
OpenShift Container Platform 4.10

Scalability and performance

Scaling your OpenShift Container Platform cluster and tuning performance in
production environments

Last Updated: 2023-09-22

OpenShift Container Platform 4.10 Scalability and performance

Scaling your OpenShift Container Platform cluster and tuning performance in production
environments

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for scaling your cluster and optimizing the performance of
your OpenShift Container Platform environment.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. RECOMMENDED HOST PRACTICES
1.1. RECOMMENDED NODE HOST PRACTICES
1.2. CREATING A KUBELETCONFIG CRD TO EDIT KUBELET PARAMETERS
1.3. MODIFYING THE NUMBER OF UNAVAILABLE WORKER NODES
1.4. CONTROL PLANE NODE SIZING

1.4.1. Selecting a larger Amazon Web Services instance type for control plane machines
1.4.1.1. Changing the Amazon Web Services instance type by using the AWS console

1.5. RECOMMENDED ETCD PRACTICES
1.6. MOVING ETCD TO A DIFFERENT DISK
1.7. DEFRAGMENTING ETCD DATA

1.7.1. Automatic defragmentation
1.7.2. Manual defragmentation

1.8. OPENSHIFT CONTAINER PLATFORM INFRASTRUCTURE COMPONENTS
1.9. MOVING THE MONITORING SOLUTION
1.10. MOVING THE DEFAULT REGISTRY
1.11. MOVING THE ROUTER
1.12. INFRASTRUCTURE NODE SIZING
1.13. ADDITIONAL RESOURCES

CHAPTER 2. RECOMMENDED HOST PRACTICES FOR IBM Z & LINUXONE ENVIRONMENTS
2.1. MANAGING CPU OVERCOMMITMENT
2.2. DISABLE TRANSPARENT HUGE PAGES
2.3. BOOST NETWORKING PERFORMANCE WITH RECEIVE FLOW STEERING

2.3.1. Use the Machine Config Operator (MCO) to activate RFS
2.4. CHOOSE YOUR NETWORKING SETUP
2.5. ENSURE HIGH DISK PERFORMANCE WITH HYPERPAV ON Z/VM

2.5.1. Use the Machine Config Operator (MCO) to activate HyperPAV aliases in nodes using z/VM full-pack
minidisks

2.6. RHEL KVM ON IBM Z HOST RECOMMENDATIONS
2.6.1. Use multiple queues for your VirtIO network interfaces
2.6.2. Use I/O threads for your virtual block devices
2.6.3. Avoid virtual SCSI devices
2.6.4. Configure guest caching for disk
2.6.5. Exclude the memory balloon device
2.6.6. Tune the CPU migration algorithm of the host scheduler
2.6.7. Disable the cpuset cgroup controller
2.6.8. Tune the polling period for idle virtual CPUs

CHAPTER 3. RECOMMENDED CLUSTER SCALING PRACTICES
3.1. RECOMMENDED PRACTICES FOR SCALING THE CLUSTER
3.2. MODIFYING A MACHINE SET
3.3. ABOUT MACHINE HEALTH CHECKS

3.3.1. Limitations when deploying machine health checks
3.4. SAMPLE MACHINEHEALTHCHECK RESOURCE

3.4.1. Short-circuiting machine health check remediation
3.4.1.1. Setting maxUnhealthy by using an absolute value
3.4.1.2. Setting maxUnhealthy by using percentages

3.5. CREATING A MACHINEHEALTHCHECK RESOURCE

CHAPTER 4. USING THE NODE TUNING OPERATOR
4.1. ABOUT THE NODE TUNING OPERATOR
4.2. ACCESSING AN EXAMPLE NODE TUNING OPERATOR SPECIFICATION

9
9

10
14
14
16
16
17
19
22
23
24
26
27
29
31

33
33

35
35
35
36
36
37
37

38
39
39
39
40
40
41
41
41

42

43
43
43
45
45
46
47
47
47
48

49
49
49

Table of Contents

1

. .

. .

. .

. .

. .

. .

4.3. DEFAULT PROFILES SET ON A CLUSTER
4.4. VERIFYING THAT THE TUNED PROFILES ARE APPLIED
4.5. CUSTOM TUNING SPECIFICATION
4.6. CUSTOM TUNING EXAMPLES
4.7. SUPPORTED TUNED DAEMON PLUGINS

CHAPTER 5. USING CPU MANAGER AND TOPOLOGY MANAGER
5.1. SETTING UP CPU MANAGER
5.2. TOPOLOGY MANAGER POLICIES
5.3. SETTING UP TOPOLOGY MANAGER
5.4. POD INTERACTIONS WITH TOPOLOGY MANAGER POLICIES

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS
6.1. ABOUT NUMA-AWARE SCHEDULING
6.2. INSTALLING THE NUMA RESOURCES OPERATOR

6.2.1. Installing the NUMA Resources Operator using the CLI
6.2.2. Installing the NUMA Resources Operator using the web console

6.3. CREATING THE NUMARESOURCESOPERATOR CUSTOM RESOURCE
6.4. DEPLOYING THE NUMA-AWARE SECONDARY POD SCHEDULER
6.5. SCHEDULING WORKLOADS WITH THE NUMA-AWARE SCHEDULER
6.6. TROUBLESHOOTING NUMA-AWARE SCHEDULING

6.6.1. Checking the NUMA-aware scheduler logs
6.6.2. Troubleshooting the resource topology exporter
6.6.3. Correcting a missing resource topology exporter config map

CHAPTER 7. SCALING THE CLUSTER MONITORING OPERATOR
7.1. PROMETHEUS DATABASE STORAGE REQUIREMENTS
7.2. CONFIGURING CLUSTER MONITORING

CHAPTER 8. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS
8.1. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER MAXIMUMS FOR MAJOR RELEASES
8.2. OPENSHIFT CONTAINER PLATFORM ENVIRONMENT AND CONFIGURATION ON WHICH THE CLUSTER
MAXIMUMS ARE TESTED

8.2.1. AWS cloud platform
8.2.2. IBM Power platform
8.2.3. IBM Z platform

8.3. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO TESTED CLUSTER MAXIMUMS
8.4. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO APPLICATION REQUIREMENTS

CHAPTER 9. OPTIMIZING STORAGE
9.1. AVAILABLE PERSISTENT STORAGE OPTIONS
9.2. RECOMMENDED CONFIGURABLE STORAGE TECHNOLOGY

9.2.1. Specific application storage recommendations
9.2.1.1. Registry
9.2.1.2. Scaled registry
9.2.1.3. Metrics
9.2.1.4. Logging
9.2.1.5. Applications

9.2.2. Other specific application storage recommendations
9.3. DATA STORAGE MANAGEMENT
9.4. OPTIMIZING STORAGE PERFORMANCE FOR MICROSOFT AZURE

CHAPTER 10. OPTIMIZING ROUTING
10.1. BASELINE INGRESS CONTROLLER (ROUTER) PERFORMANCE

50
50
50
54
56

58
58
62
63
63

65
65
66
66
68
68
70
72
75
78
81

82

85
85
86

88
88

90
90
91
91

92
93

96
96
97
97
98
98
98
99
99
99
99

100

102
102

OpenShift Container Platform 4.10 Scalability and performance

2

. .

. .

. .

. .

CHAPTER 11. OPTIMIZING NETWORKING
11.1. OPTIMIZING THE MTU FOR YOUR NETWORK
11.2. RECOMMENDED PRACTICES FOR INSTALLING LARGE SCALE CLUSTERS
11.3. IMPACT OF IPSEC

CHAPTER 12. MANAGING BARE METAL HOSTS
12.1. ABOUT BARE METAL HOSTS AND NODES
12.2. MAINTAINING BARE METAL HOSTS

12.2.1. Adding a bare metal host to the cluster using the web console
12.2.2. Adding a bare metal host to the cluster using YAML in the web console
12.2.3. Automatically scaling machines to the number of available bare metal hosts
12.2.4. Removing bare metal hosts from the provisioner node

CHAPTER 13. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS
13.1. WHAT HUGE PAGES DO
13.2. HOW HUGE PAGES ARE CONSUMED BY APPS
13.3. CONSUMING HUGE PAGES RESOURCES USING THE DOWNWARD API
13.4. CONFIGURING HUGE PAGES

13.4.1. At boot time
13.5. DISABLING TRANSPARENT HUGE PAGES

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES
14.1. UNDERSTANDING LOW LATENCY

14.1.1. About hyperthreading for low latency and real-time applications
14.2. INSTALLING THE PERFORMANCE ADDON OPERATOR

14.2.1. Installing the Operator using the CLI
14.2.2. Installing the Performance Addon Operator using the web console

14.3. UPGRADING PERFORMANCE ADDON OPERATOR
14.3.1. About upgrading Performance Addon Operator

14.3.1.1. How Performance Addon Operator upgrades affect your cluster
14.3.1.2. Upgrading Performance Addon Operator to the next minor version
14.3.1.3. Upgrading Performance Addon Operator when previously installed to a specific namespace

14.3.2. Monitoring upgrade status
14.4. PROVISIONING REAL-TIME AND LOW LATENCY WORKLOADS

14.4.1. Known limitations for real-time
14.4.2. Provisioning a worker with real-time capabilities
14.4.3. Verifying the real-time kernel installation
14.4.4. Creating a workload that works in real-time
14.4.5. Creating a pod with a QoS class of Guaranteed
14.4.6. Optional: Disabling CPU load balancing for DPDK
14.4.7. Assigning a proper node selector
14.4.8. Scheduling a workload onto a worker with real-time capabilities
14.4.9. Managing device interrupt processing for guaranteed pod isolated CPUs

14.4.9.1. Disabling CPU CFS quota
14.4.9.2. Disabling global device interrupts handling in Performance Addon Operator
14.4.9.3. Disabling interrupt processing for individual pods

14.4.10. Upgrading the performance profile to use device interrupt processing
14.4.10.1. Supported API Versions

14.4.10.1.1. Upgrading Performance Addon Operator API from v1alpha1 to v1
14.4.10.1.2. Upgrading Performance Addon Operator API from v1alpha1 or v1 to v2

14.4.11. Configuring a node for IRQ dynamic load balancing
14.4.12. Configuring hyperthreading for a cluster

14.4.12.1. Disabling hyperthreading for low latency applications
14.5. TUNING NODES FOR LOW LATENCY WITH THE PERFORMANCE PROFILE

104
104
105
105

106
106
106
106
107
108
109

111
111
111

112
114
114
116

117
117
117
118
118
119

120
120
121
121
121
122
123
123
124
125
125
126
127
127
128
128
128
129
129
129
130
130
130
130
133
134
135

Table of Contents

3

. .

. .

14.5.1. Configuring huge pages
14.5.2. Allocating multiple huge page sizes
14.5.3. Restricting CPUs for infra and application containers

14.6. REDUCING NIC QUEUES USING THE PERFORMANCE ADDON OPERATOR
14.6.1. Adjusting the NIC queues with the performance profile
14.6.2. Verifying the queue status
14.6.3. Logging associated with adjusting NIC queues

14.7. DEBUGGING LOW LATENCY CNF TUNING STATUS
14.7.1. Machine config pools

14.8. COLLECTING LOW LATENCY TUNING DEBUGGING DATA FOR RED HAT SUPPORT
14.8.1. About the must-gather tool
14.8.2. About collecting low latency tuning data
14.8.3. Gathering data about specific features

CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION
15.1. PREREQUISITES FOR RUNNING LATENCY TESTS
15.2. ABOUT DISCOVERY MODE FOR LATENCY TESTS

Limiting the nodes used during tests
15.3. MEASURING LATENCY
15.4. RUNNING THE LATENCY TESTS

15.4.1. Running hwlatdetect
Example hwlatdetect test results

15.4.2. Running cyclictest
Example cyclictest results

15.4.3. Running oslat
15.5. GENERATING A LATENCY TEST FAILURE REPORT
15.6. GENERATING A JUNIT LATENCY TEST REPORT
15.7. RUNNING LATENCY TESTS ON A SINGLE-NODE OPENSHIFT CLUSTER
15.8. RUNNING LATENCY TESTS IN A DISCONNECTED CLUSTER

Mirroring the images to a custom registry accessible from the cluster
Configuring the tests to consume images from a custom registry
Mirroring images to the cluster OpenShift image registry
Mirroring a different set of test images

15.9. TROUBLESHOOTING ERRORS WITH THE CNF-TESTS CONTAINER

CHAPTER 16. TOPOLOGY AWARE LIFECYCLE MANAGER FOR CLUSTER UPDATES
16.1. ABOUT THE TOPOLOGY AWARE LIFECYCLE MANAGER CONFIGURATION
16.2. ABOUT MANAGED POLICIES USED WITH TOPOLOGY AWARE LIFECYCLE MANAGER
16.3. INSTALLING THE TOPOLOGY AWARE LIFECYCLE MANAGER BY USING THE WEB CONSOLE
16.4. INSTALLING THE TOPOLOGY AWARE LIFECYCLE MANAGER BY USING THE CLI
16.5. ABOUT THE CLUSTERGROUPUPGRADE CR

16.5.1. The UpgradeNotStarted state
16.5.2. The UpgradeCannotStart state
16.5.3. The UpgradeNotCompleted state
16.5.4. The UpgradeTimedOut state
16.5.5. The UpgradeCompleted state
16.5.6. Blocking ClusterGroupUpgrade CRs

16.6. UPDATE POLICIES ON MANAGED CLUSTERS
16.6.1. Applying update policies to managed clusters

16.7. USING THE CONTAINER IMAGE PRE-CACHE FEATURE
16.7.1. Creating a ClusterGroupUpgrade CR with pre-caching

16.8. TROUBLESHOOTING THE TOPOLOGY AWARE LIFECYCLE MANAGER
16.8.1. General troubleshooting

136
137
138
140
140
143
147
147
148
149
150
150
150

152
152
152
152
153
154
155
158
160
162
164
167
167
168
169
169
169
170
171
171

173
173
173
174
175
176
176
178
178
180
180
181

188
188
195
195
198
198

OpenShift Container Platform 4.10 Scalability and performance

4

. .

. .

. .

16.8.2. Cannot modify the ClusterUpgradeGroup CR
16.8.3. Managed policies

Checking managed policies on the system
Checking remediationAction mode
Checking policy compliance state

16.8.4. Clusters
Checking if managed clusters are present
Checking if managed clusters are available
Checking clusterSelector
Checking if canary clusters are present
Checking the pre-caching status on spoke clusters

16.8.5. Remediation Strategy
Checking if remediationStrategy is present in the ClusterGroupUpgrade CR
Checking if maxConcurrency is specified in the ClusterGroupUpgrade CR

16.8.6. Topology Aware Lifecycle Manager
Checking condition message and status in the ClusterGroupUpgrade CR
Checking corresponding copied policies
Checking if status.remediationPlan was computed
Errors in the TALM manager container

CHAPTER 17. CREATING A PERFORMANCE PROFILE
17.1. ABOUT THE PERFORMANCE PROFILE CREATOR

17.1.1. Gathering data about your cluster using the must-gather command
17.1.2. Running the Performance Profile Creator using podman

17.1.2.1. How to run podman to create a performance profile
17.1.3. Running the Performance Profile Creator wrapper script
17.1.4. Performance Profile Creator arguments

17.2. ADDITIONAL RESOURCES

CHAPTER 18. WORKLOAD PARTITIONING ON SINGLE-NODE OPENSHIFT
18.1. MAXIMIZING CPU ALLOCATION WITH WORKLOAD PARTITIONING

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE
19.1. CHALLENGES OF THE NETWORK FAR EDGE

19.1.1. Overcoming the challenges of the network far edge
19.1.2. Using ZTP to provision clusters at the network far edge
19.1.3. Installing managed clusters with SiteConfig resources and RHACM
19.1.4. Configuring managed clusters with policies and PolicyGenTemplate resources

19.2. PREPARING THE HUB CLUSTER FOR ZTP
19.2.1. Telco RAN 4.10 validated solution software versions
19.2.2. Installing GitOps ZTP in a disconnected environment
19.2.3. Adding RHCOS ISO and RootFS images to the disconnected mirror host
19.2.4. Enabling the assisted service and updating AgentServiceConfig on the hub cluster
19.2.5. Configuring the hub cluster to use a disconnected mirror registry
19.2.6. Configuring the hub cluster with ArgoCD
19.2.7. Preparing the GitOps ZTP site configuration repository

19.3. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES
19.3.1. GitOps ZTP and Topology Aware Lifecycle Manager
19.3.2. Overview of deploying managed clusters with ZTP

Overview of the managed site installation process
19.3.3. Creating the managed bare-metal host secrets
19.3.4. Deploying a managed cluster with SiteConfig and ZTP
19.3.5. Monitoring managed cluster installation progress
19.3.6. Troubleshooting GitOps ZTP by validating the installation CRs

199
200
200
200
200
201
201

202
202
202
203
203
203
204
204
204
204
205
205

207
207
207
208

211
212
216
218

219
219

222
222
222
223
224
225
227
227
227
228
229
230
232
233
234
234
236
236
237
237
241
242

Table of Contents

5

19.3.7. Removing a managed cluster site from the ZTP pipeline
19.3.8. Removing obsolete content from the ZTP pipeline
19.3.9. Tearing down the ZTP pipeline

19.4. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE RESOURCES
19.4.1. About the PolicyGenTemplate CRD
19.4.2. Recommendations when customizing PolicyGenTemplate CRs
19.4.3. PolicyGenTemplate CRs for RAN deployments
19.4.4. Customizing a managed cluster with PolicyGenTemplate CRs
19.4.5. Monitoring managed cluster policy deployment progress
19.4.6. Validating the generation of configuration policy CRs
19.4.7. Restarting policy reconciliation
19.4.8. Indication of done for ZTP installations

19.5. MANUALLY INSTALLING A SINGLE-NODE OPENSHIFT CLUSTER WITH ZTP
19.5.1. Generating ZTP installation and configuration CRs manually
19.5.2. Creating the managed bare-metal host secrets
19.5.3. Installing a single managed cluster
19.5.4. Monitoring the managed cluster installation status
19.5.5. Troubleshooting the managed cluster
19.5.6. RHACM generated cluster installation CRs reference

19.6. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION
WORKLOADS

19.6.1. Running low latency applications on OpenShift Container Platform
19.6.2. Recommended cluster host requirements for vDU application workloads
19.6.3. Configuring host firmware for low latency and high performance
19.6.4. Connectivity prerequisites for managed cluster networks
19.6.5. Recommended installation-time cluster configurations

19.6.5.1. Workload partitioning
19.6.5.2. Reduced platform management footprint
19.6.5.3. SCTP
19.6.5.4. Accelerated container startup
19.6.5.5. Automatic kernel crash dumps with kdump

19.6.6. Recommended post-installation cluster configurations
19.6.6.1. Operator namespaces and Operator groups
19.6.6.2. Operator subscriptions
19.6.6.3. Cluster logging and log forwarding
19.6.6.4. Performance profile
19.6.6.5. PTP
19.6.6.6. Extended Tuned profile
19.6.6.7. SR-IOV
19.6.6.8. Console Operator
19.6.6.9. Grafana and Alertmanager
19.6.6.10. Network diagnostics

19.7. VALIDATING SINGLE-NODE OPENSHIFT CLUSTER TUNING FOR VDU APPLICATION WORKLOADS

19.7.1. Recommended firmware configuration for vDU cluster hosts
19.7.2. Recommended cluster configurations to run vDU applications

19.7.2.1. Recommended cluster MachineConfig CRs
19.7.2.2. Recommended cluster Operators
19.7.2.3. Recommended cluster kernel configuration
19.7.2.4. Checking the realtime kernel version

19.7.3. Checking that the recommended cluster configurations are applied
19.8. ADVANCED MANAGED CLUSTER CONFIGURATION WITH SITECONFIG RESOURCES

19.8.1. Customizing extra installation manifests in the ZTP GitOps pipeline

243
244
244
245
245
248
249
250
252
253
255
256
257
257
261
262
264
264
265

267
267
268
268
269
270
270
271

273
274
278
278
279
280
281
282
284
286
286
288
288
289

289
289
291
291
292
292
293
294
303
303

OpenShift Container Platform 4.10 Scalability and performance

6

19.8.2. Filtering custom resources using SiteConfig filters
19.9. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

19.9.1. Deploying additional changes to clusters
19.9.2. Using PolicyGenTemplate CRs to override source CRs content
19.9.3. Adding new content to the GitOps ZTP pipeline
19.9.4. Signalling ZTP cluster deployment completion with validator inform policies
19.9.5. Configuring PTP fast events using PolicyGenTemplate CRs
19.9.6. Configuring bare-metal event monitoring using PolicyGenTemplate CRs

19.10. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER
19.10.1. Updating clusters in a disconnected environment

19.10.1.1. Setting up the environment
19.10.1.2. Performing a platform update
19.10.1.3. Performing an Operator update
19.10.1.4. Performing a platform and an Operator update together
19.10.1.5. Removing Performance Addon Operator subscriptions from deployed clusters

19.10.2. About the auto-created ClusterGroupUpgrade CR for ZTP
19.11. UPDATING GITOPS ZTP

19.11.1. Overview of the GitOps ZTP update process
19.11.2. Preparing for the upgrade
19.11.3. Labeling the existing clusters
19.11.4. Stopping the existing GitOps ZTP applications
19.11.5. Required changes to the Git repository
19.11.6. Installing the new GitOps ZTP applications
19.11.7. Rolling out the GitOps ZTP configuration changes

304
306
306
306
309
310
311

313
315
315
315
317
321

326
328
330
331
331
331
332
333
333
335
335

Table of Contents

7

OpenShift Container Platform 4.10 Scalability and performance

8

CHAPTER 1. RECOMMENDED HOST PRACTICES
This topic provides recommended host practices for OpenShift Container Platform.

IMPORTANT

These guidelines apply to OpenShift Container Platform with software-defined
networking (SDN), not Open Virtual Network (OVN).

1.1. RECOMMENDED NODE HOST PRACTICES

The OpenShift Container Platform node configuration file contains important options. For example, two
parameters control the maximum number of pods that can be scheduled to a node: podsPerCore and
maxPods.

When both options are in use, the lower of the two values limits the number of pods on a node.
Exceeding these values can result in:

Increased CPU utilization.

Slow pod scheduling.

Potential out-of-memory scenarios, depending on the amount of memory in the node.

Exhausting the pool of IP addresses.

Resource overcommitting, leading to poor user application performance.

IMPORTANT

In Kubernetes, a pod that is holding a single container actually uses two containers. The
second container is used to set up networking prior to the actual container starting.
Therefore, a system running 10 pods will actually have 20 containers running.

NOTE

Disk IOPS throttling from the cloud provider might have an impact on CRI-O and kubelet.
They might get overloaded when there are large number of I/O intensive pods running on
the nodes. It is recommended that you monitor the disk I/O on the nodes and use
volumes with sufficient throughput for the workload.

podsPerCore sets the number of pods the node can run based on the number of processor cores on
the node. For example, if podsPerCore is set to 10 on a node with 4 processor cores, the maximum
number of pods allowed on the node will be 40.

Setting podsPerCore to 0 disables this limit. The default is 0. podsPerCore cannot exceed maxPods.

maxPods sets the number of pods the node can run to a fixed value, regardless of the properties of the
node.

kubeletConfig:
 podsPerCore: 10

CHAPTER 1. RECOMMENDED HOST PRACTICES

9

1.2. CREATING A KUBELETCONFIG CRD TO EDIT KUBELET
PARAMETERS

The kubelet configuration is currently serialized as an Ignition configuration, so it can be directly edited.
However, there is also a new kubelet-config-controller added to the Machine Config Controller (MCC).
This lets you use a KubeletConfig custom resource (CR) to edit the kubelet parameters.

NOTE

As the fields in the kubeletConfig object are passed directly to the kubelet from
upstream Kubernetes, the kubelet validates those values directly. Invalid values in the
kubeletConfig object might cause cluster nodes to become unavailable. For valid values,
see the Kubernetes documentation.

Consider the following guidance:

Create one KubeletConfig CR for each machine config pool with all the config changes you
want for that pool. If you are applying the same content to all of the pools, you need only one
KubeletConfig CR for all of the pools.

Edit an existing KubeletConfig CR to modify existing settings or add new settings, instead of
creating a CR for each change. It is recommended that you create a CR only to modify a
different machine config pool, or for changes that are intended to be temporary, so that you
can revert the changes.

As needed, create multiple KubeletConfig CRs with a limit of 10 per cluster. For the first
KubeletConfig CR, the Machine Config Operator (MCO) creates a machine config appended
with kubelet. With each subsequent CR, the controller creates another kubelet machine config
with a numeric suffix. For example, if you have a kubelet machine config with a -2 suffix, the next
kubelet machine config is appended with -3.

If you want to delete the machine configs, delete them in reverse order to avoid exceeding the limit. For
example, you delete the kubelet-3 machine config before deleting the kubelet-2 machine config.

NOTE

If you have a machine config with a kubelet-9 suffix, and you create another
KubeletConfig CR, a new machine config is not created, even if there are fewer than 10
kubelet machine configs.

Example KubeletConfig CR

Example showing a KubeletConfig machine config

 kubeletConfig:
 maxPods: 250

$ oc get kubeletconfig

NAME AGE
set-max-pods 15m

OpenShift Container Platform 4.10 Scalability and performance

10

https://kubernetes.io/docs/reference/config-api/kubelet-config.v1beta1/

1

The following procedure is an example to show how to configure the maximum number of pods per
node on the worker nodes.

Prerequisites

1. Obtain the label associated with the static MachineConfigPool CR for the type of node you
want to configure. Perform one of the following steps:

a. View the machine config pool:

For example:

Example output

If a label has been added it appears under labels.

b. If the label is not present, add a key/value pair:

Procedure

1. View the available machine configuration objects that you can select:

By default, the two kubelet-related configs are 01-master-kubelet and 01-worker-kubelet.

2. Check the current value for the maximum pods per node:

For example:

$ oc get mc | grep kubelet

...
99-worker-generated-kubelet-1 b5c5119de007945b6fe6fb215db3b8e2ceb12511 3.2.0
26m
...

$ oc describe machineconfigpool <name>

$ oc describe machineconfigpool worker

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 creationTimestamp: 2019-02-08T14:52:39Z
 generation: 1
 labels:
 custom-kubelet: set-max-pods 1

$ oc label machineconfigpool worker custom-kubelet=set-max-pods

$ oc get machineconfig

$ oc describe node <node_name>

CHAPTER 1. RECOMMENDED HOST PRACTICES

11

1

2

Look for value: pods: <value> in the Allocatable stanza:

Example output

3. Set the maximum pods per node on the worker nodes by creating a custom resource file that
contains the kubelet configuration:

Enter the label from the machine config pool.

Add the kubelet configuration. In this example, use maxPods to set the maximum pods per
node.

NOTE

The rate at which the kubelet talks to the API server depends on queries per
second (QPS) and burst values. The default values, 50 for kubeAPIQPS and 100
for kubeAPIBurst, are sufficient if there are limited pods running on each node.
It is recommended to update the kubelet QPS and burst rates if there are enough
CPU and memory resources on the node.

$ oc describe node ci-ln-5grqprb-f76d1-ncnqq-worker-a-mdv94

Allocatable:
 attachable-volumes-aws-ebs: 25
 cpu: 3500m
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 15341844Ki
 pods: 250

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: set-max-pods
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: set-max-pods 1
 kubeletConfig:
 maxPods: 500 2

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: set-max-pods
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: set-max-pods
 kubeletConfig:
 maxPods: <pod_count>
 kubeAPIBurst: <burst_rate>
 kubeAPIQPS: <QPS>

OpenShift Container Platform 4.10 Scalability and performance

12

1

a. Update the machine config pool for workers with the label:

b. Create the KubeletConfig object:

c. Verify that the KubeletConfig object is created:

Example output

Depending on the number of worker nodes in the cluster, wait for the worker nodes to be
rebooted one by one. For a cluster with 3 worker nodes, this could take about 10 to 15
minutes.

4. Verify that the changes are applied to the node:

a. Check on a worker node that the maxPods value changed:

b. Locate the Allocatable stanza:

In this example, the pods parameter should report the value you set in the
KubeletConfig object.

5. Verify the change in the KubeletConfig object:

This should show a status of True and type:Success, as shown in the following example:

$ oc label machineconfigpool worker custom-kubelet=large-pods

$ oc create -f change-maxPods-cr.yaml

$ oc get kubeletconfig

NAME AGE
set-max-pods 15m

$ oc describe node <node_name>

 ...
Allocatable:
 attachable-volumes-gce-pd: 127
 cpu: 3500m
 ephemeral-storage: 123201474766
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 14225400Ki
 pods: 500 1
 ...

$ oc get kubeletconfigs set-max-pods -o yaml

spec:
 kubeletConfig:
 maxPods: 500

CHAPTER 1. RECOMMENDED HOST PRACTICES

13

1.3. MODIFYING THE NUMBER OF UNAVAILABLE WORKER NODES

By default, only one machine is allowed to be unavailable when applying the kubelet-related
configuration to the available worker nodes. For a large cluster, it can take a long time for the
configuration change to be reflected. At any time, you can adjust the number of machines that are
updating to speed up the process.

Procedure

1. Edit the worker machine config pool:

2. Set maxUnavailable to the value that you want:

IMPORTANT

When setting the value, consider the number of worker nodes that can be
unavailable without affecting the applications running on the cluster.

1.4. CONTROL PLANE NODE SIZING

The control plane node resource requirements depend on the number and type of nodes and objects in
the cluster. The following control plane node size recommendations are based on the results of a control
plane density focused testing, or Cluster-density. This test creates the following objects across a given
number of namespaces:

1 image stream

1 build

5 deployments, with 2 pod replicas in a sleep state, mounting 4 secrets, 4 config maps, and 1
downward API volume each

5 services, each one pointing to the TCP/8080 and TCP/8443 ports of one of the previous
deployments

1 route pointing to the first of the previous services

10 secrets containing 2048 random string characters

 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: set-max-pods
status:
 conditions:
 - lastTransitionTime: "2021-06-30T17:04:07Z"
 message: Success
 status: "True"
 type: Success

$ oc edit machineconfigpool worker

spec:
 maxUnavailable: <node_count>

OpenShift Container Platform 4.10 Scalability and performance

14

10 config maps containing 2048 random string characters

Number of worker
nodes

Cluster-density
(namespaces)

CPU cores Memory (GB)

24 500 4 16

120 1000 8 32

252 4000 16 64

501 4000 16 96

On a large and dense cluster with three masters or control plane nodes, the CPU and memory usage will
spike up when one of the nodes is stopped, rebooted or fails. The failures can be due to unexpected
issues with power, network or underlying infrastructure in addition to intentional cases where the cluster
is restarted after shutting it down to save costs. The remaining two control plane nodes must handle the
load in order to be highly available which leads to increase in the resource usage. This is also expected
during upgrades because the masters are cordoned, drained, and rebooted serially to apply the
operating system updates, as well as the control plane Operators update. To avoid cascading failures,
keep the overall CPU and memory resource usage on the control plane nodes to at most 60% of all
available capacity to handle the resource usage spikes. Increase the CPU and memory on the control
plane nodes accordingly to avoid potential downtime due to lack of resources.

IMPORTANT

The node sizing varies depending on the number of nodes and object counts in the
cluster. It also depends on whether the objects are actively being created on the cluster.
During object creation, the control plane is more active in terms of resource usage
compared to when the objects are in the running phase.

Operator Lifecycle Manager (OLM) runs on the control plane nodes and it’s memory footprint depends
on the number of namespaces and user installed operators that OLM needs to manage on the cluster.
Control plane nodes need to be sized accordingly to avoid OOM kills. Following data points are based on
the results from cluster maximums testing.

Number of namespaces OLM memory at idle state (GB) OLM memory with 5 user
operators installed (GB)

500 0.823 1.7

1000 1.2 2.5

1500 1.7 3.2

2000 2 4.4

3000 2.7 5.6

CHAPTER 1. RECOMMENDED HOST PRACTICES

15

4000 3.8 7.6

5000 4.2 9.02

6000 5.8 11.3

7000 6.6 12.9

8000 6.9 14.8

9000 8 17.7

10,000 9.9 21.6

Number of namespaces OLM memory at idle state (GB) OLM memory with 5 user
operators installed (GB)

IMPORTANT

You can modify the control plane node size in a running OpenShift Container Platform
4.10 cluster for the following configurations only:

Clusters installed with a user-provisioned installation method.

AWS clusters installed with an installer-provisioned infrastructure installation
method.

For all other configurations, you must estimate your total node count and use the
suggested control plane node size during installation.

IMPORTANT

The recommendations are based on the data points captured on OpenShift Container
Platform clusters with OpenShift SDN as the network plugin.

NOTE

In OpenShift Container Platform 4.10, half of a CPU core (500 millicore) is now reserved
by the system by default compared to OpenShift Container Platform 3.11 and previous
versions. The sizes are determined taking that into consideration.

1.4.1. Selecting a larger Amazon Web Services instance type for control plane
machines

If the control plane machines in an Amazon Web Services (AWS) cluster require more resources, you can
select a larger AWS instance type for the control plane machines to use.

1.4.1.1. Changing the Amazon Web Services instance type by using the AWS console

You can change the Amazon Web Services (AWS) instance type that your control plane machines use by
updating the instance type in the AWS console.

OpenShift Container Platform 4.10 Scalability and performance

16

Prerequisites

You have access to the AWS console with the permissions required to modify the EC2 Instance
for your cluster.

You have access to the OpenShift Container Platform cluster as a user with the cluster-admin
role.

Procedure

1. Open the AWS console and fetch the instances for the control plane machines.

2. Choose one control plane machine instance.

a. For the selected control plane machine, back up the etcd data by creating an etcd snapshot.
For more information, see "Backing up etcd".

b. In the AWS console, stop the control plane machine instance.

c. Select the stopped instance, and click Actions → Instance Settings → Change instance
type.

d. Change the instance to a larger type, ensuring that the type is the same base as the
previous selection, and apply changes. For example, you can change m6i.xlarge to
m6i.2xlarge or m6i.4xlarge.

e. Start the instance.

f. If your OpenShift Container Platform cluster has a corresponding Machine object for the
instance, update the instance type of the object to match the instance type set in the AWS
console.

3. Repeat this process for each control plane machine.

Additional resources

Backing up etcd

1.5. RECOMMENDED ETCD PRACTICES

Because etcd writes data to disk and persists proposals on disk, its performance depends on disk
performance. Although etcd is not particularly I/O intensive, it requires a low latency block device for
optimal performance and stability. Because etcd’s consensus protocol depends on persistently storing
metadata to a log (WAL), etcd is sensitive to disk-write latency. Slow disks and disk activity from other
processes can cause long fsync latencies.

Those latencies can cause etcd to miss heartbeats, not commit new proposals to the disk on time, and
ultimately experience request timeouts and temporary leader loss. High write latencies also lead to an
OpenShift API slowness, which affects cluster performance. Because of these reasons, avoid colocating
other workloads on the control-plane nodes that are I/O sensitive or intensive and share the same
underlying I/O infrastructure.

In terms of latency, run etcd on top of a block device that can write at least 50 IOPS of 8000 bytes long
sequentially. That is, with a latency of 20ms, keep in mind that uses fdatasync to synchronize each write
in the WAL. For heavy loaded clusters, sequential 500 IOPS of 8000 bytes (2 ms) are recommended.
To measure those numbers, you can use a benchmarking tool, such as fio.

CHAPTER 1. RECOMMENDED HOST PRACTICES

17

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/backup_and_restore/#backing-up-etcd

To achieve such performance, run etcd on machines that are backed by SSD or NVMe disks with low
latency and high throughput. Consider single-level cell (SLC) solid-state drives (SSDs), which provide 1
bit per memory cell, are durable and reliable, and are ideal for write-intensive workloads.

NOTE

The load on etcd arises from static factors, such as the number of nodes and pods, and
dynamic factors, including changes in endpoints due to pod autoscaling, pod restarts, job
executions, and other workload-related events. To accurately size your etcd setup, you
must analyze the specific requirements of your workload. Consider the number of nodes,
pods, and other relevant factors that impact the load on etcd.

The following hard disk features provide optimal etcd performance:

Low latency to support fast read operation.

High-bandwidth writes for faster compactions and defragmentation.

High-bandwidth reads for faster recovery from failures.

Solid state drives as a minimum selection, however NVMe drives are preferred.

Server-grade hardware from various manufacturers for increased reliability.

RAID 0 technology for increased performance.

Dedicated etcd drives. Do not place log files or other heavy workloads on etcd drives.

NOTE

Avoid NAS or SAN setups and spinning drives. Ceph Rados Block Device (RBD) and other
types of network-attached storage can result in unpredictable network latency. To
provide fast storage to etcd nodes at scale, use PCI passthrough to pass NVM devices
directly to the nodes.

Always benchmark by using utilities such as fio. You can use such utilities to continuously monitor the
cluster performance as it increases.

NOTE

Avoid using the Network File System (NFS) protocol or other network based file systems.

Some key metrics to monitor on a deployed OpenShift Container Platform cluster are p99 of etcd disk
write ahead log duration and the number of etcd leader changes. Use Prometheus to track these
metrics.

To validate the hardware for etcd before or after you create the OpenShift Container Platform cluster,
you can use fio.

Prerequisites

Container runtimes such as Podman or Docker are installed on the machine that you’re testing.

Data is written to the /var/lib/etcd path.

OpenShift Container Platform 4.10 Scalability and performance

18

Procedure

Run fio and analyze the results:

If you use Podman, run this command:

If you use Docker, run this command:

The output reports whether the disk is fast enough to host etcd by comparing the 99th percentile of the
fsync metric captured from the run to see if it is less than 20 ms. A few of the most important etcd
metrics that might affected by I/O performance are as follow:

etcd_disk_wal_fsync_duration_seconds_bucket metric reports the etcd’s WAL fsync
duration

etcd_disk_backend_commit_duration_seconds_bucket metric reports the etcd backend
commit latency duration

etcd_server_leader_changes_seen_total metric reports the leader changes

Because etcd replicates the requests among all the members, its performance strongly depends on
network input/output (I/O) latency. High network latencies result in etcd heartbeats taking longer than
the election timeout, which results in leader elections that are disruptive to the cluster. A key metric to
monitor on a deployed OpenShift Container Platform cluster is the 99th percentile of etcd network peer
latency on each etcd cluster member. Use Prometheus to track the metric.

The histogram_quantile(0.99, rate(etcd_network_peer_round_trip_time_seconds_bucket[2m]))
metric reports the round trip time for etcd to finish replicating the client requests between the members.
Ensure that it is less than 50 ms.

Additional resources

How to use fio to check etcd disk performance in OpenShift Container Platform

1.6. MOVING ETCD TO A DIFFERENT DISK

You can move etcd from a shared disk to a separate disk to prevent or resolve performance issues.

Prerequisites

The MachineConfigPool must match
metadata.labels[machineconfiguration.openshift.io/role]. This applies to a controller, worker,
or a custom pool.

The node’s auxiliary storage device, such as /dev/sdb, must match the sdb. Change this
reference in all places in the file.

NOTE

This procedure does not move parts of the root file system, such as /var/, to another disk
or partition on an installed node.

$ sudo podman run --volume /var/lib/etcd:/var/lib/etcd:Z quay.io/openshift-scale/etcd-perf

$ sudo docker run --volume /var/lib/etcd:/var/lib/etcd:Z quay.io/openshift-scale/etcd-perf

CHAPTER 1. RECOMMENDED HOST PRACTICES

19

https://access.redhat.com/solutions/4885641

The Machine Config Operator (MCO) is responsible for mounting a secondary disk for an OpenShift
Container Platform 4.10 container storage.

Use the following steps to move etcd to a different device:

Procedure

1. Create a machineconfig YAML file named etcd-mc.yml and add the following information:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master
 name: 98-var-lib-etcd
spec:
 config:
 ignition:
 version: 3.2.0
 systemd:
 units:
 - contents: |
 [Unit]
 Description=Make File System on /dev/sdb
 DefaultDependencies=no
 BindsTo=dev-sdb.device
 After=dev-sdb.device var.mount
 Before=systemd-fsck@dev-sdb.service

 [Service]
 Type=oneshot
 RemainAfterExit=yes
 ExecStart=/usr/lib/systemd/systemd-makefs xfs /dev/sdb
 TimeoutSec=0

 [Install]
 WantedBy=var-lib-containers.mount
 enabled: true
 name: systemd-mkfs@dev-sdb.service
 - contents: |
 [Unit]
 Description=Mount /dev/sdb to /var/lib/etcd
 Before=local-fs.target
 Requires=systemd-mkfs@dev-sdb.service
 After=systemd-mkfs@dev-sdb.service var.mount

 [Mount]
 What=/dev/sdb
 Where=/var/lib/etcd
 Type=xfs
 Options=defaults,prjquota

 [Install]
 WantedBy=local-fs.target
 enabled: true
 name: var-lib-etcd.mount

OpenShift Container Platform 4.10 Scalability and performance

20

2. Create the machine configuration by entering the following commands:

The nodes are updated and rebooted. After the reboot completes, the following events occur:

 - contents: |
 [Unit]
 Description=Sync etcd data if new mount is empty
 DefaultDependencies=no
 After=var-lib-etcd.mount var.mount
 Before=crio.service

 [Service]
 Type=oneshot
 RemainAfterExit=yes
 ExecCondition=/usr/bin/test ! -d /var/lib/etcd/member
 ExecStart=/usr/sbin/setenforce 0
 ExecStart=/bin/rsync -ar /sysroot/ostree/deploy/rhcos/var/lib/etcd/ /var/lib/etcd/
 ExecStart=/usr/sbin/setenforce 1
 TimeoutSec=0

 [Install]
 WantedBy=multi-user.target graphical.target
 enabled: true
 name: sync-var-lib-etcd-to-etcd.service
 - contents: |
 [Unit]
 Description=Restore recursive SELinux security contexts
 DefaultDependencies=no
 After=var-lib-etcd.mount
 Before=crio.service

 [Service]
 Type=oneshot
 RemainAfterExit=yes
 ExecStart=/sbin/restorecon -R /var/lib/etcd/
 TimeoutSec=0

 [Install]
 WantedBy=multi-user.target graphical.target
 enabled: true
 name: restorecon-var-lib-etcd.service

$ oc login -u ${ADMIN} -p ${ADMINPASSWORD} ${API}
... output omitted ...

$ oc create -f etcd-mc.yml
machineconfig.machineconfiguration.openshift.io/98-var-lib-etcd created

$ oc login -u ${ADMIN} -p ${ADMINPASSWORD} ${API}
 [... output omitted ...]

$ oc create -f etcd-mc.yml machineconfig.machineconfiguration.openshift.io/98-var-lib-etcd
created

CHAPTER 1. RECOMMENDED HOST PRACTICES

21

An XFS file system is created on the specified disk.

The disk mounts to /var/lib/etc.

The content from /sysroot/ostree/deploy/rhcos/var/lib/etcd syncs to /var/lib/etcd.

A restore of SELinux labels is forced for /var/lib/etcd.

The old content is not removed.

3. After the nodes are on a separate disk, update the machine configuration file, etcd-mc.yml with
the following information:

4. Apply the modified version that removes the logic for creating and syncing the device by
entering the following command:

The previous step prevents the nodes from rebooting.

Additional resources

Red Hat Enterprise Linux CoreOS (RHCOS)

1.7. DEFRAGMENTING ETCD DATA

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master
 name: 98-var-lib-etcd
spec:
 config:
 ignition:
 version: 3.2.0
 systemd:
 units:
 - contents: |
 [Unit]
 Description=Mount /dev/sdb to /var/lib/etcd
 Before=local-fs.target
 Requires=systemd-mkfs@dev-sdb.service
 After=systemd-mkfs@dev-sdb.service var.mount

 [Mount]
 What=/dev/sdb
 Where=/var/lib/etcd
 Type=xfs
 Options=defaults,prjquota

 [Install]
 WantedBy=local-fs.target
 enabled: true
 name: var-lib-etcd.mount

$ oc replace -f etcd-mc.yml

OpenShift Container Platform 4.10 Scalability and performance

22

https://docs.openshift.com/container-platform/4.11/architecture/architecture-rhcos.html

For large and dense clusters, etcd can suffer from poor performance if the keyspace grows too large
and exceeds the space quota. Periodically maintain and defragment etcd to free up space in the data
store. Monitor Prometheus for etcd metrics and defragment it when required; otherwise, etcd can raise
a cluster-wide alarm that puts the cluster into a maintenance mode that accepts only key reads and
deletes.

Monitor these key metrics:

etcd_server_quota_backend_bytes, which is the current quota limit

etcd_mvcc_db_total_size_in_use_in_bytes, which indicates the actual database usage after a
history compaction

etcd_mvcc_db_total_size_in_bytes, which shows the database size, including free space
waiting for defragmentation

Defragment etcd data to reclaim disk space after events that cause disk fragmentation, such as etcd
history compaction.

History compaction is performed automatically every five minutes and leaves gaps in the back-end
database. This fragmented space is available for use by etcd, but is not available to the host file system.
You must defragment etcd to make this space available to the host file system.

Defragmentation occurs automatically, but you can also trigger it manually.

NOTE

Automatic defragmentation is good for most cases, because the etcd operator uses
cluster information to determine the most efficient operation for the user.

1.7.1. Automatic defragmentation

The etcd Operator automatically defragments disks. No manual intervention is needed.

Verify that the defragmentation process is successful by viewing one of these logs:

etcd logs

cluster-etcd-operator pod

operator status error log

WARNING

Automatic defragmentation can cause leader election failure in various OpenShift
core components, such as the Kubernetes controller manager, which triggers a
restart of the failing component. The restart is harmless and either triggers failover
to the next running instance or the component resumes work again after the
restart.

Example log output for successful defragmentation



CHAPTER 1. RECOMMENDED HOST PRACTICES

23

Example log output for unsuccessful defragmentation

1.7.2. Manual defragmentation

A Prometheus alert indicates when you need to use manual defragmentation. The alert is displayed in
two cases:

When etcd uses more than 50% of its available space for more than 10 minutes

When etcd is actively using less than 50% of its total database size for more than 10 minutes

You can also determine whether defragmentation is needed by checking the etcd database size in MB
that will be freed by defragmentation with the PromQL expression:
(etcd_mvcc_db_total_size_in_bytes - etcd_mvcc_db_total_size_in_use_in_bytes)/1024/1024

WARNING

Defragmenting etcd is a blocking action. The etcd member will not respond until
defragmentation is complete. For this reason, wait at least one minute between
defragmentation actions on each of the pods to allow the cluster to recover.

Follow this procedure to defragment etcd data on each etcd member.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Determine which etcd member is the leader, because the leader should be defragmented last.

a. Get the list of etcd pods:

Example output

b. Choose a pod and run the following command to determine which etcd member is the

etcd member has been defragmented: <member_name>, memberID: <member_id>

failed defrag on member: <member_name>, memberID: <member_id>: <error_message>



$ oc -n openshift-etcd get pods -l k8s-app=etcd -o wide

etcd-ip-10-0-159-225.example.redhat.com 3/3 Running 0 175m
10.0.159.225 ip-10-0-159-225.example.redhat.com <none> <none>
etcd-ip-10-0-191-37.example.redhat.com 3/3 Running 0 173m
10.0.191.37 ip-10-0-191-37.example.redhat.com <none> <none>
etcd-ip-10-0-199-170.example.redhat.com 3/3 Running 0 176m
10.0.199.170 ip-10-0-199-170.example.redhat.com <none> <none>

OpenShift Container Platform 4.10 Scalability and performance

24

b. Choose a pod and run the following command to determine which etcd member is the
leader:

Example output

Based on the IS LEADER column of this output, the https://10.0.199.170:2379 endpoint is
the leader. Matching this endpoint with the output of the previous step, the pod name of
the leader is etcd-ip-10-0-199-170.example.redhat.com.

2. Defragment an etcd member.

a. Connect to the running etcd container, passing in the name of a pod that is not the leader:

b. Unset the ETCDCTL_ENDPOINTS environment variable:

c. Defragment the etcd member:

Example output

If a timeout error occurs, increase the value for --command-timeout until the command
succeeds.

d. Verify that the database size was reduced:

$ oc rsh -n openshift-etcd etcd-ip-10-0-159-225.example.redhat.com etcdctl endpoint
status --cluster -w table

Defaulting container name to etcdctl.
Use 'oc describe pod/etcd-ip-10-0-159-225.example.redhat.com -n openshift-etcd' to see
all of the containers in this pod.
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | IS LEARNER |
RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| https://10.0.191.37:2379 | 251cd44483d811c3 | 3.4.9 | 104 MB | false | false |
7 | 91624 | 91624 | |
| https://10.0.159.225:2379 | 264c7c58ecbdabee | 3.4.9 | 104 MB | false | false |
7 | 91624 | 91624 | |
| https://10.0.199.170:2379 | 9ac311f93915cc79 | 3.4.9 | 104 MB | true | false |
7 | 91624 | 91624 | |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+

$ oc rsh -n openshift-etcd etcd-ip-10-0-159-225.example.redhat.com

sh-4.4# unset ETCDCTL_ENDPOINTS

sh-4.4# etcdctl --command-timeout=30s --endpoints=https://localhost:2379 defrag

Finished defragmenting etcd member[https://localhost:2379]

CHAPTER 1. RECOMMENDED HOST PRACTICES

25

Example output

This example shows that the database size for this etcd member is now 41 MB as opposed
to the starting size of 104 MB.

e. Repeat these steps to connect to each of the other etcd members and defragment them.
Always defragment the leader last.
Wait at least one minute between defragmentation actions to allow the etcd pod to recover.
Until the etcd pod recovers, the etcd member will not respond.

3. If any NOSPACE alarms were triggered due to the space quota being exceeded, clear them.

a. Check if there are any NOSPACE alarms:

Example output

b. Clear the alarms:

1.8. OPENSHIFT CONTAINER PLATFORM INFRASTRUCTURE
COMPONENTS

The following infrastructure workloads do not incur OpenShift Container Platform worker subscriptions:

Kubernetes and OpenShift Container Platform control plane services that run on masters

The default router

The integrated container image registry

The HAProxy-based Ingress Controller

sh-4.4# etcdctl endpoint status -w table --cluster

+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | IS LEARNER |
RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| https://10.0.191.37:2379 | 251cd44483d811c3 | 3.4.9 | 104 MB | false | false |
7 | 91624 | 91624 | |
| https://10.0.159.225:2379 | 264c7c58ecbdabee | 3.4.9 | 41 MB | false | false |
7 | 91624 | 91624 | | 1
| https://10.0.199.170:2379 | 9ac311f93915cc79 | 3.4.9 | 104 MB | true | false |
7 | 91624 | 91624 | |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+

sh-4.4# etcdctl alarm list

memberID:12345678912345678912 alarm:NOSPACE

sh-4.4# etcdctl alarm disarm

OpenShift Container Platform 4.10 Scalability and performance

26

The cluster metrics collection, or monitoring service, including components for monitoring user-
defined projects

Cluster aggregated logging

Service brokers

Red Hat Quay

Red Hat OpenShift Data Foundation

Red Hat Advanced Cluster Manager

Red Hat Advanced Cluster Security for Kubernetes

Red Hat OpenShift GitOps

Red Hat OpenShift Pipelines

Any node that runs any other container, pod, or component is a worker node that your subscription must
cover.

For information on infrastructure nodes and which components can run on infrastructure nodes, see the
"Red Hat OpenShift control plane and infrastructure nodes" section in the OpenShift sizing and
subscription guide for enterprise Kubernetes document.

1.9. MOVING THE MONITORING SOLUTION

The monitoring stack includes multiple components, including Prometheus, Grafana, and Alertmanager.
The Cluster Monitoring Operator manages this stack. To redeploy the monitoring stack to infrastructure
nodes, you can create and apply a custom config map.

Procedure

1. Edit the cluster-monitoring-config config map and change the nodeSelector to use the infra
label:

$ oc edit configmap cluster-monitoring-config -n openshift-monitoring

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |+
 alertmanagerMain:
 nodeSelector: 1
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 - key: node-role.kubernetes.io/infra
 value: reserved

CHAPTER 1. RECOMMENDED HOST PRACTICES

27

https://www.redhat.com/en/resources/openshift-subscription-sizing-guide

 effect: NoExecute
 prometheusK8s:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoExecute
 prometheusOperator:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoExecute
 grafana:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoExecute
 k8sPrometheusAdapter:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoExecute
 kubeStateMetrics:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoExecute
 telemeterClient:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra

OpenShift Container Platform 4.10 Scalability and performance

28

1 1 Add a nodeSelector parameter with the appropriate value to the component you want to
move. You can use a nodeSelector in the format shown or use <key>: <value> pairs,
based on the value specified for the node. If you added a taint to the infrasructure node,
also add a matching toleration.

2. Watch the monitoring pods move to the new machines:

3. If a component has not moved to the infra node, delete the pod with this component:

The component from the deleted pod is re-created on the infra node.

1.10. MOVING THE DEFAULT REGISTRY

You configure the registry Operator to deploy its pods to different nodes.

Prerequisites

Configure additional machine sets in your OpenShift Container Platform cluster.

Procedure

1. View the config/instance object:

 value: reserved
 effect: NoSchedule
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoExecute
 openshiftStateMetrics:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoExecute
 thanosQuerier:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoExecute

$ watch 'oc get pod -n openshift-monitoring -o wide'

$ oc delete pod -n openshift-monitoring <pod>

CHAPTER 1. RECOMMENDED HOST PRACTICES

29

Example output

2. Edit the config/instance object:

$ oc get configs.imageregistry.operator.openshift.io/cluster -o yaml

apiVersion: imageregistry.operator.openshift.io/v1
kind: Config
metadata:
 creationTimestamp: 2019-02-05T13:52:05Z
 finalizers:
 - imageregistry.operator.openshift.io/finalizer
 generation: 1
 name: cluster
 resourceVersion: "56174"
 selfLink: /apis/imageregistry.operator.openshift.io/v1/configs/cluster
 uid: 36fd3724-294d-11e9-a524-12ffeee2931b
spec:
 httpSecret: d9a012ccd117b1e6616ceccb2c3bb66a5fed1b5e481623
 logging: 2
 managementState: Managed
 proxy: {}
 replicas: 1
 requests:
 read: {}
 write: {}
 storage:
 s3:
 bucket: image-registry-us-east-1-c92e88cad85b48ec8b312344dff03c82-392c
 region: us-east-1
status:
...

$ oc edit configs.imageregistry.operator.openshift.io/cluster

spec:
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - podAffinityTerm:
 namespaces:
 - openshift-image-registry
 topologyKey: kubernetes.io/hostname
 weight: 100
 logLevel: Normal
 managementState: Managed
 nodeSelector: 1
 node-role.kubernetes.io/infra: ""
 tolerations:
 - effect: NoSchedule
 key: node-role.kubernetes.io/infra
 value: reserved

OpenShift Container Platform 4.10 Scalability and performance

30

1 Add a nodeSelector parameter with the appropriate value to the component you want to
move. You can use a nodeSelector in the format shown or use <key>: <value> pairs,
based on the value specified for the node. If you added a taint to the infrasructure node,
also add a matching toleration.

3. Verify the registry pod has been moved to the infrastructure node.

a. Run the following command to identify the node where the registry pod is located:

b. Confirm the node has the label you specified:

Review the command output and confirm that node-role.kubernetes.io/infra is in the
LABELS list.

1.11. MOVING THE ROUTER

You can deploy the router pod to a different machine set. By default, the pod is deployed to a worker
node.

Prerequisites

Configure additional machine sets in your OpenShift Container Platform cluster.

Procedure

1. View the IngressController custom resource for the router Operator:

The command output resembles the following text:

 - effect: NoExecute
 key: node-role.kubernetes.io/infra
 value: reserved

$ oc get pods -o wide -n openshift-image-registry

$ oc describe node <node_name>

$ oc get ingresscontroller default -n openshift-ingress-operator -o yaml

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 creationTimestamp: 2019-04-18T12:35:39Z
 finalizers:
 - ingresscontroller.operator.openshift.io/finalizer-ingresscontroller
 generation: 1
 name: default
 namespace: openshift-ingress-operator
 resourceVersion: "11341"
 selfLink: /apis/operator.openshift.io/v1/namespaces/openshift-ingress-
operator/ingresscontrollers/default
 uid: 79509e05-61d6-11e9-bc55-02ce4781844a
spec: {}

CHAPTER 1. RECOMMENDED HOST PRACTICES

31

1

2. Edit the ingresscontroller resource and change the nodeSelector to use the infra label:

Add a nodeSelector parameter with the appropriate value to the component you want to
move. You can use a nodeSelector in the format shown or use <key>: <value> pairs,
based on the value specified for the node. If you added a taint to the infrastructure node,
also add a matching toleration.

3. Confirm that the router pod is running on the infra node.

a. View the list of router pods and note the node name of the running pod:

Example output

In this example, the running pod is on the ip-10-0-217-226.ec2.internal node.

b. View the node status of the running pod:

status:
 availableReplicas: 2
 conditions:
 - lastTransitionTime: 2019-04-18T12:36:15Z
 status: "True"
 type: Available
 domain: apps.<cluster>.example.com
 endpointPublishingStrategy:
 type: LoadBalancerService
 selector: ingresscontroller.operator.openshift.io/deployment-ingresscontroller=default

$ oc edit ingresscontroller default -n openshift-ingress-operator

 spec:
 nodePlacement:
 nodeSelector: 1
 matchLabels:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - effect: NoSchedule
 key: node-role.kubernetes.io/infra
 value: reserved
 - effect: NoExecute
 key: node-role.kubernetes.io/infra
 value: reserved

$ oc get pod -n openshift-ingress -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
router-default-86798b4b5d-bdlvd 1/1 Running 0 28s 10.130.2.4 ip-10-
0-217-226.ec2.internal <none> <none>
router-default-955d875f4-255g8 0/1 Terminating 0 19h 10.129.2.4 ip-10-
0-148-172.ec2.internal <none> <none>

$ oc get node <node_name> 1

OpenShift Container Platform 4.10 Scalability and performance

32

1 Specify the <node_name> that you obtained from the pod list.

Example output

Because the role list includes infra, the pod is running on the correct node.

1.12. INFRASTRUCTURE NODE SIZING

Infrastructure nodes are nodes that are labeled to run pieces of the OpenShift Container Platform
environment. The infrastructure node resource requirements depend on the cluster age, nodes, and
objects in the cluster, as these factors can lead to an increase in the number of metrics or time series in
Prometheus. The following infrastructure node size recommendations are based on the results of
cluster maximums and control plane density focused testing.

Number of worker
nodes

Cluster density, or
number of namespaces

CPU cores Memory (GB)

27 500 4 24

120 1000 8 48

252 4000 16 128

501 4000 32 128

In general, three infrastructure nodes are recommended per cluster.

IMPORTANT

These sizing recommendations should be used as a guideline. Prometheus is a highly
memory intensive application; the resource usage depends on various factors including
the number of nodes, objects, the Prometheus metrics scraping interval, metrics or time
series, and the age of the cluster. In addition, the router resource usage can also be
affected by the number of routes and the amount/type of inbound requests.

These recommendations apply only to infrastructure nodes hosting Monitoring, Ingress
and Registry infrastructure components installed during cluster creation.

NOTE

In OpenShift Container Platform 4.10, half of a CPU core (500 millicore) is now reserved
by the system by default compared to OpenShift Container Platform 3.11 and previous
versions. This influences the stated sizing recommendations.

1.13. ADDITIONAL RESOURCES

OpenShift Container Platform cluster maximums

NAME STATUS ROLES AGE VERSION
ip-10-0-217-226.ec2.internal Ready infra,worker 17h v1.23.0

CHAPTER 1. RECOMMENDED HOST PRACTICES

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#planning-your-environment-according-to-object-maximums

Creating infrastructure machine sets

OpenShift Container Platform 4.10 Scalability and performance

34

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/machine_management/#creating-infrastructure-machinesets

CHAPTER 2. RECOMMENDED HOST PRACTICES FOR IBM Z &
LINUXONE ENVIRONMENTS

This topic provides recommended host practices for OpenShift Container Platform on IBM Z and
LinuxONE.

NOTE

The s390x architecture is unique in many aspects. Therefore, some recommendations
made here might not apply to other platforms.

NOTE

Unless stated otherwise, these practices apply to both z/VM and Red Hat Enterprise
Linux (RHEL) KVM installations on IBM Z and LinuxONE.

2.1. MANAGING CPU OVERCOMMITMENT

In a highly virtualized IBM Z environment, you must carefully plan the infrastructure setup and sizing. One
of the most important features of virtualization is the capability to do resource overcommitment,
allocating more resources to the virtual machines than actually available at the hypervisor level. This is
very workload dependent and there is no golden rule that can be applied to all setups.

Depending on your setup, consider these best practices regarding CPU overcommitment:

At LPAR level (PR/SM hypervisor), avoid assigning all available physical cores (IFLs) to each
LPAR. For example, with four physical IFLs available, you should not define three LPARs with
four logical IFLs each.

Check and understand LPAR shares and weights.

An excessive number of virtual CPUs can adversely affect performance. Do not define more
virtual processors to a guest than logical processors are defined to the LPAR.

Configure the number of virtual processors per guest for peak workload, not more.

Start small and monitor the workload. Increase the vCPU number incrementally if necessary.

Not all workloads are suitable for high overcommitment ratios. If the workload is CPU intensive,
you will probably not be able to achieve high ratios without performance problems. Workloads
that are more I/O intensive can keep consistent performance even with high overcommitment
ratios.

Additional resources

z/VM Common Performance Problems and Solutions

z/VM overcommitment considerations

LPAR CPU management

2.2. DISABLE TRANSPARENT HUGE PAGES

Transparent Huge Pages (THP) attempt to automate most aspects of creating, managing, and using

CHAPTER 2. RECOMMENDED HOST PRACTICES FOR IBM Z & LINUXONE ENVIRONMENTS

35

https://www.vm.ibm.com/perf/tips/prgcom.html
https://www.ibm.com/docs/en/linux-on-systems?topic=overcommitment-considerations
https://www.ibm.com/docs/en/zos/2.2.0?topic=director-lpar-cpu-management

huge pages. Since THP automatically manages the huge pages, this is not always handled optimally for
all types of workloads. THP can lead to performance regressions, since many applications handle huge
pages on their own. Therefore, consider disabling THP.

2.3. BOOST NETWORKING PERFORMANCE WITH RECEIVE FLOW
STEERING

Receive Flow Steering (RFS) extends Receive Packet Steering (RPS) by further reducing network
latency. RFS is technically based on RPS, and improves the efficiency of packet processing by increasing
the CPU cache hit rate. RFS achieves this, and in addition considers queue length, by determining the
most convenient CPU for computation so that cache hits are more likely to occur within the CPU. Thus,
the CPU cache is invalidated less and requires fewer cycles to rebuild the cache. This can help reduce
packet processing run time.

2.3.1. Use the Machine Config Operator (MCO) to activate RFS

Procedure

1. Copy the following MCO sample profile into a YAML file. For example, enable-rfs.yaml:

2. Create the MCO profile:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 50-enable-rfs
spec:
 config:
 ignition:
 version: 2.2.0
 storage:
 files:
 - contents:
 source: data:text/plain;charset=US-
ASCII,%23%20turn%20on%20Receive%20Flow%20Steering%20%28RFS%29%20for%20all
%20network%20interfaces%0ASUBSYSTEM%3D%3D%22net%22%2C%20ACTION%3D%
3D%22add%22%2C%20RUN%7Bprogram%7D%2B%3D%22/bin/bash%20-
c%20%27for%20x%20in%20/sys/%24DEVPATH/queues/rx-
%2A%3B%20do%20echo%208192%20%3E%20%24x/rps_flow_cnt%3B%20%20done%27
%22%0A
 filesystem: root
 mode: 0644
 path: /etc/udev/rules.d/70-persistent-net.rules
 - contents:
 source: data:text/plain;charset=US-
ASCII,%23%20define%20sock%20flow%20enbtried%20for%20%20Receive%20Flow%20Ste
ering%20%28RFS%29%0Anet.core.rps_sock_flow_entries%3D8192%0A
 filesystem: root
 mode: 0644
 path: /etc/sysctl.d/95-enable-rps.conf

$ oc create -f enable-rfs.yaml

OpenShift Container Platform 4.10 Scalability and performance

36

3. Verify that an entry named 50-enable-rfs is listed:

4. To deactivate, enter:

Additional resources

OpenShift Container Platform on IBM Z: Tune your network performance with RFS

Configuring Receive Flow Steering (RFS)

Scaling in the Linux Networking Stack

2.4. CHOOSE YOUR NETWORKING SETUP

The networking stack is one of the most important components for a Kubernetes-based product like
OpenShift Container Platform. For IBM Z setups, the networking setup depends on the hypervisor of
your choice. Depending on the workload and the application, the best fit usually changes with the use
case and the traffic pattern.

Depending on your setup, consider these best practices:

Consider all options regarding networking devices to optimize your traffic pattern. Explore the
advantages of OSA-Express, RoCE Express, HiperSockets, z/VM VSwitch, Linux Bridge (KVM),
and others to decide which option leads to the greatest benefit for your setup.

Always use the latest available NIC version. For example, OSA Express 7S 10 GbE shows great
improvement compared to OSA Express 6S 10 GbE with transactional workload types, although
both are 10 GbE adapters.

Each virtual switch adds an additional layer of latency.

The load balancer plays an important role for network communication outside the cluster.
Consider using a production-grade hardware load balancer if this is critical for your application.

OpenShift Container Platform SDN introduces flows and rules, which impact the networking
performance. Make sure to consider pod affinities and placements, to benefit from the locality
of services where communication is critical.

Balance the trade-off between performance and functionality.

Additional resources

OpenShift Container Platform on IBM Z - Performance Experiences, Hints and Tips

OpenShift Container Platform on IBM Z Networking Performance

Controlling pod placement on nodes using node affinity rules

2.5. ENSURE HIGH DISK PERFORMANCE WITH HYPERPAV ON Z/VM

DASD and ECKD devices are commonly used disk types in IBM Z environments. In a typical OpenShift

$ oc get mc

$ oc delete mc 50-enable-rfs

CHAPTER 2. RECOMMENDED HOST PRACTICES FOR IBM Z & LINUXONE ENVIRONMENTS

37

https://developer.ibm.com/tutorials/red-hat-openshift-on-ibm-z-tune-your-network-performance-with-rfs/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-networking-configuration_tools#sect-Red_Hat_Enterprise_Linux-Performance_Tuning_Guide-Configuration_tools-Configuring_Receive_Flow_Steering_RFS
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.ibm.com/docs/en/linux-on-systems?topic=openshift-performance#openshift_perf__ocp_eval
https://www.ibm.com/docs/en/linux-on-systems?topic=openshift-performance#openshift_perf__ocp_net
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/nodes/#controlling-pod-placement-on-nodes-using-node-affinity-rules

DASD and ECKD devices are commonly used disk types in IBM Z environments. In a typical OpenShift
Container Platform setup in z/VM environments, DASD disks are commonly used to support the local
storage for the nodes. You can set up HyperPAV alias devices to provide more throughput and overall
better I/O performance for the DASD disks that support the z/VM guests.

Using HyperPAV for the local storage devices leads to a significant performance benefit. However, you
must be aware that there is a trade-off between throughput and CPU costs.

2.5.1. Use the Machine Config Operator (MCO) to activate HyperPAV aliases in
nodes using z/VM full-pack minidisks

For z/VM-based OpenShift Container Platform setups that use full-pack minidisks, you can leverage the
advantage of MCO profiles by activating HyperPAV aliases in all of the nodes. You must add YAML
configurations for both control plane and compute nodes.

Procedure

1. Copy the following MCO sample profile into a YAML file for the control plane node. For
example, 05-master-kernelarg-hpav.yaml:

2. Copy the following MCO sample profile into a YAML file for the compute node. For example,
05-worker-kernelarg-hpav.yaml:

NOTE

You must modify the rd.dasd arguments to fit the device IDs.

$ cat 05-master-kernelarg-hpav.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master
 name: 05-master-kernelarg-hpav
spec:
 config:
 ignition:
 version: 3.1.0
 kernelArguments:
 - rd.dasd=800-805

$ cat 05-worker-kernelarg-hpav.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 05-worker-kernelarg-hpav
spec:
 config:
 ignition:
 version: 3.1.0
 kernelArguments:
 - rd.dasd=800-805

OpenShift Container Platform 4.10 Scalability and performance

38

3. Create the MCO profiles:

4. To deactivate, enter:

Additional resources

Using HyperPAV for ECKD DASD

Scaling HyperPAV alias devices on Linux guests on z/VM

2.6. RHEL KVM ON IBM Z HOST RECOMMENDATIONS

Optimizing a KVM virtual server environment strongly depends on the workloads of the virtual servers
and on the available resources. The same action that enhances performance in one environment can
have adverse effects in another. Finding the best balance for a particular setting can be a challenge and
often involves experimentation.

The following section introduces some best practices when using OpenShift Container Platform with
RHEL KVM on IBM Z and LinuxONE environments.

2.6.1. Use multiple queues for your VirtIO network interfaces

With multiple virtual CPUs, you can transfer packages in parallel if you provide multiple queues for
incoming and outgoing packets. Use the queues attribute of the driver element to configure multiple
queues. Specify an integer of at least 2 that does not exceed the number of virtual CPUs of the virtual
server.

The following example specification configures two input and output queues for a network interface:

Multiple queues are designed to provide enhanced performance for a network interface, but they also
use memory and CPU resources. Start with defining two queues for busy interfaces. Next, try two
queues for interfaces with less traffic or more than two queues for busy interfaces.

2.6.2. Use I/O threads for your virtual block devices

To make virtual block devices use I/O threads, you must configure one or more I/O threads for the
virtual server and each virtual block device to use one of these I/O threads.

The following example specifies <iothreads>3</iothreads> to configure three I/O threads, with

$ oc create -f 05-master-kernelarg-hpav.yaml

$ oc create -f 05-worker-kernelarg-hpav.yaml

$ oc delete -f 05-master-kernelarg-hpav.yaml

$ oc delete -f 05-worker-kernelarg-hpav.yaml

<interface type="direct">
 <source network="net01"/>
 <model type="virtio"/>
 <driver ... queues="2"/>
</interface>

CHAPTER 2. RECOMMENDED HOST PRACTICES FOR IBM Z & LINUXONE ENVIRONMENTS

39

https://www.ibm.com/docs/en/linux-on-systems?topic=io-using-hyperpav-eckd-dasd
https://public.dhe.ibm.com/software/dw/linux390/perf/zvm_hpav00.pdf

1

2

The following example specifies <iothreads>3</iothreads> to configure three I/O threads, with
consecutive decimal thread IDs 1, 2, and 3. The iothread="2" parameter specifies the driver element of
the disk device to use the I/O thread with ID 2.

Sample I/O thread specification

The number of I/O threads.

The driver element of the disk device.

Threads can increase the performance of I/O operations for disk devices, but they also use memory and
CPU resources. You can configure multiple devices to use the same thread. The best mapping of
threads to devices depends on the available resources and the workload.

Start with a small number of I/O threads. Often, a single I/O thread for all disk devices is sufficient. Do
not configure more threads than the number of virtual CPUs, and do not configure idle threads.

You can use the virsh iothreadadd command to add I/O threads with specific thread IDs to a running
virtual server.

2.6.3. Avoid virtual SCSI devices

Configure virtual SCSI devices only if you need to address the device through SCSI-specific interfaces.
Configure disk space as virtual block devices rather than virtual SCSI devices, regardless of the backing
on the host.

However, you might need SCSI-specific interfaces for:

A LUN for a SCSI-attached tape drive on the host.

A DVD ISO file on the host file system that is mounted on a virtual DVD drive.

2.6.4. Configure guest caching for disk

Configure your disk devices to do caching by the guest and not by the host.

Ensure that the driver element of the disk device includes the cache="none" and io="native"
parameters.

...
<domain>
 <iothreads>3</iothreads> 1
 ...
 <devices>
 ...
 <disk type="block" device="disk"> 2
<driver ... iothread="2"/>
 </disk>
 ...
 </devices>
 ...
</domain>

<disk type="block" device="disk">

OpenShift Container Platform 4.10 Scalability and performance

40

2.6.5. Exclude the memory balloon device

Unless you need a dynamic memory size, do not define a memory balloon device and ensure that libvirt
does not create one for you. Include the memballoon parameter as a child of the devices element in
your domain configuration XML file.

Check the list of active profiles:

2.6.6. Tune the CPU migration algorithm of the host scheduler

IMPORTANT

Do not change the scheduler settings unless you are an expert who understands the
implications. Do not apply changes to production systems without testing them and
confirming that they have the intended effect.

The kernel.sched_migration_cost_ns parameter specifies a time interval in nanoseconds. After the
last execution of a task, the CPU cache is considered to have useful content until this interval expires.
Increasing this interval results in fewer task migrations. The default value is 500000 ns.

If the CPU idle time is higher than expected when there are runnable processes, try reducing this
interval. If tasks bounce between CPUs or nodes too often, try increasing it.

To dynamically set the interval to 60000 ns, enter the following command:

To persistently change the value to 60000 ns, add the following entry to /etc/sysctl.conf:

2.6.7. Disable the cpuset cgroup controller

NOTE

This setting applies only to KVM hosts with cgroups version 1. To enable CPU hotplug on
the host, disable the cgroup controller.

Procedure

1. Open /etc/libvirt/qemu.conf with an editor of your choice.

2. Go to the cgroup_controllers line.

3. Duplicate the entire line and remove the leading number sign (#) from the copy.

 <driver name="qemu" type="raw" cache="none" io="native" iothread="1"/>
...
</disk>

<memballoon model="none"/>

sysctl kernel.sched_migration_cost_ns=60000

kernel.sched_migration_cost_ns=60000

CHAPTER 2. RECOMMENDED HOST PRACTICES FOR IBM Z & LINUXONE ENVIRONMENTS

41

4. Remove the cpuset entry, as follows:

5. For the new setting to take effect, you must restart the libvirtd daemon:

a. Stop all virtual machines.

b. Run the following command:

c. Restart the virtual machines.

This setting persists across host reboots.

2.6.8. Tune the polling period for idle virtual CPUs

When a virtual CPU becomes idle, KVM polls for wakeup conditions for the virtual CPU before allocating
the host resource. You can specify the time interval, during which polling takes place in sysfs at
/sys/module/kvm/parameters/halt_poll_ns. During the specified time, polling reduces the wakeup
latency for the virtual CPU at the expense of resource usage. Depending on the workload, a longer or
shorter time for polling can be beneficial. The time interval is specified in nanoseconds. The default is
50000 ns.

To optimize for low CPU consumption, enter a small value or write 0 to disable polling:

To optimize for low latency, for example for transactional workloads, enter a large value:

Additional resources

Linux on IBM Z Performance Tuning for KVM

Getting started with virtualization on IBM Z

cgroup_controllers = ["cpu", "devices", "memory", "blkio", "cpuacct"]

systemctl restart libvirtd

echo 0 > /sys/module/kvm/parameters/halt_poll_ns

echo 80000 > /sys/module/kvm/parameters/halt_poll_ns

OpenShift Container Platform 4.10 Scalability and performance

42

https://www.ibm.com/docs/en/linux-on-systems?topic=v-kvm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/getting-started-with-virtualization-in-rhel-8-on-ibm-z_configuring-and-managing-virtualization

CHAPTER 3. RECOMMENDED CLUSTER SCALING PRACTICES

IMPORTANT

The guidance in this section is only relevant for installations with cloud provider
integration.

