
OpenShift Container Platform 3.11

Configuring Clusters

OpenShift Container Platform 3.11 Installation and Configuration

Last Updated: 2022-09-08

OpenShift Container Platform 3.11 Configuring Clusters

OpenShift Container Platform 3.11 Installation and Configuration

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

OpenShift Installation and Configuration topics cover the basics of installing and configuring
OpenShift in your environment. Use these topics for the one-time tasks required to get OpenShift
up and running.

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW

CHAPTER 2. SETTING UP THE REGISTRY
2.1. INTERNAL REGISTRY OVERVIEW

2.1.1. About the Registry
2.1.2. Integrated or Stand-alone Registries

2.2. DEPLOYING A REGISTRY ON EXISTING CLUSTERS
2.2.1. Overview
2.2.2. Setting the Registry Host Name
2.2.3. Deploying the Registry
2.2.4. Deploying the Registry as a DaemonSet
2.2.5. Registry Compute Resources
2.2.6. Storage for the Registry

2.2.6.1. Production Use
2.2.6.1.1. Use Amazon S3 as a Storage Back-end

2.2.6.2. Non-Production Use
2.2.7. Enabling the Registry Console

2.2.7.1. Deploying the Registry Console
2.2.7.2. Securing the Registry Console
2.2.7.3. Troubleshooting the Registry Console

2.2.7.3.1. Debug Mode
2.2.7.3.2. Display SSL Certificate Path

2.3. ACCESSING THE REGISTRY
2.3.1. Viewing Logs
2.3.2. File Storage
2.3.3. Accessing the Registry Directly

2.3.3.1. User Prerequisites
2.3.3.2. Logging in to the Registry
2.3.3.3. Pushing and Pulling Images

2.3.4. Accessing Registry Metrics
2.4. SECURING AND EXPOSING THE REGISTRY

2.4.1. Overview
2.4.2. Manually Securing the Registry
2.4.3. Manually Exposing a Secure Registry
2.4.4. Manually Exposing a Non-Secure Registry

2.5. EXTENDED REGISTRY CONFIGURATION
2.5.1. Maintaining the Registry IP Address
2.5.2. Configuring an External Registry Search List
2.5.3. Setting the Registry Host Name
2.5.4. Overriding the Registry Configuration
2.5.5. Registry Configuration Reference

2.5.5.1. Log
2.5.5.2. Hooks
2.5.5.3. Storage
2.5.5.4. Auth
2.5.5.5. Middleware

2.5.5.5.1. S3 Driver Configuration
2.5.5.5.2. CloudFront Middleware
2.5.5.5.3. Overriding Middleware Configuration Options
2.5.5.5.4. Image Pullthrough
2.5.5.5.5. Manifest Schema v2 Support

21

22
22
22
22
22
22
22
23
23
23
24
24
25
26
26
27
27
29
29
29
30
30
30
32
32
32
33
34
35
35
35
38
40
42
42
43
44
44
46
46
47
47
48
48
49
49
50
51
52

Table of Contents

1

. .

2.5.5.6. OpenShift
2.5.5.7. Reporting
2.5.5.8. HTTP
2.5.5.9. Notifications
2.5.5.10. Redis
2.5.5.11. Health
2.5.5.12. Proxy
2.5.5.13. Cache

2.6. KNOWN ISSUES
2.6.1. Overview
2.6.2. Concurrent Build with Registry Pull-through
2.6.3. Image Push Errors with Scaled Registry Using Shared NFS Volume
2.6.4. Pull of Internally Managed Image Fails with "not found" Error
2.6.5. Image Push Fails with "500 Internal Server Error" on S3 Storage
2.6.6. Image Pruning Fails

CHAPTER 3. SETTING UP A ROUTER
3.1. ROUTER OVERVIEW

3.1.1. About Routers
3.1.2. Router Service Account

3.1.2.1. Permission to Access Labels
3.2. USING THE DEFAULT HAPROXY ROUTER

3.2.1. Overview
3.2.2. Creating a Router
3.2.3. Other Basic Router Commands
3.2.4. Filtering Routes to Specific Routers
3.2.5. HAProxy Strict SNI
3.2.6. TLS Cipher Suites
3.2.7. Mutual TLS Authentication
3.2.8. Highly-Available Routers
3.2.9. Customizing the Router Service Ports
3.2.10. Working With Multiple Routers
3.2.11. Adding a Node Selector to a Deployment Configuration
3.2.12. Using Router Shards

3.2.12.1. Creating Router Shards
3.2.12.2. Modifying Router Shards

3.2.13. Finding the Host Name of the Router
3.2.14. Customizing the Default Routing Subdomain
3.2.15. Forcing Route Host Names to a Custom Routing Subdomain
3.2.16. Using Wildcard Certificates
3.2.17. Manually Redeploy Certificates
3.2.18. Using Secured Routes
3.2.19. Using Wildcard Routes (for a Subdomain)
3.2.20. Using the Container Network Stack
3.2.21. Using the Dynamic Configuration Manager
3.2.22. Exposing Router Metrics
3.2.23. ARP Cache Tuning for Large-scale Clusters
3.2.24. Protecting Against DDoS Attacks
3.2.25. Enable HAProxy Threading

3.3. DEPLOYING A CUSTOMIZED HAPROXY ROUTER
3.3.1. Overview
3.3.2. Obtaining the Router Configuration Template
3.3.3. Modifying the Router Configuration Template

53
54
54
54
54
55
55
55
55
55
55
56
56
57
57

58
58
58
58
58
58
58
59
60
62
63
63
63
64
64
65
65
65
68
70
71
72
72
73
73
74
75
81
81

83
85
86
87
87
87
88
88

OpenShift Container Platform 3.11 Configuring Clusters

2

. .

. .

3.3.3.1. Background
3.3.3.2. Go Template Actions
3.3.3.3. Router Provided Information
3.3.3.4. Annotations
3.3.3.5. Environment Variables
3.3.3.6. Example Usage

3.3.4. Using a ConfigMap to Replace the Router Configuration Template
3.3.5. Using Stick Tables
3.3.6. Rebuilding Your Router

3.4. CONFIGURING THE HAPROXY ROUTER TO USE THE PROXY PROTOCOL
3.4.1. Overview
3.4.2. Why Use the PROXY Protocol?
3.4.3. Using the PROXY Protocol

CHAPTER 4. DEPLOYING RED HAT CLOUDFORMS
4.1. DEPLOYING RED HAT CLOUDFORMS ON OPENSHIFT CONTAINER PLATFORM

4.1.1. Introduction
4.2. REQUIREMENTS FOR RED HAT CLOUDFORMS ON OPENSHIFT CONTAINER PLATFORM
4.3. CONFIGURING ROLE VARIABLES

4.3.1. Overview
4.3.2. General Variables
4.3.3. Customizing Template Parameters
4.3.4. Database Variables

4.3.4.1. Containerized (Podified) Database
4.3.4.2. External Database

4.3.5. Storage Class Variables
4.3.5.1. NFS (Default)
4.3.5.2. NFS External
4.3.5.3. Cloud Provider
4.3.5.4. Preconfigured (Advanced)

4.4. RUNNING THE INSTALLER
4.4.1. Deploying Red Hat CloudForms During or After OpenShift Container Platform Installation
4.4.2. Example Inventory Files

