& RedHat

OpenShift Container Platform 3.11

Configuring Clusters

OpenShift Container Platform 3.11 Installation and Configuration

Last Updated: 2022-09-08

OpenShift Container Platform 3.11 Configuring Clusters

OpenShift Container Platform 3.11 Installation and Configuration

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

OpenShift Installation and Configuration topics cover the basics of installing and configuring
OpenShift in your environment. Use these topics for the one-time tasks required to get OpenShift
up and running.

Table of Contents

Table of Contents

CHAPTER 1. OVERVIEW Lttt ettt ettt ettt e et aateeaaeeaneeeanaenaneennneenneenns 21
CHAPTER 2. SETTING UP THE REGIST RY ..ttt et tieteeieeaeenaneennneeannennneenns 22
2.1. INTERNAL REGISTRY OVERVIEW 22
2.1.1. About the Registry 22
2.1.2. Integrated or Stand-alone Registries 22
2.2. DEPLOYING A REGISTRY ON EXISTING CLUSTERS 22
2.2.1. Overview 22
2.2.2. Setting the Registry Host Name 22
2.2.3. Deploying the Registry 23
2.2.4. Deploying the Registry as a DaemonSet 23
2.2.5. Registry Compute Resources 23
2.2.6. Storage for the Registry 24
2.2.6.1. Production Use 24
2.2.6.1.1. Use Amazon S3 as a Storage Back-end 25
2.2.6.2. Non-Production Use 26
2.2.7. Enabling the Registry Console 26
2.2.7.1. Deploying the Registry Console 27
2.2.7.2. Securing the Registry Console 27
2.2.7.3. Troubleshooting the Registry Console 29
2.2.7.3.1. Debug Mode 29
2.2.7.3.2. Display SSL Certificate Path 29

2.3. ACCESSING THE REGISTRY 30
2.3.1. Viewing Logs 30
2.3.2. File Storage 30
2.3.3. Accessing the Registry Directly 32
2.3.3.1. User Prerequisites 32
2.3.3.2. Logging in to the Registry 32
2.3.3.3. Pushing and Pulling Images 33
2.3.4. Accessing Registry Metrics 34
2.4. SECURING AND EXPOSING THE REGISTRY 35
2.4.1. Overview 35
2.4.2. Manually Securing the Registry 35
2.4.3. Manually Exposing a Secure Registry 38
2.4.4. Manually Exposing a Non-Secure Registry 40
2.5. EXTENDED REGISTRY CONFIGURATION 42
2.5.1. Maintaining the Registry IP Address 42
2.5.2. Configuring an External Registry Search List 43
2.5.3. Setting the Registry Host Name 44
2.5.4. Overriding the Registry Configuration 44
2.5.5. Registry Configuration Reference 46
25.5.1. Log 46
2.5.5.2. Hooks 47
2.5.5.3. Storage 47
2.5.5.4. Auth 48
2.5.5.5. Middleware 48
2.5.5.5.1. S3 Driver Configuration 49
2.5.5.5.2. CloudFront Middleware 49
2.5.5.5.3. Overriding Middleware Configuration Options 50
2.5.5.5.4. Image Pullthrough 51
2.5.5.5.5. Manifest Schema v2 Support 52

CHAPTER 3. SETTING UP A ROUTER
3.1. ROUTER OVERVIEW

OpenShift Container Platform 3.11 Configuring Clusters

2.5.5.6. OpenShift
2.5.5.7. Reporting
2558 . HTTP
2.5.5.9. Notifications
2.5.5.10. Redis
2.5.5.11. Health
2.5.5.12. Proxy
2.5.5.13. Cache

2.6. KNOWN ISSUES

2.6.1. Overview
2.6.2. Concurrent Build with Registry Pull-through

2.6.3. Image Push Errors with Scaled Registry Using Shared NFS Volume

2.6.4. Pull of Internally Managed Image Fails with "not found" Error

2.6.5. Image Push Fails with "500 Internal Server Error" on S3 Storage

2.6.6. Image Pruning Fails

3.1.1. About Routers
3.1.2. Router Service Account
3.1.2.1. Permission to Access Labels

3.2.USING THE DEFAULT HAPROXY ROUTER

3.2.1. Overview
3.2.2. Creating a Router
3.2.3. Other Basic Router Commands
3.2.4. Filtering Routes to Specific Routers
3.2.5. HAProxy Strict SNI
3.2.6. TLS Cipher Suites
3.2.7. Mutual TLS Authentication
3.2.8. Highly-Available Routers
3.2.9. Customizing the Router Service Ports
3.2.10. Working With Multiple Routers
3.2.11. Adding a Node Selector to a Deployment Configuration
3.2.12. Using Router Shards

3.2.12.1. Creating Router Shards

3.2.12.2. Modifying Router Shards
3.2.13. Finding the Host Name of the Router
3.2.14. Customizing the Default Routing Subdomain
3.2.15. Forcing Route Host Names to a Custom Routing Subdomain
3.2.16. Using Wildcard Certificates
3.2.17. Manually Redeploy Certificates
3.2.18. Using Secured Routes
3.2.19. Using Wildcard Routes (for a Subdomain)
3.2.20. Using the Container Network Stack
3.2.21. Using the Dynamic Configuration Manager
3.2.22. Exposing Router Metrics
3.2.23. ARP Cache Tuning for Large-scale Clusters
3.2.24. Protecting Against DDoS Attacks
3.2.25. Enable HAProxy Threading

3.3. DEPLOYING A CUSTOMIZED HAPROXY ROUTER

3.3.1. Overview
3.3.2. Obtaining the Router Configuration Template
3.3.3. Modifying the Router Configuration Template

53
54
54
54
54
55
55
55
55
55
55
56
56
57
57

58
58
58
58
58
58
58
59
60
62
63
63
63
64
64
65
65
65
68
70

71
72
72
73
73
74
75

81

81
83
85
86
87
87
87
88
88

Table of Contents

3.3.3.1. Background 88
3.3.3.2. Go Template Actions 88
3.3.3.3. Router Provided Information 89
3.3.3.4. Annotations 94
3.3.3.5. Environment Variables 94
3.3.3.6. Example Usage 95
3.3.4. Using a ConfigMap to Replace the Router Configuration Template 96
3.3.5. Using Stick Tables 98
3.3.6. Rebuilding Your Router 99
3.4. CONFIGURING THE HAPROXY ROUTER TO USE THE PROXY PROTOCOL 99
3.4.1. Overview 99
3.4.2. Why Use the PROXY Protocol? 100
3.4.3. Using the PROXY Protocol 100
CHAPTER 4. DEPLOYING RED HAT CLOUDFORMS ittt et e e eenneennnens 105
4.1. DEPLOYING RED HAT CLOUDFORMS ON OPENSHIFT CONTAINER PLATFORM 105
4.1.1. Introduction 105
4.2. REQUIREMENTS FOR RED HAT CLOUDFORMS ON OPENSHIFT CONTAINER PLATFORM 106
4.3. CONFIGURING ROLE VARIABLES 107
4.3.1. Overview 107
4.3.2. General Variables 107
4.3.3. Customizing Template Parameters 108
4.3.4. Database Variables 108
4.3.4.1. Containerized (Podified) Database 108
4.3.4.2. External Database 108
4.3.5. Storage Class Variables 109
4.3.5.1. NFS (Default) 110
4.3.5.2. NFS External 110
4.3.5.3. Cloud Provider m
4.3.5.4. Preconfigured (Advanced) m

4.4, RUNNING THE INSTALLER m
4.4.1. Deploying Red Hat CloudForms During or After OpenShift Container Platform Installation m
4.4.2. Example Inventory Files N2
4.4.2.1. All Defaults 12
4.4.2.2. External NFS Storage N2
4.4.2.3. Override PV Sizes 12
4.4.2.4. Override Memory Requirements n3
4.4.2.5. External PostgreSQL Database 13

4.5. ENABLING CONTAINER PROVIDER INTEGRATION 13
4.5.1. Adding a Single Container Provider 13
4.5.1.1. Adding Manually n4
4.5.1.2. Adding Automatically 14
4.5.2. Multiple Container Providers n4
4.5.2.1. Preparing the Script n4
4.5.2.1.1. Example ns5
4.5.2.2. Running the Playbook 16
4.5.3. Refreshing Providers 116
4.6. UNINSTALLING RED HAT CLOUDFORMS 116
4.6.1. Running the Uninstall Playbook 16
4.6.2. Troubleshooting 16
CHAPTER 5. PROMETHEUS CLUSTERMONITORING ...ttt iiieeeieieeennenaneennnenns 18
5.1. OVERVIEW 18

OpenShift Container Platform 3.11 Configuring Clusters

5.2. CONFIGURING OPENSHIFT CONTAINER PLATFORM CLUSTER MONITORING 119
5.2.1. Monitoring prerequisites 120
5.2.2. Installing monitoring stack 120
5.2.3. Persistent storage 120

5.2.3.1. Enabling persistent storage 121
5.2.3.2. Determining how much storage is necessary 121
5.2.3.3. Setting persistent storage size 121
5.2.3.4. Allocating enough persistent volumes 121
5.2.3.5. Enabling dynamically-provisioned storage 121
5.2.4. Supported configuration 122

5.3. CONFIGURING ALERTMANAGER 122
5.3.1. Dead man'’s switch 123
5.3.2. Grouping alerts 123
5.3.3. Dead man’s switch PagerDuty 124
5.3.4. Alerting rules 124

5.4. CONFIGURING ETCD MONITORING 130

5.5. ACCESSING PROMETHEUS, ALERTMANAGER, AND GRAFANA 134

CHAPTER 6. ACCESSING AND CONFIGURING THE RED HAT REGISTRYciittiiitiiiiiiieennnnnn 135

6.1. AUTHENTICATION ENABLED RED HAT REGISTRY 135
6.1.1. Creating User accounts 135
6.1.2. Creating Service Accounts and Authentication Tokens for the Red Hat Registry 136
6.1.3. Managing Registry Credentials for Installation and Upgrade 136
6.1.4. Using Service Accounts with the Red Hat Registry 137

CHAPTER 7. MASTER AND NODE CONFIGURATION ittt eii et eaneennneennnns 140

7.1. CUSTOMIZING MASTER AND NODE CONFIGURATION AFTER INSTALLATION 140

7.2. INSTALLATION DEPENDENCIES 140

7.3. CONFIGURING MASTERS AND NODES 140

7.4. MAKING CONFIGURATION CHANGES USING ANSIBLE 140
7.4.1. Using the htpasswd command 142

7.5. MAKING MANUAL CONFIGURATION CHANGES 143

7.6. MASTER CONFIGURATION FILES 144
7.6.1. Admission Control Configuration 144
7.6.2. Asset Configuration 145
7.6.3. Authentication and Authorization Configuration 146
7.6.4. Controller Configuration 147
7.6.5. etcd Configuration 147
7.6.6. Grant Configuration 149
7.6.7. Image Configuration 149
7.6.8. Image Policy Configuration 150
7.6.9. Kubernetes Master Configuration 151
7.6.10. Network Configuration 151
7.6.11. OAuth Authentication Configuration 153
7.6.12. Project Configuration 155
7.6.13. Scheduler Configuration 156
7.6.14. Security Allocator Configuration 156
7.6.15. Service Account Configuration 156
7.6.16. Serving Information Configuration 157
7.6.17. Volume Configuration 158
7.6.18. Basic Audit 159

7.6.18.1. Enable Basic Auditing 160
7.6.19. Advanced Audit 161

Table of Contents

7.6.20. Specifying TLS ciphers for etcd 163
7.7.NODE CONFIGURATION FILES 165
7.7.1. Pod and Node Configuration 167
7.7.2. Docker Configuration 168
7.7.3. Local Storage Configuration 168
7.7.4. Setting Node Queries per Second (QPS) Limits and Burst Values 169
7.7.5. Parallel Image Pulls with Docker 1.9+ 169
7.8. PASSWORDS AND OTHER SENSITIVE DATA 170
7.9. CREATING NEW CONFIGURATION FILES 170
7.10. LAUNCHING SERVERS USING CONFIGURATION FILES 171
7.1 VIEWING MASTER AND NODE LOGS 172
7.11.1. Configuring Logging Levels 173
7.12. RESTARTING MASTER AND NODE SERVICES 178
CHAPTER 8. OPENSHIFT ANSIBLE BROKER CONFIGURATION ...ttt iieeneennnens 179
8.1. OVERVIEW 179
8.2. AUTHENTICATING ON RED HAT PARTNER CONNECT REGISTRY 180
8.3. MODIFYING THE OPENSHIFT ANSIBLE BROKER CONFIGURATION 180
8.4. REGISTRY CONFIGURATION 180
8.4.1. Production or Development 181
8.4.2. Storing Registry Credentials 182
8.4.3. APB Filtering 184
8.4.4. Mock Registry 185
8.4.5. Dockerhub Registry 185
8.4.6. Ansible Galaxy Registry 185
8.4.7. Local OpenShift Container Registry 186
8.4.8. Red Hat Container Catalog Registry 186
8.4.9. Red Hat Partner Connect Registry 186
8.4.10. Helm Chart Registry 187
8.4.11. API V2 Docker Registry 187
8.4.12. Quay Docker Registry 187
8.4.13. Multiple Registries 188
8.5. BROKER AUTHENTICATION 188
8.5.1. Basic Auth 188
8.5.1.1. Deployment Template and Secrets 189
8.5.1.2. Configuring Service Catalog and Broker Communication 190
8.5.2. Bearer Auth 190
8.5.2.1. Deployment Template and Secrets 191
8.5.2.2. Configuring Service Catalog and Broker Communication 191

8.6. DAO CONFIGURATION 192
8.7.LOG CONFIGURATION 192
8.8. OPENSHIFT CONFIGURATION 192
8.9. BROKER CONFIGURATION 193
8.10. SECRETS CONFIGURATION 194
8.11. RUNNING BEHIND A PROXY 194
8.11.1. Registry Adapter Whitelists 195
8.11.2. Configuring the Broker Behind a Proxy Using Ansible 195
8.11.3. Configuring the Broker Behind a Proxy Manually 195
8.11.4. Setting Proxy Environment Variables in Pods 196
CHAPTER 9. ADDING HOSTS TO AN EXISTING CLUSTER ...\ttt eieieenneennneennnens 197
9.1. ADDING HOSTS 197
Procedure 197

OpenShift Container Platform 3.11 Configuring Clusters

9.2. ADDING ETCD HOSTS TO EXISTING CLUSTER 199
9.3. REPLACING EXISTING MASTERS WITH ETCD COLOCATED 200
9.4. MIGRATING THE NODES 202
CHAPTER 10. ADDING THE DEFAULT IMAGE STREAMS AND TEMPLATESttt 204
10.1. OVERVIEW 204
10.2. OFFERINGS BY SUBSCRIPTION TYPE 204
10.2.1. OpenShift Container Platform Subscription 204
10.2.2. xPaaS Middleware Add-on Subscriptions 205
10.3. BEFORE YOU BEGIN 205
10.4. PREREQUISITES 205
10.5. CREATING IMAGE STREAMS FOR OPENSHIFT CONTAINER PLATFORM IMAGES 206
10.6. CREATING IMAGE STREAMS FOR XPAAS MIDDLEWARE IMAGES 206
10.7. CREATING DATABASE SERVICE TEMPLATES 207
10.8. CREATING INSTANT APP AND QUICKSTART TEMPLATES 207
10.9. WHAT'S NEXT? 208
CHAPTER 11. CONFIGURING CUSTOM CERTIFICATES . ittt ittt tiiiieeeennnnenaanns 209
11.1. OVERVIEW 209
11.2. CONFIGURING A CERTIFICATE CHAIN 209
11.3. CONFIGURING CUSTOM CERTIFICATES DURING INSTALLATION 209
11.4. CONFIGURING CUSTOM CERTIFICATES FOR THE WEB CONSOLE OR CLI 210
11.5. CONFIGURING A CUSTOM MASTER HOST CERTIFICATE 21
11.6. CONFIGURING A CUSTOM WILDCARD CERTIFICATE FOR THE DEFAULT ROUTER 212
11.7. CONFIGURING A CUSTOM CERTIFICATE FOR THE IMAGE REGISTRY 213
11.8. CONFIGURING A CUSTOM CERTIFICATE FOR A LOAD BALANCER 214
11.9. RETROFIT CUSTOM CERTIFICATES INTO A CLUSTER 215
11.9.1. Retrofit Custom Master Certificates into a Cluster 215
11.9.2. Retrofit Custom Router Certificates into a Cluster 216
11.10. USING CUSTOM CERTIFICATES WITH OTHER COMPONENTS 216
CHAPTER 12. REDEPLOYING CERTIFICATES ..\ttt ittt it tteee e inneneeeennnaaeennnnns 217
12.1. OVERVIEW 217
12.2. CHECKING CERTIFICATE EXPIRATIONS 217
12.2.1. Role Variables 217
12.2.2. Running Certificate Expiration Playbooks 218
Other Example Playbooks 219
12.2.3. Output Formats 219
HTML Report 219
JSON Report 219
12.3. REDEPLOYING CERTIFICATES 220
12.3.1. Redeploying All Certificates Using the Current OpenShift Container Platform and etcd CA 221
12.3.2. Redeploying a New or Custom OpenShift Container Platform CA 221
12.3.3. Redeploying a New etcd CA 223
12.3.4. Redeploying Master and Web Console Certificates 223
12.3.5. Redeploying Only Named Certificates 224
12.3.6. Redeploying etcd Certificates Only 224
12.3.7. Redeploying Node Certificates 225
12.3.8. Redeploying Registry or Router Certificates Only 225
12.3.8.1. Redeploying Registry Certificates Only 225
12.3.8.2. Redeploying Router Certificates Only 225
12.3.9. Redeploying Custom Registry or Router Certificates 225
12.3.9.1. Redeploying Registry Certificates Manually 226
12.3.9.2. Redeploying Router Certificates Manually 227

12.4. MANAGING CERTIFICATE SIGNING REQUESTS
12.4.1. Reviewing Certificate Signing Requests
12.4.2. Approving Certificate Signing Requests
12.4.3. Denying Certificate Signing Requests
12.4.4. Configuring Automatic Approval of Certificate Signing Requests

CHAPTER 13. CONFIGURING AUTHENTICATION AND USERAGENT

13.1. OVERVIEW
13.2. IDENTITY PROVIDER PARAMETERS
13.3. CONFIGURING IDENTITY PROVIDERS
13.3.1. Configuring identity providers with Ansible
13.3.2. Configuring identity providers in the master configuration file
13.3.2.1. Manually provisioning a user when using the lookup mapping method
13.3.3. Allow all
13.3.4. Deny all
13.3.5. HTPasswd
13.3.6. Keystone
13.3.6.1. Configuring authentication on the master
13.3.6.2. Creating Users with Keystone Authentication
13.3.6.3. Verifying Users
13.3.7. LDAP authentication
13.3.8. Basic authentication (remote)
13.3.8.1. Configuring authentication on the master
13.3.8.2. Troubleshooting
13.3.9. Request header
SSPI connection support on Microsoft Windows
Apache authentication using Request header
Installing the prerequisites
Configuring Apache
Configuring the master
Restarting services
Verifying the configuration
13.3.10. GitHub and GitHub Enterprise
13.3.10.1. Registering the application on GitHub
13.3.10.2. Configuring authentication on the master
13.3.10.3. Creating users with GitHub authentication
13.3.10.4. Verifying users
13.3.11. GitLab
13.3.12. Google
13.3.13. OpenlD connect
13.4. TOKEN OPTIONS
13.5. GRANT OPTIONS
13.6. SESSION OPTIONS
13.7. PREVENTING CLI VERSION MISMATCH WITH USER AGENT

CHAPTER14.SYNCING GROUPSWITHLDAP

14.1. OVERVIEW
14.2. CONFIGURING LDAP SYNC
14.2.1. LDAP client configuration
14.2.2. LDAP query definition
14.2.3. User-defined name mapping
14.3. RUNNING LDAP SYNC
14.4. RUNNING A GROUP PRUNING JOB

Table of Contents

229
229
230
230
230

................... 231

231

231
232
232
234
234
235
236
236
238
238
240
240

241
243
244
246
247
249
250
250
252
253
254
254
255
255
256
258
258
259
260

261
264
264
265
266

.................. 269

269
269
269
270

271

271
272

OpenShift Container Platform 3.11 Configuring Clusters

14.5. SYNC EXAMPLES
14.5.1. Syncing groups by using RFC 2307 schema
14.5.1.1. RFC2307 with user-defined name mappings
14.5.2. Syncing groups by using RFC 2307 with user-defined error tolerances
14.5.3. Syncing groups by using Active Directory
14.5.4. Syncing groups by using augmented Active Directory
14.6. NESTED MEMBERSHIP SYNC EXAMPLE
14.7. LDAP SYNC CONFIGURATION SPECIFICATION
14.7.1. v1.LDAPSyncConfig
14.7.2. v1.StringSource
14.7.3. v1ILDAPQuery
14.7.4. v1.RFC2307Config
14.7.5. vl.ActiveDirectoryConfig
14.7.6. v1.AugmentedActiveDirectoryConfig

CHAPTER15. CONFIGURING LDAP FAILOVER i

15.1. PREREQUISITES FOR CONFIGURING BASIC REMOTE AUTHENTICATION

15.2. GENERATING AND SHARING CERTIFICATES WITH THE REMOTE BASIC AUTHENTICATION SERVER

15.3. CONFIGURING SSSD FOR LDAP FAILOVER
15.4. CONFIGURING APACHE TO USE SSSD

15.5. CONFIGURING OPENSHIFT CONTAINER PLATFORM TO USE SSSD AS THE BASIC REMOTE

AUTHENTICATION SERVER

CHAPTER16. CONFIGURING THESDN i

16.1. OVERVIEW
16.2. AVAILABLE SDN PROVIDERS
Installing VMware NSX-T (™) on OpenShift Container Platform
16.3. CONFIGURING THE POD NETWORK WITH ANSIBLE
16.4. CONFIGURING THE POD NETWORK ON MASTERS
16.5. CHANGING THE VXLAN PORT FOR THE CLUSTER NETWORK
16.6. CONFIGURING THE POD NETWORK ON NODES
16.7. EXPANDING THE SERVICE NETWORK
16.8. MIGRATING BETWEEN SDN PLUG-INS
16.8.1. Migrating from ovs-multitenant to ovs-networkpolicy
16.9. EXTERNAL ACCESS TO THE CLUSTER NETWORK
16.10. USING FLANNEL

CHAPTER17. CONFIGURING NUAGE SDN i i

17.1. NUAGE SDN AND OPENSHIFT CONTAINER PLATFORM
17.2. DEVELOPER WORKFLOW

17.3. OPERATIONS WORKFLOW

17.4. INSTALLATION

CHAPTER18. CONFIGURING NSX-TSDN i

18.1. NSX-T SDN AND OPENSHIFT CONTAINER PLATFORM
18.2. EXAMPLE TOPOLOGY
18.3. INSTALLING VMWARE NSX-T

18.4. CHECK NSX-T AFTER OPENSHIFT CONTAINER PLATFORM DEPLOYMENT

CHAPTER19. CONFIGURING KURYRSDN

19.1. KURYR SDN AND OPENSHIFT CONTAINER PLATFORM
19.2. INSTALLING KURYR SDN
19.3. VERIFICATION

272
272
275
276
279
281
283
287
287
289
289
290
292
293

295
295

295
296
298

301

303
303
303
303
303
304
306
307
307
308
309

310

310

313
313
313
313
313

316
316
316
316
321

Table of Contents

CHAPTER 20. CONFIGURING FOR AMAZON WEB SERVICES (AWS) .. ittt iiiiiieeneanns 326
20.1. OVERVIEW 326
20.1.1. Configuring authorization for Amazon Web Services (AWS) 326
20.1.1.1. Configuring the OpenShift Container Platform cloud provider at installation 327
20.1.1.2. Configuring the OpenShift Container Platform cloud provider after installation 327
20.2. CONFIGURING A SECURITY GROUP 328
20.2.1. Overriding Detected IP Addresses and Host Names 329
20.2.1.1. Configuring the OpenShift Container Platform registry for Amazon Web Services (AWS) 329
20.2.1.1.1. Configuring the OpenShift Container Platform inventory to use S3 330
20.2.1.1.2. Manually configuring OpenShift Container Platform registry to use S3 331
20.2.1.1.3. Verify the registry is using S3 storage 332
20.3. CONFIGURING AWS VARIABLES 335
20.4. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR AWS 335
20.4.1. Configuring OpenShift Container Platform for AWS with Ansible 335
20.4.2. Manually Configuring OpenShift Container Platform Masters for AWS 336
20.4.3. Manually Configuring OpenShift Container Platform Nodes for AWS 337
20.4.4. Manually Setting Key-Value Access Pairs 337
20.5. APPLYING CONFIGURATION CHANGES 337
20.6. LABELING CLUSTERS FOR AWS 338
20.6.1. Resources That Need Tags 338
20.6.2. Tagging an Existing Cluster 338
20.6.3. About Red Hat OpenShift Container Storage 339
CHAPTER 21. CONFIGURING FOR RED HAT VIRTUALIZATION ..ttt ittt eiieineeaeanns 340
21.1. CREATING THE BASTION VIRTUAL MACHINE 340
21.2. INSTALLING OPENSHIFT CONTAINER PLATFORM WITH THE BASTION VIRTUAL MACHINE 343
CHAPTER 22. CONFIGURING FOR OPENS T ACK .. ittt ittt ettt tiieeeeeeeennnanaanns 349
22.1. OVERVIEW 349
22.2. BEFORE YOU BEGIN 349
22.2.1. OpenShift Container Platform SDN 349
22.2.2. Kuryr SDN 349
22.2.3. OpenShift Container Platform Prerequisites 350
22.2.3.1. Enabling Octavia: OpenStack Load Balancing as a Service (LBaaS) 350
22.2.3.2. Creating OpenStack User Accounts, Projects, and Roles 352
22.2.3.3. Extra steps for Kuryr SDN 353
22.2.3.4. Configuring the RC file 354
22.2.3.5. Create an OpenStack Flavor 355
22.2.3.6. Creating an OpenStack Keypair 356
22.2.3.7. Setting up DNS for OpenShift Container Platform 356
22.2.3.8. Creation of OpenShift Container Platform Networks via OpenStack 357
22.2.3.9. Creating OpenStack Deployment Host Security Group 358
22.2.3.10. OpenStack Cinder Volumes 359
22.2.3.10.1. Docker Volume 359
22.2.3.10.2. Registry volume 360
22.2.3.11. Creating and Configuring the Deployment Instance 360
22.2.3.12. Deployment Host Configuration for OpenShift Container Platform 362
22.3. PROVISIONING OPENSHIFT CONTAINER PLATFORM INSTANCES USING THE OPENSHIFT ANSIBLE
PLAYBOOKS 365
22.3.1. Preparing the Inventory for Provisioning 365
22.3.1.1. OpenShiftSDN All YAML file 365
22.3.1.2. KuryrSDN All YAML file 367
22.3.1.2.1. Configuring global namespace access 369

OpenShift Container Platform 3.11 Configuring Clusters

22.3.1.3. OSEv3 YAML file
22.3.2. OpenStack Prerequisites Playbook
22.3.3. Stack Name Configuration

372
374
375

22.4. REGISTERING WITH SUBSCRIPTION MANAGER THE OPENSHIFT CONTAINER PLATFORM INSTANCES

22.5. INSTALLING OPENSHIFT CONTAINER PLATFORM BY USING AN ANSIBLE PLAYBOOK
22.6. APPLYING CONFIGURATION CHANGES TO EXISTING OPENSHIFT CONTAINER PLATFORM

ENVIRONMENT
22.6.1. Configuring OpenStack Variables on an existing OpenShift Environment
22.6.2. Configuring Zone Labels for Dynamically Created OpenStack PVs

CHAPTER 23. CONFIGURING FOR GOOGLE COMPUTEENGINEooiiiiiiiia.t,

23.1. BEFORE YOU BEGIN
23.1.1. Configuring authorization for Google Cloud Platform
23.1.2. Google Compute Engine objects
23.2. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR GCE
23.2.1. Option 1: Configuring OpenShift Container Platform for GCP using Ansible
23.2.2. Option 2: Manually configuring OpenShift Container Platform for GCE
23.2.2.1. Manually configuring master hosts for GCE
23.2.2.2. Manually configuring node hosts for GCE
23.2.3. Configuring the OpenShift Container Platform registry for GCP
23.2.3.1. Manually configuring OpenShift Container Platform registry for GCP
23.2.3.1.1. Verify the registry is using GCP object storage
23.2.4. Configuring OpenShift Container Platform to use GCP storage
23.2.5. About Red Hat OpenShift Container Storage
23.3. USING THE GCP EXTERNAL LOAD BALANCER AS A SERVICE

CHAPTER 24. CONFIGURING FORAZURE e

24.1. BEFORE YOU BEGIN
24.1.1. Configuring authorization for Microsoft Azure
24.1.2. Configuring Microsoft Azure objects

24.2. THE AZURE CONFIGURATION FILE

24.3. EXAMPLE INVENTORY FOR OPENSHIFT CONTAINER PLATFORM ON MICROSOFT AZURE

24.4. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR MICROSOFT AZURE
24.4.1. Configuring OpenShift Container Platform for Azure by using Ansible
24.4.2. Manually configuring OpenShift Container Platform for Microsoft Azure
24.4.2.1. Manually configuring master hosts for Microsoft Azure
24.4.2.2. Manually configuring node hosts for Microsoft Azure
24.4.3. Configuring the OpenShift Container Platform registry for Microsoft Azure
24.4.4. Configuring OpenShift Container Platform to use Microsoft Azure storage
24.45. About Red Hat OpenShift Container Storage
24.5. USING THE MICROSOFT AZURE EXTERNAL LOAD BALANCER AS A SERVICE
24.5.1. Deploying a sample application using a load balancer

CHAPTER 25. CONFIGURING FORVMWAREVSPHERE

25.1. BEFORE YOU BEGIN
25.1.1. Requirements
25.1.1.1. Permissions
25.1.1.2. Using OpenShift Container Platform with vMotion
25.2. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR VSPHERE
25.2.1. Option 1: Configuring OpenShift Container Platform for vSphere using Ansible
25.2.2. Option 2: Manually configuring OpenShift Container Platform for vSphere
25.2.2.1. Manually configuring master hosts for vSphere
25.2.2.2. Manually configuring node hosts for vSphere

10

375
376

376
377
377

379
379
379
380
383
383
385
385
386
386
387
388

391
392
392

394
394
394
395
396
397
400
400

401

401
402
403
407
408
408
409

25.2.2.3. Applying Configuration Changes
25.3. CONFIGURING OPENSHIFT CONTAINER PLATFORM TO USE VSPHERE STORAGE
Prerequisites
25.3.1. Dynamically Provisioning VMware vSphere volumes
25.3.2. Statically Provisioning VMware vSphere volumes
25.3.2.1. Creating PersistentVolumes
25.3.2.2. Formatting VMware vSphere volumes
25.4. CONFIGURING THE OPENSHIFT CONTAINER PLATFORM REGISTRY FOR VSPHERE
25.4.1. Configuring the OpenShift Container Platform registry for vSphere using Ansible
25.4.2. Dynamically provisioning storage for OpenShift Container Platform registry
25.4.3. Manually provisioning storage for OpenShift Container Platform registry
25.4.4. About Red Hat OpenShift Container Storage
25.5. BACKUP OF PERSISTENT VOLUMES

CHAPTER 26. CONFIGURING LOCALVOLUMES i

26.1. OVERVIEW

26.2. MOUNTING LOCAL VOLUMES

26.3. CONFIGURING THE LOCAL PROVISIONER

26.4. DEPLOYING THE LOCAL PROVISIONER

26.5. ADDING NEW DEVICES

26.6. CONFIGURING RAW BLOCK DEVICES
26.6.1. Preparing raw block devices
26.6.2. Deploying raw block device provisioners
26.6.3. Using raw block device persistent volumes

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

27.1. OVERVIEW
27.2. PERSISTENT STORAGE USING NFS
27.2.1. Overview
27.2.2. Provisioning
27.2.3. Enforcing Disk Quotas
27.2.4.NFS Volume Security
27.2.4.1. Group IDs
27.2.4.2. User IDs
27.2.4.3. SELinux
27.2.4.4. Export Settings
27.2.5. Reclaiming Resources
27.2.6. Automation
27.2.7. Additional Configuration and Troubleshooting
27.3. PERSISTENT STORAGE USING RED HAT GLUSTER STORAGE
27.3.1. Overview
27.3.1.1. converged mode
27.3.1.2. independent mode
27.3.1.3. Standalone Red Hat Gluster Storage
27.3.1.4. GlusterFS Volumes
27.3.1.5. gluster-block Volumes
27.3.1.6. Gluster S3 Storage
27.3.2. Considerations
27.3.2.1. Software Prerequisites
27.3.2.2. Hardware Requirements
27.3.2.3. Storage Sizing
27.3.2.4. Volume Operation Behaviors
27.3.2.5. Volume Security

Table of Contents

421
422
423
423
423
424
425
425
425
425
426
426
427

............ 428

428
428
429
430

431

431
432
433
434

............ 436

436
436
436
437
438
438
439
440

441

441
442
443
443
443
443
444
444
444
445
445
446
446
446
446
447
448
448

1

OpenShift Container Platform 3.11 Configuring Clusters

27.3.2.5.1. POSIX Permissions
27.3.2.5.2. SELinux
27.3.3. Support Requirements
27.3.4. Installation
27.3.4.1.independent mode: Installing Red Hat Gluster Storage Nodes
27.3.4.2. Using the Installer
27.3.4.2.1. Host variables
27.3.4.2.2. Role variables
27.3.4.2.3. Image name and version tag variables
27.3.4.2.4. Example: Basic converged mode Installation
27.3.4.2.5. Example: Basic independent mode Installation
27.3.4.2.6. Example: converged mode with an Integrated OpenShift Container Registry
27.3.4.2.7. Example: converged mode for OpenShift Logging and Metrics
27.3.4.2.8. Example: converged mode for Applications, Registry, Logging, and Metrics
27.3.4.2.9. Example: independent mode for Applications, Registry, Logging, and Metrics
27.3.5. Uninstall converged mode
27.3.6. Provisioning
27.3.6.1. Static Provisioning
27.3.6.2. Dynamic Provisioning
27.4. PERSISTENT STORAGE USING OPENSTACK CINDER
27.4.1. Overview
27.4.2. Provisioning Cinder PVs
27.4.2.1. Creating the Persistent Volume
27.4.2.2. Cinder PV format
27.4.2.3. Cinder volume security
27.4.2.4. Cinder volume limit
27.5. PERSISTENT STORAGE USING CEPH RADOS BLOCK DEVICE (RBD)
27.5.1. Overview
27.5.2. Provisioning
27.5.2.1. Creating the Ceph Secret
27.5.2.2. Creating the Persistent Volume
27.5.3. Ceph Volume Security
27.6. PERSISTENT STORAGE USING AWS ELASTIC BLOCK STORE
27.6.1. Overview
27.6.2. Provisioning
27.6.2.1. Creating the Persistent Volume
27.6.2.2.Volume Format
27.6.2.3. Maximum Number of EBS Volumes on a Node
27.7. PERSISTENT STORAGE USING GCE PERSISTENT DISK
27.7.1. Overview
27.7.2. Provisioning
27.7.2.1. Creating the Persistent Volume
27.7.2.2.Volume Format
27.8. PERSISTENT STORAGE USING ISCSI
27.8.1. Overview
27.8.2. Provisioning
27.8.2.1. Enforcing Disk Quotas
27.8.2.2.iSCSI Volume Security
27.8.2.3.iSCSI Multipathing
27.8.2.4.iSCSI Custom Initiator IQN
27.9. PERSISTENT STORAGE USING FIBRE CHANNEL
27.9.1. Overview
27.9.2. Provisioning

12

448
449
449
450
450
450
453
453
454
455
456
458
459

461
463
466
466
466
469
470
470

471

471
472
472
473
474
474
474
474
475
477
477
477
478
478
479
479
479
479
480
480

481

481

481

481
482
482
482
483
483
483
484

Table of Contents

27.9.2.1. Enforcing Disk Quotas 485
27.9.2.2. Fibre Channel Volume Security 485
27.10. PERSISTENT STORAGE USING AZURE DISK 485
27.10.1. Overview 485
27.10.2. Prerequisites 485
27.10.3. Provisioning 485
27.10.4. Configuring Azure Disk for regional cloud 486
27.10.4.1. Creating the Persistent Volume 486
27.10.4.2. Volume Format 487
27.1. PERSISTENT STORAGE USING AZURE FILE 487
27.11.1. Overview 487
27.11.2. Before you begin 488
27.11.3. Example configuration files 489
27.11.4. Configuring Azure File for regional cloud 490
27.1.5. Creating the Azure Storage Account secret 490
27.12. PERSISTENT STORAGE USING FLEXVOLUME PLUG-INS 491
27.12.1. Overview 491
27.12.2. FlexVolume drivers 491
27.12.2.1. FlexVolume drivers with master-initiated attach/detach 493
27.12.2.2. FlexVolume drivers without master-initiated attach/detach 495
27.12.3. Installing FlexVolume drivers 496
27.12.4. Consuming storage using FlexVolume drivers 496
27.13. USING VMWARE VSPHERE VOLUMES FOR PERSISTENT STORAGE 497
27.13.1. Overview 497
Prerequisites 497
27.13.2. Dynamically Provisioning VMware vSphere volumes 498
27.13.3. Statically Provisioning VMware vSphere volumes 498
27.13.3.1. Create the VMDKs 498
27.13.3.2. Creating PersistentVolumes 499
27.13.3.3. Formatting VMware vSphere volumes 500
27.14. PERSISTENT STORAGE USING LOCAL VOLUME 500
27.14.1. Overview 500
27.14.2. Provisioning 501
27.14.3. Creating Local Persistent Volume 501
27.14.4. Creating Local Persistent Volume Claim 501
27.14.5. Feature Status 501
27.15. PERSISTENT STORAGE USING CONTAINER STORAGE INTERFACE (CSI) 502
27.15.1. Overview 502
27.15.2. Architecture 503
27.15.2.1. External CSI Controllers 503
27.15.2.2. CSI Driver DaemonSet 504
27.15.3. Example Deployment 504
27.15.4. Dynamic Provisioning 509
27.15.5. Usage 509
27.16. PERSISTENT STORAGE USING OPENSTACK MANILA 509
27.16.1. Overview 510
27.16.2. Installation and Setup 510
27.16.2.1. Starting the External Provisioner 510
27.16.3. Usage 513
27.17. DYNAMIC PROVISIONING AND CREATING STORAGE CLASSES 513
27.17.1. Overview 513
27.17.2. Available dynamically provisioned plug-ins 514
27.17.3. Defining a StorageClass 515

13

OpenShift Container Platform 3.11 Configuring Clusters

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

14

27.17.3.1. Basic StorageClass object definition
27.17.3.2. StorageClass annotations
27.17.3.3. OpenStack Cinder object definition
27.17.3.4. AWS ElasticBlockStore (EBS) object definition
27.17.3.5. GCE PersistentDisk (gcePD) object definition
27.17.3.6. GlusterFS object definition
27.17.3.7. Ceph RBD object definition
27.17.3.8. Trident object definition
27.17.3.9. VMware vSphere object definition
27.17.3.10. Azure File object definition
27.17.3.11. Azure Disk object definition
27.17.4. Changing the default StorageClass
27.17.5. Additional information and examples
27.18. VOLUME SECURITY
27.18.1. Overview
27.18.2. SCCs, Defaults, and Allowed Ranges
27.18.3. Supplemental Groups
27.18.4. fsGroup
27.18.5. User IDs
27.18.6. SELinux Options
27.19. SELECTOR-LABEL VOLUME BINDING
27.19.1. Overview
27.19.2. Motivation
27.19.3. Deployment
27.19.3.1. Prerequisites
27.19.3.2. Define the Persistent Volume and Claim
27.19.3.3. Optional: Bind a PVC to a specific PV
27.19.3.4. Optional: Reserve a PV to a specific PVC
27.19.3.5. Deploy the Persistent Volume and Claim
27.20. ENABLING CONTROLLER-MANAGED ATTACHMENT AND DETACHMENT
27.20.1. Overview
27.20.2. Determining What Is Managing Attachment and Detachment
27.20.3. Configuring Nodes to Enable Controller-managed Attachment and Detachment
27.21. PERSISTENT VOLUME SNAPSHOTS
27.21.1. Overview
27.21.2. Features
27.21.3. Installation and Setup
27.21.3.1. Starting the External Controller and Provisioner
27.21.3.2. Managing Snapshot Users
27.21.4. Lifecycle of a Volume Snapshot and Volume Snapshot Data
27.21.4.1. Persistent Volume Claim and Persistent Volume
27.21.4.1.1. Snapshot Promoter
27.21.4.2. Create Snapshot
27.21.4.3. Restore Snapshot
27.21.4.4. Delete Snapshot
27.22. USING HOSTPATH
27.22.1. Overview
27.22.2. Configuring hostPath volumes in the Pod specification
27.22.3. Statically provisioning hostPath volumes
27.22.4. Mounting the hostPath share in a privileged pod
27.22.5. Additional resources

515
516
516

517
518
518
520
520

521

521
522
523
524
524
524
525
528

531
533
535
537
537
537
537
537
537
538
538
539
540
540
540

541

541

541

541
542
542
544
545
545
545
546
547
547
548
548
548
549
550

551

Table of Contents

28.1. OVERVIEW 552
28.2. SHARING AN NFS MOUNT ACROSS TWO PERSISTENT VOLUME CLAIMS 552
28.2.1. Overview 552
28.2.2. Creating the Persistent Volume 552
28.2.3. Creating the Persistent Volume Claim 553
28.2.4. Ensuring NFS Volume Access 554
28.2.5. Creating the Pod 555
28.2.6. Creating an Additional Pod to Reference the Same PVC 559
28.3. COMPLETE EXAMPLE USING CEPH RBD 561
28.3.1. Overview 561
28.3.2. Installing the ceph-common Package 561
28.3.3. Creating the Ceph Secret 561
28.3.4. Creating the Persistent Volume 562
28.3.5. Creating the Persistent Volume Claim 563
28.3.6. Creating the Pod 564
28.3.7. Defining Group and Owner IDs (Optional) 565
28.3.8. Setting ceph-user-secret as Default for Projects 565
28.4. USING CEPH RBD FOR DYNAMIC PROVISIONING 566
28.4.1. Overview 566
28.4.2. Creating a pool for dynamic volumes 566
28.4.3. Using an existing Ceph cluster for dynamic persistent storage 567
28.4.4. Setting ceph-user-secret as the default for projects 570
28.5. COMPLETE EXAMPLE USING GLUSTERFS 570
28.5.1. Overview 571
28.5.2. Prerequisites 571
28.5.3. Static Provisioning 572
28.5.4. Using the Storage 575
28.6. COMPLETE EXAMPLE USING GLUSTERFS FOR DYNAMIC PROVISIONING 576
28.6.1. Overview 577
28.6.2. Prerequisites 577
28.6.3. Dynamic Provisioning 577
28.6.4. Using the Storage 578
28.7.MOUNTING VOLUMES ON PRIVILEGED PODS 580
28.7.1. Overview 580
28.7.2. Prerequisites 581
28.7.3. Creating the Persistent Volume 581
28.7.4. Creating a Reqgular User 581
28.7.5. Creating the Persistent Volume Claim 582
28.7.6. Verifying the Setup 583
28.7.6.1. Checking the Pod SCC 583
28.7.6.2. Verifying the Mount 583
28.8. MOUNT PROPAGATION 583
28.8.1. Overview 583
28.8.2. Values 583
28.8.3. Configuration 584
28.9. SWITCHING AN INTEGRATED OPENSHIFT CONTAINER REGISTRY TO GLUSTERFS 584
28.9.1. Overview 584
28.9.2. Prerequisites 584
28.9.3. Manually Provision the GlusterFS PersistentVolumeClaim 585
28.9.4. Attach the PersistentVolumeClaim to the Registry 588
28.10. BINDING PERSISTENT VOLUMES BY LABELS 588
28.10.1. Overview 588
28.10.1.1. Assumptions 589

15

OpenShift Container Platform 3.11 Configuring Clusters

28.10.2. Defining Specifications
28.10.2.1. Persistent Volume with Labels
28.10.2.2. Persistent Volume Claim with Selectors
28.10.2.3. Volume Endpoints
28.10.2.4. Deploy the PV, PVC, and Endpoints
28.11. USING STORAGE CLASSES FOR DYNAMIC PROVISIONING
28.11.1. Overview
28.11.2. Scenario 1: Basic Dynamic Provisioning with Two Types of StorageClasses
28.11.3. Scenario 2: How to enable Default StorageClass behavior for a Cluster
28.12. USING STORAGE CLASSES FOR EXISTING LEGACY STORAGE
28.12.1. Overview
28.12.1.1. Scenario 1: Link StorageClass to existing Persistent Volume with Legacy Data
28.13. CONFIGURING AZURE BLOB STORAGE FOR INTEGRATED CONTAINER IMAGE REGISTRY
28.13.1. Overview
28.13.2. Before You Begin
28.13.3. Overriding Registry Configuration

CHAPTER 29. CONFIGURING EPHEMERAL STORAGE ... i

29.1. OVERVIEW
29.2. ENABLING EPHEMERAL STORAGE

CHAPTER 30. WORKING WITHHTTP PROXIES e

30.1. OVERVIEW

30.2. CONFIGURING NO_PROXY

30.3. CONFIGURING HOSTS FOR PROXIES

30.4. CONFIGURING HOSTS FOR PROXIES USING ANSIBLE
30.5. PROXYING DOCKER PULL

30.6. USING MAVEN BEHIND A PROXY

30.7. CONFIGURING S2I BUILDS FOR PROXIES

30.8. CONFIGURING DEFAULT TEMPLATES FOR PROXIES
30.9. SETTING PROXY ENVIRONMENT VARIABLES IN PODS
30.10. GIT REPOSITORY ACCESS

CHAPTER 31. CONFIGURING GLOBAL BUILD DEFAULTS AND OVERRIDES ooo0at,

31.1. OVERVIEW

31.2. SETTING GLOBAL BUILD DEFAULTS
31.2.1. Configuring Global Build Defaults with Ansible
31.2.2. Manually Setting Global Build Defaults

31.3. SETTING GLOBAL BUILD OVERRIDES
31.3.1. Configuring Global Build Overrides with Ansible
31.3.2. Manually Setting Global Build Overrides

CHAPTER 32. CONFIGURING PIPELINE EXECUTION i

32.1. OVERVIEW
32.2. OPENSHIFT JENKINS CLIENT PLUGIN
32.3. OPENSHIFT JENKINS SYNC PLUGIN

CHAPTER 33. CONFIGURING ROUTE TIMEQUTS ... i it caie s

CHAPTER 34. CONFIGURING NATIVE CONTAINERROUTING ...t

34.1. NETWORK OVERVIEW

34.2. CONFIGURE NATIVE CONTAINER ROUTING
34.3.SETTING UP ANODE FOR CONTAINER NETWORKING
34.4. SETTING UP A ROUTER FOR CONTAINER NETWORKING

16

589
589
590
590
590

591

591

591
594
598
598
598
600
600
600

601

603
603

605
605
606
606
607
608
608
608
609
609

CHAPTER 35. ROUTING FROM EDGE LOAD BALANCERS

35.1. OVERVIEW

35.2. INCLUDING THE LOAD BALANCER IN THE SDN

35.3. ESTABLISHING A TUNNEL USING A RAMP NODE
35.3.1. Configuring a Highly Available Ramp Node

CHAPTER 36. AGGREGATING CONTAINERLOGSciiiiiiiiiiiian,

36.1. OVERVIEW
36.2. PRE-DEPLOYMENT CONFIGURATION
36.3. SPECIFYING LOGGING ANSIBLE VARIABLES
36.4. DEPLOYING THE EFK STACK
36.5. UNDERSTANDING AND ADJUSTING THE DEPLOYMENT
36.5.1. Ops Cluster
36.5.2. Elasticsearch
36.5.2.1. Persistent Elasticsearch Storage
36.5.2.1.1. Using NFS as a persistent volume
36.5.2.1.2. Using NFS as local storage
36.5.2.1.3. Configuring hostPath storage for Elasticsearch
36.5.2.1.4. Changing the Scale of Elasticsearch
36.5.2.1.5. Changing the Number of Elasticsearch Replicas
36.5.2.1.6. Expose Elasticsearch as a Route
36.5.3. Fluentd
36.5.4. Kibana
36.5.5. Curator
36.5.5.1. Using the Curator Actions File
36.5.5.2. Creating the Curator Configuration
36.6. CLEANUP
36.7. SENDING LOGS TO AN EXTERNAL ELASTICSEARCH INSTANCE
36.8. SENDING LOGS TO AN EXTERNAL SYSLOG SERVER
36.9. PERFORMING ADMINISTRATIVE ELASTICSEARCH OPERATIONS
36.10. REDEPLOYING EFK CERTIFICATES
36.11. CHANGING THE AGGREGATED LOGGING DRIVER
36.12. MANUAL ELASTICSEARCH ROLLOUTS
36.12.1. Performing an Elasticsearch Rolling Cluster Restart
36.12.2. Performing an Elasticsearch Full Cluster Restart
36.13. TROUBLESHOOTING EFK
36.13.1. Troubleshooting related to all EFK components
36.13.2. Troubleshooting related to ElasticSearch
36.13.3. Kibana

CHAPTER 37. AGGREGATE LOGGING SIZING GUIDELINES

37.1. OVERVIEW
37.2. INSTALLATION
37.2.1. Large Clusters
37.3. SYSTEMD-JOURNALD AND RSYSLOG
37.4. SCALING UP EFK LOGGING
37.4.1. Master Events are Aggregated to EFK as Logs
37.5. STORAGE CONSIDERATIONS

CHAPTER 38. ENABLING CLUSTERMETRICS ...t

38.1. OVERVIEW

38.2. BEFORE YOU BEGIN

38.3. METRICS DATA STORAGE
38.3.1. Persistent Storage

Table of Contents

622
622
622
625

..................... 626

626
626
626
638
639
639
639

641
642
643
645
647
647
647
648

661
666
668
669
670
670

671
674
675
675
677
677
678
679
679
680

681

683
683
685
685
686
686
686

..................... 687

687
687
687
687

17

OpenShift Container Platform 3.11 Configuring Clusters

38.3.2. Capacity Planning for Cluster Metrics 688
Known Issues and Limitations 690
38.3.3. Non-Persistent Storage 690
38.4. METRICS ANSIBLE ROLE 690
38.4.1. Specifying Metrics Ansible Variables 691
38.4.2. Using Secrets 694
38.4.2.1. Providing Your Own Certificates 694
38.5. DEPLOYING THE METRIC COMPONENTS 695
38.5.1. Metrics Diagnostics 696
38.6.SETTING THE METRICS PUBLIC URL 696
38.7. ACCESSING HAWKULAR METRICS DIRECTLY 696
38.7.1. OpenShift Container Platform Projects and Hawkular Tenants 697
38.7.2. Authorization 697
38.8. SCALING OPENSHIFT CONTAINER PLATFORM CLUSTER METRICS PODS 697
38.9. CLEANUP 697
CHAPTER 39. CUSTOMIZING THEWEB CONSOLEttt et eeenneeennns 698
39.1. OVERVIEW 698
39.2. LOADING EXTENSION SCRIPTS AND STYLESHEETS 698
39.2.1. Setting Extension Properties 699
39.3. EXTENSION OPTION FOR EXTERNAL LOGGING SOLUTIONS 700
39.4. CUSTOMIZING AND DISABLING THE GUIDED TOUR 700
39.5. CUSTOMIZING DOCUMENTATION LINKS 700
39.6. CUSTOMIZING THE LOGO 700
39.7. CUSTOMIZING THE MEMBERSHIP WHITELIST 701
39.8. CHANGING LINKS TO DOCUMENTATION 701
39.9. ADDING OR CHANGING LINKS TO DOWNLOAD THE CLI 701
39.9.1. Customizing the About Page 702
39.10. CONFIGURING NAVIGATION MENUS 703
39.10.1. Top Navigation Dropdown Menus 703
39.10.2. Application Launcher 704
39.10.3. System Status Badge 704
39.10.4. Project Left Navigation 705
39.11. CONFIGURING FEATURED APPLICATIONS 706
39.12. CONFIGURING CATALOG CATEGORIES 707
39.13. CONFIGURING QUOTA NOTIFICATION MESSAGES 708
39.14. CONFIGURING THE CREATE FROM URL NAMESPACE WHITELIST 709
39.15. DISABLING THE COPY LOGIN COMMAND 709
39.15.1. Enabling Wildcard Routes 709
39.16. CUSTOMIZING THE LOGIN PAGE 709
39.16.1. Example Usage 710
39.177. CUSTOMIZING THE OAUTH ERROR PAGE 710
39.18. CHANGING THE LOGOUT URL 710
39.19. CONFIGURING WEB CONSOLE CUSTOMIZATIONS WITH ANSIBLE 71
39.20. CHANGING THE WEB CONSOLE URL PORT AND CERTIFICATES 712
CHAPTER 40. DEPLOYING EXTERNAL PERSISTENT VOLUME PROVISIONERS cov..... 713
40.1. OVERVIEW 713
40.2. BEFORE YOU BEGIN 713
40.2.1. External Provisioners Ansible Role 713
40.2.2. External Provisioners Ansible Variables 713
40.2.3. AWS EFS Provisioner Ansible Variables 714
40.3. DEPLOYING THE PROVISIONERS 715

18

40.3.1. Deploying the AWS EFS Provisioner
40.3.1.1. AWS EFS Object Definition
40.4. CLEANUP

CHAPTER 41. INSTALLING THE OPERATOR FRAMEWORK (TECHNOLOGY PREVIEW)
41.1. WHAT'S IN THE TECHNOLOGY PREVIEW?
41.2. INSTALLING OPERATOR LIFECYCLE MANAGER USING ANSIBLE
41.3. LAUNCHING YOUR FIRST OPERATOR
41.4. GETTING INVOLVED

CHAPTER 42. UNINSTALLING OPERATORLIFECYCLE MANAGER,

42.1. UNINSTALLING OPERATOR LIFECYCLE MANAGER USING ANSIBLE

Table of Contents

715
715
716

................ 717
717

719

720

726

19

OpenShift Container Platform 3.11 Configuring Clusters

20

CHAPTER 1. OVERVIEW

CHAPTER 1. OVERVIEW

This guide covers further configuration options available for your OpenShift Container Platform cluster
post-installation.

21

OpenShift Container Platform 3.11 Configuring Clusters

CHAPTER 2. SETTING UP THE REGISTRY

2.1.INTERNAL REGISTRY OVERVIEW

2.1.1. About the Registry

OpenShift Container Platform can build container images from your source code, deploy them, and
manage their lifecycle. To enable this, OpenShift Container Platform provides an internal, integrated
container image registry that can be deployed in your OpenShift Container Platform environment to
locally manage images.

2.1.2. Integrated or Stand-alone Registries

During an initial installation of a full OpenShift Container Platform cluster, it is likely that the registry was
deployed automatically during the installation process. If it was not, or if you want to further customize
the configuration of your registry, see Deploying a Registry on Existing Clusters .

While it can be deployed to run as an integrated part of your full OpenShift Container Platform cluster,
the OpenShift Container Platform registry can alternatively be installed separately as a stand-alone
container image registry.

To install a stand-alone registry, follow Installing a Stand-alone Registry . This installation path deploys
an all-in-one cluster running a registry and specialized web console.

2.2. DEPLOYING A REGISTRY ON EXISTING CLUSTERS

2.2.1. Overview

If the integrated registry was not previously deployed automatically during the initial installation of your
OpenShift Container Platform cluster, or if it is no longer running successfully and you need to redeploy
it on your existing cluster, see the following sections for options on deploying a new registry.

NOTE

This topic is not required if you installed a stand-alone registry.

2.2.2. Setting the Registry Host Name

You can configure the host name and port the registry is known by for both internal and external
references. By doing this, image streams will provide hostname based push and pull specifications for
images, allowing consumers of the images to be isolated from changes to the registry service IP and
potentially allowing image streams and their references to be portable between clusters.

To set the hostname used to reference the registry from within the cluster, set the
internalRegistryHostname in the imagePolicyConfig section of the master configuration file. The
external host name is controlled by setting the externalRegistryHosthame value in the same location.

Image Policy Configuration

imagePolicyConfig:
internalRegistryHostname: docker-registry.default.svc.cluster.local:5000
externalRegistryHostname: docker-registry.mycompany.com

22

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#docker-images
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#integrated-openshift-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-config-installing-stand-alone-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-config-installing-stand-alone-registry

CHAPTER 2. SETTING UP THE REGISTRY

The registry itself must be configured with the same internal hostname value. This can be accomplished
by setting the REGISTRY_OPENSHIFT_SERVER_ADDR environment variable on the registry
deployment configuration, or by setting the value in the OpenShift section of the registry configuration.

NOTE
If you have enabled TLS for your registry the server certificate must include the

hostnames by which you expect the registry to be referenced. See securing the registry
for instructions on adding hostnames to the server certificate.

2.2.3. Deploying the Registry

To deploy the integrated container image registry, use the oc adm registry command as a user with
cluster administrator privileges. For example:

$ oc adm registry --config=/etc/origin/master/admin.kubeconfig \ﬂ
--service-account=registry \9
--images="registry.redhat.io/openshift3/ose-${component}:${version}' 6

ﬂ --config is the path to the CLI configuration file for the cluster administrator.
9 --service-account is the service account used to run the registry’s pod.

9 Required to pull the correct image for OpenShift Container Platform. ${component} and
${version} are dynamically replaced during installation.
This creates a service and a deployment configuration, both called docker-registry. Once deployed

successfully, a pod is created with a name similar to docker-registry-1-cpty9.

To see a full list of options that you can specify when creating the registry:

I $ oc adm registry --help

The value for --fs-group must be permitted by the SCC used by the registry (typically, the restricted
SCQ).
2.2.4. Deploying the Registry as a DaemonSet

Use the oc adm registry command to deploy the registry as a DaemonSet with the -~-daemonset
option.

Daemonsets ensure that when nodes are created, they contain copies of a specified pod. When the
nodes are removed, the pods are garbage collected.

For more information on DaemonSets, see Using Daemonsets.

2.2.5. Registry Compute Resources

By default, the registry is created with no settings for compute resource requests or limits. For
production, it is highly recommended that the deployment configuration for the registry be updated to
set resource requests and limits for the registry pod. Otherwise, the registry pod will be considered a
BestEffort pod.

23

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cli_reference/#cli-reference-manage-cli-profiles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-daemonsets
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-compute-resources
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#quality-of-service-tiers

OpenShift Container Platform 3.11 Configuring Clusters
See Compute Resources for more information on configuring requests and limits.

2.2.6. Storage for the Registry

The registry stores container images and metadata. If you simply deploy a pod with the registry, it uses
an ephemeral volume that is destroyed if the pod exits. Any images anyone has built or pushed into the
registry would disappear.

This section lists the supported registry storage drivers. See the container image registry
documentation for more information.

The following list includes storage drivers that need to be configured in the registry’s configuration file:
® Filesystem. Filesystem is the default and does not need to be configured.
® 53, See the CloudFront configuration documentation for more information.
® OpenStack Swift
® Google Cloud Storage (GCS)
® Microsoft Azure
e Aliyun OSS

General registry storage configuration options are supported. See the container image registry
documentation for more information.

The following storage options need to be configured through the filesystem driver:
® GlusterFS Storage

® Ceph Rados Block Device

NOTE

For more information on supported persistent storage drivers, see Configuring Persistent
Storage and Persistent Storage Examples.

2.2.6.1. Production Use

For production use, attach a remote volume or define and use the persistent storage method of your
choice.

For example, to use an existing persistent volume claim:

$ oc set volume deploymentconfigs/docker-registry --add --name=registry-storage -t pvc \
--claim-name=<pvc_name> --overwrite

24

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-compute-resources
https://docs.docker.com/registry/configuration/#storage
https://docs.docker.com/registry/storage-drivers/filesystem
https://github.com/docker/docker.github.io/blob/master/registry/storage-drivers/s3.md#cloudfront-as-middleware-with-s3-backend
https://docs.docker.com/registry/storage-drivers/swift/
https://docs.docker.com/registry/storage-drivers/gcs/
https://docs.docker.com/registry/storage-drivers/azure/
https://docs.docker.com/registry/storage-drivers/oss/
https://docs.docker.com/registry/configuration/#maintenance
https://docs.docker.com/registry/storage-drivers/filesystem

CHAPTER 2. SETTING UP THE REGISTRY

IMPORTANT

Testing shows issues with using the RHEL NFS server as a storage backend for the
container image registry. This includes the OpenShift Container Registry and Quay.
Therefore, using the RHEL NFS server to back PVs used by core services is not
recommended.

Other NFS implementations on the marketplace might not have these issues. Contact
the individual NFS implementation vendor for more information on any testing that was
possibly completed against these OpenShift core components.

2.2.6.1.1. Use Amazon S3 as a Storage Back-end

There is also an option to use Amazon Simple Storage Service storage with the internal container image
registry. It is a secure cloud storage manageable through AWS Management Console. To use it, the
registry’s configuration file must be manually edited and mounted to the registry pod. However, before
you start with the configuration, look at upstream’s recommended steps.

Take a default YAML configuration file as a base and replace the filesystem entry in the storage
section with s3 entry such as below. The resulting storage section may look like this:

storage:

cache:
layerinfo: inmemory

delete:
enabled: true

s3:
accesskey: awsaccesskey ﬂ
secretkey: awssecretkey 9
region: us-west-1
regionendpoint: http://myobjects.local
bucket: bucketname
encrypt: true
keyid: mykeyid
secure: true
vdauth: false
chunksize: 5242880
rootdirectory: /s3/object/name/prefix

ﬂ Replace with your Amazon access key.

9 Replace with your Amazon secret key.
All of the s3 configuration options are documented in upstream’s driver reference documentation.

Overriding the registry configuration will take you through the additional steps on mounting the
configuration file into pod.

25

https://aws.amazon.com/s3/getting-started/
https://docs.docker.com/docker-trusted-registry/configure/config-storage/#amazon-s3
https://docs.docker.com/registry/storage-drivers/s3/

OpenShift Container Platform 3.11 Configuring Clusters

' WARNING
A When the registry runs on the S3 storage back-end, there are reported issues.

If you want to use a S3 region that is not supported by the integrated registry you are using, see S3
Driver Configuration.

2.2.6.2. Non-Production Use

For non-production use, you can use the --mount-host=<path> option to specify a directory for the
registry to use for persistent storage. The registry volume is then created as a host-mount at the
specified <paths.

IMPORTANT

The --mount-host option mounts a directory from the node on which the registry
container lives. If you scale up the docker-registry deployment configuration, it is
possible that your registry pods and containers will run on different nodes, which can
result in two or more registry containers, each with its own local storage. This will lead to
unpredictable behavior, as subsequent requests to pull the same image repeatedly may
not always succeed, depending on which container the request ultimately goes to.

The --mount-host option requires that the registry container run in privileged mode. This is
automatically enabled when you specify --mount-host. However, not all pods are allowed to run
privileged containers by default. If you still want to use this option, create the registry and specify that it
use the registry service account that was created during installation:

$ oc adm registry --service-account=registry \
--config=/etc/origin/master/admin.kubeconfig \
--images="registry.redhat.io/openshift3/ose-${component}:${version}' \ ﬂ
--mount-host=<path>

Required to pull the correct image for OpenShift Container Platform. ${component} and
${version} are dynamically replaced during installation.

