Elasticsearch log store data nodes.
- The total number of Elasticsearch log store nodes.
- The number of pending tasks.
- The Elasticsearch log store status: green, red, yellow.
- The number of unassigned shards.
- Any status conditions, if present. The Elasticsearch log store status indicates the reasons from the scheduler if a pod could not be placed. Any events related to the following conditions are shown:
 - Container Waiting for both the Elasticsearch log store and proxy containers.

- Container Terminated for both the Elasticsearch log store and proxy containers.
- Pod unschedulable. Also, a condition is shown for a number of issues; see **Example** condition messages.

The Elasticsearch log store nodes in the cluster, with **upgradeStatus**.

The Elasticsearch log store client, data, and master pods in the cluster, listed under **failed**, **notReady**, or **ready** state.

3.4.1.1. Example condition messages

The following are examples of some condition messages from the **Status** section of the Elasticsearch instance.

The following status message indicates that a node has exceeded the configured low watermark, and no shard will be allocated to this node.

status: nodes: - conditions: - lastTransitionTime: 2019-03-15T15:57:22Z message: Disk storage usage for node is 27.5gb (36.74%). Shards will be not be allocated on this node. reason: Disk Watermark Low status: "True" type: NodeStorage deploymentName: example-elasticsearch-cdm-0-1 upgradeStatus: {}

The following status message indicates that a node has exceeded the configured high watermark, and shards will be relocated to other nodes.

```
status:
nodes:
- conditions:
- lastTransitionTime: 2019-03-15T16:04:45Z
message: Disk storage usage for node is 27.5gb (36.74%). Shards will be relocated
from this node.
reason: Disk Watermark High
status: "True"
type: NodeStorage
deploymentName: example-elasticsearch-cdm-0-1
upgradeStatus: {}
```

The following status message indicates that the Elasticsearch log store node selector in the custom resource (CR) does not match any nodes in the cluster:

status: nodes: - conditions: - lastTransitionTime: 2019-04-10T02:26:24Z message: '0/8 nodes are available: 8 node(s) didn"t match node selector.' reason: Unschedulable status: "True" type: Unschedulable

The following status message indicates that the Elasticsearch log store CR uses a non-existent persistent volume claim (PVC).

status:	
nodes:	
- conditions:	
 last Transition 	Time: 2019-04-10T05:55:51Z
message:	pod has unbound immediate PersistentVolumeClaims (repeated 5 times)
reason:	Unschedulable
status:	True
type:	Unschedulable

The following status message indicates that your Elasticsearch log store cluster does not have enough nodes to support the redundancy policy.

```
status:
clusterHealth: ""
conditions:
- lastTransitionTime: 2019-04-17T20:01:31Z
message: Wrong RedundancyPolicy selected. Choose different RedundancyPolicy or
add more nodes with data roles
reason: Invalid Settings
status: "True"
type: InvalidRedundancy
```

This status message indicates your cluster has too many control plane nodes:

```
status:

clusterHealth: green

conditions:

- lastTransitionTime: '2019-04-17T20:12:34Z'

message: >-

Invalid master nodes count. Please ensure there are no more than 3 total

nodes with master roles

reason: Invalid Settings

status: 'True'

type: InvalidMasters
```

The following status message indicates that Elasticsearch storage does not support the change you tried to make.

For example:

```
status:
clusterHealth: green
conditions:
- lastTransitionTime: "2021-05-07T01:05:13Z"
message: Changing the storage structure for a custom resource is not supported
reason: StorageStructureChangeIgnored
status: 'True'
type: StorageStructureChangeIgnored
```

The **reason** and **type** fields specify the type of unsupported change:

StorageClassNameChangelgnored

Unsupported change to the storage class name.

StorageSizeChangeIgnored

Unsupported change the storage size.

StorageStructureChangelgnored

Unsupported change between ephemeral and persistent storage structures.

IMPORTANT

If you try to configure the **ClusterLogging** CR to switch from ephemeral to persistent storage, the OpenShift Elasticsearch Operator creates a persistent volume claim (PVC) but does not create a persistent volume (PV). To clear the **StorageStructureChangeIgnored** status, you must revert the change to the **ClusterLogging** CR and delete the PVC.

3.4.2. Viewing the status of the log store components

You can view the status for a number of the log store components.

Elasticsearch indices

You can view the status of the Elasticsearch indices.

1. Get the name of an Elasticsearch pod:

\$ oc get pods --selector component=elasticsearch -o name

Example output

pod/elasticsearch-cdm-1godmszn-1-6f8495-vp4lw pod/elasticsearch-cdm-1godmszn-2-5769cf-9ms2n pod/elasticsearch-cdm-1godmszn-3-f66f7d-zqkz7

2. Get the status of the indices:

\$ oc exec elasticsearch-cdm-4vjor49p-2-6d4d7db474-q2w7z -- indices

Example output

Defaulting container name to elasticsearch. Use 'oc describe pod/elasticsearch-cdm-4vjor49p-2-6d4d7db474-q2w7z -n openshiftlogging' to see all of the containers in this pod.

green op	en infra-00	00002				S4QANnf1QP6NgCegfnrnbC	Q
3 1 1	19926	0	157		78		
green op	en audit-0	00001				8_EQx77iQCSTzFOXtxRqF	W
3 1	0 0	C)	0			
green op	en .securi	ty				iDjscH7aSUGhldq0LheLBQ 1	

5 0 1 0 0 green open .kibana_-377444158_kubeadmin yBywZ9GfSrKebz5gWBZbjw 3 1 0 1 0 0 green open infra-000001 z6Dpe_ORgiopEpW6YI44A 3 1 871000 0 874 436 green open app-000001 hlrazQCeSISewG3c2VlvsQ 3 2453 3 1 1 0 green open .kibana 1 JCitcBMSQxKOvIq6iQW6wg 0 0 0 0 1 1 green open .kibana_-1595131456_user1 gIYFIEGRReka0W3okS-mQ 3 1 0 0 0 1

Log store pods

You can view the status of the pods that host the log store.

1. Get the name of a pod:

\$ oc get pods --selector component=elasticsearch -o name

Example output

pod/elasticsearch-cdm-1godmszn-1-6f8495-vp4lw pod/elasticsearch-cdm-1godmszn-2-5769cf-9ms2n pod/elasticsearch-cdm-1godmszn-3-f66f7d-zqkz7

2. Get the status of a pod:

\$ oc describe pod elasticsearch-cdm-1godmszn-1-6f8495-vp4lw

The output includes the following status information:

Example output

```
. . . .
Status:
              Running
. . . .
Containers:
 elasticsearch:
  Container ID: cri-o://b7d44e0a9ea486e27f47763f5bb4c39dfd2
  State:
              Running
   Started:
               Mon, 08 Jun 2020 10:17:56 -0400
               True
  Ready:
  Restart Count: 0
  Readiness: exec [/usr/share/elasticsearch/probe/readiness.sh] delay=10s timeout=30s
period=5s #success=1 #failure=3
. . . .
 proxy:
  Container ID: cri-
o://3f77032abaddbb1652c116278652908dc01860320b8a4e741d06894b2f8f9aa1
  State:
              Running
```

Started: Ready: Restart Cou	Mon, 08 Jun 2020 10:18:38 -0400 True nt: 0
Initialized	True eady True
Events: <	<none></none>

Log storage pod deployment configuration

You can view the status of the log store deployment configuration.

1. Get the name of a deployment configuration:

\$ oc get deployment --selector component=elasticsearch -o name

Example output

deployment.extensions/elasticsearch-cdm-1gon-1 deployment.extensions/elasticsearch-cdm-1gon-2 deployment.extensions/elasticsearch-cdm-1gon-3

2. Get the deployment configuration status:

\$ oc describe deployment elasticsearch-cdm-1gon-1

The output includes the following status information:

Example output

Containers: elasticsearch: Image: registry.redhat.io/openshift-logging/elasticsearch6-rhel8 Readiness: exec [/usr/share/elasticsearch/probe/readiness.sh] delay=10s timeout=30s period=5s #success=1 #failure=3
Conditions:
Type Status Reason
Progressing Unknown DeploymentPaused
Available True MinimumReplicasAvailable

Events: <none>

Log store replica set

You can view the status of the log store replica set.

1. Get the name of a replica set:

\$ oc get replicaSet --selector component=elasticsearch -o name

replicaset.extensions/elasticsearch-cdm-1gon-1-6f8495 replicaset.extensions/elasticsearch-cdm-1gon-2-5769cf replicaset.extensions/elasticsearch-cdm-1gon-3-f66f7d

2. Get the status of the replica set:

\$ oc describe replicaSet elasticsearch-cdm-1gon-1-6f8495

The output includes the following status information:

Example output

....
Containers:
elasticsearch:
Image: registry.redhat.io/openshift-logging/elasticsearch6rhel8@sha256:4265742c7cdd85359140e2d7d703e4311b6497eec7676957f455d6908e7b1
c25
Readiness: exec [/usr/share/elasticsearch/probe/readiness.sh] delay=10s timeout=30s
period=5s #success=1 #failure=3
....
Events: <none>

3.4.3. Elasticsearch cluster status

A dashboard in the **Observe** section of the OpenShift Container Platform web console displays the status of the Elasticsearch cluster.

To get the status of the OpenShift Elasticsearch cluster, visit the dashboard in the **Observe** section of the OpenShift Container Platform web console at **<cluster_url>/monitoring/dashboards/grafana-dashboard-cluster-logging**.

Elasticsearch status fields

eo_elasticsearch_cr_cluster_management_state

Shows whether the Elasticsearch cluster is in a managed or unmanaged state. For example:

eo_elasticsearch_cr_cluster_management_state{state="managed"} 1 eo_elasticsearch_cr_cluster_management_state{state="unmanaged"} 0

eo_elasticsearch_cr_restart_total

Shows the number of times the Elasticsearch nodes have restarted for certificate restarts, rolling restarts, or scheduled restarts. For example:

eo_elasticsearch_cr_restart_total{reason="cert_restart"} 1 eo_elasticsearch_cr_restart_total{reason="rolling_restart"} 1 eo_elasticsearch_cr_restart_total{reason="scheduled_restart"} 3

es_index_namespaces_total

Shows the total number of Elasticsearch index namespaces. For example:

Total number of Namespaces. es_index_namespaces_total 5

es_index_document_count

Shows the number of records for each namespace. For example:

es_index_document_count{namespace="namespace_1"} 25
es_index_document_count{namespace="namespace_2"} 10
es_index_document_count{namespace="namespace_3"} 5

The "Secret Elasticsearch fields are either missing or empty" message

If Elasticsearch is missing the **admin-cert**, **admin-key**, **logging-es.crt**, or **logging-es.key** files, the dashboard shows a status message similar to the following example:

message": "Secret \"elasticsearch\" fields are either missing or empty: [admin-cert, admin-key, logging-es.crt, logging-es.key]",

"reason": "Missing Required Secrets",

CHAPTER 4. ABOUT LOGGING

As a cluster administrator, you can deploy logging on an OpenShift Container Platform cluster, and use it to collect and aggregate node system audit logs, application container logs, and infrastructure logs. You can forward logs to your chosen log outputs, including on-cluster, Red Hat managed log storage. You can also visualize your log data in the OpenShift Container Platform web console, or the Kibana web console, depending on your deployed log storage solution.

NOTE

The Kibana web console is now deprecated is planned to be removed in a future logging release.

OpenShift Container Platform cluster administrators can deploy logging by using Operators. For information, see Installing logging.

The Operators are responsible for deploying, upgrading, and maintaining logging. After the Operators are installed, you can create a **ClusterLogging** custom resource (CR) to schedule logging pods and other resources necessary to support logging. You can also create a **ClusterLogForwarder** CR to specify which logs are collected, how they are transformed, and where they are forwarded to.

NOTE

Because the internal OpenShift Container Platform Elasticsearch log store does not provide secure storage for audit logs, audit logs are not stored in the internal Elasticsearch instance by default. If you want to send the audit logs to the default internal Elasticsearch log store, for example to view the audit logs in Kibana, you must use the Log Forwarding API as described in Forward audit logs to the log store.

4.1. LOGGING ARCHITECTURE

The major components of the logging are:

Collector

The collector is a daemonset that deploys pods to each OpenShift Container Platform node. It collects log data from each node, transforms the data, and forwards it to configured outputs. You can use the Vector collector or the legacy Fluentd collector.

NOTE

Fluentd is deprecated and is planned to be removed in a future release. Red Hat provides bug fixes and support for this feature during the current release lifecycle, but this feature no longer receives enhancements. As an alternative to Fluentd, you can use Vector instead.

Log store

The log store stores log data for analysis and is the default output for the log forwarder. You can use the default LokiStack log store, the legacy Elasticsearch log store, or forward logs to additional external log stores.

NOTE

The Logging 5.9 release does not contain an updated version of the OpenShift Elasticsearch Operator. If you currently use the OpenShift Elasticsearch Operator released with Logging 5.8, it will continue to work with Logging until the EOL of Logging 5.8. As an alternative to using the OpenShift Elasticsearch Operator to manage the default log storage, you can use the Loki Operator. For more information on the Logging lifecycle dates, see Platform Agnostic Operators.

Visualization

You can use a UI component to view a visual representation of your log data. The UI provides a graphical interface to search, query, and view stored logs. The OpenShift Container Platform web console UI is provided by enabling the OpenShift Container Platform console plugin.

NOTE

The Kibana web console is now deprecated is planned to be removed in a future logging release.

Logging collects container logs and node logs. These are categorized into types:

Application logs

Container logs generated by user applications running in the cluster, except infrastructure container applications.

Infrastructure logs

Container logs generated by infrastructure namespaces: **openshift***, **kube***, or **default**, as well as journald messages from nodes.

Audit logs

Logs generated by auditd, the node audit system, which are stored in the **/var/log/audit/audit.log** file, and logs from the **auditd**, **kube-apiserver**, **openshift-apiserver** services, as well as the **ovn** project if enabled.

Additional resources

• Log visualization with the web console

4.2. ABOUT DEPLOYING LOGGING

Administrators can deploy the logging by using the OpenShift Container Platform web console or the OpenShift CLI (**oc**) to install the logging Operators. The Operators are responsible for deploying, upgrading, and maintaining the logging.

Administrators and application developers can view the logs of the projects for which they have view access.

4.2.1. Logging custom resources

You can configure your logging deployment with custom resource (CR) YAML files implemented by each Operator.

Red Hat OpenShift Logging Operator.

- ClusterLogging (CL) After the Operators are installed, you create a ClusterLogging custom resource (CR) to schedule logging pods and other resources necessary to support the logging. The ClusterLogging CR deploys the collector and forwarder, which currently are both implemented by a daemonset running on each node. The Red Hat OpenShift Logging Operator watches the ClusterLogging CR and adjusts the logging deployment accordingly.
- **ClusterLogForwarder** (CLF) Generates collector configuration to forward logs per user configuration.

Loki Operator:

• **LokiStack** - Controls the Loki cluster as log store and the web proxy with OpenShift Container Platform authentication integration to enforce multi-tenancy.

OpenShift Elasticsearch Operator:

NOTE

These CRs are generated and managed by the OpenShift Elasticsearch Operator. Manual changes cannot be made without being overwritten by the Operator.

- **ElasticSearch** Configure and deploy an Elasticsearch instance as the default log store.
- Kibana Configure and deploy Kibana instance to search, query and view logs.

4.2.2. About JSON OpenShift Container Platform Logging

You can use JSON logging to configure the Log Forwarding API to parse JSON strings into a structured object. You can perform the following tasks:

- Parse JSON logs
- Configure JSON log data for Elasticsearch
- Forward JSON logs to the Elasticsearch log store

4.2.3. About collecting and storing Kubernetes events

The OpenShift Container Platform Event Router is a pod that watches Kubernetes events and logs them for collection by OpenShift Container Platform Logging. You must manually deploy the Event Router.

For information, see About collecting and storing Kubernetes events .

4.2.4. About troubleshooting OpenShift Container Platform Logging

You can troubleshoot the logging issues by performing the following tasks:

- Viewing logging status
- Viewing the status of the log store
- Understanding logging alerts
- Collecting logging data for Red Hat Support

• Troubleshooting for critical alerts

4.2.5. About exporting fields

The logging system exports fields. Exported fields are present in the log records and are available for searching from Elasticsearch and Kibana.

For information, see About exporting fields.

4.2.6. About event routing

The Event Router is a pod that watches OpenShift Container Platform events so they can be collected by logging. The Event Router collects events from all projects and writes them to **STDOUT**. Fluentd collects those events and forwards them into the OpenShift Container Platform Elasticsearch instance. Elasticsearch indexes the events to the **infra** index.

You must manually deploy the Event Router.

For information, see Collecting and storing Kubernetes events.

CHAPTER 5. INSTALLING LOGGING

You can deploy logging by installing the Red Hat OpenShift Logging Operator. The Red Hat OpenShift Logging Operator creates and manages the components of the logging stack.

NOTE

Logging is provided as an installable component, with a distinct release cycle from the core OpenShift Container Platform. The Red Hat OpenShift Container Platform Life Cycle Policy outlines release compatibility.

IMPORTANT

For new installations, use Vector and LokiStack. Elasticsearch and Fluentd are deprecated and are planned to be removed in a future release.

5.1. INSTALLING THE RED HAT OPENSHIFT LOGGING OPERATOR BY USING THE WEB CONSOLE

You can install the Red Hat OpenShift Logging Operator by using the OpenShift Container Platform web console.

Prerequisites

- You have administrator permissions.
- You have access to the OpenShift Container Platform web console.

Procedure

- 1. In the OpenShift Container Platform web console, click **Operators** \rightarrow **OperatorHub**.
- 2. Type **OpenShift Logging** in the **Filter by keyword** box.
- 3. Choose Red Hat OpenShift Logging from the list of available Operators, and click Install.
- 4. Ensure that A specific namespace on the cluster is selected under Installation mode.
- 5. Ensure that **Operator recommended namespace** is **openshift-logging** under **Installed Namespace**.
- Select Enable operator recommended cluster monitoring on this namespace This option sets the openshift.io/cluster-monitoring: "true" label in the Namespace object. You must select this option to ensure that cluster monitoring scrapes the openshift-logging namespace.
- 7. Select stable-5.y as the Update channel.

NOTE

The **stable** channel only provides updates to the most recent release of logging. To continue receiving updates for prior releases, you must change your subscription channel to **stable-x.y**, where **x.y** represents the major and minor version of logging you have installed. For example, **stable-5.7**.

- 8. Select an Update approval.
 - The **Automatic** strategy allows Operator Lifecycle Manager (OLM) to automatically update the Operator when a new version is available.
 - The **Manual** strategy requires a user with appropriate credentials to approve the Operator update.
- 9. Select Enable or Disable for the Console plugin.
- 10. Click Install.

Verification

- Verify that the Red Hat OpenShift Logging Operator is installed by switching to the Operators → Installed Operators page.
- 2. In the **Status** column, verify that you see green checkmarks with **InstallSucceeded** and the text **Up to date**.

IMPORTANT

An Operator might display a **Failed** status before the installation finishes. If the Operator install completes with an **InstallSucceeded** message, refresh the page.

If the Operator does not show as installed, choose one of the following troubleshooting options:

- Go to the **Operators** → **Installed Operators** page, and inspect the **Status** column for any errors or failures.
- Go to the Workloads → Pods page, and check the logs in any pods in the **openshift-logging** project that are reporting issues.

5.2. CREATING A CLUSTERLOGGING OBJECT BY USING THE WEB CONSOLE

After you have installed the logging Operators, you must create a **ClusterLogging** custom resource to configure log storage, visualization, and the log collector for your cluster.

Prerequisites

- You have installed the Red Hat OpenShift Logging Operator.
- You have access to the OpenShift Container Platform web console Administrator perspective.

Procedure

- 1. Navigate to the **Custom Resource Definitions**page.
- 2. On the Custom Resource Definitions page, click ClusterLogging.
- 3. On the **Custom Resource Definition details**page, select **View Instances** from the **Actions** menu.
- 4. On the ClusterLoggings page, click Create ClusterLogging.

5. In the collection section, select a Collector Implementation.

NOTE

Fluentd is deprecated and is planned to be removed in a future release. Red Hat provides bug fixes and support for this feature during the current release lifecycle, but this feature no longer receives enhancements. As an alternative to Fluentd, you can use Vector instead.

6. In the **logStore** section, select a type.

NOTE

The Logging 5.9 release does not contain an updated version of the OpenShift Elasticsearch Operator. If you currently use the OpenShift Elasticsearch Operator released with Logging 5.8, it will continue to work with Logging until the EOL of Logging 5.8. As an alternative to using the OpenShift Elasticsearch Operator to manage the default log storage, you can use the Loki Operator. For more information on the Logging lifecycle dates, see Platform Agnostic Operators.

7. Click Create.

5.3. INSTALLING THE RED HAT OPENSHIFT LOGGING OPERATOR BY USING THE CLI

You can use the OpenShift CLI (**oc**) to install the Red Hat OpenShift Logging Operator.

Prerequisites

- You have administrator permissions.
- You have installed the OpenShift CLI (**oc**).

Procedure

1. Create a Namespace object as a YAML file:

Example Namespace object

```
apiVersion: v1
kind: Namespace
metadata:
name: <name> 1
annotations:
openshift.io/node-selector: ""
labels:
openshift.io/cluster-monitoring: "true"
```


You must specify **openshift-logging** as the name of the namespace for logging versions 5.7 and earlier versions. For logging 5.8 and later versions, you can use any name.

2. Apply the **Namespace** object by running the following command:

\$ oc apply -f <filename>.yaml

3. Create an **OperatorGroup** object as a YAML file:

Example OperatorGroup object

apiVersion: operators.coreos.com/v1 kind: OperatorGroup metadata: name: cluster-logging namespace: openshift-logging 1 spec: targetNamespaces: - openshift-logging **(2)**

You must specify the **openshift-logging** namespace for logging versions 5.7 and older. For logging 5.8 and later versions, you can use any namespace.

4. Apply the **OperatorGroup** object by running the following command:

\$ oc apply -f <filename>.yaml

5. Create a **Subscription** object to subscribe the namespace to the Red Hat OpenShift Logging Operator:

Example Subscription object

apiVersion: operators.coreos.com/v1alpha1 kind: Subscription metadata: name: cluster-logging namespace: openshift-logging spec: channel: stable 2 name: cluster-logging source: redhat-operators 3 sourceNamespace: openshift-marketplace

You must specify the **openshift-logging** namespace for logging versions 5.7 and older. For logging 5.8 and later versions, you can use any namespace.

Specify **stable** or **stable-x.y** as the channel.

Specify **redhat-operators**. If your OpenShift Container Platform cluster is installed on a restricted network, also known as a disconnected cluster, specify the name of the **CatalogSource** object you created when you configured the Operator Lifecycle Manager (OLM).

6. Apply the subscription by running the following command:

\$ oc apply -f <filename>.yaml

The Red Hat OpenShift Logging Operator is installed to the **openshift-logging** namespace.

Verification

1. Run the following command:

\$ oc get csv -n <namespace>

2. Observe the output and confirm that the Red Hat OpenShift Logging Operator exists in the namespace:

Example output

 NAMESPACE
 NAME
 DISPLAY

 VERSION
 REPLACES
 PHASE

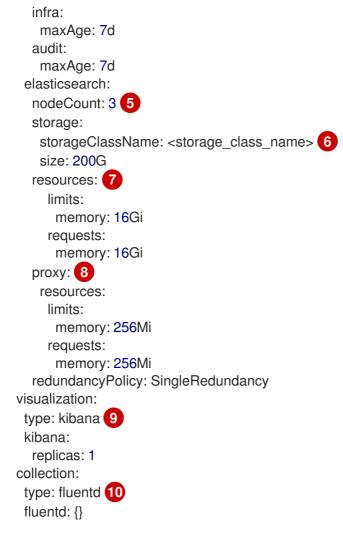
 ...
 openshift-logging
 clusterlogging.5.8.0-202007012112.p0

 OpenShift Logging
 5.8.0-202007012112.p0
 Succeeded

5.4. CREATING A CLUSTERLOGGING OBJECT BY USING THE CLI

This default logging configuration supports a wide array of environments. Review the topics on tuning and configuring components for information about modifications you can make.

Prerequisites


- You have installed the Red Hat OpenShift Logging Operator.
- You have installed the OpenShift Elasticsearch Operator for your log store.
- You have installed the OpenShift CLI (**oc**).

Procedure

1. Create a **ClusterLogging** object as a YAML file:

Example ClusterLogging object

apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: name: instance
namespace: openshift-logging
spec:
managementState: Managed 2
logStore:
type: elasticsearch 3
retentionPolicy: 4
application:
maxAge: 1d

The name must be **instance**.

The OpenShift Logging management state. In some cases, if you change the OpenShift Logging defaults, you must set this to **Unmanaged**. However, an unmanaged deployment does not receive updates until OpenShift Logging is placed back into a managed state.

Settings for configuring Elasticsearch. Using the CR, you can configure shard replication policy and persistent storage.

Specify the length of time that Elasticsearch should retain each log source. Enter an integer and a time designation: weeks(w), hours(h/H), minutes(m) and seconds(s). For example, **7d** for seven days. Logs older than the **maxAge** are deleted. You must specify a retention policy for each log source or the Elasticsearch indices will not be created for that source.

3

Specify the number of Elasticsearch nodes. See the note that follows this list.

Enter the name of an existing storage class for Elasticsearch storage. For best performance, specify a storage class that allocates block storage. If you do not specify a storage class, OpenShift Logging uses ephemeral storage.

Specify the CPU and memory requests for Elasticsearch as needed. If you leave these values blank, the OpenShift Elasticsearch Operator sets default values that should be sufficient for most deployments. The default values are **16Gi** for the memory request and **1** for the CPU request.

Specify the CPU and memory requests for the Elasticsearch proxy as needed. If you leave these values blank, the OpenShift Elasticsearch Operator sets default values that should

10

Settings for configuring Kibana. Using the CR, you can scale Kibana for redundancy and configure the CPU and memory for your Kibana nodes. For more information, see **Configuring the log visualizer**.

Settings for configuring Fluentd. Using the CR, you can configure Fluentd CPU and memory limits. For more information, see "Configuring Fluentd".

NOTE

The maximum number of Elasticsearch control plane nodes is three. If you specify a **nodeCount** greater than **3**, OpenShift Container Platform creates three Elasticsearch nodes that are Master-eligible nodes, with the master, client, and data roles. The additional Elasticsearch nodes are created as data-only nodes, using client and data roles. Control plane nodes perform cluster-wide actions such as creating or deleting an index, shard allocation, and tracking nodes. Data nodes hold the shards and perform data-related operations such as CRUD, search, and aggregations. Data-related operations are I/O-, memory-, and CPU-intensive. It is important to monitor these resources and to add more Data nodes if the current nodes are overloaded.

For example, if **nodeCount=4**, the following nodes are created:

\$ oc get deployment

Example output

NAME	READY	UP	-TO-D/	ATE	AVAILABLE	AGE
cluster-logging-operato	or 1/1	1		1	18h	
elasticsearch-cd-x6kde	ekli-1 1/	1	1	1	6m54s	
elasticsearch-cdm-x6k	dekli-1 1	1/1	1	1	18h	
elasticsearch-cdm-x6k	dekli-2 1	1/1	1	1	6m49s	
elasticsearch-cdm-x6k	dekli-3 1	1/1	1	1	6m44s	

The number of primary shards for the index templates is equal to the number of Elasticsearch data nodes.

Verification

You can verify the installation by listing the pods in the **openshift-logging** project.

• List the pods by running the following command:

\$ oc get pods -n openshift-logging

Observe the pods for components of the logging, similar to the following list:

Example output

NAME READY STATUS RESTARTS AGE cluster-logging-operator-66f77ffccb-ppzbg 1/1 Running 0 7m

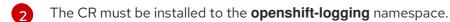
elasticsearch-cdm-ftuhduuw-1-ffc4 elasticsearch-cdm-ftuhduuw-2-7b4			Running 0 Running 0	2m40s 2m36s
elasticsearch-cdm-ftuhduuw-3-84b		0	Running 0	2m303 2m4s
collector-587vb	1/1	Running 0	2m26s	
collector-7mpb9	1/1	Running 0	2m30s	
collector-flm6j	1/1	Running 0	2m33s	
collector-gn4rn	1/1	Running 0	2m26s	
collector-nlgb6	1/1	Running 0	2m30s	
collector-snpkt	1/1	Running 0	2m28s	
kibana-d6d5668c5-rppqm		2/2 Running	g 0 2m39s	

5.5. POSTINSTALLATION TASKS

After you have installed the Red Hat OpenShift Logging Operator, you can configure your deployment by creating and modifying a **ClusterLogging** custom resource (CR).

TIP

If you are not using the Elasticsearch log store, you can remove the internal Elasticsearch **logStore** and Kibana **visualization** components from the **ClusterLogging** custom resource (CR). Removing these components is optional but saves resources. See Removing unused components if you do not use the Elasticsearch log store.


5.5.1. About the ClusterLogging custom resource

To make changes to your logging environment, create and modify the **ClusterLogging** custom resource (CR).

Sample ClusterLogging custom resource (CR)

apiVersion: logging.openshift.io/v1 kind: ClusterLogging
metadata:
name: instance 1
namespace: openshift-logging 2
spec:
managementState: Managed 3
#

The CR name must be **instance**.

3 The Red Hat OpenShift Logging Operator management state. When the state is set to **unmanaged**, the Operator is in an unsupported state and does not receive updates.

5.5.2. Configuring log storage

You can configure which log storage type your logging uses by modifying the **ClusterLogging** custom resource (CR).

Prerequisites

- You have administrator permissions.
- You have installed the OpenShift CLI (**oc**).
- You have installed the Red Hat OpenShift Logging Operator and an internal log store that is either the LokiStack or Elasticsearch.
- You have created a **ClusterLogging** CR.

NOTE

The Logging 5.9 release does not contain an updated version of the OpenShift Elasticsearch Operator. If you currently use the OpenShift Elasticsearch Operator released with Logging 5.8, it will continue to work with Logging until the EOL of Logging 5.8. As an alternative to using the OpenShift Elasticsearch Operator to manage the default log storage, you can use the Loki Operator. For more information on the Logging lifecycle dates, see Platform Agnostic Operators.

Procedure

1. Modify the **ClusterLogging** CR **logStore** spec:

ClusterLogging CR example

	<pre>apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: # spec: # logStore: type: <log_store_type> type: <log_store_type> elasticsearch: 2 nodeCount: <integer> resources: {} storage: {} redundancyPolicy: <redundancy_type> 3 lokistack: 4 name: {} #</redundancy_type></integer></log_store_type></log_store_type></pre>
1	Specify the log store type. This can be either lokistack or elasticsearch .
2	Optional configuration options for the Elasticsearch log store.
3	Specify the redundancy type. This value can be ZeroRedundancy , SingleRedundancy , MultipleRedundancy , or FullRedundancy .
4	Optional configuration options for LokiStack.
E	xample ClusterLogging CR to specify LokiStack as the log store

apiVersion: logging.openshift.io/v1

```
kind: ClusterLogging
metadata:
name: instance
namespace: openshift-logging
spec:
managementState: Managed
logStore:
type: lokistack
lokistack:
name: logging-loki
# ...
```

2. Apply the **ClusterLogging** CR by running the following command:

\$ oc apply -f <filename>.yaml

5.5.3. Configuring the log collector

You can configure which log collector type your logging uses by modifying the **ClusterLogging** custom resource (CR).

NOTE

Fluentd is deprecated and is planned to be removed in a future release. Red Hat provides bug fixes and support for this feature during the current release lifecycle, but this feature no longer receives enhancements. As an alternative to Fluentd, you can use Vector instead.

Prerequisites

- You have administrator permissions.
- You have installed the OpenShift CLI (**oc**).
- You have installed the Red Hat OpenShift Logging Operator.
- You have created a **ClusterLogging** CR.

Procedure

1. Modify the **ClusterLogging** CR **collection** spec:

ClusterLogging CR example

apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata:
#
spec:
#
collection:
type: <log_collector_type> 1</log_collector_type>
-

resources: {} tolerations: {}

The log collector type you want to use for the logging. This can be **vector** or **fluentd**.

2. Apply the **ClusterLogging** CR by running the following command:

\$ oc apply -f <filename>.yaml

5.5.4. Configuring the log visualizer

You can configure which log visualizer type your logging uses by modifying the **ClusterLogging** custom resource (CR).

Prerequisites

- You have administrator permissions.
- You have installed the OpenShift CLI (**oc**).
- You have installed the Red Hat OpenShift Logging Operator.
- You have created a **ClusterLogging** CR.

IMPORTANT

If you want to use the OpenShift Container Platform web console for visualization, you must enable the logging Console Plugin. See the documentation about "Log visualization with the web console".

Procedure

1. Modify the **ClusterLogging** CR visualization spec:

ClusterLogging CR example

apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata:
#
spec:
#
visualization:
type: <visualizer_type> 1</visualizer_type>
kibana: 2
resources: {}
nodeSelector: {}
proxy: {}
replicas: {}
tolerations: {}
ocpConsole: 3

logsLimit: {} timeout: {}

The type of visualizer you want to use for your logging. This can be either **kibana** or **ocp-console**. The Kibana console is only compatible with deployments that use Elasticsearch log storage, while the OpenShift Container Platform console is only compatible with LokiStack deployments.

Optional configurations for the Kibana console.

Optional configurations for the OpenShift Container Platform web console.

2. Apply the **ClusterLogging** CR by running the following command:

\$ oc apply -f <filename>.yaml

5.5.5. Allowing traffic between projects when network isolation is enabled

Your cluster network plugin might enforce network isolation. If so, you must allow network traffic between the projects that contain the operators deployed by OpenShift Logging.

Network isolation blocks network traffic between pods or services that are in different projects. The logging installs the *OpenShift Elasticsearch Operator* in the **openshift-operators-redhat** project and the *Red Hat OpenShift Logging Operator* in the **openshift-logging** project. Therefore, you must allow traffic between these two projects.

OpenShift Container Platform offers two supported choices for the network plugin, OpenShift SDN and OVN-Kubernetes. These two providers implement various network isolation policies.

OpenShift SDN has three modes:

network policy

This is the default mode. If no policy is defined, it allows all traffic. However, if a user defines a policy, they typically start by denying all traffic and then adding exceptions. This process might break applications that are running in different projects. Therefore, explicitly configure the policy to allow traffic to egress from one logging-related project to the other.

multitenant

This mode enforces network isolation. You must join the two logging-related projects to allow traffic between them.

subnet

This mode allows all traffic. It does not enforce network isolation. No action is needed.

OVN-Kubernetes always uses a **network policy**. Therefore, as with OpenShift SDN, you must configure the policy to allow traffic to egress from one logging-related project to the other.

Procedure

• If you are using OpenShift SDN in **multitenant** mode, join the two projects. For example:

\$ oc adm pod-network join-projects --to=openshift-operators-redhat openshift-logging

- Otherwise, for OpenShift SDN in **network policy** mode and OVN-Kubernetes, perform the following actions:
 - a. Set a label on the **openshift-operators-redhat** namespace. For example:

\$ oc label namespace openshift-operators-redhat project=openshift-operators-redhat

b. Create a network policy object in the **openshift-logging** namespace that allows ingress from the **openshift-operators-redhat**, **openshift-monitoring** and **openshift-ingress** projects to the openshift-logging project. For example:

```
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-monitoring-ingress-operators-redhat
spec:
 ingress:
 - from:
  - podSelector: {}
 - from:
  - namespaceSelector:
    matchLabels:
      project: "openshift-operators-redhat"
 - from:
  - namespaceSelector:
    matchLabels:
      name: "openshift-monitoring"
 - from:
  - namespaceSelector:
    matchLabels:
      network.openshift.io/policy-group: ingress
 podSelector: {}
 policyTypes:
 - Ingress
```

Additional resources

- About network policy
- About the OpenShift SDN default CNI network provider
- About the OVN-Kubernetes default Container Network Interface (CNI) network provider

CHAPTER 6. UPDATING LOGGING

There are two types of logging updates: minor release updates (5.y.z) and major release updates (5.y).

6.1. MINOR RELEASE UPDATES

If you installed the logging Operators using the **Automatic** update approval option, your Operators receive minor version updates automatically. You do not need to complete any manual update steps.

If you installed the logging Operators using the **Manual** update approval option, you must manually approve minor version updates.

For more information, see Manually approving a pending Operator update .

6.2. MAJOR RELEASE UPDATES

For major version updates you must complete some manual steps.

For major release version compatibility and support information, see OpenShift Operator Life Cycles.

6.3. UPGRADING THE RED HAT OPENSHIFT LOGGING OPERATOR TO WATCH ALL NAMESPACES

In logging 5.7 and older versions, the Red Hat OpenShift Logging Operator only watches the **openshift-logging** namespace. If you want the Red Hat OpenShift Logging Operator to watch all namespaces on your cluster, you must redeploy the Operator. You can complete the following procedure to redeploy the Operator without deleting your logging components.

Prerequisites

- You have installed the OpenShift CLI (**oc**).
- You have administrator permissions.

Procedure

1. Delete the subscription by running the following command:

- 2. Delete the Operator group by running the following command:

\$ oc -n openshift-logging delete operatorgroup <operator_group_name>

3. Delete the cluster service version (CSV) by running the following command:

\$ oc delete clusterserviceversion cluster-logging.<version>

4. Redeploy the Red Hat OpenShift Logging Operator by following the "Installing Logging" documentation.

Verification

• Check that the **targetNamespaces** field in the **OperatorGroup** resource is not present or is set to an empty string.

To do this, run the following command and inspect the output:

\$ oc get operatorgroup <operator_group_name> -o yaml

Example output

```
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: openshift-logging-f52cn
namespace: openshift-logging
spec:
upgradeStrategy: Default
status:
namespaces:
- ""
# ...
```

6.4. UPDATING THE RED HAT OPENSHIFT LOGGING OPERATOR

To update the Red Hat OpenShift Logging Operator to a new major release version, you must modify the update channel for the Operator subscription.

Prerequisites

- You have installed the Red Hat OpenShift Logging Operator.
- You have administrator permissions.
- You have access to the OpenShift Container Platform web console and are viewing the **Administrator** perspective.

Procedure

- 1. Navigate to **Operators** \rightarrow **Installed Operators**.
- 2. Select the openshift-logging project.
- 3. Click the Red Hat OpenShift Logging Operator.
- 4. Click **Subscription**. In the **Subscription details** section, click the **Update channel** link. This link text might be **stable** or **stable-5.y**, depending on your current update channel.
- 5. In the **Change Subscription Update Channel** window, select the latest major version update channel, **stable-5.y**, and click **Save**. Note the **cluster-logging.v5.y.z** version.

Verification

- Wait for a few seconds, then click Operators → Installed Operators. Verify that the Red Hat OpenShift Logging Operator version matches the latest cluster-logging.v5.y.z version.
- 2. On the **Operators** → **Installed Operators** page, wait for the **Status** field to report **Succeeded**.

6.5. UPDATING THE LOKI OPERATOR

To update the Loki Operator to a new major release version, you must modify the update channel for the Operator subscription.

Prerequisites

- You have installed the Loki Operator.
- You have administrator permissions.
- You have access to the OpenShift Container Platform web console and are viewing the **Administrator** perspective.

Procedure

- 1. Navigate to **Operators** \rightarrow **Installed Operators**.
- 2. Select the openshift-operators-redhat project.
- 3. Click the Loki Operator.
- 4. Click **Subscription**. In the **Subscription details** section, click the **Update channel** link. This link text might be **stable** or **stable-5.y**, depending on your current update channel.
- 5. In the **Change Subscription Update Channel** window, select the latest major version update channel, **stable-5.y**, and click **Save**. Note the **loki-operator.v5.y.z** version.

Verification

- Wait for a few seconds, then click Operators → Installed Operators. Verify that the Loki Operator version matches the latest loki-operator.v5.y.z version.
- 2. On the **Operators** → **Installed Operators** page, wait for the **Status** field to report **Succeeded**.

6.6. UPDATING THE OPENSHIFT ELASTICSEARCH OPERATOR

To update the OpenShift Elasticsearch Operator to the current version, you must modify the subscription.

NOTE

The Logging 5.9 release does not contain an updated version of the OpenShift Elasticsearch Operator. If you currently use the OpenShift Elasticsearch Operator released with Logging 5.8, it will continue to work with Logging until the EOL of Logging 5.8. As an alternative to using the OpenShift Elasticsearch Operator to manage the default log storage, you can use the Loki Operator. For more information on the Logging lifecycle dates, see Platform Agnostic Operators.

Prerequisites

• If you are using Elasticsearch as the default log store, and Kibana as the UI, update the OpenShift Elasticsearch Operator before you update the Red Hat OpenShift Logging Operator.

IMPORTANT

If you update the Operators in the wrong order, Kibana does not update and the Kibana custom resource (CR) is not created. To fix this issue, delete the Red Hat OpenShift Logging Operator pod. When the Red Hat OpenShift Logging Operator pod redeploys, it creates the Kibana CR and Kibana becomes available again.

- The Logging status is healthy:
 - All pods have a **ready** status.
 - The Elasticsearch cluster is healthy.
- Your Elasticsearch and Kibana data is backed up .
- You have administrator permissions.
- You have installed the OpenShift CLI (**oc**) for the verification steps.

Procedure

- 1. In the OpenShift Container Platform web console, click **Operators** \rightarrow **Installed Operators**.
- 2. Select the **openshift-operators-redhat** project.
- 3. Click OpenShift Elasticsearch Operator.
- 4. Click Subscription \rightarrow Channel.
- 5. In the **Change Subscription Update Channel**window, select **stable-5.y** and click **Save**. Note the **elasticsearch-operator.v5.y.z** version.
- 6. Wait for a few seconds, then click **Operators** → **Installed Operators**. Verify that the OpenShift Elasticsearch Operator version matches the latest **elasticsearch-operator.v5.y.z** version.
- 7. On the **Operators** → **Installed Operators** page, wait for the **Status** field to report **Succeeded**.