These guidelines apply to OpenShift Container Platform with software-defined
networking (SDN), not Open Virtual Network (OVN).

Apply the following best practices to scale the number of worker machines in your OpenShift Container
Platform cluster. You scale the worker machines by increasing or decreasing the number of replicas that
are defined in the worker machine set.

3.1. RECOMMENDED PRACTICES FOR SCALING THE CLUSTER

When scaling up the cluster to higher node counts:

Spread nodes across all of the available zones for higher availability.

Scale up by no more than 25 to 50 machines at once.

Consider creating new machine sets in each available zone with alternative instance types of
similar size to help mitigate any periodic provider capacity constraints. For example, on AWS,
use m5.large and m5d.large.

NOTE

Cloud providers might implement a quota for API services. Therefore, gradually scale the
cluster.

The controller might not be able to create the machines if the replicas in the machine sets are set to
higher numbers all at one time. The number of requests the cloud platform, which OpenShift Container
Platform is deployed on top of, is able to handle impacts the process. The controller will start to query
more while trying to create, check, and update the machines with the status. The cloud platform on
which OpenShift Container Platform is deployed has API request limits and excessive queries might lead
to machine creation failures due to cloud platform limitations.

Enable machine health checks when scaling to large node counts. In case of failures, the health checks
monitor the condition and automatically repair unhealthy machines.

NOTE

When scaling large and dense clusters to lower node counts, it might take large amounts
of time as the process involves draining or evicting the objects running on the nodes
being terminated in parallel. Also, the client might start to throttle the requests if there
are too many objects to evict. The default client QPS and burst rates are currently set to
5 and 10 respectively and they cannot be modified in OpenShift Container Platform.

3.2. MODIFYING A MACHINE SET

To make changes to a machine set, edit the MachineSet YAML. Then, remove all machines associated
with the machine set by deleting each machine or scaling down the machine set to 0 replicas. Then, scale

CHAPTER 3. RECOMMENDED CLUSTER SCALING PRACTICES

43

the replicas back to the desired number. Changes you make to a machine set do not affect existing
machines.

If you need to scale a machine set without making other changes, you do not need to delete the
machines.

NOTE

By default, the OpenShift Container Platform router pods are deployed on workers.
Because the router is required to access some cluster resources, including the web
console, do not scale the worker machine set to 0 unless you first relocate the router
pods.

Prerequisites

Install an OpenShift Container Platform cluster and the oc command line.

Log in to oc as a user with cluster-admin permission.

Procedure

1. Edit the machine set:

2. Scale down the machine set to 0:

Or:

TIP

You can alternatively apply the following YAML to scale the machine set:

Wait for the machines to be removed.

3. Scale up the machine set as needed:

Or:

$ oc edit machineset <machineset> -n openshift-machine-api

$ oc scale --replicas=0 machineset <machineset> -n openshift-machine-api

$ oc edit machineset <machineset> -n openshift-machine-api

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 name: <machineset>
 namespace: openshift-machine-api
spec:
 replicas: 0

$ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api

OpenShift Container Platform 4.10 Scalability and performance

44

TIP

You can alternatively apply the following YAML to scale the machine set:

Wait for the machines to start. The new machines contain changes you made to the machine
set.

3.3. ABOUT MACHINE HEALTH CHECKS

Machine health checks automatically repair unhealthy machines in a particular machine pool.

To monitor machine health, create a resource to define the configuration for a controller. Set a condition
to check, such as staying in the NotReady status for five minutes or displaying a permanent condition in
the node-problem-detector, and a label for the set of machines to monitor.

NOTE

You cannot apply a machine health check to a machine with the master role.

The controller that observes a MachineHealthCheck resource checks for the defined condition. If a
machine fails the health check, the machine is automatically deleted and one is created to take its place.
When a machine is deleted, you see a machine deleted event.

To limit disruptive impact of the machine deletion, the controller drains and deletes only one node at a
time. If there are more unhealthy machines than the maxUnhealthy threshold allows for in the targeted
pool of machines, remediation stops and therefore enables manual intervention.

NOTE

Consider the timeouts carefully, accounting for workloads and requirements.

Long timeouts can result in long periods of downtime for the workload on the
unhealthy machine.

Too short timeouts can result in a remediation loop. For example, the timeout for
checking the NotReady status must be long enough to allow the machine to
complete the startup process.

To stop the check, remove the resource.

3.3.1. Limitations when deploying machine health checks

$ oc edit machineset <machineset> -n openshift-machine-api

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 name: <machineset>
 namespace: openshift-machine-api
spec:
 replicas: 2

CHAPTER 3. RECOMMENDED CLUSTER SCALING PRACTICES

45

1

2 3

4

5 6

7

There are limitations to consider before deploying a machine health check:

Only machines owned by a machine set are remediated by a machine health check.

Control plane machines are not currently supported and are not remediated if they are
unhealthy.

If the node for a machine is removed from the cluster, a machine health check considers the
machine to be unhealthy and remediates it immediately.

If the corresponding node for a machine does not join the cluster after the
nodeStartupTimeout, the machine is remediated.

A machine is remediated immediately if the Machine resource phase is Failed.

3.4. SAMPLE MACHINEHEALTHCHECK RESOURCE

The MachineHealthCheck resource for all cloud-based installation types, and other than bare metal,
resembles the following YAML file:

Specify the name of the machine health check to deploy.

Specify a label for the machine pool that you want to check.

Specify the machine set to track in <cluster_name>-<label>-<zone> format. For example, prod-
node-us-east-1a.

Specify the timeout duration for a node condition. If a condition is met for the duration of the
timeout, the machine will be remediated. Long timeouts can result in long periods of downtime for
a workload on an unhealthy machine.

Specify the amount of machines allowed to be concurrently remediated in the targeted pool. This
can be set as a percentage or an integer. If the number of unhealthy machines exceeds the limit set

apiVersion: machine.openshift.io/v1beta1
kind: MachineHealthCheck
metadata:
 name: example 1
 namespace: openshift-machine-api
spec:
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-machine-role: <role> 2
 machine.openshift.io/cluster-api-machine-type: <role> 3
 machine.openshift.io/cluster-api-machineset: <cluster_name>-<label>-<zone> 4
 unhealthyConditions:
 - type: "Ready"
 timeout: "300s" 5
 status: "False"
 - type: "Ready"
 timeout: "300s" 6
 status: "Unknown"
 maxUnhealthy: "40%" 7
 nodeStartupTimeout: "10m" 8

OpenShift Container Platform 4.10 Scalability and performance

46

8 Specify the timeout duration that a machine health check must wait for a node to join the cluster
before a machine is determined to be unhealthy.

NOTE

The matchLabels are examples only; you must map your machine groups based on your
specific needs.

3.4.1. Short-circuiting machine health check remediation

Short circuiting ensures that machine health checks remediate machines only when the cluster is
healthy. Short-circuiting is configured through the maxUnhealthy field in the MachineHealthCheck
resource.

If the user defines a value for the maxUnhealthy field, before remediating any machines, the
MachineHealthCheck compares the value of maxUnhealthy with the number of machines within its
target pool that it has determined to be unhealthy. Remediation is not performed if the number of
unhealthy machines exceeds the maxUnhealthy limit.

IMPORTANT

If maxUnhealthy is not set, the value defaults to 100% and the machines are remediated
regardless of the state of the cluster.

The appropriate maxUnhealthy value depends on the scale of the cluster you deploy and how many
machines the MachineHealthCheck covers. For example, you can use the maxUnhealthy value to
cover multiple machine sets across multiple availability zones so that if you lose an entire zone, your
maxUnhealthy setting prevents further remediation within the cluster. In global Azure regions that do
not have multiple availability zones, you can use availability sets to ensure high availability.

The maxUnhealthy field can be set as either an integer or percentage. There are different remediation
implementations depending on the maxUnhealthy value.

3.4.1.1. Setting maxUnhealthy by using an absolute value

If maxUnhealthy is set to 2:

Remediation will be performed if 2 or fewer nodes are unhealthy

Remediation will not be performed if 3 or more nodes are unhealthy

These values are independent of how many machines are being checked by the machine health check.

3.4.1.2. Setting maxUnhealthy by using percentages

If maxUnhealthy is set to 40% and there are 25 machines being checked:

Remediation will be performed if 10 or fewer nodes are unhealthy

Remediation will not be performed if 11 or more nodes are unhealthy

If maxUnhealthy is set to 40% and there are 6 machines being checked:

Remediation will be performed if 2 or fewer nodes are unhealthy

CHAPTER 3. RECOMMENDED CLUSTER SCALING PRACTICES

47

Remediation will not be performed if 3 or more nodes are unhealthy

NOTE

The allowed number of machines is rounded down when the percentage of
maxUnhealthy machines that are checked is not a whole number.

3.5. CREATING A MACHINEHEALTHCHECK RESOURCE

You can create a MachineHealthCheck resource for all MachineSets in your cluster. You should not
create a MachineHealthCheck resource that targets control plane machines.

Prerequisites

Install the oc command line interface.

Procedure

1. Create a healthcheck.yml file that contains the definition of your machine health check.

2. Apply the healthcheck.yml file to your cluster:

$ oc apply -f healthcheck.yml

OpenShift Container Platform 4.10 Scalability and performance

48

CHAPTER 4. USING THE NODE TUNING OPERATOR
Learn about the Node Tuning Operator and how you can use it to manage node-level tuning by
orchestrating the tuned daemon.

4.1. ABOUT THE NODE TUNING OPERATOR

The Node Tuning Operator helps you manage node-level tuning by orchestrating the TuneD daemon.
The majority of high-performance applications require some level of kernel tuning. The Node Tuning
Operator provides a unified management interface to users of node-level sysctls and more flexibility to
add custom tuning specified by user needs.

The Operator manages the containerized TuneD daemon for OpenShift Container Platform as a
Kubernetes daemon set. It ensures the custom tuning specification is passed to all containerized TuneD
daemons running in the cluster in the format that the daemons understand. The daemons run on all
nodes in the cluster, one per node.

Node-level settings applied by the containerized TuneD daemon are rolled back on an event that
triggers a profile change or when the containerized TuneD daemon is terminated gracefully by receiving
and handling a termination signal.

The Node Tuning Operator is part of a standard OpenShift Container Platform installation in version 4.1
and later.

4.2. ACCESSING AN EXAMPLE NODE TUNING OPERATOR
SPECIFICATION

Use this process to access an example Node Tuning Operator specification.

Procedure

1. Run:

The default CR is meant for delivering standard node-level tuning for the OpenShift Container Platform
platform and it can only be modified to set the Operator Management state. Any other custom changes
to the default CR will be overwritten by the Operator. For custom tuning, create your own Tuned CRs.
Newly created CRs will be combined with the default CR and custom tuning applied to OpenShift
Container Platform nodes based on node or pod labels and profile priorities.

WARNING

While in certain situations the support for pod labels can be a convenient way of
automatically delivering required tuning, this practice is discouraged and strongly
advised against, especially in large-scale clusters. The default Tuned CR ships
without pod label matching. If a custom profile is created with pod label matching,
then the functionality will be enabled at that time. The pod label functionality might
be deprecated in future versions of the Node Tuning Operator.

$ oc get Tuned/default -o yaml -n openshift-cluster-node-tuning-operator



CHAPTER 4. USING THE NODE TUNING OPERATOR

49

4.3. DEFAULT PROFILES SET ON A CLUSTER

The following are the default profiles set on a cluster.

Starting with OpenShift Container Platform 4.9, all OpenShift TuneD profiles are shipped with the
TuneD package. You can use the oc exec command to view the contents of these profiles:

4.4. VERIFYING THAT THE TUNED PROFILES ARE APPLIED

Verify the TuneD profiles that are applied to your cluster node.

Example output

NAME: Name of the Profile object. There is one Profile object per node and their names match.

TUNED: Name of the desired TuneD profile to apply.

APPLIED: True if the TuneD daemon applied the desired profile. (True/False/Unknown).

DEGRADED: True if any errors were reported during application of the TuneD profile
(True/False/Unknown).

AGE: Time elapsed since the creation of Profile object.

4.5. CUSTOM TUNING SPECIFICATION

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: default
 namespace: openshift-cluster-node-tuning-operator
spec:
 recommend:
 - profile: "openshift-control-plane"
 priority: 30
 match:
 - label: "node-role.kubernetes.io/master"
 - label: "node-role.kubernetes.io/infra"

 - profile: "openshift-node"
 priority: 40

$ oc exec $tuned_pod -n openshift-cluster-node-tuning-operator -- find /usr/lib/tuned/openshift{,-
control-plane,-node} -name tuned.conf -exec grep -H ^ {} \;

$ oc get profile -n openshift-cluster-node-tuning-operator

NAME TUNED APPLIED DEGRADED AGE
master-0 openshift-control-plane True False 6h33m
master-1 openshift-control-plane True False 6h33m
master-2 openshift-control-plane True False 6h33m
worker-a openshift-node True False 6h28m
worker-b openshift-node True False 6h28m

OpenShift Container Platform 4.10 Scalability and performance

50

The custom resource (CR) for the Operator has two major sections. The first section, profile:, is a list of
TuneD profiles and their names. The second, recommend:, defines the profile selection logic.

Multiple custom tuning specifications can co-exist as multiple CRs in the Operator’s namespace. The
existence of new CRs or the deletion of old CRs is detected by the Operator. All existing custom tuning
specifications are merged and appropriate objects for the containerized TuneD daemons are updated.

Management state

The Operator Management state is set by adjusting the default Tuned CR. By default, the Operator is in
the Managed state and the spec.managementState field is not present in the default Tuned CR. Valid
values for the Operator Management state are as follows:

Managed: the Operator will update its operands as configuration resources are updated

Unmanaged: the Operator will ignore changes to the configuration resources

Removed: the Operator will remove its operands and resources the Operator provisioned

Profile data

The profile: section lists TuneD profiles and their names.

Recommended profiles

The profile: selection logic is defined by the recommend: section of the CR. The recommend: section
is a list of items to recommend the profiles based on a selection criteria.

The individual items of the list:

profile:
- name: tuned_profile_1
 data: |
 # TuneD profile specification
 [main]
 summary=Description of tuned_profile_1 profile

 [sysctl]
 net.ipv4.ip_forward=1
 # ... other sysctl's or other TuneD daemon plugins supported by the containerized TuneD

...

- name: tuned_profile_n
 data: |
 # TuneD profile specification
 [main]
 summary=Description of tuned_profile_n profile

 # tuned_profile_n profile settings

recommend:
<recommend-item-1>
...
<recommend-item-n>

CHAPTER 4. USING THE NODE TUNING OPERATOR

51

1

2

3

4

5

6

7

8

1

2

3

4

Optional.

A dictionary of key/value MachineConfig labels. The keys must be unique.

If omitted, profile match is assumed unless a profile with a higher priority matches first or
machineConfigLabels is set.

An optional list.

Profile ordering priority. Lower numbers mean higher priority (0 is the highest priority).

A TuneD profile to apply on a match. For example tuned_profile_1.

Optional operand configuration.

Turn debugging on or off for the TuneD daemon. Options are true for on or false for off. The
default is false.

<match> is an optional list recursively defined as follows:

Node or pod label name.

Optional node or pod label value. If omitted, the presence of <label_name> is enough to match.

Optional object type (node or pod). If omitted, node is assumed.

An optional <match> list.

If <match> is not omitted, all nested <match> sections must also evaluate to true. Otherwise, false is
assumed and the profile with the respective <match> section will not be applied or recommended.
Therefore, the nesting (child <match> sections) works as logical AND operator. Conversely, if any item
of the <match> list matches, the entire <match> list evaluates to true. Therefore, the list acts as logical
OR operator.

If machineConfigLabels is defined, machine config pool based matching is turned on for the given
recommend: list item. <mcLabels> specifies the labels for a machine config. The machine config is
created automatically to apply host settings, such as kernel boot parameters, for the profile
<tuned_profile_name>. This involves finding all machine config pools with machine config selector

- machineConfigLabels: 1
 <mcLabels> 2
 match: 3
 <match> 4
 priority: <priority> 5
 profile: <tuned_profile_name> 6
 operand: 7
 debug: <bool> 8

- label: <label_name> 1
 value: <label_value> 2
 type: <label_type> 3
 <match> 4

OpenShift Container Platform 4.10 Scalability and performance

52

matching <mcLabels> and setting the profile <tuned_profile_name> on all nodes that are assigned
the found machine config pools. To target nodes that have both master and worker roles, you must use
the master role.

The list items match and machineConfigLabels are connected by the logical OR operator. The match
item is evaluated first in a short-circuit manner. Therefore, if it evaluates to true, the
machineConfigLabels item is not considered.

IMPORTANT

When using machine config pool based matching, it is advised to group nodes with the
same hardware configuration into the same machine config pool. Not following this
practice might result in TuneD operands calculating conflicting kernel parameters for two
or more nodes sharing the same machine config pool.

Example: node or pod label based matching

The CR above is translated for the containerized TuneD daemon into its recommend.conf file based on
the profile priorities. The profile with the highest priority (10) is openshift-control-plane-es and,
therefore, it is considered first. The containerized TuneD daemon running on a given node looks to see if
there is a pod running on the same node with the tuned.openshift.io/elasticsearch label set. If not, the
entire <match> section evaluates as false. If there is such a pod with the label, in order for the <match>
section to evaluate to true, the node label also needs to be node-role.kubernetes.io/master or node-
role.kubernetes.io/infra.

If the labels for the profile with priority 10 matched, openshift-control-plane-es profile is applied and
no other profile is considered. If the node/pod label combination did not match, the second highest
priority profile (openshift-control-plane) is considered. This profile is applied if the containerized
TuneD pod runs on a node with labels node-role.kubernetes.io/master or node-
role.kubernetes.io/infra.

Finally, the profile openshift-node has the lowest priority of 30. It lacks the <match> section and,
therefore, will always match. It acts as a profile catch-all to set openshift-node profile, if no other profile
with higher priority matches on a given node.

- match:
 - label: tuned.openshift.io/elasticsearch
 match:
 - label: node-role.kubernetes.io/master
 - label: node-role.kubernetes.io/infra
 type: pod
 priority: 10
 profile: openshift-control-plane-es
- match:
 - label: node-role.kubernetes.io/master
 - label: node-role.kubernetes.io/infra
 priority: 20
 profile: openshift-control-plane
- priority: 30
 profile: openshift-node

CHAPTER 4. USING THE NODE TUNING OPERATOR

53

Example: machine config pool based matching

To minimize node reboots, label the target nodes with a label the machine config pool’s node selector
will match, then create the Tuned CR above and finally create the custom machine config pool itself.

4.6. CUSTOM TUNING EXAMPLES

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: openshift-node-custom
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=Custom OpenShift node profile with an additional kernel parameter
 include=openshift-node
 [bootloader]
 cmdline_openshift_node_custom=+skew_tick=1
 name: openshift-node-custom

 recommend:
 - machineConfigLabels:
 machineconfiguration.openshift.io/role: "worker-custom"
 priority: 20
 profile: openshift-node-custom

OpenShift Container Platform 4.10 Scalability and performance

54

Using TuneD profiles from the default CR

The following CR applies custom node-level tuning for OpenShift Container Platform nodes with label
tuned.openshift.io/ingress-node-label set to any value.

Example: custom tuning using the openshift-control-plane TuneD profile

IMPORTANT

Custom profile writers are strongly encouraged to include the default TuneD daemon
profiles shipped within the default Tuned CR. The example above uses the default
openshift-control-plane profile to accomplish this.

Using built-in TuneD profiles

Given the successful rollout of the NTO-managed daemon set, the TuneD operands all manage the
same version of the TuneD daemon. To list the built-in TuneD profiles supported by the daemon, query
any TuneD pod in the following way:

You can use the profile names retrieved by this in your custom tuning specification.

Example: using built-in hpc-compute TuneD profile

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: ingress
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=A custom OpenShift ingress profile
 include=openshift-control-plane
 [sysctl]
 net.ipv4.ip_local_port_range="1024 65535"
 net.ipv4.tcp_tw_reuse=1
 name: openshift-ingress
 recommend:
 - match:
 - label: tuned.openshift.io/ingress-node-label
 priority: 10
 profile: openshift-ingress

$ oc exec $tuned_pod -n openshift-cluster-node-tuning-operator -- find /usr/lib/tuned/ -name
tuned.conf -printf '%h\n' | sed 's|^.*/||'

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: openshift-node-hpc-compute
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:

CHAPTER 4. USING THE NODE TUNING OPERATOR

55

In addition to the built-in hpc-compute profile, the example above includes the openshift-node TuneD
daemon profile shipped within the default Tuned CR to use OpenShift-specific tuning for compute
nodes.

4.7. SUPPORTED TUNED DAEMON PLUGINS

Excluding the [main] section, the following TuneD plugins are supported when using custom profiles
defined in the profile: section of the Tuned CR:

audio

cpu

disk

eeepc_she

modules

mounts

net

scheduler

scsi_host

selinux

sysctl

sysfs

usb

video

vm

bootloader

There is some dynamic tuning functionality provided by some of these plugins that is not supported. The
following TuneD plugins are currently not supported:

script

 - data: |
 [main]
 summary=Custom OpenShift node profile for HPC compute workloads
 include=openshift-node,hpc-compute
 name: openshift-node-hpc-compute

 recommend:
 - match:
 - label: tuned.openshift.io/openshift-node-hpc-compute
 priority: 20
 profile: openshift-node-hpc-compute

OpenShift Container Platform 4.10 Scalability and performance

56

systemd

NOTE

The TuneD bootloader plugin only supports Red Hat Enterprise Linux CoreOS (RHCOS)
worker nodes.

Additional references

Available TuneD Plugins

Getting Started with TuneD

CHAPTER 4. USING THE NODE TUNING OPERATOR

57

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/customizing-tuned-profiles_monitoring-and-managing-system-status-and-performance#available-tuned-plug-ins_customizing-tuned-profiles
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance

CHAPTER 5. USING CPU MANAGER AND TOPOLOGY
MANAGER

CPU Manager manages groups of CPUs and constrains workloads to specific CPUs.

CPU Manager is useful for workloads that have some of these attributes:

Require as much CPU time as possible.

Are sensitive to processor cache misses.

Are low-latency network applications.

Coordinate with other processes and benefit from sharing a single processor cache.

Topology Manager collects hints from the CPU Manager, Device Manager, and other Hint Providers to
align pod resources, such as CPU, SR-IOV VFs, and other device resources, for all Quality of Service
(QoS) classes on the same non-uniform memory access (NUMA) node.

Topology Manager uses topology information from the collected hints to decide if a pod can be
accepted or rejected on a node, based on the configured Topology Manager policy and pod resources
requested.

Topology Manager is useful for workloads that use hardware accelerators to support latency-critical
execution and high throughput parallel computation.

To use Topology Manager you must configure CPU Manager with the static policy.

5.1. SETTING UP CPU MANAGER

Procedure

1. Optional: Label a node:

2. Edit the MachineConfigPool of the nodes where CPU Manager should be enabled. In this
example, all workers have CPU Manager enabled:

3. Add a label to the worker machine config pool:

4. Create a KubeletConfig, cpumanager-kubeletconfig.yaml, custom resource (CR). Refer to
the label created in the previous step to have the correct nodes updated with the new kubelet
config. See the machineConfigPoolSelector section:

oc label node perf-node.example.com cpumanager=true

oc edit machineconfigpool worker

metadata:
 creationTimestamp: 2020-xx-xxx
 generation: 3
 labels:
 custom-kubelet: cpumanager-enabled

OpenShift Container Platform 4.10 Scalability and performance

58

1

2

Specify a policy:

none. This policy explicitly enables the existing default CPU affinity scheme, providing
no affinity beyond what the scheduler does automatically. This is the default policy.

static. This policy allows containers in guaranteed pods with integer CPU requests. It
also limits access to exclusive CPUs on the node. If static, you must use a lowercase s.

Optional. Specify the CPU Manager reconcile frequency. The default is 5s.

5. Create the dynamic kubelet config:

This adds the CPU Manager feature to the kubelet config and, if needed, the Machine Config
Operator (MCO) reboots the node. To enable CPU Manager, a reboot is not needed.

6. Check for the merged kubelet config:

Example output

7. Check the worker for the updated kubelet.conf:

Example output

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: cpumanager-enabled
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: cpumanager-enabled
 kubeletConfig:
 cpuManagerPolicy: static 1
 cpuManagerReconcilePeriod: 5s 2

oc create -f cpumanager-kubeletconfig.yaml

oc get machineconfig 99-worker-XXXXXX-XXXXX-XXXX-XXXXX-kubelet -o json | grep
ownerReference -A7

 "ownerReferences": [
 {
 "apiVersion": "machineconfiguration.openshift.io/v1",
 "kind": "KubeletConfig",
 "name": "cpumanager-enabled",
 "uid": "7ed5616d-6b72-11e9-aae1-021e1ce18878"
 }
]

oc debug node/perf-node.example.com
sh-4.2# cat /host/etc/kubernetes/kubelet.conf | grep cpuManager

CHAPTER 5. USING CPU MANAGER AND TOPOLOGY MANAGER

59

1

2

cpuManagerPolicy is defined when you create the KubeletConfig CR.

cpuManagerReconcilePeriod is defined when you create the KubeletConfig CR.

8. Create a pod that requests a core or multiple cores. Both limits and requests must have their
CPU value set to a whole integer. That is the number of cores that will be dedicated to this pod:

Example output

9. Create the pod:

10. Verify that the pod is scheduled to the node that you labeled:

Example output

cpuManagerPolicy: static 1
cpuManagerReconcilePeriod: 5s 2

cat cpumanager-pod.yaml

apiVersion: v1
kind: Pod
metadata:
 generateName: cpumanager-
spec:
 containers:
 - name: cpumanager
 image: gcr.io/google_containers/pause-amd64:3.0
 resources:
 requests:
 cpu: 1
 memory: "1G"
 limits:
 cpu: 1
 memory: "1G"
 nodeSelector:
 cpumanager: "true"

oc create -f cpumanager-pod.yaml

oc describe pod cpumanager

Name: cpumanager-6cqz7
Namespace: default
Priority: 0
PriorityClassName: <none>
Node: perf-node.example.com/xxx.xx.xx.xxx
...
 Limits:
 cpu: 1
 memory: 1G
 Requests:

OpenShift Container Platform 4.10 Scalability and performance

60

11. Verify that the cgroups are set up correctly. Get the process ID (PID) of the pause process:

Pods of quality of service (QoS) tier Guaranteed are placed within the kubepods.slice. Pods of
other QoS tiers end up in child cgroups of kubepods:

Example output

12. Check the allowed CPU list for the task:

Example output

13. Verify that another pod (in this case, the pod in the burstable QoS tier) on the system cannot
run on the core allocated for the Guaranteed pod:

Example output

 cpu: 1
 memory: 1G
...
QoS Class: Guaranteed
Node-Selectors: cpumanager=true

├─init.scope
│ └─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 17
└─kubepods.slice
 ├─kubepods-pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice
 │ ├─crio-b5437308f1a574c542bdf08563b865c0345c8f8c0b0a655612c.scope
 │ └─32706 /pause

cd /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-
pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice/crio-
b5437308f1ad1a7db0574c542bdf08563b865c0345c86e9585f8c0b0a655612c.scope
for i in `ls cpuset.cpus tasks` ; do echo -n "$i "; cat $i ; done

cpuset.cpus 1
tasks 32706

grep ^Cpus_allowed_list /proc/32706/status

 Cpus_allowed_list: 1

cat /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-besteffort.slice/kubepods-besteffort-
podc494a073_6b77_11e9_98c0_06bba5c387ea.slice/crio-
c56982f57b75a2420947f0afc6cafe7534c5734efc34157525fa9abbf99e3849.scope/cpuset.cpus

0
oc describe node perf-node.example.com

...
Capacity:
 attachable-volumes-aws-ebs: 39
 cpu: 2
 ephemeral-storage: 124768236Ki

CHAPTER 5. USING CPU MANAGER AND TOPOLOGY MANAGER

61

This VM has two CPU cores. The system-reserved setting reserves 500 millicores, meaning
that half of one core is subtracted from the total capacity of the node to arrive at the Node
Allocatable amount. You can see that Allocatable CPU is 1500 millicores. This means you can
run one of the CPU Manager pods since each will take one whole core. A whole core is
equivalent to 1000 millicores. If you try to schedule a second pod, the system will accept the
pod, but it will never be scheduled:

5.2. TOPOLOGY MANAGER POLICIES

Topology Manager aligns Pod resources of all Quality of Service (QoS) classes by collecting topology
hints from Hint Providers, such as CPU Manager and Device Manager, and using the collected hints to
align the Pod resources.

Topology Manager supports four allocation policies, which you assign in the KubeletConfig custom
resource (CR) named cpumanager-enabled:

none policy

This is the default policy and does not perform any topology alignment.

best-effort policy

For each container in a pod with the best-effort topology management policy, kubelet calls each Hint
Provider to discover their resource availability. Using this information, the Topology Manager stores
the preferred NUMA Node affinity for that container. If the affinity is not preferred, Topology
Manager stores this and admits the pod to the node.

restricted policy

For each container in a pod with the restricted topology management policy, kubelet calls each Hint
Provider to discover their resource availability. Using this information, the Topology Manager stores

 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 8162900Ki
 pods: 250
Allocatable:
 attachable-volumes-aws-ebs: 39
 cpu: 1500m
 ephemeral-storage: 124768236Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 7548500Ki
 pods: 250
------- ---- ------------ ---------- --------------- ------------- --
-
 default cpumanager-6cqz7 1 (66%) 1 (66%) 1G (12%)
1G (12%) 29m

Allocated resources:
 (Total limits may be over 100 percent, i.e., overcommitted.)
 Resource Requests Limits
 -------- -------- ------
 cpu 1440m (96%) 1 (66%)

NAME READY STATUS RESTARTS AGE
cpumanager-6cqz7 1/1 Running 0 33m
cpumanager-7qc2t 0/1 Pending 0 11s

OpenShift Container Platform 4.10 Scalability and performance

62

1

2

the preferred NUMA Node affinity for that container. If the affinity is not preferred, Topology
Manager rejects this pod from the node, resulting in a pod in a Terminated state with a pod
admission failure.

single-numa-node policy

For each container in a pod with the single-numa-node topology management policy, kubelet calls
each Hint Provider to discover their resource availability. Using this information, the Topology
Manager determines if a single NUMA Node affinity is possible. If it is, the pod is admitted to the
node. If a single NUMA Node affinity is not possible, the Topology Manager rejects the pod from the
node. This results in a pod in a Terminated state with a pod admission failure.

5.3. SETTING UP TOPOLOGY MANAGER

To use Topology Manager, you must configure an allocation policy in the KubeletConfig custom
resource (CR) named cpumanager-enabled. This file might exist if you have set up CPU Manager. If the
file does not exist, you can create the file.

Prequisites

Configure the CPU Manager policy to be static.

Procedure

To activate Topololgy Manager:

1. Configure the Topology Manager allocation policy in the custom resource.

This parameter must be static with a lowercase s.

Specify your selected Topology Manager allocation policy. Here, the policy is single-numa-
node. Acceptable values are: default, best-effort, restricted, single-numa-node.

5.4. POD INTERACTIONS WITH TOPOLOGY MANAGER POLICIES

The example Pod specs below help illustrate pod interactions with Topology Manager.

The following pod runs in the BestEffort QoS class because no resource requests or limits are specified.

$ oc edit KubeletConfig cpumanager-enabled

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: cpumanager-enabled
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: cpumanager-enabled
 kubeletConfig:
 cpuManagerPolicy: static 1
 cpuManagerReconcilePeriod: 5s
 topologyManagerPolicy: single-numa-node 2

CHAPTER 5. USING CPU MANAGER AND TOPOLOGY MANAGER

63

The next pod runs in the Burstable QoS class because requests are less than limits.

If the selected policy is anything other than none, Topology Manager would not consider either of these
Pod specifications.

The last example pod below runs in the Guaranteed QoS class because requests are equal to limits.

Topology Manager would consider this pod. The Topology Manager would consult the hint providers,
which are CPU Manager and Device Manager, to get topology hints for the pod.

Topology Manager will use this information to store the best topology for this container. In the case of
this pod, CPU Manager and Device Manager will use this stored information at the resource allocation
stage.

spec:
 containers:
 - name: nginx
 image: nginx

spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 limits:
 memory: "200Mi"
 requests:
 memory: "100Mi"

spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 limits:
 memory: "200Mi"
 cpu: "2"
 example.com/device: "1"
 requests:
 memory: "200Mi"
 cpu: "2"
 example.com/device: "1"

OpenShift Container Platform 4.10 Scalability and performance

64

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS
Learn about NUMA-aware scheduling and how you can use it to deploy high performance workloads in
an OpenShift Container Platform cluster.

IMPORTANT

NUMA-aware scheduling is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The NUMA Resources Operator allows you to schedule high-performance workloads in the same NUMA
zone. It deploys a node resources exporting agent that reports on available cluster node NUMA
resources, and a secondary scheduler that manages the workloads.

6.1. ABOUT NUMA-AWARE SCHEDULING

Non-Uniform Memory Access (NUMA) is a compute platform architecture that allows different CPUs to
access different regions of memory at different speeds. NUMA resource topology refers to the
locations of CPUs, memory, and PCI devices relative to each other in the compute node. Co-located
resources are said to be in the same NUMA zone. For high-performance applications, the cluster needs
to process pod workloads in a single NUMA zone.

NUMA architecture allows a CPU with multiple memory controllers to use any available memory across
CPU complexes, regardless of where the memory is located. This allows for increased flexibility at the
expense of performance. A CPU processing a workload using memory that is outside its NUMA zone is
slower than a workload processed in a single NUMA zone. Also, for I/O-constrained workloads, the
network interface on a distant NUMA zone slows down how quickly information can reach the
application. High-performance workloads, such as telecommunications workloads, cannot operate to
specification under these conditions. NUMA-aware scheduling aligns the requested cluster compute
resources (CPUs, memory, devices) in the same NUMA zone to process latency-sensitive or high-
performance workloads efficiently. NUMA-aware scheduling also improves pod density per compute
node for greater resource efficiency.

The default OpenShift Container Platform pod scheduler scheduling logic considers the available
resources of the entire compute node, not individual NUMA zones. If the most restrictive resource
alignment is requested in the kubelet topology manager, error conditions can occur when admitting the
pod to a node. Conversely, if the most restrictive resource alignment is not requested, the pod can be
admitted to the node without proper resource alignment, leading to worse or unpredictable
performance. For example, runaway pod creation with Topology Affinity Error statuses can occur when
the pod scheduler makes suboptimal scheduling decisions for guaranteed pod workloads by not knowing
if the pod’s requested resources are available. Scheduling mismatch decisions can cause indefinite pod
startup delays. Also, depending on the cluster state and resource allocation, poor pod scheduling
decisions can cause extra load on the cluster because of failed startup attempts.

The NUMA Resources Operator deploys a custom NUMA resources secondary scheduler and other
resources to mitigate against the shortcomings of the default OpenShift Container Platform pod
scheduler. The following diagram provides a high-level overview of NUMA-aware pod scheduling.

Figure 6.1. NUMA-aware scheduling overview

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

65

https://access.redhat.com/support/offerings/techpreview/

Figure 6.1. NUMA-aware scheduling overview

NodeResourceTopology API

The NodeResourceTopology API describes the available NUMA zone resources in each compute
node.

NUMA-aware scheduler

The NUMA-aware secondary scheduler receives information about the available NUMA zones from
the NodeResourceTopology API and schedules high-performance workloads on a node where it
can be optimally processed.

Node topology exporter

The node topology exporter exposes the available NUMA zone resources for each compute node to
the NodeResourceTopology API. The node topology exporter daemon tracks the resource
allocation from the kubelet by using the PodResources API.

PodResources API

The PodResources API is local to each node and exposes the resource topology and available
resources to the kubelet.

Additional resources

For more information about running secondary pod schedulers in your cluster and how to deploy
pods with a secondary pod scheduler, see Scheduling pods using a secondary scheduler .

6.2. INSTALLING THE NUMA RESOURCES OPERATOR

NUMA Resources Operator deploys resources that allow you to schedule NUMA-aware workloads and
deployments. You can install the NUMA Resources Operator using the OpenShift Container Platform
CLI or the web console.

6.2.1. Installing the NUMA Resources Operator using the CLI

OpenShift Container Platform 4.10 Scalability and performance

66

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/nodes/#secondary-scheduler-configuring

As a cluster administrator, you can install the Operator using the CLI.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a namespace for the NUMA Resources Operator:

a. Save the following YAML in the nro-namespace.yaml file:

b. Create the Namespace CR by running the following command:

2. Create the Operator group for the NUMA Resources Operator:

a. Save the following YAML in the nro-operatorgroup.yaml file:

b. Create the OperatorGroup CR by running the following command:

3. Create the subscription for the NUMA Resources Operator:

a. Save the following YAML in the nro-sub.yaml file:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-numaresources

$ oc create -f nro-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: numaresources-operator
 namespace: openshift-numaresources
spec:
 targetNamespaces:
 - openshift-numaresources

$ oc create -f nro-operatorgroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: numaresources-operator
 namespace: openshift-numaresources
spec:
 channel: "{product-version}"
 name: numaresources-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

67

b. Create the Subscription CR by running the following command:

Verification

1. Verify that the installation succeeded by inspecting the CSV resource in the openshift-
numaresources namespace. Run the following command:

Example output

6.2.2. Installing the NUMA Resources Operator using the web console

As a cluster administrator, you can install the NUMA Resources Operator using the web console.

Procedure

1. Install the NUMA Resources Operator using the OpenShift Container Platform web console:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

b. Choose NUMA Resources Operator from the list of available Operators, and then click
Install.

2. Optional: Verify that the NUMA Resources Operator installed successfully:

a. Switch to the Operators → Installed Operators page.

b. Ensure that NUMA Resources Operator is listed in the default project with a Status of
InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the Operator does not appear as installed, to troubleshoot further:

Go to the Operators → Installed Operators page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

Go to the Workloads → Pods page and check the logs for pods in the default project.

6.3. CREATING THE NUMARESOURCESOPERATOR CUSTOM
RESOURCE

When you have installed the NUMA Resources Operator, then create the NUMAResourcesOperator

$ oc create -f nro-sub.yaml

$ oc get csv -n openshift-numaresources

NAME DISPLAY VERSION REPLACES PHASE
numaresources-operator.v4.10.0 NUMA Resources Operator 4.10.0 Succeeded

OpenShift Container Platform 4.10 Scalability and performance

68

1

When you have installed the NUMA Resources Operator, then create the NUMAResourcesOperator
custom resource (CR) that instructs the NUMA Resources Operator to install all the cluster
infrastructure needed to support the NUMA-aware scheduler, including daemon sets and APIs.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Install the NUMA Resources Operator.

Procedure

1. Create the MachineConfigPool custom resource that enables custom kubelet configurations
for worker nodes:

a. Save the following YAML in the nro-machineconfig.yaml file:

b. Create the MachineConfigPool CR by running the following command:

2. Create the NUMAResourcesOperator custom resource:

a. Save the following YAML in the nrop.yaml file:

Should match the label applied to worker nodes in the related MachineConfigPool
CR.

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 labels:
 cnf-worker-tuning: enabled
 machineconfiguration.openshift.io/mco-built-in: ""
 pools.operator.machineconfiguration.openshift.io/worker: ""
 name: worker
spec:
 machineConfigSelector:
 matchLabels:
 machineconfiguration.openshift.io/role: worker
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""

$ oc create -f nro-machineconfig.yaml

apiVersion: nodetopology.openshift.io/v1alpha1
kind: NUMAResourcesOperator
metadata:
 name: numaresourcesoperator
spec:
 nodeGroups:
 - machineConfigPoolSelector:
 matchLabels:
 pools.operator.machineconfiguration.openshift.io/worker: "" 1

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

69

b. Create the NUMAResourcesOperator CR by running the following command:

Verification

Verify that the NUMA Resources Operator deployed successfully by running the following command:

Example output

6.4. DEPLOYING THE NUMA-AWARE SECONDARY POD SCHEDULER

After you install the NUMA Resources Operator, do the following to deploy the NUMA-aware secondary
pod scheduler:

Configure the pod admittance policy for the required machine profile

Create the required machine config pool

Deploy the NUMA-aware secondary scheduler

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Install the NUMA Resources Operator.

Procedure

1. Create the KubeletConfig custom resource that configures the pod admittance policy for the
machine profile:

a. Save the following YAML in the nro-kubeletconfig.yaml file:

$ oc create -f nrop.yaml

$ oc get numaresourcesoperators.nodetopology.openshift.io

NAME AGE
numaresourcesoperator 10m

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: cnf-worker-tuning
spec:
 machineConfigPoolSelector:
 matchLabels:
 cnf-worker-tuning: enabled
 kubeletConfig:
 cpuManagerPolicy: "static" 1
 cpuManagerReconcilePeriod: "5s"
 reservedSystemCPUs: "0,1"
 memoryManagerPolicy: "Static" 2

OpenShift Container Platform 4.10 Scalability and performance

70

1

2

3

For cpuManagerPolicy, static must use a lowercase s.

For memoryManagerPolicy, Static must use an uppercase S.

topologyManagerPolicy must be set to single-numa-node.

b. Create the KubeletConfig custom resource (CR) by running the following command:

2. Create the NUMAResourcesScheduler custom resource that deploys the NUMA-aware
custom pod scheduler:

a. Save the following YAML in the nro-scheduler.yaml file:

b. Create the NUMAResourcesScheduler CR by running the following command:

Verification

Verify that the required resources deployed successfully by running the following command:

Example output

 evictionHard:
 memory.available: "100Mi"
 kubeReserved:
 memory: "512Mi"
 reservedMemory:
 - numaNode: 0
 limits:
 memory: "1124Mi"
 systemReserved:
 memory: "512Mi"
 topologyManagerPolicy: "single-numa-node" 3
 topologyManagerScope: "pod"

$ oc create -f nro-kubeletconfig.yaml

apiVersion: nodetopology.openshift.io/v1alpha1
kind: NUMAResourcesScheduler
metadata:
 name: numaresourcesscheduler
spec:
 imageSpec: "registry.redhat.io/openshift4/noderesourcetopology-scheduler-container-
rhel8:v4.10"

$ oc create -f nro-scheduler.yaml

$ oc get all -n openshift-numaresources

NAME READY STATUS RESTARTS AGE
pod/numaresources-controller-manager-7575848485-bns4s 1/1 Running 0 13m
pod/numaresourcesoperator-worker-dvj4n 2/2 Running 0 16m
pod/numaresourcesoperator-worker-lcg4t 2/2 Running 0 16m
pod/secondary-scheduler-56994cf6cf-7qf4q 1/1 Running 0 16m
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

71

6.5. SCHEDULING WORKLOADS WITH THE NUMA-AWARE
SCHEDULER

You can schedule workloads with the NUMA-aware scheduler using Deployment CRs that specify the
minimum required resources to process the workload.

The following example deployment uses NUMA-aware scheduling for a sample workload.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Install the NUMA Resources Operator and deploy the NUMA-aware secondary scheduler.

Procedure

1. Get the name of the NUMA-aware scheduler that is deployed in the cluster by running the
following command:

Example output

2. Create a Deployment CR that uses scheduler named topo-aware-scheduler, for example:

a. Save the following YAML in the nro-deployment.yaml file:

NODE SELECTOR AGE
daemonset.apps/numaresourcesoperator-worker 2 2 2 2 2 node-
role.kubernetes.io/worker= 16m
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/numaresources-controller-manager 1/1 1 1 13m
deployment.apps/secondary-scheduler 1/1 1 1 16m
NAME DESIRED CURRENT READY AGE
replicaset.apps/numaresources-controller-manager-7575848485 1 1 1 13m
replicaset.apps/secondary-scheduler-56994cf6cf 1 1 1 16m

$ oc get numaresourcesschedulers.nodetopology.openshift.io numaresourcesscheduler -o
json | jq '.status.schedulerName'

topo-aware-scheduler

apiVersion: apps/v1
kind: Deployment
metadata:
 name: numa-deployment-1
 namespace: openshift-numaresources
spec:
 replicas: 1
 selector:
 matchLabels:
 app: test
 template:
 metadata:

OpenShift Container Platform 4.10 Scalability and performance

72

1 schedulerName must match the name of the NUMA-aware scheduler that is deployed
in your cluster, for example topo-aware-scheduler.

b. Create the Deployment CR by running the following command:

Verification

1. Verify that the deployment was successful:

Example output

2. Verify that the topo-aware-scheduler is scheduling the deployed pod by running the following
command:

 labels:
 app: test
 spec:
 schedulerName: topo-aware-scheduler 1
 containers:
 - name: ctnr
 image: quay.io/openshifttest/hello-openshift:openshift
 imagePullPolicy: IfNotPresent
 resources:
 limits:
 memory: "100Mi"
 cpu: "10"
 requests:
 memory: "100Mi"
 cpu: "10"
 - name: ctnr2
 image: registry.access.redhat.com/rhel:latest
 imagePullPolicy: IfNotPresent
 command: ["/bin/sh", "-c"]
 args: ["while true; do sleep 1h; done;"]
 resources:
 limits:
 memory: "100Mi"
 cpu: "8"
 requests:
 memory: "100Mi"
 cpu: "8"

$ oc create -f nro-deployment.yaml

$ oc get pods -n openshift-numaresources

NAME READY STATUS RESTARTS AGE
numa-deployment-1-56954b7b46-pfgw8 2/2 Running 0 129m
numaresources-controller-manager-7575848485-bns4s 1/1 Running 0 15h
numaresourcesoperator-worker-dvj4n 2/2 Running 0 18h
numaresourcesoperator-worker-lcg4t 2/2 Running 0 16h
secondary-scheduler-56994cf6cf-7qf4q 1/1 Running 0 18h

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

73

1

Example output

NOTE

Deployments that request more resources than is available for scheduling will fail
with a MinimumReplicasUnavailable error. The deployment succeeds when the
required resources become available. Pods remain in the Pending state until the
required resources are available.

3. Verify that the expected allocated resources are listed for the node. Run the following
command:

Example output

The Available capacity is reduced because of the resources that have been allocated to
the guaranteed pod.

$ oc describe pod numa-deployment-1-56954b7b46-pfgw8 -n openshift-numaresources

Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 130m topo-aware-scheduler Successfully assigned openshift-
numaresources/numa-deployment-1-56954b7b46-pfgw8 to compute-0.example.com

$ oc describe noderesourcetopologies.topology.node.k8s.io

...

Zones:
 Costs:
 Name: node-0
 Value: 10
 Name: node-1
 Value: 21
 Name: node-0
 Resources:
 Allocatable: 39
 Available: 21 1
 Capacity: 40
 Name: cpu
 Allocatable: 6442450944
 Available: 6442450944
 Capacity: 6442450944
 Name: hugepages-1Gi
 Allocatable: 134217728
 Available: 134217728
 Capacity: 134217728
 Name: hugepages-2Mi
 Allocatable: 262415904768
 Available: 262206189568
 Capacity: 270146007040
 Name: memory
 Type: Node

OpenShift Container Platform 4.10 Scalability and performance

74

the guaranteed pod.

Resources consumed by guaranteed pods are subtracted from the available node resources
listed under noderesourcetopologies.topology.node.k8s.io.

4. Resource allocations for pods with a Best-effort or Burstable quality of service (qosClass) are
not reflected in the NUMA node resources under
noderesourcetopologies.topology.node.k8s.io. If a pod’s consumed resources are not
reflected in the node resource calculation, verify that the pod has qosClass of Guaranteed by
running the following command:

Example output

6.6. TROUBLESHOOTING NUMA-AWARE SCHEDULING

To troubleshoot common problems with NUMA-aware pod scheduling, perform the following steps.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in as a user with cluster-admin privileges.

Install the NUMA Resources Operator and deploy the NUMA-aware secondary scheduler.

Procedure

1. Verify that the noderesourcetopologies CRD is deployed in the cluster by running the
following command:

Example output

2. Check that the NUMA-aware scheduler name matches the name specified in your NUMA-aware
workloads by running the following command:

Example output

3. Verify that NUMA-aware scheduable nodes have the noderesourcetopologies CR applied to

$ oc get pod <pod_name> -n <pod_namespace> -o jsonpath="{ .status.qosClass }"

Guaranteed

$ oc get crd | grep noderesourcetopologies

NAME CREATED AT
noderesourcetopologies.topology.node.k8s.io 2022-01-18T08:28:06Z

$ oc get numaresourcesschedulers.nodetopology.openshift.io numaresourcesscheduler -o
json | jq '.status.schedulerName'

topo-aware-scheduler

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

75

3. Verify that NUMA-aware scheduable nodes have the noderesourcetopologies CR applied to
them. Run the following command:

Example output

NOTE

The number of nodes should equal the number of worker nodes that are
configured by the machine config pool (mcp) worker definition.

4. Verify the NUMA zone granularity for all scheduable nodes by running the following command:

Example output

$ oc get noderesourcetopologies.topology.node.k8s.io

NAME AGE
compute-0.example.com 17h
compute-1.example.com 17h

$ oc get noderesourcetopologies.topology.node.k8s.io -o yaml

apiVersion: v1
items:
- apiVersion: topology.node.k8s.io/v1alpha1
 kind: NodeResourceTopology
 metadata:
 annotations:
 k8stopoawareschedwg/rte-update: periodic
 creationTimestamp: "2022-06-16T08:55:38Z"
 generation: 63760
 name: worker-0
 resourceVersion: "8450223"
 uid: 8b77be46-08c0-4074-927b-d49361471590
 topologyPolicies:
 - SingleNUMANodeContainerLevel
 zones:
 - costs:
 - name: node-0
 value: 10
 - name: node-1
 value: 21
 name: node-0
 resources:
 - allocatable: "38"
 available: "38"
 capacity: "40"
 name: cpu
 - allocatable: "134217728"
 available: "134217728"
 capacity: "134217728"
 name: hugepages-2Mi
 - allocatable: "262352048128"
 available: "262352048128"

OpenShift Container Platform 4.10 Scalability and performance

76

 capacity: "270107316224"
 name: memory
 - allocatable: "6442450944"
 available: "6442450944"
 capacity: "6442450944"
 name: hugepages-1Gi
 type: Node
 - costs:
 - name: node-0
 value: 21
 - name: node-1
 value: 10
 name: node-1
 resources:
 - allocatable: "268435456"
 available: "268435456"
 capacity: "268435456"
 name: hugepages-2Mi
 - allocatable: "269231067136"
 available: "269231067136"
 capacity: "270573244416"
 name: memory
 - allocatable: "40"
 available: "40"
 capacity: "40"
 name: cpu
 - allocatable: "1073741824"
 available: "1073741824"
 capacity: "1073741824"
 name: hugepages-1Gi
 type: Node
- apiVersion: topology.node.k8s.io/v1alpha1
 kind: NodeResourceTopology
 metadata:
 annotations:
 k8stopoawareschedwg/rte-update: periodic
 creationTimestamp: "2022-06-16T08:55:37Z"
 generation: 62061
 name: worker-1
 resourceVersion: "8450129"
 uid: e8659390-6f8d-4e67-9a51-1ea34bba1cc3
 topologyPolicies:
 - SingleNUMANodeContainerLevel
 zones: 1
 - costs:
 - name: node-0
 value: 10
 - name: node-1
 value: 21
 name: node-0
 resources: 2
 - allocatable: "38"
 available: "38"
 capacity: "40"
 name: cpu
 - allocatable: "6442450944"

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

77

1

2

Each stanza under zones describes the resources for a single NUMA zone.

resources describes the current state of the NUMA zone resources. Check that resources
listed under items.zones.resources.available correspond to the exclusive NUMA zone
resources allocated to each guaranteed pod.

6.6.1. Checking the NUMA-aware scheduler logs

Troubleshoot problems with the NUMA-aware scheduler by reviewing the logs. If required, you can
increase the scheduler log level by modifying the spec.logLevel field of the
NUMAResourcesScheduler resource. Acceptable values are Normal, Debug, and Trace, with Trace
being the most verbose option.

NOTE

 available: "6442450944"
 capacity: "6442450944"
 name: hugepages-1Gi
 - allocatable: "134217728"
 available: "134217728"
 capacity: "134217728"
 name: hugepages-2Mi
 - allocatable: "262391033856"
 available: "262391033856"
 capacity: "270146301952"
 name: memory
 type: Node
 - costs:
 - name: node-0
 value: 21
 - name: node-1
 value: 10
 name: node-1
 resources:
 - allocatable: "40"
 available: "40"
 capacity: "40"
 name: cpu
 - allocatable: "1073741824"
 available: "1073741824"
 capacity: "1073741824"
 name: hugepages-1Gi
 - allocatable: "268435456"
 available: "268435456"
 capacity: "268435456"
 name: hugepages-2Mi
 - allocatable: "269192085504"
 available: "269192085504"
 capacity: "270534262784"
 name: memory
 type: Node
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

OpenShift Container Platform 4.10 Scalability and performance

78

NOTE

To change the log level of the secondary scheduler, delete the running scheduler
resource and re-deploy it with the changed log level. The scheduler is unavailable for
scheduling new workloads during this downtime.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Delete the currently running NUMAResourcesScheduler resource:

a. Get the active NUMAResourcesScheduler by running the following command:

Example output

b. Delete the secondary scheduler resource by running the following command:

Example output

2. Save the following YAML in the file nro-scheduler-debug.yaml. This example changes the log
level to Debug:

3. Create the updated Debug logging NUMAResourcesScheduler resource by running the
following command:

Example output

$ oc get NUMAResourcesScheduler

NAME AGE
numaresourcesscheduler 90m

$ oc delete NUMAResourcesScheduler numaresourcesscheduler

numaresourcesscheduler.nodetopology.openshift.io "numaresourcesscheduler" deleted

apiVersion: nodetopology.openshift.io/v1alpha1
kind: NUMAResourcesScheduler
metadata:
 name: numaresourcesscheduler
spec:
 imageSpec: "registry.redhat.io/openshift4/noderesourcetopology-scheduler-container-
rhel8:v4.10"
 logLevel: Debug

$ oc create -f nro-scheduler-debug.yaml

numaresourcesscheduler.nodetopology.openshift.io/numaresourcesscheduler created

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

79

Verification steps

1. Check that the NUMA-aware scheduler was successfully deployed:

a. Run the following command to check that the CRD is created succesfully:

Example output

b. Check that the new custom scheduler is available by running the following command:

Example output

2. Check that the logs for the scheduler shows the increased log level:

a. Get the list of pods running in the openshift-numaresources namespace by running the
following command:

Example output

b. Get the logs for the secondary scheduler pod by running the following command:

Example output

$ oc get crd | grep numaresourcesschedulers

NAME CREATED AT
numaresourcesschedulers.nodetopology.openshift.io 2022-02-25T11:57:03Z

$ oc get numaresourcesschedulers.nodetopology.openshift.io

NAME AGE
numaresourcesscheduler 3h26m

$ oc get pods -n openshift-numaresources

NAME READY STATUS RESTARTS AGE
numaresources-controller-manager-d87d79587-76mrm 1/1 Running 0 46h
numaresourcesoperator-worker-5wm2k 2/2 Running 0 45h
numaresourcesoperator-worker-pb75c 2/2 Running 0 45h
secondary-scheduler-7976c4d466-qm4sc 1/1 Running 0 21m

$ oc logs secondary-scheduler-7976c4d466-qm4sc -n openshift-numaresources

...
I0223 11:04:55.614788 1 reflector.go:535] k8s.io/client-go/informers/factory.go:134:
Watch close - *v1.Namespace total 11 items received
I0223 11:04:56.609114 1 reflector.go:535] k8s.io/client-go/informers/factory.go:134:
Watch close - *v1.ReplicationController total 10 items received
I0223 11:05:22.626818 1 reflector.go:535] k8s.io/client-go/informers/factory.go:134:
Watch close - *v1.StorageClass total 7 items received
I0223 11:05:31.610356 1 reflector.go:535] k8s.io/client-go/informers/factory.go:134:

OpenShift Container Platform 4.10 Scalability and performance

80

6.6.2. Troubleshooting the resource topology exporter

Troubleshoot noderesourcetopologies objects where unexpected results are occurring by inspecting
the corresponding resource-topology-exporter logs.

NOTE

It is recommended that NUMA resource topology exporter instances in the cluster are
named for nodes they refer to. For example, a worker node with the name worker should
have a corresponding noderesourcetopologies object called worker.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Get the daemonsets managed by the NUMA Resources Operator. Each daemonset has a
corresponding nodeGroup in the NUMAResourcesOperator CR. Run the following command:

Example output

2. Get the label for the daemonset of interest using the value for name from the previous step:

Example output

3. Get the pods using the resource-topology label by running the following command:

Example output

Watch close - *v1.PodDisruptionBudget total 7 items received
I0223 11:05:31.713032 1 eventhandlers.go:186] "Add event for scheduled pod"
pod="openshift-marketplace/certified-operators-thtvq"
I0223 11:05:53.461016 1 eventhandlers.go:244] "Delete event for scheduled pod"
pod="openshift-marketplace/certified-operators-thtvq"

$ oc get numaresourcesoperators.nodetopology.openshift.io numaresourcesoperator -o
jsonpath="{.status.daemonsets[0]}"

{"name":"numaresourcesoperator-worker","namespace":"openshift-numaresources"}

$ oc get ds -n openshift-numaresources numaresourcesoperator-worker -o jsonpath="
{.spec.selector.matchLabels}"

{"name":"resource-topology"}

$ oc get pods -n openshift-numaresources -l name=resource-topology -o wide

NAME READY STATUS RESTARTS AGE IP NODE
numaresourcesoperator-worker-5wm2k 2/2 Running 0 2d1h 10.135.0.64

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

81

4. Examine the logs of the resource-topology-exporter container running on the worker pod that
corresponds to the node you are troubleshooting. Run the following command:

Example output

6.6.3. Correcting a missing resource topology exporter config map

If you install the NUMA Resources Operator in a cluster with misconfigured cluster settings, in some
circumstances, the Operator is shown as active but the logs of the resource topology exporter (RTE)
daemon set pods show that the configuration for the RTE is missing, for example:

This log message indicates that the kubeletconfig with the required configuration was not properly
applied in the cluster, resulting in a missing RTE configmap. For example, the following cluster is missing
a numaresourcesoperator-worker configmap custom resource (CR):

Example output

compute-0.example.com
numaresourcesoperator-worker-pb75c 2/2 Running 0 2d1h 10.132.2.33
compute-1.example.com

$ oc logs -n openshift-numaresources -c resource-topology-exporter numaresourcesoperator-
worker-pb75c

I0221 13:38:18.334140 1 main.go:206] using sysinfo:
reservedCpus: 0,1
reservedMemory:
 "0": 1178599424
I0221 13:38:18.334370 1 main.go:67] === System information ===
I0221 13:38:18.334381 1 sysinfo.go:231] cpus: reserved "0-1"
I0221 13:38:18.334493 1 sysinfo.go:237] cpus: online "0-103"
I0221 13:38:18.546750 1 main.go:72]
cpus: allocatable "2-103"
hugepages-1Gi:
 numa cell 0 -> 6
 numa cell 1 -> 1
hugepages-2Mi:
 numa cell 0 -> 64
 numa cell 1 -> 128
memory:
 numa cell 0 -> 45758Mi
 numa cell 1 -> 48372Mi

Info: couldn't find configuration in "/etc/resource-topology-exporter/config.yaml"

$ oc get configmap

NAME DATA AGE
0e2a6bd3.openshift-kni.io 0 6d21h
kube-root-ca.crt 1 6d21h
openshift-service-ca.crt 1 6d21h
topo-aware-scheduler-config 1 6d18h

OpenShift Container Platform 4.10 Scalability and performance

82

In a correctly configured cluster, oc get configmap also returns a numaresourcesoperator-worker
configmap CR.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in as a user with cluster-admin privileges.

Install the NUMA Resources Operator and deploy the NUMA-aware secondary scheduler.

Procedure

1. Compare the values for spec.machineConfigPoolSelector.matchLabels in kubeletconfig and
metadata.labels in the MachineConfigPool (mcp) worker CR using the following commands:

a. Check the kubeletconfig labels by running the following command:

Example output

b. Check the mcp labels by running the following command:

Example output

The cnf-worker-tuning: enabled label is not present in the MachineConfigPool object.

2. Edit the MachineConfigPool CR to include the missing label, for example:

Example output

3. Apply the label changes and wait for the cluster to apply the updated configuration. Run the
following command:

Verification

$ oc get kubeletconfig -o yaml

machineConfigPoolSelector:
 matchLabels:
 cnf-worker-tuning: enabled

$ oc get mcp worker -o yaml

labels:
 machineconfiguration.openshift.io/mco-built-in: ""
 pools.operator.machineconfiguration.openshift.io/worker: ""

$ oc edit mcp worker -o yaml

labels:
 machineconfiguration.openshift.io/mco-built-in: ""
 pools.operator.machineconfiguration.openshift.io/worker: ""
 cnf-worker-tuning: enabled

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

83

Verification
Check that the missing numaresourcesoperator-worker configmap CR is applied:

Example output

$ oc get configmap

NAME DATA AGE
0e2a6bd3.openshift-kni.io 0 6d21h
kube-root-ca.crt 1 6d21h
numaresourcesoperator-worker 1 5m
openshift-service-ca.crt 1 6d21h
topo-aware-scheduler-config 1 6d18h

OpenShift Container Platform 4.10 Scalability and performance

84

CHAPTER 7. SCALING THE CLUSTER MONITORING
OPERATOR

OpenShift Container Platform exposes metrics that the Cluster Monitoring Operator collects and stores
in the Prometheus-based monitoring stack. As an administrator, you can view system resources,
containers, and components metrics in one dashboard interface, Grafana.

7.1. PROMETHEUS DATABASE STORAGE REQUIREMENTS

Red Hat performed various tests for different scale sizes.

NOTE

The Prometheus storage requirements below are not prescriptive. Higher resource
consumption might be observed in your cluster depending on workload activity and
resource use.

Table 7.1. Prometheus Database storage requirements based on number of nodes/pods in the
cluster

Number of
Nodes

Number of
pods

Prometheus
storage
growth per
day

Prometheus
storage
growth per 15
days

RAM Space
(per scale
size)

Network (per
tsdb chunk)

50 1800 6.3 GB 94 GB 6 GB 16 MB

100 3600 13 GB 195 GB 10 GB 26 MB

150 5400 19 GB 283 GB 12 GB 36 MB

200 7200 25 GB 375 GB 14 GB 46 MB

Approximately 20 percent of the expected size was added as overhead to ensure that the storage
requirements do not exceed the calculated value.

The above calculation is for the default OpenShift Container Platform Cluster Monitoring Operator.

NOTE

CPU utilization has minor impact. The ratio is approximately 1 core out of 40 per 50
nodes and 1800 pods.

Recommendations for OpenShift Container Platform

Use at least three infrastructure (infra) nodes.

Use at least three openshift-container-storage nodes with non-volatile memory express
(NVMe) drives.

CHAPTER 7. SCALING THE CLUSTER MONITORING OPERATOR

85

1

2 4

3

5

7.2. CONFIGURING CLUSTER MONITORING

You can increase the storage capacity for the Prometheus component in the cluster monitoring stack.

Procedure

To increase the storage capacity for Prometheus:

1. Create a YAML configuration file, cluster-monitoring-config.yaml. For example:

A typical value is PROMETHEUS_RETENTION_PERIOD=15d. Units are measured in time
using one of these suffixes: s, m, h, d.

The storage class for your cluster.

A typical value is PROMETHEUS_STORAGE_SIZE=2000Gi. Storage values can be a plain
integer or as a fixed-point integer using one of these suffixes: E, P, T, G, M, K. You can also
use the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki.

A typical value is ALERTMANAGER_STORAGE_SIZE=20Gi. Storage values can be a plain
integer or as a fixed-point integer using one of these suffixes: E, P, T, G, M, K. You can also
use the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki.

2. Add values for the retention period, storage class, and storage sizes.

3. Save the file.

4. Apply the changes by running:

apiVersion: v1
kind: ConfigMap
data:
 config.yaml: |
 prometheusK8s:
 retention: {{PROMETHEUS_RETENTION_PERIOD}} 1
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 volumeClaimTemplate:
 spec:
 storageClassName: {{STORAGE_CLASS}} 2
 resources:
 requests:
 storage: {{PROMETHEUS_STORAGE_SIZE}} 3
 alertmanagerMain:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 volumeClaimTemplate:
 spec:
 storageClassName: {{STORAGE_CLASS}} 4
 resources:
 requests:
 storage: {{ALERTMANAGER_STORAGE_SIZE}} 5
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring

OpenShift Container Platform 4.10 Scalability and performance

86

$ oc create -f cluster-monitoring-config.yaml

CHAPTER 7. SCALING THE CLUSTER MONITORING OPERATOR

87

CHAPTER 8. PLANNING YOUR ENVIRONMENT ACCORDING
TO OBJECT MAXIMUMS

Consider the following tested object maximums when you plan your OpenShift Container Platform
cluster.

These guidelines are based on the largest possible cluster. For smaller clusters, the maximums are lower.
There are many factors that influence the stated thresholds, including the etcd version or storage data
format.

IMPORTANT

These guidelines apply to OpenShift Container Platform with software-defined
networking (SDN), not Open Virtual Network (OVN).

In most cases, exceeding these numbers results in lower overall performance. It does not necessarily
mean that the cluster will fail.

WARNING

Clusters that experience rapid change, such as those with many starting and
stopping pods, can have a lower practical maximum size than documented.

8.1. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER
MAXIMUMS FOR MAJOR RELEASES

Tested Cloud Platforms for OpenShift Container Platform 3.x: Red Hat OpenStack Platform (RHOSP),
Amazon Web Services and Microsoft Azure. Tested Cloud Platforms for OpenShift Container Platform
4.x: Amazon Web Services, Microsoft Azure and Google Cloud Platform.

Maximum type 3.x tested maximum 4.x tested maximum

Number of nodes 2,000 2,000 [1]

Number of pods [2] 150,000 150,000

Number of pods per node 250 500 [3]

Number of pods per core There is no default value. There is no default value.

Number of namespaces [4] 10,000 10,000



OpenShift Container Platform 4.10 Scalability and performance

88

Number of builds 10,000 (Default pod RAM 512 Mi)
- Pipeline Strategy

10,000 (Default pod RAM 512 Mi)
- Source-to-Image (S2I) build
strategy

Number of pods per namespace
[5]

25,000 25,000

Number of routes and back ends
per Ingress Controller

2,000 per router 2,000 per router

Number of secrets 80,000 80,000

Number of config maps 90,000 90,000

Number of services [6] 10,000 10,000

Number of services per
namespace

5,000 5,000

Number of back-ends per service 5,000 5,000

Number of deployments per

namespace [5]

2,000 2,000

Number of build configs 12,000 12,000

Number of custom resource
definitions (CRD)

There is no default value. 512 [7]

Maximum type 3.x tested maximum 4.x tested maximum

1. Pause pods were deployed to stress the control plane components of OpenShift Container
Platform at 2000 node scale.

2. The pod count displayed here is the number of test pods. The actual number of pods depends
on the application’s memory, CPU, and storage requirements.

3. This was tested on a cluster with 100 worker nodes with 500 pods per worker node. The default
maxPods is still 250. To get to 500 maxPods, the cluster must be created with a maxPods set
to 500 using a custom kubelet config. If you need 500 user pods, you need a hostPrefix of 22
because there are 10-15 system pods already running on the node. The maximum number of
pods with attached persistent volume claims (PVC) depends on storage backend from where
PVC are allocated. In our tests, only OpenShift Data Foundation v4 (OCS v4) was able to satisfy
the number of pods per node discussed in this document.

4. When there are a large number of active projects, etcd might suffer from poor performance if
the keyspace grows excessively large and exceeds the space quota. Periodic maintenance of
etcd, including defragmentation, is highly recommended to free etcd storage.

5. There are a number of control loops in the system that must iterate over all objects in a given

CHAPTER 8. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS

89

namespace as a reaction to some changes in state. Having a large number of objects of a given
type in a single namespace can make those loops expensive and slow down processing given
state changes. The limit assumes that the system has enough CPU, memory, and disk to satisfy
the application requirements.

6. Each service port and each service back-end has a corresponding entry in iptables. The number
of back-ends of a given service impact the size of the endpoints objects, which impacts the size
of data that is being sent all over the system.

7. OpenShift Container Platform has a limit of 512 total custom resource definitions (CRD),
including those installed by OpenShift Container Platform, products integrating with OpenShift
Container Platform and user created CRDs. If there are more than 512 CRDs created, then there
is a possibility that oc commands requests may be throttled.

NOTE

Red Hat does not provide direct guidance on sizing your OpenShift Container Platform
cluster. This is because determining whether your cluster is within the supported bounds
of OpenShift Container Platform requires careful consideration of all the
multidimensional factors that limit the cluster scale.

8.2. OPENSHIFT CONTAINER PLATFORM ENVIRONMENT AND
CONFIGURATION ON WHICH THE CLUSTER MAXIMUMS ARE TESTED

8.2.1. AWS cloud platform

Node Flavor vCPU RAM(GiB) Disk type Disk
size(GiB)
/IOS

Count Region

Control
plane/etc

d [1]

r5.4xlarge 16 128 gp3 220 3 us-west-2

Infra [2] m5.12xlarg
e

48 192 gp3 100 3 us-west-2

Workload
[3]

m5.4xlarg
e

16 64 gp3 500 [4] 1 us-west-2

Compute m5.2xlarg
e

8 32 gp3 100 3/25/250

/500 [5]

us-west-2

1. gp3 disks with a baseline performance of 3000 IOPS and 125 MiB per second are used for
control plane/etcd nodes because etcd is latency sensitive. gp3 volumes do not use burst
performance.

2. Infra nodes are used to host Monitoring, Ingress, and Registry components to ensure they have
enough resources to run at large scale.

3. Workload node is dedicated to run performance and scalability workload generators.

OpenShift Container Platform 4.10 Scalability and performance

90

4. Larger disk size is used so that there is enough space to store the large amounts of data that is
collected during the performance and scalability test run.

5. Cluster is scaled in iterations and performance and scalability tests are executed at the
specified node counts.

8.2.2. IBM Power platform

Node vCPU RAM(GiB) Disk type Disk
size(GiB)/IOS

Count

Control

plane/etcd [1]

16 32 io1 120 / 10 IOPS
per GiB

3

Infra [2] 16 64 gp2 120 2

Workload [3] 16 256 gp2 120 [4] 1

Compute 16 64 gp2 120 2 to 100 [5]

1. io1 disks with 120 / 10 IOPS per GiB are used for control plane/etcd nodes as etcd is I/O
intensive and latency sensitive.

2. Infra nodes are used to host Monitoring, Ingress, and Registry components to ensure they have
enough resources to run at large scale.

3. Workload node is dedicated to run performance and scalability workload generators.

4. Larger disk size is used so that there is enough space to store the large amounts of data that is
collected during the performance and scalability test run.

5. Cluster is scaled in iterations.

8.2.3. IBM Z platform

Node vCPU [4] RAM(GiB)[5] Disk type Disk
size(GiB)/IOS

Count

Control

plane/etcd [1,2]

8 32 ds8k 300 / LCU 1 3

Compute [1,3] 8 32 ds8k 150 / LCU 2 4 nodes
(scaled to
100/250/500
pods per
node)

1. Nodes are distributed between two logical control units (LCUs) to optimize disk I/O load of the

CHAPTER 8. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS

91

1. Nodes are distributed between two logical control units (LCUs) to optimize disk I/O load of the
control plane/etcd nodes as etcd is I/O intensive and latency sensitive. Etcd I/O demand should
not interfere with other workloads.

2. Four compute nodes are used for the tests running several iterations with 100/250/500 pods
at the same time. First, idling pods were used to evaluate if pods can be instanced. Next, a
network and CPU demanding client/server workload were used to evaluate the stability of the
system under stress. Client and server pods were pairwise deployed and each pair was spread
over two compute nodes.

3. No separate workload node was used. The workload simulates a microservice workload between
two compute nodes.

4. Physical number of processors used is six Integrated Facilities for Linux (IFLs).

5. Total physical memory used is 512 GiB.

8.3. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO TESTED
CLUSTER MAXIMUMS

IMPORTANT

Oversubscribing the physical resources on a node affects resource guarantees the
Kubernetes scheduler makes during pod placement. Learn what measures you can take
to avoid memory swapping.

Some of the tested maximums are stretched only in a single dimension. They will vary
when many objects are running on the cluster.

The numbers noted in this documentation are based on Red Hat’s test methodology,
setup, configuration, and tunings. These numbers can vary based on your own individual
setup and environments.

While planning your environment, determine how many pods are expected to fit per node:

required pods per cluster / pods per node = total number of nodes needed

The current maximum number of pods per node is 250. However, the number of pods that fit on a node
is dependent on the application itself. Consider the application’s memory, CPU, and storage
requirements, as described in How to plan your environment according to application requirements .

Example scenario

If you want to scope your cluster for 2200 pods per cluster, you would need at least five nodes,
assuming that there are 500 maximum pods per node:

2200 / 500 = 4.4

If you increase the number of nodes to 20, then the pod distribution changes to 110 pods per node:

2200 / 20 = 110

Where:

OpenShift Container Platform 4.10 Scalability and performance

92

required pods per cluster / total number of nodes = expected pods per node

8.4. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO
APPLICATION REQUIREMENTS

Consider an example application environment:

Pod type Pod quantity Max memory CPU cores Persistent
storage

apache 100 500 MB 0.5 1 GB

node.js 200 1 GB 1 1 GB

postgresql 100 1 GB 2 10 GB

JBoss EAP 100 1 GB 1 1 GB

Extrapolated requirements: 550 CPU cores, 450GB RAM, and 1.4TB storage.

Instance size for nodes can be modulated up or down, depending on your preference. Nodes are often
resource overcommitted. In this deployment scenario, you can choose to run additional smaller nodes or
fewer larger nodes to provide the same amount of resources. Factors such as operational agility and
cost-per-instance should be considered.

Node type Quantity CPUs RAM (GB)

Nodes (option 1) 100 4 16

Nodes (option 2) 50 8 32

Nodes (option 3) 25 16 64

Some applications lend themselves well to overcommitted environments, and some do not. Most Java
applications and applications that use huge pages are examples of applications that would not allow for
overcommitment. That memory can not be used for other applications. In the example above, the
environment would be roughly 30 percent overcommitted, a common ratio.