IMPORTANT

The container image registry pod runs as user 1001. This user must be able to write to the
host directory. You may need to change directory ownership to user ID 1001 with this
command:

I $ sudo chown 1001:root <path>

2.2.7. Enabling the Registry Console

26

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#security-warning

CHAPTER 2. SETTING UP THE REGISTRY

OpenShift Container Platform provides a web-based interface to the integrated registry. This registry
console is an optional component for browsing and managing images. It is deployed as a stateless
service running as a pod.

NOTE

If you installed OpenShift Container Platform as a stand-alone registry, the registry
console is already deployed and secured automatically during installation.

-

IMPORTANT

If Cockpit is already running, you'll need to shut it down before proceeding in order to
avoid a port conflict (9090 by default) with the registry console.

2.2.7.1. Deploying the Registry Console

IMPORTANT

You must first have exposed the registry.

1. Create a passthrough route in the default project. You will need this when creating the registry
console application in the next step.

$ oc create route passthrough --service registry-console \
--port registry-console \
-n default

2. Deploy the registry console application. Replace <openshift_oauth_url> with the URL of the
OpenShift Container Platform OAuth provider, which is typically the master.

$ oc new-app -n default --template=registry-console \

-p OPENSHIFT_OAUTH_PROVIDER_URL="https://<openshift_oauth_url>:8443" \

-p REGISTRY_HOST=$(oc get route docker-registry -n default --template="{{ .spec.host
A

-p COCKPIT_KUBE_URL=$(oc get route registry-console -n default --template="https://{{
.spec.host }}")

/ NOTE

If the redirection URL is wrong when you are trying to log in to the registry
console, check your OAuth client with oc get oauthclients.

3. Finally, use a web browser to view the console using the route URI.

2.2.7.2. Securing the Registry Console

By default, the registry console generates self-signed TLS certificates if deployed manually per the
steps in Deploying the Registry Console. See Troubleshooting the Registry Console for more
information.

Use the following steps to add your organization’s signed certificates as a secret volume. This assumes
your certificates are available on the oc client host.

27

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-config-installing-stand-alone-registry

OpenShift Container Platform 3.11 Configuring Clusters

1. Create a.cert file containing the certificate and key. Format the file with:

® One or more BEGIN CERTIFICATE blocks for the server certificate and the intermediate
certificate authorities

® Ablock containing a BEGIN PRIVATE KEY or similar for the key. The key must not be
encrypted
For example:

MIIDUzCCAjugAwIBAgIJAPXW+CuNYS6QMAOGCSqGSIb3aDQEBCWUAMDS8XKTANBgN
V
BAoOMIGIOOGE2NGNKNMMwNTQ1YThhZTgxOTEzZDE5YmJMmRjMRIWEAYDVQQDD
Als

MIIDUzCCAjugAwIBAgIJAPXW+CuNYS6QMAOGCSqGSIb3aDQEBCWUAMDS8XKTANBgN
V
BAoOMIGIOOGE2NGNKNMMwNTQ1YThhZTgxOTEzZDE5YmJMmRjMRIWEAYDVQQDD
Als

MIIEvgIBADANBgkghkiGOWOBAQEFAASCBKgwggSkAgEAACIBAQCYOJ5garOYwOsm
8TBCDSqQ/H1awGMzDYdB11xuHHsxYS2VepPMzMzryHR13714dGFLhvd TvJUHSIUS

® The secured registry should contain the following Subject Alternative Names (SAN) list:

o Two service hostnames.
For example:

docker-registry.default.svc.cluster.local
docker-registry.default.svc

o Service IP address.
For example:

I 172.30.124.220

Use the following command to get the container image registry service IP address:
I oc get service docker-registry --template="{{.spec.clusterIP}}'

o Public hostname.
For example:

I docker-registry-default.apps.example.com

Use the following command to get the container image registry public hostname:

28

CHAPTER 2. SETTING UP THE REGISTRY

I oc get route docker-registry --template '{{.spec.host}}'
For example, the server certificate should contain SAN details similar to the following:

X509v3 Subject Alternative Name:

DNS:docker-registry-public.openshift.com, DNS:docker-registry.default.svc,
DNS:docker-registry.default.svc.cluster.local, DNS:172.30.2.98, IP
Address:172.30.2.98

The registry console loads a certificate from the /etc/cockpit/ws-certs.d directory. It
uses the last file with a.cert extension in alphabetical order. Therefore, the .cert file
should contain at least two PEM blocks formatted in the OpenSSL style.

If no certificate is found, a self-signed certificate is created using the openssl
command and stored in the O-self-signed.cert file.

2. Create the secret:

$ oc create secret generic console-secret \
--from-file=/path/to/console.cert

3. Add the secrets to the registry-console deployment configuration:

$ oc set volume dc/registry-console --add --type=secret \
--secret-name=console-secret -m /etc/cockpit/ws-certs.d

This triggers a new deployment of the registry console to include your signed certificates.
2.2.7.3. Troubleshooting the Registry Console

2.2.7.3.1. Debug Mode

The registry console debug mode is enabled using an environment variable. The following command
redeploys the registry console in debug mode:

I $ oc set env dc registry-console G_ MESSAGES_DEBUG=cockpit-ws,cockpit-wrapper

Enabling debug mode allows more verbose logging to appear in the registry console’s pod logs.

2.2.7.3.2. Display SSL Certificate Path

To check which certificate the registry console is using, a command can be run from inside the console
pod.

1. List the pods in the default project and find the registry console’s pod name:
$ oc get pods -n default

NAME READY STATUS RESTARTS AGE
registry-console-1-rssrw 1/1 Running 0 1d

2. Using the pod name from the previous command, get the certificate path that the cockpit-ws
process is using. This example shows the console using the auto-generated certificate:

29

OpenShift Container Platform 3.11 Configuring Clusters

$ oc exec registry-console-1-rssrw remotectl certificate
certificate: /etc/cockpit/ws-certs.d/0-self-signed.cert

2.3. ACCESSING THE REGISTRY

2.3.1. Viewing Logs

To view the logs for the container image registry, use the oc logs command with the deployment
configuration:

$ oc logs dc/docker-registry

2015-05-01T19:48:36.300593110Z time="2015-05-01T19:48:36Z" level=info
msg="version=v2.0.0+unknown"

2015-05-01T19:48:36.3032947247Z time="2015-05-01T19:48:36Z" level=info msg="redis not
configured" instance.id=9ed6c43d-23ee-453f-9a4b-031fea646002
2015-05-01T19:48:36.3034228457 time="2015-05-01T19:48:36Z" level=info msg="using inmemory
layerinfo cache" instance.id=9ed6c43d-23ee-453f-9a4b-031fea646002
2015-05-01T19:48:36.303433991Z time="2015-05-01T19:48:36Z" level=info msg="Using OpenShift
Auth handler"

2015-05-01T19:48:36.303439084Z time="2015-05-01T19:48:36Z" level=info msg="listening on :5000"
instance.id=9ed6c43d-23ee-453f-9a4b-031fea646002

2.3.2. File Storage

Tag and image metadata is stored in OpenShift Container Platform, but the registry stores layer and
signature data in a volume that is mounted into the registry container at /registry. As oc exec does not
work on privileged containers, to view a registry’s contents you must manually SSH into the node
housing the registry pod’s container, then run docker exec on the container itself:

1. List the current pods to find the pod name of your container image registry:
I # oc get pods
Then, use oc describe to find the host name for the node running the container:
I # oc describe pod <pod_name>

2. Login to the desired node:

I # ssh node.example.com

3. List the running containers from the default project on the node host and identify the container
ID for the container image registry:

I # docker ps --filter=name=registry_docker-registry.”_default_

4. List the registry contents using the oc rsh command:

oc rsh dc/docker-registry find /registry
/registry/docker
/registry/docker/registry
/registry/docker/registry/v2

30

0009

CHAPTER 2. SETTING UP THE REGISTRY

/registry/docker/registry/v2/blobs)

/registry/docker/registry/v2/blobs/sha256

/registry/docker/registry/v2/blobs/sha256/ed
/registry/docker/registry/v2/blobs/sha256/ed/ede17b139a271d6b1331ca3d83c648c24f92cece5f
89d95ac6¢34ce751111810
/registry/docker/registry/v2/blobs/sha256/ed/ede17b139a271d6b1331ca3d83c648c24f92cece5f
89d95ac6c34ce751111810/data 9

/registry/docker/registry/v2/blobs/sha256/a3
/registry/docker/registry/v2/blobs/sha256/a3/a3ed95caeb02ffe68cdd9fd84406680ae93d633cb1
6422d00e8a7c22955b46d4
/registry/docker/registry/v2/blobs/sha256/a3/a3ed95caeb02ffe68cdd9fd84406680ae93d633cb1
6422d00e8a7c22955b46d4/data

/registry/docker/registry/v2/blobs/sha256/f7
/registry/docker/registry/v2/blobs/sha256/f7/f72a00a23f01987b42cb26f259582bb33502bdb0fcf5
011e03c60577c4284845
/registry/docker/registry/v2/blobs/sha256/f7/f72a00a23f01987b42cb26f259582bb33502bdb0fcf5
011e03c60577c4284845/data

/registry/docker/registry/v2/repositories 6

/registry/docker/registry/v2/repositories/p1

/registry/docker/registry/v2/repositories/p1/pause
/registry/docker/registry/v2/repositories/p1/pause/_manifests
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisions
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisions/sha256
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisions/sha256/e9a2ac6418981¢
97b399d3709f1b4a6d2723cd38a4909215ce2752a5c068b1 cf
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisions/sha256/e9a2ac6418981¢
97b399d3709f1b4a6d2723cd38a4909215ce2752a5c068b1cf/signatures 9
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisions/sha256/e9a2ac6418981¢
97b399d3709f1b4a6d2723cd38a4909215ce2752a5c068b1cf/signatures/sha256
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisions/sha256/e9a2ac6418981¢
97b399d3709f1b4a6d2723cd38a4909215ce2752a5c068b1cf/signatures/sha256/ede17b139a2
71d6b1331ca3d83c648c24f92cece5f89d95ac6¢c34ce751111810
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisions/sha256/e9a2ac6418981¢
97b399d3709f1b4a6d2723cd38a4909215ce2752a5c068b1cf/signatures/sha256/ede17b139a2
71d6b1331ca3d83c648c24f92cece5f89d95ac6c34ce751111810/link G
/registry/docker/registry/v2/repositories/p1/pause/_uploads ﬂ
/registry/docker/registry/v2/repositories/p1/pause/_layers
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256/a3ed95caeb02ffe68cdd9fd844
066802€93d633cb16422d00e8a7c22955b46d4
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256/a3ed95caeb02ffe68cdd9fd844
066802€93d633cb16422d00e8a7c22955b46d4/link Q
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256/f72a00a23f01987b42cb26f25
9582bb33502bdb0fcf5011e03c60577c4284845
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256/f72a00a23f01987b42cb26f25
9582bb33502bdb0fcf5011e03c60577¢c4284845/link

This directory stores all layers and signatures as blobs.
This file contains the blob’s contents.
This directory stores all the image repositories.

This directory is for a single image repository p1/pause.

31

OpenShift Container Platform 3.11 Configuring Clusters

9 This directory contains signatures for a particular image manifest revision.
This file contains a reference back to a blob (which contains the signature data).

This directory contains any layers that are currently being uploaded and staged for the
given repository.

This directory contains links to all the layers this repository references.

0 99

This file contains a reference to a specific layer that has been linked into this repository via
an image.

2.3.3. Accessing the Registry Directly
For advanced usage, you can access the registry directly to invoke docker commands. This allows you to
push images to or pull them from the integrated registry directly using operations like docker push or

docker pull. To do so, you must be logged in to the registry using the docker login command. The
operations you can perform depend on your user permissions, as described in the following sections.

2.3.3.1. User Prerequisites

To access the registry directly, the user that you use must satisfy the following, depending on your
intended usage:

® Forany direct access, you must have a regular user for your preferred identity provider. A
regular user can generate an access token required for logging in to the registry. System users,
such as system:admin, cannot obtain access tokens and, therefore, cannot access the registry
directly.

For example, if you are using HTPASSWD authentication, you can create one using the following
command:

I # htpasswd /etc/origin/master/htpasswd <user_name>

e For pulling images, for example when using the docker pull command, the user must have the
registry-viewer role. To add this role:

I $ oc policy add-role-to-user registry-viewer <user_name>

® For writing or pushing images, for example when using the docker push command, the user
must have the registry-editor role. To add this role:

I $ oc policy add-role-to-user registry-editor <user_name>
For more information on user permissions, see Managing Role Bindings.

2.3.3.2. Logging in to the Registry

NOTE

Ensure your user satisfies the prerequisites for accessing the registry directly.

To log in to the registry directly:

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#users
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#users
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#managing-role-bindings

CHAPTER 2. SETTING UP THE REGISTRY

1. Ensure you are logged in to OpenShift Container Platform as a regular user:
I $ oc login
2. Login to the container image registry by using your access token:

I docker login -u openshift -p $(oc whoami -t) <registry_ip>:<port>

NOTE

You can pass any value for the username, the token contains all necessary information.
Passing a username that contains colons will result in a login failure.

2.3.3.3. Pushing and Pulling Images

After logging in to the registry , you can perform docker pull and docker push operations against your
registry.

IMPORTANT

You can pull arbitrary images, but if you have the system:registry role added, you can
only push images to the registry in your project.

In the following examples, we use:

Component Value

<registry_ip> 172.30.124.220

<port> 5000

<project> openshift

<image> busybox

<tag> omitted (defaults to latest)

1. Pull an arbitrary image:

I $ docker pull docker.io/busybox

2. Tagthe new image with the form <registry_ip>:<port>/<project>/<image>. The project name
must appear in this pull specification for OpenShift Container Platform to correctly place and
later access the image in the registry.

I $ docker tag docker.io/busybox 172.30.124.220:5000/openshift/busybox

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#image-streams

OpenShift Container Platform 3.11 Configuring Clusters

NOTE

Your regular user must have the system:image-builder role for the specified
project, which allows the user to write or push an image. Otherwise, the docker
push in the next step will fail. To test, you can create a new project to push the
busybox image.

3. Push the newly-tagged image to your registry:

$ docker push 172.30.124.220:5000/openshift/busybox

cf2616975b4a: Image successfully pushed
Digest: sha256:3662dd821983bc4326bee12caec61367e7fb6f6a3ee547cbaffo8f77403cab55

2.3.4. Accessing Registry Metrics

The OpenShift Container Registry provides an endpoint for Prometheus metrics. Prometheus is a
stand-alone, open source systems monitoring and alerting toolkit.

The metrics are exposed at the /extensions/v2/metrics path of the registry endpoint. However, this
route must first be enabled; see Extended Registry Configuration for instructions.

The following is a simple example of a metrics query:

$ curl -s -u <user>:<secret> \ ﬂ
http://172.30.30.30:5000/extensions/v2/metrics | grep openshift | head -n 10

HELP openshift_build_info A metric with a constant '1' value labeled by major, minor, git commit &
git version from which OpenShift was built.

TYPE openshift_build_info gauge
openshift_build_info{gitCommit="67275e1",gitVersion="v3.6.0-alpha.1+67275e1-
803",major="3",minor="6+"} 1

HELP openshift_registry_request_duration_seconds Request latency summary in microseconds for
each operation

TYPE openshift_registry request_duration_seconds summary
openshift_registry_request_duration_seconds{name="test/origin-
pod",operation="blobstore.create",quantile="0.5"} 0
openshift_registry_request_duration_seconds{name="test/origin-
pod",operation="blobstore.create",quantile="0.9"} 0
openshift_registry_request_duration_seconds{name="test/origin-
pod",operation="blobstore.create",quantile="0.99"} 0
openshift_registry_request_duration_seconds_sum{name="test/origin-
pod",operation="blobstore.create"} 0
openshift_registry_request_duration_seconds_count{name="test/origin-
pod",operation="blobstore.create"} 5

ﬂ <users can be arbitrary, but <secret> must match the value specified in the registry configuration.

Another method to access the metrics is to use a cluster role. You still need to enable the endpoint, but
you do not need to specify a <secret>. The part of the configuration file responsible for metrics should
look like this:

openshift:
version: 1.0

34

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#create-a-project
https://prometheus.io/docs/introduction/overview/

CHAPTER 2. SETTING UP THE REGISTRY

metrics:
enabled: true

You must create a cluster role if you do not already have one to access the metrics:

$ cat <<EOF |
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: prometheus-scraper
rules:
- apiGroups:
- image.openshift.io
resources:
- registry/metrics
verbs:
- get
EOF
oc create -f -

To add this role to a user, run the following command:

I $ oc adm policy add-cluster-role-to-user prometheus-scraper <username>

See the upstream Prometheus documentation for more advanced queries and recommended
visualizers.

2.4. SECURING AND EXPOSING THE REGISTRY

2.4.1. Overview

By default, the OpenShift Container Platform registry is secured during cluster installation so that it
serves traffic via TLS. A passthrough route is also created by default to expose the service externally.

If for any reason your registry has not been secured or exposed, see the following sections for steps on
how to manually do so.

2.4.2. Manually Securing the Registry

To manually secure the registry to serve traffic via TLS:
1. Deploy the registry.

2. Fetch the service IP and port of the registry:

$ oc get svc/docker-registry
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
docker-registry ClusterlP 172.30.82.152 <none> 5000/TCP 1d

3. You can use an existing server certificate, or create a key and server certificate valid for
specified IPs and host names, signed by a specified CA. To create a server certificate for the
registry service IP and the docker-registry.default.svc.cluster.local host name, run the

35

https://prometheus.io/docs/querying/basics/

OpenShift Container Platform 3.11 Configuring Clusters

following command from the first master listed in the Ansible host inventory file, by default
/etc/ansible/hosts:

$ oc adm ca create-server-cert \
--signer-cert=/etc/origin/master/ca.crt \
--signer-key=/etc/origin/master/ca.key \
--signer-serial=/etc/origin/master/ca.serial.txt \
--hostnames='docker-registry.default.svc.cluster.local,docker-

registry.default.svc,172.30.124.220' \
--cert=/etc/secrets/registry.crt \
--key=/etc/secrets/reqgistry.key

If the router will be exposed externally, add the public route host name in the --hostnames flag:

--hostnames="mydocker-registry.example.com,docker-
registry.default.svc.cluster.local,172.30.124.220 \

See Redeploying Registry and Router Certificates for additional details on updating the default
certificate so that the route is externally accessible.

NOTE

The oc adm ca create-server-cert command generates a certificate that is valid
for two years. This can be altered with the --expire-days option, but for security
reasons, it is recommended to not make it greater than this value.

4. Create the secret for the registry certificates:

$ oc create secret generic registry-certificates \
--from-file=/etc/secrets/registry.crt \
--from-file=/etc/secrets/registry.key

5. Add the secret to the registry pod’s service accounts (including the default service account):

$ oc secrets link registry registry-certificates
$ oc secrets link default registry-certificates

NOTE

Limiting secrets to only the service accounts that reference them is disabled by

default. This means that if serviceAccountConfig.limitSecretReferences is set
to false (the default setting) in the master configuration file, linking secrets to a

service is not required.

6. Pause the docker-registry service:
I $ oc rollout pause dc/docker-registry

7. Add the secret volume to the registry deployment configuration:

$ oc set volume dc/docker-registry --add --type=secret \
--secret-name=registry-certificates -m /etc/secrets

36

8.

1.

12.

13.

14.

CHAPTER 2. SETTING UP THE REGISTRY

Enable TLS by adding the following environment variables to the registry deployment
configuration:

$ oc set env dc/docker-registry \
REGISTRY_HTTP_TLS_CERTIFICATE=/etc/secrets/registry.crt \
REGISTRY_HTTP_TLS_KEY=/etc/secrets/registry.key

See the Configuring a registry section of the Docker documentation for more information.

Update the scheme used for the registry’s liveness probe from HTTP to HTTPS:

$ oc patch dc/docker-registry -p {"spec": {"template": {"spec": {"containers":[{
"name":"registry",
"livenessProbe": {"httpGet": {"scheme":"HTTPS"}}
Y

. If your registry was initially deployed on OpenShift Container Platform 3.2 or later, update the

scheme used for the registry’s readiness probe from HTTP to HTTPS:

$ oc patch dc/docker-registry -p {"spec": {"template": {"spec": {"containers":[{
"name":"registry",
"readinessProbe": {"httpGet": {"scheme":"HTTPS"}}
Y

Resume the docker-registry service:
I $ oc rollout resume dc/docker-registry

Validate the registry is running in TLS mode. Wait until the latest docker-registry deployment
completes and verify the Docker logs for the registry container. You should find an entry for
listening on :5000, tls.

$ oc logs dc/docker-registry | grep tls
time="2015-05-27T05:05:53Z" level=info msg="listening on :5000, tls" instance.id=deeba528-
c478-41f5-b751-dc48e4935fc2

Copy the CA certificate to the Docker certificates directory. This must be done on all nodes in
the cluster:

$ dcertsdir=/etc/docker/certs.d
$ destdir_addr=$dcertsdir/172.30.124.220:5000
$ destdir_name=$dcertsdir/docker-registry.default.svc.cluster.local:5000

$ sudo mkdir -p $destdir_addr $destdir_name
$ sudo cp ca.crt $destdir_addr ﬂ
$ sudo cp ca.crt $destdir_name

ﬂ The ca.crtfile is a copy of /etc/origin/master/ca.crt on the master.
When using authentication, some versions of docker also require you to configure your cluster

to trust the certificate at the OS level.

a. Copy the certificate:

37

https://docs.docker.com/registry/configuration/#override-specific-configuration-options

OpenShift Container Platform 3.11 Configuring Clusters

I $ cp /etc/origin/master/ca.crt /etc/pki/ca-trust/source/anchors/myregistrydomain.com.crt
b. Run:

I $ update-ca-trust enable

15. Remove the --insecure-registry option only for this particular registry in the

/etc/sysconfig/docker file. Then, reload the daemon and restart the docker service to reflect
this configuration change:

$ sudo systemctl daemon-reload
$ sudo systemctl restart docker

16. Validate the docker client connection. Running docker push to the registry or docker pull
from the registry should succeed. Make sure you have logged into the registry.

I $ docker tag|push <registry/image> <internal_registry/project/image>

For example:

$ docker pull busybox
$ docker tag docker.io/busybox 172.30.124.220:5000/openshift/busybox
$ docker push 172.30.124.220:5000/openshift/busybox

cf2616975b4a: Image successfully pushed
Digest: sha256:3662dd821983bc4326bee12caec61367e7fb6f6a3ee547cbaffo8f77403cab55

2.4.3. Manually Exposing a Secure Registry

Instead of logging in to the OpenShift Container Platform registry from within the OpenShift Container
Platform cluster, you can gain external access to it by first securing the registry and then exposing it with
a route. This allows you to log in to the registry from outside the cluster using the route address, and to
tag and push images using the route host.

1. Each of the following prerequisite steps are performed by default during a typical cluster
installation. If they have not been, perform them manually:

a. Manually deploy the registry.
b. Manually secure the registry.
c. Manually deploy a router.

2. A passthrough route should have been created by default for the registry during the initial
cluster installation:

a. Verify whether the route exists:

$ oc get route/docker-registry -o yaml
apiVersion: v1
kind: Route
metadata:
name: docker-registry
spec:

38

https://docs.docker.com/reference/commandline/push/
https://docs.docker.com/reference/commandline/pull/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#passthrough-termination

CHAPTER 2. SETTING UP THE REGISTRY

host: <host> ﬂ
to:

kind: Service

name: docker-registry g
tls:

termination: passthrough 6

ﬂ The host for your route. You must be able to resolve this name externally via DNS to
the router’s IP address.

9 The service name for your registry.

9 Specifies this route as a passthrough route.

NOTE

Re-encrypt routes are also supported for exposing the secure registry.

b. If it does not exist, create the route via the oc create route passthrough command,
specifying the registry as the route’s service. By default, the name of the created route is
the same as the service name:

i. Getthe docker-registry service details:

$ oc get svc

NAME CLUSTER_IP EXTERNAL_IP PORT(S) SELECTOR
AGE

docker-registry 172.30.69.167 <none> 5000/TCP docker-

registry=default 4h

kubernetes 172.30.0.1 <none> 443/TCP,53/UDP,53/TCP <none>
4h

router 172.30.172.132 <none> 80/TCP router=router
4h

ii. Create the route:

$ oc create route passthrough \
--service=docker-registry \ﬂ
--hostname=<host>

route "docker-registry" created 9

ﬂ Specifies the registry as the route’s service.
9 The route name is identical to the service name.
3. Next, you must trust the certificates being used for the registry on your host system to allow the

host to push and pull images. The certificates referenced were created when you secured your
registry.

$ sudo mkdir -p /etc/docker/certs.d/<host>
$ sudo cp <ca_certificate_file> /etc/docker/certs.d/<host>
$ sudo systemctl restart docker

39

OpenShift Container Platform 3.11 Configuring Clusters

4. Login to the registry using the information from securing the registry. However, this time point
to the host name used in the route rather than your service IP. When logging in to a secured and
exposed registry, make sure you specify the registry in the docker login command:

docker login -e user@company.com \
-u f83j5h6 \
-p Ju1PeM47R0B92Lk3AZp-bWJSck2F7aGCiZ66aFGZrs2 \
<host>

5. You can now tag and push images using the route host. For example, to tag and push a
busybox image in a project called test:

$ oc get imagestreams -n test
NAME DOCKER REPO TAGS UPDATED

$ docker pull busybox

$ docker tag busybox <host>/test/busybox

$ docker push <host>/test/busybox

The push refers to a repository [<host>/test/busybox] (len: 1)

8c2e06607696: Image already exists

6ce2e90b0bc7: Image successfully pushed

cf2616975b4a: Image successfully pushed

Digest:
sha256:6¢c7e676d76921031532d7d9c0394d0da7c2906f4cb4c049904c4031147d8ca31

$ docker pull <host>/test/busybox

latest: Pulling from <host>/test/busybox

cf2616975b4a: Already exists

6ce2e90b0bc7: Already exists

8c2e06607696: Already exists

Digest:
sha256:6¢c7e676d76921031532d7d9c0394d0da7c2906f4cb4c049904c4031147d8ca31
Status: Image is up to date for <host>/test/busybox:latest

$ oc get imagestreams -n test
NAME DOCKER REPO TAGS UPDATED
busybox 172.30.11.215:5000/test/busybox latest 2 seconds ago

NOTE

Your image streams will have the IP address and port of the registry service, not
the route name and port. See oc get imagestreams for details.

2.4.4. Manually Exposing a Non-Secure Registry

Instead of securing the registry in order to expose the registry, you can simply expose a non-secure
registry for non-production OpenShift Container Platform environments. This allows you to have an
external route to the registry without using SSL certificates.

40

CHAPTER 2. SETTING UP THE REGISTRY

' WARNING
A Only non-production environments should expose a non-secure registry to external

CIECESS:

To expose a non-secure registry:

1. Expose the registry:
I # oc expose service docker-registry --hostname=<hostname> -n default

This creates the following JSON file:

apiVersion: v1
kind: Route
metadata:
creationTimestamp: null
labels:
docker-registry: default
name: docker-registry
spec:
host: registry.example.com
port:
targetPort: "5000"
to:
kind: Service
name: docker-registry
status: {}

2. Verify that the route has been created successfully:

oc get route

NAME HOST/PORT PATH SERVICE LABELS
INSECURE POLICY TLS TERMINATION
docker-registry registry.example.com docker-registry docker-registry=default

3. Check the health of the registry:
I $ curl -v http://registry.example.com/healthz

Expect an HTTP 200/0OK message.

After exposing the registry, update your /etc/sysconfig/docker file by adding the port number
to the OPTIONS entry. For example:

OPTIONS="--selinux-enabled --insecure-registry=172.30.0.0/16 --insecure-registry
registry.example.com:80'

41

OpenShift Container Platform 3.11 Configuring Clusters

IMPORTANT

The above options should be added on the client from which you are trying to log
in.

Also, ensure that Docker is running on the client.

When logging in to the non-secured and exposed registry, make sure you specify the registry in the
docker login command. For example:

docker login -e user@company.com \
-u f83j5h6 \
-p Ju1PeM47R0B92Lk3AZp-bWJSck2F7aGCiZ66aFGZrs2 \
<host>

2.5. EXTENDED REGISTRY CONFIGURATION

2.5.1. Maintaining the Registry IP Address

OpenShift Container Platform refers to the integrated registry by its service IP address, so if you decide
to delete and recreate the docker-registry service, you can ensure a completely transparent transition
by arranging to re-use the old IP address in the new service. If a new IP address cannot be avoided, you
can minimize cluster disruption by rebooting only the masters.

Re-using the Address

To re-use the IP address, you must save the IP address of the old docker-registry service prior to
deleting it, and arrange to replace the newly assigned IP address with the saved one in the new
docker-registry service.

1. Make a note of the clusterIP for the service:

I $ oc get svc/docker-registry -o yaml | grep clusterlP:
2. Delete the service:

I $ oc delete svc/docker-registry dc/docker-registry

3. Create the registry definition in registry.yaml, replacing <options> with, for example, those
used in step 3 of the instructions in the Non-Production Use section:

I $ oc adm registry <options> -0 yaml > registry.yaml

4. Edit registry.yaml, find the Service there, and change its clusterlIP to the address noted in step
1.

5. Create the registry using the modified registry.yaml:
I $ oc create -f registry.yaml

Rebooting the Masters

If you are unable to re-use the IP address, any operation that uses a pull specification that includes
the old IP address will fail. To minimize cluster disruption, you must reboot the masters:

42

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#image-streams

CHAPTER 2. SETTING UP THE REGISTRY

master-restart api
master-restart controllers

This ensures that the old registry URL, which includes the old IP address, is cleared from the cache.

NOTE

We recommend against rebooting the entire cluster because that incurs unnecessary
downtime for pods and does not actually clear the cache.

2.5.2. Configuring an External Registry Search List

You can use the /etc/containers/registries.conf file to create a list of Docker registries to search for
container images.

The /etc/containers/registries.conf file is a list of registry servers that OpenShift Container Platform
should search against when a user pulls an image using the image short name, such as: myimage:latest.
You can customize the order of the search, specify secure and insecure registries, and define a blocked
registry list. OpenShift Container Platform does not search or allow pulls from registries on the blocked
list.

For example, if a user wants to pull the myimage:latest image, OpenShift Container Platform searches
the registries in the order they appear in the list until it finds the myimage:latest.

The registry search list allows you to curate a set of images and templates that are available for

download by OpenShift Container Platform users. You can place these images in one or more Docker
registries, add the registry to the list, and pull those images into your cluster.

NOTE

When using the registry search list, OpenShift Container Platform will not pull images
from a registry that is not in the search list.

To configure a registry search list:

1. Edit the /etc/containers/registries.conf file to add or edit the following parameters as needed:

[registries.search] ﬂ
registries = ["reg1.example.com", "reg2.example.com"]

[registries.insecure] 9
registries = ["reg3.example.com"]

[registries.block] 6
registries = ['docker.i0']

ﬂ Specify the secure registries from which users can download images using SSL/TLS.
9 Specify the insecure registries from which users can download images without TLS.

9 Specify the registries from which users cannot download images.

43

OpenShift Container Platform 3.11 Configuring Clusters

2.5.3. Setting the Registry Host Name

You can configure the host name and port the registry is known by for both internal and external
references. By doing this, image streams will provide hostname based push and pull specifications for
images, allowing consumers of the images to be isolated from changes to the registry service IP and
potentially allowing image streams and their references to be portable between clusters.

To set the hostname used to reference the registry from within the cluster, set the
internalRegistryHostname in the imagePolicyConfig section of the master configuration file. The
external host name is controlled by setting the externalRegistryHosthame value in the same location.

Image Policy Configuration

imagePolicyConfig:
internalRegistryHostname: docker-registry.default.svc.cluster.local:5000
externalRegistryHostname: docker-registry.mycompany.com

The registry itself must be configured with the same internal hostname value. This can be accomplished
by setting the REGISTRY_OPENSHIFT_SERVER_ADDR environment variable on the registry
deployment configuration, or by setting the value in the OpenShift section of the registry configuration.

NOTE

If you have enabled TLS for your registry the server certificate must include the
hostnames by which you expect the registry to be referenced. See securing the registry
for instructions on adding hostnames to the server certificate.

-

2.5.4. Overriding the Registry Configuration

You can override the integrated registry’s default configuration, found by default at /config.yml in a
running registry’s container, with your own custom configuration.

NOTE

Upstream configuration options in this file may also be overridden using environment
variables. The middleware section is an exception as there are just a few options that can
be overridden using environment variables. Learn how to override specific configuration
options.

To enable management of the registry configuration file directly and deploy an updated configuration
using a ConfigMap:

1. Deploy the registry.

2. Edit the registry configuration file locally as needed. The initial YAML file deployed on the
registry is provided below. Review supported options.

Registry Configuration File

version: 0.1
log:

level: debug
http:

addr: :5000

44

https://docs.docker.com/registry/configuration/#override-specific-configuration-options
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-configmaps

CHAPTER 2. SETTING UP THE REGISTRY

storage:
cache:
blobdescriptor: inmemory
filesystem:
rootdirectory: /registry
delete:
enabled: true
auth:
openshift:
realm: openshift
middleware:
registry:
- name: openshift
repository:
- name: openshift
options:
acceptschemaz2: true
pullthrough: true
enforcequota: false
projectcachettl: 1m
blobrepositorycachettl: 10m

storage:
- name: openshift
openshift:
version: 1.0
metrics:

enabled: false
secret: <secret>

3. Create a ConfigMap holding the content of each file in this directory:

$ oc create configmap registry-config \
--from-file=</path/to/custom/registry/config.yml>/

4. Add the registry-config ConfigMap as a volume to the registry’s deployment configuration to
mount the custom configuration file at /etc/docker/registry/:

$ oc set volume dc/docker-registry --add --type=configmap \
--configmap-name=registry-config -m /etc/docker/registry/

5. Update the registry to reference the configuration path from the previous step by adding the
following environment variable to the registry’s deployment configuration:

$ oc set env dc/docker-registry \
REGISTRY_CONFIGURATION_PATH=/etc/docker/registry/config.ymi

This may be performed as an iterative process to achieve the desired configuration. For example, during
troubleshooting, the configuration may be temporarily updated to put it in debug mode.

To update an existing configuration:

45

OpenShift Container Platform 3.11 Configuring Clusters

' WARNING
A This procedure will overwrite the currently deployed registry configuration.

1. Edit the local registry configuration file, config.yml.

2. Delete the registry-config configmap:

I $ oc delete configmap registry-config

3. Recreate the configmap to reference the updated configuration file:

$ oc create configmap registry-config\
--from-file=</path/to/custom/registry/config.yml>/

4. Redeploy the registry to read the updated configuration:

I $ oc rollout latest docker-registry

TIP

Maintain configuration files in a source control repository.

2.5.5. Registry Configuration Reference

There are many configuration options available in the upstream docker distribution library. Not all
configuration options are supported or enabled. Use this section as a reference when overriding the
registry configuration.

NOTE

Upstream configuration options in this file may also be overridden using environment
variables. However, the middleware section may not be overridden using environment
variables. Learn how to override specific configuration options .

2.5.5.1. Log
Upstream options are supported.

Example:

log:
level: debug
formatter: text
fields:
service: registry
environment: staging

46

https://github.com/docker/distribution
https://docs.docker.com/registry/configuration/
https://docs.docker.com/registry/configuration/#override-specific-configuration-options
https://docs.docker.com/registry/configuration/#log

CHAPTER 2. SETTING UP THE REGISTRY

2.5.5.2. Hooks

Mail hooks are not supported.

2.5.5.3. Storage

This section lists the supported registry storage drivers. See the container image registry
documentation for more information.

The following list includes storage drivers that need to be configured in the registry’s configuration file:

® Filesystem. Filesystem is the default and does not need to be configured.

S3. See the CloudFront configuration documentation for more information.

OpenStack Swift

Google Cloud Storage (GCS)

Microsoft Azure
® Aliyun OSS

General registry storage configuration options are supported. See the container image registry
documentation for more information.

The following storage options need to be configured through the filesystem driver:
® GlusterFS Storage

® Ceph Rados Block Device

NOTE

For more information on supported persistent storage drivers, see Configuring Persistent
Storage and Persistent Storage Examples.

General Storage Configuration Options

storage:
delete:
enabled: true ﬂ
redirect:
disable: false
cache:
blobdescriptor: inmemory
maintenance:
uploadpurging:
enabled: true
age: 168h
interval: 24h
dryrun: false
readonly:
enabled: false

47

https://docs.docker.com/registry/configuration/#storage
https://docs.docker.com/registry/storage-drivers/filesystem
https://github.com/docker/docker.github.io/blob/master/registry/storage-drivers/s3.md#cloudfront-as-middleware-with-s3-backend
https://docs.docker.com/registry/storage-drivers/swift/
https://docs.docker.com/registry/storage-drivers/gcs/
https://docs.docker.com/registry/storage-drivers/azure/
https://docs.docker.com/registry/storage-drivers/oss/
https://docs.docker.com/registry/configuration/#maintenance
https://docs.docker.com/registry/storage-drivers/filesystem

OpenShift Container Platform 3.11 Configuring Clusters

ﬂ This entry is mandatory for image pruning to work properly.

2.5.5.4. Auth

Auth options should not be altered. The openshift extension is the only supported option.

auth:
openshift:
realm: openshift

2.5.5.5. Middleware

The repository middleware extension allows to configure OpenShift Container Platform middleware
responsible for interaction with OpenShift Container Platform and image proxying.

middleware:
registry:
- name: openshift 0
repository:
- name: openshift g
options:
acceptschema?2: true 6
pullthrough: true ﬂ
mirrorpullthrough: true 6
enforcequota: false G
projectcachettl: 1m ﬂ
blobrepositorycachettl: 10m 6
storage:
- name: openshift Q

These entries are mandatory. Their presence ensures required components are loaded. These
values should not be changed.

Allows you to store manifest schema v2 during a push to the registry. See below for more details.
Allows the registry to act as a proxy for remote blobs. See below for more details.

Allows the registry cache blobs to be served from remote registries for fast access later. The
mirroring starts when the blob is accessed for the first time. The option has no effect if the
pullthrough is disabled.

Prevents blob uploads exceeding the size limit, which are defined in the targeted project.

An expiration timeout for limits cached in the registry. The lower the value, the less time it takes for
the limit changes to propagate to the registry. However, the registry will query limits from the
server more frequently and, as a consequence, pushes will be slower.

An expiration timeout for remembered associations between blob and repository. The higher the
value, the higher probability of fast lookup and more efficient registry operation. On the other
hand, memory usage will raise as well as a risk of serving image layer to user, who is no longer
authorized to access it.

@ 090 ®o0O

48

https://github.com/docker/distribution/blob/master/docs/spec/manifest-v2-2.md#image-manifest-version-2-schema-2

CHAPTER 2. SETTING UP THE REGISTRY

2.5.5.5.1. S3 Driver Configuration

If you want to use a S3 region that is not supported by the integrated registry you are using, then you
can specify a regionendpoint to avoid the region validation error.

For more information about using Amazon Simple Storage Service storage, see Amazon S3 as a Storage
Back-end.

For example:

version: 0.1
log:
level: debug
http:
addr: :5000
storage:
cache:
blobdescriptor: inmemory
delete:
enabled: true
s3:
accesskey: BIKMSZBRESWJQXRWMAEQ
secretkey: 5ah5191 SNXbeoUXXDasFtadRqOdy62JzInOW1goS
bucket: docker.myregistry.com
region: eu-west-3
regionendpoint: https://s3.eu-west-3.amazonaws.com
auth:
openshift:
realm: openshift
middleware:
registry:
- name: openshift
repository:
- name: openshift
storage:
- name: openshift

NOTE

Verify the region and regionendpoint fields are consistent between themselves.
Otherwise the integrated registry will start, but it can not read or write anything to the S3
storage.

The regionendpoint can also be useful if you use a S3 storage different from the Amazon S3.

2.5.5.5.2. CloudFront Middleware

The CloudFront middleware extension can be added to support AWS, CloudFront CDN storage
provider. CloudFront middleware speeds up distribution of image content internationally. The blobs are
distributed to several edge locations around the world. The client is always directed to the edge with the
lowest latency.

49

https://docs.docker.com/registry/configuration/#cloudfront

OpenShift Container Platform 3.11 Configuring Clusters

NOTE

The CloudFront middleware extension can be only used with S3 storage. It is utilized only
during blob serving. Therefore, only blob downloads can be speeded up, not uploads.

The following is an example of minimal configuration of S3 storage driver with a CloudFront middleware:

version: 0.1
log:
level: debug
http:
addr: :5000
storage:
cache:
blobdescriptor: inmemory
delete:
enabled: true
s3: ﬂ
accesskey: BIKMSZBRESWJQXRWMAEQ
secretkey: 5ah5191SNXbeoUXXDasFtadRqOdy62JzInOW1goS
region: us-east-1
bucket: docker.myregistry.com
auth:
openshift:
realm: openshift
middleware:
registry:
- name: openshift
repository:
- name: openshift
storage:
- name: cloudfront 9
options:
baseurl: https:/jrpbyn0k5k88bi.cloudfront.net/ 6
privatekey: /etc/docker/cloudfront-ABCEDFGHIJKLMNOPQRST.pem ﬂ
keypairid: ABCEDFGHIJKLMNOPQRST 6
- name: openshift

The S3 storage must be configured the same way regardless of CloudFront middleware.
The CloudFront storage middleware needs to be listed before OpenShift middleware.

The CloudFront base URL. In the AWS management console, this is listed as Domain Name of
CloudFront distribution.

The location of your AWS private key on the filesystem. This must be not confused with Amazon
EC2 key pair. See the AWS documentation on creating CloudFront key pairs for your trusted
signers. The file needs to be mounted as a secret into the registry pod.

® o0 000

The ID of your Cloudfront key pair.

2.5.5.5.3. Overriding Middleware Configuration Options

50

https://docs.docker.com/registry/configuration/#cloudfront
https://docs.docker.com/registry/storage-drivers/s3/
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-trusted-signers.html#private-content-creating-cloudfront-key-pairs
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-secrets

CHAPTER 2. SETTING UP THE REGISTRY

The middleware section cannot be overridden using environment variables. There are a tew exceptions,
however. For example:

middleware:
repository:
- name: openshift
options:
acceptschema?2: true ﬂ
pullthrough: true 9
mirrorpullthrough: true e
enforcequota: false
projectcachettl: 1m 9
blobrepositorycachettl: 10m G

A configuration option that can be overridden by the boolean environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_ACCEPTSCHEMAZ2, which allows for
the ability to accept manifest schema v2 on manifest put requests. Recognized values are true and
false (which applies to all the other boolean variables below).

A configuration option that can be overridden by the boolean environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_PULLTHROUGH, which enables a
proxy mode for remote repositories.

A configuration option that can be overridden by the boolean environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_MIRRORPULLTHROUGH, which
instructs registry to mirror blobs locally if serving remote blobs.

A configuration option that can be overridden by the boolean environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_ENFORCEQUOTA, which allows the
ability to turn quota enforcement on or off. By default, quota enforcement is off.

® o o0 o

A configuration option that can be overridden by the environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_PROJECTCACHETTL, specifying an
eviction timeout for project quota objects. It takes a valid time duration string (for example, 2m). If
empty, you get the default timeout. If zero (0m), caching is disabled.

o

A configuration option that can be overridden by the environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_BLOBREPOSITORYCACHETTL,
specifying an eviction timeout for associations between blob and containing repository. The format
of the value is the same as in projectcachettl case.

2.5.5.5.4. Image Pullthrough

If enabled, the registry will attempt to fetch requested blob from a remote registry unless the blob
exists locally. The remote candidates are calculated from Dockerlmage entries stored in status of the
image stream, a client pulls from. All the unique remote registry references in such entries will be tried in
turn until the blob is found.

Pullthrough will only occur if an image stream tag exists for the image being pulled. For example, if the
image being pulled is docker-registry.default.svc:5000/yourproject/yourimage:prod then the registry
will look for an image stream tag named yourimage:prod in the project yourproject. If it finds one, it will
attempt to pull the image using the dockerlmageReference associated with that image stream tag.

When performing pullthrough, the registry will use pull credentials found in the project associated with
the image stream tag that is being referenced. This capability also makes it possible for you to pull

51

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#image-streams

OpenShift Container Platform 3.11 Configuring Clusters

images that reside on a registry they do not have credentials to access, as long as you have access to the
image stream tag that references the image.

You must ensure that your registry has appropriate certificates to trust any external registries you do a
pullthrough against. The certificates need to be placed in the /etc/pki/tls/certs directory on the pod.
You can mount the certificates using a configuration map or secret. Note that the entire
/etc/pki/tls/certs directory must be replaced. You must include the new certificates and replace the
system certificates in your secret or configuration map that you mount.

Note that by default image stream tags use a reference policy type of Source which means that when
the image stream reference is resolved to an image pull specification, the specification used will point to
the source of the image. For images hosted on external registries, this will be the external registry and as
a result the resource will reference and pull the image by the external registry. For example,
registry.redhat.io/openshift3/jenkins-2-rhel7 and pullthrough will not apply. To ensure that resources
referencing image streams use a pull specification that points to the internal registry, the image stream
tag should use a reference policy type of Local. More information is available on Reference Policy.

This feature is on by default. However, it can be disabled using a configuration option.

By default, all the remote blobs served this way are stored locally for subsequent faster access unless
mirrorpullthrough is disabled. The downside of this mirroring feature is an increased storage usage.

NOTE

The mirroring starts when a client tries to fetch at least a single byte of the blob. To pre-
fetch a particular image into integrated registry before it is actually needed, you can run
the following command:

$ oc get imagestreamtag/${IS}:${TAG} -o jsonpath='{
.image.dockerlmagelLayers[*].name }' |\
xargs -n1 -l {} curl -H "Range: bytes=0-1" -u user:${TOKEN} \
http://${REGISTRY_IP}:${PORT}/v2/default/mysql/blobs/{}

NOTE

This OpenShift Container Platform mirroring feature should not be confused with the
upstream registry pull through cache feature, which is a similar but distinct capability.

2.5.5.5.5. Manifest Schema v2 Support

Each image has a manifest describing its blobs, instructions for running it and additional metadata. The
manifest is versioned, with each version having different structure and fields as it evolves over time. The
same image can be represented by multiple manifest versions. Each version will have different digest
though.

The registry currently supports manifest v2 schema 1 (schematl) and manifest v2 schema 2 (schema?2).
The former is being obsoleted but will be supported for an extended amount of time.

The default configuration is to store schema?2.
You should be wary of compatibility issues with various Docker clients:

® Docker clients of version 1.9 or older support only schemal. Any manifest this client pulls or
pushes will be of this legacy schema.

52

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#configmaps-creating-from-directories
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-secrets
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#reference-policy
https://docs.docker.com/registry/recipes/mirror/
https://github.com/docker/distribution/blob/master/docs/spec/manifest-v2-1.md#image-manifest-version-2-schema-1
https://github.com/docker/distribution/blob/master/docs/spec/manifest-v2-2.md#image-manifest-version-2-schema-2

CHAPTER 2. SETTING UP THE REGISTRY

® Docker clients of version 1.10 support both schemal and schema2. And by default, it will push
the latter to the registry if it supports newer schema.

The registry, storing an image with schematl will always return it unchanged to the client. Schema2 will
be transferred unchanged only to newer Docker client. For the older one, it will be converted on-the-fly
to schemal.

This has significant consequences. For example an image pushed to the registry by a newer Docker
client cannot be pulled by the older Docker by its digest. That's because the stored image’s manifest is
of schema2 and its digest can be used to pull only this version of manifest.

Once you're confident that all the registry clients support schemaz2, you'll be safe to enable its support
in the registry. See the middleware configuration reference above for particular option.

2.5.5.6. OpenShift

This section reviews the configuration of global settings for features specific to OpenShift Container
Platform. In a future release, openshift-related settings in the Middleware section will be obsoleted.

Currently, this section allows you to configure registry metrics collection:

openshift:
version: 1.0
server:
addr: docker-registry.default.svc 9
metrics:
enabled: false 6
secret: <secret> ﬂ

requests:
read:

maxrunning: 10 9

maxinqueue: 10

maxwaitinqueue 2m ﬂ
write:

maxrunning: 10 6

maxinqueue: 10

maxwaitinqueue 2m @

A mandatory entry specifying configuration version of this section. The only supported value is 1.0.

The hostname of the registry. Should be set to the same value configured on the master. It can be
overridden by the environment variable REGISTRY_OPENSHIFT_SERVER_ADDR.

Can be set to true to enable metrics collection. It can be overridden by the boolean environment
variable REGISTRY_OPENSHIFT_METRICS_ENABLED.

A secret used to authorize client requests. Metrics clients must use it as a bearer token in
Authorization header. It can be overridden by the environment variable
REGISTRY_OPENSHIFT_METRICS_SECRET.

Maximum number of simultaneous pull requests. It can be overridden by the environment variable
REGISTRY_OPENSHIFT_REQUESTS_READ_MAXRUNNING. Zero indicates no limit.

@ ® o0 0 o9

Maximum number of queued pull requests. It can be overridden by the environment variable
REGISTRY_OPENSHIFT_REQUESTS READ_ MAXINQUEUE. Zero indicates no limit.

53

OpenShift Container Platform 3.11 Configuring Clusters

a Maximum time a pull request can wait in the queue before being rejected. It can be overridden by
the environment variable REGISTRY_OPENSHIFT_REQUESTS_READ_MAXWAITINQUEUE.

@ Maximum number of simultaneous push requests. It can be overridden by the environment variable
REGISTRY_OPENSHIFT_REQUESTS_ WRITE_MAXRUNNING. Zero indicates no limit.

@ Maximum number of queued push requests. It can be overridden by the environment variable
REGISTRY_OPENSHIFT_REQUESTS_ WRITE_MAXINQUEUE. Zero indicates no limit.

@ Maximum time a push request can wait in the queue before being rejected. It can be overridden by

the environment variable REGISTRY_OPENSHIFT_REQUESTS_ WRITE_MAXWAITINQUEUE.
Zero indicates no limit.

See Accessing Registry Metrics for usage information.

2.5.5.7. Reporting

Reporting is unsupported.

2.5.5.8.HTTP

Upstream options are supported. Learn how to alter these settings via environment variables . Only the
tls section should be altered. For example:

http:
addr: :5000
tls:
certificate: /etc/secrets/reqistry.crt
key: /etc/secrets/registry.key

2.5.5.9. Notifications

Upstream options are supported. The REST API Reference provides more comprehensive integration
options.

Example:

notifications:
endpoints:

- name: registry
disabled: false
url: https://url:port/path
headers:

Accept:

- text/plain
timeout: 500
threshold: 5
backoff: 1000

2.5.5.10. Redis

Redis is not supported.

54

https://docs.docker.com/registry/configuration/#http
https://docs.docker.com/registry/configuration/#notifications
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/api_reference/#rest-api-index

CHAPTER 2. SETTING UP THE REGISTRY

2.5.5.11. Health

Upstream options are supported. The registry deployment configuration provides an integrated health
check at /healthz.

2.5.5.12. Proxy

Proxy configuration should not be enabled. This functionality is provided by the OpenShift Container
Platform repository middleware extension, pullthrough: true.

2.5.5.13. Cache

The integrated registry actively caches data to reduce the number of calls to slow external resources.
There are two caches:

1. The storage cache that is used to cache blobs metadata. This cache does not have an expiration
time and the data is there until it is explicitly deleted.

2. The application cache contains association between blobs and repositories. The data in this
cache has an expiration time.

In order to completely turn off the cache, you need to change the configuration:

version: 0.1
log:
level: debug
http:
addr: :5000
storage:
cache:
blobdescriptor: "™ ﬂ
openshift:
version: 1.0
cache:
disabled: true @)
blobrepositoryttl: 10m

ﬂ Disables cache of metadata accessed in the storage backend. Without this cache, the registry
server will constantly access the backend for metadata.

9 Disables the cache in which contains the blob and repository associations. Without this cache, the
registry server will continually re-query the data from the master APl and recompute the
associations.

2.6. KNOWN ISSUES

2.6.1. Overview

The following are the known issues when deploying or using the integrated registry.

2.6.2. Concurrent Build with Registry Pull-through

The local docker-registry deployment takes on additional load. By default, it now caches content from

55

https://docs.docker.com/registry/configuration/#health

OpenShift Container Platform 3.11 Configuring Clusters

registry.redhat.io. The images from registry.redhat.io for STI builds are now stored in the local registry.
Attempts to pull them result in pulls from the local docker-registry. As a result, there are circumstances
where extreme numbers of concurrent builds can result in timeouts for the pulls and the build can
possibly fail. To alleviate the issue, scale the docker-registry deployment to more than one replica.
Check for timeouts in the builder pod'’s logs.

2.6.3. Image Push Errors with Scaled Registry Using Shared NFS Volume

When using a scaled registry with a shared NFS volume, you may see one of the following errors during
the push of an image:

e digest invalid: provided digest did not match uploaded content

e blob upload unknown

e blob upload invalid
These errors are returned by an internal registry service when Docker attempts to push the image. Its
cause originates in the synchronization of file attributes across nodes. Factors such as NFS client side
caching, network latency, and layer size can all contribute to potential errors that might occur when
pushing an image using the default round-robin load balancing configuration.

You can perform the following steps to minimize the probability of such a failure:

1. Ensure that the sessionAffinity of your docker-registry service is set to ClientIP:
I $ oc get svc/docker-registry --template="{{.spec.sessionAffinity}}'

This should return ClientlP, which is the default in recent OpenShift Container Platform
versions. If not, change it:

I $ oc patch svc/docker-registry -p '{"spec":{"sessionAffinity": "Client|P"}}'

2. Ensure that the NFS export line of your registry volume on your NFS server has the no_wdelay
options listed. The no_wdelay option prevents the server from delaying writes, which greatly
improves read-after-write consistency, a requirement of the registry.

IMPORTANT

Testing shows issues with using the RHEL NFS server as a storage backend for the
container image registry. This includes the OpenShift Container Registry and Quay.
Therefore, using the RHEL NFS server to back PVs used by core services is not
recommended.

Other NFS implementations on the marketplace might not have these issues. Contact
the individual NFS implementation vendor for more information on any testing that was
possibly completed against these OpenShift core components.

2.6.4. Pull of Internally Managed Image Fails with "not found" Error

This error occurs when the pulled image is pushed to an image stream different from the one it is being
pulled from. This is caused by re-tagging a built image into an arbitrary image stream:

I $ oc tag srcimagestream:latest anyproject/pullimagestream:latest

56

CHAPTER 2. SETTING UP THE REGISTRY

And subsequently pulling from it, using an image reference such as:
I internal.registry.url:5000/anyproject/pullimagestream:latest
During a manual Docker pull, this will produce a similar error:

I Error: image anyproject/pullimagestream:latest not found

To prevent this, avoid the tagging of internally managed images completely, or re-push the built image
to the desired namespace manually.

2.6.5. Image Push Fails with "500 Internal Server Error" on S3 Storage

There are problems reported happening when the registry runs on S3 storage back-end. Pushing to a
container image registry occasionally fails with the following error:

I Received unexpected HTTP status: 500 Internal Server Error

To debug this, you need to view the registry logs. In there, look for similar error messages occurring at
the time of the failed push:

time="2016-03-30T15:01:21.22287816-04:00" level=error msg="unknown error completing upload:
driver.Error{DriverName:\"s3\", Enclosed:(*url.Error)(0xc20901cea0)}" http.request.method=PUT

time="2016-03-30T15:01:21.493067808-04:00" level=error msg="response completed with error"
err.code=UNKNOWN err.detail="s3: Put https://s3.amazonaws.com/oso-tsi-
docker/registry/docker/registry/v2/blobs/sha256/ab/abe5af443833d60cf672e2ac57589410dddec060ed7
25d3e676f1865af63d2e2/data: EOF" err.message="unknown error" http.request.method=PUT

time="2016-04-02T07:01:46.056520049-04:00" level=error msg="error putting into main store: s3:
The request signature we calculated does not match the signature you provided. Check your key and
signing method." http.request.method=PUT

atest

If you see such errors, contact your Amazon S3 support. There may be a problem in your region or with
your particular bucket.

2.6.6. Image Pruning Fails

If you encounter the following error when pruning images:

I BLOB sha256:49638d540b2b62f3b01c388e9d8134c55493b1fa659ed84e97cb59b87a6b8e6ce error
deleting blob

And your registry log contains the following information:

error deleting blob
\"sha256:49638d540b2b62f3b01c388e9d8134c55493b1fa659ed84e97cb59b87a6b8e6e\": operation
unsupported

It means that your custom configuration file lacks mandatory entries in the storage section, namely
storage:delete:enabled set to true. Add them, re-deploy the registry, and repeat your image pruning
operation.

57

OpenShift Container Platform 3.11 Configuring Clusters

CHAPTER 3. SETTING UP AROUTER

3.1. ROUTER OVERVIEW

3.1.1. About Routers

There are many ways to get traffic into the cluster. The most common approach is to use the OpenShift
Container Platform router as the ingress point for external traffic destined for services in your
OpenShift Container Platform installation.

OpenShift Container Platform provides and supports the following router plug-ins:

® The HAProxy template router is the default plug-in. It uses the openshift3/ose-haproxy-
routerimage to run an HAProxy instance alongside the template router plug-in inside a
container on OpenShift Container Platform. It currently supports HTTP(S) traffic and TLS-
enabled traffic via SNI. The router’s container listens on the host network interface, unlike most
containers that listen only on private IPs. The router proxies external requests for route names
to the IPs of actual pods identified by the service associated with the route.

® The F5router integrates with an existing F5 BIG-IP® system in your environment to synchronize
routes. F5 BIG-IP® version 11.4 or newer is required in order to have the F5 iControl REST API.

® Deploying a Default HAProxy Router
® Deploying a Custom HAProxy Router
® Configuring the HAProxy Router to Use PROXY Protocol

® Configuring Route Timeouts

3.1.2. Router Service Account

Before deploying an OpenShift Container Platform cluster, you must have a service account for the
router, which is automatically created during cluster installation. This service account has permissions to
a security context constraint (SCC) that allows it to specify host ports.

3.1.2.1. Permission to Access Labels

When namespace labels are used, for example in creating router shards, the service account for the
router must have cluster-reader permission.

$ oc adm policy add-cluster-role-to-user \
cluster-reader \
system:serviceaccount:default:router

With a service account in place, you can proceed to installing a default HAProxy Router or a customized
HAProxy Router

3.2. USING THE DEFAULT HAPROXY ROUTER

3.2.1. Overview

The oc adm router command is provided with the administrator CLI to simplify the tasks of setting up

58

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#getting-traffic-into-cluster-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-haproxy-router
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-f5-big-ip
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#security-context-constraints
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#labels

CHAPTER 3. SETTING UP A ROUTER

routers in a new installation. The oc adm router command creates the service and deployment
configuration objects. Use the --service-account option to specify the service account the router will
use to contact the master.

The router service account can be created in advance or created by the oc adm router --service-
account command.

Every form of communication between OpenShift Container Platform components is secured by TLS
and uses various certificates and authentication methods. The --default-certificate .pem format file can
be supplied or one is created by the oc adm router command. When routes are created, the user can
provide route certificates that the router will use when handling the route.

IMPORTANT

When deleting a router, ensure the deployment configuration, service, and secret are
deleted as well.

Routers are deployed on specific nodes. This makes it easier for the cluster administrator and external
network manager to coordinate which IP address will run a router and which traffic the router will handle.
The routers are deployed on specific nodes by using node selectors.

IMPORTANT

Routers use host networking by default, and they directly attach to port 80 and 443 on all
interfaces on a host. Restrict routers to hosts where ports 80/443 are available and not
being consumed by another service, and set this using node selectors and the scheduler
configuration. As an example, you can achieve this by dedicating infrastructure nodes to
run services such as routers.

IMPORTANT

It is recommended to use separate distinct openshift-router service account with your
router. This can be provided using the --service-account flag to the oc adm router
command.

I $ oc adm router --dry-run --service-account:routerﬂ

ﬂ --service-account is the name of a service account for the openshift-router.

IMPORTANT

Router pods created using oc adm router have default resource requests that a node
must satisfy for the router pod to be deployed. In an effort to increase the reliability of
infrastructure components, the default resource requests are used to increase the QoS
tier of the router pods above pods without resource requests. The default values
represent the observed minimum resources required for a basic router to be deployed
and can be edited in the routers deployment configuration and you may want to increase
them based on the load of the router.

3.2.2. Creating a Router

If the router does not exist, run the following to create a router:

59

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-scheduler
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-service-accounts

OpenShift Container Platform 3.11 Configuring Clusters
$ oc adm router <router_name> --replicas=<number> --service-account=router --extended-
logging=true
--replicas is usually 1 unless a high availability configuration is being created.

--extended-logging=true configures the router to forward logs that are generated by HAProxy to the
syslog container.

To find the host IP address of the router:

I $ oc get po <router-pod> --template={{.status.hostIP}}

You can also use router shards to ensure that the router is filtered to specific namespaces or routes, or
set any environment variables after router creation. In this case create a router for each shard.

3.2.3. Other Basic Router Commands

Checking the Default Router

The default router service account, named router, is automatically created during cluster
installations. To verify that this account already exists:

I $ oc adm router --dry-run --service-account=router

Viewing the Default Router

To see what the default router would look like if created:

I $ oc adm router --dry-run -o yaml --service-account=router

Configuring the Router to Forward HAProxy Logs

You can configure the router to forward logs that are generated by HAProxy to an rsyslog sidecar
container. The --extended-logging=true parameter appends the syslog container to forward
HAProxy logs to standard output.

I $ oc adm router --extended-logging=true

The following example is the configuration for a router that uses --extended-logging=true:

$ oc get pod router-1-xhdb9 -o yaml
apiVersion: v1
kind: Pod
spec:
containers:
- env:

- name: ROUTER_SYSLOG_ADDRESS ﬂ
value: /var/lib/rsyslog/rsyslog.sock

- command: g

60

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#env-variables

CHAPTER 3. SETTING UP A ROUTER

- /sbin/rsyslogd

--n

--i

- /tmp/rsyslog.pid

- f

- /etc/rsyslog/rsyslog.conf

image: registry.redhat.io/openshift3/ose-haproxy-router:v3.11.188
imagePullPolicy: IfNotPresent

name: syslog

ﬂ The --extended-logging=true parameter creates a socket file for the logs.

9 The --extended-logging=true parameter adds a container to the router. In the container, the
rsyslog process is running as: /sbhin/rsyslogd -n -i /tmp/rsyslog.pid -f /etc/rsyslog/rsyslog.contf.

Use the following commands to view the HAProxy logs:

$ oc set env dc/test-router ROUTER_LOG_LEVEL=info @)
$ oc logs -f <pod-name> -c syslog

Q Set the log level to info or debug. The default is warning.