4.4.2.1. All Defaults
4.4.2.2. External NFS Storage
4.4.2.3. Override PV Sizes
4.4.2.4. Override Memory Requirements
4.4.2.5. External PostgreSQL Database

4.5. ENABLING CONTAINER PROVIDER INTEGRATION
4.5.1. Adding a Single Container Provider

4.5.1.1. Adding Manually
4.5.1.2. Adding Automatically

4.5.2. Multiple Container Providers
4.5.2.1. Preparing the Script

4.5.2.1.1. Example
4.5.2.2. Running the Playbook

4.5.3. Refreshing Providers
4.6. UNINSTALLING RED HAT CLOUDFORMS

4.6.1. Running the Uninstall Playbook
4.6.2. Troubleshooting

CHAPTER 5. PROMETHEUS CLUSTER MONITORING
5.1. OVERVIEW

88
88
89
94
94
95
96
98
99
99
99

100
100

105
105
105
106
107
107
107
108
108
108
108
109
110
110
111
111
111
111

112
112
112
112
113
113
113
113
114
114
114
114
115
116
116
116
116
116

118
118

Table of Contents

3

. .

. .

5.2. CONFIGURING OPENSHIFT CONTAINER PLATFORM CLUSTER MONITORING
5.2.1. Monitoring prerequisites
5.2.2. Installing monitoring stack
5.2.3. Persistent storage

5.2.3.1. Enabling persistent storage
5.2.3.2. Determining how much storage is necessary
5.2.3.3. Setting persistent storage size
5.2.3.4. Allocating enough persistent volumes
5.2.3.5. Enabling dynamically-provisioned storage

5.2.4. Supported configuration
5.3. CONFIGURING ALERTMANAGER

5.3.1. Dead man’s switch
5.3.2. Grouping alerts
5.3.3. Dead man’s switch PagerDuty
5.3.4. Alerting rules

5.4. CONFIGURING ETCD MONITORING
5.5. ACCESSING PROMETHEUS, ALERTMANAGER, AND GRAFANA

CHAPTER 6. ACCESSING AND CONFIGURING THE RED HAT REGISTRY
6.1. AUTHENTICATION ENABLED RED HAT REGISTRY

6.1.1. Creating User accounts
6.1.2. Creating Service Accounts and Authentication Tokens for the Red Hat Registry
6.1.3. Managing Registry Credentials for Installation and Upgrade
6.1.4. Using Service Accounts with the Red Hat Registry

CHAPTER 7. MASTER AND NODE CONFIGURATION
7.1. CUSTOMIZING MASTER AND NODE CONFIGURATION AFTER INSTALLATION
7.2. INSTALLATION DEPENDENCIES
7.3. CONFIGURING MASTERS AND NODES
7.4. MAKING CONFIGURATION CHANGES USING ANSIBLE

7.4.1. Using the htpasswd command
7.5. MAKING MANUAL CONFIGURATION CHANGES
7.6. MASTER CONFIGURATION FILES

7.6.1. Admission Control Configuration
7.6.2. Asset Configuration
7.6.3. Authentication and Authorization Configuration
7.6.4. Controller Configuration
7.6.5. etcd Configuration
7.6.6. Grant Configuration
7.6.7. Image Configuration
7.6.8. Image Policy Configuration
7.6.9. Kubernetes Master Configuration
7.6.10. Network Configuration
7.6.11. OAuth Authentication Configuration
7.6.12. Project Configuration
7.6.13. Scheduler Configuration
7.6.14. Security Allocator Configuration
7.6.15. Service Account Configuration
7.6.16. Serving Information Configuration
7.6.17. Volume Configuration
7.6.18. Basic Audit

7.6.18.1. Enable Basic Auditing
7.6.19. Advanced Audit

119
120
120
120
121
121
121
121
121
122
122
123
123
124
124
130
134

135
135
135
136
136
137

140
140
140
140
140
142
143
144
144
145
146
147
147
149
149
150
151
151

153
155
156
156
156
157
158
159
160
161

OpenShift Container Platform 3.11 Configuring Clusters

4

. .

. .

7.6.20. Specifying TLS ciphers for etcd
7.7. NODE CONFIGURATION FILES

7.7.1. Pod and Node Configuration
7.7.2. Docker Configuration
7.7.3. Local Storage Configuration
7.7.4. Setting Node Queries per Second (QPS) Limits and Burst Values
7.7.5. Parallel Image Pulls with Docker 1.9+

7.8. PASSWORDS AND OTHER SENSITIVE DATA
7.9. CREATING NEW CONFIGURATION FILES
7.10. LAUNCHING SERVERS USING CONFIGURATION FILES
7.11. VIEWING MASTER AND NODE LOGS

7.11.1. Configuring Logging Levels
7.12. RESTARTING MASTER AND NODE SERVICES

CHAPTER 8. OPENSHIFT ANSIBLE BROKER CONFIGURATION
8.1. OVERVIEW
8.2. AUTHENTICATING ON RED HAT PARTNER CONNECT REGISTRY
8.3. MODIFYING THE OPENSHIFT ANSIBLE BROKER CONFIGURATION
8.4. REGISTRY CONFIGURATION

8.4.1. Production or Development
8.4.2. Storing Registry Credentials
8.4.3. APB Filtering
8.4.4. Mock Registry
8.4.5. Dockerhub Registry
8.4.6. Ansible Galaxy Registry
8.4.7. Local OpenShift Container Registry
8.4.8. Red Hat Container Catalog Registry
8.4.9. Red Hat Partner Connect Registry
8.4.10. Helm Chart Registry
8.4.11. API V2 Docker Registry
8.4.12. Quay Docker Registry
8.4.13. Multiple Registries

8.5. BROKER AUTHENTICATION
8.5.1. Basic Auth

8.5.1.1. Deployment Template and Secrets
8.5.1.2. Configuring Service Catalog and Broker Communication

8.5.2. Bearer Auth
8.5.2.1. Deployment Template and Secrets
8.5.2.2. Configuring Service Catalog and Broker Communication

8.6. DAO CONFIGURATION
8.7. LOG CONFIGURATION
8.8. OPENSHIFT CONFIGURATION
8.9. BROKER CONFIGURATION
8.10. SECRETS CONFIGURATION
8.11. RUNNING BEHIND A PROXY

8.11.1. Registry Adapter Whitelists
8.11.2. Configuring the Broker Behind a Proxy Using Ansible
8.11.3. Configuring the Broker Behind a Proxy Manually
8.11.4. Setting Proxy Environment Variables in Pods

CHAPTER 9. ADDING HOSTS TO AN EXISTING CLUSTER
9.1. ADDING HOSTS

Procedure

163
165
167
168
168
169
169
170
170
171
172
173
178

179
179
180
180
180
181

182
184
185
185
185
186
186
186
187
187
187
188
188
188
189
190
190
191
191

192
192
192
193
194
194
195
195
195
196

197
197
197

Table of Contents

5

. .

. .

. .