The application pods can access a service either by using environment variables or DNS. If using
environment variables, for each active service the variables are injected by the kubelet when a pod is run
on a node. A cluster-aware DNS server watches the Kubernetes API for new services and creates a set
of DNS records for each one. If DNS is enabled throughout your cluster, then all pods should
automatically be able to resolve services by their DNS name. Service discovery using DNS can be used in
case you must go beyond 5000 services. When using environment variables for service discovery, the
argument list exceeds the allowed length after 5000 services in a namespace, then the pods and
deployments will start failing. Disable the service links in the deployment’s service specification file to
overcome this:

CHAPTER 8. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS

93

apiVersion: template.openshift.io/v1
kind: Template
metadata:
 name: deployment-config-template
 creationTimestamp:
 annotations:
 description: This template will create a deploymentConfig with 1 replica, 4 env vars and a service.
 tags: ''
objects:
- apiVersion: apps.openshift.io/v1
 kind: DeploymentConfig
 metadata:
 name: deploymentconfig${IDENTIFIER}
 spec:
 template:
 metadata:
 labels:
 name: replicationcontroller${IDENTIFIER}
 spec:
 enableServiceLinks: false
 containers:
 - name: pause${IDENTIFIER}
 image: "${IMAGE}"
 ports:
 - containerPort: 8080
 protocol: TCP
 env:
 - name: ENVVAR1_${IDENTIFIER}
 value: "${ENV_VALUE}"
 - name: ENVVAR2_${IDENTIFIER}
 value: "${ENV_VALUE}"
 - name: ENVVAR3_${IDENTIFIER}
 value: "${ENV_VALUE}"
 - name: ENVVAR4_${IDENTIFIER}
 value: "${ENV_VALUE}"
 resources: {}
 imagePullPolicy: IfNotPresent
 capabilities: {}
 securityContext:
 capabilities: {}
 privileged: false
 restartPolicy: Always
 serviceAccount: ''
 replicas: 1
 selector:
 name: replicationcontroller${IDENTIFIER}
 triggers:
 - type: ConfigChange
 strategy:
 type: Rolling
- apiVersion: v1
 kind: Service
 metadata:
 name: service${IDENTIFIER}
 spec:
 selector:

OpenShift Container Platform 4.10 Scalability and performance

94

The number of application pods that can run in a namespace is dependent on the number of services
and the length of the service name when the environment variables are used for service discovery.
ARG_MAX on the system defines the maximum argument length for a new process and it is set to
2097152 KiB by default. The Kubelet injects environment variables in to each pod scheduled to run in
the namespace including:

<SERVICE_NAME>_SERVICE_HOST=<IP>

<SERVICE_NAME>_SERVICE_PORT=<PORT>

<SERVICE_NAME>_PORT=tcp://<IP>:<PORT>

<SERVICE_NAME>_PORT_<PORT>_TCP=tcp://<IP>:<PORT>

<SERVICE_NAME>_PORT_<PORT>_TCP_PROTO=tcp

<SERVICE_NAME>_PORT_<PORT>_TCP_PORT=<PORT>

<SERVICE_NAME>_PORT_<PORT>_TCP_ADDR=<ADDR>

The pods in the namespace will start to fail if the argument length exceeds the allowed value and the
number of characters in a service name impacts it. For example, in a namespace with 5000 services, the
limit on the service name is 33 characters, which enables you to run 5000 pods in the namespace.

 name: replicationcontroller${IDENTIFIER}
 ports:
 - name: serviceport${IDENTIFIER}
 protocol: TCP
 port: 80
 targetPort: 8080
 clusterIP: ''
 type: ClusterIP
 sessionAffinity: None
 status:
 loadBalancer: {}
parameters:
- name: IDENTIFIER
 description: Number to append to the name of resources
 value: '1'
 required: true
- name: IMAGE
 description: Image to use for deploymentConfig
 value: gcr.io/google-containers/pause-amd64:3.0
 required: false
- name: ENV_VALUE
 description: Value to use for environment variables
 generate: expression
 from: "[A-Za-z0-9]{255}"
 required: false
labels:
 template: deployment-config-template

CHAPTER 8. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS

95

CHAPTER 9. OPTIMIZING STORAGE
Optimizing storage helps to minimize storage use across all resources. By optimizing storage,
administrators help ensure that existing storage resources are working in an efficient manner.

9.1. AVAILABLE PERSISTENT STORAGE OPTIONS

Understand your persistent storage options so that you can optimize your OpenShift Container
Platform environment.

Table 9.1. Available storage options

Storage
type

Description Examples

Block
Presented to the operating system (OS) as
a block device

Suitable for applications that need full
control of storage and operate at a low
level on files bypassing the file system

Also referred to as a Storage Area Network
(SAN)

Non-shareable, which means that only one
client at a time can mount an endpoint of
this type

AWS EBS and VMware vSphere
support dynamic persistent volume
(PV) provisioning natively in OpenShift
Container Platform.

File
Presented to the OS as a file system export
to be mounted

Also referred to as Network Attached
Storage (NAS)

Concurrency, latency, file locking
mechanisms, and other capabilities vary
widely between protocols,
implementations, vendors, and scales.

RHEL NFS, NetApp NFS [1], and
Vendor NFS

Object
Accessible through a REST API endpoint

Configurable for use in the OpenShift
image registry

Applications must build their drivers into
the application and/or container.

AWS S3

1. NetApp NFS supports dynamic PV provisioning when using the Trident plugin.

IMPORTANT

OpenShift Container Platform 4.10 Scalability and performance

96

IMPORTANT

Currently, CNS is not supported in OpenShift Container Platform 4.10.

9.2. RECOMMENDED CONFIGURABLE STORAGE TECHNOLOGY

The following table summarizes the recommended and configurable storage technologies for the given
OpenShift Container Platform cluster application.

Table 9.2. Recommended and configurable storage technology

Storage
type

ROX1 RWX2 Registry Scaled
registry

Metrics3 Logging Apps

1 ReadOnlyMany

2 ReadWriteMany

3 Prometheus is the underlying technology used for metrics.

4 This does not apply to physical disk, VM physical disk, VMDK, loopback over NFS, AWS EBS, and Azure
Disk.

5 For metrics, using file storage with the ReadWriteMany (RWX) access mode is unreliable. If you use file
storage, do not configure the RWX access mode on any persistent volume claims (PVCs) that are
configured for use with metrics.

6 For logging, using any shared storage would be an anti-pattern. One volume per elasticsearch is
required.

7 Object storage is not consumed through OpenShift Container Platform’s PVs or PVCs. Apps must
integrate with the object storage REST API.

Block Yes4 No Configura
ble

Not
configura
ble

Recomme
nded

Recomme
nded

Recomme
nded

File Yes4 Yes Configura
ble

Configura
ble

Configura

ble5

Configura

ble6

Recomme
nded

Object Yes Yes Recomme
nded

Recomme
nded

Not
configura
ble

Not
configura
ble

Not
configura

ble7

NOTE

A scaled registry is an OpenShift image registry where two or more pod replicas are
running.

9.2.1. Specific application storage recommendations

CHAPTER 9. OPTIMIZING STORAGE

97

IMPORTANT

Testing shows issues with using the NFS server on Red Hat Enterprise Linux (RHEL) as
storage backend for core services. This includes the OpenShift Container Registry and
Quay, Prometheus for monitoring storage, and Elasticsearch for logging storage.
Therefore, using RHEL NFS to back PVs used by core services is not recommended.

Other NFS implementations on the marketplace might not have these issues. Contact
the individual NFS implementation vendor for more information on any testing that was
possibly completed against these OpenShift Container Platform core components.

9.2.1.1. Registry

In a non-scaled/high-availability (HA) OpenShift image registry cluster deployment:

The storage technology does not have to support RWX access mode.

The storage technology must ensure read-after-write consistency.

The preferred storage technology is object storage followed by block storage.

File storage is not recommended for OpenShift image registry cluster deployment with
production workloads.

9.2.1.2. Scaled registry

In a scaled/HA OpenShift image registry cluster deployment:

The storage technology must support RWX access mode.

The storage technology must ensure read-after-write consistency.

The preferred storage technology is object storage.

Red Hat OpenShift Data Foundation (ODF), Amazon Simple Storage Service (Amazon S3),
Google Cloud Storage (GCS), Microsoft Azure Blob Storage, and OpenStack Swift are
supported.

Object storage should be S3 or Swift compliant.

For non-cloud platforms, such as vSphere and bare metal installations, the only configurable
technology is file storage.

Block storage is not configurable.

9.2.1.3. Metrics

In an OpenShift Container Platform hosted metrics cluster deployment:

The preferred storage technology is block storage.

Object storage is not configurable.

IMPORTANT

OpenShift Container Platform 4.10 Scalability and performance

98

IMPORTANT

It is not recommended to use file storage for a hosted metrics cluster deployment with
production workloads.

9.2.1.4. Logging

In an OpenShift Container Platform hosted logging cluster deployment:

The preferred storage technology is block storage.

Object storage is not configurable.

9.2.1.5. Applications

Application use cases vary from application to application, as described in the following examples:

Storage technologies that support dynamic PV provisioning have low mount time latencies, and
are not tied to nodes to support a healthy cluster.

Application developers are responsible for knowing and understanding the storage
requirements for their application, and how it works with the provided storage to ensure that
issues do not occur when an application scales or interacts with the storage layer.

9.2.2. Other specific application storage recommendations

IMPORTANT

It is not recommended to use RAID configurations on Write intensive workloads, such as
etcd. If you are running etcd with a RAID configuration, you might be at risk of
encountering performance issues with your workloads.

Red Hat OpenStack Platform (RHOSP) Cinder: RHOSP Cinder tends to be adept in ROX
access mode use cases.

Databases: Databases (RDBMSs, NoSQL DBs, etc.) tend to perform best with dedicated block
storage.

The etcd database must have enough storage and adequate performance capacity to enable a
large cluster. Information about monitoring and benchmarking tools to establish ample storage
and a high-performance environment is described in Recommended etcd practices .

9.3. DATA STORAGE MANAGEMENT

The following table summarizes the main directories that OpenShift Container Platform components
write data to.

Table 9.3. Main directories for storing OpenShift Container Platform data

CHAPTER 9. OPTIMIZING STORAGE

99

Directory Notes Sizing Expected growth

/var/log Log files for all
components.

10 to 30 GB. Log files can grow
quickly; size can be
managed by growing
disks or by using log
rotate.

/var/lib/etcd Used for etcd storage
when storing the
database.

Less than 20 GB.

Database can grow up
to 8 GB.

Will grow slowly with the
environment. Only
storing metadata.

Additional 20-25 GB for
every additional 8 GB of
memory.

/var/lib/containers This is the mount point
for the CRI-O runtime.
Storage used for active
container runtimes,
including pods, and
storage of local images.
Not used for registry
storage.

50 GB for a node with 16
GB memory. Note that
this sizing should not be
used to determine
minimum cluster
requirements.

Additional 20-25 GB for
every additional 8 GB of
memory.

Growth is limited by
capacity for running
containers.

/var/lib/kubelet Ephemeral volume
storage for pods. This
includes anything
external that is mounted
into a container at
runtime. Includes
environment variables,
kube secrets, and data
volumes not backed by
persistent volumes.

Varies Minimal if pods requiring
storage are using
persistent volumes. If
using ephemeral
storage, this can grow
quickly.

Directory Notes Sizing Expected growth

9.4. OPTIMIZING STORAGE PERFORMANCE FOR MICROSOFT AZURE

OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is
recommended, particularly for etcd on the control plane nodes.

For production Azure clusters and clusters with intensive workloads, the virtual machine operating
system disk for control plane machines should be able to sustain a tested and recommended minimum
throughput of 5000 IOPS / 200MBps. This throughput can be provided by having a minimum of 1 TiB
Premium SSD (P30). In Azure and Azure Stack Hub, disk performance is directly dependent on SSD disk
sizes. To achieve the throughput supported by a Standard_D8s_v3 virtual machine, or other similar
machine types, and the target of 5000 IOPS, at least a P30 disk is required.

Host caching must be set to ReadOnly for low latency and high IOPS and throughput when reading

OpenShift Container Platform 4.10 Scalability and performance

100

Host caching must be set to ReadOnly for low latency and high IOPS and throughput when reading
data. Reading data from the cache, which is present either in the VM memory or in the local SSD disk, is
much faster than reading from the disk, which is in the blob storage.

CHAPTER 9. OPTIMIZING STORAGE

101

CHAPTER 10. OPTIMIZING ROUTING
The OpenShift Container Platform HAProxy router can be scaled or configured to optimize
performance.

10.1. BASELINE INGRESS CONTROLLER (ROUTER) PERFORMANCE

The OpenShift Container Platform Ingress Controller, or router, is the ingress point for ingress traffic for
applications and services that are configured using routes and ingresses.

When evaluating a single HAProxy router performance in terms of HTTP requests handled per second,
the performance varies depending on many factors. In particular:

HTTP keep-alive/close mode

Route type

TLS session resumption client support

Number of concurrent connections per target route

Number of target routes

Back end server page size

Underlying infrastructure (network/SDN solution, CPU, and so on)

While performance in your specific environment will vary, Red Hat lab tests on a public cloud instance of
size 4 vCPU/16GB RAM. A single HAProxy router handling 100 routes terminated by backends serving
1kB static pages is able to handle the following number of transactions per second.

In HTTP keep-alive mode scenarios:

Encryption LoadBalancerService HostNetwork

none 21515 29622

edge 16743 22913

passthrough 36786 53295

re-encrypt 21583 25198

In HTTP close (no keep-alive) scenarios:

Encryption LoadBalancerService HostNetwork

none 5719 8273

edge 2729 4069

OpenShift Container Platform 4.10 Scalability and performance

102

passthrough 4121 5344

re-encrypt 2320 2941

Encryption LoadBalancerService HostNetwork

The default Ingress Controller configuration was used with the spec.tuningOptions.threadCount field
set to 4. Two different endpoint publishing strategies were tested: Load Balancer Service and Host
Network. TLS session resumption was used for encrypted routes. With HTTP keep-alive, a single
HAProxy router is capable of saturating a 1 Gbit NIC at page sizes as small as 8 kB.

When running on bare metal with modern processors, you can expect roughly twice the performance of
the public cloud instance above. This overhead is introduced by the virtualization layer in place on public
clouds and holds mostly true for private cloud-based virtualization as well. The following table is a guide
to how many applications to use behind the router:

Number of applications Application type

5-10 static file/web server or caching proxy

100-1000 applications generating dynamic content

In general, HAProxy can support routes for up to 1000 applications, depending on the technology in use.
Ingress Controller performance might be limited by the capabilities and performance of the applications
behind it, such as language or static versus dynamic content.

Ingress, or router, sharding should be used to serve more routes towards applications and help
horizontally scale the routing tier.

For more information on Ingress sharding, see Configuring Ingress Controller sharding by using route
labels and Configuring Ingress Controller sharding by using namespace labels .

For more information on tuningOptions, see Ingress Controller configuration parameters .

You can modify the Ingress Controller deployment using the information provided in Setting Ingress
Controller thread count for threads and Ingress Controller configuration parameters for timeouts, and
other tuning configurations in the Ingress Controller specification.

CHAPTER 10. OPTIMIZING ROUTING

103

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-ingress-sharding-route-labels_configuring-ingress
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-ingress-sharding-namespace-labels_configuring-ingress
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-ingress-controller-configuration-parameters_configuring-ingress
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-ingress-setting-thread-count
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-ingress-controller-configuration-parameters_configuring-ingress

CHAPTER 11. OPTIMIZING NETWORKING
The OpenShift SDN uses OpenvSwitch, virtual extensible LAN (VXLAN) tunnels, OpenFlow rules, and
iptables. This network can be tuned by using jumbo frames, network interface controllers (NIC) offloads,
multi-queue, and ethtool settings.

OVN-Kubernetes uses Geneve (Generic Network Virtualization Encapsulation) instead of VXLAN as the
tunnel protocol.

VXLAN provides benefits over VLANs, such as an increase in networks from 4096 to over 16 million, and
layer 2 connectivity across physical networks. This allows for all pods behind a service to communicate
with each other, even if they are running on different systems.

VXLAN encapsulates all tunneled traffic in user datagram protocol (UDP) packets. However, this leads
to increased CPU utilization. Both these outer- and inner-packets are subject to normal checksumming
rules to guarantee data is not corrupted during transit. Depending on CPU performance, this additional
processing overhead can cause a reduction in throughput and increased latency when compared to
traditional, non-overlay networks.

Cloud, VM, and bare metal CPU performance can be capable of handling much more than one Gbps
network throughput. When using higher bandwidth links such as 10 or 40 Gbps, reduced performance
can occur. This is a known issue in VXLAN-based environments and is not specific to containers or
OpenShift Container Platform. Any network that relies on VXLAN tunnels will perform similarly because
of the VXLAN implementation.

If you are looking to push beyond one Gbps, you can:

Evaluate network plugins that implement different routing techniques, such as border gateway
protocol (BGP).

Use VXLAN-offload capable network adapters. VXLAN-offload moves the packet checksum
calculation and associated CPU overhead off of the system CPU and onto dedicated hardware
on the network adapter. This frees up CPU cycles for use by pods and applications, and allows
users to utilize the full bandwidth of their network infrastructure.

VXLAN-offload does not reduce latency. However, CPU utilization is reduced even in latency tests.

11.1. OPTIMIZING THE MTU FOR YOUR NETWORK

There are two important maximum transmission units (MTUs): the network interface controller (NIC)
MTU and the cluster network MTU.

The NIC MTU is only configured at the time of OpenShift Container Platform installation. The MTU
must be less than or equal to the maximum supported value of the NIC of your network. If you are
optimizing for throughput, choose the largest possible value. If you are optimizing for lowest latency,
choose a lower value.

The OpenShift SDN network plugin overlay MTU must be less than the NIC MTU by 50 bytes at a
minimum. This accounts for the SDN overlay header. So, on a normal ethernet network, this should be
set to 1450. On a jumbo frame ethernet network, this should be set to 8950. These values should be set
automatically by the Cluster Network Operator based on the NIC’s configured MTU. Therefore, cluster
administrators do not typically update these values. Amazon Web Services (AWS) and bare-metal
environments support jumbo frame ethernet networks. This setting will help throughput, especially with
transmission control protocol (TCP).

For OVN and Geneve, the MTU must be less than the NIC MTU by 100 bytes at a minimum.

OpenShift Container Platform 4.10 Scalability and performance

104

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#about-openshift-sdn
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#about-ovn-kubernetes

NOTE

This 50 byte overlay header is relevant to the OpenShift SDN network plugin. Other SDN
solutions might require the value to be more or less.

11.2. RECOMMENDED PRACTICES FOR INSTALLING LARGE SCALE
CLUSTERS

When installing large clusters or scaling the cluster to larger node counts, set the cluster network cidr
accordingly in your install-config.yaml file before you install the cluster:

The default cluster network cidr 10.128.0.0/14 cannot be used if the cluster size is more than 500
nodes. It must be set to 10.128.0.0/12 or 10.128.0.0/10 to get to larger node counts beyond 500 nodes.

11.3. IMPACT OF IPSEC

Because encrypting and decrypting node hosts uses CPU power, performance is affected both in
throughput and CPU usage on the nodes when encryption is enabled, regardless of the IP security
system being used.

IPSec encrypts traffic at the IP payload level, before it hits the NIC, protecting fields that would
otherwise be used for NIC offloading. This means that some NIC acceleration features might not be
usable when IPSec is enabled and will lead to decreased throughput and increased CPU usage.

Additional resources

Modifying advanced network configuration parameters

Configuration parameters for the OVN-Kubernetes default CNI network provider

Configuration parameters for the OpenShift SDN default CNI network provider

networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16

CHAPTER 11. OPTIMIZING NETWORKING

105

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#modifying-nwoperator-config-startup_installing-aws-network-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-operator-configuration-parameters-for-ovn-sdn_cluster-network-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-operator-configuration-parameters-for-openshift-sdn_cluster-network-operator

CHAPTER 12. MANAGING BARE METAL HOSTS
When you install OpenShift Container Platform on a bare metal cluster, you can provision and manage
bare metal nodes using machine and machineset custom resources (CRs) for bare metal hosts that
exist in the cluster.

12.1. ABOUT BARE METAL HOSTS AND NODES

To provision a Red Hat Enterprise Linux CoreOS (RHCOS) bare metal host as a node in your cluster, first
create a MachineSet custom resource (CR) object that corresponds to the bare metal host hardware.
Bare metal host machine sets describe infrastructure components specific to your configuration. You
apply specific Kubernetes labels to these machine sets and then update the infrastructure components
to run on only those machines.

Machine CR’s are created automatically when you scale up the relevant MachineSet containing a
metal3.io/autoscale-to-hosts annotation. OpenShift Container Platform uses Machine CR’s to
provision the bare metal node that corresponds to the host as specified in the MachineSet CR.

12.2. MAINTAINING BARE METAL HOSTS

You can maintain the details of the bare metal hosts in your cluster from the OpenShift Container
Platform web console. Navigate to Compute → Bare Metal Hosts, and select a task from the Actions
drop down menu. Here you can manage items such as BMC details, boot MAC address for the host,
enable power management, and so on. You can also review the details of the network interfaces and
drives for the host.

You can move a bare metal host into maintenance mode. When you move a host into maintenance
mode, the scheduler moves all managed workloads off the corresponding bare metal node. No new
workloads are scheduled while in maintenance mode.

You can deprovision a bare metal host in the web console. Deprovisioning a host does the following
actions:

1. Annotates the bare metal host CR with cluster.k8s.io/delete-machine: true

2. Scales down the related machine set

NOTE

Powering off the host without first moving the daemon set and unmanaged static pods
to another node can cause service disruption and loss of data.

Additional resources

Adding compute machines to bare metal

12.2.1. Adding a bare metal host to the cluster using the web console

You can add bare metal hosts to the cluster in the web console.

Prerequisites

Install an RHCOS cluster on bare metal.

OpenShift Container Platform 4.10 Scalability and performance

106

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/machine_management/#adding-bare-metal-compute-user-infra

Log in as a user with cluster-admin privileges.

Procedure

1. In the web console, navigate to Compute → Bare Metal Hosts.

2. Select Add Host → New with Dialog.

3. Specify a unique name for the new bare metal host.

4. Set the Boot MAC address.

5. Set the Baseboard Management Console (BMC) Address.

6. Enter the user credentials for the host’s baseboard management controller (BMC).

7. Select to power on the host after creation, and select Create.

8. Scale up the number of replicas to match the number of available bare metal hosts. Navigate to
Compute → MachineSets, and increase the number of machine replicas in the cluster by
selecting Edit Machine count from the Actions drop-down menu.

NOTE

You can also manage the number of bare metal nodes using the oc scale command and
the appropriate bare metal machine set.

12.2.2. Adding a bare metal host to the cluster using YAML in the web console

You can add bare metal hosts to the cluster in the web console using a YAML file that describes the
bare metal host.

Prerequisites

Install a RHCOS compute machine on bare metal infrastructure for use in the cluster.

Log in as a user with cluster-admin privileges.

Create a Secret CR for the bare metal host.

Procedure

1. In the web console, navigate to Compute → Bare Metal Hosts.

2. Select Add Host → New from YAML.

3. Copy and paste the below YAML, modifying the relevant fields with the details of your host:

apiVersion: metal3.io/v1alpha1
kind: BareMetalHost
metadata:
 name: <bare_metal_host_name>
spec:
 online: true
 bmc:

CHAPTER 12. MANAGING BARE METAL HOSTS

107

1

2

credentialsName must reference a valid Secret CR. The baremetal-operator cannot
manage the bare metal host without a valid Secret referenced in the credentialsName.
For more information about secrets and how to create them, see Understanding secrets .

Setting disableCertificateVerification to true disables TLS host validation between the
cluster and the baseboard management controller (BMC).

4. Select Create to save the YAML and create the new bare metal host.

5. Scale up the number of replicas to match the number of available bare metal hosts. Navigate to
Compute → MachineSets, and increase the number of machines in the cluster by selecting Edit
Machine count from the Actions drop-down menu.

NOTE

You can also manage the number of bare metal nodes using the oc scale
command and the appropriate bare metal machine set.

12.2.3. Automatically scaling machines to the number of available bare metal hosts

To automatically create the number of Machine objects that matches the number of available
BareMetalHost objects, add a metal3.io/autoscale-to-hosts annotation to the MachineSet object.

Prerequisites

Install RHCOS bare metal compute machines for use in the cluster, and create corresponding
BareMetalHost objects.

Install the OpenShift Container Platform CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Annotate the machine set that you want to configure for automatic scaling by adding the
metal3.io/autoscale-to-hosts annotation. Replace <machineset> with the name of the
machine set.

Wait for the new scaled machines to start.

NOTE

 address: <bmc_address>
 credentialsName: <secret_credentials_name> 1
 disableCertificateVerification: True 2
 bootMACAddress: <host_boot_mac_address>

$ oc annotate machineset <machineset> -n openshift-machine-api 'metal3.io/autoscale-to-
hosts=<any_value>'

OpenShift Container Platform 4.10 Scalability and performance

108

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/nodes/#nodes-pods-secrets-about_nodes-pods-secrets

NOTE

When you use a BareMetalHost object to create a machine in the cluster and labels or
selectors are subsequently changed on the BareMetalHost, the BareMetalHost object
continues be counted against the MachineSet that the Machine object was created
from.

12.2.4. Removing bare metal hosts from the provisioner node

In certain circumstances, you might want to temporarily remove bare metal hosts from the provisioner
node. For example, during provisioning when a bare metal host reboot is triggered by using the
OpenShift Container Platform administration console or as a result of a Machine Config Pool update,
OpenShift Container Platform logs into the integrated Dell Remote Access Controller (iDrac) and issues
a delete of the job queue.

To prevent the management of the number of Machine objects that matches the number of available
BareMetalHost objects, add a baremetalhost.metal3.io/detached annotation to the MachineSet
object.

NOTE

This annotation has an effect for only BareMetalHost objects that are in either
Provisioned, ExternallyProvisioned or Ready/Available state.

Prerequisites

Install RHCOS bare metal compute machines for use in the cluster and create corresponding
BareMetalHost objects.

Install the OpenShift Container Platform CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Annotate the compute machine set that you want to remove from the provisioner node by
adding the baremetalhost.metal3.io/detached annotation.

Wait for the new machines to start.

NOTE

When you use a BareMetalHost object to create a machine in the cluster and
labels or selectors are subsequently changed on the BareMetalHost, the
BareMetalHost object continues be counted against the MachineSet that the
Machine object was created from.

2. In the provisioning use case, remove the annotation after the reboot is complete by using the
following command:

$ oc annotate machineset <machineset> -n openshift-machine-api
'baremetalhost.metal3.io/detached'

CHAPTER 12. MANAGING BARE METAL HOSTS

109

Additional resources

Expanding the cluster

MachineHealthChecks on bare metal

$ oc annotate machineset <machineset> -n openshift-machine-api
'baremetalhost.metal3.io/detached-'

OpenShift Container Platform 4.10 Scalability and performance

110

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#ipi-install-expanding-the-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/machine_management/#machine-health-checks-bare-metal_deploying-machine-health-checks

CHAPTER 13. WHAT HUGE PAGES DO AND HOW THEY ARE
CONSUMED BY APPLICATIONS

13.1. WHAT HUGE PAGES DO

Memory is managed in blocks known as pages. On most systems, a page is 4Ki. 1Mi of memory is equal to
256 pages; 1Gi of memory is 256,000 pages, and so on. CPUs have a built-in memory management unit
that manages a list of these pages in hardware. The Translation Lookaside Buffer (TLB) is a small
hardware cache of virtual-to-physical page mappings. If the virtual address passed in a hardware
instruction can be found in the TLB, the mapping can be determined quickly. If not, a TLB miss occurs,
and the system falls back to slower, software-based address translation, resulting in performance issues.
Since the size of the TLB is fixed, the only way to reduce the chance of a TLB miss is to increase the
page size.

A huge page is a memory page that is larger than 4Ki. On x86_64 architectures, there are two common
huge page sizes: 2Mi and 1Gi. Sizes vary on other architectures. To use huge pages, code must be
written so that applications are aware of them. Transparent Huge Pages (THP) attempt to automate the
management of huge pages without application knowledge, but they have limitations. In particular, they
are limited to 2Mi page sizes. THP can lead to performance degradation on nodes with high memory
utilization or fragmentation due to defragmenting efforts of THP, which can lock memory pages. For this
reason, some applications may be designed to (or recommend) usage of pre-allocated huge pages
instead of THP.

In OpenShift Container Platform, applications in a pod can allocate and consume pre-allocated huge
pages.

13.2. HOW HUGE PAGES ARE CONSUMED BY APPS

Nodes must pre-allocate huge pages in order for the node to report its huge page capacity. A node can
only pre-allocate huge pages for a single size.

Huge pages can be consumed through container-level resource requirements using the resource name
hugepages-<size>, where size is the most compact binary notation using integer values supported on a
particular node. For example, if a node supports 2048KiB page sizes, it exposes a schedulable resource
hugepages-2Mi. Unlike CPU or memory, huge pages do not support over-commitment.

apiVersion: v1
kind: Pod
metadata:
 generateName: hugepages-volume-
spec:
 containers:
 - securityContext:
 privileged: true
 image: rhel7:latest
 command:
 - sleep
 - inf
 name: example
 volumeMounts:
 - mountPath: /dev/hugepages
 name: hugepage
 resources:
 limits:

CHAPTER 13. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS

111

1 Specify the amount of memory for hugepages as the exact amount to be allocated. Do not specify
this value as the amount of memory for hugepages multiplied by the size of the page. For
example, given a huge page size of 2MB, if you want to use 100MB of huge-page-backed RAM for
your application, then you would allocate 50 huge pages. OpenShift Container Platform handles
the math for you. As in the above example, you can specify 100MB directly.

Allocating huge pages of a specific size

Some platforms support multiple huge page sizes. To allocate huge pages of a specific size, precede the
huge pages boot command parameters with a huge page size selection parameter hugepagesz=<size>.
The <size> value must be specified in bytes with an optional scale suffix [kKmMgG]. The default huge
page size can be defined with the default_hugepagesz=<size> boot parameter.

Huge page requirements

Huge page requests must equal the limits. This is the default if limits are specified, but requests
are not.

Huge pages are isolated at a pod scope. Container isolation is planned in a future iteration.

EmptyDir volumes backed by huge pages must not consume more huge page memory than the
pod request.

Applications that consume huge pages via shmget() with SHM_HUGETLB must run with a
supplemental group that matches proc/sys/vm/hugetlb_shm_group.

13.3. CONSUMING HUGE PAGES RESOURCES USING THE
DOWNWARD API

You can use the Downward API to inject information about the huge pages resources that are consumed
by a container.

You can inject the resource allocation as environment variables, a volume plugin, or both. Applications
that you develop and run in the container can determine the resources that are available by reading the
environment variables or files in the specified volumes.

Procedure

1. Create a hugepages-volume-pod.yaml file that is similar to the following example:

 hugepages-2Mi: 100Mi 1
 memory: "1Gi"
 cpu: "1"
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

apiVersion: v1
kind: Pod
metadata:
 generateName: hugepages-volume-
 labels:
 app: hugepages-example

OpenShift Container Platform 4.10 Scalability and performance

112

<.> Specifies to read the resource use from requests.hugepages-1Gi and expose the value as
the REQUESTS_HUGEPAGES_1GI environment variable. <.> Specifies to read the resource
use from requests.hugepages-1Gi and expose the value as the file
/etc/podinfo/hugepages_1G_request.

2. Create the pod from the hugepages-volume-pod.yaml file:

Verification

1. Check the value of the REQUESTS_HUGEPAGES_1GI environment variable:

spec:
 containers:
 - securityContext:
 capabilities:
 add: ["IPC_LOCK"]
 image: rhel7:latest
 command:
 - sleep
 - inf
 name: example
 volumeMounts:
 - mountPath: /dev/hugepages
 name: hugepage
 - mountPath: /etc/podinfo
 name: podinfo
 resources:
 limits:
 hugepages-1Gi: 2Gi
 memory: "1Gi"
 cpu: "1"
 requests:
 hugepages-1Gi: 2Gi
 env:
 - name: REQUESTS_HUGEPAGES_1GI <.>
 valueFrom:
 resourceFieldRef:
 containerName: example
 resource: requests.hugepages-1Gi
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages
 - name: podinfo
 downwardAPI:
 items:
 - path: "hugepages_1G_request" <.>
 resourceFieldRef:
 containerName: example
 resource: requests.hugepages-1Gi
 divisor: 1Gi

$ oc create -f hugepages-volume-pod.yaml

CHAPTER 13. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS

113

Example output

2. Check the value of the /etc/podinfo/hugepages_1G_request file:

Example output

Additional resources

Allowing containers to consume Downward API objects

13.4. CONFIGURING HUGE PAGES

Nodes must pre-allocate huge pages used in an OpenShift Container Platform cluster. There are two
ways of reserving huge pages: at boot time and at run time. Reserving at boot time increases the
possibility of success because the memory has not yet been significantly fragmented. The Node Tuning
Operator currently supports boot time allocation of huge pages on specific nodes.

13.4.1. At boot time

Procedure

To minimize node reboots, the order of the steps below needs to be followed:

1. Label all nodes that need the same huge pages setting by a label.

2. Create a file with the following content and name it hugepages-tuned-boottime.yaml:

$ oc exec -it $(oc get pods -l app=hugepages-example -o
jsonpath='{.items[0].metadata.name}') \
 -- env | grep REQUESTS_HUGEPAGES_1GI

REQUESTS_HUGEPAGES_1GI=2147483648

$ oc exec -it $(oc get pods -l app=hugepages-example -o
jsonpath='{.items[0].metadata.name}') \
 -- cat /etc/podinfo/hugepages_1G_request

2

$ oc label node <node_using_hugepages> node-role.kubernetes.io/worker-hp=

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: hugepages 1
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile: 2
 - data: |
 [main]
 summary=Boot time configuration for hugepages
 include=openshift-node

OpenShift Container Platform 4.10 Scalability and performance

114

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/nodes/#nodes-containers-downward-api

1

2

3

4

Set the name of the Tuned resource to hugepages.

Set the profile section to allocate huge pages.

Note the order of parameters is important as some platforms support huge pages of
various sizes.

Enable machine config pool based matching.

3. Create the Tuned hugepages object

4. Create a file with the following content and name it hugepages-mcp.yaml:

5. Create the machine config pool:

Given enough non-fragmented memory, all the nodes in the worker-hp machine config pool should now
have 50 2Mi huge pages allocated.

NOTE

The TuneD bootloader plugin only supports Red Hat Enterprise Linux CoreOS (RHCOS)
worker nodes.

 [bootloader]
 cmdline_openshift_node_hugepages=hugepagesz=2M hugepages=50 3
 name: openshift-node-hugepages

 recommend:
 - machineConfigLabels: 4
 machineconfiguration.openshift.io/role: "worker-hp"
 priority: 30
 profile: openshift-node-hugepages

$ oc create -f hugepages-tuned-boottime.yaml

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 name: worker-hp
 labels:
 worker-hp: ""
spec:
 machineConfigSelector:
 matchExpressions:
 - {key: machineconfiguration.openshift.io/role, operator: In, values: [worker,worker-hp]}
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker-hp: ""

$ oc create -f hugepages-mcp.yaml

$ oc get node <node_using_hugepages> -o jsonpath="{.status.allocatable.hugepages-2Mi}"
100Mi

CHAPTER 13. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS

115

13.5. DISABLING TRANSPARENT HUGE PAGES

Transparent Huge Pages (THP) attempt to automate most aspects of creating, managing, and using
huge pages. Since THP automatically manages the huge pages, this is not always handled optimally for
all types of workloads. THP can lead to performance regressions, since many applications handle huge
pages on their own. Therefore, consider disabling THP. The following steps describe how to disable THP
using the Node Tuning Operator (NTO).

Procedure

1. Create a file with the following content and name it thp-disable-tuned.yaml:

2. Create the Tuned object:

3. Check the list of active profiles:

Verification

Log in to one of the nodes and do a regular THP check to verify if the nodes applied the profile
successfully:

Example output

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: thp-workers-profile
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=Custom tuned profile for OpenShift to turn off THP on worker nodes
 include=openshift-node

 [vm]
 transparent_hugepages=never
 name: openshift-thp-never-worker

 recommend:
 - match:
 - label: node-role.kubernetes.io/worker
 priority: 25
 profile: openshift-thp-never-worker

$ oc create -f thp-disable-tuned.yaml

$ oc get profile -n openshift-cluster-node-tuning-operator

$ cat /sys/kernel/mm/transparent_hugepage/enabled

always madvise [never]

OpenShift Container Platform 4.10 Scalability and performance

116

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW
LATENCY NODES

14.1. UNDERSTANDING LOW LATENCY

The emergence of Edge computing in the area of Telco / 5G plays a key role in reducing latency and
congestion problems and improving application performance.

Simply put, latency determines how fast data (packets) moves from the sender to receiver and returns
to the sender after processing by the receiver. Obviously, maintaining a network architecture with the
lowest possible delay of latency speeds is key for meeting the network performance requirements of
5G. Compared to 4G technology, with an average latency of 50ms, 5G is targeted to reach latency
numbers of 1ms or less. This reduction in latency boosts wireless throughput by a factor of 10.

Many of the deployed applications in the Telco space require low latency that can only tolerate zero
packet loss. Tuning for zero packet loss helps mitigate the inherent issues that degrade network
performance. For more information, see Tuning for Zero Packet Loss in Red Hat OpenStack Platform
(RHOSP).

The Edge computing initiative also comes in to play for reducing latency rates. Think of it as literally
being on the edge of the cloud and closer to the user. This greatly reduces the distance between the
user and distant data centers, resulting in reduced application response times and performance latency.

Administrators must be able to manage their many Edge sites and local services in a centralized way so
that all of the deployments can run at the lowest possible management cost. They also need an easy way
to deploy and configure certain nodes of their cluster for real-time low latency and high-performance
purposes. Low latency nodes are useful for applications such as Cloud-native Network Functions (CNF)
and Data Plane Development Kit (DPDK).

OpenShift Container Platform currently provides mechanisms to tune software on an OpenShift
Container Platform cluster for real-time running and low latency (around <20 microseconds reaction
time). This includes tuning the kernel and OpenShift Container Platform set values, installing a kernel,
and reconfiguring the machine. But this method requires setting up four different Operators and
performing many configurations that, when done manually, is complex and could be prone to mistakes.

OpenShift Container Platform provides a Performance Addon Operator to implement automatic tuning
to achieve low latency performance for OpenShift applications. The cluster administrator uses this
performance profile configuration that makes it easier to make these changes in a more reliable way.
The administrator can specify whether to update the kernel to kernel-rt, reserve CPUs for cluster and
operating system housekeeping duties, including pod infra containers, and isolate CPUs for application
containers to run the workloads.

14.1.1. About hyperthreading for low latency and real-time applications

Hyperthreading is an Intel processor technology that allows a physical CPU processor core to function
as two logical cores, executing two independent threads simultaneously. Hyperthreading allows for
better system throughput for certain workload types where parallel processing is beneficial. The default
OpenShift Container Platform configuration expects hyperthreading to be enabled by default.

For telecommunications applications, it is important to design your application infrastructure to
minimize latency as much as possible. Hyperthreading can slow performance times and negatively affect
throughput for compute intensive workloads that require low latency. Disabling hyperthreading ensures
predictable performance and can decrease processing times for these workloads.

NOTE

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

117

https://www.redhat.com/en/blog/tuning-zero-packet-loss-red-hat-openstack-platform-part-1

NOTE

Hyperthreading implementation and configuration differs depending on the hardware you
are running OpenShift Container Platform on. Consult the relevant host hardware tuning
information for more details of the hyperthreading implementation specific to that
hardware. Disabling hyperthreading can increase the cost per core of the cluster.

Additional resources

Configuring hyperthreading for a cluster

14.2. INSTALLING THE PERFORMANCE ADDON OPERATOR

Performance Addon Operator provides the ability to enable advanced node performance tunings on a
set of nodes. As a cluster administrator, you can install Performance Addon Operator using the
OpenShift Container Platform CLI or the web console.

14.2.1. Installing the Operator using the CLI

As a cluster administrator, you can install the Operator using the CLI.

Prerequisites

A cluster installed on bare-metal hardware.

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a namespace for the Performance Addon Operator by completing the following actions:

a. Create the following Namespace Custom Resource (CR) that defines the openshift-
performance-addon-operator namespace, and then save the YAML in the pao-
namespace.yaml file:

b. Create the namespace by running the following command:

2. Install the Performance Addon Operator in the namespace you created in the previous step by
creating the following objects:

a. Create the following OperatorGroup CR and save the YAML in the pao-
operatorgroup.yaml file:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-performance-addon-operator
 annotations:
 workload.openshift.io/allowed: management

$ oc create -f pao-namespace.yaml

OpenShift Container Platform 4.10 Scalability and performance

118

1

2

b. Create the OperatorGroup CR by running the following command:

c. Run the following command to get the channel value required for the next step.

Example output

d. Create the following Subscription CR and save the YAML in the pao-sub.yaml file:

Example Subscription

Specify the value from you obtained in the previous step for the
.status.defaultChannel parameter.

You must specify the redhat-operators value.

e. Create the Subscription object by running the following command:

f. Change to the openshift-performance-addon-operator project:

14.2.2. Installing the Performance Addon Operator using the web console

As a cluster administrator, you can install the Performance Addon Operator using the web console.

NOTE

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: openshift-performance-addon-operator
 namespace: openshift-performance-addon-operator

$ oc create -f pao-operatorgroup.yaml

$ oc get packagemanifest performance-addon-operator -n openshift-marketplace -o
jsonpath='{.status.defaultChannel}'

4.10

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-performance-addon-operator-subscription
 namespace: openshift-performance-addon-operator
spec:
 channel: "<channel>" 1
 name: performance-addon-operator
 source: redhat-operators 2
 sourceNamespace: openshift-marketplace

$ oc create -f pao-sub.yaml

$ oc project openshift-performance-addon-operator

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

119

NOTE

You must create the Namespace CR and OperatorGroup CR as mentioned in the
previous section.

Procedure

1. Install the Performance Addon Operator using the OpenShift Container Platform web console:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

b. Choose Performance Addon Operator from the list of available Operators, and then click
Install.

c. On the Install Operator page, select All namespaces on the cluster. Then, click Install.

2. Optional: Verify that the performance-addon-operator installed successfully:

a. Switch to the Operators → Installed Operators page.

b. Ensure that Performance Addon Operator is listed in the openshift-operators project
with a Status of Succeeded.

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with a Succeeded message, you can ignore the
Failed message.

If the Operator does not appear as installed, you can troubleshoot further:

Go to the Operators → Installed Operators page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

Go to the Workloads → Pods page and check the logs for pods in the openshift-
operators project.

14.3. UPGRADING PERFORMANCE ADDON OPERATOR

You can manually upgrade to the next minor version of Performance Addon Operator and monitor the
status of an update by using the web console.

14.3.1. About upgrading Performance Addon Operator

You can upgrade to the next minor version of Performance Addon Operator by using the
OpenShift Container Platform web console to change the channel of your Operator
subscription.

You can enable automatic z-stream updates during Performance Addon Operator installation.

Updates are delivered via the Marketplace Operator, which is deployed during OpenShift
Container Platform installation.The Marketplace Operator makes external Operators available
to your cluster.

The amount of time an update takes to complete depends on your network connection. Most

OpenShift Container Platform 4.10 Scalability and performance

120

The amount of time an update takes to complete depends on your network connection. Most
automatic updates complete within fifteen minutes.

14.3.1.1. How Performance Addon Operator upgrades affect your cluster

Neither the low latency tuning nor huge pages are affected.

Updating the Operator should not cause any unexpected reboots.

14.3.1.2. Upgrading Performance Addon Operator to the next minor version

You can manually upgrade Performance Addon Operator to the next minor version by using the
OpenShift Container Platform web console to change the channel of your Operator subscription.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Access the web console and navigate to Operators → Installed Operators.

2. Click Performance Addon Operator to open the Operator details page.

3. Click the Subscription tab to open the Subscription details page.

4. In the Update channel pane, click the pencil icon on the right side of the version number to
open the Change Subscription update channel window.

5. Select the next minor version. For example, if you want to upgrade to Performance Addon
Operator 4.10, select 4.10.

6. Click Save.

7. Check the status of the upgrade by navigating to Operators → Installed Operators. You can
also check the status by running the following oc command:

14.3.1.3. Upgrading Performance Addon Operator when previously installed to a specific
namespace

If you previously installed the Performance Addon Operator to a specific namespace on the cluster, for
example openshift-performance-addon-operator, modify the OperatorGroup object to remove the
targetNamespaces entry before upgrading.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in to the OpenShift cluster as a user with cluster-admin privileges.

Procedure

1. Edit the Performance Addon Operator OperatorGroup CR and remove the spec element that

$ oc get csv -n openshift-performance-addon-operator

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

121

1. Edit the Performance Addon Operator OperatorGroup CR and remove the spec element that
contains the targetNamespaces entry by running the following command:

2. Wait until the Operator Lifecycle Manager (OLM) processes the change.

3. Verify that the OperatorGroup CR change has been successfully applied. Check that the
OperatorGroup CR spec element has been removed:

4. Proceed with the Performance Addon Operator upgrade.

14.3.2. Monitoring upgrade status

The best way to monitor Performance Addon Operator upgrade status is to watch the
ClusterServiceVersion (CSV) PHASE. You can also monitor the CSV conditions in the web console or
by running the oc get csv command.

NOTE

The PHASE and conditions values are approximations that are based on available
information.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Install the OpenShift CLI (oc).

Procedure

1. Run the following command:

2. Review the output, checking the PHASE field. For example:

3. Run get csv again to verify the output:

Example output

$ oc patch operatorgroup -n openshift-performance-addon-operator openshift-performance-
addon-operator --type json -p '[{ "op": "remove", "path": "/spec" }]'

$ oc describe -n openshift-performance-addon-operator og openshift-performance-addon-
operator

$ oc get csv

VERSION REPLACES PHASE
4.10.0 performance-addon-operator.v4.10.0 Installing
4.8.0 Replacing

oc get csv

NAME DISPLAY VERSION REPLACES
PHASE

OpenShift Container Platform 4.10 Scalability and performance

122

14.4. PROVISIONING REAL-TIME AND LOW LATENCY WORKLOADS

Many industries and organizations need extremely high performance computing and might require low
and predictable latency, especially in the financial and telecommunications industries. For these
industries, with their unique requirements, OpenShift Container Platform provides a Performance
Addon Operator to implement automatic tuning to achieve low latency performance and consistent
response time for OpenShift Container Platform applications.

The cluster administrator can use this performance profile configuration to make these changes in a
more reliable way. The administrator can specify whether to update the kernel to kernel-rt (real-time),
reserve CPUs for cluster and operating system housekeeping duties, including pod infra containers, and
isolate CPUs for application containers to run the workloads.

WARNING

The usage of execution probes in conjunction with applications that require
guaranteed CPUs can cause latency spikes. It is recommended to use other probes,
such as a properly configured set of network probes, as an alternative.

14.4.1. Known limitations for real-time

NOTE

In most deployments, kernel-rt is supported only on worker nodes when you use a
standard cluster with three control plane nodes and three worker nodes. There are
exceptions for compact and single nodes on OpenShift Container Platform deployments.
For installations on a single node, kernel-rt is supported on the single control plane node.

To fully utilize the real-time mode, the containers must run with elevated privileges. See Set capabilities
for a Container for information on granting privileges.

OpenShift Container Platform restricts the allowed capabilities, so you might need to create a
SecurityContext as well.

NOTE

This procedure is fully supported with bare metal installations using Red Hat Enterprise
Linux CoreOS (RHCOS) systems.

Establishing the right performance expectations refers to the fact that the real-time kernel is not a
panacea. Its objective is consistent, low-latency determinism offering predictable response times. There
is some additional kernel overhead associated with the real-time kernel. This is due primarily to handling
hardware interruptions in separately scheduled threads. The increased overhead in some workloads
results in some degradation in overall throughput. The exact amount of degradation is very workload
dependent, ranging from 0% to 30%. However, it is the cost of determinism.

performance-addon-operator.v4.10.0 Performance Addon Operator 4.10.0 performance-
addon-operator.v4.8.0 Succeeded



CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

123

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-capabilities-for-a-container

14.4.2. Provisioning a worker with real-time capabilities

1. Install Performance Addon Operator to the cluster.

2. Optional: Add a node to the OpenShift Container Platform cluster. See Setting BIOS
parameters.

3. Add the label worker-rt to the worker nodes that require the real-time capability by using the
oc command.

4. Create a new machine config pool for real-time nodes:

Note that a machine config pool worker-rt is created for group of nodes that have the label
worker-rt.

5. Add the node to the proper machine config pool by using node role labels.

NOTE

You must decide which nodes are configured with real-time workloads. You could
configure all of the nodes in the cluster, or a subset of the nodes. The
Performance Addon Operator that expects all of the nodes are part of a
dedicated machine config pool. If you use all of the nodes, you must point the
Performance Addon Operator to the worker node role label. If you use a subset,
you must group the nodes into a new machine config pool.

6. Create the PerformanceProfile with the proper set of housekeeping cores and
realTimeKernel: enabled: true.

7. You must set machineConfigPoolSelector in PerformanceProfile:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 name: worker-rt
 labels:
 machineconfiguration.openshift.io/role: worker-rt
spec:
 machineConfigSelector:
 matchExpressions:
 - {
 key: machineconfiguration.openshift.io/role,
 operator: In,
 values: [worker, worker-rt],
 }
 paused: false
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker-rt: ""

 apiVersion: performance.openshift.io/v2
 kind: PerformanceProfile
 metadata:
 name: example-performanceprofile
 spec:

OpenShift Container Platform 4.10 Scalability and performance

124

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/8/html-single/tuning_guide/index#Setting_BIOS_parameters

8. Verify that a matching machine config pool exists with a label:

Example output

9. OpenShift Container Platform will start configuring the nodes, which might involve multiple
reboots. Wait for the nodes to settle. This can take a long time depending on the specific
hardware you use, but 20 minutes per node is expected.

10. Verify everything is working as expected.

14.4.3. Verifying the real-time kernel installation

Use this command to verify that the real-time kernel is installed:

Note the worker with the role worker-rt that contains the string 4.18.0-305.30.1.rt7.102.el8_4.x86_64
cri-o://1.23.0-99.rhaos4.10.gitc3131de.el8:

14.4.4. Creating a workload that works in real-time

Use the following procedures for preparing a workload that will use real-time capabilities.

Procedure

1. Create a pod with a QoS class of Guaranteed.

2. Optional: Disable CPU load balancing for DPDK.

3. Assign a proper node selector.

When writing your applications, follow the general recommendations described in Application tuning and

 ...
 realTimeKernel:
 enabled: true
 nodeSelector:
 node-role.kubernetes.io/worker-rt: ""
 machineConfigPoolSelector:
 machineconfiguration.openshift.io/role: worker-rt

$ oc describe mcp/worker-rt

Name: worker-rt
Namespace:
Labels: machineconfiguration.openshift.io/role=worker-rt

$ oc get node -o wide

NAME STATUS ROLES AGE VERSION INTERNAL-IP
EXTERNAL-IP OS-IMAGE KERNEL-VERSION
CONTAINER-RUNTIME
rt-worker-0.example.com Ready worker,worker-rt 5d17h v1.23.0
128.66.135.107 <none> Red Hat Enterprise Linux CoreOS 46.82.202008252340-0 (Ootpa)
4.18.0-305.30.1.rt7.102.el8_4.x86_64 cri-o://1.23.0-99.rhaos4.10.gitc3131de.el8
[...]

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

125

When writing your applications, follow the general recommendations described in Application tuning and
deployment.

14.4.5. Creating a pod with a QoS class of Guaranteed

Keep the following in mind when you create a pod that is given a QoS class of Guaranteed:

Every container in the pod must have a memory limit and a memory request, and they must be
the same.

Every container in the pod must have a CPU limit and a CPU request, and they must be the
same.

The following example shows the configuration file for a pod that has one container. The container has a
memory limit and a memory request, both equal to 200 MiB. The container has a CPU limit and a CPU
request, both equal to 1 CPU.

1. Create the pod:

2. View detailed information about the pod:

Example output

NOTE

apiVersion: v1
kind: Pod
metadata:
 name: qos-demo
 namespace: qos-example
spec:
 containers:
 - name: qos-demo-ctr
 image: <image-pull-spec>
 resources:
 limits:
 memory: "200Mi"
 cpu: "1"
 requests:
 memory: "200Mi"
 cpu: "1"

$ oc apply -f qos-pod.yaml --namespace=qos-example

$ oc get pod qos-demo --namespace=qos-example --output=yaml

spec:
 containers:
 ...
status:
 qosClass: Guaranteed

OpenShift Container Platform 4.10 Scalability and performance

126

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/8/html-single/tuning_guide/index#chap-Application_Tuning_and_Deployment

NOTE

If a container specifies its own memory limit, but does not specify a memory
request, OpenShift Container Platform automatically assigns a memory request
that matches the limit. Similarly, if a container specifies its own CPU limit, but
does not specify a CPU request, OpenShift Container Platform automatically
assigns a CPU request that matches the limit.

14.4.6. Optional: Disabling CPU load balancing for DPDK

Functionality to disable or enable CPU load balancing is implemented on the CRI-O level. The code
under the CRI-O disables or enables CPU load balancing only when the following requirements are met.

The pod must use the performance-<profile-name> runtime class. You can get the proper
name by looking at the status of the performance profile, as shown here:

The pod must have the cpu-load-balancing.crio.io: true annotation.

The Performance Addon Operator is responsible for the creation of the high-performance runtime
handler config snippet under relevant nodes and for creation of the high-performance runtime class
under the cluster. It will have the same content as default runtime handler except it enables the CPU
load balancing configuration functionality.

To disable the CPU load balancing for the pod, the Pod specification must include the following fields:

NOTE

Only disable CPU load balancing when the CPU manager static policy is enabled and for
pods with guaranteed QoS that use whole CPUs. Otherwise, disabling CPU load
balancing can affect the performance of other containers in the cluster.

14.4.7. Assigning a proper node selector

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
...
status:
 ...
 runtimeClass: performance-manual

apiVersion: v1
kind: Pod
metadata:
 ...
 annotations:
 ...
 cpu-load-balancing.crio.io: "disable"
 ...
 ...
spec:
 ...
 runtimeClassName: performance-<profile_name>
 ...

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

127

The preferred way to assign a pod to nodes is to use the same node selector the performance profile
used, as shown here:

For more information, see Placing pods on specific nodes using node selectors .

14.4.8. Scheduling a workload onto a worker with real-time capabilities

Use label selectors that match the nodes attached to the machine config pool that was configured for
low latency by the Performance Addon Operator. For more information, see Assigning pods to nodes .

14.4.9. Managing device interrupt processing for guaranteed pod isolated CPUs

The Performance Addon Operator can manage host CPUs by dividing them into reserved CPUs for
cluster and operating system housekeeping duties, including pod infra containers, and isolated CPUs for
application containers to run the workloads. This allows you to set CPUs for low latency workloads as
isolated.

Device interrupts are load balanced between all isolated and reserved CPUs to avoid CPUs being
overloaded, with the exception of CPUs where there is a guaranteed pod running. Guaranteed pod
CPUs are prevented from processing device interrupts when the relevant annotations are set for the
pod.

In the performance profile, globallyDisableIrqLoadBalancing is used to manage whether device
interrupts are processed or not. For certain workloads the reserved CPUs are not always sufficient for
dealing with device interrupts, and for this reason, device interrupts are not globally disabled on the
isolated CPUs. By default, Performance Addon Operator does not disable device interrupts on isolated
CPUs.

To achieve low latency for workloads, some (but not all) pods require the CPUs they are running on to
not process device interrupts. A pod annotation, irq-load-balancing.crio.io, is used to define whether
device interrupts are processed or not. When configured, CRI-O disables device interrupts only as long
as the pod is running.

14.4.9.1. Disabling CPU CFS quota

To reduce CPU throttling for individual guaranteed pods, create a pod specification with the annotation
cpu-quota.crio.io: "disable". This annotation disables the CPU completely fair scheduler (CFS) quota
at the pod run time. The following pod specification contains this annotation:

apiVersion: v1
kind: Pod
metadata:
 name: example
spec:
 # ...
 nodeSelector:
 node-role.kubernetes.io/worker-rt: ""

apiVersion: performance.openshift.io/v2
kind: Pod
metadata:
 annotations:
 cpu-quota.crio.io: "disable"

OpenShift Container Platform 4.10 Scalability and performance

128

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/index#nodes-scheduler-node-selectors
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

NOTE

Only disable CPU CFS quota when the CPU manager static policy is enabled and for
pods with guaranteed QoS that use whole CPUs. Otherwise, disabling CPU CFS quota
can affect the performance of other containers in the cluster.

14.4.9.2. Disabling global device interrupts handling in Performance Addon Operator

To configure Performance Addon Operator to disable global device interrupts for the isolated CPU set,
set the globallyDisableIrqLoadBalancing field in the performance profile to true. When true,
conflicting pod annotations are ignored. When false, IRQ loads are balanced across all CPUs.

A performance profile snippet illustrates this setting:

14.4.9.3. Disabling interrupt processing for individual pods

To disable interrupt processing for individual pods, ensure that globallyDisableIrqLoadBalancing is
set to false in the performance profile. Then, in the pod specification, set the irq-load-balancing.crio.io
pod annotation to disable. The following pod specification contains this annotation:

14.4.10. Upgrading the performance profile to use device interrupt processing

When you upgrade the Performance Addon Operator performance profile custom resource definition
(CRD) from v1 or v1alpha1 to v2, globallyDisableIrqLoadBalancing is set to true on existing profiles.

NOTE

globallyDisableIrqLoadBalancing toggles whether IRQ load balancing will be disabled
for the Isolated CPU set. When the option is set to true it disables IRQ load balancing for
the Isolated CPU set. Setting the option to false allows the IRQs to be balanced across all
CPUs.

spec:
 runtimeClassName: performance-<profile_name>
...

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: manual
spec:
 globallyDisableIrqLoadBalancing: true
...

apiVersion: performance.openshift.io/v2
kind: Pod
metadata:
 annotations:
 irq-load-balancing.crio.io: "disable"
spec:
 runtimeClassName: performance-<profile_name>
...

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

129

14.4.10.1. Supported API Versions

The Performance Addon Operator supports v2, v1, and v1alpha1 for the performance profile
apiVersion field. The v1 and v1alpha1 APIs are identical. The v2 API includes an optional boolean field
globallyDisableIrqLoadBalancing with a default value of false.

14.4.10.1.1. Upgrading Performance Addon Operator API from v1alpha1 to v1

When upgrading Performance Addon Operator API version from v1alpha1 to v1, the v1alpha1 performance
profiles are converted on-the-fly using a "None" Conversion strategy and served to the Performance
Addon Operator with API version v1.

14.4.10.1.2. Upgrading Performance Addon Operator API from v1alpha1 or v1 to v2

When upgrading from an older Performance Addon Operator API version, the existing v1 and v1alpha1
performance profiles are converted using a conversion webhook that injects the
globallyDisableIrqLoadBalancing field with a value of true.

14.4.11. Configuring a node for IRQ dynamic load balancing

To configure a cluster node to handle IRQ dynamic load balancing, do the following:

1. Log in to the OpenShift Container Platform cluster as a user with cluster-admin privileges.

2. Set the performance profile apiVersion to use performance.openshift.io/v2.

3. Remove the globallyDisableIrqLoadBalancing field or set it to false.

4. Set the appropriate isolated and reserved CPUs. The following snippet illustrates a profile that
reserves 2 CPUs. IRQ load-balancing is enabled for pods running on the isolated CPU set:

NOTE

When you configure reserved and isolated CPUs, the infra containers in pods use
the reserved CPUs and the application containers use the isolated CPUs.

5. Create the pod that uses exclusive CPUs, and set irq-load-balancing.crio.io and cpu-
quota.crio.io annotations to disable. For example:

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: dynamic-irq-profile
spec:
 cpu:
 isolated: 2-5
 reserved: 0-1
...

apiVersion: v1
kind: Pod
metadata:
 name: dynamic-irq-pod
 annotations:

OpenShift Container Platform 4.10 Scalability and performance

130

6. Enter the pod runtimeClassName in the form performance-<profile_name>, where
<profile_name> is the name from the PerformanceProfile YAML, in this example, performance-
dynamic-irq-profile.

7. Set the node selector to target a cnf-worker.

8. Ensure the pod is running correctly. Status should be running, and the correct cnf-worker node
should be set:

Expected output

9. Get the CPUs that the pod configured for IRQ dynamic load balancing runs on:

Expected output

10. Ensure the node configuration is applied correctly. SSH into the node to verify the
configuration.

Expected output

 irq-load-balancing.crio.io: "disable"
 cpu-quota.crio.io: "disable"
spec:
 containers:
 - name: dynamic-irq-pod
 image: "registry.redhat.io/openshift4/cnf-tests-rhel8:v4.10"
 command: ["sleep", "10h"]
 resources:
 requests:
 cpu: 2
 memory: "200M"
 limits:
 cpu: 2
 memory: "200M"
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""
 runtimeClassName: performance-dynamic-irq-profile
...

$ oc get pod -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
dynamic-irq-pod 1/1 Running 0 5h33m <ip-address> <node-name> <none>
<none>

$ oc exec -it dynamic-irq-pod -- /bin/bash -c "grep Cpus_allowed_list /proc/self/status | awk
'{print $2}'"

Cpus_allowed_list: 2-3

$ oc debug node/<node-name>

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

131

11. Verify that you can use the node file system:

Expected output

12. Ensure the default system CPU affinity mask does not include the dynamic-irq-pod CPUs, for
example, CPUs 2 and 3.

Example output

13. Ensure the system IRQs are not configured to run on the dynamic-irq-pod CPUs:

Example output

Starting pod/<node-name>-debug ...
To use host binaries, run `chroot /host`

Pod IP: <ip-address>
If you don't see a command prompt, try pressing enter.

sh-4.4#

sh-4.4# chroot /host

sh-4.4#

$ cat /proc/irq/default_smp_affinity

33

find /proc/irq/ -name smp_affinity_list -exec sh -c 'i="$1"; mask=$(cat $i); file=$(echo $i); echo
$file: $mask' _ {} \;

/proc/irq/0/smp_affinity_list: 0-5
/proc/irq/1/smp_affinity_list: 5
/proc/irq/2/smp_affinity_list: 0-5
/proc/irq/3/smp_affinity_list: 0-5
/proc/irq/4/smp_affinity_list: 0
/proc/irq/5/smp_affinity_list: 0-5
/proc/irq/6/smp_affinity_list: 0-5
/proc/irq/7/smp_affinity_list: 0-5
/proc/irq/8/smp_affinity_list: 4
/proc/irq/9/smp_affinity_list: 4
/proc/irq/10/smp_affinity_list: 0-5
/proc/irq/11/smp_affinity_list: 0
/proc/irq/12/smp_affinity_list: 1
/proc/irq/13/smp_affinity_list: 0-5
/proc/irq/14/smp_affinity_list: 1
/proc/irq/15/smp_affinity_list: 0
/proc/irq/24/smp_affinity_list: 1
/proc/irq/25/smp_affinity_list: 1
/proc/irq/26/smp_affinity_list: 1
/proc/irq/27/smp_affinity_list: 5

OpenShift Container Platform 4.10 Scalability and performance

132

Some IRQ controllers do not support IRQ re-balancing and will always expose all online CPUs as the IRQ
mask. These IRQ controllers effectively run on CPU 0. For more information on the host configuration,
SSH into the host and run the following, replacing <irq-num> with the CPU number that you want to
query:

14.4.12. Configuring hyperthreading for a cluster

To configure hyperthreading for an OpenShift Container Platform cluster, set the CPU threads in the
performance profile to the same cores that are configured for the reserved or isolated CPU pools.

NOTE

If you configure a performance profile, and subsequently change the hyperthreading
configuration for the host, ensure that you update the CPU isolated and reserved fields
in the PerformanceProfile YAML to match the new configuration.

WARNING

Disabling a previously enabled host hyperthreading configuration can cause the
CPU core IDs listed in the PerformanceProfile YAML to be incorrect. This incorrect
configuration can cause the node to become unavailable because the listed CPUs
can no longer be found.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Install the OpenShift CLI (oc).

Procedure

1. Ascertain which threads are running on what CPUs for the host you want to configure.
You can view which threads are running on the host CPUs by logging in to the cluster and
running the following command:

Example output

/proc/irq/28/smp_affinity_list: 1
/proc/irq/29/smp_affinity_list: 0
/proc/irq/30/smp_affinity_list: 0-5

$ cat /proc/irq/<irq-num>/effective_affinity



$ lscpu --all --extended

CPU NODE SOCKET CORE L1d:L1i:L2:L3 ONLINE MAXMHZ MINMHZ
0 0 0 0 0:0:0:0 yes 4800.0000 400.0000
1 0 0 1 1:1:1:0 yes 4800.0000 400.0000

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

133

In this example, there are eight logical CPU cores running on four physical CPU cores. CPU0
and CPU4 are running on physical Core0, CPU1 and CPU5 are running on physical Core 1, and so
on.

Alternatively, to view the threads that are set for a particular physical CPU core (cpu0 in the
example below), open a command prompt and run the following:

Example output

2. Apply the isolated and reserved CPUs in the PerformanceProfile YAML. For example, you can
set logical cores CPU0 and CPU4 as isolated, and logical cores CPU1 to CPU3 and CPU5 to
CPU7 as reserved. When you configure reserved and isolated CPUs, the infra containers in
pods use the reserved CPUs and the application containers use the isolated CPUs.

NOTE

The reserved and isolated CPU pools must not overlap and together must span
all available cores in the worker node.

IMPORTANT

Hyperthreading is enabled by default on most Intel processors. If you enable
hyperthreading, all threads processed by a particular core must be isolated or processed
on the same core.

14.4.12.1. Disabling hyperthreading for low latency applications

When configuring clusters for low latency processing, consider whether you want to disable
hyperthreading before you deploy the cluster. To disable hyperthreading, do the following:

1. Create a performance profile that is appropriate for your hardware and topology.

2. Set nosmt as an additional kernel argument. The following example performance profile
illustrates this setting:

2 0 0 2 2:2:2:0 yes 4800.0000 400.0000
3 0 0 3 3:3:3:0 yes 4800.0000 400.0000
4 0 0 0 0:0:0:0 yes 4800.0000 400.0000
5 0 0 1 1:1:1:0 yes 4800.0000 400.0000
6 0 0 2 2:2:2:0 yes 4800.0000 400.0000
7 0 0 3 3:3:3:0 yes 4800.0000 400.0000

$ cat /sys/devices/system/cpu/cpu0/topology/thread_siblings_list

0-4

...
 cpu:
 isolated: 0,4
 reserved: 1-3,5-7
...

​apiVersion: performance.openshift.io/v2

OpenShift Container Platform 4.10 Scalability and performance

134

NOTE

When you configure reserved and isolated CPUs, the infra containers in pods use
the reserved CPUs and the application containers use the isolated CPUs.

14.5. TUNING NODES FOR LOW LATENCY WITH THE PERFORMANCE
PROFILE

The performance profile lets you control latency tuning aspects of nodes that belong to a certain
machine config pool. After you specify your settings, the PerformanceProfile object is compiled into
multiple objects that perform the actual node level tuning:

A MachineConfig file that manipulates the nodes.

A KubeletConfig file that configures the Topology Manager, the CPU Manager, and the
OpenShift Container Platform nodes.

The Tuned profile that configures the Node Tuning Operator.

You can use a performance profile to specify whether to update the kernel to kernel-rt, to allocate huge
pages, and to partition the CPUs for performing housekeeping duties or running workloads.

NOTE

You can manually create the PerformanceProfile object or use the Performance Profile
Creator (PPC) to generate a performance profile. See the additional resources below for
more information on the PPC.

kind: PerformanceProfile
metadata:
 name: example-performanceprofile
spec:
 additionalKernelArgs:
 - nmi_watchdog=0
 - audit=0
 - mce=off
 - processor.max_cstate=1
 - idle=poll
 - intel_idle.max_cstate=0
 - nosmt
 cpu:
 isolated: 2-3
 reserved: 0-1
 hugepages:
 defaultHugepagesSize: 1G
 pages:
 - count: 2
 node: 0
 size: 1G
 nodeSelector:
 node-role.kubernetes.io/performance: ''
 realTimeKernel:
 enabled: true

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

135

1

2

3

4

5

Sample performance profile

Use this field to isolate specific CPUs to use with application containers for workloads. Set an even
number of isolated CPUs to enable the pods to run without errors when hyperthreading is enabled.

Use this field to reserve specific CPUs to use with infra containers for housekeeping.

Use this field to install the real-time kernel on the node. Valid values are true or false. Setting the
true value installs the real-time kernel.

Use this field to configure the topology manager policy. Valid values are none (default), best-
effort, restricted, and single-numa-node. For more information, see Topology Manager Policies .

Use this field to specify a node selector to apply the performance profile to specific nodes.

Additional resources

For information on using the Performance Profile Creator (PPC) to generate a performance
profile, see Creating a performance profile .

14.5.1. Configuring huge pages

Nodes must pre-allocate huge pages used in an OpenShift Container Platform cluster. Use the
Performance Addon Operator to allocate huge pages on a specific node.

OpenShift Container Platform provides a method for creating and allocating huge pages. Performance
Addon Operator provides an easier method for doing this using the performance profile.

For example, in the hugepages pages section of the performance profile, you can specify multiple
blocks of size, count, and, optionally, node:

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: performance
spec:
 cpu:
 isolated: "4-15" 1
 reserved: "0-3" 2
 hugepages:
 defaultHugepagesSize: "1G"
 pages:
 - size: "1G"
 count: 16
 node: 0
 realTimeKernel:
 enabled: true 3
 numa: 4
 topologyPolicy: "best-effort"
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: "" 5

hugepages:

OpenShift Container Platform 4.10 Scalability and performance

136

https://kubernetes.io/docs/tasks/administer-cluster/topology-manager/#topology-manager-policies
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#cnf-create-performance-profiles

1 node is the NUMA node in which the huge pages are allocated. If you omit node, the pages are
evenly spread across all NUMA nodes.

NOTE

Wait for the relevant machine config pool status that indicates the update is finished.

These are the only configuration steps you need to do to allocate huge pages.

Verification

To verify the configuration, see the /proc/meminfo file on the node:

Example output

Use oc describe to report the new size:

Example output

14.5.2. Allocating multiple huge page sizes

You can request huge pages with different sizes under the same container. This allows you to define
more complicated pods consisting of containers with different huge page size needs.

For example, you can define sizes 1G and 2M and the Performance Addon Operator will configure both
sizes on the node, as shown here:

 defaultHugepagesSize: "1G"
 pages:
 - size: "1G"
 count: 4
 node: 0 1

$ oc debug node/ip-10-0-141-105.ec2.internal

grep -i huge /proc/meminfo

AnonHugePages: ###### ##
ShmemHugePages: 0 kB
HugePages_Total: 2
HugePages_Free: 2
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: #### ##
Hugetlb: #### ##

$ oc describe node worker-0.ocp4poc.example.com | grep -i huge

 hugepages-1g=true
 hugepages-###: ###
 hugepages-###: ###

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

137

14.5.3. Restricting CPUs for infra and application containers

Generic housekeeping and workload tasks use CPUs in a way that may impact latency-sensitive
processes. By default, the container runtime uses all online CPUs to run all containers together, which
can result in context switches and spikes in latency. Partitioning the CPUs prevents noisy processes
from interfering with latency-sensitive processes by separating them from each other. The following
table describes how processes run on a CPU after you have tuned the node using the Performance
Add-On Operator:

Table 14.1. Process' CPU assignments

Process type Details

Burstable and BestEffort pods Runs on any CPU except where low latency workload
is running

Infrastructure pods Runs on any CPU except where low latency workload
is running

Interrupts Redirects to reserved CPUs (optional in OpenShift
Container Platform 4.7 and later)

Kernel processes Pins to reserved CPUs

Latency-sensitive workload pods Pins to a specific set of exclusive CPUs from the
isolated pool

OS processes/systemd services Pins to reserved CPUs

The allocatable capacity of cores on a node for pods of all QoS process types, Burstable, BestEffort, or
Guaranteed, is equal to the capacity of the isolated pool. The capacity of the reserved pool is removed
from the node’s total core capacity for use by the cluster and operating system housekeeping duties.

Example 1

A node features a capacity of 100 cores. Using a performance profile, the cluster administrator allocates
50 cores to the isolated pool and 50 cores to the reserved pool. The cluster administrator assigns 25
cores to QoS Guaranteed pods and 25 cores for BestEffort or Burstable pods. This matches the
capacity of the isolated pool.

Example 2

spec:
 hugepages:
 defaultHugepagesSize: 1G
 pages:
 - count: 1024
 node: 0
 size: 2M
 - count: 4
 node: 1
 size: 1G

OpenShift Container Platform 4.10 Scalability and performance

138

A node features a capacity of 100 cores. Using a performance profile, the cluster administrator allocates
50 cores to the isolated pool and 50 cores to the reserved pool. The cluster administrator assigns 50
cores to QoS Guaranteed pods and one core for BestEffort or Burstable pods. This exceeds the
capacity of the isolated pool by one core. Pod scheduling fails because of insufficient CPU capacity.

The exact partitioning pattern to use depends on many factors like hardware, workload characteristics
and the expected system load. Some sample use cases are as follows:

If the latency-sensitive workload uses specific hardware, such as a network interface controller
(NIC), ensure that the CPUs in the isolated pool are as close as possible to this hardware. At a
minimum, you should place the workload in the same Non-Uniform Memory Access (NUMA)
node.

The reserved pool is used for handling all interrupts. When depending on system networking,
allocate a sufficiently-sized reserve pool to handle all the incoming packet interrupts. In 4.10 and
later versions, workloads can optionally be labeled as sensitive.

The decision regarding which specific CPUs should be used for reserved and isolated partitions requires
detailed analysis and measurements. Factors like NUMA affinity of devices and memory play a role. The
selection also depends on the workload architecture and the specific use case.

IMPORTANT

The reserved and isolated CPU pools must not overlap and together must span all
available cores in the worker node.

To ensure that housekeeping tasks and workloads do not interfere with each other, specify two groups
of CPUs in the spec section of the performance profile.

isolated - Specifies the CPUs for the application container workloads. These CPUs have the
lowest latency. Processes in this group have no interruptions and can, for example, reach much
higher DPDK zero packet loss bandwidth.

reserved - Specifies the CPUs for the cluster and operating system housekeeping duties.
Threads in the reserved group are often busy. Do not run latency-sensitive applications in the
reserved group. Latency-sensitive applications run in the isolated group.

Procedure

1. Create a performance profile appropriate for the environment’s hardware and topology.

2. Add the reserved and isolated parameters with the CPUs you want reserved and isolated for
the infra and application containers:

​apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: infra-cpus
spec:
 cpu:
 reserved: "0-4,9" 1
 isolated: "5-8" 2
 nodeSelector: 3
 node-role.kubernetes.io/worker: ""

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

139

1

2

3

Specify which CPUs are for infra containers to perform cluster and operating system
housekeeping duties.

Specify which CPUs are for application containers to run workloads.

Optional: Specify a node selector to apply the performance profile to specific nodes.