Verification

1. Verify that all Elasticsearch pods have a **Ready** status by entering the following command and observing the output:

\$ oc get pod -n openshift-logging --selector component=elasticsearch

Example output

NAME	READY STA	ATUS	RESTARTS	AGE
elasticsearch-cdm-1pbrl44l-1-55	b7546f4c-mshł	nk 2/2	Running 0	31m
elasticsearch-cdm-1pbrl44l-2-5c	6d87589f-gx5h	k 2/2	Running 0	30m
elasticsearch-cdm-1pbrl44l-3-88	df5d47-m45jc	2/2	Running 0	29m

2. Verify that the Elasticsearch cluster status is **green** by entering the following command and observing the output:

\$ oc exec -n openshift-logging -c elasticsearch elasticsearch-cdm-1pbrl44l-1-55b7546f4cmshhk -- health

Example output

```
{

"cluster_name" : "elasticsearch",

"status" : "green",

}
```

3. Verify that the Elasticsearch cron jobs are created by entering the following commands and observing the output:

\$ oc project openshift-logging

\$ oc get cronjob

Example output

NAMESCHEDULESUSPENDACTIVELAST SCHEDULEAGEelasticsearch-im-app*/15 * * * *False0<none>56selasticsearch-im-audit*/15 * * * *False0<none>56selasticsearch-im-infra*/15 * * * *False0<none>56s

4. Verify that the log store is updated to the correct version and the indices are **green** by entering the following command and observing the output:

\$ oc exec -c elasticsearch <any_es_pod_in_the_cluster> -- indices

Verify that the output includes the **app-00000x**, **infra-00000x**, **audit-00000x**, **.security** indices:

Example 6.1. Sample output with indices in a green status

Tue Jun 30 14:30:54 UTC 2020 health status index docs.count docs.deleted store.size pri.store.size green open infra-000008		uuid	pri rep
bnBvUFEXTWi92z3zWAzieQ 3 1 222195	0	289	144
green open infra-000004 3 1 226717 0 297 148		rtDSzo	oqsSl6saisSK7Au1Q
green open infra-000012 RSf_kUwDSR2xEuKRZMPqZQ 3 1 227623	0	295	147
green open .kibana_7 1 1 4 0 0 0		1SJaC	qlZTPWIIAaOUd78yg
green open infra-000010			
iXwL3bnqTuGEABbUDa6OVw 3 1 248368	0	317	158
green open infra-000009 YN9EsULWSNaxWeeNvOs0RA 3 1 258799	0	337	168
green open infra-000014 YP0U6R7FQ GVQVQZ6Yh9Ig 31 223788	0	292	146
green open infra-000015	-		
JRBbAbEmSMqK5X40df9HbQ 3 1 224371 green open .orphaned.2020.06.30	0	291	145

n_xQC2dWQzConkvQqei3YA 31 9	0	0	0
green open infra-000007			
IlkkAVSzSOmosWTSAJM hg 3 1 228584	0	296	148
green open infra-000005	-		-
d9BoGQdiQASsS3BBFm2iRA 3 1 227987	0	297	148
green open infra-000003	Ũ	1-	
goREK1QUKIQPAIVkWVaQ 3 1 226719	0	295	147
green open .security	Ũ		uOuRTKZMjg_bbUc1g
11 5 0 0 0		20100	
green open .kibana-377444158_kubeadmin			wvMhDwJkR-
mRZQ084K0gUQ 3 1 1 0 0		0	WINNEWORIT
green open infra-000006		5H-	
KBSXGQKiO7hdapDE23g 3 1 226676	0	295	147
green open infra-000001	U		3BQ-
bSxSWR5xYZB6lVg 3 1 341800 0	443	220	ODQ
green open .kibana-6	110	220	
RVp7TemSSemGJcsSUmuf3A 1 1 4	0	0	0
green open infra-000011	Ū	0	0
J7XWBauWSTe0jnzX02fU6A 3 1 226100	0	293	146
green open app-000001	Ū	200	140
axSAFfONQDmKwatkjPXdtw 3 1 103186	0	126	57
green open infra-000016	0	120	01
m9c1iRLtStWSF1GopaRyCg 3 1 13685	0	19	9
green open infra-000002	0	-	WvINtTvKcQzw-
ewmbYg 3 1 228994 0 296	148	1120	WWWWWWWWWWWWWWWWWWWWWWWWWWWWW
green open infra-000013	140	KRG	mMFUpQI-
jraYtanylGw 3 1 228166 0 298	148		
green open audit-000001	1-10	0	
eERqLdLmQOiQDFES1LBATQ 3 1 0	0	0	0
	0	0	U

5. Verify that the log visualizer is updated to the correct version by entering the following command and observing the output:

\$ oc get kibana kibana -o json

Verify that the output includes a Kibana pod with the **ready** status:

Example 6.2. Sample output with a ready Kibana pod

```
[
{
    "clusterCondition": {
    "kibana-5fdd766ffd-nb2jj": [
    {
    "lastTransitionTime": "2020-06-30T14:11:07Z",
    "reason": "ContainerCreating",
    "status": "True",
    "type": ""
    },
    {
    "lastTransitionTime": "2020-06-30T14:11:07Z",
    "reason": "ContainerCreating",
    "status": "True",
    "status": "True",
    "status": "True",
    "type": ""
```

```
}
}
,
"deployment": "kibana",
"pods": {
"failed": [],
"notReady": []
"ready": []
},
"replicaSets": [
"kibana-5fdd766ffd"
],
"replicas": 1
}
]
```

CHAPTER 7. VISUALIZING LOGS

7.1. ABOUT LOG VISUALIZATION

You can visualize your log data in the OpenShift Container Platform web console, or the Kibana web console, depending on your deployed log storage solution. The Kibana console can be used with ElasticSearch log stores, and the OpenShift Container Platform web console can be used with the ElasticSearch log store or the LokiStack.

NOTE

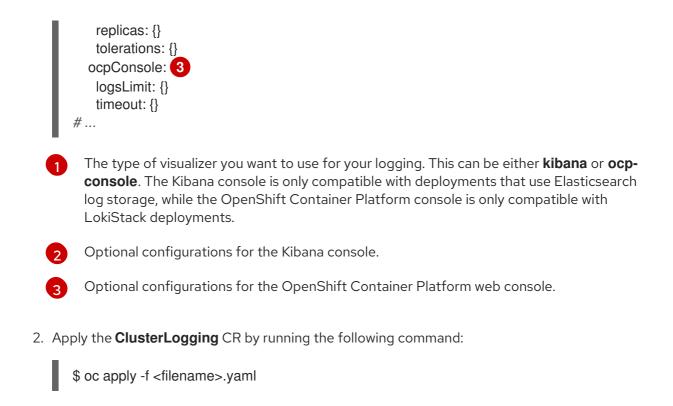
The Kibana web console is now deprecated is planned to be removed in a future logging release.

7.1.1. Configuring the log visualizer

You can configure which log visualizer type your logging uses by modifying the **ClusterLogging** custom resource (CR).

Prerequisites

- You have administrator permissions.
- You have installed the OpenShift CLI (**oc**).
- You have installed the Red Hat OpenShift Logging Operator.
- You have created a **ClusterLogging** CR.


IMPORTANT

If you want to use the OpenShift Container Platform web console for visualization, you must enable the logging Console Plugin. See the documentation about "Log visualization with the web console".

Procedure

1. Modify the **ClusterLogging** CR visualization spec:

ClusterLogging CR example

7.1.2. Viewing logs for a resource

Resource logs are a default feature that provides limited log viewing capability. You can view the logs for various resources, such as builds, deployments, and pods by using the OpenShift CLI (**oc**) and the web console.

TIP

To enhance your log retrieving and viewing experience, install the logging. The logging aggregates all the logs from your OpenShift Container Platform cluster, such as node system audit logs, application container logs, and infrastructure logs, into a dedicated log store. You can then query, discover, and visualize your log data through the Kibana console or the OpenShift Container Platform web console. Resource logs do not access the logging log store.

7.1.2.1. Viewing resource logs

You can view the log for various resources in the OpenShift CLI (**oc**) and web console. Logs read from the tail, or end, of the log.

Prerequisites

• Access to the OpenShift CLI (**oc**).

Procedure (UI)

1. In the OpenShift Container Platform console, navigate to **Workloads** → **Pods** or navigate to the pod through the resource you want to investigate.

NOTE

Some resources, such as builds, do not have pods to query directly. In such instances, you can locate the **Logs** link on the **Details** page for the resource.

- 2. Select a project from the drop-down menu.
- 3. Click the name of the pod you want to investigate.
- 4. Click Logs.

Procedure (CLI)

• View the log for a specific pod:

\$ oc logs -f <pod_name> -c <container_name>

where:

-f

Optional: Specifies that the output follows what is being written into the logs.

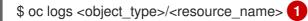
<pod_name>

Specifies the name of the pod.

<container_name>

Optional: Specifies the name of a container. When a pod has more than one container, you must specify the container name.

For example:



\$ oc logs -f ruby-57f7f4855b-znl92 -c ruby

The contents of log files are printed out.

• View the log for a specific resource:

Specifies the resource type and name.

For example:

The contents of log files are printed out.

7.2. LOG VISUALIZATION WITH THE WEB CONSOLE

You can use the OpenShift Container Platform web console to visualize log data by configuring the logging Console Plugin.

For information about configuring the plugin during the logging installation, see Installing the logging using the web console.

If you have already installed the logging and want to configure the plugin, use one of the following procedures.

7.2.1. Enabling the logging Console Plugin after you have installed the Red Hat OpenShift Logging Operator

You can enable the logging Console Plugin as part of the Red Hat OpenShift Logging Operator installation, but you can also enable the plugin if you have already installed the Red Hat OpenShift Logging Operator with the plugin disabled.

Prerequisites

- You have administrator permissions.
- You have installed the Red Hat OpenShift Logging Operator and selected **Disabled** for the **Console plugin**.
- You have access to the OpenShift Container Platform web console.

Procedure

- 1. In the OpenShift Container Platform web console Administrator perspective, navigate to **Operators** → Installed Operators.
- 2. Click Red Hat OpenShift Logging. This takes you to the Operator Details page.
- 3. In the **Details** page, click **Disabled** for the **Console plugin** option.
- 4. In the **Console plugin enablement** dialog, select **Enable**.
- 5. Click Save.
- 6. Verify that the **Console plugin** option now shows **Enabled**.
- 7. The web console displays a pop-up window when changes have been applied. The window prompts you to reload the web console. Refresh the browser when you see the pop-up window to apply the changes.

7.2.2. Configuring the logging Console Plugin when you have the Elasticsearch log store and LokiStack installed

In logging version 5.8 and later, if the Elasticsearch log store is your default log store but you have also installed the LokiStack, you can enable the logging Console Plugin by using the following procedure.

Prerequisites

- You have administrator permissions.
- You have installed the Red Hat OpenShift Logging Operator, the OpenShift Elasticsearch Operator, and the Loki Operator.
- You have installed the OpenShift CLI (**oc**).
- You have created a **ClusterLogging** custom resource (CR).

Procedure

1. Ensure that the logging Console Plugin is enabled by running the following command:

\$ oc get consoles.operator.openshift.io cluster -o yaml |grep logging-view-plugin \ || oc patch consoles.operator.openshift.io cluster --type=merge \ --patch '{ "spec": { "plugins": ["logging-view-plugin"]}}'

2. Add the .metadata.annotations.logging.openshift.io/ocp-console-migration-target: lokistack-dev annotation to the ClusterLogging CR, by running the following command:

\$ oc patch clusterlogging instance --type=merge --patch \
'{ "metadata": { "annotations": { "logging.openshift.io/ocp-console-migration-target":
"lokistack-dev" }}}' \
-n openshift-logging

Example output

clusterlogging.logging.openshift.io/instance patched

Verification

• Verify that the annotation was added successfully, by running the following command and observing the output:

\$ oc get clusterlogging instance \
-o=jsonpath='{.metadata.annotations.logging\.openshift\.io/ocp-console-migration-target}' \
-n openshift-logging

Example output

"lokistack-dev"

The logging Console Plugin pod is now deployed. You can view logging data by navigating to the OpenShift Container Platform web console and viewing the **Observe** \rightarrow **Logs** page.

7.3. VIEWING CLUSTER DASHBOARDS

The **Logging/Elasticsearch Nodes** and **Openshift Logging** dashboards in the OpenShift Container Platform web console contain in-depth details about your Elasticsearch instance and the individual Elasticsearch nodes that you can use to prevent and diagnose problems.

The **OpenShift Logging** dashboard contains charts that show details about your Elasticsearch instance at a cluster level, including cluster resources, garbage collection, shards in the cluster, and Fluentd statistics.

The Logging/Elasticsearch Nodes dashboard contains charts that show details about your Elasticsearch instance, many at node level, including details on indexing, shards, resources, and so forth.

7.3.1. Accessing the Elasticsearch and OpenShift Logging dashboards

You can view the **Logging/Elasticsearch Nodes** and **OpenShift Logging** dashboards in the OpenShift Container Platform web console.

Procedure

To launch the dashboards:

- 1. In the OpenShift Container Platform web console, click **Observe** \rightarrow **Dashboards**.
- 2. On the **Dashboards** page, select **Logging/Elasticsearch Nodes** or **OpenShift Logging** from the **Dashboard** menu.

For the **Logging/Elasticsearch Nodes** dashboard, you can select the Elasticsearch node you want to view and set the data resolution.

The appropriate dashboard is displayed, showing multiple charts of data.

3. Optional: Select a different time range to display or refresh rate for the data from the **Time Range** and **Refresh Interval** menus.

For information on the dashboard charts, see About the OpenShift Logging dashboard and About the Logging/Elastisearch Nodes dashboard.

7.3.2. About the OpenShift Logging dashboard

The **OpenShift Logging** dashboard contains charts that show details about your Elasticsearch instance at a cluster-level that you can use to diagnose and anticipate problems.

Table 7.1. OpenShift Logging charts

Metric	Description
Elastic Cluster Status	 ONLINE - Indicates that the Elasticsearch instance is online. OFFLINE - Indicates that the Elasticsearch instance is offline.
Elastic Nodes	The total number of Elasticsearch nodes in the Elasticsearch instance.
Elastic Shards	The total number of Elasticsearch shards in the Elasticsearch instance.
Elastic Documents	The total number of Elasticsearch documents in the Elasticsearch instance.
Total Index Size on Disk	The total disk space that is being used for the Elasticsearch indices.
Elastic Pending Tasks	The total number of Elasticsearch changes that have not been completed, such as index creation, index mapping, shard allocation, or shard failure.

Metric	Description
Elastic JVM GC time	The amount of time that the JVM spent executing Elasticsearch garbage collection operations in the cluster.
Elastic JVM GC Rate	The total number of times that JVM executed garbage activities per second.
Elastic Query/Fetch Latency Sum	 Query latency: The average time each Elasticsearch search query takes to execute. Fetch latency: The average time each Elasticsearch search query spends fetching data. Fetch latency typically takes less time than query latency. If fetch latency is consistently increasing, it might indicate slow disks, data enrichment, or large requests with too many results.
Elastic Query Rate	The total queries executed against the Elasticsearch instance per second for each Elasticsearch node.
CPU	The amount of CPU used by Elasticsearch, Fluentd, and Kibana, shown for each component.
Elastic JVM Heap Used	The amount of JVM memory used. In a healthy cluster, the graph shows regular drops as memory is freed by JVM garbage collection.
Elasticsearch Disk Usage	The total disk space used by the Elasticsearch instance for each Elasticsearch node.
File Descriptors In Use	The total number of file descriptors used by Elasticsearch, Fluentd, and Kibana.
FluentD emit count	The total number of Fluentd messages per second for the Fluentd default output, and the retry count for the default output.
FluentD Buffer Usage	The percent of the Fluentd buffer that is being used for chunks. A full buffer might indicate that Fluentd is not able to process the number of logs received.
Elastic rx bytes	The total number of bytes that Elasticsearch has received from FluentD, the Elasticsearch nodes, and other sources.

Metric	Description
Elastic Index Failure Rate	The total number of times per second that an Elasticsearch index fails. A high rate might indicate an issue with indexing.
FluentD Output Error Rate	The total number of times per second that FluentD is not able to output logs.

7.3.3. Charts on the Logging/Elasticsearch nodes dashboard

The **Logging/Elasticsearch Nodes** dashboard contains charts that show details about your Elasticsearch instance, many at node-level, for further diagnostics.

Elasticsearch status

The **Logging/Elasticsearch Nodes** dashboard contains the following charts about the status of your Elasticsearch instance.

Table 7.2. Elasticsearch status fields

Metric	Description
Cluster status	 The cluster health status during the selected time period, using the Elasticsearch green, yellow, and red statuses: O - Indicates that the Elasticsearch instance is in green status, which means that all shards are allocated. 1 - Indicates that the Elasticsearch instance is in yellow status, which means that replica shards for at least one shard are not allocated. 2 - Indicates that the Elasticsearch instance is in red status, which means that at least one primary shard and its replicas are not allocated.
Cluster nodes	The total number of Elasticsearch nodes in the cluster.
Cluster data nodes	The number of Elasticsearch data nodes in the cluster.
Cluster pending tasks	The number of cluster state changes that are not finished and are waiting in a cluster queue, for example, index creation, index deletion, or shard allocation. A growing trend indicates that the cluster is not able to keep up with changes.

Elasticsearch cluster index shard status

Each Elasticsearch index is a logical group of one or more shards, which are basic units of persisted data. There are two types of index shards: primary shards, and replica shards. When a document is indexed into an index, it is stored in one of its primary shards and copied into every replica of that shard. The number of primary shards is specified when the index is created, and the number cannot change during index lifetime. You can change the number of replica shards at any time.

The index shard can be in several states depending on its lifecycle phase or events occurring in the cluster. When the shard is able to perform search and indexing requests, the shard is active. If the shard cannot perform these requests, the shard is non-active. A shard might be non-active if the shard is initializing, reallocating, unassigned, and so forth.

Index shards consist of a number of smaller internal blocks, called index segments, which are physical representations of the data. An index segment is a relatively small, immutable Lucene index that is created when Lucene commits newly-indexed data. Lucene, a search library used by Elasticsearch, merges index segments into larger segments in the background to keep the total number of segments low. If the process of merging segments is slower than the speed at which new segments are created, it could indicate a problem.

When Lucene performs data operations, such as a search operation, Lucene performs the operation against the index segments in the relevant index. For that purpose, each segment contains specific data structures that are loaded in the memory and mapped. Index mapping can have a significant impact on the memory used by segment data structures.

The **Logging/Elasticsearch Nodes** dashboard contains the following charts about the Elasticsearch index shards.

Metric	Description
Cluster active shards	The number of active primary shards and the total number of shards, including replicas, in the cluster. If the number of shards grows higher, the cluster performance can start degrading.
Cluster initializing shards	The number of non-active shards in the cluster. A non-active shard is one that is initializing, being reallocated to a different node, or is unassigned. A cluster typically has non-active shards for short periods. A growing number of non-active shards over longer periods could indicate a problem.
Cluster relocating shards	The number of shards that Elasticsearch is relocating to a new node. Elasticsearch relocates nodes for multiple reasons, such as high memory use on a node or after a new node is added to the cluster.
Cluster unassigned shards	The number of unassigned shards. Elasticsearch shards might be unassigned for reasons such as a new index being added or the failure of a node.

Table 7.3. Elasticsearch cluster shard status charts

Elasticsearch node metrics

Each Elasticsearch node has a finite amount of resources that can be used to process tasks. When all the resources are being used and Elasticsearch attempts to perform a new task, Elasticsearch puts the tasks into a queue until some resources become available.

The **Logging/Elasticsearch Nodes** dashboard contains the following charts about resource usage for a selected node and the number of tasks waiting in the Elasticsearch queue.

Table 7.4. Elasticsearch	node metric charts
--------------------------	--------------------

Metric	Description
ThreadPool tasks	The number of waiting tasks in individual queues, shown by task type. A long–term accumulation of tasks in any queue could indicate node resource shortages or some other problem.
CPU usage	The amount of CPU being used by the selected Elasticsearch node as a percentage of the total CPU allocated to the host container.
Memory usage	The amount of memory being used by the selected Elasticsearch node.
Disk usage	The total disk space being used for index data and metadata on the selected Elasticsearch node.
Documents indexing rate	The rate that documents are indexed on the selected Elasticsearch node.
Indexing latency	The time taken to index the documents on the selected Elasticsearch node. Indexing latency can be affected by many factors, such as JVM Heap memory and overall load. A growing latency indicates a resource capacity shortage in the instance.
Search rate	The number of search requests run on the selected Elasticsearch node.
Search latency	The time taken to complete search requests on the selected Elasticsearch node. Search latency can be affected by many factors. A growing latency indicates a resource capacity shortage in the instance.
Documents count (with replicas)	The number of Elasticsearch documents stored on the selected Elasticsearch node, including documents stored in both the primary shards and replica shards that are allocated on the node.
Documents deleting rate	The number of Elasticsearch documents being deleted from any of the index shards that are allocated to the selected Elasticsearch node.

Metric	Description
Documents merging rate	The number of Elasticsearch documents being merged in any of index shards that are allocated to the selected Elasticsearch node.

Elasticsearch node fielddata

Fielddata is an Elasticsearch data structure that holds lists of terms in an index and is kept in the JVM Heap. Because fielddata building is an expensive operation, Elasticsearch caches the fielddata structures. Elasticsearch can evict a fielddata cache when the underlying index segment is deleted or merged, or if there is not enough JVM HEAP memory for all the fielddata caches.

The **Logging/Elasticsearch Nodes** dashboard contains the following charts about Elasticsearch fielddata.

Table 7.5. Elasticsearch node fielddata charts

Metric	Description
Fielddata memory size	The amount of JVM Heap used for the fielddata cache on the selected Elasticsearch node.
Fielddata evictions	The number of fielddata structures that were deleted from the selected Elasticsearch node.

Elasticsearch node query cache

If the data stored in the index does not change, search query results are cached in a node-level query cache for reuse by Elasticsearch.

The **Logging/Elasticsearch Nodes** dashboard contains the following charts about the Elasticsearch node query cache.

Table 7.6. Elasticsearch node query charts

Metric	Description
Query cache size	The total amount of memory used for the query cache for all the shards allocated to the selected Elasticsearch node.
Query cache evictions	The number of query cache evictions on the selected Elasticsearch node.
Query cache hits	The number of query cache hits on the selected Elasticsearch node.
Query cache misses	The number of query cache misses on the selected Elasticsearch node.

Elasticsearch index throttling

When indexing documents, Elasticsearch stores the documents in index segments, which are physical representations of the data. At the same time, Elasticsearch periodically merges smaller segments into a larger segment as a way to optimize resource use. If the indexing is faster then the ability to merge segments, the merge process does not complete quickly enough, which can lead to issues with searches and performance. To prevent this situation, Elasticsearch throttles indexing, typically by reducing the number of threads allocated to indexing down to a single thread.

The **Logging/Elasticsearch Nodes** dashboard contains the following charts about Elasticsearch index throttling.

Table 7.7. Index throttling charts

Metric	Description
Indexing throttling	The amount of time that Elasticsearch has been throttling the indexing operations on the selected Elasticsearch node.
Merging throttling	The amount of time that Elasticsearch has been throttling the segment merge operations on the selected Elasticsearch node.

Node JVM Heap statistics

The **Logging/Elasticsearch Nodes** dashboard contains the following charts about JVM Heap operations.

Table 7.8. JVM Heap statistic charts

Metric	Description
Heap used	The amount of the total allocated JVM Heap space that is used on the selected Elasticsearch node.
GC count	The number of garbage collection operations that have been run on the selected Elasticsearch node, by old and young garbage collection.
GC time	The amount of time that the JVM spent running garbage collection operations on the selected Elasticsearch node, by old and young garbage collection.

7.4. LOG VISUALIZATION WITH KIBANA

If you are using the ElasticSearch log store, you can use the Kibana console to visualize collected log data.

Using Kibana, you can do the following with your data:

• Search and browse the data using the **Discover** tab.

- Chart and map the data using the **Visualize** tab.
- Create and view custom dashboards using the **Dashboard** tab.

Use and configuration of the Kibana interface is beyond the scope of this documentation. For more information about using the interface, see the Kibana documentation.

NOTE

The audit logs are not stored in the internal OpenShift Container Platform Elasticsearch instance by default. To view the audit logs in Kibana, you must use the Log Forwarding API to configure a pipeline that uses the **default** output for audit logs.

7.4.1. Defining Kibana index patterns

An index pattern defines the Elasticsearch indices that you want to visualize. To explore and visualize data in Kibana, you must create an index pattern.

Prerequisites

• A user must have the **cluster-admin** role, the **cluster-reader** role, or both roles to view the **infra** and **audit** indices in Kibana. The default **kubeadmin** user has proper permissions to view these indices.

If you can view the pods and logs in the **default**, **kube-** and **openshift-** projects, you should be able to access these indices. You can use the following command to check if the current user has appropriate permissions:

\$ oc auth can-i get pods --subresource log -n <project>

Example output

yes

NOTE

The audit logs are not stored in the internal OpenShift Container Platform Elasticsearch instance by default. To view the audit logs in Kibana, you must use the Log Forwarding API to configure a pipeline that uses the **default** output for audit logs.

• Elasticsearch documents must be indexed before you can create index patterns. This is done automatically, but it might take a few minutes in a new or updated cluster.

Procedure

To define index patterns and create visualizations in Kibana:

- 1. In the OpenShift Container Platform console, click the Application Launcher and select Logging.
- Create your Kibana index patterns by clicking Management → Index Patterns → Create index pattern:

- Each user must manually create index patterns when logging into Kibana the first time to see logs for their projects. Users must create an index pattern named **app** and use the **@timestamp** time field to view their container logs.
- Each admin user must create index patterns when logged into Kibana the first time for the **app**, **infra**, and **audit** indices using the **@timestamp** time field.
- 3. Create Kibana Visualizations from the new index patterns.

7.4.2. Viewing cluster logs in Kibana

You view cluster logs in the Kibana web console. The methods for viewing and visualizing your data in Kibana that are beyond the scope of this documentation. For more information, refer to the Kibana documentation.

Prerequisites

- The Red Hat OpenShift Logging and Elasticsearch Operators must be installed.
- Kibana index patterns must exist.
- A user must have the **cluster-admin** role, the **cluster-reader** role, or both roles to view the **infra** and **audit** indices in Kibana. The default **kubeadmin** user has proper permissions to view these indices.

If you can view the pods and logs in the **default**, **kube-** and **openshift-** projects, you should be able to access these indices. You can use the following command to check if the current user has appropriate permissions:

\$ oc auth can-i get pods --subresource log -n <project>

Example output

yes

NOTE

The audit logs are not stored in the internal OpenShift Container Platform Elasticsearch instance by default. To view the audit logs in Kibana, you must use the Log Forwarding API to configure a pipeline that uses the **default** output for audit logs.

Procedure

To view logs in Kibana:

- 1. In the OpenShift Container Platform console, click the Application Launcher and select **Logging**.
- Log in using the same credentials you use to log in to the OpenShift Container Platform console.

The Kibana interface launches.

3. In Kibana, click **Discover**.

4. Select the index pattern you created from the drop-down menu in the top-left corner: **app**, **audit**, or **infra**.

The log data displays as time-stamped documents.

- 5. Expand one of the time-stamped documents.
- 6. Click the **JSON** tab to display the log entry for that document.

```
Example 7.1. Sample infrastructure log entry in Kibana
    "_index": "infra-000001",
     _type": "_doc",
    "_id": "YmJmYTBINDkZTRmLTliMGQtMjE3NmFiOGUyOWM3",
    " version": 1,
     _score": null,
    "_source": {
     "docker": {
      "container id": "f85fa55bbef7bb783f041066be1e7c267a6b88c4603dfce213e32c1"
     },
     "kubernetes": {
      "container name": "registry-server",
      "namespace name": "openshift-marketplace",
      "pod name": "redhat-marketplace-n64gc",
      "container_image": "registry.redhat.io/redhat/redhat-marketplace-index:v4.7",
      "container_image_id": "registry.redhat.io/redhat/redhat-marketplace-
  index@sha256:65fc0c45aabb95809e376feb065771ecda9e5e59cc8b3024c4545c168f",
      "pod_id": "8f594ea2-c866-4b5c-a1c8-a50756704b2a",
      "host": "ip-10-0-182-28.us-east-2.compute.internal",
      "master_url": "https://kubernetes.default.svc",
      "namespace id": "3abab127-7669-4eb3-b9ef-44c04ad68d38",
      "namespace labels": {
       "openshift io/cluster-monitoring": "true"
      },
      "flat labels": [
       "catalogsource operators coreos com/update=redhat-marketplace"
      1
     },
     "message": "time=\"2020-09-23T20:47:03Z\" level=info msg=\"serving registry\"
  database=/database/index.db port=50051",
     "level": "unknown",
     "hostname": "ip-10-0-182-28.internal",
     "pipeline_metadata": {
      "collector": {
       "ipaddr4": "10.0.182.28",
       "inputname": "fluent-plugin-systemd",
       "name": "fluentd",
       "received_at": "2020-09-23T20:47:15.007583+00:00",
       "version": "1.7.4 1.6.0"
      }
     },
     "@timestamp": "2020-09-23T20:47:03.422465+00:00",
     "viag msg id": "YmJmYTBINDktMDMGQtMjE3NmFiOGUyOWM3",
     "openshift": {
      "labels": {
       "logging": "infra"
      }
```

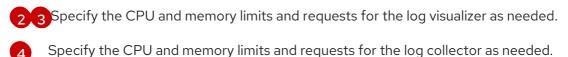

7.4.3. Configuring Kibana

You can configure using the Kibana console by modifying the **ClusterLogging** custom resource (CR).

7.4.3.1. Configuring CPU and memory limits

The logging components allow for adjustments to both the CPU and memory limits.

Procedure


1. Edit the **ClusterLogging** custom resource (CR) in the **openshift-logging** project:

```
$ oc -n openshift-logging edit ClusterLogging instance
apiVersion: "logging.openshift.io/v1"
kind: "ClusterLogging"
metadata:
 name: "instance"
 namespace: openshift-logging
spec:
 managementState: "Managed"
 logStore:
  type: "elasticsearch"
  elasticsearch:
   nodeCount: 3
   resources: 1
    limits:
      memory: 16Gi
    requests:
      cpu: 200m
      memory: 16Gi
   storage:
    storageClassName: "gp2"
    size: "200G"
   redundancyPolicy: "SingleRedundancy"
```

visualization: type: "kibana" kibana: resources: 2 limits: memory: 1Gi requests: cpu: 500m memory: 1Gi proxy: resources: 3 limits: memory: 100Mi requests: cpu: 100m memory: 100Mi replicas: 2 collection: logs: type: "fluentd" fluentd: resources: 4 limits: memory: 736Mi requests: cpu: 200m memory: 736Mi

Specify the CPU and memory limits and requests for the log store as needed. For Elasticsearch, you must adjust both the request value and the limit value.

7.4.3.2. Scaling redundancy for the log visualizer nodes

You can scale the pod that hosts the log visualizer for redundancy.

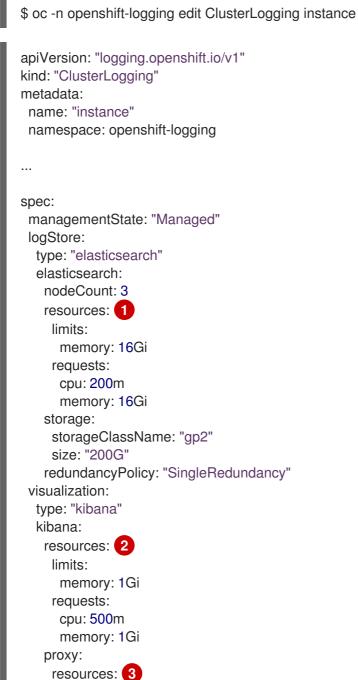
Procedure

1. Edit the **ClusterLogging** custom resource (CR) in the **openshift-logging** project:

spec: visualization: type: "kibana" kibana: replicas: 1

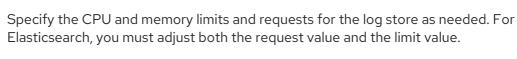
CHAPTER 8. CONFIGURING YOUR LOGGING DEPLOYMENT

8.1. CONFIGURING CPU AND MEMORY LIMITS FOR LOGGING COMPONENTS


You can configure both the CPU and memory limits for each of the logging components as needed.

8.1.1. Configuring CPU and memory limits

The logging components allow for adjustments to both the CPU and memory limits.


Procedure

1. Edit the **ClusterLogging** custom resource (CR) in the **openshift-logging** project:

limits:

memory: 100Mi requests: cpu: 100m memory: 100Mi replicas: 2 collection: logs: type: "fluentd" fluentd: resources: 4 limits: memory: 736Mi requests: cpu: 200m memory: 736Mi

2 3 Specify the CPU and memory limits and requests for the log visualizer as needed.

Specify the CPU and memory limits and requests for the log collector as needed.

8.2. CONFIGURING SYSTEMD-JOURNALD AND FLUENTD

Because Fluentd reads from the journal, and the journal default settings are very low, journal entries can be lost because the journal cannot keep up with the logging rate from system services.

We recommend setting **RateLimitIntervalSec=30s** and **RateLimitBurst=10000** (or even higher if necessary) to prevent the journal from losing entries.

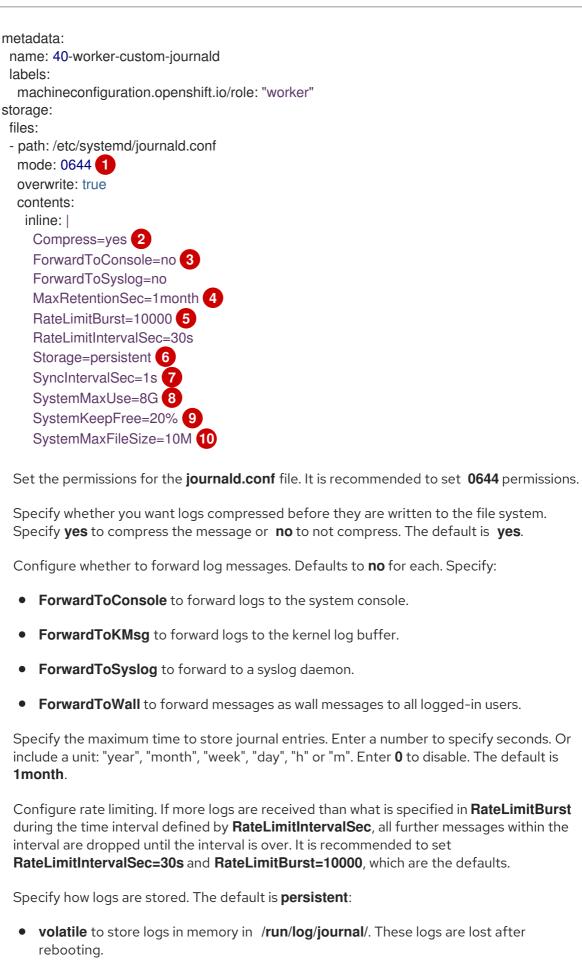
8.2.1. Configuring systemd-journald for OpenShift Logging

As you scale up your project, the default logging environment might need some adjustments.

For example, if you are missing logs, you might have to increase the rate limits for journald. You can adjust the number of messages to retain for a specified period of time to ensure that OpenShift Logging does not use excessive resources without dropping logs.

You can also determine if you want the logs compressed, how long to retain logs, how or if the logs are stored, and other settings.

Procedure


1. Create a Butane config file, **40-worker-custom-journald.bu**, that includes an /**etc/systemd/journald.conf** file with the required settings.

NOTE

See "Creating machine configs with Butane" for information about Butane.

variant: openshift version: 4.12.0

5

persistent to store logs to disk in /var/log/journal/. systemd creates the directory if it does not exist.

- **auto** to store logs in /**var**/**log**/**journal**/ if the directory exists. If it does not exist, systemd temporarily stores logs in /**run**/**systemd**/**journal**.
- **none** to not store logs. systemd drops all logs.
- Specify the timeout before synchronizing journal files to disk for ERR, WARNING, NOTICE, INFO, and DEBUG logs. systemd immediately syncs after receiving a CRIT, ALERT, or EMERG log. The default is **1s**.

Specify the maximum size the journal can use. The default is **8G**.

Specify how much disk space systemd must leave free. The default is **20%**.

Specify the maximum size for individual journal files stored persistently in /**var/log/journal**. The default is **10M**.

NOTE

If you are removing the rate limit, you might see increased CPU utilization on the system logging daemons as it processes any messages that would have previously been throttled.

For more information on systemd settings, see https://www.freedesktop.org/software/systemd/man/journald.conf.html. The default settings listed on that page might not apply to OpenShift Container Platform.

2. Use Butane to generate a **MachineConfig** object file, **40-worker-custom-journald.yaml**, containing the configuration to be delivered to the nodes:

\$ butane 40-worker-custom-journald.bu -o 40-worker-custom-journald.yaml

3. Apply the machine config. For example:

\$ oc apply -f 40-worker-custom-journald.yaml

The controller detects the new **MachineConfig** object and generates a new **rendered-worker-<hash>** version.

4. Monitor the status of the rollout of the new rendered configuration to each node:

\$ oc describe machineconfigpool/worker

Example output

```
Name: worker
Namespace:
Labels: machineconfiguration.openshift.io/mco-built-in=
Annotations: <none>
API Version: machineconfiguration.openshift.io/v1
Kind: MachineConfigPool
...
Conditions:
```

Message: Reason: All nodes are updating to rendered-worker-913514517bcea7c93bd446f4830bc64e

CHAPTER 9. LOG COLLECTION AND FORWARDING

9.1. ABOUT LOG COLLECTION AND FORWARDING

The Red Hat OpenShift Logging Operator deploys a collector based on the **ClusterLogForwarder** resource specification. There are two collector options supported by this Operator: the legacy Fluentd collector, and the Vector collector.

NOTE

Fluentd is deprecated and is planned to be removed in a future release. Red Hat provides bug fixes and support for this feature during the current release lifecycle, but this feature no longer receives enhancements. As an alternative to Fluentd, you can use Vector instead.

9.1.1. Log collection

The log collector is a daemon set that deploys pods to each OpenShift Container Platform node to collect container and node logs.

By default, the log collector uses the following sources:

- System and infrastructure logs generated by journald log messages from the operating system, the container runtime, and OpenShift Container Platform.
- /var/log/containers/*.log for all container logs.

If you configure the log collector to collect audit logs, it collects them from /var/log/audit/audit.log.

The log collector collects the logs from these sources and forwards them internally or externally depending on your logging configuration.

9.1.1.1. Log collector types

Vector is a log collector offered as an alternative to Fluentd for the logging.

You can configure which logging collector type your cluster uses by modifying the **ClusterLogging** custom resource (CR) **collection** spec:

Example ClusterLogging CR that configures Vector as the collector

```
apiVersion: logging.openshift.io/v1
kind: ClusterLogging
metadata:
name: instance
namespace: openshift-logging
spec:
collection:
logs:
type: vector
vector: {}
# ...
```

9.1.1.2. Log collection limitations

The container runtimes provide minimal information to identify the source of log messages: project, pod name, and container ID. This information is not sufficient to uniquely identify the source of the logs. If a pod with a given name and project is deleted before the log collector begins processing its logs, information from the API server, such as labels and annotations, might not be available. There might not be a way to distinguish the log messages from a similarly named pod and project or trace the logs to their source. This limitation means that log collection and normalization are considered *best effort*.

IMPORTANT

The available container runtimes provide minimal information to identify the source of log messages and do not guarantee unique individual log messages or that these messages can be traced to their source.

9.1.1.3. Log collector features by type

Table 9.1. Log Sources

Feature	Fluentd	Vector
App container logs	✓	✓
App-specific routing	✓	\checkmark
App-specific routing by namespace	1	1
Infra container logs	<i>√</i>	✓
Infra journal logs	✓	✓
Kube API audit logs	✓	✓
OpenShift API audit logs	✓	✓
Open Virtual Network (OVN) audit logs	/	/

Table 9.2. Authorization and Authentication

Feature	Fluentd	Vector
Elasticsearch certificates	\checkmark	
Elasticsearch username / password	/	1
Cloudwatch keys	1	<i>✓</i>

Feature	Fluentd	Vector
Cloudwatch STS	<i>J</i>	1
Kafka certificates	1	1
Kafka username / password	1	1
Kafka SASL	1	/
Loki bearer token	7	1

Table 9.3. Normalizations and Transformations

Feature	Fluentd	Vector
Viaq data model - app	1	1
Viaq data model - infra	\checkmark	✓
Viaq data model - infra(journal)	\checkmark	✓
Viaq data model - Linux audit	✓	<i>✓</i>
Viaq data model - kube-apiserver audit	1	/
Viaq data model - OpenShift API audit	/	/
Viaq data model - OVN	1	1
Loglevel Normalization	✓	✓
JSON parsing	✓	✓
Structured Index	\checkmark	✓
Multiline error detection	✓	✓
Multicontainer / split indices	\checkmark	✓
Flatten labels	\checkmark	✓
CLF static labels	✓	<i>✓</i>

Table 9.4. Tuning

Feature	Fluentd	Vector
Fluentd readlinelimit	<i>√</i>	
Fluentd buffer	✓	
- chunklimitsize	\checkmark	
- totallimitsize	\checkmark	
- overflowaction	\checkmark	
- flushthreadcount	\checkmark	
- flushmode	\checkmark	
- flushinterval	\checkmark	
- retrywait	\checkmark	
- retrytype	✓	
- retrymaxinterval	\checkmark	
- retrytimeout	/	

Table 9.5. Visibility

Feature	Fluentd	Vector
Metrics	✓	✓
Dashboard	1	1
Alerts	1	1

Table 9.6. Miscellaneous

Feature	Fluentd	Vector
Global proxy support	✓	✓
x86 support	✓	×
ARM support	✓	×

Feature	Fluentd	Vector
IBM Power support	✓	/
IBM Z support	1	1
IPv6 support	✓	✓
Log event buffering	1	
Disconnected Cluster	1	1

9.1.1.4. Collector outputs

The following collector outputs are supported:

Table 9.7. Supported outputs

Feature	Fluentd	Vector
Elasticsearch v6-v8	1	<i>✓</i>
Fluent forward	✓	
Syslog RFC3164	✓	✓ (Logging 5.7+)
Syslog RFC5424	\checkmark	✓ (Logging 5.7+)
Kafka	\checkmark	✓
Cloudwatch	\checkmark	✓
Cloudwatch STS	\checkmark	✓
Loki	\checkmark	✓
НТТР	✓	✓ (Logging 5.7+)
Google Cloud Logging	\checkmark	✓
Splunk		✓ (Logging 5.6+)

9.1.2. Log forwarding

Administrators can create **ClusterLogForwarder** resources that specify which logs are collected, how they are transformed, and where they are forwarded to.