9.2. ADDING ETCD HOSTS TO EXISTING CLUSTER
9.3. REPLACING EXISTING MASTERS WITH ETCD COLOCATED
9.4. MIGRATING THE NODES

CHAPTER 10. ADDING THE DEFAULT IMAGE STREAMS AND TEMPLATES
10.1. OVERVIEW
10.2. OFFERINGS BY SUBSCRIPTION TYPE

10.2.1. OpenShift Container Platform Subscription
10.2.2. xPaaS Middleware Add-on Subscriptions

10.3. BEFORE YOU BEGIN
10.4. PREREQUISITES
10.5. CREATING IMAGE STREAMS FOR OPENSHIFT CONTAINER PLATFORM IMAGES
10.6. CREATING IMAGE STREAMS FOR XPAAS MIDDLEWARE IMAGES
10.7. CREATING DATABASE SERVICE TEMPLATES
10.8. CREATING INSTANT APP AND QUICKSTART TEMPLATES
10.9. WHAT’S NEXT?

CHAPTER 11. CONFIGURING CUSTOM CERTIFICATES
11.1. OVERVIEW
11.2. CONFIGURING A CERTIFICATE CHAIN
11.3. CONFIGURING CUSTOM CERTIFICATES DURING INSTALLATION
11.4. CONFIGURING CUSTOM CERTIFICATES FOR THE WEB CONSOLE OR CLI
11.5. CONFIGURING A CUSTOM MASTER HOST CERTIFICATE
11.6. CONFIGURING A CUSTOM WILDCARD CERTIFICATE FOR THE DEFAULT ROUTER
11.7. CONFIGURING A CUSTOM CERTIFICATE FOR THE IMAGE REGISTRY
11.8. CONFIGURING A CUSTOM CERTIFICATE FOR A LOAD BALANCER
11.9. RETROFIT CUSTOM CERTIFICATES INTO A CLUSTER

11.9.1. Retrofit Custom Master Certificates into a Cluster
11.9.2. Retrofit Custom Router Certificates into a Cluster

11.10. USING CUSTOM CERTIFICATES WITH OTHER COMPONENTS

CHAPTER 12. REDEPLOYING CERTIFICATES
12.1. OVERVIEW
12.2. CHECKING CERTIFICATE EXPIRATIONS

12.2.1. Role Variables
12.2.2. Running Certificate Expiration Playbooks

Other Example Playbooks
12.2.3. Output Formats

HTML Report
JSON Report

12.3. REDEPLOYING CERTIFICATES
12.3.1. Redeploying All Certificates Using the Current OpenShift Container Platform and etcd CA
12.3.2. Redeploying a New or Custom OpenShift Container Platform CA
12.3.3. Redeploying a New etcd CA
12.3.4. Redeploying Master and Web Console Certificates
12.3.5. Redeploying Only Named Certificates
12.3.6. Redeploying etcd Certificates Only
12.3.7. Redeploying Node Certificates
12.3.8. Redeploying Registry or Router Certificates Only

12.3.8.1. Redeploying Registry Certificates Only
12.3.8.2. Redeploying Router Certificates Only

12.3.9. Redeploying Custom Registry or Router Certificates
12.3.9.1. Redeploying Registry Certificates Manually
12.3.9.2. Redeploying Router Certificates Manually

199
200
202

204
204
204
204
205
205
205
206
206
207
207
208

209
209
209
209
210
211
212
213
214
215
215
216
216

217
217
217
217
218
219
219
219
219

220
221
221

223
223
224
224
225
225
225
225
225
226
227

OpenShift Container Platform 3.11 Configuring Clusters

6

. .

. .

12.4. MANAGING CERTIFICATE SIGNING REQUESTS
12.4.1. Reviewing Certificate Signing Requests
12.4.2. Approving Certificate Signing Requests
12.4.3. Denying Certificate Signing Requests
12.4.4. Configuring Automatic Approval of Certificate Signing Requests

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT
13.1. OVERVIEW
13.2. IDENTITY PROVIDER PARAMETERS
13.3. CONFIGURING IDENTITY PROVIDERS

13.3.1. Configuring identity providers with Ansible
13.3.2. Configuring identity providers in the master configuration file

13.3.2.1. Manually provisioning a user when using the lookup mapping method
13.3.3. Allow all
13.3.4. Deny all
13.3.5. HTPasswd
13.3.6. Keystone

13.3.6.1. Configuring authentication on the master
13.3.6.2. Creating Users with Keystone Authentication
13.3.6.3. Verifying Users

13.3.7. LDAP authentication
13.3.8. Basic authentication (remote)

13.3.8.1. Configuring authentication on the master
13.3.8.2. Troubleshooting

13.3.9. Request header
SSPI connection support on Microsoft Windows
Apache authentication using Request header

Installing the prerequisites
Configuring Apache
Configuring the master
Restarting services
Verifying the configuration

13.3.10. GitHub and GitHub Enterprise
13.3.10.1. Registering the application on GitHub
13.3.10.2. Configuring authentication on the master
13.3.10.3. Creating users with GitHub authentication
13.3.10.4. Verifying users

13.3.11. GitLab
13.3.12. Google
13.3.13. OpenID connect

13.4. TOKEN OPTIONS
13.5. GRANT OPTIONS
13.6. SESSION OPTIONS
13.7. PREVENTING CLI VERSION MISMATCH WITH USER AGENT

CHAPTER 14. SYNCING GROUPS WITH LDAP
14.1. OVERVIEW
14.2. CONFIGURING LDAP SYNC

14.2.1. LDAP client configuration
14.2.2. LDAP query definition
14.2.3. User-defined name mapping

14.3. RUNNING LDAP SYNC
14.4. RUNNING A GROUP PRUNING JOB

229
229
230
230
230

231
231
231

232
232
234
234
235
236
236
238
238
240
240
241

243
244
246
247
249
250
250
252
253
254
254
255
255
256
258
258
259
260
261

264
264
265
266

269
269
269
269
270
271
271

272

Table of Contents

7

. .

. .

. .

. .

. .

14.5. SYNC EXAMPLES
14.5.1. Syncing groups by using RFC 2307 schema

14.5.1.1. RFC2307 with user-defined name mappings
14.5.2. Syncing groups by using RFC 2307 with user-defined error tolerances
14.5.3. Syncing groups by using Active Directory
14.5.4. Syncing groups by using augmented Active Directory

14.6. NESTED MEMBERSHIP SYNC EXAMPLE
14.7. LDAP SYNC CONFIGURATION SPECIFICATION

14.7.1. v1.LDAPSyncConfig
14.7.2. v1.StringSource
14.7.3. v1.LDAPQuery
14.7.4. v1.RFC2307Config
14.7.5. v1.ActiveDirectoryConfig
14.7.6. v1.AugmentedActiveDirectoryConfig

CHAPTER 15. CONFIGURING LDAP FAILOVER
15.1. PREREQUISITES FOR CONFIGURING BASIC REMOTE AUTHENTICATION
15.2. GENERATING AND SHARING CERTIFICATES WITH THE REMOTE BASIC AUTHENTICATION SERVER

15.3. CONFIGURING SSSD FOR LDAP FAILOVER
15.4. CONFIGURING APACHE TO USE SSSD
15.5. CONFIGURING OPENSHIFT CONTAINER PLATFORM TO USE SSSD AS THE BASIC REMOTE
AUTHENTICATION SERVER