Additional resources

Managing device interrupt processing for guaranteed pod isolated CPUs

Create a pod that gets assigned a QoS class of Guaranteed

14.6. REDUCING NIC QUEUES USING THE PERFORMANCE ADDON
OPERATOR

The Performance Addon Operator allows you to adjust the network interface controller (NIC) queue
count for each network device by configuring the performance profile. Device network queues allows the
distribution of packets among different physical queues and each queue gets a separate thread for
packet processing.

In real-time or low latency systems, all the unnecessary interrupt request lines (IRQs) pinned to the
isolated CPUs must be moved to reserved or housekeeping CPUs.

In deployments with applications that require system, OpenShift Container Platform networking or in
mixed deployments with Data Plane Development Kit (DPDK) workloads, multiple queues are needed to
achieve good throughput and the number of NIC queues should be adjusted or remain unchanged. For
example, to achieve low latency the number of NIC queues for DPDK based workloads should be
reduced to just the number of reserved or housekeeping CPUs.

Too many queues are created by default for each CPU and these do not fit into the interrupt tables for
housekeeping CPUs when tuning for low latency. Reducing the number of queues makes proper tuning
possible. Smaller number of queues means a smaller number of interrupts that then fit in the IRQ table.

14.6.1. Adjusting the NIC queues with the performance profile

The performance profile lets you adjust the queue count for each network device.

Supported network devices:

Non-virtual network devices

Network devices that support multiple queues (channels)

Unsupported network devices:

Pure software network interfaces

Block devices

Intel DPDK virtual functions

Prerequisites

OpenShift Container Platform 4.10 Scalability and performance

140

https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/#create-a-pod-that-gets-assigned-a-qos-class-of-guaranteed

Access to the cluster as a user with the cluster-admin role.

Install the OpenShift CLI (oc).

Procedure

1. Log in to the OpenShift Container Platform cluster running the Performance Addon Operator
as a user with cluster-admin privileges.

2. Create and apply a performance profile appropriate for your hardware and topology. For
guidance on creating a profile, see the "Creating a performance profile" section.

3. Edit this created performance profile:

4. Populate the spec field with the net object. The object list can contain two fields:

userLevelNetworking is a required field specified as a boolean flag. If
userLevelNetworking is true, the queue count is set to the reserved CPU count for all
supported devices. The default is false.

devices is an optional field specifying a list of devices that will have the queues set to the
reserved CPU count. If the device list is empty, the configuration applies to all network
devices. The configuration is as follows:

interfaceName: This field specifies the interface name, and it supports shell-style
wildcards, which can be positive or negative.

Example wildcard syntax is as follows: <string> .*

Negative rules are prefixed with an exclamation mark. To apply the net queue
changes to all devices other than the excluded list, use !<device>, for example,
!eno1.

vendorID: The network device vendor ID represented as a 16-bit hexadecimal number
with a 0x prefix.

deviceID: The network device ID (model) represented as a 16-bit hexadecimal number
with a 0x prefix.

NOTE

When a deviceID is specified, the vendorID must also be defined. A
device that matches all of the device identifiers specified in a device
entry interfaceName, vendorID, or a pair of vendorID plus deviceID
qualifies as a network device. This network device then has its net queues
count set to the reserved CPU count.

When two or more devices are specified, the net queues count is set to
any net device that matches one of them.

5. Set the queue count to the reserved CPU count for all devices by using this example
performance profile:

$ oc edit -f <your_profile_name>.yaml

apiVersion: performance.openshift.io/v2

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

141

6. Set the queue count to the reserved CPU count for all devices matching any of the defined
device identifiers by using this example performance profile:

7. Set the queue count to the reserved CPU count for all devices starting with the interface name
eth by using this example performance profile:

8. Set the queue count to the reserved CPU count for all devices with an interface named
anything other than eno1 by using this example performance profile:

kind: PerformanceProfile
metadata:
 name: manual
spec:
 cpu:
 isolated: 3-51,54-103
 reserved: 0-2,52-54
 net:
 userLevelNetworking: true
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: manual
spec:
 cpu:
 isolated: 3-51,54-103
 reserved: 0-2,52-54
 net:
 userLevelNetworking: true
 devices:
 - interfaceName: “eth0”
 - interfaceName: “eth1”
 - vendorID: “0x1af4”
 - deviceID: “0x1000”
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: manual
spec:
 cpu:
 isolated: 3-51,54-103
 reserved: 0-2,52-54
 net:
 userLevelNetworking: true
 devices:
 - interfaceName: “eth*”
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""

apiVersion: performance.openshift.io/v2

OpenShift Container Platform 4.10 Scalability and performance

142

9. Set the queue count to the reserved CPU count for all devices that have an interface name
eth0, vendorID of 0x1af4, and deviceID of 0x1000 by using this example performance profile:

10. Apply the updated performance profile:

Additional resources

Creating a performance profile .

14.6.2. Verifying the queue status

In this section, a number of examples illustrate different performance profiles and how to verify the
changes are applied.

Example 1

In this example, the net queue count is set to the reserved CPU count (2) for all supported devices.

The relevant section from the performance profile is:

kind: PerformanceProfile
metadata:
 name: manual
spec:
 cpu:
 isolated: 3-51,54-103
 reserved: 0-2,52-54
 net:
 userLevelNetworking: true
 devices:
 - interfaceName: “!eno1”
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: manual
spec:
 cpu:
 isolated: 3-51,54-103
 reserved: 0-2,52-54
 net:
 userLevelNetworking: true
 devices:
 - interfaceName: “eth0”
 - vendorID: “0x1af4”
 - deviceID: “0x1000”
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""

$ oc apply -f <your_profile_name>.yaml

apiVersion: performance.openshift.io/v2
metadata:

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

143

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#cnf-create-performance-profiles

Display the status of the queues associated with a device using the following command:

NOTE

Run this command on the node where the performance profile was applied.

Verify the queue status before the profile is applied:

Example output

Verify the queue status after the profile is applied:

Example output

 name: performance
spec:
 kind: PerformanceProfile
 spec:
 cpu:
 reserved: 0-1 #total = 2
 isolated: 2-8
 net:
 userLevelNetworking: true
...

$ ethtool -l <device>

$ ethtool -l ens4

Channel parameters for ens4:
Pre-set maximums:
RX: 0
TX: 0
Other: 0
Combined: 4
Current hardware settings:
RX: 0
TX: 0
Other: 0
Combined: 4

$ ethtool -l ens4

Channel parameters for ens4:
Pre-set maximums:
RX: 0
TX: 0
Other: 0
Combined: 4
Current hardware settings:
RX: 0

OpenShift Container Platform 4.10 Scalability and performance

144

1 The combined channel shows that the total count of reserved CPUs for all supported devices is 2.
This matches what is configured in the performance profile.

Example 2

In this example, the net queue count is set to the reserved CPU count (2) for all supported network
devices with a specific vendorID.

The relevant section from the performance profile is:

Display the status of the queues associated with a device using the following command:

NOTE

Run this command on the node where the performance profile was applied.

Verify the queue status after the profile is applied:

Example output

TX: 0
Other: 0
Combined: 2 1

apiVersion: performance.openshift.io/v2
metadata:
 name: performance
spec:
 kind: PerformanceProfile
 spec:
 cpu:
 reserved: 0-1 #total = 2
 isolated: 2-8
 net:
 userLevelNetworking: true
 devices:
 - vendorID = 0x1af4
...

$ ethtool -l <device>

$ ethtool -l ens4

Channel parameters for ens4:
Pre-set maximums:
RX: 0
TX: 0
Other: 0
Combined: 4
Current hardware settings:
RX: 0

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

145

1 The total count of reserved CPUs for all supported devices with vendorID=0x1af4 is 2. For
example, if there is another network device ens2 with vendorID=0x1af4 it will also have total net
queues of 2. This matches what is configured in the performance profile.

Example 3

In this example, the net queue count is set to the reserved CPU count (2) for all supported network
devices that match any of the defined device identifiers.

The command udevadm info provides a detailed report on a device. In this example the devices are:

Set the net queues to 2 for a device with interfaceName equal to eth0 and any devices that
have a vendorID=0x1af4 with the following performance profile:

Verify the queue status after the profile is applied:

Example output

TX: 0
Other: 0
Combined: 2 1

udevadm info -p /sys/class/net/ens4
...
E: ID_MODEL_ID=0x1000
E: ID_VENDOR_ID=0x1af4
E: INTERFACE=ens4
...

udevadm info -p /sys/class/net/eth0
...
E: ID_MODEL_ID=0x1002
E: ID_VENDOR_ID=0x1001
E: INTERFACE=eth0
...

apiVersion: performance.openshift.io/v2
metadata:
 name: performance
spec:
 kind: PerformanceProfile
 spec:
 cpu:
 reserved: 0-1 #total = 2
 isolated: 2-8
 net:
 userLevelNetworking: true
 devices:
 - interfaceName = eth0
 - vendorID = 0x1af4
...

$ ethtool -l ens4

OpenShift Container Platform 4.10 Scalability and performance

146

1 The total count of reserved CPUs for all supported devices with vendorID=0x1af4 is set to
2. For example, if there is another network device ens2 with vendorID=0x1af4, it will also
have the total net queues set to 2. Similarly, a device with interfaceName equal to eth0 will
have total net queues set to 2.

14.6.3. Logging associated with adjusting NIC queues

Log messages detailing the assigned devices are recorded in the respective Tuned daemon logs. The
following messages might be recorded to the /var/log/tuned/tuned.log file:

An INFO message is recorded detailing the successfully assigned devices:

A WARNING message is recorded if none of the devices can be assigned:

14.7. DEBUGGING LOW LATENCY CNF TUNING STATUS

The PerformanceProfile custom resource (CR) contains status fields for reporting tuning status and
debugging latency degradation issues. These fields report on conditions that describe the state of the
operator’s reconciliation functionality.

A typical issue can arise when the status of machine config pools that are attached to the performance
profile are in a degraded state, causing the PerformanceProfile status to degrade. In this case, the
machine config pool issues a failure message.

The Performance Addon Operator contains the performanceProfile.spec.status.Conditions status
field:

Channel parameters for ens4:
Pre-set maximums:
RX: 0
TX: 0
Other: 0
Combined: 4
Current hardware settings:
RX: 0
TX: 0
Other: 0
Combined: 2 1

INFO tuned.plugins.base: instance net_test (net): assigning devices ens1, ens2, ens3

WARNING tuned.plugins.base: instance net_test: no matching devices available

Status:
 Conditions:
 Last Heartbeat Time: 2020-06-02T10:01:24Z
 Last Transition Time: 2020-06-02T10:01:24Z
 Status: True
 Type: Available
 Last Heartbeat Time: 2020-06-02T10:01:24Z
 Last Transition Time: 2020-06-02T10:01:24Z
 Status: True
 Type: Upgradeable

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

147

The Status field contains Conditions that specify Type values that indicate the status of the
performance profile:

Available

All machine configs and Tuned profiles have been created successfully and are available for cluster
components are responsible to process them (NTO, MCO, Kubelet).

Upgradeable

Indicates whether the resources maintained by the Operator are in a state that is safe to upgrade.

Progressing

Indicates that the deployment process from the performance profile has started.

Degraded

Indicates an error if:

Validation of the performance profile has failed.

Creation of all relevant components did not complete successfully.

Each of these types contain the following fields:

Status

The state for the specific type (true or false).

Timestamp

The transaction timestamp.

Reason string

The machine readable reason.

Message string

The human readable reason describing the state and error details, if any.

14.7.1. Machine config pools

A performance profile and its created products are applied to a node according to an associated
machine config pool (MCP). The MCP holds valuable information about the progress of applying the
machine configurations created by performance addons that encompass kernel args, kube config, huge
pages allocation, and deployment of rt-kernel. The performance addons controller monitors changes in
the MCP and updates the performance profile status accordingly.

The only conditions returned by the MCP to the performance profile status is when the MCP is
Degraded, which leads to performaceProfile.status.condition.Degraded = true.

Example

The following example is for a performance profile with an associated machine config pool (worker-cnf)

 Last Heartbeat Time: 2020-06-02T10:01:24Z
 Last Transition Time: 2020-06-02T10:01:24Z
 Status: False
 Type: Progressing
 Last Heartbeat Time: 2020-06-02T10:01:24Z
 Last Transition Time: 2020-06-02T10:01:24Z
 Status: False
 Type: Degraded

OpenShift Container Platform 4.10 Scalability and performance

148

The following example is for a performance profile with an associated machine config pool (worker-cnf)
that was created for it:

1. The associated machine config pool is in a degraded state:

Example output

2. The describe section of the MCP shows the reason:

Example output

3. The degraded state should also appear under the performance profile status field marked as
degraded = true:

Example output

14.8. COLLECTING LOW LATENCY TUNING DEBUGGING DATA FOR
RED HAT SUPPORT

When opening a support case, it is helpful to provide debugging information about your cluster to Red

oc get mcp

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-2ee57a93fa6c9181b546ca46e1571d2d True False
False 3 3 3 0 2d21h
worker rendered-worker-d6b2bdc07d9f5a59a6b68950acf25e5f True False
False 2 2 2 0 2d21h
worker-cnf rendered-worker-cnf-6c838641b8a08fff08dbd8b02fb63f7c False True
True 2 1 1 1 2d20h

oc describe mcp worker-cnf

 Message: Node node-worker-cnf is reporting: "prepping update:
 machineconfig.machineconfiguration.openshift.io \"rendered-worker-cnf-
40b9996919c08e335f3ff230ce1d170\" not
 found"
 Reason: 1 nodes are reporting degraded status on sync

oc describe performanceprofiles performance

Message: Machine config pool worker-cnf Degraded Reason: 1 nodes are reporting
degraded status on sync.
Machine config pool worker-cnf Degraded Message: Node yquinn-q8s5v-w-b-
z5lqn.c.openshift-gce-devel.internal is
reporting: "prepping update: machineconfig.machineconfiguration.openshift.io
\"rendered-worker-cnf-40b9996919c08e335f3ff230ce1d170\" not found". Reason:
MCPDegraded
 Status: True
 Type: Degraded

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

149

When opening a support case, it is helpful to provide debugging information about your cluster to Red
Hat Support.

The must-gather tool enables you to collect diagnostic information about your OpenShift Container
Platform cluster, including node tuning, NUMA topology, and other information needed to debug issues
with low latency setup.

For prompt support, supply diagnostic information for both OpenShift Container Platform and low
latency tuning.

14.8.1. About the must-gather tool

The oc adm must-gather CLI command collects the information from your cluster that is most likely
needed for debugging issues, such as:

Resource definitions

Audit logs

Service logs

You can specify one or more images when you run the command by including the --image argument.
When you specify an image, the tool collects data related to that feature or product. When you run oc
adm must-gather, a new pod is created on the cluster. The data is collected on that pod and saved in a
new directory that starts with must-gather.local. This directory is created in your current working
directory.

14.8.2. About collecting low latency tuning data

Use the oc adm must-gather CLI command to collect information about your cluster, including features
and objects associated with low latency tuning, including:

The Performance Addon Operator namespaces and child objects.

MachineConfigPool and associated MachineConfig objects.

The Node Tuning Operator and associated Tuned objects.

Linux Kernel command line options.

CPU and NUMA topology

Basic PCI device information and NUMA locality.

To collect Performance Addon Operator debugging information with must-gather, you must specify the
Performance Addon Operator must-gather image:

14.8.3. Gathering data about specific features

You can gather debugging information about specific features by using the oc adm must-gather CLI
command with the --image or --image-stream argument. The must-gather tool supports multiple
images, so you can gather data about more than one feature by running a single command.

NOTE

--image=registry.redhat.io/openshift4/performance-addon-operator-must-gather-rhel8:v4.10.

OpenShift Container Platform 4.10 Scalability and performance

150

1

2

1

NOTE

To collect the default must-gather data in addition to specific feature data, add the --
image-stream=openshift/must-gather argument.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

The OpenShift Container Platform CLI (oc) installed.

Procedure

1. Navigate to the directory where you want to store the must-gather data.

2. Run the oc adm must-gather command with one or more --image or --image-stream
arguments. For example, the following command gathers both the default cluster data and
information specific to the Performance Addon Operator:

The default OpenShift Container Platform must-gather image.

The must-gather image for low latency tuning diagnostics.

3. Create a compressed file from the must-gather directory that was created in your working
directory. For example, on a computer that uses a Linux operating system, run the following
command:

Replace must-gather-local.5421342344627712289/ with the actual directory name.

4. Attach the compressed file to your support case on the Red Hat Customer Portal .

Additional resources

For more information about MachineConfig and KubeletConfig, see Managing nodes.

For more information about the Node Tuning Operator, see Using the Node Tuning Operator .

For more information about the PerformanceProfile, see Configuring huge pages .

For more information about consuming huge pages from your containers, see How huge pages
are consumed by apps.

$ oc adm must-gather \
 --image-stream=openshift/must-gather \ 1

 --image=registry.redhat.io/openshift4/performance-addon-operator-must-gather-rhel8:v4.10
2

 $ tar cvaf must-gather.tar.gz must-gather.local.5421342344627712289/ 1

CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

151

https://access.redhat.com/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/nodes/#nodes-nodes-managing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#using-node-tuning-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#configuring-huge-pages_huge-pages
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#how-huge-pages-are-consumed-by-apps_huge-pages

CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM
VERIFICATION

You can use the Cloud-native Network Functions (CNF) tests image to run latency tests on a CNF-
enabled OpenShift Container Platform cluster, where all the components required for running CNF
workloads are installed. Run the latency tests to validate node tuning for your workload.

The cnf-tests container image is available at registry.redhat.io/openshift4/cnf-tests-rhel8:v4.10.

IMPORTANT

The cnf-tests image also includes several tests that are not supported by Red Hat at this
time. Only the latency tests are supported by Red Hat.

15.1. PREREQUISITES FOR RUNNING LATENCY TESTS

Your cluster must meet the following requirements before you can run the latency tests:

1. You have configured a performance profile with the Performance Addon Operator.

2. You have applied all the required CNF configurations in the cluster.

3. You have a pre-existing MachineConfigPool CR applied in the cluster. The default worker pool
is worker-cnf.

Additional resources

For more information about creating the cluster performance profile, see Provisioning real-time
and low latency workloads.

15.2. ABOUT DISCOVERY MODE FOR LATENCY TESTS

Use discovery mode to validate the functionality of a cluster without altering its configuration. Existing
environment configurations are used for the tests. The tests can find the configuration items needed
and use those items to execute the tests. If resources needed to run a specific test are not found, the
test is skipped, providing an appropriate message to the user. After the tests are finished, no cleanup of
the pre-configured configuration items is done, and the test environment can be immediately used for
another test run.

IMPORTANT

When running the latency tests, always run the tests with -e DISCOVERY_MODE=true
and -ginkgo.focus set to the appropriate latency test. If you do not run the latency tests
in discovery mode, your existing live cluster performance profile configuration will be
modified by the test run.

Limiting the nodes used during tests
The nodes on which the tests are executed can be limited by specifying a NODES_SELECTOR
environment variable, for example, -e NODES_SELECTOR=node-role.kubernetes.io/worker-cnf. Any
resources created by the test are limited to nodes with matching labels.

NOTE

OpenShift Container Platform 4.10 Scalability and performance

152

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#cnf-provisioning-real-time-and-low-latency-workloads_cnf-master

NOTE

If you want to override the default worker pool, pass the -e ROLE_WORKER_CNF=
<custom_worker_pool> variable to the command specifying an appropriate label.

15.3. MEASURING LATENCY

The cnf-tests image uses three tools to measure the latency of the system:

hwlatdetect

cyclictest

oslat

Each tool has a specific use. Use the tools in sequence to achieve reliable test results.

hwlatdetect

Measures the baseline that the bare-metal hardware can achieve. Before proceeding with the next
latency test, ensure that the latency reported by hwlatdetect meets the required threshold because
you cannot fix hardware latency spikes by operating system tuning.

cyclictest

Verifies the real-time kernel scheduler latency after hwlatdetect passes validation. The cyclictest
tool schedules a repeated timer and measures the difference between the desired and the actual
trigger times. The difference can uncover basic issues with the tuning caused by interrupts or
process priorities. The tool must run on a real-time kernel.

oslat

Behaves similarly to a CPU-intensive DPDK application and measures all the interruptions and
disruptions to the busy loop that simulates CPU heavy data processing.

The tests introduce the following environment variables:

Table 15.1. Latency test environment variables

Environment variables Description

LATENCY_TEST_DE
LAY

Specifies the amount of time in seconds after which the test starts running. You
can use the variable to allow the CPU manager reconcile loop to update the
default CPU pool. The default value is 0.

LATENCY_TEST_CP
US

Specifies the number of CPUs that the pod running the latency tests uses. If you
do not set the variable, the default configuration includes all isolated CPUs.

LATENCY_TEST_RU
NTIME

Specifies the amount of time in seconds that the latency test must run. The
default value is 300 seconds.

HWLATDETECT_MA
XIMUM_LATENCY

Specifies the maximum acceptable hardware latency in microseconds for the
workload and operating system. If you do not set the value of
HWLATDETECT_MAXIMUM_LATENCY or MAXIMUM_LATENCY, the
tool compares the default expected threshold (20μs) and the actual maximum
latency in the tool itself. Then, the test fails or succeeds accordingly.

CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

153

CYCLICTEST_MAXI
MUM_LATENCY

Specifies the maximum latency in microseconds that all threads expect before
waking up during the cyclictest run. If you do not set the value of
CYCLICTEST_MAXIMUM_LATENCY or MAXIMUM_LATENCY, the tool
skips the comparison of the expected and the actual maximum latency.

OSLAT_MAXIMUM_L
ATENCY

Specifies the maximum acceptable latency in microseconds for the oslat test
results. If you do not set the value of OSLAT_MAXIMUM_LATENCY or
MAXIMUM_LATENCY, the tool skips the comparison of the expected and the
actual maximum latency.

MAXIMUM_LATENC
Y

Unified variable that specifies the maximum acceptable latency in microseconds.
Applicable for all available latency tools.

LATENCY_TEST_RU
N

Boolean parameter that indicates whether the tests should run.
LATENCY_TEST_RUN is set to false by default. To run the latency tests, set
this value to true.

Environment variables Description

NOTE

Variables that are specific to a latency tool take precedence over unified variables. For
example, if OSLAT_MAXIMUM_LATENCY is set to 30 microseconds and
MAXIMUM_LATENCY is set to 10 microseconds, the oslat test will run with maximum
acceptable latency of 30 microseconds.

15.4. RUNNING THE LATENCY TESTS

Run the cluster latency tests to validate node tuning for your Cloud-native Network Functions (CNF)
workload.

IMPORTANT

Always run the latency tests with DISCOVERY_MODE=true set. If you don’t, the test
suite will make changes to the running cluster configuration.

NOTE

When executing podman commands as a non-root or non-privileged user, mounting
paths can fail with permission denied errors. To make the podman command work,
append :Z to the volumes creation; for example, -v $(pwd)/:/kubeconfig:Z. This allows
podman to do the proper SELinux relabeling.

Procedure

1. Open a shell prompt in the directory containing the kubeconfig file.
You provide the test image with a kubeconfig file in current directory and its related
$KUBECONFIG environment variable, mounted through a volume. This allows the running
container to use the kubeconfig file from inside the container.

2. Run the latency tests by entering the following command:

OpenShift Container Platform 4.10 Scalability and performance

154

3. Optional: Append -ginkgo.dryRun to run the latency tests in dry-run mode. This is useful for
checking what the tests run.

4. Optional: Append -ginkgo.v to run the tests with increased verbosity.

5. Optional: To run the latency tests against a specific performance profile, run the following
command, substituting appropriate values:

where:

<performance_profile>

Is the name of the performance profile you want to run the latency tests against.

IMPORTANT

For valid latency tests results, run the tests for at least 12 hours.

15.4.1. Running hwlatdetect

The hwlatdetect tool is available in the rt-kernel package with a regular subscription of Red Hat
Enterprise Linux (RHEL) 8.x.

IMPORTANT

Always run the latency tests with DISCOVERY_MODE=true set. If you don’t, the test
suite will make changes to the running cluster configuration.

NOTE

When executing podman commands as a non-root or non-privileged user, mounting
paths can fail with permission denied errors. To make the podman command work,
append :Z to the volumes creation; for example, -v $(pwd)/:/kubeconfig:Z. This allows
podman to do the proper SELinux relabeling.

Prerequisites

You have installed the real-time kernel in the cluster.

You have logged in to registry.redhat.io with your Customer Portal credentials.

Procedure

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e LATENCY_TEST_RUN=true -e DISCOVERY_MODE=true
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.10 \
/usr/bin/test-run.sh -ginkgo.focus="\[performance\]\ Latency\ Test"

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e LATENCY_TEST_RUN=true -e LATENCY_TEST_RUNTIME=600 -e
MAXIMUM_LATENCY=20 \
-e PERF_TEST_PROFILE=<performance_profile> registry.redhat.io/openshift4/cnf-tests-
rhel8:v4.10 \
/usr/bin/test-run.sh -ginkgo.focus="[performance]\ Latency\ Test"

CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

155

To run the hwlatdetect tests, run the following command, substituting variable values as
appropriate:

The hwlatdetect test runs for 10 minutes (600 seconds). The test runs successfully when the
maximum observed latency is lower than MAXIMUM_LATENCY (20 μs).

If the results exceed the latency threshold, the test fails.

IMPORTANT

For valid results, the test should run for at least 12 hours.

Example failure output

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e LATENCY_TEST_RUN=true -e DISCOVERY_MODE=true -e
ROLE_WORKER_CNF=worker-cnf \
-e LATENCY_TEST_RUNTIME=600 -e MAXIMUM_LATENCY=20 \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.10 \
/usr/bin/test-run.sh -ginkgo.v -ginkgo.focus="hwlatdetect"

running /usr/bin/validationsuite -ginkgo.v -ginkgo.focus=hwlatdetect
I0210 17:08:38.607699 7 request.go:668] Waited for 1.047200253s due to client-side
throttling, not priority and fairness, request:
GET:https://api.ocp.demo.lab:6443/apis/apps.openshift.io/v1?timeout=32s
Running Suite: CNF Features e2e validation
==
Random Seed: 1644512917
Will run 0 of 48 specs

SS
Ran 0 of 48 Specs in 0.001 seconds
SUCCESS! -- 0 Passed | 0 Failed | 0 Pending | 48 Skipped

PASS
Discovery mode enabled, skipping setup
running /usr/bin/cnftests -ginkgo.v -ginkgo.focus=hwlatdetect
I0210 17:08:41.179269 40 request.go:668] Waited for 1.046001096s due to client-side
throttling, not priority and fairness, request:
GET:https://api.ocp.demo.lab:6443/apis/storage.k8s.io/v1beta1?timeout=32s
Running Suite: CNF Features e2e integration tests
===
Random Seed: 1644512920
Will run 1 of 151 specs

SSSSSSS

[performance] Latency Test with the hwlatdetect image
 should succeed
 /remote-source/app/vendor/github.com/openshift-kni/performance-addon-
operators/functests/4_latency/latency.go:221
STEP: Waiting two minutes to download the latencyTest image
STEP: Waiting another two minutes to give enough time for the cluster to move the pod to
Succeeded phase
Feb 10 17:10:56.045: [INFO]: found mcd machine-config-daemon-dzpw7 for node ocp-

OpenShift Container Platform 4.10 Scalability and performance

156

worker-0.demo.lab
Feb 10 17:10:56.259: [INFO]: found mcd machine-config-daemon-dzpw7 for node ocp-
worker-0.demo.lab
Feb 10 17:11:56.825: [ERROR]: timed out waiting for the condition

• Failure [193.903 seconds]
[performance] Latency Test
/remote-source/app/vendor/github.com/openshift-kni/performance-addon-
operators/functests/4_latency/latency.go:60
 with the hwlatdetect image
 /remote-source/app/vendor/github.com/openshift-kni/performance-addon-
operators/functests/4_latency/latency.go:213
 should succeed [It]
 /remote-source/app/vendor/github.com/openshift-kni/performance-addon-
operators/functests/4_latency/latency.go:221

 Log file created at: 2022/02/10 17:08:45
 Running on machine: hwlatdetect-cd8b6
 Binary: Built with gc go1.16.6 for linux/amd64
 Log line format: [IWEF]mmdd hh:mm:ss.uuuuuu threadid file:line] msg
 I0210 17:08:45.716288 1 node.go:37] Environment information: /proc/cmdline:
BOOT_IMAGE=(hd0,gpt3)/ostree/rhcos-
56fabc639a679b757ebae30e5f01b2ebd38e9fde9ecae91c41be41d3e89b37f8/vmlinuz-
4.18.0-305.34.2.rt7.107.el8_4.x86_64 random.trust_cpu=on console=tty0
console=ttyS0,115200n8 ignition.platform.id=qemu
ostree=/ostree/boot.0/rhcos/56fabc639a679b757ebae30e5f01b2ebd38e9fde9ecae91c41be41d
3e89b37f8/0 root=UUID=56731f4f-f558-46a3-85d3-d1b579683385 rw rootflags=prjquota
skew_tick=1 nohz=on rcu_nocbs=3-5 tuned.non_isolcpus=ffffffc7 intel_pstate=disable
nosoftlockup tsc=nowatchdog intel_iommu=on iommu=pt isolcpus=managed_irq,3-5
systemd.cpu_affinity=0,1,2,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,
29,30,31 + +
 I0210 17:08:45.716782 1 node.go:44] Environment information: kernel version 4.18.0-
305.34.2.rt7.107.el8_4.x86_64
 I0210 17:08:45.716861 1 main.go:50] running the hwlatdetect command with
arguments [/usr/bin/hwlatdetect --threshold 1 --hardlimit 1 --duration 10 --window
10000000us --width 950000us]
 F0210 17:08:56.815204 1 main.go:53] failed to run hwlatdetect command; out:
hwlatdetect: test duration 10 seconds
 detector: tracer
 parameters:
 Latency threshold: 1us 1
 Sample window: 10000000us
 Sample width: 950000us
 Non-sampling period: 9050000us
 Output File: None

 Starting test
 test finished
 Max Latency: 24us 2
 Samples recorded: 1
 Samples exceeding threshold: 1
 ts: 1644512927.163556381, inner:20, outer:24
 ; err: exit status 1
 goroutine 1 [running]:
 k8s.io/klog.stacks(0xc000010001, 0xc00012e000, 0x25b, 0x2710)
 /remote-source/app/vendor/k8s.io/klog/klog.go:875 +0xb9

CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

157

1

2

You can configure the latency threshold by using the MAXIMUM_LATENCY or the
HWLATDETECT_MAXIMUM_LATENCY environment variables.

The maximum latency value measured during the test.

Example hwlatdetect test results

 k8s.io/klog.(*loggingT).output(0x5bed00, 0xc000000003, 0xc0000121c0, 0x53ea81, 0x7,
0x35, 0x0)
 /remote-source/app/vendor/k8s.io/klog/klog.go:829 +0x1b0
 k8s.io/klog.(*loggingT).printf(0x5bed00, 0x3, 0x5082da, 0x33, 0xc000113f58, 0x2, 0x2)
 /remote-source/app/vendor/k8s.io/klog/klog.go:707 +0x153
 k8s.io/klog.Fatalf(...)
 /remote-source/app/vendor/k8s.io/klog/klog.go:1276
 main.main()
 /remote-source/app/cnf-tests/pod-utils/hwlatdetect-runner/main.go:53 +0x897

 goroutine 6 [chan receive]:
 k8s.io/klog.(*loggingT).flushDaemon(0x5bed00)
 /remote-source/app/vendor/k8s.io/klog/klog.go:1010 +0x8b
 created by k8s.io/klog.init.0
 /remote-source/app/vendor/k8s.io/klog/klog.go:411 +0xd8

 goroutine 7 [chan receive]:
 k8s.io/klog/v2.(*loggingT).flushDaemon(0x5bede0)
 /remote-source/app/vendor/k8s.io/klog/v2/klog.go:1169 +0x8b
 created by k8s.io/klog/v2.init.0
 /remote-source/app/vendor/k8s.io/klog/v2/klog.go:420 +0xdf
 Unexpected error:
 <*errors.errorString | 0xc000418ed0>: {
 s: "timed out waiting for the condition",
 }
 timed out waiting for the condition
 occurred

 /remote-source/app/vendor/github.com/openshift-kni/performance-addon-
operators/functests/4_latency/latency.go:433

SS
SS
SSSSSSSSSSSSSSS
JUnit report was created: /junit.xml/cnftests-junit.xml

Summarizing 1 Failure:

[Fail] [performance] Latency Test with the hwlatdetect image [It] should succeed
/remote-source/app/vendor/github.com/openshift-kni/performance-addon-
operators/functests/4_latency/latency.go:433

Ran 1 of 151 Specs in 222.254 seconds
FAIL! -- 0 Passed | 1 Failed | 0 Pending | 150 Skipped

--- FAIL: TestTest (222.45s)
FAIL

OpenShift Container Platform 4.10 Scalability and performance

158

You can capture the following types of results:

Rough results that are gathered after each run to create a history of impact on any changes
made throughout the test.

The combined set of the rough tests with the best results and configuration settings.

Example of good results

The hwlatdetect tool only provides output if the sample exceeds the specified threshold.

Example of bad results

The output of hwlatdetect shows that multiple samples exceed the threshold. However, the same
output can indicate different results based on the following factors:

The duration of the test

The number of CPU cores

The host firmware settings

hwlatdetect: test duration 3600 seconds
detector: tracer
parameters:
Latency threshold: 10us
Sample window: 1000000us
Sample width: 950000us
Non-sampling period: 50000us
Output File: None

Starting test
test finished
Max Latency: Below threshold
Samples recorded: 0

hwlatdetect: test duration 3600 seconds
detector: tracer
parameters:Latency threshold: 10usSample window: 1000000us
Sample width: 950000usNon-sampling period: 50000usOutput File: None

Starting tests:1610542421.275784439, inner:78, outer:81
ts: 1610542444.330561619, inner:27, outer:28
ts: 1610542445.332549975, inner:39, outer:38
ts: 1610542541.568546097, inner:47, outer:32
ts: 1610542590.681548531, inner:13, outer:17
ts: 1610543033.818801482, inner:29, outer:30
ts: 1610543080.938801990, inner:90, outer:76
ts: 1610543129.065549639, inner:28, outer:39
ts: 1610543474.859552115, inner:28, outer:35
ts: 1610543523.973856571, inner:52, outer:49
ts: 1610543572.089799738, inner:27, outer:30
ts: 1610543573.091550771, inner:34, outer:28
ts: 1610543574.093555202, inner:116, outer:63

CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

159

WARNING

Before proceeding with the next latency test, ensure that the latency reported by
hwlatdetect meets the required threshold. Fixing latencies introduced by hardware
might require you to contact the system vendor support.

Not all latency spikes are hardware related. Ensure that you tune the host firmware
to meet your workload requirements. For more information, see Setting firmware
parameters for system tuning.

15.4.2. Running cyclictest

The cyclictest tool measures the real-time kernel scheduler latency on the specified CPUs.

IMPORTANT

Always run the latency tests with DISCOVERY_MODE=true set. If you don’t, the test
suite will make changes to the running cluster configuration.

NOTE

When executing podman commands as a non-root or non-privileged user, mounting
paths can fail with permission denied errors. To make the podman command work,
append :Z to the volumes creation; for example, -v $(pwd)/:/kubeconfig:Z. This allows
podman to do the proper SELinux relabeling.

Prerequisites

You have logged in to registry.redhat.io with your Customer Portal credentials.

You have installed the real-time kernel in the cluster.

You have applied a cluster performance profile by using Performance addon operator.

Procedure

To perform the cyclictest, run the following command, substituting variable values as
appropriate:

The command runs the cyclictest tool for 10 minutes (600 seconds). The test runs successfully
when the maximum observed latency is lower than MAXIMUM_LATENCY (in this example, 20
μs). Latency spikes of 20 μs and above are generally not acceptable for telco RAN workloads.



$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e LATENCY_TEST_RUN=true -e DISCOVERY_MODE=true -e
ROLE_WORKER_CNF=worker-cnf \
-e LATENCY_TEST_CPUS=10 -e LATENCY_TEST_RUNTIME=600 -e
MAXIMUM_LATENCY=20 \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.10 \
/usr/bin/test-run.sh -ginkgo.v -ginkgo.focus="cyclictest"

OpenShift Container Platform 4.10 Scalability and performance

160

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/9/html-single/optimizing_rhel_9_for_real_time_for_low_latency_operation/index#setting-bios-parameters-for-system-tuning_optimizing-RHEL9-for-real-time-for-low-latency-operation

If the results exceed the latency threshold, the test fails.

IMPORTANT

For valid results, the test should run for at least 12 hours.

Example failure output

Discovery mode enabled, skipping setup
running /usr/bin//cnftests -ginkgo.v -ginkgo.focus=cyclictest
I0811 15:02:36.350033 20 request.go:668] Waited for 1.049965918s due to client-side
throttling, not priority and fairness, request:
GET:https://api.cnfdc8.t5g.lab.eng.bos.redhat.com:6443/apis/machineconfiguration.openshift.io/
v1?timeout=32s
Running Suite: CNF Features e2e integration tests
===
Random Seed: 1628694153
Will run 1 of 138 specs

SS
SS

[performance] Latency Test with the cyclictest image
 should succeed
 /go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-
kni/performance-addon-operators/functests/4_latency/latency.go:200
STEP: Waiting two minutes to download the latencyTest image
STEP: Waiting another two minutes to give enough time for the cluster to move the pod to
Succeeded phase
Aug 11 15:03:06.826: [INFO]: found mcd machine-config-daemon-wf4w8 for node
cnfdc8.clus2.t5g.lab.eng.bos.redhat.com

• Failure [22.527 seconds]
[performance] Latency Test
/go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-
kni/performance-addon-operators/functests/4_latency/latency.go:84
 with the cyclictest image
 /go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-
kni/performance-addon-operators/functests/4_latency/latency.go:188
 should succeed [It]
 /go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-
kni/performance-addon-operators/functests/4_latency/latency.go:200

 The current latency 27 is bigger than the expected one 20
 Expected
 <bool>: false
 to be true

 /go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-
kni/performance-addon-operators/functests/4_latency/latency.go:219

Log file created at: 2021/08/11 15:02:51
Running on machine: cyclictest-knk7d
Binary: Built with gc go1.16.6 for linux/amd64
Log line format: [IWEF]mmdd hh:mm:ss.uuuuuu threadid file:line] msg

CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

161

Example cyclictest results
The same output can indicate different results for different workloads. For example, spikes up to 18μs
are acceptable for 4G DU workloads, but not for 5G DU workloads.

I0811 15:02:51.092254 1 node.go:37] Environment information: /proc/cmdline:
BOOT_IMAGE=(hd0,gpt3)/ostree/rhcos-
612d89f4519a53ad0b1a132f4add78372661bfb3994f5fe115654971aa58a543/vmlinuz-
4.18.0-305.10.2.rt7.83.el8_4.x86_64 ip=dhcp random.trust_cpu=on console=tty0
console=ttyS0,115200n8
ostree=/ostree/boot.1/rhcos/612d89f4519a53ad0b1a132f4add78372661bfb3994f5fe11565497
1aa58a543/0 ignition.platform.id=openstack root=UUID=5a4ddf16-9372-44d9-ac4e-
3ee329e16ab3 rw rootflags=prjquota skew_tick=1 nohz=on rcu_nocbs=1-3
tuned.non_isolcpus=000000ff,ffffffff,ffffffff,fffffff1 intel_pstate=disable nosoftlockup
tsc=nowatchdog intel_iommu=on iommu=pt isolcpus=managed_irq,1-3
systemd.cpu_affinity=0,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,
29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,
59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,
89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 default_hugepagesz=1G
hugepagesz=2M hugepages=128 nmi_watchdog=0 audit=0 mce=off
processor.max_cstate=1 idle=poll intel_idle.max_cstate=0
I0811 15:02:51.092427 1 node.go:44] Environment information: kernel version 4.18.0-
305.10.2.rt7.83.el8_4.x86_64
I0811 15:02:51.092450 1 main.go:48] running the cyclictest command with arguments \
[-D 600 -95 1 -t 10 -a 2,4,6,8,10,54,56,58,60,62 -h 30 -i 1000 --quiet]
I0811 15:03:06.147253 1 main.go:54] succeeded to run the cyclictest command: #
/dev/cpu_dma_latency set to 0us
Histogram
000000 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000
000001 000000 005561 027778 037704 011987 000000 120755 238981 081847
300186
000002 587440 581106 564207 554323 577416 590635 474442 357940 513895
296033
000003 011751 011441 006449 006761 008409 007904 002893 002066 003349
003089
000004 000527 001079 000914 000712 001451 001120 000779 000283 000350
000251

More histogram entries ...
Min Latencies: 00002 00001 00001 00001 00001 00002 00001 00001 00001 00001
Avg Latencies: 00002 00002 00002 00001 00002 00002 00001 00001 00001 00001
Max Latencies: 00018 00465 00361 00395 00208 00301 02052 00289 00327 00114
Histogram Overflows: 00000 00220 00159 00128 00202 00017 00069 00059 00045
00120
Histogram Overflow at cycle number:
Thread 0:
Thread 1: 01142 01439 05305 … # 00190 others
Thread 2: 20895 21351 30624 … # 00129 others
Thread 3: 01143 17921 18334 … # 00098 others
Thread 4: 30499 30622 31566 ... # 00172 others
Thread 5: 145221 170910 171888 ...
Thread 6: 01684 26291 30623 ...# 00039 others
Thread 7: 28983 92112 167011 … 00029 others
Thread 8: 45766 56169 56171 ...# 00015 others
Thread 9: 02974 08094 13214 ... # 00090 others

OpenShift Container Platform 4.10 Scalability and performance

162

Example of good results

Example of bad results

running cmd: cyclictest -q -D 10m -p 1 -t 16 -a 2,4,6,8,10,12,14,16,54,56,58,60,62,64,66,68 -h 30 -i
1000 -m
Histogram
000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000
000001 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000
000002 579506 535967 418614 573648 532870 529897 489306 558076 582350 585188
583793 223781 532480 569130 472250 576043
More histogram entries ...
Total: 000600000 000600000 000600000 000599999 000599999 000599999 000599998
000599998 000599998 000599997 000599997 000599996 000599996 000599995 000599995
000599995
Min Latencies: 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002
00002 00002 00002 00002
Avg Latencies: 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002
00002 00002 00002 00002
Max Latencies: 00005 00005 00004 00005 00004 00004 00005 00005 00006 00005 00004 00005
00004 00004 00005 00004
Histogram Overflows: 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
00000 00000 00000 00000 00000
Histogram Overflow at cycle number:
Thread 0:
Thread 1:
Thread 2:
Thread 3:
Thread 4:
Thread 5:
Thread 6:
Thread 7:
Thread 8:
Thread 9:
Thread 10:
Thread 11:
Thread 12:
Thread 13:
Thread 14:
Thread 15:

running cmd: cyclictest -q -D 10m -p 1 -t 16 -a 2,4,6,8,10,12,14,16,54,56,58,60,62,64,66,68 -h 30 -i
1000 -m
Histogram
000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000
000001 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000
000002 564632 579686 354911 563036 492543 521983 515884 378266 592621 463547
482764 591976 590409 588145 589556 353518
More histogram entries ...
Total: 000599999 000599999 000599999 000599997 000599997 000599998 000599998
000599997 000599997 000599996 000599995 000599996 000599995 000599995 000599995

CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

163

15.4.3. Running oslat

The oslat test simulates a CPU-intensive DPDK application and measures all the interruptions and
disruptions to test how the cluster handles CPU heavy data processing.

IMPORTANT

Always run the latency tests with DISCOVERY_MODE=true set. If you don’t, the test
suite will make changes to the running cluster configuration.

NOTE

When executing podman commands as a non-root or non-privileged user, mounting
paths can fail with permission denied errors. To make the podman command work,
append :Z to the volumes creation; for example, -v $(pwd)/:/kubeconfig:Z. This allows
podman to do the proper SELinux relabeling.

Prerequisites

You have logged in to registry.redhat.io with your Customer Portal credentials.

You have applied a cluster performance profile by using the Performance addon operator.

Procedure

To perform the oslat test, run the following command, substituting variable values as
appropriate:

000599993
Min Latencies: 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002
00002 00002 00002 00002
Avg Latencies: 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002
00002 00002 00002 00002
Max Latencies: 00493 00387 00271 00619 00541 00513 00009 00389 00252 00215 00539 00498
00363 00204 00068 00520
Histogram Overflows: 00001 00001 00001 00002 00002 00001 00000 00001 00001 00001 00002
00001 00001 00001 00001 00002
Histogram Overflow at cycle number:
Thread 0: 155922
Thread 1: 110064
Thread 2: 110064
Thread 3: 110063 155921
Thread 4: 110063 155921
Thread 5: 155920
Thread 6:
Thread 7: 110062
Thread 8: 110062
Thread 9: 155919
Thread 10: 110061 155919
Thread 11: 155918
Thread 12: 155918
Thread 13: 110060
Thread 14: 110060
Thread 15: 110059 155917

OpenShift Container Platform 4.10 Scalability and performance

164

LATENCY_TEST_CPUS specifices the list of CPUs to test with the oslat command.

The command runs the oslat tool for 10 minutes (600 seconds). The test runs successfully
when the maximum observed latency is lower than MAXIMUM_LATENCY (20 μs).

If the results exceed the latency threshold, the test fails.

IMPORTANT

For valid results, the test should run for at least 12 hours.

Example failure output

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e LATENCY_TEST_RUN=true -e DISCOVERY_MODE=true -e
ROLE_WORKER_CNF=worker-cnf \
-e LATENCY_TEST_CPUS=7 -e LATENCY_TEST_RUNTIME=600 -e
MAXIMUM_LATENCY=20 \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.10 \
/usr/bin/test-run.sh -ginkgo.v -ginkgo.focus="oslat"

running /usr/bin//validationsuite -ginkgo.v -ginkgo.focus=oslat
I0829 12:36:55.386776 8 request.go:668] Waited for 1.000303471s due to client-side
throttling, not priority and fairness, request:
GET:https://api.cnfdc8.t5g.lab.eng.bos.redhat.com:6443/apis/authentication.k8s.io/v1?
timeout=32s
Running Suite: CNF Features e2e validation
==

Discovery mode enabled, skipping setup
running /usr/bin//cnftests -ginkgo.v -ginkgo.focus=oslat
I0829 12:37:01.219077 20 request.go:668] Waited for 1.050010755s due to client-side
throttling, not priority and fairness, request:
GET:https://api.cnfdc8.t5g.lab.eng.bos.redhat.com:6443/apis/snapshot.storage.k8s.io/v1beta1?
timeout=32s
Running Suite: CNF Features e2e integration tests
===
Random Seed: 1630240617
Will run 1 of 142 specs

SS

[performance] Latency Test with the oslat image
 should succeed
 /go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-
kni/performance-addon-operators/functests/4_latency/latency.go:134
STEP: Waiting two minutes to download the latencyTest image
STEP: Waiting another two minutes to give enough time for the cluster to move the pod to
Succeeded phase
Aug 29 12:37:59.324: [INFO]: found mcd machine-config-daemon-wf4w8 for node
cnfdc8.clus2.t5g.lab.eng.bos.redhat.com

• Failure [49.246 seconds]
[performance] Latency Test
/go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-

CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

165

kni/performance-addon-operators/functests/4_latency/latency.go:59
 with the oslat image
 /go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-
kni/performance-addon-operators/functests/4_latency/latency.go:112
 should succeed [It]
 /go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-
kni/performance-addon-operators/functests/4_latency/latency.go:134

 The current latency 27 is bigger than the expected one 20 1
 Expected
 <bool>: false
 to be true
 /go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-
kni/performance-addon-operators/functests/4_latency/latency.go:168

Log file created at: 2021/08/29 13:25:21
Running on machine: oslat-57c2g
Binary: Built with gc go1.16.6 for linux/amd64
Log line format: [IWEF]mmdd hh:mm:ss.uuuuuu threadid file:line] msg
I0829 13:25:21.569182 1 node.go:37] Environment information: /proc/cmdline:
BOOT_IMAGE=(hd0,gpt3)/ostree/rhcos-
612d89f4519a53ad0b1a132f4add78372661bfb3994f5fe115654971aa58a543/vmlinuz-
4.18.0-305.10.2.rt7.83.el8_4.x86_64 ip=dhcp random.trust_cpu=on console=tty0
console=ttyS0,115200n8
ostree=/ostree/boot.0/rhcos/612d89f4519a53ad0b1a132f4add78372661bfb3994f5fe11565497
1aa58a543/0 ignition.platform.id=openstack root=UUID=5a4ddf16-9372-44d9-ac4e-
3ee329e16ab3 rw rootflags=prjquota skew_tick=1 nohz=on rcu_nocbs=1-3
tuned.non_isolcpus=000000ff,ffffffff,ffffffff,fffffff1 intel_pstate=disable nosoftlockup
tsc=nowatchdog intel_iommu=on iommu=pt isolcpus=managed_irq,1-3
systemd.cpu_affinity=0,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,
29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,
59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,
89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 default_hugepagesz=1G
hugepagesz=2M hugepages=128 nmi_watchdog=0 audit=0 mce=off
processor.max_cstate=1 idle=poll intel_idle.max_cstate=0
I0829 13:25:21.569345 1 node.go:44] Environment information: kernel version 4.18.0-
305.10.2.rt7.83.el8_4.x86_64
I0829 13:25:21.569367 1 main.go:53] Running the oslat command with arguments \
[--duration 600 --rtprio 1 --cpu-list 4,6,52,54,56,58 --cpu-main-thread 2]
I0829 13:35:22.632263 1 main.go:59] Succeeded to run the oslat command: oslat V 2.00
Total runtime: 600 seconds
Thread priority: SCHED_FIFO:1
CPU list: 4,6,52,54,56,58
CPU for main thread: 2
Workload: no
Workload mem: 0 (KiB)
Preheat cores: 6

Pre-heat for 1 seconds...
Test starts...
Test completed.

 Core: 4 6 52 54 56 58
 CPU Freq: 2096 2096 2096 2096 2096 2096 (Mhz)
 001 (us): 19390720316 19141129810 20265099129 20280959461 19391991159
19119877333

OpenShift Container Platform 4.10 Scalability and performance

166

1 In this example, the measured latency is outside the maximum allowed value.

15.5. GENERATING A LATENCY TEST FAILURE REPORT

Use the following procedures to generate a JUnit latency test output and test failure report.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in as a user with cluster-admin privileges.

Procedure

Create a test failure report with information about the cluster state and resources for
troubleshooting by passing the --report parameter with the path to where the report is dumped:

where:

<report_folder_path>

Is the path to the folder where the report is generated.

15.6. GENERATING A JUNIT LATENCY TEST REPORT

Use the following procedures to generate a JUnit latency test output and test failure report.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in as a user with cluster-admin privileges.

 002 (us): 5304 5249 5777 5947 6829 4971
 003 (us): 28 14 434 47 208 21
 004 (us): 1388 853 123568 152817 5576 0
 005 (us): 207850 223544 103827 91812 227236 231563
 006 (us): 60770 122038 277581 323120 122633 122357
 007 (us): 280023 223992 63016 25896 214194 218395
 008 (us): 40604 25152 24368 4264 24440 25115
 009 (us): 6858 3065 5815 810 3286 2116
 010 (us): 1947 936 1452 151 474 361
 ...
 Minimum: 1 1 1 1 1 1 (us)
 Average: 1.000 1.000 1.000 1.000 1.000 1.000 (us)
 Maximum: 37 38 49 28 28 19 (us)
 Max-Min: 36 37 48 27 27 18 (us)
 Duration: 599.667 599.667 599.667 599.667 599.667 599.667 (sec)

$ podman run -v $(pwd)/:/kubeconfig:Z -v $(pwd)/reportdest:<report_folder_path> \
-e KUBECONFIG=/kubeconfig/kubeconfig -e DISCOVERY_MODE=true \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.10 \
/usr/bin/test-run.sh --report <report_folder_path> \
-ginkgo.focus="\[performance\]\ Latency\ Test"

CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

167

Procedure

Create a JUnit-compliant XML report by passing the --junit parameter together with the path
to where the report is dumped:

where:

<junit_folder_path>

Is the path to the folder where the junit report is generated

15.7. RUNNING LATENCY TESTS ON A SINGLE-NODE OPENSHIFT
CLUSTER

You can run latency tests on single-node OpenShift clusters.

IMPORTANT

Always run the latency tests with DISCOVERY_MODE=true set. If you don’t, the test
suite will make changes to the running cluster configuration.

NOTE

When executing podman commands as a non-root or non-privileged user, mounting
paths can fail with permission denied errors. To make the podman command work,
append :Z to the volumes creation; for example, -v $(pwd)/:/kubeconfig:Z. This allows
podman to do the proper SELinux relabeling.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in as a user with cluster-admin privileges.

Procedure

To run the latency tests on a single-node OpenShift cluster, run the following command:

NOTE

$ podman run -v $(pwd)/:/kubeconfig:Z -v $(pwd)/junitdest:<junit_folder_path> \
-e KUBECONFIG=/kubeconfig/kubeconfig -e DISCOVERY_MODE=true \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.10 \
/usr/bin/test-run.sh --junit <junit_folder_path> \
-ginkgo.focus="\[performance\]\ Latency\ Test"

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e DISCOVERY_MODE=true -e ROLE_WORKER_CNF=master \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.10 \
/usr/bin/test-run.sh -ginkgo.focus="\[performance\]\ Latency\ Test"

OpenShift Container Platform 4.10 Scalability and performance

168

NOTE

ROLE_WORKER_CNF=master is required because master is the only machine
pool to which the node belongs. For more information about setting the required
MachineConfigPool for the latency tests, see "Prerequisites for running latency
tests".

After running the test suite, all the dangling resources are cleaned up.

15.8. RUNNING LATENCY TESTS IN A DISCONNECTED CLUSTER

The CNF tests image can run tests in a disconnected cluster that is not able to reach external registries.
This requires two steps:

1. Mirroring the cnf-tests image to the custom disconnected registry.

2. Instructing the tests to consume the images from the custom disconnected registry.

Mirroring the images to a custom registry accessible from the cluster
A mirror executable is shipped in the image to provide the input required by oc to mirror the test image
to a local registry.

1. Run this command from an intermediate machine that has access to the cluster and
registry.redhat.io:

where:

<disconnected_registry>

Is the disconnected mirror registry you have configured, for example,
my.local.registry:5000/.

2. When you have mirrored the cnf-tests image into the disconnected registry, you must override
the original registry used to fetch the images when running the tests, for example:

Configuring the tests to consume images from a custom registry
You can run the latency tests using a custom test image and image registry using CNF_TESTS_IMAGE
and IMAGE_REGISTRY variables.

To configure the latency tests to use a custom test image and image registry, run the following
command:

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.10 \
/usr/bin/mirror -registry <disconnected_registry> | oc image mirror -f -

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e DISCOVERY_MODE=true -e IMAGE_REGISTRY="<disconnected_registry>" \
-e CNF_TESTS_IMAGE="cnf-tests-rhel8:v4.10" \
/usr/bin/test-run.sh -ginkgo.focus="\[performance\]\ Latency\ Test"

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e IMAGE_REGISTRY="<custom_image_registry>" \
-e CNF_TESTS_IMAGE="<custom_cnf-tests_image>" \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.10 /usr/bin/test-run.sh

CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

169

https://catalog.redhat.com/software/containers/explore

where:

<custom_image_registry>

is the custom image registry, for example, custom.registry:5000/.

<custom_cnf-tests_image>

is the custom cnf-tests image, for example, custom-cnf-tests-image:latest.

Mirroring images to the cluster OpenShift image registry
OpenShift Container Platform provides a built-in container image registry, which runs as a standard
workload on the cluster.

Procedure

1. Gain external access to the registry by exposing it with a route:

2. Fetch the registry endpoint by running the following command:

3. Create a namespace for exposing the images:

4. Make the image stream available to all the namespaces used for tests. This is required to allow
the tests namespaces to fetch the images from the cnf-tests image stream. Run the following
commands:

5. Retrieve the docker secret name and auth token by running the following commands:

6. Create a dockerauth.json file, for example:

7. Do the image mirroring:

$ oc patch configs.imageregistry.operator.openshift.io/cluster --patch '{"spec":
{"defaultRoute":true}}' --type=merge

$ REGISTRY=$(oc get route default-route -n openshift-image-registry --template='{{
.spec.host }}')

$ oc create ns cnftests

$ oc policy add-role-to-user system:image-puller system:serviceaccount:cnf-features-
testing:default --namespace=cnftests

$ oc policy add-role-to-user system:image-puller system:serviceaccount:performance-addon-
operators-testing:default --namespace=cnftests

$ SECRET=$(oc -n cnftests get secret | grep builder-docker | awk {'print $1'}

$ TOKEN=$(oc -n cnftests get secret $SECRET -o jsonpath="{.data['\.dockercfg']}" | base64
--decode | jq '.["image-registry.openshift-image-registry.svc:5000"].auth')

$ echo "{\"auths\": { \"$REGISTRY\": { \"auth\": $TOKEN } }}" > dockerauth.json

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \

OpenShift Container Platform 4.10 Scalability and performance

170

8. Run the tests:

Mirroring a different set of test images
You can optionally change the default upstream images that are mirrored for the latency tests.

Procedure

1. The mirror command tries to mirror the upstream images by default. This can be overridden by
passing a file with the following format to the image:

2. Pass the file to the mirror command, for example saving it locally as images.json. With the
following command, the local path is mounted in /kubeconfig inside the container and that can
be passed to the mirror command.

15.9. TROUBLESHOOTING ERRORS WITH THE CNF-TESTS
CONTAINER

To run latency tests, the cluster must be accessible from within the cnf-tests container.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in as a user with cluster-admin privileges.

Procedure

Verify that the cluster is accessible from inside the cnf-tests container by running the following
command:

registry.redhat.io/openshift4/cnf-tests-rhel8:4.10 \
/usr/bin/mirror -registry $REGISTRY/cnftests | oc image mirror --insecure=true \
-a=$(pwd)/dockerauth.json -f -

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e DISCOVERY_MODE=true -e IMAGE_REGISTRY=image-registry.openshift-image-
registry.svc:5000/cnftests \
cnf-tests-local:latest /usr/bin/test-run.sh -ginkgo.focus="\[performance\]\ Latency\ Test"

[
 {
 "registry": "public.registry.io:5000",
 "image": "imageforcnftests:4.10"
 }
]

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.10 /usr/bin/mirror \
--registry "my.local.registry:5000/" --images "/kubeconfig/images.json" \
| oc image mirror -f -

CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

171

If this command does not work, an error related to spanning across DNS, MTU size, or firewall
access might be occurring.

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.10 \
oc get nodes

OpenShift Container Platform 4.10 Scalability and performance

172

CHAPTER 16. TOPOLOGY AWARE LIFECYCLE MANAGER FOR
CLUSTER UPDATES

You can use the Topology Aware Lifecycle Manager (TALM) to manage the software lifecycle of
multiple single-node OpenShift clusters. TALM uses Red Hat Advanced Cluster Management (RHACM)
policies to perform changes on the target clusters.

IMPORTANT

Topology Aware Lifecycle Manager is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

16.1. ABOUT THE TOPOLOGY AWARE LIFECYCLE MANAGER
CONFIGURATION

The Topology Aware Lifecycle Manager (TALM) manages the deployment of Red Hat Advanced Cluster
Management (RHACM) policies for one or more OpenShift Container Platform clusters. Using TALM in
a large network of clusters allows the phased rollout of policies to the clusters in limited batches. This
helps to minimize possible service disruptions when updating. With TALM, you can control the following
actions:

The timing of the update

The number of RHACM-managed clusters

The subset of managed clusters to apply the policies to

The update order of the clusters

The set of policies remediated to the cluster

The order of policies remediated to the cluster

TALM supports the orchestration of the OpenShift Container Platform y-stream and z-stream updates,
and day-two operations on y-streams and z-streams.

16.2. ABOUT MANAGED POLICIES USED WITH TOPOLOGY AWARE
LIFECYCLE MANAGER

The Topology Aware Lifecycle Manager (TALM) uses RHACM policies for cluster updates.

TALM can be used to manage the rollout of any policy CR where the remediationAction field is set to
inform. Supported use cases include the following:

Manual user creation of policy CRs

Automatically generated policies from the PolicyGenTemplate custom resource definition

CHAPTER 16. TOPOLOGY AWARE LIFECYCLE MANAGER FOR CLUSTER UPDATES

173

https://access.redhat.com/support/offerings/techpreview/

Automatically generated policies from the PolicyGenTemplate custom resource definition
(CRD)

For policies that update an Operator subscription with manual approval, TALM provides additional
functionality that approves the installation of the updated Operator.

For more information about managed policies, see Policy Overview in the RHACM documentation.

For more information about the PolicyGenTemplate CRD, see the "About the PolicyGenTemplate
CRD" section in "Configuring managed clusters with policies and PolicyGenTemplate resources".

16.3. INSTALLING THE TOPOLOGY AWARE LIFECYCLE MANAGER BY
USING THE WEB CONSOLE

You can use the OpenShift Container Platform web console to install the Topology Aware Lifecycle
Manager.

Prerequisites

Install the latest version of the RHACM Operator.

Set up a hub cluster with disconnected regitry.

Log in as a user with cluster-admin privileges.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators → OperatorHub.

2. Search for the Topology Aware Lifecycle Manager from the list of available Operators, and
then click Install.

3. Keep the default selection of Installation mode ["All namespaces on the cluster (default)"] and
Installed Namespace ("openshift-operators") to ensure that the Operator is installed properly.

4. Click Install.

Verification

To confirm that the installation is successful:

1. Navigate to the Operators → Installed Operators page.

2. Check that the Operator is installed in the All Namespaces namespace and its status is
Succeeded.

If the Operator is not installed successfully:

1. Navigate to the Operators → Installed Operators page and inspect the Status column for any
errors or failures.

2. Navigate to the Workloads → Pods page and check the logs in any containers in the cluster-
group-upgrades-controller-manager pod that are reporting issues.

16.4. INSTALLING THE TOPOLOGY AWARE LIFECYCLE MANAGER BY

OpenShift Container Platform 4.10 Scalability and performance

174

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.4/html-single/governance/index#policy-overview

16.4. INSTALLING THE TOPOLOGY AWARE LIFECYCLE MANAGER BY
USING THE CLI

You can use the OpenShift CLI (oc) to install the Topology Aware Lifecycle Manager (TALM).

Prerequisites

Install the OpenShift CLI (oc).

Install the latest version of the RHACM Operator.

Set up a hub cluster with disconnected registry.

Log in as a user with cluster-admin privileges.

Procedure

1. Create a Subscription CR:

a. Define the Subscription CR and save the YAML file, for example, talm-subscription.yaml:

b. Create the Subscription CR by running the following command:

Verification

1. Verify that the installation succeeded by inspecting the CSV resource:

Example output

2. Verify that the TALM is up and running:

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-topology-aware-lifecycle-manager-subscription
 namespace: openshift-operators
spec:
 channel: "stable"
 name: topology-aware-lifecycle-manager
 source: redhat-operators
 sourceNamespace: openshift-marketplace

$ oc create -f talm-subscription.yaml

$ oc get csv -n openshift-operators

NAME DISPLAY VERSION
REPLACES PHASE
topology-aware-lifecycle-manager.4.10.0-202206301927 Topology Aware Lifecycle
Manager 4.10.0-202206301927 Succeeded

$ oc get deploy -n openshift-operators

CHAPTER 16. TOPOLOGY AWARE LIFECYCLE MANAGER FOR CLUSTER UPDATES

175

Example output

16.5. ABOUT THE CLUSTERGROUPUPGRADE CR

The Topology Aware Lifecycle Manager (TALM) builds the remediation plan from the
ClusterGroupUpgrade CR for a group of clusters. You can define the following specifications in a
ClusterGroupUpgrade CR:

Clusters in the group

Blocking ClusterGroupUpgrade CRs

Applicable list of managed policies

Number of concurrent updates

Applicable canary updates

Actions to perform before and after the update

Update timing

As TALM works through remediation of the policies to the specified clusters, the
ClusterGroupUpgrade CR can have the following states:

UpgradeNotStarted

UpgradeCannotStart

UpgradeNotComplete

UpgradeTimedOut

UpgradeCompleted

PrecachingRequired

NOTE

After TALM completes a cluster update, the cluster does not update again under the
control of the same ClusterGroupUpgrade CR. You must create a new
ClusterGroupUpgrade CR in the following cases:

When you need to update the cluster again

When the cluster changes to non-compliant with the inform policy after being
updated

16.5.1. The UpgradeNotStarted state

NAMESPACE NAME READY UP-TO-
DATE AVAILABLE AGE
openshift-operators cluster-group-upgrades-controller-manager 1/1
1 1 14s

OpenShift Container Platform 4.10 Scalability and performance

176

The initial state of the ClusterGroupUpgrade CR is UpgradeNotStarted.

TALM builds a remediation plan based on the following fields:

The clusterSelector field specifies the labels of the clusters that you want to update.

The clusters field specifies a list of clusters to update.

The canaries field specifies the clusters for canary updates.

The maxConcurrency field specifies the number of clusters to update in a batch.

You can use the clusters and the clusterSelector fields together to create a combined list of clusters.

The remediation plan starts with the clusters listed in the canaries field. Each canary cluster forms a
single-cluster batch.

NOTE

Any failures during the update of a canary cluster stops the update process.

The ClusterGroupUpgrade CR transitions to the UpgradeNotCompleted state after the remediation
plan is successfully created and after the enable field is set to true. At this point, TALM starts to update
the non-compliant clusters with the specified managed policies.

NOTE

You can only make changes to the spec fields if the ClusterGroupUpgrade CR is either
in the UpgradeNotStarted or the UpgradeCannotStart state.

Sample ClusterGroupUpgrade CR in the UpgradeNotStarted state

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
 name: cgu-upgrade-complete
 namespace: default
spec:
 clusters: 1
 - spoke1
 enable: false
 managedPolicies: 2
 - policy1-common-cluster-version-policy
 - policy2-common-pao-sub-policy
 remediationStrategy: 3
 canaries: 4
 - spoke1
 maxConcurrency: 1 5
 timeout: 240
status: 6
 conditions:
 - message: The ClusterGroupUpgrade CR is not enabled
 reason: UpgradeNotStarted
 status: "False"

CHAPTER 16. TOPOLOGY AWARE LIFECYCLE MANAGER FOR CLUSTER UPDATES

177

1

2

3

4

5

6

Defines the list of clusters to update.

Lists the user-defined set of policies to remediate.

Defines the specifics of the cluster updates.

Defines the clusters for canary updates.

Defines the maximum number of concurrent updates in a batch. The number of remediation
batches is the number of canary clusters, plus the number of clusters, except the canary clusters,
divided by the maxConcurrency value. The clusters that are already compliant with all the
managed policies are excluded from the remediation plan.

Displays information about the status of the updates.

16.5.2. The UpgradeCannotStart state

In the UpgradeCannotStart state, the update cannot start because of the following reasons:

Blocking CRs are missing from the system

Blocking CRs have not yet finished

16.5.3. The UpgradeNotCompleted state

In the UpgradeNotCompleted state, TALM enforces the policies following the remediation plan defined
in the UpgradeNotStarted state.

Enforcing the policies for subsequent batches starts immediately after all the clusters of the current
batch are compliant with all the managed policies. If the batch times out, TALM moves on to the next
batch. The timeout value of a batch is the spec.timeout field divided by the number of batches in the
remediation plan.

NOTE

 type: Ready
 copiedPolicies:
 - cgu-upgrade-complete-policy1-common-cluster-version-policy
 - cgu-upgrade-complete-policy2-common-pao-sub-policy
 managedPoliciesForUpgrade:
 - name: policy1-common-cluster-version-policy
 namespace: default
 - name: policy2-common-pao-sub-policy
 namespace: default
 placementBindings:
 - cgu-upgrade-complete-policy1-common-cluster-version-policy
 - cgu-upgrade-complete-policy2-common-pao-sub-policy
 placementRules:
 - cgu-upgrade-complete-policy1-common-cluster-version-policy
 - cgu-upgrade-complete-policy2-common-pao-sub-policy
 remediationPlan:
 - - spoke1

OpenShift Container Platform 4.10 Scalability and performance

178

1

2

NOTE

The managed policies apply in the order that they are listed in the managedPolicies field
in the ClusterGroupUpgrade CR. One managed policy is applied to the specified
clusters at a time. After the specified clusters comply with the current policy, the next
managed policy is applied to the next non-compliant cluster.

Sample ClusterGroupUpgrade CR in the UpgradeNotCompleted state

The update starts when the value of the spec.enable field is true.

The status fields change accordingly when the update begins.

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
 name: cgu-upgrade-complete
 namespace: default
spec:
 clusters:
 - spoke1
 enable: true 1
 managedPolicies:
 - policy1-common-cluster-version-policy
 - policy2-common-pao-sub-policy
 remediationStrategy:
 maxConcurrency: 1
 timeout: 240
status: 2
 conditions:
 - message: The ClusterGroupUpgrade CR has upgrade policies that are still non compliant
 reason: UpgradeNotCompleted
 status: "False"
 type: Ready
 copiedPolicies:
 - cgu-upgrade-complete-policy1-common-cluster-version-policy
 - cgu-upgrade-complete-policy2-common-pao-sub-policy
 managedPoliciesForUpgrade:
 - name: policy1-common-cluster-version-policy
 namespace: default
 - name: policy2-common-pao-sub-policy
 namespace: default
 placementBindings:
 - cgu-upgrade-complete-policy1-common-cluster-version-policy
 - cgu-upgrade-complete-policy2-common-pao-sub-policy
 placementRules:
 - cgu-upgrade-complete-policy1-common-cluster-version-policy
 - cgu-upgrade-complete-policy2-common-pao-sub-policy
 remediationPlan:
 - - spoke1
 status:
 currentBatch: 1
 remediationPlanForBatch: 3
 spoke1: 0

CHAPTER 16. TOPOLOGY AWARE LIFECYCLE MANAGER FOR CLUSTER UPDATES

179

3 Lists the clusters in the batch and the index of the policy that is being currently applied to each
cluster. The index of the policies starts with 0 and the index follows the order of the

16.5.4. The UpgradeTimedOut state

In the UpgradeTimedOut state, TALM checks every hour if all the policies for the
ClusterGroupUpgrade CR are compliant. The checks continue until the ClusterGroupUpgrade CR is
deleted or the updates are completed. The periodic checks allow the updates to complete if they get
prolonged due to network, CPU, or other issues.

TALM transitions to the UpgradeTimedOut state in two cases:

When the current batch contains canary updates and the cluster in the batch does not comply
with all the managed policies within the batch timeout.

When the clusters do not comply with the managed policies within the timeout value specified in
the remediationStrategy field.

If the policies are compliant, TALM transitions to the UpgradeCompleted state.

16.5.5. The UpgradeCompleted state

In the UpgradeCompleted state, the cluster updates are complete.

Sample ClusterGroupUpgrade CR in the UpgradeCompleted state

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
 name: cgu-upgrade-complete
 namespace: default
spec:
 actions:
 afterCompletion:
 deleteObjects: true 1
 clusters:
 - spoke1
 enable: true
 managedPolicies:
 - policy1-common-cluster-version-policy
 - policy2-common-pao-sub-policy
 remediationStrategy:
 maxConcurrency: 1
 timeout: 240
status: 2
 conditions:
 - message: The ClusterGroupUpgrade CR has all clusters compliant with all the managed policies
 reason: UpgradeCompleted
 status: "True"
 type: Ready
 managedPoliciesForUpgrade:
 - name: policy1-common-cluster-version-policy
 namespace: default
 - name: policy2-common-pao-sub-policy

OpenShift Container Platform 4.10 Scalability and performance

180

1

2

3

The value of spec.action.afterCompletion.deleteObjects field is true by default. After the update
is completed, TALM deletes the underlying RHACM objects that were created during the update.
This option is to prevent the RHACM hub from continuously checking for compliance after a
successful update.

The status fields show that the updates completed successfully.

Displays that all the policies are applied to the cluster.

<discreet><title>The PrecachingRequired state</title>
In the PrecachingRequired state, the clusters need to have images pre-cached before the update can
start. For more information about pre-caching, see the "Using the container image pre-cache feature"
section.

</discreet>

16.5.6. Blocking ClusterGroupUpgrade CRs

You can create multiple ClusterGroupUpgrade CRs and control their order of application.

For example, if you create ClusterGroupUpgrade CR C that blocks the start of ClusterGroupUpgrade
CR A, then ClusterGroupUpgrade CR A cannot start until the status of ClusterGroupUpgrade CR C
becomes UpgradeComplete.

One ClusterGroupUpgrade CR can have multiple blocking CRs. In this case, all the blocking CRs must
complete before the upgrade for the current CR can start.

Prerequisites

Install the Topology Aware Lifecycle Manager (TALM).

Provision one or more managed clusters.

Log in as a user with cluster-admin privileges.

Create RHACM policies in the hub cluster.