9 Specify the name of the router pod to view the logs.

The HAProxy logs take the following form:

2020-04-14T03:05:36.629527+00:00 test-311-node-1 haproxy[43]: 10.0.151.166:59594
[14/Apr/2020:03:05:36.627] fe_no_sni~ be_secure:openshift-console:console/pod:console-
b475748cb-t6gkq:console:10.128.0.5:8443 0/0/1/1/2 200 393 - - --NI 2/1/0/1/0 0/0 "HEAD / HTTP/1.1"
2020-04-14T03:05:36.633024+00:00 test-311-node-1 haproxy[43]: 10.0.151.166:59594
[14/Apr/2020:03:05:36.528] public_ssl be_no_sni/fe_no_sni 95/1/104 2793 -- 1/1/0/0/0 0/0

Deploying the Router to a Labeled Node

To deploy the router to any node(s) that match a specified node label:

$ oc adm router <router_name> --replicas=<number> --selector=<label> \
--service-account=router

For example, if you want to create a router named router and have it placed on a node labeled with
node-role.kubernetes.io/infra=true:

$ oc adm router router --replicas=1 --selector="node-role.kubernetes.io/infra=true" \
--service-account=router

During cluster installation, the openshift_router_selector and openshift_registry_selector Ansible
settings are set to node-role.kubernetes.io/infra=true by default. The default router and registry will
only be automatically deployed if a node exists that matches the node-role.kubernetes.io/infra=true
label.

For information on updating labels, see Updating Labels on Nodes.

Multiple instances are created on different hosts according to the scheduler policy.

61

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#updating-labels-on-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#updating-labels-on-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-scheduler

OpenShift Container Platform 3.11 Configuring Clusters

Using a Different Router Image

To use a different router image and view the router configuration that would be used:

$ oc adm router <router_name> -o <format> --images=<image> \
--service-account=router

For example:

$ oc adm router region-west -0 yaml --images=myrepo/somerouter:mytag \
--service-account=router

3.2.4. Filtering Routes to Specific Routers

Using the ROUTE_LABELS environment variable, you can filter routes so that they are used only by
specific routers.

For example, if you have multiple routers, and 100 routes, you can attach labels to the routes so that a
portion of them are handled by one router, whereas the rest are handled by another.

1. After creating a router, use the ROUTE_LABELS environment variable to tag the router:

I $ oc set env dc/<router=name> ROUTE_LABELS="key=value"

2. Add the label to the desired routes:

I oc label route <route=name> key=value

3. To verify that the label has been attached to the route, check the route configuration:

I $ oc describe route/<route_name>

Setting the Maximum Number of Concurrent Connections

The router can handle a maximum number of 20000 connections by default. You can change that
limit depending on your needs. Having too few connections prevents the health check from working,
which causes unnecessary restarts. You need to configure the system to support the maximum
number of connections. The limits shown in 'sysctl fs.nr_open' and 'sysctl fs.file-max' must be
large enough. Otherwise, HAproxy will not start.

When the router is created, the --max-connections= option sets the desired limit:

I $ oc adm router --max-connections=10000

Edit the ROUTER_MAX_CONNECTIONS environment variable in the router’s deployment
configuration to change the value. The router pods are restarted with the new value. If
ROUTER_MAX_CONNECTIONS is not present, the default value of 20000, is used.

NOTE

A connection includes the frontend and internal backend. This counts as two connections.
Be sure to set ROUTER_MAX_CONNECTIONS to double than the number of
connections you intend to create.

62

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#env-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#env-variables

CHAPTER 3. SETTING UP A ROUTER

3.2.5. HAProxy Strict SNI

The HAProxy strict-sni can be controlled through the ROUTER_STRICT_SNI environment variable in
the router’s deployment configuration. It can also be set when the router is created by using the --strict-
sni command line option.

I $ oc adm router --strict-sni

3.2.6. TLS Cipher Suites

Set the router cipher suite using the --ciphers option when creating a router:

I $ oc adm router --ciphers=modern
The values are: modern, intermediate, or old, with intermediate as the default. Alternatively, a set of ":"
separated ciphers can be provided. The ciphers must be from the set displayed by:

I $ openssl ciphers

Alternatively, use the ROUTER_CIPHERS environment variable for an existing router.

3.2.7. Mutual TLS Authentication

Client access to the router and the backend services can be restricted using mutual TLS authentication.
The router will reject requests from clients not in its authenticated set. Mutual TLS authentication is
implemented on client certificates and can be controlled based on the certifying authorities (CAs)
issuing the certificates, the certificate revocation list and/or any certificate subject filters. Use the
mutual tls config options --mutual-tls-auth, --mutual-tls-auth-ca, --mutual-tis-auth-crl and --mutual-
tis-auth-filter when creating a router:

$ oc adm router --mutual-tls-auth=required \
--mutual-tls-auth-ca=/local/path/to/cacerts.pem
The --mutual-tls-auth values are required, optional, or none, with none as the default. The --mutual-
tis-auth-ca value specifies a file containing one or more CA certificates. These CA certificates are used
by the router to verify a client’s certificate.

The --mutual-tls-auth-crl can be used specify the certificate revocation list to handle cases where
certificates (issued by valid certifying authorities) have been revoked.

$ oc adm router --mutual-tls-auth=required \
--mutual-tls-auth-ca=/local/path/to/cacerts.pem \
--mutual-tls-auth-filter=""/CN=my.org/ST=CA/C=US/O=Security/OU=0OSE$' \

The --mutual-tls-auth-filter value can be used for fine grain access control based on the certificate
subject. The value is a regular expression, which is to used to match up the certificate’s subject.

63

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#strict-sni
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#ciphers

OpenShift Container Platform 3.11 Configuring Clusters

NOTE

The mutual TLS authentication filter example above shows you a restrictive regular
expression (regex) —anchored with A and $ — that exactly matches a certificate subject.
If you decide to use a less restrictive regular expression, please be aware that this can
potentially match certificates issued by any CAs you have deemed to be valid. It is
recommended to also use the --mutual-tls-auth-ca option so that you have finer control
over the issued certificates.

Using --mutual-tls-auth=required ensures that you only allow authenticated clients access to the
backend resources. This means that the client is always required to provide authentication information
(aka a client certificate). To make the mutual TLS authentication optional, use --mutual-tls-
auth=optional (or use none to disable it - this is the default). Note here that optional means that you
do not require a client to present any authentication information and if the client provides any
authentication information, that is just passed on to the backend in the X-SSL* HTTP headers.

$ oc adm router --mutual-tls-auth=optional \
--mutual-tls-auth-ca=/local/path/to/cacerts.pem \

When mutual TLS authentication support is enabled (either using the required or optional value for the
--mutual-tls-auth flag), the client authentication information is passed to the backend in the form of X-
SSL* HTTP headers.

Examples of the X-SSL* HTTP headers X-SSL-Client-DN: the full distinguished name (DN) of the
certificate subject. X-SSL-Client-NotBefore: the client certificate start date in YYMMDDhhmmss[Z]
format. X-SSL-Client-NotAfter: the client certificate end date in YYMMDDhhmmss[Z] format. X-SSL-
Client-SHA1: the SHA-1fingerprint of the client certificate. X-SSL-Client-DER: provides full access to
the client certificate. Contains the DER formatted client certificate encoded in base-64 format.

3.2.8. Highly-Available Routers

You can set up a highly-available router on your OpenShift Container Platform cluster using IP failover.
This setup has multiple replicas on different nodes so the failover software can switch to another replica
if the current one fails.

3.2.9. Customizing the Router Service Ports

You can customize the service ports that a template router binds to by setting the environment
variables ROUTER_SERVICE_HTTP_PORT and ROUTER_SERVICE_HTTPS_PORT. This can be
done by creating a template router, then editing its deployment configuration.

The following example creates a router deployment with 0 replicas and customizes the router service
HTTP and HTTPS ports, then scales it appropriately (to 1 replica).

$ oc adm router --replicas=0 --ports='10080:10080,10443:10443' ﬂ
$ oc set env dc/router ROUTER_SERVICE_HTTP_PORT=10080 \
ROUTER_SERVICE_HTTPS_PORT=10443

$ oc scale dc/router --replicas=1

Ensures exposed ports are appropriately set for routers that use the container networking mode --
host-network=false.

64

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-high-availability
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#env-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#env-variables

CHAPTER 3. SETTING UP A ROUTER

IMPORTANT

If you do customize the template router service ports, you will also need to ensure that
the nodes where the router pods run have those custom ports opened in the firewall
(either via Ansible or iptables, or any other custom method that you use via firewall-
cmd).

The following is an example using iptables to open the custom router service ports.

$ iptables -A OS_FIREWALL_ALLOW -p tcp --dport 10080 -j ACCEPT
$ iptables -A OS_FIREWALL_ALLOW -p tcp --dport 10443 -j ACCEPT

3.2.10. Working With Multiple Routers

An administrator can create multiple routers with the same definition to serve the same set of routes.
Each router will be on a different node and will have a different IP address. The network administrator
will need to get the desired traffic to each node.

Multiple routers can be grouped to distribute routing load in the cluster and separate tenants to
different routers or shards. Each router or shard in the group admits routes based on the selectors in the
router. An administrator can create shards over the whole cluster using ROUTE_LABELS. A user can
create shards over a namespace (project) by using NAMESPACE_LABELS.

3.2.11. Adding a Node Selector to a Deployment Configuration

Making specific routers deploy on specific nodes requires two steps:

1. Add a label to the desired node:

I $ oc label node 10.254.254.28 "router=first"

2. Add a node selector to the router deployment configuration:
I $ oc edit dc <deploymentConfigName>

Add the template.spec.nodeSelector field with a key and value corresponding to the label:

template:
metadata:
creationTimestamp: null
labels:
router: router1
spec:
nodeSelector: ﬂ
router: "first"

The key and value are router and first, respectively, corresponding to the router=first
label.

3.2.12. Using Router Shards

65

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#router-sharding
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#env-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#env-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#updating-labels-on-nodes

OpenShift Container Platform 3.11 Configuring Clusters

Router sharding uses NAMESPACE_LABELS and ROUTE_LABELS, to filter router namespaces and
routes. This enables you to distribute subsets of routes over multiple router deployments. By using non-
overlapping subsets, you can effectively partition the set of routes. Alternatively, you can define shards
comprising overlapping subsets of routes.

By default, a router selects all routes from all projects (namespaces). Sharding involves adding labels to
routes or namespaces and label selectors to routers. Each router shard comprises the routes that are

selected by a specific set of label selectors or belong to the namespaces that are selected by a specific
set of label selectors.

NOTE

The router service account must have the [cluster reader] permission set to allow access
to labels in other namespaces.

Router Sharding and DNS
Because an external DNS server is needed to route requests to the desired shard, the administrator is
responsible for making a separate DNS entry for each router in a project. A router will not forward
unknown routes to another router.
Consider the following example:

® Router A lives on host 192.168.0.5 and has routes with *.foo.com.

® Router B lives on host 192.168.1.9 and has routes with *.example.com.

Separate DNS entries must resolve *.foo.com to the node hosting Router A and *.example.com to the
node hosting Router B:

e *foo.com A IN 192.168.0.5
e *.example.com A IN 192.168.1.9
Router Sharding Examples

This section describes router sharding using namespace and route labels.

66

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#router-sharding
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#env-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#env-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#projects

CHAPTER 3. SETTING UP A ROUTER

Figure 3.1. Router Sharding Based on Namespace Labels

_ X

Z

Interface

l

ROUTER 1 ROUTER 2 ROUTER 3
LABEL 2
LABEL 1 LABEL 3 LABEL 3

l l l

NAMESPACE 1 NAMESPACE 2 NAMESPACE 3 NAMESPACE 4
Service 1 Service 1 Service 1 Service 1
Service 2 Service 2 Service 2
LABEL 1 LABEL 2 LABEL 2 LABEL 3

. Configure a router with a namespace label selector:

I $ oc set env dc/router NAMESPACE_LABELS="router=r1"

. Because the router has a selector on the namespace, the router will handle routes only for
matching namespaces. In order to make this selector match a namespace, label the namespace
accordingly:

I $ oc label namespace default "router=r1"

. Now, if you create a route in the default namespace, the route is available in the default router:
I $ oc create -f route1.yaml

. Create a new project (namespace) and create a route, route2:

$ oc new-project p1
$ oc create -f route2.yaml

Notice the route is not available in your router.

. Label namespace p1 with router=r1

67

OpenShift Container Platform 3.11 Configuring Clusters

I $ oc label namespace p1 "router=r1"

Adding this label makes the route available in the router.

Example

A router deployment finops-router is configured with the label selector
NAMESPACE_LABELS="name in (finance, ops)"”, and a router deployment dev-router is
configured with the label selector NAMESPACE_LABELS="name=dev".

If all routes are in namespaces labeled name=finance, name=o0ps, and name=dev, then this
configuration effectively distributes your routes between the two router deployments.

In the above scenario, sharding becomes a special case of partitioning, with no overlapping subsets.
Routes are divided between router shards.

The criteria for route selection govern how the routes are distributed. It is possible to have
overlapping subsets of routes across router deployments.

Example

In addition to finops-router and dev-router in the example above, you also have devops-router,
which is configured with a label selector NAMESPACE_LABELS="name in (dev, ops)".

The routes in namespaces labeled name=dev or name=ops now are serviced by two different router
deployments. This becomes a case in which you have defined overlapping subsets of routes, as
illustrated in the procedure in Router Sharding Based on Namespace Labels.

In addition, this enables you to create more complex routing rules, allowing the diversion of higher
priority traffic to the dedicated finops-router while sending lower priority traffic to devops-router.

Router Sharding Based on Route Labels

NAMESPACE_LABELS allows filtering of the projects to service and selecting all the routes from those
projects, but you may want to partition routes based on other criteria associated with the routes
themselves. The ROUTE_LABELS selector allows you to slice-and-dice the routes themselves.

Example

A router deployment prod-router is configured with the label selector
ROUTE_LABELS="mydeployment=prod", and a router deployment devtest-router is configured
with the label selector ROUTE_LABELS="mydeployment in (dev, test)".

This configuration partitions routes between the two router deployments according to the routes'
labels, irrespective of their namespaces.

The example assumes you have all the routes you want to be serviced tagged with a label
"mydeployment=<tag>".

3.2.12.1. Creating Router Shards

This section describes an advanced example of router sharding. Suppose there are 26 routes, named a
— z, with various labels:

Possible labels on routes

68

CHAPTER 3. SETTING UP A ROUTER

sla=high geo=east hw=modest dept=finance
sla=medium geo=west hws=strong dept=dev
sla=low dept=0ps

These labels express the concepts including service level agreement, geographical location, hardware
requirements, and department. The routes can have at most one label from each column. Some routes
may have other labels or no labels at all.

NENEE)) SLA Geo HW Dept Other Labels

a high east modest finance type=static

b west strong type=dynamic
cde low modest type=static
g-k medium strong dev

I-s high modest ops

t-z west type=dynamic

Here is a convenience script mkshard that illustrates how oc adm router, oc set env, and oc scale can
be used together to make a router shard.

#!/bin/bash

Usage: mkshard ID SELECTION-EXPRESSION
id=$1

sel="$2"

router=router-shard-$id ﬂ

oc adm router $router --replicas=0 9
dc=dc/router-shard-$id

oc set env $dc ROUTE_LABELS="$sel" @)
oc scale $dc --replicas=3

The created router has name router-shard-<id>.
Specify no scaling for now.
The deployment configuration for the router.

Set the selection expression using oc set env. The selection expression is the value of the
ROUTE_LABELS environment variable.

Scale it up.

® 0009

Running mkshard several times creates several routers:

69

OpenShift Container Platform 3.11 Configuring Clusters

Router Selection Expression Routes
router-shard-1 sla=high al-s
router-shard-2 geo=west bt-z
router-shard-3 dept=dev g-k

3.2.12.2. Modifying Router Shards

Because a router shard is a construct based on labels, you can modify either the labels (via oc label) or

the selection expression (via oc set env).

This section extends the example started in the Creating Router Shards section, demonstrating how to

change the selection expression.

Here is a convenience script modshard that modifies an existing router to use a new selection
expression:

#!/bin/bash

Usage: modshard ID SELECTION-EXPRESSION...
id=$1

shift

router=router-shard-$id ﬂ

dc=dc/$router

oc scale $dc --replicas=0 6

oc set env $dc "$@" ﬂ

oc scale $dc --replicas=3

The modified router has name router-shard-<id>.

The deployment configuration where the modifications occur.

Scale it down.

Set the new selection expression using oc set env. Unlike mkshard from the Creating Router

Shards section, the selection expression specified as the non- ID arguments to modshard must
include the environment variable name as well as its value.

® 00009

Scale it back up.

NOTE

In modshard, the oc scale commands are not necessary if the deployment strategy for

router-shard-<id> is Rolling.

For example, to expand the department for router-shard-3 to include ops as well as dev:
I $ modshard 3 ROUTE_LABELS='dept in (dev, ops)'

The result is that router-shard-3 now selects routes g — s (the combined sets of g —k and I —s).

70

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#router-sharding
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cli_reference/#oc-label
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cli_reference/#oc-set-env
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#strategies

CHAPTER 3. SETTING UP A ROUTER

This example takes into account that there are only three departments in this example scenario, and
specifies a department to leave out of the shard, thus achieving the same result as the preceding
example:

I $ modshard 3 ROUTE_LABELS='dept = finance'
This example specifies three comma-separated qualities, and results in only route b being selected:

I $ modshard 3 ROUTE_LABELS="hw=strong,type=dynamic,geo=west'

Similarly to ROUTE_LABELS, which involves a route’s labels, you can select routes based on the labels
of the route’s namespace using the NAMESPACE_LABELS environment variable. This example
modifies router-shard-3 to serve routes whose namespace has the label frequency=weekly:

I $ modshard 3 NAMESPACE_LABELS='"frequency=weekly"'

The last example combines ROUTE_LABELS and NAMESPACE_LABELS to select routes with label
sla=low and whose namespace has the label frequency=weekly:

$ modshard 3\
NAMESPACE_LABELS='frequency=weekly" \
ROUTE_LABELS='sla=low'

3.2.13. Finding the Host Name of the Router

When exposing a service, a user can use the same route from the DNS name that external users use to
access the application. The network administrator of the external network must make sure the host
name resolves to the name of a router that has admitted the route. The user can set up their DNS with a
CNAME that points to this host name. However, the user may not know the host name of the router.
When it is not known, the cluster administrator can provide it.

The cluster administrator can use the --router-canonical-hostname option with the router’s canonical
host name when creating the router. For example:

I # oc adm router myrouter --router-canonical-hostname="rtr.example.com"”

This creates the ROUTER_CANONICAL_HOSTNAME environment variable in the router’'s deployment
configuration containing the host name of the router.

For routers that already exist, the cluster administrator can edit the router’s deployment configuration
and add the ROUTER_CANONICAL_HOSTNAME environment variable:

spec:
template:
spec:
containers:
- env:
- name: ROUTER_CANONICAL_HOSTNAME
value: rtr.example.com

The ROUTER_CANONICAL_HOSTNAME value is displayed in the route status for all routers that have
admitted the route. The route status is refreshed every time the router is reloaded.

71

OpenShift Container Platform 3.11 Configuring Clusters

When a user creates a route, all of the active routers evaluate the route and, if conditions are met, admit
it. When a router that defines the ROUTER_CANONICAL_HOSTNAME environment variable admits
the route, the router places the value in the routerCanonicalHostname field in the route status. The
user can examine the route status to determine which, if any, routers have admitted the route, select a
router from the list, and find the host name of the router to pass along to the network administrator.

status:
ingress:
conditions:
lastTransitionTime: 2016-12-07T15:20:57Z
status: "True"
type: Admitted
host: hello.in.mycloud.com
routerCanonicalHostname: rtr.example.com
routerName: myrouter
wildcardPolicy: None

oc describe inclues the host name when available:

$ oc describe route/hello-route3

Requested Host: hello.in.mycloud.com exposed on router myroute (host rtr.example.com) 12 minutes
ago

Using the above information, the user can ask the DNS administrator to set up a CNAME from the
route’s host, hello.in.mycloud.com, to the router’s canonical hostname, rtr.example.com. This results
in any traffic to hello.in.mycloud.com reaching the user’s application.

3.2.14. Customizing the Default Routing Subdomain

You can customize the suffix used as the default routing subdomain for your environment by modifying
the master configuration file (the /etc/origin/master/master-config.yaml file by default). Routes that
do not specify a host name would have one generated using this default routing subdomain.

The following example shows how you can set the configured suffix to v3.openshift.test:

routingConfig:
subdomain: v3.openshift.test

NOTE

This change requires a restart of the master if it is running.

With the OpenShift Container Platform master(s) running the above configuration, the generated host
name for the example of a route named no-route-hostname without a host name added to a
namespace mynamespace would be:

I no-route-hostname-mynamespace.v3.openshift.test

3.2.15. Forcing Route Host Names to a Custom Routing Subdomain

If an administrator wants to restrict all routes to a specific routing subdomain, they can pass the --force-
subdomain option to the oc adm router command. This forces the router to override any host names

72

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#route-hostnames

CHAPTER 3. SETTING UP A ROUTER

specified in a route and generate one based on the template provided to the --force-subdomain
option.

The following example runs a router, which overrides the route host names using a custom subdomain
template ${name}-${namespace}.apps.example.com.

I $ oc adm router --force-subdomain='${name}-${namespace}.apps.example.com'’

3.2.16. Using Wildcard Certificates

A TLS-enabled route that does not include a certificate uses the router’s default certificate instead. In
most cases, this certificate should be provided by a trusted certificate authority, but for convenience you
can use the OpenShift Container Platform CA to create the certificate. For example:

$ CA=/etc/origin/master
$ oc adm ca create-server-cert --signer-cert=$CA/ca.crt \
--signer-key=$CA/ca.key --signer-serial=$CA/ca.serial.txt \
--hostnames="".cloudapps.example.com' \
--cert=cloudapps.crt --key=cloudapps.key
NOTE
The oc adm ca create-server-cert command generates a certificate that is valid for two
years. This can be altered with the --expire-days option, but for security reasons, it is

recommended to not make it greater than this value.

Run oc adm commands only from the first master listed in the Ansible host inventory file,
by default /etc/ansible/hosts.

The router expects the certificate and key to be in PEM format in a single file:

I $ cat cloudapps.crt cloudapps.key $CA/ca.crt > cloudapps.router.pem

From there you can use the --default-cert flag:

I $ oc adm router --default-cert=cloudapps.router.pem --service-account=router

NOTE

Browsers only consider wildcards valid for subdomains one level deep. So in this example,
the certificate would be valid for a.cloudapps.example.com but not for
a.b.cloudapps.example.com.

3.2.17. Manually Redeploy Certificates

To manually redeploy the router certificates:

1. Check to see if a secret containing the default router certificate was added to the router:

$ oc set volume dc/router

deploymentconfigs/router

73

OpenShift Container Platform 3.11 Configuring Clusters

secret/router-certs as server-certificate
mounted at /etc/pki/tls/private

If the certificate is added, skip the following step and overwrite the secret.

2. Make sure that you have a default certificate directory set for the following variable
DEFAULT_CERTIFICATE_DIR:

$ oc set env dc/router --list

DEFAULT_CERTIFICATE_DIR=/etc/pki/tls/private

If not, create the directory using the following command:
I $ oc set env dc/router DEFAULT_CERTIFICATE_DIR=/etc/pki/tls/private

3. Export the certificate to PEM format:

I $ cat custom-router.key custom-router.crt custom-ca.crt > custom-router.crt

4. Overwrite or create a router certificate secret:
If the certificate secret was added to the router, overwrite the secret. If not, create a new secret.

To overwrite the secret, run the following command:

$ oc create secret generic router-certs --from-file=tls.crt=custom-router.crt --from-
file=tls.key=custom-router.key --type=kubernetes.io/tls -0 json --dry-run | oc replace -f -

To create a new secret, run the following commands:

$ oc create secret generic router-certs --from-file=tls.crt=custom-router.crt --from-
file=tls.key=custom-router.key --type=kubernetes.io/tls

$ oc set volume dc/router --add --mount-path=/etc/pki/tls/private --secret-name="router-certs'
--name router-certs

5. Deploy the router.

I $ oc rollout latest dc/router

3.2.18. Using Secured Routes

Currently, password protected key files are not supported. HAProxy prompts for a password upon
starting and does not have a way to automate this process. To remove a passphrase from a keyfile, you
can run:

I # openssl rsa -in <passwordProtectedKey.key> -out <new.key>
Here is an example of how to use a secure edge terminated route with TLS termination occurring on the

router before traffic is proxied to the destination. The secure edge terminated route specifies the TLS
certificate and key information. The TLS certificate is served by the router front end.

First, start up a router instance:

74

CHAPTER 3. SETTING UP A ROUTER

I # oc adm router --replicas=1 --service-account=router

Next, create a private key, csr and certificate for our edge secured route. The instructions on how to do
that would be specific to your certificate authority and provider. For a simple self-signed certificate for a
domain named www.example.test, see the example shown below:

sudo openssl genrsa -out example-test.key 2048
#
sudo openssl req -new -key example-test.key -out example-test.csr \
-subj "/C=US/ST=CA/L=Mountain View/O=0S3/0U=Eng/CN=www.example.test"
#
sudo openssl x509 -req -days 366 -in example-test.csr \
-signkey example-test.key -out example-test.crt

Generate a route using the above certificate and key.

$ oc create route edge --service=my-service \
--hostname=www.example.test \
--key=example-test.key --cert=example-test.crt
route "my-service" created

Look at its definition.

$ oc get route/my-service -o yaml
apiVersion: v1
kind: Route
metadata:
name: my-service
spec:
host: www.example.test
to:
kind: Service
name: my-service
tls:
termination: edge
key: |

Make sure your DNS entry for www.example.test points to your router instance(s) and the route to
your domain should be available. The example below uses curl along with a local resolver to simulate the
DNS lookup:

routerip="4.1.1.1" # replace with IP address of one of your router instances.
curl -k --resolve www.example.test:443:$routerip https://www.example.test/

3.2.19. Using Wildcard Routes (for a Subdomain)

75

OpenShift Container Platform 3.11 Configuring Clusters

The HAProxy router has support for wildcard routes, which are enabled by setting the
ROUTER_ALLOW_WILDCARD_ROUTES environment variable to true. Any routes with a wildcard
policy of Subdomain that pass the router admission checks will be serviced by the HAProxy router.
Then, the HAProxy router exposes the associated service (for the route) per the route’s wildcard policy.

IMPORTANT

To change a route’s wildcard policy, you must remove the route and recreate it with the
updated wildcard policy. Editing only the route’s wildcard policy in a route’s .yaml file
does not work.

$ oc adm router --replicas=0 ...
$ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true
$ oc scale dc/router --replicas=1

Learn how to configure the web console for wildcard routes .

Using a Secure Wildcard Edge Terminated Route

This example reflects TLS termination occurring on the router before traffic is proxied to the
destination. Traffic sent to any hosts in the subdomain example.org (*.example.org) is proxied to the
exposed service.

The secure edge terminated route specifies the TLS certificate and key information. The TLS
certificate is served by the router front end for all hosts that match the subdomain (*.example.org).

1. Start up a router instance:

$ oc adm router --replicas=0 --service-account=router
$ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true
$ oc scale dc/router --replicas=1

2. Create a private key, certificate signing request (CSR), and certificate for the edge secured
route.
The instructions on how to do this are specific to your certificate authority and provider. For a
simple self-signed certificate for a domain named *.example.test, see this example:

sudo openssl genrsa -out example-test.key 2048
#
sudo openssl req -new -key example-test.key -out example-test.csr \
-subj "/C=US/ST=CA/L=Mountain View/O=0S3/OU=Eng/CN=".example.test"
#
sudo openssl x509 -req -days 366 -in example-test.csr \
-signkey example-test.key -out example-test.crt

3. Generate a wildcard route using the above certificate and key:

$ cat > route.yaml <<REOF
apiVersion: v1
kind: Route
metadata:
name: my-service
spec:
host: www.example.test

76

CHAPTER 3. SETTING UP A ROUTER

wildcardPolicy: Subdomain
to:
kind: Service
name: my-service
tls:
termination: edge
key: "$(perl -pe 's/\An\\n/' example-test.key)"
certificate: "$(perl -pe 's/An/\\n/' example-test.cert)"
REOF
$ oc create -f route.yaml

Ensure your DNS entry for *.example.test points to your router instance(s) and the route to
your domain is available.

This example uses curl with a local resolver to simulate the DNS lookup:

routerip="4.1.1.1" # replace with IP address of one of your router instances.

curl -k --resolve www.example.test:443:$routerip https:/www.example.test/

curl -k --resolve abc.example.test:443:$routerip https://abc.example.test/

curl -k --resolve anyname.example.test:443:$routerip https://anyname.example.test/

For routers that allow wildcard routes (ROUTER_ALLOW_WILDCARD_ROUTES set to true), there are
some caveats to the ownership of a subdomain associated with a wildcard route.

Prior to wildcard routes, ownership was based on the claims made for a host name with the namespace
with the oldest route winning against any other claimants. For example, route r1in namespace ns1 with
a claim for one.example.test would win over another route r2in namespace ns2 for the same host
name one.example.test if route r1 was older than route r2.

In addition, routes in other namespaces were allowed to claim non-overlapping hostnames. For example,
route rone in namespace hs1 could claim www.example.test and another route rtwo in namespace d2
could claim c3po.example.test.

This is still the case if there are no wildcard routes claiming that same subdomain (example.test in the
above example).

However, a wildcard route needs to claim all of the host names within a subdomain (host names of the
form *.example.test). A wildcard route’s claim is allowed or denied based on whether or not the oldest
route for that subdomain (example.test) is in the same namespace as the wildcard route. The oldest
route can be either a regular route or a wildcard route.

For example, if there is already a route eldest that exists in the ns1 namespace that claimed a host
named owner.example.test and, if at a later point in time, a new wildcard route wildthing requesting for
routes in that subdomain (example.test) is added, the claim by the wildcard route will only be allowed if
it is the same namespace (ns1) as the owning route.

The following examples illustrate various scenarios in which claims for wildcard routes will succeed or fail.

In the example below, a router that allows wildcard routes will allow non-overlapping claims for hosts in
the subdomain example.test as long as a wildcard route has not claimed a subdomain.

$ oc adm router ...
$ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true

$ oc project ns1
$ oc expose service myservice --hosthname=owner.example.test

77

OpenShift Container Platform 3.11 Configuring Clusters

$ oc expose service myservice --hostname=aname.example.test
$ oc expose service myservice --hostname=bname.example.test

$ oc project ns2
$ oc expose service anotherservice --hostname=second.example.test
$ oc expose service anotherservice --hostname=cname.example.test

$ oc project otherns
$ oc expose service thirdservice --hostname=emmy.example.test
$ oc expose service thirdservice --hostname=webby.example.test

In the example below, a router that allows wildcard routes will not allow the claim for
owner.example.test or aname.example.test to succeed since the owning namespace is ns1.

$ oc adm router ...
$ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true

$ oc project ns1
$ oc expose service myservice --hostname=owner.example.test
$ oc expose service myservice --hostname=aname.example.test

$ oc project ns2
$ oc expose service secondservice --hostname=bname.example.test
$ oc expose service secondservice --hostname=cname.example.test

$ # Router will not allow this claim with a different path name */p1" as
$ # namespace ‘ns1" has an older route claiming host “aname.example.test'.
$ oc expose service secondservice --hostname=aname.example.test --path="/p1"

$ # Router will not allow this claim as namespace "ns1" has an older route
$ # claiming host name “owner.example.test'.
$ oc expose service secondservice --hostname=owner.example.test

$ oc project otherns
$ # Router will not allow this claim as namespace "ns1" has an older route

$ # claiming host name “aname.example.test'.
$ oc expose service thirdservice --hostname=aname.example.test

In the example below, a router that allows wildcard routes will allow the claim for "*.example.test to
succeed since the owning namespace is ns1 and the wildcard route belongs to that same namespace.

$ oc adm router ...
$ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true

$ oc project ns1
$ oc expose service myservice --hosthame=owner.example.test

$ # Reusing the route.yaml from the previous example.
$ # spec:

$ # host: www.example.test

$ # wildcardPolicy: Subdomain

$ oc create -f route.yaml # router will allow this claim.

78

CHAPTER 3. SETTING UP A ROUTER

In the example below, a router that allows wildcard routes will not allow the claim for "*.example.test to
succeed since the owning namespace is ns1 and the wildcard route belongs to another namespace
cyclone.

$ oc adm router ...
$ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true

$ oc project ns1
$ oc expose service myservice --hosthame=owner.example.test

$ # Switch to a different namespace/project.
$ oc project cyclone

$ # Reusing the route.yaml from a prior example.
$ # spec:

$ # host: www.example.test

$ # wildcardPolicy: Subdomain

$ oc create -f route.yaml # router will deny (_NOT_ allow) this claim.

Similarly, once a namespace with a wildcard route claims a subdomain, only routes within that
namespace can claim any hosts in that same subdomain.

In the example below, once a route in namespace hs1 with a wildcard route claims subdomain
example.test, only routes in the namespace ns1 are allowed to claim any hosts in that same subdomain.

$ oc adm router ...
$ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true

$ oc project ns1
$ oc expose service myservice --hosthname=owner.example.test

$ oc project otherns

$ # namespace “otherns’ is allowed to claim for other.example.test
$ oc expose service otherservice --hostname=other.example.test

$ oc project ns1

$ # Reusing the route.yaml from the previous example.
$ # spec:

$ # host: www.example.test

$ # wildcardPolicy: Subdomain

$ oc create -f route.yaml # Router will allow this claim.

$ # In addition, route in namespace otherns will lose its claim to host
$ # “other.example.test” due to the wildcard route claiming the subdomain.

$ # namespace "ns1’ is allowed to claim for deux.example.test
$ oc expose service mysecondservice --hostname=deux.example.test

$ # namespace ‘ns1’ is allowed to claim for deux.example.test with path /p1
$ oc expose service mythirdservice --hostname=deux.example.test --path="/p1"

79

OpenShift Container Platform 3.11 Configuring Clusters

$ oc project otherns

$ # namespace “otherns’ is not allowed to claim for deux.example.test
$ # with a different path '/otherpath’
$ oc expose service otherservice --hostname=deux.example.test --path="/otherpath"

$ # namespace “otherns’ is not allowed to claim for owner.example.test
$ oc expose service yetanotherservice --hostname=owner.example.test

$ # namespace “otherns’ is not allowed to claim for unclaimed.example.test
$ oc expose service yetanotherservice --hostname=unclaimed.example.test

In the example below, different scenarios are shown, in which the owner routes are deleted and
ownership is passed within and across namespaces. While a route claiming host eldest.example.test in

the namespace ns1 exists, wildcard routes in that namespace can claim subdomain example.test. When

the route for host eldest.example.test is deleted, the next oldest route senior.example.test would
become the oldest route and would not affect any other routes. Once the route for host

senior.example.test is deleted, the next oldest route junior.example.test becomes the oldest route
and block the wildcard route claimant.

$ oc adm router ...
$ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true

$ oc project ns1
$ oc expose service myservice --hostname=eldest.example.test
$ oc expose service seniorservice --hostname=senior.example.test

$ oc project otherns

$ # namespace “otherns’ is allowed to claim for other.example.test
$ oc expose service juniorservice --hostname=junior.example.test

$ oc project ns1

$ # Reusing the route.yaml from the previous example.
$ # spec:

$ # host: www.example.test

$ # wildcardPolicy: Subdomain

$ oc create -f route.yaml # Router will allow this claim.

$ # In addition, route in namespace otherns will lose its claim to host
$ # “junior.example.test’ due to the wildcard route claiming the subdomain.

$ # namespace "ns1’ is allowed to claim for dos.example.test
$ oc expose service mysecondservice --hostname=dos.example.test

$ # Delete route for host “eldest.example.test’, the next oldest route is
$ # the one claiming “senior.example.test’, so route claims are unaffacted.
$ oc delete route myservice

$ # Delete route for host “senior.example.test’, the next oldest route is

$ # the one claiming “junior.example.test™ in another namespace, so claims
$ # for a wildcard route would be affected. The route for the host

80

CHAPTER 3. SETTING UP A ROUTER

$ # “dos.example.test” would be unaffected as there are no other wildcard
$ # claimants blocking it.
$ oc delete route seniorservice

3.2.20. Using the Container Network Stack

The OpenShift Container Platform router runs inside a container and the default behavior is to use the
network stack of the host (i.e., the node where the router container runs). This default behavior benefits
performance because network traffic from remote clients does not need to take multiple hops through
user space to reach the target service and container.

Additionally, this default behavior enables the router to get the actual source IP address of the remote
connection rather than getting the node’s IP address. This is useful for defining ingress rules based on
the originating IP, supporting sticky sessions, and monitoring traffic, among other uses.

This host network behavior is controlled by the --host-network router command line option, and the
default behaviour is the equivalent of using --host-network=true. If you wish to run the router with the
container network stack, use the --host-network=false option when creating the router. For example:

I $ oc adm router --service-account=router --host-network=false

Internally, this means the router container must publish the 80 and 443 ports in order for the external
network to communicate with the router.

NOTE

Running with the container network stack means that the router sees the source IP
address of a connection to be the NATed IP address of the node, rather than the actual
remote IP address.

NOTE

On OpenShift Container Platform clusters using multi-tenant network isolation, routers
on a non-default namespace with the --host-network=false option will load all routes in
the cluster, but routes across the namespaces will not be reachable due to network
isolation. With the --host-network=true option, routes bypass the container network and
it can access any pod in the cluster. If isolation is needed in this case, then do not add
routes across the namespaces.

3.2.21. Using the Dynamic Configuration Manager

You can configure the HAProxy router to support the dynamic configuration manager.
The dynamic configuration manager brings certain types of routes online without requiring HAProxy
reload downtime. It handles any route and endpoint life-cycle events such as route and endpoint

addition|deletion|update.

Enable the dynamic configuration manager by setting the ROUTER_HAPROXY_CONFIG_MANAGER
environment variable to true:

I $ oc set env dc/<router_name> ROUTER_HAPROXY_CONFIG_MANAGER='"true'

81

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#network-isolation-multitenant

OpenShift Container Platform 3.11 Configuring Clusters

If the dynamic configuration manager cannot dynamically configure HAProxy, it rewrites the
configuration and reloads the HAProxy process. For example, if a new route contains custom
annotations, such as custom timeouts, or if the route requires custom TLS configuration.

The dynamic configuration internally uses the HAProxy socket and configuration APl with a pool of pre-
allocated routes and back end servers. The pre-allocated pool of routes is created using route
blueprints. The default set of blueprints supports unsecured routes, edge secured routes without any
custom TLS configuration, and passthrough routes.

IMPORTANT

re-encrypt routes require custom TLS configuration information, so extra configuration is
needed in order to use them with the dynamic configuration manager.

Extend the blueprints that the dynamic configuration manager can use by setting the
ROUTER_BLUEPRINT_ROUTE_NAMESPACE and optionally the
ROUTER_BLUEPRINT_ROUTE_LABELS environment variables.

All routes, or the routes that match the route labels, in the blueprint route namespace are
processed as custom blueprints similar to the default set of blueprints. This includes re-
encrypt routes or routes that use custom annotations or routes with custom TLS
configuration.

The following procedure assumes you have created three route objects: reencrypt-blueprint,
annotated-edge-blueprint, and annotated-unsecured-blueprint. See Route Types for an example of
the different route type objects.

Procedure
1. Create a new project:

I $ oc new-project namespace_name

2. Create a new route. This method exposes an existing service:

$ oc create route edge edge_route_name --key=/path/to/key.pem \
--cert=/path/to/cert.pem --service=<service> --port=8443

3. Label the route:

I $ oc label route edge_route_name type=route_label 1

4. Create three different routes from route object definitions . All have the label
type=route_label_1:

$ oc create -f reencrypt-blueprint.yaml
$ oc create -f annotated-edge-blueprint.yaml
$ oc create -f annotated-unsecured-blueprint.json

You can also remove a label from a route, which prevents it from being used as a blueprint route.
For example, to prevent the annotated-unsecured-blueprint from being used as a blueprint
route:

I $ oc label route annotated-unsecured-blueprint type-

82

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#route-types
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#creating-routes

CHAPTER 3. SETTING UP A ROUTER

5. Create a new router to be used for the blueprint pool:

I $ oc adm router

6. Set the environment variables for the new router:

$ oc set env dc/router ROUTER_HAPROXY_ CONFIG_MANAGER=true \
ROUTER_BLUEPRINT_ROUTE_NAMESPACE=namespace_name \
ROUTER_BLUEPRINT_ROUTE_LABELS="type=route_label_1"

All routes in the namespace or project namespace_name with label type=route_label_1 can
be processed and used as custom blueprints.

Note that you can also add, update, or remove blueprints by managing the routes as you would
normally in that namespace hamespace_name. The dynamic configuration manager watches
for changes to routes in the namespace hamespace_name similar to how the router watches
for routes and services.

7. The pool sizes of the pre-allocated routes and back end servers can be controlled with the
ROUTER_BLUEPRINT_ROUTE_POOL_SIZE, which defaults to 10, and
ROUTER_MAX_DYNAMIC_SERVERS, which defaults to 5, environment variables. You can also
control how often changes made by the dynamic configuration manager are committed to disk,
which is when the HAProxy configuration is re-written and the HAProxy process is reloaded. The

default is one hour, or 3600 seconds, or when the dynamic configuration manager runs out of
pool space. The COMMIT_INTERVAL environment variable controls this setting:

$ oc set env dc/router -c router ROUTER_BLUEPRINT_ROUTE_POOL_SIZE=20 \
ROUTER_MAX_DYNAMIC_SERVERS=3 COMMIT_INTERVAL=6h

The example increases the pool size for each blueprint route to 20, reduces the number of
dynamic servers to 3, and increases the commit interval to 6 hours.

3.2.22. Exposing Router Metrics

The HAProxy router metrics are, by default, exposed or published in Prometheus format for
consumption by external metrics collection and aggregation systems (e.g. Prometheus, statsd). Metrics
are also available directly from the HAProxy router in its own HTML format for viewing in a browser or
CSV download. These metrics include the HAProxy native metrics and some controller metrics.

When you create a router using the following command, OpenShift Container Platform makes metrics
available in Prometheus format on the stats port, by default 1936.

I $ oc adm router --service-account=router
® To extract the raw statistics in Prometheus format run the following command:
I curl <user>:<password>@-<router_IP>:<STATS_PORT>
For example:
I $ curl admin:sLzdR6SgDJ@10.254.254.35:1936/metrics

You can get the information you need to access the metrics from the router service annotations:

83

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#haproxy-metrics
https://prometheus.io/docs/concepts/data_model/
https://cbonte.github.io/haproxy-dconv/1.5/configuration.html#9

OpenShift Container Platform 3.11 Configuring Clusters

$ oc edit service <router-name>

apiVersion: v1

kind: Service

metadata:

annotations:

prometheus.io/port: "1936"
prometheus.io/scrape: "true"
prometheus.openshift.io/password: ImoDgqON02
prometheus.openshift.io/username: admin

The prometheus.io/port is the stats port, by default 1936. You might need to configure your
firewall to permit access. Use the previous user name and password to access the metrics. The
path is /metrics.

$ curl <user>:<password>@<router_|IP>:<STATS_PORT>
for example:
$ curl admin:sLzdR6SgDJ@10.254.254.35:1936/metrics

HELP haproxy_backend_connections_total Total number of connections.

TYPE haproxy_backend_connections_total gauge
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route"} 0
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route-alt"} 0
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route01"} 0

HELP haproxy_exporter_server_threshold Number of servers tracked and the current
threshold value.

TYPE haproxy_exporter_server_threshold gauge
haproxy_exporter_server_threshold{type="current"} 11
haproxy_exporter_server_threshold{type="limit"} 500

HELP haproxy_frontend_bytes_in_total Current total of incoming bytes.
TYPE haproxy_frontend_bytes_in_total gauge
haproxy_frontend_bytes_in_total{frontend="fe_no_sni"} 0
haproxy_frontend_bytes_in_total{frontend="fe_sni"} 0
haproxy_frontend_bytes_in_total{frontend="public"} 119070

HELP haproxy_server_bytes_in_total Current total of incoming bytes.

TYPE haproxy_server_bytes_in_total gauge
haproxy_server_bytes_in_total{namespace="",pod="",route="",server="fe_no_sni",service=""}
0

haproxy_server_bytes_in_total{namespace="",pod="",route="",server="fe_sni",service=""} 0
haproxy_server_bytes_in_total{namespace="default",pod="docker-registry-5-
nk5fz",route="docker-registry",server="10.130.0.89:5000",service="docker-registry"} 0
haproxy_server_bytes_in_total{namespace="default",pod="hello-rc-vkjgx",route="hello-
route",server="10.130.0.90:8080",service="hello-svc-1"} 0

® To get metricsin a browser:

1. Delete the following environment variables from the router deployment configuration file:

84

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#env-variables

CHAPTER 3. SETTING UP A ROUTER

$ oc edit dc router

- name: ROUTER_LISTEN_ADDR
value: 0.0.0.0:1936

- name: ROUTER_METRICS_TYPE
value: haproxy

2. Patch the router readiness probe to use the same path as the liveness probe as it is now
served by the haproxy router:

$ oc patch dc router -p "spec": {"template": {"spec": {"containers": [{"name":
"router”,"readinessProbe": {"httpGet": {"path": "/healthz"}}}]}}}'

3. Launch the stats window using the following URL in a browser, where the STATS_PORT
value is 1936 by default:

I http://admin:<Password>@-<router_IP>:<STATS_PORT>
You can get the stats in CSV format by adding ;esv to the URL:
For example:

I http://admin:<Password>@-<router_IP>:1936;csv

To get the router IP, admin name, and password:
I oc describe pod <router_pod>

® To suppress metrics collection:

I $ oc adm router --service-account=router --stats-port=0

3.2.23. ARP Cache Tuning for Large-scale Clusters

In OpenShift Container Platform clusters with large numbers of routes (greater than the value of
net.ipv4.neigh.default.gc_thresh3, which is 65536 by default), you must increase the default values of
sysctl variables on each node in the cluster running the router pod to allow more entries in the ARP
cache.

When the problem is occuring, the kernel messages would be similar to the following:

[1738.811139] net_ratelimit: 1045 callbacks suppressed
[1743.823136] net_ratelimit: 293 callbacks suppressed

When this issue occurs, the o¢ commands might start to fail with the following error:

Unable to connect to the server: dial tcp: lookup <hostname> on <ip>:<port>: write udp <ip>:<port>->
<ip>:<port>: write: invalid argument

To verify the actual amount of ARP entries for IPv4, run the following:

I # ip -4 neigh show nud all | wc -

85

OpenShift Container Platform 3.11 Configuring Clusters

If the number begins to approach the net.ipv4.neigh.default.gc_thresh3 threshold, increase the
values. Get the current value by running:

sysctl net.ipv4.neigh.default.gc_thresh1
net.ipv4.neigh.default.gc_thresh1 = 128
sysctl net.ipv4.neigh.default.gc_thresh2
net.ipv4.neigh.default.gc_thresh2 = 512
sysctl net.ipv4.neigh.default.gc_thresh3
net.ipv4.neigh.default.gc_thresh3 = 1024

The following sysctl sets the variables to the OpenShift Container Platform current default values.

sysctl net.ipv4.neigh.default.gc_thresh1=8192
sysctl net.ipv4.neigh.default.gc_thresh2=32768
sysctl net.ipv4.neigh.default.gc_thresh3=65536

To make these settings permanent, see this document.

3.2.24. Protecting Against DDoS Attacks

Add timeout http-request to the default HAProxy router image to protect the deployment against
distributed denial-of-service (DDoS) attacks (for example, slowloris):

and the haproxy stats socket is available at /var/run/haproxy.stats
global
stats socket ./haproxy.stats level admin

defaults
option http-server-close
mode http
timeout http-request 5s
timeout connect 5s
timeout server 10s
timeout client 30s

timeout http-requestis set up to 5 seconds. HAProxy gives a client 5 seconds *to send its whole
HTTP request. Otherwise, HAProxy shuts the connection with *an error.

Also, when the environment variable ROUTER_SLOWLORIS_TIMEOUT is set, it limits the amount of
time a client has to send the whole HTTP request. Otherwise, HAProxy will shut down the connection.

Setting the environment variable allows information to be captured as part of the router’s deployment
configuration and does not require manual modification of the template, whereas manually adding the

HAProxy setting requires you to rebuild the router pod and maintain your router template file.

Using annotations implements basic DDoS protections in the HAProxy template router, including the
ability to limit the:

® number of concurrent TCP connections
® rate at which a client can request TCP connections

® rate at which HTTP requests can be made

86

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Performance_Tuning_Guide/index.html#custom-profiles

CHAPTER 3. SETTING UP A ROUTER

These are enabled on a per route basis because applications can have extremely different traffic
patterns.

Table 3.1. HAProxy Template Router Settings

Setting Description

haproxy.router.openshift.io/rate-limit- Enables the settings be configured (when set to true,
connections for example).
haproxy.router.openshift.io/rate-limit- The number of concurrent TCP connections that can
connections.concurrent-tcp be made by the same IP address on this route.
haproxy.router.openshift.io/rate-limit- The number of TCP connections that can be opened
connections.rate-tcp by a client IP.
haproxy.router.openshift.io/rate-limit- The number of HTTP requests that a client IP can
connections.rate-http make in a 3-second period.

3.2.25. Enable HAProxy Threading

Enabled threading with the --threads flag. This flag specifies the number of threads that the HAProxy
router will use.

3.3. DEPLOYING A CUSTOMIZED HAPROXY ROUTER

3.3.1. Overview

The default HAProxy router is intended to satisfy the needs of most users. However, it does not expose
all of the capability of HAProxy. Therefore, users may need to modify the router for their own needs.

You may need to implement new features within the application back-ends, or modify the current
operation. The router plug-in provides all the facilities necessary to make this customization.

The router pod uses a template file to create the needed HAProxy configuration file. The template file is
a golang template. When processing the template, the router has access to OpenShift Container
Platform information, including the router’s deployment configuration, the set of admitted routes, and
some helper functions.

When the router pod starts, and every time it reloads, it creates an HAProxy configuration file, and then
it starts HAProxy. The HAProxy configuration manual describes all of the features of HAProxy and how
to construct a valid configuration file.

A configMap can be used to add the new template to the router pod. With this approach, the router
deployment configuration is modified to mount the configMap as a volume in the router pod. The
TEMPLATE_FILE environment variable is set to the full path name of the template file in the router
pod.

87

http://golang.org/pkg/text/template/
https://cbonte.github.io/haproxy-dconv/configuration-1.5.html

OpenShift Container Platform 3.11 Configuring Clusters

IMPORTANT

It is not guaranteed that router template customizations will still work after you upgrade
OpenShift Container Platform.

Also, router template customizations must be applied to the template version of the
router that is running.

Alternatively, you can build a custom router image and use it when deploying some or all of your routers.
There is no need for all routers to run the same image. To do this, modify the haproxy-template.config
file, and rebuild the router image. The new image is pushed to the cluster's Docker repository, and the
router’s deployment configuration image: field is updated with the new name. When the cluster is
updated, the image needs to be rebuilt and pushed.

In either case, the router pod starts with the template file.

3.3.2. Obtaining the Router Configuration Template

The HAProxy template file is fairly large and complex. For some changes, it may be easier to modify the
existing template rather than writing a complete replacement. You can obtain a haproxy-
config.template file from a running router by running this on master, referencing the router pod:

oc get po
NAME READY STATUS RESTARTS AGE
router-2-40fc3 11 Running 0 11d

oc exec router-2-40fc3 cat haproxy-config.template > haproxy-config.template
oc exec router-2-40fc3 cat haproxy.config > haproxy.config

Alternatively, you can log onto the node that is running the router:

docker run --rm --interactive=true --tty --entrypoint=cat \
registry.redhat.io/openshift3/ose-haproxy-router:v{product-version} haproxy-config.template

The image name is from container images.

Save this content to a file for use as the basis of your customized template. The saved haproxy.config
shows what is actually running.

3.3.3. Modifying the Router Configuration Template

3.3.3.1. Background

The template is based on the golang template. It can reference any of the environment variables in the
router’s deployment configuration, any configuration information that is described below, and router
provided helper functions.

The structure of the template file mirrors the resulting HAProxy configuration file. As the template is
processed, anything not surrounded by {{" something "}} is directly copied to the configuration file.

Passages that are surrounded by {{"" something "}} are evaluated. The resulting text, if any, is copied to
the configuration file.

3.3.3.2. Go Template Actions

The define action names the file that will contain the processed template.

88

https://golang.org/pkg/text/template/

CHAPTER 3. SETTING UP A ROUTER

I {{define "/var/lib/haproxy/conf/haproxy.config"}}pipeline{{end}}

Table 3.2. Template Router Functions

Function Meaning

processEndpointsForAlias(alias
ServiceAliasConfig, svc ServiceUnit, action
string) [JEndpoint

env(variable, default ...string) string

matchPattern(pattern, s string) bool

isInteger(s string) bool

firstMatch(s string, allowedValues ...string)
bool

matchValues(s string, allowedValues ...
string) bool

generateRouteRegexp(hosthame, path
string, wildcard bool) string

genCertificateHostName(hosthame string,
wildcard bool) string

isTrue(s string) bool

Returns the list of valid endpoints. When action is
"shuffle”, the order of endpoints is randomized.

Tries to get the named environment variable from
the pod. If it is not defined or empty, it returns the
optional second argument. Otherwise, it returns an
empty string.

The first argument is a string that contains the
regular expression, the second argument is the
variable to test. Returns a Boolean value indicating
whether the regular expression provided as the first
argument matches the string provided as the second
argument.

Determines if a given variable is an integer.

Compares a given string to a list of allowed strings.
Returns first match scanning left to right through the
list.

Compares a given string to a list of allowed strings.
Returns "true" if the string is an allowed value,
otherwise returns false.

Generates a regular expression matching the route
hosts (and paths). The first argument is the host
name, the second is the path, and the third is a
wildcard Boolean.

Generates host name to use for serving/matching
certificates. First argument is the host name and the
second is the wildcard Boolean.

Determines if a given variable contains "true".

These functions are provided by the HAProxy template router plug-in.

3.3.3.3. Router Provided Information

This section reviews the OpenShift Container Platform information that the router makes available to
the template. The router configuration parameters are the set of data that the HAProxy router plug-in is

given. The fields are accessed by (dot) .Fieldname.

89

OpenShift Container Platform 3.11 Configuring Clusters

The tables below the Router Configuration Parameters expand on the definitions of the various fields. In
particular, .State has the set of admitted routes.

Table 3.3. Router Configuration Parameters

Field

WorkingDir

State

ServiceUnits

DefaultCertificate

PeerEndpoints

StatsUser

StatsPassword

StatsPort

BindPorts

Type

string

map[string]
(ServiceAliasConfig)

map[string]ServiceUnit

string

[IEndpoint

string

string

int

bool

Table 3.4. Router ServiceAliasConfig (A Route)

90

Field

Name

Namespace

Host

Path

Type

string

string

string

string

Description

The directory that files will be
written to, defaults to
/var/lib/containers/router

The routes.

The service lookup.

Full path name to the default
certificate in pem format.

Peers.

User name to expose stats with (if
the template supports it).

Password to expose stats with (if
the template supports it).

Port to expose stats with (if the
template supports it).

Whether the router should bind
the default ports.

Description

The user-specified name of the
route.

The namespace of the route.

The host name. For example,
www.example.com.

Optional path. For example,
www.example.com/myservic
e where myservice is the path.

Field

TLSTermination

Certificates

Status

PreferPort

InsecureEdgeTerminationPol
icy

RoutingKeyName

IsWildcard

Annotations

ServiceUnitNames

ActiveServiceUnits

Type

routeapi.TLSTerminationTyp
e

map|[string]Certificate

ServiceAliasConfigStatus

string

routeapi.lnsecureEdgeTermi
nationPolicyType

string

bool

maplstring]string

map|[string]int32

int

CHAPTER 3. SETTING UP A ROUTER

Description

The termination policy for this
back-end; drives the mapping
files and router configuration.

Certificates used for securing this
back-end. Keyed by the
certificate ID.

Indicates the status of
configuration that needs to be
persisted.

Indicates the port the user wants
to expose. If empty, a port will be
selected for the service.

Indicates desired behavior for
insecure connections to an edge-
terminated route: none (or
disable), allow, orredirect.

Hash of the route + namespace
name used to obscure the cookie
ID.

Indicates this service unit needing
wildcard support.

Annotations attached to this
route.

Collection of services that
support this route, keyed by
service name and valued on the
weight attached to it with respect
to other entries in the map.

Count of the
ServiceUnitNames with a non-
zero weight.

The ServiceAliasConfig is a route for a service. Uniquely identified by host + path. The default template
iterates over routes using {{range $cfgldx, $cfg := .State }}. Within such a {{range}} block, the
template can refer to any field of the current ServiceAliasConfig using $cfg.Field.

Table 3.5. Router ServiceUnit

o1

OpenShift Container Platform 3.11 Configuring Clusters

Field Type Description

Name string Name corresponds to a service
name + namespace. Uniquely
identifies the ServiceUnit.

EndpointTable [IEndpoint Endpoints that back the service.
This translates into a final back-
end implementation for routers.

ServiceUnit is an encapsulation of a service, the endpoints that back that service, and the routes that
point to the service. This is the data that drives the creation of the router configuration files

Table 3.6. Router Endpoint

Field Type
ID string
IP string
Port string
TargetName string
PortName string
IdHash string
NoHealthCheck bool

Endpoint is an internal representation of a Kubernetes endpoint.

Table 3.7. Router Certificate, ServiceAliasConfigStatus

Field Type Description

Certificate string Represents a public/private key
pair. It is identified by an ID, which
will become the file name. A CA
certificate will not have a
PrivateKey set.

ServiceAliasConfigStatus string Indicates that the necessary files
for this configuration have been
persisted to disk. Valid values:

"saved", "".

92

CHAPTER 3. SETTING UP A ROUTER

Table 3.8. Router Certificate Type

Field Type Description

ID string

Contents string The certificate.
PrivateKey string The private key.

Table 3.9. Router TLSTerminationType

Field Type Description

TLSTerminationType string Dictates where the secure
communication will stop.

InsecureEdgeTerminationPol string Indicates the desired behavior for

icyType insecure connections to a route.
While each router may make its
own decisions on which ports to
expose, this is normally port 80.

TLSTerminationType and InsecureEdgeTerminationPolicyType dictate where the secure
communication will stop.

Table 3.10. Router TLSTerminationType Values

Constant Value Meaning

TLSTerminationEdge edge Terminate encryption at the edge
router.
TLSTerminationPassthrough passthrough Terminate encryption at the

destination, the destination is
responsible for decrypting traffic.

TLSTerminationReencrypt reencrypt Terminate encryption at the edge
router and re-encrypt it with a
new certificate supplied by the
destination.

Table 3.11. Router InsecureEdgeTerminationPolicyType Values

Type Meaning
Allow Traffic is sent to the server on the insecure port
(default).

o)

3

OpenShift Container Platform 3.11 Configuring Clusters

Type Meaning

Disable No traffic is allowed on the insecure port.
Redirect Clients are redirected to the secure port.
None ("") is the same as Disable.

3.3.3.4. Annotations

Each route can have annotations attached. Each annotation is just a name and a value.

apiVersion: vi
kind: Route
metadata:
annotations:
haproxy.router.openshift.io/timeout: 5500ms

[...]
The name can be anything that does not conflict with existing Annotations. The value is any string. The

string can have multiple tokens separated by a space. For example, aa bb cc. The template uses
{{index}} to extract the value of an annotation. For example:

I {{$balanceAlgo := index $cfg.Annotations "haproxy.router.openshift.io/balance"}}

This is an example of how this could be used for mutual client authorization.

{{ with $cnList := index $cfg.Annotations "whiteListCertCommonName" }}
{{ if ne $cnList " }}
acl test ssl_c_s_dn(CN) -m str {{ $cnList }}
http-request deny if ltest

{{ end}}
{{end }}

Then, you can handle the white-listed CNs with this command.
I $ oc annotate route <route-name> --overwrite whiteListCertCommonName="CN1 CN2 CN3"
See Route-specific Annotations for more information.

3.3.3.5. Environment Variables

The template can use any environment variables that exist in the router pod. The environment variables
can be set in the deployment configuration. New environment variables can be added.

They are referenced by the env function:

I {{env "ROUTER_MAX_CONNECTIONS" "20000"}}

94

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#route-specific-annotations

CHAPTER 3. SETTING UP A ROUTER

The tirst string is the variable, and the second string is the detault when the variable is missing or nil.
When ROUTER_MAX_CONNECTIONS is not set or is nil, 20000 is used. Environment variables are a
map where the key is the environment variable name and the content is the value of the variable.

See Route-specific Environment variables for more information.

3.3.3.6. Example Usage

Here is a simple template based on the HAProxy template file.

Start with a comment:

{
Here is a small example of how to work with templates
taken from the HAProxy template file.

i

The template can create any number of output files. Use a define construct to create an output file. The
file name is specified as an argument to define, and everything inside the define block up to the
matching end is written as the contents of that file.

{{ define "/var/lib/haproxy/conf/haproxy.config" }}
global

{{end }}

The above will copy global to the /var/lib/haproxy/conf/haproxy.config file, and then close the file.

Set up logging based on environment variables.

{{ with (env "ROUTER_SYSLOG_ADDRESS" ") }}
log {{.}} {{env "ROUTER_LOG_FACILITY" "local1"}} {{env "ROUTER_LOG_LEVEL" "warning"}}

{{end }}

The env function extracts the value for the environment variable. If the environment variable is not
defined or nil, the second argument is returned.

nn

The with construct sets the value of "." (dot) within the with block to whatever value is provided as an
argument to with. The with action tests Dot for nil. If not nil, the clause is processed up to the end. In
the above, assume ROUTER_SYSLOG_ADDRESS contains /var/log/msg, ROUTER_LOG_FACILITY
is not defined, and ROUTER_LOG_LEVEL contains info. The following will be copied to the output file:

I log /var/log/msg locall info

Each admitted route ends up generating lines in the configuration file. Use range to go through the
admitted routes:

{{ range $cfgldx, $cfg := .State }}
backend be_http_{{$cfgldx}}
{{end}}

.State is a map of ServiceAliasConfig, where the key is the route name. range steps through the map
and, for each pass, it sets $cfgldx with the key, and sets $cfg to point to the ServiceAliasConfig that
describes the route. If there are two routes named myroute and hisroute, the above will copy the
following to the output file:

95

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#env-variables

OpenShift Container Platform 3.11 Configuring Clusters

backend be_http_myroute
backend be_http_hisroute

Route Annotations, $cfg.Annotations, is also a map with the annotation name as the key and the
content string as the value. The route can have as many annotations as desired and the use is defined by
the template author. The user codes the annotation into the route and the template author customized
the HAProxy template to handle the annotation.

The common usage is to index the annotation to get the value.

I {{$balanceAlgo := index $cfg.Annotations "haproxy.router.openshift.io/balance"}}

The index extracts the value for the given annotation, if any. Therefore, $balanceAlgo will contain the
string associated with the annotation or nil. As above, you can test for a non- nil string and act on it with
the with construct.

{{ with $balanceAlgo }}
balance $balanceAlgo

{{end }}
Here when $balanceAlgo is not nil, balance $balanceAlgo is copied to the output file.
In a second example, you want to set a server timeout based on a timeout value set in an annotation.
I $value = index $cfg.Annotations "haproxy.router.openshift.io/timeout”

The $value can now be evaluated to make sure it contains a properly constructed string. The
matchPattern function accepts a regular expression and returns true if the argument satisfies the
expression.

I matchPattern "[1-9][0-9]*(us\|ms\|s\|m\|h\|d)?" $value
This would accept 5000ms but not 7y. The results can be used in a test.