ClusterLogForwarder resources can be used up to forward container, infrastructure, and audit logs to specific endpoints within or outside of a cluster. Transport Layer Security (TLS) is supported so that log forwarders can be configured to send logs securely.

Administrators can also authorize RBAC permissions that define which service accounts and users can access and forward which types of logs.

9.1.2.1. Log forwarding implementations

There are two log forwarding implementations available: the legacy implementation, and the multi log forwarder feature.

IMPORTANT

Only the Vector collector is supported for use with the multi log forwarder feature. The Fluentd collector can only be used with legacy implementations.

9.1.2.1.1. Legacy implementation

In legacy implementations, you can only use one log forwarder in your cluster. The **ClusterLogForwarder** resource in this mode must be named **instance**, and must be created in the **openshift-logging** namespace. The **ClusterLogForwarder** resource also requires a corresponding **ClusterLogging** resource named **instance** in the **openshift-logging** namespace.

9.1.2.1.2. Multi log forwarder feature

The multi log forwarder feature is available in logging 5.8 and later, and provides the following functionality:

- Administrators can control which users are allowed to define log collection and which logs they are allowed to collect.
- Users who have the required permissions are able to specify additional log collection configurations.
- Administrators who are migrating from the deprecated Fluentd collector to the Vector collector can deploy a new log forwarder separately from their existing deployment. The existing and new log forwarders can operate simultaneously while workloads are being migrated.

In multi log forwarder implementations, you are not required to create a corresponding **ClusterLogging** resource for your **ClusterLogForwarder** resource. You can create multiple **ClusterLogForwarder** resources using any name, in any namespace, with the following exceptions:

- You cannot create a **ClusterLogForwarder** resource named **instance** in the **openshiftlogging** namespace, because this is reserved for a log forwarder that supports the legacy workflow using the Fluentd collector.
- You cannot create a **ClusterLogForwarder** resource named **collector** in the **openshift**-**logging** namespace, because this is reserved for the collector.

9.1.2.2. Enabling the multi log forwarder feature for a cluster

To use the multi log forwarder feature, you must create a service account and cluster role bindings for that service account. You can then reference the service account in the **ClusterLogForwarder** resource to control access permissions.

IMPORTANT

In order to support multi log forwarding in additional namespaces other than the **openshift-logging** namespace, you must update the Red Hat OpenShift Logging Operator to watch all namespaces. This functionality is supported by default in new Red Hat OpenShift Logging Operator version 5.8 installations.

9.1.2.2.1. Authorizing log collection RBAC permissions

In logging 5.8 and later, the Red Hat OpenShift Logging Operator provides **collect-audit-logs**, **collect-application-logs**, and **collect-infrastructure-logs** cluster roles, which enable the collector to collect audit logs, application logs, and infrastructure logs respectively.

You can authorize RBAC permissions for log collection by binding the required cluster roles to a service account.

Prerequisites

- The Red Hat OpenShift Logging Operator is installed in the **openshift-logging** namespace.
- You have administrator permissions.

Procedure

- 1. Create a service account for the collector. If you want to write logs to storage that requires a token for authentication, you must include a token in the service account.
- 2. Bind the appropriate cluster roles to the service account:

Example binding command

\$ oc adm policy add-cluster-role-to-user <cluster_role_name> system:serviceaccount: <namespace_name>:<service_account_name>

Additional resources

- Using RBAC to define and apply permissions
- Using service accounts in applications
- Using RBAC Authorization Kubernetes documentation

9.2. LOG OUTPUT TYPES

Outputs define the destination where logs are sent to from a log forwarder. You can configure multiple types of outputs in the **ClusterLogForwarder** custom resource (CR) to send logs to servers that support different protocols.

9.2.1. Supported log forwarding outputs

Outputs can be any of the following types:

Table 9.8. Supported log output types

Output type	Protocol	Tested with	Logging versions	Supported collector type
Elasticsearch v6	HTTP 1.1	6.8.1, 6.8.23	5.6+	Fluentd, Vector
Elasticsearch v7	HTTP 1.1	7.12.2, 7.17.7, 7.10.1	5.6+	Fluentd, Vector
Elasticsearch v8	HTTP 1.1	8.4.3, 8.6.1	5.6+	Fluentd ^[1] , Vector
Fluent Forward	Fluentd forward v1	Fluentd 1.14.6, Logstash 7.10.1, Fluentd 1.14.5	5.4+	Fluentd
Google Cloud Logging	REST over HTTPS	Latest	5.7+	Vector
НТТР	HTTP 1.1	Fluentd 1.14.6, Vector 0.21	5.7+	Fluentd, Vector
Kafka	Kafka 0.11	Kafka 2.4.1, 2.7.0, 3.3.1	5.4+	Fluentd, Vector
Loki	REST over HTTP and HTTPS	2.3.0, 2.5.0, 2.7, 2.2.1	5.4+	Fluentd, Vector
Splunk	HEC	8.2.9, 9.0.0	5.7+	Vector
Syslog	RFC3164, RFC5424	Rsyslog 8.37.0- 9.el7, rsyslog- 8.39.0	5.4+	Fluentd, Vector ^[2]
Amazon CloudWatch	REST over HTTPS	Latest	5.4+	Fluentd, Vector

- 1. Fluentd does not support Elasticsearch 8 in the logging version 5.6.2.
- 2. Vector supports Syslog in the logging version 5.7 and higher.

9.2.2. Output type descriptions

default

The on-cluster, Red Hat managed log store. You are not required to configure the default output.

NOTE

If you configure a **default** output, you receive an error message, because the **default** output name is reserved for referencing the on-cluster, Red Hat managed log store.

Loki, a horizontally scalable, highly available, multi-tenant log aggregation system.

kafka

A Kafka broker. The **kafka** output can use a TCP or TLS connection.

elasticsearch

An external Elasticsearch instance. The **elasticsearch** output can use a TLS connection.

fluentdForward

An external log aggregation solution that supports Fluentd. This option uses the Fluentd **forward** protocols. The **fluentForward** output can use a TCP or TLS connection and supports shared-key authentication by providing a **shared_key** field in a secret. Shared-key authentication can be used with or without TLS.

IMPORTANT

The **fluentdForward** output is only supported if you are using the Fluentd collector. It is not supported if you are using the Vector collector. If you are using the Vector collector, you can forward logs to Fluentd by using the **http** output.

syslog

An external log aggregation solution that supports the syslog RFC3164 or RFC5424 protocols. The **syslog** output can use a UDP, TCP, or TLS connection.

cloudwatch

Amazon CloudWatch, a monitoring and log storage service hosted by Amazon Web Services (AWS).

9.3. ENABLING JSON LOG FORWARDING

You can configure the Log Forwarding API to parse JSON strings into a structured object.

9.3.1. Parsing JSON logs

You can use a **ClusterLogForwarder** object to parse JSON logs into a structured object and forward them to a supported output.

To illustrate how this works, suppose that you have the following structured JSON log entry:

Example structured JSON log entry

{"level":"info","name":"fred","home":"bedrock"}

To enable parsing JSON log, you add **parse: json** to a pipeline in the **ClusterLogForwarder** CR, as shown in the following example:

Example snippet showing parse: json

pipelines:
inputRefs: [application]
outputRefs: myFluentd
parse: json

When you enable parsing JSON logs by using **parse: json**, the CR copies the JSON-structured log entry in a **structured** field, as shown in the following example:

Example structured output containing the structured JSON log entry

```
{"structured": { "level": "info", "name": "fred", "home": "bedrock" },
"more fields..."}
```


IMPORTANT

If the log entry does not contain valid structured JSON, the **structured** field is absent.

9.3.2. Configuring JSON log data for Elasticsearch

If your JSON logs follow more than one schema, storing them in a single index might cause type conflicts and cardinality problems. To avoid that, you must configure the **ClusterLogForwarder** custom resource (CR) to group each schema into a single output definition. This way, each schema is forwarded to a separate index.

IMPORTANT

If you forward JSON logs to the default Elasticsearch instance managed by OpenShift Logging, it generates new indices based on your configuration. To avoid performance issues associated with having too many indices, consider keeping the number of possible schemas low by standardizing to common schemas.

Structure types

You can use the following structure types in the **ClusterLogForwarder** CR to construct index names for the Elasticsearch log store:

- **structuredTypeKey** is the name of a message field. The value of that field is used to construct the index name.
 - **kubernetes.labels.<key>** is the Kubernetes pod label whose value is used to construct the index name.
 - **openshift.labels.<key>** is the **pipeline.label.<key>** element in the **ClusterLogForwarder** CR whose value is used to construct the index name.
 - **kubernetes.container_name** uses the container name to construct the index name.
- structuredTypeName: If the structuredTypeKey field is not set or its key is not present, the structuredTypeName value is used as the structured type. When you use both the structuredTypeKey field and the structuredTypeName field together, the structuredTypeName value provides a fallback index name if the key in the structuredTypeKey field is missing from the JSON log data.

NOTE

Although you can set the value of **structuredTypeKey** to any field shown in the "Log Record Fields" topic, the most useful fields are shown in the preceding list of structure types.

A structuredTypeKey: kubernetes.labels.<key> example

Suppose the following:

- Your cluster is running application pods that produce JSON logs in two different formats, "apache" and "google".
- The user labels these application pods with logFormat=apache and logFormat=google.
- You use the following snippet in your **ClusterLogForwarder** CR YAML file.

```
apiVersion: logging.openshift.io/v1
kind: ClusterLogForwarder
metadata:
# ...
spec:
# ...
 outputDefaults:
  elasticsearch:
   structuredTypeKey: kubernetes.labels.logFormat
   structuredTypeName: nologformat
 pipelines:
 - inputRefs:
  - application
  outputRefs:
  - default
  parse: json 2
```

Uses the value of the key-value pair that is formed by the Kubernetes **logFormat** label.

Enables parsing JSON logs.

In that case, the following structured log record goes to the **app-apache-write** index:

```
{
    "structured":{"name":"fred","home":"bedrock"},
    "kubernetes":{"labels":{"logFormat": "apache", ...}}
}
And the following structured log record goes to the app-google-write index:
    (
```

"structured":{"name":"wilma","home":"bedrock"}, "kubernetes":{"labels":{"logFormat": "google", ...}} }

A structuredTypeKey: openshift.labels.<key> example

Suppose that you use the following snippet in your **ClusterLogForwarder** CR YAML file.

```
outputDefaults:
elasticsearch:
structuredTypeKey: openshift.labels.myLabel 1
structuredTypeName: nologformat
pipelines:
- name: application-logs
inputRefs:
- application
```

- audit
outputRefs:
- elasticsearch-secure
- default
parse: json
labels:
myLabel: myValue 2

Uses the value of the key-value pair that is formed by the OpenShift **myLabel** label.

The myLabel element gives its string value, myValue, to the structured log record.

In that case, the following structured log record goes to the **app-myValue-write** index:

{
 "structured":{"name":"fred","home":"bedrock"},
 "openshift":{"labels":{"myLabel": "myValue", ...}}
}

Additional considerations

- The Elasticsearch *index* for structured records is formed by prepending "app-" to the structured type and appending "-write".
- Unstructured records are not sent to the structured index. They are indexed as usual in the application, infrastructure, or audit indices.
- If there is no non-empty structured type, forward an *unstructured* record with no **structured** field.

It is important not to overload Elasticsearch with too many indices. Only use distinct structured types for distinct log *formats*, **not** for each application or namespace. For example, most Apache applications use the same JSON log format and structured type, such as **LogApache**.

9.3.3. Forwarding JSON logs to the Elasticsearch log store

For an Elasticsearch log store, if your JSON log entries *follow different schemas*, configure the **ClusterLogForwarder** custom resource (CR) to group each JSON schema into a single output definition. This way, Elasticsearch uses a separate index for each schema.

IMPORTANT

Because forwarding different schemas to the same index can cause type conflicts and cardinality problems, you must perform this configuration before you forward data to the Elasticsearch store.

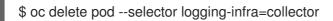
To avoid performance issues associated with having too many indices, consider keeping the number of possible schemas low by standardizing to common schemas.

Procedure

- 1. Add the following snippet to your **ClusterLogForwarder** CR YAML file.
 - outputDefaults:

elasticsearch: structuredTypeKey: <log record field> structuredTypeName: <name>
pipelines:
inputRefs:
application outputRefs: default
parse: json

- 2. Use **structuredTypeKey** field to specify one of the log record fields.
- 3. Use **structuredTypeName** field to specify a name.


IMPORTANT

To parse JSON logs, you must set both the **structuredTypeKey** and **structuredTypeName** fields.

- 4. For **inputRefs**, specify which log types to forward by using that pipeline, such as **application**, **infrastructure**, or **audit**.
- 5. Add the **parse: json** element to pipelines.
- 6. Create the CR object:

\$ oc create -f <filename>.yaml

The Red Hat OpenShift Logging Operator redeploys the collector pods. However, if they do not redeploy, delete the collector pods to force them to redeploy.

9.3.4. Forwarding JSON logs from containers in the same pod to separate indices

You can forward structured logs from different containers within the same pod to different indices. To use this feature, you must configure the pipeline with multi-container support and annotate the pods. Logs are written to indices with a prefix of **app-**. It is recommended that Elasticsearch be configured with aliases to accommodate this.

IMPORTANT

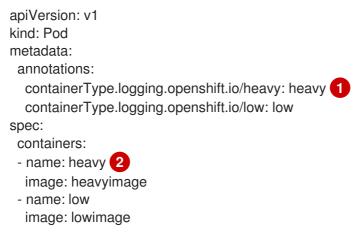
JSON formatting of logs varies by application. Because creating too many indices impacts performance, limit your use of this feature to creating indices for logs that have incompatible JSON formats. Use queries to separate logs from different namespaces, or applications with compatible JSON formats.

Prerequisites

• Logging for Red Hat OpenShift: 5.5

Procedure

1. Create or edit a YAML file that defines the **ClusterLogForwarder** CR object:


<pre>apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: name: instance namespace: openshift-logging spec: outputDefaults: elasticsearch: structuredTypeKey: kubernetes.labels.logFormat enableStructuredTypeName: nologformat enableStructuredContainerLogs: true 2 pipelines: inputRefs: - application name: application-logs outputRefs: - default parse: json</pre>	

Enables multi-container outputs.

2. Create or edit a YAML file that defines the **Pod** CR object:

Format: containerType.logging.openshift.io/<container-name>: <index>

Annotation names must match container names

WARNING

This configuration might significantly increase the number of shards on the cluster.

Additional Resources

• Kubernetes Annotations

Additional resources

• About log forwarding

9.4. CONFIGURING LOG FORWARDING

In a logging deployment, container and infrastructure logs are forwarded to the internal log store defined in the **ClusterLogging** custom resource (CR) by default.

Audit logs are not forwarded to the internal log store by default because this does not provide secure storage. You are responsible for ensuring that the system to which you forward audit logs is compliant with your organizational and governmental regulations, and is properly secured.

If this default configuration meets your needs, you do not need to configure a **ClusterLogForwarder** CR. If a **ClusterLogForwarder** CR exists, logs are not forwarded to the internal log store unless a pipeline is defined that contains the **default** output.

9.4.1. About forwarding logs to third-party systems

To send logs to specific endpoints inside and outside your OpenShift Container Platform cluster, you specify a combination of *outputs* and *pipelines* in a **ClusterLogForwarder** custom resource (CR). You can also use *inputs* to forward the application logs associated with a specific project to an endpoint. Authentication is provided by a Kubernetes Secret object.

pipeline

Defines simple routing from one log type to one or more outputs, or which logs you want to send. The log types are one of the following:

- **application**. Container logs generated by user applications running in the cluster, except infrastructure container applications.
- **infrastructure**. Container logs from pods that run in the **openshift***, **kube***, or **default** projects and journal logs sourced from node file system.
- **audit**. Audit logs generated by the node audit system, **auditd**, Kubernetes API server, OpenShift API server, and OVN network.

You can add labels to outbound log messages by using **key:value** pairs in the pipeline. For example, you might add a label to messages that are forwarded to other data centers or label the logs by type. Labels that are added to objects are also forwarded with the log message.

input

Forwards the application logs associated with a specific project to a pipeline. In the pipeline, you define which log types to forward using an **inputRef** parameter and where to forward the logs to using an **outputRef** parameter.

Secret

A key:value map that contains confidential data such as user credentials.

Note the following:

- If you do not define a pipeline for a log type, the logs of the undefined types are dropped. For example, if you specify a pipeline for the **application** and **audit** types, but do not specify a pipeline for the **infrastructure** type, **infrastructure** logs are dropped.
- You can use multiple types of outputs in the **ClusterLogForwarder** custom resource (CR) to send logs to servers that support different protocols.

The following example forwards the audit logs to a secure external Elasticsearch instance, the infrastructure logs to an insecure external Elasticsearch instance, the application logs to a Kafka broker, and the application logs from the **my-apps-logs** project to the internal Elasticsearch instance.

Sample log forwarding outputs and pipelines

```
apiVersion: "logging.openshift.io/v1"
kind: ClusterLogForwarder
metadata:
 name: <log_forwarder_name> 1
 namespace: <log_forwarder_namespace> 2
spec:
 serviceAccountName: < service account name > (3)
 outputs:
 - name: elasticsearch-secure 4
  type: "elasticsearch"
  url: https://elasticsearch.secure.com:9200
   secret:
     name: elasticsearch
  - name: elasticsearch-insecure 5
   type: "elasticsearch"
   url: http://elasticsearch.insecure.com:9200
  - name: kafka-app 6
  type: "kafka"
  url: tls://kafka.secure.com:9093/app-topic
 inputs: 7
 - name: my-app-logs
   application:
     namespaces:
     - my-project
 pipelines:
 - name: audit-logs (8)
  inputRefs:
   - audit
   outputRefs:
   - elasticsearch-secure
   - default
   labels:
    secure: "true" 9
    datacenter: "east"
  - name: infrastructure-logs 10
  inputRefs:
   - infrastructure
   outputRefs:
   - elasticsearch-insecure
   labels:
    datacenter: "west"
  - name: my-app 1
```

inputRefs: - my-app-logs outputRefs: - default - inputRefs: - application outputRefs: - kafka-app labels: datacenter: "south"

- 1 In legacy implementations, the CR name must be **instance**. In multi log forwarder implementations, you can use any name.
- 2 In legacy implementations, the CR namespace must be **openshift-logging**. In multi log forwarder implementations, you can use any namespace.
- 3 The name of your service account. The service account is only required in multi log forwarder implementations if the log forwarder is not deployed in the **openshift-logging** namespace.

Configuration for an secure Elasticsearch output using a secret with a secure URL.

- A name to describe the output.
- The type of output: **elasticsearch**.
- The secure URL and port of the Elasticsearch instance as a valid absolute URL, including the prefix.
- The secret required by the endpoint for TLS communication. The secret must exist in the **openshift-logging** project.

5 Configuration for an insecure Elasticsearch output:

- A name to describe the output.
- The type of output: **elasticsearch**.
- The insecure URL and port of the Elasticsearch instance as a valid absolute URL, including the prefix.

6 Configuration for a Kafka output using a client-authenticated TLS communication over a secure URL:

- A name to describe the output.
- The type of output: **kafka**.
- Specify the URL and port of the Kafka broker as a valid absolute URL, including the prefix.
- **7** Configuration for an input to filter application logs from the **my-project** namespace.

8 Configuration for a pipeline to send audit logs to the secure external Elasticsearch instance:

- A name to describe the pipeline.
- The inputRefs is the log type, in this example audit.

- The **outputRefs** is the name of the output to use, in this example **elasticsearch-secure** to forward to the secure Elasticsearch instance and **default** to forward to the internal Elasticsearch instance.
- Optional: Labels to add to the logs.

9 Optional: String. One or more labels to add to the logs. Quote values like "true" so they are recognized as string values, not as a boolean.

O Configuration for a pipeline to send infrastructure logs to the insecure external Elasticsearch instance.

1 Configuration for a pipeline to send logs from the **my-project** project to the internal Elasticsearch instance.

- A name to describe the pipeline.
- The inputRefs is a specific input: my-app-logs.
- The outputRefs is default.
- Optional: String. One or more labels to add to the logs.

Configuration for a pipeline to send logs to the Kafka broker, with no pipeline name:

- The inputRefs is the log type, in this example application.
- The **outputRefs** is the name of the output to use.
- Optional: String. One or more labels to add to the logs.

Fluentd log handling when the external log aggregator is unavailable

If your external logging aggregator becomes unavailable and cannot receive logs, Fluentd continues to collect logs and stores them in a buffer. When the log aggregator becomes available, log forwarding resumes, including the buffered logs. If the buffer fills completely, Fluentd stops collecting logs. OpenShift Container Platform rotates the logs and deletes them. You cannot adjust the buffer size or add a persistent volume claim (PVC) to the Fluentd daemon set or pods.

Supported Authorization Keys

Common key types are provided here. Some output types support additional specialized keys, documented with the output-specific configuration field. All secret keys are optional. Enable the security features you want by setting the relevant keys. You are responsible for creating and maintaining any additional configurations that external destinations might require, such as keys and secrets, service accounts, port openings, or global proxy configuration. Open Shift Logging will not attempt to verify a mismatch between authorization combinations.

Transport Layer Security (TLS)

Using a TLS URL (**http:**//... or **ssl:**//...) without a secret enables basic TLS server-side authentication. Additional TLS features are enabled by including a secret and setting the following optional fields:

- **passphrase**: (string) Passphrase to decode an encoded TLS private key. Requires **tls.key**.
- **ca-bundle.crt**: (string) File name of a customer CA for server authentication.

Username and Password

• **username**: (string) Authentication user name. Requires **password**.

• **password**: (string) Authentication password. Requires **username**.

Simple Authentication Security Layer (SASL)

- **sasl.enable** (boolean) Explicitly enable or disable SASL. If missing, SASL is automatically enabled when any of the other **sasl.** keys are set.
- **sasl.mechanisms**: (array) List of allowed SASL mechanism names. If missing or empty, the system defaults are used.
- **sasl.allow-insecure**: (boolean) Allow mechanisms that send clear-text passwords. Defaults to false.

9.4.1.1. Creating a Secret

You can create a secret in the directory that contains your certificate and key files by using the following command:

\$ oc create secret generic -n <namespace> <secret_name> \

- --from-file=ca-bundle.crt=<your_bundle_file> $\$
- --from-literal=username=<your_username> \
- --from-literal=password=<your_password>

NOTE

Generic or opaque secrets are recommended for best results.

9.4.2. Creating a log forwarder

To create a log forwarder, you must create a **ClusterLogForwarder** CR that specifies the log input types that the service account can collect. You can also specify which outputs the logs can be forwarded to. If you are using the multi log forwarder feature, you must also reference the service account in the **ClusterLogForwarder** CR.

If you are using the multi log forwarder feature on your cluster, you can create **ClusterLogForwarder** custom resources (CRs) in any namespace, using any name. If you are using a legacy implementation, the **ClusterLogForwarder** CR must be named **instance**, and must be created in the **openshift-logging** namespace.

IMPORTANT

You need administrator permissions for the namespace where you create the **ClusterLogForwarder** CR.

ClusterLogForwarder resource example

apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: name: <log_forwarder_name> 1 namespace: <log_forwarder_namespace> 2

spec:
serviceAccountName: <service_account_name> 3</service_account_name>
pipelines:
- inputRefs:
- <log_type> 4</log_type>
outputRefs:
- <output_name> 5</output_name>
outputs:
- name: <output_name> 6</output_name>
type: <output_type> 7</output_type>
url: <log_output_url> 8 #</log_output_url>
#
In legacy implementations, the CR name must be instance . In multi log forwarder implementations,
you can use any name.
In legacy implementations, the CR namespace must be openshift-logging . In multi log forwarder
implementations, you can use any namespace.
The name of your service account. The service account is only required in multi log forwarder implementations if the log forwarder is not deployed in the openshift-logging namespace.
Implementations in the log forwarder is not deployed in the opensint-logging hamespace.
The log types that are collected. The value for this field can be audit for audit logs, application for
application logs, infrastructure for infrastructure logs, or a named input that has been defined for
your application.
The type of eutruit that you want to ferward lease to The value of this field can be default leki
7 The type of output that you want to forward logs to. The value of this field can be default , loki , kafka , elasticsearch , fluentdForward , syslog , or cloudwatch .
NOTE

The **default** output type is not supported in mutli log forwarder implementations.

- A name for the output that you want to forward logs to.
- The URL of the output that you want to forward logs to. 8

9.4.3. Enabling multi-line exception detection

Enables multi-line error detection of container logs.

3

4

5

WARNING

Enabling this feature could have performance implications and may require additional computing resources or alternate logging solutions.

Log parsers often incorrectly identify separate lines of the same exception as separate exceptions. This leads to extra log entries and an incomplete or inaccurate view of the traced information.

Example java exception

java.lang.NullPointerException: Cannot invoke "String.toString()" because "<param1>" is null at testjava.Main.handle(Main.java:47)

- at testjava.Main.printMe(Main.java:47)
- at testjava.Main.main(Main.java:10)
- To enable logging to detect multi-line exceptions and reassemble them into a single log entry, ensure that the **ClusterLogForwarder** Custom Resource (CR) contains a **detectMultilineErrors** field, with a value of **true**.

Example ClusterLogForwarder CR

```
apiVersion: logging.openshift.io/v1
kind: ClusterLogForwarder
metadata:
name: instance
namespace: openshift-logging
spec:
pipelines:
- name: my-app-logs
inputRefs:
- application
outputRefs:
- default
detectMultilineErrors: true
```

9.4.3.1. Details

When log messages appear as a consecutive sequence forming an exception stack trace, they are combined into a single, unified log record. The first log message's content is replaced with the concatenated content of all the message fields in the sequence.

Table 9.9. Supported languages per collector:

Language	Fluentd	Vector
Java	\checkmark	\checkmark
JS	\checkmark	✓
Ruby	\checkmark	✓
Python	\checkmark	✓
Golang	✓	✓
PHP	✓	✓
Dart	\checkmark	✓

9.4.3.2. Troubleshooting

When enabled, the collector configuration will include a new section with type: detect_exceptions

Example vector configuration section

```
[transforms.detect_exceptions_app-logs]
type = "detect_exceptions"
inputs = ["application"]
languages = ["All"]
group_by = ["kubernetes.namespace_name","kubernetes.pod_name","kubernetes.container_name"]
expire_after_ms = 2000
multiline_flush_interval_ms = 1000
```

Example fluentd config section

```
<label @MULTILINE_APP_LOGS>
<match kubernetes.**>
@type detect_exceptions
remove_tag_prefix 'kubernetes'
message message
force_line_breaks true
multiline_flush_interval .2
</match></label>
```

9.4.4. Forwarding logs to Google Cloud Platform (GCP)

You can forward logs to Google Cloud Logging in addition to, or instead of, the internal default OpenShift Container Platform log store.

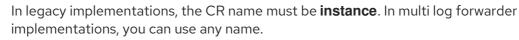
NOTE

Using this feature with Fluentd is not supported.

Prerequisites

• Red Hat OpenShift Logging Operator 5.5.1 and later

Procedure


1. Create a secret using your Google service account key .

\$ oc -n openshift-logging create secret generic gcp-secret --from-file google-applicationcredentials.json=<your_service_account_key_file.json>

2. Create a **ClusterLogForwarder** Custom Resource YAML using the template below:

apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: name: <log_forwarder_name> 1 namespace: <log_forwarder_namespace> 2

spec:
serviceAccountName: <service_account_name> 3</service_account_name>
outputs:
- name: gcp-1
type: googleCloudLogging
secret:
name: gcp-secret
googleCloudLogging:
projectId : "openshift-gce-devel" 4
logId : "app-gcp" 5
pipelines:
- name: test-app
inputRefs: 6
- application
outputRefs:
- gcp-1

- In legacy implementations, the CR namespace must be **openshift-logging**. In multi log forwarder implementations, you can use any namespace.
- 3 The name of your service account. The service account is only required in multi log forwarder implementations if the log forwarder is not deployed in the **openshift-logging** namespace.

Set a **projectId**, **folderId**, **organizationId**, or **billingAccountId** field and its corresponding value, depending on where you want to store your logs in the GCP resource hierarchy.

Set the value to add to the **logName** field of the Log Entry.

Specify which log types to forward by using the pipeline: **application**, **infrastructure**, or **audit**.

Additional resources

- Google Cloud Billing Documentation
- Google Cloud Logging Query Language Documentation

9.4.5. Forwarding logs to Splunk

You can forward logs to the Splunk HTTP Event Collector (HEC) in addition to, or instead of, the internal default OpenShift Container Platform log store.

NOTE

Using this feature with Fluentd is not supported.

Prerequisites

• Red Hat OpenShift Logging Operator 5.6 or later

- A **ClusterLogging** instance with **vector** specified as the collector
- Base64 encoded Splunk HEC token

Procedure

1. Create a secret using your Base64 encoded Splunk HEC token.

\$ oc -n openshift-logging create secret generic vector-splunk-secret --from-literal hecToken= <HEC_Token>

2. Create or edit the **ClusterLogForwarder** Custom Resource (CR) using the template below:

apiVersion: logging.openshift.io/v1
kind: ClusterLogForwarder
metadata:
name: <log_forwarder_name> 1</log_forwarder_name>
namespace: <log_forwarder_namespace> 2</log_forwarder_namespace>
spec:
serviceAccountName: <service_account_name> 3</service_account_name>
outputs:
- name: splunk-receiver 4
secret:
name: vector-splunk-secret 5
type: splunk 6
url: <http: your.splunk.hec.url:8088=""> 7</http:>
pipelines: 8
- inputRefs:
- application
- infrastructure
name: 9
outputRefs:
- splunk-receiver 10
_

In legacy implementations, the CR name must be **instance**. In multi log forwarder implementations, you can use any name.

In legacy implementations, the CR namespace must be **openshift-logging**. In multi log forwarder implementations, you can use any namespace.

(3	

2

The name of your service account. The service account is only required in multi log forwarder implementations if the log forwarder is not deployed in the **openshift-logging** namespace.

Specify a name for the output.

Specify the output type as **splunk**.

Specify the URL (including port) of your Splunk HEC.

Specify the name of the secret that contains your HEC token.

Specify which log types to forward by using the pipeline: **application**, **infrastructure**, or **audit**.

Optional: Specify a name for the pipeline.

Specify the name of the output to use when forwarding logs with this pipeline.

9.4.6. Forwarding logs over HTTP

Forwarding logs over HTTP is supported for both the Fluentd and Vector log collectors. To enable, specify **http** as the output type in the **ClusterLogForwarder** custom resource (CR).

Procedure

• Create or edit the **ClusterLogForwarder** CR using the template below:

Example ClusterLogForwarder CR

apiVersion: logging.openshift.io/v1
kind: ClusterLogForwarder
metadata:
name: <log_forwarder_name> 1</log_forwarder_name>
namespace: <log_forwarder_namespace> 2</log_forwarder_namespace>
spec:
serviceAccountName: <service_account_name> 3</service_account_name>
outputs:
- name: httpout-app
type: http
url: 4
http:
headers: 5
h1: v1
h2: v2
method: POST
secret:
name: 6
tls:
insecureSkipVerify: 7
pipelines:
- name:
inputRefs:
- application
outputRefs:
- 8

In legacy implementations, the CR name must be **instance**. In multi log forwarder implementations, you can use any name.

In legacy implementations, the CR namespace must be **openshift-logging**. In multi log forwarder implementations, you can use any namespace.

The name of your service account. The service account is only required in multi log forwarder implementations if the log forwarder is not deployed in the **openshift-logging** namespace.

Destination address for logs.

- Additional headers to send with the log record.

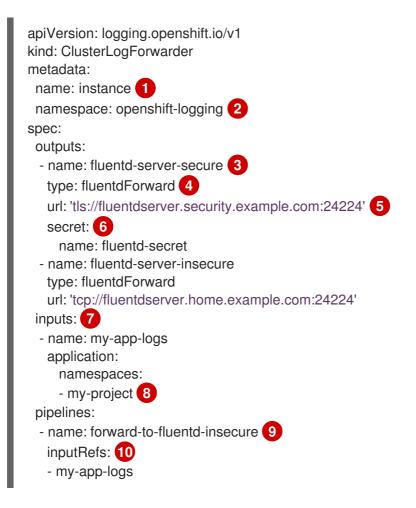
8

- Secret name for destination credentials.
- **7** Values are either **true** or **false**.
 - This value should be the same as the output name.

9.4.7. Forwarding application logs from specific projects

You can forward a copy of the application logs from specific projects to an external log aggregator, in addition to, or instead of, using the internal log store. You must also configure the external log aggregator to receive log data from OpenShift Container Platform.

To configure forwarding application logs from a project, you must create a **ClusterLogForwarder** custom resource (CR) with at least one input from a project, optional outputs for other log aggregators, and pipelines that use those inputs and outputs.

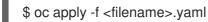

Prerequisites

• You must have a logging server that is configured to receive the logging data using the specified protocol or format.

Procedure

1. Create or edit a YAML file that defines the **ClusterLogForwarder** CR:

Example ClusterLogForwarder CR



	outputRefs: 1 - fluentd-server-insecure labels: project: "my-project" 12 - name: forward-to-fluentd-secure 13 inputRefs: - application 14 - audit - infrastructure
	outputRefs: - fluentd-server-secure - default labels: clusterId: "C1234"
1	The name of the ClusterLogForwarder CR must be instance .
2	The namespace for the ClusterLogForwarder CR must be openshift-logging .
3	The name of the output.
4	The output type: elasticsearch, fluentdForward, syslog, or kafka.
5	The URL and port of the external log aggregator as a valid absolute URL. If the cluster- wide proxy using the CIDR annotation is enabled, the output must be a server name or FQDN, not an IP address.
6	If using a tls prefix, you must specify the name of the secret required by the endpoint for TLS communication. The secret must exist in the openshift-logging project and have tls.crt , tls.key , and ca-bundle.crt keys that each point to the certificates they represent.
7	The configuration for an input to filter application logs from the specified projects.
8	If no namespace is specified, logs are collected from all namespaces.
9	The pipeline configuration directs logs from a named input to a named output. In this example, a pipeline named forward-to-fluentd-insecure forwards logs from an input named my-app-logs to an output named fluentd-server-insecure .
10	A list of inputs.
1	The name of the output to use.
12	Optional: String. One or more labels to add to the logs.
13	Configuration for a pipeline to send logs to other log aggregators.
	• Optional: Specify a name for the pipeline.
	• Specify which log types to forward by using the pipeline: application, infrastructure , or audit .
	• Specify the name of the output to use when forwarding logs with this pipeline.
	• Optional: Specify the default output to forward logs to the default log store.

• Optional: String. One or more labels to add to the logs.

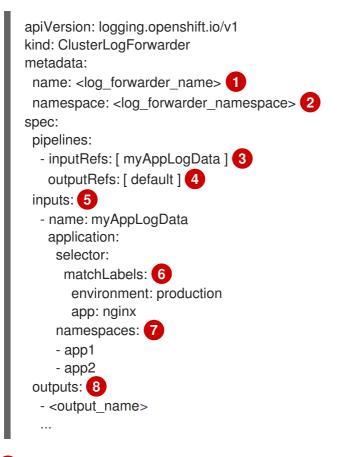
Note that application logs from all namespaces are collected when using this configuration.

2. Apply the **ClusterLogForwarder** CR by running the following command:

9.4.8. Forwarding application logs from specific pods

As a cluster administrator, you can use Kubernetes pod labels to gather log data from specific pods and forward it to a log collector.

Suppose that you have an application composed of pods running alongside other pods in various namespaces. If those pods have labels that identify the application, you can gather and output their log data to a specific log collector.


To specify the pod labels, you use one or more **matchLabels** key-value pairs. If you specify multiple key-value pairs, the pods must match all of them to be selected.

Procedure

14

 Create or edit a YAML file that defines the ClusterLogForwarder CR object. In the file, specify the pod labels using simple equality-based selectors under inputs[].name.application.selector.matchLabels, as shown in the following example.

Example ClusterLogForwarder CR YAML file

In legacy implementations, the CR name must be **instance**. In multi log forwarder implementations, you can use any name.

In legacy implementations, the CR namespace must be **openshift-logging**. In multi log forwarder implementations, you can use any namespace.

Specify one or more comma-separated values from **inputs[].name**.

Specify one or more comma-separated values from **outputs[]**.

Define a unique **inputs[].name** for each application that has a unique set of pod labels.

Specify the key-value pairs of pod labels whose log data you want to gather. You must specify both a key and value, not just a key. To be selected, the pods must match all the key-value pairs.

Optional: Specify one or more namespaces.

Specify one or more outputs to forward your log data to.

- 2. Optional: To restrict the gathering of log data to specific namespaces, use **inputs[].name.application.namespaces**, as shown in the preceding example.
- 3. Optional: You can send log data from additional applications that have different pod labels to the same pipeline.
 - a. For each unique combination of pod labels, create an additional **inputs[].name** section similar to the one shown.
 - b. Update the **selectors** to match the pod labels of this application.

c. Add the new inputs[].name value to inputRefs. For example:

4. Create the CR object:

\$ oc create -f <file-name>.yaml

Additional resources

• For more information on **matchLabels** in Kubernetes, see Resources that support set-based requirements.

9.4.9. Overview of API audit filter

OpenShift API servers generate audit events for each API call, detailing the request, response, and the identity of the requester, leading to large volumes of data. The API Audit filter uses rules to enable the exclusion of non-essential events and the reduction of event size, facilitating a more manageable audit trail. Rules are checked in order, checking stops at the first match. How much data is included in an event is determined by the value of the **level** field:

- **None**: The event is dropped.
- Metadata: Audit metadata is included, request and response bodies are removed.
- **Request**: Audit metadata and the request body are included, the response body is removed.

• **RequestResponse**: All data is included: metadata, request body and response body. The response body can be very large. For example, **oc get pods -A** generates a response body containing the YAML description of every pod in the cluster.

In logging 5.8 and later, the **ClusterLogForwarder** custom resource (CR) uses the same format as the standard Kubernetes audit policy, while providing the following additional functions:

Wildcards

Names of users, groups, namespaces, and resources can have a leading or trailing * asterisk character. For example, namespace **openshift-*** matches **openshift-apiserver** or **openshift-apiserver**

Default Rules

Events that do not match any rule in the policy are filtered as follows:

- Read-only system events such as **get**, **list**, **watch** are dropped.
- Service account write events that occur within the same namespace as the service account are dropped.
- All other events are forwarded, subject to any configured rate limits.

To disable these defaults, either end your rules list with a rule that has only a **level** field or add an empty rule.

Omit Response Codes

A list of integer status codes to omit. You can drop events based on the HTTP status code in the response by using the **OmitResponseCodes** field, a list of HTTP status code for which no events are created. The default value is **[404, 409, 422, 429]**. If the value is an empty list, **[]**, then no status codes are omitted.

The **ClusterLogForwarder** CR audit policy acts in addition to the OpenShift Container Platform audit policy. The **ClusterLogForwarder** CR audit filter changes what the log collector forwards, and provides the ability to filter by verb, user, group, namespace, or resource. You can create multiple filters to send different summaries of the same audit stream to different places. For example, you can send a detailed stream to the local cluster log store, and a less detailed stream to a remote site.

NOTE

The example provided is intended to illustrate the range of rules possible in an audit policy and is not a recommended configuration.

Example audit policy

apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: name: instance namespace: openshift-logging spec: pipelines: - name: my-pipeline inputRefs: audit 1 filterRefs: my-policy 2

```
outputRefs: default
filters:
 - name: my-policy
  type: kubeAPIAudit
  kubeAPIAudit:
   # Don't generate audit events for all requests in RequestReceived stage.
   omitStages:
     - "RequestReceived"
   rules:
     # Log pod changes at RequestResponse level
     - level: RequestResponse
      resources:
      - group: ""
       resources: ["pods"]
     # Log "pods/log", "pods/status" at Metadata level
     - level: Metadata
      resources:
      - group: ""
       resources: ["pods/log", "pods/status"]
     # Don't log requests to a configmap called "controller-leader"
     - level: None
      resources:
      - group: ""
       resources: ["configmaps"]
       resourceNames: ["controller-leader"]
     # Don't log watch requests by the "system:kube-proxy" on endpoints or services
     - level: None
      users: ["system:kube-proxy"]
      verbs: ["watch"]
      resources:
      - group: "" # core API group
       resources: ["endpoints", "services"]
     # Don't log authenticated requests to certain non-resource URL paths.
     - level: None
      userGroups: ["system:authenticated"]
      nonResourceURLs:
      - "/api*" # Wildcard matching.
      - "/version"
     # Log the request body of configmap changes in kube-system.
     - level: Request
      resources:
      - group: "" # core API group
       resources: ["configmaps"]
      # This rule only applies to resources in the "kube-system" namespace.
      # The empty string "" can be used to select non-namespaced resources.
      namespaces: ["kube-system"]
     # Log configmap and secret changes in all other namespaces at the Metadata level.
     - level: Metadata
      resources:
```

group: "" # core API group resources: ["secrets", "configmaps"]
Log all other resources in core and extensions at the Request level.
level: Request resources:

group: "" # core API group
group: "extensions" # Version of group should NOT be included.

A catch-all rule to log all other requests at the Metadata level.

A catch-all rule to log all other requests at the Metadata le - level: Metadata

1 The log types that are collected. The value for this field can be **audit** for audit logs, **application** for application logs, **infrastructure** for infrastructure logs, or a named input that has been defined for your application.

The name of your audit policy.

Additional resources

• Logging for egress firewall and network policy rules

9.4.10. Forwarding logs to an external Loki logging system

You can forward logs to an external Loki logging system in addition to, or instead of, the default log store.

To configure log forwarding to Loki, you must create a **ClusterLogForwarder** custom resource (CR) with an output to Loki, and a pipeline that uses the output. The output to Loki can use the HTTP (insecure) or HTTPS (secure HTTP) connection.

Prerequisites

• You must have a Loki logging system running at the URL you specify with the **url** field in the CR.

Procedure

1. Create or edit a YAML file that defines the **ClusterLogForwarder** CR object:

apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata:
name: <log_forwarder_name> 1</log_forwarder_name>
namespace: <log_forwarder_namespace> 2</log_forwarder_namespace>
spec:
serviceAccountName: <service_account_name> 3</service_account_name>
outputs:
- name: loki-insecure 4
type: "loki" 5
url: http://loki.insecure.com:3100 6
loki:
tenantKey: kubernetes.namespace_name labelKeys:

- kubernetes.labels.foo
- name: loki-secure 7
type: "loki"
url: https://loki.secure.com:3100
secret:
name: loki-secret 8
loki:
tenantKey: kubernetes.namespace_name 9
labelKeys:
- kubernetes.labels.foo 10
pipelines:
- name: application-logs 11
inputRefs: 12
- application
- audit
outputRefs: 13
- loki-secure

In legacy implementations, the CR name must be **instance**. In multi log forwarder implementations, you can use any name.