Procedure

1. Save the content of the ClusterGroupUpgrade CRs in the cgu-a.yaml, cgu-b.yaml, and cgu-
c.yaml files.

 namespace: default
 remediationPlan:
 - - spoke1
 status:
 remediationPlanForBatch:
 spoke1: -2 3

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
 name: cgu-a
 namespace: default
spec:

CHAPTER 16. TOPOLOGY AWARE LIFECYCLE MANAGER FOR CLUSTER UPDATES

181

1 Defines the blocking CRs. The cgu-a update cannot start until cgu-c is complete.

 blockingCRs: 1
 - name: cgu-c
 namespace: default
 clusters:
 - spoke1
 - spoke2
 - spoke3
 enable: false
 managedPolicies:
 - policy1-common-cluster-version-policy
 - policy2-common-pao-sub-policy
 - policy3-common-ptp-sub-policy
 remediationStrategy:
 canaries:
 - spoke1
 maxConcurrency: 2
 timeout: 240
status:
 conditions:
 - message: The ClusterGroupUpgrade CR is not enabled
 reason: UpgradeNotStarted
 status: "False"
 type: Ready
 copiedPolicies:
 - cgu-a-policy1-common-cluster-version-policy
 - cgu-a-policy2-common-pao-sub-policy
 - cgu-a-policy3-common-ptp-sub-policy
 managedPoliciesForUpgrade:
 - name: policy1-common-cluster-version-policy
 namespace: default
 - name: policy2-common-pao-sub-policy
 namespace: default
 - name: policy3-common-ptp-sub-policy
 namespace: default
 placementBindings:
 - cgu-a-policy1-common-cluster-version-policy
 - cgu-a-policy2-common-pao-sub-policy
 - cgu-a-policy3-common-ptp-sub-policy
 placementRules:
 - cgu-a-policy1-common-cluster-version-policy
 - cgu-a-policy2-common-pao-sub-policy
 - cgu-a-policy3-common-ptp-sub-policy
 remediationPlan:
 - - spoke1
 - - spoke2

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
 name: cgu-b
 namespace: default
spec:
 blockingCRs: 1

OpenShift Container Platform 4.10 Scalability and performance

182

1 The cgu-b update cannot start until cgu-a is complete.

 - name: cgu-a
 namespace: default
 clusters:
 - spoke4
 - spoke5
 enable: false
 managedPolicies:
 - policy1-common-cluster-version-policy
 - policy2-common-pao-sub-policy
 - policy3-common-ptp-sub-policy
 - policy4-common-sriov-sub-policy
 remediationStrategy:
 maxConcurrency: 1
 timeout: 240
status:
 conditions:
 - message: The ClusterGroupUpgrade CR is not enabled
 reason: UpgradeNotStarted
 status: "False"
 type: Ready
 copiedPolicies:
 - cgu-b-policy1-common-cluster-version-policy
 - cgu-b-policy2-common-pao-sub-policy
 - cgu-b-policy3-common-ptp-sub-policy
 - cgu-b-policy4-common-sriov-sub-policy
 managedPoliciesForUpgrade:
 - name: policy1-common-cluster-version-policy
 namespace: default
 - name: policy2-common-pao-sub-policy
 namespace: default
 - name: policy3-common-ptp-sub-policy
 namespace: default
 - name: policy4-common-sriov-sub-policy
 namespace: default
 placementBindings:
 - cgu-b-policy1-common-cluster-version-policy
 - cgu-b-policy2-common-pao-sub-policy
 - cgu-b-policy3-common-ptp-sub-policy
 - cgu-b-policy4-common-sriov-sub-policy
 placementRules:
 - cgu-b-policy1-common-cluster-version-policy
 - cgu-b-policy2-common-pao-sub-policy
 - cgu-b-policy3-common-ptp-sub-policy
 - cgu-b-policy4-common-sriov-sub-policy
 remediationPlan:
 - - spoke4
 - - spoke5
 status: {}

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
 name: cgu-c

CHAPTER 16. TOPOLOGY AWARE LIFECYCLE MANAGER FOR CLUSTER UPDATES

183

1 The cgu-c update does not have any blocking CRs. TALM starts the cgu-c update when
the enable field is set to true.

2. Create the ClusterGroupUpgrade CRs by running the following command for each relevant
CR:

3. Start the update process by running the following command for each relevant CR:

The following examples show ClusterGroupUpgrade CRs where the enable field is set to true:

 namespace: default
spec: 1
 clusters:
 - spoke6
 enable: false
 managedPolicies:
 - policy1-common-cluster-version-policy
 - policy2-common-pao-sub-policy
 - policy3-common-ptp-sub-policy
 - policy4-common-sriov-sub-policy
 remediationStrategy:
 maxConcurrency: 1
 timeout: 240
status:
 conditions:
 - message: The ClusterGroupUpgrade CR is not enabled
 reason: UpgradeNotStarted
 status: "False"
 type: Ready
 copiedPolicies:
 - cgu-c-policy1-common-cluster-version-policy
 - cgu-c-policy4-common-sriov-sub-policy
 managedPoliciesCompliantBeforeUpgrade:
 - policy2-common-pao-sub-policy
 - policy3-common-ptp-sub-policy
 managedPoliciesForUpgrade:
 - name: policy1-common-cluster-version-policy
 namespace: default
 - name: policy4-common-sriov-sub-policy
 namespace: default
 placementBindings:
 - cgu-c-policy1-common-cluster-version-policy
 - cgu-c-policy4-common-sriov-sub-policy
 placementRules:
 - cgu-c-policy1-common-cluster-version-policy
 - cgu-c-policy4-common-sriov-sub-policy
 remediationPlan:
 - - spoke6
 status: {}

$ oc apply -f <name>.yaml

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/<name> \
--type merge -p '{"spec":{"enable":true}}'

OpenShift Container Platform 4.10 Scalability and performance

184

Example for cgu-a with blocking CRs

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
 name: cgu-a
 namespace: default
spec:
 blockingCRs:
 - name: cgu-c
 namespace: default
 clusters:
 - spoke1
 - spoke2
 - spoke3
 enable: true
 managedPolicies:
 - policy1-common-cluster-version-policy
 - policy2-common-pao-sub-policy
 - policy3-common-ptp-sub-policy
 remediationStrategy:
 canaries:
 - spoke1
 maxConcurrency: 2
 timeout: 240
status:
 conditions:
 - message: 'The ClusterGroupUpgrade CR is blocked by other CRs that have not yet
 completed: [cgu-c]' 1
 reason: UpgradeCannotStart
 status: "False"
 type: Ready
 copiedPolicies:
 - cgu-a-policy1-common-cluster-version-policy
 - cgu-a-policy2-common-pao-sub-policy
 - cgu-a-policy3-common-ptp-sub-policy
 managedPoliciesForUpgrade:
 - name: policy1-common-cluster-version-policy
 namespace: default
 - name: policy2-common-pao-sub-policy
 namespace: default
 - name: policy3-common-ptp-sub-policy
 namespace: default
 placementBindings:
 - cgu-a-policy1-common-cluster-version-policy
 - cgu-a-policy2-common-pao-sub-policy
 - cgu-a-policy3-common-ptp-sub-policy
 placementRules:
 - cgu-a-policy1-common-cluster-version-policy
 - cgu-a-policy2-common-pao-sub-policy
 - cgu-a-policy3-common-ptp-sub-policy
 remediationPlan:
 - - spoke1
 - - spoke2
 status: {}

CHAPTER 16. TOPOLOGY AWARE LIFECYCLE MANAGER FOR CLUSTER UPDATES

185

1 Shows the list of blocking CRs.

Example for cgu-b with blocking CRs

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
 name: cgu-b
 namespace: default
spec:
 blockingCRs:
 - name: cgu-a
 namespace: default
 clusters:
 - spoke4
 - spoke5
 enable: true
 managedPolicies:
 - policy1-common-cluster-version-policy
 - policy2-common-pao-sub-policy
 - policy3-common-ptp-sub-policy
 - policy4-common-sriov-sub-policy
 remediationStrategy:
 maxConcurrency: 1
 timeout: 240
status:
 conditions:
 - message: 'The ClusterGroupUpgrade CR is blocked by other CRs that have not yet
 completed: [cgu-a]' 1
 reason: UpgradeCannotStart
 status: "False"
 type: Ready
 copiedPolicies:
 - cgu-b-policy1-common-cluster-version-policy
 - cgu-b-policy2-common-pao-sub-policy
 - cgu-b-policy3-common-ptp-sub-policy
 - cgu-b-policy4-common-sriov-sub-policy
 managedPoliciesForUpgrade:
 - name: policy1-common-cluster-version-policy
 namespace: default
 - name: policy2-common-pao-sub-policy
 namespace: default
 - name: policy3-common-ptp-sub-policy
 namespace: default
 - name: policy4-common-sriov-sub-policy
 namespace: default
 placementBindings:
 - cgu-b-policy1-common-cluster-version-policy
 - cgu-b-policy2-common-pao-sub-policy
 - cgu-b-policy3-common-ptp-sub-policy
 - cgu-b-policy4-common-sriov-sub-policy
 placementRules:
 - cgu-b-policy1-common-cluster-version-policy
 - cgu-b-policy2-common-pao-sub-policy
 - cgu-b-policy3-common-ptp-sub-policy

OpenShift Container Platform 4.10 Scalability and performance

186

1 Shows the list of blocking CRs.

Example for cgu-c with blocking CRs

 - cgu-b-policy4-common-sriov-sub-policy
 remediationPlan:
 - - spoke4
 - - spoke5
 status: {}

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
 name: cgu-c
 namespace: default
spec:
 clusters:
 - spoke6
 enable: true
 managedPolicies:
 - policy1-common-cluster-version-policy
 - policy2-common-pao-sub-policy
 - policy3-common-ptp-sub-policy
 - policy4-common-sriov-sub-policy
 remediationStrategy:
 maxConcurrency: 1
 timeout: 240
status:
 conditions:
 - message: The ClusterGroupUpgrade CR has upgrade policies that are still non compliant
1

 reason: UpgradeNotCompleted
 status: "False"
 type: Ready
 copiedPolicies:
 - cgu-c-policy1-common-cluster-version-policy
 - cgu-c-policy4-common-sriov-sub-policy
 managedPoliciesCompliantBeforeUpgrade:
 - policy2-common-pao-sub-policy
 - policy3-common-ptp-sub-policy
 managedPoliciesForUpgrade:
 - name: policy1-common-cluster-version-policy
 namespace: default
 - name: policy4-common-sriov-sub-policy
 namespace: default
 placementBindings:
 - cgu-c-policy1-common-cluster-version-policy
 - cgu-c-policy4-common-sriov-sub-policy
 placementRules:
 - cgu-c-policy1-common-cluster-version-policy
 - cgu-c-policy4-common-sriov-sub-policy
 remediationPlan:
 - - spoke6
 status:

CHAPTER 16. TOPOLOGY AWARE LIFECYCLE MANAGER FOR CLUSTER UPDATES

187

1 The cgu-c update does not have any blocking CRs.

16.6. UPDATE POLICIES ON MANAGED CLUSTERS

The Topology Aware Lifecycle Manager (TALM) remediates a set of inform policies for the clusters
specified in the ClusterGroupUpgrade CR. TALM remediates inform policies by making enforce copies
of the managed RHACM policies. Each copied policy has its own corresponding RHACM placement rule
and RHACM placement binding.

One by one, TALM adds each cluster from the current batch to the placement rule that corresponds
with the applicable managed policy. If a cluster is already compliant with a policy, TALM skips applying
that policy on the compliant cluster. TALM then moves on to applying the next policy to the non-
compliant cluster. After TALM completes the updates in a batch, all clusters are removed from the
placement rules associated with the copied policies. Then, the update of the next batch starts.

If a spoke cluster does not report any compliant state to RHACM, the managed policies on the hub
cluster can be missing status information that TALM needs. TALM handles these cases in the following
ways:

If a policy’s status.compliant field is missing, TALM ignores the policy and adds a log entry.
Then, TALM continues looking at the policy’s status.status field.

If a policy’s status.status is missing, TALM produces an error.

If a cluster’s compliance status is missing in the policy’s status.status field, TALM considers
that cluster to be non-compliant with that policy.

For more information about RHACM policies, see Policy overview .

Additional resources

For more information about the PolicyGenTemplate CRD, see About the PolicyGenTemplate CRD.

16.6.1. Applying update policies to managed clusters

You can update your managed clusters by applying your policies.

Prerequisites

Install the Topology Aware Lifecycle Manager (TALM).

Provision one or more managed clusters.

Log in as a user with cluster-admin privileges.

Create RHACM policies in the hub cluster.

Procedure

1. Save the contents of the ClusterGroupUpgrade CR in the cgu-1.yaml file.

 currentBatch: 1
 remediationPlanForBatch:
 spoke6: 0

OpenShift Container Platform 4.10 Scalability and performance

188

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.4/html-single/governance/index#policy-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-the-policygentemplate_ztp-configuring-managed-clusters-policies

1

2

3

4

The name of the policies to apply.

The list of clusters to update.

The maxConcurrency field signifies the number of clusters updated at the same time.

The update timeout in minutes.

2. Create the ClusterGroupUpgrade CR by running the following command:

a. Check if the ClusterGroupUpgrade CR was created in the hub cluster by running the
following command:

Example output

b. Check the status of the update by running the following command:

Example output

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
 name: cgu-1
 namespace: default
spec:
 managedPolicies: 1
 - policy1-common-cluster-version-policy
 - policy2-common-pao-sub-policy
 - policy3-common-ptp-sub-policy
 - policy4-common-sriov-sub-policy
 enable: false
 clusters: 2
 - spoke1
 - spoke2
 - spoke5
 - spoke6
 remediationStrategy:
 maxConcurrency: 2 3
 timeout: 240 4

$ oc create -f cgu-1.yaml

$ oc get cgu --all-namespaces

NAMESPACE NAME AGE
default cgu-1 8m55s

$ oc get cgu -n default cgu-1 -ojsonpath='{.status}' | jq

{
 "computedMaxConcurrency": 2,
 "conditions": [

CHAPTER 16. TOPOLOGY AWARE LIFECYCLE MANAGER FOR CLUSTER UPDATES

189

 {
 "lastTransitionTime": "2022-02-25T15:34:07Z",
 "message": "The ClusterGroupUpgrade CR is not enabled", 1
 "reason": "UpgradeNotStarted",
 "status": "False",
 "type": "Ready"
 }
],
 "copiedPolicies": [
 "cgu-policy1-common-cluster-version-policy",
 "cgu-policy2-common-pao-sub-policy",
 "cgu-policy3-common-ptp-sub-policy",
 "cgu-policy4-common-sriov-sub-policy"
],
 "managedPoliciesContent": {
 "policy1-common-cluster-version-policy": "null",
 "policy2-common-pao-sub-policy": "[{\"kind\":\"Subscription\",\"name\":\"performance-
addon-operator\",\"namespace\":\"openshift-performance-addon-operator\"}]",
 "policy3-common-ptp-sub-policy": "[{\"kind\":\"Subscription\",\"name\":\"ptp-operator-
subscription\",\"namespace\":\"openshift-ptp\"}]",
 "policy4-common-sriov-sub-policy": "[{\"kind\":\"Subscription\",\"name\":\"sriov-network-
operator-subscription\",\"namespace\":\"openshift-sriov-network-operator\"}]"
 },
 "managedPoliciesForUpgrade": [
 {
 "name": "policy1-common-cluster-version-policy",
 "namespace": "default"
 },
 {
 "name": "policy2-common-pao-sub-policy",
 "namespace": "default"
 },
 {
 "name": "policy3-common-ptp-sub-policy",
 "namespace": "default"
 },
 {
 "name": "policy4-common-sriov-sub-policy",
 "namespace": "default"
 }
],
 "managedPoliciesNs": {
 "policy1-common-cluster-version-policy": "default",
 "policy2-common-pao-sub-policy": "default",
 "policy3-common-ptp-sub-policy": "default",
 "policy4-common-sriov-sub-policy": "default"
 },
 "placementBindings": [
 "cgu-policy1-common-cluster-version-policy",
 "cgu-policy2-common-pao-sub-policy",
 "cgu-policy3-common-ptp-sub-policy",
 "cgu-policy4-common-sriov-sub-policy"
],
 "placementRules": [
 "cgu-policy1-common-cluster-version-policy",
 "cgu-policy2-common-pao-sub-policy",

OpenShift Container Platform 4.10 Scalability and performance

190

1

1

The spec.enable field in the ClusterGroupUpgrade CR is set to false.

c. Check the status of the policies by running the following command:

Example output

The spec.remediationAction field of policies currently applied on the clusters is set to
enforce. The managed policies in inform mode from the ClusterGroupUpgrade CR
remain in inform mode during the update.

3. Change the value of the spec.enable field to true by running the following command:

 "cgu-policy3-common-ptp-sub-policy",
 "cgu-policy4-common-sriov-sub-policy"
],
 "precaching": {
 "spec": {}
 },
 "remediationPlan": [
 [
 "spoke1",
 "spoke2"
],
 [
 "spoke5",
 "spoke6"
]
],
 "status": {}
}

$ oc get policies -A

NAMESPACE NAME REMEDIATION ACTION
COMPLIANCE STATE AGE
default cgu-policy1-common-cluster-version-policy enforce
17m 1
default cgu-policy2-common-pao-sub-policy enforce
17m
default cgu-policy3-common-ptp-sub-policy enforce
17m
default cgu-policy4-common-sriov-sub-policy enforce
17m
default policy1-common-cluster-version-policy inform NonCompliant
15h
default policy2-common-pao-sub-policy inform NonCompliant
15h
default policy3-common-ptp-sub-policy inform NonCompliant
18m
default policy4-common-sriov-sub-policy inform NonCompliant
18m

CHAPTER 16. TOPOLOGY AWARE LIFECYCLE MANAGER FOR CLUSTER UPDATES

191

Verification

1. Check the status of the update again by running the following command:

Example output

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-1 \
--patch '{"spec":{"enable":true}}' --type=merge

$ oc get cgu -n default cgu-1 -ojsonpath='{.status}' | jq

{
 "computedMaxConcurrency": 2,
 "conditions": [1
 {
 "lastTransitionTime": "2022-02-25T15:34:07Z",
 "message": "The ClusterGroupUpgrade CR has upgrade policies that are still non
compliant",
 "reason": "UpgradeNotCompleted",
 "status": "False",
 "type": "Ready"
 }
],
 "copiedPolicies": [
 "cgu-policy1-common-cluster-version-policy",
 "cgu-policy2-common-pao-sub-policy",
 "cgu-policy3-common-ptp-sub-policy",
 "cgu-policy4-common-sriov-sub-policy"
],
 "managedPoliciesContent": {
 "policy1-common-cluster-version-policy": "null",
 "policy2-common-pao-sub-policy": "[{\"kind\":\"Subscription\",\"name\":\"performance-
addon-operator\",\"namespace\":\"openshift-performance-addon-operator\"}]",
 "policy3-common-ptp-sub-policy": "[{\"kind\":\"Subscription\",\"name\":\"ptp-operator-
subscription\",\"namespace\":\"openshift-ptp\"}]",
 "policy4-common-sriov-sub-policy": "[{\"kind\":\"Subscription\",\"name\":\"sriov-network-
operator-subscription\",\"namespace\":\"openshift-sriov-network-operator\"}]"
 },
 "managedPoliciesForUpgrade": [
 {
 "name": "policy1-common-cluster-version-policy",
 "namespace": "default"
 },
 {
 "name": "policy2-common-pao-sub-policy",
 "namespace": "default"
 },
 {
 "name": "policy3-common-ptp-sub-policy",
 "namespace": "default"
 },
 {
 "name": "policy4-common-sriov-sub-policy",
 "namespace": "default"

OpenShift Container Platform 4.10 Scalability and performance

192

1 Reflects the update progress of the current batch. Run this command again to receive
updated information about the progress.

2. If the policies include Operator subscriptions, you can check the installation progress directly on
the single-node cluster.

a. Export the KUBECONFIG file of the single-node cluster you want to check the installation
progress for by running the following command:

 }
],
 "managedPoliciesNs": {
 "policy1-common-cluster-version-policy": "default",
 "policy2-common-pao-sub-policy": "default",
 "policy3-common-ptp-sub-policy": "default",
 "policy4-common-sriov-sub-policy": "default"
 },
 "placementBindings": [
 "cgu-policy1-common-cluster-version-policy",
 "cgu-policy2-common-pao-sub-policy",
 "cgu-policy3-common-ptp-sub-policy",
 "cgu-policy4-common-sriov-sub-policy"
],
 "placementRules": [
 "cgu-policy1-common-cluster-version-policy",
 "cgu-policy2-common-pao-sub-policy",
 "cgu-policy3-common-ptp-sub-policy",
 "cgu-policy4-common-sriov-sub-policy"
],
 "precaching": {
 "spec": {}
 },
 "remediationPlan": [
 [
 "spoke1",
 "spoke2"
],
 [
 "spoke5",
 "spoke6"
]
],
 "status": {
 "currentBatch": 1,
 "currentBatchStartedAt": "2022-02-25T15:54:16Z",
 "remediationPlanForBatch": {
 "spoke1": 0,
 "spoke2": 1
 },
 "startedAt": "2022-02-25T15:54:16Z"
 }
}

$ export KUBECONFIG=<cluster_kubeconfig_absolute_path>

CHAPTER 16. TOPOLOGY AWARE LIFECYCLE MANAGER FOR CLUSTER UPDATES

193

1

b. Check all the subscriptions present on the single-node cluster and look for the one in the
policy you are trying to install through the ClusterGroupUpgrade CR by running the
following command:

Example output for cluster-logging policy

3. If one of the managed policies includes a ClusterVersion CR, check the status of platform
updates in the current batch by running the following command against the spoke cluster:

Example output

4. Check the Operator subscription by running the following command:

5. Check the install plans present on the single-node cluster that is associated with the desired
subscription by running the following command:

Example output for cluster-logging Operator

The install plans have their Approval field set to Manual and their Approved field changes
from false to true after TALM approves the install plan.

NOTE

When TALM is remediating a policy containing a subscription, it automatically
approves any install plans attached to that subscription. Where multiple install
plans are needed to get the operator to the latest known version, TALM might
approve multiple install plans, upgrading through one or more intermediate
versions to get to the final version.

$ oc get subs -A | grep -i <subscription_name>

NAMESPACE NAME PACKAGE SOURCE
CHANNEL
openshift-logging cluster-logging cluster-logging redhat-
operators stable

$ oc get clusterversion

NAME VERSION AVAILABLE PROGRESSING SINCE STATUS
version 4.9.5 True True 43s Working towards 4.9.7: 71 of 735 done (9%
complete)

$ oc get subs -n <operator-namespace> <operator-subscription> -ojsonpath="{.status}"

$ oc get installplan -n <subscription_namespace>

NAMESPACE NAME CSV APPROVAL
APPROVED
openshift-logging install-6khtw cluster-logging.5.3.3-4 Manual true
1

OpenShift Container Platform 4.10 Scalability and performance

194

6. Check if the cluster service version for the Operator of the policy that the
ClusterGroupUpgrade is installing reached the Succeeded phase by running the following
command:

Example output for OpenShift Logging Operator

16.7. USING THE CONTAINER IMAGE PRE-CACHE FEATURE

Clusters might have limited bandwidth to access the container image registry, which can cause a
timeout before the updates are completed.

NOTE

The time of the update is not set by TALM. You can apply the ClusterGroupUpgrade CR
at the beginning of the update by manual application or by external automation.

The container image pre-caching starts when the preCaching field is set to true in the
ClusterGroupUpgrade CR. After a successful pre-caching process, you can start remediating policies.
The remediation actions start when the enable field is set to true.

The pre-caching process can be in the following statuses:

PrecacheNotStarted

This is the initial state all clusters are automatically assigned to on the first reconciliation pass of the
ClusterGroupUpgrade CR.
In this state, TALM deletes any pre-caching namespace and hub view resources of spoke clusters
that remain from previous incomplete updates. TALM then creates a new ManagedClusterView
resource for the spoke pre-caching namespace to verify its deletion in the PrecachePreparing
state.

PrecachePreparing

Cleaning up any remaining resources from previous incomplete updates is in progress.

PrecacheStarting

Pre-caching job prerequisites and the job are created.

PrecacheActive

The job is in "Active" state.

PrecacheSucceeded

The pre-cache job has succeeded.

PrecacheTimeout

The artifact pre-caching has been partially done.

PrecacheUnrecoverableError

The job ends with a non-zero exit code.

16.7.1. Creating a ClusterGroupUpgrade CR with pre-caching

$ oc get csv -n <operator_namespace>

NAME DISPLAY VERSION REPLACES PHASE
cluster-logging.5.4.2 Red Hat OpenShift Logging 5.4.2 Succeeded

CHAPTER 16. TOPOLOGY AWARE LIFECYCLE MANAGER FOR CLUSTER UPDATES

195

1

The pre-cache feature allows the required container images to be present on the spoke cluster before
the update starts.

Prerequisites

Install the Topology Aware Lifecycle Manager (TALM).

Provision one or more managed clusters.

Log in as a user with cluster-admin privileges.

Procedure

1. Save the contents of the ClusterGroupUpgrade CR with the preCaching field set to true in
the clustergroupupgrades-group-du.yaml file:

The preCaching field is set to true, which enables TALM to pull the container images
before starting the update.

2. When you want to start the update, apply the ClusterGroupUpgrade CR by running the
following command:

Verification

1. Check if the ClusterGroupUpgrade CR exists in the hub cluster by running the following
command:

Example output

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
 name: du-upgrade-4918
 namespace: ztp-group-du-sno
spec:
 preCaching: true 1
 clusters:
 - cnfdb1
 - cnfdb2
 enable: false
 managedPolicies:
 - du-upgrade-platform-upgrade
 remediationStrategy:
 maxConcurrency: 2
 timeout: 240

$ oc apply -f clustergroupupgrades-group-du.yaml

$ oc get cgu -A

NAMESPACE NAME AGE
ztp-group-du-sno du-upgrade-4918 10s 1

OpenShift Container Platform 4.10 Scalability and performance

196

1

1

2

The CR is created.

2. Check the status of the pre-caching task by running the following command:

Example output

Displays that the update is in progress.

Displays the list of identified clusters.

3. Check the status of the pre-caching job by running the following command on the spoke
cluster:

Example output

$ oc get cgu -n ztp-group-du-sno du-upgrade-4918 -o jsonpath='{.status}'

{
 "conditions": [
 {
 "lastTransitionTime": "2022-01-27T19:07:24Z",
 "message": "Precaching is not completed (required)", 1
 "reason": "PrecachingRequired",
 "status": "False",
 "type": "Ready"
 },
 {
 "lastTransitionTime": "2022-01-27T19:07:24Z",
 "message": "Precaching is required and not done",
 "reason": "PrecachingNotDone",
 "status": "False",
 "type": "PrecachingDone"
 },
 {
 "lastTransitionTime": "2022-01-27T19:07:34Z",
 "message": "Pre-caching spec is valid and consistent",
 "reason": "PrecacheSpecIsWellFormed",
 "status": "True",
 "type": "PrecacheSpecValid"
 }
],
 "precaching": {
 "clusters": [
 "cnfdb1" 2
],
 "spec": {
 "platformImage": "image.example.io"},
 "status": {
 "cnfdb1": "Active"}
 }
}

$ oc get jobs,pods -n openshift-talm-pre-cache

CHAPTER 16. TOPOLOGY AWARE LIFECYCLE MANAGER FOR CLUSTER UPDATES

197

1

4. Check the status of the ClusterGroupUpgrade CR by running the following command:

Example output

The pre-cache tasks are done.

16.8. TROUBLESHOOTING THE TOPOLOGY AWARE LIFECYCLE
MANAGER

The Topology Aware Lifecycle Manager (TALM) is an OpenShift Container Platform Operator that
remediates RHACM policies. When issues occur, use the oc adm must-gather command to gather
details and logs and to take steps in debugging the issues.

For more information about related topics, see the following documentation:

Red Hat Advanced Cluster Management for Kubernetes 2.4 Support Matrix

Red Hat Advanced Cluster Management Troubleshooting

The "Troubleshooting Operator issues" section

16.8.1. General troubleshooting

You can determine the cause of the problem by reviewing the following questions:

Is the configuration that you are applying supported?

Are the RHACM and the OpenShift Container Platform versions compatible?

NAME COMPLETIONS DURATION AGE
job.batch/pre-cache 0/1 3m10s 3m10s

NAME READY STATUS RESTARTS AGE
pod/pre-cache--1-9bmlr 1/1 Running 0 3m10s

$ oc get cgu -n ztp-group-du-sno du-upgrade-4918 -o jsonpath='{.status}'

"conditions": [
 {
 "lastTransitionTime": "2022-01-27T19:30:41Z",
 "message": "The ClusterGroupUpgrade CR has all clusters compliant with all the
managed policies",
 "reason": "UpgradeCompleted",
 "status": "True",
 "type": "Ready"
 },
 {
 "lastTransitionTime": "2022-01-27T19:28:57Z",
 "message": "Precaching is completed",
 "reason": "PrecachingCompleted",
 "status": "True",
 "type": "PrecachingDone" 1
 }

OpenShift Container Platform 4.10 Scalability and performance

198

https://access.redhat.com/articles/6218901
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.0/html/troubleshooting/troubleshooting

Are the TALM and RHACM versions compatible?

Which of the following components is causing the problem?

Section 16.8.3, “Managed policies”

Section 16.8.4, “Clusters”

Section 16.8.5, “Remediation Strategy”

Section 16.8.6, “Topology Aware Lifecycle Manager”

To ensure that the ClusterGroupUpgrade configuration is functional, you can do the following:

1. Create the ClusterGroupUpgrade CR with the spec.enable field set to false.

2. Wait for the status to be updated and go through the troubleshooting questions.

3. If everything looks as expected, set the spec.enable field to true in the ClusterGroupUpgrade
CR.

WARNING

After you set the spec.enable field to true in the ClusterUpgradeGroup CR, the
update procedure starts and you cannot edit the CR’s spec fields anymore.

16.8.2. Cannot modify the ClusterUpgradeGroup CR

Issue

You cannot edit the ClusterUpgradeGroup CR after enabling the update.

Resolution

Restart the procedure by performing the following steps:

1. Remove the old ClusterGroupUpgrade CR by running the following command:

2. Check and fix the existing issues with the managed clusters and policies.

a. Ensure that all the clusters are managed clusters and available.

b. Ensure that all the policies exist and have the spec.remediationAction field set to
inform.

3. Create a new ClusterGroupUpgrade CR with the correct configurations.



$ oc delete cgu -n <ClusterGroupUpgradeCR_namespace>
<ClusterGroupUpgradeCR_name>

$ oc apply -f <ClusterGroupUpgradeCR_YAML>

CHAPTER 16. TOPOLOGY AWARE LIFECYCLE MANAGER FOR CLUSTER UPDATES

199

16.8.3. Managed policies

Checking managed policies on the system

Issue

You want to check if you have the correct managed policies on the system.

Resolution

Run the following command:

Example output

Checking remediationAction mode

Issue

You want to check if the remediationAction field is set to inform in the spec of the managed
policies.

Resolution

Run the following command:

Example output

Checking policy compliance state

Issue

You want to check the compliance state of policies.

Resolution

Run the following command:

Example output

$ oc get cgu lab-upgrade -ojsonpath='{.spec.managedPolicies}'

["group-du-sno-validator-du-validator-policy", "policy2-common-pao-sub-policy", "policy3-common-
ptp-sub-policy"]

$ oc get policies --all-namespaces

NAMESPACE NAME REMEDIATION ACTION COMPLIANCE
STATE AGE
default policy1-common-cluster-version-policy inform NonCompliant
5d21h
default policy2-common-pao-sub-policy inform Compliant 5d21h
default policy3-common-ptp-sub-policy inform NonCompliant 5d21h
default policy4-common-sriov-sub-policy inform NonCompliant 5d21h

$ oc get policies --all-namespaces

NAMESPACE NAME REMEDIATION ACTION COMPLIANCE
STATE AGE

OpenShift Container Platform 4.10 Scalability and performance

200

16.8.4. Clusters

Checking if managed clusters are present

Issue

You want to check if the clusters in the ClusterGroupUpgrade CR are managed clusters.

Resolution

Run the following command:

Example output

1. Alternatively, check the TALM manager logs:

a. Get the name of the TALM manager by running the following command:

Example output

b. Check the TALM manager logs by running the following command:

Example output

default policy1-common-cluster-version-policy inform NonCompliant
5d21h
default policy2-common-pao-sub-policy inform Compliant 5d21h
default policy3-common-ptp-sub-policy inform NonCompliant 5d21h
default policy4-common-sriov-sub-policy inform NonCompliant 5d21h

$ oc get managedclusters

NAME HUB ACCEPTED MANAGED CLUSTER URLS JOINED AVAILABLE
AGE
local-cluster true https://api.hub.example.com:6443 True Unknown 13d
spoke1 true https://api.spoke1.example.com:6443 True True 13d
spoke3 true https://api.spoke3.example.com:6443 True True 27h

$ oc get pod -n openshift-operators

NAME READY STATUS RESTARTS AGE
cluster-group-upgrades-controller-manager-75bcc7484d-8k8xp 2/2 Running 0
45m

$ oc logs -n openshift-operators \
cluster-group-upgrades-controller-manager-75bcc7484d-8k8xp -c manager

ERROR controller-runtime.manager.controller.clustergroupupgrade Reconciler error
{"reconciler group": "ran.openshift.io", "reconciler kind": "ClusterGroupUpgrade",
"name": "lab-upgrade", "namespace": "default", "error": "Cluster spoke5555 is not a
ManagedCluster"} 1
sigs.k8s.io/controller-runtime/pkg/internal/controller.
(*Controller).processNextWorkItem

CHAPTER 16. TOPOLOGY AWARE LIFECYCLE MANAGER FOR CLUSTER UPDATES

201

1

1 2

1

The error message shows that the cluster is not a managed cluster.

Checking if managed clusters are available

Issue

You want to check if the managed clusters specified in the ClusterGroupUpgrade CR are available.

Resolution

Run the following command:

Example output

The value of the AVAILABLE field is True for the managed clusters.

Checking clusterSelector

Issue

You want to check if the clusterSelector field is specified in the ClusterGroupUpgrade CR in at
least one of the managed clusters.

Resolution

Run the following command:

The label for the clusters you want to update is upgrade:true.

Example output

Checking if canary clusters are present

Issue

You want to check if the canary clusters are present in the list of clusters.

Example ClusterGroupUpgrade CR

$ oc get managedclusters

NAME HUB ACCEPTED MANAGED CLUSTER URLS JOINED AVAILABLE
AGE
local-cluster true https://api.hub.testlab.com:6443 True Unknown 13d
spoke1 true https://api.spoke1.testlab.com:6443 True True 13d 1
spoke3 true https://api.spoke3.testlab.com:6443 True True 27h 2

$ oc get managedcluster --selector=upgrade=true 1

NAME HUB ACCEPTED MANAGED CLUSTER URLS JOINED
AVAILABLE AGE
spoke1 true https://api.spoke1.testlab.com:6443 True True 13d
spoke3 true https://api.spoke3.testlab.com:6443 True True 27h

OpenShift Container Platform 4.10 Scalability and performance

202

Resolution

Run the following commands:

Example output

1. Check if the canary clusters are present in the list of clusters that match clusterSelector
labels by running the following command:

Example output

NOTE

A cluster can be present in spec.clusters and also be matched by the
spec.clusterSelecter label.

Checking the pre-caching status on spoke clusters

1. Check the status of pre-caching by running the following command on the spoke cluster:

16.8.5. Remediation Strategy

Checking if remediationStrategy is present in the ClusterGroupUpgrade CR

Issue

You want to check if the remediationStrategy is present in the ClusterGroupUpgrade CR.

spec:
 clusters:
 - spoke1
 - spoke3
 clusterSelector:
 - upgrade2=true
 remediationStrategy:
 canaries:
 - spoke3
 maxConcurrency: 2
 timeout: 240

$ oc get cgu lab-upgrade -ojsonpath='{.spec.clusters}'

["spoke1", "spoke3"]

$ oc get managedcluster --selector=upgrade=true

NAME HUB ACCEPTED MANAGED CLUSTER URLS JOINED AVAILABLE
AGE
spoke1 true https://api.spoke1.testlab.com:6443 True True 13d
spoke3 true https://api.spoke3.testlab.com:6443 True True 27h

$ oc get jobs,pods -n openshift-talo-pre-cache

CHAPTER 16. TOPOLOGY AWARE LIFECYCLE MANAGER FOR CLUSTER UPDATES

203

Resolution

Run the following command:

Example output

Checking if maxConcurrency is specified in the ClusterGroupUpgrade CR

Issue

You want to check if the maxConcurrency is specified in the ClusterGroupUpgrade CR.

Resolution

Run the following command:

Example output

16.8.6. Topology Aware Lifecycle Manager

Checking condition message and status in the ClusterGroupUpgrade CR

Issue

You want to check the value of the status.conditions field in the ClusterGroupUpgrade CR.

Resolution

Run the following command:

Example output

Checking corresponding copied policies

Issue

You want to check if every policy from status.managedPoliciesForUpgrade has a corresponding
policy in status.copiedPolicies.

Resolution

Run the following command:

$ oc get cgu lab-upgrade -ojsonpath='{.spec.remediationStrategy}'

{"maxConcurrency":2, "timeout":240}

$ oc get cgu lab-upgrade -ojsonpath='{.spec.remediationStrategy.maxConcurrency}'

2

$ oc get cgu lab-upgrade -ojsonpath='{.status.conditions}'

{"lastTransitionTime":"2022-02-17T22:25:28Z", "message":"The ClusterGroupUpgrade CR has
managed policies that are missing:[policyThatDoesntExist]", "reason":"UpgradeCannotStart",
"status":"False", "type":"Ready"}

OpenShift Container Platform 4.10 Scalability and performance

204

1

Example output

Checking if status.remediationPlan was computed

Issue

You want to check if status.remediationPlan is computed.

Resolution

Run the following command:

Example output

Errors in the TALM manager container

Issue

You want to check the logs of the manager container of TALM.

Resolution

Run the following command:

Example output

Displays the error.

Additional resources

For information about troubleshooting, see OpenShift Container Platform Troubleshooting

$ oc get cgu lab-upgrade -oyaml

status:
 …
 copiedPolicies:
 - lab-upgrade-policy3-common-ptp-sub-policy
 managedPoliciesForUpgrade:
 - name: policy3-common-ptp-sub-policy
 namespace: default

$ oc get cgu lab-upgrade -ojsonpath='{.status.remediationPlan}'

[["spoke2", "spoke3"]]

$ oc logs -n openshift-operators \
cluster-group-upgrades-controller-manager-75bcc7484d-8k8xp -c manager

ERROR controller-runtime.manager.controller.clustergroupupgrade Reconciler error {"reconciler
group": "ran.openshift.io", "reconciler kind": "ClusterGroupUpgrade", "name": "lab-upgrade",
"namespace": "default", "error": "Cluster spoke5555 is not a ManagedCluster"} 1
sigs.k8s.io/controller-runtime/pkg/internal/controller.(*Controller).processNextWorkItem

CHAPTER 16. TOPOLOGY AWARE LIFECYCLE MANAGER FOR CLUSTER UPDATES

205

For information about troubleshooting, see OpenShift Container Platform Troubleshooting
Operator Issues.

For more information about using Topology Aware Lifecycle Manager in the ZTP workflow, see
Updating managed policies with Topology Aware Lifecycle Manager .

For more information about the PolicyGenTemplate CRD, see About the PolicyGenTemplate
CRD

OpenShift Container Platform 4.10 Scalability and performance

206

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/support/#troubleshooting-operator-issues-1
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-topology-aware-lifecycle-manager
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-the-policygentemplate_ztp-configuring-managed-clusters-policies

CHAPTER 17. CREATING A PERFORMANCE PROFILE
Learn about the Performance Profile Creator (PPC) and how you can use it to create a performance
profile.

17.1. ABOUT THE PERFORMANCE PROFILE CREATOR

The Performance Profile Creator (PPC) is a command-line tool, delivered with the Performance Addon
Operator, used to create the performance profile. The tool consumes must-gather data from the
cluster and several user-supplied profile arguments. The PPC generates a performance profile that is
appropriate for your hardware and topology.

The tool is run by one of the following methods:

Invoking podman

Calling a wrapper script

17.1.1. Gathering data about your cluster using the must-gather command

The Performance Profile Creator (PPC) tool requires must-gather data. As a cluster administrator, run
the must-gather command to capture information about your cluster.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Access to the Performance Addon Operator image.

The OpenShift CLI (oc) installed.

Procedure

1. Optional: Verify that a matching machine config pool exists with a label:

Example output

2. If a matching label does not exist add a label for a machine config pool (MCP) that matches with
the MCP name:

3. Navigate to the directory where you want to store the must-gather data.

4. Run must-gather on your cluster:

NOTE

$ oc describe mcp/worker-rt

Name: worker-rt
Namespace:
Labels: machineconfiguration.openshift.io/role=worker-rt

$ oc label mcp <mcp_name> <mcp_name>=""

$ oc adm must-gather --image=<PAO_image> --dest-dir=<dir>

CHAPTER 17. CREATING A PERFORMANCE PROFILE

207

NOTE

The must-gather command must be run with the performance-addon-
operator-must-gather image. The output can optionally be compressed.
Compressed output is required if you are running the Performance Profile
Creator wrapper script.

Example

5. Create a compressed file from the must-gather directory:

17.1.2. Running the Performance Profile Creator using podman

As a cluster administrator, you can run podman and the Performance Profile Creator to create a
performance profile.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

A cluster installed on bare metal hardware.

A node with podman and OpenShift CLI (oc) installed.

Procedure

1. Check the machine config pool:

Example output

2. Use Podman to authenticate to registry.redhat.io:

$ oc adm must-gather --image=registry.redhat.io/openshift4/performance-addon-operator-
must-gather-rhel8:v4.10 --dest-dir=must-gather

$ tar cvaf must-gather.tar.gz must-gather/

$ oc get mcp

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-acd1358917e9f98cbdb599aea622d78b True False
False 3 3 3 0 22h
worker-cnf rendered-worker-cnf-1d871ac76e1951d32b2fe92369879826 False True
False 2 1 1 0 22h

$ podman login registry.redhat.io

Username: <username>
Password: <password>

OpenShift Container Platform 4.10 Scalability and performance

208

3. Optional: Display help for the PPC tool:

Example output

4. Run the Performance Profile Creator tool in discovery mode:

NOTE

Discovery mode inspects your cluster using the output from must-gather. The
output produced includes information on:

The NUMA cell partitioning with the allocated CPU ids

Whether hyperthreading is enabled

Using this information you can set appropriate values for some of the arguments
supplied to the Performance Profile Creator tool.

NOTE

$ podman run --entrypoint performance-profile-creator
registry.redhat.io/openshift4/performance-addon-rhel8-operator:v4.10 -h

A tool that automates creation of Performance Profiles

Usage:
 performance-profile-creator [flags]

Flags:
 --disable-ht Disable Hyperthreading
 -h, --help help for performance-profile-creator
 --info string Show cluster information; requires --must-gather-dir-path,
ignore the other arguments. [Valid values: log, json] (default "log")
 --mcp-name string MCP name corresponding to the target machines
(required)
 --must-gather-dir-path string Must gather directory path (default "must-gather")
 --power-consumption-mode string The power consumption mode. [Valid values:
default, low-latency, ultra-low-latency] (default "default")
 --profile-name string Name of the performance profile to be created (default
"performance")
 --reserved-cpu-count int Number of reserved CPUs (required)
 --rt-kernel Enable Real Time Kernel (required)
 --split-reserved-cpus-across-numa Split the Reserved CPUs across NUMA nodes
 --topology-manager-policy string Kubelet Topology Manager Policy of the performance
profile to be created. [Valid values: single-numa-node, best-effort, restricted] (default
"restricted")
 --user-level-networking Run with User level Networking(DPDK) enabled

$ podman run --entrypoint performance-profile-creator -v /must-gather:/must-gather:z
registry.redhat.io/openshift4/performance-addon-rhel8-operator:v4.10 --info log --must-
gather-dir-path /must-gather

CHAPTER 17. CREATING A PERFORMANCE PROFILE

209

NOTE

This command uses the performance profile creator as a new entry point to
podman. It maps the must-gather data for the host into the container image
and invokes the required user-supplied profile arguments to produce the my-
performance-profile.yaml file.

The -v option can be the path to either:

The must-gather output directory

An existing directory containing the must-gather decompressed tarball

The info option requires a value which specifies the output format. Possible
values are log and JSON. The JSON format is reserved for debugging.

5. Run podman:

NOTE

The Performance Profile Creator arguments are shown in the Performance
Profile Creator arguments table. The following arguments are required:

reserved-cpu-count

mcp-name

rt-kernel

The mcp-name argument in this example is set to worker-cnf based on the
output of the command oc get mcp. For single-node OpenShift use --mcp-
name=master.

6. Review the created YAML file:

Example output

$ podman run --entrypoint performance-profile-creator -v /must-gather:/must-gather:z
registry.redhat.io/openshift4/performance-addon-rhel8-operator:v4.10 --mcp-name=worker-
cnf --reserved-cpu-count=20 --rt-kernel=true --split-reserved-cpus-across-numa=false --
topology-manager-policy=single-numa-node --must-gather-dir-path /must-gather --power-
consumption-mode=ultra-low-latency > my-performance-profile.yaml

$ cat my-performance-profile.yaml

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: performance
spec:
 additionalKernelArgs:
 - nmi_watchdog=0
 - audit=0
 - mce=off

OpenShift Container Platform 4.10 Scalability and performance

210

7. Apply the generated profile:

NOTE

Install the Performance Addon Operator before applying the profile.

17.1.2.1. How to run podman to create a performance profile

The following example illustrates how to run podman to create a performance profile with 20 reserved
CPUs that are to be split across the NUMA nodes.

Node hardware configuration:

80 CPUs

Hyperthreading enabled

Two NUMA nodes

Even numbered CPUs run on NUMA node 0 and odd numbered CPUs run on NUMA node 1

Run podman to create the performance profile:

The created profile is described in the following YAML:

 - processor.max_cstate=1
 - intel_idle.max_cstate=0
 - idle=poll
 cpu:
 isolated: 1,3,5,7,9,11,13,15,17,19-39,41,43,45,47,49,51,53,55,57,59-79
 reserved: 0,2,4,6,8,10,12,14,16,18,40,42,44,46,48,50,52,54,56,58
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""
 numa:
 topologyPolicy: single-numa-node
 realTimeKernel:
 enabled: true

$ oc apply -f my-performance-profile.yaml

$ podman run --entrypoint performance-profile-creator -v /must-gather:/must-gather:z
registry.redhat.io/openshift4/performance-addon-rhel8-operator:v4.10 --mcp-name=worker-cnf --
reserved-cpu-count=20 --rt-kernel=true --split-reserved-cpus-across-numa=true --must-gather-dir-
path /must-gather > my-performance-profile.yaml

 apiVersion: performance.openshift.io/v2
 kind: PerformanceProfile
 metadata:
 name: performance
 spec:
 cpu:
 isolated: 10-39,50-79
 reserved: 0-9,40-49
 nodeSelector:

CHAPTER 17. CREATING A PERFORMANCE PROFILE

211

NOTE

In this case, 10 CPUs are reserved on NUMA node 0 and 10 are reserved on NUMA node 1.

17.1.3. Running the Performance Profile Creator wrapper script

The performance profile wrapper script simplifies the running of the Performance Profile Creator (PPC)
tool. It hides the complexities associated with running podman and specifying the mapping directories
and it enables the creation of the performance profile.

Prerequisites

Access to the Performance Addon Operator image.

Access to the must-gather tarball.

Procedure

1. Create a file on your local machine named, for example, run-perf-profile-creator.sh:

2. Paste the following code into the file:

 node-role.kubernetes.io/worker-cnf: ""
 numa:
 topologyPolicy: restricted
 realTimeKernel:
 enabled: true

$ vi run-perf-profile-creator.sh

#!/bin/bash

readonly CONTAINER_RUNTIME=${CONTAINER_RUNTIME:-podman}
readonly CURRENT_SCRIPT=$(basename "$0")
readonly CMD="${CONTAINER_RUNTIME} run --entrypoint performance-profile-creator"
readonly IMG_EXISTS_CMD="${CONTAINER_RUNTIME} image exists"
readonly IMG_PULL_CMD="${CONTAINER_RUNTIME} image pull"
readonly MUST_GATHER_VOL="/must-gather"

PAO_IMG="registry.redhat.io/openshift4/performance-addon-rhel8-operator:v4.10"
MG_TARBALL=""
DATA_DIR=""

usage() {
 print "Wrapper usage:"
 print " ${CURRENT_SCRIPT} [-h] [-p image][-t path] -- [performance-profile-creator flags]"
 print ""
 print "Options:"
 print " -h help for ${CURRENT_SCRIPT}"
 print " -p Performance Addon Operator image"
 print " -t path to a must-gather tarball"

 ${IMG_EXISTS_CMD} "${PAO_IMG}" && ${CMD} "${PAO_IMG}" -h
}

OpenShift Container Platform 4.10 Scalability and performance

212

function cleanup {
 [-d "${DATA_DIR}"] && rm -rf "${DATA_DIR}"
}
trap cleanup EXIT

exit_error() {
 print "error: $*"
 usage
 exit 1
}

print() {
 echo "$*" >&2
}

check_requirements() {
 ${IMG_EXISTS_CMD} "${PAO_IMG}" || ${IMG_PULL_CMD} "${PAO_IMG}" || \
 exit_error "Performance Addon Operator image not found"

 [-n "${MG_TARBALL}"] || exit_error "Must-gather tarball file path is mandatory"
 [-f "${MG_TARBALL}"] || exit_error "Must-gather tarball file not found"

 DATA_DIR=$(mktemp -d -t "${CURRENT_SCRIPT}XXXX") || exit_error "Cannot create the
data directory"
 tar -zxf "${MG_TARBALL}" --directory "${DATA_DIR}" || exit_error "Cannot decompress the
must-gather tarball"
 chmod a+rx "${DATA_DIR}"

 return 0
}

main() {
 while getopts ':hp:t:' OPT; do
 case "${OPT}" in
 h)
 usage
 exit 0
 ;;
 p)
 PAO_IMG="${OPTARG}"
 ;;
 t)
 MG_TARBALL="${OPTARG}"
 ;;
 ?)
 exit_error "invalid argument: ${OPTARG}"
 ;;
 esac
 done
 shift $((OPTIND - 1))

 check_requirements || exit 1

 ${CMD} -v "${DATA_DIR}:${MUST_GATHER_VOL}:z" "${PAO_IMG}" "$@" --must-gather-
dir-path "${MUST_GATHER_VOL}"

CHAPTER 17. CREATING A PERFORMANCE PROFILE

213

3. Add execute permissions for everyone on this script:

4. Optional: Display the run-perf-profile-creator.sh command usage:

Expected output

NOTE

 echo "" 1>&2
}

main "$@"

$ chmod a+x run-perf-profile-creator.sh

$./run-perf-profile-creator.sh -h

Wrapper usage:
 run-perf-profile-creator.sh [-h] [-p image][-t path] -- [performance-profile-creator flags]

Options:
 -h help for run-perf-profile-creator.sh
 -p Performance Addon Operator image 1
 -t path to a must-gather tarball 2

A tool that automates creation of Performance Profiles

 Usage:
 performance-profile-creator [flags]

 Flags:
 --disable-ht Disable Hyperthreading
 -h, --help help for performance-profile-creator
 --info string Show cluster information; requires --must-gather-dir-path,
ignore the other arguments. [Valid values: log, json] (default "log")
 --mcp-name string MCP name corresponding to the target machines
(required)
 --must-gather-dir-path string Must gather directory path (default "must-gather")
 --power-consumption-mode string The power consumption mode. [Valid values:
default, low-latency, ultra-low-latency] (default "default")
 --profile-name string Name of the performance profile to be created (default
"performance")
 --reserved-cpu-count int Number of reserved CPUs (required)
 --rt-kernel Enable Real Time Kernel (required)
 --split-reserved-cpus-across-numa Split the Reserved CPUs across NUMA nodes
 --topology-manager-policy string Kubelet Topology Manager Policy of the
performance profile to be created. [Valid values: single-numa-node, best-effort, restricted]
(default "restricted")
 --user-level-networking Run with User level Networking(DPDK) enabled

OpenShift Container Platform 4.10 Scalability and performance

214

1

2

NOTE

There two types of arguments:

Wrapper arguments namely -h, -p and -t

PPC arguments

Optional: Specify the Performance Addon Operator image. If not set, the default upstream
image is used: registry.redhat.io/openshift4/performance-addon-rhel8-operator:v4.10.

-t is a required wrapper script argument and specifies the path to a must-gather tarball.

5. Run the performance profile creator tool in discovery mode:

NOTE

Discovery mode inspects your cluster using the output from must-gather. The
output produced includes information on:

The NUMA cell partitioning with the allocated CPU IDs

Whether hyperthreading is enabled

Using this information you can set appropriate values for some of the arguments
supplied to the Performance Profile Creator tool.

NOTE

The info option requires a value which specifies the output format. Possible
values are log and JSON. The JSON format is reserved for debugging.

6. Check the machine config pool:

Example output

7. Create a performance profile:

NOTE

$./run-perf-profile-creator.sh -t /must-gather/must-gather.tar.gz -- --info=log

$ oc get mcp

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-acd1358917e9f98cbdb599aea622d78b True False
False 3 3 3 0 22h
worker-cnf rendered-worker-cnf-1d871ac76e1951d32b2fe92369879826 False True
False 2 1 1 0 22h

$./run-perf-profile-creator.sh -t /must-gather/must-gather.tar.gz -- --mcp-name=worker-cnf --
reserved-cpu-count=2 --rt-kernel=true > my-performance-profile.yaml

CHAPTER 17. CREATING A PERFORMANCE PROFILE

215

NOTE

The Performance Profile Creator arguments are shown in the Performance
Profile Creator arguments table. The following arguments are required:

reserved-cpu-count

mcp-name

rt-kernel

The mcp-name argument in this example is set to worker-cnf based on the
output of the command oc get mcp. For single-node OpenShift use --mcp-
name=master.

8. Review the created YAML file:

Example output

9. Apply the generated profile:

NOTE

Install the Performance Addon Operator before applying the profile.

17.1.4. Performance Profile Creator arguments

Table 17.1. Performance Profile Creator arguments

Argument Description

$ cat my-performance-profile.yaml

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: performance
spec:
 cpu:
 isolated: 1-39,41-79
 reserved: 0,40
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""
 numa:
 topologyPolicy: restricted
 realTimeKernel:
 enabled: false

$ oc apply -f my-performance-profile.yaml

OpenShift Container Platform 4.10 Scalability and performance

216

disable-ht Disable hyperthreading.

Possible values: true or false.

Default: false.

WARNING

If this argument is set to true you should not disable
hyperthreading in the BIOS. Disabling hyperthreading
is accomplished with a kernel command line
argument.

info This captures cluster information and is used in discovery mode only.
Discovery mode also requires the must-gather-dir-path argument. If any
other arguments are set they are ignored.

Possible values:

log

JSON

NOTE

These options define the output format with the
JSON format being reserved for debugging.

Default: log.

mcp-name MCP name for example worker-cnf corresponding to the target machines.
This parameter is required.

must-gather-dir-path Must gather directory path. This parameter is required.

When the user runs the tool with the wrapper script must-gather is
supplied by the script itself and the user must not specify it.

power-consumption-
mode

The power consumption mode.

Possible values:

default

low-latency

ultra-low-latency

Default: default.

Argument Description



CHAPTER 17. CREATING A PERFORMANCE PROFILE

217

profile-name Name of the performance profile to create. Default: performance.

reserved-cpu-count Number of reserved CPUs. This parameter is required.

NOTE

This must be a natural number. A value of 0 is not allowed.

rt-kernel Enable real-time kernel. This parameter is required.

Possible values: true or false.

split-reserved-cpus-
across-numa

Split the reserved CPUs across NUMA nodes.

Possible values: true or false.

Default: false.

topology-manager-policy Kubelet Topology Manager policy of the performance profile to be created.

Possible values:

single-numa-node

best-effort

restricted

Default: restricted.

user-level-networking Run with user level networking (DPDK) enabled.

Possible values: true or false.

Default: false.

Argument Description

17.2. ADDITIONAL RESOURCES

For more information about the must-gather tool, see Gathering data about your cluster .

OpenShift Container Platform 4.10 Scalability and performance

218

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/support/#nodes-nodes-managing

CHAPTER 18. WORKLOAD PARTITIONING ON SINGLE-NODE
OPENSHIFT

In resource-constrained environments, such as single-node OpenShift deployments, it is advantageous
to reserve most of the CPU resources for your own workloads and configure OpenShift Container
Platform to run on a fixed number of CPUs within the host. In these environments, management
workloads, including the control plane, need to be configured to use fewer resources than they might by
default in normal clusters. You can isolate the OpenShift Container Platform services, cluster
management workloads, and infrastructure pods to run on a reserved set of CPUs.

When you use workload partitioning, the CPU resources used by OpenShift Container Platform for
cluster management are isolated to a partitioned set of CPU resources on a single-node cluster. This
partitioning isolates cluster management functions to the defined number of CPUs. All cluster
management functions operate solely on that cpuset configuration.

The minimum number of reserved CPUs required for the management partition for a single-node
cluster is four CPU Hyper threads (HTs). The set of pods that make up the baseline OpenShift
Container Platform installation and a set of typical add-on Operators are annotated for inclusion in the
management workload partition. These pods operate normally within the minimum size cpuset
configuration. Inclusion of Operators or workloads outside of the set of accepted management pods
requires additional CPU HTs to be added to that partition.

Workload partitioning isolates the user workloads away from the platform workloads using the normal
scheduling capabilities of Kubernetes to manage the number of pods that can be placed onto those
cores, and avoids mixing cluster management workloads and user workloads.

When using workload partitioning, you must install the Performance Addon Operator and apply the
performance profile:

Workload partitioning pins the OpenShift Container Platform infrastructure pods to a defined
cpuset configuration.

The Performance Addon Operator performance profile pins the systemd services to a defined
cpuset configuration.

This cpuset configuration must match.

Workload partitioning introduces a new extended resource of <workload-
type>.workload.openshift.io/cores for each defined CPU pool, or workload-type. Kubelet advertises
these new resources and CPU requests by pods allocated to the pool are accounted for within the
corresponding resource rather than the typical cpu resource. When workload partitioning is enabled, the
<workload-type>.workload.openshift.io/cores resource allows access to the CPU capacity of the
host, not just the default CPU pool.

18.1. MAXIMIZING CPU ALLOCATION WITH WORKLOAD PARTITIONING

During single-node OpenShift cluster installation, you must enable workload partitioning. This limits the
cores allowed to run platform services, maximizing the CPU core for application payloads.

NOTE

You can enable workload partitioning only during cluster installation. You cannot disable
workload partitioning post-installation. However, you can reconfigure workload
partitioning by updating the cpu value that you define in the performance profile, and in
the related cpuset value in the MachineConfig custom resource (CR).

CHAPTER 18. WORKLOAD PARTITIONING ON SINGLE-NODE OPENSHIFT

219

1

The base64-encoded CR that enables workload partitioning contains the CPU set that the
management workloads are constrained to. Encode host-specific values for crio.conf and
kubelet.conf in base64. This content must be adjusted to match the CPU set that is specified in
the cluster performance profile and must be accurate for the number of cores in the cluster
host.

When configured in the cluster host, the contents of /etc/crio/crio.conf.d/01-workload-
partitioning should look like this:

The cpuset value varies based on the installation.

If Hyper-Threading is enabled, specify both threads for each core. The cpuset value must
match the reserved CPUs that you define in the spec.cpu.reserved field in the performance
profile.

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master
 name: 02-master-workload-partitioning
spec:
 config:
 ignition:
 version: 3.2.0
 storage:
 files:
 - contents:
 source: data:text/plain;charset=utf-
8;base64,W2NyaW8ucnVudGltZS53b3JrbG9hZHMubWFuYWdlbWVudF0KYWN0aXZhdGlvbl
9hbm5vdGF0aW9uID0gInRhcmdldC53b3JrbG9hZC5vcGVuc2hpZnQuaW8vbWFuYWdlbWVu
dCIKYW5ub3RhdGlvbl9wcmVmaXggPSAicmVzb3VyY2VzLndvcmtsb2FkLm9wZW5zaGlmdC5
pbyIKcmVzb3VyY2VzID0geyAiY3B1c2hhcmVzIiA9IDAsICJjcHVzZXQiID0gIjAtMSw1Mi01MyIgf
Qo=
 mode: 420
 overwrite: true
 path: /etc/crio/crio.conf.d/01-workload-partitioning
 user:
 name: root
 - contents:
 source: data:text/plain;charset=utf-
8;base64,ewogICJtYW5hZ2VtZW50IjogewogICAgImNwdXNldCI6ICIwLTEsNTItNTMiCiAgfQp
9Cg==
 mode: 420
 overwrite: true
 path: /etc/kubernetes/openshift-workload-pinning
 user:
 name: root

[crio.runtime.workloads.management]
activation_annotation = "target.workload.openshift.io/management"
annotation_prefix = "resources.workload.openshift.io"
[crio.runtime.workloads.management.resources]
cpushares = 0
cpuset = "0-1, 52-53" 1

OpenShift Container Platform 4.10 Scalability and performance

220

1

When configured in the cluster, the contents of /etc/kubernetes/openshift-workload-pinning
should look like this:

The cpuset must match the cpuset value in /etc/crio/crio.conf.d/01-workload-
partitioning.

{
 "management": {
 "cpuset": "0-1,52-53" 1
 }
}

CHAPTER 18. WORKLOAD PARTITIONING ON SINGLE-NODE OPENSHIFT

221

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

19.1. CHALLENGES OF THE NETWORK FAR EDGE

Edge computing presents complex challenges when managing many sites in geographically displaced
locations. Use zero touch provisioning (ZTP) and GitOps to provision and manage sites at the far edge
of the network.

19.1.1. Overcoming the challenges of the network far edge

Today, service providers want to deploy their infrastructure at the edge of the network. This presents
significant challenges:

How do you handle deployments of many edge sites in parallel?

What happens when you need to deploy sites in disconnected environments?

How do you manage the lifecycle of large fleets of clusters?

Zero touch provisioning (ZTP) and GitOps meets these challenges by allowing you to provision remote
edge sites at scale with declarative site definitions and configurations for bare-metal equipment.
Template or overlay configurations install OpenShift Container Platform features that are required for
CNF workloads. The full lifecycle of installation and upgrades is handled through the ZTP pipeline.

ZTP uses GitOps for infrastructure deployments. With GitOps, you use declarative YAML files and other
defined patterns stored in Git repositories. Red Hat Advanced Cluster Management (RHACM) uses your
Git repositories to drive the deployment of your infrastructure.

GitOps provides traceability, role-based access control (RBAC), and a single source of truth for the
desired state of each site. Scalability issues are addressed by Git methodologies and event driven
operations through webhooks.

You start the ZTP workflow by creating declarative site definition and configuration custom resources
(CRs) that the ZTP pipeline delivers to the edge nodes.

The following diagram shows how ZTP works within the far edge framework.

OpenShift Container Platform 4.10 Scalability and performance

222

19.1.2. Using ZTP to provision clusters at the network far edge

Red Hat Advanced Cluster Management (RHACM) manages clusters in a hub-and-spoke architecture,
where a single hub cluster manages many spoke clusters. Hub clusters running RHACM provision and
deploy the managed clusters by using zero touch provisioning (ZTP) and the assisted service that is
deployed when you install RHACM.

The assisted service handles provisioning of OpenShift Container Platform on single node clusters,
three-node clusters, or standard clusters running on bare metal.

A high-level overview of using ZTP to provision and maintain bare-metal hosts with OpenShift
Container Platform is as follows:

A hub cluster running RHACM manages an OpenShift image registry that mirrors the OpenShift
Container Platform release images. RHACM uses the OpenShift image registry to provision the
managed clusters.

You manage the bare-metal hosts in a YAML format inventory file, versioned in a Git repository.

You make the hosts ready for provisioning as managed clusters, and use RHACM and the
assisted service to install the bare-metal hosts on site.

Installing and deploying the clusters is a two-stage process, involving an initial installation phase, and a
subsequent configuration phase. The following diagram illustrates this workflow:

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

223

19.1.3. Installing managed clusters with SiteConfig resources and RHACM

GitOps ZTP uses SiteConfig custom resources (CRs) in a Git repository to manage the processes that
install OpenShift Container Platform clusters. The SiteConfig CR contains cluster-specific parameters
required for installation. It has options for applying select configuration CRs during installation including
user defined extra manifests.

The ZTP GitOps plugin processes SiteConfig CRs to generate a collection of CRs on the hub cluster.
This triggers the assisted service in Red Hat Advanced Cluster Management (RHACM) to install
OpenShift Container Platform on the bare-metal host. You can find installation status and error
messages in these CRs on the hub cluster.

You can provision single clusters manually or in batches with ZTP:

Provisioning a single cluster

Create a single SiteConfig CR and related installation and configuration CRs for the cluster, and

OpenShift Container Platform 4.10 Scalability and performance

224

Create a single SiteConfig CR and related installation and configuration CRs for the cluster, and
apply them in the hub cluster to begin cluster provisioning. This is a good way to test your CRs before
deploying on a larger scale.

Provisioning many clusters

Install managed clusters in batches of up to 400 by defining SiteConfig and related CRs in a Git
repository. ArgoCD uses the SiteConfig CRs to deploy the sites. The RHACM policy generator
creates the manifests and applies them to the hub cluster. This starts the cluster provisioning
process.

19.1.4. Configuring managed clusters with policies and PolicyGenTemplate
resources

Zero touch provisioning (ZTP) uses Red Hat Advanced Cluster Management (RHACM) to configure
clusters by using a policy-based governance approach to applying the configuration.

The policy generator or PolicyGen is a plugin for the GitOps Operator that enables the creation of
RHACM policies from a concise template. The tool can combine multiple CRs into a single policy, and
you can generate multiple policies that apply to various subsets of clusters in your fleet.

NOTE

For scalability and to reduce the complexity of managing configurations across the fleet
of clusters, use configuration CRs with as much commonality as possible.

Where possible, apply configuration CRs using a fleet-wide common policy.

The next preference is to create logical groupings of clusters to manage as much
of the remaining configurations as possible under a group policy.

When a configuration is unique to an individual site, use RHACM templating on
the hub cluster to inject the site-specific data into a common or group policy.
Alternatively, apply an individual site policy for the site.

The following diagram shows how the policy generator interacts with GitOps and RHACM in the
configuration phase of cluster deployment.

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

225

For large fleets of clusters, it is typical for there to be a high-level of consistency in the configuration of
those clusters.

The following recommended structuring of policies combines configuration CRs to meet several goals:

Describe common configurations once and apply to the fleet.

Minimize the number of maintained and managed policies.

Support flexibility in common configurations for cluster variants.

Table 19.1. Recommended PolicyGenTemplate policy categories

Policy
category

Description

Common A policy that exists in the common category is applied to all clusters in the fleet. Use
common PolicyGenTemplate CRs to apply common installation settings across all
cluster types.

Groups A policy that exists in the groups category is applied to a group of clusters in the fleet. Use
group PolicyGenTemplate CRs to manage specific aspects of single-node, three-node,
and standard cluster installations. Cluster groups can also follow geographic region,
hardware variant, etc.

Sites A policy that exists in the sites category is applied to a specific cluster site. Any cluster can
have its own specific policies maintained.

Additional resources

OpenShift Container Platform 4.10 Scalability and performance

226

For more information about extracting the reference SiteConfig and PolicyGenTemplate CRs
from the ztp-site-generate container image, see Preparing the ZTP Git repository .

19.2. PREPARING THE HUB CLUSTER FOR ZTP

To use RHACM in a disconnected environment, create a mirror registry that mirrors the OpenShift
Container Platform release images and Operator Lifecycle Manager (OLM) catalog that contains the
required Operator images. OLM manages, installs, and upgrades Operators and their dependencies in
the cluster. You can also use a disconnected mirror host to serve the RHCOS ISO and RootFS disk
images that are used to provision the bare-metal hosts.

19.2.1. Telco RAN 4.10 validated solution software versions

The Red Hat Telco Radio Access Network (RAN) version 4.10 solution has been validated using the
following Red Hat software products.

Table 19.2. Telco RAN 4.10 validated solution software

Product Software version

Hub cluster OpenShift Container Platform version 4.10

GitOps ZTP plugin 4.9 or 4.10

Red Hat Advanced Cluster Management (RHACM) 2.4 or 2.5

Red Hat OpenShift GitOps 1.4

Topology Aware Lifecycle Manager (TALM) 4.10 (Technology Preview)

19.2.2. Installing GitOps ZTP in a disconnected environment

Use Red Hat Advanced Cluster Management (RHACM), Red Hat OpenShift GitOps, and Topology
Aware Lifecycle Manager (TALM) on the hub cluster in the disconnected environment to manage the
deployment of multiple managed clusters.

Prerequisites

You have installed the OpenShift Container Platform CLI (oc).

You have logged in as a user with cluster-admin privileges.

You have configured a disconnected mirror registry for use in the cluster.

NOTE

The disconnected mirror registry that you create must contain a version of TALM
backup and pre-cache images that matches the version of TALM running in the
hub cluster. The spoke cluster must be able to resolve these images in the
disconnected mirror registry.

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

227

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-preparing-the-ztp-git-repository_ztp-preparing-the-hub-cluster

1

1

Procedure

Install RHACM in the hub cluster. See Installing RHACM in a disconnected environment .

Install GitOps and TALM in the hub cluster.

Additional resources

Installing OpenShift GitOps

Installing TALM

Mirroring an Operator catalog

19.2.3. Adding RHCOS ISO and RootFS images to the disconnected mirror host

Before you begin installing clusters in the disconnected environment with Red Hat Advanced Cluster
Management (RHACM), you must first host Red Hat Enterprise Linux CoreOS (RHCOS) images for it to
use. Use a disconnected mirror to host the RHCOS images.

Prerequisites

Deploy and configure an HTTP server to host the RHCOS image resources on the network. You
must be able to access the HTTP server from your computer, and from the machines that you
create.

IMPORTANT

The RHCOS images might not change with every release of OpenShift Container
Platform. You must download images with the highest version that is less than or equal to
the version that you install. Use the image versions that match your OpenShift Container
Platform version if they are available. You require ISO and RootFS images to install
RHCOS on the hosts. RHCOS QCOW2 images are not supported for this installation
type.

Procedure

1. Log in to the mirror host.

2. Obtain the RHCOS ISO and RootFS images from mirror.openshift.com, for example:

a. Export the required image names and OpenShift Container Platform version as
environment variables:

ISO image name, for example, rhcos-4.10.1-x86_64-live.x86_64.iso

RootFS image name, for example, rhcos-4.10.1-x86_64-live-rootfs.x86_64.img

$ export ISO_IMAGE_NAME=<iso_image_name> 1

$ export ROOTFS_IMAGE_NAME=<rootfs_image_name> 1

$ export OCP_VERSION=<ocp_version> 1

OpenShift Container Platform 4.10 Scalability and performance

228

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.4/html/install/installing#install-on-disconnected-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cicd/#getting-started-with-openshift-gitops
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#installing-topology-aware-lifecycle-manager-using-cli_cnf-topology-aware-lifecycle-manager
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/operators/#olm-mirror-catalog_olm-restricted-networks
https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/

1 OpenShift Container Platform verison, for example, 4.10.1

b. Download the required images:

Verification steps

Verify that the images downloaded successfully and are being served on the disconnected
mirror host, for example:

Example output

Additional resources

Creating a mirror registry

Mirroring images for a disconnected installation

19.2.4. Enabling the assisted service and updating AgentServiceConfig on the hub
cluster

Red Hat Advanced Cluster Management (RHACM) uses the assisted service to deploy OpenShift
Container Platform clusters. The assisted service is deployed automatically when you enable the
MultiClusterHub Operator with Central Infrastructure Management (CIM). When you have enabled CIM
on the hub cluster, you then need to update the AgentServiceConfig custom resource (CR) with
references to the ISO and RootFS images that are hosted on the mirror registry HTTP server.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

You have enabled the assisted service on the hub cluster. For more information, see Enabling
CIM.

Procedure

1. Update the AgentServiceConfig CR by running the following command:

$ sudo wget https://mirror.openshift.com/pub/openshift-
v4/dependencies/rhcos/4.10/${OCP_VERSION}/${ISO_IMAGE_NAME} -O
/var/www/html/${ISO_IMAGE_NAME}

$ sudo wget https://mirror.openshift.com/pub/openshift-
v4/dependencies/rhcos/4.10/${OCP_VERSION}/${ROOTFS_IMAGE_NAME} -O
/var/www/html/${ROOTFS_IMAGE_NAME}

$ wget http://$(hostname)/${ISO_IMAGE_NAME}

Saving to: rhcos-4.10.1-x86_64-live.x86_64.iso
rhcos-4.10.1-x86_64-live.x86_64.iso- 11%[====>] 10.01M 4.71MB/s

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

229

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#installing-mirroring-creating-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#installing-mirroring-installation-images
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html/multicluster_engine/multicluster_engine_overview#enable-cim

2. Add the following entry to the items.spec.osImages field in the CR:

where:

<host>

Is the fully qualified domain name (FQDN) for the target mirror registry HTTP server.

<path>

Is the path to the image on the target mirror registry.

Save and quit the editor to apply the changes.

19.2.5. Configuring the hub cluster to use a disconnected mirror registry

You can configure the hub cluster to use a disconnected mirror registry for a disconnected environment.

Prerequisites

You have a disconnected hub cluster installation with Red Hat Advanced Cluster Management
(RHACM) 2.4 installed.

You have hosted the rootfs and iso images on an HTTP server.

WARNING

If you enable TLS for the HTTP server, you must confirm the root certificate is
signed by an authority trusted by the client and verify the trusted certificate chain
between your OpenShift Container Platform hub and managed clusters and the
HTTP server. Using a server configured with an untrusted certificate prevents the
images from being downloaded to the image creation service. Using untrusted
HTTPS servers is not supported.

Procedure

1. Create a ConfigMap containing the mirror registry config:

$ oc edit AgentServiceConfig

- cpuArchitecture: x86_64
 openshiftVersion: "4.10"
 rootFSUrl: https://<host>/<path>/rhcos-live-rootfs.x86_64.img
 url: https://<mirror-registry>/<path>/rhcos-live.x86_64.iso



apiVersion: v1
kind: ConfigMap
metadata:
 name: assisted-installer-mirror-config
 namespace: assisted-installer
 labels:
 app: assisted-service

OpenShift Container Platform 4.10 Scalability and performance

230

1

2

3

1 2

The mirror registry’s certificate used when creating the mirror registry.

The configuration for the mirror registry.

The URL of the mirror registry.

This updates mirrorRegistryRef in the AgentServiceConfig custom resource, as shown below:

Example output

Must match the URLs of the HTTPD server.

IMPORTANT

A valid NTP server is required during cluster installation. Ensure that a suitable NTP
server is available and can be reached from the installed clusters through the
disconnected network.

data:
 ca-bundle.crt: <certificate> 1
 registries.conf: | 2
 unqualified-search-registries = ["registry.access.redhat.com", "docker.io"]

 [[registry]]
 location = <mirror_registry_url> 3
 insecure = false
 mirror-by-digest-only = true

apiVersion: agent-install.openshift.io/v1beta1
kind: AgentServiceConfig
metadata:
 name: agent
spec:
 databaseStorage:
 volumeName: <db_pv_name>
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: <db_storage_size>
 filesystemStorage:
 volumeName: <fs_pv_name>
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: <fs_storage_size>
 mirrorRegistryRef:
 name: 'assisted-installer-mirror-config'
 osImages:
 - openshiftVersion: <ocp_version>
 rootfs: <rootfs_url> 1
 url: <iso_url> 2

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

231

19.2.6. Configuring the hub cluster with ArgoCD

You can configure your hub cluster with a set of ArgoCD applications that generate the required
installation and policy custom resources (CR) for each site based on a zero touch provisioning (ZTP)
GitOps flow.

Prerequisites

You have a OpenShift Container Platform hub cluster with Red Hat Advanced Cluster
Management (RHACM) and Red Hat OpenShift GitOps installed.

You have extracted the reference deployment from the ZTP GitOps plugin container as
described in the "Preparing the GitOps ZTP site configuration repository" section. Extracting
the reference deployment creates the out/argocd/deployment directory referenced in the
following procedure.

Procedure

1. Prepare the ArgoCD pipeline configuration:

a. Create a Git repository with the directory structure similar to the example directory. For
more information, see "Preparing the GitOps ZTP site configuration repository".

b. Configure access to the repository using the ArgoCD UI. Under Settings configure the
following:

Repositories - Add the connection information. The URL must end in .git, for example,
https://repo.example.com/repo.git and credentials.

Certificates - Add the public certificate for the repository, if needed.

c. Modify the two ArgoCD applications, out/argocd/deployment/clusters-app.yaml and
out/argocd/deployment/policies-app.yaml, based on your Git repository:

Update the URL to point to the Git repository. The URL ends with .git, for example,
https://repo.example.com/repo.git.