CHAPTER 16. CONFIGURING THE SDN
16.1. OVERVIEW
16.2. AVAILABLE SDN PROVIDERS

Installing VMware NSX-T (™) on OpenShift Container Platform
16.3. CONFIGURING THE POD NETWORK WITH ANSIBLE
16.4. CONFIGURING THE POD NETWORK ON MASTERS
16.5. CHANGING THE VXLAN PORT FOR THE CLUSTER NETWORK
16.6. CONFIGURING THE POD NETWORK ON NODES
16.7. EXPANDING THE SERVICE NETWORK
16.8. MIGRATING BETWEEN SDN PLUG-INS

16.8.1. Migrating from ovs-multitenant to ovs-networkpolicy
16.9. EXTERNAL ACCESS TO THE CLUSTER NETWORK
16.10. USING FLANNEL

CHAPTER 17. CONFIGURING NUAGE SDN
17.1. NUAGE SDN AND OPENSHIFT CONTAINER PLATFORM
17.2. DEVELOPER WORKFLOW
17.3. OPERATIONS WORKFLOW
17.4. INSTALLATION

CHAPTER 18. CONFIGURING NSX-T SDN
18.1. NSX-T SDN AND OPENSHIFT CONTAINER PLATFORM
18.2. EXAMPLE TOPOLOGY
18.3. INSTALLING VMWARE NSX-T
18.4. CHECK NSX-T AFTER OPENSHIFT CONTAINER PLATFORM DEPLOYMENT

CHAPTER 19. CONFIGURING KURYR SDN
19.1. KURYR SDN AND OPENSHIFT CONTAINER PLATFORM
19.2. INSTALLING KURYR SDN
19.3. VERIFICATION

272
272
275
276
279
281
283
287
287
289
289
290
292
293

295
295

295
296
298

301

303
303
303
303
303
304
306
307
307
308
309
310
310

313
313
313
313
313

316
316
316
316
321

324
324
324
324

OpenShift Container Platform 3.11 Configuring Clusters

8

. .

. .

. .

CHAPTER 20. CONFIGURING FOR AMAZON WEB SERVICES (AWS)
20.1. OVERVIEW

20.1.1. Configuring authorization for Amazon Web Services (AWS)
20.1.1.1. Configuring the OpenShift Container Platform cloud provider at installation
20.1.1.2. Configuring the OpenShift Container Platform cloud provider after installation

20.2. CONFIGURING A SECURITY GROUP
20.2.1. Overriding Detected IP Addresses and Host Names

20.2.1.1. Configuring the OpenShift Container Platform registry for Amazon Web Services (AWS)
20.2.1.1.1. Configuring the OpenShift Container Platform inventory to use S3
20.2.1.1.2. Manually configuring OpenShift Container Platform registry to use S3
20.2.1.1.3. Verify the registry is using S3 storage

20.3. CONFIGURING AWS VARIABLES
20.4. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR AWS

20.4.1. Configuring OpenShift Container Platform for AWS with Ansible
20.4.2. Manually Configuring OpenShift Container Platform Masters for AWS
20.4.3. Manually Configuring OpenShift Container Platform Nodes for AWS
20.4.4. Manually Setting Key-Value Access Pairs

20.5. APPLYING CONFIGURATION CHANGES
20.6. LABELING CLUSTERS FOR AWS

20.6.1. Resources That Need Tags
20.6.2. Tagging an Existing Cluster
20.6.3. About Red Hat OpenShift Container Storage

CHAPTER 21. CONFIGURING FOR RED HAT VIRTUALIZATION
21.1. CREATING THE BASTION VIRTUAL MACHINE
21.2. INSTALLING OPENSHIFT CONTAINER PLATFORM WITH THE BASTION VIRTUAL MACHINE

CHAPTER 22. CONFIGURING FOR OPENSTACK
22.1. OVERVIEW
22.2. BEFORE YOU BEGIN

22.2.1. OpenShift Container Platform SDN
22.2.2. Kuryr SDN
22.2.3. OpenShift Container Platform Prerequisites

22.2.3.1. Enabling Octavia: OpenStack Load Balancing as a Service (LBaaS)
22.2.3.2. Creating OpenStack User Accounts, Projects, and Roles
22.2.3.3. Extra steps for Kuryr SDN
22.2.3.4. Configuring the RC file
22.2.3.5. Create an OpenStack Flavor
22.2.3.6. Creating an OpenStack Keypair
22.2.3.7. Setting up DNS for OpenShift Container Platform
22.2.3.8. Creation of OpenShift Container Platform Networks via OpenStack
22.2.3.9. Creating OpenStack Deployment Host Security Group
22.2.3.10. OpenStack Cinder Volumes

22.2.3.10.1. Docker Volume
22.2.3.10.2. Registry volume

22.2.3.11. Creating and Configuring the Deployment Instance
22.2.3.12. Deployment Host Configuration for OpenShift Container Platform

22.3. PROVISIONING OPENSHIFT CONTAINER PLATFORM INSTANCES USING THE OPENSHIFT ANSIBLE
PLAYBOOKS

22.3.1. Preparing the Inventory for Provisioning
22.3.1.1. OpenShiftSDN All YAML file
22.3.1.2. KuryrSDN All YAML file

22.3.1.2.1. Configuring global namespace access

326
326
326
327
327
328
329
329
330
331
332
335
335
335
336
337
337
337
338
338
338
339

340
340
343

349
349
349
349
349
350
350
352
353
354
355
356
356
357
358
359
359
360
360
362

365
365
365
367
369

Table of Contents

9

. .

. .

. .

22.3.1.3. OSEv3 YAML file
22.3.2. OpenStack Prerequisites Playbook
22.3.3. Stack Name Configuration

22.4. REGISTERING WITH SUBSCRIPTION MANAGER THE OPENSHIFT CONTAINER PLATFORM INSTANCES

22.5. INSTALLING OPENSHIFT CONTAINER PLATFORM BY USING AN ANSIBLE PLAYBOOK
22.6. APPLYING CONFIGURATION CHANGES TO EXISTING OPENSHIFT CONTAINER PLATFORM
ENVIRONMENT

22.6.1. Configuring OpenStack Variables on an existing OpenShift Environment
22.6.2. Configuring Zone Labels for Dynamically Created OpenStack PVs

CHAPTER 23. CONFIGURING FOR GOOGLE COMPUTE ENGINE
23.1. BEFORE YOU BEGIN

23.1.1. Configuring authorization for Google Cloud Platform
23.1.2. Google Compute Engine objects

23.2. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR GCE
23.2.1. Option 1: Configuring OpenShift Container Platform for GCP using Ansible
23.2.2. Option 2: Manually configuring OpenShift Container Platform for GCE

23.2.2.1. Manually configuring master hosts for GCE
23.2.2.2. Manually configuring node hosts for GCE

23.2.3. Configuring the OpenShift Container Platform registry for GCP
23.2.3.1. Manually configuring OpenShift Container Platform registry for GCP

23.2.3.1.1. Verify the registry is using GCP object storage
23.2.4. Configuring OpenShift Container Platform to use GCP storage
23.2.5. About Red Hat OpenShift Container Storage

23.3. USING THE GCP EXTERNAL LOAD BALANCER AS A SERVICE

CHAPTER 24. CONFIGURING FOR AZURE
24.1. BEFORE YOU BEGIN

24.1.1. Configuring authorization for Microsoft Azure
24.1.2. Configuring Microsoft Azure objects

24.2. THE AZURE CONFIGURATION FILE
24.3. EXAMPLE INVENTORY FOR OPENSHIFT CONTAINER PLATFORM ON MICROSOFT AZURE
24.4. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR MICROSOFT AZURE