In legacy implementations, the CR namespace must be **openshift-logging**. In multi log forwarder implementations, you can use any namespace.

The name of your service account. The service account is only required in multi log forwarder implementations if the log forwarder is not deployed in the **openshift-logging** namespace.

Specify a name for the output.

Specify the type as "loki".

7

9

6 Specify the URL and port of the Loki system as a valid absolute URL. You can use the **http** (insecure) or **https** (secure HTTP) protocol. If the cluster-wide proxy using the CIDR annotation is enabled, the output must be a server name or FQDN, not an IP Address. Loki's default port for HTTP(S) communication is 3100.

For a secure connection, you can specify an **https** or **http** URL that you authenticate by specifying a **secret**.

8 For an **https** prefix, specify the name of the secret required by the endpoint for TLS communication. The secret must contain a **ca-bundle.crt** key that points to the certificates it represents. Otherwise, for **http** and **https** prefixes, you can specify a secret that contains a username and password. In legacy implementations, the secret must exist in the **openshift-logging** project. For more information, see the following "Example: Setting a secret that contains a username and password."

Optional: Specify a metadata key field to generate values for the **TenantID** field in Loki. For example, setting **tenantKey: kubernetes.namespace_name** uses the names of the Kubernetes namespaces as values for tenant IDs in Loki. To see which other log record fields you can specify, see the "Log Record Fields" link in the following "Additional resources" section.

Optional: Specify a list of metadata field keys to replace the default Loki labels. Loki label names must match the regular expression **[a-zA-Z_:][a-zA-Z0-9_:]***. Illegal characters in metadata keys are replaced with _ to form the label name. For example, the

kubernetes.labels.foo metadata key becomes Loki label **kubernetes_labels_foo**. If you do not set **labelKeys**, the default value is: **[log_type, kubernetes.namespace_name, kubernetes.pod_name, kubernetes_host]**. Keep the set of labels small because Loki limits the size and number of labels allowed. See Configuring Loki, limits_config. You can still query based on any log record field using query filters.

Optional: Specify a name for the pipeline.

Specify which log types to forward by using the pipeline: **application, infrastructure**, or **audit**.

Specify the name of the output to use when forwarding logs with this pipeline.

NOTE

Because Loki requires log streams to be correctly ordered by timestamp, **labelKeys** always includes the **kubernetes_host** label set, even if you do not specify it. This inclusion ensures that each stream originates from a single host, which prevents timestamps from becoming disordered due to clock differences on different hosts.

2. Apply the **ClusterLogForwarder** CR object by running the following command:

Additional resources

• Configuring Loki server

9.4.11. Forwarding logs to an external Elasticsearch instance

You can forward logs to an external Elasticsearch instance in addition to, or instead of, the internal log store. You are responsible for configuring the external log aggregator to receive log data from OpenShift Container Platform.

To configure log forwarding to an external Elasticsearch instance, you must create a **ClusterLogForwarder** custom resource (CR) with an output to that instance, and a pipeline that uses the output. The external Elasticsearch output can use the HTTP (insecure) or HTTPS (secure HTTP) connection.

To forward logs to both an external and the internal Elasticsearch instance, create outputs and pipelines to the external instance and a pipeline that uses the **default** output to forward logs to the internal instance.

NOTE

If you only want to forward logs to an internal Elasticsearch instance, you do not need to create a **ClusterLogForwarder** CR.

Prerequisites

• You must have a logging server that is configured to receive the logging data using the specified protocol or format.

Procedure

1. Create or edit a YAML file that defines the **ClusterLogForwarder** CR:

Example ClusterLogForwarder CR

apiVersion: logging.openshift.io/v1
kind: ClusterLogForwarder
metadata:
name: <log_forwarder_name> 1</log_forwarder_name>
namespace: <log_forwarder_namespace> 2</log_forwarder_namespace>
spec:
serviceAccountName: <service_account_name> 3</service_account_name>
outputs:
- name: elasticsearch-example 4
type: elasticsearch 5
elasticsearch:
version: 8 6
url: http://elasticsearch.example.com:9200 7
secret:
name: es-secret 8
pipelines:
- name: application-logs 9
inputRefs: 10
- application
- audit
outputRefs:
- elasticsearch-example 11
- default 12
labels:
myLabel: "myValue" 13
#

In legacy implementations, the CR name must be **instance**. In multi log forwarder implementations, you can use any name.

In legacy implementations, the CR namespace must be **openshift-logging**. In multi log forwarder implementations, you can use any namespace.

The name of your service account. The service account is only required in multi log forwarder implementations if the log forwarder is not deployed in the **openshift-logging** namespace.

3

Specify a name for the output.

Specify the **elasticsearch** type.

7

Specify the Elasticsearch version. This can be 6, 7, or 8.

Specify the URL and port of the external Elasticsearch instance as a valid absolute URL. You can use the **http** (insecure) or **https** (secure HTTP) protocol. If the cluster-wide proxy using the CIDR annotation is enabled, the output must be a server name or FQDN, not an IP Address.

For an **https** prefix, specify the name of the secret required by the endpoint for TLS communication. The secret must contain a **ca-bundle.crt** key that points to the certificate

Optional: Specify a name for the pipeline.

Specify which log types to forward by using the pipeline: **application, infrastructure**, or **audit**.

Specify the name of the output to use when forwarding logs with this pipeline.

Optional: Specify the **default** output to send the logs to the internal Elasticsearch instance.

Optional: String. One or more labels to add to the logs.

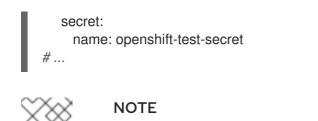
2. Apply the ClusterLogForwarder CR:

Example: Setting a secret that contains a username and password

You can use a secret that contains a username and password to authenticate a secure connection to an external Elasticsearch instance.

For example, if you cannot use mutual TLS (mTLS) keys because a third party operates the Elasticsearch instance, you can use HTTP or HTTPS and set a secret that contains the username and password.

1. Create a **Secret** YAML file similar to the following example. Use base64-encoded values for the **username** and **password** fields. The secret type is opaque by default.


```
apiVersion: v1
kind: Secret
metadata:
name: openshift-test-secret
data:
username: <username>
password: <password>
# ...
```

2. Create the secret:

\$ oc create secret -n openshift-logging openshift-test-secret.yaml

3. Specify the name of the secret in the **ClusterLogForwarder** CR:

```
kind: ClusterLogForwarder
metadata:
name: instance
namespace: openshift-logging
spec:
outputs:
- name: elasticsearch
type: "elasticsearch"
url: https://elasticsearch.secure.com:9200
```


In the value of the **url** field, the prefix can be **http** or **https**.

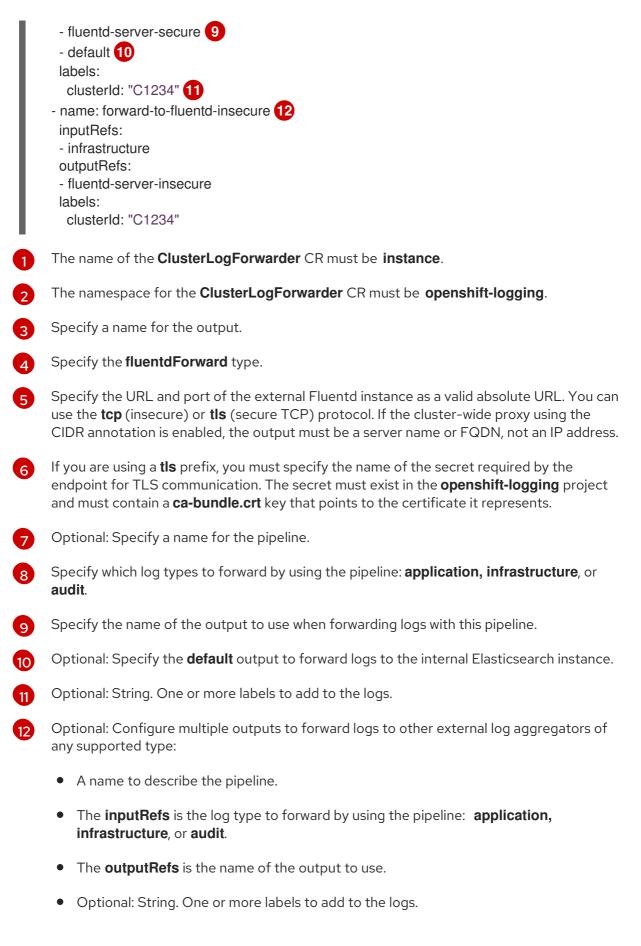
4. Apply the CR object:

\$ oc apply -f <filename>.yaml

9.4.12. Forwarding logs using the Fluentd forward protocol

You can use the Fluentd **forward** protocol to send a copy of your logs to an external log aggregator that is configured to accept the protocol instead of, or in addition to, the default Elasticsearch log store. You are responsible for configuring the external log aggregator to receive the logs from OpenShift Container Platform.

To configure log forwarding using the **forward** protocol, you must create a **ClusterLogForwarder** custom resource (CR) with one or more outputs to the Fluentd servers, and pipelines that use those outputs. The Fluentd output can use a TCP (insecure) or TLS (secure TCP) connection.


Prerequisites

• You must have a logging server that is configured to receive the logging data using the specified protocol or format.

Procedure

1. Create or edit a YAML file that defines the **ClusterLogForwarder** CR object:

apiVersion: logging.openshift.io/v1
kind: ClusterLogForwarder
metadata:
name: instance 1
namespace: openshift-logging 2
spec:
outputs:
- name: fluentd-server-secure 3
type: fluentdForward 4
url: 'tls://fluentdserver.security.example.com:24224' 5
secret: 6
name: fluentd-secret
 name: fluentd-server-insecure
type: fluentdForward
url: 'tcp://fluentdserver.home.example.com:24224'
pipelines:
- name: forward-to-fluentd-secure 7
inputRefs: 8
- application
- audit
outputRefs:

2. Create the CR object:

9.4.12.1. Enabling nanosecond precision for Logstash to ingest data from fluentd

For Logstash to ingest log data from fluentd, you must enable nanosecond precision in the Logstash configuration file.

Procedure

• In the Logstash configuration file, set **nanosecond_precision** to **true**.

Example Logstash configuration file

```
input { tcp { codec => fluent { nanosecond_precision => true } port => 24114 } }
filter { }
output { stdout { codec => rubydebug } }
```

9.4.13. Forwarding logs using the syslog protocol

You can use the **syslog** RFC3164 or RFC5424 protocol to send a copy of your logs to an external log aggregator that is configured to accept the protocol instead of, or in addition to, the default Elasticsearch log store. You are responsible for configuring the external log aggregator, such as a syslog server, to receive the logs from OpenShift Container Platform.

To configure log forwarding using the **syslog** protocol, you must create a **ClusterLogForwarder** custom resource (CR) with one or more outputs to the syslog servers, and pipelines that use those outputs. The syslog output can use a UDP, TCP, or TLS connection.

Prerequisites

• You must have a logging server that is configured to receive the logging data using the specified protocol or format.

Procedure

1. Create or edit a YAML file that defines the **ClusterLogForwarder** CR object:

apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder
metadata:
name: <log_forwarder_name> 1</log_forwarder_name>
namespace: <log_forwarder_namespace> 2</log_forwarder_namespace>
spec:
serviceAccountName: <service_account_name> 3</service_account_name>
outputs:
- name: rsyslog-east 4
type: syslog 5
syslog: 6
facility: local0
rfc: RFC3164
payloadKey: message
severity: informational
url: 'tls://rsyslogserver.east.example.com:514' 7
secret: 8
name: syslog-secret

- name: rsyslog-west type: syslog syslog: appName: myapp facility: user msgID: mymsg procID: myproc rfc: RFC5424 severity: debug url: 'tcp://rsyslogserver.west.example.com:514' pipelines: - name: syslog-east 9 inputRefs: 10 - audit - application outputRefs: 11 - rsyslog-east - default 12 labels: secure: "true" 13 syslog: "east" - name: syslog-west 14 inputRefs: - infrastructure outputRefs: - rsyslog-west - default labels: syslog: "west"

In legacy implementations, the CR name must be **instance**. In multi log forwarder implementations, you can use any name.

In legacy implementations, the CR namespace must be **openshift-logging**. In multi log forwarder implementations, you can use any namespace.

The name of your service account. The service account is only required in multi log forwarder implementations if the log forwarder is not deployed in the **openshift-logging** namespace.

Specify a name for the output.

3)

Specify the **syslog** type.

Optional: Specify the syslog parameters, listed below.

Specify the URL and port of the external syslog instance. You can use the **udp** (insecure),
 tcp (insecure) or **tls** (secure TCP) protocol. If the cluster-wide proxy using the CIDR annotation is enabled, the output must be a server name or FQDN, not an IP address.

If using a **tls** prefix, you must specify the name of the secret required by the endpoint for TLS communication. The secret must contain a **ca-bundle.crt** key that points to the certificate it represents. In legacy implementations, the secret must exist in the **openshift-logging** project.

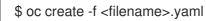
8

Optional: Specify a name for the pipeline.

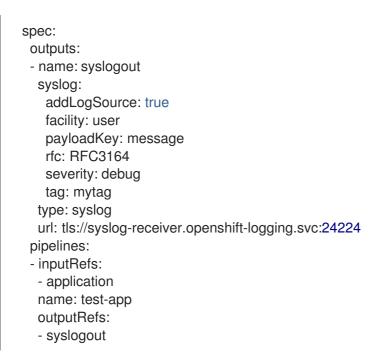
Specify which log types to forward by using the pipeline: **application, infrastructure**, or **audit**.

Specify the name of the output to use when forwarding logs with this pipeline.

Optional: Specify the **default** output to forward logs to the internal Elasticsearch instance.



Optional: String. One or more labels to add to the logs. Quote values like "true" so they are recognized as string values, not as a boolean.


Optional: Configure multiple outputs to forward logs to other external log aggregators of any supported type:

- A name to describe the pipeline.
- The inputRefs is the log type to forward by using the pipeline: application, infrastructure, or audit.
- The **outputRefs** is the name of the output to use.
- Optional: String. One or more labels to add to the logs.
- 2. Create the CR object:

9.4.13.1. Adding log source information to message output

You can add **namespace_name**, **pod_name**, and **container_name** elements to the **message** field of the record by adding the **AddLogSource** field to your **ClusterLogForwarder** custom resource (CR).

NOTE

This configuration is compatible with both RFC3164 and RFC5424.

Example syslog message output without AddLogSource

<15>1 2020-11-15T17:06:14+00:00 fluentd-9hkb4 mytag - - - {"msgcontent"=>"Message Contents", "timestamp"=>"2020-11-15 17:06:09", "tag_key"=>"rec_tag", "index"=>56}

Example syslog message output with AddLogSource

<15>1 2020-11-16T10:49:37+00:00 crc-j55b9-master-0 mytag - - - namespace_name=clo-test-6327,pod_name=log-generator.ff9746c49-qxm7l,container_name=log-generator,message= {"msgcontent":"My life is my message", "timestamp":"2020-11-16 10:49:36", "tag_key":"rec_tag", "index":76}

9.4.13.2. Syslog parameters

You can configure the following for the **syslog** outputs. For more information, see the syslog RFC3164 or RFC5424 RFC.

- facility: The syslog facility. The value can be a decimal integer or a case-insensitive keyword:
 - **0** or **kern** for kernel messages
 - 1 or **user** for user-level messages, the default.
 - 2 or mail for the mail system
 - 3 or daemon for system daemons
 - 4 or **auth** for security/authentication messages
 - 5 or syslog for messages generated internally by syslogd
 - 6 or lpr for the line printer subsystem
 - 7 or **news** for the network news subsystem
 - 8 or **uucp** for the UUCP subsystem
 - 9 or cron for the clock daemon
 - 10 or authpriv for security authentication messages
 - 11 or ftp for the FTP daemon
 - 12 or ntp for the NTP subsystem
 - 13 or security for the syslog audit log
 - 14 or console for the syslog alert log
 - 15 or solaris-cron for the scheduling daemon
 - 16-23 or local0 local7 for locally used facilities
- Optional: **payloadKey**: The record field to use as payload for the syslog message.

NOTE

Configuring the **payloadKey** parameter prevents other parameters from being forwarded to the syslog.

- rfc: The RFC to be used for sending logs using syslog. The default is RFC5424.
- severity: The syslog severity to set on outgoing syslog records. The value can be a decimal integer or a case-insensitive keyword:
 - 0 or **Emergency** for messages indicating the system is unusable
 - 1 or Alert for messages indicating action must be taken immediately
 - 2 or Critical for messages indicating critical conditions
 - 3 or Error for messages indicating error conditions
 - 4 or Warning for messages indicating warning conditions
 - 5 or Notice for messages indicating normal but significant conditions
 - 6 or Informational for messages indicating informational messages
 - 7 or **Debug** for messages indicating debug-level messages, the default
- tag: Tag specifies a record field to use as a tag on the syslog message.
- trimPrefix: Remove the specified prefix from the tag.

9.4.13.3. Additional RFC5424 syslog parameters

The following parameters apply to RFC5424:

- appName: The APP-NAME is a free-text string that identifies the application that sent the log. Must be specified for **RFC5424**.
- msgID: The MSGID is a free-text string that identifies the type of message. Must be specified for **RFC5424**.
- procID: The PROCID is a free-text string. A change in the value indicates a discontinuity in syslog reporting. Must be specified for **RFC5424**.

9.4.14. Forwarding logs to a Kafka broker

You can forward logs to an external Kafka broker in addition to, or instead of, the default log store.

To configure log forwarding to an external Kafka instance, you must create a **ClusterLogForwarder** custom resource (CR) with an output to that instance, and a pipeline that uses the output. You can include a specific Kafka topic in the output or use the default. The Kafka output can use a TCP (insecure) or TLS (secure TCP) connection.

Procedure

1. Create or edit a YAML file that defines the **ClusterLogForwarder** CR object:

apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: name: <log_forwarder_name> (1) namespace: <log_forwarder_namespace> (2) spec: serviceAccountName: <service account name> (3) outputs: - name: app-logs 4 type: kafka 5 url: tls://kafka.example.devlab.com:9093/app-topic 6 secret: name: kafka-secret 7 - name: infra-logs type: kafka url: tcp://kafka.devlab2.example.com:9093/infra-topic 8 - name: audit-logs type: kafka url: tls://kafka.qelab.example.com:9093/audit-topic secret: name: kafka-secret-ge pipelines: - name: app-topic 9 inputRefs: 10 - application outputRefs: 11 - app-logs labels: logType: "application" **12** - name: infra-topic 13 inputRefs: - infrastructure outputRefs: - infra-logs labels: logType: "infra" - name: audit-topic inputRefs: - audit outputRefs: - audit-logs labels: logType: "audit"

In legacy implementations, the CR name must be **instance**. In multi log forwarder implementations, you can use any name.

3)

In legacy implementations, the CR namespace must be **openshift-logging**. In multi log forwarder implementations, you can use any namespace.

The name of your service account. The service account is only required in multi log forwarder implementations if the log forwarder is not deployed in the **openshift-logging** namespace.

Specify a name for the output.

Specify the kafka type.

Specify the URL and port of the Kafka broker as a valid absolute URL, optionally with a specific topic. You can use the tcp (insecure) or tls (secure TCP) protocol. If the clusterwide proxy using the CIDR annotation is enabled, the output must be a server name or FQDN, not an IP address.

7

If you are using a **tIs** prefix, you must specify the name of the secret required by the endpoint for TLS communication. The secret must contain a **ca-bundle.crt** key that points to the certificate it represents. In legacy implementations, the secret must exist in the openshift-logging project.

8

Optional: To send an insecure output, use a **tcp** prefix in front of the URL. Also omit the secret key and its name from this output.

Optional: Specify a name for the pipeline.

Specify which log types to forward by using the pipeline: **application, infrastructure**, or audit.

11

Specify the name of the output to use when forwarding logs with this pipeline.

Optional: String. One or more labels to add to the logs.

Optional: Configure multiple outputs to forward logs to other external log aggregators of 13 any supported type:

- A name to describe the pipeline.
- The **inputRefs** is the log type to forward by using the pipeline: **application**, infrastructure, or audit.
- The outputRefs is the name of the output to use.
- Optional: String. One or more labels to add to the logs.
- 2. Optional: To forward a single output to multiple Kafka brokers, specify an array of Kafka brokers as shown in the following example:

- Specify a **kafka** key that has a **brokers** and **topic** key.
- 2 Use the **brokers** key to specify an array of one or more brokers.
- 3 Use the **topic** key to specify the target topic that receives the logs.
- 3. Apply the **ClusterLogForwarder** CR by running the following command:

9.4.15. Forwarding logs to Amazon CloudWatch

You can forward logs to Amazon CloudWatch, a monitoring and log storage service hosted by Amazon Web Services (AWS). You can forward logs to CloudWatch in addition to, or instead of, the default log store.

To configure log forwarding to CloudWatch, you must create a **ClusterLogForwarder** custom resource (CR) with an output for CloudWatch, and a pipeline that uses the output.

Procedure

1. Create a **Secret** YAML file that uses the **aws_access_key_id** and **aws_secret_access_key** fields to specify your base64-encoded AWS credentials. For example:

apiVersion: v1
kind: Secret
metadata:
name: cw-secret
namespace: openshift-logging
data:
aws_access_key_id: QUtJQUIPU0ZPRE5ON0VYQU1QTEUK
aws_secret_access_key:
d0phbHJYVXRuRkVNSS9LN01ERU5HL2JQeFJmaUNZRVhBTVBMRUtFWQo=

2. Create the secret. For example:

\$ oc apply -f cw-secret.yaml

3. Create or edit a YAML file that defines the **ClusterLogForwarder** CR object. In the file, specify the name of the secret. For example:

apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder
metadata:
name: <log_forwarder_name> 1</log_forwarder_name>
namespace: <log_forwarder_namespace> 2</log_forwarder_namespace>
spec:
serviceAccountName: <service_account_name> 3</service_account_name>
outputs:
- name: cw 4
type: cloudwatch 5
cloudwatch:
groupBy: logType 6

	groupPrefix: <group prefix=""> 7 region: us-east-2 8 secret: name: cw-secret 9</group>
	pipelines: - name: infra-logs 10 inputRefs: 11 - infrastructure - audit - application outputRefs: - cw 12
1	In legacy implementations, the CR name must be instance . In multi log forwarder implementations, you can use any name.
2	In legacy implementations, the CR namespace must be openshift-logging . In multi log forwarder implementations, you can use any namespace.
3	The name of your service account. The service account is only required in multi log forwarder implementations if the log forwarder is not deployed in the openshift-logging namespace.
4	Specify a name for the output.
5	Specify the cloudwatch type.
6	Optional: Specify how to group the logs:
	• logType creates log groups for each log type.
	 namespaceName creates a log group for each application name space. It also creates separate log groups for infrastructure and audit logs.
	 namespaceUUID creates a new log groups for each application namespace UUID. It also creates separate log groups for infrastructure and audit logs.
7	Optional: Specify a string to replace the default infrastructureName prefix in the names of the log groups.
8	Specify the AWS region.
9	Specify the name of the secret that contains your AWS credentials.
10	Optional: Specify a name for the pipeline.
11	Specify which log types to forward by using the pipeline: application, infrastructure , or audit .
12	Specify the name of the output to use when forwarding logs with this pipeline.
4. C	reate the CR object:
1	\$ oc create -f <file-name>.yaml</file-name>

Example: Using ClusterLogForwarder with Amazon CloudWatch

Here, you see an example **ClusterLogForwarder** custom resource (CR) and the log data that it outputs to Amazon CloudWatch.

Suppose that you are running an OpenShift Container Platform cluster named **mycluster**. The following command returns the cluster's **infrastructureName**, which you will use to compose **aws** commands later on:

\$ oc get Infrastructure/cluster -ojson | jq .status.infrastructureName "mycluster-7977k"

To generate log data for this example, you run a **busybox** pod in a namespace called **app**. The **busybox** pod writes a message to stdout every three seconds:

\$ oc run busybox --image=busybox -- sh -c 'while true; do echo "My life is my message"; sleep 3; done' \$ oc logs -f busybox My life is my message My life is my message My life is my message ...

You can look up the UUID of the **app** namespace where the **busybox** pod runs:

\$ oc get ns/app -ojson | jq .metadata.uid "794e1e1a-b9f5-4958-a190-e76a9b53d7bf"

In your **ClusterLogForwarder** custom resource (CR), you configure the **infrastructure**, **audit**, and **application** log types as inputs to the **all-logs** pipeline. You also connect this pipeline to **cw** output, which forwards the logs to a CloudWatch instance in the **us-east-2** region:

```
apiVersion: "logging.openshift.io/v1"
kind: ClusterLogForwarder
metadata:
 name: instance
 namespace: openshift-logging
spec:
 outputs:
 - name: cw
   type: cloudwatch
   cloudwatch:
    groupBy: logType
    region: us-east-2
   secret:
    name: cw-secret
 pipelines:
  - name: all-logs
   inputRefs:
    - infrastructure
     - audit
     - application
   outputRefs:
     - CW
```

Each region in CloudWatch contains three levels of objects:

- log group
 - log stream
 - log event

With **groupBy: logType** in the **ClusterLogForwarding** CR, the three log types in the **inputRefs** produce three log groups in Amazon Cloudwatch:

\$ aws --output json logs describe-log-groups | jq .logGroups[].logGroupName
"mycluster-7977k.application"
"mycluster-7977k.audit"
"mycluster-7977k.infrastructure"

Each of the log groups contains log streams:

\$ aws --output json logs describe-log-streams --log-group-name mycluster-7977k.application | jq .logStreams[].logStreamName "kubernetes.var.log.containers.busybox_app_busyboxda085893053e20beddd6747acdbaf98e77c37718f85a7f6a4facf09ca195ad76.log"

\$ aws --output json logs describe-log-streams --log-group-name mycluster-7977k.audit | jq .logStreams[].logStreamName "ip-10-0-131-228.us-east-2.compute.internal.k8s-audit.log" "ip-10-0-131-228.us-east-2.compute.internal.linux-audit.log" "ip-10-0-131-228.us-east-2.compute.internal.openshift-audit.log" ...

\$ aws --output json logs describe-log-streams --log-group-name mycluster-7977k.infrastructure | jq .logStreams[].logStreamName

"ip-10-0-131-228.us-east-2.compute.internal.kubernetes.var.log.containers.apiserver-69f9fd9b58-zqzw5_openshift-oauth-apiserver_oauth-apiserver-

453c5c4ee026fe20a6139ba6b1cdd1bed25989c905bf5ac5ca211b7cbb5c3d7b.log"

"ip-10-0-131-228.us-east-2.compute.internal.kubernetes.var.log.containers.apiserver-797774f7c5lftrx_openshift-apiserver_openshift-apiserver-

ce51532df7d4e4d5f21c4f4be05f6575b93196336be0027067fd7d93d70f66a4.log"

"ip-10-0-131-228.us-east-2.compute.internal.kubernetes.var.log.containers.apiserver-797774f7c5lftrx_openshift-apiserver_openshift-apiserver-check-endpoints-

82a9096b5931b5c3b1d6dc4b66113252da4a6472c9fff48623baee761911a9ef.log"

•••

Each log stream contains log events. To see a log event from the **busybox** Pod, you specify its log stream from the **application** log group:

ernetes\": {\"container_name\":\"busybox\",\"namespace_name\":\"app\",\"pod_name\":\"busybox\",\"container_ima ge\":\"docker.io/library/busybox:latest\",\"container_image_id\":\"docker.io/library/busybox@sha256:0f35 4ec1728d9ff32edcd7d1b8bbdfc798277ad36120dc3dc683be44524c8b60\",\"pod id\":\"870be234-90a3-4258-b73f-4f4d6e2777c7\",\"host\":\"ip-10-0-216-3.us-east-2.compute.internal\",\"labels\": {\"run\":\"busybox\"},\"master_url\":\"https://kubernetes.default.svc\",\"namespace_id\":\"794e1e1ab9f5-4958-a190-e76a9b53d7bf\",\"namespace labels\": {\"kubernetes_io/metadata_name\":\"app\"}},\"message\":\"My life is my message\",\"level\":\"unknown\",\"hostname\":\"ip-10-0-216-3.us-east-2.compute.internal/",/"pipeline metadata/":{/"collector/": {\"ipaddr4\":\"10.0.216.3\",\"inputname\":\"fluent-pluginsystemd\",\"name\":\"fluentd\",\"received_at\":\"2021-08-20T01:25:08.085760+00:00\",\"version\":\"1.7.4 1.6.0\"}},\"@timestamp\":\"2021-08-20T01:25:04.178986+00:00\",\"viaq_index_name\":\"appwrite\",\"viaq_msg_id\":\"NWRjZmUyMWQtZjgzNC00MjI4LTk3MjMtNTk3NmY3ZjU4NDk1\",\"log_type\": \"application\",\"time\":\"2021-08-20T01:25:04+00:00\"}", "ingestionTime": 1629422744016 }, ...

Example: Customizing the prefix in log group names

In the log group names, you can replace the default **infrastructureName** prefix, **mycluster-7977k**, with an arbitrary string like **demo-group-prefix**. To make this change, you update the **groupPrefix** field in the **ClusterLogForwarding** CR:

cloudwatch: groupBy: logType groupPrefix: demo-group-prefix region: us-east-2

The value of groupPrefix replaces the default infrastructureName prefix:

\$ aws --output json logs describe-log-groups | jq .logGroups[].logGroupName "demo-group-prefix.application" "demo-group-prefix.audit" "demo-group-prefix.infrastructure"

Example: Naming log groups after application namespace names

For each application namespace in your cluster, you can create a log group in CloudWatch whose name is based on the name of the application namespace.

If you delete an application namespace object and create a new one that has the same name, CloudWatch continues using the same log group as before.

If you consider successive application namespace objects that have the same name as equivalent to each other, use the approach described in this example. Otherwise, if you need to distinguish the resulting log groups from each other, see the following "Naming log groups for application namespace UUIDs" section instead.

To create application log groups whose names are based on the names of the application namespaces, you set the value of the **groupBy** field to **namespaceName** in the **ClusterLogForwarder** CR:

cloudwatch: groupBy: namespaceName region: us-east-2

Setting **groupBy** to **namespaceName** affects the application log group only. It does not affect the **audit** and **infrastructure** log groups.

In Amazon Cloudwatch, the namespace name appears at the end of each log group name. Because there is a single application namespace, "app", the following output shows a new **mycluster-7977k.app** log group instead of **mycluster-7977k.application**:

```
$ aws --output json logs describe-log-groups | jq .logGroups[].logGroupName
"mycluster-7977k.app"
"mycluster-7977k.audit"
"mycluster-7977k.infrastructure"
```

If the cluster in this example had contained multiple application namespaces, the output would show multiple log groups, one for each namespace.

The **groupBy** field affects the application log group only. It does not affect the **audit** and **infrastructure** log groups.

Example: Naming log groups after application namespace UUIDs

For each application namespace in your cluster, you can create a log group in CloudWatch whose name is based on the UUID of the application namespace.

If you delete an application namespace object and create a new one, CloudWatch creates a new log group.

If you consider successive application namespace objects with the same name as different from each other, use the approach described in this example. Otherwise, see the preceding "Example: Naming log groups for application namespace names" section instead.

To name log groups after application namespace UUIDs, you set the value of the **groupBy** field to **namespaceUUID** in the **ClusterLogForwarder** CR:

cloudwatch: groupBy: namespaceUUID region: us-east-2

In Amazon Cloudwatch, the namespace UUID appears at the end of each log group name. Because there is a single application namespace, "app", the following output shows a new **mycluster**-**7977k.794e1e1a-b9f5-4958-a190-e76a9b53d7bf** log group instead of **mycluster-7977k.application**:

\$ aws --output json logs describe-log-groups | jq .logGroups[].logGroupName "mycluster-7977k.794e1e1a-b9f5-4958-a190-e76a9b53d7bf" // uid of the "app" namespace "mycluster-7977k.audit" "mycluster-7977k.infrastructure"

The **groupBy** field affects the application log group only. It does not affect the **audit** and **infrastructure** log groups.

9.4.15.1. Creating a secret for AWS CloudWatch with an existing AWS role

If you have an existing role for AWS, you can create a secret for AWS with STS using the **oc create secret --from-literal** command.

Procedure

• In the CLI, enter the following to generate a secret for AWS:

\$ oc create secret generic cw-sts-secret -n openshift-logging --fromliteral=role_arn=arn:aws:iam::123456789012:role/my-role_with-permissions

Example Secret

apiVersion: v1 kind: Secret metadata: namespace: openshift-logging name: my-secret-name stringData: role_arn: arn:aws:iam::123456789012:role/my-role_with-permissions

9.4.16. Forwarding logs to Amazon CloudWatch from STS enabled clusters

For clusters with AWS Security Token Service (STS) enabled, you can create an AWS service account manually or create a credentials request by using the Cloud Credential Operator (CCO) utility **ccoctl**.

Prerequisites

• Logging for Red Hat OpenShift: 5.5 and later

Procedure

1. Create a **CredentialsRequest** custom resource YAML by using the template below:

CloudWatch credentials request template

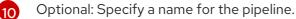
apiVersion: cloudcredential.openshift.io/v1 kind: CredentialsRequest metadata:
name: <your_role_name>-credrequest</your_role_name>
namespace: openshift-cloud-credential-operator
spec:
providerSpec:
apiVersion: cloudcredential.openshift.io/v1
kind: AWSProviderSpec
statementEntries:
- action:
 logs:PutLogEvents
 logs:CreateLogGroup
 logs:PutRetentionPolicy
 logs:CreateLogStream
 logs:DescribeLogGroups
 logs:DescribeLogStreams
effect: Allow
resource: arn:aws:logs:*:*:*

secretRef: name: <your_role_name> namespace: openshift-logging serviceAccountNames: - logcollector

2. Use the ccoctl command to create a role for AWS using your CredentialsRequest CR. With the CredentialsRequest object, this ccoctl command creates an IAM role with a trust policy that is tied to the specified OIDC identity provider, and a permissions policy that grants permissions to perform operations on CloudWatch resources. This command also creates a YAML configuration file in /<path_to_ccoctl_output_dir>/manifests/openshift-logging<your_role_name>-credentials.yaml. This secret file contains the role_arn key/value used during authentication with the AWS IAM identity provider.

\$ ccoctl aws create-iam-roles \
--name=<name> \
--region=<aws_region> \
--credentials-requests-dir=
<path_to_directory_with_list_of_credentials_requests>/credrequests \
--identity-provider-arn=arn:aws:iam::<aws_account_id>:oidc-provider/<name>-oidc.s3.
<aws_region>.amazonaws.com

<name> is the name used to tag your cloud resources and should match the name used during your STS cluster install


3. Apply the secret created:

\$ oc apply -f output/manifests/openshift-logging-<your_role_name>-credentials.yaml

4. Create or edit a **ClusterLogForwarder** custom resource:

```
apiVersion: logging.openshift.io/v1
kind: ClusterLogForwarder
metadata:
 name: <log_forwarder_name> 1
 namespace: <log_forwarder_namespace> (2)
spec:
 serviceAccountName: clf-collector 3
 outputs:
 - name: cw 4
  type: cloudwatch 5
  cloudwatch:
    groupBy: logType 6
    groupPrefix: <group prefix> 7
    region: us-east-2 8
  secret:
    name: <your_secret_name> 9
 pipelines:
  - name: to-cloudwatch 10
   inputRefs: 1
    - infrastructure
    - audit
```

- application outputRefs: - cw 12 In legacy implementations, the CR name must be **instance**. In multi log forwarder implementations, you can use any name. In legacy implementations, the CR namespace must be **openshift-logging**. In multi log forwarder implementations, you can use any namespace. Specify the clf-collector service account. The service account is only required in multi log forwarder implementations if the log forwarder is not deployed in the **openshift-logging** namespace. Specify a name for the output. Specify the **cloudwatch** type. Optional: Specify how to group the logs: • **logType** creates log groups for each log type. namespaceName creates a log group for each application name space. Infrastructure and audit logs are unaffected, remaining grouped by logType. namespaceUUID creates a new log groups for each application namespace UUID. It also creates separate log groups for infrastructure and audit logs. Optional: Specify a string to replace the default infrastructureName prefix in the names of the log groups. Specify the AWS region. Specify the name of the secret that contains your AWS credentials.

3

4

5

7

8

9

Specify which log types to forward by using the pipeline: application, infrastructure, or audit.

Specify the name of the output to use when forwarding logs with this pipeline.

Additional resources

12

- AWS STS API Reference
- Cloud Credential Operator (CCO)

9.5. CONFIGURING THE LOGGING COLLECTOR

Logging for Red Hat OpenShift collects operations and application logs from your cluster and enriches the data with Kubernetes pod and project metadata. All supported modifications to the log collector can be performed though the **spec.collection** stanza in the **ClusterLogging** custom resource (CR).

9.5.1. Configuring the log collector

You can configure which log collector type your logging uses by modifying the **ClusterLogging** custom resource (CR).

NOTE

Fluentd is deprecated and is planned to be removed in a future release. Red Hat provides bug fixes and support for this feature during the current release lifecycle, but this feature no longer receives enhancements. As an alternative to Fluentd, you can use Vector instead.

Prerequisites

- You have administrator permissions.
- You have installed the OpenShift CLI (**oc**).
- You have installed the Red Hat OpenShift Logging Operator.
- You have created a **ClusterLogging** CR.

Procedure

1. Modify the **ClusterLogging** CR **collection** spec:

ClusterLogging CR example

```
apiVersion: logging.openshift.io/v1
kind: ClusterLogging
metadata:
# ...
spec:
# ...
collection:
   type: <log_collector_type> 1
   resources: {}
   tolerations: {}
# ...
```

The log collector type you want to use for the logging. This can be **vector** or **fluentd**.

2. Apply the **ClusterLogging** CR by running the following command:

```
$ oc apply -f <filename>.yaml
```

9.5.2. Creating a LogFileMetricExporter resource

In logging version 5.8 and newer versions, the LogFileMetricExporter is no longer deployed with the collector by default. You must manually create a **LogFileMetricExporter** custom resource (CR) to generate metrics from the logs produced by running containers.

If you do not create the **LogFileMetricExporter** CR, you may see a **No datapoints found** message in the OpenShift Container Platform web console dashboard for **Produced Logs**.

Prerequisites

- You have administrator permissions.
- You have installed the Red Hat OpenShift Logging Operator.
- You have installed the OpenShift CLI (**oc**).

Procedure

1. Create a LogFileMetricExporter CR as a YAML file:

Example LogFileMetricExporter CR

apiVersion: logging.openshift.io/v1alpha1 kind: LogFileMetricExporter metadata:
name: instance
namespace: openshift-logging
spec:
nodeSelector: {}
resources: 2
limits:
cpu: 500m
memory: 256Mi
requests:
cpu: 200m
memory: 128Mi
tolerations: [] 3
#

Optional: The **nodeSelector** stanza defines which nodes the pods are scheduled on.

The **resources** stanza defines resource requirements for the **LogFileMetricExporter** CR.

Optional: The **tolerations** stanza defines the tolerations that the pods accept.

2. Apply the **LogFileMetricExporter** CR by running the following command:

Verification

3

A logfilesmetricexporter pod runs concurrently with a collector pod on each node.

• Verify that the **logfilesmetricexporter** pods are running in the namespace where you have created the **LogFileMetricExporter** CR, by running the following command and observing the output:

\$ oc get pods -l app.kubernetes.io/component=logfilesmetricexporter -n openshift-logging

Example output

NAME READY STATUS RESTARTS AGE logfilesmetricexporter-9qbjj 1/1 Running 0 2m46s logfilesmetricexporter-cbc4v 1/1 Running 0 2m46s

9.5.3. Configure log collector CPU and memory limits

The log collector allows for adjustments to both the CPU and memory limits.

Procedure

• Edit the **ClusterLogging** custom resource (CR) in the **openshift-logging** project:

\$ oc -n openshift-logging edit ClusterLogging instance apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: name: instance namespace: openshift-logging spec: collection: type: fluentd resources: limits: 🚹 memory: 736Mi requests: cpu: 100m memory: 736Mi # ...

Specify the CPU and memory limits and requests as needed. The values shown are the default values.

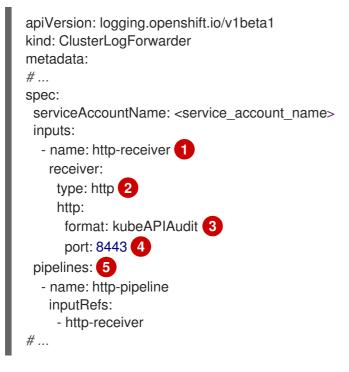
9.5.4. Configuring input receivers

The Red Hat OpenShift Logging Operator deploys a service for each configured input receiver so that clients can write to the collector. This service exposes the port specified for the input receiver. The service name is generated based on the following:

- For multi log forwarder **ClusterLogForwarder** CR deployments, the service name is in the format **<ClusterLogForwarder_CR_name>-<input_name>**. For example, **example-http-receiver**.
- For legacy **ClusterLogForwarder** CR deployments, meaning those named **instance** and located in the **openshift-logging** namespace, the service name is in the format **collectorcollector**-**collector**-**http-receiver**.

9.5.4.1. Configuring the collector to receive audit logs as an HTTP server

You can configure your log collector to listen for HTTP connections and receive audit logs as an HTTP server by specifying **http** as a receiver input in the **ClusterLogForwarder** custom resource (CR). This enables you to use a common log store for audit logs that are collected from both inside and outside of your OpenShift Container Platform cluster.


Prerequisites

- You have administrator permissions.
- You have installed the OpenShift CLI (**oc**).
- You have installed the Red Hat OpenShift Logging Operator.
- You have created a **ClusterLogForwarder** CR.