The targetRevision indicates which Git repository branch to monitor.

path specifies the path to the SiteConfig and PolicyGenTemplate CRs, respectively.

2. To install the ZTP GitOps plugin you must patch the ArgoCD instance in the hub cluster by using
the patch file previously extracted into the out/argocd/deployment/ directory. Run the
following command:

3. Apply the pipeline configuration to your hub cluster by using the following command:

Additional resources

Preparing the GitOps ZTP site configuration repository

$ oc patch argocd openshift-gitops \
-n openshift-gitops --type=merge \
--patch-file out/argocd/deployment/argocd-openshift-gitops-patch.json

$ oc apply -k out/argocd/deployment

OpenShift Container Platform 4.10 Scalability and performance

232

https://repo.example.com/repo.git
https://repo.example.com/repo.git
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-preparing-the-ztp-git-repository_ztp-preparing-the-hub-cluster

19.2.7. Preparing the GitOps ZTP site configuration repository

Before you can use the ZTP GitOps pipeline, you need to prepare the Git repository to host the site
configuration data.

Prerequisites

You have configured the hub cluster GitOps applications for generating the required installation
and policy custom resources (CRs).

You have deployed the managed clusters using zero touch provisioning (ZTP).

Procedure

1. Create a directory structure with separate paths for the SiteConfig and PolicyGenTemplate
CRs.

2. Export the argocd directory from the ztp-site-generate container image using the following
commands:

3. Check that the out directory contains the following subdirectories:

out/extra-manifest contains the source CR files that SiteConfig uses to generate extra
manifest configMap.

out/source-crs contains the source CR files that PolicyGenTemplate uses to generate the
Red Hat Advanced Cluster Management (RHACM) policies.

out/argocd/deployment contains patches and YAML files to apply on the hub cluster for
use in the next step of this procedure.

out/argocd/example contains the examples for SiteConfig and PolicyGenTemplate files
that represent the recommended configuration.

The directory structure under out/argocd/example serves as a reference for the structure and content
of your Git repository. The example includes SiteConfig and PolicyGenTemplate reference CRs for
single-node, three-node, and standard clusters. Remove references to cluster types that you are not
using. The following example describes a set of CRs for a network of single-node clusters:

$ podman pull registry.redhat.io/openshift4/ztp-site-generate-rhel8:v4.10

$ mkdir -p ./out

$ podman run --log-driver=none --rm registry.redhat.io/openshift4/ztp-site-generate-
rhel8:v{product-version} extract /home/ztp --tar | tar x -C ./out

example
├── policygentemplates
│ ├── common-ranGen.yaml
│ ├── example-sno-site.yaml
│ ├── group-du-sno-ranGen.yaml
│ ├── group-du-sno-validator-ranGen.yaml
│ ├── kustomization.yaml
│ └── ns.yaml
└── siteconfig

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

233

Keep SiteConfig and PolicyGenTemplate CRs in separate directories. Both the SiteConfig and
PolicyGenTemplate directories must contain a kustomization.yaml file that explicitly includes the files
in that directory.

This directory structure and the kustomization.yaml files must be committed and pushed to your Git
repository. The initial push to Git should include the kustomization.yaml files. The SiteConfig
(example-sno.yaml) and PolicyGenTemplate (common-ranGen.yaml, group-du-sno*.yaml, and
example-sno-site.yaml) files can be omitted and pushed at a later time as required when deploying a
site.

The KlusterletAddonConfigOverride.yaml file is only required if one or more SiteConfig CRs which
make reference to it are committed and pushed to Git. See example-sno.yaml for an example of how
this is used.

19.3. INSTALLING MANAGED CLUSTERS WITH RHACM AND
SITECONFIG RESOURCES

You can provision OpenShift Container Platform clusters at scale with Red Hat Advanced Cluster
Management (RHACM) using the assisted service and the GitOps plugin policy generator with core-
reduction technology enabled. The zero touch priovisioning (ZTP) pipeline performs the cluster
installations. ZTP can be used in a disconnected environment.

19.3.1. GitOps ZTP and Topology Aware Lifecycle Manager

GitOps zero touch provisioning (ZTP) generates installation and configuration CRs from manifests
stored in Git. These artifacts are applied to a centralized hub cluster where Red Hat Advanced Cluster
Management (RHACM), the assisted service, and the Topology Aware Lifecycle Manager (TALM) use
the CRs to install and configure the managed cluster. The configuration phase of the ZTP pipeline uses
the TALM to orchestrate the application of the configuration CRs to the cluster. There are several key
integration points between GitOps ZTP and the TALM.

Inform policies

By default, GitOps ZTP creates all policies with a remediation action of inform. These policies cause
RHACM to report on compliance status of clusters relevant to the policies but does not apply the
desired configuration. During the ZTP process, after OpenShift installation, the TALM steps through
the created inform policies and enforces them on the target managed cluster(s). This applies the
configuration to the managed cluster. Outside of the ZTP phase of the cluster lifecycle, this allows
you to change policies without the risk of immediately rolling those changes out to affected
managed clusters. You can control the timing and the set of remediated clusters by using TALM.

Automatic creation of ClusterGroupUpgrade CRs

To automate the initial configuration of newly deployed clusters, TALM monitors the state of all
ManagedCluster CRs on the hub cluster. Any ManagedCluster CR that does not have a ztp-done
label applied, including newly created ManagedCluster CRs, causes the TALM to automatically
create a ClusterGroupUpgrade CR with the following characteristics:

The ClusterGroupUpgrade CR is created and enabled in the ztp-install namespace.

ClusterGroupUpgrade CR has the same name as the ManagedCluster CR.

The cluster selector includes only the cluster associated with that ManagedCluster CR.

The set of managed policies includes all policies that RHACM has bound to the cluster at the

 ├── example-sno.yaml
 ├── KlusterletAddonConfigOverride.yaml
 └── kustomization.yaml

OpenShift Container Platform 4.10 Scalability and performance

234

The set of managed policies includes all policies that RHACM has bound to the cluster at the
time the ClusterGroupUpgrade is created.

Pre-caching is disabled.

Timeout set to 4 hours (240 minutes).

The automatic creation of an enabled ClusterGroupUpgrade ensures that initial zero-touch
deployment of clusters proceeds without the need for user intervention. Additionally, the automatic
creation of a ClusterGroupUpgrade CR for any ManagedCluster without the ztp-done label allows
a failed ZTP installation to be restarted by simply deleting the ClusterGroupUpgrade CR for the
cluster.

Waves

Each policy generated from a PolicyGenTemplate CR includes a ztp-deploy-wave annotation. This
annotation is based on the same annotation from each CR which is included in that policy. The wave
annotation is used to order the policies in the auto-generated ClusterGroupUpgrade CR. The wave
annotation is not used other than for the auto-generated ClusterGroupUpgrade CR.

NOTE

All CRs in the same policy must have the same setting for the ztp-deploy-wave
annotation. The default value of this annotation for each CR can be overridden in the
PolicyGenTemplate. The wave annotation in the source CR is used for determining
and setting the policy wave annotation. This annotation is removed from each built CR
which is included in the generated policy at runtime.

The TALM applies the configuration policies in the order specified by the wave annotations. The
TALM waits for each policy to be compliant before moving to the next policy. It is important to
ensure that the wave annotation for each CR takes into account any prerequisites for those CRs to
be applied to the cluster. For example, an Operator must be installed before or concurrently with the
configuration for the Operator. Similarly, the CatalogSource for an Operator must be installed in a
wave before or concurrently with the Operator Subscription. The default wave value for each CR
takes these prerequisites into account.

Multiple CRs and policies can share the same wave number. Having fewer policies can result in faster
deployments and lower CPU usage. It is a best practice to group many CRs into relatively few waves.

To check the default wave value in each source CR, run the following command against the out/source-
crs directory that is extracted from the ztp-site-generate container image:

Phase labels

The ClusterGroupUpgrade CR is automatically created and includes directives to annotate the
ManagedCluster CR with labels at the start and end of the ZTP process.
When ZTP configuration post-installation commences, the ManagedCluster has the ztp-running
label applied. When all policies are remediated to the cluster and are fully compliant, these directives
cause the TALM to remove the ztp-running label and apply the ztp-done label.

For deployments that make use of the informDuValidator policy, the ztp-done label is applied when
the cluster is fully ready for deployment of applications. This includes all reconciliation and resulting
effects of the ZTP applied configuration CRs. The ztp-done label affects automatic

$ grep -r "ztp-deploy-wave" out/source-crs

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

235

ClusterGroupUpgrade CR creation by TALM. Do not manipulate this label after the initial ZTP
installation of the cluster.

Linked CRs

The automatically created ClusterGroupUpgrade CR has the owner reference set as the
ManagedCluster from which it was derived. This reference ensures that deleting the
ManagedCluster CR causes the instance of the ClusterGroupUpgrade to be deleted along with any
supporting resources.

19.3.2. Overview of deploying managed clusters with ZTP

Red Hat Advanced Cluster Management (RHACM) uses zero touch provisioning (ZTP) to deploy single-
node OpenShift Container Platform clusters, three-node clusters, and standard clusters. You manage
site configuration data as OpenShift Container Platform custom resources (CRs) in a Git repository.
ZTP uses a declarative GitOps approach for a develop once, deploy anywhere model to deploy the
managed clusters.

The deployment of the clusters includes:

Installing the host operating system (RHCOS) on a blank server

Deploying OpenShift Container Platform

Creating cluster policies and site subscriptions

Making the necessary network configurations to the server operating system

Deploying profile Operators and performing any needed software-related configuration, such
as performance profile, PTP, and SR-IOV

Overview of the managed site installation process
After you apply the managed site custom resources (CRs) on the hub cluster, the following actions
happen automatically:

1. A Discovery image ISO file is generated and booted on the target host.

2. When the ISO file successfully boots on the target host it reports the host hardware information
to RHACM.

3. After all hosts are discovered, OpenShift Container Platform is installed.

4. When OpenShift Container Platform finishes installing, the hub installs the klusterlet service on
the target cluster.

5. The requested add-on services are installed on the target cluster.

The Discovery image ISO process is complete when the Agent CR for the managed cluster is created on
the hub cluster.

IMPORTANT

The target bare-metal host must meet the networking, firmware, and hardware
requirements listed in Recommended single-node OpenShift cluster configuration for
vDU application workloads.

OpenShift Container Platform 4.10 Scalability and performance

236

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#sno-configure-for-vdu

1

2

3

4

19.3.3. Creating the managed bare-metal host secrets

Add the required Secret custom resources (CRs) for the managed bare-metal host to the hub cluster.
You need a secret for the ZTP pipeline to access the Baseboard Management Controller (BMC) and a
secret for the assisted installer service to pull cluster installation images from the registry.

NOTE

The secrets are referenced from the SiteConfig CR by name. The namespace must
match the SiteConfig namespace.

Procedure

1. Create a YAML secret file containing credentials for the host Baseboard Management
Controller (BMC) and a pull secret required for installing OpenShift and all add-on cluster
Operators:

a. Save the following YAML as the file example-sno-secret.yaml:

Must match the namespace configured in the related SiteConfig CR

Base64-encoded values for password and username

Must match the namespace configured in the related SiteConfig CR

Base64-encoded pull secret

2. Add the relative path to example-sno-secret.yaml to the kustomization.yaml file that you use
to install the cluster.

19.3.4. Deploying a managed cluster with SiteConfig and ZTP

Use the following procedure to create a SiteConfig custom resource (CR) and related files and initiate
the zero touch provisioning (ZTP) cluster deployment.

Prerequisites

apiVersion: v1
kind: Secret
metadata:
 name: example-sno-bmc-secret
 namespace: example-sno 1
data: 2
 password: <base64_password>
 username: <base64_username>
type: Opaque

apiVersion: v1
kind: Secret
metadata:
 name: pull-secret
 namespace: example-sno 3
data:
 .dockerconfigjson: <pull_secret> 4
type: kubernetes.io/dockerconfigjson

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

237

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

You configured the hub cluster for generating the required installation and policy CRs.

You created a Git repository where you manage your custom site configuration data. The
repository must be accessible from the hub cluster and you must configure it as a source
repository for the ArgoCD application. See "Preparing the GitOps ZTP site configuration
repository" for more information.

NOTE

When you create the source repository, ensure that you patch the ArgoCD
application with the argocd/deployment/argocd-openshift-gitops-patch.json
patch-file that you extract from the ztp-site-generate container. See
"Configuring the hub cluster with ArgoCD".

To be ready for provisioning managed clusters, you require the following for each bare-metal
host:

Network connectivity

Your network requires DNS. Managed cluster hosts should be reachable from the hub
cluster. Ensure that Layer 3 connectivity exists between the hub cluster and the managed
cluster host.

Baseboard Management Controller (BMC) details

ZTP uses BMC username and password details to connect to the BMC during cluster
installation. The GitOps ZTP plugin manages the ManagedCluster CRs on the hub cluster
based on the SiteConfig CR in your site Git repo. You create individual BMCSecret CRs for
each host manually.

Procedure

1. Create the required managed cluster secrets on the hub cluster. These resources must be in a
namespace with a name matching the cluster name. For example, in
out/argocd/example/siteconfig/example-sno.yaml, the cluster name and namespace is
example-sno.

a. Export the cluster namespace by running the following command:

b. Create the namespace:

2. Create pull secret and BMC Secret CRs for the managed cluster. The pull secret must contain
all the credentials necessary for installing OpenShift Container Platform and all required
Operators. See "Creating the managed bare-metal host secrets" for more information.

NOTE

$ export CLUSTERNS=example-sno

$ oc create namespace $CLUSTERNS

OpenShift Container Platform 4.10 Scalability and performance

238

NOTE

The secrets are referenced from the SiteConfig custom resource (CR) by name.
The namespace must match the SiteConfig namespace.

3. Create a SiteConfig CR for your cluster in your local clone of the Git repository:

a. Choose the appropriate example for your CR from the out/argocd/example/siteconfig/
folder. The folder includes example files for single node, three-node, and standard clusters:

example-sno.yaml

example-3node.yaml

example-standard.yaml

b. Change the cluster and host details in the example file to match the type of cluster you
want. For example:

Example single-node OpenShift cluster SiteConfig CR

apiVersion: ran.openshift.io/v1
kind: SiteConfig
metadata:
 name: "<site_name>"
 namespace: "<site_name>"
spec:
 baseDomain: "example.com"
 pullSecretRef:
 name: "assisted-deployment-pull-secret" 1
 clusterImageSetNameRef: "openshift-4.10" 2
 sshPublicKey: "ssh-rsa AAAA..." 3
 clusters:
 - clusterName: "<site_name>"
 networkType: "OVNKubernetes"
 clusterLabels: 4
 common: true
 group-du-sno: ""
 sites : "<site_name>"
 clusterNetwork:
 - cidr: 1001:1::/48
 hostPrefix: 64
 machineNetwork:
 - cidr: 1111:2222:3333:4444::/64
 serviceNetwork:
 - 1001:2::/112
 additionalNTPSources:
 - 1111:2222:3333:4444::2
 #crTemplates:
 # KlusterletAddonConfig: "KlusterletAddonConfigOverride.yaml" 5
 nodes:
 - hostName: "example-node.example.com" 6
 role: "master"
 #biosConfigRef:
 # filePath: "example-hw.profile" 7

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

239

1

2

3

4

5

6

Create the assisted-deployment-pull-secret CR with the same namespace as the
SiteConfig CR.

clusterImageSetNameRef defines an image set available on the hub cluster. To see
the list of supported versions on your hub cluster, run oc get clusterimagesets.

Configure the SSH public key used to access the cluster.

Cluster labels must correspond to the bindingRules field in the PolicyGenTemplate
CRs that you define. For example, policygentemplates/common-ranGen.yaml
applies to all clusters with common: true set, policygentemplates/group-du-sno-
ranGen.yaml applies to all clusters with group-du-sno: "" set.

Optional. The CR specifed under KlusterletAddonConfig is used to override the
default KlusterletAddonConfig that is created for the cluster.

For single-node deployments, define a single host. For three-node deployments,
define three hosts. For standard deployments, define three hosts with role: master
and two or more hosts defined with role: worker.

 bmcAddress: idrac-virtualmedia://<out_of_band_ip>/<system_id>/ 8
 bmcCredentialsName:
 name: "bmh-secret" 9
 bootMACAddress: "AA:BB:CC:DD:EE:11"
 bootMode: "UEFI" 10
 rootDeviceHints:
 wwn: "0x11111000000asd123"
 cpuset: "0-1,52-53"
 nodeNetwork: 11
 interfaces:
 - name: eno1
 macAddress: "AA:BB:CC:DD:EE:11"
 config:
 interfaces:
 - name: eno1
 type: ethernet
 state: up
 ipv4:
 enabled: false
 ipv6: 12
 enabled: true
 address:
 - ip: 1111:2222:3333:4444::aaaa:1
 prefix-length: 64
 dns-resolver:
 config:
 search:
 - example.com
 server:
 - 1111:2222:3333:4444::2
 routes:
 config:
 - destination: ::/0
 next-hop-interface: eno1
 next-hop-address: 1111:2222:3333:4444::1
 table-id: 254

OpenShift Container Platform 4.10 Scalability and performance

240

7

8

9

10

11

12

Optional. Use biosConfigRef to configure desired firmware for the host.

Applies to all cluster types. Specifies the BMC address.

Create the bmh-secret CR that specifies the BMC credentials. Use the same
namespace as the SiteConfig CR.

Use UEFISecureBoot to enable secure boot on the host.

Specifies the network settings for the node.

Configures the IPv6 address for the host. For single-node OpenShift clusters with
static IP addresses, the node-specific API and Ingress IPs should be the same.

NOTE

For more information about BMC addressing, see the "Additional resources"
section.

c. You can inspect the default set of extra-manifest MachineConfig CRs in
out/argocd/extra-manifest. It is automatically applied to the cluster when it is installed.

d. Optional: To provision additional install-time manifests on the provisioned cluster, create a
directory in your Git repository, for example, sno-extra-manifest/, and add your custom
manifest CRs to this directory. If your SiteConfig.yaml refers to this directory in the
extraManifestPath field, any CRs in this referenced directory are appended to the default
set of extra manifests.

4. Add the SiteConfig CR to the kustomization.yaml file in the generators section, similar to the
example shown in out/argocd/example/siteconfig/kustomization.yaml.

5. Commit the SiteConfig CR and associated kustomization.yaml changes in your Git repository
and push the changes.
The ArgoCD pipeline detects the changes and begins the managed cluster deployment.

Additional resources

Preparing the GitOps ZTP site configuration repository

Configuring the hub cluster with ArgoCD

Signalling ZTP cluster deployment completion with validator inform policies

Creating the managed bare-metal host secrets

BMC addressing

19.3.5. Monitoring managed cluster installation progress

The ArgoCD pipeline uses the SiteConfig CR to generate the cluster configuration CRs and syncs it
with the hub cluster. You can monitor the progress of the synchronization in the ArgoCD dashboard.

Prerequisites

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

241

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-preparing-the-ztp-git-repository_ztp-preparing-the-hub-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-configuring-hub-cluster-with-argocd_ztp-preparing-the-hub-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-creating-a-validator-inform-policy_ztp-advanced-policy-config
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-creating-the-site-secrets_ztp-manual-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#bmc-addressing_ipi-install-installation-workflow

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

When the synchronization is complete, the installation generally proceeds as follows:

1. The Assisted Service Operator installs OpenShift Container Platform on the cluster. You can
monitor the progress of cluster installation from the RHACM dashboard or from the command
line by running the following commands:

a. Export the cluster name:

b. Query the AgentClusterInstall CR for the managed cluster:

c. Get the installation events for the cluster:

19.3.6. Troubleshooting GitOps ZTP by validating the installation CRs

The ArgoCD pipeline uses the SiteConfig and PolicyGenTemplate custom resources (CRs) to
generate the cluster configuration CRs and Red Hat Advanced Cluster Management (RHACM) policies.
Use the following steps to troubleshoot issues that might occur during this process.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

1. Check that the installation CRs were created by using the following command:

If no object is returned, use the following steps to troubleshoot the ArgoCD pipeline flow from
SiteConfig files to the installation CRs.

2. Verify that the ManagedCluster CR was generated using the SiteConfig CR on the hub cluster:

3. If the ManagedCluster is missing, check if the clusters application failed to synchronize the
files from the Git repository to the hub cluster:

$ export CLUSTER=<clusterName>

$ oc get agentclusterinstall -n $CLUSTER $CLUSTER -o jsonpath='{.status.conditions[?
(@.type=="Completed")]}' | jq

$ curl -sk $(oc get agentclusterinstall -n $CLUSTER $CLUSTER -o
jsonpath='{.status.debugInfo.eventsURL}') | jq '.[-2,-1]'

$ oc get AgentClusterInstall -n <cluster_name>

$ oc get managedcluster

OpenShift Container Platform 4.10 Scalability and performance

242

a. Check for the Status.Conditions field to view the error logs for the managed cluster. For
example, setting an invalid value for extraManifestPath: in the SiteConfig CR raises the
following error:

b. Check the Status.Sync field. If there are log errors, the Status.Sync field could indicate an
Unknown error:

19.3.7. Removing a managed cluster site from the ZTP pipeline

You can remove a managed site and the associated installation and configuration policy CRs from the
ZTP pipeline.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

Precedure

1. Remove a site and the associated CRs by removing the associated SiteConfig and
PolicyGenTemplate files from the kustomization.yaml file.
When you run the ZTP pipeline again, the generated CRs are removed.

2. Optional: If you want to permanently remove a site, you should also remove the SiteConfig and
site-specific PolicyGenTemplate files from the Git repository.

3. Optional: If you want to remove a site temporarily, for example when redeploying a site, you can

$ oc describe -n openshift-gitops application clusters

Status:
 Conditions:
 Last Transition Time: 2021-11-26T17:21:39Z
 Message: rpc error: code = Unknown desc = `kustomize build
/tmp/https___git.com/ran-sites/siteconfigs/ --enable-alpha-plugins` failed exit status 1:
2021/11/26 17:21:40 Error could not create extra-manifest ranSite1.extra-manifest3 stat
extra-manifest3: no such file or directory 2021/11/26 17:21:40 Error: could not build the
entire SiteConfig defined by /tmp/kust-plugin-config-913473579: stat extra-manifest3: no
such file or directory Error: failure in plugin configured via /tmp/kust-plugin-config-
913473579; exit status 1: exit status 1
 Type: ComparisonError

Status:
 Sync:
 Compared To:
 Destination:
 Namespace: clusters-sub
 Server: https://kubernetes.default.svc
 Source:
 Path: sites-config
 Repo URL: https://git.com/ran-sites/siteconfigs/.git
 Target Revision: master
 Status: Unknown

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

243

3. Optional: If you want to remove a site temporarily, for example when redeploying a site, you can
leave the SiteConfig and site-specific PolicyGenTemplate CRs in the Git repository.

NOTE

After removing the SiteConfig file from the Git repository, if the corresponding clusters
get stuck in the detach process, check Red Hat Advanced Cluster Management
(RHACM) on the hub cluster for information about cleaning up the detached cluster.

Additional resources

For information about removing a cluster, see Removing a cluster from management .

19.3.8. Removing obsolete content from the ZTP pipeline

If a change to the PolicyGenTemplate configuration results in obsolete policies, for example, if you
rename policies, use the following procedure to remove the obsolete policies.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

1. Remove the affected PolicyGenTemplate files from the Git repository, commit and push to
the remote repository.

2. Wait for the changes to synchronize through the application and the affected policies to be
removed from the hub cluster.

3. Add the updated PolicyGenTemplate files back to the Git repository, and then commit and
push to the remote repository.

NOTE

Removing zero touch provisioning (ZTP) policies from the Git repository, and as a
result also removing them from the hub cluster, does not affect the configuration
of the managed cluster. The policy and CRs managed by that policy remains in
place on the managed cluster.

4. Optional: As an alternative, after making changes to PolicyGenTemplate CRs that result in
obsolete policies, you can remove these policies from the hub cluster manually. You can delete
policies from the RHACM console using the Governance tab or by running the following
command:

19.3.9. Tearing down the ZTP pipeline

You can remove the ArgoCD pipeline and all generated ZTP artifacts.

Prerequisites

$ oc delete policy -n <namespace> <policy_name>

OpenShift Container Platform 4.10 Scalability and performance

244

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html/multicluster_engine/multicluster_engine_overview#remove-managed-cluster

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

1. Detach all clusters from Red Hat Advanced Cluster Management (RHACM) on the hub cluster.

2. Delete the kustomization.yaml file in the deployment directory using the following command:

3. Commit and push your changes to the site repository.

19.4. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND
POLICYGENTEMPLATE RESOURCES

Applied policy custom resources (CRs) configure the managed clusters that you provision. You can
customize how Red Hat Advanced Cluster Management (RHACM) uses PolicyGenTemplate CRs to
generate the applied policy CRs.

19.4.1. About the PolicyGenTemplate CRD

The PolicyGenTemplate custom resource definition (CRD) tells the PolicyGen policy generator what
custom resources (CRs) to include in the cluster configuration, how to combine the CRs into the
generated policies, and what items in those CRs need to be updated with overlay content.

The following example shows a PolicyGenTemplate CR (common-du-ranGen.yaml) extracted from
the ztp-site-generate reference container. The common-du-ranGen.yaml file defines two Red Hat
Advanced Cluster Management (RHACM) policies. The polices manage a collection of configuration
CRs, one for each unique value of policyName in the CR. common-du-ranGen.yaml creates a single
placement binding and a placement rule to bind the policies to clusters based on the labels listed in the
bindingRules section.

Example PolicyGenTemplate CR - common-du-ranGen.yaml

$ oc delete -k out/argocd/deployment

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
 name: "common"
 namespace: "ztp-common"
spec:
 bindingRules:
 common: "true" 1
 sourceFiles: 2
 - fileName: SriovSubscription.yaml
 policyName: "subscriptions-policy"
 - fileName: SriovSubscriptionNS.yaml
 policyName: "subscriptions-policy"
 - fileName: SriovSubscriptionOperGroup.yaml
 policyName: "subscriptions-policy"
 - fileName: SriovOperatorStatus.yaml

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

245

1

2

3

4

5

common: "true" applies the policies to all clusters with this label.

Files listed under sourceFiles create the Operator policies for installed clusters.

OperatorHub.yaml configures the OperatorHub for the disconnected registry.

DefaultCatsrc.yaml configures the catalog source for the disconnected registry.

policyName: "config-policy" configures Operator subscriptions. The OperatorHub CR disables
the default and this CR replaces redhat-operators with a CatalogSource CR that points to the
disconnected registry.

 policyName: "subscriptions-policy"
 - fileName: PtpSubscription.yaml
 policyName: "subscriptions-policy"
 - fileName: PtpSubscriptionNS.yaml
 policyName: "subscriptions-policy"
 - fileName: PtpSubscriptionOperGroup.yaml
 policyName: "subscriptions-policy"
 - fileName: PtpOperatorStatus.yaml
 policyName: "subscriptions-policy"
 - fileName: ClusterLogNS.yaml
 policyName: "subscriptions-policy"
 - fileName: ClusterLogOperGroup.yaml
 policyName: "subscriptions-policy"
 - fileName: ClusterLogSubscription.yaml
 policyName: "subscriptions-policy"
 - fileName: ClusterLogOperatorStatus.yaml
 policyName: "subscriptions-policy"
 - fileName: StorageNS.yaml
 policyName: "subscriptions-policy"
 - fileName: StorageOperGroup.yaml
 policyName: "subscriptions-policy"
 - fileName: StorageSubscription.yaml
 policyName: "subscriptions-policy"
 - fileName: StorageOperatorStatus.yaml
 policyName: "subscriptions-policy"
 - fileName: ReduceMonitoringFootprint.yaml
 policyName: "config-policy"
 - fileName: OperatorHub.yaml 3
 policyName: "config-policy"
 - fileName: DefaultCatsrc.yaml 4
 policyName: "config-policy" 5
 metadata:
 name: redhat-operators
 spec:
 displayName: disconnected-redhat-operators
 image: registry.example.com:5000/disconnected-redhat-operators/disconnected-redhat-
operator-index:v4.9
 - fileName: DisconnectedICSP.yaml
 policyName: "config-policy"
 spec:
 repositoryDigestMirrors:
 - mirrors:
 - registry.example.com:5000
 source: registry.redhat.io

OpenShift Container Platform 4.10 Scalability and performance

246

A PolicyGenTemplate CR can be constructed with any number of included CRs. Apply the following
example CR in the hub cluster to generate a policy containing a single CR:

Using the source file PtpConfigSlave.yaml as an example, the file defines a PtpConfig CR. The
generated policy for the PtpConfigSlave example is named group-du-sno-config-policy. The
PtpConfig CR defined in the generated group-du-sno-config-policy is named du-ptp-slave. The spec
defined in PtpConfigSlave.yaml is placed under du-ptp-slave along with the other spec items defined
under the source file.

The following example shows the group-du-sno-config-policy CR:

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
 name: "group-du-sno"
 namespace: "ztp-group"
spec:
 bindingRules:
 group-du-sno: ""
 mcp: "master"
 sourceFiles:
 - fileName: PtpConfigSlave.yaml
 policyName: "config-policy"
 metadata:
 name: "du-ptp-slave"
 spec:
 profile:
 - name: "slave"
 interface: "ens5f0"
 ptp4lOpts: "-2 -s --summary_interval -4"
 phc2sysOpts: "-a -r -n 24"

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: group-du-ptp-config-policy
 namespace: groups-sub
 annotations:
 policy.open-cluster-management.io/categories: CM Configuration Management
 policy.open-cluster-management.io/controls: CM-2 Baseline Configuration
 policy.open-cluster-management.io/standards: NIST SP 800-53
spec:
 remediationAction: inform
 disabled: false
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: group-du-ptp-config-policy-config
 spec:
 remediationAction: inform
 severity: low
 namespaceselector:
 exclude:

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

247

19.4.2. Recommendations when customizing PolicyGenTemplate CRs

Consider the following best practices when customizing site configuration PolicyGenTemplate custom
resources (CRs):

Use as few policies as are necessary. Using fewer policies requires less resources. Each additional
policy creates overhead for the hub cluster and the deployed managed cluster. CRs are
combined into policies based on the policyName field in the PolicyGenTemplate CR. CRs in
the same PolicyGenTemplate which have the same value for policyName are managed under a
single policy.

In disconnected environments, use a single catalog source for all Operators by configuring the
registry as a single index containing all Operators. Each additional CatalogSource CR on the
managed clusters increases CPU usage.

MachineConfig CRs should be included as extraManifests in the SiteConfig CR so that they
are applied during installation. This can reduce the overall time taken until the cluster is ready to
deploy applications.

PolicyGenTemplates should override the channel field to explicitly identify the desired version.
This ensures that changes in the source CR during upgrades does not update the generated
subscription.

 - kube-*
 include:
 - '*'
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: ptp.openshift.io/v1
 kind: PtpConfig
 metadata:
 name: du-ptp-slave
 namespace: openshift-ptp
 spec:
 recommend:
 - match:
 - nodeLabel: node-role.kubernetes.io/worker-du
 priority: 4
 profile: slave
 profile:
 - interface: ens5f0
 name: slave
 phc2sysOpts: -a -r -n 24
 ptp4lConf: |
 [global]
 #
 # Default Data Set
 #
 twoStepFlag 1
 slaveOnly 0
 priority1 128
 priority2 128
 domainNumber 24

OpenShift Container Platform 4.10 Scalability and performance

248

Additional resources

For recommendations about scaling clusters with RHACM, see Performance and scalability.

NOTE

When managing large numbers of spoke clusters on the hub cluster, minimize the number
of policies to reduce resource consumption.

Grouping multiple configuration CRs into a single or limited number of policies is one way
to reduce the overall number of policies on the hub cluster. When using the common,
group, and site hierarchy of policies for managing site configuration, it is especially
important to combine site-specific configuration into a single policy.

19.4.3. PolicyGenTemplate CRs for RAN deployments

Use PolicyGenTemplate (PGT) custom resources (CRs) to customize the configuration applied to the
cluster by using the GitOps zero touch provisioning (ZTP) pipeline. The PGT CR allows you to generate
one or more policies to manage the set of configuration CRs on your fleet of clusters. The PGT
identifies the set of managed CRs, bundles them into policies, builds the policy wrapping around those
CRs, and associates the policies with clusters by using label binding rules.

The reference configuration, obtained from the GitOps ZTP container, is designed to provide a set of
critical features and node tuning settings that ensure the cluster can support the stringent performance
and resource utilization constraints typical of RAN (Radio Access Network) Distributed Unit (DU)
applications. Changes or omissions from the baseline configuration can affect feature availability,
performance, and resource utilization. Use the reference PolicyGenTemplate CRs as the basis to
create a hierarchy of configuration files tailored to your specific site requirements.

The baseline PolicyGenTemplate CRs that are defined for RAN DU cluster configuration can be
extracted from the GitOps ZTP ztp-site-generate container. See "Preparing the GitOps ZTP site
configuration repository" for further details.

The PolicyGenTemplate CRs can be found in the ./out/argocd/example/policygentemplates folder.
The reference architecture has common, group, and site-specific configuration CRs. Each
PolicyGenTemplate CR refers to other CRs that can be found in the ./out/source-crs folder.

The PolicyGenTemplate CRs relevant to RAN cluster configuration are described below. Variants are
provided for the group PolicyGenTemplate CRs to account for differences in single-node, three-node
compact, and standard cluster configurations. Similarly, site-specific configuration variants are provided
for single-node clusters and multi-node (compact or standard) clusters. Use the group and site-specific
configuration variants that are relevant for your deployment.

Table 19.3. PolicyGenTemplate CRs for RAN deployments

PolicyGenTemplate CR Description

example-multinode-site.yaml Contains a set of CRs that get applied to multi-node
clusters. These CRs configure SR-IOV features
typical for RAN installations.

example-sno-site.yaml Contains a set of CRs that get applied to single-
node OpenShift clusters. These CRs configure SR-
IOV features typical for RAN installations.

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

249

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html/install/installing#performance-and-scalability

common-ranGen.yaml Contains a set of common RAN CRs that get applied
to all clusters. These CRs subscribe to a set of
operators providing cluster features typical for RAN
as well as baseline cluster tuning.

group-du-3node-ranGen.yaml Contains the RAN policies for three-node clusters
only.

group-du-sno-ranGen.yaml Contains the RAN policies for single-node clusters
only.

group-du-standard-ranGen.yaml Contains the RAN policies for standard three
control-plane clusters.

group-du-3node-validator-ranGen.yaml PolicyGenTemplate CR used to generate the
various policies required for three-node clusters.

group-du-standard-validator-ranGen.yaml PolicyGenTemplate CR used to generate the
various policies required for standard clusters.

group-du-sno-validator-ranGen.yaml PolicyGenTemplate CR used to generate the
various policies required for single-node OpenShift
clusters.

PolicyGenTemplate CR Description

Additional resources

Preparing the GitOps ZTP site configuration repository

19.4.4. Customizing a managed cluster with PolicyGenTemplate CRs

Use the following procedure to customize the policies that get applied to the managed cluster that you
provision using the zero touch provisioning (ZTP) pipeline.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

You configured the hub cluster for generating the required installation and policy CRs.

You created a Git repository where you manage your custom site configuration data. The
repository must be accessible from the hub cluster and be defined as a source repository for the
Argo CD application.

Procedure

1. Create a PolicyGenTemplate CR for site-specific configuration CRs.

a. Choose the appropriate example for your CR from the

OpenShift Container Platform 4.10 Scalability and performance

250

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-preparing-the-ztp-git-repository_ztp-preparing-the-hub-cluster

a. Choose the appropriate example for your CR from the
out/argocd/example/policygentemplates folder, for example, example-sno-site.yaml or
example-multinode-site.yaml.

b. Change the bindingRules field in the example file to match the site-specific label included
in the SiteConfig CR. In the example SiteConfig file, the site-specific label is sites:
example-sno.

NOTE

Ensure that the labels defined in your PolicyGenTemplate bindingRules
field correspond to the labels that are defined in the related managed
clusters SiteConfig CR.

c. Change the content in the example file to match the desired configuration.

2. Optional: Create a PolicyGenTemplate CR for any common configuration CRs that apply to
the entire fleet of clusters.

a. Select the appropriate example for your CR from the
out/argocd/example/policygentemplates folder, for example, common-ranGen.yaml.

b. Change the content in the example file to match the desired configuration.

3. Optional: Create a PolicyGenTemplate CR for any group configuration CRs that apply to the
certain groups of clusters in the fleet.
Ensure that the content of the overlaid spec files matches your desired end state. As a
reference, the out/source-crs directory contains the full list of source-crs available to be
included and overlaid by your PolicyGenTemplate templates.

NOTE

Depending on the specific requirements of your clusters, you might need more
than a single group policy per cluster type, especially considering that the
example group policies each have a single PerformancePolicy.yaml file that can
only be shared across a set of clusters if those clusters consist of identical
hardware configurations.

a. Select the appropriate example for your CR from the
out/argocd/example/policygentemplates folder, for example, group-du-sno-
ranGen.yaml.

b. Change the content in the example file to match the desired configuration.

4. Optional. Create a validator inform policy PolicyGenTemplate CR to signal when the ZTP
installation and configuration of the deployed cluster is complete. For more information, see
"Creating a validator inform policy".

5. Define all the policy namespaces in a YAML file similar to the example
out/argocd/example/policygentemplates/ns.yaml file.

IMPORTANT

Do not include the Namespace CR in the same file with the PolicyGenTemplate
CR.

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

251

6. Add the PolicyGenTemplate CRs and Namespace CR to the kustomization.yaml file in the
generators section, similar to the example shown in
out/argocd/example/policygentemplates/kustomization.yaml.

7. Commit the PolicyGenTemplate CRs, Namespace CR, and associated kustomization.yaml
file in your Git repository and push the changes.
The ArgoCD pipeline detects the changes and begins the managed cluster deployment. You
can push the changes to the SiteConfig CR and the PolicyGenTemplate CR simultaneously.

Additional resources

Signalling ZTP cluster deployment completion with validator inform policies

19.4.5. Monitoring managed cluster policy deployment progress

The ArgoCD pipeline uses PolicyGenTemplate CRs in Git to generate the RHACM policies and then
sync them to the hub cluster. You can monitor the progress of the managed cluster policy
synchronization after the assisted service installs OpenShift Container Platform on the managed cluster.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

1. The Topology Aware Lifecycle Manager (TALM) applies the configuration policies that are
bound to the cluster.
After the cluster installation is complete and the cluster becomes Ready, a
ClusterGroupUpgrade CR corresponding to this cluster, with a list of ordered policies defined
by the ran.openshift.io/ztp-deploy-wave annotations, is automatically created by the TALM.
The cluster’s policies are applied in the order listed in ClusterGroupUpgrade CR.

You can monitor the high-level progress of configuration policy reconciliation by using the
following commands:

Example output

2. You can monitor the detailed cluster policy compliance status by using the RHACM dashboard

$ export CLUSTER=<clusterName>

$ oc get clustergroupupgrades -n ztp-install $CLUSTER -o jsonpath='{.status.conditions[-1:]}'
| jq

{
 "lastTransitionTime": "2022-11-09T07:28:09Z",
 "message": "The ClusterGroupUpgrade CR has upgrade policies that are still non
compliant",
 "reason": "UpgradeNotCompleted",
 "status": "False",
 "type": "Ready"
}

OpenShift Container Platform 4.10 Scalability and performance

252

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-creating-a-validator-inform-policy_ztp-advanced-policy-config

2. You can monitor the detailed cluster policy compliance status by using the RHACM dashboard
or the command line.

a. To check policy compliance by using oc, run the following command:

Example output

b. To check policy status from the RHACM web console, perform the following actions:

i. Click Governance → Find policies.

ii. Click on a cluster policy to check it’s status.

When all of the cluster policies become compliant, ZTP installation and configuration for the cluster is
complete. The ztp-done label is added to the cluster.

In the reference configuration, the final policy that becomes compliant is the one defined in the *-du-
validator-policy policy. This policy, when compliant on a cluster, ensures that all cluster configuration,
Operator installation, and Operator configuration is complete.

19.4.6. Validating the generation of configuration policy CRs

Policy custom resources (CRs) are generated in the same namespace as the PolicyGenTemplate from
which they are created. The same troubleshooting flow applies to all policy CRs generated from a
PolicyGenTemplate regardless of whether they are ztp-common, ztp-group, or ztp-site based, as
shown using the following commands:

The expected set of policy-wrapped CRs should be displayed.

If the policies failed synchronization, use the following troubleshooting steps.

$ oc get policies -n $CLUSTER

NAME REMEDIATION ACTION COMPLIANCE STATE
AGE
ztp-common.common-config-policy inform Compliant
3h42m
ztp-common.common-subscriptions-policy inform NonCompliant
3h42m
ztp-group.group-du-sno-config-policy inform NonCompliant
3h42m
ztp-group.group-du-sno-validator-du-policy inform NonCompliant
3h42m
ztp-install.example1-common-config-policy-pjz9s enforce Compliant
167m
ztp-install.example1-common-subscriptions-policy-zzd9k enforce NonCompliant
164m
ztp-site.example1-config-policy inform NonCompliant 3h42m
ztp-site.example1-perf-policy inform NonCompliant 3h42m

$ export NS=<namespace>

$ oc get policy -n $NS

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

253

Procedure

1. To display detailed information about the policies, run the following command:

2. Check for Status: Conditions: to show the error logs. For example, setting an invalid
sourceFile→fileName: generates the error shown below:

3. Check for Status: Sync:. If there are log errors at Status: Conditions:, the Status: Sync:
shows Unknown or Error:

4. When Red Hat Advanced Cluster Management (RHACM) recognizes that policies apply to a
ManagedCluster object, the policy CR objects are applied to the cluster namespace. Check to
see if the policies were copied to the cluster namespace:

Example output:

RHACM copies all applicable policies into the cluster namespace. The copied policy names have
the format: <policyGenTemplate.Namespace>.<policyGenTemplate.Name>-<policyName>.

5. Check the placement rule for any policies not copied to the cluster namespace. The

$ oc describe -n openshift-gitops application policies

Status:
 Conditions:
 Last Transition Time: 2021-11-26T17:21:39Z
 Message: rpc error: code = Unknown desc = `kustomize build
/tmp/https___git.com/ran-sites/policies/ --enable-alpha-plugins` failed exit status 1:
2021/11/26 17:21:40 Error could not find test.yaml under source-crs/: no such file or directory
Error: failure in plugin configured via /tmp/kust-plugin-config-52463179; exit status 1: exit
status 1
 Type: ComparisonError

Status:
 Sync:
 Compared To:
 Destination:
 Namespace: policies-sub
 Server: https://kubernetes.default.svc
 Source:
 Path: policies
 Repo URL: https://git.com/ran-sites/policies/.git
 Target Revision: master
 Status: Error

$ oc get policy -n $CLUSTER

NAME REMEDIATION ACTION COMPLIANCE STATE AGE
ztp-common.common-config-policy inform Compliant 13d
ztp-common.common-subscriptions-policy inform Compliant 13d
ztp-group.group-du-sno-config-policy inform Compliant 13d
Ztp-group.group-du-sno-validator-du-policy inform Compliant 13d
ztp-site.example-sno-config-policy inform Compliant 13d

OpenShift Container Platform 4.10 Scalability and performance

254

5. Check the placement rule for any policies not copied to the cluster namespace. The
matchSelector in the PlacementRule for those policies should match labels on the
ManagedCluster object:

6. Note the PlacementRule name appropriate for the missing policy, common, group, or site,
using the following command:

The status-decisions should include your cluster name.

The key-value pair of the matchSelector in the spec must match the labels on your
managed cluster.

7. Check the labels on the ManagedCluster object using the following command:

8. Check to see which policies are compliant using the following command:

If the Namespace, OperatorGroup, and Subscription policies are compliant but the Operator
configuration policies are not, it is likely that the Operators did not install on the managed
cluster. This causes the Operator configuration policies to fail to apply because the CRD is not
yet applied to the spoke.

19.4.7. Restarting policy reconciliation

You can restart policy reconciliation when unexpected compliance issues occur, for example, when the
ClusterGroupUpgrade custom resource (CR) has timed out.

Procedure

1. A ClusterGroupUpgrade CR is generated in the namespace ztp-install by the Topology Aware
Lifecycle Manager after the managed cluster becomes Ready:

2. If there are unexpected issues and the policies fail to become complaint within the configured
timeout (the default is 4 hours), the status of the ClusterGroupUpgrade CR shows
UpgradeTimedOut:

3. A ClusterGroupUpgrade CR in the UpgradeTimedOut state automatically restarts its policy
reconciliation every hour. If you have changed your policies, you can start a retry immediately by
deleting the existing ClusterGroupUpgrade CR. This triggers the automatic creation of a new

$ oc get placementrule -n $NS

$ oc get placementrule -n $NS <placementRuleName> -o yaml

$ oc get ManagedCluster $CLUSTER -o jsonpath='{.metadata.labels}' | jq

$ oc get policy -n $CLUSTER

$ export CLUSTER=<clusterName>

$ oc get clustergroupupgrades -n ztp-install $CLUSTER

$ oc get clustergroupupgrades -n ztp-install $CLUSTER -o jsonpath='{.status.conditions[?
(@.type=="Ready")]}'

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

255

ClusterGroupUpgrade CR that begins reconciling the policies immediately:

Note that when the ClusterGroupUpgrade CR completes with status UpgradeCompleted and the
managed cluster has the label ztp-done applied, you can make additional configuration changes using
PolicyGenTemplate. Deleting the existing ClusterGroupUpgrade CR will not make the TALM generate
a new CR.

At this point, ZTP has completed its interaction with the cluster and any further interactions should be
treated as an update and a new ClusterGroupUpgrade CR created for remediation of the policies.

Additional resources

For information about using Topology Aware Lifecycle Manager (TALM) to construct your own
ClusterGroupUpgrade CR, see About the ClusterGroupUpgrade CR.

19.4.8. Indication of done for ZTP installations

Zero touch provisioning (ZTP) simplifies the process of checking the ZTP installation status for a cluster.
The ZTP status moves through three phases: cluster installation, cluster configuration, and ZTP done.

Cluster installation phase

The cluster installation phase is shown by the ManagedClusterJoined and
ManagedClusterAvailable conditions in the ManagedCluster CR . If the ManagedCluster CR does
not have these conditions, or the condition is set to False, the cluster is still in the installation phase.
Additional details about installation are available from the AgentClusterInstall and
ClusterDeployment CRs. For more information, see "Troubleshooting GitOps ZTP".

Cluster configuration phase

The cluster configuration phase is shown by a ztp-running label applied the ManagedCluster CR for
the cluster.

ZTP done

Cluster installation and configuration is complete in the ZTP done phase. This is shown by the
removal of the ztp-running label and addition of the ztp-done label to the ManagedCluster CR.
The ztp-done label shows that the configuration has been applied and the baseline DU configuration
has completed cluster tuning.
The transition to the ZTP done state is conditional on the compliant state of a Red Hat Advanced
Cluster Management (RHACM) validator inform policy. This policy captures the existing criteria for a
completed installation and validates that it moves to a compliant state only when ZTP provisioning of
the managed cluster is complete.

The validator inform policy ensures the configuration of the cluster is fully applied and Operators
have completed their initialization. The policy validates the following:

The target MachineConfigPool contains the expected entries and has finished updating. All
nodes are available and not degraded.

The SR-IOV Operator has completed initialization as indicated by at least one
SriovNetworkNodeState with syncStatus: Succeeded.

The PTP Operator daemon set exists.

19.5. MANUALLY INSTALLING A SINGLE-NODE OPENSHIFT CLUSTER

$ oc delete clustergroupupgrades -n ztp-install $CLUSTER

OpenShift Container Platform 4.10 Scalability and performance

256

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#talo-about-cgu-crs_cnf-topology-aware-lifecycle-manager

19.5. MANUALLY INSTALLING A SINGLE-NODE OPENSHIFT CLUSTER
WITH ZTP

You can deploy a managed single-node OpenShift cluster by using Red Hat Advanced Cluster
Management (RHACM) and the assisted service.

NOTE

If you are creating multiple managed clusters, use the SiteConfig method described in
Deploying far edge sites with ZTP .

IMPORTANT

The target bare-metal host must meet the networking, firmware, and hardware
requirements listed in Recommended cluster configuration for vDU application
workloads.

19.5.1. Generating ZTP installation and configuration CRs manually

Use the generator entrypoint for the ztp-site-generate container to generate the site installation and
configuration custom resource (CRs) for a cluster based on SiteConfig and PolicyGenTemplate CRs.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

1. Create an output folder by running the following command:

2. Export the argocd directory from the ztp-site-generate container image:

The ./out directory has the reference PolicyGenTemplate and SiteConfig CRs in the
out/argocd/example/ folder.

Example output

$ mkdir -p ./out

$ podman run --log-driver=none --rm registry.redhat.io/openshift4/ztp-site-generate-
rhel8:v4.10 extract /home/ztp --tar | tar x -C ./out

out
 └── argocd
 └── example
 ├── policygentemplates
 │ ├── common-ranGen.yaml
 │ ├── example-sno-site.yaml
 │ ├── group-du-sno-ranGen.yaml
 │ ├── group-du-sno-validator-ranGen.yaml
 │ ├── kustomization.yaml

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

257

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-deploying-far-edge-sites
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#sno-configure-for-vdu

3. Create an output folder for the site installation CRs:

4. Modify the example SiteConfig CR for the cluster type that you want to install. Copy example-
sno.yaml to site-1-sno.yaml and modify the CR to match the details of the site and bare-
metal host that you want to install, for example:

Example single-node OpenShift cluster SiteConfig CR

 │ └── ns.yaml
 └── siteconfig
 ├── example-sno.yaml
 ├── KlusterletAddonConfigOverride.yaml
 └── kustomization.yaml

$ mkdir -p ./site-install

apiVersion: ran.openshift.io/v1
kind: SiteConfig
metadata:
 name: "<site_name>"
 namespace: "<site_name>"
spec:
 baseDomain: "example.com"
 pullSecretRef:
 name: "assisted-deployment-pull-secret" 1
 clusterImageSetNameRef: "openshift-4.10" 2
 sshPublicKey: "ssh-rsa AAAA..." 3
 clusters:
 - clusterName: "<site_name>"
 networkType: "OVNKubernetes"
 clusterLabels: 4
 common: true
 group-du-sno: ""
 sites : "<site_name>"
 clusterNetwork:
 - cidr: 1001:1::/48
 hostPrefix: 64
 machineNetwork:
 - cidr: 1111:2222:3333:4444::/64
 serviceNetwork:
 - 1001:2::/112
 additionalNTPSources:
 - 1111:2222:3333:4444::2
 #crTemplates:
 # KlusterletAddonConfig: "KlusterletAddonConfigOverride.yaml" 5
 nodes:
 - hostName: "example-node.example.com" 6
 role: "master"
 #biosConfigRef:
 # filePath: "example-hw.profile" 7
 bmcAddress: idrac-virtualmedia://<out_of_band_ip>/<system_id>/ 8
 bmcCredentialsName:
 name: "bmh-secret" 9
 bootMACAddress: "AA:BB:CC:DD:EE:11"

OpenShift Container Platform 4.10 Scalability and performance

258

1

2

3

4

5

6

7

8

Create the assisted-deployment-pull-secret CR with the same namespace as the
SiteConfig CR.

clusterImageSetNameRef defines an image set available on the hub cluster. To see the
list of supported versions on your hub cluster, run oc get clusterimagesets.

Configure the SSH public key used to access the cluster.

Cluster labels must correspond to the bindingRules field in the PolicyGenTemplate CRs
that you define. For example, policygentemplates/common-ranGen.yaml applies to all
clusters with common: true set, policygentemplates/group-du-sno-ranGen.yaml applies
to all clusters with group-du-sno: "" set.

Optional. The CR specifed under KlusterletAddonConfig is used to override the default
KlusterletAddonConfig that is created for the cluster.

For single-node deployments, define a single host. For three-node deployments, define
three hosts. For standard deployments, define three hosts with role: master and two or
more hosts defined with role: worker.

Optional. Use biosConfigRef to configure desired firmware for the host.

Applies to all cluster types. Specifies the BMC address.

 bootMode: "UEFI" 10
 rootDeviceHints:
 wwn: "0x11111000000asd123"
 cpuset: "0-1,52-53"
 nodeNetwork: 11
 interfaces:
 - name: eno1
 macAddress: "AA:BB:CC:DD:EE:11"
 config:
 interfaces:
 - name: eno1
 type: ethernet
 state: up
 ipv4:
 enabled: false
 ipv6: 12
 enabled: true
 address:
 - ip: 1111:2222:3333:4444::aaaa:1
 prefix-length: 64
 dns-resolver:
 config:
 search:
 - example.com
 server:
 - 1111:2222:3333:4444::2
 routes:
 config:
 - destination: ::/0
 next-hop-interface: eno1
 next-hop-address: 1111:2222:3333:4444::1
 table-id: 254

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

259

9

10

11

12

Create the bmh-secret CR that specifies the BMC credentials. Use the same namespace
as the SiteConfig CR.

Use UEFISecureBoot to enable secure boot on the host.

Specifies the network settings for the node.

Configures the IPv6 address for the host. For single-node OpenShift clusters with static IP
addresses, the node-specific API and Ingress IPs should be the same.

5. Generate the day-0 installation CRs by processing the modified SiteConfig CR site-1-
sno.yaml by running the following command:

Example output

6. Optional: Generate just the day-0 MachineConfig installation CRs for a particular cluster type
by processing the reference SiteConfig CR with the -E option. For example, run the following
commands:

a. Create an output folder for the MachineConfig CRs:

b. Generate the MachineConfig installation CRs:

Example output

$ podman run -it --rm -v `pwd`/out/argocd/example/siteconfig:/resources:Z -v `pwd`/site-
install:/output:Z,U registry.redhat.io/openshift4/ztp-site-generate-rhel8:v4.10.1 generator
install site-1-sno.yaml /output

site-install
└── site-1-sno
 ├── site-1_agentclusterinstall_example-sno.yaml
 ├── site-1-sno_baremetalhost_example-node1.example.com.yaml
 ├── site-1-sno_clusterdeployment_example-sno.yaml
 ├── site-1-sno_configmap_example-sno.yaml
 ├── site-1-sno_infraenv_example-sno.yaml
 ├── site-1-sno_klusterletaddonconfig_example-sno.yaml
 ├── site-1-sno_machineconfig_02-master-workload-partitioning.yaml
 ├── site-1-sno_machineconfig_predefined-extra-manifests-master.yaml
 ├── site-1-sno_machineconfig_predefined-extra-manifests-worker.yaml
 ├── site-1-sno_managedcluster_example-sno.yaml
 ├── site-1-sno_namespace_example-sno.yaml
 └── site-1-sno_nmstateconfig_example-node1.example.com.yaml

$ mkdir -p ./site-machineconfig

$ podman run -it --rm -v `pwd`/out/argocd/example/siteconfig:/resources:Z -v `pwd`/site-
machineconfig:/output:Z,U registry.redhat.io/openshift4/ztp-site-generate-rhel8:v4.10.1
generator install -E site-1-sno.yaml /output

site-machineconfig
└── site-1-sno
 ├── site-1-sno_machineconfig_02-master-workload-partitioning.yaml

OpenShift Container Platform 4.10 Scalability and performance

260

7. Generate and export the day-2 configuration CRs using the reference PolicyGenTemplate
CRs from the previous step. Run the following commands:

a. Create an output folder for the day-2 CRs:

b. Generate and export the day-2 configuration CRs:

The command generates example group and site-specific PolicyGenTemplate CRs for
single-node OpenShift, three-node clusters, and standard clusters in the ./ref folder.

Example output

8. Use the generated CRs as the basis for the CRs that you use to install the cluster. You apply the
installation CRs to the hub cluster as described in "Installing a single managed cluster". The
configuration CRs can be applied to the cluster after cluster installation is complete.

Additional resources

Installing a single managed cluster

BMC addressing

19.5.2. Creating the managed bare-metal host secrets

Add the required Secret custom resources (CRs) for the managed bare-metal host to the hub cluster.
You need a secret for the ZTP pipeline to access the Baseboard Management Controller (BMC) and a
secret for the assisted installer service to pull cluster installation images from the registry.

NOTE

 ├── site-1-sno_machineconfig_predefined-extra-manifests-master.yaml
 └── site-1-sno_machineconfig_predefined-extra-manifests-worker.yaml

$ mkdir -p ./ref

$ podman run -it --rm -v `pwd`/out/argocd/example/policygentemplates:/resources:Z -v
`pwd`/ref:/output:Z,U registry.redhat.io/openshift4/ztp-site-generate-rhel8:v4.10.1
generator config -N . /output

ref
 └── customResource
 ├── common
 ├── example-multinode-site
 ├── example-sno
 ├── group-du-3node
 ├── group-du-3node-validator
 │ └── Multiple-validatorCRs
 ├── group-du-sno
 ├── group-du-sno-validator
 ├── group-du-standard
 └── group-du-standard-validator
 └── Multiple-validatorCRs

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

261

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-manually-install-a-single-managed-cluster_ztp-manual-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#bmc-addressing_ipi-install-installation-workflow

1

2

3

4

NOTE

The secrets are referenced from the SiteConfig CR by name. The namespace must
match the SiteConfig namespace.

Procedure

1. Create a YAML secret file containing credentials for the host Baseboard Management
Controller (BMC) and a pull secret required for installing OpenShift and all add-on cluster
Operators:

a. Save the following YAML as the file example-sno-secret.yaml:

Must match the namespace configured in the related SiteConfig CR

Base64-encoded values for password and username

Must match the namespace configured in the related SiteConfig CR

Base64-encoded pull secret

2. Add the relative path to example-sno-secret.yaml to the kustomization.yaml file that you use
to install the cluster.

19.5.3. Installing a single managed cluster

You can manually deploy a single managed cluster using the assisted service and Red Hat Advanced
Cluster Management (RHACM).

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

You have created the baseboard management controller (BMC) Secret and the image pull-

apiVersion: v1
kind: Secret
metadata:
 name: example-sno-bmc-secret
 namespace: example-sno 1
data: 2
 password: <base64_password>
 username: <base64_username>
type: Opaque

apiVersion: v1
kind: Secret
metadata:
 name: pull-secret
 namespace: example-sno 3
data:
 .dockerconfigjson: <pull_secret> 4
type: kubernetes.io/dockerconfigjson

OpenShift Container Platform 4.10 Scalability and performance

262

1

2

1 2

You have created the baseboard management controller (BMC) Secret and the image pull-
secret Secret custom resources (CRs). See "Creating the managed bare-metal host secrets"
for details.

Your target bare-metal host meets the networking and hardware requirements for managed
clusters.

Procedure

1. Create a ClusterImageSet for each specific cluster version to be deployed, for example
clusterImageSet-4.10.yaml. A ClusterImageSet has the following format:

The descriptive version that you want to deploy.

Specifies the releaseImage to deploy and determines the operating system image
version. The discovery ISO is based on the image version as set by releaseImage, or the
latest version if the exact version is unavailable.

2. Apply the clusterImageSet CR:

3. Create the Namespace CR in the cluster-namespace.yaml file:

The name of the managed cluster to provision.

4. Apply the Namespace CR by running the following command:

5. Apply the generated day-0 CRs that you extracted from the ztp-site-generate container and
customized to meet your requirements:

Additional resources

Connectivity prerequisites for managed cluster networks

apiVersion: hive.openshift.io/v1
kind: ClusterImageSet
metadata:
 name: openshift-4.10.0-rc.0 1
spec:
 releaseImage: quay.io/openshift-release-dev/ocp-release:4.10.0-x86_64 2

$ oc apply -f clusterImageSet-4.10.yaml

apiVersion: v1
kind: Namespace
metadata:
 name: <cluster_name> 1
 labels:
 name: <cluster_name> 2

$ oc apply -f cluster-namespace.yaml

$ oc apply -R ./site-install/site-sno-1

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

263

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-managed-cluster-network-prereqs_sno-configure-for-vdu

19.5.4. Monitoring the managed cluster installation status

Ensure that cluster provisioning was successful by checking the cluster status.

Prerequisites

All of the custom resources have been configured and provisioned, and the Agent custom
resource is created on the hub for the managed cluster.

Procedure

1. Check the status of the managed cluster:

True indicates the managed cluster is ready.

2. Check the agent status:

3. Use the describe command to provide an in-depth description of the agent’s condition.
Statuses to be aware of include BackendError, InputError, ValidationsFailing,
InstallationFailed, and AgentIsConnected. These statuses are relevant to the Agent and
AgentClusterInstall custom resources.

4. Check the cluster provisioning status:

5. Use the describe command to provide an in-depth description of the cluster provisioning
status:

6. Check the status of the managed cluster’s add-on services:

7. Retrieve the authentication information of the kubeconfig file for the managed cluster:

19.5.5. Troubleshooting the managed cluster

Use this procedure to diagnose any installation issues that might occur with the managed cluster.

Procedure

$ oc get managedcluster

$ oc get agent -n <cluster_name>

$ oc describe agent -n <cluster_name>

$ oc get agentclusterinstall -n <cluster_name>

$ oc describe agentclusterinstall -n <cluster_name>

$ oc get managedclusteraddon -n <cluster_name>

$ oc get secret -n <cluster_name> <cluster_name>-admin-kubeconfig -o jsonpath=
{.data.kubeconfig} | base64 -d > <directory>/<cluster_name>-kubeconfig

OpenShift Container Platform 4.10 Scalability and performance

264

1. Check the status of the managed cluster:

Example output

If the status in the AVAILABLE column is True, the managed cluster is being managed by the
hub.

If the status in the AVAILABLE column is Unknown, the managed cluster is not being managed
by the hub. Use the following steps to continue checking to get more information.

2. Check the AgentClusterInstall install status:

Example output

If the status in the INSTALLED column is false, the installation was unsuccessful.

3. If the installation failed, enter the following command to review the status of the
AgentClusterInstall resource:

4. Resolve the errors and reset the cluster:

a. Remove the cluster’s managed cluster resource:

b. Remove the cluster’s namespace:

This deletes all of the namespace-scoped custom resources created for this cluster. You
must wait for the ManagedCluster CR deletion to complete before proceeding.

c. Recreate the custom resources for the managed cluster.

19.5.6. RHACM generated cluster installation CRs reference

Red Hat Advanced Cluster Management (RHACM) supports deploying OpenShift Container Platform

$ oc get managedcluster

NAME HUB ACCEPTED MANAGED CLUSTER URLS JOINED AVAILABLE
AGE
SNO-cluster true True True 2d19h

$ oc get clusterdeployment -n <cluster_name>

NAME PLATFORM REGION CLUSTERTYPE INSTALLED INFRAID
VERSION POWERSTATE AGE
Sno0026 agent-baremetal false Initialized
2d14h

$ oc describe agentclusterinstall -n <cluster_name> <cluster_name>

$ oc delete managedcluster <cluster_name>

$ oc delete namespace <cluster_name>

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

265

Red Hat Advanced Cluster Management (RHACM) supports deploying OpenShift Container Platform
on single-node clusters, three-node clusters, and standard clusters with a specific set of installation
custom resources (CRs) that you generate using SiteConfig CRs for each site.

NOTE

Every managed cluster has its own namespace, and all of the installation CRs except for
ManagedCluster and ClusterImageSet are under that namespace. ManagedCluster
and ClusterImageSet are cluster-scoped, not namespace-scoped. The namespace and
the CR names match the cluster name.

The following table lists the installation CRs that are automatically applied by the RHACM assisted
service when it installs clusters using the SiteConfig CRs that you configure.

Table 19.4. Cluster installation CRs generated by RHACM

CR Description Usage

BareMetal
Host

Contains the connection information for the
Baseboard Management Controller (BMC)
of the target bare-metal host.

Provides access to the BMC to load and boot
the discovery image on the target server by
using the Redfish protocol.

InfraEnv Contains information for installing OpenShift
Container Platform on the target bare-metal
host.

Used with ClusterDeployment to
generate the discovery ISO for the managed
cluster.

AgentClus
terInstall

Specifies details of the managed cluster
configuration such as networking and the
number of control plane nodes. Displays the
cluster kubeconfig and credentials when
the installation is complete.

Specifies the managed cluster configuration
information and provides status during the
installation of the cluster.

ClusterDe
ployment

References the AgentClusterInstall CR to
use.

Used with InfraEnv to generate the
discovery ISO for the managed cluster.

NMStateC
onfig

Provides network configuration information
such as MAC address to IP mapping, DNS
server, default route, and other network
settings. This is not needed if DHCP is used.

Sets up a static IP address for the managed
cluster’s Kube API server.

Agent Contains hardware information about the
target bare-metal host.

Created automatically on the hub when the
target machine’s discovery image boots.

Managed
Cluster

When a cluster is managed by the hub, it
must be imported and known. This
Kubernetes object provides that interface.

The hub uses this resource to manage and
show the status of managed clusters.

Klusterlet
AddonCo
nfig

Contains the list of services provided by the
hub to be deployed to the
ManagedCluster resource.

Tells the hub which addon services to deploy
to the ManagedCluster resource.

OpenShift Container Platform 4.10 Scalability and performance

266

Namespac
e

Logical space for ManagedCluster
resources existing on the hub. Unique per
site.

Propagates resources to the
ManagedCluster.

Secret Two CRs are created: BMC Secret and
Image Pull Secret. BMC Secret authenticates into

the target bare-metal host using its
username and password.

Image Pull Secret contains
authentication information for the
OpenShift Container Platform
image installed on the target bare-
metal host.

ClusterIm
ageSet

Contains OpenShift Container Platform
image information such as the repository and
image name.

Passed into resources to provide OpenShift
Container Platform images.

CR Description Usage

19.6. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER
CONFIGURATION FOR VDU APPLICATION WORKLOADS

Use the following reference information to understand the single-node OpenShift configurations
required to deploy virtual distributed unit (vDU) applications in the cluster. Configurations include
cluster optimizations for high performance workloads, enabling workload partitioning, and minimizing
the number of reboots required post-installation.

Additional resources

To deploy a single cluster by hand, see Manually installing a single-node OpenShift cluster with
ZTP.

To deploy a fleet of clusters using GitOps zero touch provisioning (ZTP), see Deploying far
edge sites with ZTP.

19.6.1. Running low latency applications on OpenShift Container Platform

OpenShift Container Platform enables low latency processing for applications running on commercial
off-the-shelf (COTS) hardware by using several technologies and specialized hardware devices:

Real-time kernel for RHCOS

Ensures workloads are handled with a high degree of process determinism.

CPU isolation

Avoids CPU scheduling delays and ensures CPU capacity is available consistently.

NUMA-aware topology management

Aligns memory and huge pages with CPU and PCI devices to pin guaranteed container memory and
huge pages to the non-uniform memory access (NUMA) node. Pod resources for all Quality of
Service (QoS) classes stay on the same NUMA node. This decreases latency and improves

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

267

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-manual-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-deploying-far-edge-sites

performance of the node.

Huge pages memory management

Using huge page sizes improves system performance by reducing the amount of system resources
required to access page tables.

Precision timing synchronization using PTP

Allows synchronization between nodes in the network with sub-microsecond accuracy.

19.6.2. Recommended cluster host requirements for vDU application workloads

Running vDU application workloads requires a bare-metal host with sufficient resources to run
OpenShift Container Platform services and production workloads.

Table 19.5. Minimum resource requirements

Profile vCPU Memory Storage

Minimum 4 to 8 vCPU cores 32GB of RAM 120GB

NOTE

One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or
Hyper-Threading, is not enabled. When enabled, use the following formula to calculate
the corresponding ratio:

(threads per core × cores) × sockets = vCPUs

IMPORTANT

The server must have a Baseboard Management Controller (BMC) when booting with
virtual media.

19.6.3. Configuring host firmware for low latency and high performance

Bare-metal hosts require the firmware to be configured before the host can be provisioned. The
firmware configuration is dependent on the specific hardware and the particular requirements of your
installation.

Procedure

1. Set the UEFI/BIOS Boot Mode to UEFI.

2. In the host boot sequence order, set Hard drive first.

3. Apply the specific firmware configuration for your hardware. The following table describes a
representative firmware configuration for an Intel Xeon Skylake or Intel Cascade Lake server,
based on the Intel FlexRAN 4G and 5G baseband PHY reference design.

IMPORTANT

The exact firmware configuration depends on your specific hardware and
network requirements. The following sample configuration is for illustrative
purposes only.

OpenShift Container Platform 4.10 Scalability and performance

268

Table 19.6. Sample firmware configuration for an Intel Xeon Skylake or Cascade Lake server

Firmware setting Configuration

CPU Power and Performance Policy Performance

Uncore Frequency Scaling Disabled

Performance P-limit Disabled

Enhanced Intel SpeedStep ® Tech Enabled

Intel Configurable TDP Enabled

Configurable TDP Level Level 2

Intel® Turbo Boost Technology Enabled

Energy Efficient Turbo Disabled

Hardware P-States Disabled

Package C-State C0/C1 state

C1E Disabled

Processor C6 Disabled

NOTE

Enable global SR-IOV and VT-d settings in the firmware for the host. These settings are
relevant to bare-metal environments.

19.6.4. Connectivity prerequisites for managed cluster networks

Before you can install and provision a managed cluster with the zero touch provisioning (ZTP) GitOps
pipeline, the managed cluster host must meet the following networking prerequisites:

There must be bi-directional connectivity between the ZTP GitOps container in the hub cluster
and the Baseboard Management Controller (BMC) of the target bare-metal host.

The managed cluster must be able to resolve and reach the API hostname of the hub hostname
and *.apps hostname. Here is an example of the API hostname of the hub and *.apps
hostname:

api.hub-cluster.internal.domain.com

console-openshift-console.apps.hub-cluster.internal.domain.com

The hub cluster must be able to resolve and reach the API and *.apps hostname of the

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

269

The hub cluster must be able to resolve and reach the API and *.apps hostname of the
managed cluster. Here is an example of the API hostname of the managed cluster and *.apps
hostname:

api.sno-managed-cluster-1.internal.domain.com

console-openshift-console.apps.sno-managed-cluster-1.internal.domain.com

19.6.5. Recommended installation-time cluster configurations

The ZTP pipeline applies the following custom resources (CRs) during cluster installation. These
configuration CRs ensure that the cluster meets the feature and performance requirements necessary
for running a vDU application.

NOTE

When using the ZTP GitOps plugin and SiteConfig CRs for cluster deployment, the
following MachineConfig CRs are included by default.

Use the SiteConfig extraManifests filter to alter the CRs that are included by default. For more
information, see Advanced managed cluster configuration with SiteConfig CRs .

19.6.5.1. Workload partitioning

Single-node OpenShift clusters that run DU workloads require workload partitioning. This limits the
cores allowed to run platform services, maximizing the CPU core for application payloads.

NOTE

Workload partitioning can only be enabled during cluster installation. You cannot disable
workload partitioning post-installation. However, you can reconfigure workload
partitioning by updating the cpu value that you define in the performance profile, and in
the related MachineConfig custom resource (CR).

The base64-encoded CR that enables workload partitioning contains the CPU set that the
management workloads are constrained to. Encode host-specific values for crio.conf and
kubelet.conf in base64. Adjust the content to match the CPU set that is specified in the cluster
performance profile. It must match the number of cores in the cluster host.

Recommended workload partitioning configuration

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master
 name: 02-master-workload-partitioning
spec:
 config:
 ignition:
 version: 3.2.0
 storage:
 files:
 - contents:

OpenShift Container Platform 4.10 Scalability and performance

270

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-advanced-install-ztp

1

1

When configured in the cluster host, the contents of /etc/crio/crio.conf.d/01-workload-
partitioning should look like this:

The CPUs value varies based on the installation.

If Hyper-Threading is enabled, specify both threads for each core. The CPUs value must match
the reserved CPU set specified in the performance profile.

When configured in the cluster, the contents of /etc/kubernetes/openshift-workload-pinning
should look like this:

The cpuset must match the CPUs value in /etc/crio/crio.conf.d/01-workload-partitioning.

19.6.5.2. Reduced platform management footprint

To reduce the overall management footprint of the platform, a MachineConfig custom resource (CR) is
required that places all Kubernetes-specific mount points in a new namespace separate from the host
operating system. The following base64-encoded example MachineConfig CR illustrates this
configuration.