24.4.1. Configuring OpenShift Container Platform for Azure by using Ansible
24.4.2. Manually configuring OpenShift Container Platform for Microsoft Azure

24.4.2.1. Manually configuring master hosts for Microsoft Azure
24.4.2.2. Manually configuring node hosts for Microsoft Azure

24.4.3. Configuring the OpenShift Container Platform registry for Microsoft Azure
24.4.4. Configuring OpenShift Container Platform to use Microsoft Azure storage
24.4.5. About Red Hat OpenShift Container Storage

24.5. USING THE MICROSOFT AZURE EXTERNAL LOAD BALANCER AS A SERVICE
24.5.1. Deploying a sample application using a load balancer

CHAPTER 25. CONFIGURING FOR VMWARE VSPHERE
25.1. BEFORE YOU BEGIN

25.1.1. Requirements
25.1.1.1. Permissions
25.1.1.2. Using OpenShift Container Platform with vMotion

25.2. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR VSPHERE
25.2.1. Option 1: Configuring OpenShift Container Platform for vSphere using Ansible
25.2.2. Option 2: Manually configuring OpenShift Container Platform for vSphere

25.2.2.1. Manually configuring master hosts for vSphere
25.2.2.2. Manually configuring node hosts for vSphere

372
374
375

375
376

376
377
377

379
379
379
380
383
383
385
385
386
386
387
388
391

392
392

394
394
394
395
396
397
400
400
401
401
402
403
407
408
408
409

411
411
411

412
414
414
414
418
418
421

OpenShift Container Platform 3.11 Configuring Clusters

10

. .

. .

25.2.2.3. Applying Configuration Changes
25.3. CONFIGURING OPENSHIFT CONTAINER PLATFORM TO USE VSPHERE STORAGE

Prerequisites
25.3.1. Dynamically Provisioning VMware vSphere volumes
25.3.2. Statically Provisioning VMware vSphere volumes

25.3.2.1. Creating PersistentVolumes
25.3.2.2. Formatting VMware vSphere volumes

25.4. CONFIGURING THE OPENSHIFT CONTAINER PLATFORM REGISTRY FOR VSPHERE
25.4.1. Configuring the OpenShift Container Platform registry for vSphere using Ansible
25.4.2. Dynamically provisioning storage for OpenShift Container Platform registry
25.4.3. Manually provisioning storage for OpenShift Container Platform registry
25.4.4. About Red Hat OpenShift Container Storage

25.5. BACKUP OF PERSISTENT VOLUMES

CHAPTER 26. CONFIGURING LOCAL VOLUMES
26.1. OVERVIEW
26.2. MOUNTING LOCAL VOLUMES
26.3. CONFIGURING THE LOCAL PROVISIONER
26.4. DEPLOYING THE LOCAL PROVISIONER
26.5. ADDING NEW DEVICES
26.6. CONFIGURING RAW BLOCK DEVICES

26.6.1. Preparing raw block devices
26.6.2. Deploying raw block device provisioners
26.6.3. Using raw block device persistent volumes

CHAPTER 27. CONFIGURING PERSISTENT STORAGE
27.1. OVERVIEW
27.2. PERSISTENT STORAGE USING NFS

27.2.1. Overview
27.2.2. Provisioning
27.2.3. Enforcing Disk Quotas
27.2.4. NFS Volume Security

27.2.4.1. Group IDs
27.2.4.2. User IDs
27.2.4.3. SELinux
27.2.4.4. Export Settings

27.2.5. Reclaiming Resources
27.2.6. Automation
27.2.7. Additional Configuration and Troubleshooting

27.3. PERSISTENT STORAGE USING RED HAT GLUSTER STORAGE
27.3.1. Overview

27.3.1.1. converged mode
27.3.1.2. independent mode
27.3.1.3. Standalone Red Hat Gluster Storage
27.3.1.4. GlusterFS Volumes
27.3.1.5. gluster-block Volumes
27.3.1.6. Gluster S3 Storage

27.3.2. Considerations
27.3.2.1. Software Prerequisites
27.3.2.2. Hardware Requirements
27.3.2.3. Storage Sizing
27.3.2.4. Volume Operation Behaviors
27.3.2.5. Volume Security

421
422
423
423
423
424
425
425
425
425
426
426
427

428
428
428
429
430
431
431

432
433
434

436
436
436
436
437
438
438
439
440
441
441

442
443
443
443
443
444
444
444
445
445
446
446
446
446
447
448
448

Table of Contents

11

27.3.2.5.1. POSIX Permissions
27.3.2.5.2. SELinux

27.3.3. Support Requirements
27.3.4. Installation

27.3.4.1. independent mode: Installing Red Hat Gluster Storage Nodes
27.3.4.2. Using the Installer

27.3.4.2.1. Host variables
27.3.4.2.2. Role variables
27.3.4.2.3. Image name and version tag variables
27.3.4.2.4. Example: Basic converged mode Installation
27.3.4.2.5. Example: Basic independent mode Installation
27.3.4.2.6. Example: converged mode with an Integrated OpenShift Container Registry
27.3.4.2.7. Example: converged mode for OpenShift Logging and Metrics
27.3.4.2.8. Example: converged mode for Applications, Registry, Logging, and Metrics
27.3.4.2.9. Example: independent mode for Applications, Registry, Logging, and Metrics

27.3.5. Uninstall converged mode
27.3.6. Provisioning

27.3.6.1. Static Provisioning
27.3.6.2. Dynamic Provisioning

27.4. PERSISTENT STORAGE USING OPENSTACK CINDER
27.4.1. Overview
27.4.2. Provisioning Cinder PVs

27.4.2.1. Creating the Persistent Volume
27.4.2.2. Cinder PV format
27.4.2.3. Cinder volume security
27.4.2.4. Cinder volume limit

27.5. PERSISTENT STORAGE USING CEPH RADOS BLOCK DEVICE (RBD)
27.5.1. Overview
27.5.2. Provisioning

27.5.2.1. Creating the Ceph Secret
27.5.2.2. Creating the Persistent Volume

27.5.3. Ceph Volume Security
27.6. PERSISTENT STORAGE USING AWS ELASTIC BLOCK STORE

27.6.1. Overview
27.6.2. Provisioning

27.6.2.1. Creating the Persistent Volume
27.6.2.2. Volume Format
27.6.2.3. Maximum Number of EBS Volumes on a Node

27.7. PERSISTENT STORAGE USING GCE PERSISTENT DISK
27.7.1. Overview
27.7.2. Provisioning

27.7.2.1. Creating the Persistent Volume
27.7.2.2. Volume Format

27.8. PERSISTENT STORAGE USING ISCSI
27.8.1. Overview
27.8.2. Provisioning

27.8.2.1. Enforcing Disk Quotas
27.8.2.2. iSCSI Volume Security
27.8.2.3. iSCSI Multipathing
27.8.2.4. iSCSI Custom Initiator IQN

27.9. PERSISTENT STORAGE USING FIBRE CHANNEL
27.9.1. Overview
27.9.2. Provisioning

448
449
449
450
450
450
453
453
454
455
456
458
459
461

463
466
466
466
469
470
470
471
471
472
472
473
474
474
474
474
475
477
477
477
478
478
479
479
479
479
480
480
481
481
481
481