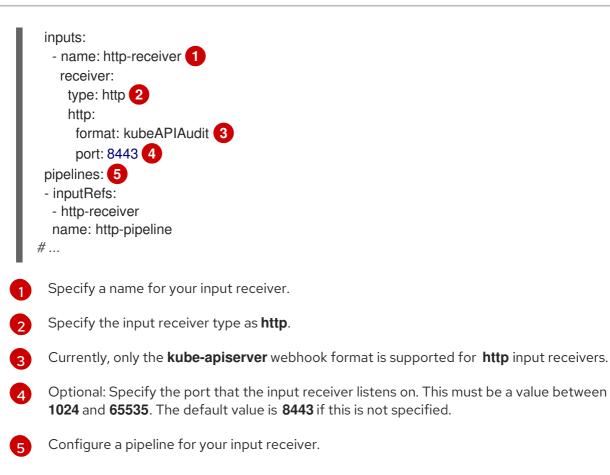
Procedure

1. Modify the **ClusterLogForwarder** CR to add configuration for the **http** receiver input:

Example ClusterLogForwarder CR if you are using a multi log forwarder deployment

Specify a name for your input receiver.

Specify the input receiver type as **http**.


Currently, only the **kube-apiserver** webhook format is supported for **http** input receivers.

Optional: Specify the port that the input receiver listens on. This must be a value between **1024** and **65535**. The default value is **8443** if this is not specified.

Configure a pipeline for your input receiver.

Example ClusterLogForwarder CR if you are using a legacy deployment

apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: name: instance namespace: openshift-logging spec:

2. Apply the changes to the **ClusterLogForwarder** CR by running the following command:

\$ oc apply -f <filename>.yaml

Additional resources

• Overview of API audit filter

9.5.5. Advanced configuration for the Fluentd log forwarder

NOTE

Fluentd is deprecated and is planned to be removed in a future release. Red Hat provides bug fixes and support for this feature during the current release lifecycle, but this feature no longer receives enhancements. As an alternative to Fluentd, you can use Vector instead.

Logging includes multiple Fluentd parameters that you can use for tuning the performance of the Fluentd log forwarder. With these parameters, you can change the following Fluentd behaviors:

- Chunk and chunk buffer sizes
- Chunk flushing behavior
- Chunk forwarding retry behavior

Fluentd collects log data in a single blob called a *chunk*. When Fluentd creates a chunk, the chunk is considered to be in the *stage*, where the chunk gets filled with data. When the chunk is full, Fluentd moves the chunk to the *queue*, where chunks are held before being flushed, or written out to their

destination. Fluentd can fail to flush a chunk for a number of reasons, such as network issues or capacity issues at the destination. If a chunk cannot be flushed, Fluentd retries flushing as configured.

By default in OpenShift Container Platform, Fluentd uses the *exponential backoff* method to retry flushing, where Fluentd doubles the time it waits between attempts to retry flushing again, which helps reduce connection requests to the destination. You can disable exponential backoff and use the *periodic* retry method instead, which retries flushing the chunks at a specified interval.

These parameters can help you determine the trade-offs between latency and throughput.

- To optimize Fluentd for throughput, you could use these parameters to reduce network packet count by configuring larger buffers and queues, delaying flushes, and setting longer times between retries. Be aware that larger buffers require more space on the node file system.
- To optimize for low latency, you could use the parameters to send data as soon as possible, avoid the build-up of batches, have shorter queues and buffers, and use more frequent flush and retries.

You can configure the chunking and flushing behavior using the following parameters in the **ClusterLogging** custom resource (CR). The parameters are then automatically added to the Fluentd config map for use by Fluentd.

NOTE

These parameters are:

- Not relevant to most users. The default settings should give good general performance.
- Only for advanced users with detailed knowledge of Fluentd configuration and performance.
- Only for performance tuning. They have no effect on functional aspects of logging.

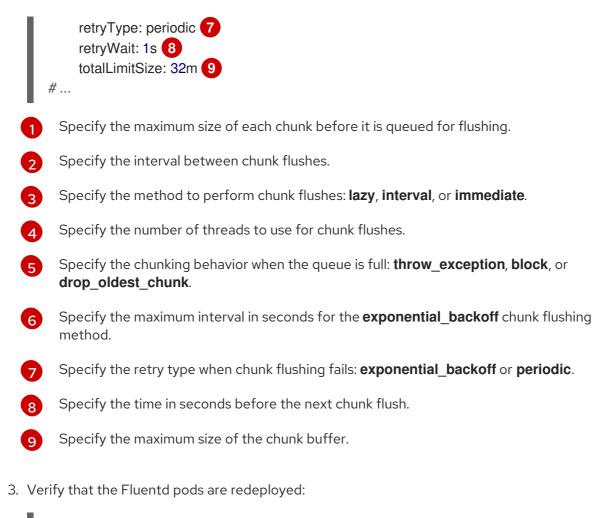
Table 9.10. Advanced Fluentd Configuration Parameters

Parameter	Description	Default
chunkLimitSize	The maximum size of each chunk. Fluentd stops writing data to a chunk when it reaches this size. Then, Fluentd sends the chunk to the queue and opens a new chunk.	8m
totalLimitSize	The maximum size of the buffer, which is the total size of the stage and the queue. If the buffer size exceeds this value, Fluentd stops adding data to chunks and fails with an error. All data not in chunks is lost.	Approximately 15% of the node disk distributed across all outputs.

Parameter	Description	Default
flushInterval	The interval between chunk flushes. You can use s (seconds), m (minutes), h (hours), or d (days).	1s
flushMode	 Iazy: Flush chunks based on the timekey parameter. You cannot modify the timekey parameter. interval: Flush chunks based on the flushInterval parameter. immediate: Flush chunks immediately after data is added to a chunk. 	interval
flushThreadCount	The number of threads that perform chunk flushing. Increasing the number of threads improves the flush throughput, which hides network latency.	2
overflowAction	 The chunking behavior when the queue is full: throw_exception: Raise an exception to show in the log. block: Stop data chunking until the full buffer issue is resolved. drop_oldest_chunk: Drop the oldest chunk to accept new incoming chunks. Older chunks have less value than newer chunks. 	block
retryMaxInterval	The maximum time in seconds for the exponential_backoff retry method.	300s

Parameter	Description	Default
retryType	 The retry method when flushing fails: exponential_backoff: Increase the time between flush retries. Fluentd doubles the time it waits until the next retry until the retry_max_interval parameter is reached. periodic: Retries flushes periodically, based on the retryWait parameter. 	exponential_backoff
retryTimeOut	The maximum time interval to attempt retries before the record is discarded.	60m
retryWait	The time in seconds before the next chunk flush.	1s

For more information on the Fluentd chunk lifecycle, see Buffer Plugins in the Fluentd documentation.


Procedure

1. Edit the **ClusterLogging** custom resource (CR) in the **openshift-logging** project:

\$ oc edit ClusterLogging instance

2. Add or modify any of the following parameters:

kind: ClusterLogging metadata:
name: instance
namespace: openshift-logging
spec:
collection:
fluentd:
buffer:
chunkLimitSize: 8m 1
flushInterval: 5s 2
flushMode: interval 3
flushThreadCount: 3 4
overflowAction: throw_exception 5
retryMaxInterval: "300s" 6

\$ oc get pods -I component=collector -n openshift-logging

4. Check that the new values are in the **fluentd** config map:

\$ oc extract configmap/collector-config --confirm

Example fluentd.conf

<buffer> @type file path '/var/lib/fluentd/default' flush mode interval flush_interval 5s flush_thread_count 3 retry_type periodic retry_wait 1s retry_max_interval 300s retry_timeout 60m queued chunks limit size "#{ENV['BUFFER QUEUE LIMIT'] || '32'}" total limit size "#{ENV['TOTAL LIMIT SIZE PER BUFFER'] || '8589934592'}" chunk limit size 8m overflow action throw exception disable chunk backup true </buffer>

9.6. COLLECTING AND STORING KUBERNETES EVENTS

The OpenShift Container Platform Event Router is a pod that watches Kubernetes events and logs them for collection by the logging. You must manually deploy the Event Router.

The Event Router collects events from all projects and writes them to **STDOUT**. The collector then forwards those events to the store defined in the **ClusterLogForwarder** custom resource (CR).

IMPORTANT

The Event Router adds additional load to Fluentd and can impact the number of other log messages that can be processed.

9.6.1. Deploying and configuring the Event Router

Use the following steps to deploy the Event Router into your cluster. You should always deploy the Event Router to the **openshift-logging** project to ensure it collects events from across the cluster.

NOTE

The Event Router image is not a part of the Red Hat OpenShift Logging Operator and must be downloaded separately.

The following **Template** object creates the service account, cluster role, and cluster role binding required for the Event Router. The template also configures and deploys the Event Router pod. You can either use this template without making changes or edit the template to change the deployment object CPU and memory requests.

Prerequisites

- You need proper permissions to create service accounts and update cluster role bindings. For example, you can run the following template with a user that has the **cluster-admin** role.
- The Red Hat OpenShift Logging Operator must be installed.

Procedure

1. Create a template for the Event Router:

```
apiVersion: template.openshift.io/v1
kind: Template
metadata:
 name: eventrouter-template
 annotations:
  description: "A pod forwarding kubernetes events to OpenShift Logging stack."
  tags: "events, EFK, logging, cluster-logging"
objects:
 - kind: ServiceAccount 1
  apiVersion: v1
  metadata:
   name: eventrouter
   namespace: ${NAMESPACE}
 - kind: ClusterRole 2
  apiVersion: rbac.authorization.k8s.io/v1
  metadata:
   name: event-reader
```

rules: - apiGroups: [""] resources: ["events"] verbs: ["get", "watch", "list"] - kind: ClusterRoleBinding 3 apiVersion: rbac.authorization.k8s.io/v1 metadata: name: event-reader-binding subjects: - kind: ServiceAccount name: eventrouter namespace: \${NAMESPACE} roleRef: kind: ClusterRole name: event-reader - kind: ConfigMap 4 apiVersion: v1 metadata: name: eventrouter namespace: \${NAMESPACE} data: config.json: |-{ "sink": "stdout" } - kind: Deployment 5 apiVersion: apps/v1 metadata: name: eventrouter namespace: \${NAMESPACE} labels: component: "eventrouter" logging-infra: "eventrouter" provider: "openshift" spec: selector: matchLabels: component: "eventrouter" logging-infra: "eventrouter" provider: "openshift" replicas: 1 template: metadata: labels: component: "eventrouter" logging-infra: "eventrouter" provider: "openshift" name: eventrouter spec: serviceAccount: eventrouter containers: - name: kube-eventrouter image: \${IMAGE} imagePullPolicy: IfNotPresent resources: requests:

	<pre>cpu: \${CPU} memory: \${MEMORY} volumeMounts: - name: config-volume mountPath: /etc/eventrouter securityContext: allowPrivilegeEscalation: false capabilities: drop: ["ALL"] securityContext: runAsNonRoot: true seccompProfile: type: RuntimeDefault volumes: - name: config-volume configMap: name: eventrouter parameters: - name: IMAGE ③ displayName: Image value: "registry.redhat.io/openshift-logging/eventrouter-rhel8:v0.4" - name: CPU ⑦ displayName: CPU value: "100m" - name: MEMORY ③ displayName: Memory value: "128Mi" - name: NAMESPACE displayName: Namespace value: "openshift-logging" ④</pre>
1	Creates a Service Account in the openshift-logging project for the Event Router.
2	Creates a ClusterRole to monitor for events in the cluster.
3	Creates a ClusterRoleBinding to bind the ClusterRole to the service account.
4	Creates a config map in the openshift-logging project to generate the required config.json file.
5	Creates a deployment in the openshift-logging project to generate and configure the Event Router pod.
6	Specifies the image, identified by a tag such as v0.4 .
•	Specifies the minimum amount of CPU to allocate to the Event Router pod. Defaults to 100m .
8	Specifies the minimum amount of memory to allocate to the Event Router pod. Defaults to 128Mi .
9	Specifies the openshift-logging project to install objects in.

2. Use the following command to process and apply the template:

\$ oc process -f <templatefile> | oc apply -n openshift-logging -f -

For example:

\$ oc process -f eventrouter.yaml | oc apply -n openshift-logging -f -

Example output

serviceaccount/eventrouter created clusterrole.rbac.authorization.k8s.io/event-reader created clusterrolebinding.rbac.authorization.k8s.io/event-reader-binding created configmap/eventrouter created deployment.apps/eventrouter created

- 3. Validate that the Event Router installed in the **openshift-logging** project:
 - a. View the new Event Router pod:

\$ oc get pods --selector component=eventrouter -o name -n openshift-logging

Example output

pod/cluster-logging-eventrouter-d649f97c8-qvv8r

b. View the events collected by the Event Router:

\$ oc logs <cluster_logging_eventrouter_pod> -n openshift-logging

For example:

\$ oc logs cluster-logging-eventrouter-d649f97c8-qvv8r -n openshift-logging

Example output

{"verb":"ADDED","event":{"metadata":{"name":"openshift-service-catalog-controllermanager-remover.1632d931e88fcd8f","namespace":"openshift-service-catalogremoved","selfLink":"/api/v1/namespaces/openshift-service-catalogremoved/events/openshift-service-catalog-controller-managerremover.1632d931e88fcd8f","uid":"787d7b26-3d2f-4017-b0b0-420db4ae62c0","resourceVersion":"21399","creationTimestamp":"2020-09-08T15:40:26Z"},"involvedObject":{"kind":"Job","namespace":"openshift-service-catalogremoved","name":"openshift-service-catalog-controller-managerremover","uid":"fac9f479-4ad5-4a57-8adccb25d3d9cf8f","apiVersion":"batch/v1","resourceVersion":"21280"},"reason":"Completed"," message":"Job completed","source":{"component":"jobcontroller"},"firstTimestamp":"2020-09-08T15:40:26Z","lastTimestamp":"2020-09-08T15:40:26Z","count":1,"type":"Normal"}}

You can also use Kibana to view events by creating an index pattern using the Elasticsearch **infra** index.

CHAPTER 10. LOG STORAGE

10.1. ABOUT LOG STORAGE

You can use an internal Loki or Elasticsearch log store on your cluster for storing logs, or you can use a **ClusterLogForwarder** custom resource (CR) to forward logs to an external store.

10.1.1. Log storage types

Loki is a horizontally scalable, highly available, multi-tenant log aggregation system offered as an alternative to Elasticsearch as a log store for the logging.

Elasticsearch indexes incoming log records completely during ingestion. Loki only indexes a few fixed labels during ingestion and defers more complex parsing until after the logs have been stored. This means Loki can collect logs more quickly.

10.1.1.1. About the Elasticsearch log store

The logging Elasticsearch instance is optimized and tested for short term storage, approximately seven days. If you want to retain your logs over a longer term, it is recommended you move the data to a third-party storage system.

Elasticsearch organizes the log data from Fluentd into datastores, or *indices*, then subdivides each index into multiple pieces called *shards*, which it spreads across a set of Elasticsearch nodes in an Elasticsearch cluster. You can configure Elasticsearch to make copies of the shards, called *replicas*, which Elasticsearch also spreads across the Elasticsearch nodes. The **ClusterLogging** custom resource (CR) allows you to specify how the shards are replicated to provide data redundancy and resilience to failure. You can also specify how long the different types of logs are retained using a retention policy in the **ClusterLogging** CR.

NOTE

The number of primary shards for the index templates is equal to the number of Elasticsearch data nodes.

The Red Hat OpenShift Logging Operator and companion OpenShift Elasticsearch Operator ensure that each Elasticsearch node is deployed using a unique deployment that includes its own storage volume. You can use a **ClusterLogging** custom resource (CR) to increase the number of Elasticsearch nodes, as needed. See the Elasticsearch documentation for considerations involved in configuring storage.

NOTE

A highly-available Elasticsearch environment requires at least three Elasticsearch nodes, each on a different host.

Role-based access control (RBAC) applied on the Elasticsearch indices enables the controlled access of the logs to the developers. Administrators can access all logs and developers can access only the logs in their projects.

10.1.2. Querying log stores

You can query Loki by using the LogQL log query language.

10.1.3. Additional resources

- Loki components documentation
- Loki Object Storage documentation

10.2. INSTALLING LOG STORAGE

You can use the OpenShift CLI (**oc**) or the OpenShift Container Platform web console to deploy a log store on your OpenShift Container Platform cluster.

NOTE

The Logging 5.9 release does not contain an updated version of the OpenShift Elasticsearch Operator. If you currently use the OpenShift Elasticsearch Operator released with Logging 5.8, it will continue to work with Logging until the EOL of Logging 5.8. As an alternative to using the OpenShift Elasticsearch Operator to manage the default log storage, you can use the Loki Operator. For more information on the Logging lifecycle dates, see Platform Agnostic Operators.

10.2.1. Deploying a Loki log store

You can use the Loki Operator to deploy an internal Loki log store on your OpenShift Container Platform cluster. After install the Loki Operator, you must configure Loki object storage by creating a secret, and create a **LokiStack** custom resource (CR).

10.2.1.1. Loki deployment sizing

Sizing for Loki follows the format of **1x.<size>** where the value **1x** is number of instances and **<size>** specifies performance capabilities.

IMPORTANT

It is not possible to change the number **1x** for the deployment size.

Table 10.1. Loki sizing

	1x.demo	1x.extra-small	1x.small	1x.medium
Data transfer	Demo use only	100GB/day	500GB/day	2TB/day
Queries per second (QPS)	Demo use only	1-25 QPS at 200ms	25-50 QPS at 200ms	25-75 QPS at 200ms
Replication factor	None	2	2	2
Total CPU requests	None	14 vCPUs	34 vCPUs	54 vCPUs

	1x.demo	1x.extra-small	1x.small	1x.medium
Total CPU requests if using the ruler	None	16 vCPUs	42 vCPUs	70 vCPUs
Total memory requests	None	31Gi	67Gi	139Gi
Total memory requests if using the ruler	None	35Gi	83Gi	171Gi
Total disk requests	40Gi	430Gi	430Gi	590Gi
Total disk requests if using the ruler	80Gi	750Gi	750Gi	910Gi

10.2.1.2. Installing the Loki Operator by using the OpenShift Container Platform web console

To install and configure logging on your OpenShift Container Platform cluster, additional Operators must be installed. This can be done from the Operator Hub within the web console.

OpenShift Container Platform Operators use custom resources (CR) to manage applications and their components. High-level configuration and settings are provided by the user within a CR. The Operator translates high-level directives into low-level actions, based on best practices embedded within the Operator's logic. A custom resource definition (CRD) defines a CR and lists all the configurations available to users of the Operator. Installing an Operator creates the CRDs, which are then used to generate CRs.

Prerequisites

- You have access to a supported object store (AWS S3, Google Cloud Storage, Azure, Swift, Minio, OpenShift Data Foundation).
- You have administrator permissions.
- You have access to the OpenShift Container Platform web console.

Procedure

- In the OpenShift Container Platform web console Administrator perspective, go to Operators
 → OperatorHub.
- 2. Type Loki Operator in the **Filter by keyword** field. Click **Loki Operator** in the list of available Operators, and then click **Install**.

IMPORTANT

The Community Loki Operator is not supported by Red Hat.

3. Select stable or stable-x.y as the Update channel.

NOTE

The **stable** channel only provides updates to the most recent release of logging. To continue receiving updates for prior releases, you must change your subscription channel to **stable-x.y**, where **x.y** represents the major and minor version of logging you have installed. For example, **stable-5.7**.

The Loki Operator must be deployed to the global operator group namespace **openshift-operators-redhat**, so the **Installation mode** and **Installed Namespace** are already selected. If this namespace does not already exist, it is created for you.

- Select Enable operator-recommended cluster monitoring on this namespace. This option sets the openshift.io/cluster-monitoring: "true" label in the Namespace object. You must select this option to ensure that cluster monitoring scrapes the openshift-operatorsredhat namespace.
- 5. For **Update approval** select **Automatic**, then click **Install**. If the approval strategy in the subscription is set to **Automatic**, the update process initiates as soon as a new Operator version is available in the selected channel. If the approval strategy is set to **Manual**, you must manually approve pending updates.

Verification

- 1. Go to **Operators** \rightarrow **Installed Operators**.
- 2. Make sure the **openshift-logging** project is selected.
- 3. In the **Status** column, verify that you see green checkmarks with **InstallSucceeded** and the text **Up to date**.

NOTE

An Operator might display a **Failed** status before the installation finishes. If the Operator install completes with an **InstallSucceeded** message, refresh the page.

10.2.1.3. Creating a secret for Loki object storage by using the web console

To configure Loki object storage, you must create a secret. You can create a secret by using the OpenShift Container Platform web console.

Prerequisites

- You have administrator permissions.
- You have access to the OpenShift Container Platform web console.
- You installed the Loki Operator.

Procedure

- Go to Workloads → Secrets in the Administrator perspective of the OpenShift Container Platform web console.
- 2. From the Create drop-down list, select From YAML.
- 3. Create a secret that uses the **access_key_id** and **access_key_secret** fields to specify your credentials and the **bucketnames**, **endpoint**, and **region** fields to define the object storage location. AWS is used in the following example:

Example Secret object

apiVersion: v1 kind: Secret metadata: name: logging-loki-s3 namespace: openshift-logging stringData: access_key_id: AKIAIOSFODNN7EXAMPLE access_key_secret: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY bucketnames: s3-bucket-name endpoint: https://s3.eu-central-1.amazonaws.com region: eu-central-1

Additional resources

• Loki object storage

10.2.1.4. Creating a LokiStack custom resource by using the web console

You can create a **LokiStack** custom resource (CR) by using the OpenShift Container Platform web console.

Prerequisites

- You have administrator permissions.
- You have access to the OpenShift Container Platform web console.
- You installed the Loki Operator.

Procedure

- 1. Go to the **Operators** \rightarrow **Installed Operators** page. Click the **All instances** tab.
- 2. From the **Create new** drop-down list, select **LokiStack**.
- 3. Select YAML view, and then use the following template to create a LokiStack CR:

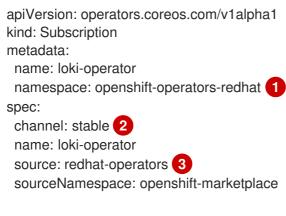
apiVersion: loki.grafana.com/v1 kind: LokiStack metadata: name: logging-loki namespace: openshift-logging

4. Click Create.

10.2.1.5. Installing Loki Operator by using the CLI

To install and configure logging on your OpenShift Container Platform cluster, additional Operators must be installed. This can be done from the OpenShift Container Platform CLI.

OpenShift Container Platform Operators use custom resources (CR) to manage applications and their components. High-level configuration and settings are provided by the user within a CR. The Operator translates high-level directives into low-level actions, based on best practices embedded within the Operator's logic. A custom resource definition (CRD) defines a CR and lists all the configurations available to users of the Operator. Installing an Operator creates the CRDs, which are then used to generate CRs.


Prerequisites

- You have administrator permissions.
- You installed the OpenShift CLI (**oc**).

• You have access to a supported object store. For example: AWS S3, Google Cloud Storage, Azure, Swift, Minio, or OpenShift Data Foundation.

Procedure

1. Create a Subscription object:

You must specify the **openshift-operators-redhat** namespace.

Specify **stable**, or **stable-5.<y>** as the channel.

Specify **redhat-operators**. If your OpenShift Container Platform cluster is installed on a restricted network, also known as a disconnected cluster, specify the name of the **CatalogSource** object you created when you configured the Operator Lifecycle Manager (OLM).

2. Apply the Subscription object:

\$ oc apply -f <filename>.yaml

10.2.1.6. Creating a secret for Loki object storage by using the CLI

To configure Loki object storage, you must create a secret. You can do this by using the OpenShift CLI (**oc**).

Prerequisites

- You have administrator permissions.
- You installed the Loki Operator.
- You installed the OpenShift CLI (**oc**).

Procedure

• Create a secret in the directory that contains your certificate and key files by running the following command:

\$ oc create secret generic -n openshift-logging <your_secret_name> \

- --from-file=tls.key=<your_key_file>
- --from-file=tls.crt=<your_crt_file>

--from-file=ca-bundle.crt=<your_bundle_file>

- --from-literal=username=<your_username>
- --from-literal=password=<your_password>

NOTE

Use generic or opaque secrets for best results.

Verification

• Verify that a secret was created by running the following command:

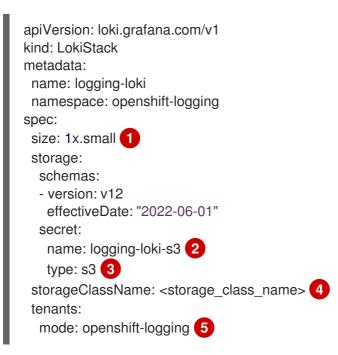
\$ oc get secrets

Additional resources

• Loki object storage

10.2.1.7. Creating a LokiStack custom resource by using the CLI

You can create a **LokiStack** custom resource (CR) by using the OpenShift CLI (**oc**).


Prerequisites

- You have administrator permissions.
- You installed the Loki Operator.
- You installed the OpenShift CLI (**oc**).

Procedure

1. Create a **LokiStack** CR:

Example LokiStack CR

Specify the deployment size. In the logging 5.8 and later versions, the supported size options for production instances of Loki are **1x.extra-small**, **1x.small**, or **1x.medium**.

IMPORTANT

It is not possible to change the number $\mathbf{1x}$ for the deployment size.

Specify the type of your log store secret.

4

Specify the name of a storage class for temporary storage. For best performance, specify a storage class that allocates block storage. Available storage classes for your cluster can be listed by using the **oc get storageclasses** command.

LokiStack defaults to running in multi-tenant mode, which cannot be modified. One tenant is provided for each log type: audit, infrastructure, and application logs. This enables access control for individual users and user groups to different log streams.

2. Apply the **LokiStack** CR by running the following command:

Verification

• Verify the installation by listing the pods in the **openshift-logging** project by running the following command and observing the output:

\$ oc get pods -n openshift-logging

Confirm that you see several pods for components of the logging, similar to the following list:

Example output

NAME	READ	Υ STATL	JS RE	START	S AGE
cluster-logging-operator-78fddc6	97-mnl	82 1/1	Runi	ning 0	14m
collector-6cglq	2/2	Running	0	45s	
collector-8r664	2/2	Running	0	45s	
collector-8z7px	2/2	Running	0	45s	
collector-pdxl9	2/2	Running	0	45s	
collector-tc9dx	2/2	Running	0	45s	
collector-xkd76	2/2	Running	0	45s	
logging-loki-compactor-0	1	/1 Run	ning 0	8r	n2s
logging-loki-distributor-b85b7d9f	d-25j9g	1/1	Runnin	ig 0	8m2s
logging-loki-distributor-b85b7d9f	d-xwjs6	1/1	Runnir	ng O	8m2s
logging-loki-gateway-7bb86fd855		2/2	Runni	ng 0	8m2s
logging-loki-gateway-7bb86fd855	5-qjtlb	2/2	Runnir	ng O	8m2s
logging-loki-index-gateway-0			nning	0	8m2s
logging-loki-index-gateway-1		1/1 Ru	nning	0	7m29s
logging-loki-ingester-0	1/1		0	8m2	2s
logging-loki-ingester-1	1/1	Runnii	ng 0	6m4	16s
logging-loki-querier-f5cf9cb87-9f	-		Running		8m2s
logging-loki-querier-f5cf9cb87-fp	9v5	1/1 F	Running	0	8m2s

logging-loki-query-frontend-58c579fcb7-lfvbc	1/1	Running	0	8m2s
logging-loki-query-frontend-58c579fcb7-tjf9k	1/1	Running	0	8m2s
logging-view-plugin-79448d8df6-ckgmx	1/1	Running	0	46s

10.2.2. Loki object storage

The Loki Operator supports AWS S3, as well as other S3 compatible object stores such as Minio and OpenShift Data Foundation. Azure, GCS, and Swift are also supported.

The recommended nomenclature for Loki storage is logging-loki-<your_storage_provider>.

The following table shows the **type** values within the **LokiStack** custom resource (CR) for each storage provider. For more information, see the section on your storage provider.

Table 10.2. Secret type quick reference

Storage provider	Secret type value
AWS	s3
Azure	azure
Google Cloud	gcs
Minio	s3
OpenShift Data Foundation	s3
Swift	swift

10.2.2.1. AWS storage

Prerequisites

- You installed the Loki Operator.
- You installed the OpenShift CLI (**oc**).
- You created a bucket on AWS.
- You created an AWS IAM Policy and IAM User.

Procedure

• Create an object storage secret with the name **logging-loki-aws** by running the following command:

\$ oc create secret generic logging-loki-aws \
--from-literal=bucketnames="<bucket_name>" \
--from-literal=endpoint="<aws_bucket_endpoint>" \

--from-literal=access_key_id="<aws_access_key_id>" \ --from-literal=access_key_secret="<aws_access_key_secret>" \ --from-literal=region="<aws_region_of_your_bucket>"

10.2.2.2. Azure storage

Prerequisites

- You installed the Loki Operator.
- You installed the OpenShift CLI (**oc**).
- You created a bucket on Azure.

Procedure

• Create an object storage secret with the name **logging-loki-azure** by running the following command:

\$ oc create secret generic logging-loki-azure \

- --from-literal=container="<azure_container_name>" \
- --from-literal=environment="<azure_environment>" \
- --from-literal=account_name="<azure_account_name>" \
- --from-literal=account_key="<azure_account_key>"

Supported environment values are **AzureGlobal**, **AzureChinaCloud**, **AzureGermanCloud**, or **AzureUSGovernment**.

10.2.2.3. Google Cloud Platform storage

Prerequisites

- You installed the Loki Operator.
- You installed the OpenShift CLI (**oc**).
- You created a project on Google Cloud Platform (GCP).
- You created a bucket in the same project.
- You created a service account in the same project for GCP authentication.

Procedure

- 1. Copy the service account credentials received from GCP into a file called **key.json**.
- 2. Create an object storage secret with the name **logging-loki-gcs** by running the following command:

\$ oc create secret generic logging-loki-gcs \
 --from-literal=bucketname="<bucket_name>" \
 --from-file=key.json="<path/to/key.json>"

10.2.2.4. Minio storage

Prerequisites

- You installed the Loki Operator.
- You installed the OpenShift CLI (**oc**).
- You have Minio deployed on your cluster.
- You created a bucket on Minio.

Procedure

- Create an object storage secret with the name **logging-loki-minio** by running the following command:
 - \$ oc create secret generic logging-loki-minio \
 - --from-literal=bucketnames="<bucket_name>" \
 - --from-literal=endpoint="<minio_bucket_endpoint>" \
 - --from-literal=access_key_id="<minio_access_key_id>" \
 - --from-literal=access_key_secret="<minio_access_key_secret>"

10.2.2.5. OpenShift Data Foundation storage

Prerequisites

- You installed the Loki Operator.
- You installed the OpenShift CLI (**oc**).
- You deployed OpenShift Data Foundation.
- You configured your OpenShift Data Foundation cluster for object storage.

Procedure

1. Create an **ObjectBucketClaim** custom resource in the **openshift-logging** namespace:

apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
name: loki-bucket-odf
namespace: openshift-logging
spec:
generateBucketName: loki-bucket-odf
storageClassName: openshift-storage.noobaa.io

2. Get bucket properties from the associated **ConfigMap** object by running the following command:

BUCKET_HOST=\$(oc get -n openshift-logging configmap loki-bucket-odf -o jsonpath='{.data.BUCKET_HOST}') BUCKET_NAME=\$(oc get -n openshift-logging configmap loki-bucket-odf -o jsonpath='{.data.BUCKET_NAME}') BUCKET_PORT=\$(oc get -n openshift-logging configmap loki-bucket-odf -o jsonpath='{.data.BUCKET_PORT}')

3. Get bucket access key from the associated secret by running the following command:

ACCESS_KEY_ID=\$(oc get -n openshift-logging secret loki-bucket-odf -o jsonpath='{.data.AWS_ACCESS_KEY_ID}' | base64 -d) SECRET_ACCESS_KEY=\$(oc get -n openshift-logging secret loki-bucket-odf -o jsonpath='{.data.AWS_SECRET_ACCESS_KEY}' | base64 -d)

4. Create an object storage secret with the name **logging-loki-odf** by running the following command:

\$ oc create -n openshift-logging secret generic logging-loki-odf \
--from-literal=access_key_id="<access_key_id>" \
--from-literal=access_key_secret="<secret_access_key>" \
--from-literal=bucketnames="<bucket_name>" \
--from-literal=endpoint="https://<bucket_host>:<bucket_port>"

10.2.2.6. Swift storage

Prerequisites

- You installed the Loki Operator.
- You installed the OpenShift CLI (**oc**).
- You created a bucket on Swift.

Procedure

- Create an object storage secret with the name **logging-loki-swift** by running the following command:
 - \$ oc create secret generic logging-loki-swift \
 - --from-literal=auth_url="<swift_auth_url>" \
 - --from-literal=username="<swift_usernameclaim>" \
 - --from-literal=user_domain_name="<swift_user_domain_name>" \
 - --from-literal=user_domain_id="<swift_user_domain_id>" \
 - --from-literal=user_id="<swift_user_id>" \
 - --from-literal=password="<swift_password>" \
 - --from-literal=domain_id="<swift_domain_id>" \
 - --from-literal=domain_name="<swift_domain_name>" \
 - --from-literal=container_name="<swift_container_name>"
- You can optionally provide project-specific data, region, or both by running the following command:

\$ oc create secret generic logging-loki-swift \

- --from-literal=auth_url="<swift_auth_url>" \
- --from-literal=username="<swift_usernameclaim>" \
- --from-literal=user_domain_name="<swift_user_domain_name>" \
- --from-literal=user_domain_id="<swift_user_domain_id>" \

- --from-literal=user_id="<swift_user_id>" \
- --from-literal=password="<swift_password>" \
- --from-literal=domain_id="<swift_domain_id>" \
- --from-literal=domain_name="<swift_domain_name>" \
- --from-literal=container_name="<swift_container_name>" \
- --from-literal=project_id="<swift_project_id>" \
- --from-literal=project_name="<swift_project_name>" \
- --from-literal=project_domain_id="<swift_project_domain_id>" \
- --from-literal=project_domain_name="<swift_project_domain_name>" \
- --from-literal=region="<swift_region>"

10.2.3. Deploying an Elasticsearch log store

You can use the OpenShift Elasticsearch Operator to deploy an internal Elasticsearch log store on your OpenShift Container Platform cluster.

NOTE

The Logging 5.9 release does not contain an updated version of the OpenShift Elasticsearch Operator. If you currently use the OpenShift Elasticsearch Operator released with Logging 5.8, it will continue to work with Logging until the EOL of Logging 5.8. As an alternative to using the OpenShift Elasticsearch Operator to manage the default log storage, you can use the Loki Operator. For more information on the Logging lifecycle dates, see Platform Agnostic Operators.

10.2.3.1. Storage considerations for Elasticsearch

A persistent volume is required for each Elasticsearch deployment configuration. On OpenShift Container Platform this is achieved using persistent volume claims (PVCs).

NOTE

If you use a local volume for persistent storage, do not use a raw block volume, which is described with **volumeMode: block** in the **LocalVolume** object. Elasticsearch cannot use raw block volumes.

The OpenShift Elasticsearch Operator names the PVCs using the Elasticsearch resource name.

Fluentd ships any logs from **systemd journal** and **/var/log/containers/*.log** to Elasticsearch.

Elasticsearch requires sufficient memory to perform large merge operations. If it does not have enough memory, it becomes unresponsive. To avoid this problem, evaluate how much application log data you need, and allocate approximately double that amount of free storage capacity.

By default, when storage capacity is 85% full, Elasticsearch stops allocating new data to the node. At 90%, Elasticsearch attempts to relocate existing shards from that node to other nodes if possible. But if no nodes have a free capacity below 85%, Elasticsearch effectively rejects creating new indices and becomes RED.

NOTE

These low and high watermark values are Elasticsearch defaults in the current release. You can modify these default values. Although the alerts use the same default values, you cannot change these values in the alerts.

10.2.3.2. Installing the OpenShift Elasticsearch Operator by using the web console

The OpenShift Elasticsearch Operator creates and manages the Elasticsearch cluster used by OpenShift Logging.

Prerequisites

Elasticsearch is a memory-intensive application. Each Elasticsearch node needs at least 16GB of memory for both memory requests and limits, unless you specify otherwise in the **ClusterLogging** custom resource.
 The initial set of OpenShift Container Platform nodes might not be large enough to support the Elasticsearch cluster. You must add additional nodes to the OpenShift Container Platform cluster to run with the recommended or higher memory, up to a maximum of 64GB for each Elasticsearch node.

Elasticsearch nodes can operate with a lower memory setting, though this is not recommended for production environments.

• Ensure that you have the necessary persistent storage for Elasticsearch. Note that each Elasticsearch node requires its own storage volume.

NOTE

If you use a local volume for persistent storage, do not use a raw block volume, which is described with **volumeMode: block** in the **LocalVolume** object. Elasticsearch cannot use raw block volumes.

Procedure

- 1. In the OpenShift Container Platform web console, click **Operators** \rightarrow **OperatorHub**.
- 2. Click **OpenShift Elasticsearch Operator** from the list of available Operators, and click **Install**.
- 3. Ensure that the All namespaces on the cluster is selected under Installation mode.
- 4. Ensure that openshift-operators-redhat is selected under Installed Namespace. You must specify the openshift-operators-redhat namespace. The openshift-operators namespace might contain Community Operators, which are untrusted and could publish a metric with the same name as OpenShift Container Platform metric, which would cause conflicts.
- Select Enable operator recommended cluster monitoring on this namespace This option sets the openshift.io/cluster-monitoring: "true" label in the Namespace object. You must select this option to ensure that cluster monitoring scrapes the openshift-operatorsredhat namespace.
- 6. Select **stable-5.x** as the **Update channel**.
- 7. Select an Update approval strategy:
 - The **Automatic** strategy allows Operator Lifecycle Manager (OLM) to automatically update the Operator when a new version is available.
 - The **Manual** strategy requires a user with appropriate credentials to approve the Operator update.
- 8. Click Install.

Verification

- Verify that the OpenShift Elasticsearch Operator installed by switching to the Operators → Installed Operators page.
- 2. Ensure that **OpenShift Elasticsearch Operator** is listed in all projects with a **Status** of **Succeeded**.

10.2.3.3. Installing the OpenShift Elasticsearch Operator by using the CLI

You can use the OpenShift CLI (**oc**) to install the OpenShift Elasticsearch Operator.

Prerequisites

• Ensure that you have the necessary persistent storage for Elasticsearch. Note that each Elasticsearch node requires its own storage volume.

NOTE

If you use a local volume for persistent storage, do not use a raw block volume, which is described with **volumeMode: block** in the **LocalVolume** object. Elasticsearch cannot use raw block volumes.

Elasticsearch is a memory-intensive application. By default, OpenShift Container Platform installs three Elasticsearch nodes with memory requests and limits of 16 GB. This initial set of three OpenShift Container Platform nodes might not have enough memory to run Elasticsearch within your cluster. If you experience memory issues that are related to Elasticsearch, add more Elasticsearch nodes to your cluster rather than increasing the memory on existing nodes.

- You have administrator permissions.
- You have installed the OpenShift CLI (**oc**).

Procedure

1. Create a **Namespace** object as a YAML file:

apiVersion: v1 kind: Namespace metadata: name: openshift-operators-redhat 1 annotations: openshift.io/node-selector: "" labels: openshift.io/cluster-monitoring: "true" 2

You must specify the **openshift-operators-redhat** namespace. To prevent possible conflicts with metrics, configure the Prometheus Cluster Monitoring stack to scrape metrics from the **openshift-operators-redhat** namespace and not the **openshift-operators** namespace. The **openshift-operators** namespace might contain community Operators, which are untrusted and could publish a metric with the same name as metric, which would cause conflicts.

2

String. You must specify this label as shown to ensure that cluster monitoring scrapes the **openshift-operators-redhat** namespace.

2. Apply the **Namespace** object by running the following command:

\$ oc apply -f <filename>.yaml

3. Create an **OperatorGroup** object as a YAML file:

apiVersion: operators.coreos.com/v1 kind: OperatorGroup metadata: name: openshift-operators-redhat namespace: openshift-operators-redhat spec: {}

You must specify the **openshift-operators-redhat** namespace.

4. Apply the **OperatorGroup** object by running the following command:

\$ oc apply -f <filename>.yaml

5. Create a **Subscription** object to subscribe the namespace to the OpenShift Elasticsearch Operator:

Example Subscription

apiVersion: operators.coreos.com/v1alpha1 kind: Subscription
metadata:
name: elasticsearch-operator
namespace: openshift-operators-redhat 1
spec:
channel: stable-x.y 2
installPlanApproval: Automatic 3
source: redhat-operators 4
sourceNamespace: openshift-marketplace
name: elasticsearch-operator

You must specify the **openshift-operators-redhat** namespace.

Specify **stable**, or **stable-x.y** as the channel. See the following note.

Automatic allows the Operator Lifecycle Manager (OLM) to automatically update the Operator when a new version is available. Manual requires a user with appropriate credentials to approve the Operator update.

Specify redhat-operators. If your OpenShift Container Platform cluster is installed on a restricted network, also known as a disconnected cluster, specify the name of the CatalogSource object created when you configured the Operator Lifecycle Manager (OLM).

NOTE

Specifying **stable** installs the current version of the latest stable release. Using **stable** with **installPlanApproval: "Automatic"** automatically upgrades your Operators to the latest stable major and minor release.

Specifying **stable-x.y** installs the current minor version of a specific major release. Using **stable-x.y** with **installPlanApproval: "Automatic"** automatically upgrades your Operators to the latest stable minor release within the major release.

6. Apply the subscription by running the following command:

\$ oc apply -f <filename>.yaml

The OpenShift Elasticsearch Operator is installed to the **openshift-operators-redhat** namespace and copied to each project in the cluster.

Verification

1. Run the following command:

\$ oc get csv -n --all-namespaces

2. Observe the output and confirm that pods for the OpenShift Elasticsearch Operator exist in each namespace

Example output

NAMESPACE		NAME	DISPLAY	
VERSION	REPLACES	PHASE		
default		elasticsearch-operator	v5.8.1 OpenShift Elasticsea	ırch
Operator 5.8.	1 elasticsear	ch-operator.v5.8.0 Su	lcceeded	
kube-node-leas	se	elasticsearch-ope	erator.v5.8.1 OpenShift	
Elasticsearch C	Operator 5.8.1	elasticsearch-opera	ator.v5.8.0 Succeeded	
kube-public		elasticsearch-opera	tor.v5.8.1 OpenShift Elastics	earch
Operator 5.8.	1 elasticsear	ch-operator.v5.8.0 Su	ucceeded	
kube-system		elasticsearch-oper	ator.v5.8.1 OpenShift Elastic	search
Operator 5.8.	1 elasticsear	ch-operator.v5.8.0 Su	lcceeded	
non-destructive	e-test	elasticsearch-ope	erator.v5.8.1 OpenShift	
Elasticsearch C	Operator 5.8.1	elasticsearch-opera	ator.v5.8.0 Succeeded	
openshift-apise	erver-operator	elasticsearch-	operator.v5.8.1 OpenShift	
Elasticsearch C	Operator 5.8.1	elasticsearch-opera	ator.v5.8.0 Succeeded	
openshift-apise	erver	elasticsearch-ope	erator.v5.8.1 OpenShift	
Elasticsearch C	Operator 5.8.1	elasticsearch-opera	ator.v5.8.0 Succeeded	

10.2.4. Configuring log storage

You can configure which log storage type your logging uses by modifying the **ClusterLogging** custom resource (CR).