Recommended container mount namespace configuration

 source: data:text/plain;charset=utf-
8;base64,W2NyaW8ucnVudGltZS53b3JrbG9hZHMubWFuYWdlbWVudF0KYWN0aXZhdGlvbl
9hbm5vdGF0aW9uID0gInRhcmdldC53b3JrbG9hZC5vcGVuc2hpZnQuaW8vbWFuYWdlbWVu
dCIKYW5ub3RhdGlvbl9wcmVmaXggPSAicmVzb3VyY2VzLndvcmtsb2FkLm9wZW5zaGlmdC5
pbyIKcmVzb3VyY2VzID0geyAiY3B1c2hhcmVzIiA9IDAsICJjcHVzZXQiID0gIjAtMSw1Mi01MyIgf
Qo=
 mode: 420
 overwrite: true
 path: /etc/crio/crio.conf.d/01-workload-partitioning
 user:
 name: root
 - contents:
 source: data:text/plain;charset=utf-
8;base64,ewogICJtYW5hZ2VtZW50IjogewogICAgImNwdXNldCI6ICIwLTEsNTItNTMiCiAgfQp
9Cg==
 mode: 420
 overwrite: true
 path: /etc/kubernetes/openshift-workload-pinning
 user:
 name: root

[crio.runtime.workloads.management]
activation_annotation = "target.workload.openshift.io/management"
annotation_prefix = "resources.workload.openshift.io"
resources = { "cpushares" = 0, "cpuset" = "0-1,52-53" } 1

{
 "management": {
 "cpuset": "0-1,52-53" 1
 }
}

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

271

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master
 name: container-mount-namespace-and-kubelet-conf-master
spec:
 config:
 ignition:
 version: 3.2.0
 storage:
 files:
 - contents:
 source: data:text/plain;charset=utf-
8;base64,IyEvYmluL2Jhc2gKCmRlYnVnKCkgewogIGVjaG8gJEAgPiYyCn0KCnVzYWdlKCkgewogIGVj
aG8gVXNhZ2U6ICQoYmFzZW5hbWUgJDApIFVOSVQgW2VudmZpbGUgW3Zhcm5hbWVdXQogIGV
jaG8KICBlY2hvIEV4dHJhY3QgdGhlIGNvbnRlbnRzIG9mIHRoZSBmaXJzdCBFeGVjU3RhcnQgc3Rhbn
phIGZyb20gdGhlIGdpdmVuIHN5c3RlbWQgdW5pdCBhbmQgcmV0dXJuIGl0IHRvIHN0ZG91dAogIGVj
aG8KICBlY2hvICJJZiAnZW52ZmlsZScgaXMgcHJvdmlkZWQsIHB1dCBpdCBpbiB0aGVyZSBpbnN0ZW
FkLCBhcyBhbiBlbnZpcm9ubWVudCB2YXJpYWJsZSBuYW1lZCAndmFybmFtZSciCiAgZWNobyAiRGV
mYXVsdCAndmFybmFtZScgaXMgRVhFQ1NUQVJUIGlmIG5vdCBzcGVjaWZpZWQiCiAgZXhpdCAxC
n0KClVOSVQ9JDEKRU5WRklMRT0kMgpWQVJOQU1FPSQzCmlmIFtbIC16ICRVTklUIHx8ICRVTklUI
D09ICItLWhlbHAiIHx8ICRVTklUID09ICItaCIgXV07IHRoZW4KICB1c2FnZQpmaQpkZWJ1ZyAiRXh0cm
FjdGluZyBFeGVjU3RhcnQgZnJvbSAkVU5JVCIKRklMRT0kKHN5c3RlbWN0bCBjYXQgJFVOSVQgfCB
oZWFkIC1uIDEpCkZJTEU9JHtGSUxFI1wjIH0KaWYgW1sgISAtZiAkRklMRSBdXTsgdGhlbgogIGRlYnV
nICJGYWlsZWQgdG8gZmluZCByb290IGZpbGUgZm9yIHVuaXQgJFVOSVQgKCRGSUxFKSIKICBle
Gl0CmZpCmRlYnVnICJTZXJ2aWNlIGRlZmluaXRpb24gaXMgaW4gJEZJTEUiCkVYRUNTVEFSVD0k
KHNlZCAtbiAtZSAnL15FeGVjU3RhcnQ9LipcXCQvLC9bXlxcXSQvIHsgcy9eRXhlY1N0YXJ0PS8vOyBw
IH0nIC1lICcvXkV4ZWNTdGFydD0uKlteXFxdJC8geyBzL15FeGVjU3RhcnQ9Ly87IHAgfScgJEZJTEUp
CgppZiBbWyAkRU5WRklMRSBdXTsgdGhlbgogIFZBUk5BTUU9JHtWQVJOQU1FOi1FWEVDU1RBUl
R9CiAgZWNobyAiJHtWQVJOQU1FfT0ke0VYRUNTVEFSVH0iID4gJEVOVkZJTEUKZWxzZQogIGVja
G8gJEVYRUNTVEFSVApmaQo=
 mode: 493
 path: /usr/local/bin/extractExecStart
 - contents:
 source: data:text/plain;charset=utf-
8;base64,IyEvYmluL2Jhc2gKbnNlbnRlciAtLW1vdW50PS9ydW4vY29udGFpbmVyLW1vdW50LW5hbWV
zcGFjZS9tbnQgIiRAIgo=
 mode: 493
 path: /usr/local/bin/nsenterCmns
 systemd:
 units:
 - contents: |
 [Unit]
 Description=Manages a mount namespace that both kubelet and crio can use to share their
container-specific mounts

 [Service]
 Type=oneshot
 RemainAfterExit=yes
 RuntimeDirectory=container-mount-namespace
 Environment=RUNTIME_DIRECTORY=%t/container-mount-namespace
 Environment=BIND_POINT=%t/container-mount-namespace/mnt
 ExecStartPre=bash -c "findmnt ${RUNTIME_DIRECTORY} || mount --make-unbindable --bind
${RUNTIME_DIRECTORY} ${RUNTIME_DIRECTORY}"
 ExecStartPre=touch ${BIND_POINT}

OpenShift Container Platform 4.10 Scalability and performance

272

19.6.5.3. SCTP

Stream Control Transmission Protocol (SCTP) is a key protocol used in RAN applications. This
MachineConfig object adds the SCTP kernel module to the node to enable this protocol.

Recommended SCTP configuration

 ExecStart=unshare --mount=${BIND_POINT} --propagation slave mount --make-rshared /
 ExecStop=umount -R ${RUNTIME_DIRECTORY}
 enabled: true
 name: container-mount-namespace.service
 - dropins:
 - contents: |
 [Unit]
 Wants=container-mount-namespace.service
 After=container-mount-namespace.service

 [Service]
 ExecStartPre=/usr/local/bin/extractExecStart %n /%t/%N-execstart.env ORIG_EXECSTART
 EnvironmentFile=-/%t/%N-execstart.env
 ExecStart=
 ExecStart=bash -c "nsenter --mount=%t/container-mount-namespace/mnt \
 ${ORIG_EXECSTART}"
 name: 90-container-mount-namespace.conf
 name: crio.service
 - dropins:
 - contents: |
 [Unit]
 Wants=container-mount-namespace.service
 After=container-mount-namespace.service

 [Service]
 ExecStartPre=/usr/local/bin/extractExecStart %n /%t/%N-execstart.env ORIG_EXECSTART
 EnvironmentFile=-/%t/%N-execstart.env
 ExecStart=
 ExecStart=bash -c "nsenter --mount=%t/container-mount-namespace/mnt \
 ${ORIG_EXECSTART} --housekeeping-interval=30s"
 name: 90-container-mount-namespace.conf
 - contents: |
 [Service]
 Environment="OPENSHIFT_MAX_HOUSEKEEPING_INTERVAL_DURATION=60s"
 Environment="OPENSHIFT_EVICTION_MONITORING_PERIOD_DURATION=30s"
 name: 30-kubelet-interval-tuning.conf
 name: kubelet.service

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master
 name: load-sctp-module
spec:
 config:
 ignition:
 version: 2.2.0

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

273

19.6.5.4. Accelerated container startup

The following MachineConfig CR configures core OpenShift processes and containers to use all
available CPU cores during system startup and shutdown. This accelerates the system recovery during
initial boot and reboots.

Recommended accelerated container startup configuration

 storage:
 files:
 - contents:
 source: data:,
 verification: {}
 filesystem: root
 mode: 420
 path: /etc/modprobe.d/sctp-blacklist.conf
 - contents:
 source: data:text/plain;charset=utf-8,sctp
 filesystem: root
 mode: 420
 path: /etc/modules-load.d/sctp-load.conf

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master
 name: 04-accelerated-container-startup-master
spec:
 config:
 ignition:
 version: 3.2.0
 storage:
 files:
 - contents:
 source: data:text/plain;charset=utf-
8;base64,IyEvYmluL2Jhc2gKIwojIFRlbXBvcmFyaWx5IHJlc2V0IHRoZSBjb3JlIHN5c3RlbSBwcm9jZXNz
ZXMncyBDUFUgYWZmaW5pdHkgdG8gYmUgdW5yZXN0cmljdGVkIHRvIGFjY2VsZXJhdGUgc3Rhcn
R1cCBhbmQgc2h1dGRvd24KIwojIFRoZSBkZWZhdWx0cyBiZWxvdyBjYW4gYmUgb3ZlcnJpZGRlbiB2a
WEgZW52aXJvbm1lbnQgdmFyaWFibGVzCiMKCiMgVGhlIGRlZmF1bHQgc2V0IG9mIGNyaXRpY2FsI
HByb2Nlc3NlcyB3aG9zZSBhZmZpbml0eSBzaG91bGQgYmUgdGVtcG9yYXJpbHkgdW5ib3VuZDoKQ
1JJVElDQUxfUFJPQ0VTU0VTPSR7Q1JJVElDQUxfUFJPQ0VTU0VTOi0ic3lzdGVtZCBvdnMgY3JpbyB
rdWJlbGV0IE5ldHdvcmtNYW5hZ2VyIGNvbm1vbiBkYnVzIn0KCiMgRGVmYXVsdCB3YWl0IHRpbWUga
XMgNjAwcyA9IDEwbToKTUFYSU1VTV9XQUlUX1RJTUU9JHtNQVhJTVVNX1dBSVRfVElNRTotNjAw
fQoKIyBEZWZhdWx0IHN0ZWFkeS1zdGF0ZSB0aHJlc2hvbGQgPSAyJQojIEFsbG93ZWQgdmFsdWV
zOgojICA0ICAtIGFic29sdXRlIHBvZCBjb3VudCAoKy8tKQojICA0JSAtIHBlcmNlbnQgY2hhbmdlICgrLy0p
CiMgIC0xIC0gZGlzYWJsZSB0aGUgc3RlYWR5LXN0YXRlIGNoZWNrClNURUFEWV9TVEFURV9USF
JFU0hPTEQ9JHtTVEVBRFlfU1RBVEVfVEhSRVNIT0xEOi0yJX0KCiMgRGVmYXVsdCBzdGVhZHktc3
RhdGUgd2luZG93ID0gNjBzCiMgSWYgdGhlIHJ1bm5pbmcgcG9kIGNvdW50IHN0YXlzIHdpdGhpbiB0a
GUgZ2l2ZW4gdGhyZXNob2xkIGZvciB0aGlzIHRpbWUKIyBwZXJpb2QsIHJldHVybiBDUFUgdXRpbGl6
YXRpb24gdG8gbm9ybWFsIGJlZm9yZSB0aGUgbWF4aW11bSB3YWl0IHRpbWUgaGFzCiMgZXhwaX
JlcwpTVEVBRFlfU1RBVEVfV0lORE9XPSR7U1RFQURZX1NUQVRFX1dJTkRPVzotNjB9CgojIERlZm
F1bHQgc3RlYWR5LXN0YXRlIGFsbG93cyBhbnkgcG9kIGNvdW50IHRvIGJlICJzdGVhZHkgc3RhdGUi
CiMgSW5jcmVhc2luZyB0aGlzIHdpbGwgc2tpcCBhbnkgc3RlYWR5LXN0YXRlIGNoZWNrcyB1bnRpbCB
0aGUgY291bnQgcmlzZXMgYWJvdmUKIyB0aGlzIG51bWJlciB0byBhdm9pZCBmYWxzZSBwb3NpdGl2

OpenShift Container Platform 4.10 Scalability and performance

274

ZXMgaWYgdGhlcmUgYXJlIHNvbWUgcGVyaW9kcyB3aGVyZSB0aGUKIyBjb3VudCBkb2Vzbid0IGluY3
JlYXNlIGJ1dCB3ZSBrbm93IHdlIGNhbid0IGJlIGF0IHN0ZWFkeS1zdGF0ZSB5ZXQuClNURUFEWV9T
VEFURV9NSU5JTVVNPSR7U1RFQURZX1NUQVRFX01JTklNVU06LTB9CgojIyMjIyMjIyMjIyMjIyMjIy
MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjCgpLVUJFTEVUX0NQVV9TVEFURT0vdmFyL2xpYi
9rdWJlbGV0L2NwdV9tYW5hZ2VyX3N0YXRlCkZVTExfQ1BVX1NUQVRFPS9zeXMvZnMvY2dyb3VwL
2NwdXNldC9jcHVzZXQuY3B1cwp1bnJlc3RyaWN0ZWRDcHVzZXQoKSB7CiAgbG9jYWwgY3B1cwogI
GlmIFtbIC1lICRLVUJFTEVUX0NQVV9TVEFURSBdXTsgdGhlbgogICAgICBjcHVzPSQoanEgLXIgJy5k
ZWZhdWx0Q3B1U2V0JyA8JEtVQkVMRVRfQ1BVX1NUQVRFKQogIGZpCiAgaWYgW1sgLXogJGNw
dXMgXV07IHRoZW4KICAgICMgZmFsbCBiYWNrIHRvIHVzaW5nIGFsbCBjcHVzIGlmIHRoZSBrdWJlb
GV0IHN0YXRlIGlzIG5vdCBjb25maWd1cmVkIHlldAogICAgW1sgLWUgJEZVTExfQ1BVX1NUQVRFIF1
dIHx8IHJldHVybiAxCiAgICBjcHVzPSQoPCRGVUxMX0NQVV9TVEFURSkKICBmaQogIGVjaG8gJGN
wdXMKfQoKcmVzdHJpY3RlZENwdXNldCgpIHsKICBmb3IgYXJnIGluICQoPC9wcm9jL2NtZGxpbmUp
OyBkbwogICAgaWYgW1sgJGFyZyA9fiBec3lzdGVtZC5jcHVfYWZmaW5pdHk9IF1dOyB0aGVuCiAgIC
AgIGVjaG8gJHthcmcjKj19CiAgICAgIHJldHVybiAwCiAgICBmaQogIGRvbmUKICByZXR1cm4gMQp9Cg
pnZXRDUFVDb3VudCAoKSB7CiAgbG9jYWwgY3B1c2V0PSIkMSIKICBsb2NhbCBjcHVsaXN0PSgpCiA
gbG9jYWwgY3B1cz0wCiAgbG9jYWwgbWluY3B1cz0yCgogIGlmIFtbIC16ICRjcHVzZXQgfHwgJGNwdX
NldCA9fiBbXjAtOSwtXSBdXTsgdGhlbgogICAgZWNobyAkbWluY3B1cwogICAgcmV0dXJuIDEKICBma
QoKICBJRlM9JywnIHJlYWQgLXJhIGNwdWxpc3QgPDw8ICRjcHVzZXQKCiAgZm9yIGVsbSBpbiAiJHtj
cHVsaXN0W0BdfSI7IGRvCiAgICBpZiBbWyAkZWxtID1+IF5bMC05XSskIF1dOyB0aGVuCiAgICAgICgo
IGNwdXMrKyApKQogICAgZWxpZiBbWyAkZWxtID1+IF5bMC05XSstWzAtOV0rJCBdXTsgdGhlbgogIC
AgICBsb2NhbCBsb3c9MCBoaWdoPTAKICAgICAgSUZTPSctJyByZWFkIGxvdyBoaWdoIDw8PCAkZW
xtCiAgICAgICgoIGNwdXMgKz0gaGlnaCAtIGxvdyArIDEgKSkKICAgIGVsc2UKICAgICAgZWNobyAkbWl
uY3B1cwogICAgICByZXR1cm4gMQogICAgZmkKICBkb25lCgogICMgUmV0dXJuIGEgbWluaW11bSBv
ZiAyIGNwdXMKICBlY2hvICQoKCBjcHVzID4gJG1pbmNwdXMgPyBjcHVzIDogJG1pbmNwdXMgKSkKI
CByZXR1cm4gMAp9CgpyZXNldE9WU3RocmVhZHMgKCkgewogIGxvY2FsIGNwdWNvdW50PSIkMSI
KICBsb2NhbCBjdXJSZXZhbGlkYXRvcnM9MAogIGxvY2FsIGN1ckhhbmRsZXJzPTAKICBsb2NhbCBkZ
XNpcmVkUmV2YWxpZGF0b3JzPTAKICBsb2NhbCBkZXNpcmVkSGFuZGxlcnM9MAogIGxvY2FsIHJjP
TAKCiAgY3VyUmV2YWxpZGF0b3JzPSQocHMgLVRlbyBwaWQsdGlkLGNvbW0sY21kIHwgZ3JlcCAtZ
SByZXZhbGlkYXRvciB8IGdyZXAgLWMgb3ZzLXZzd2l0Y2hkKQogIGN1ckhhbmRsZXJzPSQocHMgLV
RlbyBwaWQsdGlkLGNvbW0sY21kIHwgZ3JlcCAtZSBoYW5kbGVyIHwgZ3JlcCAtYyBvdnMtdnN3aXRja
GQpCgogICMgQ2FsY3VsYXRlIHRoZSBkZXNpcmVkIG51bWJlciBvZiB0aHJlYWRzIHRoZSBzYW1lIHd
heSBPVlMgZG9lcy4KICAjIE9WUyB3aWxsIHNldCB0aGVzZSB0aHJlYWQgY291bnQgYXMgYSBvbmUg
c2hvdCBwcm9jZXNzIG9uIHN0YXJ0dXAsIHNvIHdlCiAgIyBoYXZlIHRvIGFkanVzdCB1cCBvciBkb3duIG
R1cmluZyB0aGUgYm9vdCB1cCBwcm9jZXNzLiBUaGUgZGVzaXJlZCBvdXRjb21lIGlzCiAgIyB0byBub3
QgcmVzdHJpY3QgdGhlIG51bWJlciBvZiB0aHJlYWQgYXQgc3RhcnR1cCB1bnRpbCB3ZSByZWFjaCB
hIHN0ZWFkeQogICMgc3RhdGUuICBBdCB3aGljaCBwb2ludCB3ZSBuZWVkIHRvIHJlc2V0IHRoZXNlI
GJhc2VkIG9uIG91ciByZXN0cmljdGVkICBzZXQKICAjIG9mIGNvcmVzLgogICMgU2VlIE9WUyBmdW5jd
GlvbiB0aGF0IGNhbGN1bGF0ZXMgdGhlc2UgdGhyZWFkIGNvdW50czoKICAjIGh0dHBzOi8vZ2l0aHVi
LmNvbS9vcGVudnN3aXRjaC9vdnMvYmxvYi9tYXN0ZXIvb2Zwcm90by9vZnByb3RvLWRwaWYtdXBjY
WxsLmMjTDYzNQogICgoIGRlc2lyZWRSZXZhbGlkYXRvcnM9JGNwdWNvdW50IC8gNCArIDEgKSkKI
CAoKCBkZXNpcmVkSGFuZGxlcnM9JGNwdWNvdW50IC0gJGRlc2lyZWRSZXZhbGlkYXRvcnMgKSkK
CgogIGlmIFtbICRjdXJSZXZhbGlkYXRvcnMgLW5lICRkZXNpcmVkUmV2YWxpZGF0b3JzIHx8ICRjdXJI
YW5kbGVycyAtbmUgJGRlc2lyZWRIYW5kbGVycyBdXTsgdGhlbgoKICAgIGxvZ2dlciAiUmVjb3Zlcnk6IFJ
lLXNldHRpbmcgT1ZTIHJldmFsaWRhdG9yIHRocmVhZHM6ICR7Y3VyUmV2YWxpZGF0b3JzfSAtPiAk
e2Rlc2lyZWRSZXZhbGlkYXRvcnN9IgogICAgbG9nZ2VyICJSZWNvdmVyeTogUmUtc2V0dGluZyBPVl
MgaGFuZGxlciB0aHJlYWRzOiAke2N1ckhhbmRsZXJzfSAtPiAke2Rlc2lyZWRIYW5kbGVyc30iCgogICAg
b3ZzLXZzY3RsIHNldCBcCiAgICAgIE9wZW5fdlN3aXRjaCAuIFwKICAgICAgb3RoZXItY29uZmlnOm4ta
GFuZGxlci10aHJlYWRzPSR7ZGVzaXJlZEhhbmRsZXJzfSBcCiAgICAgIG90aGVyLWNvbmZpZzpuLXJl
dmFsaWRhdG9yLXRocmVhZHM9JHtkZXNpcmVkUmV2YWxpZGF0b3JzfQogICAgcmM9JD8KICBma
QoKICByZXR1cm4gJHJjCn0KCnJlc2V0QWZmaW5pdHkoKSB7CiAgbG9jYWwgY3B1c2V0PSIkMSIKIC
Bsb2NhbCBmYWlsY291bnQ9MAogIGxvY2FsIHN1Y2Nlc3Njb3VudD0wCiAgbG9nZ2VyICJSZWNvdmV
yeTogU2V0dGluZyBDUFUgYWZmaW5pdHkgZm9yIGNyaXRpY2FsIHByb2Nlc3NlcyBcIiRDUklUSUNB
TF9QUk9DRVNTRVNcIiB0byAkY3B1c2V0IgogIGZvciBwcm9jIGluICRDUklUSUNBTF9QUk9DRVNTR
VM7IGRvCiAgICBsb2NhbCBwaWRzPSIkKHBncmVwICRwcm9jKSIKICAgIGZvciBwaWQgaW4gJHBpZ
HM7IGRvCiAgICAgIGxvY2FsIHRhc2tzZXRPdXRwdXQKICAgICAgdGFza3NldE91dHB1dD0iJCh0YXN
rc2V0IC1hcGMgIiRjcHVzZXQiICRwaWQgMj4mMSkiCiAgICAgIGlmIFtbICQ/IC1uZSAwIF1dOyB0aGVu

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

275

CiAgICAgICAgZWNobyAiRVJST1I6ICR0YXNrc2V0T3V0cHV0IgogICAgICAgICgoZmFpbGNvdW50Kys
pKQogICAgICBlbHNlCiAgICAgICAgKChzdWNjZXNzY291bnQrKykpCiAgICAgIGZpCiAgICBkb25lCiAgZ
G9uZQoKICByZXNldE9WU3RocmVhZHMgIiQoZ2V0Q1BVQ291bnQgJHtjcHVzZXR9KSIKICBpZiBbW
yAkPyAtbmUgMCBdXTsgdGhlbgogICAgKChmYWlsY291bnQrKykpCiAgZWxzZQogICAgKChzdWNjZX
NzY291bnQrKykpCiAgZmkKCiAgbG9nZ2VyICJSZWNvdmVyeTogUmUtYWZmaW5lZCAkc3VjY2Vzc2N
vdW50IHBpZHMgc3VjY2Vzc2Z1bGx5IgogIGlmIFtbICRmYWlsY291bnQgLWd0IDAgXV07IHRoZW4KIC
AgIGxvZ2dlciAiUmVjb3Zlcnk6IEZhaWxlZCB0byByZS1hZmZpbmUgJGZhaWxjb3VudCBwcm9jZXNzZX
MiCiAgICByZXR1cm4gMQogIGZpCn0KCnNldFVucmVzdHJpY3RlZCgpIHsKICBsb2dnZXIgIlJlY292ZXJ
5OiBTZXR0aW5nIGNyaXRpY2FsIHN5c3RlbSBwcm9jZXNzZXMgdG8gaGF2ZSB1bnJlc3RyaWN0ZW
QgQ1BVIGFjY2VzcyIKICByZXNldEFmZmluaXR5ICIkKHVucmVzdHJpY3RlZENwdXNldCkiCn0KCnNld
FJlc3RyaWN0ZWQoKSB7CiAgbG9nZ2VyICJSZWNvdmVyeTogUmVzZXR0aW5nIGNyaXRpY2FsIHN
5c3RlbSBwcm9jZXNzZXMgYmFjayB0byBub3JtYWxseSByZXN0cmljdGVkIGFjY2VzcyIKICByZXNldEFm
ZmluaXR5ICIkKHJlc3RyaWN0ZWRDcHVzZXQpIgp9CgpjdXJyZW50QWZmaW5pdHkoKSB7CiAgbG9j
YWwgcGlkPSIkMSIKICB0YXNrc2V0IC1wYyAkcGlkIHwgYXdrIC1GJzogJyAne3ByaW50ICQyfScKfQoK
d2l0aGluKCkgewogIGxvY2FsIGxhc3Q9JDEgY3VycmVudD0kMiB0aHJlc2hvbGQ9JDMKICBsb2NhbCB
kZWx0YT0wIHBjaGFuZ2UKICBkZWx0YT0kKCggY3VycmVudCAtIGxhc3QgKSkKICBpZiBbWyAkY3Vy
cmVudCAtZXEgJGxhc3QgXV07IHRoZW4KICAgIHBjaGFuZ2U9MAogIGVsaWYgW1sgJGxhc3QgLWV
xIDAgXV07IHRoZW4KICAgIHBjaGFuZ2U9MTAwMDAwMAogIGVsc2UKICAgIHBjaGFuZ2U9JCgoICg
gJGRlbHRhICogMTAwKSAvIGxhc3QgKSkKICBmaQogIGVjaG8gLW4gImxhc3Q6JGxhc3QgY3VycmV
udDokY3VycmVudCBkZWx0YTokZGVsdGEgcGNoYW5nZToke3BjaGFuZ2V9JTogIgogIGxvY2FsIGFic
29sdXRlIGxpbWl0CiAgY2FzZSAkdGhyZXNob2xkIGluCiAgICAqJSkKICAgICAgYWJzb2x1dGU9JHtwY2
hhbmdlIyMtfSAjIGFic29sdXRlIHZhbHVlCiAgICAgIGxpbWl0PSR7dGhyZXNob2xkJSUlfQogICAgICA7O
wogICAgKikKICAgICAgYWJzb2x1dGU9JHtkZWx0YSMjLX0gIyBhYnNvbHV0ZSB2YWx1ZQogICAgICB
saW1pdD0kdGhyZXNob2xkCiAgICAgIDs7CiAgZXNhYwogIGlmIFtbICRhYnNvbHV0ZSAtbGUgJGxpb
Wl0IF1dOyB0aGVuCiAgICBlY2hvICJ3aXRoaW4gKCsvLSkkdGhyZXNob2xkIgogICAgcmV0dXJuIDAKI
CBlbHNlCiAgICBlY2hvICJvdXRzaWRlICgrLy0pJHRocmVzaG9sZCIKICAgIHJldHVybiAxCiAgZmkKfQoK
c3RlYWR5c3RhdGUoKSB7CiAgbG9jYWwgbGFzdD0kMSBjdXJyZW50PSQyCiAgaWYgW1sgJGxhc3Q
gLWx0ICRTVEVBRFlfU1RBVEVfTUlOSU1VTSBdXTsgdGhlbgogICAgZWNobyAibGFzdDokbGFzdCBj
dXJyZW50OiRjdXJyZW50IFdhaXRpbmcgdG8gcmVhY2ggJFNURUFEWV9TVEFURV9NSU5JTVVNIG
JlZm9yZSBjaGVja2luZyBmb3Igc3RlYWR5LXN0YXRlIgogICAgcmV0dXJuIDEKICBmaQogIHdpdGhpbiA
kbGFzdCAkY3VycmVudCAkU1RFQURZX1NUQVRFX1RIUkVTSE9MRAp9Cgp3YWl0Rm9yUmVhZHk
oKSB7CiAgbG9nZ2VyICJSZWNvdmVyeTogV2FpdGluZyAke01BWElNVU1fV0FJVF9USU1FfXMgZm9
yIHRoZSBpbml0aWFsaXphdGlvbiB0byBjb21wbGV0ZSIKICBsb2NhbCBsYXN0U3lzdGVtZENwdXNldD
0iJChjdXJyZW50QWZmaW5pdHkgMSkiCiAgbG9jYWwgbGFzdERlc2lyZWRDcHVzZXQ9IiQodW5yZXN
0cmljdGVkQ3B1c2V0KSIKICBsb2NhbCB0PTAgcz0xMAogIGxvY2FsIGxhc3RDY291bnQ9MCBjY291bn
Q9MCBzdGVhZHlTdGF0ZVRpbWU9MAogIHdoaWxlIFtbICR0IC1sdCAkTUFYSU1VTV9XQUlUX1RJT
UUgXV07IGRvCiAgICBzbGVlcCAkcwogICAgKCh0ICs9IHMpKQogICAgIyBSZS1jaGVjayB0aGUgY3Vy
cmVudCBhZmZpbml0eSBvZiBzeXN0ZW1kLCBpbiBjYXNlIHNvbWUgb3RoZXIgcHJvY2VzcyBoYXMgY2
hhbmdlZCBpdAogICAgbG9jYWwgc3lzdGVtZENwdXNldD0iJChjdXJyZW50QWZmaW5pdHkgMSkiCiAg
ICAjIFJlLWNoZWNrIHRoZSB1bnJlc3RyaWN0ZWQgQ3B1c2V0LCBhcyB0aGUgYWxsb3dlZCBzZXQgb
2YgdW5yZXNlcnZlZCBjb3JlcyBtYXkgY2hhbmdlIGFzIHBvZHMgYXJlIGFzc2lnbmVkIHRvIGNvcmVzCiAg
ICBsb2NhbCBkZXNpcmVkQ3B1c2V0PSIkKHVucmVzdHJpY3RlZENwdXNldCkiCiAgICBpZiBbWyAkc3lz
dGVtZENwdXNldCAhPSAkbGFzdFN5c3RlbWRDcHVzZXQgfHwgJGxhc3REZXNpcmVkQ3B1c2V0ICE
9ICRkZXNpcmVkQ3B1c2V0IF1dOyB0aGVuCiAgICAgIHJlc2V0QWZmaW5pdHkgIiRkZXNpcmVkQ3B1
c2V0IgogICAgICBsYXN0U3lzdGVtZENwdXNldD0iJChjdXJyZW50QWZmaW5pdHkgMSkiCiAgICAgIGx
hc3REZXNpcmVkQ3B1c2V0PSIkZGVzaXJlZENwdXNldCIKICAgIGZpCgogICAgIyBEZXRlY3Qgc3RlY
WR5LXN0YXRlIHBvZCBjb3VudAogICAgY2NvdW50PSQoY3JpY3RsIHBzIHwgd2MgLWwpCiAgICBpZi
BzdGVhZHlzdGF0ZSAkbGFzdENjb3VudCAkY2NvdW50OyB0aGVuCiAgICAgICgoc3RlYWR5U3RhdG
VUaW1lICs9IHMpKQogICAgICBlY2hvICJTdGVhZHktc3RhdGUgZm9yICR7c3RlYWR5U3RhdGVUaW
1lfXMvJHtTVEVBRFlfU1RBVEVfV0lORE9XfXMiCiAgICAgIGlmIFtbICRzdGVhZHlTdGF0ZVRpbWUgL
WdlICRTVEVBRFlfU1RBVEVfV0lORE9XIF1dOyB0aGVuCiAgICAgICAgbG9nZ2VyICJSZWNvdmVyeT
ogU3RlYWR5LXN0YXRlICgrLy0gJFNURUFEWV9TVEFURV9USFJFU0hPTEQpIGZvciAke1NURUFE
WV9TVEFURV9XSU5ET1d9czogRG9uZSIKICAgICAgICByZXR1cm4gMAogICAgICBmaQogICAgZWx
zZQogICAgICBpZiBbWyAkc3RlYWR5U3RhdGVUaW1lIC1ndCAwIF1dOyB0aGVuCiAgICAgICAgZWN
obyAiUmVzZXR0aW5nIHN0ZWFkeS1zdGF0ZSB0aW1lciIKICAgICAgICBzdGVhZHlTdGF0ZVRpbWU
9MAogICAgICBmaQogICAgZmkKICAgIGxhc3RDY291bnQ9JGNjb3VudAogIGRvbmUKICBsb2dnZXIgI

OpenShift Container Platform 4.10 Scalability and performance

276

lJlY292ZXJ5OiBSZWNvdmVyeSBDb21wbGV0ZSBUaW1lb3V0Igp9CgptYWluKCkgewogIGlmICEgdW5
yZXN0cmljdGVkQ3B1c2V0ID4mL2Rldi9udWxsOyB0aGVuCiAgICBsb2dnZXIgIlJlY292ZXJ5OiBObyB1b
nJlc3RyaWN0ZWQgQ3B1c2V0IGNvdWxkIGJlIGRldGVjdGVkIgogICAgcmV0dXJuIDEKICBmaQoKICB
pZiAhIHJlc3RyaWN0ZWRDcHVzZXQgPiYvZGV2L251bGw7IHRoZW4KICAgIGxvZ2dlciAiUmVjb3Zlcnk
6IE5vIHJlc3RyaWN0ZWQgQ3B1c2V0IGhhcyBiZWVuIGNvbmZpZ3VyZWQuICBXZSBhcmUgYWxyZW
FkeSBydW5uaW5nIHVucmVzdHJpY3RlZC4iCiAgICByZXR1cm4gMAogIGZpCgogICMgRW5zdXJlIHdlI
HJlc2V0IHRoZSBDUFUgYWZmaW5pdHkgd2hlbiB3ZSBleGl0IHRoaXMgc2NyaXB0IGZvciBhbnkgcmVh
c29uCiAgIyBUaGlzIHdheSBlaXRoZXIgYWZ0ZXIgdGhlIHRpbWVyIGV4cGlyZXMgb3IgYWZ0ZXIgdGhlI
HByb2Nlc3MgaXMgaW50ZXJydXB0ZWQKICAjIHZpYSBeQyBvciBTSUdURVJNLCB3ZSByZXR1cm4g
dGhpbmdzIGJhY2sgdG8gdGhlIHdheSB0aGV5IHNob3VsZCBiZS4KICB0cmFwIHNldFJlc3RyaWN0ZW
QgRVhJVAoKICBsb2dnZXIgIlJlY292ZXJ5OiBSZWNvdmVyeSBNb2RlIFN0YXJ0aW5nIgogIHNldFVucm
VzdHJpY3RlZAogIHdhaXRGb3JSZWFkeQp9CgppZiBbWyAiJHtCQVNIX1NPVVJDRVswXX0iID0gIiR7
MH0iIF1dOyB0aGVuCiAgbWFpbiAiJHtAfSIKICBleGl0ICQ/CmZpCg==
 mode: 493
 path: /usr/local/bin/accelerated-container-startup.sh
 systemd:
 units:
 - contents: |
 [Unit]
 Description=Unlocks more CPUs for critical system processes during container startup

 [Service]
 Type=simple
 ExecStart=/usr/local/bin/accelerated-container-startup.sh

 # Maximum wait time is 600s = 10m:
 Environment=MAXIMUM_WAIT_TIME=600

 # Steady-state threshold = 2%
 # Allowed values:
 # 4 - absolute pod count (+/-)
 # 4% - percent change (+/-)
 # -1 - disable the steady-state check
 # Note: '%' must be escaped as '%%' in systemd unit files
 Environment=STEADY_STATE_THRESHOLD=2%%

 # Steady-state window = 120s
 # If the running pod count stays within the given threshold for this time
 # period, return CPU utilization to normal before the maximum wait time has
 # expires
 Environment=STEADY_STATE_WINDOW=120

 # Steady-state minimum = 40
 # Increasing this will skip any steady-state checks until the count rises above
 # this number to avoid false positives if there are some periods where the
 # count doesn't increase but we know we can't be at steady-state yet.
 Environment=STEADY_STATE_MINIMUM=40

 [Install]
 WantedBy=multi-user.target
 enabled: true
 name: accelerated-container-startup.service
 - contents: |
 [Unit]
 Description=Unlocks more CPUs for critical system processes during container shutdown
 DefaultDependencies=no

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

277

19.6.5.5. Automatic kernel crash dumps with kdump

kdump is a Linux kernel feature that creates a kernel crash dump when the kernel crashes. kdump is
enabled with the following MachineConfig CR:

Recommended kdump configuration

19.6.6. Recommended post-installation cluster configurations

When the cluster installation is complete, the ZTP pipeline applies the following custom resources (CRs)
that are required to run DU workloads.

 [Service]
 Type=simple
 ExecStart=/usr/local/bin/accelerated-container-startup.sh

 # Maximum wait time is 600s = 10m:
 Environment=MAXIMUM_WAIT_TIME=600

 # Steady-state threshold
 # Allowed values:
 # 4 - absolute pod count (+/-)
 # 4% - percent change (+/-)
 # -1 - disable the steady-state check
 # Note: '%' must be escaped as '%%' in systemd unit files
 Environment=STEADY_STATE_THRESHOLD=-1

 # Steady-state window = 60s
 # If the running pod count stays within the given threshold for this time
 # period, return CPU utilization to normal before the maximum wait time has
 # expires
 Environment=STEADY_STATE_WINDOW=60

 [Install]
 WantedBy=shutdown.target reboot.target halt.target
 enabled: true
 name: accelerated-container-shutdown.service

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master
 name: 06-kdump-enable-master
spec:
 config:
 ignition:
 version: 3.2.0
 systemd:
 units:
 - enabled: true
 name: kdump.service
 kernelArguments:
 - crashkernel=512M

OpenShift Container Platform 4.10 Scalability and performance

278

NOTE

In GitOps ZTP v4.10 and earlier, you configure UEFI secure boot with a MachineConfig
CR. This is no longer required in GitOps ZTP v4.11 and later. In v4.11, you configure UEFI
secure boot for single-node OpenShift clusters using Performance profile CRs. For more
information, see Performance profile.

19.6.6.1. Operator namespaces and Operator groups

Single-node OpenShift clusters that run DU workloads require the following OperatorGroup and
Namespace custom resources (CRs):

Local Storage Operator

Logging Operator

PTP Operator

SR-IOV Network Operator

The following YAML summarizes these CRs:

Recommended Operator Namespace and OperatorGroup configuration

apiVersion: v1
kind: Namespace
metadata:
 annotations:
 workload.openshift.io/allowed: management
 name: openshift-local-storage

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: openshift-local-storage
 namespace: openshift-local-storage
spec:
 targetNamespaces:
 - openshift-local-storage

apiVersion: v1
kind: Namespace
metadata:
 annotations:
 workload.openshift.io/allowed: management
 name: openshift-logging

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: cluster-logging
 namespace: openshift-logging
spec:
 targetNamespaces:
 - openshift-logging

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

279

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-sno-du-configuring-performance-addons_sno-configure-for-vdu

19.6.6.2. Operator subscriptions

Single-node OpenShift clusters that run DU workloads require the following Subscription CRs. The
subscription provides the location to download the following Operators:

Local Storage Operator

Logging Operator

PTP Operator

SR-IOV Network Operator

Recommended Operator subscriptions

apiVersion: v1
kind: Namespace
metadata:
 annotations:
 workload.openshift.io/allowed: management
 labels:
 openshift.io/cluster-monitoring: "true"
 name: openshift-ptp

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: ptp-operators
 namespace: openshift-ptp
spec:
 targetNamespaces:
 - openshift-ptp

apiVersion: v1
kind: Namespace
metadata:
 annotations:
 workload.openshift.io/allowed: management
 name: openshift-sriov-network-operator

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: sriov-network-operators
 namespace: openshift-sriov-network-operator
spec:
 targetNamespaces:
 - openshift-sriov-network-operator

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: cluster-logging
 namespace: openshift-logging
spec:

OpenShift Container Platform 4.10 Scalability and performance

280

1

2

Specify the channel to get the Operator from. stable is the recommended channel.

Specify Manual or Automatic. In Automatic mode, the Operator automatically updates to the
latest versions in the channel as they become available in the registry. In Manual mode, new
Operator versions are installed only after they are explicitly approved.

19.6.6.3. Cluster logging and log forwarding

Single-node OpenShift clusters that run DU workloads require logging and log forwarding for
debugging. The following example YAML illustrates the required ClusterLogging and
ClusterLogForwarder CRs.

 channel: "stable" 1
 name: cluster-logging
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 installPlanApproval: Manual 2

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: local-storage-operator
 namespace: openshift-local-storage
spec:
 channel: "stable"
 installPlanApproval: Automatic
 name: local-storage-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 installPlanApproval: Manual

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: ptp-operator-subscription
 namespace: openshift-ptp
spec:
 channel: "stable"
 name: ptp-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 installPlanApproval: Manual

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: sriov-network-operator-subscription
 namespace: openshift-sriov-network-operator
spec:
 channel: "stable"
 name: sriov-network-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 installPlanApproval: Manual

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

281

1

2

3

Recommended cluster logging and log forwarding configuration

Updates the existing ClusterLogging instance or creates the instance if it does not exist.

Updates the existing ClusterLogForwarder instance or creates the instance if it does not exist.

Specifies the URL of the Kafka server where the logs are forwarded to.

19.6.6.4. Performance profile

Single-node OpenShift clusters that run DU workloads require a Node Tuning Operator performance
profile to use real-time host capabilities and services.

NOTE

apiVersion: logging.openshift.io/v1
kind: ClusterLogging 1
metadata:
 name: instance
 namespace: openshift-logging
spec:
 collection:
 logs:
 fluentd: {}
 type: fluentd
 curation:
 type: "curator"
 curator:
 schedule: "30 3 * * *"
 managementState: Managed

apiVersion: logging.openshift.io/v1
kind: ClusterLogForwarder 2
metadata:
 name: instance
 namespace: openshift-logging
spec:
 inputs:
 - infrastructure: {}
 name: infra-logs
 outputs:
 - name: kafka-open
 type: kafka
 url: tcp://10.46.55.190:9092/test 3
 pipelines:
 - inputRefs:
 - audit
 name: audit-logs
 outputRefs:
 - kafka-open
 - inputRefs:
 - infrastructure
 name: infrastructure-logs
 outputRefs:
 - kafka-open

OpenShift Container Platform 4.10 Scalability and performance

282

1

2 3

4

5

6

7

8

NOTE

In earlier versions of OpenShift Container Platform, the Performance Addon Operator
was used to implement automatic tuning to achieve low latency performance for
OpenShift applications. In OpenShift Container Platform 4.11, these functions are part of
the Node Tuning Operator.

The following example PerformanceProfile CR illustrates the required cluster configuration.

Recommended performance profile configuration

Ensure that the value for name matches that specified in the spec.profile.data field of
TunedPerformancePatch.yaml and the status.configuration.source.name field of
validatorCRs/informDuValidator.yaml.

Configures UEFI secure boot for the cluster host.

Set the isolated CPUs. Ensure all of the Hyper-Threading pairs match.

Set the reserved CPUs. When workload partitioning is enabled, system processes, kernel threads,
and system container threads are restricted to these CPUs. All CPUs that are not isolated should
be reserved.

Set the number of huge pages.

Set the huge page size.

Set enabled to true to install the real-time Linux kernel.

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: openshift-node-performance-profile 1
spec:
 additionalKernelArgs:
 - rcupdate.rcu_normal_after_boot=0
 - "efi=runtime" 2
 cpu:
 isolated: 2-51,54-103 3
 reserved: 0-1,52-53 4
 hugepages:
 defaultHugepagesSize: 1G
 pages:
 - count: 32 5
 size: 1G 6
 node: 1 7
 machineConfigPoolSelector:
 pools.operator.machineconfiguration.openshift.io/master: ""
 nodeSelector:
 node-role.kubernetes.io/master: ""
 numa:
 topologyPolicy: "restricted"
 realTimeKernel:
 enabled: true 8

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

283

19.6.6.5. PTP

Single-node OpenShift clusters use Precision Time Protocol (PTP) for network time synchronization.
The following example PtpConfig CR illustrates the required PTP slave configuration.

Recommended PTP configuration

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
 name: du-ptp-slave
 namespace: openshift-ptp
spec:
 profile:
 - interface: ens5f0 1
 name: slave
 phc2sysOpts: -a -r -n 24
 ptp4lConf: |
 [global]
 #
 # Default Data Set
 #
 twoStepFlag 1
 slaveOnly 0
 priority1 128
 priority2 128
 domainNumber 24
 #utc_offset 37
 clockClass 248
 clockAccuracy 0xFE
 offsetScaledLogVariance 0xFFFF
 free_running 0
 freq_est_interval 1
 dscp_event 0
 dscp_general 0
 dataset_comparison ieee1588
 G.8275.defaultDS.localPriority 128
 #
 # Port Data Set
 #
 logAnnounceInterval -3
 logSyncInterval -4
 logMinDelayReqInterval -4
 logMinPdelayReqInterval -4
 announceReceiptTimeout 3
 syncReceiptTimeout 0
 delayAsymmetry 0
 fault_reset_interval 4
 neighborPropDelayThresh 20000000
 masterOnly 0
 G.8275.portDS.localPriority 128
 #
 # Run time options
 #
 assume_two_step 0
 logging_level 6

OpenShift Container Platform 4.10 Scalability and performance

284

 path_trace_enabled 0
 follow_up_info 0
 hybrid_e2e 0
 inhibit_multicast_service 0
 net_sync_monitor 0
 tc_spanning_tree 0
 tx_timestamp_timeout 1
 unicast_listen 0
 unicast_master_table 0
 unicast_req_duration 3600
 use_syslog 1
 verbose 0
 summary_interval 0
 kernel_leap 1
 check_fup_sync 0
 #
 # Servo Options
 #
 pi_proportional_const 0.0
 pi_integral_const 0.0
 pi_proportional_scale 0.0
 pi_proportional_exponent -0.3
 pi_proportional_norm_max 0.7
 pi_integral_scale 0.0
 pi_integral_exponent 0.4
 pi_integral_norm_max 0.3
 step_threshold 2.0
 first_step_threshold 0.00002
 max_frequency 900000000
 clock_servo pi
 sanity_freq_limit 200000000
 ntpshm_segment 0
 #
 # Transport options
 #
 transportSpecific 0x0
 ptp_dst_mac 01:1B:19:00:00:00
 p2p_dst_mac 01:80:C2:00:00:0E
 udp_ttl 1
 udp6_scope 0x0E
 uds_address /var/run/ptp4l
 #
 # Default interface options
 #
 clock_type OC
 network_transport L2
 delay_mechanism E2E
 time_stamping hardware
 tsproc_mode filter
 delay_filter moving_median
 delay_filter_length 10
 egressLatency 0
 ingressLatency 0
 boundary_clock_jbod 0
 #
 # Clock description

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

285

1 Sets the interface used to receive the PTP clock signal.

19.6.6.6. Extended Tuned profile

Single-node OpenShift clusters that run DU workloads require additional performance tuning
configurations necessary for high-performance workloads. The following example Tuned CR extends
the Tuned profile:

Recommended extended Tuned profile configuration

19.6.6.7. SR-IOV

Single root I/O virtualization (SR-IOV) is commonly used to enable the fronthaul and the midhaul
networks. The following YAML example configures SR-IOV for a single-node OpenShift cluster.

 #
 productDescription ;;
 revisionData ;;
 manufacturerIdentity 00:00:00
 userDescription ;
 timeSource 0xA0
 ptp4lOpts: -2 -s --summary_interval -4
recommend:
 - match:
 - nodeLabel: node-role.kubernetes.io/master
 priority: 4
 profile: slave

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: performance-patch
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=Configuration changes profile inherited from performance created tuned
 include=openshift-node-performance-openshift-node-performance-profile
 [bootloader]
 cmdline_crash=nohz_full=2-51,54-103
 [sysctl]
 kernel.timer_migration=1
 [scheduler]
 group.ice-ptp=0:f:10:*:ice-ptp.*
 [service]
 service.stalld=start,enable
 service.chronyd=stop,disable
 name: performance-patch
 recommend:
 - machineConfigLabels:
 machineconfiguration.openshift.io/role: master
 priority: 19
 profile: performance-patch

OpenShift Container Platform 4.10 Scalability and performance

286

Recommended SR-IOV configuration

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
 name: default
 namespace: openshift-sriov-network-operator
spec:
 configDaemonNodeSelector:
 node-role.kubernetes.io/master: ""
 disableDrain: true
 enableInjector: true
 enableOperatorWebhook: true

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: sriov-nw-du-mh
 namespace: openshift-sriov-network-operator
spec:
 networkNamespace: openshift-sriov-network-operator
 resourceName: du_mh
 vlan: 150 1

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: sriov-nnp-du-mh
 namespace: openshift-sriov-network-operator
spec:
 deviceType: vfio-pci 2
 isRdma: false
 nicSelector:
 pfNames:
 - ens7f0 3
 nodeSelector:
 node-role.kubernetes.io/master: ""
 numVfs: 8 4
 priority: 10
 resourceName: du_mh

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: sriov-nw-du-fh
 namespace: openshift-sriov-network-operator
spec:
 networkNamespace: openshift-sriov-network-operator
 resourceName: du_fh
 vlan: 140 5

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: sriov-nnp-du-fh

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

287

1

2

3

4

5

6

7

8

Specifies the VLAN for the midhaul network.

Select either vfio-pci or netdevice, as needed.

Specifies the interface connected to the midhaul network.

Specifies the number of VFs for the midhaul network.

The VLAN for the fronthaul network.

Select either vfio-pci or netdevice, as needed.

Specifies the interface connected to the fronthaul network.

Specifies the number of VFs for the fronthaul network.

19.6.6.8. Console Operator

The console-operator installs and maintains the web console on a cluster. When the node is centrally
managed the Operator is not needed and makes space for application workloads. The following
Console custom resource (CR) example disables the console.

Recommended console configuration

19.6.6.9. Grafana and Alertmanager

Single-node OpenShift clusters that run DU workloads require reduced CPU resources consumed by

 namespace: openshift-sriov-network-operator
spec:
 deviceType: netdevice 6
 isRdma: true
 nicSelector:
 pfNames:
 - ens5f0 7
 nodeSelector:
 node-role.kubernetes.io/master: ""
 numVfs: 8 8
 priority: 10
 resourceName: du_fh

apiVersion: operator.openshift.io/v1
kind: Console
metadata:
 annotations:
 include.release.openshift.io/ibm-cloud-managed: "false"
 include.release.openshift.io/self-managed-high-availability: "false"
 include.release.openshift.io/single-node-developer: "false"
 release.openshift.io/create-only: "true"
 name: cluster
spec:
 logLevel: Normal
 managementState: Removed
 operatorLogLevel: Normal

OpenShift Container Platform 4.10 Scalability and performance

288

Single-node OpenShift clusters that run DU workloads require reduced CPU resources consumed by
the OpenShift Container Platform monitoring components. The following ConfigMap custom resource
(CR) disables Grafana and Alertmanager.

Recommended cluster monitoring configuration

19.6.6.10. Network diagnostics

Single-node OpenShift clusters that run DU workloads require less inter-pod network connectivity
checks to reduce the additional load created by these pods. The following custom resource (CR)
disables these checks.

Recommended network diagnostics configuration

Additional resources

Deploying far edge sites using ZTP

19.7. VALIDATING SINGLE-NODE OPENSHIFT CLUSTER TUNING FOR
VDU APPLICATION WORKLOADS

Before you can deploy virtual distributed unit (vDU) applications, you need to tune and configure the
cluster host firmware and various other cluster configuration settings. Use the following information to
validate the cluster configuration to support vDU workloads.

Additional resources

For more information about single-node OpenShift clusters tuned for vDU application
deployments, see Reference configuration for deploying vDUs on single-node OpenShift .

19.7.1. Recommended firmware configuration for vDU cluster hosts

Use the following table as the basis to configure the cluster host firmware for vDU applications running

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 grafana:
 enabled: false
 alertmanagerMain:
 enabled: false
 prometheusK8s:
 retention: 24h

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 disableNetworkDiagnostics: true

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

289

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-deploying-far-edge-sites
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#sno-configure-for-vdu

Use the following table as the basis to configure the cluster host firmware for vDU applications running
on OpenShift Container Platform 4.10.

NOTE

The following table is a general recommendation for vDU cluster host firmware
configuration. Exact firmware settings will depend on your requirements and specific
hardware platform. Automatic setting of firmware is not handled by the zero touch
provisioning pipeline.

Table 19.7. Recommended cluster host firmware settings

Firmware setting Configuration Description

HyperTransport
(HT)

Enabled HyperTransport (HT) bus is a bus technology developed by
AMD. HT provides a high-speed link between the components in
the host memory and other system peripherals.

UEFI Enabled Enable booting from UEFI for the vDU host.

CPU Power and
Performance
Policy

Performance Set CPU Power and Performance Policy to optimize the system
for performance over energy efficiency.

Uncore Frequency
Scaling

Disabled Disable Uncore Frequency Scaling to prevent the voltage and
frequency of non-core parts of the CPU from being set
independently.

Uncore Frequency Maximum Sets the non-core parts of the CPU such as cache and memory
controller to their maximum possible frequency of operation.

Performance P-
limit

Disabled Disable Performance P-limit to prevent the Uncore frequency
coordination of processors.

Enhanced Intel®
SpeedStep Tech

Enabled Enable Enhanced Intel SpeedStep to allow the system to
dynamically adjust processor voltage and core frequency that
decreases power consumption and heat production in the host.

Intel® Turbo Boost
Technology

Enabled Enable Turbo Boost Technology for Intel-based CPUs to
automatically allow processor cores to run faster than the rated
operating frequency if they are operating below power, current,
and temperature specification limits.

Intel Configurable
TDP

Enabled Enables Thermal Design Power (TDP) for the CPU.

Configurable TDP
Level

Level 2 TDP level sets the CPU power consumption required for a
particular performance rating. TDP level 2 sets the CPU to the
most stable performance level at the cost of power
consumption.

OpenShift Container Platform 4.10 Scalability and performance

290

Energy Efficient
Turbo

Disabled Disable Energy Efficient Turbo to prevent the processor from
using an energy-efficiency based policy.

Hardware P-States Disabled Disable P-states (performance states) to optimize the
operating system and CPU for performance over power
consumption.

Package C-State C0/C1 state Use C0 or C1 states to set the processor to a fully active state
(C0) or to stop CPU internal clocks running in software (C1).

C1E Disabled CPU Enhanced Halt (C1E) is a power saving feature in Intel
chips. Disabling C1E prevents the operating system from sending
a halt command to the CPU when inactive.

Processor C6 Disabled C6 power-saving is a CPU feature that automatically disables
idle CPU cores and cache. Disabling C6 improves system
performance.

Sub-NUMA
Clustering

Disabled Sub-NUMA clustering divides the processor cores, cache, and
memory into multiple NUMA domains. Disabling this option can
increase performance for latency-sensitive workloads.

Firmware setting Configuration Description

NOTE

Enable global SR-IOV and VT-d settings in the firmware for the host. These settings are
relevant to bare-metal environments.

19.7.2. Recommended cluster configurations to run vDU applications

Clusters running virtualized distributed unit (vDU) applications require a highly tuned and optimized
configuration. The following information describes the various elements that you require to support vDU
workloads in OpenShift Container Platform 4.10 clusters.

19.7.2.1. Recommended cluster MachineConfig CRs

The following MachineConfig CRs configure the cluster host:

Table 19.8. Recommended MachineConfig CRs

CR filename Description

02-workload-partitioning.yaml Configures workload partitioning for the cluster.
Apply this MachineConfig CR when you install the
cluster.

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

291

MachineConfigSctp.yaml Loads the SCTP kernel module. This
MachineConfig CR is optional and can be omitted
if you do not require this kernel module.

MachineConfigContainerMountNS.yaml Configures the container mount namespace and
kubelet conf.

MachineConfigAcceleratedStartup.yaml Configures accelerated startup for the cluster.

06-kdump-master.yaml, 06-kdump-
worker.yaml

Configures kdump for the cluster.

CR filename Description

19.7.2.2. Recommended cluster Operators

The following Operators are required for clusters running vDU applications and are a part of the baseline
reference configuration:

Node Tuning Operator (NTO). NTO packages functionality that was previously delivered with
the Performance Addon Operator, which is now a part of NTO.

PTP Operator

SR-IOV Network Operator

Red Hat OpenShift Logging Operator

Local Storage Operator

19.7.2.3. Recommended cluster kernel configuration

Always use the latest supported realtime kernel version in your cluster. You should also ensure that the
following configurations are applied in the cluster:

1. Ensure the following additionalKernelArgs are set in the cluster performance profile:

2. Ensure that the performance-patch profile in the Tuned CR configures the correct CPU
isolation set that matches the isolated CPU set in the related PerformanceProfile CR, for
example:

spec:
 additionalKernelArgs:
 - "idle=poll"
 - "rcupdate.rcu_normal_after_boot=0"
 - "efi=runtime"

spec:
 profile:
 - name: performance-patch
 # The 'include' line must match the associated PerformanceProfile name
 # And the cmdline_crash CPU set must match the 'isolated' set in the associated
PerformanceProfile

OpenShift Container Platform 4.10 Scalability and performance

292

1 Listed CPUs depend on the host hardware configuration, specifically the number of
available CPUs in the system and the CPU topology.

19.7.2.4. Checking the realtime kernel version

Always use the latest version of the realtime kernel in your OpenShift Container Platform clusters. If you
are unsure about the kernel version that is in use in the cluster, you can compare the current realtime
kernel version to the release version with the following procedure.

Prerequisites

You have installed the OpenShift CLI (oc).

You are logged in as a user with cluster-admin privileges.

You have installed podman.

Procedure

1. Run the following command to get the cluster version:

2. Get the release image SHA number:

3. Run the release image container and extract the kernel version that is packaged with cluster’s
current release:

Example output

 data: |
 [main]
 summary=Configuration changes profile inherited from performance created tuned
 include=openshift-node-performance-openshift-node-performance-profile
 [bootloader]
 cmdline_crash=nohz_full=2-51,54-103 1
 [sysctl]
 kernel.timer_migration=1
 [scheduler]
 group.ice-ptp=0:f:10:*:ice-ptp.*
 [service]
 service.stalld=start,enable
 service.chronyd=stop,disable

$ OCP_VERSION=$(oc get clusterversion version -o jsonpath='{.status.desired.version}
{"\n"}')

$ DTK_IMAGE=$(oc adm release info --image-for=driver-toolkit quay.io/openshift-release-
dev/ocp-release:$OCP_VERSION-x86_64)

$ podman run --rm $DTK_IMAGE rpm -qa | grep 'kernel-rt-core-' | sed 's#kernel-rt-core-##'

4.18.0-305.49.1.rt7.121.el8_4.x86_64

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

293

This is the default realtime kernel version that ships with the release.

NOTE

The realtime kernel is denoted by the string .rt in the kernel version.

Verification

Check that the kernel version listed for the cluster’s current release matches actual realtime kernel that
is running in the cluster. Run the following commands to check the running realtime kernel version:

1. Open a remote shell connection to the cluster node:

2. Check the realtime kernel version:

Example output

19.7.3. Checking that the recommended cluster configurations are applied

You can check that clusters are running the correct configuration. The following procedure describes
how to check the various configurations that you require to deploy a DU application in OpenShift
Container Platform 4.10 clusters.

Prerequisites

You have deployed a cluster and tuned it for vDU workloads.

You have installed the OpenShift CLI (oc).

You have logged in as a user with cluster-admin privileges.

Procedure

1. Check that the default Operator Hub sources are disabled. Run the following command:

Example output

2. Check that all required CatalogSource resources are annotated for workload partitioning
(PreferredDuringScheduling) by running the following command:

$ oc debug node/<node_name>

sh-4.4# uname -r

4.18.0-305.49.1.rt7.121.el8_4.x86_64

$ oc get operatorhub cluster -o yaml

spec:
 disableAllDefaultSources: true

OpenShift Container Platform 4.10 Scalability and performance

294

1

Example output

CatalogSource resources that are not annotated are also returned. In this example, the
ran-operators CatalogSource resource is not annotated and does not have the
PreferredDuringScheduling annotation.

NOTE

In a properly configured vDU cluster, only a single annotated catalog source is
listed.

3. Check that all applicable OpenShift Container Platform Operator namespaces are annotated
for workload partitioning. This includes all Operators installed with core OpenShift Container
Platform and the set of additional Operators included in the reference DU tuning configuration.
Run the following command:

Example output

IMPORTANT

Additional Operators must not be annotated for workload partitioning. In the
output from the previous command, additional Operators should be listed
without any value on the right-hand side of the -- separator.

4. Check that the ClusterLogging configuration is correct. Run the following commands:

a. Validate that the appropriate input and output logs are configured:

Example output

$ oc get catalogsource -A -o jsonpath='{range .items[*]}{.metadata.name}{" -- "}
{.metadata.annotations.target\.workload\.openshift\.io/management}{"\n"}{end}'

certified-operators -- {"effect": "PreferredDuringScheduling"}
community-operators -- {"effect": "PreferredDuringScheduling"}
ran-operators 1
redhat-marketplace -- {"effect": "PreferredDuringScheduling"}
redhat-operators -- {"effect": "PreferredDuringScheduling"}

$ oc get namespaces -A -o jsonpath='{range .items[*]}{.metadata.name}{" -- "}
{.metadata.annotations.workload\.openshift\.io/allowed}{"\n"}{end}'

default --
openshift-apiserver -- management
openshift-apiserver-operator -- management
openshift-authentication -- management
openshift-authentication-operator -- management

$ oc get -n openshift-logging ClusterLogForwarder instance -o yaml

apiVersion: logging.openshift.io/v1

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

295

b. Check that the curation schedule is appropriate for your application:

Example output

kind: ClusterLogForwarder
metadata:
 creationTimestamp: "2022-07-19T21:51:41Z"
 generation: 1
 name: instance
 namespace: openshift-logging
 resourceVersion: "1030342"
 uid: 8c1a842d-80c5-447a-9150-40350bdf40f0
spec:
 inputs:
 - infrastructure: {}
 name: infra-logs
 outputs:
 - name: kafka-open
 type: kafka
 url: tcp://10.46.55.190:9092/test
 pipelines:
 - inputRefs:
 - audit
 name: audit-logs
 outputRefs:
 - kafka-open
 - inputRefs:
 - infrastructure
 name: infrastructure-logs
 outputRefs:
 - kafka-open
...

$ oc get -n openshift-logging clusterloggings.logging.openshift.io instance -o yaml

apiVersion: logging.openshift.io/v1
kind: ClusterLogging
metadata:
 creationTimestamp: "2022-07-07T18:22:56Z"
 generation: 1
 name: instance
 namespace: openshift-logging
 resourceVersion: "235796"
 uid: ef67b9b8-0e65-4a10-88ff-ec06922ea796
spec:
 collection:
 logs:
 fluentd: {}
 type: fluentd
 curation:
 curator:
 schedule: 30 3 * * *
 type: curator
 managementState: Managed
...

OpenShift Container Platform 4.10 Scalability and performance

296

5. Check that the web console is disabled (managementState: Removed) by running the
following command:

Example output

6. Check that chronyd is disabled on the cluster node by running the following commands:

Check the status of chronyd on the node:

Example output

7. Check that the PTP interface is successfully synchronized to the primary clock using a remote
shell connection to the linuxptp-daemon container and the PTP Management Client (pmc)
tool:

a. Set the $PTP_POD_NAME variable with the name of the linuxptp-daemon pod by running
the following command:

b. Run the following command to check the sync status of the PTP device:

Example output

$ oc get consoles.operator.openshift.io cluster -o jsonpath="{ .spec.managementState }"

Removed

$ oc debug node/<node_name>

sh-4.4# chroot /host

sh-4.4# systemctl status chronyd

● chronyd.service - NTP client/server
 Loaded: loaded (/usr/lib/systemd/system/chronyd.service; disabled; vendor preset:
enabled)
 Active: inactive (dead)
 Docs: man:chronyd(8)
 man:chrony.conf(5)

$ PTP_POD_NAME=$(oc get pods -n openshift-ptp -l app=linuxptp-daemon -o name)

$ oc -n openshift-ptp rsh -c linuxptp-daemon-container ${PTP_POD_NAME} pmc -u -f
/var/run/ptp4l.0.config -b 0 'GET PORT_DATA_SET'

sending: GET PORT_DATA_SET
 3cecef.fffe.7a7020-1 seq 0 RESPONSE MANAGEMENT PORT_DATA_SET
 portIdentity 3cecef.fffe.7a7020-1
 portState SLAVE
 logMinDelayReqInterval -4
 peerMeanPathDelay 0
 logAnnounceInterval 1
 announceReceiptTimeout 3

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

297

1

2

c. Run the following pmc command to check the PTP clock status:

Example output

master_offset should be between -100 and 100 ns.

Indicates that the PTP clock is synchronized to a master, and the local clock is not the
grandmaster clock.

d. Check that the expected master offset value corresponding to the value in
/var/run/ptp4l.0.config is found in the linuxptp-daemon-container log:

Example output

8. Check that the SR-IOV configuration is correct by running the following commands:

 logSyncInterval 0
 delayMechanism 1
 logMinPdelayReqInterval 0
 versionNumber 2
 3cecef.fffe.7a7020-2 seq 0 RESPONSE MANAGEMENT PORT_DATA_SET
 portIdentity 3cecef.fffe.7a7020-2
 portState LISTENING
 logMinDelayReqInterval 0
 peerMeanPathDelay 0
 logAnnounceInterval 1
 announceReceiptTimeout 3
 logSyncInterval 0
 delayMechanism 1
 logMinPdelayReqInterval 0
 versionNumber 2

$ oc -n openshift-ptp rsh -c linuxptp-daemon-container ${PTP_POD_NAME} pmc -u -f
/var/run/ptp4l.0.config -b 0 'GET TIME_STATUS_NP'

sending: GET TIME_STATUS_NP
 3cecef.fffe.7a7020-0 seq 0 RESPONSE MANAGEMENT TIME_STATUS_NP
 master_offset 10 1
 ingress_time 1657275432697400530
 cumulativeScaledRateOffset +0.000000000
 scaledLastGmPhaseChange 0
 gmTimeBaseIndicator 0
 lastGmPhaseChange 0x0000'0000000000000000.0000
 gmPresent true 2
 gmIdentity 3c2c30.ffff.670e00

$ oc logs $PTP_POD_NAME -n openshift-ptp -c linuxptp-daemon-container

phc2sys[56020.341]: [ptp4l.1.config] CLOCK_REALTIME phc offset -1731092 s2 freq -
1546242 delay 497
ptp4l[56020.390]: [ptp4l.1.config] master offset -2 s2 freq -5863 path delay 541
ptp4l[56020.390]: [ptp4l.0.config] master offset -8 s2 freq -10699 path delay 533

OpenShift Container Platform 4.10 Scalability and performance

298

a. Check that the disableDrain value in the SriovOperatorConfig resource is set to true:

Example output

b. Check that the SriovNetworkNodeState sync status is Succeeded by running the
following command:

Example output

c. Verify that the expected number and configuration of virtual functions (Vfs) under each
interface configured for SR-IOV is present and correct in the .status.interfaces field. For
example:

Example output

$ oc get sriovoperatorconfig -n openshift-sriov-network-operator default -o jsonpath="
{.spec.disableDrain}{'\n'}"

true

$ oc get SriovNetworkNodeStates -n openshift-sriov-network-operator -o jsonpath="
{.items[*].status.syncStatus}{'\n'}"

Succeeded

$ oc get SriovNetworkNodeStates -n openshift-sriov-network-operator -o yaml

apiVersion: v1
items:
- apiVersion: sriovnetwork.openshift.io/v1
 kind: SriovNetworkNodeState
...
 status:
 interfaces:
 ...
 - Vfs:
 - deviceID: 154c
 driver: vfio-pci
 pciAddress: 0000:3b:0a.0
 vendor: "8086"
 vfID: 0
 - deviceID: 154c
 driver: vfio-pci
 pciAddress: 0000:3b:0a.1
 vendor: "8086"
 vfID: 1
 - deviceID: 154c
 driver: vfio-pci
 pciAddress: 0000:3b:0a.2
 vendor: "8086"
 vfID: 2
 - deviceID: 154c
 driver: vfio-pci

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

299

9. Check that the cluster performance profile is correct. The cpu and hugepages sections will
vary depending on your hardware configuration. Run the following command:

Example output

 pciAddress: 0000:3b:0a.3
 vendor: "8086"
 vfID: 3
 - deviceID: 154c
 driver: vfio-pci
 pciAddress: 0000:3b:0a.4
 vendor: "8086"
 vfID: 4
 - deviceID: 154c
 driver: vfio-pci
 pciAddress: 0000:3b:0a.5
 vendor: "8086"
 vfID: 5
 - deviceID: 154c
 driver: vfio-pci
 pciAddress: 0000:3b:0a.6
 vendor: "8086"
 vfID: 6
 - deviceID: 154c
 driver: vfio-pci
 pciAddress: 0000:3b:0a.7
 vendor: "8086"
 vfID: 7

$ oc get PerformanceProfile openshift-node-performance-profile -o yaml

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 creationTimestamp: "2022-07-19T21:51:31Z"
 finalizers:
 - foreground-deletion
 generation: 1
 name: openshift-node-performance-profile
 resourceVersion: "33558"
 uid: 217958c0-9122-4c62-9d4d-fdc27c31118c
spec:
 additionalKernelArgs:
 - idle=poll
 - rcupdate.rcu_normal_after_boot=0
 - efi=runtime
 cpu:
 isolated: 2-51,54-103
 reserved: 0-1,52-53
 hugepages:
 defaultHugepagesSize: 1G
 pages:
 - count: 32
 size: 1G
 machineConfigPoolSelector:

OpenShift Container Platform 4.10 Scalability and performance

300

NOTE

CPU settings are dependent on the number of cores available on the server and
should align with workload partitioning settings. hugepages configuration is
server and application dependent.

10. Check that the PerformanceProfile was successfully applied to the cluster by running the
following command:

Example output

11. Check the Tuned performance patch settings by running the following command:

Example output

 pools.operator.machineconfiguration.openshift.io/master: ""
 net:
 userLevelNetworking: true
 nodeSelector:
 node-role.kubernetes.io/master: ""
 numa:
 topologyPolicy: restricted
 realTimeKernel:
 enabled: true
status:
 conditions:
 - lastHeartbeatTime: "2022-07-19T21:51:31Z"
 lastTransitionTime: "2022-07-19T21:51:31Z"
 status: "True"
 type: Available
 - lastHeartbeatTime: "2022-07-19T21:51:31Z"
 lastTransitionTime: "2022-07-19T21:51:31Z"
 status: "True"
 type: Upgradeable
 - lastHeartbeatTime: "2022-07-19T21:51:31Z"
 lastTransitionTime: "2022-07-19T21:51:31Z"
 status: "False"
 type: Progressing
 - lastHeartbeatTime: "2022-07-19T21:51:31Z"
 lastTransitionTime: "2022-07-19T21:51:31Z"
 status: "False"
 type: Degraded
 runtimeClass: performance-openshift-node-performance-profile
 tuned: openshift-cluster-node-tuning-operator/openshift-node-performance-openshift-node-
performance-profile

$ oc get performanceprofile openshift-node-performance-profile -o jsonpath="{range
.status.conditions[*]}{ @.type }{' -- '}{@.status}{'\n'}{end}"

Available -- True
Upgradeable -- True
Progressing -- False
Degraded -- False

$ oc get tuneds.tuned.openshift.io -n openshift-cluster-node-tuning-operator performance-
patch -o yaml

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

301

1

Example output

The cpu list in cmdline=nohz_full= will vary based on your hardware configuration.

12. Check that cluster networking diagnostics are disabled by running the following command:

Example output

13. Check that the Kubelet housekeeping interval is tuned to slower rate. This is set in the
containerMountNS machine config. Run the following command:

Example output

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 creationTimestamp: "2022-07-18T10:33:52Z"
 generation: 1
 name: performance-patch
 namespace: openshift-cluster-node-tuning-operator
 resourceVersion: "34024"
 uid: f9799811-f744-4179-bf00-32d4436c08fd
spec:
 profile:
 - data: |
 [main]
 summary=Configuration changes profile inherited from performance created tuned
 include=openshift-node-performance-openshift-node-performance-profile
 [bootloader]
 cmdline_crash=nohz_full=2-23,26-47 1
 [sysctl]
 kernel.timer_migration=1
 [scheduler]
 group.ice-ptp=0:f:10:*:ice-ptp.*
 [service]
 service.stalld=start,enable
 service.chronyd=stop,disable
 name: performance-patch
 recommend:
 - machineConfigLabels:
 machineconfiguration.openshift.io/role: master
 priority: 19
 profile: performance-patch

$ oc get networks.operator.openshift.io cluster -o
jsonpath='{.spec.disableNetworkDiagnostics}'

true

$ oc describe machineconfig container-mount-namespace-and-kubelet-conf-master | grep
OPENSHIFT_MAX_HOUSEKEEPING_INTERVAL_DURATION

Environment="OPENSHIFT_MAX_HOUSEKEEPING_INTERVAL_DURATION=60s"

OpenShift Container Platform 4.10 Scalability and performance

302

14. Check that Grafana and alertManagerMain are disabled and that the Prometheus retention
period is set to 24h by running the following command:

Example output

a. Use the following commands to verify that Grafana and alertManagerMain routes are not
found in the cluster:

Both queries should return Error from server (NotFound) messages.

15. Check that there is a minimum of 4 CPUs allocated as reserved for each of the
PerformanceProfile, Tuned performance-patch, workload partitioning, and kernel command
line arguments by running the following command:

Example output

NOTE

Depending on your workload requirements, you might require additional reserved
CPUs to be allocated.

19.8. ADVANCED MANAGED CLUSTER CONFIGURATION WITH
SITECONFIG RESOURCES

You can use SiteConfig custom resources (CRs) to deploy custom functionality and configurations in
your managed clusters at installation time.

19.8.1. Customizing extra installation manifests in the ZTP GitOps pipeline

You can define a set of extra manifests for inclusion in the installation phase of the zero touch
provisioning (ZTP) GitOps pipeline. These manifests are linked to the SiteConfig custom resources
(CRs) and are applied to the cluster during installation. Including MachineConfig CRs at install time
makes the installation process more efficient.

$ oc get configmap cluster-monitoring-config -n openshift-monitoring -o jsonpath="{
.data.config\.yaml }"

grafana:
 enabled: false
alertmanagerMain:
 enabled: false
prometheusK8s:
 retention: 24h

$ oc get route -n openshift-monitoring alertmanager-main

$ oc get route -n openshift-monitoring grafana

$ oc get performanceprofile -o jsonpath="{ .items[0].spec.cpu.reserved }"

0-1,52-53

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

303

Prerequisites

Create a Git repository where you manage your custom site configuration data. The repository
must be accessible from the hub cluster and be defined as a source repository for the Argo CD
application.

Procedure

1. Create a set of extra manifest CRs that the ZTP pipeline uses to customize the cluster installs.

2. In your custom /siteconfig directory, create an /extra-manifest folder for your extra manifests.
The following example illustrates a sample /siteconfig with /extra-manifest folder:

3. Add your custom extra manifest CRs to the siteconfig/extra-manifest directory.

4. In your SiteConfig CR, enter the directory name in the extraManifestPath field, for example:

5. Save the SiteConfig CRs and /extra-manifest CRs and push them to the site configuration
repo.

The ZTP pipeline appends the CRs in the /extra-manifest directory to the default set of extra manifests
during cluster provisioning.

19.8.2. Filtering custom resources using SiteConfig filters

By using filters, you can easily customize SiteConfig custom resources (CRs) to include or exclude
other CRs for use in the installation phase of the zero touch provisioning (ZTP) GitOps pipeline.

You can specify an inclusionDefault value of include or exclude for the SiteConfig CR, along with a
list of the specific extraManifest RAN CRs that you want to include or exclude. Setting
inclusionDefault to include makes the ZTP pipeline apply all the files in /source-crs/extra-manifest
during installation. Setting inclusionDefault to exclude does the opposite.

You can exclude individual CRs from the /source-crs/extra-manifest folder that are otherwise included
by default. The following example configures a custom single-node OpenShift SiteConfig CR to
exclude the /source-crs/extra-manifest/03-sctp-machine-config-worker.yaml CR at installation time.

Some additional optional filtering scenarios are also described.

Prerequisites

You configured the hub cluster for generating the required installation and policy CRs.

You created a Git repository where you manage your custom site configuration data. The

siteconfig
├── site1-sno-du.yaml
├── site2-standard-du.yaml
└── extra-manifest
 └── 01-example-machine-config.yaml

clusters:
- clusterName: "example-sno"
 networkType: "OVNKubernetes"
 extraManifestPath: extra-manifest

OpenShift Container Platform 4.10 Scalability and performance

304

You created a Git repository where you manage your custom site configuration data. The
repository must be accessible from the hub cluster and be defined as a source repository for the
Argo CD application.

Procedure

1. To prevent the ZTP pipeline from applying the 03-sctp-machine-config-worker.yaml CR file,
apply the following YAML in the SiteConfig CR:

The ZTP pipeline skips the 03-sctp-machine-config-worker.yaml CR during installation. All
other CRs in /source-crs/extra-manifest are applied.

2. Save the SiteConfig CR and push the changes to the site configuration repository.
The ZTP pipeline monitors and adjusts what CRs it applies based on the SiteConfig filter
instructions.