482
482
482
483
483
483
484

OpenShift Container Platform 3.11 Configuring Clusters

12

27.9.2.1. Enforcing Disk Quotas
27.9.2.2. Fibre Channel Volume Security

27.10. PERSISTENT STORAGE USING AZURE DISK
27.10.1. Overview
27.10.2. Prerequisites
27.10.3. Provisioning
27.10.4. Configuring Azure Disk for regional cloud

27.10.4.1. Creating the Persistent Volume
27.10.4.2. Volume Format

27.11. PERSISTENT STORAGE USING AZURE FILE
27.11.1. Overview
27.11.2. Before you begin
27.11.3. Example configuration files
27.11.4. Configuring Azure File for regional cloud
27.11.5. Creating the Azure Storage Account secret

27.12. PERSISTENT STORAGE USING FLEXVOLUME PLUG-INS
27.12.1. Overview
27.12.2. FlexVolume drivers

27.12.2.1. FlexVolume drivers with master-initiated attach/detach
27.12.2.2. FlexVolume drivers without master-initiated attach/detach

27.12.3. Installing FlexVolume drivers
27.12.4. Consuming storage using FlexVolume drivers

27.13. USING VMWARE VSPHERE VOLUMES FOR PERSISTENT STORAGE
27.13.1. Overview

Prerequisites
27.13.2. Dynamically Provisioning VMware vSphere volumes
27.13.3. Statically Provisioning VMware vSphere volumes

27.13.3.1. Create the VMDKs
27.13.3.2. Creating PersistentVolumes
27.13.3.3. Formatting VMware vSphere volumes

27.14. PERSISTENT STORAGE USING LOCAL VOLUME
27.14.1. Overview
27.14.2. Provisioning
27.14.3. Creating Local Persistent Volume
27.14.4. Creating Local Persistent Volume Claim
27.14.5. Feature Status

27.15. PERSISTENT STORAGE USING CONTAINER STORAGE INTERFACE (CSI)
27.15.1. Overview
27.15.2. Architecture

27.15.2.1. External CSI Controllers
27.15.2.2. CSI Driver DaemonSet

27.15.3. Example Deployment
27.15.4. Dynamic Provisioning
27.15.5. Usage

27.16. PERSISTENT STORAGE USING OPENSTACK MANILA
27.16.1. Overview
27.16.2. Installation and Setup

27.16.2.1. Starting the External Provisioner
27.16.3. Usage

27.17. DYNAMIC PROVISIONING AND CREATING STORAGE CLASSES
27.17.1. Overview
27.17.2. Available dynamically provisioned plug-ins
27.17.3. Defining a StorageClass

485
485
485
485
485
485
486
486
487
487
487
488
489
490
490
491
491
491

493
495
496
496
497
497
497
498
498
498
499
500
500
500
501
501
501
501

502
502
503
503
504
504
509
509
509
510
510
510
513
513
513
514
515

Table of Contents

13

. .

27.17.3.1. Basic StorageClass object definition
27.17.3.2. StorageClass annotations
27.17.3.3. OpenStack Cinder object definition
27.17.3.4. AWS ElasticBlockStore (EBS) object definition
27.17.3.5. GCE PersistentDisk (gcePD) object definition
27.17.3.6. GlusterFS object definition
27.17.3.7. Ceph RBD object definition
27.17.3.8. Trident object definition
27.17.3.9. VMware vSphere object definition
27.17.3.10. Azure File object definition
27.17.3.11. Azure Disk object definition

27.17.4. Changing the default StorageClass
27.17.5. Additional information and examples

27.18. VOLUME SECURITY
27.18.1. Overview
27.18.2. SCCs, Defaults, and Allowed Ranges
27.18.3. Supplemental Groups
27.18.4. fsGroup
27.18.5. User IDs
27.18.6. SELinux Options

27.19. SELECTOR-LABEL VOLUME BINDING
27.19.1. Overview
27.19.2. Motivation
27.19.3. Deployment

27.19.3.1. Prerequisites
27.19.3.2. Define the Persistent Volume and Claim
27.19.3.3. Optional: Bind a PVC to a specific PV
27.19.3.4. Optional: Reserve a PV to a specific PVC
27.19.3.5. Deploy the Persistent Volume and Claim

27.20. ENABLING CONTROLLER-MANAGED ATTACHMENT AND DETACHMENT
27.20.1. Overview
27.20.2. Determining What Is Managing Attachment and Detachment
27.20.3. Configuring Nodes to Enable Controller-managed Attachment and Detachment

27.21. PERSISTENT VOLUME SNAPSHOTS
27.21.1. Overview
27.21.2. Features
27.21.3. Installation and Setup

27.21.3.1. Starting the External Controller and Provisioner
27.21.3.2. Managing Snapshot Users

27.21.4. Lifecycle of a Volume Snapshot and Volume Snapshot Data
27.21.4.1. Persistent Volume Claim and Persistent Volume

27.21.4.1.1. Snapshot Promoter
27.21.4.2. Create Snapshot
27.21.4.3. Restore Snapshot
27.21.4.4. Delete Snapshot

27.22. USING HOSTPATH
27.22.1. Overview
27.22.2. Configuring hostPath volumes in the Pod specification
27.22.3. Statically provisioning hostPath volumes
27.22.4. Mounting the hostPath share in a privileged pod
27.22.5. Additional resources

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

515
516
516
517
518
518

520
520
521
521

522
523
524
524
524
525
528
531
533
535
537
537
537
537
537
537
538
538
539
540
540
540
541
541
541
541
542
542
544
545
545
545
546
547
547
548
548
548
549
550
551

552

OpenShift Container Platform 3.11 Configuring Clusters

14

28.1. OVERVIEW
28.2. SHARING AN NFS MOUNT ACROSS TWO PERSISTENT VOLUME CLAIMS

28.2.1. Overview
28.2.2. Creating the Persistent Volume
28.2.3. Creating the Persistent Volume Claim
28.2.4. Ensuring NFS Volume Access
28.2.5. Creating the Pod
28.2.6. Creating an Additional Pod to Reference the Same PVC

28.3. COMPLETE EXAMPLE USING CEPH RBD
28.3.1. Overview
28.3.2. Installing the ceph-common Package
28.3.3. Creating the Ceph Secret
28.3.4. Creating the Persistent Volume
28.3.5. Creating the Persistent Volume Claim
28.3.6. Creating the Pod
28.3.7. Defining Group and Owner IDs (Optional)
28.3.8. Setting ceph-user-secret as Default for Projects

28.4. USING CEPH RBD FOR DYNAMIC PROVISIONING
28.4.1. Overview
28.4.2. Creating a pool for dynamic volumes
28.4.3. Using an existing Ceph cluster for dynamic persistent storage
28.4.4. Setting ceph-user-secret as the default for projects

28.5. COMPLETE EXAMPLE USING GLUSTERFS
28.5.1. Overview
28.5.2. Prerequisites
28.5.3. Static Provisioning
28.5.4. Using the Storage

28.6. COMPLETE EXAMPLE USING GLUSTERFS FOR DYNAMIC PROVISIONING
28.6.1. Overview
28.6.2. Prerequisites
28.6.3. Dynamic Provisioning
28.6.4. Using the Storage