{{if (matchPattern "[1-9][0-9]*(us\|ms\|s\|m\|h\|d)?" $value) }}
timeout server {{$value}}

{{end }}

It can also be used to match tokens:

I matchPattern "roundrobin|leastconn|source" $balanceAlgo

Alternatively matchValues can be used to match tokens:

I matchValues $balanceAlgo "roundrobin" "leastconn” "source"

3.3.4. Using a ConfigMap to Replace the Router Configuration Template

You can use a ConfigMap to customize the router instance without rebuilding the router image. The
haproxy-config.template, reload-haproxy, and other scripts can be modified as well as creating and
modifying router environment variables.

96

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-configmaps

CHAPTER 3. SETTING UP A ROUTER

1. Copy the haproxy-config.template that you want to modify as described above. Modify it as

desired.

Create a ConfigMap:

I $ oc create configmap customrouter --from-file=haproxy-config.template

The customrouter ConfigMap now contains a copy of the modified haproxy-config.template

file.

Modify the router deployment configuration to mount the ConfigMap as a file and point the

TEMPLATE_FILE environment variable to it. This can be done via oc set env and oc set
volume commands, or alternatively by editing the router deployment configuration.

Using oc commands

$ oc set volume dc/router --add --overwrite \
--name=config-volume \
--mount-path=/var/lib/haproxy/conf/custom \
--source='{"configMap": { "name": "customrouter"}}'
$ oc set env dc/router \
TEMPLATE_FILE=/var/lib/haproxy/conf/custom/haproxy-config.template

Editing the Router Deployment Configuration

Use oc edit dc router to edit the router deployment configuration with a text editor.

2]
©

- name: STATS_USERNAME

value: admin
- name: TEMPLATE_FILE @)

value: /var/lib/haproxy/conf/custom/haproxy-config.template
image: openshift/origin-haproxy-routerp

terminationMessagePath: /dev/termination-log
volumeMounts: 9
- mountPath: /var/lib/haproxy/conf/custom
name: config-volume
dnsPolicy: ClusterFirst

terminationGracePeriodSeconds: 30

volumes: 6

- configMap:
name: customrouter
name: config-volume

In the spec.container.env field, add the TEMPLATE_FILE environment variable to
point to the mounted haproxy-config.template file.

Add the spec.container.volumeMounts field to create the mount point.

Add a new spec.volumes field to mention the ConfigMap.

Save the changes and exit the editor. This restarts the router.

97

OpenShift Container Platform 3.11 Configuring Clusters

3.3.5. Using Stick Tables

The following example customization can be used in a highly-available routing setup to use stick-tables
that synchronize between peers.

Adding a Peer Section

In order to synchronize stick-tables amongst peers you must a define a peers section in your HAProxy
configuration. This section determines how HAProxy will identify and connect to peers. The plug-in
provides data to the template under the .PeerEndpoints variable to allow you to easily identify
members of the router service. You may add a peer section to the haproxy-config.template file inside
the router image by adding:

{{ if (len .PeerEndpoints) gt 0 }}
peers openshift_peers
{{ range $endpointID, $endpoint := .PeerEndpoints }}
peer {{$endpoint. TargetName}} {{$endpoint.IP}}:1937
{{end }}
{{end}}

Changing the Reload Script

When using stick-tables, you have the option of telling HAProxy what it should consider the name of the
local host in the peer section. When creating endpoints, the plug-in attempts to set the TargetName to
the value of the endpoint’s TargetRef.Name. If TargetRef is not set, it will set the TargetName to the IP
address. The TargetRef.Name corresponds with the Kubernetes host name, therefore you can add the -
L option to the reload-haproxy script to identify the local host in the peer section.

peer_name=$HOSTNAME @)

if [-n "$old_pid"]; then

/usr/sbin/haproxy -f $config_file -p $pid_file -L $peer_name -sf $old_pid
else

/usr/sbin/haproxy -f $config_file -p $pid_file -L $peer_name
fi

ﬂ Must match an endpoint target name that is used in the peer section.

Modifying Back Ends

Finally, to use the stick-tables within back ends, you can modify the HAProxy configuration to use the
stick-tables and peer set. The following is an example of changing the existing back end for TCP
connections to use stick-tables:

{{ if eq $cfg.TLSTermination "passthrough" }}

backend be_tcp_{{$cfgldx}}

balance leastconn

timeout check 5000ms

stick-table type ip size 1m expire 5m{{ if (len $.PeerEndpoints) gt 0 }} peers openshift_peers {{ end
1}

stick on src

{{ range $endpointID, $endpoint := $serviceUnit.EndpointTable }}

98

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#configuring-a-highly-available-service

CHAPTER 3. SETTING UP A ROUTER

server {{$endpointID}} {{$endpoint.IP}}:{{$endpoint.Port}} check inter 5000ms

{{end }}
{{end }}

After this modification, you can rebuild your router.

3.3.6. Rebuilding Your Router

In order to rebuild the router, you need copies of several files that are present on a running router. Make
a work directory and copy the files from the router:

mkdir - myrouter/conf
cd myrouter

oc get po
NAME READY STATUS RESTARTS AGE
router-2-40fc3 11 Running 0 11d

oc exec router-2-40fc3 cat haproxy-config.template > conf/haproxy-config.template
oc exec router-2-40fc3 cat error-page-503.http > conf/error-page-503.http

oc exec router-2-40fc3 cat default_pub_keys.pem > conf/default_pub_keys.pem

oc exec router-2-40fc3 cat ../Dockerfile > Dockerfile

oc exec router-2-40fc3 cat ../reload-haproxy > reload-haproxy

You can edit or replace any of these files. However, conf/haproxy-config.template and reload-
haproxy are the most likely to be modified.

After updating the files:

docker build -t openshift/origin-haproxy-router-myversion .
docker tag openshift/origin-haproxy-router-myversion 172.30.243.98:5000/openshift/haproxy-router-
myversion

docker push 172.30.243.98:5000/openshift/origin-haproxy-router-pc:latest 9

ﬂ Tag the version with the repository. In this case the repository is 172.30.243.98:5000.
Push the tagged version to the repository. It may be necessary to docker login to the repository
first.
To use the new router, edit the router deployment configuration either by changing the image: string or

by adding the --images=<repo>/<image>:<tag> flag to the oc adm router command.

When debugging the changes, it is helpful to set imagePullPolicy: Always in the deployment
configuration to force an image pull on each pod creation. When debugging is complete, you can change
it back to imagePullPolicy: IfNotPresent to avoid the pull on each pod start.

3.4. CONFIGURING THE HAPROXY ROUTER TO USE THE PROXY
PROTOCOL

3.4.1. Overview

By default, the HAProxy router expects incoming connections to unsecure, edge, and re-encrypt routes
to use HTTP. However, you can configure the router to expect incoming requests by using the PROXY
protocol instead. This topic describes how to configure the HAProxy router and an external load

99

http://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

OpenShift Container Platform 3.11 Configuring Clusters

balancer to use the PROXY protocol.

3.4.2. Why Use the PROXY Protocol?

When an intermediary service such as a proxy server or load balancer forwards an HTTP request, it
appends the source address of the connection to the request’s "Forwarded" header in order to provide
this information to subsequent intermediaries and to the back-end service to which the request is
ultimately forwarded. However, if the connection is encrypted, intermediaries cannot modify the
"Forwarded" header. In this case, the HTTP header will not accurately communicate the original source

address when the request is forwarded.

To solve this problem, some load balancers encapsulate HTTP requests using the PROXY protocol as an
alternative to simply forwarding HTTP. Encapsulation enables the load balancer to add information to
the request without modifying the forwarded request itself. In particular, this means that the load
balancer can communicate the source address even when forwarding an encrypted connection.

The HAProxy router can be configured to accept the PROXY protocol and decapsulate the HTTP
request. Because the router terminates encryption for edge and re-encrypt routes, the router can then
update the "Forwarded" HTTP header (and related HTTP headers) in the request, appending any source
address that is communicated using the PROXY protocol.

' WARNING
A The PROXY protocol and HTTP are incompatible and cannot be mixed. If you use a

load balancer in front of the router, both must use either the PROXY protocol or
HTTP. Configuring one to use one protocol and the other to use the other protocol
will cause routing to fail.

3.4.3. Using the PROXY Protocol

By default, the HAProxy router does not use the PROXY protocol. The router can be configured using
the ROUTER_USE_PROXY_PROTOCOL environment variable to expect the PROXY protocol for
incoming connections:

Enable the PROXY Protocol
I $ oc set env dc/router ROUTER_USE_PROXY_ PROTOCOL=true

Set the variable to any value other than true or TRUE to disable the PROXY protocol:

Disable the PROXY Protocol
I $ oc set env dc/router ROUTER_USE_PROXY_ PROTOCOL=false

If you enable the PROXY protocol in the router, you must configure your load balancer in front of the
router to use the PROXY protocol as well. Following is an example of configuring Amazon's Elastic Load
Balancer (ELB) service to use the PROXY protocol. This example assumes that ELB is forwarding ports
80 (HTTP), 443 (HTTPS), and 5000 (for the image registry) to the router running on one or more EC2
instances.

100

CHAPTER 3. SETTING UP A ROUTER

Configure Amazon ELB to Use the PROXY Protocol

1. To simplify subsequent steps, first set some shell variables:

$ lo="infra-Ib' @)

$ instances=('i-079b4096c654f563c") 9
$ secgroups=('sg-e1760186") 6

$ subnets=('subnet-cf57¢596'") ﬂ

ﬂ The name of your ELB.
9 The instance or instances on which the router is running.
9 The security group or groups for this ELB.

Q The subnet or subnets for this ELB.

2. Next, create the ELB with the appropriate listeners, security groups, and subnets.

NOTE

You must configure all listeners to use the TCP protocol, not the HTTP protocol.

$ aws elb create-load-balancer --load-balancer-name "$Ib" \

--listeners \
'Protocol=TCP,LoadBalancerPort=80,InstanceProtocol=TCP,InstancePort=80" \
'Protocol=TCP,LoadBalancerPort=443,InstanceProtocol=TCP,InstancePort=443" \
'Protocol=TCP,LoadBalancerPort=5000,InstanceProtocol=TCP,InstancePort=5000" \

--security-groups $secgroups \

--subnets $subnets

{

"DNSName"; "infra-Ib-2006263232.us-east-1.elb.amazonaws.com"

}

3. Register your router instance or instances with the ELB:

$ aws elb register-instances-with-load-balancer --load-balancer-name "$lb" \
--instances $instances

{

"Instances": [

{
"Instanceld": "i-079b4096¢c6541563c"

}
]
}
4. Configure the ELB’s health check:
$ aws elb configure-health-check --load-balancer-name "$Ib" \
--health-check
"Target=HTTP:1936/healthz,Interval=30,Unhealthy Threshold=2,Healthy Threshold=2, Timeout=5

{

101

OpenShift Container Platform 3.11 Configuring Clusters

"HealthCheck™: {
"HealthyThreshold": 2,
"Interval™: 30,

"Target": "HTTP:1936/healthz",
"Timeout": 5,
"UnhealthyThreshold": 2

5. Finally, create a load-balancer policy with the ProxyProtocol attribute enabled, and configure it
on the ELB’s TCP ports 80 and 443:

$ aws elb create-load-balancer-policy --load-balancer-name "$lb" \
--policy-name "${Ib}-ProxyProtocol-policy" \
--policy-type-name 'ProxyProtocolPolicy Type' \
--policy-attributes 'AttributeName=ProxyProtocol,AttributeValue=true'
$ for port in 80 443
do
aws elb set-load-balancer-policies-for-backend-server \
--load-balancer-name "$Ib" \
--instance-port "$port" \
--policy-names "${Ib}-ProxyProtocol-policy"
done

Verify the Configuration
You can examine the load balancer as follows to verify that the configuration is correct:

$ aws elb describe-load-balancers --load-balancer-name "$lb" |
jq ".LoadBalancerDescriptions| [.[]|.ListenerDescriptions]'

[
[

{
"Listener": {
"InstancePort": 80,
"LoadBalancerPort": 80,
"Protocol": "TCP",
"InstanceProtocol": "TCP"
b
"PolicyNames": ["infra-Ib-ProxyProtocol-policy"] ﬂ
2
{
"Listener": {
"InstancePort": 443,
"LoadBalancerPort": 443,
"Protocol": "TCP",
"InstanceProtocol": "TCP"
b
"PolicyNames": ["infra-Ib-ProxyProtocol-policy"] 9
2
{
"Listener": {

"InstancePort": 5000,
"LoadBalancerPort": 5000,
"Protocol": "TCP",

102

CHAPTER 3. SETTING UP A ROUTER

"InstanceProtocol": "TCP"
|3
"PolicyNames": [] 6

}

]

]

ﬂ The listener for TCP port 80 should have the policy for using the PROXY protocol.
9 The listener for TCP port 443 should have the same policy.

9 The listener for TCP port 5000 should not have the policy.

Alternatively, if you already have an ELB configured, but it is not configured to use the PROXY protocol,
you will need to change the existing listener for TCP port 80 to use the TCP protocol instead of HTTP
(TCP port 443 should already be using the TCP protocol):

$ aws elb delete-load-balancer-listeners --load-balancer-name "$Ib" \
--load-balancer-ports 80

$ aws elb create-load-balancer-listeners --load-balancer-name "$lb" \
--listeners 'Protocol=TCP,LoadBalancerPort=80,InstanceProtocol=TCP,InstancePort=80'

Verify the Protocol Updates

Verify that the protocol has been updated as follows:

$ aws elb describe-load-balancers --load-balancer-name "$lb" |
jq '[.LoadBalancerDescriptions[]|.ListenerDescriptions]’

[
[
{

"Listener™: {
"InstancePort": 443,
"LoadBalancerPort": 443,
"Protocol": "TCP",
"InstanceProtocol": "TCP"

b

"PolicyNames": []

b
{

"Listener™: {
"InstancePort": 5000,
"LoadBalancerPort": 5000,
"Protocol": "TCP",
"InstanceProtocol": "TCP"
|3
"PolicyNames": []
|3
{

"Listener": {
"InstancePort": 80,
"LoadBalancerPort": 80,
"Protocol": "TCP", ﬂ
"InstanceProtocol": "TCP"

103

OpenShift Container Platform 3.11 Configuring Clusters

"PolicyNames": []

}
]
]

ﬂ All listeners, including the listener for TCP port 80, should be using the TCP protocol.

Then, create a load-balancer policy and add it to the ELB as described in Step 5 above.

104

CHAPTER 4. DEPLOYING RED HAT CLOUDFORMS

CHAPTER 4. DEPLOYING RED HAT CLOUDFORMS

4.1. DEPLOYING RED HAT CLOUDFORMS ON OPENSHIFT CONTAINER
PLATFORM

4.1.1. Introduction
The OpenShift Container Platform installer includes the Ansible role openshift-management and

playbooks for deploying Red Hat CloudForms 4.6 (CloudForms Management Engine 5.9, or CFME) on
OpenShift Container Platform.

' WARNING
A The current implementation is incompatible with the Technology Preview

deployment process of Red Hat CloudForms 4.5 as described in OpenShift
Container Platform 3.6 documentation.

When deploying Red Hat CloudForms on OpenShift Container Platform, there are two major decisions
to make:

1. Do you want an external or a containerized (also referred to as podified) PostgreSQL database?
2. Which storage class will back your persistent volumes (PVs)?

For the first decision, you can deploy Red Hat CloudForms in one of two ways, depending on the
location of the PostgreSQL database to be used by Red Hat CloudForms:

Deployment Variant Description

Fully containerized All application services and the PostgreSQL
database are run as pods on OpenShift Container
Platform.

External database The application utilizes an externally-hosted

PostgreSQL database server, while all other services
are ran as pods on OpenShift Container Platform.

For the second decision, the openshift-management role provides customization options for overriding
many default deployment parameters. This includes the following storage class options to back your
PVs:

Storage Class Description

NFS (default) Local, on cluster

105

https://docs.openshift.com/container-platform/3.6/install_config/deploying_cfme.html

OpenShift Container Platform 3.11 Configuring Clusters

Storage Class Description

NFS External NFS somewhere else, like a storage appliance

Cloud Provider Use automatic storage provisioning from your cloud
provider (Google Cloud Engine, Amazon Web
Services, or Microsoft Azure)

Preconfigured (advanced) Assumes you created everything ahead of time

Topics in this guide include the requirements for running Red Hat CloudForms on OpenShift Container
Platform, descriptions of the available configuration variables, and instructions on running the installer
either during your initial OpenShift Container Platform installation or after your cluster has been
provisioned.

4.2. REQUIREMENTS FOR RED HAT CLOUDFORMS ON OPENSHIFT
CONTAINER PLATFORM

The default requirements are listed in the table below. These can be overridden by customizing
template parameters.

IMPORTANT

The application performance will suffer, or possibly even fail to deploy, if these
requirements are not satisfied.

Table 4.1. Default Requirements

Requirement Description Customization

Parameter

Application Memory =4.0Gi Minimum required APPLICATION_MEM
memory for the _REQ
application

Application Storage =50Gi Minimum PV size APPLICATION_VOL
required for the UME_CAPACITY
application

PostgreSQL Memory =6.0Gi Minimum required POSTGRESQL_MEM
memory for the _REQ
database

PostgreSQL Storage =15.0Gi Minimum PV size DATABASE_VOLUM
required for the E_CAPACITY
database

106

CHAPTER 4. DEPLOYING RED HAT CLOUDFORMS

Requirement

Customization
Parameter

Description

Cluster Hosts =3 Number of hosts in your N/A

cluster
To sum up these requirements:
® You must have several cluster nodes.
® Your cluster nodes must have lots of memory available.
® You must have several GiB's of storage available, either locally or on your cloud provider.

® PV sizes can be changed by providing override values to template parameters.

4.3. CONFIGURING ROLE VARIABLES

4.3.1. Overview

The following sections describe role variables that may be used in your Ansible inventory file, which is
used to control the behavior of the Red Hat CloudForms installation when running the installer.

4.3.2. General Variables

Variable Required Default Description

openshift No false Boolean, set to true to install the application.

_manage

ment_inst

all_manag

ement

openshift Yes cfme- The deployment variant of Red Hat CloudForms to install. Set
_manage template cfme-template for a containerized database orcfme-
ment_app template-ext-db for an external database.

_template

openshift No openshift- Namespace (project) for the Red Hat CloudForms installation.
_manage managem

ment_proj ent

ect

openshift No CloudFor Namespace (project) description.

_manage ms

ment_proj Managem

ect_descri ent

ption Engine

107

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible

OpenShift Container Platform 3.11 Configuring Clusters

Variable Required Default Description

openshift No admin Default management user name. Changing this value does not
_manage change the user name; only change this value if you have
ment_use changed the name already and are running integration scripts
rname (such as the script to add container providers).

openshift No smartvm Default management password. Changing this value does not
_manage change the password; only change this value if you have
ment_pas changed the password already and are running integration
sword scripts (such as the script to add container providers).

4.3.3. Customizing Template Parameters

You can use the openshift_management_template_parameters Ansible role variable to specify any
template parameters you want to override in the application or PV templates.

For example, if you wanted to reduce the memory requirement of the PostgreSQL pod, then you could
set the following:

I openshift_management_template_parameters={'POSTGRESQL_MEM_REQ': '1Gi"}

When the Red Hat CloudForms template is processed, 1Gi will be used for the value of the
POSTGRESQL_MEM_REQ template parameter.

Not all template parameters are present in both template variants (containerized or external database).
For example, while the podified database template has a POSTGRESQL_MEM_REQ parameter, no
such parameter is present in the external db template, as there is no need for this information due to
there being no databases that require pods.

Therefore, be very careful if you are overriding template parameters. Including parameters not defined
in a template will cause errors. If you do receive an error during the Ensure the Management App is
created task, run the uninstall scripts first before running the installer again.

4.3.4. Database Variables

4.3.4.1. Containerized (Podified) Database

Any POSTGRES_* or DATABASE_* template parameters in the cfme-template.yaml file may be
customized through the openshift_management_template_parameters hash in your inventory file..

4.3.4.2. External Database

Any POSTGRES_* or DATABASE_* template parameters in the cfme-template-ext-db.yaml file may
be customized through the openshift_management_template_parameters hash in your inventory file..

External PostgreSQL databases require you to provide database connection parameters. You must set

the required connection keys in the openshift_management_template_parameters parameter in your
inventory. The following keys are required:

108

CHAPTER 4. DEPLOYING RED HAT CLOUDFO

e DATABASE_USER

e DATABASE_PASSWORD

e DATABASE_IP

e DATABASE_PORT (Most PostgreSQL servers run on port 5432)

e DATABASE_NAME

NOTE

Ensure your external database is running PostgreSQL 9.5 or you may not be able to
deploy the CloudForms application successfully.

Your inventory would contain a line similar to:

[OSEv3:vars]

openshift_management_app_template=cfme-template-ext-db ﬂ
openshift_management_template_parameters={'DATABASE_USER?': 'root',
'DATABASE_PASSWORD': 'mypassword’, 'DATABASE_IP':'10.10.10.10', 'DATABASE_PORT"
'5432', 'DATABASE_NAME": 'cfme'}

Q Set openshift_management_app_template parameter to cfme-template-ext-db.

4.3.5. Storage Class Variables

Variable Required Default Description
openshift_managem No nfs Storage type to use.
ent_storage_class Options are nfs,
nfs_external,
preconfigured, or
cloudprovider.
openshift_managem No false If you are using an

ent_storage nfs_ext
ernal_hostname

external NFS server,
such as a NetApp
appliance, then you
must set the host name
here. Leave the value as
false if you are not
using external NFS.
Additionally, external
NFS requires that you
create the NFS exports
that will back the
application PV and
optionally the database
PV.

RMS

109

OpenShift Container Platform 3.11 Configuring Clusters

Variable Required Default Description
openshift_managem No /exports/ If you are using external
ent_storage nfs_bas NFS, then you can set
e _dir the base path to the

exports location here.
Forlocal NFS, you can
also change this value if
you want to change the
default path used for
local NFS exports.

openshift_managem No false If you do not have an
ent_storage nfs_loc [nfs] group in your
al_hostname inventory, or want to

simply manually define
the local NFS host in
your cluster, set this
parameter to the host
name of the preferred
NFS server. The server
must be a part of your
OpenShift Container
Platform cluster.

4.3.5.1. NFS (Default)

The NFS storage class is best suited for proof-of-concept and test deployments. It is also the default
storage class for deployments. No additional configuration is required for this choice.

This storage class configures NFS on a cluster host (by default, the first master in the inventory file) to
back the required PVs. The application requires a PV, and the database (which may be hosted
externally) may require a second. PV minimum required sizes are 5GiB for the Red Hat CloudForms
application, and 15GiB for the PostgreSQL database (20GiB minimum available space on a volume or
partition if used specifically for NFS purposes).

Customization is provided through the following role variables:

e openshift_management_storage_nfs_base_dir

o openshift_management_storage_nfs_local_hostname

4.3.5.2. NFS External

External NFS leans on pre-configured NFS servers to provide exports for the required PVs. For external
NFS you must have a cfme-app and optionally a cfme-db (for containerized database) exports.

Configuration is provided through the following role variables:
o openshift_management_storage nfs_external_hostname

e openshift_management_storage_nfs_base_dir

110

CHAPTER 4. DEPLOYING RED HAT CLOUDFORMS

The openshift_management_storage_nfs_external_hostname parameter must be set to the host
name or |IP of your external NFS server.

If /exports is not the parent directory to your exports then you must set the base directory via the
openshift_management_storage_nfs_base_dir parameter.

For example, if your server export is /exports/hosted/prod/cfme-app, then you must set
openshift_management_storage nfs_base_dir=/exports/hosted/prod.

4.3.5.3. Cloud Provider

If you are using OpenShift Container Platform cloud provider integration for your storage class, Red Hat
CloudForms can also use the cloud provider storage to back its required PVs. For this functionality to
work, you must have configured the openshift_cloudprovider_kind variable (for AWS or GCE) and all
associated parameters specific to your chosen cloud provider.

When the application is created using this storage class, the required PVs are automatically provisioned
using the configured cloud provider storage integration.

There are no additional variables to configure the behavior of this storage class.

4.3.5.4. Preconfigured (Advanced)

The preconfigured storage class implies that you know exactly what you are doing and that all storage
requirements have been taken care ahead of time. Typically this means that you have already created
the correctly sized PVs. The installer will do nothing to modify any storage settings.

There are no additional variables to configure the behavior of this storage class.

4.4. RUNNING THE INSTALLER

4.4.1. Deploying Red Hat CloudForms During or After OpenShift Container Platform
Installation

You can choose to deploy Red Hat CloudForms either during initial OpenShift Container Platform
installation or after the cluster has been provisioned:

1. Ensure that openshift_management_install_management is set to true in your inventory file
under the [OSEv3:vars] section:

[OSEv3:vars]
openshift_management_install_management=true

2. Set any other Red Hat CloudForms role variables in your inventory file as described in
Configuring Role Variables. Resources to assist in this are provided in Example Inventory Files.

3. Choose which playbook to run depending on whether OpenShift Container Platform is already
provisioned:

a. If youwant to install Red Hat CloudForms at the same time you install your OpenShift
Container Platform cluster, call the standard config.yml playbook as described in Running
the Installation Playbooks to begin the OpenShift Container Platform cluster and Red Hat
CloudForms installation.

m

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#running-the-installation-playbooks

OpenShift Container Platform 3.11 Configuring Clusters

b. If you want to install Red Hat CloudForms on an already provisioned OpenShift Container
Platform cluster, change to the playbook directory and call the Red Hat CloudForms
playbook directly to begin the installation:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -v [-i /path/to/inventory] \
playbooks/openshift-management/config.yml

4.4.2. Example Inventory Files

The following sections show example snippets of inventory files showing various configurations of Red
Hat CloudForms on OpenShift Container Platform that can help you get started.

Tt

NOTE

See Configuring Role Variables for complete variable descriptions.

4.4.2.1. All Defaults

This example is the simplest, using all of the default values and choices. This results in a fully-
containerized (podified) Red Hat CloudForms installation. All application components, as well as the
PostgreSQL database, are created as pods in OpenShift Container Platform:

[OSEv3:vars]
openshift_management_app_template=cfme-template

4.4.2.2. External NFS Storage

This is as the previous example, except that instead of using local NFS services in the cluster, it uses an
existing, external NFS server (such as a storage appliance). Note the two new parameters:

[OSEv3:vars]

openshift_management_app_template=cfme-template
openshift_management_storage_class=nfs_external ﬂ
openshift_management_storage nfs_external_hostname=nfs.example.com 9

Q Set to nfs_external.

9 Set to the host name of the NFS server.

If the external NFS host exports directories under a different parent directory, such as
/exports/hosted/prod, add the following additional variable:

I openshift_management_storage nfs_base_dir=/exports/hosted/prod

4.4.2.3. Override PV Sizes

This example overrides the persistent volume (PV) sizes. PV sizes must be set via
openshift_management_template_parameters, which ensures that the application and database are
able to make claims on created PVs without interfering with each other:

12

CHAPTER 4. DEPLOYING RED HAT CLOUDFORMS

[OSEv3:vars]

openshift_management_app_template=cfme-template
openshift_management_template_parameters={"APPLICATION_VOLUME_CAPACITY": "10Gi',
'DATABASE_VOLUME_CAPACITY": '25Gi'}

4.4.2.4. Override Memory Requirements

In a test or proof-of-concept installation, you may need to reduce the application and database memory
requirements to fit within your capacity. Note that reducing memory limits can result in reduced
performance or a complete failure to initialize the application:

[OSEv3:vars]

openshift_management_app_template=cfme-template
openshift_management_template_parameters={"APPLICATION_MEM_REQ': '3000Mi',
'POSTGRESQL_MEM_REQ'": '1Gi', '"ANSIBLE_MEM_REQ'": '512Mi'}

This example instructs the installer to process the application template with the parameter
APPLICATION_MEM_REQ set to 3000Mi, POSTGRESQL_MEM_REQ set to 1Gi, and
ANSIBLE_MEM_REQ set to 512Mi.

These parameters can be combined with the parameters displayed in the previous example Override PV
Sizes.

4.4.2.5. External PostgreSQL Database

To use an external database, you must change the openshift_management_app_template parameter
value to cfme-template-ext-db.

Additionally, database connection information must be supplied using the
openshift_management_template_parameters variable. See Configuring Role Variables for more
details.

[OSEv3:vars]

openshift_management_app_template=cfme-template-ext-db
openshift_management_template_parameters={'DATABASE_USER': 'root',
'DATABASE_PASSWORD': 'mypassword’, 'DATABASE_IP": '10.10.10.10", 'DATABASE_PORT"
'5432', 'DATABASE_NAME': 'cfme'}

IMPORTANT

Ensure your are running PostgreSQL 9.5 or you may not be able to deploy the application
successfully.

4.5. ENABLING CONTAINER PROVIDER INTEGRATION

4.5.1. Adding a Single Container Provider

After deploying Red Hat CloudForms on OpenShift Container Platform as described in Running the
Installer, there are two methods for enabling container provider integration. You can manually add
OpenShift Container Platform as a container provider, or you can try the playbooks included with this
role.

13

OpenShift Container Platform 3.11 Configuring Clusters

4.5.1.1. Adding Manually

See the following Red Hat CloudForms documentation for steps on manually adding your OpenShift
Container Platform cluster as a container provider:

® Integration with OpenShift Container Platform

4.5.1.2. Adding Automatically

Automated container provider integration can be accomplished using the playbooks included with this
role.

This playbook:
1. Gathers the necessary authentication secrets.
2. Finds the public routes to the Red Hat CloudForms application and the cluster API.
3. Makes a REST call to add the OpenShift Container Platform cluster as a container provider.

Change to the playbook directory and run the container provider playbook:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -v [-i /path/to/inventory] \
openshift-management/add_container_provider.yml|

4.5.2. Multiple Container Providers

As well as providing playbooks to integrate your current OpenShift Container Platform cluster into your
Red Hat CloudForms deployment, this role includes a script which allows you to add multiple container
platforms as container providers in any arbitrary Red Hat CloudForms server. The container platforms
can be OpenShift Container Platform or OpenShift Origin.

Using the multiple provider script requires manual configuration and setting an EXTRA_VARS
parameter on the CLI when running the playbook.

4.5.2.1. Preparing the Script

To prepare the multiple provider script, complete the following manual configuration:

1. Copy the fusr/share/ansible/openshift-
ansible/roles/openshift_ management/files/examples/container_providers.yml example
somewhere, such as /tmp/cp.yml. You will be modifying this file.

2. If you changed your Red Hat CloudForms name or password, update the hostname, user, and
password parameters in the management_server key in the container_providers.yml file that
you copied.

3. Fillin an entry under the container_providers key for each container platform cluster you want
to add as container providers.

a. The following parameters must be configured:

e auth_key - This is the token of a service account that has cluster-admin privileges.

14

https://access.redhat.com/documentation/en-us/red_hat_cloudforms/4.5/html/integration_with_openshift_container_platform/

CHAPTER 4. DEPLOYING RED HAT CLOUDFORMS

® hosthame - This is the host name that points to the cluster API. Each container
provider must have a unique host name.

® npame - This is the name of the cluster to be displayed in the Red Hat CloudForms
server container providers overview page. This must be unique.

TIP

To obtain the auth_key bearer token from your clusters:

I $ oc serviceaccounts get-token -n management-infra management-admin

b. The following parameters may be optionally configured:

e port - Update this key if your container platform cluster runs the APl on a port other
than 8443.

e endpoint - You may enable SSL verification (verify_ssl) or change the validation
setting to ssl-with-validation. Support for custom trusted CA certificates is not
currently available.

4.5.2.1.1. Example

As an example, consider the following scenario:
® You copied the container_providers.yml file to /tmp/cp.yml.
® You want to add two OpenShift Container Platform clusters.
® Your Red Hat CloudForms server runs on mgmt.example.com

For this scenario, you would customize /tmp/cp.yml as follows:

container_providers:
- connection_configurations:
- authentication: {auth_key: "<token>", authtype: bearer, type: AuthToken} ﬂ
endpoint: {role: default, security_protocol: ssl-without-validation, verify_ssl: 0}
hostname: "<provider_hostname1>"
name: <display_name1>
port: 8443
type: "ManagelQ::Providers::Openshift::ContainerManager”
- connection_configurations:
- authentication: {auth_key: "<token>", authtype: bearer, type: AuthToken} g
endpoint: {role: default, security_protocol: ssl-without-validation, verify_ssl: 0}
hostname: "<provider_hostname2>"
name: <display_name2>
port: 8443
type: "ManagelQ::Providers::Openshift::ContainerManager”
management_server:
hostname: "<hostname>"
user: <user_name>
password: <password>

wRepIace <token> with the management token for this cluster.

115

OpenShift Container Platform 3.11 Configuring Clusters

4.5.2.2. Running the Playbook

To run the multiple-providers integration script, you must provide the path to the container providers
configuration file as an EXTRA_VARS parameter to the ansible-playbook command. Use the -e (or --
extra-vars) parameter to set container_providers_config to the configuration file path. Change to the
playbook directory and run the playbook:

$ cd /usr/share/ansible/openshift-ansible

$ ansible-playbook -v [-i /path/to/inventory] \
-e container_providers_config=/tmp/cp.yml \
playbooks/openshift-management/add_many_container_providers.yml

After the playbook completes, you should find two new container providers in your Red Hat CloudForms
service. Navigate to the Compute — Containers — Providers page to see an overview.

4.5.3. Refreshing Providers

After adding either a single or multiple container providers, the new provider(s) must be refreshed in Red
Hat CloudForms to get all the latest data about the container provider and the containers being
managed. This involves navigating to each provider in the Red Hat CloudForms web console and

clicking a refresh button for each.

See the following Red Hat CloudForms documentation for steps:

® Managing Providers

4.6. UNINSTALLING RED HAT CLOUDFORMS

4.6.1. Running the Uninstall Playbook

To uninstall and erase a deployed Red Hat CloudForms installation from OpenShift Container Platform,
change to the playbook directory and run the uninstall.yml playbook:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -v [-i /path/to/inventory] \
playbooks/openshift-management/uninstall.yml

IMPORTANT
NFS export definitions and data stored on NFS exports are not automatically removed.

You are urged to manually erase any data from old application or database deployments
before attempting to initialize a new deployment.

4.6.2. Troubleshooting

Failure to erase old PostgreSQL data can result in cascading errors, causing the postgresql pod to
enter a crashloopbackoff state. This blocks the cfme pod from ever starting. The cause of the
crashloopbackoff is due to incorrect file permissions on the database NFS export created during a
previous deployment.

To continue, erase all data from the PostgreSQL export and delete the pod (not the deployer pod). For
example, if you had the following pods:

16

https://access.redhat.com/documentation/en-us/red_hat_cloudforms/4.6/html-single/managing_providers/index#refreshing_cloud_providers

CHAPTER 4. DEPLOYING RED HAT CLOUDFORMS

$ oc get pods

NAME READY STATUS RESTARTS AGE
httpd-1-cx7fk 11 Running 1 21h

cfme-0 0/1 Running 1 21h
memcached-1-vkc7p 1/1 Running 1 21h
postgresql-1-deploy 1/1 Running 1 21h
postgresql-1-6w2t4 0/1 CrashLoopBackOff 1 21h

Then you would:
1. Erase the data from the database NFS export.

2. Run:

I $ oc delete postgresql-1-6w2t4

The PostgreSQL deployer pod will try to scale up a new postgresql pod to replace the one you deleted.
After the postgresql pod is running, the cfme pod will stop blocking and begin application initialization.

17

OpenShift Container Platform 3.11 Configuring Clusters

CHAPTER 5. PROMETHEUS CLUSTER MONITORING

5.1. OVERVIEW

OpenShift Container Platform ships with a pre-configured and self-updating monitoring stack that is
based on the Prometheus open source project and its wider eco-system. It provides monitoring of
cluster components and ships with a set of alerts to immediately notify the cluster administrator about
any occurring problems and a set of Grafana dashboards.

openshift-monitoring
Cluster-monitofing-operator |-« :---:--covereeereeesniiineaieea. prometheus-operator
A A
: Grafana
| .
| Y Y | Y
L I
Jostn kube-state-metrics - Prometheus |7 77 Alertmanager
r-—H—-—=-=="="="="=-"=== il
: A
N node-exporter I
= manages - Control Plane
----p access | mem——————— .
—— = alert > Kubelet J
——» monitor

Highlighted in the diagram above, at the heart of the monitoring stack sits the OpenShift Container
Platform Cluster Monitoring Operator (CMO), which watches over the deployed monitoring components
and resources, and ensures that they are always up to date.

The Prometheus Operator (PO) creates, configures, and manages Prometheus and Alertmanager
instances. It also automatically generates monitoring target configurations based on familiar Kubernetes
label queries.

In addition to Prometheus and Alertmanager, OpenShift Container Platform Monitoring also includes
node-exporter and kube-state-metrics. Node-exporter is an agent deployed on every node to collect
metrics about it. The kube-state-metrics exporter agent converts Kubernetes objects to metrics
consumable by Prometheus.
The targets monitored as part of the cluster monitoring are:

® Prometheus itself

® Prometheus-Operator

® cluster-monitoring-operator

® Alertmanager cluster instances

® Kubernetes apiserver

® kubelets (the kubelet embeds cAdvisor for per container metrics)

18

https://prometheus.io/
https://grafana.com/
https://github.com/prometheus/node_exporter
https://github.com/kubernetes/kube-state-metrics

® kube-controllers

® kube-state-metrics

® node-exporter

e etcd (if etcd monitoring is enabled)

All these components are automatically updated.

CHAPTER 5. PROMETHEUS CLUSTER MONITORING

For more information about the OpenShift Container Platform Cluster Monitoring Operator, see the

Cluster Monitoring Operator GitHub project.

NOTE

In order to be able to deliver updates with guaranteed compatibility, configurability of the
OpenShift Container Platform Monitoring stack is limited to the explicitly available

options.

5.2. CONFIGURING OPENSHIFT CONTAINER PLATFORM CLUSTER

MONITORING

The OpenShift Container Platform Ansible openshift_cluster_monitoring_operator role configures
and deploys the Cluster Monitoring Operator using the variables from the inventory file.

Table 5.1. Ansible variables

Variable Description

openshift_cluster_monitoring_operator_insta
]

openshift_cluster_monitoring_operator_pro
metheus_storage capacity

openshift_cluster_monitoring_operator_alert
manager_storage_capacity

openshift_cluster_monitoring_operator_nod
e_selector

openshift_cluster_monitoring_operator_alert
manager_config

Deploy the Cluster Monitoring Operator if true.
Otherwise, undeploy. This variable is set to true by
default.

The persistent volume claim size for each of the
Prometheus instances. This variable applies only if
openshift_cluster_monitoring_operator_pro
metheus_storage enabled is set to true.
Defaults to 50Gi.

The persistent volume claim size for each of the
Alertmanager instances. This variable applies only if
openshift_cluster_monitoring_operator_alert
manager_storage_enabled is set to true.
Defaults to 2Gi.

Set to the desired, existing node selector to ensure
that pods are placed onto nodes with specific labels.
Defaults to node-role.kubernetes.io/infra=true.

Configures Alertmanager.

19

https://github.com/openshift/cluster-monitoring-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-sched-selector

OpenShift Container Platform 3.11 Configuring Clusters

Variable Description

openshift_cluster_monitoring_operator_pro
metheus_storage enabled

openshift_cluster_monitoring_operator_alert
manager_storage_enabled

openshift_cluster_monitoring_operator_pro
metheus_storage class_name

openshift_cluster_monitoring_operator_alert
manager_storage_class_name

5.2.1. Monitoring prerequisites

Enable persistent storage of Prometheus' time-
series data. This variable is set to false by default.

Enable persistent storage of Alertmanager
notifications and silences. This variable is set to false
by default.

If you enabled the
openshift_cluster_monitoring_operator_pro
metheus_storage enabled option, set a specific
StorageClass to ensure that pods are configured to
use the PVC with thatstorageclass. Defaults to
none, which applies the default storage class name.

If you enabled the
openshift_cluster_monitoring_operator_alert
manager_storage_enabled option, set a specific
StorageClass to ensure that pods are configured to
use the PVC with thatstorageclass. Defaults to
none, which applies the default storage class name.

The monitoring stack imposes additional resource requirements. See computing resources

recommendations for details.

5.2.2. Installing monitoring stack

The Monitoring stack is installed with OpenShift Container Platform by default. You can prevent it from
being installed. To do that, set this variable to false in the Ansible inventory file:

openshift_cluster_monitoring_operator_install

You can do it by running:

$ ansible-playbook [-i </path/to/inventory>] <OPENSHIFT_ANSIBLE_DIR>/playbooks/openshift-

monitoring/config.yml \

-e openshift_cluster_monitoring_operator_install=False

A common path for the Ansible directory is /ust/share/ansible/openshift-ansible/. In this case, the path
to the configuration file is /ust/share/ansible/openshift-ansible/playbooks/openshift-

monitoring/config.yml.

5.2.3. Persistent storage

Running cluster monitoring with persistent storage means that your metrics are stored to a persistent
volume and can survive a pod being restarted or recreated. This is ideal if you require your metrics or
alerting data to be guarded from data loss. For production environments, it is highly recommended to
configure persistent storage using block storage technology.

120

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/scaling_and_performance_guide/#cluster-monitoring-recommendations-for-OCP
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#persistent-volumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/scaling_and_performance_guide/#optimizing-persistent-storage

CHAPTER 5. PROMETHEUS CLUSTER MONITORING

5.2.3.1. Enabling persistent storage

By default, persistent storage is disabled for both Prometheus time-series data and for Alertmanager
notifications and silences. You can configure the cluster to persistently store any one of them or both.

® To enable persistent storage of Prometheus time-series data, set this variable to true in the
Ansible inventory file:
openshift_cluster_monitoring_operator_prometheus_storage_enabled

® To enable persistent storage of Alertmanager notifications and silences, set this variable to true
in the Ansible inventory file:
openshift_cluster_monitoring_operator_alertmanager_storage_enabled

5.2.3.2. Determining how much storage is necessary

How much storage you need depends on the number of pods. It is administrator’s responsibility to
dedicate sufficient storage to ensure that the disk does not become full. For information on system
requirements for persistent storage, see Capacity Planning for Cluster Monitoring Operator.

5.2.3.3. Setting persistent storage size

To specify the size of the persistent volume claim for Prometheus and Alertmanager, change these
Ansible variables:

e openshift_cluster_monitoring_operator_prometheus_storage_capacity (default: 50Gi)
e openshift_cluster_monitoring_operator_alertmanager_storage_capacity (default: 2Gi)

Each of these variables applies only if its corresponding storage_enabled variable is set to true.

5.2.3.4. Allocating enough persistent volumes

Unless you use dynamically-provisioned storage, you need to make sure you have a persistent volume
(PV) ready to be claimed by the PVC, one PV for each replica. Prometheus has two replicas and
Alertmanager has three replicas, which amounts to five PVs.

5.2.3.5. Enabling dynamically-provisioned storage

Instead of statically-provisioned storage, you can use dynamically-provisioned storage. See Dynamic
Volume Provisioning for details.

To enable dynamic storage for Prometheus and Alertmanager, set the following parameters to true in
the Ansible inventory file:

e openshift_cluster_monitoring_operator_prometheus_storage _enabled (Default: false)
e openshift_cluster_monitoring_operator_alertmanager_storage_enabled (Default: false)

After you enable dynamic storage, you can also set the storageclass for the persistent volume claim for
each component in the following parameters in the Ansible inventory file:

e openshift_cluster_monitoring_operator_prometheus_storage_class_name (default: ")
e openshift_cluster_monitoring_operator_alertmanager_storage_class_name (default: ")

Each of these variables applies only if its corresponding storage_enabled variable is set to true.

121

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/scaling_and_performance_guide/#capacity-planning-for-cluster-monitoring-operator
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/

OpenShift Container Platform 3.11 Configuring Clusters

5.2.4. Supported configuration

The supported way of configuring OpenShift Container Platform Monitoring is by configuring it using the
options described in this guide. Beyond those explicit configuration options, it is possible to inject
additional configuration into the stack. However this is unsupported, as configuration paradigms might
change across Prometheus releases, and such cases can only be handled gracefully if all configuration
possibilities are controlled.

Explicitly unsupported cases include:

® Creating additional ServiceMonitor objects in the openshift-monitoring namespace, thereby
extending the targets the cluster monitoring Prometheus instance scrapes. This can cause
collisions and load differences that cannot be accounted for, therefore the Prometheus setup
can be unstable.

® Creating additional ConfigMap objects, that cause the cluster monitoring Prometheus instance
to include additional alerting and recording rules. Note that this behavior is known to cause a
breaking behavior if applied, as Prometheus 2.0 will ship with a new rule file syntax.

5.3. CONFIGURING ALERTMANAGER

The Alertmanager manages incoming alerts; this includes silencing, inhibition, aggregation, and sending
out notifications through methods such as email, PagerDuty, and HipChat.

The default configuration of the OpenShift Container Platform Monitoring Alertmanager cluster is:

global:
resolve_timeout: 5m
route:
group_wait: 30s
group_interval: 5m
repeat_interval: 12h
receiver: default
routes:
- match:
alertname: DeadMansSwitch
repeat_interval: 5m
receiver: deadmansswitch
receivers:
- name: default
- name: deadmansswitch

This configuration can be overwritten using the Ansible variable
openshift_cluster_monitoring_operator_alertmanager_config from the
openshift_cluster_monitoring_operator role.

The following example configures PagerDuty for notifications. See the PagerDuty documentation for
Alertmanager to learn how to retrieve the service_key.

openshift_cluster_monitoring_operator_alertmanager_config: |+
global:
resolve_timeout: 5m
route:
group_wait: 30s
group_interval: 5m

122

https://www.pagerduty.com/
https://www.pagerduty.com/docs/guides/prometheus-integration-guide/

CHAPTER 5. PROMETHEUS CLUSTER MONITORING

repeat_interval: 12h
receiver: default
routes:
- match:
alertname: DeadMansSwitch
repeat_interval: 5m
receiver: deadmansswitch
- match:
service: example-app
routes:
- match:
severity: critical
receiver: team-frontend-page
receivers:
- name: default
- name: deadmansswitch
- name: team-frontend-page
pagerduty_configs:
- service_key: "<key>"

The sub-route matches only on alerts that have a severity of critical and sends them using the receiver
called team-frontend-page. As the name indicates, someone should be paged for alerts that are critical.
See Alertmanager configuration for configuring alerting through different alert receivers.

5.3.1. Dead man’s switch

OpenShift Container Platform Monitoring ships with a dead man’s switch to ensure the availability of the
monitoring infrastructure.

The dead man'’s switch is a simple Prometheus alerting rule that always triggers. The Alertmanager
continuously sends notifications for the dead man’s switch to the notification provider that supports this
functionality. This also ensures that communication between the Alertmanager and the notification
provider is working.

This mechanism is supported by PagerDuty to issue alerts when the monitoring system itself is down.
For more information, see Dead man's switch PagerDuty below.

5.3.2. Grouping alerts

After alerts are firing against the Alertmanager, it must be configured to know how to logically group
them.

For this example, a new route is added to reflect alert routing of the frontend team.

Procedure

1. Add new routes. Multiple routes may be added beneath the original route, typically to define the
receiver for the notification. The following example uses a matcher to ensure that only alerts
coming from the service example-app are used:

global:
resolve_timeout: 5m
route:
group_wait: 30s
group_interval: 5m

123

https://prometheus.io/docs/alerting/configuration/

OpenShift Container Platform 3.11 Configuring Clusters

repeat_interval: 12h
receiver: default
routes:
- match:
alertname: DeadMansSwitch
repeat_interval: 5m
receiver: deadmansswitch
- match:
service: example-app
routes:
- match:
severity: critical
receiver: team-frontend-page
receivers:
- name: default
- name: deadmansswitch

The sub-route matches only on alerts that have a severity of critical, and sends them using the
receiver called team-frontend-page. As the name indicates, someone should be paged for
alerts that are critical.

5.3.3. Dead man’s switch PagerDuty

PagerDuty supports this mechanism through an integration called Dead Man'’s Snitch. Simply add a
PagerDuty configuration to the default deadmansswitch receiver. Use the process described above to
add this configuration.

Configure Dead Man’s Snitch to page the operator if the Dead man's switch alert is silent for 15 minutes.
With the default Alertmanager configuration, the Dead man’s switch alert is repeated every five
minutes. If Dead Man'’s Snitch triggers after 15 minutes, it indicates that the notification has been
unsuccessful at least twice.

Learn how to configure Dead Man'’s Snitch for PagerDuty.

5.3.4. Alerting rules

OpenShift Container Platform Cluster Monitoring ships with the following alerting rules configured by
default. Currently you cannot add custom alerting rules.

Some alerting rules have identical names. This is intentional. They are alerting about the same event
with different thresholds, with different severity, or both. With the inhibition rules, the lower severity is

inhibited when the higher severity is firing.

For more details on the alerting rules, see the configuration file.

Alert Severity Description

ClusterMonitoringOperatorEr critical Cluster Monitoring Operator is

rors experiencing X% errors.

AlertmanagerDown critical Alertmanager has disappeared
from Prometheus target
discovery.

124

https://www.pagerduty.com/
https://deadmanssnitch.com/
https://www.pagerduty.com/docs/guides/dead-mans-snitch-integration-guide/
https://github.com/openshift/cluster-monitoring-operator/blob/release-3.11/assets/prometheus-k8s/rules.yaml

Alert

ClusterMonitoringOperatorD
own

KubeAPIDown

KubeControllerManagerDow
n

KubeSchedulerDown

KubeStateMetricsDown

KubeletDown

NodeExporterDown

PrometheusDown

PrometheusOperatorDown

KubePodCrashLooping

KubePodNotReady

KubeDeploymentGeneration
Mismatch

KubeDeploymentReplicasMi
smatch

Severity

critical

critical

critical

critical

critical

critical

critical

critical

critical

critical

critical

critical

critical

CHAPTER 5. PROMETHEUS CLUSTER MONITORING

Description

ClusterMonitoringOperator has
disappeared from Prometheus
target discovery.

KubeAPI has disappeared from
Prometheus target discovery.

KubeControllerManager has
disappeared from Prometheus
target discovery.

KubeScheduler has disappeared
from Prometheus target
discovery.

KubeStateMetrics has
disappeared from Prometheus
target discovery.

Kubelet has disappeared from
Prometheus target discovery.

NodeExporter has disappeared
from Prometheus target
discovery.

Prometheus has disappeared
from Prometheus target
discovery.

PrometheusOperator has
disappeared from Prometheus
target discovery.

Namespace/Pod (Container) is
restarting times / second

Namespace/Pod is not ready.

Deployment
Namespace/Deployment
generation mismatch

Deployment
Namespace/Deployment replica
mismatch

125

Alert
KubeStatefulSetReplicasMis

match

KubeStatefulSetGenerationM
ismatch

KubeDaemonSetRolloutStuc
k

KubeDaemonSetNotSchedul
ed

KubeDaemonSetMisSchedul
ed

KubeCronJobRunning

KubedobCompletion

KubeJobFailed

KubeCPUOvercommit

KubeMemOvercommit

KubeCPUOvercommit

KubeMemOvercommit

alerKubeQuotaExceeded

126

OpenShift Container Platform 3.11 Configuring Clusters

Severity

critical

critical

critical

warning

warning

warning

warning

warning

warning

warning

warning

warning

warning

Description

StatefulSet
Namespace/StatefulSet replica
mismatch

StatefulSet
Namespace/StatefulSet
generation mismatch

Only X% of desired pods
scheduled and ready for daemon
set Namespace/DaemonSet

A number of pods of daemonset
Namespace/DaemonSet are not
scheduled.

A number of pods of daemonset
Namespace/DaemonSet are
running where they are not
supposed to run.

CronJob Namespace/CronJob is
taking more than 1h to complete.

Job Namespaces/Job is taking
more than Th to complete.

Job Namespaces/Job failed to
complete.

Overcommited CPU resource
requests on Pods, cannot tolerate
node failure.

Overcommited Memory resource
requests on Pods, cannot tolerate
node failure.

Overcommited CPU resource
request quota on Namespaces.

Overcommited Memory resource
request quota on Namespaces.

X% usage of Resource in
namespace Namespace.

Alert

KubePersistentVolumeUsage
Critical

KubePersistentVolumeFullln
FourDays

KubeNodeNotReady

KubeVersionMismatch

KubeClientErrors

KubeClientErrors

KubeletTooManyPods

KubeAPILatencyHigh

KubeAPILatencyHigh

KubeAPIErrorsHigh

KubeAPIErrorsHigh

KubeClientCertificateExpirati
on

Severity

critical

critical

warning

warning

warning

warning

warning

warning

critical

critical

warning

warning

CHAPTER 5. PROMETHEUS CLUSTER MONITORING

Description

The persistent volume claimed by
PersistentVolumeClaim in
namespace Namespace has X%
free.

Based on recent sampling, the
persistent volume claimed by
PersistentVolumeClaim in
namespace Namespace is
expected to fill up within four
days. Currently X bytes are
available.

Node has been unready for more
than an hour

There are X different versions of
Kubernetes components running.

Kubernetes API server client
‘Job/Instance' is experiencing X%
errors.'

Kubernetes APl server client
‘Job/Instance' is experiencing X
errors / sec.’

Kubelet Instance is running X
pods, close to the limit of 110.

The APl server has a 99th
percentile latency of X seconds
for Verb Resource.

The APl server has a 99th
percentile latency of X seconds
for Verb Resource.

APl server is erroring for X% of
requests.

APl server is erroring for X% of
requests.

Kubernetes API certificate is
expiring in less than 7 days.

127

Alert

KubeClientCertificateExpirati
on

AlertmanagerConfiginconsis
tent

AlertmanagerFailedReload

TargetDown

DeadMansSwitch

NodeDiskRunningFull

NodeDiskRunningFull

PrometheusConfigReloadFai
led

PrometheusNotificationQueu
eRunningFull

128

OpenShift Container Platform 3.11 Configuring Clusters

Severity

critical

critical

warning

warning

none

warning

critical

warning

warning

Description

Kubernetes API certificate is
expiring in less than 1day.

Summary: Configuration out of
sync. Description: The
configuration of the instances of
the Alertmanager cluster Service
are out of sync.

Summary: Alertmanager's
configuration reload failed.
Description: Reloading
Alertmanager’s configuration has
failed for Namespace/Pod.

Summary: Targets are down.
Description: X% of Job targets are
down.

Summary: Alerting
DeadMansSwitch. Description:
This is a DeadMansSwitch meant
to ensure that the entire Alerting
pipeline is functional.

Device Device of node-exporter
Namespace/Pod is running full
within the next 24 hours.

Device Device of node-exporter
Namespace/Pod is running full
within the next 2 hours.

Summary: Reloading Prometheus'
configuration failed. Description:
Reloading Prometheus'
configuration has failed for
Namespace/Pod

Summary: Prometheus' alert
notification queue is running full.
Description: Prometheus' alert
notification queue is running full
for Namespace/Pod

Alert

PrometheusErrorSendingAle
rts

PrometheusErrorSendingAle
rts

PrometheusNotConnectedTo
Alertmanagers

PrometheusTSDBReloadsFai
ling

PrometheusTSDBCompactio
nsFailing

PrometheusTSDBWALCorru
ptions

PrometheusNotlngestingSa
mples

PrometheusTargetScrapesD
uplicate

Severity

warning

critical

warning

warning

warning

warning

warning

warning

CHAPTER 5. PROMETHEUS CLUSTER MONITORING

Description

Summary: Errors while sending
alert from Prometheus.
Description: Errors while sending
alerts from Prometheus
Namespace/Pod to Alertmanager
Alertmanager

Summary: Errors while sending
alerts from Prometheus.
Description: Errors while sending
alerts from Prometheus
Namespace/Pod to Alertmanager
Alertmanager

Summary: Prometheus is not
connected to any Alertmanagers.
Description: Prometheus
Namespace/Pod is not connected
to any Alertmanagers

Summary: Prometheus has issues
reloading data blocks from disk.
Description: Job atInstance had X
reload failures over the last four
hours.

Summary: Prometheus has issues
compacting sample blocks.
Description: Job atInstance had X
compaction failures over the last
four hours.

Summary: Prometheus write-
ahead log is corrupted.
Description: Job atInstance has a
corrupted write-ahead log (WAL).

Summary: Prometheus isn't
ingesting samples. Description:
Prometheus Namespace/Pod isn't
ingesting samples.

Summary: Prometheus has many
samples rejected. Description:
Namespace/Pod has many
samples rejected due to duplicate
timestamps but different values

129

OpenShift Container Platform 3.11 Configuring Clusters

Alert Severity Description
EtcdinsufficientMembers critical Etcd cluster "Job": insufficient
members (X).
EtcdNoLeader critical Etcd cluster "Job": member
Instance has no leader.
EtcdHighNumberOfLeaderCh warning Etcd cluster "Job": instance
anges Instance has seenXleader
changes within the last hour.
EtcdHighNumberOfFailedGR warning Etcd cluster "Job": X% of requests
PCRequests for GRPC_Method failed on etcd
instance Instance.
EtcdHighNumberOfFailedGR critical Etcd cluster "Job": X% of requests
PCRequests for GRPC_Method failed on etcd
instance Instance.
EtcdGRPCRequestsSlow critical Etcd cluster "Job": gRPC requests
to GRPC_Method are takingX_s
on eted instance _Instance.
EtcdMemberCommunication warning Etcd cluster "Job": member
Slow communication with To is taking
X_s on etcd instance _Instance
EtcdHighNumberOfFailedPro warning Etcd cluster "Job": X proposal
posals failures within the last hour on
etcd instance Instance.
EtcdHighFsyncDurations warning Etcd cluster "Job": 99th
percentile fync durations are X_s
on eted instance _Instance.
EtcdHighCommitDurations warning Etcd cluster "Job": 99th
percentile commit durations X_s
on eted instance _Instance.
FdExhaustionClose warning Job instance Instance will exhaust
its file descriptors soon
FdExhaustionClose critical Job instance Instance will exhaust

its file descriptors soon

5.4. CONFIGURING ETCD MONITORING

If the eted service does not run correctly, successful operation of the whole OpenShift Container
Platform cluster is in danger. Therefore, it is reasonable to configure monitoring of eted.

130

CHAPTER 5. PROMETHEUS CLUSTER MONITORING

Follow these steps to configure eted monitoring:

Procedure

1. Verify that the monitoring stack is running:

$ oc -n openshift-monitoring get pods

NAME READY STATUS RESTARTS AGE
alertmanager-main-0 3/3 Running 0 34m
alertmanager-main-1 3/3 Running 0 33m
alertmanager-main-2 3/3 Running 0 33m
cluster-monitoring-operator-67b8797d79-sphxj 1/1 Running 0 36m
grafana-c66997f-pxrf7 2/2 Running 0 37s
kube-state-metrics-7449d589bc-rt4mq 3/3 Running 0 33m
node-exporter-5tt4f 2/2 Running 0 33m
node-exporter-b2mrp 2/2 Running 0 33m
node-exporter-fd52p 2/2 Running 0 33m
node-exporter-hfagv 2/2 Running 0 33m
prometheus-k8s-0 4/4 Running 1 35m
prometheus-k8s-1 0/4 ContainerCreating 0 21s
prometheus-operator-6¢9fddd4 7f-9jfgk 11 Running 0 36m

2. Open the configuration file for the cluster monitoring stack:
I $ oc -n openshift-monitoring edit configmap cluster-monitoring-config

3. Under config.yaml: |+, add the etcd section.

a. If youruneted in static pods on your master nodes, you can specify the eted nodes using
the selector:

data:
config.yaml: |+

etcd:
targets:
selector:
openshift.io/component: etcd
openshift.io/control-plane: "true"

b. If you run eted on separate hosts, you need to specify the nodes using IP addresses:

data:
config.yaml: |+
etcd:
targets:
ips:
-"127.0.0.1"

-"127.0.0.2"
-"127.0.0.3"

If the IP addresses for eted nodes change, you must update this list.

131

OpenShift Container Platform 3.11 Configuring Clusters

132

4. Verify that the eted service monitor is now running:

$ oc -n openshift-monitoring get servicemonitor
NAME AGE

alertmanager 35m

eted im ﬂ

kube-apiserver 36m

kube-controllers 36m

kube-state-metrics 34m

kubelet 36m
node-exporter 34m
prometheus 36m

prometheus-operator 37m

ﬂ The eted service monitor.

It might take up to a minute for the eted service monitor to start.

5. Now you can navigate to the web interface to see more information about the status of eted

monitoring.

a. Togetthe URL, run:

$ oc -n openshift-monitoring get routes
NAME HOST/PORT

SERVICES PORT TERMINATION WILDCARD

PATH

prometheus-k8s prometheus-k8s-openshift-monitoring.apps.msvistun.origin-

gce.dev.openshift.com prometheus-k8s

web

reencrypt None

b. Using https, navigate to the URL listed for prometheus-k8s. Log in.

6. Ensure the user belongs to the cluster-monitoring-view role. This role provides access to

viewing cluster monitoring Uls.

For example, to add user developer to the cluster-monitoring-view role, run:

I $ oc adm policy add-cluster-role-to-user cluster-monitoring-view developer

7. In the web interface, log in as the user belonging to the cluster-monitoring-view role.

8. Click Status, then Targets. If you see an eted entry, eted is being monitored.

etcd (0/1 up)

Endpoint State Labels
hitps://10.142.0.2:237 DOW E
9/metrics M stance="10,142.0.2:2379"

B CE
T

Last

Scrape Error

1.787s
ago

Gel hitps://10.142.0.2:23
79/metrics: x509: certificat
e signed by unknown auth
ority

CHAPTER 5. PROMETHEUS CLUSTER MONITORING

9. While eted is now being monitored, Prometheus is not yet able to authenticate against eted,
and so cannot gather metrics.
To configure Prometheus authentication against eted:

a. Copy the /etc/etcd/cal/ca.crt and /etc/etcd/ca/ca.key credentials files from the master
node to the local machine:

I $ ssh -i gcp-dev/ssh-privatekey cloud-user@35.237.54.213
b. Create the openssl.cnf file with these contents:

[req]

req_extensions = v3_req

distinguished_name = req_distinguished_name

[req_distinguished_name]

[v3_req]

basicConstraints = CA:FALSE

keyUsage = nonRepudiation, keyEncipherment, digitalSignature
extendedKeyUsage=serverAuth, clientAuth

c. Generate the etcd.key private key file:
I $ openssl genrsa -out etcd.key 2048
d. Generate the eted.csr certificate signing request file:
I $ openssl req -new -key etcd.key -out etcd.csr -subj "/CN=etcd" -config openssl.cnf

e. Generate the etcd.crt certificate file:

$ openssl x509 -req -in etcd.csr -CA ca.crt -CAkey ca.key -CAcreateserial -out etcd.crt -
days 365 -extensions v3_req -extfile openssl.cnf

f. Put the credentials into format used by OpenShift Container Platform:

$ cat <<-EOF > etcd-cert-secret.yaml
apiVersion: v1
data:
etcd-client-ca.crt: "$(cat ca.crt | base64 --wrap=0)"
etcd-client.crt: "$(cat etcd.crt | base64 --wrap=0)"
etcd-client.key: "$(cat etcd.key | base64 --wrap=0)"
kind: Secret
metadata:
name: kube-etcd-client-certs
namespace: openshift-monitoring
type: Opaque
EOF

This creates the etcd-cert-secret.yaml file

g. Apply the credentials file to the cluster:

I $ oc apply -f etcd-cert-secret.yaml

133

OpenShift Container Platform 3.11 Configuring Clusters

10.