3. Optional: To prevent the ZTP pipeline from applying all the /source-crs/extra-manifest CRs
during cluster installation, apply the following YAML in the SiteConfig CR:

4. Optional: To exclude all the /source-crs/extra-manifest RAN CRs and instead include a custom
CR file during installation, edit the custom SiteConfig CR to set the custom manifests folder
and the include file, for example:

apiVersion: ran.openshift.io/v1
kind: SiteConfig
metadata:
 name: "site1-sno-du"
 namespace: "site1-sno-du"
spec:
 baseDomain: "example.com"
 pullSecretRef:
 name: "assisted-deployment-pull-secret"
 clusterImageSetNameRef: "openshift-4.10"
 sshPublicKey: "<ssh_public_key>"
 clusters:
- clusterName: "site1-sno-du"
 extraManifests:
 filter:
 exclude:
 - 03-sctp-machine-config-worker.yaml

- clusterName: "site1-sno-du"
 extraManifests:
 filter:
 inclusionDefault: exclude

clusters:
- clusterName: "site1-sno-du"
 extraManifestPath: "<custom_manifest_folder>" 1
 extraManifests:
 filter:
 inclusionDefault: exclude 2
 include:
 - custom-sctp-machine-config-worker.yaml

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

305

1

2

Replace <custom_manifest_folder> with the name of the folder that contains the custom
installation CRs, for example, user-custom-manifest/.

Set inclusionDefault to exclude to prevent the ZTP pipeline from applying the files in
/source-crs/extra-manifest during installation.

The following example illustrates the custom folder structure:

19.9. ADVANCED MANAGED CLUSTER CONFIGURATION WITH
POLICYGENTEMPLATE RESOURCES

You can use PolicyGenTemplate CRs to deploy custom functionality in your managed clusters.

19.9.1. Deploying additional changes to clusters

If you require cluster configuration changes outside of the base GitOps ZTP pipeline configuration,
there are three options:

Apply the additional configuration after the ZTP pipeline is complete

When the GitOps ZTP pipeline deployment is complete, the deployed cluster is ready for application
workloads. At this point, you can install additional Operators and apply configurations specific to your
requirements. Ensure that additional configurations do not negatively affect the performance of the
platform or allocated CPU budget.

Add content to the ZTP library

The base source custom resources (CRs) that you deploy with the GitOps ZTP pipeline can be
augmented with custom content as required.

Create extra manifests for the cluster installation

Extra manifests are applied during installation and make the installation process more efficient.

IMPORTANT

Providing additional source CRs or modifying existing source CRs can significantly impact
the performance or CPU profile of OpenShift Container Platform.

Additional resources

See Customizing extra installation manifests in the ZTP GitOps pipeline for information about
adding extra manifests.

19.9.2. Using PolicyGenTemplate CRs to override source CRs content

PolicyGenTemplate custom resources (CRs) allow you to overlay additional configuration details on
top of the base source CRs provided with the GitOps plugin in the ztp-site-generate container. You can
think of PolicyGenTemplate CRs as a logical merge or patch to the base CR. Use PolicyGenTemplate
CRs to update a single field of the base CR, or overlay the entire contents of the base CR. You can
update values and insert fields that are not in the base CR.

siteconfig
 ├── site1-sno-du.yaml
 └── user-custom-manifest
 └── custom-sctp-machine-config-worker.yaml

OpenShift Container Platform 4.10 Scalability and performance

306

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-customizing-the-install-extra-manifests_ztp-advanced-install-ztp

The following example procedure describes how to update fields in the generated PerformanceProfile
CR for the reference configuration based on the PolicyGenTemplate CR in the group-du-sno-
ranGen.yaml file. Use the procedure as a basis for modifying other parts of the PolicyGenTemplate
based on your requirements.

Prerequisites

Create a Git repository where you manage your custom site configuration data. The repository
must be accessible from the hub cluster and be defined as a source repository for Argo CD.

Procedure

1. Review the baseline source CR for existing content. You can review the source CRs listed in the
reference PolicyGenTemplate CRs by extracting them from the zero touch provisioning (ZTP)
container.

a. Create an /out folder:

b. Extract the source CRs:

2. Review the baseline PerformanceProfile CR in ./out/source-crs/PerformanceProfile.yaml:

$ mkdir -p ./out

$ podman run --log-driver=none --rm registry.redhat.io/openshift4/ztp-site-generate-
rhel8:v{product-version}.1 extract /home/ztp --tar | tar x -C ./out

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: $name
 annotations:
 ran.openshift.io/ztp-deploy-wave: "10"
spec:
 additionalKernelArgs:
 - "idle=poll"
 - "rcupdate.rcu_normal_after_boot=0"
 cpu:
 isolated: $isolated
 reserved: $reserved
 hugepages:
 defaultHugepagesSize: $defaultHugepagesSize
 pages:
 - size: $size
 count: $count
 node: $node
 machineConfigPoolSelector:
 pools.operator.machineconfiguration.openshift.io/$mcp: ""
 net:
 userLevelNetworking: true
 nodeSelector:
 node-role.kubernetes.io/$mcp: ''
 numa:

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

307

NOTE

Any fields in the source CR which contain $… ​ are removed from the generated
CR if they are not provided in the PolicyGenTemplate CR.

3. Update the PolicyGenTemplate entry for PerformanceProfile in the group-du-sno-
ranGen.yaml reference file. The following example PolicyGenTemplate CR stanza supplies
appropriate CPU specifications, sets the hugepages configuration, and adds a new field that
sets globallyDisableIrqLoadBalancing to false.

4. Commit the PolicyGenTemplate change in Git, and then push to the Git repository being
monitored by the GitOps ZTP argo CD application.

Example output

The ZTP application generates an RHACM policy that contains the generated PerformanceProfile CR.
The contents of that CR are derived by merging the metadata and spec contents from the
PerformanceProfile entry in the PolicyGenTemplate onto the source CR. The resulting CR has the
following content:

 topologyPolicy: "restricted"
 realTimeKernel:
 enabled: true

- fileName: PerformanceProfile.yaml
 policyName: "config-policy"
 metadata:
 name: openshift-node-performance-profile
 spec:
 cpu:
 # These must be tailored for the specific hardware platform
 isolated: "2-19,22-39"
 reserved: "0-1,20-21"
 hugepages:
 defaultHugepagesSize: 1G
 pages:
 - size: 1G
 count: 10
 globallyDisableIrqLoadBalancing: false

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: openshift-node-performance-profile
spec:
 additionalKernelArgs:
 - idle=poll
 - rcupdate.rcu_normal_after_boot=0
 cpu:
 isolated: 2-19,22-39
 reserved: 0-1,20-21
 globallyDisableIrqLoadBalancing: false
 hugepages:
 defaultHugepagesSize: 1G

OpenShift Container Platform 4.10 Scalability and performance

308

NOTE

In the /source-crs folder that you extract from the ztp-site-generate container, the $
syntax is not used for template substitution as implied by the syntax. Rather, if the
policyGen tool sees the $ prefix for a string and you do not specify a value for that field
in the related PolicyGenTemplate CR, the field is omitted from the output CR entirely.

An exception to this is the $mcp variable in /source-crs YAML files that is substituted
with the specified value for mcp from the PolicyGenTemplate CR. For example, in
example/policygentemplates/group-du-standard-ranGen.yaml, the value for mcp is
worker:

The policyGen tool replace instances of $mcp with worker in the output CRs.

19.9.3. Adding new content to the GitOps ZTP pipeline

The source CRs in the GitOps ZTP site generator container provide a set of critical features and node
tuning settings for RAN Distributed Unit (DU) applications. These are applied to the clusters that you
deploy with ZTP. To add or modify existing source CRs in the ztp-site-generate container, rebuild the
ztp-site-generate container and make it available to the hub cluster, typically from the disconnected
registry associated with the hub cluster. Any valid OpenShift Container Platform CR can be added.

Perform the following procedure to add new content to the ZTP pipeline.

Procedure

1. Create a directory containing a Containerfile and the source CR YAML files that you want to
include in the updated ztp-site-generate container, for example:

2. Add the following content to the ztp-update.in Containerfile:

 pages:
 - count: 10
 size: 1G
 machineConfigPoolSelector:
 pools.operator.machineconfiguration.openshift.io/master: ""
 net:
 userLevelNetworking: true
 nodeSelector:
 node-role.kubernetes.io/master: ""
 numa:
 topologyPolicy: restricted
 realTimeKernel:
 enabled: true

spec:
 bindingRules:
 group-du-standard: ""
 mcp: "worker"

ztp-update/
├── example-cr1.yaml
├── example-cr2.yaml
└── ztp-update.in

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

309

3. Open a terminal at the ztp-update/ folder and rebuild the container:

4. Push the built container image to your disconnected registry, for example:

5. Patch the Argo CD instance on the hub cluster to point to the newly built container image:

When the Argo CD instance is patched, the openshift-gitops-repo-server pod automatically
restarts.

Verification

1. Verify that the new openshift-gitops-repo-server pod has completed initialization and that the
previous repo pod is terminated:

Example output

You must wait until the new openshift-gitops-repo-server pod has completed initialization and
the previous pod is terminated before the newly added container image content is available.

Additional resources

Alternatively, you can patch the ArgoCD instance as described in Configuring the hub cluster
with ArgoCD by modifying argocd-openshift-gitops-patch.json with an updated initContainer
image before applying the patch file.

19.9.4. Signalling ZTP cluster deployment completion with validator inform policies

Create a validator inform policy that signals when the zero touch provisioning (ZTP) installation and
configuration of the deployed cluster is complete. This policy can be used for deployments of single-
node OpenShift clusters, three-node clusters, and standard clusters.

Procedure

1. Create a standalone PolicyGenTemplate custom resource (CR) that contains the source file

FROM registry.redhat.io/openshift4/ztp-site-generate-rhel8:v4.10

ADD example-cr2.yaml /kustomize/plugin/ran.openshift.io/v1/policygentemplate/source-crs/
ADD example-cr1.yaml /kustomize/plugin/ran.openshift.io/v1/policygentemplate/source-crs/

$ podman build -t ztp-site-generate-rhel8-custom:v4.10-custom-1

$ podman push localhost/ztp-site-generate-rhel8-custom:v4.10-custom-1
registry.example.com:5000/ztp-site-generate-rhel8-custom:v4.10-custom-1

$ oc patch -n openshift-gitops argocd openshift-gitops --type=json -p '[{"op": "replace",
"path":"/spec/repo/initContainers/0/image", "value": "registry.example.com:5000/ztp-site-
generate-rhel8-custom:v4.10-custom-1"}]'

$ oc get pods -n openshift-gitops | grep openshift-gitops-repo-server

openshift-gitops-server-7df86f9774-db682 1/1 Running 1 28s

OpenShift Container Platform 4.10 Scalability and performance

310

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-configuring-hub-cluster-with-argocd_ztp-preparing-the-hub-cluster

1

2

3

4

5

6

7

validatorCRs/informDuValidator.yaml. You only need one standalone PolicyGenTemplate
CR for each cluster type. For example, this CR applies a validator inform policy for single-node
OpenShift clusters:

Example single-node cluster validator inform policy CR (group-du-sno-validator-
ranGen.yaml)

The name of PolicyGenTemplates object. This name is also used as part of the names for
the placementBinding, placementRule, and policy that are created in the requested
namespace.

This value should match the namespace used in the group PolicyGenTemplates.

The group-du-* label defined in bindingRules must exist in the SiteConfig files.

The label defined in bindingExcludedRules must be`ztp-done:`. The ztp-done label is
used in coordination with the Topology Aware Lifecycle Manager.

mcp defines the MachineConfigPool object that is used in the source file
validatorCRs/informDuValidator.yaml. It should be master for single node and three-
node cluster deployments and worker for standard cluster deployments.

Optional. The default value is inform.

This value is used as part of the name for the generated RHACM policy. The generated
validator policy for the single node example is group-du-sno-validator-du-policy.

2. Commit the PolicyGenTemplate CR file in your Git repository and push the changes.

Additional resources

Upgrading GitOps ZTP

19.9.5. Configuring PTP fast events using PolicyGenTemplate CRs

You can configure PTP fast events for vRAN clusters that are deployed using the GitOps Zero Touch

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
 name: "group-du-sno-validator" 1
 namespace: "ztp-group" 2
spec:
 bindingRules:
 group-du-sno: "" 3
 bindingExcludedRules:
 ztp-done: "" 4
 mcp: "master" 5
 sourceFiles:
 - fileName: validatorCRs/informDuValidator.yaml
 remediationAction: inform 6
 policyName: "du-policy" 7

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

311

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-updating-gitops

1

You can configure PTP fast events for vRAN clusters that are deployed using the GitOps Zero Touch
Provisioning (ZTP) pipeline. Use PolicyGenTemplate custom resources (CRs) as the basis to create a
hierarchy of configuration files tailored to your specific site requirements.

Prerequisites

Create a Git repository where you manage your custom site configuration data.

Procedure

1. Add the following YAML into .spec.sourceFiles in the common-ranGen.yaml file to configure
the AMQP Operator:

2. Apply the following PolicyGenTemplate changes to group-du-3node-ranGen.yaml, group-
du-sno-ranGen.yaml, or group-du-standard-ranGen.yaml files according to your
requirements:

a. In .sourceFiles, add the PtpOperatorConfig CR file that configures the AMQ transport
host to the config-policy:

b. Configure the linuxptp and phc2sys for the PTP clock type and interface. For example,
add the following stanza into .sourceFiles:

Can be one PtpConfigMaster.yaml, PtpConfigSlave.yaml, or
PtpConfigSlaveCvl.yaml depending on your requirements. PtpConfigSlaveCvl.yaml
configures linuxptp services for an Intel E810 Columbiaville NIC. For configurations
based on group-du-sno-ranGen.yaml or group-du-3node-ranGen.yaml, use
PtpConfigSlave.yaml.

#AMQ interconnect operator for fast events
- fileName: AmqSubscriptionNS.yaml
 policyName: "subscriptions-policy"
- fileName: AmqSubscriptionOperGroup.yaml
 policyName: "subscriptions-policy"
- fileName: AmqSubscription.yaml
 policyName: "subscriptions-policy"

- fileName: PtpOperatorConfigForEvent.yaml
 policyName: "config-policy"

- fileName: PtpConfigSlave.yaml 1
 policyName: "config-policy"
 metadata:
 name: "du-ptp-slave"
 spec:
 profile:
 - name: "slave"
 interface: "ens5f1" 2
 ptp4lOpts: "-2 -s --summary_interval -4" 3
 phc2sysOpts: "-a -r -m -n 24 -N 8 -R 16" 4
 ptpClockThreshold: 5
 holdOverTimeout: 30 #secs
 maxOffsetThreshold: 100 #nano secs
 minOffsetThreshold: -100 #nano secs

OpenShift Container Platform 4.10 Scalability and performance

312

2

3

4

5

Device specific interface name.

You must append the --summary_interval -4 value to ptp4lOpts in
.spec.sourceFiles.spec.profile to enable PTP fast events.

Required phc2sysOpts values. -m prints messages to stdout. The linuxptp-daemon
DaemonSet parses the logs and generates Prometheus metrics.

Optional. If the ptpClockThreshold stanza is not present, default values are used for
the ptpClockThreshold fields. The stanza shows default ptpClockThreshold values.
The ptpClockThreshold values configure how long after the PTP master clock is
disconnected before PTP events are triggered. holdOverTimeout is the time value in
seconds before the PTP clock event state changes to FREERUN when the PTP
master clock is disconnected. The maxOffsetThreshold and minOffsetThreshold
settings configure offset values in nanoseconds that compare against the values for
CLOCK_REALTIME (phc2sys) or master offset (ptp4l). When the ptp4l or phc2sys
offset value is outside this range, the PTP clock state is set to FREERUN. When the
offset value is within this range, the PTP clock state is set to LOCKED.

3. Apply the following PolicyGenTemplate changes to your specific site YAML files, for example,
example-sno-site.yaml:

a. In .sourceFiles, add the Interconnect CR file that configures the AMQ router to the
config-policy:

4. Merge any other required changes and files with your custom site repository.

5. Push the changes to your site configuration repository to deploy PTP fast events to new sites
using GitOps ZTP.

Additional resources

For more information about how to install the AMQ Interconnect Operator, see Installing the
AMQ messaging bus.

19.9.6. Configuring bare-metal event monitoring using PolicyGenTemplate CRs

You can configure bare-metal hardware events for vRAN clusters that are deployed using the GitOps
Zero Touch Provisioning (ZTP) pipeline.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Create a Git repository where you manage your custom site configuration data.

Procedure

1. To configure the AMQ Interconnect Operator and the Bare Metal Event Relay Operator, add

- fileName: AmqInstance.yaml
 policyName: "config-policy"

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

313

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/monitoring/#hw-installing-amq-interconnect-messaging-bus_using-rfhe

1

1. To configure the AMQ Interconnect Operator and the Bare Metal Event Relay Operator, add
the following YAML to spec.sourceFiles in the common-ranGen.yaml file:

2. Add the Interconnect CR to .spec.sourceFiles in the site configuration file, for example, the
example-sno-site.yaml file:

3. Add the HardwareEvent CR to spec.sourceFiles in your specific group configuration file, for
example, in the group-du-sno-ranGen.yaml file:

The transportHost URL is composed of the existing AMQ Interconnect CR name and
namespace. For example, in transportHost: "amqp://amq-router.amq-
router.svc.cluster.local", the AMQ Interconnect name and namespace are both set to
amq-router.

NOTE

Each baseboard management controller (BMC) requires a single HardwareEvent
resource only.

4. Commit the PolicyGenTemplate change in Git, and then push the changes to your site
configuration repository to deploy bare-metal events monitoring to new sites using GitOps
ZTP.

5. Create the Redfish Secret by running the following command:

AMQ interconnect operator for fast events
- fileName: AmqSubscriptionNS.yaml
 policyName: "subscriptions-policy"
- fileName: AmqSubscriptionOperGroup.yaml
 policyName: "subscriptions-policy"
- fileName: AmqSubscription.yaml
 policyName: "subscriptions-policy"
Bare Metal Event Rely operator
- fileName: BareMetalEventRelaySubscriptionNS.yaml
 policyName: "subscriptions-policy"
- fileName: BareMetalEventRelaySubscriptionOperGroup.yaml
 policyName: "subscriptions-policy"
- fileName: BareMetalEventRelaySubscription.yaml
 policyName: "subscriptions-policy"

- fileName: AmqInstance.yaml
 policyName: "config-policy"

- fileName: HardwareEvent.yaml
 policyName: "config-policy"
 spec:
 nodeSelector: {}
 transportHost: "amqp://<amq_interconnect_name>.
<amq_interconnect_namespace>.svc.cluster.local" 1
 logLevel: "info"

OpenShift Container Platform 4.10 Scalability and performance

314

Additional resources

For more information about how to install the Bare Metal Event Relay, see Installing the Bare
Metal Event Relay using the CLI.

Additional resources

For more information about how to create the username, password, and host IP address for the
BMC secret, see Creating the bare-metal event and Secret CRs .

19.10. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY
AWARE LIFECYCLE MANAGER

You can use the Topology Aware Lifecycle Manager (TALM) to manage the software lifecycle of
OpenShift Container Platform managed clusters. TALM uses Red Hat Advanced Cluster Management
(RHACM) policies to perform changes on the target clusters.

IMPORTANT

The Topology Aware Lifecycle Manager is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Additional resources

For more information about the Topology Aware Lifecycle Manager, see About the Topology
Aware Lifecycle Manager.

19.10.1. Updating clusters in a disconnected environment

You can upgrade managed clusters and Operators for managed clusters that you have deployed using
GitOps ZTP and Topology Aware Lifecycle Manager (TALM).

19.10.1.1. Setting up the environment

TALM can perform both platform and Operator updates.

You must mirror both the platform image and Operator images that you want to update to in your mirror
registry before you can use TALM to update your disconnected clusters. Complete the following steps
to mirror the images:

For platform updates, you must perform the following steps:

$ oc -n openshift-bare-metal-events create secret generic redfish-basic-auth \
--from-literal=username=<bmc_username> --from-literal=password=<bmc_password> \
--from-literal=hostaddr="<bmc_host_ip_addr>"

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

315

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/monitoring/#nw-rfhe-installing-operator-cli_using-rfhe
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/monitoring/#nw-rfhe-creating-hardware-event_using-rfhe
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#cnf-about-topology-aware-lifecycle-manager-config_cnf-topology-aware-lifecycle-manager

1. Mirror the desired OpenShift Container Platform image repository. Ensure that the desired
platform image is mirrored by following the "Mirroring the OpenShift Container Platform
image repository" procedure linked in the Additional Resources. Save the contents of the
imageContentSources section in the imageContentSources.yaml file:

Example output

2. Save the image signature of the desired platform image that was mirrored. You must add
the image signature to the PolicyGenTemplate CR for platform updates. To get the image
signature, perform the following steps:

a. Specify the desired OpenShift Container Platform tag by running the following
command:

b. Specify the architecture of the server by running the following command:

c. Get the release image digest from Quay by running the following command

d. Set the digest algorithm by running the following command:

e. Set the digest signature by running the following command:

f. Get the image signature from the mirror.openshift.com website by running the following
command:

g. Save the image signature to the checksum-<OCP_RELEASE_NUMBER>.yaml file by
running the following commands:

imageContentSources:
 - mirrors:
 - mirror-ocp-registry.ibmcloud.io.cpak:5000/openshift-release-dev/openshift4
 source: quay.io/openshift-release-dev/ocp-release
 - mirrors:
 - mirror-ocp-registry.ibmcloud.io.cpak:5000/openshift-release-dev/openshift4
 source: quay.io/openshift-release-dev/ocp-v4.0-art-dev

$ OCP_RELEASE_NUMBER=<release_version>

$ ARCHITECTURE=<server_architecture>

$ DIGEST="$(oc adm release info quay.io/openshift-release-dev/ocp-
release:${OCP_RELEASE_NUMBER}-${ARCHITECTURE} | sed -n 's/Pull From:
.*@//p')"

$ DIGEST_ALGO="${DIGEST%%:*}"

$ DIGEST_ENCODED="${DIGEST#*:}"

$ SIGNATURE_BASE64=$(curl -s "https://mirror.openshift.com/pub/openshift-
v4/signatures/openshift/release/${DIGEST_ALGO}=${DIGEST_ENCODED}/signature
-1" | base64 -w0 && echo)

OpenShift Container Platform 4.10 Scalability and performance

316

https://mirror.openshift.com/pub/openshift-v4/signatures/openshift/release/

3. Prepare the update graph. You have two options to prepare the update graph:

a. Use the OpenShift Update Service.
For more information about how to set up the graph on the hub cluster, see Deploy the
operator for OpenShift Update Service and Build the graph data init container .

b. Make a local copy of the upstream graph. Host the update graph on an http or https
server in the disconnected environment that has access to the managed cluster. To
download the update graph, use the following command:

For Operator updates, you must perform the following task:

Mirror the Operator catalogs. Ensure that the desired operator images are mirrored by
following the procedure in the "Mirroring Operator catalogs for use with disconnected
clusters" section.

Additional resources

For more information about how to update ZTP, see Upgrading GitOps ZTP .

For more information about how to mirror an OpenShift Container Platform image repository,
see Mirroring the OpenShift Container Platform image repository .

For more information about how to mirror Operator catalogs for disconnected clusters, see
Mirroring Operator catalogs for use with disconnected clusters .

For more information about how to prepare the disconnected environment and mirroring the
desired image repository, see Preparing the disconnected environment.

For more information about update channels and releases, see Understanding update channels
and releases.

19.10.1.2. Performing a platform update

You can perform a platform update with the TALM.

Prerequisites

Install the Topology Aware Lifecycle Manager (TALM).

Update ZTP to the latest version.

Provision one or more managed clusters with ZTP.

Mirror the desired image repository.

Log in as a user with cluster-admin privileges.

$ cat >checksum-${OCP_RELEASE_NUMBER}.yaml <<EOF
${DIGEST_ALGO}-${DIGEST_ENCODED}: ${SIGNATURE_BASE64}
EOF

$ curl -s https://api.openshift.com/api/upgrades_info/v1/graph?channel=stable-4.10 -
o ~/upgrade-graph_stable-4.10

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

317

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.4/html/clusters/managing-your-clusters#deploy-the-operator-for-cincinnati
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.4/html/clusters/managing-your-clusters#build-the-graph-data-init-container
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-updating-gitops
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#installation-mirror-repository_installing-mirroring-installation-images
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#olm-mirror-catalog_installing-mirroring-installation-images
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-preparing-the-hub-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/updating_clusters/#understanding-upgrade-channels-releases

Create RHACM policies in the hub cluster.

Procedure

1. Create a PolicyGenTemplate CR for the platform update:

a. Save the following contents of the PolicyGenTemplate CR in the du-upgrade.yaml file.

Example of PolicyGenTemplate for platform update

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
 name: "du-upgrade"
 namespace: "ztp-group-du-sno"
spec:
 bindingRules:
 group-du-sno: ""
 mcp: "master"
 remediationAction: inform
 sourceFiles:
 - fileName: ImageSignature.yaml 1
 policyName: "platform-upgrade-prep"
 binaryData:
 ${DIGEST_ALGO}-${DIGEST_ENCODED}: ${SIGNATURE_BASE64} 2
 - fileName: DisconnectedICSP.yaml
 policyName: "platform-upgrade-prep"
 metadata:
 name: disconnected-internal-icsp-for-ocp
 spec:
 repositoryDigestMirrors: 3
 - mirrors:
 - quay-intern.example.com/ocp4/openshift-release-dev
 source: quay.io/openshift-release-dev/ocp-release
 - mirrors:
 - quay-intern.example.com/ocp4/openshift-release-dev
 source: quay.io/openshift-release-dev/ocp-v4.0-art-dev
 - fileName: ClusterVersion.yaml 4
 policyName: "platform-upgrade-prep"
 metadata:
 name: version
 annotations:
 ran.openshift.io/ztp-deploy-wave: "1"
 spec:
 channel: "stable-4.10"
 upstream: http://upgrade.example.com/images/upgrade-graph_stable-4.10
 - fileName: ClusterVersion.yaml 5
 policyName: "platform-upgrade"
 metadata:
 name: version
 spec:
 channel: "stable-4.10"
 upstream: http://upgrade.example.com/images/upgrade-graph_stable-4.10
 desiredUpdate:
 version: 4.10.4

OpenShift Container Platform 4.10 Scalability and performance

318

1

2

3

4

5

The ConfigMap CR contains the signature of the desired release image to update to.

Shows the image signature of the desired OpenShift Container Platform release. Get
the signature from the checksum-${OCP_RELASE_NUMBER}.yaml file you saved
when following the procedures in the "Setting up the environment" section.

Shows the mirror repository that contains the desired OpenShift Container Platform
image. Get the mirrors from the imageContentSources.yaml file that you saved when
following the procedures in the "Setting up the environment" section.

Shows the ClusterVersion CR to update upstream.

Shows the ClusterVersion CR to trigger the update. The channel, upstream, and
desiredVersion fields are all required for image pre-caching.

The PolicyGenTemplate CR generates two policies:

The du-upgrade-platform-upgrade-prep policy does the preparation work for the
platform update. It creates the ConfigMap CR for the desired release image signature,
creates the image content source of the mirrored release image repository, and
updates the cluster version with the desired update channel and the update graph
reachable by the managed cluster in the disconnected environment.

The du-upgrade-platform-upgrade policy is used to perform platform upgrade.

b. Add the du-upgrade.yaml file contents to the kustomization.yaml file located in the ZTP
Git repository for the PolicyGenTemplate CRs and push the changes to the Git repository.
ArgoCD pulls the changes from the Git repository and generates the policies on the hub
cluster.

c. Check the created policies by running the following command:

2. Apply the required update resources before starting the platform update with the TALM.

a. Save the content of the platform-upgrade-prep ClusterUpgradeGroup CR with the du-
upgrade-platform-upgrade-prep policy and the target managed clusters to the cgu-
platform-upgrade-prep.yml file, as shown in the following example:

 status:
 history:
 - version: 4.10.4
 state: "Completed"

$ oc get policies -A | grep platform-upgrade

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
 name: cgu-platform-upgrade-prep
 namespace: default
spec:
 managedPolicies:
 - du-upgrade-platform-upgrade-prep
 clusters:
 - spoke1

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

319

b. Apply the policy to the hub cluster by running the following command:

c. Monitor the update process. Upon completion, ensure that the policy is compliant by
running the following command:

3. Create the ClusterGroupUpdate CR for the platform update with the spec.enable field set to
false.

a. Save the content of the platform update ClusterGroupUpdate CR with the du-upgrade-
platform-upgrade policy and the target clusters to the cgu-platform-upgrade.yml file, as
shown in the following example:

b. Apply the ClusterGroupUpdate CR to the hub cluster by running the following command:

4. Optional: Pre-cache the images for the platform update.

a. Enable pre-caching in the ClusterGroupUpdate CR by running the following command:

b. Monitor the update process and wait for the pre-caching to complete. Check the status of
pre-caching by running the following command on the hub cluster:

5. Start the platform update:

 remediationStrategy:
 maxConcurrency: 1
 enable: true

$ oc apply -f cgu-platform-upgrade-prep.yml

$ oc get policies --all-namespaces

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
 name: cgu-platform-upgrade
 namespace: default
spec:
 managedPolicies:
 - du-upgrade-platform-upgrade
 preCaching: false
 clusters:
 - spoke1
 remediationStrategy:
 maxConcurrency: 1
 enable: false

$ oc apply -f cgu-platform-upgrade.yml

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-platform-
upgrade \
--patch '{"spec":{"preCaching": true}}' --type=merge

$ oc get cgu cgu-platform-upgrade -o jsonpath='{.status.precaching.status}'

OpenShift Container Platform 4.10 Scalability and performance

320

a. Enable the cgu-platform-upgrade policy and disable pre-caching by running the following
command:

b. Monitor the process. Upon completion, ensure that the policy is compliant by running the
following command:

Additional resources

For more information about mirroring the images in a disconnected environment, see Preparing
the disconnected environment

19.10.1.3. Performing an Operator update

You can perform an Operator update with the TALM.

Prerequisites

Install the Topology Aware Lifecycle Manager (TALM).

Update ZTP to the latest version.

Provision one or more managed clusters with ZTP.

Mirror the desired index image, bundle images, and all Operator images referenced in the
bundle images.

Log in as a user with cluster-admin privileges.

Create RHACM policies in the hub cluster.

Procedure

1. Update the PolicyGenTemplate CR for the Operator update.

a. Update the du-upgrade PolicyGenTemplate CR with the following additional contents in
the du-upgrade.yaml file:

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-platform-
upgrade \
--patch '{"spec":{"enable":true, "preCaching": false}}' --type=merge

$ oc get policies --all-namespaces

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
 name: "du-upgrade"
 namespace: "ztp-group-du-sno"
spec:
 bindingRules:
 group-du-sno: ""
 mcp: "master"
 remediationAction: inform
 sourceFiles:
 - fileName: DefaultCatsrc.yaml

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

321

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-acm-adding-images-to-mirror-registry_ztp-preparing-the-hub-cluster

1

2

The index image URL contains the desired Operator images. If the index images are
always pushed to the same image name and tag, this change is not needed.

Set how frequently the Operator Lifecycle Manager (OLM) polls the index image for
new Operator versions with the registryPoll.interval field. This change is not needed
if a new index image tag is always pushed for y-stream and z-stream Operator
updates. The registryPoll.interval field can be set to a shorter interval to expedite the
update, however shorter intervals increase computational load. To counteract this, you
can restore registryPoll.interval to the default value once the update is complete.

b. This update generates one policy, du-upgrade-operator-catsrc-policy, to update the
redhat-operators catalog source with the new index images that contain the desired
Operators images.

NOTE

If you want to use the image pre-caching for Operators and there are
Operators from a different catalog source other than redhat-operators, you
must perform the following tasks:

Prepare a separate catalog source policy with the new index image or
registry poll interval update for the different catalog source.

Prepare a separate subscription policy for the desired Operators that are
from the different catalog source.

For example, the desired SRIOV-FEC Operator is available in the certified-operators
catalog source. To update the catalog source and the Operator subscription, add the
following contents to generate two policies, du-upgrade-fec-catsrc-policy and du-
upgrade-subscriptions-fec-policy:

 remediationAction: inform
 policyName: "operator-catsrc-policy"
 metadata:
 name: redhat-operators
 spec:
 displayName: Red Hat Operators Catalog
 image: registry.example.com:5000/olm/redhat-operators:v4.10 1
 updateStrategy: 2
 registryPoll:
 interval: 1h

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
 name: "du-upgrade"
 namespace: "ztp-group-du-sno"
spec:
 bindingRules:
 group-du-sno: ""
 mcp: "master"
 remediationAction: inform
 sourceFiles:
 …

OpenShift Container Platform 4.10 Scalability and performance

322

c. Remove the specified subscriptions channels in the common PolicyGenTemplate CR, if
they exist. The default subscriptions channels from the ZTP image are used for the update.

NOTE

The default channel for the Operators applied through ZTP 4.10 is stable,
except for the performance-addon-operator. The default channel for PAO
is 4.10. You can also specify the default channels in the common
PolicyGenTemplate CR.

d. Push the PolicyGenTemplate CRs updates to the ZTP Git repository.
ArgoCD pulls the changes from the Git repository and generates the policies on the hub
cluster.

e. Check the created policies by running the following command:

2. Apply the required catalog source updates before starting the Operator update.

a. Save the content of the ClusterGroupUpgrade CR named operator-upgrade-prep with
the catalog source policies and the target managed clusters to the cgu-operator-upgrade-
prep.yml file:

 - fileName: DefaultCatsrc.yaml
 remediationAction: inform
 policyName: "fec-catsrc-policy"
 metadata:
 name: certified-operators
 spec:
 displayName: Intel SRIOV-FEC Operator
 image: registry.example.com:5000/olm/far-edge-sriov-fec:v4.10
 updateStrategy:
 registryPoll:
 interval: 10m
 - fileName: AcceleratorsSubscription.yaml
 policyName: "subscriptions-fec-policy"
 spec:
 channel: "stable"
 source: certified-operators

$ oc get policies -A | grep -E "catsrc-policy|subscription"

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
 name: cgu-operator-upgrade-prep
 namespace: default
spec:
 clusters:
 - spoke1
 enable: true
 managedPolicies:
 - du-upgrade-operator-catsrc-policy
 remediationStrategy:
 maxConcurrency: 1

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

323

1

2

b. Apply the policy to the hub cluster by running the following command:

c. Monitor the update process. Upon completion, ensure that the policy is compliant by
running the following command:

3. Create the ClusterGroupUpgrade CR for the Operator update with the spec.enable field set
to false.

a. Save the content of the Operator update ClusterGroupUpgrade CR with the du-upgrade-
operator-catsrc-policy policy and the subscription policies created from the common
PolicyGenTemplate and the target clusters to the cgu-operator-upgrade.yml file, as
shown in the following example:

The policy is needed by the image pre-caching feature to retrieve the operator images
from the catalog source.

The policy contains Operator subscriptions. If you have upgraded ZTP from 4.9 to 4.10
by following "Upgrade ZTP from 4.9 to 4.10", all Operator subscriptions are grouped
into the common-subscriptions-policy policy.

NOTE

One ClusterGroupUpgrade CR can only pre-cache the images of the
desired Operators defined in the subscription policy from one catalog source
included in the ClusterGroupUpgrade CR. If the desired Operators are from
different catalog sources, such as in the example of the SRIOV-FEC
Operator, another ClusterGroupUpgrade CR must be created with du-
upgrade-fec-catsrc-policy and du-upgrade-subscriptions-fec-policy
policies for the SRIOV-FEC Operator images pre-caching and update.

b. Apply the ClusterGroupUpgrade CR to the hub cluster by running the following command:

$ oc apply -f cgu-operator-upgrade-prep.yml

$ oc get policies -A | grep -E "catsrc-policy"

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
 name: cgu-operator-upgrade
 namespace: default
spec:
 managedPolicies:
 - du-upgrade-operator-catsrc-policy 1
 - common-subscriptions-policy 2
 preCaching: false
 clusters:
 - spoke1
 remediationStrategy:
 maxConcurrency: 1
 enable: false

$ oc apply -f cgu-operator-upgrade.yml

OpenShift Container Platform 4.10 Scalability and performance

324

4. Optional: Pre-cache the images for the Operator update.

a. Before starting image pre-caching, verify the subscription policy is NonCompliant at this
point by running the following command:

Example output

b. Enable pre-caching in the ClusterGroupUpgrade CR by running the following command:

c. Monitor the process and wait for the pre-caching to complete. Check the status of pre-
caching by running the following command on the managed cluster:

d. Check if the pre-caching is completed before starting the update by running the following
command:

Example output

5. Start the Operator update.

a. Enable the cgu-operator-upgrade ClusterGroupUpgrade CR and disable pre-caching to
start the Operator update by running the following command:

$ oc get policy common-subscriptions-policy -n <policy_namespace>

NAME REMEDIATION ACTION COMPLIANCE STATE AGE
common-subscriptions-policy inform NonCompliant 27d

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-operator-
upgrade \
--patch '{"spec":{"preCaching": true}}' --type=merge

$ oc get cgu cgu-operator-upgrade -o jsonpath='{.status.precaching.status}'

$ oc get cgu -n default cgu-operator-upgrade -ojsonpath='{.status.conditions}' | jq

[
 {
 "lastTransitionTime": "2022-03-08T20:49:08.000Z",
 "message": "The ClusterGroupUpgrade CR is not enabled",
 "reason": "UpgradeNotStarted",
 "status": "False",
 "type": "Ready"
 },
 {
 "lastTransitionTime": "2022-03-08T20:55:30.000Z",
 "message": "Precaching is completed",
 "reason": "PrecachingCompleted",
 "status": "True",
 "type": "PrecachingDone"
 }
]

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

325

b. Monitor the process. Upon completion, ensure that the policy is compliant by running the
following command:

Additional resources

For more information about updating GitOps ZTP, see Upgrading GitOps ZTP .

19.10.1.4. Performing a platform and an Operator update together

You can perform a platform and an Operator update at the same time.

Prerequisites

Install the Topology Aware Lifecycle Manager (TALM).

Update ZTP to the latest version.

Provision one or more managed clusters with ZTP.

Log in as a user with cluster-admin privileges.

Create RHACM policies in the hub cluster.

Procedure

1. Create the PolicyGenTemplate CR for the updates by following the steps described in the
"Performing a platform update" and "Performing an Operator update" sections.

2. Apply the prep work for the platform and the Operator update.

a. Save the content of the ClusterGroupUpgrade CR with the policies for platform update
preparation work, catalog source updates, and target clusters to the cgu-platform-
operator-upgrade-prep.yml file, for example:

b. Apply the cgu-platform-operator-upgrade-prep.yml file to the hub cluster by running the

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-operator-
upgrade \
--patch '{"spec":{"enable":true, "preCaching": false}}' --type=merge

$ oc get policies --all-namespaces

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
 name: cgu-platform-operator-upgrade-prep
 namespace: default
spec:
 managedPolicies:
 - du-upgrade-platform-upgrade-prep
 - du-upgrade-operator-catsrc-policy
 clusterSelector:
 - group-du-sno
 remediationStrategy:
 maxConcurrency: 10
 enable: true

OpenShift Container Platform 4.10 Scalability and performance

326

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#ztp-updating-gitops

1

2

3

b. Apply the cgu-platform-operator-upgrade-prep.yml file to the hub cluster by running the
following command:

c. Monitor the process. Upon completion, ensure that the policy is compliant by running the
following command:

3. Create the ClusterGroupUpdate CR for the platform and the Operator update with the
spec.enable field set to false.

a. Save the contents of the platform and Operator update ClusterGroupUpdate CR with the
policies and the target clusters to the cgu-platform-operator-upgrade.yml file, as shown in
the following example:

This is the platform update policy.

This is the policy containing the catalog source information for the Operators to be
updated. It is needed for the pre-caching feature to determine which Operator images
to download to the managed cluster.

This is the policy to update the Operators.

b. Apply the cgu-platform-operator-upgrade.yml file to the hub cluster by running the
following command:

4. Optional: Pre-cache the images for the platform and the Operator update.

a. Enable pre-caching in the ClusterGroupUpgrade CR by running the following command:

$ oc apply -f cgu-platform-operator-upgrade-prep.yml

$ oc get policies --all-namespaces

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
 name: cgu-du-upgrade
 namespace: default
spec:
 managedPolicies:
 - du-upgrade-platform-upgrade 1
 - du-upgrade-operator-catsrc-policy 2
 - common-subscriptions-policy 3
 preCaching: true
 clusterSelector:
 - group-du-sno
 remediationStrategy:
 maxConcurrency: 1
 enable: false

$ oc apply -f cgu-platform-operator-upgrade.yml

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-du-upgrade \
--patch '{"spec":{"preCaching": true}}' --type=merge

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

327

b. Monitor the update process and wait for the pre-caching to complete. Check the status of
pre-caching by running the following command on the managed cluster:

c. Check if the pre-caching is completed before starting the update by running the following
command:

5. Start the platform and Operator update.

a. Enable the cgu-du-upgrade ClusterGroupUpgrade CR to start the platform and the
Operator update by running the following command:

b. Monitor the process. Upon completion, ensure that the policy is compliant by running the
following command:

NOTE

The CRs for the platform and Operator updates can be created from the
beginning by configuring the setting to spec.enable: true. In this case, the
update starts immediately after pre-caching completes and there is no need
to manually enable the CR.

Both pre-caching and the update create extra resources, such as policies,
placement bindings, placement rules, managed cluster actions, and managed
cluster view, to help complete the procedures. Setting the
afterCompletion.deleteObjects field to true deletes all these resources
after the updates complete.

19.10.1.5. Removing Performance Addon Operator subscriptions from deployed clusters

In earlier versions of OpenShift Container Platform, the Performance Addon Operator provided
automatic, low latency performance tuning for applications. In OpenShift Container Platform 4.11 or
later, these functions are part of the Node Tuning Operator.

Do not install the Performance Addon Operator on clusters running OpenShift Container Platform 4.11
or later. If you upgrade to OpenShift Container Platform 4.11 or later, the Node Tuning Operator
automatically removes the Performance Addon Operator.

NOTE

You need to remove any policies that create Performance Addon Operator subscriptions
to prevent a re-installation of the Operator.

The reference DU profile includes the Performance Addon Operator in the PolicyGenTemplate CR

$ oc get jobs,pods -n openshift-talm-pre-cache

$ oc get cgu cgu-du-upgrade -ojsonpath='{.status.conditions}'

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-du-upgrade \
--patch '{"spec":{"enable":true, "preCaching": false}}' --type=merge

$ oc get policies --all-namespaces

OpenShift Container Platform 4.10 Scalability and performance

328

The reference DU profile includes the Performance Addon Operator in the PolicyGenTemplate CR
common-ranGen.yaml. To remove the subscription from deployed managed clusters, you must update
common-ranGen.yaml.

NOTE

If you install Performance Addon Operator 4.10.3-5 or later on OpenShift Container
Platform 4.11 or later, the Performance Addon Operator detects the cluster version and
automatically hibernates to avoid interfering with the Node Tuning Operator functions.
However, to ensure best performance, remove the Performance Addon Operator from
your OpenShift Container Platform 4.11 clusters.

Prerequisites

Create a Git repository where you manage your custom site configuration data. The repository
must be accessible from the hub cluster and be defined as a source repository for ArgoCD.

Update to OpenShift Container Platform 4.11 or later.

Log in as a user with cluster-admin privileges.

Procedure

1. Change the complianceType to mustnothave for the Performance Addon Operator
namespace, Operator group, and subscription in the common-ranGen.yaml file.

2. Merge the changes with your custom site repository and wait for the ArgoCD application to
synchronize the change to the hub cluster. The status of the common-subscriptions-policy
policy changes to Non-Compliant.

3. Apply the change to your target clusters by using the Topology Aware Lifecycle Manager. For
more information about rolling out configuration changes, see the "Additional resources"
section.

4. Monitor the process. When the status of the common-subscriptions-policy policy for a target
cluster is Compliant, the Performance Addon Operator has been removed from the cluster. Get
the status of the common-subscriptions-policy by running the following command:

5. Delete the Performance Addon Operator namespace, Operator group and subscription CRs
from .spec.sourceFiles in the common-ranGen.yaml file.

6. Merge the changes with your custom site repository and wait for the ArgoCD application to
synchronize the change to the hub cluster. The policy remains compliant.

 - fileName: PaoSubscriptionNS.yaml
 policyName: "subscriptions-policy"
 complianceType: mustnothave
 - fileName: PaoSubscriptionOperGroup.yaml
 policyName: "subscriptions-policy"
 complianceType: mustnothave
 - fileName: PaoSubscription.yaml
 policyName: "subscriptions-policy"
 complianceType: mustnothave

$ oc get policy -n ztp-common common-subscriptions-policy

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

329

19.10.2. About the auto-created ClusterGroupUpgrade CR for ZTP

TALM has a controller called ManagedClusterForCGU that monitors the Ready state of the
ManagedCluster CRs on the hub cluster and creates the ClusterGroupUpgrade CRs for ZTP (zero
touch provisioning).

For any managed cluster in the Ready state without a "ztp-done" label applied, the
ManagedClusterForCGU controller automatically creates a ClusterGroupUpgrade CR in the ztp-
install namespace with its associated RHACM policies that are created during the ZTP process. TALM
then remediates the set of configuration policies that are listed in the auto-created
ClusterGroupUpgrade CR to push the configuration CRs to the managed cluster.

NOTE

If the managed cluster has no bound policies when the cluster becomes Ready, no
ClusterGroupUpgrade CR is created.

Example of an auto-created ClusterGroupUpgrade CR for ZTP

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
 generation: 1
 name: spoke1
 namespace: ztp-install
 ownerReferences:
 - apiVersion: cluster.open-cluster-management.io/v1
 blockOwnerDeletion: true
 controller: true
 kind: ManagedCluster
 name: spoke1
 uid: 98fdb9b2-51ee-4ee7-8f57-a84f7f35b9d5
 resourceVersion: "46666836"
 uid: b8be9cd2-764f-4a62-87d6-6b767852c7da
spec:
 actions:
 afterCompletion:
 addClusterLabels:
 ztp-done: "" 1
 deleteClusterLabels:
 ztp-running: ""
 deleteObjects: true
 beforeEnable:
 addClusterLabels:
 ztp-running: "" 2
 clusters:
 - spoke1
 enable: true
 managedPolicies:
 - common-spoke1-config-policy
 - common-spoke1-subscriptions-policy
 - group-spoke1-config-policy
 - spoke1-config-policy
 - group-spoke1-validator-du-policy
 preCaching: false

OpenShift Container Platform 4.10 Scalability and performance

330

1

2

Applied to the managed cluster when TALM completes the cluster configuration.

Applied to the managed cluster when TALM starts deploying the configuration policies.

19.11. UPDATING GITOPS ZTP

You can update the Gitops zero touch provisioning (ZTP) infrastructure independently from the hub
cluster, Red Hat Advanced Cluster Management (RHACM), and the managed OpenShift Container
Platform clusters.

NOTE

You can update the Red Hat OpenShift GitOps Operator when new versions become
available. When updating the GitOps ZTP plugin, review the updated files in the
reference configuration and ensure that the changes meet your requirements.

19.11.1. Overview of the GitOps ZTP update process

You can update GitOps zero touch provisioning (ZTP) for a fully operational hub cluster running an
earlier version of the GitOps ZTP infrastructure. The update process avoids impact on managed
clusters.

NOTE

Any changes to policy settings, including adding recommended content, results in
updated polices that must be rolled out to the managed clusters and reconciled.

At a high level, the strategy for updating the GitOps ZTP infrastructure is as follows:

1. Label all existing clusters with the ztp-done label.

2. Stop the ArgoCD applications.

3. Install the new GitOps ZTP tools.

4. Update required content and optional changes in the Git repository.

5. Update and restart the application configuration.

19.11.2. Preparing for the upgrade

Use the following procedure to prepare your site for the GitOps zero touch provisioning (ZTP) upgrade.

Procedure

1. Get the latest version of the GitOps ZTP container that has the custom resources (CRs) used to
configure Red Hat OpenShift GitOps for use with GitOps ZTP.

2. Extract the argocd/deployment directory by using the following commands:

 remediationStrategy:
 maxConcurrency: 1
 timeout: 240

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

331

The /update directory contains the following subdirectories:

update/extra-manifest: contains the source CR files that the SiteConfig CR uses to
generate the extra manifest configMap.

update/source-crs: contains the source CR files that the PolicyGenTemplate CR uses to
generate the Red Hat Advanced Cluster Management (RHACM) policies.

update/argocd/deployment: contains patches and YAML files to apply on the hub cluster
for use in the next step of this procedure.

update/argocd/example: contains example SiteConfig and PolicyGenTemplate files that
represent the recommended configuration.

3. Update the clusters-app.yaml and policies-app.yaml files to reflect the name of your
applications and the URL, branch, and path for your Git repository.
If the upgrade includes changes that results in obsolete policies, the obsolete policies should be
removed prior to performing the upgrade.

4. Diff the changes between the configuration and deployment source CRs in the /update folder
and Git repo where you manage your fleet site CRs. Apply and push the required changes to
your site repository.

IMPORTANT

When you update GitOps ZTP to the latest version, you must apply the changes
from the update/argocd/deployment directory to your site repository. Do not
use older versions of the argocd/deployment/ files.

19.11.3. Labeling the existing clusters

To ensure that existing clusters remain untouched by the tool updates, label all existing managed
clusters with the ztp-done label.

NOTE

This procedure only applies when updating clusters that were not provisioned with
Topology Aware Lifecycle Manager (TALM). Clusters that you provision with TALM are
automatically labeled with ztp-done.

Procedure

1. Find a label selector that lists the managed clusters that were deployed with zero touch
provisioning (ZTP), such as local-cluster!=true:

2. Ensure that the resulting list contains all the managed clusters that were deployed with ZTP,
and then use that selector to add the ztp-done label:

$ mkdir -p ./update

$ podman run --log-driver=none --rm registry.redhat.io/openshift4/ztp-site-generate-
rhel8:v{product-version} extract /home/ztp --tar | tar x -C ./update

$ oc get managedcluster -l 'local-cluster!=true'

OpenShift Container Platform 4.10 Scalability and performance

332

19.11.4. Stopping the existing GitOps ZTP applications

Removing the existing applications ensures that any changes to existing content in the Git repository
are not rolled out until the new version of the tools is available.

Use the application files from the deployment directory. If you used custom names for the applications,
update the names in these files first.

Procedure

1. Perform a non-cascaded delete on the clusters application to leave all generated resources in
place:

2. Perform a cascaded delete on the policies application to remove all previous policies:

19.11.5. Required changes to the Git repository

When upgrading the ztp-site-generate container from an earlier release of GitOps ZTP to v4.10 or later,
there are additional requirements for the contents of the Git repository. Existing content in the
repository must be updated to reflect these changes.

Make required changes to PolicyGenTemplate files:
All PolicyGenTemplate files must be created in a Namespace prefixed with ztp. This ensures
that the GitOps zero touch provisioning (ZTP) application is able to manage the policy CRs
generated by GitOps ZTP without conflicting with the way Red Hat Advanced Cluster
Management (RHACM) manages the policies internally.

Add the kustomization.yaml file to the repository:
All SiteConfig and PolicyGenTemplate CRs must be included in a kustomization.yaml file
under their respective directory trees. For example:

$ oc label managedcluster -l 'local-cluster!=true' ztp-done=

$ oc delete -f update/argocd/deployment/clusters-app.yaml

$ oc patch -f policies-app.yaml -p '{"metadata": {"finalizers": ["resources-
finalizer.argocd.argoproj.io"]}}' --type merge

$ oc delete -f update/argocd/deployment/policies-app.yaml

├── policygentemplates
│ ├── site1-ns.yaml
│ ├── site1.yaml
│ ├── site2-ns.yaml
│ ├── site2.yaml
│ ├── common-ns.yaml
│ ├── common-ranGen.yaml
│ ├── group-du-sno-ranGen-ns.yaml
│ ├── group-du-sno-ranGen.yaml
│ └── kustomization.yaml
└── siteconfig

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

333

NOTE

The files listed in the generator sections must contain either SiteConfig or
PolicyGenTemplate CRs only. If your existing YAML files contain other CRs, for
example, Namespace, these other CRs must be pulled out into separate files and
listed in the resources section.

The PolicyGenTemplate kustomization file must contain all PolicyGenTemplate YAML files in
the generator section and Namespace CRs in the resources section. For example:

The SiteConfig kustomization file must contain all SiteConfig YAML files in the generator
section and any other CRs in the resources:

Remove the pre-sync.yaml and post-sync.yaml files.
In OpenShift Container Platform 4.10 and later, the pre-sync.yaml and post-sync.yaml files
are no longer required. The update/deployment/kustomization.yaml CR manages the policies
deployment on the hub cluster.

NOTE

There is a set of pre-sync.yaml and post-sync.yaml files under both the
SiteConfig and PolicyGenTemplate trees.

Review and incorporate recommended changes
Each release may include additional recommended changes to the configuration applied to
deployed clusters. Typically these changes result in lower CPU use by the OpenShift platform,
additional features, or improved tuning of the platform.

 ├── site1.yaml
 ├── site2.yaml
 └── kustomization.yaml

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization

generators:
- common-ranGen.yaml
- group-du-sno-ranGen.yaml
- site1.yaml
- site2.yaml

resources:
- common-ns.yaml
- group-du-sno-ranGen-ns.yaml
- site1-ns.yaml
- site2-ns.yaml

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization

generators:
- site1.yaml
- site2.yaml

OpenShift Container Platform 4.10 Scalability and performance

334

Review the reference SiteConfig and PolicyGenTemplate CRs applicable to the types of
cluster in your network. These examples can be found in the argocd/example directory
extracted from the GitOps ZTP container.

19.11.6. Installing the new GitOps ZTP applications

Using the extracted argocd/deployment directory, and after ensuring that the applications point to
your site Git repository, apply the full contents of the deployment directory. Applying the full contents
of the directory ensures that all necessary resources for the applications are correctly configured.

Procedure

1. To patch the ArgoCD instance in the hub cluster by using the patch file that you previously
extracted into the update/argocd/deployment/ directory, enter the following command:

2. To apply the contents of the argocd/deployment directory, enter the following command:

19.11.7. Rolling out the GitOps ZTP configuration changes

If any configuration changes were included in the upgrade due to implementing recommended changes,
the upgrade process results in a set of policy CRs on the hub cluster in the Non-Compliant state. With
the ZTP GitOps v4.10 and later ztp-site-generate container, these policies are set to inform mode and
are not pushed to the managed clusters without an additional step by the user. This ensures that
potentially disruptive changes to the clusters can be managed in terms of when the changes are made,
for example, during a maintenance window, and how many clusters are updated concurrently.

To roll out the changes, create one or more ClusterGroupUpgrade CRs as detailed in the TALM
documentation. The CR must contain the list of Non-Compliant policies that you want to push out to
the managed clusters as well as a list or selector of which clusters should be included in the update.

Additional resources

For information about the Topology Aware Lifecycle Manager (TALM), see About the Topology
Aware Lifecycle Manager configuration.

For information about creating ClusterGroupUpgrade CRs, see About the auto-created
ClusterGroupUpgrade CR for ZTP.

$ oc patch argocd openshift-gitops \
-n openshift-gitops --type=merge \
--patch-file update/argocd/deployment/argocd-openshift-gitops-patch.json

$ oc apply -k update/argocd/deployment

CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE

335

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#cnf-about-topology-aware-lifecycle-manager-config_cnf-topology-aware-lifecycle-manager
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#talo-precache-autocreated-cgu-for-ztp_ztp-talm

	Table of Contents
	CHAPTER 1. RECOMMENDED HOST PRACTICES
	1.1. RECOMMENDED NODE HOST PRACTICES
	1.2. CREATING A KUBELETCONFIG CRD TO EDIT KUBELET PARAMETERS
	1.3. MODIFYING THE NUMBER OF UNAVAILABLE WORKER NODES
	1.4. CONTROL PLANE NODE SIZING
	1.4.1. Selecting a larger Amazon Web Services instance type for control plane machines
	1.4.1.1. Changing the Amazon Web Services instance type by using the AWS console

	1.5. RECOMMENDED ETCD PRACTICES
	1.6. MOVING ETCD TO A DIFFERENT DISK
	1.7. DEFRAGMENTING ETCD DATA
	1.7.1. Automatic defragmentation
	1.7.2. Manual defragmentation

	1.8. OPENSHIFT CONTAINER PLATFORM INFRASTRUCTURE COMPONENTS
	1.9. MOVING THE MONITORING SOLUTION
	1.10. MOVING THE DEFAULT REGISTRY
	1.11. MOVING THE ROUTER
	1.12. INFRASTRUCTURE NODE SIZING
	1.13. ADDITIONAL RESOURCES

	CHAPTER 2. RECOMMENDED HOST PRACTICES FOR IBM Z & LINUXONE ENVIRONMENTS
	2.1. MANAGING CPU OVERCOMMITMENT
	2.2. DISABLE TRANSPARENT HUGE PAGES
	2.3. BOOST NETWORKING PERFORMANCE WITH RECEIVE FLOW STEERING
	2.3.1. Use the Machine Config Operator (MCO) to activate RFS

	2.4. CHOOSE YOUR NETWORKING SETUP
	2.5. ENSURE HIGH DISK PERFORMANCE WITH HYPERPAV ON Z/VM
	2.5.1. Use the Machine Config Operator (MCO) to activate HyperPAV aliases in nodes using z/VM full-pack minidisks

	2.6. RHEL KVM ON IBM Z HOST RECOMMENDATIONS
	2.6.1. Use multiple queues for your VirtIO network interfaces
	2.6.2. Use I/O threads for your virtual block devices
	2.6.3. Avoid virtual SCSI devices
	2.6.4. Configure guest caching for disk
	2.6.5. Exclude the memory balloon device
	2.6.6. Tune the CPU migration algorithm of the host scheduler
	2.6.7. Disable the cpuset cgroup controller
	2.6.8. Tune the polling period for idle virtual CPUs

	CHAPTER 3. RECOMMENDED CLUSTER SCALING PRACTICES
	3.1. RECOMMENDED PRACTICES FOR SCALING THE CLUSTER
	3.2. MODIFYING A MACHINE SET
	3.3. ABOUT MACHINE HEALTH CHECKS
	3.3.1. Limitations when deploying machine health checks

	3.4. SAMPLE MACHINEHEALTHCHECK RESOURCE
	3.4.1. Short-circuiting machine health check remediation
	3.4.1.1. Setting maxUnhealthy by using an absolute value
	3.4.1.2. Setting maxUnhealthy by using percentages

	3.5. CREATING A MACHINEHEALTHCHECK RESOURCE

	CHAPTER 4. USING THE NODE TUNING OPERATOR
	4.1. ABOUT THE NODE TUNING OPERATOR
	4.2. ACCESSING AN EXAMPLE NODE TUNING OPERATOR SPECIFICATION
	4.3. DEFAULT PROFILES SET ON A CLUSTER
	4.4. VERIFYING THAT THE TUNED PROFILES ARE APPLIED
	4.5. CUSTOM TUNING SPECIFICATION
	4.6. CUSTOM TUNING EXAMPLES
	4.7. SUPPORTED TUNED DAEMON PLUGINS

	CHAPTER 5. USING CPU MANAGER AND TOPOLOGY MANAGER
	5.1. SETTING UP CPU MANAGER
	5.2. TOPOLOGY MANAGER POLICIES
	5.3. SETTING UP TOPOLOGY MANAGER
	5.4. POD INTERACTIONS WITH TOPOLOGY MANAGER POLICIES

	CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS
	6.1. ABOUT NUMA-AWARE SCHEDULING
	6.2. INSTALLING THE NUMA RESOURCES OPERATOR
	6.2.1. Installing the NUMA Resources Operator using the CLI
	6.2.2. Installing the NUMA Resources Operator using the web console

	6.3. CREATING THE NUMARESOURCESOPERATOR CUSTOM RESOURCE
	6.4. DEPLOYING THE NUMA-AWARE SECONDARY POD SCHEDULER
	6.5. SCHEDULING WORKLOADS WITH THE NUMA-AWARE SCHEDULER
	6.6. TROUBLESHOOTING NUMA-AWARE SCHEDULING
	6.6.1. Checking the NUMA-aware scheduler logs
	6.6.2. Troubleshooting the resource topology exporter
	6.6.3. Correcting a missing resource topology exporter config map

	CHAPTER 7. SCALING THE CLUSTER MONITORING OPERATOR
	7.1. PROMETHEUS DATABASE STORAGE REQUIREMENTS
	7.2. CONFIGURING CLUSTER MONITORING

	CHAPTER 8. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS
	8.1. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER MAXIMUMS FOR MAJOR RELEASES
	8.2. OPENSHIFT CONTAINER PLATFORM ENVIRONMENT AND CONFIGURATION ON WHICH THE CLUSTER MAXIMUMS ARE TESTED
	8.2.1. AWS cloud platform
	8.2.2. IBM Power platform
	8.2.3. IBM Z platform

	8.3. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO TESTED CLUSTER MAXIMUMS
	8.4. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO APPLICATION REQUIREMENTS

	CHAPTER 9. OPTIMIZING STORAGE
	9.1. AVAILABLE PERSISTENT STORAGE OPTIONS
	9.2. RECOMMENDED CONFIGURABLE STORAGE TECHNOLOGY
	9.2.1. Specific application storage recommendations
	9.2.1.1. Registry
	9.2.1.2. Scaled registry
	9.2.1.3. Metrics
	9.2.1.4. Logging
	9.2.1.5. Applications

	9.2.2. Other specific application storage recommendations

	9.3. DATA STORAGE MANAGEMENT
	9.4. OPTIMIZING STORAGE PERFORMANCE FOR MICROSOFT AZURE

	CHAPTER 10. OPTIMIZING ROUTING
	10.1. BASELINE INGRESS CONTROLLER (ROUTER) PERFORMANCE

	CHAPTER 11. OPTIMIZING NETWORKING
	11.1. OPTIMIZING THE MTU FOR YOUR NETWORK
	11.2. RECOMMENDED PRACTICES FOR INSTALLING LARGE SCALE CLUSTERS
	11.3. IMPACT OF IPSEC

	CHAPTER 12. MANAGING BARE METAL HOSTS
	12.1. ABOUT BARE METAL HOSTS AND NODES
	12.2. MAINTAINING BARE METAL HOSTS
	12.2.1. Adding a bare metal host to the cluster using the web console
	12.2.2. Adding a bare metal host to the cluster using YAML in the web console
	12.2.3. Automatically scaling machines to the number of available bare metal hosts
	12.2.4. Removing bare metal hosts from the provisioner node

	CHAPTER 13. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS
	13.1. WHAT HUGE PAGES DO
	13.2. HOW HUGE PAGES ARE CONSUMED BY APPS
	13.3. CONSUMING HUGE PAGES RESOURCES USING THE DOWNWARD API
	13.4. CONFIGURING HUGE PAGES
	13.4.1. At boot time

	13.5. DISABLING TRANSPARENT HUGE PAGES

	CHAPTER 14. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES
	14.1. UNDERSTANDING LOW LATENCY
	14.1.1. About hyperthreading for low latency and real-time applications

	14.2. INSTALLING THE PERFORMANCE ADDON OPERATOR
	14.2.1. Installing the Operator using the CLI
	14.2.2. Installing the Performance Addon Operator using the web console

	14.3. UPGRADING PERFORMANCE ADDON OPERATOR
	14.3.1. About upgrading Performance Addon Operator
	14.3.1.1. How Performance Addon Operator upgrades affect your cluster
	14.3.1.2. Upgrading Performance Addon Operator to the next minor version
	14.3.1.3. Upgrading Performance Addon Operator when previously installed to a specific namespace

	14.3.2. Monitoring upgrade status

	14.4. PROVISIONING REAL-TIME AND LOW LATENCY WORKLOADS
	14.4.1. Known limitations for real-time
	14.4.2. Provisioning a worker with real-time capabilities
	14.4.3. Verifying the real-time kernel installation
	14.4.4. Creating a workload that works in real-time
	14.4.5. Creating a pod with a QoS class of Guaranteed
	14.4.6. Optional: Disabling CPU load balancing for DPDK
	14.4.7. Assigning a proper node selector
	14.4.8. Scheduling a workload onto a worker with real-time capabilities
	14.4.9. Managing device interrupt processing for guaranteed pod isolated CPUs
	14.4.9.1. Disabling CPU CFS quota
	14.4.9.2. Disabling global device interrupts handling in Performance Addon Operator
	14.4.9.3. Disabling interrupt processing for individual pods

	14.4.10. Upgrading the performance profile to use device interrupt processing
	14.4.10.1. Supported API Versions

	14.4.11. Configuring a node for IRQ dynamic load balancing
	14.4.12. Configuring hyperthreading for a cluster
	14.4.12.1. Disabling hyperthreading for low latency applications

	14.5. TUNING NODES FOR LOW LATENCY WITH THE PERFORMANCE PROFILE
	14.5.1. Configuring huge pages
	14.5.2. Allocating multiple huge page sizes
	14.5.3. Restricting CPUs for infra and application containers

	14.6. REDUCING NIC QUEUES USING THE PERFORMANCE ADDON OPERATOR
	14.6.1. Adjusting the NIC queues with the performance profile
	14.6.2. Verifying the queue status
	14.6.3. Logging associated with adjusting NIC queues

	14.7. DEBUGGING LOW LATENCY CNF TUNING STATUS
	14.7.1. Machine config pools

	14.8. COLLECTING LOW LATENCY TUNING DEBUGGING DATA FOR RED HAT SUPPORT
	14.8.1. About the must-gather tool
	14.8.2. About collecting low latency tuning data
	14.8.3. Gathering data about specific features

	CHAPTER 15. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION
	15.1. PREREQUISITES FOR RUNNING LATENCY TESTS
	15.2. ABOUT DISCOVERY MODE FOR LATENCY TESTS
	Limiting the nodes used during tests

	15.3. MEASURING LATENCY
	15.4. RUNNING THE LATENCY TESTS
	15.4.1. Running hwlatdetect
	Example hwlatdetect test results

	15.4.2. Running cyclictest
	Example cyclictest results

	15.4.3. Running oslat

	15.5. GENERATING A LATENCY TEST FAILURE REPORT
	15.6. GENERATING A JUNIT LATENCY TEST REPORT
	15.7. RUNNING LATENCY TESTS ON A SINGLE-NODE OPENSHIFT CLUSTER
	15.8. RUNNING LATENCY TESTS IN A DISCONNECTED CLUSTER
	Mirroring the images to a custom registry accessible from the cluster
	Configuring the tests to consume images from a custom registry
	Mirroring images to the cluster OpenShift image registry
	Mirroring a different set of test images

	15.9. TROUBLESHOOTING ERRORS WITH THE CNF-TESTS CONTAINER

	CHAPTER 16. TOPOLOGY AWARE LIFECYCLE MANAGER FOR CLUSTER UPDATES
	16.1. ABOUT THE TOPOLOGY AWARE LIFECYCLE MANAGER CONFIGURATION
	16.2. ABOUT MANAGED POLICIES USED WITH TOPOLOGY AWARE LIFECYCLE MANAGER
	16.3. INSTALLING THE TOPOLOGY AWARE LIFECYCLE MANAGER BY USING THE WEB CONSOLE
	16.4. INSTALLING THE TOPOLOGY AWARE LIFECYCLE MANAGER BY USING THE CLI
	16.5. ABOUT THE CLUSTERGROUPUPGRADE CR
	16.5.1. The UpgradeNotStarted state
	16.5.2. The UpgradeCannotStart state
	16.5.3. The UpgradeNotCompleted state
	16.5.4. The UpgradeTimedOut state
	16.5.5. The UpgradeCompleted state
	16.5.6. Blocking ClusterGroupUpgrade CRs

	16.6. UPDATE POLICIES ON MANAGED CLUSTERS
	16.6.1. Applying update policies to managed clusters

	16.7. USING THE CONTAINER IMAGE PRE-CACHE FEATURE
	16.7.1. Creating a ClusterGroupUpgrade CR with pre-caching

	16.8. TROUBLESHOOTING THE TOPOLOGY AWARE LIFECYCLE MANAGER
	16.8.1. General troubleshooting
	16.8.2. Cannot modify the ClusterUpgradeGroup CR
	16.8.3. Managed policies
	Checking managed policies on the system
	Checking remediationAction mode
	Checking policy compliance state

	16.8.4. Clusters
	Checking if managed clusters are present
	Checking if managed clusters are available
	Checking clusterSelector
	Checking if canary clusters are present
	Checking the pre-caching status on spoke clusters

	16.8.5. Remediation Strategy
	Checking if remediationStrategy is present in the ClusterGroupUpgrade CR
	Checking if maxConcurrency is specified in the ClusterGroupUpgrade CR

	16.8.6. Topology Aware Lifecycle Manager
	Checking condition message and status in the ClusterGroupUpgrade CR
	Checking corresponding copied policies
	Checking if status.remediationPlan was computed
	Errors in the TALM manager container

	CHAPTER 17. CREATING A PERFORMANCE PROFILE
	17.1. ABOUT THE PERFORMANCE PROFILE CREATOR
	17.1.1. Gathering data about your cluster using the must-gather command
	17.1.2. Running the Performance Profile Creator using podman
	17.1.2.1. How to run podman to create a performance profile

	17.1.3. Running the Performance Profile Creator wrapper script
	17.1.4. Performance Profile Creator arguments

	17.2. ADDITIONAL RESOURCES

	CHAPTER 18. WORKLOAD PARTITIONING ON SINGLE-NODE OPENSHIFT
	18.1. MAXIMIZING CPU ALLOCATION WITH WORKLOAD PARTITIONING

	CHAPTER 19. CLUSTERS AT THE NETWORK FAR EDGE
	19.1. CHALLENGES OF THE NETWORK FAR EDGE
	19.1.1. Overcoming the challenges of the network far edge
	19.1.2. Using ZTP to provision clusters at the network far edge
	19.1.3. Installing managed clusters with SiteConfig resources and RHACM
	19.1.4. Configuring managed clusters with policies and PolicyGenTemplate resources

	19.2. PREPARING THE HUB CLUSTER FOR ZTP
	19.2.1. Telco RAN 4.10 validated solution software versions
	19.2.2. Installing GitOps ZTP in a disconnected environment
	19.2.3. Adding RHCOS ISO and RootFS images to the disconnected mirror host
	19.2.4. Enabling the assisted service and updating AgentServiceConfig on the hub cluster
	19.2.5. Configuring the hub cluster to use a disconnected mirror registry
	19.2.6. Configuring the hub cluster with ArgoCD
	19.2.7. Preparing the GitOps ZTP site configuration repository

	19.3. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES
	19.3.1. GitOps ZTP and Topology Aware Lifecycle Manager
	19.3.2. Overview of deploying managed clusters with ZTP
	Overview of the managed site installation process

	19.3.3. Creating the managed bare-metal host secrets
	19.3.4. Deploying a managed cluster with SiteConfig and ZTP
	19.3.5. Monitoring managed cluster installation progress
	19.3.6. Troubleshooting GitOps ZTP by validating the installation CRs
	19.3.7. Removing a managed cluster site from the ZTP pipeline
	19.3.8. Removing obsolete content from the ZTP pipeline
	19.3.9. Tearing down the ZTP pipeline

	19.4. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE RESOURCES
	19.4.1. About the PolicyGenTemplate CRD
	19.4.2. Recommendations when customizing PolicyGenTemplate CRs
	19.4.3. PolicyGenTemplate CRs for RAN deployments
	19.4.4. Customizing a managed cluster with PolicyGenTemplate CRs
	19.4.5. Monitoring managed cluster policy deployment progress
	19.4.6. Validating the generation of configuration policy CRs
	19.4.7. Restarting policy reconciliation
	19.4.8. Indication of done for ZTP installations

	19.5. MANUALLY INSTALLING A SINGLE-NODE OPENSHIFT CLUSTER WITH ZTP
	19.5.1. Generating ZTP installation and configuration CRs manually
	19.5.2. Creating the managed bare-metal host secrets
	19.5.3. Installing a single managed cluster
	19.5.4. Monitoring the managed cluster installation status
	19.5.5. Troubleshooting the managed cluster
	19.5.6. RHACM generated cluster installation CRs reference

	19.6. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS
	19.6.1. Running low latency applications on OpenShift Container Platform
	19.6.2. Recommended cluster host requirements for vDU application workloads
	19.6.3. Configuring host firmware for low latency and high performance
	19.6.4. Connectivity prerequisites for managed cluster networks
	19.6.5. Recommended installation-time cluster configurations
	19.6.5.1. Workload partitioning
	19.6.5.2. Reduced platform management footprint
	19.6.5.3. SCTP
	19.6.5.4. Accelerated container startup
	19.6.5.5. Automatic kernel crash dumps with kdump

	19.6.6. Recommended post-installation cluster configurations
	19.6.6.1. Operator namespaces and Operator groups
	19.6.6.2. Operator subscriptions
	19.6.6.3. Cluster logging and log forwarding
	19.6.6.4. Performance profile
	19.6.6.5. PTP
	19.6.6.6. Extended Tuned profile
	19.6.6.7. SR-IOV
	19.6.6.8. Console Operator
	19.6.6.9. Grafana and Alertmanager
	19.6.6.10. Network diagnostics

	19.7. VALIDATING SINGLE-NODE OPENSHIFT CLUSTER TUNING FOR VDU APPLICATION WORKLOADS
	19.7.1. Recommended firmware configuration for vDU cluster hosts
	19.7.2. Recommended cluster configurations to run vDU applications
	19.7.2.1. Recommended cluster MachineConfig CRs
	19.7.2.2. Recommended cluster Operators
	19.7.2.3. Recommended cluster kernel configuration
	19.7.2.4. Checking the realtime kernel version

	19.7.3. Checking that the recommended cluster configurations are applied

	19.8. ADVANCED MANAGED CLUSTER CONFIGURATION WITH SITECONFIG RESOURCES
	19.8.1. Customizing extra installation manifests in the ZTP GitOps pipeline
	19.8.2. Filtering custom resources using SiteConfig filters

	19.9. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES
	19.9.1. Deploying additional changes to clusters
	19.9.2. Using PolicyGenTemplate CRs to override source CRs content
	19.9.3. Adding new content to the GitOps ZTP pipeline
	19.9.4. Signalling ZTP cluster deployment completion with validator inform policies
	19.9.5. Configuring PTP fast events using PolicyGenTemplate CRs
	19.9.6. Configuring bare-metal event monitoring using PolicyGenTemplate CRs

	19.10. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER
	19.10.1. Updating clusters in a disconnected environment
	19.10.1.1. Setting up the environment
	19.10.1.2. Performing a platform update
	19.10.1.3. Performing an Operator update
	19.10.1.4. Performing a platform and an Operator update together
	19.10.1.5. Removing Performance Addon Operator subscriptions from deployed clusters

	19.10.2. About the auto-created ClusterGroupUpgrade CR for ZTP

	19.11. UPDATING GITOPS ZTP
	19.11.1. Overview of the GitOps ZTP update process
	19.11.2. Preparing for the upgrade
	19.11.3. Labeling the existing clusters
	19.11.4. Stopping the existing GitOps ZTP applications
	19.11.5. Required changes to the Git repository
	19.11.6. Installing the new GitOps ZTP applications
	19.11.7. Rolling out the GitOps ZTP configuration changes