Prerequisites

- You have administrator permissions.
- You have installed the OpenShift CLI (**oc**).
- You have installed the Red Hat OpenShift Logging Operator and an internal log store that is either the LokiStack or Elasticsearch.
- You have created a **ClusterLogging** CR.

NOTE

The Logging 5.9 release does not contain an updated version of the OpenShift Elasticsearch Operator. If you currently use the OpenShift Elasticsearch Operator released with Logging 5.8, it will continue to work with Logging until the EOL of Logging 5.8. As an alternative to using the OpenShift Elasticsearch Operator to manage the default log storage, you can use the Loki Operator. For more information on the Logging lifecycle dates, see Platform Agnostic Operators.

Procedure

1. Modify the **ClusterLogging** CR **logStore** spec:

ClusterLogging CR example

	<pre>apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: # spec: # logStore: type: <log_store_type> 1 elasticsearch: 2 nodeCount: <integer> resources: {} storage: {} redundancyPolicy: <redundancy_type> 3 lokistack: 4 name: {} #</redundancy_type></integer></log_store_type></pre>
1	Specify the log store type. This can be either lokistack or elasticsearch .
2	Optional configuration options for the Elasticsearch log store.
3	Specify the redundancy type. This value can be ZeroRedundancy , SingleRedundancy , MultipleRedundancy , or FullRedundancy .
4	Optional configuration options for LokiStack.
E	xample ClusterLogging CR to specify LokiStack as the log store

apiVersion: logging.openshift.io/v1

- kind: ClusterLogging metadata: name: instance namespace: openshift-logging spec: managementState: Managed logStore: type: lokistack lokistack: name: logging-loki # ...
- 2. Apply the **ClusterLogging** CR by running the following command:

\$ oc apply -f <filename>.yaml

10.3. CONFIGURING THE LOKISTACK LOG STORE

In logging documentation, *LokiStack* refers to the logging supported combination of Loki and web proxy with OpenShift Container Platform authentication integration. LokiStack's proxy uses OpenShift Container Platform authentication to enforce multi-tenancy. *Loki* refers to the log store as either the individual component or an external store.

10.3.1. Creating a new group for the cluster-admin user role

IMPORTANT

Querying application logs for multiple namespaces as a **cluster-admin** user, where the sum total of characters of all of the namespaces in the cluster is greater than 5120, results in the error **Parse error: input size too long (XXXX > 5120)**. For better control over access to logs in LokiStack, make the **cluster-admin** user a member of the **cluster-admin** group. If the **cluster-admin** group does not exist, create it and add the desired users to it.

Use the following procedure to create a new group for users with **cluster-admin** permissions.

Procedure

1. Enter the following command to create a new group:

\$ oc adm groups new cluster-admin

2. Enter the following command to add the desired user to the **cluster-admin** group:

\$ oc adm groups add-users cluster-admin <username>

3. Enter the following command to add **cluster-admin** user role to the group:

\$ oc adm policy add-cluster-role-to-group cluster-admin cluster-admin

10.3.2. LokiStack behavior during cluster restarts

In logging version 5.8 and newer versions, when an OpenShift Container Platform cluster is restarted, LokiStack ingestion and the query path continue to operate within the available CPU and memory resources available for the node. This means that there is no downtime for the LokiStack during OpenShift Container Platform cluster updates. This behavior is achieved by using **PodDisruptionBudget** resources. The Loki Operator provisions **PodDisruptionBudget** resources for Loki, which determine the minimum number of pods that must be available per component to ensure normal operations under certain conditions.

Additional resources

.

• Pod disruption budgets Kubernetes documentation

10.3.3. Configuring Loki to tolerate node failure

In the logging 5.8 and later versions, the Loki Operator supports setting pod anti-affinity rules to request that pods of the same component are scheduled on different available nodes in the cluster.

Affinity is a property of pods that controls the nodes on which they prefer to be scheduled. Anti-affinity is a property of pods that prevents a pod from being scheduled on a node.

In OpenShift Container Platform, *pod affinity* and *pod anti-affinity* allow you to constrain which nodes your pod is eligible to be scheduled on based on the key-value labels on other pods.

The Operator sets default, preferred **podAntiAffinity** rules for all Loki components, which includes the **compactor**, **distributor**, **gateway**, **indexGateway**, **ingester**, **querier**, **queryFrontend**, and **ruler** components.

You can override the preferred **podAntiAffinity** settings for Loki components by configuring required settings in the **requiredDuringSchedulingIgnoredDuringExecution** field:

Example user settings for the ingester component

```
apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: logging-loki
 namespace: openshift-logging
spec:
# ...
 template:
  ingester:
   podAntiAffinity:
   # ...
     requiredDuringSchedulingIgnoredDuringExecution:
     - labelSelector:
       matchLabels: 2
        app.kubernetes.io/component: ingester
      topologyKey: kubernetes.io/hostname
# ...
 The stanza to define a required rule.
```

The key-value pair (label) that must be matched to apply the rule.

Additional resources

- PodAntiAffinity v1 core Kubernetes documentation
- Assigning Pods to Nodes Kubernetes documentation
- Placing pods relative to other pods using affinity and anti-affinity rules

10.3.4. Zone aware data replication

In the logging 5.8 and later versions, the Loki Operator offers support for zone-aware data replication through pod topology spread constraints. Enabling this feature enhances reliability and safeguards against log loss in the event of a single zone failure. When configuring the deployment size as 1x.extra.small, 1x.small, or 1x.medium, the replication.factor field is automatically set to 2.

To ensure proper replication, you need to have at least as many availability zones as the replication factor specifies. While it is possible to have more availability zones than the replication factor, having fewer zones can lead to write failures. Each zone should host an equal number of instances for optimal operation.

Example LokiStack CR with zone replication enabled

- This value is automatically set when deployment size is selected at setup.
- The maximum difference in number of pods between any two topology domains. The default is 1, and you cannot specify a value of O.
- Defines zones in the form of a topology key that corresponds to a node label. Δ

10.3.4.1. Recovering Loki pods from failed zones

In OpenShift Container Platform a zone failure happens when specific availability zone resources become inaccessible. Availability zones are isolated areas within a cloud provider's data center, aimed at enhancing redundancy and fault tolerance. If your OpenShift Container Platform cluster isn't configured to handle this, a zone failure can lead to service or data loss.

Loki pods are part of a StatefulSet, and they come with Persistent Volume Claims (PVCs) provisioned by a **StorageClass** object. Each Loki pod and its PVCs reside in the same zone. When a zone failure occurs in a cluster, the StatefulSet controller automatically attempts to recover the affected pods in the

failed zone.

WARNING

The following procedure will delete the PVCs in the failed zone, and all data contained therein. To avoid complete data loss the replication factor field of the **LokiStack** CR should always be set to a value greater than 1 to ensure that Loki is replicating.

Prerequisites

- Logging version 5.8 or later.
- Verify your LokiStack CR has a replication factor greater than 1.
- Zone failure detected by the control plane, and nodes in the failed zone are marked by cloud provider integration.

The StatefulSet controller automatically attempts to reschedule pods in a failed zone. Because the associated PVCs are also in the failed zone, automatic rescheduling to a different zone does not work. You must manually delete the PVCs in the failed zone to allow successful re-creation of the stateful Loki Pod and its provisioned PVC in the new zone.

Procedure

1. List the pods in **Pending** status by running the following command:

oc get pods --field-selector status.phase==Pending -n openshift-logging

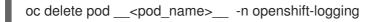
Example oc get pods output

NAMEREADYSTATUSRESTARTSAGE1logging-loki-index-gateway-10/1Pending017mlogging-loki-ingester-10/1Pending016mlogging-loki-ruler-10/1Pending016m

These pods are in **Pending** status because their corresponding PVCs are in the failed zone.

2. List the PVCs in **Pending** status by running the following command:

oc get pvc -o=json -n openshift-logging | jq '.items[] | select(.status.phase == "Pending") | .metadata.name' -r


Example oc get pvc output

storage-logging-loki-index-gateway-1 storage-logging-loki-ingester-1 wal-logging-loki-ingester-1 storage-logging-loki-ruler-1 wal-logging-loki-ruler-1

3. Delete the PVC(s) for a pod by running the following command:

oc delete pvc ___<pvc_name>___ -n openshift-logging

4. Then delete the pod(s) by running the following command:

Once these objects have been successfully deleted, they should automatically be rescheduled in an available zone.

10.3.4.1.1. Troubleshooting PVC in a terminating state

The PVCs might hang in the terminating state without being deleted, if PVC metadata finalizers are set to **kubernetes.io/pv-protection**. Removing the finalizers should allow the PVCs to delete successfully.

1. Remove the finalizer for each PVC by running the command below, then retry deletion.

oc patch pvc __<pvc_name>__ -p '{"metadata":{"finalizers":null}}' -n openshift-logging

Additional resources

- Topology spread constraints Kubernetes documentation
- Kubernetes storage documentation.
- Controlling pod placement by using pod topology spread constraints

10.3.5. Fine grained access for Loki logs

In logging 5.8 and later, the Red Hat OpenShift Logging Operator does not grant all users access to logs by default. As an administrator, you must configure your users' access unless the Operator was upgraded and prior configurations are in place. Depending on your configuration and need, you can configure fine grain access to logs using the following:

- Cluster wide policies
- Namespace scoped policies
- Creation of custom admin groups

As an administrator, you need to create the role bindings and cluster role bindings appropriate for your deployment. The Red Hat OpenShift Logging Operator provides the following cluster roles:

- **cluster-logging-application-view** grants permission to read application logs.
- **cluster-logging-infrastructure-view** grants permission to read infrastructure logs.
- **cluster-logging-audit-view** grants permission to read audit logs.

If you have upgraded from a prior version, an additional cluster role **logging-application-logs-reader** and associated cluster role binding **logging-all-authenticated-application-logs-reader** provide backward compatibility, allowing any authenticated user read access in their namespaces.

NOTE

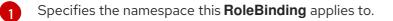
Users with access by namespace must provide a namespace when querying application logs.

10.3.5.1. Cluster wide access

Cluster role binding resources reference cluster roles, and set permissions cluster wide.

Example ClusterRoleBinding

```
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: logging-all-application-logs-reader
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-logging-application-view
subjects: 2
- kind: Group
name: system:authenticated
apiGroup: rbac.authorization.k8s.io
```


- Additional **ClusterRoles** are **cluster-logging-infrastructure-view**, and **cluster-logging-audit-view**.
- Specifies the users or groups this object applies to.

10.3.5.2. Namespaced access

RoleBinding resources can be used with **ClusterRole** objects to define the namespace a user or group has access to logs for.

Example RoleBinding

kind: RoleBinding apiVersion: rbac.authorization.k8s.io/v1 metadata: name: allow-read-logs namespace: log-test-0 1 roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: cluster-logging-application-view subjects: - kind: User apiGroup: rbac.authorization.k8s.io name: testuser-0

10.3.5.3. Custom admin group access

If you have a large deployment with a number of users who require broader permissions, you can create a custom group using the **adminGroup** field. Users who are members of any group specified in the **adminGroups** field of the **LokiStack** CR are considered admins. Admin users have access to all application logs in all namespaces, if they also get assigned the **cluster-logging-application-view** role.

Example LokiStack CR

apiVersion: loki.grafana.com/v1 kind: LokiStack
metadata:
name: logging-loki
namespace: openshift-logging
spec:
tenants:
mode: openshift-logging 1
openshift:
adminGroups: 2
- cluster-admin
- custom-admin-group 3

- Custom admin groups are only available in this mode.
- 2 Entering an empty list [] value for this field disables admin groups.
- 3 Overrides the default groups (system:cluster-admins, cluster-admin, dedicated-admin)

Additional resources

• Using RBAC to define and apply permissions

10.3.6. Enabling stream-based retention with Loki

With Logging version 5.6 and higher, you can configure retention policies based on log streams. Rules for these may be set globally, per tenant, or both. If you configure both, tenant rules apply before global rules.

1. To enable stream-based retention, create a **LokiStack** custom resource (CR):

Example global stream-based retention

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
name: logging-loki
namespace: openshift-logging
spec:
limits:
global: 🚺

retention: 2 days: 20 streams: - days: 4 priority: 1 selector: '{kubernetes namespace name=~"test.+"}' 3 - days: 1 priority: 1 selector: '{log_type="infrastructure"}' managementState: Managed replicationFactor: 1 size: 1x.small storage: schemas: - effectiveDate: "2020-10-11" version: v11 secret: name: logging-loki-s3 type: aws storageClassName: standard tenants: mode: openshift-logging

Sets retention policy for all log streams. **Note: This field does not impact the retention period for stored logs in object storage.**

Retention is enabled in the cluster when this block is added to the CR.

Contains the LogQL query used to define the log stream.

Example per-tenant stream-based retention

```
apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: logging-loki
 namespace: openshift-logging
spec:
 limits:
  global:
   retention:
    days: 20
  tenants: 1
   application:
     retention:
      days: 1
      streams:
       - days: 4
        selector: '{kubernetes namespace name=~"test.+"}' 2
   infrastructure:
    retention:
      days: 5
      streams:
       - days: 1
```

selector: '{kubernetes_namespace_name=~"openshift-cluster.+"}'
managementState: Managed
replicationFactor: 1
size: 1x.small
storage:
 schemas:
 effectiveDate: "2020-10-11"
 version: v11
 secret:
 name: logging-loki-s3
 type: aws
storageClassName: standard
tenants:
 mode: openshift-logging

Sets retention policy by tenant. Valid tenant types are **application**, **audit**, and **infrastructure**.

Contains the LogQL query used to define the log stream.

2. Apply the **LokiStack** CR:

\$ oc apply -f <filename>.yaml

NOTE

This is not for managing the retention for stored logs. Global retention periods for stored logs to a supported maximum of 30 days is configured with your object storage.

10.3.7. Troubleshooting Loki rate limit errors

If the Log Forwarder API forwards a large block of messages that exceeds the rate limit to Loki, Loki generates rate limit (**429**) errors.

These errors can occur during normal operation. For example, when adding the logging to a cluster that already has some logs, rate limit errors might occur while the logging tries to ingest all of the existing log entries. In this case, if the rate of addition of new logs is less than the total rate limit, the historical data is eventually ingested, and the rate limit errors are resolved without requiring user intervention.

In cases where the rate limit errors continue to occur, you can fix the issue by modifying the **LokiStack** custom resource (CR).

IMPORTANT

The **LokiStack** CR is not available on Grafana-hosted Loki. This topic does not apply to Grafana-hosted Loki servers.

Conditions

- The Log Forwarder API is configured to forward logs to Loki.
- Your system sends a block of messages that is larger than 2 MB to Loki. For example:

• After you enter **oc logs -n openshift-logging -l component=collector**, the collector logs in your cluster show a line containing one of the following error messages:

429 Too Many Requests Ingestion rate limit exceeded

Example Vector error message

2023-08-25T16:08:49.301780Z WARN sink{component_kind="sink" component_id=default_loki_infra component_type=loki component_name=default_loki_infra}: vector::sinks::util::retries: Retrying after error. error=Server responded with an error: 429 Too Many Requests internal_log_rate_limit=true

Example Fluentd error message

2023-08-30 14:52:15 +0000 [warn]: [default_loki_infra] failed to flush the buffer. retry_times=2 next_retry_time=2023-08-30 14:52:19 +0000 chunk="604251225bf5378ed1567231a1c03b8b" error_class=Fluent::Plugin::LokiOutput::LogPostError error="429 Too Many Requests Ingestion rate limit exceeded for user infrastructure (limit: 4194304 bytes/sec) while attempting to ingest '4082' lines totaling '7820025' bytes, reduce log volume or contact your Loki administrator to see if the limit can be increased\n"

The error is also visible on the receiving end. For example, in the LokiStack ingester pod:

Example Loki ingester error message

level=warn ts=2023-08-30T14:57:34.155592243Z caller=grpc_logging.go:43 duration=1.434942ms method=/logproto.Pusher/Push err="rpc error: code = Code(429) desc = entry with timestamp 2023-08-30 14:57:32.012778399 +0000 UTC ignored, reason: 'Per stream rate limit exceeded (limit: 3MB/sec) while attempting to ingest for stream

Procedure

• Update the ingestionBurstSize and ingestionRate fields in the LokiStack CR:

apiVersion: loki.grafana.com/v1 kind: LokiStack metadata: name: logging-loki namespace: openshift-logging spec: limits:

The **ingestionBurstSize** field defines the maximum local rate-limited sample size per distributor replica in MB. This value is a hard limit. Set this value to at least the maximum logs size expected in a single push request. Single requests that are larger than the **ingestionBurstSize** value are not permitted.

2 The **ingestionRate** field is a soft limit on the maximum amount of ingested samples per second in MB. Rate limit errors occur if the rate of logs exceeds the limit, but the collector retries sending the logs. As long as the total average is lower than the limit, the system recovers and errors are resolved without user intervention.

10.3.8. Configuring Loki to tolerate memberlist creation failure

In an OpenShift cluster, administrators generally use a non-private IP network range. As a result, the LokiStack memberlist configuration fails because, by default, it only uses private IP networks.

As an administrator, you can select the pod network for the memberlist configuration. You can modify the LokiStack CR to use the **podIP** in the **hashRing** spec. To configure the LokiStack CR, use the following command:

\$ oc patch LokiStack logging-loki -n openshift-logging --type=merge -p '{"spec": {"hashRing": {"memberlist":{"instanceAddrType":"podIP","type": "memberlist"}}}

Example LokiStack to include podIP

```
apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
name: logging-loki
namespace: openshift-logging
spec:
# ...
hashRing:
type: memberlist
memberlist:
instanceAddrType: podIP
# ...
```

10.3.9. Additional Resources

- Loki components documentation
- Loki Query Language (LogQL) documentation
- Grafana Dashboard documentation
- Loki Object Storage documentation

- Loki Operator IngestionLimitSpec documentation
- Loki Storage Schema documentation

10.4. CONFIGURING THE ELASTICSEARCH LOG STORE

You can use Elasticsearch 6 to store and organize log data.

You can make modifications to your log store, including:

- Storage for your Elasticsearch cluster
- Shard replication across data nodes in the cluster, from full replication to no replication
- External access to Elasticsearch data

10.4.1. Configuring log storage

You can configure which log storage type your logging uses by modifying the **ClusterLogging** custom resource (CR).

Prerequisites

- You have administrator permissions.
- You have installed the OpenShift CLI (**oc**).
- You have installed the Red Hat OpenShift Logging Operator and an internal log store that is either the LokiStack or Elasticsearch.
- You have created a **ClusterLogging** CR.

NOTE

The Logging 5.9 release does not contain an updated version of the OpenShift Elasticsearch Operator. If you currently use the OpenShift Elasticsearch Operator released with Logging 5.8, it will continue to work with Logging until the EOL of Logging 5.8. As an alternative to using the OpenShift Elasticsearch Operator to manage the default log storage, you can use the Loki Operator. For more information on the Logging lifecycle dates, see Platform Agnostic Operators.

Procedure

1. Modify the **ClusterLogging** CR **logStore** spec:

ClusterLogging CR example

apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: # ... spec: # ... logStore: type: <log_store_type> 1

name: logging-loki

\$ oc apply -f <filename>.yaml

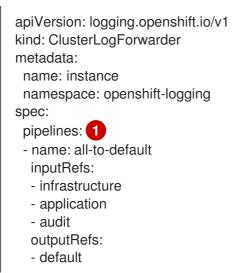
10.4.2. Forwarding audit logs to the log store

...

	<pre>elasticsearch: 2 nodeCount: <integer> resources: {} storage: {} redundancyPolicy: <redundancy_type> 3 lokistack: 4 name: {} #</redundancy_type></integer></pre>
1	Specify the log store type. This can be either lokistack or elasticsearch .
2	Optional configuration options for the Elasticsearch log store.
3	Specify the redundancy type. This value can be ZeroRedundancy , SingleRedundancy , MultipleRedundancy , or FullRedundancy .
4	Optional configuration options for LokiStack.
Ex	cample ClusterLogging CR to specify LokiStack as the log store
	apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: name: instance namespace: openshift-logging spec: managementState: Managed logStore: type: lokistack lokistack;

In a logging deployment, container and infrastructure logs are forwarded to the internal log store defined in the **ClusterLogging** custom resource (CR) by default.

2. Apply the **ClusterLogging** CR by running the following command:


Audit logs are not forwarded to the internal log store by default because this does not provide secure storage. You are responsible for ensuring that the system to which you forward audit logs is compliant with your organizational and governmental regulations, and is properly secured.

If this default configuration meets your needs, you do not need to configure a **ClusterLogForwarder** CR. If a **ClusterLogForwarder** CR exists, logs are not forwarded to the internal log store unless a pipeline is defined that contains the **default** output.

Procedure

To use the Log Forward API to forward audit logs to the internal Elasticsearch instance:

- 1. Create or edit a YAML file that defines the **ClusterLogForwarder** CR object:
 - Create a CR to send all log types to the internal Elasticsearch instance. You can use the following example without making any changes:

A pipeline defines the type of logs to forward using the specified output. The default output forwards logs to the internal Elasticsearch instance.

NOTE

You must specify all three types of logs in the pipeline: application, infrastructure, and audit. If you do not specify a log type, those logs are not stored and will be lost.

• If you have an existing **ClusterLogForwarder** CR, add a pipeline to the default output for the audit logs. You do not need to define the default output. For example:

apiVersion: "logging.openshift.io/v1" kind: ClusterLogForwarder metadata: name: instance namespace: openshift-logging spec: outputs: - name: elasticsearch-insecure type: "elasticsearch" url: http://elasticsearch-insecure.messaging.svc.cluster.local insecure: true - name: elasticsearch-secure type: "elasticsearch" url: https://elasticsearch-secure.messaging.svc.cluster.local secret: name: es-audit - name: secureforward-offcluster type: "fluentdForward" url: https://secureforward.offcluster.com:24224 secret: name: secureforward pipelines:

- name: container-logs inputRefs:
 application outputRefs:
 secureforward-offcluster
 name: infra-logs inputRefs:
 infrastructure outputRefs:
 elasticsearch-insecure
 name: audit-logs inputRefs:
 audit
 - outputRefs:
 - elasticsearch-secure
 - default 🚺

1

This pipeline sends the audit logs to the internal Elasticsearch instance in addition to an external instance.

Additional resources

• About log collection and forwarding

10.4.3. Configuring log retention time

You can configure a *retention policy* that specifies how long the default Elasticsearch log store keeps indices for each of the three log sources: infrastructure logs, application logs, and audit logs.

To configure the retention policy, you set a **maxAge** parameter for each log source in the **ClusterLogging** custom resource (CR). The CR applies these values to the Elasticsearch rollover schedule, which determines when Elasticsearch deletes the rolled-over indices.

Elasticsearch rolls over an index, moving the current index and creating a new index, when an index matches any of the following conditions:

- The index is older than the **rollover.maxAge** value in the **Elasticsearch** CR.
- The index size is greater than 40 GB × the number of primary shards.
- The index doc count is greater than 40960 KB × the number of primary shards.

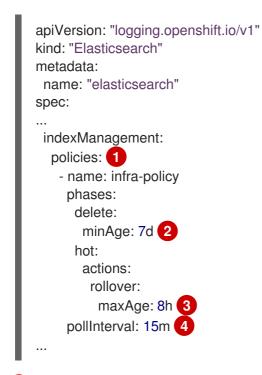
Elasticsearch deletes the rolled-over indices based on the retention policy you configure. If you do not create a retention policy for any log sources, logs are deleted after seven days by default.

Prerequisites

• The Red Hat OpenShift Logging Operator and the OpenShift Elasticsearch Operator must be installed.

Procedure

To configure the log retention time:


1. Edit the **ClusterLogging** CR to add or modify the **retentionPolicy** parameter:

apiVersion: "logging.openshift.io/v1" kind: "ClusterLogging"
spec:
managementState: "Managed"
logStore:
type: "elasticsearch"
retentionPolicy: 1
application:
maxAge: 1d
infra:
maxAge: 7d
audit:
maxAge: 7d
elasticsearch:
nodeCount: 3

Specify the time that Elasticsearch should retain each log source. Enter an integer and a time designation: weeks(w), hours(h/H), minutes(m) and seconds(s). For example, **1d** for one day. Logs older than the **maxAge** are deleted. By default, logs are retained for seven days.

2. You can verify the settings in the **Elasticsearch** custom resource (CR).

For example, the Red Hat OpenShift Logging Operator updated the following **Elasticsearch** CR to configure a retention policy that includes settings to roll over active indices for the infrastructure logs every eight hours and the rolled-over indices are deleted seven days after rollover. OpenShift Container Platform checks every 15 minutes to determine if the indices need to be rolled over.

For each log source, the retention policy indicates when to delete and roll over logs for that source.

When OpenShift Container Platform deletes the rolled-over indices. This setting is the **maxAge** you set in the **ClusterLogging** CR.

The index age for OpenShift Container Platform to consider when rolling over the indices. This value is determined from the **maxAge** you set in the **ClusterLogging** CR.

When OpenShift Container Platform checks if the indices should be rolled over. This setting is the default and cannot be changed.

NOTE

Modifying the **Elasticsearch** CR is not supported. All changes to the retention policies must be made in the **ClusterLogging** CR.

The OpenShift Elasticsearch Operator deploys a cron job to roll over indices for each mapping using the defined policy, scheduled using the **pollInterval**.

Example output

NAME	SC	HEDULE	SUSP	END	ACTIVE	LAST SCHEDULE	AGE
elasticsearch-im-a	рр	*/15 * * * *	False	0	<none></none>	4s	
elasticsearch-im-a	udit	*/15 * * * *	False	0	<none></none>	4s	
elasticsearch-im-ir	nfra	*/15 * * * *	False	0	<none></none>	4s	

10.4.4. Configuring CPU and memory requests for the log store

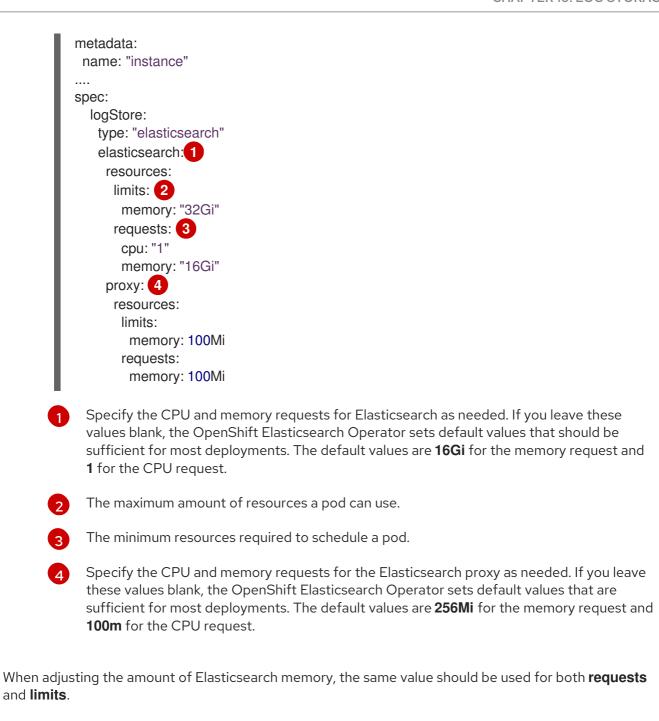
Each component specification allows for adjustments to both the CPU and memory requests. You should not have to manually adjust these values as the OpenShift Elasticsearch Operator sets values sufficient for your environment.

NOTE

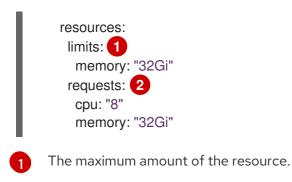
In large-scale clusters, the default memory limit for the Elasticsearch proxy container might not be sufficient, causing the proxy container to be OOMKilled. If you experience this issue, increase the memory requests and limits for the Elasticsearch proxy.

Each Elasticsearch node can operate with a lower memory setting though this is **not** recommended for production deployments. For production use, you should have no less than the default 16Gi allocated to each pod. Preferably you should allocate as much as possible, up to 64Gi per pod.

Prerequisites


• The Red Hat OpenShift Logging and Elasticsearch Operators must be installed.

Procedure


1. Edit the **ClusterLogging** custom resource (CR) in the **openshift-logging** project:

\$ oc edit ClusterLogging instance

apiVersion: "logging.openshift.io/v1" kind: "ClusterLogging"

For example:

The minimum amount required.

Kubernetes generally adheres the node configuration and does not allow Elasticsearch to use the specified limits. Setting the same value for the **requests** and **limits** ensures that Elasticsearch can use the memory you want, assuming the node has the memory available.

10.4.5. Configuring replication policy for the log store

You can define how Elasticsearch shards are replicated across data nodes in the cluster.

Prerequisites

• The Red Hat OpenShift Logging and Elasticsearch Operators must be installed.

Procedure

1. Edit the **ClusterLogging** custom resource (CR) in the **openshift-logging** project:

\$ oc edit clusterlogging instance
apiVersion: "logging.openshift.io/v1" kind: "ClusterLogging" metadata: name: "instance"
spec: logStore: type: "elasticsearch" elasticsearch: redundancyPolicy: "SingleRedundancy"

Specify a redundancy policy for the shards. The change is applied upon saving the changes.

- **FullRedundancy**. Elasticsearch fully replicates the primary shards for each index to every data node. This provides the highest safety, but at the cost of the highest amount of disk required and the poorest performance.
- **MultipleRedundancy**. Elasticsearch fully replicates the primary shards for each index to half of the data nodes. This provides a good tradeoff between safety and performance.
- **SingleRedundancy**. Elasticsearch makes one copy of the primary shards for each index. Logs are always available and recoverable as long as at least two data nodes exist. Better performance than MultipleRedundancy, when using 5 or more nodes. You cannot apply this policy on deployments of single Elasticsearch node.
- **ZeroRedundancy**. Elasticsearch does not make copies of the primary shards. Logs might be unavailable or lost in the event a node is down or fails. Use this mode when you are more concerned with performance than safety, or have implemented your own disk/PVC backup/restore strategy.

NOTE

The number of primary shards for the index templates is equal to the number of Elasticsearch data nodes.

10.4.6. Scaling down Elasticsearch pods

Reducing the number of Elasticsearch pods in your cluster can result in data loss or Elasticsearch performance degradation.

If you scale down, you should scale down by one pod at a time and allow the cluster to re-balance the shards and replicas. After the Elasticsearch health status returns to **green**, you can scale down by another pod.

NOTE

If your Elasticsearch cluster is set to **ZeroRedundancy**, you should not scale down your Elasticsearch pods.

10.4.7. Configuring persistent storage for the log store

Elasticsearch requires persistent storage. The faster the storage, the faster the Elasticsearch performance.

WARNING

Using NFS storage as a volume or a persistent volume (or via NAS such as Gluster) is not supported for Elasticsearch storage, as Lucene relies on file system behavior that NFS does not supply. Data corruption and other problems can occur.

Prerequisites

• The Red Hat OpenShift Logging and Elasticsearch Operators must be installed.

Procedure

1. Edit the **ClusterLogging** CR to specify that each data node in the cluster is bound to a Persistent Volume Claim.

```
apiVersion: "logging.openshift.io/v1"
kind: "ClusterLogging"
metadata:
    name: "instance"
# ...
spec:
    logStore:
    type: "elasticsearch"
    elasticsearch:
        nodeCount: 3
        storageClassName: "gp2"
        size: "200G"
```

This example specifies each data node in the cluster is bound to a Persistent Volume Claim that requests "200G" of AWS General Purpose SSD (gp2) storage.

NOTE

If you use a local volume for persistent storage, do not use a raw block volume, which is described with volumeMode: block in the LocalVolume object. Elasticsearch cannot use raw block volumes.

10.4.8. Configuring the log store for emptyDir storage

You can use emptyDir with your log store, which creates an ephemeral deployment in which all of a pod's data is lost upon restart.

NOTE

When using emptyDir, if log storage is restarted or redeployed, you will lose data.

Prerequisites

The Red Hat OpenShift Logging and Elasticsearch Operators must be installed.

Procedure

- 1. Edit the **ClusterLogging** CR to specify emptyDir:
 - spec: logStore: type: "elasticsearch" elasticsearch: nodeCount: 3 storage: {}

10.4.9. Performing an Elasticsearch rolling cluster restart

Perform a rolling restart when you change the elasticsearch config map or any of the elasticsearch-* deployment configurations.

Also, a rolling restart is recommended if the nodes on which an Elasticsearch pod runs requires a reboot.

Prerequisites

The Red Hat OpenShift Logging and Elasticsearch Operators must be installed.

Procedure

To perform a rolling cluster restart:

1. Change to the **openshift-logging** project:

- \$ oc project openshift-logging
- 2. Get the names of the Elasticsearch pods:

3. Scale down the collector pods so they stop sending new logs to Elasticsearch:

\$ oc -n openshift-logging patch daemonset/collector -p '{"spec": {"template":{"spec": {"nodeSelector": {"logging-infra-collector": "false"}}}}

4. Perform a shard synced flush using the OpenShift Container Platform **es_util** tool to ensure there are no pending operations waiting to be written to disk prior to shutting down:

\$ oc exec <any_es_pod_in_the_cluster> -c elasticsearch -- es_util --query="_flush/synced" - XPOST

For example:

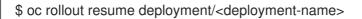
\$ oc exec -c elasticsearch-cdm-5ceex6ts-1-dcd6c4c7c-jpw6 -c elasticsearch -- es_util -- query="_flush/synced" -XPOST

Example output

{"_shards":{"total":4,"successful":4,"failed":0},".security": {"total":2,"successful":2,"failed":0},".kibana_1":{"total":2,"successful":2,"failed":0}}

5. Prevent shard balancing when purposely bringing down nodes using the OpenShift Container Platform es_util tool:

\$ oc exec <any_es_pod_in_the_cluster> -c elasticsearch -- es_util -query="_cluster/settings" -XPUT -d '{ "persistent": { "cluster.routing.allocation.enable" :
 "primaries" } }'


For example:

\$ oc exec elasticsearch-cdm-5ceex6ts-1-dcd6c4c7c-jpw6 -c elasticsearch -- es_util -query="_cluster/settings" -XPUT -d '{ "persistent": { "cluster.routing.allocation.enable" : "primaries" } }'

Example output

{"acknowledged":true,"persistent":{"cluster":{"routing":{"allocation": {"enable":"primaries"}}},"transient":

- 6. After the command is complete, for each deployment you have for an ES cluster:
 - a. By default, the OpenShift Container Platform Elasticsearch cluster blocks rollouts to their nodes. Use the following command to allow rollouts and allow the pod to pick up the changes:

For example:

\$ oc rollout resume deployment/elasticsearch-cdm-0-1

Example output

deployment.extensions/elasticsearch-cdm-0-1 resumed

A new pod is deployed. After the pod has a ready container, you can move on to the next deployment.

\$ oc get pods -I component=elasticsearch-

Example output

NAME	READY STA	TUS	RESTART	S	AGE
elasticsearch-cdm-5ceex6ts-1-de	cd6c4c7c-jpw6ł	x 2/2	Running	0	22h
elasticsearch-cdm-5ceex6ts-2-f7	'99564cb-l9mj7	2/2	Running	0	22h
elasticsearch-cdm-5ceex6ts-3-58	85968dc68-k7k	jr 2/2	Running	0	22h

b. After the deployments are complete, reset the pod to disallow rollouts:

\$ oc rollout pause deployment/<deployment-name>

For example:

\$ oc rollout pause deployment/elasticsearch-cdm-0-1

Example output

deployment.extensions/elasticsearch-cdm-0-1 paused

c. Check that the Elasticsearch cluster is in a green or yellow state:

\$ oc exec <any_es_pod_in_the_cluster> -c elasticsearch -- es_util -query=_cluster/health?pretty=true

NOTE

If you performed a rollout on the Elasticsearch pod you used in the previous commands, the pod no longer exists and you need a new pod name here.

For example:

\$ oc exec elasticsearch-cdm-5ceex6ts-1-dcd6c4c7c-jpw6 -c elasticsearch -- es_util -- query=_cluster/health?pretty=true

```
{
    "cluster_name" : "elasticsearch",
    "status" : "yellow",
    "timed_out" : false,
    "number_of_nodes" : 3,
    "number_of_data_nodes" : 3,
    "active_primary_shards" : 3,
    "active_shards" : 16,
    "relocating_shards" : 0,
    "initializing_shards" : 0,
    "unassigned_shards" : 1,
```

"delayed_unassigned_shards" : 0, "number_of_pending_tasks" : 0, "number_of_in_flight_fetch" : 0, "task_max_waiting_in_queue_millis" : 0, "active_shards_percent_as_number" : 100.0 }

Make sure this parameter value is **green** or **yellow** before proceeding.

- 7. If you changed the Elasticsearch configuration map, repeat these steps for each Elasticsearch pod.
- 8. After all the deployments for the cluster have been rolled out, re-enable shard balancing:

```
$ oc exec <any_es_pod_in_the_cluster> -c elasticsearch -- es_util --
query="_cluster/settings" -XPUT -d '{ "persistent": { "cluster.routing.allocation.enable" : "all" }
}'
```

For example:

```
$ oc exec elasticsearch-cdm-5ceex6ts-1-dcd6c4c7c-jpw6 -c elasticsearch -- es_util --
query="_cluster/settings" -XPUT -d '{ "persistent": { "cluster.routing.allocation.enable" : "all" }
}'
```

Example output

9. Scale up the collector pods so they send new logs to Elasticsearch.

\$ oc -n openshift-logging patch daemonset/collector -p '{"spec":{"template":{"spec": {"nodeSelector":{"logging-infra-collector": "true"}}}}'

10.4.10. Exposing the log store service as a route

By default, the log store that is deployed with logging is not accessible from outside the logging cluster. You can enable a route with re-encryption termination for external access to the log store service for those tools that access its data. Externally, you can access the log store by creating a reencrypt route, your OpenShift Container Platform token and the installed log store CA certificate. Then, access a node that hosts the log store service with a cURL request that contains:

• The Authorization: Bearer \${token}

• The Elasticsearch reencrypt route and an Elasticsearch API request.

Internally, you can access the log store service using the log store cluster IP, which you can get by using either of the following commands:

\$ oc get service elasticsearch -o jsonpath={.spec.clusterIP} -n openshift-logging

Example output

172.30.183.229

\$ oc get service elasticsearch -n openshift-logging

Example output

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE elasticsearch ClusterIP 172.30.183.229 <none> 9200/TCP 22h

You can check the cluster IP address with a command similar to the following:

\$ oc exec elasticsearch-cdm-opInhinv-1-5746475887-fj2f8 -n openshift-logging -- curl -tlsv1.2 -- insecure -H "Authorization: Bearer \${token}" "https://172.30.183.229:9200/_cat/health"

Example output

% Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 29 100 29 0 0 108 0 --:--:-- --- 108

Prerequisites

- The Red Hat OpenShift Logging and Elasticsearch Operators must be installed.
- You must have access to the project to be able to access to the logs.

Procedure

To expose the log store externally:

1. Change to the **openshift-logging** project:

\$ oc project openshift-logging

2. Extract the CA certificate from the log store and write to the *admin-ca* file:

\$ oc extract secret/elasticsearch --to=. --keys=admin-ca

Example output

admin-ca

- 3. Create the route for the log store service as a YAML file:
 - a. Create a YAML file with the following:

apiVersion: route.openshift.io/v1 kind: Route
metadata:
name: elasticsearch
namespace: openshift-logging
spec:
host:
to:
kind: Service
name: elasticsearch
tls:
termination: reencrypt
destinationCACertificate: 1

- Add the log store CA certifcate or use the command in the next step. You do not have to set the **spec.tls.key**, **spec.tls.certificate**, and **spec.tls.caCertificate** parameters required by some reencrypt routes.
- b. Run the following command to add the log store CA certificate to the route YAML you created in the previous step:

\$ cat ./admin-ca | sed -e "s/^/ /" >> <file-name>.yaml

c. Create the route:

Example output

route.route.openshift.io/elasticsearch created

- 4. Check that the Elasticsearch service is exposed:
 - a. Get the token of this service account to be used in the request:

\$ token=\$(oc whoami -t)

b. Set the elasticsearch route you created as an environment variable.

\$ routeES=`oc get route elasticsearch -o jsonpath={.spec.host}`

c. To verify the route was successfully created, run the following command that accesses Elasticsearch through the exposed route: curl -tlsv1.2 --insecure -H "Authorization: Bearer \${token}" "https://\${routeES}"

The response appears similar to the following:

Example output

```
{
    "name" : "elasticsearch-cdm-i40ktba0-1",
    "cluster_name" : "elasticsearch",
    "cluster_uuid" : "0eY-tJzcR3KOdpgeMJo-MQ",
    "version" : {
    "number" : "6.8.1",
    "build_flavor" : "oss",
    "build_type" : "zip",
    "build_type" : "zip",
    "build_hash" : "Unknown",
    "build_date" : "Unknown",
    "build_snapshot" : true,
    "lucene_version" : "7.7.0",
    "minimum_wire_compatibility_version" : "5.6.0",
    "minimum_index_compatibility_version" : "5.0.0"
},
    "<tagline>" : "<for search>"
}
```

10.4.11. Removing unused components if you do not use the default Elasticsearch log store

As an administrator, in the rare case that you forward logs to a third-party log store and do not use the default Elasticsearch log store, you can remove several unused components from your logging cluster.

In other words, if you do not use the default Elasticsearch log store, you can remove the internal Elasticsearch **logStore** and Kibana **visualization** components from the **ClusterLogging** custom resource (CR). Removing these components is optional but saves resources.