1.

Now that you have configured authentication, visit the Targets page of the web interface again.
Verify that eted is now being correctly monitored. It might take several minutes for changes to
take effect.

etcd (1/1 up)

Last
Endpoint State Labels Scrape Error
https://10.142.0.2:237 UP [endpoint="metrics” | infiFLRSIeE
9/metrics ago

namespace="Kube-syste
m pod="master-atcd-
svistun-ig-m-2jSg" m

If you want eted monitoring to be automatically updated when you update OpenShift Container
Platform, set this variable in the Ansible inventory file to true:

I openshift_cluster_monitoring_operator_etcd_enabled=true
If you run eted on separate hosts, specify the nodes by IP addresses using this Ansible variable:
I openshift_cluster_monitoring_operator_etcd_hosts=[<address1>, <address2>, ...]

If the IP addresses of the eted nodes change, you must update this list.

5.5. ACCESSING PROMETHEUS, ALERTMANAGER, AND GRAFANA

OpenShift Container Platform Monitoring ships with a Prometheus instance for cluster monitoring and a
central Alertmanager cluster. In addition to Prometheus and Alertmanager, OpenShift Container
Platform Monitoring also includes a Grafana instance as well as pre-built dashboards for cluster
monitoring troubleshooting. The Grafana instance that is provided with the monitoring stack, along with
its dashboards, is read-only.

To get the addresses for accessing Prometheus, Alertmanager, and Grafana web Uls:

Procedure

134

1. Run the following command:

$ oc -n openshift-monitoring get routes

NAME HOST/PORT
alertmanager-main alertmanager-main-openshift-monitoring.apps._url_.openshift.com
grafana grafana-openshift-monitoring.apps._url_.openshift.com

prometheus-k8s prometheus-k8s-openshift-monitoring.apps._url_.openshift.com

Make sure to prepend https:// to these addresses. You cannot access web Uls using
unencrypted connections.

2. Authentication is performed against the OpenShift Container Platform identity and uses the

same credentials or means of authentication as is used elsewhere in OpenShift Container
Platform. You must use a role that has read access to all namespaces, such as the cluster-
monitoring-view cluster role.

https://grafana.com/

CHAPTER 6. ACCESSING AND CONFIGURING THE RED HAT REGISTRY

CHAPTER 6. ACCESSING AND CONFIGURING THE RED HAT
REGISTRY

6.1. AUTHENTICATION ENABLED RED HAT REGISTRY

All container images available through the Red Hat Container Catalog are hosted on an image registry,
registry.access.redhat.com. With OpenShift Container Platform 3.11 Red Hat Container Catalog moved
from registry.access.redhat.com to registry.redhat.io.

The new registry, registry.redhat.io, requires authentication for access to images and hosted content
on OpenShift Container Platform. Following the move to the new registry, the existing registry will be
available for a period of time.

NOTE

OpenShift Container Platform pulls images from registry.redhat.io, so you must
configure your cluster to use it.

.'--)

The new registry uses standard OAuth mechanisms for authentication, with the following methods:

® Authentication token. Tokens, which are generated by administrators, are service accounts that
give systems the ability to authenticate against the container image registry. Service accounts
are not affected by changes in user accounts, so the token authentication method is reliable
and resilient. This is the only supported authentication option for production clusters.

® Web username and password. This is the standard set of credentials you use to log in to
resources such as access.redhat.com. While it is possible to use this authentication method
with OpenShift Container Platform, it is not supported for production deployments. Restrict this
authentication method to stand-alone projects outside OpenShift Container Platform.

You can use docker login with your credentials, either username and password or authentication token,
to access content on the new registry.

All image streams point to the new registry. Because the new registry requires authentication for access,
there is a new secret in the OpenShift namespace called imagestreamsecret.

You must place your credentials in two places:

® OpenShift namespace. Your credentials must exist in the OpenShift namespace so that the
image streams in the OpenShift namespace can import.

® Your host. Your credentials must exist on your host because Kubernetes uses the credentials
from your host when it goes to pull images.

To access the new registry:

e Verify image import secret, imagestreamsecret, is in your OpenShift namespace. That secret
has credentials that allow you to access the new registry.

e Verify all of your cluster nodes have a /var/lib/origin/.docker/config.json, copied from master,
that allows you to access the Red Hat registry.

6.1.1. Creating User accounts

135

https://access.redhat.com/terms-based-registry

OpenShift Container Platform 3.11 Configuring Clusters

If you are a Red Hat customer with entitlements to Red Hat products, you have an account with
applicable user credentials. These are the username and password that you use to log in to the Red Hat
Customer Portal.

If you do not have an account, you can acquire one for free by registering for one of the following
options:

® Red Hat Developer Program This account gives you access to developer tools and programs.

® 30-day Trial Subscription. This account gives you a 30-day trial subscription with access to
select Red Hat software products.

6.1.2. Creating Service Accounts and Authentication Tokens for the Red Hat
Registry

You must create tokens if your organization manages shared accounts. Administrators can create, view,
and delete all tokens associated with an organization.

Prerequisites

® User credentials

Procedure

To create a token in order complete a docker login:
1. Navigate to registry.redhat.io.
2. Login with your Red Hat Network (RHN) username and password.

3. Accept terms when prompted.

e |f you are notimmediately prompted to accept terms, you will be prompted when
proceeding with the following steps.

4. From the Registry Service Accountspage, click Create Service Account

a. Provide a name for the service account. It will be prepended with a random string.
b. Enter a description.
c. Click create.

5. Navigate back to your Service Accounts.

6. Click the Service Account you created.

7. Copy the username, including the prepended string.

8. Copy the token.

6.1.3. Managing Registry Credentials for Installation and Upgrade

You can also manage registry credentials during installation or upgrade using the Ansible installer.

This will set up the following:

136

https://developers.redhat.com/
https://access.redhat.com/products/red-hat-enterprise-linux/evaluation

CHAPTER 6. ACCESSING AND CONFIGURING THE RED HAT REGISTRY

e imagestreamsecret in your OpenShift namespace.
® Credentials on all nodes.

The Ansible installer will require credentials when you are using the default value of registry.redhat.io
for either openshift_examples_registryurl or oreg_url.

Prerequisites

® User credentials
® Service account
® Service account token

Procedure

To manage registry credentials during installation or upgrade using the Ansible installer:

e During installation or upgrade, specify the oreg_auth_user and oreg_auth_password
variables in your installer inventory.

NOTE

If you have created a token, set oreg_auth_password to the value of the token.

Clusters that require access to additional authenticated registries can configure a list of registries by
setting openshift_additional_registry credentials. Each registry requires a host and password value,
you can specify a username by setting user. By default the credentials specified are validated by
attempting to inspect the image openshift3/ose-pod on the specified registry.
To specify an alternate image, either:

® Settest_image.

® Disable credential validation by setting test_login to False.

If the registry is insecure, set tls_verify to False.

All credentials in this list will have an imagestreamsecret created in the OpenShift namespace and
credentials deployed to all nodes.

For example:

openshift_additional_registry_credentials=
[{'host"'registry.example.com’,'user':'name’,'password':'pass1’,'test_login":'False',
{’host"'registry2.example.com’,'password':'token12345','tls_verify":'False’,'test_image'":'mongodb/mongod

b}]

6.1.4. Using Service Accounts with the Red Hat Registry

Once you have created your service accounts and generated tokens for the Red Hat Registry, you can
perform additional tasks.

137

OpenShift Container Platform 3.11 Configuring Clusters

NOTE

This section provides the manual steps, which can be automatically performed during
installation by providing the inventory variables outlined in the Managing Registry
Credentials for Installation and Upgrade section.

Prerequisites

User credentials

Service account

Service account token

Procedure

From your Registry Service Accounts page, click on your account name. From there, you can perform
the following tasks:

138

From the Token Information tab, you can view your username (the name you provided
prepended with a random string) and password (token). From this tab, you can regenerate your
token.

From the OpenShift Secret tab, you can:

a. Download the secret by clicking the link in the tab.

b. Submit the secret to the cluster:

I # oc create -f <account-name>-secret.yml --namespace=openshift

c. Update your Kubernetes configuration by adding a reference to the secret to your
Kubernetes pod configuration with an imagePullSecrets field, for example:

apiVersion: vi
kind: Pod
metadata:
name: somepod
namespace: all
spec:
containers:
- hame: web
image: registry.redhat.io/REPONAME

imagePullSecrets:
- name: <numerical-string-account-name>-pull-secret

From the Docker Login tab, you can run docker login. For example:

docker login -u='<numerical-string|laccount-name>"'
-p=<token>

After you successfully log in, copy ~/.docker/config.json to /var/lib/origin/.docker/config.json
and restart the node.

https://access.redhat.com/terms-based-registry/

CHAPTER 6. ACCESSING AND CONFIGURING THE RED HAT REGISTRY

cp -r ~/.docker /var/lib/origin/
systemctl restart atomic-openshift-node

e From the Docker Configuration tab, you can:

a. Download the credentials configuration by clicking the link in the tab.

b. Write the configuration to the disk by placing the file in the Docker configuration directory.
This will overwrite existing credentials. For example:

I # mv <account-name>-auth.json ~/.docker/config.json

139

OpenShift Container Platform 3.11 Configuring Clusters

CHAPTER 7. MASTER AND NODE CONFIGURATION

7.1. CUSTOMIZING MASTER AND NODE CONFIGURATION AFTER
INSTALLATION

The openshift start command (for master servers) and hyperkube command (for node servers) take a
limited set of arguments that are sufficient for launching servers in a development or experimental
environment. However, these arguments are insufficient to describe and control the full set of
configuration and security options that are necessary in a production environment.

You must provide these options in the master configuration file, at /etc/origin/master/master-
config.yaml, and the node configuration maps. These files define options including overriding the
default plug-ins, connecting to etcd, automatically creating service accounts, building image names,
customizing project requests, configuring volume plug-ins, and much more.

This topic covers the available options for customizing your OpenShift Container Platform master and
node hosts, and shows you how to make changes to the configuration after installation.

These files are fully specified with no default values. Therefore, an empty value indicates that you want
to start up with an empty value for that parameter. This makes it easy to reason about exactly what your
configuration is, but it also makes it difficult to remember all of the options to specify. To make this
easier, the configuration files can be created with the --write-config option and then used with the --
config option.

7.2. INSTALLATION DEPENDENCIES

Production environments should be installed using the standard cluster installation process. In
production environments, it is a good idea to use multiple masters for the purposes of high availability
(HA). A cluster architecture of three masters is recommended, and HAproxy is the recommended
solution for this.

CAUTION

If etcd is installed on the master hosts, you must configure your cluster to use at least three masters,
because etcd would not be able to decide which one is authoritative. The only way to successfully run
only two masters is if you install etcd on hosts other than the masters.

7.3. CONFIGURING MASTERS AND NODES

The method you use to configure your master and node configuration files must match the method that
was used to install your OpenShift Container Platform cluster. If you followed the standard cluster
installation processe, then make your configuration changes in the Ansible inventory file.

7.4. MAKING CONFIGURATION CHANGES USING ANSIBLE

For this section, familiarity with Ansible is assumed.

Only a portion of the available host configuration options are exposed to Ansible . After an OpenShift
Container Platform install, Ansible creates an inventory file with some substituted values. Modifying this

inventory file and re-running the Ansible installer playbook is how you customize your OpenShift
Container Platform cluster.

140

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#modifying-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-planning
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#multiple-masters
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-high-availability
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-planning
https://github.com/openshift/openshift-ansible/blob/master/inventory/hosts.example

CHAPTER 7. MASTER AND NODE CONFIGURATION

While OpenShift Container Platform supports using Ansible for cluster installation, using an Ansible
playbook and inventory file, you can also use other management tools, such as Puppet, Chef, or Salt.

Use Case: Configuring the cluster to use HTPasswd authentication

NOTE

® This use case assumes you have already set up SSH keys to all the nodes
referenced in the playbook.

® The htpasswd utility is in the httpd-tools package:

I # yum install httpd-tools

To modify the Ansible inventory and make configuration changes:

1. Open the ./hosts inventory file.

2. Add the following new variables to the [OSEv3:vars] section of the file:

htpasswd auth

openshift_master_identity providers=[{'name’": 'htpasswd_auth’, 'login": 'true’, '‘challenge':
'true’, 'kind'": 'HTPasswdPasswordldentityProvider'}]

Defining htpasswd users

#openshift_master_htpasswd_users={'<name>": '<hashed-password>', '<xname>": '<hashed-
password>'"}

or

#openshift_master_htpasswd_file=/etc/origin/master/htpasswd

For HTPasswd authentication the openshift_master_identity providers variable enables the
authentication type. You can configure three different authentication options that use
HTPasswd:

Specify only openshift_master_identity providers if /etc/origin/master/htpasswd is
already configured and present on the host.

Specify both openshift_master_identity providers and
openshift_master_htpasswd_file to copy a local htpasswd file to the host.

Specify both openshift_master_identity providers and
openshift_master_htpasswd_users to generate a new htpasswd file on the host.

Because OpenShift Container Platform requires a hashed password to configure HTPasswd
authentication, you can use the htpasswd command, as shown in the following section, to
generate the hashed password(s) for your user(s) or to create the flat file with the users and
associated hashed passwords.

The following example changes the authentication method from the default deny all setting to
htpasswd and uses the specified file to generate user IDs and passwords for the jsmith and
bloblaw users.

htpasswd auth

openshift_master_identity providers=[{'name": 'htpasswd_auth’, 'login": 'true’, '‘challenge':
'true’, 'kind'": 'HTPasswdPasswordldentityProvider'}]

Defining htpasswd users

141

https://puppet.com/
https://www.chef.io/
http://saltstack.com/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#ensuring-host-access

OpenShift Container Platform 3.11 Configuring Clusters

openshift_master_htpasswd_users={"jsmith": '$apr1$wlwXkFLI$bAygtKGmPOqgaJftB',
'bloblaw': '7IRJ$20DmeLoxf416sUEKfiA$2aDJgLJe'}

or

#openshift_master_htpasswd_file=/etc/origin/master/htpasswd

3. Re-run the ansible playbook for these modifications to take effect:
I $ ansible-playbook -b -i ./hosts ~/src/openshift-ansible/playbooks/deploy_cluster.ymi

The playbook updates the configuration, and restarts the OpenShift Container Platform master
service to apply the changes.

You have now modified the master and node configuration files using Ansible, but this is just a simple

use case. From here you can see which master and node configuration options are exposed to Ansible
and customize your own Ansible inventory.

7.4.1. Using the htpasswd command

To configure the OpenShift Container Platform cluster to use HTPasswd authentication, you need at
least one user with a hashed password to include in the inventory file.

You can:
® Generate the username and password to add directly to the ./hosts inventory file.
® Create a flat file to pass the credentials to the ./hosts inventory file.

To create a user and hashed password:

1. Run the following command to add the specified user:

I $ htpasswd -n <user_name>

NOTE

You can include the -b option to supply the password on the command line:

I $ htpasswd -nb <user_name> <password>

2. Enter and confirm a clear-text password for the user.
For example:

$ htpasswd -n myuser

New password:

Re-type new password:
myuser:$apri1$vdW.cI3j$WSKIOzUPs6Q

The command generates a hashed version of the password.

You can then use the hashed password when configuring HTPasswd authentication. The hashed
password is the string after the :. In the above example,you would enter:

I openshift_master_htpasswd_users={'myuser": '$apr1$wiwXkFLI$SbAygtISk2eKGmqaJftB'}

142

https://github.com/openshift/openshift-ansible/blob/master/inventory/hosts.example

CHAPTER 7. MASTER AND NODE CONFIGURATION

To create a flat file with a user name and hashed password:

1. Execute the following command:

I $ htpasswd -c /etc/origin/master/htpasswd <user_name>

NOTE

You can include the -b option to supply the password on the command line:

I $ htpasswd -c -b <user_name> <password>

2. Enter and confirm a clear-text password for the user.
For example:

htpasswd -c /etc/origin/master/htpasswd user
New password:

Re-type new password:

Adding password for user useri

The command generates a file that includes the user name and a hashed version of the user’s
password.

You can then use the password file when configuring HTPasswd authentication.

NOTE

For more information on the htpasswd command, see HTPasswd Identity Provider.

-

7.5. MAKING MANUAL CONFIGURATION CHANGES
Use Case: Configure the cluster to use HTPasswd authentication
To manually modify a configuration file:

1. Open the configuration file you want to modify, which in this case is the
/etc/origin/master/master-config.yaml file:

2. Add the following new variables to the identityProviders stanza of the file:

oauthConfig:

identityProviders:
- name: my_htpasswd_provider
challenge: true
login: true
mappingMethod: claim
provider:
apiVersion: v1i
kind: HTPasswdPasswordldentityProvider
file: /etc/origin/master/htpasswd

3. Save your changes and close the file.

143

OpenShift Container Platform 3.11 Configuring Clusters

4. Restart the master for the changes to take effect:

master-restart api
master-restart controllers

You have now manually modified the master and node configuration files, but this is just a simple use
case. From here you can see all the master and node configuration options, and further customize your
own cluster by making further modifications.

NOTE

To modify a node in your cluster, update the node configuration maps as needed. Do not
manually edit the node-config.yaml file.

7.6. MASTER CONFIGURATION FILES
This section reviews parameters mentioned in the master-config.yaml file.

You can create a new master configuration file to see the valid options for your installed version of
OpenShift Container Platform.

IMPORTANT

Whenever you modify the master-config.yaml file, you must restart the master for the
changes to take effect. See Restarting OpenShift Container Platform services.

7.6.1. Admission Control Configuration

Table 7.1. Admission Control Configuration Parameters

Parameter Name Description

AdmissionConfig Contains the admission control plug-in configuration. OpenShift
Container Platform has a configurable list of admission controller plug-
ins that are triggered whenever APl objects are created or modified.

This option allows you to override the default list of plug-ins; for example,
disabling some plug-ins, adding others, changing the ordering, and
specifying configuration. Both the list of plug-ins and their configuration
can be controlled from Ansible.

APIServerArguments Key-value pairs that will be passed directly to the Kube API server that
match the APl servers' command line arguments. These are not
migrated, but if you reference a value that does not exist the server will
not start. These values may override other settings in
KubernetesMasterConfig, which may cause invalid configurations.
Use APIServerArguments with theevent-ttl value to store events in
etcd. The defaultis 2h, but it can be set to less to prevent memory
growth:

apiServerArguments:
event-tl:
- ll1 5mll

144

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#modifying-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-admission-controllers

CHAPTER 7. MASTER AND NODE CONFIGURATION

Parameter Name Description

ControllerArguments Key-value pairs that will be passed directly to the Kube controller
manager that match the controller manager’'s command line arguments.
These are not migrated, but if you reference a value that does not exist
the server will not start. These values may override other settings in
KubernetesMasterConfig, which may cause invalid configurations.

DefaultAdmissionConfig Used to enable or disable various admission plug-ins. When this type is
present as the configuration object under pluginConfig and if the
admission plug-in supports it, this will cause an off by defaultadmission
plug-in to be enabled.

PluginConfig Allows specifying a configuration file per admission control plug-in.

PluginOrderOverride A list of admission control plug-in names that will be installed on the
master. Order is significant. If empty, a default list of plug-ins is used.

SchedulerArguments Key-value pairs that will be passed directly to the Kube scheduler that
match the scheduler's command line arguments. These are not migrated,
but if you reference a value that does not exist the server will not start.
These values may override other settings in
KubernetesMasterConfig, which may cause invalid configurations.

7.6.2. Asset Configuration

Table 7.2. Asset Configuration Parameters

Parameter Name Description

AssetConfig If present, then the asset server starts based on the defined parameters.
For example:

assetConfig:
logoutURL: "
masterPublicURL: https://master.ose32.example.com:8443
publicURL: https://master.ose32.example.com:8443/console/
servinglnfo:
bindAddress: 0.0.0.0:8443
bindNetwork: tcp4
certFile: master.server.crt
clientCA: ™
keyFile: master.server.key
maxRequestsinFlight: 0
requestTimeoutSeconds: 0

145

OpenShift Container Platform 3.11 Configuring Clusters

Parameter Name Description

corsAllowedOrigins To access the APl server from a web application using a different host
name, you must whitelist that host name by specifying
corsAllowedOrigins in the configuration field or by specifying the=-
cors-allowed-origins option on openshift start. No pinning or
escaping is done to the value. See Web Console for example usage.

DisabledFeatures A list of features that should not be started. You will likely want to set
this as null. It is very unlikely that anyone will want to manually disable
features and that is not encouraged.

Extensions Files to serve from the asset server file system under a subcontext.

ExtensionDevelopment When set to true, tells the asset server to reload extension scripts and
stylesheets for every request rather than only at startup. It lets you
develop extensions without having to restart the server for every
change.

ExtensionProperties Key- (string) and value- (string) pairs that will be injected into the

console under the global variable
OPENSHIFT_EXTENSION_PROPERTIES.

ExtensionScripts File paths on the asset server files to load as scripts when the web
console loads.

ExtensionStylesheets File paths on the asset server files to load as style sheets when the web
console loads.

LoggingPublicURL The public endpoint for logging (optional).

LogoutURL An optional, absolute URL to redirect web browsers to after logging out
of the web console. If not specified, the built-in logout page is shown.

MasterPublicURL How the web console can access the OpenShift Container Platform
server.

MetricsPublicURL The public endpoint for metrics (optional).

PublicURL URL of the asset server.

7.6.3. Authentication and Authorization Configuration

Table 7.3. Authentication and Authorization Parameters

Parameter Name Description

authConfig Holds authentication and authorization configuration options.

146

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#corsAllowedOrigins

CHAPTER 7. MASTER AND NODE CONFIGURATION

Parameter Name Description

AuthenticationCacheSize Indicates how many authentication results should be cached. If O, the
default cache size is used.

AuthorizationCacheTTL Indicates how long an authorization result should be cached. It takes a
valid time duration string (e.g. "5m"). If empty, you get the default
timeout. If zero (e.g. "Om"), caching is disabled.

7.6.4. Controller Configuration

Table 7.4. Controller Configuration Parameters

Parameter Name Description

Controllers List of the controllers that should be started. If set to none, no
controllers will start automatically. The default value is * which will start
all controllers. When using *, you may exclude controllers by prepending
a = in front of their name. No other values are recognized at this time.

ControllerLeaseTTL Enables controller election, instructing the master to attempt to acquire
a lease before controllers start and renewing it within a number of
seconds defined by this value. Setting this value non-negative forces
pauseControllers=true. This value defaults off (O, or omitted) and
controller election can be disabled with -1.

PauseControllers Instructs the master to not automatically start controllers, but instead to
wait until a notification to the server is received before launching them.

7.6.5. etcd Configuration

Table 7.5. etcd Configuration Parameters

Parameter Name Description

Address The advertised host:port for client connections to etcd.

etcdClientinfo Contains information about how to connect to etcd. Specifies if etcd is
run as embedded or non-embedded, and the hosts. The rest of the
configuration is handled by the Ansible inventory. For example:

etcdClientinfo:
ca: ca.crt
certFile: master.etcd-client.crt
keyFile: master.etcd-client.key
urls:
- https://m1.aos.example.com:4001

147

OpenShift Container Platform 3.11 Configuring Clusters

Parameter Name Description

etcdConfig If present, then etcd starts based on the defined parameters. For
example:

etcdConfig:
address: master.ose32.example.com:4001
peerAddress: master.ose32.example.com:7001
peerServinglinfo:
bindAddress: 0.0.0.0:7001
certFile: etcd.server.crt
clientCA: ca.crt
keyFile: etcd.server.key
servinglnfo:
bindAddress: 0.0.0.0:4001
certFile: etcd.server.crt
clientCA: ca.crt
keyFile: etcd.server.key
storageDirectory: /var/lib/origin/openshift.local.etcd

etcdStorageConfig Contains information about how API resources are stored in etcd. These
values are only relevant when etcd is the backing store for the cluster.

KubernetesStoragePrefix The path within etcd that the Kubernetes resources will be rooted under.
This value, if changed, will mean existing objects in etcd will no longer be
located. The default value is kubernetes.io.

KubernetesStorageVersion The API version that Kubernetes resources in eted should be serialized
to. This value should not be advanced until all clients in the cluster that
read from etcd have code that allows them to read the new version.

OpenShiftStoragePrefix The path within etcd that the OpenShift Container Platform resources
will be rooted under. This value, if changed, will mean existing objects in
etcd will no longer be located. The default value is openshift.io.

OpenShiftStorageVersion API version that OS resources in eted should be serialized to. This value
should not be advanced until all clients in the cluster that read frometed
have code that allows them to read the new version.

PeerAddress The advertised host:port for peer connections to etcd.

PeerServinglnfo Describes how to start serving the etcd peer.

148

CHAPTER 7. MASTER AND NODE CONFIGURATION

Parameter Name Description

Servinginfo Describes how to start serving. For example:

servinglnfo:
bindAddress: 0.0.0.0:8443
bindNetwork: tcp4
certFile: master.server.crt
clientCA: ca.crt
keyFile: master.server.key
maxRequestsinFlight: 500
requestTimeoutSeconds: 3600

StorageDir The path to the etcd storage directory.

7.6.6. Grant Configuration

Table 7.6. Grant Configuration Parameters

Parameter Name Description

GrantConfig Describes how to handle grants.

GrantHandlerAuto Auto-approves client authorization grant requests.
GrantHandlerDeny Auto-denies client authorization grant requests.
GrantHandlerPrompt Prompts the user to approve new client authorization grant requests.
Method Determines the default strategy to use when an OAuth client requests a

grant.This method will be used only if the specific OAuth client does not
provide a strategy of their own. Valid grant handling methods are:

® auto: always approves grant requests, useful for trusted clients

® prompt: prompts the end user for approval of grant requests,
useful for third-party clients

e deny: always denies grant requests, useful for black-listed
clients

7.6.7. Image Configuration

Table 7.7. Image Configuration Parameters

Parameter Name Description

Format The format of the name to be built for the system component.

149

OpenShift Container Platform 3.11 Configuring Clusters

Parameter Name Description

Latest Determines if the latest tag will be pulled from the registry.

7.6.8. Image Policy Configuration

Table 7.8. Image Policy Configuration Parameters

Parameter Name Description

DisableScheduledimport

MaximagesBulklmportedPer
Repository

MaxScheduledimagelmports
PerMinute

ScheduledimagelmportMini
mumlintervalSeconds

AllowedRegistriesForimport

AdditionalTrustedCA

InternalRegistryHosthame

ExternalRegistryHosthame

150

Allows scheduled background import of images to be disabled.

Controls the number of images that are imported when a user does a
bulk import of a Docker repository. This number defaults to 5 to prevent
users from importing large numbers of images accidentally. Set -1 for no
limit.

The maximum number of scheduled image streams that will be imported
in the background per minute. The default value is 60.

The minimum number of seconds that can elapse between when image
streams scheduled for background import are checked against the
upstream repository. The default value is 15 minutes.

Limits the docker registries that normal users may import images from.
Set this list to the registries that you trust to contain valid Docker images
and that you want applications to be able to import from. Users with
permission to create Images or ImageStreamMappings via the APl are
not affected by this policy - typically only administrators or system
integrations will have those permissions.

Specified a filepath to a PEM-encoded file listing additional certificate
authorities that should be trusted during imagestream import. This file
needs to be accessible to the APl server process. Depending how your
cluster is installed, this may require mounting the file into the API server
pod.

Sets the hostname for the default internal image registry. The value
must be in hostname[:port] format. For backward compatibility, users
can still uyse OPENSHIFT_DEFAULT_REGISTRY environment
variable but this setting overrides the environment variable. When this is
set, the internal registry must have its hostname set as well. See setting
the registry hostname for more details.

ExternalRegistryHostname sets the hostname for the default external
image registry. The external hostname should be set only when the
image registry is exposed externally. The value is used in
publicDockerlmageRepository field in ImageStreams. The value
must be in hostname[:port] format.

CHAPTER 7. MASTER AND NODE CONFIGURATION

7.6.9. Kubernetes Master Configuration

Table 7.9. Kubernetes Master Configuration Parameters

Parameter Name Description

APILevels A list of APl levels that should be enabled on startup, vl as examples.

DisabledAPIGroupVersions A map of groups to the versions (or *) that should be disabled.
KubeletClientinfo Contains information about how to connect to kubelets.

KubernetesMasterConfig Contains information about how to connect to kubelet's
KubernetesMasterConfig. If present, then start the kubernetes master
with this process.

MasterCount The number of expected masters that should be running. This value
defaults to 1and may be set to a positive integer, or if set to -1, indicates
this is part of a cluster.

MasterIP The public IP address of Kubernetes resources. If empty, the first result
from net.InterfaceAddrs will be used.

MasterKubeConfig File name for the .kubeconfig file that describes how to connect this
node to the master.

PodEvictionTimeout Controls grace period for deleting pods on failed nodes. It takes valid
time duration string. If empty, you get the default pod eviction timeout.
The default is 5m0s.

ProxyClientinfo Specifies the client cert/key to use when proxying to pods.For example:

proxyClientInfo:
certFile: master.proxy-client.crt
keyFile: master.proxy-client.key

ServicesNodePortRange The range to use for assigning service public ports on a host. Default
30000-32767.

ServicesSubnet The subnet to use for assigning service IPs.

StaticNodeNames The list of nodes that are statically known.

7.6.10. Network Configuration

Choose the CIDRs in the following parameters carefully, because the IPv4 address space is shared by all
users of the nodes. OpenShift Container Platform reserves CIDRs from the IPv4 address space for its
own use, and reserves CIDRs from the IPv4 address space for addresses that are shared between the
external user and the cluster.

151

OpenShift Container Platform 3.11 Configuring Clusters

Table 7.10. Network Configuration Parameters

Parameter Name Description

ClusterNetworkCIDR

externallPNetworkCIDRs

HostSubnetLength

ingressIPNetworkCIDR

HostSubnetLength

152

The CIDR string to specify the global overlay network’s L3 space. This is
reserved for the internal use of the cluster networking.

Controls what values are acceptable for the service external IP field. If
empty, no externallP may be set. It may contain a list of CIDRs which
are checked for access. If a CIDR is prefixed with !, IPs in that CIDR will
be rejected. Rejections will be applied first, then the IP checked against
one of the allowed CIDRs. You must ensure this range does not overlap
with your nodes, pods, or service CIDRs for security reasons.

The number of bits to allocate to each host’s subnet. For example, 8
would mean a /24 network on the host.

Controls the range to assign ingress IPs from for services of type
LoadBalancer on bare metal. It may contain a single CIDR that it will be
allocated from. By default 172.46.0.0/16 is configured. For security
reasons, you should ensure that this range does not overlap with the
CIDRs reserved for external IPs, nodes, pods, or services.

The number of bits to allocate to each host’s subnet. For example, 8
would mean a /24 network on the host.

CHAPTER 7. MASTER AND NODE CONFIGURATION

Parameter Name Description

NetworkConfig To be passed to the compiled-in-network plug-in. Many of the options
here can be controlled in the Ansible inventory.

o NetworkPluginName (string)

o ClusterNetworkCIDR (string)

e HostSubnetLength (unsigned integer)

o ServiceNetworkCIDR (string)

o externallPNetworkCIDRs (string array): Controls which
values are acceptable for the service external IP field. If empty,
no external IP may be set. It can contain a list of CIDRs which
are checked for access. If a CIDR is prefixed with !, then IPs in
that CIDR are rejected. Rejections are applied first, then the IP
is checked against one of the allowed CIDRs. For security
purposes, you should ensure this range does not overlap with
your nodes, pods, or service CIDRs.

For Example:
networkConfig:

clusterNetworks
- ¢idr: 10.3.0.0/16
hostSubnetLength: 8
networkPluginName: example/openshift-ovs-subnet
serviceNetworkCIDR must match
kubernetesMasterConfig.servicesSubnet
serviceNetworkCIDR: 179.29.0.0/16

NetworkPluginName The name of the network plug-in to use.

ServiceNetwork The CIDR string to specify the service networks.

7.6.11. OAuth Authentication Configuration

Table 7.11. OAuth Configuration Parameters

Parameter Name Description

AlwaysShowProviderSelecti Forces the provider selection page to render even when there is only a

on single provider.

AssetPublicURL Used for building valid client redirect URLs for external access.

Error A path to a file containing a go template used to render error pages
during the authentication or grant flow If unspecified, the default error
page is used.

IdentityProviders Ordered list of ways for a user to identify themselves.

153

OpenShift Container Platform 3.11 Configuring Clusters

Parameter Name Description

Login A path to a file containing a go template used to render the login page.
If unspecified, the default login page is used.

MasterCA CA for verifying the TLS connection back to the MasterURL.
MasterPublicURL Used for building valid client redirect URLs for external access.
MasterURL Used for making server-to-server calls to exchange authorization codes

for access tokens.

OAuthConfig If present, then the /oauth endpoint starts based on the defined
parameters. For example:

oauthConfig:
assetPublicURL:
https://master.ose32.example.com:8443/console/
grantConfig:
method: auto
identityProviders:
- challenge: true
login: true
mappingMethod: claim
name: htpasswd_all
provider:
apiVersion: v1i
kind: HTPasswdPasswordldentityProvider
file: /etc/origin/openshift-passwd
masterCA: ca.crt
masterPublicURL: https://master.ose32.example.com:8443
masterURL: https://master.ose32.example.com:8443
sessionConfig:
sessionMaxAgeSeconds: 3600
sessionName: ssn
sessionSecretsFile: /etc/origin/master/session-secrets.yaml
tokenConfig:
accessTokenMaxAgeSeconds: 86400
authorizeTokenMaxAgeSeconds: 500

OAuthTemplates Allows for customization of pages like the login page.

ProviderSelection A path to a file containing a go template used to render the provider
selection page. If unspecified, the default provider selection page is
used.

SessionConfig Holds information about configuring sessions.

Templates Allows you to customize pages like the login page.

TokenConfig Contains options for authorization and access tokens.

154

CHAPTER 7. MASTER AND NODE CONFIGURATION

7.6.12. Project Configuration

Table 7.12. Project Configuration Parameters

Parameter Name Description

DefaultNodeSelector Holds default project node label selector.

ProjectConfig Holds information about project creation and defaults:

o DefaultNodeSelector (string): Holds the default project
node label selector.

e ProjectRequestMessage (string): The string presented to a
user if they are unable to request a project via the
projectrequest APl endpoint.

o ProjectRequestTemplate (string): The template to use for
creating projects in response to projectrequest. Itis in the
format <namespaces>/<templates. It is optional, and if it is
not specified, a default template is used.

e SecurityAllocator: Controls the automatic allocation of UIDs
and MCS labels to a project. If nil, allocation is disabled:

o mcsAllocatorRange (string): Defines the range of MCS
categories that will be assigned to namespaces. The
format is <prefixs/<numberOfLabels>[,
<maxCategory>]. The default iss0/2 and will allocate
from cO — c1023, which means a total of 535k labels are
available. If this value is changed after startup, new
projects may receive labels that are already allocated to
other projects. The prefix may be any valid SELinux set of
terms (including user, role, and type). However, leaving the
prefix at its default allows the server to set them
automatically. For example, $0:/2 would allocate labels
from s0:c0,c0 to s0:c511,c511 whereas $0:/2,512 would
allocate labels from s0:c0,c0,c0O to s0:c511,c511,511.

o mcsLabelsPerProject (integer): Defines the number of
labels to reserve per project. The default is 5 to match the
default UID and MCS ranges.

o uidAllocatorRange (string): Defines the total set of Unix
user IDs (UIDs) automatically allocated to projects, and the
size of the block that each namespace gets. For example,
1000-1999/10 would allocate ten UIDs per namespace,
and would be able to allocate up to 100 blocks before
running out of space. The default is to allocate from 1billion
to 2 billion in 10k blocks, which is the expected size of
ranges for container images when user namespaces are
started.

ProjectRequestMessage The string presented to a user if they are unable to request a project via
the project request APl endpoint.

ProjectRequestTemplate The template to use for creating projects in response to a
projectrequest. Itis in the format namespace/template and it is
optional. If it is not specified, a default template is used.

155

OpenShift Container Platform 3.11 Configuring Clusters

7.6.13. Scheduler Configuration

Table 7.13. Scheduler Configuration Parameters

Parameter Name Description

SchedulerConfigFile Points to a file that describes how to set up the scheduler. If empty, you
get the default scheduling rules

7.6.14. Security Allocator Configuration

Table 7.14. Security Allocator Parameters

Parameter Name Description

MCSAIllocatorRange Defines the range of MCS categories that will be assigned to
namespaces. The format is <prefix>/<numberOfLabels>][,
<maxCategory>]. The default issO/2 and will allocate from cO to
c1023, which means a total of 535k labels are available (1024 choose 2 ~
535k). If this value is changed after startup, new projects may receive
labels that are already allocated to other projects. Prefix may be any
valid SELinux set of terms (including user, role, and type), although
leaving them as the default will allow the server to set them
automatically.

SecurityAllocator Controls the automatic allocation of UIDs and MCS labels to a project. If
nil, allocation is disabled.

UIDAllocatorRange Defines the total set of Unix user IDs (UIDs) that will be allocated to
projects automatically, and the size of the block that each namespace
gets. For example, 1000-1999/10 will allocate ten UIDs per namespace,
and will be able to allocate up to 100 blocks before running out of space.
The default is to allocate from 1billion to 2 billion in 10k blocks (which is
the expected size of the ranges container images will use once user
namespaces are started).

7.6.15. Service Account Configuration

Table 7.15. Service Account Configuration Parameters

Parameter Name Description

LimitSecretReferences Controls whether or not to allow a service account to reference any
secret in a namespace without explicitly referencing them.

ManagedNames A list of service account names that will be auto-created in every
namespace. If no names are specified, the
ServiceAccountsController will not be started.

156

CHAPTER 7. MASTER AND NODE CONFIGURATION

Parameter Name Description

MasterCA The CA for verifying the TLS connection back to the master. The service
account controller will automatically inject the contents of this file into
pods so they can verify connections to the master.

PrivateKeyFile A file containing a PEM-encoded private RSA key, used to sign service
account tokens. If no private key is specified, the service account
TokensController will not be started.

PublicKeyFiles A list of files, each containing a PEM-encoded public RSA key. If any file
contains a private key, the public portion of the key is used. The list of
public keys is used to verify presented service account tokens. Each key
is tried in order until the list is exhausted or verification succeeds. If no
keys are specified, no service account authentication will be available.

ServiceAccountConfig Holds options related to service accounts:

o LimitSecretReferences (boolean): Controls whether or not
to allow a service account to reference any secretin a
namespace without explicitly referencing them.

o ManagedNames (string): A list of service account names that
will be auto-created in every namespace. If no names are
specified, then the ServiceAccountsController will not be
started.

o MasterCA (string): The certificate authority for verifying the
TLS connection back to the master. The service account
controller will automatically inject the contents of this file into
pods so that they can verify connections to the master.

e PrivateKeyFile (string): Contains a PEM-encoded private
RSA key, used to sign service account tokens. If no private key
is specified, then the service account TokensController will
not be started.

o PublicKeyFiles (string): A list of files, each containing a
PEM-encoded public RSA key. If any file contains a private key,
then OpenShift Container Platform uses the public portion of
the key. The list of public keys is used to verify service account
tokens; each key is tried in order until either the list is exhausted
or verification succeeds. If no keys are specified, then service
account authentication will not be available.

7.6.16. Serving Information Configuration

Table 7.16. Serving Information Configuration Parameters

Parameter Name Description

157

OpenShift Container Platform 3.11 Configuring Clusters

Parameter Name Description

AllowRecursiveQueries Allows the DNS server on the master to answer queries recursively. Note
that open resolvers can be used for DNS amplification attacks and the
master DNS should not be made accessible to public networks.

BindAddress The ip:port to serve on.

BindNetwork Controls limits and behavior for importing images.

CertFile A file containing a PEM-encoded certificate.

Certinfo TLS cert information for serving secure traffic.

ClientCA The certificate bundle for all the signers that you recognize for incoming

client certificates.

dnsConfig If present, then start the DNS server based on the defined parameters.
For example:

dnsConfig:
bindAddress: 0.0.0.0:8053
bindNetwork: tcp4

DNSDomain Holds the domain suffix.

DNSIP Holds the IP.

KeyFile A file containing a PEM-encoded private key for the certificate specified
by CertFile.

MasterClientConnectionOver Provides overrides to the client connection used to connect to the
rides master. This parameter is not supported. To set QPS and burst values,
see Setting Node QPS and Burst Values.

MaxRequestsinFlight The number of concurrent requests allowed to the server. If zero, no
limit.

NamedCertificates A list of certificates to use to secure requests to specific host names.

RequestTimeoutSecond The number of seconds before requests are timed out. The default is 60

minutes. If -1, there is no limit on requests.

Servinginfo The HTTP serving information for the assets.

7.6.17. Volume Configuration

158

CHAPTER 7. MASTER AND NODE CONFIGURATION

Table 7.17. Volume Configuration Parameters

Parameter Name Description

DynamicProvisioningEnable A boolean to enable or disable dynamic provisioning. Default is true.
d

FSGroup Enables local storage quotas on each node for each FSGroup. At
present this is only implemented for emptyDir volumes, and if the
underlying volumeDirectory is on an XFS filesystem.

MasterVolumeConfig Contains options for configuring volume plug-ins in the master node.
NodeVolumeConfig Contains options for configuring volumes on the node.
VolumeConfig Contains options for configuring volume plug-ins in the node:

e DynamicProvisioningEnabled (boolean): Default value is
true, and toggles dynamic provisioning off whenfalse.

VolumeDirectory The directory that volumes are stored under. Use the
openshift_node_group_data_dir parameter to change this value.

7.6.18. Basic Audit

Audit provides a security-relevant chronological set of records documenting the sequence of activities
that have affected system by individual users, administrators, or other components of the system.

Audit works at the API server level, logging all requests coming to the server. Each audit log contains
two entries:

1. The request line containing:

a. AUnique ID allowing to match the response line (see #2)

b. The source IP of the request

c. The HTTP method being invoked

d. The original user invoking the operation

e. The impersonated user for the operation (self meaning himself)

f. The impersonated group for the operation (lookup meaning user’s group)
g. The namespace of the request or <none>

h. The URIl as requested

2. The response line containing:

a. The unique ID from #1

159

OpenShift Container Platform 3.11 Configuring Clusters

b. The response code

Example output for user admin asking for a list of pods:

AUDIT: id="5c3b8227-4af9-4322-8a71-542231¢3887b" ip="127.0.0.1" method="GET" user="admin"
as="<self>" asgroups="<lookup>" namespace="default" uri="/api/vi/namespaces/default/pods"
AUDIT: id="5c3b8227-4af9-4322-8a71-542231c3887b" response="200"

7.6.18.1. Enable Basic Auditing

The following procedure enables basic auditing post installation.

NOTE

Advanced Audit must be enabled during installation.

1. Edit the /etc/origin/master/master-config.yaml file on all master nodes as shown in the
following example:

auditConfig:
auditFilePath: "/var/log/origin/audit-ocp.log"
enabled: true
maximumpFileRetentionDays: 14
maximumpFileSizeMegabytes: 500
maximumRetainedFiles: 15

2. Restart the API pods in your cluster.

I # /usr/local/bin/master-restart api

To enable basic auditing during installation, add the following variable declaration to your inventory file.
Adjust values as appropriate.

openshift_master_audit_config={"enabled": true, "auditFilePath": "/var/lib/origin/openpaas-oscp-
audit.log", "maximumFileRetentionDays": 14, "maximumFileSizeMegabytes": 500,
"maximumRetainedFiles": 5}

The audit configuration takes the following parameters:

Table 7.18. Audit Configuration Parameters

Parameter Name Description

enabled A boolean to enable or disable audit logs. Default is false.

auditFilePath File path where the requests should be logged to. If not set, logs are
printed to master logs.

maximumFileRetentionDays Specifies maximum number of days to retain old audit log files based on
the time stamp encoded in their filename.

160

CHAPTER 7. MASTER AND NODE CONFIGURATION

Parameter Name Description

maximumRetainedFiles Specifies the maximum number of old audit log files to retain.

maximumFileSizeMegabytes Specifies maximum size in megabytes of the log file before it gets
rotated. Defaults to 100MB.

Example Audit Configuration

auditConfig:
auditFilePath: "/var/log/origin/audit-ocp.log"
enabled: true
maximumFileRetentionDays: 14
maximumpFileSizeMegabytes: 500
maximumRetainedFiles: 15

When you define the auditFilePath parameter, the directory is created if it does not exist.

7.6.19. Advanced Audit

The advanced audit feature provides several improvements over the basic audit functionality, including
fine-grained events filtering and multiple output back ends.

To enable the advanced audit feature, you create an audit policy file and specify the following values in
the openshift_master_audit_config and openshift_master_audit_policyfile parameters:

openshift_master_audit_config={"enabled": true, "auditFilePath": "/var/log/origin/audit-ocp.log",
"maximumFileRetentionDays": 14, "maximumFileSizeMegabytes": 500, "maximumRetainedFiles": 5,
"policyFile": "/etc/origin/master/adv-audit.yaml”, "logFormat":"json"}
openshift_master_audit_policyfile="/<path>/adv-audit.yaml"

IMPORTANT

You must create the adv-audit.yaml file before you install the cluster and specify its
location in the cluster inventory file.

The following table contains additional options you can use.

Table 7.19. Advanced Audit Configuration Parameters

Parameter Name Description

policyFile Path to the file that defines the audit policy configuration.
policyConfiguration An embedded audit policy configuration.
logFormat Specifies the format of the saved audit logs. Allowed values are legacy

(the format used in basic audit), and json.

161

OpenShift Container Platform 3.11 Configuring Clusters

Parameter Name Description

webHookKubeConfig Path to a .Kubeconfig-formatted file that defines the audit webhook

configuration, where the events are sent to.

webHookMode Specifies the strategy for sending audit events. Allowed values are

block (blocks processing another event until the previous has fully
processed) and batch (buffers events and delivers in batches).

IMPORTANT

To enable the advanced audit feature, you must provide either policyFile
orpolicyConfiguration describing the audit policy rules:

Sample Audit Policy Configuration

162

apiVersion: audit.k8s.io/vibetal

kind: Policy
rules:

Do not log watch requests by the "system:kube-proxy" on endpoints or services
- level: None ﬂ

users: ["'system:kube-proxy"] 9

verbs: ["watch"]

resources:

- group: ™
resources: ["endpoints”, "services"]

Do not log authenticated requests to certain non-resource URL paths.
- level: None

userGroups: ["system:authenticated"] 6

nonResourceURLs:

- "[api*" # Wildcard matching.

- "/version"

Log the request body of configmap changes in kube-system.
- level: Request
resources:
- group: "" # core API group
resources: ["'configmaps"]
This rule only applies to resources in the "kube-system" namespace.
The empty string "" can be used to select non-namespaced resources.
namespaces: ['kube-system"] ﬂ

Log configmap and secret changes in all other namespaces at the metadata level.
- level: Metadata
resources:
- group: "" # core API group
resources: ["secrets", "configmaps"]

Log all other resources in core and extensions at the request level.

CHAPTER 7. MASTER AND NODE CONFIGURATION

- level: Request
resources:
- group: "" # core API group
- group: "extensions" # Version of group should NOT be included.

A catch-all rule to log all other requests at the Metadata level.
- level: Metadata 6

Log login failures from the web console or CLI. Review the logs and refine your policies.
- level: Metadata
nonResourceURLs:

- /login* g
- /oauth* @

wThere are four possible levels every event can be logged at:
® None - Do not log events that match this rule.

® Metadata - Log request metadata (requesting user, time stamp, resource, verb, etc.), but
not request or response body. This is the same level as the one used in basic audit.

® Request - Log event metadata and request body, but not response body.

® RequestResponse - Log event metadata, request, and response bodies.
A list of users the rule applies to. An empty list implies every user.
A list of verbs this rule applies to. An empty list implies every verb. This is Kubernetes verb
associated with API requests (including get, list, watch, create, update, patch, delete,
deletecollection, and proxy).
A list of resources the rule applies to. An empty list implies every resource. Each resource is
specified as a group it is assigned to (for example, an empty for Kubernetes core API, batch,
build.openshift.io, etc.), and a resource list from that group.
A list of groups the rule applies to. An empty list implies every group.
A list of non-resources URLs the rule applies to.

A list of namespaces the rule applies to. An empty list implies every namespace.

Endpoint used by the web console.

0O0900® o6 OO

Endpoint used by the CLI.

For more information on advanced audit, see the Kubernetes documentation

7.6.20. Specifying TLS ciphers for etcd

You can specify the supported TLS ciphers to use in communication between the master and etcd
servers.

1. On each etcd node, upgrade etcd:

I # yum update etcd iptables-services

163

https://kubernetes.io/docs/tasks/debug-application-cluster/audit
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#arch-index-how-is-it-secured-tls

OpenShift Container Platform 3.11 Configuring Clusters

164

2. Confirm that your etcd version is 3.2.22 or later:

etcd --version
etcd Version: 3.2.22

3. On each master host, specify the ciphers to enable in the /etc/origin/master/master-
config.yaml file:

servinglnfo:

minTLSVersion: VersionTLS12

cipherSuites:

- TLS_ECDHE_RSA WITH_AES 128 GCM_SHA256
- TLS_RSA WITH_AES 256 CBC_SHA

- TLS_RSA WITH_AES 128 CBC_SHA

4. On each master host, restart the master service:

master-restart api
master-restart controllers

5. Confirm that the cipher is applied. For example, for TLSv1.2 cipher ECDHE-RSA-AES128-GCM-
SHA256, run the following command:

openssl s_client -connect etcd1.example.com:2379 ﬂ
CONNECTED(00000003)
depth=0 CN = etcd1.example.com
verify error:num=20:unable to get local issuer certificate
verify return:1
depth=0 CN = etcd1.example.com
verify error:num=21:unable to verify the first certificate
verify return:1
139905367488400:error:14094412:SSL routines:ssl3_read_bytes:sslv3 alert bad
certificate:s3_pkt.c:1493:SSL alert number 42
139905367488400:error:140790E5:SSL routines:ssl23_ write:ssl handshake
failure:s23_lib.c:177:
Certificate chain
0 s:/CN=etcd1.example.com
iz/CN=etcd-signer@1529635004

Server certificate

subject=/CN=etcd1.example.com
issuer=/CN=etcd-signer@1529635004
Acceptable client certificate CA names
/CN=etcd-signer@1529635004

Client Certificate Types: RSA sign, ECDSA sign

CHAPTER 7. MASTER AND NODE CONFIGURATION

Requested Signature Algorithms:
RSA+SHA256:ECDSA+SHA256:RSA+SHA384:ECDSA+SHA384:RSA+SHA1:ECDSA+SHA1

Shared Requested Signature Algorithms:
RSA+SHA256:ECDSA+SHA256:RSA+SHA384:ECDSA+SHA384:RSA+SHA1:ECDSA+SHA1

Peer signing digest: SHA384
Server Temp Key: ECDH, P-256, 256 bits

SSL handshake has read 1666 bytes and written 138 bytes

New, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES128-GCM-SHA256
Server public key is 2048 bit

Secure Renegotiation IS supported

Compression: NONE

Expansion: NONE

No ALPN negotiated

SSL-Session:

Protocol : TLSv1.2

Cipher : ECDHE-RSA-AES128-GCM-SHA256

Session-ID:

Session-ID-ctx:

Master-Key:
1EFAO0A91EES5FC5EDDCFC67C8ECD060D44FD3EB23D834EDED929E4B74536F273C0F
9299935E5504B562CD56E76ED208D

Key-Arg :None

Krb5 Principal: None

PSK identity: None

PSK identity hint: None

Start Time: 1529651744

Timeout : 300 (sec)

Verify return code: 21 (unable to verify the first certificate)

ﬂ etcdi.example.com is the name of an etcd host.

7.7.NODE CONFIGURATION FILES

During installation, OpenShift Container Platform creates a configmap in the openshift-node project
for each type of node group:

® node-config-master
® node-config-infra
® node-config-compute
® node-config-all-in-one
® node-config-master-infra
To make configuration changes to an existing node, edit the appropriate configuration map. A sync pod

on each node watches for changes in the configuration maps. During installation, the sync pods are
created by using sync Daemonsets, and a /etc/origin/node/node-config.yaml file, where the node

165

OpenShift Container Platform 3.11 Configuring Clusters

configuration parameters reside, is added to each node. When a sync pod detects configuration map
change, it updates the node-config.yaml on all nodes in that node group and restarts the atomic-
openshift-node.service on the appropriate nodes.

I $ oc get cm -n openshift-node

Example Output

NAME DATA AGE
node-config-all-in-one 1 1d
node-config-compute 1 1d
node-config-infra 1 1d
node-config-master 1 1d
node-config-master-infra 1 1d

Sample configuration map for the node-config-compute group

apiVersion: vi
authConfig: ﬂ
authenticationCacheSize: 1000
authenticationCacheTTL: 5m
authorizationCacheSize: 1000
authorizationCacheTTL: 5m
dnsBindAddress: 127.0.0.1:53
dnsDomain: cluster.local
dnsIP: 0.0.0.0 (2]
dnsNameservers: null
dnsRecursiveResolvConf: /etc/origin/node/resolv.conf
dockerConfig:
dockerShimRootDirectory: /var/lib/dockershim
dockerShimSocket: /var/run/dockershim.sock
execHandlerName: native
enableUnidling: true
imageConfig:
format: registry.reg-aws.openshift.com/openshift3/ose-${component}:${version}
latest: false
iptablesSyncPeriod: 30s
kind: NodeConfig
kubeletArguments:
bootstrap-kubeconfig:
- /etc/origin/node/bootstrap.kubeconfig
cert-dir:
- /etc/origin/node/certificates
cloud-config:
- /etc/origin/cloudprovider/aws.conf
cloud-provider:
- aws
enable-controller-attach-detach:
- 'true’
feature-gates:
- RotateKubeletClientCertificate=true,RotateKubeletServerCertificate=true
node-labels:
- node-role.kubernetes.io/compute=true
pod-manifest-path:

166

CHAPTER 7. MASTER AND NODE CONFIGURATION

- /etc/origin/node/pods ﬂ
rotate-certificates:
- 'true’
masterClientConnectionOverrides:
acceptContentTypes: application/vnd.kubernetes.protobuf,application/json
burst: 40
contentType: application/vnd.kubernetes.protobuf
gps: 20
masterKubeConfig: node.kubeconfig
networkConfig: 6
mtu: 8951
networkPluginName: redhat/openshift-ovs-subnet G
servinglnfo:
bindAddress: 0.0.0.0:10250
bindNetwork: tcp4
clientCA: client-ca.crt
volumeConfig:
localQuota:
perFSGroup: null
volumeDirectory: /var/lib/origin/openshift.local.volumes

Authentication and authorization configuration options.
IP address prepended to a pod’s /etc/resolv.conf.

Key value pairs that are passed directly to the Kubelet that match the Kubelet's command line
arguments.

The path to the pod manifest file or directory. A directory must contain one or more manifest files.
OpenShift Container Platform uses the manifest files to create pods on the node.

The pod network settings on the node.
Software defined network (SDN) plug-in. Set to redhat/openshift-ovs-subnet for the ovs-subnet
plug-in; redhat/openshift-ovs-multitenant for the ovs-multitenant plug-in; or redhat/openshift-

ovs-networkpolicy for the ovs-networkpolicy plug-in.

Certificate information for the node.

9 OO 0 000

Optional: PEM-encoded certificate bundle. If set, a valid client certificate must be presented and
validated against the certificate authorities in the specified file before the request headers are
checked for user names.

NOTE

Do not manually modify the /etc/origin/node/node-config.yaml file.

The node configuration file determines the resources of a node. See the Allocating node resources
section in the Cluster Administrator guide for more information.

7.7.1. Pod and Node Configuration

Table 7.20. Pod and Node Configuration Parameters

167

https://kubernetes.io/docs/admin/kubelet/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-allocating-node-resources

OpenShift Container Platform 3.11 Configuring Clusters

Parameter Name Description

NodeConfig The fully specified configuration starting an OpenShift Container
Platform node.

NodeName The value used to identify this particular node in the cluster. If possible,
this should be your fully qualified hostname. If you are describing a set
of static nodes to the master, this value must match one of the values in
the list.

7.7.2. Docker Configuration

Table 7.21. Docker Configuration Parameters

Parameter Name Description

AllowDisabledDocker If true, the kubelet will ignore errors from Docker. This means that a
node can start on a machine that does not have docker started.

DockerConfig Holds Docker related configuration options

ExecHandlerName The handler to use for executing commands in containers.

7.7.3. Local Storage Configuration

You can use the XFS quota subsystem to limit the size of emptyDir volumes and volumes based on an
emptyDir volume, such as secrets and configuration maps, on each node.

To limit the size of emptyDir volumes in an XFS filesystem, configure local volume quota for each unique
FSGroup using the node-config-compute configuration map in the openshift-node project.

apiVersion: kubelet.config.openshift.io/v1
kind: VolumeConfig
localQuota: ﬂ
perFSGroup: 1Gi g

ﬂ Contains options for controlling local volume quota on the node.

9 Set this value to a resource quantity representing the desired quota per [FSGroup], per node, such
as 1Gi, 512Mi, and so forth. Requires the volumeDirectory to be on an XFS filesystem mounted
with the grpquota option. The matching security context constraint fsGroup type must be set to
MustRunAs.

If no FSGroup is specified, indicating the request matched an SCC with RunAsAny, the quota
application is skipped.

168

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/ch-xfs
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#authorization-FSGroup

CHAPTER 7. MASTER AND NODE CONFIGURATION

NOTE

Do not edit the /etc/origin/node/volume-config.yaml file directly. The file is created
from the node-config-compute configuration map. Use the node-config-compute
configuration map to create or edit the paramaters in the volume-config.yaml file.

7.7.4. Setting Node Queries per Second (QPS) Limits and Burst Values

The rate at which kubelet talks to APl server depends on gps and burst values. The default values are
good enough if there are limited pods running on each node. Provided there are enough CPU and
memory resources on the node, the gps and burst values can be tweaked in the
/etc/origin/node/node-config.yaml file:

kubeletArguments:
kube-api-gps:
- "20"
kube-api-burst:
- "40"

NOTE

The gps and burst values above are defaults for OpenShift Container Platform.

Table 7.22. QPS and Burst Configuration Parameters

Parameter Name Description

kube-api-qps The QPS rate at which the Kubelet talks to the APIServer. The default is
20.

kube-api-burst The burst rate at which the Kubelet talks to the APIServer. The default is
40.

ExecHandlerName The handler to use for executing commands in containers.

Then restart OpenShift Container Platform node services.

7.7.5. Parallel Image Pulls with Docker 1.9+

If you are using Docker 1.9+, you may want to consider enabling parallel image pulling, as the default is to
pullimages one at a time.

NOTE

There is a potential issue with data corruption prior to Docker 1.9. However, starting with
1.9, the corruption issue is resolved and it is safe to switch to parallel pulls.

kubeletArguments:
serialize-image-pulls:
- "false"

169

OpenShift Container Platform 3.11 Configuring Clusters

ﬂ Change to true to disable parallel pulls. This is the default configuration.

7.8. PASSWORDS AND OTHER SENSITIVE DATA

For some authentication configurations, an LDAP bindPassword or OAuth clientSecret value is
required. Instead of specifying these values directly in the master configuration file, these values may be
provided as environment variables, external files, or in encrypted files.

Environment Variable Example

bindPassword:
env: BIND PASSWORD _ENV_VAR_NAME

External File Example

bindPassword:
file: bindPassword.txt

Encrypted External File Example

bindPassword:
file: bindPassword.encrypted
keyFile: bindPassword.key

To create the encrypted file and key file for the above example:

$ oc adm ca encrypt --genkey=bindPassword.key --out=bindPassword.encrypted
> Data to encrypt: B1ndPassOrd!

Run oc adm commands only from the first master listed in the Ansible host inventory file, by default
/etc/ansible/hosts.

' WARNING
A Encrypted data is only as secure as the decrypting key. Care should be taken to limit

filesystem permissions and access to the key file.

7.9. CREATING NEW CONFIGURATION FILES

When defining an OpenShift Container Platform configuration from scratch, start by creating new
configuration files.

For master host configuration files, use the openshift start command with the --write-config option to

write the configuration files. For node hosts, use the oc adm create-node-config command to write the
configuration files.

170

CHAPTER 7. MASTER AND NODE CONFIGURATION

The following commands write the relevant launch configuration file(s), certificate files, and any other
necessary files to the specified --write-config or --node-dir directory.

Generated certificate files are valid for two years, while the certification authority (CA) certificate is
valid for five years. This can be altered with the --expire-days and --signer-expire-days options, but for
security reasons, it is recommended to not make them greater than these values.

To create configuration files for an all-in-one server (a master and a node on the same host) in the
specified directory:

I $ openshift start --write-config=/openshift.local.config

To create a master configuration file and other required files in the specified directory:

I $ openshift start master --write-config=/openshift.local.config/master

To create a node configuration file and other related files in the specified directory:

$ oc adm create-node-config \
--node-dir=/openshift.local.config/node-<node_hostname> \
--node=<node_hostname> \
--hostnames=<node_hostname>,<ip_address> \
--certificate-authority="/path/to/ca.crt" \
--signer-cert="/path/to/ca.crt" \
--signer-key="/path/to/ca.key"
--signer-serial="/path/to/ca.serial.txt"
--node-client-certificate-authority="/path/to/ca.crt"

When creating node configuration files, the --hostnames option accepts a comma-delimited list of
every host name or IP address you want server certificates to be valid for.

7.10. LAUNCHING SERVERS USING CONFIGURATION FILES

After you have modified the master and node configuration files to your specifications, you can use
them when launching servers by specifying them as an argument. If you specify a configuration file, none
of the other command line options you pass are respected.

/, NOTE

To modify a node in your cluster, update the node configuration maps as needed. Do not
manually edit the node-config.yaml file.

1. Launch a master server using a master configuration file:

$ openshift start master \
--config=/openshift.local.config/master/master-config.yaml

2. Start the network proxy and SDN plug-ins using a node configuration file and a
node.kubeconfig file:
$ openshift start network \

--config=/openshift.local.config/node-<node_hostname>/node-config.yaml \
--kubeconfig=/openshift.local.config/node-<node_hostname>/node.kubeconfig

171

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#modifying-nodes

OpenShift Container Platform 3.11 Configuring Clusters

3. Launch a node server using a node configuration file:

$ hyperkube kubelet \
$(/usr/bin/openshift-node-config \
--config=/openshift.local.config/node-<node_hostname>/node-config.yaml)

7.11. VIEWING MASTER AND NODE LOGS

OpenShift Container Platform collects log messages for debugging, using the systemd-
journald.service for nodes and a script, called master-logs, for masters.

NOTE

The number of lines displayed in the web console is hard-coded at 5000 and cannot be
changed. To see the entire log, use the CLI.