28.7. MOUNTING VOLUMES ON PRIVILEGED PODS
28.7.1. Overview
28.7.2. Prerequisites
28.7.3. Creating the Persistent Volume
28.7.4. Creating a Regular User
28.7.5. Creating the Persistent Volume Claim
28.7.6. Verifying the Setup

28.7.6.1. Checking the Pod SCC
28.7.6.2. Verifying the Mount

28.8. MOUNT PROPAGATION
28.8.1. Overview
28.8.2. Values
28.8.3. Configuration

28.9. SWITCHING AN INTEGRATED OPENSHIFT CONTAINER REGISTRY TO GLUSTERFS
28.9.1. Overview
28.9.2. Prerequisites
28.9.3. Manually Provision the GlusterFS PersistentVolumeClaim
28.9.4. Attach the PersistentVolumeClaim to the Registry

28.10. BINDING PERSISTENT VOLUMES BY LABELS
28.10.1. Overview

28.10.1.1. Assumptions

552
552
552
552
553
554
555
559
561
561
561
561
562
563
564
565
565
566
566
566
567
570
570
571
571

572
575
576
577
577
577
578
580
580
581
581
581
582
583
583
583
583
583
583
584
584
584
584
585
588
588
588
589

Table of Contents

15

. .

. .

. .

. .

. .

. .

28.10.2. Defining Specifications
28.10.2.1. Persistent Volume with Labels
28.10.2.2. Persistent Volume Claim with Selectors
28.10.2.3. Volume Endpoints
28.10.2.4. Deploy the PV, PVC, and Endpoints

28.11. USING STORAGE CLASSES FOR DYNAMIC PROVISIONING
28.11.1. Overview
28.11.2. Scenario 1: Basic Dynamic Provisioning with Two Types of StorageClasses
28.11.3. Scenario 2: How to enable Default StorageClass behavior for a Cluster

28.12. USING STORAGE CLASSES FOR EXISTING LEGACY STORAGE
28.12.1. Overview

28.12.1.1. Scenario 1: Link StorageClass to existing Persistent Volume with Legacy Data
28.13. CONFIGURING AZURE BLOB STORAGE FOR INTEGRATED CONTAINER IMAGE REGISTRY

28.13.1. Overview
28.13.2. Before You Begin
28.13.3. Overriding Registry Configuration

CHAPTER 29. CONFIGURING EPHEMERAL STORAGE
29.1. OVERVIEW
29.2. ENABLING EPHEMERAL STORAGE

CHAPTER 30. WORKING WITH HTTP PROXIES
30.1. OVERVIEW
30.2. CONFIGURING NO_PROXY
30.3. CONFIGURING HOSTS FOR PROXIES
30.4. CONFIGURING HOSTS FOR PROXIES USING ANSIBLE
30.5. PROXYING DOCKER PULL
30.6. USING MAVEN BEHIND A PROXY
30.7. CONFIGURING S2I BUILDS FOR PROXIES
30.8. CONFIGURING DEFAULT TEMPLATES FOR PROXIES
30.9. SETTING PROXY ENVIRONMENT VARIABLES IN PODS
30.10. GIT REPOSITORY ACCESS

CHAPTER 31. CONFIGURING GLOBAL BUILD DEFAULTS AND OVERRIDES
31.1. OVERVIEW
31.2. SETTING GLOBAL BUILD DEFAULTS

31.2.1. Configuring Global Build Defaults with Ansible
31.2.2. Manually Setting Global Build Defaults

31.3. SETTING GLOBAL BUILD OVERRIDES
31.3.1. Configuring Global Build Overrides with Ansible
31.3.2. Manually Setting Global Build Overrides

CHAPTER 32. CONFIGURING PIPELINE EXECUTION
32.1. OVERVIEW
32.2. OPENSHIFT JENKINS CLIENT PLUGIN
32.3. OPENSHIFT JENKINS SYNC PLUGIN

CHAPTER 33. CONFIGURING ROUTE TIMEOUTS

CHAPTER 34. CONFIGURING NATIVE CONTAINER ROUTING
34.1. NETWORK OVERVIEW
34.2. CONFIGURE NATIVE CONTAINER ROUTING
34.3. SETTING UP A NODE FOR CONTAINER NETWORKING
34.4. SETTING UP A ROUTER FOR CONTAINER NETWORKING

589
589
590
590
590
591
591
591

594
598
598
598
600
600
600
601

603
603
603

605
605
605
606
606
607
608
608
608
609
609

610
610
611
611

612
613
613
614

616
616
617
617

619

620
620
620
621
621

OpenShift Container Platform 3.11 Configuring Clusters

16

. .

. .

. .

. .

CHAPTER 35. ROUTING FROM EDGE LOAD BALANCERS
35.1. OVERVIEW
35.2. INCLUDING THE LOAD BALANCER IN THE SDN
35.3. ESTABLISHING A TUNNEL USING A RAMP NODE

35.3.1. Configuring a Highly Available Ramp Node

CHAPTER 36. AGGREGATING CONTAINER LOGS
36.1. OVERVIEW
36.2. PRE-DEPLOYMENT CONFIGURATION
36.3. SPECIFYING LOGGING ANSIBLE VARIABLES
36.4. DEPLOYING THE EFK STACK
36.5. UNDERSTANDING AND ADJUSTING THE DEPLOYMENT

36.5.1. Ops Cluster
36.5.2. Elasticsearch

36.5.2.1. Persistent Elasticsearch Storage
36.5.2.1.1. Using NFS as a persistent volume
36.5.2.1.2. Using NFS as local storage
36.5.2.1.3. Configuring hostPath storage for Elasticsearch
36.5.2.1.4. Changing the Scale of Elasticsearch
36.5.2.1.5. Changing the Number of Elasticsearch Replicas
36.5.2.1.6. Expose Elasticsearch as a Route

36.5.3. Fluentd
36.5.4. Kibana
36.5.5. Curator

36.5.5.1. Using the Curator Actions File
36.5.5.2. Creating the Curator Configuration

36.6. CLEANUP
36.7. SENDING LOGS TO AN EXTERNAL ELASTICSEARCH INSTANCE
36.8. SENDING LOGS TO AN EXTERNAL SYSLOG SERVER
36.9. PERFORMING ADMINISTRATIVE ELASTICSEARCH OPERATIONS
36.10. REDEPLOYING EFK CERTIFICATES
36.11. CHANGING THE AGGREGATED LOGGING DRIVER
36.12. MANUAL ELASTICSEARCH ROLLOUTS

36.12.1. Performing an Elasticsearch Rolling Cluster Restart
36.12.2. Performing an Elasticsearch Full Cluster Restart

36.13. TROUBLESHOOTING EFK
36.13.1. Troubleshooting related to all EFK components
36.13.2. Troubleshooting related to ElasticSearch
36.13.3. Kibana

CHAPTER 37. AGGREGATE LOGGING SIZING GUIDELINES
37.1. OVERVIEW
37.2. INSTALLATION

37.2.1. Large Clusters
37.3. SYSTEMD-JOURNALD AND RSYSLOG
37.4. SCALING UP EFK LOGGING

37.4.1. Master Events are Aggregated to EFK as Logs
37.5. STORAGE CONSIDERATIONS

CHAPTER 38. ENABLING CLUSTER METRICS
38.1. OVERVIEW
38.2. BEFORE YOU BEGIN
38.3. METRICS DATA STORAGE

38.3.1. Persistent Storage

622
622
622
622
625

626
626
626
626
638
639
639
639
641

642
643
645
647
647
647
648
661

666
668
669
670
670
671

674
675
675
677
677
678
679
679
680
681

683
683
683
685
685
686
686
686

687
687
687
687
687

Table of Contents

17

. .