Prerequisites

- Verify that your log forwarder does not send log data to the default internal Elasticsearch cluster. Inspect the **ClusterLogForwarder** CR YAML file that you used to configure log forwarding. Verify that it *does not* have an **outputRefs** element that specifies **default**. For example:
 - outputRefs: - default

WARNING

Suppose the **ClusterLogForwarder** CR forwards log data to the internal Elasticsearch cluster, and you remove the **logStore** component from the **ClusterLogging** CR. In that case, the internal Elasticsearch cluster will not be present to store the log data. This absence can cause data loss.

Procedure

1. Edit the **ClusterLogging** custom resource (CR) in the **openshift-logging** project:

- 2. If they are present, remove the **logStore** and **visualization** stanzas from the **ClusterLogging** CR.
- 3. Preserve the **collection** stanza of the **ClusterLogging** CR. The result should look similar to the following example:

apiVersion: "logging.openshift.io/v1"
kind: "ClusterLogging"
metadata:
name: "instance"
namespace: "openshift-logging"
spec:
managementState: "Managed"
collection:
type: "fluentd"
fluentd: {}

4. Verify that the collector pods are redeployed:

\$ oc get pods -I component=collector -n openshift-logging

CHAPTER 11. LOGGING ALERTS

11.1. DEFAULT LOGGING ALERTS

Logging alerts are installed as part of the Red Hat OpenShift Logging Operator installation. Alerts depend on metrics exported by the log collection and log storage backends. These metrics are enabled if you selected the option to **Enable operator recommended cluster monitoring on this namespace** when installing the Red Hat OpenShift Logging Operator. For more information about installing logging Operators, see Installing logging using the web console.

Default logging alerts are sent to the OpenShift Container Platform monitoring stack Alertmanager in the **openshift-monitoring** namespace, unless you have disabled the local Alertmanager instance.

11.1.1. Accessing the Alerting UI in the Administrator and Developer perspectives

The Alerting UI is accessible through the **Administrator** perspective and the **Developer** perspective of the OpenShift Container Platform web console.

- In the Administrator perspective, go to Observe → Alerting. The three main pages in the Alerting UI in this perspective are the Alerts, Silences, and Alerting rules pages.
- In the Developer perspective, go to Observe → <project_name> → Alerts. In this perspective, alerts, silences, and alerting rules are all managed from the Alerts page. The results shown in the Alerts page are specific to the selected project.

NOTE

In the Developer perspective, you can select from core OpenShift Container Platform and user-defined projects that you have access to in the **Project: <project_name**>list. However, alerts, silences, and alerting rules relating to core OpenShift Container Platform projects are not displayed if you do not have **cluster-admin** privileges.

11.1.2. Vector collector alerts

In logging 5.7 and later versions, the following alerts are generated by the Vector collector. You can view these alerts in the OpenShift Container Platform web console.

Alert	Message	Description	Severity
CollectorHighErrorRate	<value> of records have resulted in an error by vector <instance>.</instance></value>	The number of vector output errors is high, by default more than 10 in the previous 15 minutes.	Warning
CollectorNodeDown	Prometheus could not scrape vector <instance> for more than 10m.</instance>	Vector is reporting that Prometheus could not scrape a specific Vector instance.	Critical

Table 11.1. Vector collector alerts

Alert	Message	Description	Severity
CollectorVeryHighError Rate	<value> of records have resulted in an error by vector <instance>.</instance></value>	The number of Vector component errors are very high, by default more than 25 in the previous 15 minutes.	Critical
FluentdQueueLengthInc reasing	In the last 1h, fluentd <instance> buffer queue length constantly increased more than 1. Current value is <value>.</value></instance>	Fluentd is reporting that the queue size is increasing.	Warning

11.1.3. Fluentd collector alerts

The following alerts are generated by the legacy Fluentd log collector. You can view these alerts in the OpenShift Container Platform web console.

Table 11.2. Fluentd collector alerts

Alert	Message	Description	Severity
FluentDHighErrorRate	<value> of records have resulted in an error by fluentd <instance>.</instance></value>	The number of FluentD output errors is high, by default more than 10 in the previous 15 minutes.	Warning
FluentdNodeDown	Prometheus could not scrape fluentd <instance> for more than 10m.</instance>	Fluentd is reporting that Prometheus could not scrape a specific Fluentd instance.	Critical
FluentdQueueLengthInc reasing	In the last 1h, fluentd <instance> buffer queue length constantly increased more than 1. Current value is <value>.</value></instance>	Fluentd is reporting that the queue size is increasing.	Warning
FluentDVeryHighErrorR ate	<value> of records have resulted in an error by fluentd <instance>.</instance></value>	The number of FluentD output errors is very high, by default more than 25 in the previous 15 minutes.	Critical

11.1.4. Elasticsearch alerting rules

You can view these alerting rules in the OpenShift Container Platform web console.

Table 11.3. Alerting rules

Alert	Description	Severit y
ElasticsearchClusterNotH ealthy	The cluster health status has been RED for at least 2 minutes. The cluster does not accept writes, shards may be missing, or the master node hasn't been elected yet.	Critical
ElasticsearchClusterNotH ealthy	The cluster health status has been YELLOW for at least 20 minutes. Some shard replicas are not allocated.	Warnin g
ElasticsearchDiskSpaceR unningLow	The cluster is expected to be out of disk space within the next 6 hours.	Critical
ElasticsearchHighFileDes criptorUsage	The cluster is predicted to be out of file descriptors within the next hour.	Warnin g
ElasticsearchJVMHeapUs eHigh	The JVM Heap usage on the specified node is high.	Alert
ElasticsearchNodeDiskW atermarkReached	The specified node has hit the low watermark due to low free disk space. Shards can not be allocated to this node anymore. You should consider adding more disk space to the node.	Info
ElasticsearchNodeDiskW atermarkReached	The specified node has hit the high watermark due to low free disk space. Some shards will be re-allocated to different nodes if possible. Make sure more disk space is added to the node or drop old indices allocated to this node.	Warnin g
ElasticsearchNodeDiskW atermarkReached	The specified node has hit the flood watermark due to low free disk space. Every index that has a shard allocated on this node is enforced a read-only block. The index block must be manually released when the disk use falls below the high watermark.	Critical
ElasticsearchJVMHeapUs eHigh	The JVM Heap usage on the specified node is too high.	Alert
ElasticsearchWriteReque stsRejectionJumps	Elasticsearch is experiencing an increase in write rejections on the specified node. This node might not be keeping up with the indexing speed.	Warnin g
AggregatedLoggingSyste mCPUHigh	The CPU used by the system on the specified node is too high.	Alert
ElasticsearchProcessCPU High	The CPU used by Elasticsearch on the specified node is too high.	Alert

11.1.5. Additional resources

• Modifying core platform alerting rules

CHAPTER 12. PERFORMANCE AND RELIABILITY TUNING

12.1. FLOW CONTROL MECHANISMS

If logs are produced faster than they can be collected, it can be difficult to predict or control the volume of logs being sent to an output. Not being able to predict or control the volume of logs being sent to an output can result in logs being lost. If there is a system outage and log buffers are accumulated without user control, this can also cause long recovery times and high latency when the connection is restored.

As an administrator, you can limit logging rates by configuring flow control mechanisms for your logging.

12.1.1. Benefits of flow control mechanisms

- The cost and volume of logging can be predicted more accurately in advance.
- Noisy containers cannot produce unbounded log traffic that drowns out other containers.
- Ignoring low-value logs reduces the load on the logging infrastructure.
- High-value logs can be preferred over low-value logs by assigning higher rate limits.

12.1.2. Configuring rate limits

Rate limits are configured per collector, which means that the maximum rate of log collection is the number of collector instances multiplied by the rate limit.

Because logs are collected from each node's file system, a collector is deployed on each cluster node. For example, in a 3-node cluster, with a maximum rate limit of 10 records per second per collector, the maximum rate of log collection is 30 records per second.

Because the exact byte size of a record as written to an output can vary due to transformations, different encodings, or other factors, rate limits are set in number of records instead of bytes.

You can configure rate limits in the **ClusterLogForwarder** custom resource (CR) in two ways:

Output rate limit

Limit the rate of outbound logs to selected outputs, for example, to match the network or storage capacity of an output. The output rate limit controls the aggregated per-output rate.

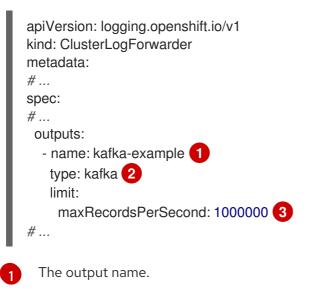
Input rate limit

Limit the per-container rate of log collection for selected containers.

12.1.3. Configuring log forwarder output rate limits

You can limit the rate of outbound logs to a specified output by configuring the **ClusterLogForwarder** custom resource (CR).

Prerequisites


- You have installed the Red Hat OpenShift Logging Operator.
- You have administrator permissions.

Procedure

1. Add a **maxRecordsPerSecond** limit value to the **ClusterLogForwarder** CR for a specified output.

The following example shows how to configure a per collector output rate limit for a Kafka broker output named **kafka-example**:

Example ClusterLogForwarder CR

- The log output rate limit. This value sets the maximum Quantity of logs that can be sent to the Kafka broker per second. This value is not set by default. The default behavior is best effort, and records are dropped if the log forwarder cannot keep up. If this value is **0**, no logs are forwarded.
- 2. Apply the ClusterLogForwarder CR:

Example command

Additional resources

• Log output types

12.1.4. Configuring log forwarder input rate limits

You can limit the rate of incoming logs that are collected by configuring the **ClusterLogForwarder** custom resource (CR). You can set input limits on a per-container or per-namespace basis.

Prerequisites

- You have installed the Red Hat OpenShift Logging Operator.
- You have administrator permissions.

Procedure

1. Add a **maxRecordsPerSecond** limit value to the **ClusterLogForwarder** CR for a specified input.

The following examples show how to configure input rate limits for different scenarios:

Example ClusterLogForwarder CR that sets a per-container limit for containers with certain labels

The input name.

3

A list of labels. If these labels match labels that are applied to a pod, the per-container limit specified in the **maxRecordsPerSecond** field is applied to those containers.

Configures the rate limit. Setting the **maxRecordsPerSecond** field to **0** means that no logs are collected for the container. Setting the **maxRecordsPerSecond** field to some other value means that a maximum of that number of records per second are collected for the container.

Example ClusterLogForwarder CR that sets a per-container limit for containers in selected namespaces

apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata:	
#	
spec:	
#	
inputs:	
- name: <input_name> 1</input_name>	
application:	
namespaces: [example-ns-1, example-ns-2] 2	
containerLimit:	
maxRecordsPerSecond: 10 3	
- name: <input_name></input_name>	
application:	
namespaces: [test]	
containerLimit:	
maxRecordsPerSecond: 1000	
#	

The input name.

A list of namespaces. The per-container limit specified in the **maxRecordsPerSecond** field is applied to all containers in the namespaces listed.

Configures the rate limit. Setting the **maxRecordsPerSecond** field to **10** means that a maximum of 10 records per second are collected for each container in the namespaces listed.

2. Apply the **ClusterLogForwarder** CR:

Example command

CHAPTER 13. SCHEDULING RESOURCES

13.1. USING NODE SELECTORS TO MOVE LOGGING RESOURCES

A *node selector* specifies a map of key/value pairs that are defined using custom labels on nodes and selectors specified in pods.

For the pod to be eligible to run on a node, the pod must have the same key/value node selector as the label on the node.

13.1.1. About node selectors

You can use node selectors on pods and labels on nodes to control where the pod is scheduled. With node selectors, OpenShift Container Platform schedules the pods on nodes that contain matching labels.

You can use a node selector to place specific pods on specific nodes, cluster-wide node selectors to place new pods on specific nodes anywhere in the cluster, and project node selectors to place new pods in a project on specific nodes.

For example, as a cluster administrator, you can create an infrastructure where application developers can deploy pods only onto the nodes closest to their geographical location by including a node selector in every pod they create. In this example, the cluster consists of five data centers spread across two regions. In the U.S., label the nodes as **us-east**, **us-central**, or **us-west**. In the Asia-Pacific region (APAC), label the nodes as **apac-east** or **apac-west**. The developers can add a node selector to the pods they create to ensure the pods get scheduled on those nodes.

A pod is not scheduled if the **Pod** object contains a node selector, but no node has a matching label.

IMPORTANT

If you are using node selectors and node affinity in the same pod configuration, the following rules control pod placement onto nodes:

- If you configure both **nodeSelector** and **nodeAffinity**, both conditions must be satisfied for the pod to be scheduled onto a candidate node.
- If you specify multiple **nodeSelectorTerms** associated with **nodeAffinity** types, then the pod can be scheduled onto a node if one of the **nodeSelectorTerms** is satisfied.
- If you specify multiple **matchExpressions** associated with **nodeSelectorTerms**, then the pod can be scheduled onto a node only if all **matchExpressions** are satisfied.

Node selectors on specific pods and nodes

You can control which node a specific pod is scheduled on by using node selectors and labels. To use node selectors and labels, first label the node to avoid pods being descheduled, then add the node selector to the pod.

NOTE

You cannot add a node selector directly to an existing scheduled pod. You must label the object that controls the pod, such as deployment config.

For example, the following **Node** object has the **region: east** label:

Sample Node object with a label

```
kind: Node
apiVersion: v1
metadata:
 name: ip-10-0-131-14.ec2.internal
 selfLink: /api/v1/nodes/ip-10-0-131-14.ec2.internal
 uid: 7bc2580a-8b8e-11e9-8e01-021ab4174c74
 resourceVersion: '478704'
 creationTimestamp: '2019-06-10T14:46:08Z'
 labels:
  kubernetes.io/os: linux
  failure-domain.beta.kubernetes.io/zone: us-east-1a
  node.openshift.io/os_version: '4.5'
  node-role.kubernetes.io/worker: "
  failure-domain.beta.kubernetes.io/region: us-east-1
  node.openshift.io/os id: rhcos
  beta.kubernetes.io/instance-type: m4.large
  kubernetes.io/hostname: ip-10-0-131-14
  beta.kubernetes.io/arch: amd64
  region: east 1
  type: user-node
#...
```


Labels to match the pod node selector.

A pod has the **type: user-node,region: east** node selector:

Sample Pod object with node selectors

apiVersion: v1 kind: Pod	
metadata:	
melauala.	
name: s1	
#	
spec:	
nodeSelector: 1	
region: east	
type: user-node	
#	

Node selectors to match the node label. The node must have a label for each node selector.

When you create the pod using the example pod spec, it can be scheduled on the example node.

Default cluster-wide node selectors

With default cluster-wide node selectors, when you create a pod in that cluster, OpenShift Container Platform adds the default node selectors to the pod and schedules the pod on nodes with matching labels.

For example, the following **Scheduler** object has the default cluster-wide **region=east** and **type=user-node** node selectors:

Example Scheduler Operator Custom Resource

```
apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
name: cluster
#...
spec:
defaultNodeSelector: type=user-node,region=east
#...
```

A node in that cluster has the **type=user-node,region=east** labels:

Example Node object

```
apiVersion: v1
kind: Node
metadata:
name: ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4
#...
labels:
region: east
type: user-node
#...
```

Example Pod object with a node selector

```
apiVersion: v1
kind: Pod
metadata:
name: s1
#...
spec:
nodeSelector:
region: east
#...
```

When you create the pod using the example pod spec in the example cluster, the pod is created with the cluster-wide node selector and is scheduled on the labeled node:

Example pod list with the pod on the labeled node

```
NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
pod-s1 1/1 Running 0 20s 10.131.2.6 ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4
<none> <none>
```


NOTE

If the project where you create the pod has a project node selector, that selector takes preference over a cluster-wide node selector. Your pod is not created or scheduled if the pod does not have the project node selector.

Project node selectors

With project node selectors, when you create a pod in this project, OpenShift Container Platform adds the node selectors to the pod and schedules the pods on a node with matching labels. If there is a cluster-wide default node selector, a project node selector takes preference. For example, the following project has the **region=east** node selector:

Example Namespace object

```
apiVersion: v1
kind: Namespace
metadata:
name: east-region
annotations:
openshift.io/node-selector: "region=east"
#...
```

The following node has the type=user-node,region=east labels:

Example Node object

```
apiVersion: v1
kind: Node
metadata:
name: ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4
#...
labels:
region: east
type: user-node
#...
```

When you create the pod using the example pod spec in this example project, the pod is created with the project node selectors and is scheduled on the labeled node:

Example Pod object

```
apiVersion: v1
kind: Pod
metadata:
namespace: east-region
#...
spec:
nodeSelector:
region: east
type: user-node
#...
```

Example pod list with the pod on the labeled node

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES pod-s1 1/1 Running 0 20s 10.131.2.6 ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4 <none> <none>

A pod in the project is not created or scheduled if the pod contains different node selectors. For example, if you deploy the following pod into the example project, it is not be created:

Example Pod object with an invalid node selector

```
apiVersion: v1
kind: Pod
metadata:
name: west-region
#...
spec:
nodeSelector:
region: west
#...
```

13.1.2. Loki pod placement

You can control which nodes the Loki pods run on, and prevent other workloads from using those nodes, by using tolerations or node selectors on the pods.

You can apply tolerations to the log store pods with the LokiStack custom resource (CR) and apply taints to a node with the node specification. A taint on a node is a **key:value** pair that instructs the node to repel all pods that do not allow the taint. Using a specific **key:value** pair that is not on other pods ensures that only the log store pods can run on that node.

Example LokiStack with node selectors

```
apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: logging-loki
 namespace: openshift-logging
spec:
# ...
 template:
  compactor: 1
   nodeSelector:
     node-role.kubernetes.io/infra: "" (2)
  distributor:
   nodeSelector:
     node-role.kubernetes.io/infra: ""
  gateway:
   nodeSelector:
     node-role.kubernetes.io/infra: ""
  indexGateway:
   nodeSelector:
```

```
node-role.kubernetes.io/infra: ""
ingester:
nodeSelector:
node-role.kubernetes.io/infra: ""
querier:
nodeSelector:
node-role.kubernetes.io/infra: ""
queryFrontend:
nodeSelector:
node-role.kubernetes.io/infra: ""
ruler:
nodeSelector:
node-role.kubernetes.io/infra: ""
```

Specifies the component pod type that applies to the node selector.

Specifies the pods that are moved to nodes containing the defined label.

In the previous example configuration, all Loki pods are moved to nodes containing the **node-role.kubernetes.io/infra: ""** label.

Example LokiStack CR with node selectors and tolerations

```
apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: logging-loki
 namespace: openshift-logging
spec:
# ...
 template:
  compactor:
   nodeSelector:
     node-role.kubernetes.io/infra: ""
   tolerations:
   - effect: NoSchedule
     key: node-role.kubernetes.io/infra
     value: reserved
   - effect: NoExecute
     key: node-role.kubernetes.io/infra
     value: reserved
  distributor:
   nodeSelector:
     node-role.kubernetes.io/infra: ""
   tolerations:
   - effect: NoSchedule
     key: node-role.kubernetes.io/infra
     value: reserved
   - effect: NoExecute
     key: node-role.kubernetes.io/infra
     value: reserved
   nodeSelector:
     node-role.kubernetes.io/infra: ""
   tolerations:
```

- effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved indexGateway: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved ingester: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved querier: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved queryFrontend: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule kev: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved ruler: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved

```
gateway:
nodeSelector:
node-role.kubernetes.io/infra: ""
tolerations:
- effect: NoSchedule
key: node-role.kubernetes.io/infra
value: reserved
- effect: NoExecute
key: node-role.kubernetes.io/infra
value: reserved
```

To configure the **nodeSelector** and **tolerations** fields of the LokiStack (CR), you can use the **oc explain** command to view the description and fields for a particular resource:

\$ oc explain lokistack.spec.template

Example output

```
KIND: LokiStack
VERSION: loki.grafana.com/v1
```

RESOURCE: template <Object>

DESCRIPTION:

Template defines the resource/limits/tolerations/nodeselectors per component

```
FIELDS:
compactor <Object>
Compactor defines the compaction component spec.
```

distributor <Object> Distributor defines the distributor component spec.

•••

For more detailed information, you can add a specific field:

\$ oc explain lokistack.spec.template.compactor

Example output

```
KIND: LokiStack
VERSION: loki.grafana.com/v1
```

RESOURCE: compactor <Object>

```
DESCRIPTION:
```

Compactor defines the compaction component spec.

```
FIELDS:
nodeSelector <map[string]string>
```

NodeSelector defines the labels required by a node to schedule the component onto it.

13.1.3. Configuring resources and scheduling for logging collectors

Administrators can modify the resources or scheduling of the collector by creating a **ClusterLogging** custom resource (CR) that is in the same namespace and has the same name as the **ClusterLogForwarder** CR that it supports.

The applicable stanzas for the **ClusterLogging** CR when using multiple log forwarders in a deployment are **managementState** and **collection**. All other stanzas are ignored.

Prerequisites

- You have administrator permissions.
- You have installed the Red Hat OpenShift Logging Operator version 5.8 or newer.
- You have created a **ClusterLogForwarder** CR.

Procedure

1. Create a **ClusterLogging** CR that supports your existing **ClusterLogForwarder** CR:

Example ClusterLogging CR YAML

```
apiVersion: logging.openshift.io/v1
kind: ClusterLogging
metadata:
 name: <name> 1
 namespace: <namespace> (2)
spec:
 managementState: "Managed"
 collection:
  type: "vector"
  tolerations:
  - key: "logging"
   operator: "Exists"
   effect: "NoExecute"
   tolerationSeconds: 6000
  resources:
   limits:
    memory: 1Gi
   requests:
    cpu: 100m
    memory: 1Gi
  nodeSelector:
   collector: needed
```

The name must be the same name as the **ClusterLogForwarder** CR.

The namespace must be the same namespace as the **ClusterLogForwarder** CR.

2. Apply the **ClusterLogging** CR by running the following command:

\$ oc apply -f <filename>.yaml

13.1.4. Viewing logging collector pods

You can view the logging collector pods and the corresponding nodes that they are running on.

Procedure

• Run the following command in a project to view the logging collector pods and their details:

\$ oc get pods --selector component=collector -o wide -n <project_name>

Example output

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES collector-8d69v 1/1 Running 0 134m 10.130.2.30 master1.example.com <none> <none> collector-bd225 1/1 Running 0 134m 10.131.1.11 master2.example.com <none> <none> collector-cvrzs 1/1 Running 0 134m 10.130.0.21 master3.example.com <none> <none> collector-gpqg2 1/1 Running 0 134m 10.128.2.27 worker1.example.com <none> <none> collector-l9j7j 1/1 Running 0 134m 10.129.2.31 worker2.example.com <none> <none>

13.1.5. Additional resources

• Placing pods on specific nodes using node selectors

13.2. USING TAINTS AND TOLERATIONS TO CONTROL LOGGING POD PLACEMENT

Taints and tolerations allow the node to control which pods should (or should not) be scheduled on them.

13.2.1. Understanding taints and tolerations

A *taint* allows a node to refuse a pod to be scheduled unless that pod has a matching *toleration*.

You apply taints to a node through the **Node** specification (**NodeSpec**) and apply tolerations to a pod through the **Pod** specification (**PodSpec**). When you apply a taint a node, the scheduler cannot place a pod on that node unless the pod can tolerate the taint.

Example taint in a node specification

apiVersion: v1 kind: Node metadata:

```
name: my-node
#...
spec:
taints:
- effect: NoExecute
key: key1
value: value1
#...
```

Example toleration in a **Pod** spec

apiVersion: v1
kind: Pod
metadata:
name: my-pod
#
spec:
tolerations:
- key: "key1"
operator: "Equal"
value: "value1"
effect: "NoExecute"
tolerationSeconds: 3600
#

Taints and tolerations consist of a key, value, and effect.

Table 13.1. Taint and toleration components

Parameter	Description
key	The key is any string, up to 253 characters. The key must begin with a letter or number, and may contain letters, numbers, hyphens, dots, and underscores.
value	The value is any string, up to 63 characters. The value must begin with a letter or number, and may contain letters, numbers, hyphens, dots, and underscores.

Parameter	Description			
effect	The effect is one of the follo	The effect is one of the following:		
	NoSchedule ^[1]	 New pods that do not match the taint are not scheduled onto that node. Existing pods on the node remain. 		
	PreferNoSchedule	 New pods that do not match the taint might be scheduled onto that node, but the scheduler tries not to. Existing pods on the node remain. 		
	NoExecute	 New pods that do not match the taint cannot be scheduled onto that node. Existing pods on the node that do not have a matching toleration are removed. 		
operator				
operator	Equal	The key/value/effect parameters must match. This is the default.		
	Exists	The key/effect parameters must match. You must leave a blank Value parameter, which matches any.		

 If you add a NoSchedule taint to a control plane node, the node must have the noderole.kubernetes.io/master=:NoSchedule taint, which is added by default. For example:

apiVersion: v1 kind: Node metadata:
annotations:
machine.openshift.io/machine: openshift-machine-api/ci-ln-62s7gtb-f76d1-v8jxv-master-0 machineconfiguration.openshift.io/currentConfig: rendered-master-
cdc1ab7da414629332cc4c3926e6e59c
name: my-node
#
spec:

taints: - effect: NoSchedule key: node-role.kubernetes.io/master #...

A toleration matches a taint:

- If the **operator** parameter is set to **Equal**:
 - the **key** parameters are the same;
 - the **value** parameters are the same;
 - the **effect** parameters are the same.
- If the **operator** parameter is set to **Exists**:
 - the **key** parameters are the same;
 - the **effect** parameters are the same.

The following taints are built into OpenShift Container Platform:

- **node.kubernetes.io/not-ready**: The node is not ready. This corresponds to the node condition **Ready=False**.
- **node.kubernetes.io/unreachable**: The node is unreachable from the node controller. This corresponds to the node condition **Ready=Unknown**.
- **node.kubernetes.io/memory-pressure**: The node has memory pressure issues. This corresponds to the node condition **MemoryPressure=True**.
- **node.kubernetes.io/disk-pressure**: The node has disk pressure issues. This corresponds to the node condition **DiskPressure=True**.
- node.kubernetes.io/network-unavailable: The node network is unavailable.
- node.kubernetes.io/unschedulable: The node is unschedulable.
- **node.cloudprovider.kubernetes.io/uninitialized**: When the node controller is started with an external cloud provider, this taint is set on a node to mark it as unusable. After a controller from the cloud-controller-manager initializes this node, the kubelet removes this taint.
- **node.kubernetes.io/pid-pressure**: The node has pid pressure. This corresponds to the node condition **PIDPressure=True**.

IMPORTANT

OpenShift Container Platform does not set a default pid.available **evictionHard**.

13.2.2. Loki pod placement

You can control which nodes the Loki pods run on, and prevent other workloads from using those nodes, by using tolerations or node selectors on the pods.

You can apply tolerations to the log store pods with the LokiStack custom resource (CR) and apply taints to a node with the node specification. A taint on a node is a **key:value** pair that instructs the node

to repel all pods that do not allow the taint. Using a specific **key:value** pair that is not on other pods ensures that only the log store pods can run on that node.

Example LokiStack with node selectors

```
apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: logging-loki
 namespace: openshift-logging
spec:
# ...
 template:
  compactor: 1
   nodeSelector:
     node-role.kubernetes.io/infra: "" 2
  distributor:
   nodeSelector:
     node-role.kubernetes.io/infra: ""
  gateway:
   nodeSelector:
     node-role.kubernetes.io/infra: ""
  indexGateway:
   nodeSelector:
     node-role.kubernetes.io/infra: ""
  ingester:
   nodeSelector:
     node-role.kubernetes.io/infra: ""
  querier:
   nodeSelector:
     node-role.kubernetes.io/infra: ""
  queryFrontend:
   nodeSelector:
     node-role.kubernetes.io/infra: ""
  ruler:
   nodeSelector:
     node-role.kubernetes.io/infra: ""
# ...
```

Specifies the component pod type that applies to the node selector.

Specifies the pods that are moved to nodes containing the defined label.

In the previous example configuration, all Loki pods are moved to nodes containing the **node-role.kubernetes.io/infra: ""** label.

Example LokiStack CR with node selectors and tolerations

```
apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
name: logging-loki
namespace: openshift-logging
spec:
```

... template: compactor: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved distributor: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved indexGateway: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved indester: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved querier: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule

key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved queryFrontend: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved ruler: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved gateway: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved

...

To configure the **nodeSelector** and **tolerations** fields of the LokiStack (CR), you can use the **oc explain** command to view the description and fields for a particular resource:

\$ oc explain lokistack.spec.template

Example output

```
KIND: LokiStack
VERSION: loki.grafana.com/v1
RESOURCE: template <Object>
```

DESCRIPTION: Template defines the resource/limits/tolerations/nodeselectors per component

FIELDS: compactor <Object> Compactor defines the compaction component spec.

```
distributor <Object>
Distributor defines the distributor component spec.
```

For more detailed information, you can add a specific field:

\$ oc explain lokistack.spec.template.compactor

Example output

```
KIND: LokiStack
VERSION: loki.grafana.com/v1
```

RESOURCE: compactor < Object>

DESCRIPTION:

Compactor defines the compaction component spec.

FIELDS:

nodeSelector <map[string]string> NodeSelector defines the labels required by a node to schedule the component onto it.

•••

13.2.3. Using tolerations to control log collector pod placement

By default, log collector pods have the following tolerations configuration:

```
apiVersion: v1
kind: Pod
metadata:
 name: collector-example
 namespace: openshift-logging
spec:
# ...
 collection:
  type: vector
  tolerations:
  - effect: NoSchedule
   key: node-role.kubernetes.io/master
   operator: Exists
  - effect: NoSchedule
   key: node.kubernetes.io/disk-pressure
   operator: Exists
  - effect: NoExecute
   key: node.kubernetes.io/not-ready
   operator: Exists
  - effect: NoExecute
   key: node.kubernetes.io/unreachable
   operator: Exists
  - effect: NoSchedule
   key: node.kubernetes.io/memory-pressure
```

operator: Exists

- effect: NoSchedule
- key: node.kubernetes.io/pid-pressure
- operator: Exists
- effect: NoSchedule
- key: node.kubernetes.io/unschedulable
- operator: Exists

...

Prerequisites

• You have installed the Red Hat OpenShift Logging Operator and OpenShift CLI (oc).

Procedure

1. Add a taint to a node where you want logging collector pods to schedule logging collector pods by running the following command:


\$ oc adm taint nodes <node_name> <key>=<value>:<effect>

Example command

\$ oc adm taint nodes node1 collector=node:NoExecute

This example places a taint on **node1** that has key **collector**, value **node**, and taint effect **NoExecute**. You must use the **NoExecute** taint effect. **NoExecute** schedules only pods that match the taint and removes existing pods that do not match.

2. Edit the **collection** stanza of the **ClusterLogging** custom resource (CR) to configure a toleration for the logging collector pods:

Specify the key that you added to the node.

Specify the **Exists** operator to require the **key/value/effect** parameters to match.

Specify the **NoExecute** effect.

Optionally, specify the **tolerationSeconds** parameter to set how long a pod can remain bound to a node before being evicted.

This toleration matches the taint created by the **oc adm taint** command. A pod with this toleration can be scheduled onto **node1**.

13.2.4. Configuring resources and scheduling for logging collectors

Administrators can modify the resources or scheduling of the collector by creating a **ClusterLogging** custom resource (CR) that is in the same namespace and has the same name as the **ClusterLogForwarder** CR that it supports.

The applicable stanzas for the **ClusterLogging** CR when using multiple log forwarders in a deployment are **managementState** and **collection**. All other stanzas are ignored.

Prerequisites

- You have administrator permissions.
- You have installed the Red Hat OpenShift Logging Operator version 5.8 or newer.
- You have created a **ClusterLogForwarder** CR.

Procedure

1. Create a **ClusterLogging** CR that supports your existing **ClusterLogForwarder** CR:

Example ClusterLogging CR YAML

```
apiVersion: logging.openshift.io/v1
kind: ClusterLogging
metadata:
 name: <name> 1
 namespace: <namespace> 2
spec:
 managementState: "Managed"
 collection:
  type: "vector"
  tolerations:
  - key: "logging"
   operator: "Exists"
   effect: "NoExecute"
   tolerationSeconds: 6000
  resources:
   limits:
    memory: 1Gi
   requests:
    cpu: 100m
    memory: 1Gi
```

nodeSelector: collector: needed #

The name must be the same name as the **ClusterLogForwarder** CR.

The namespace must be the same namespace as the **ClusterLogForwarder** CR.

2. Apply the **ClusterLogging** CR by running the following command:

13.2.5. Viewing logging collector pods

You can view the logging collector pods and the corresponding nodes that they are running on.

Procedure

• Run the following command in a project to view the logging collector pods and their details:

\$ oc get pods --selector component=collector -o wide -n <project_name>

Example output

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES collector-8d69v 1/1 Running 0 134m 10.130.2.30 master1.example.com <none> <none> collector-bd225 1/1 Running 0 134m 10.131.1.11 master2.example.com <none> <none> collector-cvrzs 1/1 Running 0 134m 10.130.0.21 master3.example.com <none> <none> collector-gpqg2 1/1 Running 0 134m 10.128.2.27 worker1.example.com <none> <none> collector-l9j7j 1/1 Running 0 134m 10.129.2.31 worker2.example.com <none> <none>

13.2.6. Additional resources

• Controlling pod placement using node taints

CHAPTER 14. UNINSTALLING LOGGING

You can remove logging from your OpenShift Container Platform cluster by removing installed Operators and related custom resources (CRs).

14.1. UNINSTALLING THE LOGGING

You can stop aggregating logs by deleting the Red Hat OpenShift Logging Operator and the **ClusterLogging** custom resource (CR).

Prerequisites

- You have administrator permissions.
- You have access to the **Administrator** perspective of the OpenShift Container Platform web console.

Procedure

- 1. Go to the Administration → Custom Resource Definitions page, and click ClusterLogging.
- 2. On the Custom Resource Definition Details page, click Instances.
- 3. Click the options menu next to the instance, and click **Delete ClusterLogging**.
- 4. Go to the Administration \rightarrow Custom Resource Definitions page.
- 5. Click the options menu next to **ClusterLogging**, and select **Delete Custom Resource Definition**.

WARNING

Deleting the **ClusterLogging** CR does not remove the persistent volume claims (PVCs). To delete the remaining PVCs, persistent volumes (PVs), and associated data, you must take further action. Releasing or deleting PVCs can delete PVs and cause data loss.

- 6. If you have created a **ClusterLogForwarder** CR, click the options menu next to **ClusterLogForwarder**, and then click **Delete Custom Resource Definition**
- 7. Go to the **Operators** \rightarrow **Installed Operators** page.

8. Click the options menu **Uninstall Operator**.

next to the Red Hat OpenShift Logging Operator, and then click

9. Optional: Delete the **openshift-logging** project.

	WARNING Deleting the openshift-logging project deletes everything in that namespace, including any persistent volume claims (PVCs). If you want to preserve logging data, do not delete the openshift-logging project.
a. Go to the	e Home → Projects page.

- b. Click the options menu next to the **openshift-logging** project, and then click **Delete Project**.
- c. Confirm the deletion by typing **openshift-logging** in the dialog box, and then click **Delete**.

14.2. DELETING LOGGING PVCS

To keep persistent volume claims (PVCs) for reuse with other pods, keep the labels or PVC names that you need to reclaim the PVCs. If you do not want to keep the PVCs, you can delete them. If you want to recover storage space, you can also delete the persistent volumes (PVs).

Prerequisites

- You have administrator permissions.
- You have access to the **Administrator** perspective of the OpenShift Container Platform web console.

Procedure

- 1. Go to the Storage \rightarrow Persistent Volume Claims page.
- 2. Click the options menu

next to each PVC, and select **Delete Persistent Volume Claim**

14.3. UNINSTALLING LOKI

Prerequisites

• You have administrator permissions.

- You have access to the **Administrator** perspective of the OpenShift Container Platform web console.
- If you have not already removed the Red Hat OpenShift Logging Operator and related resources, you have removed references to LokiStack from the **ClusterLogging** custom resource.

Procedure

- 1. Go to the Administration → Custom Resource Definitions page, and click LokiStack.
- 2. On the Custom Resource Definition Details page, click Instances.
- 3. Click the options menu next to the instance, and then click **Delete LokiStack**.
- 4. Go to the Administration \rightarrow Custom Resource Definitions page.
- 5. Click the options menu next to LokiStack, and select Delete Custom Resource Definition.
- 6. Delete the object storage secret.
- 7. Go to the **Operators** \rightarrow **Installed Operators** page.
- 8. Click the options menu next to the Loki Operator, and then click **Uninstall Operator**.
- 9. Optional: Delete the **openshift-operators-redhat** project.

IMPORTANT

Do not delete the **openshift-operators-redhat** project if other global Operators are installed in this namespace.

a. Go to the Home \rightarrow Projects page.

- b. Click the options menu next click **Delete Project**.

next to the openshift-operators-redhat project, and then

c. Confirm the deletion by typing **openshift-operators-redhat** in the dialog box, and then click **Delete**.

14.4. UNINSTALLING ELASTICSEARCH

Prerequisites

• You have administrator permissions.

- You have access to the **Administrator** perspective of the OpenShift Container Platform web console.
- If you have not already removed the Red Hat OpenShift Logging Operator and related resources, you must remove references to Elasticsearch from the **ClusterLogging** custom resource.

Procedure

- 1. Go to the Administration → Custom Resource Definitions page, and click Elasticsearch.
- 2. On the **Custom Resource Definition Details**page, click **Instances**.
- 3. Click the options menu next to the instance, and then click **Delete Elasticsearch**.
- 4. Go to the Administration \rightarrow Custom Resource Definitions page.
- 5. Click the options menu next to **Elasticsearch**, and select **Delete Custom Resource Definition**.
- 6. Delete the object storage secret.
- 7. Go to the **Operators** \rightarrow **Installed Operators** page.
- 8. Click the options menu **next** to the OpenShift Elasticsearch Operator, and then click **Uninstall Operator**.
- 9. Optional: Delete the **openshift-operators-redhat** project.

IMPORTANT

Do not delete the **openshift-operators-redhat** project if other global Operators are installed in this namespace.

- a. Go to the Home \rightarrow Projects page.
- b. Click the options menu click **Delete Project**.

next to the **openshift-operators-redhat** project, and then

c. Confirm the deletion by typing **openshift-operators-redhat** in the dialog box, and then click **Delete**.

14.5. DELETING OPERATORS FROM A CLUSTER USING THE CLI

Cluster administrators can delete installed Operators from a selected namespace by using the CLI.

Prerequisites

- Access to an OpenShift Container Platform cluster using an account with **cluster-admin** permissions.
- **oc** command installed on workstation.

Procedure

1. Ensure the latest version of the subscribed operator (for example, **serverless-operator**) is identified in the **currentCSV** field.

\$ oc get subscription.operators.coreos.com serverless-operator -n openshift-serverless -o yaml | grep currentCSV

Example output

currentCSV: serverless-operator.v1.28.0

2. Delete the subscription (for example, **serverless-operator**):

\$ oc delete subscription.operators.coreos.com serverless-operator -n openshift-serverless

Example output

subscription.operators.coreos.com "serverless-operator" deleted

3. Delete the CSV for the Operator in the target namespace using the **currentCSV** value from the previous step:

\$ oc delete clusterserviceversion serverless-operator.v1.28.0 -n openshift-serverless

Example output

clusterserviceversion.operators.coreos.com "serverless-operator.v1.28.0" deleted

Additional resources

• Reclaiming a persistent volume manually

CHAPTER 15. LOG RECORD FIELDS

The following fields can be present in log records exported by the logging. Although log records are typically formatted as JSON objects, the same data model can be applied to other encodings.

To search these fields from Elasticsearch and Kibana, use the full dotted field name when searching. For example, with an Elasticsearch **/_search URL**, to look for a Kubernetes pod name, use **/_search/q=kubernetes.pod_name:name-of-my-pod**.

The top level fields may be present in every record.

MESSAGE

The original log entry text, UTF-8 encoded. This field may be absent or empty if a non-empty **structured** field is present. See the description of **structured** for more.

Data type	text
Example value	НАРРҮ

STRUCTURED

Original log entry as a structured object. This field may be present if the forwarder was configured to parse structured JSON logs. If the original log entry was a valid structured log, this field will contain an equivalent JSON structure. Otherwise this field will be empty or absent, and the **message** field will contain the original log message. The **structured** field can have any subfields that are included in the log message, there are no restrictions defined here.

Data type	group
Example value	map[message:starting fluentd worker pid=21631 ppid=21618 worker=0 pid:21631 ppid:21618 worker:0]

@TIMESTAMP

A UTC value that marks when the log payload was created or, if the creation time is not known, when the log payload was first collected. The "@" prefix denotes a field that is reserved for a particular use. By default, most tools look for "@timestamp" with ElasticSearch.

Data type	date
Example value	2015-01-24 14:06:05.071000000 Z

HOSTNAME

The name of the host where this log message originated. In a Kubernetes cluster, this is the same as **kubernetes.host**.

IPADDR4

The IPv4 address of the source server. Can be an array.

|--|--|--|

IPADDR6

The IPv6 address of the source server, if available. Can be an array.

|--|--|--|--|

LEVEL

The logging level from various sources, including **rsyslog(severitytext property)**, a Python logging module, and others.

The following values come from **syslog.h**, and are preceded by their numeric equivalents:

- **0** = **emerg**, system is unusable.
- 1 = alert, action must be taken immediately.
- **2** = **crit**, critical conditions.
- **3** = **err**, error conditions.
- **4** = **warn**, warning conditions.
- **5** = **notice**, normal but significant condition.
- **6** = **info**, informational.
- 7 = debug, debug-level messages.

The two following values are not part of **syslog.h** but are widely used:

- 8 = trace, trace-level messages, which are more verbose than debug messages.
- 9 = **unknown**, when the logging system gets a value it doesn't recognize.

Map the log levels or priorities of other logging systems to their nearest match in the preceding list. For example, from python logging, you can match **CRITICAL** with **crit**, **ERROR** with **err**, and so on.

Data type	keyword
Example value	info

PID

The process ID of the logging entity, if available.

SERVICE

The name of the service associated with the logging entity, if available. For example, syslog's **APP-NAME** and rsyslog's **programname** properties are mapped to the service field.

|--|

CHAPTER 16. TAGS

Optional. An operator-defined list of tags placed on each log by the collector or normalizer. The payload can be a string with whitespace-delimited string tokens or a JSON list of string tokens.

Data type

FILE

The path to the log file from which the collector reads this log entry. Normally, this is a path in the /**var/log** file system of a cluster node.