The logging uses five log message severities based on Kubernetes logging conventions, as follows:

Table 7.23. Log Level Options

Option Description

0 Errors and warnings only

2 Normal information

4 Debugging-level information

6 API-level debugging information (request / response)
8 Body-level APl debugging information

You can change the log levels independently for masters or nodes as needed.
View node logs

To view logs for the node system, run the following command:

I # journalctl -r -u <journal_name>

Use the -r option to show the newest entries first.
View master logs

To view logs for the master components, run the following command:

I # /usr/local/bin/master-logs <component> <container>

For example:

172

CHAPTER 7. MASTER AND NODE CONFIGURATION

/usr/local/bin/master-logs controllers controllers
/usr/local/bin/master-logs api api
/usr/local/bin/master-logs etcd etcd

Redirect master log to a file

To redirect the output of master log in to a file, run the following command:

I master-logs api api 2> file

7.11.1. Configuring Logging Levels

You can control which INFO messages are logged by setting the DEBUG_LOGLEVEL option in the
/etc/origin/master/master.env file for the master or /etc/sysconfig/atomic-openshift-node file for
the nodes. Configuring the logs to collect all messages can lead to large logs that are difficult to
interpret and can take up excessive space. Only collect all messages when you need to debug your
cluster.

NOTE

Messages with FATAL, ERROR, WARNING, and some INFO severities appear in the logs
regardless of the log configuration.

To change the logging level:

1. Edit the /etc/origin/master/master.env file for the master or /etc/sysconfig/atomic-
openshift-node file for the nodes.

2. Enter a value from the Log Level Optionstable in the DEBUG_LOGLEVEL field.
For example:

I DEBUG_LOGLEVEL=4

3. Restart the master or node host as appropriate. See Restarting OpenShift Container Platform
services.

After the restart, all new log messages will conform to the new setting. Older messages do not change.

NOTE

The default log level can be set using the standard cluster installation process. For more
information, see Cluster Variables.

The following examples are excerpts of redirected master log files at various log levels. System
information has been removed from these examples.

Excerpt of master-logs api api 2> file output at loglevel=2

W1022 15:08:09.787705 1 server.go:79] Unable to keep dnsmasq up to date, 0.0.0.0:8053 must
point to port 53

11022 15:08:09.787894 1 logs.go:49] skydns: ready for queries on cluster.local. for
tcp4://0.0.0.0:8053 [rcache 0]

173

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#cluster-variables-table

OpenShift Container Platform 3.11 Configuring Clusters

174

11022 15:08:09.787913

1 logs.go:49] skydns: ready for queries on cluster.local. for

udp4://0.0.0.0:8053 [rcache 0]

11022 15:08:09.889022
11022 15:08:09.893156
11022 15:08:09.893500
11022 15:08:09.914759
11022 15:08:09.942349

W1022 15:08:09.977088

/oapi/vi

W1022 15:08:09.977176

/api/vi

1 dns_server.go:63] DNS listening at 0.0.0.0:8053
1 feature_gate.go:190] feature gates: map[AdvancedAuditing:true]
1 master.go:431] Starting OAuth2 API at /oauth
1 master.go:431] Starting OAuth2 API at /oauth
1 master.go:431] Starting OAuth2 API at /oauth
1 swagger.go:38] No API exists for predefined swagger description

1 swagger.go:38] No API exists for predefined swagger description

[restful] 2018/10/22 15:08:09 log.go:33: [restful/swagger] listing is available at
https://openshift.com:443/swaggerapi

[restful] 2018/10/22 15:08:09 log.go:33: [restful/swagger] https://openshift.com:443/swaggerui/ is
mapped to folder /swagger-ui/

1022 15:08:10.231405

W1022 15:08:10.259523

/oapi/vi

W1022 15:08:10.259555

/api/vi

11022 15:08:23.895493
11022 15:08:24.449577
11022 15:08:24.449916
controller

11022 15:08:24.496147
[1022 15:08:24.821198
controller

11022 15:08:24.833022
controller

11022 15:08:24.865087
11022 15:08:24.865393

1 master.go:431] Starting OAuth2 API at /oauth
1 swagger.go:38] No API exists for predefined swagger description

1 swagger.go:38] No API exists for predefined swagger description
1 logs.go:49] http: TLS handshake error from 10.10.94.10:46322: EOF
1 crdregistration_controller.go:110] Starting crd-autoregister controller

1 controller_utils.go:1019] Waiting for caches to sync for crd-autoregister

1 logs.go:49] http: TLS handshake error from 127.0.0.1:39140: EOF
1 cache.go:39] Caches are synced for APIServiceRegistrationController

1 cache.go:39] Caches are synced for AvailableConditionController

1 controller.go:537] quota admission added evaluator for: { events}
1 l0gs.go:49] http: TLS handshake error from 127.0.0.1:39162: read tcp4

127.0.0.1:443->127.0.0.1:39162: read: connection reset by peer

11022 15:08:24.966917
controller

11022 15:08:24.967961
11022 15:08:24.967977
11022 15:08:25.015924
serviceaccounts}

11022 15:08:25.077984

W1022 15:08:25.304265

1 controller_utils.go:1026] Caches are synced for crd-autoregister

1 autoregister_controller.go:136] Starting autoregister controller
1 cache.go:32] Waiting for caches to sync for autoregister controller
1 controller.go:537] quota admission added evaluator for: {

1 cache.go:39] Caches are synced for autoregister controller
1 lease_endpoint_reconciler.go:176] Resetting endpoints for master

service "kubernetes" 10 [10.10.94.10]

E1022 15:08:25.472536

1 memcache.go:153] couldn't get resource list for

servicecatalog.k8s.io/vibetal: the server could not find the requested resource

E1022 15:08:25.550888

1 memcache.go:153] couldn't get resource list for

servicecatalog.k8s.io/vibetal: the server could not find the requested resource

11022 15:08:29.480691
11022 15:08:30.981999

1 healthz.go:72] /healthz/log check
1 controller.go:105] OpenAPI AggregationController: Processing item

vibetai.servicecatalog.k8s.io

E1022 15:08:30.990914

1 controller.go:111] loading OpenAPI spec for

"vibetal.servicecatalog.k8s.io" failed with: OpenAPI spec does not exists

11022 15:08:30.990965

1 controller.go:119] OpenAPI AggregationController: action for item

vibetai.servicecatalog.k8s.io: Rate Limited Requeue.

11022 15:08:31.530473

1 trace.go:76] Trace[1253590531]: "Get /api/vi/namespaces/openshift-

infra/serviceaccounts/serviceaccount-controller" (started: 2018-10-22 15:08:30.868387562 +0000
UTC m=+24.277041043) (total time: 661.981642ms):
Trace[1253590531]: [661.903178ms] [661.89217ms] About to write a response

CHAPTER 7. MASTER AND NODE CONFIGURATION

11022 15:08:31.531366 1 trace.go:76] Trace[83808472]: "Get /api/vi/namespaces/aws-
sb/secrets/aws-servicebroker" (started: 2018-10-22 15:08:30.831296749 +0000 UTC
m=+24.239950203) (total time: 700.049245ms):

Excerpt of master-logs api api 2> file output at loglevel=4

11022 15:08:09.746980 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: AlwaysDeny.

11022 15:08:09.747597 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: ResourceQuota.

11022 15:08:09.748038 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: openshift.io/ClusterResourceQuota.

11022 15:08:09.786771 1 start_master.go:458] Starting master on 0.0.0.0:443 (v3.10.45)
11022 15:08:09.786798 1 start_master.go:459] Public master address is https://openshift.com:443
1022 15:08:09.786844 1 start_master.go:463] Using images from
"registry.access.redhat.com/openshift3/ose-<component>:v3.10.45"

W1022 15:08:09.787046 1 dns_server.go:37] Binding DNS on port 8053 instead of 53, which may
not be resolvable from all clients

W1022 15:08:09.787705 1 server.go:79] Unable to keep dnsmasq up to date, 0.0.0.0:8053 must
point to port 53

11022 15:08:09.787894 1 logs.go:49] skydns: ready for queries on cluster.local. for
tcp4://0.0.0.0:8053 [rcache 0]

11022 15:08:09.787913 1 logs.go:49] skydns: ready for queries on cluster.local. for
udp4://0.0.0.0:8053 [rcache 0]

11022 15:08:09.889022 1 dns_server.go:63] DNS listening at 0.0.0.0:8053

11022 15:08:09.893156 1 feature_gate.go:190] feature gates: map[AdvancedAuditing:true]
11022 15:08:09.893500 1 master.go:431] Starting OAuth2 API at /oauth

11022 15:08:09.914759 1 master.go:431] Starting OAuth2 API at /oauth

11022 15:08:09.942349 1 master.go:431] Starting OAuth2 API at /oauth

W1022 15:08:09.977088 1 swagger.go:38] No API exists for predefined swagger description
/oapi/vi

W1022 15:08:09.977176 1 swagger.go:38] No API exists for predefined swagger description
/api/vi

[restful] 2018/10/22 15:08:09 log.go:33: [restful/swagger] listing is available at
https://openshift.com:443/swaggerapi

[restful] 2018/10/22 15:08:09 log.go:33: [restful/swagger] https://openshift.com:443/swaggerui/ is
mapped to folder /swagger-ui/

11022 15:08:10.231405 1 master.go:431] Starting OAuth2 API at /oauth

W1022 15:08:10.259523 1 swagger.go:38] No API exists for predefined swagger description
/oapi/vi

W1022 15:08:10.259555 1 swagger.go:38] No API exists for predefined swagger description
/api/vi

[restful] 2018/10/22 15:08:10 log.go:33: [restful/swagger] listing is available at
https://openshift.com:443/swaggerapi

[restful] 2018/10/22 15:08:10 log.go:33: [restful/swagger] https://openshift.com:443/swaggerui/ is
mapped to folder /swagger-ui/

11022 15:08:10.444303 1 master.go:431] Starting OAuth2 API at /oauth

W1022 15:08:10.492409 1 swagger.go:38] No API exists for predefined swagger description
/oapi/vi

W1022 15:08:10.492507 1 swagger.go:38] No API exists for predefined swagger description
/api/vi

[restful] 2018/10/22 15:08:10 log.go:33: [restful/swagger] listing is available at
https://openshift.com:443/swaggerapi

[restful] 2018/10/22 15:08:10 log.go:33: [restful/swagger] https://openshift.com:443/swaggerui/ is
mapped to folder /swagger-ui/

175

OpenShift Container Platform 3.11 Configuring Clusters

11022 15:08:10.774824
11022 15:08:23.808685
11022 15:08:23.815311
11022 15:08:23.822286
DiscoveryController

11022 15:08:23.822349
11022 15:08:23.822705

1 master.go:431] Starting OAuth2 API at /oauth

1 l0gs.go:49] http: TLS handshake error from 10.128.0.11:39206: EOF
1 l0gs.go:49] http: TLS handshake error from 10.128.0.14:53054: EOF
1 customresource_discovery_controller.go:174] Starting

1 naming_controller.go:276] Starting NamingConditionController
1 l0gs.go:49] http: TLS handshake error from 10.128.0.14:53056: EOF

+24.277041043) (total time: 661.981642ms):
Trace[1253590531]: [661.903178ms] [661.89217ms] About to write a response

11022 15:08:31.531366

1 trace.go:76] Trace[83808472]: "Get /api/vi/namespaces/aws-

sb/secrets/aws-servicebroker" (started: 2018-10-22 15:08:30.831296749 +0000 UTC
m=+24.239950203) (total time: 700.049245ms):
Trace[83808472]: [700.049245ms] [700.04027ms] END

11022 15:08:31.531695

1 trace.go:76] Trace[1916801734]: "Get /api/vi/namespaces/aws-

sb/secrets/aws-servicebroker" (started: 2018-10-22 15:08:31.031163449 +0000 UTC
m=+24.439816907) (total time: 500.514208ms):
Trace[1916801734]: [500.514208ms] [500.505008ms] END

1022 15:08:44.675371
11022 15:08:46.589759
1022 15:08:46.621270
11022 15:08:57.159494
1022 15:09:07.161315
1022 15:09:16.297982

1 healthz.go:72] /healthz/log check

1 controller.go:537] quota admission added evaluator for: { endpoints}
1 controller.go:537] quota admission added evaluator for: { endpoints}
1 healthz.go:72] /healthz/log check

1 healthz.go:72] /healthz/log check

1 trace.go:76] Trace[2001108522]: "GuaranteedUpdate etcd3:

*core.Node" (started: 2018-10-22 15:09:15.139820419 +0000 UTC m=+68.548473981) (total time:

1.158128974s):

Trace[2001108522]: [1.158012755s] [1.156496534s] Transaction committed

11022 15:09:16.298165

1 trace.go:76] Trace[1124283912]: "Patch /api/vi/nodes/master-

0.com/status” (started: 2018-10-22 15:09:15.139695483 +0000 UTC m=+68.548348970) (total time:

1.158434318s):

Trace[1124283912]: [1.158328853s] [1.15713683s] Object stored in database

1022 15:09:16.298761

1 trace.go:76] Trace[24963576]: "GuaranteedUpdate etcd3: *core.Node"

(started: 2018-10-22 15:09:15.13159057 +0000 UTC m=+68.540244112) (total time: 1.167151224s):
Trace[24963576]: [1.167106144s] [1.165570379s] Transaction committed

11022 15:09:16.298882 1 trace.go:76] Trace[222129183]: "Patch /api/vi/nodes/node-
0.com/status” (started: 2018-10-22 15:09:15.131269234 +0000 UTC m=+68.539922722) (total time:

1.1675955268):

Trace[222129183]: [1.167517296s] [1.166135605s] Object stored in database

Excerpt of master-logs api api 2> file output at loglevel=8

176

1022 15:11:58.829357
11022 15:11:58.839967
11022 15:11:58.839994

1 plugins.go:84] Registered admission plugin "NamespaceLifecycle"

1 plugins.go:84] Registered admission plugin "Initializers"
1 plugins.go:84] Registered admission plugin

"ValidatingAdmissionWebhook"

1022 15:11:58.840012

1 plugins.go:84] Registered admission plugin

"MutatingAdmissionWebhook"

1022 15:11:58.840025
1022 15:11:58.840082
1022 15:11:58.840105

1 plugins.go:84] Registered admission plugin "AlwaysAdmit"
1 plugins.go:84] Registered admission plugin "AlwaysPulllmages”
1 plugins.go:84] Registered admission plugin

"LimitPodHardAntiAffinity Topology"

1022 15:11:58.840126
1022 15:11:58.840146
1022 15:11:58.840176
11022 15:11:59.850825
11022 15:11:59.859108

1 plugins.go:84] Registered admission plugin "DefaultTolerationSeconds”
1 plugins.go:84] Registered admission plugin "AlwaysDeny"

1 plugins.go:84] Registered admission plugin "EventRateLimit"

1 feature_gate.go:190] feature gates: map[AdvancedAuditing:true]

1 register.go:154] Admission plugin AlwaysAdmit is not enabled. It will not

CHAPTER 7. MASTER AND NODE CONFIGURATION

be started.

11022 15:11:59.859284 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: AlwaysAdmit.

11022 15:11:59.859809 1 register.go:154] Admission plugin NamespaceAutoProvision is not
enabled. It will not be started.

11022 15:11:59.859939 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: NamespaceAutoProvision.

11022 15:11:59.860594 1 register.go:154] Admission plugin NamespaceExists is not enabled. It
will not be started.

11022 15:11:59.860778 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: NamespaceExists.

11022 15:11:59.863999 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: NamespaceLifecycle.

11022 15:11:59.864626 1 register.go:154] Admission plugin EventRateLimit is not enabled. It will
not be started.

11022 15:11:59.864768 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: EventRateLimit.

11022 15:11:59.865259 1 register.go:154] Admission plugin ProjectRequestLimit is not enabled. It
will not be started.

11022 15:11:59.865376 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: ProjectRequestLimit.

11022 15:11:59.866126 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: OriginNamespaceLifecycle.

11022 15:11:59.866709 1 register.go:154] Admission plugin openshift.io/RestrictSubjectBindings
is not enabled. It will not be started.

11022 15:11:59.866761 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: openshift.io/RestrictSubjectBindings.

11022 15:11:59.867304 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: openshift.io/JenkinsBootstrapper.

11022 15:11:59.867823 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: openshift.io/BuildConfigSecretinjector.

1022 15:12:00.015273 1 master_config.go:476] Initializing cache sizes based on OMB limit
11022 15:12:00.015896 1 master_config.go:539] Using the lease endpoint reconciler with
TTL=15s and interval=10s

11022 15:12:00.018396 1 storage_factory.go:285] storing { apiServerlPInfo} in v1, reading as
__internal from storagebackend.Config{Type:"etcd3", Prefix:"kubernetes.io", ServerList:
[Istring{"https://master-0.com:2379"}, KeyFile:"/etc/origin/master/master.etcd-client.key",
CertFile:"/etc/origin/master/master.etcd-client.crt", CAFile:"/etc/origin/master/master.etcd-ca.crt",
Quorum:true, Paging:true, DeserializationCacheSize:0, Codec:runtime.Codec(nil),
Transformer:value.Transformer(nil), Compactioninterval:300000000000,
CountMetricPollPeriod:60000000000}

11022 15:12:00.037710 1 storage_factory.go:285] storing { endpoints} in v1, reading as __internal
from storagebackend.Config{Type:"etcd3", Prefix:"kubernetes.io", ServerList:[]string{"https://master-
0.com:2379"}, KeyFile:"/etc/origin/master/master.etcd-client.key",
CertFile:"/etc/origin/master/master.etcd-client.crt", CAFile:"/etc/origin/master/master.etcd-ca.crt",
Quorum:true, Paging:true, DeserializationCacheSize:0, Codec:runtime.Codec(nil),
Transformer:value.Transformer(nil), Compactioninterval:300000000000,
CountMetricPollPeriod:60000000000}

11022 15:12:00.054112 1 compact.go:54] compactor already exists for endpoints [https://master-
0.com:2379]

11022 15:12:00.054678 1 start_master.go:458] Starting master on 0.0.0.0:443 (v3.10.45)

11022 15:12:00.054755 1 start_master.go:459] Public master address is https://openshift.com:443
11022 15:12:00.054837 1 start_master.go:463] Using images from
"registry.access.redhat.com/openshift3/ose-<component>:v3.10.45"

W1022 15:12:00.056957 1 dns_server.go:37] Binding DNS on port 8053 instead of 53, which may
not be resolvable from all clients

177

OpenShift Container Platform 3.11 Configuring Clusters

W1022 15:12:00.065497 1 server.go:79] Unable to keep dnsmasq up to date, 0.0.0.0:8053 must
point to port 53

11022 15:12:00.066061 1 logs.go:49] skydns: ready for queries on cluster.local. for
tcp4://0.0.0.0:8053 [rcache 0]

11022 15:12:00.066265 1 logs.go:49] skydns: ready for queries on cluster.local. for
udp4://0.0.0.0:8053 [rcache 0]

11022 15:12:00.158725 1 dns_server.go:63] DNS listening at 0.0.0.0:8053

11022 15:12:00.167910 1 htpasswd.go:118] Loading htpasswd file /etc/origin/master/htpasswd...
11022 15:12:00.168182 1 htpasswd.go:118] Loading htpasswd file /etc/origin/master/htpasswd...
11022 15:12:00.231233 1 storage_factory.go:285] storing {apps.openshift.io deploymentconfigs}
in apps.openshift.io/v1, reading as apps.openshift.io/__internal from
storagebackend.Config{Type:"etcd3", Prefix:"openshift.io", ServerList:[]string{"https://master-
0.com:2379"}, KeyFile:"/etc/origin/master/master.etcd-client.key",
CertFile:"/etc/origin/master/master.etcd-client.crt", CAFile:"/etc/origin/master/master.etcd-ca.crt",
Quorum:true, Paging:true, DeserializationCacheSize:0, Codec:runtime.Codec(nil),
Transformer:value.Transformer(nil), Compactioninterval:300000000000,
CountMetricPollPeriod:60000000000}

11022 15:12:00.248136 1 compact.go:54] compactor already exists for endpoints [https://master-
0.com:2379]

11022 15:12:00.248697 1 store.go:1391] Monitoring deploymentconfigs.apps.openshift.io count at
<storage-prefix>//deploymentconfigs

W1022 15:12:00.256861 1 swagger.go:38] No API exists for predefined swagger description
/oapi/vi

W1022 15:12:00.258106 1 swagger.go:38] No API exists for predefined swagger description
/api/vi

7.12. RESTARTING MASTER AND NODE SERVICES

To apply master or node configuration changes, you must restart the respective services.

To reload master configuration changes, restart master services running in control plane static pods
using the master-restart command:

master-restart api
master-restart controllers

To reload node configuration changes, restart the node service on the node host:

178

systemctl restart atomic-openshift-node

CHAPTER 8. OPENSHIFT ANSIBLE BROKER CONFIGURATION

CHAPTER 8. OPENSHIFT ANSIBLE BROKER CONFIGURATION

8.1. OVERVIEW

When the OpenShift Ansible broker (OAB) is deployed in a cluster, its behavior is largely dictated by the
broker’s configuration file loaded on startup. The broker’s configuration is stored as a ConfigMap object

in the broker's namespace (openshift-ansible-service-broker by default).

Example OpenShift Ansible Broker Configuration File

registry: ﬂ
- type: dockerhub
name: docker
url: https://registry.hub.docker.com
org: <dockerhub_org>
fail_on_error: false
- type: rhce
name: rhcc
url: https://registry.redhat.io
fail_on_error: true
white_list:
- ""oo.*-apb$"
- " *-apb$"
black_list:
- "bar.*-apb$"
- ""my-apb$"
- type: local_openshift
name: lo
namespaces:
- openshift
white_list:
- " *-apb$"
dao:
etcd_host: localhost
etcd_port: 2379
log: e
logfile: /var/log/ansible-service-broker/asb.log
stdout: true
level: debug
color: true
openshift: ﬂ
host: "
ca_file: ™
bearer_token_file: "
image_pull_policy: IfNotPresent
sandbox_role: "edit"
keep_namespace: false
keep_namespace_on_error: true
broker:
bootstrap_on_startup: true
dev_broker: true
launch_apb_on_bind: false
recovery: true
output_request: true

179

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#arch-ansible-service-broker

OpenShift Container Platform 3.11 Configuring Clusters

ssl_cert_key: /path/to/key
ssl_cert: /path/to/cert
refresh_interval: "600s"
auth:

- type: basic

enabled: true
secrets: G

- title: Database credentials

secret: db_creds

apb_name: dh-rhscl-postgresql-apb

See Registry Configuration for details.
See DAO Configuration for details.

See Log Configuration for details.

See OpenShift Configuration for details.

See Broker Configuration for details.

QD000

See Secrets Configuration for details.

8.2. AUTHENTICATING ON RED HAT PARTNER CONNECT REGISTRY

Before configuring the Automation Broker, you must run the following command on all nodes of an
OpenShift Container Platform cluster to use the Red Hat Partner Connect:

$ docker --config=/var/lib/origin/.docker login -u <registry-user> -p <registry-password>
registry.connect.redhat.com

8.3. MODIFYING THE OPENSHIFT ANSIBLE BROKER CONFIGURATION
To modify the OAB’s default broker configuration after it has been deployed:

1. Edit the broker-config ConfigMap object in the OAB’s namespace as a user with cluster-
admin privileges:

I $ oc edit configmap broker-config -n openshift-ansible-service-broker

2. After saving any updates, redeploy the OAB's deployment configuration for the changes to take
effect:

I $ oc rollout latest dc/asb -n openshift-ansible-service-broker

8.4. REGISTRY CONFIGURATION
The registry section allows you to define the registries that the broker should look at for APBs.

Table 8.1. registry Section Configuration Options

180

CHAPTER 8. OPENSHIFT ANSIBLE BROKER CONFIGURATION

Field Description Required

hame The name of the registry. Used by the broker to identify APBs Y
from this registry.

user The user name for authenticating to the registry. Not used when N
auth_type is set to secret orfile.

pass The password for authenticating to the registry. Not used when N
auth_type is set to secret orfile.

auth_type How the broker should read the registry credentials if they are N
not defined in the broker configuration via user and pass. Can
be secret (uses a secret in the broker namespace) offile (uses a
mounted file).

auth_name Name of the secret or file storing the registry credentials that N, only required
should be read. Used when auth_type is set to secret. when auth_type
is set to secret or
file.
org The namespace or organization that the image is contained in. N
type The type of registry. Available adapters are mock, rhcc, Y

openshift, dockerhub, and local_openshift.

namespaces The list of namespaces to configure the local_openshift N
registry type with. By default, a user should use openshift.

url The URL that is used to retrieve image information. Used N
extensively for RHCC while the dockerhub type uses hard-
coded URLs.

fail_on_error Should this registry fail, the bootstrap request if it fails. Will stop N

the execution of other registries loading.

white_list The list of regular expressions used to define which image N
names should be allowed through. Must have a white list to allow
APBs to be added to the catalog. The most permissive regular
expression that you can use is .*-apb$ if you would want to
retrieve all APBs in a registry. See APB Filtering for more details.

black_list The list of regular expressions used to define which images N
names should never be allowed through. See APB Filtering for
more details.

images The list of images to be used with an OpenShift Container N
Registry.

8.4.1. Production or Development

181

OpenShift Container Platform 3.11 Configuring Clusters

A production broker configuration is designed to be pointed at a trusted container distribution registry,
such as the Red Hat Container Catalog (RHCC):

registry:

- name: rhcc
type: rhce
url: https://registry.redhat.io
tag: v3.11
white_list:

- ".*-apb$"

- type: local_openshift
name: localregistry
namespaces:

- openshift
white_list: []

However, a development broker configuration is primarily used by developers working on the broker. To
enable developer settings, set the registry name to dev and the dev_broker field in the broker section
to true:

registry:
name: dev

broker:
dev_broker: true

8.4.2. Storing Registry Credentials

The broker configuration determines how the broker should read any registry credentials. They can be
read from the user and pass values in the registry section, for example:

registry:
- name: isv
type: openshift
url: https://registry.connect.redhat.com
user: <user>
pass: <password>

If you want to ensure these credentials are not publicly accessible, the auth_type field in the registry
section can be set to the secret or file type. The secret type configures a registry to use a secret from
the broker’s namespace, while the file type configures a registry to use a secret that has been mounted
as a volume.

To use the secret or file type:

1. The associated secret should have the values username and password defined. When using a
secret, you must ensure that the openshift-ansible-service-broker namespace exists, as this is
where the secret will be read from.

For example, create a reg-creds.yaml file:

$ cat reg-creds.yaml

username: <user_name>
password: <password>

182

CHAPTER 8. OPENSHIFT ANSIBLE BROKER CONFIGURATION

2. Create a secret from this file in the openshift-ansible-service-broker namespace:

$ oc create secret generic \
registry-credentials-secret \
--from-file reg-creds.yaml \
-n openshift-ansible-service-broker

3. Choose whether you want to use the secret or file type:
® To use the secret type:

a. Inthe broker configuration, set auth_type to secret and auth_name to the name of
the secret:

registry:
- name: isv
type: openshift
url: https://registry.connect.redhat.com
auth_type: secret
auth_name: registry-credentials-secret

b. Set the namespace where the secret is located:

openshift:
namespace: openshift-ansible-service-broker

® To use thefile type:

a. Edit the asb deployment configuration to mount your file into /tmp/registry-
credentials/reg-creds.yaml.

I $ oc edit dc/asb -n openshift-ansible-service-broker

In the containers.volumeMounts section, add:

volumeMounts:
- mountPath: /tmp/registry-credentials
name: reg-auth

In the volumes section, add:

volumes:
- name: reg-auth
secret:
defaultMode: 420
secretName: registry-credentials-secret

b. In the broker configuration, set auth_type to file and auth_type to the location of the
file:

registry:

- name: isv
type: openshift

183

OpenShift Container Platform 3.11 Configuring Clusters

url: https://registry.connect.redhat.com
auth_type: file
auth_name: /tmp/registry-credentials/reg-creds.yaml

8.4.3. APB Filtering

APBs can be filtered out by their image name using a combination of the white_list or black_list
parameters, set on a registry basis inside the broker’s configuration.

Both are optional lists of regular expressions that will be run over the total set of discovered APBs for a
given registry to determine matches.

Table 8.2. APB Filter Behavior

Present Allowed Blocked
Only whitelist Matches a regexin list. Any APB that does not match.
Only blacklist All APBs that do not match. APBs that match a regexin list.
Both present Matches regex in whitelist but not APBs that match a regexin

in blacklist. blacklist.
None No APBs from the registry. All APBs from that registry.

For example:

Whitelist Only

white_list:
- "foo.*-apb$"
_ "/\my_apb$ll

Anything matching on foo.*-apb$ and only my-apb will be allowed through in this case. All other APBs
will be rejected.

Blacklist Only

black_list:
- "bar.*-apb$"
- ""foobar-apb$"

Anything matching on bar.*-apb$ and only foobar-apb will be blocked in this case. All other APBs will be
allowed through.

Whitelist and Blacklist

white_list:
- "foo.*-apb$"
_ "/\my_apb$u
black _list:
- "oo-rootkit-apb$"

184

CHAPTER 8. OPENSHIFT ANSIBLE BROKER CONFIGURATION

Here, foo-rootkit-apb is specifically blocked by the blacklist despite its match in the whitelist because
the whitelist match is overridden.

Otherwise, only those matching on foo.*-apb$ and my-apb will be allowed through.

Example Broker Configuration registry Section:

registry:

- type: dockerhub
name: dockerhub
url: https://reqgistry.hub.docker.com
user: <user>
pass: <password>
org: <org>
white_list:

- "foo.*-apb$"

- ""my-apb$"
black_list:

- "bar.*-apb$"

- ""foobar-apb$"

8.4.4. Mock Registry

A mock registry is useful for reading local APB specs. Instead of going out to a registry to search for
image specs, this uses a list of local specs. Set the name of the registry to mock to use the mock
registry.

registry:
- name: mock
type: mock

8.4.5. Dockerhub Registry

The dockerhub type allows you to load APBs from a specific organization in the DockerHub. For
example, the ansibleplaybookbundle organization.

registry:

- name: dockerhub
type: dockerhub
org: ansibleplaybookbundle
user: <user>
pass: <password>
white_list:

- ".*-apb$"

8.4.6. Ansible Galaxy Registry

The galaxy type allows you to use APB roles from Ansible Galaxy. You can also optionally specify an
organization.

registry:
- name: galaxy

185

https://hub.docker.com/u/ansibleplaybookbundle/
https://galaxy.ansible.com

OpenShift Container Platform 3.11 Configuring Clusters

type: galaxy

Optional:

org: ansibleplaybookbundle

runner: docker.io/ansibleplaybookbundle/apb-base:latest
white_list:

- ".*$ll

8.4.7. Local OpenShift Container Registry

Using the local_openshift type will allow you to load APBs from the OpenShift Container Registry that
is internal to the OpenShift Container Platform cluster. You can configure the namespaces in which you
want to look for published APBs.

registry:

- type: local_openshift
name: lo
namespaces:

- openshift
white_list:
- ".*-apb$"

8.4.8. Red Hat Container Catalog Registry

Using the rhece type will allow you to load APBs that are published to the Red Hat Container Catalog
(RHCC) registry.

registry:
- name: rhce
type: rhce
url: https://registry.redhat.io
white_list:
- ".*-apb$"

8.4.9. Red Hat Partner Connect Registry

Third-party images in the Red Hat Container Catalog are served from the Red Hat Partner Connect
Registry at https://registry.connect.redhat.com. The partner_rhcc type allows the broker to be
bootstrapped from the Partner Registry to retrieve a list of APBs and load their specs. The Partner
Registry requires authentication for pulling images with a valid Red Hat Customer Portal user name and
password.

registry:

- name: partner_reg
type: partner_rhcc
url: https://registry.connect.redhat.com
user: <registry_user>
pass: <registry_password>
white_list:

- ".*-apb$"

Because the Partner Registry requires authentication, the following manual step is also required to
configure the broker to use the Partner Registry URL:

186

https://access.redhat.com/containers
https://registry.connect.redhat.com

CHAPTER 8. OPENSHIFT ANSIBLE BROKER CONFIGURATION

1. Run the following command on all nodes of a OpenShift Container Platform cluster:

docker --config=/var/lib/origin/.docker \
login -u <registry_user> -p <registry_password> \
registry.connect.redhat.com

8.4.10. Helm Chart Registry

Using the helm type allows you to consume Helm Charts from a Helm Chart Repository.

registry:
- name: stable
type: helm
url: "https://kubernetes-charts.storage.googleapis.com”
runner: "docker.io/automationbroker/helm-runner:latest”
white_list:

" oxn

NOTE

Many Helm charts in the stable repository are not suitable for use with OpenShift
Container Platform and will fail with errors if you use them.

8.4.11. API1 V2 Docker Registry

Using the apiv2 type allows you to consume images from docker registries that implement the Docker
Registry HTTP API V2 protocol.

registry:
- name: <registry_name>
type: apiv2
url: <registry_url>
user: <registry-user>
pass: <registry-password>
white_list:
- ".*-apb$"

If the registry requires authentication for pulling images, this can be achieved by running the following
command on every node in your existing cluster:

I $ docker --config=/var/lib/origin/.docker login -u <registry-user> -p <registry-password> <registry _url>

8.4.12. Quay Docker Registry

Using the quay type allows you to load APBs that are published to the CoreOS Quay Registry. If an
authentication token is provided, private repositories that the token is configured to access will load.
Public repositories in the specified organization do not require a token to load.

registry:
- name: quay_reg
type: quay
url: https://quay.io

187

https://quay.io/about/

OpenShift Container Platform 3.11 Configuring Clusters

token: <for_private_repos>
org: <your_org>
white_list:

- ".*-apb$"

If the Quay registry requires authentication for pulling images, this can be achieved by running the
following command on every node in your existing cluster:

I $ docker --config=/var/lib/origin/.docker login -u <registry-user> -p <registry-password> quay.io

8.4.13. Multiple Registries

You can use more than one registry to separate APBs into logical organizations and be able to manage
them from the same broker. The registries must have a unique, non-empty name. If there is no unique
name, the service broker will fail to start with an error message alerting you to the problem.

registry:

- name: dockerhub
type: dockerhub
org: ansibleplaybookbundle
user: <user>
pass: <password>
white_list:

- " *-apb$"

- name: rhce
type: rhce
url: <rhce_url>
white_list:

- ".*-apb$"

8.5. BROKER AUTHENTICATION

The broker supports authentication, meaning when connecting to the broker, the caller must supply the
Basic Auth or Bearer Auth credentials for each request. Using curl, it is as simple as supplying:

I -U <user_names>:<password>
or

I -h "Authorization: bearer <token>

to the command. The service catalog must be configured with a secret containing the user name and
password combinations or the bearer token.

8.5.1. Basic Auth

To enable Basic Auth usage, set the following in the broker configuration:

broker:

auth:

188

CHAPTER 8. OPENSHIFT ANSIBLE BROKER CONFIGURATION

enabled: true 9

I - type: basic ﬂ

ﬂ The type field specifies the type of authentication to use.

The enabled field allows you to disable a particular authentication type. This keeps you from having
to delete the entire section of auth just to disable it.

8.5.1.1. Deployment Template and Secrets

Typically the broker is configured using a ConfigMap in a deployment template. You supply the
authentication configuration the same way as in the file configuration.

The following is an example of the deployment template:

auth:
- type: basic
enabled: ${ENABLE_BASIC_AUTH}

Another part to Basic Auth is the user name and password used to authenticate against the broker.
While the Basic Auth implementation can be backed by different back-end services, the currently
supported one is backed by a secret. The secret must be injected into the pod via a volume mount at the
/var/run/asb_auth location. This is from where the broker will read the user name and password.

In the deployment template, a secret must be specified. For example:

- apiVersion: v1
kind: Secret
metadata:
name: asb-auth-secret
namespace: openshift-ansible-service-broker
data:
username: ${BROKER_USER}
password: ${BROKER_PASS}

The secret must contain a user name and password. The values must be base64 encoded. The easiest
way to generate the values for those entries is to use the echo and base64 commands:

$ echo -n admin | base64 ﬂ
YWRtaW4=

ﬂ The -n option is very important.

This secret must now be injected to the pod via a volume mount. This is configured in the deployment
template as well:

spec:
serviceAccount: asb
containers:
- image: ${BROKER_IMAGE}
name: asb
imagePullPolicy: IfNotPresent

189

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-configmaps
https://github.com/openshift/ansible-service-broker/blob/master/templates/deploy-ansible-service-broker.template.yaml#L220-L222
https://github.com/openshift/ansible-service-broker/blob/61a7fc80e40a7d7ddd836a2216394185094b1b0b/templates/deploy-ansible-service-broker.template.yaml#L168-L175

OpenShift Container Platform 3.11 Configuring Clusters

volumeMounts:

- name: asb-auth-volume
mountPath: /var/run/asb-auth

Then, in the volumes section, mount the secret:

volumes:

- name: asb-auth-volume
secret:
secretName: asb-auth-secret

The above will have created a volume mount located at /var/run/asb-auth. This volume will have two
files: a user name and password written by the asb-auth-secretsecret.

8.5.1.2. Configuring Service Catalog and Broker Communication

Now that the broker is configured to use Basic Auth, you must tell the service catalog how to
communicate with the broker. This is accomplished by the authinfo section of the broker resource.

The following is an example of creating a broker resource in the service catalog. The spec tells the
service catalog what URL the broker is listening at. The authlnfo tells it what secret to read to get the
authentication information.

apiVersion: servicecatalog.k8s.io/vialphat
kind: Broker
metadata:
name: ansible-service-broker
spec:
url: https://asb-1338-openshift-ansible-service-broker.172.17.0.1.nip.io
authlinfo:
basicAuthSecret:
namespace: openshift-ansible-service-broker
name: asb-auth-secret

Starting with v0.0.17 of the service catalog, the broker resource configuration changes:

apiVersion: servicecatalog.k8s.io/vialphat
kind: ServiceBroker
metadata:
name: ansible-service-broker
spec:
url: https://asb-1338-openshift-ansible-service-broker.172.17.0.1.nip.io
authlinfo:
basic:
secretRef:
namespace: openshift-ansible-service-broker
name: asb-auth-secret

8.5.2. Bearer Auth

By default, if no authentication is specified the broker will use bearer token authentication (Bearer
Auth). Bearer Auth uses delegated authentication from the Kubernetes apiserver library.

190

https://github.com/kubernetes/apiserver

CHAPTER 8. OPENSHIFT ANSIBLE BROKER CONFIGURATION

The configuration grants access, through Kubernetes RBAC roles and role bindings, to the URL prefix.
The broker has added a configuration option cluster_url to specify the url_prefix. This value defaults to
openshift-ansible-service-broker.

Example Cluster Role

- apiVersion: authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: access-asb-role
rules:
- nonResourceURLs: ["/ansible-service-broker", "/ansible-service-broker/*"]
verbs: ["get", "post”, "put”, "patch”, "delete"]

8.5.2.1. Deployment Template and Secrets

The following is an example of creating a secret that the service catalog can use. This example assumes
that the role, access-asb-role, has been created already. From the deployment template:

- apiVersion: v1
kind: ServiceAccount
metadata:
name: ansibleservicebroker-client
namespace: openshift-ansible-service-broker

- apiVersion: authorization.openshift.io/v1
kind: ClusterRoleBinding
metadata:
name: ansibleservicebroker-client
subjects:
- kind: ServiceAccount
name: ansibleservicebroker-client
namespace: openshift-ansible-service-broker
roleRef:
kind: ClusterRole
name: access-asb-role

- apiVersion: v1
kind: Secret
metadata:
name: ansibleservicebroker-client
annotations:
kubernetes.io/service-account.name: ansibleservicebroker-client
type: kubernetes.io/service-account-token

The above example creates a service account, granting access to access-asb-role and creating a secret
for that service accounts token.

8.5.2.2. Configuring Service Catalog and Broker Communication

Now that the broker is configured to use Bearer Auth tokens, you must tell the service catalog how to
communicate with the broker. This is accomplished by the authlnfo section of the broker resource.

191

https://kubernetes.io/docs/admin/authorization/rbac/
https://github.com/openshift/ansible-service-broker/blob/61a7fc80e40a7d7ddd836a2216394185094b1b0b/templates/deploy-ansible-service-broker.template.yaml#L224-L248
https://kubernetes.io/docs/admin/service-accounts-admin/

OpenShift Container Platform 3.11 Configuring Clusters

I he following is an example of creating a broker resource in the service catalog. he spec tells the
service catalog what URL the broker is listening at. The authlnfo tells it what secret to read to get the
authentication information.

apiVersion: servicecatalog.k8s.io/vialphat
kind: ServiceBroker
metadata:
name: ansible-service-broker
spec:
url: https://asb.openshift-ansible-service-broker.svc:1338${BROKER_URL_PREFIX}/
authlinfo:
bearer:
secretRef:
kind: Secret
namespace: openshift-ansible-service-broker
name: ansibleservicebroker-client

8.6. DAO CONFIGURATION

Field Description Required
etcd_host The URL of the etcd host. Y
etcd_port The port to use when communicating with etcd_host. Y

8.7.LOG CONFIGURATION

Field Description Required
logfile Where to write the broker’s logs. Y
stdout Write logs to stdout. Y
level Level of the log output. Y
color Color the logs. Y

8.8. OPENSHIFT CONFIGURATION

Field Description Required
host OpenShift Container Platform host. N
ca_file Location of the certificate authority file. N
bearer_token_fil Location of bearer token to be used. N

e

192

Field

image_pull_poli
cy

namespace

sandbox_role

keep_namespac
e

keep_namespac
e_on_error

8.9. BROKER

CHAPTER 8. OPENSHIFT ANSIBLE BROKER CONFIGURATION

Description

When to pull the image.

The namespace that the broker has been deployed to. Important

for things like passing parameter values via secret.

Role to give to an APB sandbox environment.

Always keep namespace after an APB execution.

Keep namespace after an APB execution has an error.

CONFIGURATION

Required

Y

The broker section tells the broker what functionality should be enabled and disabled. It will also tell the

broker where to find files on disk that will enable the full functionality.

Field

dev_broker

launch_apb_
on_bind

bootstrap_o
n_startup

recovery

output_requ
est

ssl_cert_key

ssl_cert

refresh_inter
val

auto_escalat
e

Description

Allow development routes to be accessible.

Allow bind to be a no-op.

Allow the broker attempt to bootstrap itself on start
up. Will retrieve the APBs from configured registries.

Allow the broker to attempt to recover itself by
dealing with pending jobs noted in etcd.

Allow the broker to output the requests to the log
file as they come in for easier debugging.

Tells the broker where to find the TLS key file. If not
set, the APl server will attempt to create one.

Tells the broker where to find the TLS.crtfile. If not
set, the APl server will attempt to create one.

The interval to query registries for new image specs.

Allows the broker to escalate the permissions of a
user while running the APB.

Default Value

false

false

false

false

false

"6008"

false

193

OpenShift Container Platform 3.11 Configuring Clusters

Field Description Default Value Required
cluster_url Sets the prefix for the URL that the broker is openshift- N
expecting. ansible-
service-
broker
NOTE

Async bind and unbind is an experimental feature and is not supported or enabled by
default. With the absence of async bind, setting launch_apb_on_bind to true can cause
the bind action to timeout and will span a retry. The broker will handle this with "409
Conflicts" because it is the same bind request with different parameters.

8.10. SECRETS CONFIGURATION

The secrets section creates associations between secrets in the broker’'s namespace and APBs the
broker runs. The broker uses these rules to mount secrets into running APBs, allowing the user to use
secrets to pass parameters without exposing them to the catalog or users.

The section is a list where each entry has the following structure:

Field Description Required
title The title of the rule. This is just for display and output purposes. Y
apb_name The name of the APB to associate with the specified secret. This Y

is the fully qualified name (<registry_name>-
<image_name>).

secret The name of the secret to pull parameters from. Y

You can download and use the create_broker_secret.py file to create and format this configuration
section.

secrets:
- title: Database credentials
secret: db_creds
apb_name: dh-rhscl-postgresql-apb

8.11. RUNNING BEHIND A PROXY
When running the OAB inside of a proxied OpenShift Container Platform cluster, it is important to
understand its core concepts and consider them within the context of a proxy used for external network

access.

As an overview, the broker itself runs as a pod within the cluster. It has a requirement for external
network access depending on how its registries have been configured.

194

https://github.com/openshift/ansible-service-broker/blob/master/scripts/create_broker_secret.py

CHAPTER 8. OPENSHIFT ANSIBLE BROKER CONFIGURATION

8.11.1. Registry Adapter Whitelists

The broker’s configured registry adapters must be able to communicate with their external registries in
order to bootstrap successfully and load remote APB manifests. These requests can be made via the
proxy, however, the proxy must ensure that the required remote hosts are accessible.

Example required whitelisted hosts:

Registry Adapter Type Whitelisted Hosts

rhce registry.redhat.io, access.redhat.com

dockerhub docker.io

8.11.2. Configuring the Broker Behind a Proxy Using Ansible

If during initial installation you configure your OpenShift Container Platform cluster to run behind a
proxy (see Configuring Global Proxy Options), when the OAB is deployed it will:

® inherit those cluster-wide proxy settings automatically and
® generate the required NO_PROXY list, including the cidr fields and serviceNetworkCIDR,

and no further configuration is needed.

8.11.3. Configuring the Broker Behind a Proxy Manually

If your cluster’s global proxy options were not configured during initial installation or prior to the broker
being deployed, or if you have modified the global proxy settings, you must manually configure the
broker for external access via proxy:

1. Before attempting to run the OAB behind a proxy, review Working with HTTP Proxies and
ensure your cluster is configured accordingly to run behind a proxy.
In particular, the cluster must be configured to not proxy internal cluster requests. This is
typically configured with a NO_PROXY setting of:

I .cluster.local,.svc,<serviceNetworkCIDR_value>,<master IP>,<master_domain>,.default

in addition to any other desired NO_PROXY settings. See Configuring NO_PROXY for more
details.

NOTE

Brokers deploying unversioned, or vl APBs must also add 172.30.0.1 to their
NO_PROXY list. APBs prior to v2 extracted their credentials from running APB
pods via an exec HTTP request, rather than a secret exchange. Unless you are
running a broker with experimental proxy supportin a cluster prior to OpenShift
Container Platform 3.9, you probably do not have to worry about this.

2. Edit the broker's DeploymentConfig as a user with cluster-admin privileges:

I $ oc edit dc/asb -n openshift-ansible-service-broker

195

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-install-configuring-global-proxy

OpenShift Container Platform 3.11 Configuring Clusters

3. Set the following environment variables:
e HTTP_PROXY
e HTTPS_PROXY

e NO_PROXY

NOTE

See Setting Proxy Environment Variables in Pods for more information.

4. After saving any updates, redeploy the OAB's deployment configuration for the changes to take
effect:

I $ oc rollout latest dc/asb -n openshift-ansible-service-broker

8.11.4. Setting Proxy Environment Variables in Pods

It is common that APB pods themselves may require external access via proxy as well. If the broker
recognizes it has a proxy configuration, it will transparently apply these environment variables to the
APB pods that it spawns. As long as the modules used within the APB respect proxy configuration via
environment variable, the APB will also use these settings to perform its work.

Finally, it is possible the services spawned by the APB may also require external network access via
proxy. The APB must be authored to set these environment variables explicitly if recognizes them in its
own execution environment, or the cluster operator must manually modify the required services to inject
them into their environments.

196

CHAPTER 9. ADDING HOSTS TO AN EXISTING CLUSTER

CHAPTER 9. ADDING HOSTS TO AN EXISTING CLUSTER

9.1. ADDING HOSTS

You can add new hosts to your cluster by running the scaleup.yml playbook. This playbook queries the
master, generates and distributes new certificates for the new hosts, and then runs the configuration
playbooks on only the new hosts. Before running the scaleup.yml playbook, complete all prerequisite
host preparation steps.

IMPORTANT

The scaleup.yml playbook configures only the new host. It does not update NO_PROXY
in master services, and it does not restart master services.

You must have an existing inventory file, for example /etc/ansible/hosts, that is representative of your
current cluster configuration in order to run the scaleup.yml playbook. If you previously used the
atomic-openshift-installer command to run your installation, you can check ~/.config/openshift/hosts
for the last inventory file that the installer generated and use that file as your inventory file. You can
modify this file as required. You must then specify the file location with -i when you run the ansible-
playbook.

IMPORTANT

See the cluster maximums section for the recommended maximum number of nodes.

Procedure

1. Ensure you have the latest playbooks by updating the openshift-ansible package:
I # yum update openshift-ansible

2. Edit your /etc/ansible/hosts file and add new_<host_type> to the [OSEv3:children] section.
For example, to add a new node host, add new_nodes:

[OSEv3:children]
masters

nodes
new_nodes

To add new master hosts, add new_masters.

3. Create a [new_<host_type>] section to specify host information for the new hosts. Format this
section like an existing section, as shown in the following example of adding a new node:

[nodes]

master[1:3].example.com

node1.example.com openshift_node_group_name="node-config-compute'
node2.example.com openshift_node_group_name="node-config-compute'
infra-node1.example.com openshift_node_group_name="node-config-infra’
infra-node2.example.com openshift_node_group_name="node-config-infra’

[new_nodes]
node3.example.com openshift_node_group_name="node-config-infra'

197

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#preparing-for-advanced-installations-origin
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/scaling_and_performance_guide/#scaling-performance-cluster-maximums

OpenShift Container Platform 3.11 Configuring Clusters

198

See Configuring Host Variables for more options.

When adding new masters, add hosts to both the [new_masters] section and the [new_nodes]
section to ensure that the new master host is part of the OpenShift SDN:

[masters]
master[1:2].example.com

[new_masters]
master3.example.com

[nodes]

master[1:2].example.com

node1.example.com openshift_node_group_name="node-config-compute'
node2.example.com openshift_node_group_name="node-config-compute'
infra-node1.example.com openshift_node_group_name="node-config-infra’
infra-node2.example.com openshift_node_group_name="node-config-infra’

[new_nodes]
master3.example.com

IMPORTANT

If you label a master host with the node-role.kubernetes.io/infra=true label and
have no other dedicated infrastructure nodes, you must also explicitly mark the
host as schedulable by adding openshift_schedulable=true to the entry.
Otherwise, the registry and router pods cannot be placed anywhere.

4. Change to the playbook directory and run the openshift_node_group.yml playbook. If your

inventory file is located somewhere other than the default of /etc/ansible/hosts, specify the
location with the -i option:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook [-i /path/to/file] \
playbooks/openshift-master/openshift_node_group.yml

This creates the ConfigMap for the new node groups, and ultimately, the configuration file of
the node on the host.

NOTE

Running the openshift_node_group.yaml playbook only updates new nodes. It
cannot be run to update existing nodes in a cluster.

. Run the scaleup.yml playbook. If your inventory file is located somewhere other than the default

of /etc/ansible/hosts, specify the location with the -i option.

® F[or additional nodes:

$ ansible-playbook [-i /path/to/file] \
playbooks/openshift-node/scaleup.yml

® F[or additional masters:

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-host-variables

CHAPTER 9. ADDING HOSTS TO AN EXISTING CLUSTER

$ ansible-playbook [-i /path/to/file] \
playbooks/openshift-master/scaleup.yml

6. Set the node label to logging-infra-fluentd=true, if you deployed the EFK stack in your cluster:

I # oc label node/new-node.example.com logging-infra-fluentd=true

7. After the playbook runs, verify the installation.

8. Move any hosts that you defined in the [new_<host_type>] section to their appropriate section.
By moving these hosts, subsequent playbook runs that use this inventory file treat the nodes
correctly. You can keep the empty [new_<host_type>] section. For example, when adding new
nodes:

[nodes]

master[1:3].example.com

node1.example.com openshift_node_group_name="node-config-compute'
node2.example.com openshift_node_group_name="node-config-compute'
node3.example.com openshift_node_group_name="node-config-compute’
infra-node1.example.com openshift_node_group_name="node-config-infra’
infra-node2.example.com openshift_node_group_name="node-config-infra’

[new_nodes]

9.2. ADDING ETCD HOSTS TO EXISTING CLUSTER

You can add new etcd hosts to your cluster by running the etcd scaleup playbook. This playbook queries
the master, generates and distributes new certificates for the new hosts, and then runs the
configuration playbooks on the new hosts only. Before running the etcd scaleup.yml playbook, complete
all prerequisite host preparation steps.

' WARNING
A These steps will synchronize the settings in the Ansible inventory with the cluster.

Ensure that any local changes are shown in the Ansible inventory.

To add an etcd host to an existing cluster:

1. Ensure you have the latest playbooks by updating the openshift-ansible package:
I # yum update openshift-ansible

2. Edit your /etc/ansible/hosts file, add new_<host_type> to the [OSEv3:children] group and
add hosts under the new_<host_type> group. For example, to add a new etcd, add new_etcd:

[OSEv3:children]

masters
nodes

199

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-verifying-the-installation
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-config-install-host-preparation

OpenShift Container Platform 3.11 Configuring Clusters

etcd
new_etcd

[etcd]
etcd1.example.com
etcd2.example.com

[new_etcd]
etcd3.example.com

3. Change to the playbook directory and run the openshift_node_group.yml playbook. If your
inventory file is located somewhere other than the default of /etc/ansible/hosts, specify the
location with the -i option:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook [-i /path/to/file] \
playbooks/openshift-master/openshift_node_group.yml

This creates the ConfigMap for the new node groups, and ultimately, the configuration file of
the node on the host.

NOTE

Running the openshift_node_group.yaml playbook only updates new nodes. It
cannot be run to update existing nodes in a cluster.

4. Run the etcd scaleup.yml playbook. If your inventory file is located somewhere other than the
default of /etc/ansible/hosts, specify the location with the -i option:

$ ansible-playbook [-i /path/to/file] \
playbooks/openshift-etcd/scaleup.yml

5. After the playbook completes successfully, verify the installation.

9.3. REPLACING EXISTING MASTERS WITH ETCD COLOCATED

Follow these steps when you are migrating your machines to a different data center and the network and
IPs assigned to it will change.

1. Back up the primary etcd and master nodes.

IMPORTANT

Ensure that you back up the /etc/etcd/ directory, as noted in the etcd backup
instructions.

2. Provision as many new machines as there are masters to replace.

3. Add or expand the cluster. For example, if you want to add 3 masters with etcd colocated, scale
up 3 master nodes.

200

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-verifying-the-installation
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/day_two_operations_guide/#etcd-backup_deprecating-etcd
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/day_two_operations_guide/#creating-master-backup_deprecating-etcd
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/day_two_operations_guide/#backing-up-etcd_deprecating-etcd

CHAPTER 9. ADDING HOSTS TO AN EXISTING CLUSTER

IMPORTANT

In the initial release of OpenShift Container Platform version 3.11, the scaleup.yml
playbook does not scale up etcd. This is fixed in OpenShift Container Platform 3.11.59 and
later.

. Add a master. In step 3 of that process, add the host of the new data centerin [new_masters]
and [new_nodes], run the openshift_node_group.yml playbook, and run the master
scaleup.yml playbook.

. Put the same host in the etcd section, run the openshift_node_group.yml playbook, and run
the etcd scaleup.yml playbook.

. Verify that the host was added:

I # oc get nodes

. Verify that the master host IP was added:

I # oc get ep kubernetes

. Verify that etcd was added. The value of ETCDCTL_API depends on the version being used:

source /etc/etcd/etcd.conf
ETCDCTL_API=2 etcdctl --cert-file=$ETCD_PEER_CERT_FILE --key-
file=$ETCD_PEER_KEY_FILE\

--ca-file=/etc/etcd/ca.crt --endpoints=$ETCD_LISTEN_CLIENT_URLS member list

. Copy /etc/origin/master/ca.serial.txt from the /etc/origin/master directory to the new
master host that is listed first in your inventory file. By default, this is /etc/ansible/hosts.

1. Remove the etcd hosts.

. Copy the /etc/etcd/ca directory to the new etcd host that is listed first in your inventory file. By
default, this is /etc/ansible/hosts.

. Remove the old etcd clients from the master-config.yaml file:

I # grep etcdClientInfo -A 11 /etc/origin/master/master-config.yaml

i. Restart the masters:

master-restart api
master-restart controllers

j. Remove the old etcd members from the cluster. The value of ETCDCTL_API depends on the
version being used:

source /etc/etcd/etcd.conf
ETCDCTL_API=2 etcdctl --cert-file=$ETCD_PEER_CERT_FILE --key-
file=$ETCD_PEER_KEY_FILE\

--ca-file=/etc/etcd/ca.crt --endpoints=$ETCD_LISTEN_CLIENT_URLS member list

201

OpenShift Container Platform 3.11 Configuring Clusters

k. Take the IDs from the output of the command above and remove the old members using the
IDs:

etcdctl --cert-file=SETCD_PEER_CERT_FILE --key-file=$ETCD_PEER_KEY_FILE \
--ca-file=/etc/etcd/ca.crt --endpoints=$ETCD_LISTEN_CLIENT_URL member remove
1609b5a3a078c227

l. Stop the etcd services on the old etcd hosts by removing the etcd pod definition:

mkdir -p /etc/origin/node/pods-stopped
mv /etc/origin/node/pods/* /etc/origin/node/pods-stopped/

1. Shut down old master APl and controller services by moving definition files out of the static
pods dir /etc/origin/node/pods:

mkdir -p /etc/origin/node/pods/disabled
mv /etc/origin/node/pods/controller.yaml /etc/origin/node/pods/disabled/:

2. Remove the master nodes from the HA proxy configuration, which was installed as a load
balancer by default during the native installation process.

3. Decommission the machine.

m. Stop the node service on the master to be removed by removing the pod definition and
rebooting the host:

mkdir -p /etc/origin/node/pods-stopped
mv /etc/origin/node/pods/* /etc/origin/node/pods-stopped/
reboot

n. Delete the node resource:

I # oc delete node

9.4. MIGRATING THE NODES

You can migrate nodes individually or in groups (of 2, 5, 10, and so on), depending on what you are
comfortable with and how the services on the node are run and scaled.

1. For the migration node or nodes, provision new VMs for the node's use in the new data center.
2. To add the new node, scale up the infrastructure. Ensure the labels for the new node are set
properly and that your new APl servers are added to your load balancer and successfully serving
traffic.
3. Evaluate and scale down.
a. Mark the current node (in the old data center) unscheduled.
b. Evacuate the node, so that pods on it are scheduled to other nodes.

c. Verify that the evacuated services are running on the new nodes.

4. Remove the node.

202

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#marking-nodes-as-unschedulable-or-schedulable
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#evacuating-pods-on-nodes

CHAPTER 9. ADDING HOSTS TO AN EXISTING CLUSTER

a. Verify that the node is empty and does not have running processes.

b. Stop the service or delete the node.

203

OpenShift Container Platform 3.11 Configuring Clusters

CHAPTER 10. ADDING THE DEFAULT IMAGE STREAMS AND
TEMPLATES

10.1. OVERVIEW

If you installed OpenShift Container Platform on servers with x86_64 architecture, your cluster includes
useful sets of Red Hat-provided image streams and templates to make it easy for developers to create
new applications. By default, the cluster installation process automatically create these sets in the
openshift project, which is a default global project to which all users have view access.

If you installed OpenShift Container Platform on servers with IBM POWER architecture, you can add
image streams and templates to your cluster.

10.2. OFFERINGS BY SUBSCRIPTION TYPE

Depending on the active subscriptions on your Red Hat account, the following sets of image streams
and templates are provided and supported by Red Hat. Contact your Red Hat sales representative for
further subscription details.

10.2.1. OpenShift Container Platform Subscription

The core set of image streams and templates are provided and supported with an active OpenShift
Container Platform subscription. This includes the following technologies:

Type Technology

Languages &
Frameworks

e NET Core
o Node,s

o Perl

e PHP

e Python

® Ruby

Databases .
e MariaDB

e MongoDB
e MySQL

® PostgreSQL

Middleware Services
® Red Hat JBoss Web Server(Tomcat)

® Red Hat Single Sign-on

204

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-planning
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-using-dot-net-core
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-s2i-images-nodejs
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-s2i-images-perl
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-s2i-images-php
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-s2i-images-python
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-s2i-images-ruby
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-db-images-mariadb
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-db-images-mongodb
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-db-images-mysql
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-db-images-postgresql
https://access.redhat.com/documentation/en/red-hat-jboss-middleware-for-openshift/3/single/red-hat-jboss-web-server-for-openshift/
https://access.redhat.com/documentation/en/red-hat-jboss-middleware-for-openshift/3/single/red-hat-jboss-sso-for-openshift/

CHAPTER 10. ADDING THE DEFAULT IMAGE STREAMS AND TEMPLATES

Type Technology

Other Services)
® Jenkins

e Jenkins Slaves

10.2.2. xPaaS Middleware Add-on Subscriptions

Support for xPaaS middleware images are provided by xPaaS Middleware add-on subscriptions, which
are separate subscriptions for each xPaa$S product. If the relevant subscription is active on your account,
image streams and templates are provided and supported for the following technologies:

Type Technology

Middleware Services
e RedHat JBoss A-MQ

® Red Hat JBoss BPM Suite Intelligent Process Server
® Red Hat JBoss BRMS Decision Server

® Red Hat JBoss Data Grid

® RedHat JBoss EAP

® Red Hat Fuse on OpenShift

e Red Hat JBoss Data Virtualization

10.3. BEFORE YOU BEGIN

Before you consider performing the tasks in this topic, confirm if these image streams and templates are
already registered in your OpenShift Container Platform cluster by doing one of the following:

® | oginto the web console and click Add to Project

® List them for the openshift project using the CLI:

$ oc get is -n openshift
$ oc get templates -n openshift

If the default image streams and templates are ever removed or changed, you can follow this topic to
create the default objects yourself. Otherwise, the following instructions are not necessary.

10.4. PREREQUISITES
Before you can create the default image streams and templates:

® The integrated container image registry service must be deployed in your OpenShift Container
Platform installation.

205

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-other-images-jenkins
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-other-images-jenkins-slaves
https://access.redhat.com/documentation/en-us/red_hat_jboss_a-mq/6.3/html-single/red_hat_jboss_a-mq_for_openshift/
https://access.redhat.com/documentation/en-us/red_hat_jboss_bpm_suite/6.4/html-single/red_hat_jboss_bpm_suite_intelligent_process_server_for_openshift/
https://access.redhat.com/documentation/en-us/red_hat_jboss_brms/6.4/html-single/red_hat_jboss_brms_realtime_decision_server_for_openshift/
https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.1/html-single/data_grid_for_openshift/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/red_hat_jboss_enterprise_application_platform_for_openshift/
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/fuse_on_openshift_guide/
https://access.redhat.com/documentation/en-us/red_hat_jboss_data_virtualization/6.4/html/red_hat_jboss_data_virtualization_for_openshift/

OpenShift Container Platform 3.11 Configuring Clusters

® You must be able to run the oc create command with cluster-admin privileges, because they
operate on the default openshiftproject.

® You must have installed the openshift-ansible RPM package. See Software Prerequisites for
instructions.

® Foron-premise installations on IBM POWERS8 or IBM POWER9 servers, create a secret for
registry.redhat.io in the openshift namespace.

® Define shell variables for the directories containing image streams and templates. This
significantly shortens the commands in the following sections. To do this:

o For cloud installations and on-premise installations on x86_64 servers:

$ IMAGESTREAMDIR="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/x86_64/image-streams”; \
XPAASSTREAMDIR="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/x86_64/xpaas-streams”; \
XPAASTEMPLATES="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/x86_64/xpaas-templates”; \
DBTEMPLATES="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/x86_64/db-templates"; \
QSTEMPLATES="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/x86_64/quickstart-templates”

® For on-premise installations on IBM POWERS or IBM POWERSO servers:

IMAGESTREAMDIR="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/ppc64le/image-streams”; \
DBTEMPLATES="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/ppc64le/db-templates”; \
QSTEMPLATES="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/ppc64le/quickstart-templates”

10.5. CREATING IMAGE STREAMS FOR OPENSHIFT CONTAINER
PLATFORM IMAGES

If your node hosts are subscribed using Red Hat Subscription Manager and you want to use the core set
of image streams that used Red Hat Enterprise Linux (RHEL) 7 based images:

I $ oc create -f SIMAGESTREAMDIR/image-streams-rhel7.json -n openshift

Alternatively, to create the core set of image streams that use the CentOS 7 based images:

I $ oc create -f SIMAGESTREAMDIR/image-streams-centos7.json -n openshift

Creating both the CentOS and RHEL sets of image streams is not possible, because they use the same
names. To have both sets of image streams available to users, either create one set in a different
project, or edit one of the files and modify the image stream names to make them unique.

10.6. CREATING IMAGE STREAMS FOR XPAAS MIDDLEWARE IMAGES

206

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#software-prerequisites
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#creating-secrets

CHAPTER 10. ADDING THE DEFAULT IMAGE STREAMS AND TEMPLATES

The xPaaS Middleware image streams provide images for JBoss EAP, JBoss JWS, JBoss A-MQ, Red
Hat Fuse on OpenShift, Decision Server, JBoss Data Virtualization and JBoss Data Grid. They can
be used to build applications for those platforms using the provided templates.

To create the xPaaS Middleware set of image streams:

I $ oc create -f $XPAASSTREAMDIR/jboss-image-streams.json -n openshift

NOTE

Access to the images referenced by these image streams requires the relevant xPaaS
Middleware subscriptions.

10.7. CREATING DATABASE SERVICE TEMPLATES

The database service templates make it easy to run a database image which can be utilized by other
components. For each database (MongoDB, MySQL, and PostgreSQL), two templates are defined.

One template uses ephemeral storage in the container which means data stored will be lost if the
container is restarted, for example if the pod moves. This template should be used for demonstration

purposes only.

The other template defines a persistent volume for storage, however it requires your OpenShift
Container Platform installation to have persistent volumes configured.

To create the core set of database templates:

I $ oc create -f SDBTEMPLATES -n openshift

After creating the templates, users are able to easily instantiate the various templates, giving them quick
access to a database deployment.

10.8. CREATING INSTANT APP AND QUICKSTART TEMPLATES

The Instant App and Quickstart templates define a full set of objects for a running application. These
include:

® Build configurations to build the application from source located in a GitHub public repository
® Deployment configurations to deploy the application image after it is built.

® Services to provide load balancing for the application pods.

® Routes to provide external access to the application.

Some of the templates also define a database deployment and service so the application can perform
database operations.

NOTE

The templates which define a database use ephemeral storage for the database content.
These templates should be used for demonstration purposes only as all database data
will be lost if the database pod restarts for any reason.

207

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-db-images-mongodb
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-db-images-mysql
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-db-images-postgresql
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#builds
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#pods
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-core-concepts-routes

OpenShift Container Platform 3.11 Configuring Clusters

Using these templates, users are able to easily instantiate full applications using the various language
images provided with OpenShift Container Platform. They can also customize the template parameters
during instantiation so that it builds source from their own repository rather than the sample repository,
so this provides a simple starting point for building new applications.

To create the core Instant App and Quickstart templates:

I $ oc create -f SQSTEMPLATES -n openshift

There is also a set of templates for creating applications using various xPaaS Middleware products
(JBoss EAP, JBoss JWS, JBoss A-MQ, Red Hat Fuse on OpenShift Decision Server, and JBoss
Data Grid), which can be registered by running:

I $ oc create -f $XPAASTEMPLATES -n openshift

NOTE

The xPaaS Middleware templates require the xPaaS Middleware image streams, which in
turn require the relevant xPaaS Middleware subscriptions.

NOTE

The templates which define a database use ephemeral storage for the database content.
These templates should be used for demonstration purposes only as all database data
will be lost if the database pod restarts for any reason.

10.9. WHAT'S NEXT?

With these artifacts created, developers can now log in to the web console and follow the flow for
creating from a template. Any of the database or application templates can be selected to create a
running database service or application in the current project. Note that some of the application
templates define their own database services as well.

The example applications are all built out of GitHub repositories which are referenced in the templates
by default, as seen in the SOURCE_REPOSITORY_URL parameter value. Those repositories can be
forked, and the fork can be provided as the SOURCE_REPOSITORY_URL parameter value when
creating from the templates. This allows developers to experiment with creating their own applications.

You can direct your developers to the Using the Instant App and Quickstart Templates section in the
Developer Guide for these instructions.

208

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#creating-from-templates-using-the-web-console
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#using-the-instantapp-templates

CHAPTER 11. CONFIGURING CUSTOM CERTIFICATES

CHAPTER 1. CONFIGURING CUSTOM CERTIFICATES

11.1. OVERVIEW

Administrators can configure custom serving certificates for the public host names of the OpenShift
Container Platform APl and web console. This can be done during a cluster installation or configured
after installation.

11.2. CONFIGURING A CERTIFICATE CHAIN

If a certificate chain is used, then all certificates must be manually concatenated into a single named
certificate file. These certificates must be placed in the following order:

® OpenShift Container Platform master host certificate
® |ntermediate CA certificate

® Root CA certificate

® Third party certificate

To create this certificate chain, concatenate the certificates into a common file. You must run this
command for each certificate and ensure that they are in the previously defined order.

I $ cat <certificate>.pem >> ca-chain.cert.pem

11.3. CONFIGURING CUSTOM CERTIFICATES DURING INSTALLATION

During cluster installations, custom certificates can be configured using the
openshift_master_named_certificates and openshift_master_overwrite_named_certificates
parameters, which are configurable in the inventory file. More details are available about configuring
custom certificates with Ansible.

Custom Certificate Configuration Parameters

openshift_master_overwrite_named_certificates=true ﬂ
openshift_master_named_certificates=[{"certfile": "/path/on/host/to/crt-file", "keyfile":
"/path/on/host/to/key-file", "names": ["public-master-host.com"], "cafile™: "/path/on/host/to/ca-file"}] 9
openshift_hosted_router_certificate={"certfile": "/path/on/host/to/app-cri-file", "keyfile":
"/path/on/host/to/app-key-file", "cafile": "/path/on/host/to/app-ca-file"} e

ﬂ If you provide a value for the openshift_master_named_certificates parameter, set this
parameter to true.

9 Provisions a master API certificate. If necessary, concatenate all of the required files that form your
certificate chain for the certificate file that is provided to the certFile parameter.

9 Provisions a router wildcard certificate.

Example parameters for a master API certificate:

I openshift_master_overwrite_named_certificates=true

209

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-infrastructure-components-web-console
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-install-custom-certificates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-install-custom-certificates

OpenShift Container Platform 3.11 Configuring Clusters

openshift_master_named_certificates=[{"names": ['master.148.251.233.173.nip.io"], "certfile":
"/home/cloud-user/master.148.251.233.173.nip.io.cert.pem"”, "keyfile": "/home/cloud-
user/master.148.251.233.173.nip.io.key.pem", "cafile": "/home/cloud-user/master-bundle.cert.pem"}]

Example parameters for a router wildcard certificate:

openshift_hosted_router_certificate={"certfile": "/home/cloud-user/star-
apps.148.251.233.173.nip.io.cert.pem", "keyfile": "/home/cloud-user/star-
apps.148.251.233.173.nip.io.key.pem”, "cafile": "/home/cloud-user/ca-chain.cert.pem"}

11.4. CONFIGURING CUSTOM CERTIFICATES FOR THE WEB CONSOLE
ORCLI

You can specify custom certificates for the web console and for the CLI through the servinginfo
section of the master configuration file:

® The servinglnfo.namedCertificates section serves up custom certificates for the web console.
® The servinglnfo section serves up custom certificates for the CLI and other API calls.

You can configure multiple certificates this way, and each certificate can be associated with multiple
host names, multiple routers, or the OpenShift Container Platform image registry.

A default certificate must be configured in the servinginfo.certFile and servinglnfo.keyFile
configuration sections in addition to namedCertificates.

NOTE

The namedCertificates section should be configured only for the host name associated
with the masterPublicURL and oauthConfig.assetPublicURL settings in the
/etc/origin/master/master-config.yaml file. Using a custom serving certificate for the
host name associated with the masterURL will result in TLS errors as infrastructure
components will attempt to contact the master API using the internal masterURL host.

Custom Certificates Configuration

servinglnfo:
logoutURL: "
masterPublicURL: https://openshift.example.com:8443
publicURL: https://openshift.example.com:8443/console/
bindAddress: 0.0.0.0:8443
bindNetwork: tcp4
certFile: master.server.crt
clientCA: "
keyFile: master.server.key 9
maxRequestsInFlight: 0
requestTimeoutSeconds: 0
namedCertificates:
- certFile: wildcard.example.com.crt e
keyFile: wildcard.example.com.key
names:
- "openshift.example.com”
metricsPublicURL: "https://metrics.os.example.com/hawkular/metrics"

210

CHAPTER 11. CONFIGURING CUSTOM CERTIFICATES

Path to the certificate file for the CLI and other API calls.
Path to the key file for the CLI and other API calls.

Path to the certificate file for the public host names of the OpenShift Container Platform APl and
web console. If necessary, concatenate all of the required files that form your certificate chain for
the certificate file that is provided to the certFile parameter.

Path to the key file for the public host names of the OpenShift Container Platform APl and web
console.

O 000

The openshift_master_cluster_public_hosthame and openshift_master_cluster_hostname
parameters in the Ansible inventory file, by default /etc/ansible/hosts, must be different. If they are the
same, the named certificates will fail and you will need to re-install them.

Native HA with External LB VIPs
openshift_master_cluster_hostname=internal.paas.example.com
openshift_master_cluster_public_hostname=external.paas.example.com

For more information on using DNS with OpenShift Container Platform, see the DNS installation
prerequisites.

This approach allows you to take advantage of the self-signed certificates generated by OpenShift
Container Platform and add custom trusted certificates to individual components as needed.

Note that the internal infrastructure certificates remain self-signed, which might be perceived as bad

practice by some security or PKI teams. However, any risk here is minimal, as the only clients that trust
these certificates are other components within the cluster. All external users and systems use custom
trusted certificates.

Relative paths are resolved based on the location of the master configuration file. Restart the server to
pick up the configuration changes.

11.5. CONFIGURING A CUSTOM MASTER HOST CERTIFICATE

In order to facilitate trusted connections with external users of OpenShift Container Platform, you can
provision a named certificate that matches the domain name provided in the
openshift_master_cluster_public_hostname paramater in the Ansible inventory file, by default
/etc/ansible/hosts.

You must place this certificate in a directory accessible to Ansible and add the path in the Ansible
inventory file, as follows:

openshift_master_named_certificates=[{"certfile": "/path/to/console.ocp-c1.myorg.com.crt", "keyfile":
"/path/to/console.ocp-c1.myorg.com.key", "names": ["console.ocp-c1.myorg.com"]}]

Where the parameter values are:

o certfile is the path to the file that contains the OpenShift Container Platform custom master
API certificate.

e keyfileis the path to the file that contains the OpenShift Container Platform custom master
API certificate key.

® npames is the cluster public hostname.

21

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#prereq-dns
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible

OpenShift Container Platform 3.11 Configuring Clusters

The file paths must be local to the system where Ansible runs. Certificates are copied to master hosts
and are deployed within the /etc/origin/master directory.

When securing the registry, add the service hostnames and IP addresses to the server certificate for the
registry. The Subject Alternative Names (SAN) must contain the following.

® Two service hostnames:

docker-registry.default.svc.cluster.local
docker-registry.default.svc

® Service IP address.
For example:
I 172.30.252.46
Use the following command to get the container image registry service IP address:
I oc get service docker-registry --template="{{.spec.clusterIP}}'

® Public hostname.
I docker-registry-default.apps.example.com
Use the following command to get the container image registry public hostname:
I oc get route docker-registry --template '{{.spec.host}}'

For example, the server certificate should contain SAN details similar to the following:

X509v3 Subject Alternative Name:
DNS:docker-registry-public.openshift.com, DNS:docker-registry.default.svc, DNS:docker-
registry.default.svc.cluster.local, DNS:172.30.2.98, IP Address:172.30.2.98

11.6. CONFIGURING A CUSTOM WILDCARD CERTIFICATE FOR THE
DEFAULT ROUTER

You can configure the OpenShift Container Platform default router with a default wildcard certificate. A
default wildcard certificate provides a convenient way for applications that are deployed in OpenShift
Container Platform to use default encryption without needing custom certificates.

9 NOTE

Default wildcard certificates are recommended for non-production environments only.

To configure a default wildcard certificate, provision a certificate that is valid for *.<app_domains,
where <app_domains is the value of openshift_master_default_subdomain in the Ansible inventory
file, by default /etc/ansible/hosts. Once provisioned, place the certificate, key, and ca certificate files on
your Ansible host, and add the following line to your Ansible inventory file.

212

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible

CHAPTER 11. CONFIGURING CUSTOM CERTIFICATES

openshift_hosted_router_certificate={"certfile": "/path/to/apps.c1-ocp.myorg.com.crt", "keyfile":
"/path/to/apps.c1-ocp.myorg.com.key", "cafile": "/path/to/apps.c1-ocp.myorg.com.ca.crt"}

For example:

openshift_hosted_router_certificate={"certfile": "/home/cloud-user/star-
apps.148.251.233.173.nip.io.cert.pem", "keyfile": "/home/cloud-user/star-
apps.148.251.233.173.nip.io.key.pem"”, "cafile": "/home/cloud-user/ca-chain.cert.pem"}

Where the parameter values are:

o certfile is the path to the file that contains the OpenShift Container Platform router wildcard
certificate.

e keyfileis the path to the file that contains the OpenShift Container Platform router wildcard
certificate key.

e cafile is the path to the file that contains the root CA for this key and certificate. If an
intermediate CAis in use, the file should contain both the intermediate and root CA.

If these certificate files are new to your OpenShift Container Platform cluster, change to the playbook
directory and run the Ansible deploy_router.yml playbook to add these files to the OpenShift Container
Platform configuration files. The playbook adds the certificate files to the /etc/origin/master/
directory.

ansible-playbook [-i /path/to/inventory] \
/usr/share/ansible/openshift-ansible/playbooks/openshift-hosted/deploy_router.yml

If the certificates are not new, for example, you want to change existing certificates or replace expired
certificates, change to the playbook directory and run the following playbook:

I ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/redeploy-certificates.yml

NOTE

For this playbook to run, the certificate names must not change. If the certificate names
change, rerun the Ansible deploy_cluster.yml playbook as if the certificates were new.

11.7. CONFIGURING A CUSTOM CERTIFICATE FOR THE IMAGE
REGISTRY

The OpenShift Container Platform image registry is an internal service that facilitates builds and
deployments. Most of the communication with the registry is handled by internal components in
OpenShift Container Platform. As such, you should not need to replace the certificate used by the
registry service itself.

However, by default, the registry uses routes to allow external systems and users to do pulls and pushes
of images. You can use a re-encrypt route with a custom certificate that is presented to external users
instead of using the internal, self-signed certificate.

To configure this, add the following lines of code to the [OSEv3:vars] section of the Ansible inventory
file, by default /etc/ansible/hosts file. Specify the certificates to use with the registry route.

213

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-install-configuring-docker-route

OpenShift Container Platform 3.11 Configuring Clusters

openshift_hosted_registry_routehost=registry.apps.c1-ocp.myorg.com ﬂ
openshift_hosted_registry_routecertificates={"certfile": "/path/to/registry.apps.c1-ocp.myorg.com.crt",
"keyfile": "/path/to/registry.apps.c1-ocp.myorg.com.key", "cafile": "/path/to/registry.apps.ci-
ocp.myorg.com-ca.crt"}

openshift_hosted_registry_routetermination=reencrypt 6

ﬂ The host name of the registry.
9 The locations of the cacert, cert, and key files.

e certfile is the path to the file that contains the OpenShift Container Platform registry
certificate.

e keyfileis the path to the file that contains the OpenShift Container Platform registry
certificate key.

e cafile is the path to the file that contains the root CA for this key and certificate. If an
intermediate CAis in use, the file should contain both the intermediate and root CA.

9 Specify where encryption is performed:

® Set to reencrypt with a re-encrypt route to terminate encryption at the edge router and
re-encrypt it with a new certificate supplied by the destination.

® Set to passthrough to terminate encryption at the destination. The destination is
responsible for decrypting traffic.

11.8. CONFIGURING A CUSTOM CERTIFICATE FOR A LOAD BALANCER

If your OpenShift Container Platform cluster uses the default load balancer or an enterprise-level load
balancer, you can use custom certificates to make the web console and APl available externally using a
publicly-signed custom certificate. leaving the existing internal certificates for the internal endpoints.

To configure OpenShift Container Platform to use custom certificates in this way:

1. Edit the servinglnfo section of the master configuration file:

servinglnfo:
logoutURL: "
masterPublicURL: https://openshift.example.com:8443
publicURL: https://openshift.example.com:8443/console/
bindAddress: 0.0.0.0:8443
bindNetwork: tcp4
certFile: master.server.crt
clientCA: "
keyFile: master.server.key
maxRequestsInFlight: 0
requestTimeoutSeconds: 0
namedCertificates:
- certFile: wildcard.example.com.crt ﬂ
keyFile: wildcard.example.com.key 9
names:
- "openshift.example.com”
metricsPublicURL: "https://metrics.os.example.com/hawkular/metrics"

214

CHAPTER 11. CONFIGURING CUSTOM CERTIFICATES

ﬂ Path to the certificate file for the public host names of the OpenShift Container Platform
APl and web console. If necessary, concatenate all of the required files that form your
certificate chain for the certificate file that is provided to the certFile parameter.

9 Path to the key file for the public host names of the OpenShift Container Platform APl and
web console.

NOTE

Configure the namedCertificates section for only the host name associated with
the masterPublicURL and oauthConfig.assetPublicURL settings. Using a
custom serving certificate for the host name associated with the masterURL
causes in TLS errors as infrastructure components attempt to contact the
master API using the internal masterURL host.

2. Specify the openshift_master_cluster_public_hostname and
openshift_master_cluster_hostname paramaters in the Ansible inventory file, by default
/etc/ansible/hosts. These values must be different. If they are the same, the named certificates
will fail.

Native HA with External LB VIPs
openshift_master_cluster_hostname=paas.example.com ﬂ
openshift_master_cluster_public_hostname=public.paas.example.com 9

ﬂ The FQDN for internal load balancer configured for SSL passthrough.
9 The FQDN for external the load balancer with custom (public) certificate.

For information specific to your load balancer environment, refer to the OpenShift Container Platform
Reference Architecture for your provider and Custom Certificate SSL Termination (Production).

11.9. RETROFIT CUSTOM CERTIFICATES INTO A CLUSTER

You can retrofit custom master and custom router certificates into an existing OpenShift Container
Platform cluster.

11.9.1. Retrofit Custom Master Certificates into a Cluster
To retrofit custom certificates:

1. Edit the Ansible inventory file to set the
openshift_master_overwrite_named_certificates=true.

2. Specify the path to the certificate using the openshift_master_named_certificates parameter.

openshift_master_overwrite_named_certificates=true
openshift_master_named_certificates=[{"certfile": "/path/on/host/to/crt-file", "keyfile":
"/path/on/host/to/key-file", "names": ["public-master-host.com"], "cafile": "/path/on/host/to/ca-

file"}] @)

Path to a master API certificate. If necessary, concatenate all of the required files that form
your certificate chain for the certificate file that is provided to the certFile parameter.

215

https://access.redhat.com/documentation/en-us/reference_architectures/?category=openshift%2520container%2520platform&version=current%2520release
http://v1.uncontained.io/playbooks/installation/load_balancing.html#custom-certificate-ssl-termination-production

OpenShift Container Platform 3.11 Configuring Clusters

3. Change to the playbook directory and run the following playbook:
I ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/redeploy-certificates.yml

4. If you use named certificates:

a. Update the certificate parameters in the master-config.yaml file on each master node.

b. Restart the OpenShift Container Platform master service to apply the changes.

master-restart api
master-restart controllers

11.9.2. Retrofit Custom Router Certificates into a Cluster

To retrofit custom router certificates:

1. Edit the Ansible inventory file to set the
openshift_master_overwrite_named_certificates=true.

2. Specify the path to the certificate using the openshift_hosted_router_certificate parameter.
openshift_master_overwrite_named_certificates=true
openshift_hosted_router_certificate={"certfile": "/path/on/host/to/app-cri-file", "keyfile":

"/path/on/host/to/app-key-file", "cafile": "/path/on/host/to/app-ca-file"} 0

ﬂ Path to a router wildcard certificate.

3. Change to the playbook directory and run the following playbook:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook playbooks/openshift-hosted/redeploy-router-certificates.yml

11.10. USING CUSTOM CERTIFICATES WITH OTHER COMPONENTS

For information on how other components, such as Logging & Metrics, use custom certificates, see
Certificate Management.

216

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/day_two_operations_guide/#admin-solutions-certificate-management

CHAPTER 12. REDEPLOYING CERTIFICATES

CHAPTER 12. REDEPLOYING CERTIFICATES

12.1. OVERVIEW

OpenShift Container Platform uses certificates to provide secure connections for the following
components:

® masters (APl server and controllers)

® etcd

® nodes

® registry

® router
You can use Ansible playbooks provided with the installer to automate checking expiration dates for
cluster certificates. Playbooks are also provided to automate backing up and redeploying these
certificates, which can fix common certificate errors.
Possible use cases for redeploying certificates include:

® The installer detected the wrong host names and the issue was identified too late.

® The certificates are expired and you need to update them.

® You have a new CA and want to create certificates using it instead.

12.2. CHECKING CERTIFICATE EXPIRATIONS
You can use the installer to warn you about any certificates expiring within a configurable window of
days and notify you about any certificates that have already expired. Certificate expiry playbooks use
the Ansible role openshift_certificate_expiry.
Certificates examined by the role include:

® Master and node service certificates

® Router and registry service certificates from etcd secrets

® Master, node, router, registry, and kubeconfig files for cluster-admin users

e etcd certificates (including embedded)

Learn how to list all OpenShift TLS certificate expiration dates.

12.2.1. Role Variables

The openshift_certificate_expiry role uses the following variables:

Table 12.1. Core Variables

217

https://access.redhat.com/solutions/3930291

OpenShift Container Platform 3.11 Configuring Clusters

Variable Name Default Value Description
openshift_certificate_expiry_config /etc/origin Base OpenShift Container Platform
_base configuration directory.
openshift_certificate_expiry_warnin 365 Flag certificates that will expire in this
g_days many days from now.
openshift_certificate_expiry_show_ no Include healthy (non-expired and non-
all warning) certificates in results.

Table 12.2. Optional Variables

Variable Name Default Value Description
openshift_certificate_expiry_gener no Generate an HTML report of the expiry
ate_html_report check results.
openshift_certificate_expiry_html_r $HOME/cert- The full path for saving the HTML report.
eport_path expiry- Defaults to consist of home directory and
report.yyyymm timestamp suffix of the report file.
ddTHHMMSS. ht
ml
openshift_certificate_expiry_save j no Save expiry check results as a JSON file.
son_results
openshift_certificate_expiry_json_r $HOME/cert- The full path for saving the JSON report.
esults_path expiry- Defaults to consist of home directory and
report.yyyymm timestamp suffix of the report file.
ddTHHMMSS.js
on

12.2.2. Running Certificate Expiration Playbooks

The OpenShift Container Platform installer provides a set of example certificate expiration playbooks,
using different sets of configuration for the openshift_certificate_expiry role.

These playbooks must be used with an inventory file that is representative of the cluster. For best
results, run ansible-playbook with the -v option.

Using the easy-mode.yaml example playbook, you can try the role out before tweaking it to your
specifications as needed. This playbook:

® Produces JSON and stylized HTML reports in $SHOME directory.
® Sets the warning window very large, so you will almost always get results back.

® |Includes all certificates (healthy or not) in the results.

218

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible

CHAPTER 12. REDEPLOYING CERTIFICATES

Change to the playbook directory and run the easy-mode.yaml playbook:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -v -i <inventory_file> \
playbooks/openshift-checks/certificate_expiry/easy-mode.yaml

Other Example Playbooks
The other example playbooks are also available to run directly out of the /usr/share/ansible/openshift-
ansible/playbooks/certificate_expiry/ directory.

Table 12.3. Other Example Playbooks

File Name Usage

default.yaml Produces the default behavior of the
openshift_certificate_expiry role.

html_and_json_default_paths.yaml Generates HTML and JSON artifacts in their default
paths.

longer_warning_period.yaml/ Changes the expiration warning window to 1500 days.

longer-warning-period-json-results.yaml/ Changes the expiration warning window to 1500 days

and saves the results as a JSON file.

To run any of these example playbooks:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -v -i <inventory_file> \
playbooks/openshift-checks/certificate_expiry/<playbook>

12.2.3. Output Formats

As noted above, there are two ways to format your check report. In JSON format for machine parsing, or
as a stylized HTML page for easy skimming.

HTML Report
An example of an HTML report is provided with the installer. You can open the following file in your

browser to view it:

/usr/share/ansible/openshift-ansible/roles/openshift_certificate_expiry/examples/cert-expiry-
report.html

JSON Report
There are two top-level keys in the saved JSON results: data and summary.

The data key is a hash where the keys are the names of each host examined and the values are the
check results for the certificates identified on each respective host.

The summary key is a hash that summarizes the total number of certificates:

® examined on the entire cluster

219

OpenShift Container Platform 3.11 Configuring Clusters

® thatare OK
® expiring within the configured warning window
® already expired

For an example of the full JSON report, see /usr/share/ansible/openshift-
ansible/roles/openshift_certificate_expiry/examples/cert-expiry-report.json.

The summary from the JSON data can be easily checked for warnings or expirations using a variety of

command-line tools. For example, using grep you can look for the word summary and print out the two
lines after the match (-A2):

$ grep -A2 summary $HOME/cert-expiry-report.yyyymmddTHHMMSS.json

"summary": {
"warning": 16,
"expired": 0

If available, the jg tool can also be used to pick out specific values. The first two examples below show
how to select just one value, either warning or expired. The third example shows how to select both
values at once:

$ jq '.summary.warning' $SHOME/cert-expiry-report.yyyymmddTHHMMSS.json
16

$ jq '.summary.expired' $SHOME/cert-expiry-report.yyyymmddTHHMMSS.json
0

$ jq '.summary.warning,.summary.expired' $SHOME/cert-expiry-report.yyyymmddTHHMMSS.json
16
0

12.3. REDEPLOYING CERTIFICATES

' WARNING
A Redeployment playbooks restart control plane services and might cause cluster

downtime. An error in one service can cause a playbook to fail and affect cluster
health. If a playbook fails, you might need to resolve problems manually and restart
the playbook. A playbook must finish all tasks sequentially to succeed.

Use the following playbooks to redeploy master, etcd, node, registry, and router certificates on all
relevant hosts. You can redeploy all of them at once using the current CA, redeploy certificates for
specific components only, or redeploy a newly generated or custom CA on its own.

Just like the certificate expiry playbooks, these playbooks must be run with an inventory file that is
representative of the cluster.

220

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible

CHAPTER 12. REDEPLOYING CERTIFICATES

In particular, the inventory must specify or override all host names and IP addresses set via the following
variables such that they match the current cluster configuration:

e openshift_public_hostname

e openshift_public_ip

o openshift_master_cluster_hostname

e openshift_master_cluster_public_hostname

The playbooks you need are provided by:

I # yum install openshift-ansible

NOTE

The validity (length in days until they expire) for any certificates auto-generated while
redeploying can be configured via Ansible as well. See Configuring Certificate Validity.

NOTE

OpenShift Container Platform CA and etcd certificates expire after five years. Signed
OpenShift Container Platform certificates expire after two years.

12.3.1. Redeploying All Certificates Using the Current OpenShift Container Platform
and etcd CA

The redeploy-certificates.yml playbook does not regenerate the OpenShift Container Platform CA
certificate. New master, etcd, node, registry, and router certificates are created using the current CA
certificate to sign new certificates.

This also includes serial restarts of:
® ectcd
® master services
® node services

To redeploy master, etcd, and node certificates using the current OpenShift Container Platform CA,
change to the playbook directory and run this playbook, specifying your inventory file:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <inventory_file>\
playbooks/redeploy-certificates.yml

IMPORTANT

If the OpenShift Container Platform CA was redeployed with the openshift-
master/redeploy-openshift-ca.yml playbook you must add -e
openshift_redeploy_openshift_ca=true to this command.

12.3.2. Redeploying a New or Custom OpenShift Container Platform CA

221

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-install-config-certificate-validity

OpenShift Container Platform 3.11 Configuring Clusters

The openshift-master/redeploy-openshift-ca.ymlplaybook redeploys the OpenShift Container
Platform CA certificate by generating a new CA certificate and distributing an updated bundle to all
components including client kubeconfig files and the node’s database of trusted CAs (the CA-trust).

This also includes serial restarts of:
® master services
® node services
® docker

Additionally, you can specify a custom CA certificate when redeploying certificates instead of relying on
a CA generated by OpenShift Container Platform.

When the master services are restarted, the registry and routers can continue to communicate with the
master without being redeployed because the master’s serving certificate is the same, and the CA the
registry and routers have are still valid.

To redeploy a newly generated or custom CA:

1. If you want to use a custom CA, set the following variable in your inventory file. To use the
current CA, skip this step.

Configure custom ca certificate

NOTE: CA certificate will not be replaced with existing clusters.

This option may only be specified when creating a new cluster or

when redeploying cluster certificates with the redeploy-certificates

playbook.

openshift_master_ca_certificate={'certfile": '</path/to/ca.crt>', 'keyfile": '</path/to/ca.key>'}

If the CA certificate is issued by an intermediate CA, the bundled certificate must contain the
full chain (the intermediate and root certificates) for the CA in order to validate child
certificates.

For example:

$ cat intermediate/certs/intermediate.cert.pem \
certs/ca.cert.pem >> intermediate/certs/ca-chain.cert.pem

2. Change to the playbook directory and run the openshift-master/redeploy-openshift-ca.yml/
playbook, specifying your inventory file:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <inventory_file>\
playbooks/openshift-master/redeploy-openshift-ca.yml

With the new OpenShift Container Platform CA in place, use the redeploy-certificates.yml
playbook whenever you want to redeploy certificates that are signed by the new CA on all
components.

222

CHAPTER 12. REDEPLOYING CERTIFICATES

IMPORTANT

When using the redeploy-certificates.yml playbook after the new OpenShift
Container Platform CAis in place, you must add -e
openshift_redeploy_openshift_ca=true to the playbook command.

12.3.3. Redeploying a New etcd CA

The openshift-etcd/redeploy-ca.yml playbook redeploys the etcd CA certificate by generating a new
CA certificate and distributing an updated bundle to all etcd peers and master clients.

This also includes serial restarts of:
® etcd
® master services
To redeploy a newly generated etcd CA:

1. Run the openshift-etcd/redeploy-ca.yml playbook, specifying your inventory file:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <inventory_file> \
playbooks/openshift-etcd/redeploy-ca.yml

IMPORTANT

After you run the playbooks/openshift-etcd/redeploy-ca.yml playbook for the first
time, a compressed bundle containing the CA signers is persisted to
/etc/etcd/eted_ca.tgz. Because the CA signers are required for the generation of new
etcd certificates, it is important that they are backed up.

If the playbook is run again, as a precaution it does not overwrite this bundle on disk. To
run the playbook again, back up and move the bundle from this path and then run the
playbook.

With the new etcd CA in place, you can then use the openshift-etcd/redeploy-certificates.yml
playbook at your discretion whenever you want to redeploy certificates signed by the new etcd CA on
etcd peers and master clients. Alternatively, you can use the redeploy-certificates.yml playbook to
redeploy certificates for OpenShift Container Platform components in addition to etcd peers and
master clients.

NOTE

m The etcd certificate redeployment can result in copying the serial to all master hosts.

12.3.4. Redeploying Master and Web Console Certificates

The openshift-master/redeploy-certificates.ymlplaybook redeploys master certificates and web
console certificates. This also includes serial restarts of master services.

To redeploy master certificates and web console certificates, change to the playbook directory and run
this playbook, specifying your inventory file:

223

OpenShift Container Platform 3.11 Configuring Clusters

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <inventory_file>\
playbooks/openshift-master/redeploy-certificates.yml

NOTE

If you use named certificates, you must update the named certificate parameters in the
master-config.yaml file on each master node. If necessary, concatenate all of the
required files that form your certificate chain for the certificate file that is provided to the
certFile parameter.

Then, restart the OpenShift Container Platform master services to apply the changes.

IMPORTANT

After running this playbook, you must regenerate any service signing certificate or key
pairs by deleting existing secrets that contain service serving certificates or removing and
re-adding annotations to appropriate services.

You can set the openshift_redeploy_service_signer=false parameter in the inventory file to skip the
redeployment of the service signer certificate, if required. If you set
openshift_redeploy_openshift_ca=true and openshift_redeploy_service_signer=true in the
inventory file, the service signing certificate is redeployed when you redeploy the master certificates. If
you set openshift_redeploy_openshift_ca=false or omit the parameter, the service signer certificate
is never redeployed.

12.3.5. Redeploying Only Named Certificates

The openshift-master/redeploy-named-certificates.ymlplaybook redeploys only named certificates.
Running this playbook also completes serial restarts of master services.

To redeploy named certificates only, change to the directory that contains the playbooks, and run this
playbook.

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <inventory_file>\
playbooks/openshift-master/redeploy-named-certificates.yml

NOTE

The _ openshift_master_named_certificates_parameter in ansible inventory file must
contain certificates with the same name as in the master-config.yaml file. If the names of
certfile and keyfile are changed, you must update the named certificate parameters in
the master-config.yaml file on each master node and restart the api and controllers
services. The cafile with the full ca chain is added to /etc/origin/master/ca-bundle.crt.

12.3.6. Redeploying etcd Certificates Only

The openshift-etcd/redeploy-certificates.yml playbook only redeploys etcd certificates including
master client certificates.

This also include serial restarts of:

224

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#service-serving-certificate-secrets

CHAPTER 12. REDEPLOYING CERTIFICATES

® etcd
® master services.

To redeploy etcd certificates, change to the playbook directory and run this playbook, specifying your
inventory file:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <inventory_file>\
playbooks/openshift-etcd/redeploy-certificates.yml

12.3.7. Redeploying Node Certificates

By default, node certificates are valid for one year. OpenShift Container Platform automatically rotates
node certificates when they get close to expiring. If automatic approval is not configured, you must
manually approve the certificate signing requests (CSRs).

If you need to redeploy certificates because the CA certificate was changed, you can use the
playbooks/redeploy-certificates.yml playbook with the -e openshift_redeploy_openshift_ca=true
flag. See Redeploying All Certificates Using the Current OpenShift Container Platform and etcd CA for
details. When running this playbook, the CSRs are automatically approved.

12.3.8. Redeploying Registry or Router Certificates Only

The openshift-hosted/redeploy-registry-certificates.ymland openshift-hosted/redeploy-router-
certificates.yml playbooks replace installer-created certificates for the registry and router. If custom
certificates are in use for these components, see Redeploying Custom Registry or Router Certificates to
replace them manually.

12.3.8.1. Redeploying Registry Certificates Only

To redeploy registry certificates, change to the playbook directory and run the following playbook,
specifying your inventory file:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <inventory_file>\
playbooks/openshift-hosted/redeploy-registry-certificates.yml

12.3.8.2. Redeploying Router Certificates Only

To redeploy router certificates, change to the playbook directory and run the following playbook,
specifying your inventory file:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <inventory_file>\
playbooks/openshift-hosted/redeploy-router-certificates.yml

12.3.9. Redeploying Custom Registry or Router Certificates

When nodes are evacuated due to a redeployed CA, registry and router pods are restarted. If the
registry and router certificates were not also redeployed with the new CA, this can cause outages
because they cannot reach the masters using their old certificates.

225

OpenShift Container Platform 3.11 Configuring Clusters

12.3.9.1. Redeploying Registry Certificates Manually

To redeploy registry certificates manually, you must add new registry certificates to a secret named
registry-certificates, then redeploy the registry:

1. Switch to the default project for the remainder of these steps:

I $ oc project default

2. If your registry was initially created on OpenShift Container Platform 3.1 or earlier, it may still be
using environment variables to store certificates (which has been deprecated in favor of using
secrets).

a. Run the following and look for the OPENSHIFT_CA_DATA, OPENSHIFT_CERT_DATA,
OPENSHIFT_KEY_DATA environment variables:

I $ oc set env dc/docker-registry --list

b. If they do not exist, skip this step. If they do, create the following ClusterRoleBinding:

$ cat <<EOF |

apiVersion: v1

groupNames: null

kind: ClusterRoleBinding

metadata:
creationTimestamp: null
name: registry-registry-role

roleRef:
kind: ClusterRole
name: system:registry
subjects:

- kind: ServiceAccount
name: registry
namespace: default

userNames:

- system:serviceaccount:default:registry

EOF

oc create -f -

Then, run the following to remove the environment variables:

$ oc set env dc/docker-registry OPENSHIFT_CA_DATA- OPENSHIFT_CERT_DATA-
OPENSHIFT_KEY_DATA- OPENSHIFT_MASTER-

3. Set the following environment variables locally to make later commands less complex:

$ REGISTRY_IP="oc get service docker-registry -o jsonpath="{.spec.clusterlP}"
$ REGISTRY_HOSTNAME-="0c get route/docker-registry -o jsonpath='{.spec.host}"

4. Create new registry certificates:

$ oc adm ca create-server-cert \
--signer-cert=/etc/origin/master/ca.crt \
--signer-key=/etc/origin/master/ca.key \

226

CHAPTER 12. REDEPLOYING CERTIFICATES

--hostnames=$REGISTRY_IP,docker-registry.default.svc,docker-
registry.default.svc.cluster.local, $REGISTRY_HOSTNAME \
--cert=/etc/origin/master/registry.crt \
--key=/etc/origin/master/registry.key \
--signer-serial=/etc/origin/master/ca.serial.txt

Run oc adm commands only from the first master listed in the Ansible host inventory file, by
default /etc/ansible/hosts.

5. Update the registry-certificates secret with the new registry certificates:

$ oc create secret generic registry-certificates \
--from-file=/etc/origin/master/registry.crt,/etc/origin/master/registry.key \
-0 json --dry-run | oc replace -f -

6. Redeploy the registry:

I $ oc rollout latest dc/docker-registry

12.3.9.2. Redeploying Router Certificates Manually

To redeploy router certificates manually, you must add new router certificates to a secret named router-
certs, then redeploy the router:

1. Switch to the default project for the remainder of these steps:

I $ oc project default

2. If your router was initially created on OpenShift Container Platform 3.1 or earlier, it might still
use environment variables to store certificates, which has been deprecated in favor of using
service serving certificate secret.

a. Run the following command and look for the OPENSHIFT_CA_DATA,
OPENSHIFT_CERT_DATA, OPENSHIFT_KEY_DATA environment variables:

I $ oc set env dc/router --list

b. If those variables exist, create the following ClusterRoleBinding:

$ cat <<EOF |

apiVersion: v1

groupNames: null

kind: ClusterRoleBinding

metadata:
creationTimestamp: null
name: router-router-role

roleRef:
kind: ClusterRole
name: system:router
subjects:

- kind: ServiceAccount
name: router
namespace: default

userNames:

227

OpenShift Container Platform 3.11 Configuring Clusters

- system:serviceaccount:default:router
EOF
oc create -f -

c. If those variables exist, run the following command to remove them:

$ oc set env dc/router OPENSHIFT_CA_DATA- OPENSHIFT_CERT_DATA-
OPENSHIFT_KEY_DATA- OPENSHIFT_MASTER-

3. Obtain a certificate.

e |f you use an external Certificate Authority (CA) to sign your certificates, create a new
certificate and provide it to OpenShift Container Platform by following your internal
processes.

e |f you use the internal OpenShift Container Platform CA to sign certificates, run the
following commands:

IMPORTANT

The following commands generate a certificate that is internally signed. It will
be trusted by only clients that trust the OpenShift Container Platform CA.

$ cd /root

$ mkdir cert ; cd cert

$ oc adm ca create-server-cert \
--signer-cert=/etc/origin/master/ca.crt \
--signer-key=/etc/origin/master/ca.key \
--signer-serial=/etc/origin/master/ca.serial.txt \
--hostnames="".hostnames.for.the.certificate' \
--cert=router.crt \
--key=router.key \

These commands generate the following files:
o Anew certificate named router.crt.

o A copy of the signing CA certificate chain, /etc/origin/master/ca.crt. This chain can
contain more than one certificate if you use intermediate CAs.

o A corresponding private key named router.key.

4. Create a new file that concatenates the generated certificates:

I $ cat router.crt /etc/origin/master/ca.crt router.key > router.pem

NOTE

This step is only valid if you are using a certificate signed by the OpenShift CA. If a
custom certificate is used, a file with the correct CA chain should be used instead
of /etc/origin/master/ca.crt.

5. Before you generate a new secret, back up the current one:

228

CHAPTER 12. REDEPLOYING CERTIFICATES

I $ oc get -0 yaml --export secret router-certs > ~/old-router-certs-secret.yami

6. Create a new secret to hold the new certificate and key, and replace the contents of the existing
secret:

$ oc create secret tls router-certs --cert=router.pem \ ﬂ
--key=router.key -o json --dry-run |\

oc replace -f -

ﬂ router.pem is the file that contains the concatenation of the certificates that you
generated.

7. Redeploy the router:
I $ oc rollout latest dc/router

When routers are initially deployed, an annotation is added to the router’s service that
automatically creates a service serving certificate secret named router-metrics-tls.

To redeploy router-metrics-tls certificates manually, that service serving certificate can be
triggered to be recreated by deleting the secret, removing and re-adding annotations to the
router service, then redeploying the router-metrics-tls secret:

8. Remove the following annotations from the router service:

$ oc annotate service router \
service.alpha.openshift.io/serving-cert-secret-name- \
service.alpha.openshift.io/serving-cert-signed-by-

9. Remove the existing router-metrics-tls secret.
I $ oc delete secret router-metrics-tls
10. Re-add the annotations:

$ oc annotate service router \
service.alpha.openshift.io/serving-cert-secret-name=router-metrics-tls

12.4. MANAGING CERTIFICATE SIGNING REQUESTS

Cluster administrators can review certificate signing requests (CSRs) and approve or deny them.

12.4.1. Reviewing Certificate Signing Requests

You can review the list of certificate signing requests (CSRs).

® Get the list of current CSRs:
I $ oc get csr

® \View the details of a CSR to verify that it is valid:

229

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#service-serving-certificate-secrets

OpenShift Container Platform 3.11 Configuring Clusters

I $ oc describe csr <csr_name> ﬂ

ﬂ <csr_names is the name of a CSR from the list of current CSRs.

12.4.2. Approving Certificate Signing Requests

You can manually approve certificate signing requests (CSRs) by using the oc certificate approve
command.

® Approve a CSR:
I $ oc adm certificate approve <csr_name> ﬂ

ﬂ <csr_names is the name of a CSR from the list of current CSRs.

® Approve all pending CSRs:

$ oc get csr -0 go-template="{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}
{{end}}' | xargs oc adm certificate approve

12.4.3. Denying Certificate Signing Requests

You can manually deny certificate signing requests (CSRs) by using the oc certificate deny command.

® DenyaCSR:
I $ oc adm certificate deny <csr_name> ﬂ

ﬂ <csr_names is the name of a CSR from the list of current CSRs.

12.4.4. Configuring Automatic Approval of Certificate Signing Requests

You can configure automatic approval of node certificate signing requests (CSRs) by specifying adding
the following parameter to your Ansible inventory file when installing your cluster:

I openshift_master_bootstrap_auto_approve=true

Adding this parameter allows all CSRs generated by using the bootstrap credential or from a previously
authenticated node with the same host name to be approved without any administrator intervention.

For more information, see Configuring Cluster Variables.

230

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-cluster-variables

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER
AGENT

13.1. OVERVIEW

The OpenShift Container Platform master includes a built-in OAuth server. Developers and
administrators obtain OAuth access tokens to authenticate themselves to the APL.

As an administrator, you can configure OAuth using the master configuration file to specify an identity
provider. It is a best practice to configure your identity provider during cluster installation, but you can
configure it after installation.

NOTE

OpenShift Container Platform user names containing/, :, and % are not supported.

The Deny All identity provider is used by default, which denies access for all user names and passwords.
To allow access, you must choose a different identity provider and configure the master configuration
file appropriately (located at /etc/origin/master/master-config.yaml by default).

When you run a master without a configuration file, the Allow All identity provider is used by default,
which allows any non-empty user name and password to log in. This is useful for testing purposes. To
use other identity providers, or to modify any token, grant, or session options, you must run the master
from a configuration file.

NOTE

Roles need to be assigned to administer the setup with an external user.

After making changes to an identity provider, you must restart the master services for the changes to
take effect:

master-restart api
master-restart controllers

13.2. IDENTITY PROVIDER PARAMETERS

There are four parameters common to all identity providers:

Parameter Description

hame The provider name is prefixed to provider user names to form an identity name.

challenge When true, unauthenticated token requests from non-web clients (like the CLI) are
sent a WWW-Authenticate challenge header. Not supported by all identity providers.

To prevent cross-site request forgery (CSRF) attacks against browser clients Basic
authentication challenges are only sent if a X-CSRF-Token header is present on the
request. Clients that expect to receive Basic WWW-Authenticate challenges should
set this header to a non-empty value.

231

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#oauth
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#api-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-cluster-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#roles

OpenShift Container Platform 3.11 Configuring Clusters

Parameter Description

login When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider. Not supported by all identity
providers.

If you want users to be sent to a branded page before being redirected to the identity
provider's login, then set oauthConfig — alwaysShowProviderSelection: true in
the master configuration file. This provider selection page can be customized.

mappingMethod Defines how new identities are mapped to users when they log in. Enter one of the
following values:

claim

The default value. Provisions a user with the identity’s preferred user name. Fails if a
user with that user name is already mapped to another identity.

lookup

Looks up an existing identity, user identity mapping, and user, but does not
automatically provision users or identities. This allows cluster administrators to set
up identities and users manually, or using an external process. Using this method
requires you to manually provision users. See Manually Provisioning a User When
Using the Lookup Mapping Method.

generate

Provisions a user with the identity’s preferred user name. If a user with the preferred
user name is already mapped to an existing identity, a unique user name is
generated. For example, myuser2. This method should not be used in combination
with external processes that require exact matches between OpenShift Container
Platform user names and identity provider user names, such as LDAP group sync.

add

Provisions a user with the identity’s preferred user name. If a user with that user
name already exists, the identity is mapped to the existing user, adding to any
existing identity mappings for the user. Required when multiple identity providers
are configured that identify the same set of users and map to the same user names.

NOTE

When adding or changing identity providers, you can map identities from the new
provider to existing users by setting the mappingMethod parameter to add.

13.3. CONFIGURING IDENTITY PROVIDERS

OpenShift Container Platform does not support configuring multiple LDAP servers for the same identity
provider. However, you can extend the basic authentication for more complex configurations such as
LDAP failover.

You can use these parameters to define the identity provider during installation or after installation.

13.3.1. Configuring identity providers with Ansible

For initial cluster installations, the Deny All identity provider is configured by default, though it can be
overriden during installation by configuring openshift_master_identity providers parameter in the
inventory file. Session options in the OAuth configuration are also configurable in the inventory file.

232

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-cluster-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-install-session-options

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

Example identity provider configuration with Ansible

htpasswd auth

openshift_master_identity_providers=[{'name": 'htpasswd_auth', 'login": 'true’, 'challenge': 'true’, 'kind":
'HTPasswdPasswordldentityProvider'}]

Defining htpasswd users

#openshift_master_htpasswd_users={'useri": '<pre-hashed password>', 'user2": '<pre-hashed
password>'"}

or

#openshift_master_htpasswd_file=/etc/origin/master/htpasswd

Allow all auth
#openshift_master_identity _providers=[{'name": 'allow_all', 'login": 'true', 'challenge': 'true’, 'kind":
'AllowAllPasswordldentityProvider'}]

LDAP auth

#openshift_master_identity_providers=[{'name": 'my_ldap_provider', 'challenge': 'true’, 'login': 'true’,
'kind": 'LDAPPasswordldentityProvider', 'attributes”: {'id": ['dn'], 'email": ['mail], 'name’: ['cn’],
'‘preferredUsername’: ['uid']}, 'bindDN'": ", 'bindPassword'": ", 'insecure': 'false’, 'url":
'Idap://Idap.example.com:389/ou=users,dc=example,dc=com?uid'}]

Configuring the Idap ca certificate

#openshift_master_ldap_ca=<ca text>

or

#openshift_master_|dap_ca_file=<path to local ca file to use> g

Available variables for configuring certificates for other identity providers:
#openshift_master_openid_ca

#openshift_master_openid_ca_file 6
#openshift_master_request_header_ca
#openshift_master_request_header_ca_file ﬂ

If you specified 'insecure': 'true’ in the openshift_master_identity _providers parameter for only
an LDAP identity provider, you can omit the CA certificate.

f you specify a file on the host you run the playbook on, its contents are copied to the
/etc/origin/master/<identity_provider_name>_<identity_provider_type>_ca.crt file. The
identity provider name is the value of the openshift_master_identity_providers parameter, Idap,
openid, or request_header. If you do not specify the CA text or the path to the local CA file, you
must place the CA certificate in this location. If you specify multiple identity providers, you must
manually place the CA certificate for each provider in this location. You cannot change this
location.

You can specify multiple identity providers. If you do, you must place the CA certificate for each identity
provider in the /etc/origin/master/ directory. For example, you include the following providers in your
openshift_master_identity_providers value:

openshift_master_identity_providers:
- name: foo
provider:
kind: OpenlIDldentityProvider

- name: bar

provider:
kind: OpenlDldentityProvider

233

OpenShift Container Platform 3.11 Configuring Clusters

- name: baz
provider:
kind: RequestHeaderldentityProvider

You must place the CA certificates for these identity providers in the following files:
e /etc/origin/master/foo_openid_ca.crt
® /etc/origin/master/bar_openid_ca.crt

® /Jetc/origin/master/baz_requestheader_ca.crt

13.3.2. Configuring identity providers in the master configuration file

You can configure the master host for authentication using your desired identity provider by modifying
the master configuration file.

oauthConfig:
identityProviders:
- name: htpasswd_auth
challenge: true
login: true
mappingMethod: "claim"

‘ Example 13.1. Example identity provider configuration in the master configuration file

When set to the default claim value, OAuth will fail if the identity is mapped to a previously-existing user
name.

13.3.2.1. Manually provisioning a user when using the lookup mapping method

When using the lookup mapping method, user provisioning is done by an external system, via the API.
Typically, identities are automatically mapped to users during login. The 'lookup' mapping method
automatically disables this automatic mapping, which requires you to provision users manually.

For more information on identity objects, see the |dentity user API obejct.

If you are using the lookup mapping method, use the following steps for each user after configuring the
identity provider:

1. Create an OpenShift Container Platform User, if not created already:
I $ oc create user <username>

For example, the following command creates a OpenShift Container Platform User bob:

I $ oc create user bob

234

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#identity

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

2. Create an OpenShift Container Platform Identity, if not created already. Use the name of the
identity provider and the name that uniquely represents this identity in the scope of the identity
provider:

I $ oc create identity <identity-provider>:<user-id-from-identity-provider>

The <identity-providers is the name of the identity provider in the master configuration, as
shown in the appropriate identity provider section below.

For example, the following commands creates an Identity with identity provider Idap_provider
and the identity provider user name bob_s.

I $ oc create identity Idap_provider:bob_s

3. Create a user/identity mapping for the created user and identity:

$ oc create useridentitymapping <identity-provider>:<user-id-from-identity-provider>
<username>

For example, the following command maps the identity to the user:

I $ oc create useridentitymapping Idap_provider:bob_s bob

13.3.3. Allow all

Set AllowAllPasswordldentityProvider in the identityProviders stanza to allow any non-empty user
name and password to log in.

Example 13.2. Master configuration using AllowAllPasswordldentityProvider

oauthConfig:

identityProviders:
- name: my_allow_provider ﬂ
challenge: true 9
login: true
mappingMethod: claim ﬂ
provider:
apiVersion: v1i
kind: AllowAllPasswordldentityProvider

This provider name is prefixed to provider user names to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a
WWW-Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

o ® 00

235

OpenShift Container Platform 3.11 Configuring Clusters

13.3.4. Deny all

Set DenyAllPasswordldentityProvider in the identityProviders stanza to deny access for all user
names and passwords.

Example 13.3. Master configuration using DenyAllPasswordldentityProvider

oauthConfig:

identityProviders:
- name: my_deny_provider 0
challenge: true 9
login: true
mappingMethod: claim ﬂ
provider:
apiVersion: vi
kind: DenyAllPasswordldentityProvider

This provider name is prefixed to provider user names to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a
WWW-Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

o ® 00

Controls how mappings are established between this provider’s identities and user objects, as
described above.

13.3.5. HTPasswd

Set HTPasswdPasswordldentityProvider in the identityProviders stanza to validate user names and
passwords against a flat file generated using htpasswd.

NOTE

The htpasswd utility is in the httpd-tools package:

I # yum install httpd-tools

-

OpenShift Container Platform supports the Berypt, SHA-1, and MD5 cryptographic hash functions, and
MD5 is the default for htpasswd. Plaintext, encrypted text, and other hash functions are not currently
supported.

The flat file is reread if its modification time changes, without requiring a server restart.

IMPORTANT

Because the OpenShift Container Platform master APl now runs as a static pod, you
must create the HTPasswdPasswordldentityProvider htpasswd file in
/etc/origin/master/ so it can be read by the container.

236

http://httpd.apache.org/docs/2.4/programs/htpasswd.html

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

To use the htpasswd command:
® To create a flat file with a user name and hashed password, run:
I $ htpasswd -c /etc/origin/master/htpasswd <user_name>

Then, enter and confirm a clear-text password for the user. The command generates a hashed
version of the password.

For example:

htpasswd -c /etc/origin/master/htpasswd user
New password:

Re-type new password:

Adding password for user useri

NOTE

You can include the -b option to supply the password on the command line:

I $ htpasswd -c -b <user_name> <password>

For example:

$ htpasswd -c -b file user1 MyPassword!
Adding password for user user1

® To add or update a login to the file, run:
I $ htpasswd /etc/origin/master/htpasswd <user_name>
® Toremove a login from the file, run:

I $ htpasswd -D /etc/origin/master/htpasswd <user_name>

Example 13.4. Master configuration using HTPasswdPasswordldentityProvider
oauthConfig:

identityProviders:
- name: my_htpasswd_provider ﬂ
challenge: true
login: true
mappingMethod: claim ﬂ
provider:
apiVersion: v1i
kind: HTPasswdPasswordldentityProvider
file: /etc/origin/master/htpasswd 6

ﬂ This provider name is prefixed to provider user names to form an identity name.

237

OpenShift Container Platform 3.11 Configuring Clusters

e When true, unauthenticated token requests from non-web clients (like the CLI) are sent a
WWW-Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

Q Controls how mappings are established between this provider’s identities and user objects, as
described above.

File generated using htpasswd.

13.3.6. Keystone

Keystone is an OpenStack project that provides identity, token, catalog, and policy services. You can
integrate your OpenShift Container Platform cluster with Keystone to enable shared authentication
with an OpenStack Keystone v3 server configured to store users in an internal database. This

configuration allows users to log in to OpenShift Container Platform with their Keystone credentials.

You can configure the integration with Keystone so that the new OpenShift Container Platform users
are based on either the Keystone user names or unique Keystone IDs. With both methods, users log in
by entering their Keystone user name and password. Basing the OpenShift Container Platform users off
of the Keystone ID is more secure. If you delete a Keystone user and create a new Keystone user with
that user name, the new user might have access to the old user's resources.

13.3.6.1. Configuring authentication on the master
1. If you have:

® Already completed the installation of Openshift, then copy the
/etc/origin/master/master-config.yaml file into a new directory; for example:

$ cd /etc/origin/master
$ mkdir keystoneconfig; cp master-config.yaml keystoneconfig

® Not yetinstalled OpenShift Container Platform, then start the OpenShift Container
Platform API server, specifying the hostname of the (future) OpenShift Container Platform
master and a directory to store the configuration file created by the start command:

I $ openshift start master --public-master=<apiserver> --write-config=<directory>

For example:

$ openshift start master --public-master=https://myapiserver.com:8443 --write-
config=keystoneconfig

NOTE

If you are installing with Ansible, then you must add the identityProvider
configuration to the Ansible playbook. If you use the following steps to
modify your configuration manually after installing with Ansible, then you will
lose any modifications whenever you re-run the install tool or upgrade.

238

http://httpd.apache.org/docs/2.4/programs/htpasswd.html
http://docs.openstack.org/developer/keystone/

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

2. Edit the new keystoneconfig/master-config.yaml file's identityProviders stanza, and copy the
example KeystonePasswordldentityProvider configuration and paste it to replace the existing
stanza:

oauthConfig:

identityProviders:
- name: my_keystone_provider ﬂ
challenge: true
login: true
mappingMethod: claim ﬂ
provider:
apiVersion: v1i
kind: KeystonePasswordldentityProvider
domainName: default
url: http://keystone.example.com:5000 G
ca: ca.pem
certFile: keystone.pem 6
keyFile: keystonekey.pem %
useKeystoneldentity: false

This provider name is prefixed to provider user names to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a
WWW-Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

Controls how mappings are established between this provider’s identities and user objects,
as described above.

Keystone domain name. In Keystone, usernames are domain-specific. Only a single domain
is supported.

The URL to use to connect to the Keystone server (required).
Optional: Certificate bundle to use to validate server certificates for the configured URL.
Optional: Client certificate to present when making requests to the configured URL.

Key for the client certificate. Required if certFile is specified.

90090 & 6 © 9O

When true, indicates that user is authenticated by Keystone ID, not by Keystone user
name. Set to false to authenticate by user name.

3. Make the following modifications to the identityProviders stanza:

a. Change the provider name ("my_keystone_provider") to match your Keystone server. This
name is prefixed to provider user names to form an identity name.

b. If required, change mappingMethod to control how mappings are established between the
provider's identities and user objects.

239

OpenShift Container Platform 3.11 Configuring Clusters

c. Change the domainName to the domain name of your OpenStack Keystone server. In
Keystone, user names are domain-specific. Only a single domain is supported.

d. Specify the url to use to connect to your OpenStack Keystone server.

e. Optionally, to authenticate users by Keystone ID instead of Keystone user name, set
useKeystoneldentity to true.

f. Optionally, change the ca to the certificate bundle to use in order to validate server
certificates for the configured URL.

g. Optionally, change the certFile to the client certificate to present when making requests to
the configured URL.

h. If certFile is specified, then you must change the keyFile to the key for the client
certificate.

4. Save your changes and close the file.

5. Start the OpenShift Container Platform APl server, specifying the configuration file you just
modified:

I $ openshift start master --config=<path/to/modified/config>/master-config.yami

Once configured, any user logging in to the OpenShift Container Platform web console will be
prompted to log in using their Keystone credentials.
13.3.6.2. Creating Users with Keystone Authentication

You do not create users in OpenShift Container Platform when integrating with an external
authentication provider, such as, in this case, Keystone. Keystone is the system of record, meaning that
users are defined in a Keystone database, and any user with a valid Keystone user name for the
configured authentication server can log in.

To add a user to OpenShift Container Platform, the user must exist in the Keystone database, and if
required you must create a new Keystone account for the user.

13.3.6.3. Verifying Users

Once one or more users have logged in, you can run oc get users to view a list of users and verify that
users were created successfully:

Example 13.5. Output of oc get users command

$ oc get users
NAME uiD FULL NAME IDENTITIES

bobsmith a0c1d95¢-1ch5-11e6-a04a-002186a28631 Bob Smith keystone:bobsmith)

ﬂ Identities in OpenShift Container Platform are comprised of the identity provider name
prefixed to the Keystone user name.

From here, you might want to learn how to manage user roles.

240

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#managing-role-bindings

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

13.3.7. LDAP authentication

Set LDAPPasswordldentityProvider in the identityProviders stanza to validate user names and
passwords against an LDAPvV3 server, using simple bind authentication.

NOTE

If you require failover for your LDAP server, instead of following these steps, extend the
basic authentication method by configuring SSSD for LDAP failover .

During authentication, the LDAP directory is searched for an entry that matches the provided user
name. If a single unique match is found, a simple bind is attempted using the distinguished name (DN) of
the entry plus the provided password.

These are the steps taken:

1. Generate a search filter by combining the attribute and filter in the configured url with the
user-provided user name.

2. Search the directory using the generated filter. If the search does not return exactly one entry,
deny access.

3. Attempt to bind to the LDAP server using the DN of the entry retrieved from the search, and
the user-provided password.

4. If the bind is unsuccessful, deny access.

5. If the bind is successful, build an identity using the configured attributes as the identity, email
address, display name, and preferred user name.

The configured url is an RFC 2255 URL, which specifies the LDAP host and search parameters to use.
The syntax of the URL is:

I Idap://host:port/basedn?attribute ?scope ?filter

For the above example:

URL Component Description

Idap For regular LDAP, use the string ldap. For secure LDAP (LDAPS), useldaps instead.

host:port The name and port of the LDAP server. Defaults to localhost:389 for Idap and
localhost:636 for LDAPS.

basedn The DN of the branch of the directory where all searches should start from. At the very
least, this must be the top of your directory tree, but it could also specify a subtree in
the directory.

attribute The attribute to search for. Although RFC 2255 allows a comma-separated list of
attributes, only the first attribute will be used, no matter how many are provided. If no
attributes are provided, the default is to use Uid. It is recommended to choose an
attribute that will be unique across all entries in the subtree you will be using.

241

OpenShift Container Platform 3.11 Configuring Clusters

URL Component Description

scope The scope of the search. Can be either one orsub. If the scope is not provided, the
default is to use a scope of sub.

filter A valid LDAP search filter. If not provided, defaults to (objectClass=")

When doing searches, the attribute, filter, and provided user name are combined to create a search filter
that looks like:

I (&(<filter>)(<attribute>=<usernames))

For example, consider a URL of:

I Idap://Idap.example.com/o=Acme?cn?sub?(enabled=true)

When a client attempts to connect using a user name of bob, the resulting search filter will be (&
(enabled=true)(cn=bob)).

If the LDAP directory requires authentication to search, specify a bindDN and bindPassword to use to
perform the entry search.

Master configuration using LDAPPasswordldentityProvider

oauthConfig:

identityProviders:
- name: "my_ldap_provider" ﬂ
challenge: true 9
login: true
mappingMethod: claim ﬂ
provider:
apiVersion: v1i
kind: LDAPPasswordldentityProvider
attributes:

id: @
-dn

-cn
preferredUsername: 6
- uid
bindDN: "
bindPassword: " @
ca: my-ldap-ca-bundle.crt m
insecure: false
url: "ldap://Idap.example.com/ou=users,dc=acme,dc=com?uid" @

ﬂ This provider name is prefixed to the returned user ID to form an identity name.

242

O 990 9990 ® 6 ® o

@ O

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

When true, unauthenticated token requests from non-web clients (like the CLI) are senta WWW-
Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are redirected
to a login page backed by this provider.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

List of attributes to use as the identity. First non-empty attribute is used. At least one attribute is
required. If none of the listed attribute have a value, authentication fails.

List of attributes to use as the email address. First non-empty attribute is used.
List of attributes to use as the display name. First non-empty attribute is used.