Data type

OFFSET

The offset value. Can represent bytes to the start of the log line in the file (zero- or one-based), or log line numbers (zero- or one-based), so long as the values are strictly monotonically increasing in the context of a single log file. The values are allowed to wrap, representing a new version of the log file (rotation).

|--|--|

CHAPTER 17. KUBERNETES

The namespace for Kubernetes-specific metadata

Data type group

17.1. KUBERNETES.POD_NAME

The name of the pod

17.2. KUBERNETES.POD_ID

The Kubernetes ID of the pod

17.3. KUBERNETES.NAMESPACE_NAME

The name of the namespace in Kubernetes

|--|--|--|

17.4. KUBERNETES.NAMESPACE_ID

The ID of the namespace in Kubernetes

Data type keyword

17.5. KUBERNETES.HOST

The Kubernetes node name

Data type keyword

17.6. KUBERNETES.CONTAINER_NAME

The name of the container in Kubernetes

17.7. KUBERNETES.ANNOTATIONS

Annotations associated with the Kubernetes object

Data type group

17.8. KUBERNETES.LABELS

Labels present on the original Kubernetes Pod

Data type group

17.9. KUBERNETES.EVENT

The Kubernetes event obtained from the Kubernetes master API. This event description loosely follows **type Event** in Event v1 core.

Data type

17.9.1. kubernetes.event.verb

The type of event, ADDED, MODIFIED, or DELETED

Data type	keyword
Example value	ADDED

17.9.2. kubernetes.event.metadata

Information related to the location and time of the event creation

|--|

17.9.2.1. kubernetes.event.metadata.name

The name of the object that triggered the event creation

Data type	keyword
Example value	java-mainclass-1.14d888a4cfc24890

17.9.2.2. kubernetes.event.metadata.namespace

The name of the namespace where the event originally occurred. Note that it differs from **kubernetes.namespace_name**, which is the namespace where the **eventrouter** application is deployed.

Data type	keyword
Example value	default

17.9.2.3. kubernetes.event.metadata.selfLink

A link to the event

Data type	keyword
Example value	/api/v1/namespaces/javaj/events/java-mainclass-1.14d888a4cfc24890

17.9.2.4. kubernetes.event.metadata.uid

The unique ID of the event

Data type	keyword
Example value	d828ac69-7b58-11e7-9cf5-5254002f560c

17.9.2.5. kubernetes.event.metadata.resourceVersion

A string that identifies the server's internal version of the event. Clients can use this string to determine when objects have changed.

Data type	integer
Example value	311987

17.9.3. kubernetes.event.involvedObject

The object that the event is about.

17.9.3.1. kubernetes.event.involvedObject.kind

The type of object

Data type	keyword
Example value	ReplicationController

17.9.3.2. kubernetes.event.involvedObject.namespace

The namespace name of the involved object. Note that it may differ from **kubernetes.namespace_name**, which is the namespace where the **eventrouter** application is deployed.

Data type	keyword
Example value	default

17.9.3.3. kubernetes.event.involvedObject.name

The name of the object that triggered the event

Data type	keyword
Example value	java-mainclass-1

17.9.3.4. kubernetes.event.involvedObject.uid

The unique ID of the object

Data type	keyword
Example value	e6bff941-76a8-11e7-8193-5254002f560c

17.9.3.5. kubernetes.event.involvedObject.apiVersion

The version of kubernetes master API

Data type	keyword
Example value	v1

17.9.3.6. kubernetes.event.involvedObject.resourceVersion

A string that identifies the server's internal version of the pod that triggered the event. Clients can use this string to determine when objects have changed.

Data type	keyword
Example value	308882

17.9.4. kubernetes.event.reason

A short machine-understandable string that gives the reason for generating this event

Data type	keyword
Example value	SuccessfulCreate

17.9.5. kubernetes.event.source_component

The component that reported this event

Data type	keyword
Example value	replication-controller

17.9.6. kubernetes.event.firstTimestamp

The time at which the event was first recorded

Data type	date
Example value	2017-08-07 10:11:57.00000000 Z

17.9.7. kubernetes.event.count

The number of times this event has occurred

Data type	integer
Example value	1

17.9.8. kubernetes.event.type

The type of event, **Normal** or **Warning**. New types could be added in the future.

Data type	keyword
Example value	Normal

CHAPTER 18. OPENSHIFT

The namespace for openshift-logging specific metadata

Data type group

18.1. OPENSHIFT.LABELS

Labels added by the Cluster Log Forwarder configuration

Data type group

CHAPTER 19. API REFERENCE

19.1. 5.6 LOGGING API REFERENCE

19.1.1. Logging 5.6 API reference

19.1.1.1. ClusterLogForwarder

ClusterLogForwarder is an API to configure forwarding logs.

You configure forwarding by specifying a list of **pipelines**, which forward from a set of named inputs to a set of named outputs.

There are built-in input names for common log categories, and you can define custom inputs to do additional filtering.

There is a built-in output name for the default openshift log store, but you can define your own outputs with a URL and other connection information to forward logs to other stores or processors, inside or outside the cluster.

For more details see the documentation on the API fields.

Property	Туре	Description
spec	object	Specification of the desired behavior of ClusterLogForwarder
status	object	Status of the ClusterLogForwarder

19.1.1.1.1. .spec

19.1.1.1.1.1. Description

ClusterLogForwarderSpec defines how logs should be forwarded to remote targets.

19.1.1.1.1.1. Type

• object

Property	Туре	Description
inputs	array	(optional) Inputs are named filters for log messages to be forwarded.

Property	Туре	Description
outputDefaults	object	(optional) DEPRECATED OutputDefaults specify forwarder config explicitly for the default store.
outputs	array	(optional) Outputs are named destinations for log messages.
pipelines	array	Pipelines forward the messages selected by a set of inputs to a set of outputs.

19.1.1.1.2. .spec.inputs[]

19.1.1.1.2.1. Description

InputSpec defines a selector of log messages.

19.1.1.1.2.1.1. Type

• array

Property	Туре	Description
application	object	(optional) Application, if present, enables named set of application logs that
name	string	Name used to refer to the input of a pipeline .

19.1.1.1.3. .spec.inputs[].application

19.1.1.3.1. Description

Application log selector. All conditions in the selector must be satisfied (logical AND) to select logs.

19.1.1.1.3.1.1. Type

• object

Property	Туре	Description
namespaces	array	(optional) Namespaces from which to collect application logs.

Property	Туре	Description
selector	object	(optional) Selector for logs from pods with matching labels.

19.1.1.1.4. .spec.inputs[].application.namespaces[]

19.1.1.1.4.1. Description

19.1.1.1.4.1.1. Type

• array

19.1.1.1.5. .spec.inputs[].application.selector

19.1.1.1.5.1. Description

A label selector is a label query over a set of resources.

19.1.1.1.5.1.1. Type

• object

Property	Туре	Description
matchLabels	object	(optional) matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels

19.1.1.1.6. .spec.inputs[].application.selector.matchLabels

19.1.1.1.6.1. Description

19.1.1.1.6.1.1. Type

• object

19.1.1.1.7. .spec.outputDefaults

19.1.1.1.7.1. Description

19.1.1.1.7.1.1. Type

Property	Туре	Description
elasticsearch	object	(optional) Elasticsearch OutputSpec default values

19.1.1.1.8. .spec.outputDefaults.elasticsearch

19.1.1.1.8.1. Description

ElasticsearchStructuredSpec is spec related to structured log changes to determine the elasticsearch index

19.1.1.1.8.1.1. Type

• object

Property	Туре	Description
enableStructuredContainerLogs	bool	(optional) EnableStructuredContainerLogs enables multi-container structured logs to allow
structuredTypeKey	string	(optional) StructuredTypeKey specifies the metadata key to be used as name of elasticsearch index
structuredTypeName	string	(optional) StructuredTypeName specifies the name of elasticsearch schema

19.1.1.1.9. .spec.outputs[]

19.1.1.1.9.1. Description

Output defines a destination for log messages.

19.1.1.1.9.1.1. Type

Property	Туре	Description
syslog	object	(optional)
fluentdForward	object	(optional)

Property	Туре	Description
elasticsearch	object	(optional)
kafka	object	(optional)
cloudwatch	object	(optional)
loki	object	(optional)
googleCloudLogging	object	(optional)
splunk	object	(optional)
name	string	Name used to refer to the output from a pipeline .
secret	object	(optional) Secret for authentication.
tls	object	TLS contains settings for controlling options on TLS client connections.
type	string	Type of output plugin.
url	string	(optional) URL to send log records to.

19.1.1.10. .spec.outputs[].secret

19.1.1.1.10.1. Description

OutputSecretSpec is a secret reference containing name only, no namespace.

19.1.1.1.10.1.1. Type

• object

Property	Туре	Description
name	string	Name of a secret in the namespace configured for log forwarder secrets.

19.1.1.1.11. .spec.outputs[].tls

19.1.1.1.11.1. Description

OutputTLSSpec contains options for TLS connections that are agnostic to the output type.

19.1.1.1.11.1.1. Type

• object

Property	Туре	Description
insecureSkipVerify	bool	If InsecureSkipVerify is true, then the TLS client will be configured to ignore errors with certificates.

19.1.1.1.12. .spec.pipelines[]

19.1.1.1.12.1. Description

PipelinesSpec link a set of inputs to a set of outputs.

19.1.1.1.12.1.1. Type

• array

Property	Туре	Description
detectMultilineErrors	bool	(optional) DetectMultilineErrors enables multiline error detection of container logs
inputRefs	array	InputRefs lists the names (input.name) of inputs to this pipeline.
labels	object	(optional) Labels applied to log records passing through this pipeline.
name	string	(optional) Name is optional, but must be unique in the pipelines list if provided.
outputRefs	array	OutputRefs lists the names (output.name) of outputs from this pipeline.
parse	string	(optional) Parse enables parsing of log entries into structured logs

19.1.1.1.13. .spec.pipelines[].inputRefs[]

19.1.1.1.13.1. Description

19.1.1.1.13.1.1. Type

• array

19.1.1.1.14. .spec.pipelines[].labels

19.1.1.1.14.1. Description

19.1.1.1.14.1.1. Type

• object

19.1.1.15. .spec.pipelines[].outputRefs[]

19.1.1.15.1. Description

19.1.1.1.15.1.1. Type

• array

19.1.1.1.16. .status

19.1.1.1.16.1. Description

ClusterLogForwarderStatus defines the observed state of ClusterLogForwarder

19.1.1.1.16.1.1. Type

• object

Property	Туре	Description
conditions	object	Conditions of the log forwarder.
inputs	Conditions	Inputs maps input name to condition of the input.
outputs	Conditions	Outputs maps output name to condition of the output.
pipelines	Conditions	Pipelines maps pipeline name to condition of the pipeline.

19.1.1.1.17. .status.conditions

19.1.1.17.1. Description

19.1.1.1.17.1.1. Type

• object

19.1.1.18. .status.inputs

19.1.1.18.1. Description

19.1.1.1.18.1.1. Type

• Conditions

19.1.1.19. .status.outputs

19.1.1.19.1. Description

19.1.1.19.1.1. Type

• Conditions

19.1.1.1.20. .status.pipelines

19.1.1.1.20.1. Description

19.1.1.1.20.1.1. Type

• Conditions== ClusterLogging A Red Hat OpenShift Logging instance. ClusterLogging is the Schema for the clusterloggings API

Property	Туре	Description
spec	object	Specification of the desired behavior of ClusterLogging
status	object	Status defines the observed state of ClusterLogging

19.1.1.1.21. .spec

19.1.1.21.1. Description

ClusterLoggingSpec defines the desired state of ClusterLogging

19.1.1.1.21.1.1. Type

Property	Туре	Description
collection	object	Specification of the Collection component for the cluster
curation	object	(DEPRECATED) (optional) Deprecated. Specification of the Curation component for the cluster
forwarder	object	(DEPRECATED) (optional) Deprecated. Specification for Forwarder component for the cluster
logStore	object	(optional) Specification of the Log Storage component for the cluster
managementState	string	(optional) Indicator if the resource is 'Managed' or 'Unmanaged' by the operator
visualization	object	(optional) Specification of the Visualization component for the cluster

19.1.1.1.22. .spec.collection

19.1.1.1.22.1. Description

This is the struct that will contain information pertinent to Log and event collection

19.1.1.1.22.1.1. Type

Property	Туре	Description
resources	object	(optional) The resource requirements for the collector
nodeSelector	object	(optional) Define which Nodes the Pods are scheduled on.
tolerations	array	(optional) Define the tolerations the Pods will accept

Property	Туре	Description
fluentd	object	(optional) Fluentd represents the configuration for forwarders of type fluentd.
logs	object	(DEPRECATED) (optional) Deprecated. Specification of Log Collection for the cluster
type	string	(optional) The type of Log Collection to configure

19.1.1.1.23. .spec.collection.fluentd

19.1.1.23.1. Description

FluentdForwarderSpec represents the configuration for forwarders of type fluentd.

19.1.1.1.23.1.1. Type

• object

Property	Туре	Description
buffer	object	
inFile	object	

19.1.1.1.24. .spec.collection.fluentd.buffer

19.1.1.1.24.1. Description

FluentdBufferSpec represents a subset of fluentd buffer parameters to tune the buffer configuration for all fluentd outputs. It supports a subset of parameters to configure buffer and queue sizing, flush operations and retry flushing.

For general parameters refer to: https://docs.fluentd.org/configuration/buffer-section#buffering-parameters

For flush parameters refer to: https://docs.fluentd.org/configuration/buffer-section#flushing-parameters

For retry parameters refer to: https://docs.fluentd.org/configuration/buffer-section#retriesparameters

19.1.1.1.24.1.1. Type

Property	Туре	Description
chunkLimitSize	string	(optional) ChunkLimitSize represents the maximum size of each chunk. Events will be
flushInterval	string	(optional) FlushInterval represents the time duration to wait between two consecutive flush
flushMode	string	(optional) FlushMode represents the mode of the flushing thread to write chunks. The mode
flush Thread Count	int	(optional) FlushThreadCount reprents the number of threads used by the fluentd buffer
overflowAction	string	(optional) OverflowAction represents the action for the fluentd buffer plugin to
retryMaxInterval	string	(optional) RetryMaxInterval represents the maximum time interval for exponential backoff
retryTimeout	string	(optional) RetryTimeout represents the maximum time interval to attempt retries before giving up
retryType	string	(optional) RetryType represents the type of retrying flush operations. Flush operations can
retryWait	string	(optional) RetryWait represents the time duration between two consecutive retries to flush
totalLimitSize	string	(optional) TotalLimitSize represents the threshold of node space allowed per fluentd

19.1.1.1.25. .spec.collection.fluentd.inFile

19.1.1.1.25.1. Description

FluentdInFileSpec represents a subset of fluentd in-tail plugin parameters to tune the configuration for all fluentd in-tail inputs.

For general parameters refer to: https://docs.fluentd.org/input/tail#parameters

19.1.1.1.25.1.1. Type

• object

Property	Туре	Description
readLinesLimit	int	(optional) ReadLinesLimit represents the number of lines to read with each I/O operation

19.1.1.1.26. .spec.collection.logs

19.1.1.1.26.1. Description

19.1.1.1.26.1.1. Type

• object

Property	Туре	Description
fluentd	object	Specification of the Fluentd Log Collection component
type	string	The type of Log Collection to configure

19.1.1.1.27. .spec.collection.logs.fluentd

19.1.1.27.1. Description

CollectorSpec is spec to define scheduling and resources for a collector

19.1.1.1.27.1.1. Type

Property	Туре	Description
nodeSelector	object	(optional) Define which Nodes the Pods are scheduled on.
resources	object	(optional) The resource requirements for the collector
tolerations	array	(optional) Define the tolerations the Pods will accept

19.1.1.1.28. .spec.collection.logs.fluentd.nodeSelector

19.1.1.1.28.1. Description

19.1.1.1.28.1.1. Type

• object

19.1.1.1.29. .spec.collection.logs.fluentd.resources

19.1.1.1.29.1. Description

19.1.1.1.29.1.1. Type

• object

Property	Туре	Description
limits	object	(optional) Limits describes the maximum amount of compute resources allowed.
requests	object	(optional) Requests describes the minimum amount of compute resources required.

19.1.1.1.30. .spec.collection.logs.fluentd.resources.limits

19.1.1.30.1. Description

19.1.1.1.30.1.1. Type

• object

19.1.1.1.31. .spec.collection.logs.fluentd.resources.requests

19.1.1.31.1. Description

19.1.1.1.31.1.1. Type

• object

19.1.1.1.32. .spec.collection.logs.fluentd.tolerations[]

19.1.1.32.1. Description

19.1.1.1.32.1.1. Type

Property	Туре	Description
effect	string	(optional) Effect indicates the taint effect to match. Empty means match all taint effects.
key	string	(optional) Key is the taint key that the toleration applies to. Empty means match all taint keys.
operator	string	(optional) Operator represents a key's relationship to the value.
tolerationSeconds	int	(optional) TolerationSeconds represents the period of time the toleration (which must be
value	string	(optional) Value is the taint value the toleration matches to.

19.1.1.1.33. .spec.collection.logs.fluentd.tolerations[].tolerationSeconds

19.1.1.1.33.1. Description

19.1.1.1.33.1.1. Type

• int

19.1.1.1.34. .spec.curation

19.1.1.1.34.1. Description

This is the struct that will contain information pertinent to Log curation (Curator)

19.1.1.1.34.1.1. Type

• object

Property	Туре	Description
curator	object	The specification of curation to configure
type	string	The kind of curation to configure

19.1.1.1.35. .spec.curation.curator

19.1.1.1.35.1. Description

19.1.1.1.35.1.1. Type

• object

Property	Туре	Description
nodeSelector	object	Define which Nodes the Pods are scheduled on.
resources	object	(optional) The resource requirements for Curator
schedule	string	The cron schedule that the Curator job is run. Defaults to "30 3 * * *"
tolerations	array	

19.1.1.1.36. .spec.curation.curator.nodeSelector

19.1.1.1.36.1. Description

19.1.1.1.36.1.1. Type

• object

19.1.1.1.37. .spec.curation.curator.resources

19.1.1.1.37.1. Description

19.1.1.1.37.1.1. Type

• object

Property	Туре	Description
limits	object	(optional) Limits describes the maximum amount of compute resources allowed.
requests	object	(optional) Requests describes the minimum amount of compute resources required.

19.1.1.1.38. .spec.curation.curator.resources.limits

19.1.1.1.38.1. Description

19.1.1.1.38.1.1. Type

• object

19.1.1.1.39. .spec.curation.curator.resources.requests

19.1.1.1.39.1. Description

19.1.1.1.39.1.1. Type

• object

19.1.1.1.40. .spec.curation.curator.tolerations[]

19.1.1.1.40.1. Description

19.1.1.1.40.1.1. Type

• array

Property	Туре	Description
effect	string	(optional) Effect indicates the taint effect to match. Empty means match all taint effects.
key	string	(optional) Key is the taint key that the toleration applies to. Empty means match all taint keys.
operator	string	(optional) Operator represents a key's relationship to the value.
tolerationSeconds	int	(optional) TolerationSeconds represents the period of time the toleration (which must be
value	string	(optional) Value is the taint value the toleration matches to.

19.1.1.1.41. .spec.curation.curator.tolerations[].tolerationSeconds

19.1.1.1.41.1. Description

19.1.1.1.41.1.1. Type

• int

19.1.1.1.42. .spec.forwarder

19.1.1.1.42.1. Description

ForwarderSpec contains global tuning parameters for specific forwarder implementations. This field is not required for general use, it allows performance tuning by users familiar with the underlying forwarder technology. Currently supported: **fluentd**.

19.1.1.1.42.1.1. Type

• object

Property	Туре	Description
fluentd	object	

19.1.1.1.43. .spec.forwarder.fluentd

19.1.1.43.1. Description

FluentdForwarderSpec represents the configuration for forwarders of type fluentd.

19.1.1.1.43.1.1. Type

• object

Property	Туре	Description
buffer	object	
inFile	object	

19.1.1.1.44. .spec.forwarder.fluentd.buffer

19.1.1.44.1. Description

FluentdBufferSpec represents a subset of fluentd buffer parameters to tune the buffer configuration for all fluentd outputs. It supports a subset of parameters to configure buffer and queue sizing, flush operations and retry flushing.

For general parameters refer to: https://docs.fluentd.org/configuration/buffer-section#buffering-parameters

For flush parameters refer to: https://docs.fluentd.org/configuration/buffer-section#flushingparameters

For retry parameters refer to: https://docs.fluentd.org/configuration/buffer-section#retriesparameters

19.1.1.1.44.1.1. Type

Property	Туре	Description
chunkLimitSize	string	(optional) ChunkLimitSize represents the maximum size of each chunk. Events will be
flushInterval	string	(optional) FlushInterval represents the time duration to wait between two consecutive flush
flushMode	string	(optional) FlushMode represents the mode of the flushing thread to write chunks. The mode
flushThreadCount	int	(optional) FlushThreadCount reprents the number of threads used by the fluentd buffer
overflowAction	string	(optional) OverflowAction represents the action for the fluentd buffer plugin to
retryMaxInterval	string	(optional) RetryMaxInterval represents the maximum time interval for exponential backoff
retryTimeout	string	(optional) RetryTimeout represents the maximum time interval to attempt retries before giving up
retryType	string	(optional) RetryType represents the type of retrying flush operations. Flush operations can
retryWait	string	(optional) RetryWait represents the time duration between two consecutive retries to flush
totalLimitSize	string	(optional) TotalLimitSize represents the threshold of node space allowed per fluentd

19.1.1.1.45. .spec.forwarder.fluentd.inFile

19.1.1.1.45.1. Description

FluentdInFileSpec represents a subset of fluentd in-tail plugin parameters to tune the configuration for all fluentd in-tail inputs.

For general parameters refer to: https://docs.fluentd.org/input/tail#parameters

19.1.1.1.45.1.1. Type

• object

Pro	perty	Туре	Description
read	dLinesLimit	int	(optional) ReadLinesLimit represents the number of lines to read with each I/O operation

19.1.1.1.46. .spec.logStore

19.1.1.1.46.1. Description

The LogStoreSpec contains information about how logs are stored.

19.1.1.1.46.1.1. Type

• object

Property	Туре	Description
elasticsearch	object	Specification of the Elasticsearch Log Store component
lokistack	object	LokiStack contains information about which LokiStack to use for log storage if Type is set to LogStoreTypeLokiStack.
retentionPolicy	object	(optional) Retention policy defines the maximum age for an index after which it should be deleted
type	string	The Type of Log Storage to configure. The operator currently supports either using ElasticSearch

19.1.1.47. .spec.logStore.elasticsearch

19.1.1.1.47.1. Description

19.1.1.1.47.1.1. Type

Property	Туре	Description
nodeCount	int	Number of nodes to deploy for Elasticsearch
nodeSelector	object	Define which Nodes the Pods are scheduled on.
proxy	object	Specification of the Elasticsearch Proxy component
redundancyPolicy	string	(optional)
resources	object	(optional) The resource requirements for Elasticsearch
storage	object	(optional) The storage specification for Elasticsearch data nodes
tolerations	array	

19.1.1.1.48. .spec.logStore.elasticsearch.nodeSelector

19.1.1.1.48.1. Description

19.1.1.1.48.1.1. Type

• object

19.1.1.1.49. .spec.logStore.elasticsearch.proxy

19.1.1.1.49.1. Description

19.1.1.1.49.1.1. Type

• object

Property	Туре	Description
resources	object	

19.1.1.1.50. .spec.logStore.elasticsearch.proxy.resources

19.1.1.1.50.1. Description

19.1.1.1.50.1.1. Type

• object

Property	Туре	Description
limits	object	(optional) Limits describes the maximum amount of compute resources allowed.
requests	object	(optional) Requests describes the minimum amount of compute resources required.

19.1.1.1.51. .spec.logStore.elasticsearch.proxy.resources.limits

19.1.1.1.51.1. Description

19.1.1.1.51.1.1. Type

• object

19.1.1.1.52. .spec.logStore.elasticsearch.proxy.resources.requests

19.1.1.1.52.1. Description

19.1.1.1.52.1.1. Type

- object
- 19.1.1.1.53. .spec.logStore.elasticsearch.resources

19.1.1.1.53.1. Description

19.1.1.1.53.1.1. Type

• object

Property	Туре	Description
limits	object	(optional) Limits describes the maximum amount of compute resources allowed.
requests	object	(optional) Requests describes the minimum amount of compute resources required.

19.1.1.1.54. .spec.logStore.elasticsearch.resources.limits

19.1.1.1.54.1. Description

19.1.1.1.54.1.1. Type

• object

19.1.1.1.55. .spec.logStore.elasticsearch.resources.requests

19.1.1.1.55.1. Description

19.1.1.1.55.1.1. Type

• object

19.1.1.1.56. .spec.logStore.elasticsearch.storage

19.1.1.1.56.1. Description

19.1.1.1.56.1.1. Type

• object

Property	Туре	Description
size	object	The max storage capacity for the node to provision.
storageClassName	string	(optional) The name of the storage class to use with creating the node's PVC.

19.1.1.1.57. .spec.logStore.elasticsearch.storage.size

19.1.1.1.57.1. Description

19.1.1.1.57.1.1. Type

Property	Туре	Description
Format	string	Change Format at will. See the comment for Canonicalize for
d	object	d is the quantity in inf.Dec form if d.Dec != nil

Property	Туре	Description
i	int	i is the quantity in int64 scaled form, if d.Dec == nil
S	string	s is the generated value of this quantity to avoid recalculation

19.1.1.1.58. .spec.logStore.elasticsearch.storage.size.d

19.1.1.1.58.1. Description

19.1.1.1.58.1.1. Type

• object

Property	Туре	Description
Dec	object	

19.1.1.1.59. .spec.logStore.elasticsearch.storage.size.d.Dec

19.1.1.1.59.1. Description

19.1.1.1.59.1.1. Type

• object

Property	Туре	Description
scale	int	
unscaled	object	

$19.1.1.1.60.\ .spec.log Store.elastics earch.storage.size.d. Dec. unscaled$

19.1.1.1.60.1. Description

19.1.1.1.60.1.1. Type

Property	Туре	Description
abs	Word	sign

Property	Туре	Description
neg	bool	

19.1.1.1.61. .spec.logStore.elasticsearch.storage.size.d.Dec.unscaled.abs

19.1.1.1.61.1. Description

19.1.1.1.61.1.1. Type

• Word

19.1.1.1.62. .spec.logStore.elasticsearch.storage.size.i

19.1.1.1.62.1. Description

19.1.1.1.62.1.1. Type

• int

Property	Туре	Description
scale	int	
value	int	

19.1.1.1.63. .spec.logStore.elasticsearch.tolerations[]

19.1.1.1.63.1. Description

19.1.1.1.63.1.1. Type

Property	Туре	Description
effect	string	(optional) Effect indicates the taint effect to match. Empty means match all taint effects.
key	string	(optional) Key is the taint key that the toleration applies to. Empty means match all taint keys.
operator	string	(optional) Operator represents a key's relationship to the value.

Property	Туре	Description
tolerationSeconds	int	(optional) TolerationSeconds represents the period of time the toleration (which must be
value	string	(optional) Value is the taint value the toleration matches to.

19.1.1.1.64. .spec.logStore.elasticsearch.tolerations[].tolerationSeconds

19.1.1.1.64.1. Description

19.1.1.1.64.1.1. Type

• int

19.1.1.1.65. .spec.logStore.lokistack

19.1.1.1.65.1. Description

LokiStackStoreSpec is used to set up cluster-logging to use a LokiStack as logging storage. It points to an existing LokiStack in the same namespace.

19.1.1.1.65.1.1. Type

• object

Property	Туре	Description
name	string	Name of the LokiStack resource.

19.1.1.1.66. .spec.logStore.retentionPolicy

19.1.1.1.66.1. Description

19.1.1.1.66.1.1. Type

Property	Туре	Description
application	object	
audit	object	

Property	Туре	Description
infra	object	

19.1.1.1.67. .spec.logStore.retentionPolicy.application

19.1.1.1.67.1. Description

19.1.1.1.67.1.1. Type

• object

Property	Туре	Description
diskThresholdPercent	int	(optional) The threshold percentage of ES disk usage that when reached, old indices should be deleted (e.g. 75)
maxAge	string	(optional)
namespaceSpec	array	(optional) The per namespace specification to delete documents older than a given minimum age
pruneNamespacesInterval	string	(optional) How often to run a new prune-namespaces job

19.1.1.1.68. .spec.logStore.retentionPolicy.application.namespaceSpec[]

19.1.1.1.68.1. Description

19.1.1.1.68.1.1. Type

Property	Туре	Description
minAge	string	(optional) Delete the records matching the namespaces which are older than this MinAge (e.g. 1d)
namespace	string	Target Namespace to delete logs older than MinAge (defaults to 7d)

19.1.1.1.69. .spec.logStore.retentionPolicy.audit

19.1.1.1.69.1. Description

19.1.1.1.69.1.1. Type

• object

Property	Туре	Description
diskThresholdPercent	int	(optional) The threshold percentage of ES disk usage that when reached, old indices should be deleted (e.g. 75)
maxAge	string	(optional)
namespaceSpec	array	(optional) The per namespace specification to delete documents older than a given minimum age
pruneNamespacesInterval	string	(optional) How often to run a new prune-namespaces job

19.1.1.1.70. .spec.logStore.retentionPolicy.audit.namespaceSpec[]

19.1.1.1.70.1. Description

19.1.1.1.70.1.1. Type

• array

Property	Туре	Description
minAge	string	(optional) Delete the records matching the namespaces which are older than this MinAge (e.g. 1d)
namespace	string	Target Namespace to delete logs older than MinAge (defaults to 7d)

19.1.1.1.71. .spec.logStore.retentionPolicy.infra

19.1.1.71.1. Description

19.1.1.1.71.1.1. Type

• object

Property	Туре	Description
diskThresholdPercent	int	(optional) The threshold percentage of ES disk usage that when reached, old indices should be deleted (e.g. 75)
maxAge	string	(optional)
namespaceSpec	array	(optional) The per namespace specification to delete documents older than a given minimum age
pruneNamespacesInterval	string	(optional) How often to run a new prune-namespaces job

19.1.1.1.72. .spec.logStore.retentionPolicy.infra.namespaceSpec[]

19.1.1.72.1. Description

19.1.1.1.72.1.1. Type

• array

Property	Туре	Description
minAge	string	(optional) Delete the records matching the namespaces which are older than this MinAge (e.g. 1d)
namespace	string	Target Namespace to delete logs older than MinAge (defaults to 7d)

19.1.1.1.73. .spec.visualization

19.1.1.73.1. Description

This is the struct that will contain information pertinent to Log visualization (Kibana)

19.1.1.1.73.1.1. Type

Property	Туре	Description
kibana	object	Specification of the Kibana Visualization component
type	string	The type of Visualization to configure

19.1.1.1.74. .spec.visualization.kibana

19.1.1.1.74.1. Description

19.1.1.1.74.1.1. Type

• object

Property	Туре	Description
nodeSelector	object	Define which Nodes the Pods are scheduled on.
proxy	object	Specification of the Kibana Proxy component
replicas	int	Number of instances to deploy for a Kibana deployment
resources	object	(optional) The resource requirements for Kibana
tolerations	array	

19.1.1.1.75. .spec.visualization.kibana.nodeSelector

19.1.1.1.75.1. Description

19.1.1.1.75.1.1. Type

• object

19.1.1.1.76. .spec.visualization.kibana.proxy

19.1.1.1.76.1. Description

19.1.1.1.76.1.1. Type

• object

Property	Туре	Description
resources	object	

19.1.1.1.77. .spec.visualization.kibana.proxy.resources

19.1.1.1.77.1. Description

19.1.1.1.77.1.1. Type

• object

Property	Туре	Description
limits	object	(optional) Limits describes the maximum amount of compute resources allowed.
requests	object	(optional) Requests describes the minimum amount of compute resources required.

19.1.1.1.78. .spec.visualization.kibana.proxy.resources.limits

19.1.1.78.1. Description

19.1.1.1.78.1.1. Type

• object

19.1.1.1.79. .spec.visualization.kibana.proxy.resources.requests

19.1.1.79.1. Description

19.1.1.1.79.1.1. Type

• object

19.1.1.1.80. .spec.visualization.kibana.replicas

19.1.1.1.80.1. Description

19.1.1.1.80.1.1. Type

• int

19.1.1.1.81. .spec.visualization.kibana.resources

19.1.1.1.81.1. Description

19.1.1.1.81.1.1. Type

• object

Property	Туре	Description
limits	object	(optional) Limits describes the maximum amount of compute resources allowed.
requests	object	(optional) Requests describes the minimum amount of compute resources required.

19.1.1.1.82. .spec.visualization.kibana.resources.limits

19.1.1.1.82.1. Description

19.1.1.1.82.1.1. Type

• object

19.1.1.1.83. .spec.visualization.kibana.resources.requests

19.1.1.1.83.1. Description

19.1.1.1.83.1.1. Type

• object

19.1.1.1.84. .spec.visualization.kibana.tolerations[]

19.1.1.1.84.1. Description

19.1.1.1.84.1.1. Type

Property	Туре	Description
effect	string	(optional) Effect indicates the taint effect to match. Empty means match all taint effects.

Property	Туре	Description
key	string	(optional) Key is the taint key that the toleration applies to. Empty means match all taint keys.
operator	string	(optional) Operator represents a key's relationship to the value.
tolerationSeconds	int	(optional) TolerationSeconds represents the period of time the toleration (which must be
value	string	(optional) Value is the taint value the toleration matches to.

19.1.1.1.85. .spec.visualization.kibana.tolerations[].tolerationSeconds

19.1.1.1.85.1. Description

19.1.1.1.85.1.1. Type

• int

19.1.1.1.86. .status

19.1.1.1.86.1. Description

ClusterLoggingStatus defines the observed state of ClusterLogging

19.1.1.1.86.1.1. Type

• object

Property	Туре	Description
collection	object	(optional)
conditions	object	(optional)
curation	object	(optional)
logStore	object	(optional)
visualization	object	(optional)

19.1.1.1.87. .status.collection

19.1.1.1.87.1. Description

19.1.1.1.87.1.1. Type

• object

Property	Туре	Description
logs	object	(optional)

19.1.1.1.88. .status.collection.logs

19.1.1.1.88.1. Description

19.1.1.1.88.1.1. Type

• object

Property	Туре	Description
fluentdStatus	object	(optional)

19.1.1.1.89. .status.collection.logs.fluentdStatus

19.1.1.1.89.1. Description

19.1.1.1.89.1.1. Type

• object

Property	Туре	Description
clusterCondition	object	(optional)
daemonSet	string	(optional)
nodes	object	(optional)
pods	string	(optional)

19.1.1.1.90. .status.collection.logs.fluentdStatus.clusterCondition

19.1.1.1.90.1. Description

operator-sdk generate crds does not allow map-of-slice, must use a named type.

19.1.1.1.90.1.1. Type

• object

19.1.1.1.91. .status.collection.logs.fluentdStatus.nodes

19.1.1.1.91.1. Description

19.1.1.1.91.1.1. Type

• object

19.1.1.1.92. .status.conditions

19.1.1.1.92.1. Description

19.1.1.1.92.1.1. Type

• object

19.1.1.1.93. .status.curation

19.1.1.1.93.1. Description

19.1.1.1.93.1.1. Type

• object

Property	Туре	Description
curatorStatus	array	(optional)

19.1.1.1.94. .status.curation.curatorStatus[]

19.1.1.94.1. Description

19.1.1.1.94.1.1. Type

Property	Туре	Description
clusterCondition	object	(optional)
cronJobs	string	(optional)
schedules	string	(optional)

Property	Туре	Description
suspended	bool	(optional)

19.1.1.1.95. .status.curation.curatorStatus[].clusterCondition

19.1.1.1.95.1. Description

operator-sdk generate crds does not allow map-of-slice, must use a named type.

19.1.1.1.95.1.1. Type

• object

19.1.1.1.96. .status.logStore

19.1.1.1.96.1. Description

19.1.1.1.96.1.1. Type

• object

Property	Туре	Description
elasticsearchStatus	array	(optional)

19.1.1.1.97. .status.logStore.elasticsearchStatus[]

19.1.1.1.97.1. Description

19.1.1.1.97.1.1. Type

Property	Туре	Description
cluster	object	(optional)
clusterConditions	object	(optional)
clusterHealth	string	(optional)
clusterName	string	(optional)
deployments	array	(optional)

Property	Туре	Description
nodeConditions	object	(optional)
nodeCount	int	(optional)
pods	object	(optional)
replicaSets	array	(optional)
shardAllocationEnabled	string	(optional)
statefulSets	array	(optional)

19.1.1.1.98. .status.logStore.elasticsearchStatus[].cluster

19.1.1.1.98.1. Description

19.1.1.1.98.1.1. Type

Property	Туре	Description
activePrimaryShards	int	The number of Active Primary Shards for the Elasticsearch Cluster
activeShards	int	The number of Active Shards for the Elasticsearch Cluster
initializingShards	int	The number of Initializing Shards for the Elasticsearch Cluster
numDataNodes	int	The number of Data Nodes for the Elasticsearch Cluster
numNodes	int	The number of Nodes for the Elasticsearch Cluster
pendingTasks	int	
relocatingShards	int	The number of Relocating Shards for the Elasticsearch Cluster
status	string	The current Status of the Elasticsearch Cluster

Property	Туре	Description
unassignedShards	int	The number of Unassigned Shards for the Elasticsearch Cluster

19.1.1.1.99. .status.logStore.elasticsearchStatus[].clusterConditions

19.1.1.1.99.1. Description

19.1.1.1.99.1.1. Type

• object

19.1.1.100. .status.logStore.elasticsearchStatus[].deployments[]

19.1.1.100.1. Description

19.1.1.1.100.1.1. Type

• array

19.1.1.101. .status.logStore.elasticsearchStatus[].nodeConditions

19.1.1.101.1. Description

19.1.1.101.1.1. Type

• object

19.1.1.102. .status.logStore.elasticsearchStatus[].pods

19.1.1.102.1. Description

19.1.1.1.102.1.1. Type

• object

19.1.1.103. .status.logStore.elasticsearchStatus[].replicaSets[]

19.1.1.1.103.1. Description

19.1.1.1.103.1.1. Type

• array

19.1.1.104. .status.logStore.elasticsearchStatus[].statefulSets[]

19.1.1.104.1. Description

19.1.1.1.104.1.1. Type

• array

19.1.1.105. .status.visualization

19.1.1.105.1. Description

19.1.1.1.105.1.1. Type

• object

Property	Туре	Description
kibanaStatus	array	(optional)

19.1.1.106. .status.visualization.kibanaStatus[]

19.1.1.106.1. Description

19.1.1.1.106.1.1. Type

• array

Property	Туре	Description
clusterCondition	object	(optional)
deployment	string	(optional)
pods	string	(optional) The status for each of the Kibana pods for the Visualization component
replicaSets	array	(optional)
replicas	int	(optional)

$19.1.1.107.\ .status.visualization.kibanaStatus []. cluster Condition$

19.1.1.107.1. Description

19.1.1.1.107.1.1. Type

19.1.1.108. .status.visualization.kibanaStatus[].replicaSets[]

19.1.1.1.108.1. Description

19.1.1.1.108.1.1. Type

CHAPTER 20. GLOSSARY

This glossary defines common terms that are used in the logging documentation.

Annotation

You can use annotations to attach metadata to objects.

Red Hat OpenShift Logging Operator

The Red Hat OpenShift Logging Operator provides a set of APIs to control the collection and forwarding of application, infrastructure, and audit logs.

Custom resource (CR)

A CR is an extension of the Kubernetes API. To configure the logging and log forwarding, you can customize the **ClusterLogging** and the **ClusterLogForwarder** custom resources.

Event router

The event router is a pod that watches OpenShift Container Platform events. It collects logs by using the logging.

Fluentd

Fluentd is a log collector that resides on each OpenShift Container Platform node. It gathers application, infrastructure, and audit logs and forwards them to different outputs.

Garbage collection

Garbage collection is the process of cleaning up cluster resources, such as terminated containers and images that are not referenced by any running pods.

Elasticsearch

Elasticsearch is a distributed search and analytics engine. OpenShift Container Platform uses Elasticsearch as a default log store for the logging.

OpenShift Elasticsearch Operator

The OpenShift Elasticsearch Operator is used to run an Elasticsearch cluster on OpenShift Container Platform. The OpenShift Elasticsearch Operator provides self-service for the Elasticsearch cluster operations and is used by the logging.

Indexing

Indexing is a data structure technique that is used to quickly locate and access data. Indexing optimizes the performance by minimizing the amount of disk access required when a query is processed.

JSON logging

The Log Forwarding API enables you to parse JSON logs into a structured object and forward them to either the logging managed Elasticsearch or any other third-party system supported by the Log Forwarding API.

Kibana

Kibana is a browser-based console interface to query, discover, and visualize your Elasticsearch data through histograms, line graphs, and pie charts.

Kubernetes API server

Kubernetes API server validates and configures data for the API objects.

Labels

Labels are key-value pairs that you can use to organize and select subsets of objects, such as a pod.

Logging

With the logging, you can aggregate application, infrastructure, and audit logs throughout your cluster. You can also store them to a default log store, forward them to third party systems, and query and visualize the stored logs in the default log store.

Logging collector

A logging collector collects logs from the cluster, formats them, and forwards them to the log store or third party systems.

Log store

A log store is used to store aggregated logs. You can use an internal log store or forward logs to external log stores.

Log visualizer

Log visualizer is the user interface (UI) component you can use to view information such as logs, graphs, charts, and other metrics.

Node

A node is a worker machine in the OpenShift Container Platform cluster. A node is either a virtual machine (VM) or a physical machine.

Operators

Operators are the preferred method of packaging, deploying, and managing a Kubernetes application in an OpenShift Container Platform cluster. An Operator takes human operational knowledge and encodes it into software that is packaged and shared with customers.

Pod

A pod is the smallest logical unit in Kubernetes. A pod consists of one or more containers and runs on a worker node.

Role-based access control (RBAC)

RBAC is a key security control to ensure that cluster users and workloads have access only to resources required to execute their roles.

Shards

Elasticsearch organizes log data from Fluentd into datastores, or indices, then subdivides each index into multiple pieces called shards.

Taint

Taints ensure that pods are scheduled onto appropriate nodes. You can apply one or more taints on a node.

Toleration

You can apply tolerations to pods. Tolerations allow the scheduler to schedule pods with matching taints.

Web console

A user interface (UI) to manage OpenShift Container Platform.