List of attributes to use as the preferred user name when provisioning a user for this identity. First
non-empty attribute is used.

Optional DN to use to bind during the search phase.

Optional password to use to bind during the search phase. This value may also be provided in an
environment variable, external file, or encrypted file.

Certificate bundle to use to validate server certificates for the configured URL. The contents of
this file are copied to the /etc/origin/master/<identity_provider_name>_Idap_ca.crt file. The
identity provider name is the value of the openshift_master_identity_providers parameter. If you
do not specify the CA text or the path to the local CA file, you must place the CA certificate in the
/etc/origin/master/ directory. If you specify multiple identity providers, you must manually place
the CA certificate for each provider in the /etc/origin/master/ directory. You cannot change this
location. Defining the certificate bundle only applies if insecure: false is set in the inventory file.

When true, no TLS connection is made to the server. When false, Idaps:// URLs connect using TLS,
and ldap:// URLs are upgraded to TLS.

An RFC 2255 URL which specifies the LDAP host and search parameters to use, as described
above.

NOTE

To whitelist users for an LDAP integration, use the lookup mapping method. Before a
login from LDAP would be allowed, a cluster administrator must create an identity and
user object for each LDAP user.

-

13.3.8. Basic authentication (remote)

Basic Authentication is a generic backend integration mechanism that allows users to log in to OpenShift
Container Platform with credentials validated against a remote identity provider.

Because basic authentication is generic, you can use this identity provider for advanced authentication
configurations. You can configure LDAP failover or use the containerized basic authentication
repository as a starting point for another advanced remote basic authentication configuration.

243

https://github.com/openshift/basic-authentication-provider-example

OpenShift Container Platform 3.11 Configuring Clusters

CAUTION

Basic authentication must use an HTTPS connection to the remote server to prevent potential snooping
of the user ID and password and man-in-the-middle attacks.

With BasicAuthPasswordldentityProvider configured, users send their user name and password to
OpenShift Container Platform, which then validates those credentials against a remote server by making
a server-to-server request, passing the credentials as a Basic Auth header. This requires users to send
their credentials to OpenShift Container Platform during login.

NOTE

This only works for user name/password login mechanisms, and OpenShift Container
Platform must be able to make network requests to the remote authentication server.

Set BasicAuthPasswordldentityProvider in the identityProviders stanza to validate user names and
passwords against a remote server using a server-to-server Basic authentication request. User names
and passwords are validated against a remote URL that is protected by Basic authentication and returns
JSON.

A 401 response indicates failed authentication.
A non-200 status, or the presence of a non-empty "error" key, indicates an error:
I {"error":"Error message"}

A 200 status with a sub (subject) key indicates success:

I {"sub":"userid"}ﬂ

ﬂ The subject must be unique to the authenticated user and must not be able to be modified.

A successful response may optionally provide additional data, such as:

® Adisplay name using the name key. For example:
I {"sub":"userid", "name": "User Name", ...}

® An email address using the email key. For example:
I {"sub":"userid", "email":"user@example.com", ...}

® A preferred user name using the preferred_username key. This is useful when the unique,
unchangeable subject is a database key or UID, and a more human-readable name exists. This is
used as a hint when provisioning the OpenShift Container Platform user for the authenticated
identity. For example:

I {"sub":"014fbff9a07c", "preferred_username":"bob", ...}

13.3.8.1. Configuring authentication on the master

1. If you have:

244

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

® Already completed the installation of Openshift, then copy the
/etc/origin/master/master-config.yaml file into a new directory; for example:

I $ mkdir basicauthconfig; cp master-config.yaml basicauthconfig

® Not yetinstalled OpenShift Container Platform, then start the OpenShift Container
Platform API server, specifying the hostname of the (future) OpenShift Container Platform
master and a directory to store the configuration file created by the start command:

I $ openshift start master --public-master=<apiserver> --write-config=<directory>

For example:

$ openshift start master --public-master=https://myapiserver.com:8443 --write-
config=basicauthconfig

NOTE

If you are installing with Ansible, then you must add the identityProvider
configuration to the Ansible playbook. If you use the following steps to
modify your configuration manually after installing with Ansible, then you will
lose any modifications whenever you re-run the install tool or upgrade.

2. Edit the new master-config.yaml file's identityProviders stanza, and copy the example
BasicAuthPasswordldentityProvider configuration and paste it to replace the existing stanza:

oauthConfig:

identityProviders:
- name: my_remote_basic_auth_provider ﬂ
challenge: true
login: true
mappingMethod: claim ﬂ
provider:
apiVersion: v1i
kind: BasicAuthPasswordldentityProvider
url: https://www.example.com/remote-idp
ca: /path/to/ca.file G
certFile: /path/to/client.crt ﬂ
keyFile: /path/to/client.key G

This provider name is prefixed to the returned user ID to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a
WWW-Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

Controls how mappings are established between this provider’s identities and user objects,
as described above.

URL accepting credentials in Basic authentication headers.

® 6 o 90

245

OpenShift Container Platform 3.11 Configuring Clusters

6 Optional: Certificate bundle to use to validate server certificates for the configured URL.
Q Optional: Client certificate to present when making requests to the configured URL.

@ Key for the client certificate. Required if certFile is specified.

Make the following modifications to the identityProviders stanza:

a. Set the provider name to something unique and relevant to your deployment. This name is
prefixed to the returned user ID to form an identity name.

b. If required, set mappingMethod to control how mappings are established between the
provider's identities and user objects.

c. Specify the HTTPS url to use to connect to a server that accepts credentials in Basic
authentication headers.

d. Optionally, set the ca to the certificate bundle to use in order to validate server certificates
for the configured URL, or leave it empty to use the system-trusted roots.

e. Optionally, remove or set the certFile to the client certificate to present when making
requests to the configured URL.

f. If certFile is specified, then you must set the keyFile to the key for the client certificate.
3. Save your changes and close the file.

4. Start the OpenShift Container Platform APl server, specifying the configuration file you just
modified:

I $ openshift start master --config=<path/to/modified/config>/master-config.yami

Once configured, any user logging in to the OpenShift Container Platform web console will be
prompted to log in using their Basic authentication credentials.

13.3.8.2. Troubleshooting

The most common issue relates to network connectivity to the backend server. For simple debugging,
run curl commands on the master. To test for a successful login, replace the <users and <passwords in
the following example command with valid credentials. To test an invalid login, replace them with false
credentials.

curl --cacert /path/to/ca.crt --cert /path/to/client.crt --key /path/to/client.key -u <user>:<password> -v
https://www.example.com/remote-idp

Successful responses

A 200 status with a sub (subject) key indicates success:
I {"sub":"userid"}

The subject must be unique to the authenticated user, and must not be able to be modified.

A successful response may optionally provide additional data, such as:

246

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

® Adisplay name using the name key:

I {"sub":"userid", "name": "User Name", ...}

® Anemail address using the email key:

I {"sub":"userid", "email":"user@example.com", ...}

e A preferred user name using the preferred_username key:
I {"sub":"014fbff9a07c", "preferred_username":"bob", ...}

The preferred_username key is useful when the unique, unchangeable subject is a database
key or UID, and a more human-readable name exists. This is used as a hint when provisioning the
OpenShift Container Platform user for the authenticated identity.

Failed responses
® A 401 response indicates failed authentication.

® A non-200 status or the presence of a non-empty "error" key indicates an error: {"error":"Error
message"}
13.3.9. Request header

Set RequestHeaderldentityProvider in the identityProviders stanza to identify users from request
header values, such as X-Remote-User. It is typically used in combination with an authenticating proxy,
which sets the request header value. This is similar to how the remote user plug-in in OpenShift
Enterprise 2 allowed administrators to provide Kerberos, LDAP, and many other forms of enterprise
authentication.

NOTE
You can also use the request header identity provider for advanced configurations such

as the community-supported SAML authentication. Note that SAML authentication is
not supported by Red Hat.

For users to authenticate using this identity provider, they must access
https://<master>/oauth/authorize (and subpaths) via an authenticating proxy. To accomplish this,
configure the OAuth server to redirect unauthenticated requests for OAuth tokens to the proxy
endpoint that proxies to https://<master>/oauth/authorize.

To redirect unauthenticated requests from clients expecting browser-based login flows:

1. Set the login parameter to true.

2. Set the provider.loginURL parameter to the authenticating proxy URL that will authenticate
interactive clients and then proxy the request to https:/<master>/oauth/authorize.

To redirect unauthenticated requests from clients expecting WWW-Authenticate challenges:

1. Set the challenge parameter to true.

247

https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html/Deployment_Guide/Configuring_OpenShift_Enterprise_Authentication.html
https://github.com/openshift/request-header-saml-service-provider

OpenShift Container Platform 3.11 Configuring Clusters

2. Set the provider.challengeURL parameter to the authenticating proxy URL that will
authenticate clients expecting WWW-Authenticate challenges and then proxy the request to
https://<master>/oauth/authorize.

The provider.challengeURL and provider.loginURL parameters can include the following tokens in
the query portion of the URL:

o ${url} is replaced with the current URL, escaped to be safe in a query parameter.
For example: hitps://www.example.com/sso-login?then=${url}

e ${query} is replaced with the current query string, unescaped.
For example: hitps://www.example.com/auth-proxy/oauth/authorize?${query}

' WARNING
A If you expect unauthenticated requests to reach the OAuth server, a clientCA

parameter MUST be set for this identity provider, so that incoming requests are
checked for a valid client certificate before the request’s headers are checked for a
user name. Otherwise, any direct request to the OAuth server can impersonate any
identity from this provider, merely by setting a request header.

Master configuration using RequestHeaderldentityProvider

oauthConfig:

identityProviders:
- name: my_request_header_provider ﬂ

challenge: true

login: true

mappingMethod: claim ﬂ

provider:
apiVersion: v1i
kind: RequestHeaderldentityProvider
challengeURL: "https://www.example.com/challenging-proxy/oauth/authorize?${query}" 9
loginURL: "https://www.example.com/login-proxy/oauth/authorize?${query}" G
clientCA: /path/to/client-ca.file ﬂ
clientCommonNames:
- my-auth-proxy
headers:
- X-Remote-User
- SSO-User
emailHeaders: @
- X-Remote-User-Email
nameHeaders: m
- X-Remote-User-Display-Name
preferredUsernameHeaders: @
- X-Remote-User-Login

248

® 6 o o9

o

® 9 9 6 O 9

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

This provider name is prefixed to the user name in the request header to form an identity name.

RequestHeaderldentityProvider can only respond to clients that request WWW-Authenticate
challenges by redirecting to a configured challengeURL. The configured URL should respond with
a WWW-Authenticate challenge.

RequestHeaderldentityProvider can only respond to clients requesting a login flow by redirecting
to a configured loginURL. The configured URL should respond with a login flow.

Controls how mappings are established between this provider's identities and user objects, as
described above.

Optional: URL to redirect unauthenticated /oauth/authorize requests to, that will authenticate
clients which expect WWW-Authenticate challenges, and then proxy them to
https://<master>/oauth/authorize. ${url} is replaced with the current URL, escaped to be safe in a
query parameter. ${query} is replaced with the current query string.

Optional: URL to redirect unauthenticated /oauth/authorize requests to, that will authenticate
browser-based clients and then proxy their request to https://<master>/oauth/authorize. The URL
that proxies to hitps://<master>/oauth/authorize must end with /authorize (with no trailing slash),
and also proxy subpaths, in order for OAuth approval flows to work properly. ${url} is replaced with
the current URL, escaped to be safe in a query parameter. ${query} is replaced with the current
query string.

Optional: PEM-encoded certificate bundle. If set, a valid client certificate must be presented and
validated against the certificate authorities in the specified file before the request headers are
checked for user names.

Optional: list of common names (en). If set, a valid client certificate with a Common Name (¢n) in
the specified list must be presented before the request headers are checked for user names. If
empty, any Common Name is allowed. Can only be used in combination with clientCA.

Header names to check, in order, for the user identity. The first header containing a value is used as
the identity. Required, case-insensitive.

Header names to check, in order, for an email address. The first header containing a value is used as
the email address. Optional, case-insensitive.

Header names to check, in order, for a display name. The first header containing a value is used as
the display name. Optional, case-insensitive.

Header names to check, in order, for a preferred user name, if different than the immutable
identity determined from the headers specified in headers. The first header containing a value is
used as the preferred user name when provisioning. Optional, case-insensitive.

SSPI connection support on Microsoft Windows

249

OpenShift Container Platform 3.11 Configuring Clusters

IMPORTANT

Using SSPI connection support on Microsoft Windows is a Technology Preview feature.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend to use them for production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information on Red Hat Technology Preview features support scope, see
https://access.redhat.com/support/offerings/techpreview/.

Starting in version 3.11,

oc supports the Security Support Provider Interface (SSPI) to allow for SSO flows on Microsft Windows.
If you use the request header identity provider with a GSSAPI-enabled proxy to connect an Active
Directory server to OpenShift Container Platform, users can automatically authenticate to OpenShift
Container Platform by using the oc command line interface from a domain-joined Microsoft Windows
computer.

Apache authentication using Request header

This example configures an authentication proxy on the same host as the master. Having the proxy and
master on the same host is merely a convenience and may not be suitable for your environment. For
example, if you were already running a router on the master, port 443 would not be available.

Itis also important to note that while this reference configuration uses Apache’s mod_auth_gssapi, it is
by no means required and other proxies can easily be used if the following requirements are met:

1. Block the X-Remote-User header from client requests to prevent spoofing.
2. Enforce client certificate authentication in the RequestHeaderldentityProvider configuration.
3. Require the X-Csrf-Token header be set for all authentication request using the challenge flow.

4. Only the /oauth/authorize endpoint and its subpaths should be proxied, and redirects should
not be rewritten to allow the backend server to send the client to the correct location.

5. The URL that proxies to https://<master>/oauth/authorize must end with /authorize (with no
trailing slash). For example:

e https:/proxy.example.com/login-proxy/authorize?... —»
https://<master>/oauth/authorize?...

6. Subpaths of the URL that proxies to https://<masters/oauth/authorize must proxy to subpaths
of https://<master>/oauth/authorize. For example:

e https:/proxy.example.com/login-proxy/authorize/approve?... -»
https://<master>/oauth/authorize/approve?...

Installing the prerequisites

1. Obtain the mod_auth_gssapi module from the Optional channel. Install the following packages:
I # yum install -y httpd mod_ssl mod_session apr-util-openssl mod_auth_gssapi

2. Generate a CA for validating requests that submit the trusted header. This CA should be used
as the file name for clientCA in the master's identity provider configuration.

250

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/solutions/392003

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

--cert="/etc/origin/master/proxyca.crt' \
--key="/etc/origin/master/proxyca.key" \
--name='openshift-proxy-signer@1432232228'" \

oc adm ca create-signer-cert \
--serial="/etc/origin/master/proxyca.serial.txt'

NOTE
The oc adm ca create-signer-cert command generates a certificate that is valid
for five years. This can be altered with the --expire-days option, but for security

. reasons, it is recommended to not make it greater than this value.
Run oc adm commands only from the first master listed in the Ansible host

. inventory file, by default /etc/ansible/hosts.

. Generate a client certificate for the proxy. This can be done using any x509 certificate tooling.
For convenience, the oc adm CLI| can be used:

oc adm create-api-client-config \
--certificate-authority="/etc/origin/master/proxyca.crt' \
--client-dir="/etc/origin/master/proxy’ \
--signer-cert='/etc/origin/master/proxyca.crt' \
--signer-key="/etc/origin/master/proxyca.key' \
--signer-serial='/etc/origin/master/proxyca.serial.txt' \
--user="'system:proxy"

pushd /etc/origin/master

cp master.server.crt /etc/pki/tls/certs/localhost.crt 9

cp master.server.key /etc/pki/tis/private/localhost.key

cp ca.crt /etc/pki/CA/certs/ca.crt

cat proxy/system\:proxy.crt \
proxy/system\:proxy.key >\
/etc/pki/tls/certs/authproxy.pem

popd

The user name can be anything, however it is useful to give it a descriptive name as it will
appear in logs.

9 When running the authentication proxy on a different host name than the master, it is
important to generate a certificate that matches the host name instead of using the
default master certificate as shown above. The value for masterPublicURL in the
/etc/origin/master/master-config.yaml file must be included in the X509v3 Subject
Alternative Name in the certificate that is specified for SSLCertificateFile. If a new
certificate needs to be created, the oc adm ca create-server-cert command can be used.

NOTE

The oc adm create-api-client-config command generates a certificate that is
valid for two years. This can be altered with the --expire-days option, but for
security reasons, it is recommended to not make it greater than this value. Run
oc adm commands only from the first master listed in the Ansible host inventory
file, by default /etc/ansible/hosts.

251

OpenShift Container Platform 3.11 Configuring Clusters

Configuring Apache
This proxy does not need to reside on the same host as the master. It uses a client certificate to connect
to the master, which is configured to trust the X-Remote-User header.

252

1. Create the certificate for the Apache configuration. The certificate that you specify as the
SSLProxyMachineCertificateFile parameter value is the proxy’s client cert that is used to
authenticate the proxy to the server. It must use TLS Web Client Authentication as the
extended key type.

2. Create the Apache configuration. Use the following template to provide your required settings

and values:

IMPORTANT

Carefully review the template and customize its contents to fit your environment.

LoadModule request_module modules/mod_request.so
LoadModule auth_gssapi_module modules/mod_auth_gssapi.so
Some Apache configurations might require these modules.

LoadModule auth_form_module modules/mod_auth_form.so

LoadModule session_module modules/mod_session.so

Nothing needs to be served over HTTP. This virtual host simply redirects to
#HTTPS.
<VirtualHost *:80>
DocumentRoot /var/www/html
RewriteEngine On
RewriteRule 7(.*)$ https://%{HTTP_HOST}$1 [R,L]
</VirtualHost>

<VirtualHost *:443>
This needs to match the certificates you generated. See the CN and X509v3
Subject Alternative Name in the output of:
openssl x509 -text -in /etc/pki/tls/certs/localhost.crt
ServerName www.example.com

DocumentRoot /var/www/html

SSLEngine on

SSL CertificateFile /etc/pki/tls/certs/localhost.crt
SSLCertificateKeyFile /etc/pki/tls/private/localhost.key
SSLCACertificateFile /etc/pki/CA/certs/ca.crt

SSLProxyEngine on

SSLProxyCACertificateFile /etc/pki/CA/certs/ca.crt

It's critical to enforce client certificates on the Master. Otherwise

requests could spoof the X-Remote-User header by accessing the Master's
/oauth/authorize endpoint directly.

SSLProxyMachineCertificateFile /etc/pki/tls/certs/authproxy.pem

Send all requests to the console
RewriteEngine On
RewriteRule */console(.*)$ https://%{HTTP_HOST}:8443/console$1 [R,L]

In order to using the challenging-proxy an X-Csrf-Token must be present.
RewriteCond %{REQUEST_URI} */challenging-proxy

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

RewriteCond %{HTTP:X-Csrf-Token} "$ [NC]
RewriteRule *.* - [F,L]

<Location /challenging-proxy/oauth/authorize>
Insert your backend server name/ip here.
ProxyPass https://[MASTER]:8443/oauth/authorize
AuthName "SSO Login"
For Kerberos
AuthType GSSAPI
Require valid-user
RequestHeader set X-Remote-User %{REMOTE_USER]}s

GssapiCredStore keytab:/etc/httpd/protected/auth-proxy.keytab

Enable the following if you want to allow users to fallback

to password based authntication when they do not have a client
configured to perform kerberos authentication

GssapiBasicAuth On

For Idap:

AuthBasicProvider Idap

AuthLDAPURL "ldap://Idap.example.com:389/ou=People,dc=my-domain,dc=com?uid?
sub?(objectClass=")"

It's possible to remove the mod_auth_gssapi usage and replace it with
something like mod_auth_mellon, which only supports the login flow.
</Location>

<Location /login-proxy/oauth/authorize>
Insert your backend server name/ip here.
ProxyPass https://[MASTER]:8443/oauth/authorize

AuthName "SSO Login"

AuthType GSSAPI

Require valid-user

RequestHeader set X-Remote-User %{REMOTE_USER}s env=REMOTE_USER

GssapiCredStore keytab:/etc/httpd/protected/auth-proxy.keytab

Enable the following if you want to allow users to fallback

to password based authntication when they do not have a client
configured to perform kerberos authentication

GssapiBasicAuth On

ErrorDocument 401 /login.html
</Location>

</VirtualHost>

RequestHeader unset X-Remote-User

Configuring the master
The identityProviders stanza in the /etc/origin/master/master-config.yaml file must be updated as
well:

identityProviders:
- name: requestheader
challenge: true

253

OpenShift Container Platform 3.11 Configuring Clusters

login: true
provider:
apiVersion: v1i
kind: RequestHeaderldentityProvider
challengeURL: "https://[MASTER]/challenging-proxy/oauth/authorize?${query}"
loginURL: "https://[MASTER]/login-proxy/oauth/authorize ?${query}"
clientCA: /etc/origin/master/proxyca.crt
headers:
- X-Remote-User

Restarting services
Finally, restart the following services:

systemctl restart httpd
master-restart api
master-restart controllers

Verifying the configuration

1. Test by bypassing the proxy. You should be able to request a token if you supply the correct
client certificate and header:

curl -L -k -H "X-Remote-User: joe" \

--cert /etc/pki/tls/certs/authproxy.pem \
https://[MASTER]:8443/oauth/token/request

2. If you do not supply the client certificate, the request should be denied:

curl -L -k -H "X-Remote-User: joe" \
https://[MASTER]:8443/oauth/token/request

3. This should show a redirect to the configured challengeURL (with additional query
parameters):
curl -k -v -H 'X-Csrf-Token: 1"\

'<masterPublicURL>/oauth/authorize?client_id=openshift-challenging-
client&response_type=token'

4. This should show a 401 response with a WWW-Authenticate basic challenge, a negotiate
challenge, or both challenges:

curl -k -v -H 'X-Csrf-Token: 1"\
'<redirected challengeURL from step 3 +query>'

5. Testlogging into the oc command line with and without using a Kerberos ticket:

a. If you generated a Kerberos ticket by using Kinit, destroy it:
I # kdestroy -c cache_name ﬂ

ﬂ Provide the name of your Kerberos cache.

b. Login to the oc command line by using your Kerberos credentials:

254

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

I # oc login
Enter your Kerberos user name and password at the prompt.

c. Log out of the oc command line:

I # oc logout

d. Use your Kerberos credentials to get a ticket:
I # Kinit
Enter your Kerberos user name and password at the prompt.

e. Confirm that you can log in to the o¢ command line:
I # oc login

If your configuration is correct, you are logged in without entering separate credentials.

13.3.10. GitHub and GitHub Enterprise

GitHub uses OAuth, and you can integrate your OpenShift Container Platform cluster to use that OAuth
authentication. OAuth facilitates a token exchange flow between OpenShift Container Platform and
GitHub or GitHub Enterprise.

You can use the GitHub integration to connect to either GitHub or GitHub Enterprise. For GitHub

Enterprise integrations, you must provide the hostname of your instance and can optionally provide a
ca certificate bundle to use in requests to the server.

NOTE

The following steps apply to both GitHub and GitHub Enterprise unless noted.

Configuring GitHub authentication allows users to log in to OpenShift Container Platform with their
GitHub credentials. To prevent anyone with any GitHub user ID from logging in to your OpenShift
Container Platform cluster, you can restrict access to only those in specific GitHub organizations.

13.3.10.1. Registering the application on GitHub
1. Register an application:

® For GitHub, click Settings = Developer settings = Register a new OAuth application.

® For GitHub Enterprise, go to your GitHub Enterprise home page and then click Settings =
Developer settings = Register a new application.

2. Enter an application name, for example My OpenShift Install.
3. Enter a homepage URL, such as https://myapiserver.com:8443.

4. Optionally, enter an application description.

255

https://github.com/settings/profile
https://github.com/settings/developers
https://github.com/settings/applications/new
https://myapiserver.com:8443

OpenShift Container Platform 3.11 Configuring Clusters

5. Enter the authorization callback URL, where the end of the URL contains the identity provider
name, which is defined in the identityProviders stanza of the master configuration file, which
you configure in the next section of this topic:

I <apiserver>/oauth2callback/<identityProviderName>
For example:

I https://myapiserver.com:8443/oauth2callback/github/

6. Click Register application. GitHub provides a Client ID and a Client Secret. Keep this window
open so you can copy these values and paste them into the master configuration file.

13.3.10.2. Configuring authentication on the master

256

1. If you have:

® Already installed OpenShift Container Platform, then copy the /etc/origin/master/master-
config.yaml file into a new directory, for example:

$ cd /etc/origin/master
$ mkdir githubconfig; cp master-config.yaml githubconfig

® Not yetinstalled OpenShift Container Platform, then start the OpenShift Container
Platform API server, specifying the hostname of the (future) OpenShift Container Platform
master and a directory to store the configuration file created by the start command:

I $ openshift start master --public-master=<apiserver> --write-config=<directory>
For example:

$ openshift start master --public-master=https://myapiserver.com:8443 --write-
config=githubconfig

NOTE

If you are installing with Ansible, then you must add the identityProvider
configuration to the Ansible playbook. If you use the following steps to
modify your configuration manually after installing with Ansible, then you will
lose any modifications whenever you re-run the install tool or upgrade.

' NOTE
. Using openshift start master on its own would auto-detect host names, but

GitHub must be able to redirect to the exact host name that you specified
when registering the application. For this reason, you cannot auto-detect the
ID because it might redirect to the wrong address. Instead, you must specify
the hostname that web browsers use to interact with your OpenShift
Container Platform cluster.

2. Edit the new master-config.yaml file's identityProviders stanza, and copy the example
GitHubldentityProvider configuration and paste it to replace the existing stanza:

O o0 9 9 ® 6 0 o

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

oauthConfig:

identityProviders:
- name: github
challenge: false 9
login: true
mappingMethod: claim ﬂ
provider:
apiVersion: v1i
kind: GitHubldentityProvider

ca: .. @
clientlD: ... G

clientSecret: ... ﬂ
hostname: ... G
organizations: g

- myorganization1

- myorganization2

teams:

- myorganization1/team-a
- myorganization2/team-b

This provider name is prefixed to the GitHub numeric user ID to form an identity name. It is
also used to build the callback URL.

GitHubldentityProvider cannot be used to send WWW-Authenticate challenges.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to GitHub to log in.

Controls how mappings are established between this provider’s identities and user objects,
as described above.

For GitHub Enterprise, the CA is the optional trusted certificate authority bundle to use
when making requests to the server. Omit this parameter to use the default system root
certificates. For GitHub, omit this parameter.

The client ID of a registered GitHub OAuth application. The application must be configured
with a callback URL of <masters/oauth2callback/<identityProviderNames.

The client secret issued by GitHub. This value may also be provided in an environment
variable, external file, or encrypted file.

For GitHub Enterprise, you must provide the host name of your instance, such as
example.com. This value must match the GitHub Enterprise hostname value in in the
/setup/settings file and cannot include a port number. For GitHub, omit this parameter.

Optional list of organizations. If specified, only GitHub users that are members of at least
one of the listed organizations will be allowed to log in. If the GitHub OAuth application
configured in clientID is not owned by the organization, an organization owner must grant
third-party access in order to use this option. This can be done during the first GitHub
login by the organization’s administrator, or from the GitHub organization settings. Cannot
be used in combination with the teams field.

Optional list of teams. If specified, only GitHub users that are members of at least one of
the listed teams will be allowed to log in. If the GitHub OAuth application configured in

257

https://github.com/settings/applications/new

OpenShift Container Platform 3.11 Configuring Clusters

clientil Is not owned by the team's organization, an organization owner must grant third-
party access in order to use this option. This can be done during the first GitHub login by
the organization’s administrator, or from the GitHub organization settings. Cannot be used
in combination with the organizations field.

3. Make the following modifications to the identityProviders stanza:

a. Change the provider name to match the callback URL you configured on GitHub.
For example, if you defined the callback URL as
https://myapiserver.com:8443/oauth2callback/github/ then the name must be github.

b. Change clientID to the Client ID from GitHub that you registered previously.
c. Change clientSecret to the Client Secret from GitHub that you registered previously.

d. Change organizations or teams to include a list of one or more GitHub organizations or
teams to which a user must have membership in order to authenticate. If specified, only
GitHub users that are members of at least one of the listed organizations or teams will be
allowed to log in. If this is not specified, then any person with a valid GitHub account can log
in.

4. Save your changes and close the file.

5. Start the OpenShift Container Platform API server, specifying the configuration file you just
modified:

I $ openshift start master --config=<path/to/modified/config>/master-config.yami

Once configured, any user logging in to the OpenShift Container Platform web console will be
prompted to log in using their GitHub credentials. On their first login, the user must click authorize
application to permit GitHub to use their user name, password, and organization membership with
OpenShift Container Platform. The user is then redirected back to the web console.

13.3.10.3. Creating users with GitHub authentication

You do not create users in OpenShift Container Platform when integrating with an external
authentication provider, such as, in this case, GitHub. GitHub, or GitHub Enterprise, is the system of
record, meaning that users are defined by GitHub, and any user belonging to a specified organization
can login.

To add a user to OpenShift Container Platform, you must add that user to an approved organization on
GitHub or GitHub Enterprise, and if required create a new GitHub account for the user.

13.3.10.4. Verifying users

Once one or more users have logged in, you can run oc get users to view a list of users and verify that
users were created successfully:

Example 13.6. Output of oc get users command

NAME uiD FULL NAME IDENTITIES

$ oc get users
bobsmith 433b5641-066f-11e6-a6d8-acfc32c1ca87 Bob Smith github:873654 ﬂ

258

https://myapiserver.com:8443/oauth2callback/github/

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

Identities in OpenShift Container Platform are comprised of the identity provider name and
GitHub's internal numeric user ID. This way, if a user changes their GitHub user name or e-mail

From here, you might want to learn how to control user roles.

13.3.11. GitLab

Set GitLabldentityProvider in the identityProviders stanza to use GitLab.com or any other GitLab
instance as an identity provider. If you use GitLab version 7.7.0 to 11.0, you connect using the OAuth
integration. If you use GitLab version 11.1 or later, you can use OpenlD Connect (OIDC) to connect
instead of OAuth.

Example 13.7. Master configuration using GitLabldentityProvider
oauthConfig:

identityProviders:
- name: gitlab ﬂ
challenge: true 9
login: true
mappingMethod: claim ﬂ
provider:
apiVersion: v1i
kind: GitLabldentityProvider
legacy:
url: ...

clientlD: ... @

clientSecret: ... 6

ca. ... g

This provider name is prefixed to the GitLab numeric user ID to form an identity name. It is also
used to build the callback URL.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a
WWW-Authenticate challenge header for this provider. This uses the Resource Owner
Password Credentials grant flow to obtain an access token from GitlLab.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to GitLab to log in.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

Determines whether to use OAuth or OIDC as the authentication provider. Set to true to use
OAuth and false to use OIDC. You must use GitLab.com or GitLab version 11.1 or later to use
OIDC. If you do not provide a value, OAuth is used to connect to your GitLab instance, and
OIDC is used to connect to GitLab.com.

® 6 o o 9o

o

The host URL of a GitLab provider. This could either be https://gitlab.com/ or any other self
hosted instance of GitLab.

259

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-manage-rbac
https://gitlab.com/
http://doc.gitlab.com/ce/integration/oauth_provider.html
https://docs.gitlab.com/ce/integration/openid_connect_provider.html
http://doc.gitlab.com/ce/api/oauth2.html#resource-owner-password-credentials

OpenShift Container Platform 3.11 Configuring Clusters

The client ID of a registered GitLab OAuth application. The application must be configured with
a callback URL of <master>/oauth2callback/<identityProviderName>.

9 The client secret issued by GitLab. This value may also be provided in an environment variable,
external file, or encrypted file.

@ CA'is an optional trusted certificate authority bundle to use when making requests to the
GitLab instance. If empty, the default system roots are used.

13.3.12. Google

Set GoogleldentityProvider in the identityProviders stanza to use Google as an identity provider,
using Google’s OpenlD Connect integration.

NOTE

Using Google as an identity provider requires users to get a token using
<master>/oauth/token/request to use with command-line tools.

' WARNING
A Using Google as an identity provider allows any Google user to authenticate to your

server. You can limit authentication to members of a specific hosted domain with
the hostedDomain configuration attribute, as shown below.

Example 13.8. Master configuration using GoogleldentityProvider
oauthConfig:

identityProviders:
- name: google
challenge: false
login: true
mappingMethod: claim ﬂ
provider:
apiVersion: v1i
kind: GoogleldentityProvider
clientlD: ... @
clientSecret: ... G
hostedDomain: " ﬂ

This provider name is prefixed to the Google numeric user ID to form an identity name. It is also
used to build the redirect URL.

9 GoogleldentityProvider cannot be used to send WWW-Authenticate challenges.

260

https://docs.gitlab.com/ce/api/oauth2.html
https://developers.google.com/identity/protocols/OpenIDConnect

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

When true, unauthenticated token requests from web clients (like the web console) are
redirected to Google to login.

Controls how mappings are established between this provider's identities and user objects, as
described above.

The client ID of a registered Google project. The project must be configured with a redirect URI
of <masters>/oauth2callback/<identityProviderName>.

The client secret issued by Google. This value may also be provided in an environment variable,
external file, or encrypted file.

Optional hosted domain to restrict sign-in accounts to. If empty, any Google account is allowed
to authenticate.

oSO O ©® 9 O

13.3.13. OpenlID connect

Set OpenlDIidentityProvider in the identityProviders stanza to integrate with an OpenlD Connect
identity provider using an Authorization Code Flow.

You can configure Red Hat Single Sign-On as an OpenlD Connect identity provider for OpenShift
Container Platform.

NOTE

- ID Token and Userinfo decryptions are not supported.

By default, the openid scope is requested. If required, extra scopes can be specified in the extraScopes
field.

Claims are read from the JWT id_token returned from the OpenlID identity provider and, if specified,
from the JSON returned by the Userinfo URL.

At least one claim must be configured to use as the user’s identity. The standard identity claim is sub.
You can also indicate which claims to use as the user’s preferred user name, display name, and email

address. If multiple claims are specified, the first one with a non-empty value is used. The standard
claims are:

sub Short for "subject identifier." The remote identity for the user at the issuer.
preferred_ The preferred user name when provisioning a user. A shorthand name that the user wants to
username be referred to as, such as janedoe. Typically a value that corresponding to the user’s login or

username in the authentication system, such as username or email.

email Email address.

hame Display name.

See the OpenlD claims documentation for more information.

261

https://console.developers.google.com/
https://developers.google.com/identity/protocols/OpenIDConnect#hd-param
http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://access.redhat.com/documentation/en-us/red_hat_jboss_middleware_for_openshift/3/html/red_hat_single_sign-on_for_openshift/tutorials
http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

OpenShift Container Platform 3.11 Configuring Clusters

NOTE

Using an OpenlID Connect identity provider requires users to get a token using
<master>/oauth/token/request to use with command-line tools.

Standard Master configuration using OpeniDIdentityProvider

SO O ©® 6 6 ©O©® O

262

oauthConfig:

identityProviders:
- name: my_openid_connect ﬂ
challenge: true
login: true
mappingMethod: claim ﬂ
provider:
apiVersion: vi
kind: OpenlIDldentityProvider
clientlD: ...

clientSecret: ... G
claims:
id: @
- sub
preferredUsername:
- preferred_username
name:
- name
email:
- emalil
urls:
authorize: https://myidp.example.com/oauth2/authorize 6

token: https://myidp.example.com/oauth2/token Q

This provider name is prefixed to the value of the identity claim to form an identity name. It is also
used to build the redirect URL.

When true, unauthenticated token requests from non-web clients (like the CLI) are senta WWW-
Authenticate challenge header for this provider. This requires the OpenlD provider to support the
Resource Owner Password Credentials grant flow.

When true, unauthenticated token requests from web clients (like the web console) are redirected
to the authorize URL to log in.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

The client ID of a client registered with the OpenlID provider. The client must be allowed to redirect
to <master>/oauth2callback/<identityProviderName>.

The client secret. This value may also be provided in an environment variable, external file, or
encrypted file.

List of claims to use as the identity. First non-empty claim is used. At least one claim is required. If
none of the listed claims have a value, authentication fails. For example, this uses the value of the
sub claim in the returned id_token as the user’s identity.

https://tools.ietf.org/html/rfc6749#section-1.3.3

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

@ Authorization Endpoint described in the OpenlD spec. Must use https.

@ Token Endpoint described in the OpenlID spec. Must use https.

A custom certificate bundle, extra scopes, extra authorization request parameters, and userinfo URL

can also be specified:

Example 13.9. Full Master configuration using OpeniDIdentityProvider

® o

oauthConfig:

identityProviders:
- name: my_openid_connect
challenge: false
login: true
mappingMethod: claim
provider:
apiVersion: v1i
kind: OpenlIDldentityProvider
clientlD: ...
clientSecret: ...
ca: my-openid-ca-bundle.crt ﬂ
extraScopes:
- email
- profile
extraAuthorizeParameters: 6
include_granted_scopes: "true"
claims:
id: @)
- custom_id_claim
- sub
preferredUsername: 6
- preferred_username

- nickname
- given_name
- name
email: ﬂ
- custom_email_claim
- email
urls:
authorize: https://myidp.example.com/oauth2/authorize
token: https://myidp.example.com/oauth2/token
userlnfo: https://myidp.example.com/oauth2/userinfo G

Certificate bundle to use to validate server certificates for the configured URLs. If empty,
system trusted roots are used.

Optional list of scopes to request, in addition to the openid scope, during the authorization
token request.

Optional map of extra parameters to add to the authorization token request.

263

http://openid.net/specs/openid-connect-core-1_0.html#AuthorizationEndpoint
http://openid.net/specs/openid-connect-core-1_0.html#TokenEndpoint

OpenShift Container Platform 3.11 Configuring Clusters

Q List of claims to use as the identity. First non-empty claim is used. At least one claim is required.
If none of the listed claims have a value, authentication fails.

List of claims to use as the preferred user name when provisioning a user for this identity. First
non-empty claim is used.

List of claims to use as the display name. First non-empty claim is used.
List of claims to use as the email address. First non-empty claim is used.

UserInfo Endpoint described in the OpenlD spec. Must use https.

Q90 O

13.4. TOKEN OPTIONS

The OAuth server generates two kinds of tokens:

Access Longer-lived tokens that grant access to the API.

tokens

Authorize Short-lived tokens whose only use is to be exchanged for an access token.
codes

Use the tokenConfig stanza to set token options:

Example 13.10. Master Configuration Token Options

oauthConfig:

tokenConfig:
accessTokenMaxAgeSeconds: 86400 ﬂ
authorizeTokenMaxAgeSeconds: 300 9

Set accessTokenMaxAgeSeconds to control the lifetime of access tokens. The default
lifetime is 24 hours.

Set authorizeTokenMaxAgeSeconds to control the lifetime of authorize codes. The default
lifetime is five minutes.

NOTE

You can override the accessTokenMaxAgeSeconds value through an OAuthClient

- object definition.

13.5. GRANT OPTIONS

When the OAuth server receives token requests for a client to which the user has not previously granted
permission, the action that the OAuth server takes is dependent on the OAuth client’s grant strategy.

264

http://openid.net/specs/openid-connect-core-1_0.html#UserInfo
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#oauthclient

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

When the OAuth client requesting token does not provide its own grant strategy, the server-wide
default strategy is used. To configure the default strategy, set the method value in the grantConfig
stanza. Valid values for method are:

auto Auto-approve the grant and retry the request.
prompt Prompt the user to approve or deny the grant.
deny Auto-deny the grant and return a failure error to the client.

grantConfig:

oauthConfig:
method: auto

‘ Example 13.11. Master Configuration Grant Options

13.6. SESSION OPTIONS
The OAuth server uses a signed and encrypted cookie-based session during login and redirect flows.

Use the sessionConfig stanza to set session options:

Example 13.12. Master Configuration Session Options

oauthConfig:

sessionConfig:
sessionMaxAgeSeconds: 300 ﬂ
sessionName: ssn
sessionSecretsFile: "..." 6

ﬂ Controls the maximum age of a session; sessions auto-expire once a token request is complete.
If auto-grantis not enabled, sessions must last as long as the user is expected to take to
approve or reject a client authorization request.

9 Name of the cookie used to store the session.
9 File name containing serialized SessionSecrets object. If empty, a random signing and
encryption secret is generated at each server start.

If no sessionSecretsFile is specified, a random signing and encryption secret is generated at each start
of the master server. This means that any logins in progress will have their sessions invalidated if the
master is restarted. It also means they will not be able to decode sessions generated by one of the other
masters.

265

OpenShift Container Platform 3.11 Configuring Clusters

To specify the signing and encryption secret to use, specify a sessionSecretsFile. This allows you
separate secret values from the configuration file and keep the configuration file distributable, for
example for debugging purposes.

Multiple secrets can be specified in the sessionSecretsFile to enable rotation. New sessions are signed
and encrypted using the first secret in the list. Existing sessions are decrypted and authenticated by each
secret until one succeeds.

Example 13.13. Session Secret Configuration:

apiVersion: v1
kind: SessionSecrets

secrets: @)

- authentication: "..." 9

encryption: "..." 6
- authentication: "..."
encryption: "..."

ﬂ List of secrets used to authenticate and encrypt cookie sessions. At least one secret must be
specified. Each secret must set an authentication and encryption secret.

9 Signing secret, used to authenticate sessions using HMAC. Recommended to use a secret with
32 or 64 bytes.

g Encrypting secret, used to encrypt sessions. Must be 16, 24, or 32 characters long, to select
AES-128, AES-192, or AES-256.

13.7. PREVENTING CLI VERSION MISMATCH WITH USER AGENT

OpenShift Container Platform implements a user agent that can be used to prevent an application
developer’s CLI from accessing the OpenShift Container Platform API.

User agents for the OpenShift Container Platform CLI are constructed from a set of values within
OpenShift Container Platform:

I <command>/<version>+<git_commit> (<platform>/<architecture>) <client>/<git_commit>

So, for example, when:
® <command>=o0c¢c
® <version> = The client version. For example, v3.3.0. Requests made against the Kubernetes API
at /api receive the Kubernetes version, while requests made against the OpenShift Container
Platform API at /oapi receive the OpenShift Container Platform version (as specified by oc
version)
e <platform> = linux

® <architecture> = amd64

e <client> = openshift, or kubernetes depending on if the request is made against the Kubernetes
API at /api, or the OpenShift Container Platform API at /oapi

266

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

® <git_commit> = The Git commit of the client version (for example, f034127)

the user agent will be:

I 0c/v3.3.0+f034127 (linux/amd64) openshift/f034127

You must configure the user agent in the master configuration file, /etc/origin/master/master-
config.yaml. To apply the configuration, restart the APl server:

I $ /usr/local/bin/master-restart api

As an OpenShift Container Platform administrator, you can prevent clients from accessing the API with
the userAgentMatching configuration setting of a master configuration. So, if a client is using a
particular library or binary, they will be prevented from accessing the API.

The following user agent example denies the Kubernetes 1.2 client binary, OpenShift Origin 1.1.3 binary,
and the POST and PUT httpVerbs:

policyConfig:
userAgentMatchingConfig:
defaultRejectionMessage: "Your client is too old. Go to https://example.org to update it."
deniedClients:
- regex: "\W+/v(?:(?7:1\.1\.1)|(?:1\.0\.1)) \(.+/.+\) openshiftAw{7}'
- regex: "\W+/v(?7:1\.1\.3) \(.+/.+\) openshiftAw{7}'
httpVerbs:
- POST
- PUT
- regex: "\W+/v1\.2\.0 \(.+/.+\) kubernetes/\w{7}'
httpVerbs:
- POST
- PUT
requiredClients: null

Administrators can also deny clients that do not exactly match the expected clients:

policyConfig:
userAgentMatchingConfig:
defaultRejectionMessage: "Your client is too old. Go to https://example.org to update it."
deniedClients: []
requiredClients:
- regex: "\W+/VI\.1\.3 \(.+/.+\) openshiftAw{7}'
- regex: "\W+/v1\.2\.0 \(.+/.+\) kubernetes/\w{7}'
httpVerbs:
- POST
- PUT

To deny a client that would otherwise be included in a set of allowed clients, use deniedClients and
requiredClients values together. The following example allows all 1.X client binaries except for 1.13:

policyConfig:
userAgentMatchingConfig:
defaultRejectionMessage: "Your client is too old. Go to https://example.org to update it."
deniedClients:
- regex: "\W+/vI\.13.0\-+\W{7} \(.+/.+\) openshiftAw{7}'

267

OpenShift Container Platform 3.11 Configuring Clusters

- regex: "\W+/v1\.13.0\+\w{7} \(.+/.+\) kubernetes/\w{7}'
requiredClients:

- regex: "\W+/v1\.[1-9][1-9].[0-9\+\W{7} \(.+/.+\) openshiftAw{7}'

- regex: "\W+/v1\.[1-9][1-9].[0-9\+\W{7} \(.+/.+\) kubernetes/\w{7}'

NOTE

When the client’s user agent mismatches the configuration, errors occur. To ensure that
mutating requests match, enforce a whitelist. Rules are mapped to specific verbs, so you
can ban mutating requests while allowing non-mutating requests.

268

CHAPTER 14. SYNCING GROUPS WITH LDAF

CHAPTER 14. SYNCING GROUPS WITH LDAP

14.1. OVERVIEW

As an OpenShift Container Platform administrator, you can use groups to manage users, change their
permissions, and enhance collaboration. Your organization may have already created user groups and
stored them in an LDAP server. OpenShift Container Platform can sync those LDAP records with
internal OpenShift Container Platform records, enabling you to manage your groups in one place.
OpenShift Container Platform currently supports group sync with LDAP servers using three common
schemas for defining group membership: RFC 2307, Active Directory, and augmented Active Directory.

NOTE

You must have cluster-admin privileges to sync groups.

14.2. CONFIGURING LDAP SYNC

Before you can run LDAP sync, you need a sync configuration file. This file contains LDAP client
configuration details:

e Configuration for connecting to your LDAP server.
® Sync configuration options that are dependent on the schema used in your LDAP server.

A sync configuration file can also contain an administrator-defined list of name mappings that maps
OpenShift Container Platform group names to groups in your LDAP server.

14.2.1. LDAP client configuration

LDAP client configuration

url: Idap://10.0.0.0:389)

bindDN: cn=admin,dc=example,dc=com 9
bindPassword: password e

insecure: false

ca: my-ldap-ca-bundle.crt 9

ﬂ The connection protocol, IP address of the LDAP server hosting your database, and the port to
connect to, formatted as scheme://host:port.

9 Optional distinguished name (DN) to use as the Bind DN. OpenShift Container Platform uses this if
elevated privilege is required to retrieve entries for the sync operation.

Optional password to use to bind. OpenShift Container Platform uses this if elevated privilege is
necessary to retrieve entries for the sync operation. This value may also be provided in an
environment variable, external file, or encrypted file.

are upgraded to TLS. When true, no TLS connection is made to the server unless you specify a
Idaps:// URL, in which case URLs still attempt to connect by using TLS.

The certificate bundle to use for validating server certificates for the configured URL. If empty,

Q When false, secure LDAP (ldaps://) URLs connect using TLS, and insecure LDAP (Idap://) URLs
OpenShift Container Platform uses system-trusted roots. This only applies if insecure is set to

269

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#roles

OpenShift Container Platform 3.11 Configuring Clusters

false.

14.2.2. LDAP query definition

Sync configurations consist of LDAP query definitions for the entries that are required for
synchronization. The specific definition of an LDAP query depends on the schema used to store
membership information in the LDAP server.

LDAP query definition

baseDN: ou=users,dc=example,dc=com ﬂ

scope: sub 9

derefAliases: never 6

timeout: 0 ﬂ

filter: (objectClass=inetOrgPerson) 6
pageSize: 0

The distinguished name (DN) of the branch of the directory where all searches will start from. It is
required that you specify the top of your directory tree, but you can also specify a subtree in the
directory.

The scope of the search. Valid values are base, one, or sub. If this is left undefined, then a scope of
sub is assumed. Descriptions of the scope options can be found in the table below.

The behavior of the search with respect to aliases in the LDAP tree. Valid values are never, search,
base, or always. If this is left undefined, then the defaultis to always dereference aliases.
Descriptions of the dereferencing behaviors can be found in the table below.

The time limit allowed for the search by the client, in seconds. A value of O imposes no client-side
limit.

A valid LDAP search filter. If this is left undefined, then the default is (objectClass=").

Q® 6 o o 9o

The optional maximum size of response pages from the server, measured in LDAP entries. If set to
0, no size restrictions will be made on pages of responses. Setting paging sizes is necessary when
queries return more entries than the client or server allow by default.

Table 14.1. LDAP search scope options

LDAP Search Description

Scope

base Only consider the object specified by the base DN given for the query.

onhe Consider all of the objects on the same level in the tree as the base DN for the query.
sub Consider the entire subtree rooted at the base DN given for the query.

Table 14.2. LDAP dereferencing behaviors

270

CHAPTER 14. SYNCING GROUPS WITH LDAF

Dereferencing Description

Behavior

hever Never dereference any aliases found in the LDAP tree.
search Only dereference aliases found while searching.

base Only dereference aliases while finding the base object.
always Always dereference all aliases found in the LDAP tree.

14.2.3. User-defined name mapping

A user-defined name mapping explicitly maps the names of OpenShift Container Platform groups to
unique identifiers that find groups on your LDAP server. The mapping uses normal YAML syntax. A
user-defined mapping can contain an entry for every group in your LDAP server or only a subset of
those groups. If there are groups on the LDAP server that do not have a user-defined name mapping,
the default behavior during sync is to use the attribute specified as the OpenShift Container Platform
group’s name.

User-defined name mapping

groupUIDNameMapping:
"cn=group1,ou=groups,dc=example,dc=com": firstgroup
"cn=group2,ou=groups,dc=example,dc=com": secondgroup
"cn=group3,ou=groups,dc=example,dc=com": thirdgroup

14.3. RUNNING LDAP SYNC

Once you have created a sync configuration file, then sync can begin. OpenShift Container Platform
allows administrators to perform a number of different sync types with the same server.

NOTE

By default, all group synchronization or pruning operations are dry-run, so you must set
the --confirm flag on the sync-groups command in order to make changes to OpenShift
Container Platform Group records.

To sync all groups from the LDAP server with OpenShift Container Platform:
I $ oc adm groups sync --sync-config=config.yaml --confirm

To sync all groups already in OpenShift Container Platform that correspond to groups in the LDAP
server specified in the configuration file:

I $ oc adm groups sync --type=openshift --sync-config=config.yaml --confirm

To sync a subset of LDAP groups with OpenShift Container Platform, you can use whitelist files, blacklist
files, or both:

271

OpenShift Container Platform 3.11 Configuring Clusters

NOTE

You can use any combination of blacklist files, whitelist files, or whitelist literals. Whitelist
and blacklist files must contain one unique group identifier per line, and you can include
whitelist literals directly in the command itself. These guidelines apply to groups found on
LDAP servers as well as groups already present in OpenShift Container Platform.

$ oc adm groups sync --whitelist=<whitelist_file> \
--sync-config=config.yaml \
--confirm

$ oc adm groups sync --blacklist=<blacklist_file> \
--sync-config=config.yaml \
--confirm

$ oc adm groups sync <group_unique_identifier> \
--sync-config=config.yaml \
--confirm

$ oc adm groups sync <group_unique_identifier> \
--whitelist=<whitelist_file> \
--blacklist=<blacklist_file>\
--sync-config=config.yaml \
--confirm

$ oc adm groups sync --type=openshift \
--whitelist=<whitelist_file> \
--sync-config=config.yaml \
--confirm

14.4. RUNNING A GROUP PRUNING JOB
An administrator can also choose to remove groups from OpenShift Container Platform records if the
records on the LDAP server that created them are no longer present. The prune job will accept the

same sync configuration file and white- or black-lists as used for the sync job. More information is
available in Pruning groups section.

14.5. SYNC EXAMPLES
This section contains examples for the RFC 2307, Active Directory, and augmented Active Directory
schemas. All of the following examples synchronize a group named admins that has two members: Jane
and Jim. Each example explains:

® How the group and users are added to the LDAP server.

® What the LDAP sync configuration file looks like.

® What the resulting group record in OpenShift Container Platform will be after synchronization.

NOTE

These examples assume that all users are direct members of their respective groups.
Specifically, no groups have other groups as members. See Nested Membership Sync
Example for information on how to sync nested groups.

14.5.1. Syncing groups by using RFC 2307 schema

272

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#pruning-groups

CHAPTER 14. SYNCING GROUPS WITH LDAF

In the RFC 2307 schema, both users (Jane and Jim) and groups exist on the LDAP server as first-class
entries, and group membership is stored in attributes on the group. The following snippet of Idif defines
the users and group for this schema:

LDAP entries that use RFC 2307 schema: rfc2307.1dif

dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit
ou: users

dn: cn=Jane,ou=users,dc=example,dc=com
objectClass: person

objectClass: organizationalPerson
objectClass: inetOrgPerson

cn: Jane

sn: Smith

displayName: Jane Smith

mail: jane.smith@example.com

dn: cn=Jim,ou=users,dc=example,dc=com
objectClass: person

objectClass: organizationalPerson
objectClass: inetOrgPerson

cn:Jim

sn: Adams

displayName: Jim Adams

mail: jim.adams@example.com

dn: ou=groups,dc=example,dc=com
objectClass: organizationalUnit
ou: groups

dn: cn=admins,ou=groups,dc=example,dc=com ﬂ
objectClass: groupOfNames

cn: admins

owner: cn=admin,dc=example,dc=com

description: System Administrators

member: cn=Jane,ou=users,dc=example,dc=com 9
member: cn=Jim,ou=users,dc=example,dc=com

ﬂ The group is a first-class entry in the LDAP server.

9 Members of a group are listed with an identifying reference as attributes on the group.

To sync this group, you must first create the configuration file. The RFC 2307 schema requires you to
provide an LDAP query definition for both user and group entries, as well as the attributes with which to
represent them in the internal OpenShift Container Platform records.

For clarity, the group you create in OpenShift Container Platform should use attributes other than the
distinguished name whenever possible for user- or administrator-facing fields. For example, identify the
users of an OpenShift Container Platform group by their e-mail, and use the name of the group as the
common name. The following configuration file creates these relationships:

273

OpenShift Container Platform 3.11 Configuring Clusters

NOTE

If using user-defined name mappings, your configuration file will differ.

LDAP sync configuration that uses RFC 2307 schema: rfc2307_config.yaml

O 0906 O 009

kind: LDAPSyncConfig

apiVersion: vi

url: ldap://LDAP_SERVICE_IP:389 0
insecure: false 9

rfc2307:

groupsQuery:

baseDN: "ou=groups,dc=example,dc=com"

scope: sub

derefAliases: never

pageSize: 0
groupUIDAttribute: dn 6
groupNameAttributes: [cn] ﬂ
groupMembershipAttributes: [member] 6
usersQuery:

baseDN: "ou=users,dc=example,dc=com"

scope: sub

derefAliases: never

pageSize: 0
userUIDAttribute: dn &)
userNameAttributes: [uid] ﬂ
tolerateMemberNotFoundErrors: false
tolerateMemberOutOfScopeErrors: false

The IP address and host of the LDAP server where this group’s record is stored.

When false, secure LDAP (ldaps://) URLs connect using TLS, and insecure LDAP (Idap://) URLs
are upgraded to TLS. When true, no TLS connection is made to the server unless you specify a
Idaps:// URL, in which case URLs still attempt to connect by using TLS.

The attribute that uniquely identifies a group on the LDAP server. You cannot specify
groupsQuery filters when using DN for groupUIDAttribute. For fine-grained filtering, use the
whitelist / blacklist method.

The attribute to use as the name of the group.

The attribute on the group that stores the membership information.

The attribute that uniquely identifies a user on the LDAP server. You cannot specify usersQuery
filters when using DN for userUIDAttribute. For fine-grained filtering, use the whitelist / blacklist
method.

The attribute to use as the name of the user in the OpenShift Container Platform group record.

To run sync with the rfc2307_config.yaml file:

I $ oc adm groups sync --sync-config=rfc2307_config.yaml --confirm

274

CHAPTER 14. SYNCING GROUPS WITH LDAF

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift Container Platform group created by using the rfc2307_config.yaml file

apiVersion: user.openshift.io/v1
kind: Group
metadata:
annotations:
openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 0
openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com 9
openshift.io/ldap.url: LDAP_SERVER_IP:389 9
creationTimestamp:
name: admins ﬂ
users: 6
- jane.smith@example.com
- jim.adams@example.com

The last time this OpenShift Container Platform group was synchronized with the LDAP server, in
ISO 6801 format.

The unique identifier for the group on the LDAP server.
The IP address and host of the LDAP server where this group’s record is stored.
The name of the group as specified by the sync file.

The users that are members of the group, named as specified by the sync file.

000 O

14.5.1.1. RFC2307 with user-defined name mappings

When syncing groups with user-defined name mappings, the configuration file changes to contain these
mappings as shown below.

LDAP sync configuration that uses RFC 2307 schema with user-defined name mappings:
rfc2307_config_user_defined.yaml/

kind: LDAPSyncConfig
apiVersion: v1i
groupUIDNameMapping:
"cn=admins,ou=groups,dc=example,dc=com": Administrators ﬂ
rfc2307:
groupsQuery:
baseDN: "ou=groups,dc=example,dc=com"
scope: sub
derefAliases: never
pageSize: 0
groupUIDAttribute: dn 9
groupNameAttributes: [cn] G
groupMembershipAttributes: [member]
usersQuery:
baseDN: "ou=users,dc=example,dc=com"
scope: sub

275

OpenShift Container Platform 3.11 Configuring Clusters

derefAliases: never

pageSize: 0
userUIDAttribute: dn @)
userNameAttributes: [uid]
tolerateMemberNotFoundErrors: false
tolerateMemberOutOfScopeErrors: false

The user-defined name mapping.

The unique identifier attribute that is used for the keys in the user-defined name mapping. You
cannot specify groupsQuery filters when using DN for groupUIDAttribute. For fine-grained
filtering, use the whitelist / blacklist method.

The attribute to name OpenShift Container Platform groups with if their unique identifier is not in
the user-defined name mapping.

o o o9

The attribute that uniquely identifies a user on the LDAP server. You cannot specify usersQuery
filters when using DN for userUIDAttribute. For fine-grained filtering, use the whitelist / blacklist
method.

To run sync with the rfc2307_config_user_defined.yaml file:

I $ oc adm groups sync --sync-config=rfc2307_config_user_defined.yaml --confirm

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift Container Platform group created by using the
rfc2307_config_user_defined.yaml file

apiVersion: user.openshift.io/v1
kind: Group
metadata:
annotations:
openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400
openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com
openshift.io/ldap.url: LDAP_SERVER_IP:389
creationTimestamp:
name: Administrators
users:
- jane.smith@example.com
- jim.adams@example.com

ﬂ The name of the group as specified by the user-defined name mapping.

14.5.2. Syncing groups by using RFC 2307 with user-defined error tolerances

By default, if the groups being synced contain members whose entries are outside of the scope defined
in the member query, the group sync fails with an error:

276

CHAPTER 14. SYNCING GROUPS WITH LDAF

Error determining LDAP group membership for "<group>": membership lookup for user "<user>" in
group "<group>" failed because of "search for entry with dn="<user-dn>" would search outside of the
base dn specified (dn="<base-dn>")".

This often indicates a mis-configured baseDN in the usersQuery field. However, in cases where the
baseDN intentionally does not contain some of the members of the group, setting
tolerateMemberOutOfScopeErrors: true allows the group sync to continue. Out of scope members
will be ignored.

Similarly, when the group sync process fails to locate a member for a group, it fails outright with errors:

Error determining LDAP group membership for "<group>": membership lookup for user "<user>" in
group "<group>" failed because of "search for entry with base dn="<user-dn>" refers to a non-
existent entry".

Error determining LDAP group membership for "<group>": membership lookup for user "<user>" in
group "<group>" failed because of "search for entry with base dn="<user-dn>" and filter "<filter>" did
not return any results".

This often indicates a mis-configured usersQuery field. However, in cases where the group contains
member entries that are known to be missing, setting tolerateMemberNotFoundErrors: true allows the
group sync to continue. Problematic members will be ignored.

' WARNING
A Enabling error tolerances for the LDAP group sync causes the sync process to

ignore problematic member entries. If the LDAP group sync is not configured
correctly, this could result in synced OpenShift Container Platform groups missing
members.

LDAP entries that use RFC 2307 schema with problematic group membership:
rfc2307_problematic_users.Idif

dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit
ou: users

dn: cn=Jane,ou=users,dc=example,dc=com
objectClass: person

objectClass: organizationalPerson
objectClass: inetOrgPerson

cn: Jane

sn: Smith

displayName: Jane Smith

mail: jane.smith@example.com

dn: cn=Jim,ou=users,dc=example,dc=com
objectClass: person

objectClass: organizationalPerson
objectClass: inetOrgPerson

277

OpenShift Container Platform 3.11 Configuring Clusters

cn:Jim

sn: Adams

displayName: Jim Adams

mail: jim.adams@example.com

dn: ou=groups,dc=example,dc=com
objectClass: organizationalUnit
ou: groups

dn: cn=admins,ou=groups,dc=example,dc=com

objectClass: groupOfNames

cn: admins

owner: cn=admin,dc=example,dc=com

description: System Administrators

member: cn=Jane,ou=users,dc=example,dc=com

member: cn=Jim,ou=users,dc=example,dc=com

member: cn=INVALID,ou=users,dc=example,dc=com ﬂ
member: cn=Jim,ou=OUTOFSCOPE,dc=example,dc=com 9

ﬂ A member that does not exist on the LDAP server.

9 A member that may exist, but is not under the baseDN in the user query for the sync job.

In order to tolerate the errors in the above example, the following additions to your sync configuration
file must be made:

LDAP sync configuration that uses RFC 2307 schema tolerating errors:
rfc2307_config_tolerating.yaml

kind: LDAPSyncConfig
apiVersion: vi
url: [dap://LDAP_SERVICE_IP:389
rfc2307:
groupsQuery:
baseDN: "ou=groups,dc=example,dc=com"
scope: sub
derefAliases: never
groupUIDAttribute: dn
groupNameAttributes: [cn]
groupMembershipAttributes: [member]
usersQuery:
baseDN: "ou=users,dc=example,dc=com"
scope: sub
derefAliases: never
userUIDAttribute: dn)
userNameAttributes: [uid]
tolerateMemberNotFoundErrors: true 9

tolerateMemberOutOfScopekErrors: true 6

9 When true, the sync job tolerates groups for which some members were not found, and members
whose LDAP entries are not found are ignored. The default behavior for the sync job is to fail if a
member of a group is not found.

9 When true, the sync job tolerates groups for which some members are outside the user scope

P Lk T T T Y Ny g T N I Y N B N e L e L T T T o B o S s e e o e PP |

278

CHAPTER 14. SYNCING GROUPS WITH LDAF

YJIVEIT T LUE UDCIDWUCTY LdST VIN, dIU TTICHIVElS DULsiue Lic nieniper quelry scope dic iginoircu.
The default behavior for the sync job is to fail if a member of a group is out of scope.

ﬂ The attribute that uniquely identifies a user on the LDAP server. You cannot specify usersQuery
filters when using DN for userUIDAttribute. For fine-grained filtering, use the whitelist / blacklist
method.

To run sync with the rfc2307_config_tolerating.yaml file:

I $ oc adm groups