. .

38.3.2. Capacity Planning for Cluster Metrics
Known Issues and Limitations

38.3.3. Non-Persistent Storage
38.4. METRICS ANSIBLE ROLE

38.4.1. Specifying Metrics Ansible Variables
38.4.2. Using Secrets

38.4.2.1. Providing Your Own Certificates
38.5. DEPLOYING THE METRIC COMPONENTS

38.5.1. Metrics Diagnostics
38.6. SETTING THE METRICS PUBLIC URL
38.7. ACCESSING HAWKULAR METRICS DIRECTLY

38.7.1. OpenShift Container Platform Projects and Hawkular Tenants
38.7.2. Authorization

38.8. SCALING OPENSHIFT CONTAINER PLATFORM CLUSTER METRICS PODS
38.9. CLEANUP

CHAPTER 39. CUSTOMIZING THE WEB CONSOLE
39.1. OVERVIEW
39.2. LOADING EXTENSION SCRIPTS AND STYLESHEETS

39.2.1. Setting Extension Properties
39.3. EXTENSION OPTION FOR EXTERNAL LOGGING SOLUTIONS
39.4. CUSTOMIZING AND DISABLING THE GUIDED TOUR
39.5. CUSTOMIZING DOCUMENTATION LINKS
39.6. CUSTOMIZING THE LOGO
39.7. CUSTOMIZING THE MEMBERSHIP WHITELIST
39.8. CHANGING LINKS TO DOCUMENTATION
39.9. ADDING OR CHANGING LINKS TO DOWNLOAD THE CLI

39.9.1. Customizing the About Page
39.10. CONFIGURING NAVIGATION MENUS

39.10.1. Top Navigation Dropdown Menus
39.10.2. Application Launcher
39.10.3. System Status Badge
39.10.4. Project Left Navigation

39.11. CONFIGURING FEATURED APPLICATIONS
39.12. CONFIGURING CATALOG CATEGORIES
39.13. CONFIGURING QUOTA NOTIFICATION MESSAGES
39.14. CONFIGURING THE CREATE FROM URL NAMESPACE WHITELIST
39.15. DISABLING THE COPY LOGIN COMMAND

39.15.1. Enabling Wildcard Routes
39.16. CUSTOMIZING THE LOGIN PAGE

39.16.1. Example Usage
39.17. CUSTOMIZING THE OAUTH ERROR PAGE
39.18. CHANGING THE LOGOUT URL
39.19. CONFIGURING WEB CONSOLE CUSTOMIZATIONS WITH ANSIBLE
39.20. CHANGING THE WEB CONSOLE URL PORT AND CERTIFICATES

CHAPTER 40. DEPLOYING EXTERNAL PERSISTENT VOLUME PROVISIONERS
40.1. OVERVIEW
40.2. BEFORE YOU BEGIN

40.2.1. External Provisioners Ansible Role
40.2.2. External Provisioners Ansible Variables
40.2.3. AWS EFS Provisioner Ansible Variables

40.3. DEPLOYING THE PROVISIONERS

688
690
690
690
691

694
694
695
696
696
696
697
697
697
697

698
698
698
699
700
700
700
700
701
701
701

702
703
703
704
704
705
706
707
708
709
709
709
709
710
710
710
711
712

713
713
713
713
713
714
715

OpenShift Container Platform 3.11 Configuring Clusters

18

. .

. .

40.3.1. Deploying the AWS EFS Provisioner
40.3.1.1. AWS EFS Object Definition

40.4. CLEANUP

CHAPTER 41. INSTALLING THE OPERATOR FRAMEWORK (TECHNOLOGY PREVIEW)
41.1. WHAT’S IN THE TECHNOLOGY PREVIEW?
41.2. INSTALLING OPERATOR LIFECYCLE MANAGER USING ANSIBLE
41.3. LAUNCHING YOUR FIRST OPERATOR
41.4. GETTING INVOLVED

CHAPTER 42. UNINSTALLING OPERATOR LIFECYCLE MANAGER
42.1. UNINSTALLING OPERATOR LIFECYCLE MANAGER USING ANSIBLE

715
715
716

717
717
719

720
726

727
727

Table of Contents

19

OpenShift Container Platform 3.11 Configuring Clusters

20

CHAPTER 1. OVERVIEW
This guide covers further configuration options available for your OpenShift Container Platform cluster
post-installation.

CHAPTER 1. OVERVIEW

21

CHAPTER 2. SETTING UP THE REGISTRY

2.1. INTERNAL REGISTRY OVERVIEW

2.1.1. About the Registry

OpenShift Container Platform can build container images from your source code, deploy them, and
manage their lifecycle. To enable this, OpenShift Container Platform provides an internal, integrated
container image registry that can be deployed in your OpenShift Container Platform environment to
locally manage images.

2.1.2. Integrated or Stand-alone Registries

During an initial installation of a full OpenShift Container Platform cluster, it is likely that the registry was
deployed automatically during the installation process. If it was not, or if you want to further customize
the configuration of your registry, see Deploying a Registry on Existing Clusters .

While it can be deployed to run as an integrated part of your full OpenShift Container Platform cluster,
the OpenShift Container Platform registry can alternatively be installed separately as a stand-alone
container image registry.

To install a stand-alone registry, follow Installing a Stand-alone Registry . This installation path deploys
an all-in-one cluster running a registry and specialized web console.

2.2. DEPLOYING A REGISTRY ON EXISTING CLUSTERS

2.2.1. Overview

If the integrated registry was not previously deployed automatically during the initial installation of your
OpenShift Container Platform cluster, or if it is no longer running successfully and you need to redeploy
it on your existing cluster, see the following sections for options on deploying a new registry.

NOTE

This topic is not required if you installed a stand-alone registry.

2.2.2. Setting the Registry Host Name

You can configure the host name and port the registry is known by for both internal and external
references. By doing this, image streams will provide hostname based push and pull specifications for
images, allowing consumers of the images to be isolated from changes to the registry service IP and
potentially allowing image streams and their references to be portable between clusters.

To set the hostname used to reference the registry from within the cluster, set the
internalRegistryHostname in the imagePolicyConfig section of the master configuration file. The
external host name is controlled by setting the externalRegistryHostname value in the same location.

Image Policy Configuration

imagePolicyConfig:
 internalRegistryHostname: docker-registry.default.svc.cluster.local:5000
 externalRegistryHostname: docker-registry.mycompany.com

OpenShift Container Platform 3.11 Configuring Clusters

22

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#docker-images
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#integrated-openshift-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-config-installing-stand-alone-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-config-installing-stand-alone-registry

1

2

3

The registry itself must be configured with the same internal hostname value. This can be accomplished
by setting the REGISTRY_OPENSHIFT_SERVER_ADDR environment variable on the registry
deployment configuration, or by setting the value in the OpenShift section of the registry configuration.

NOTE

If you have enabled TLS for your registry the server certificate must include the
hostnames by which you expect the registry to be referenced. See securing the registry
for instructions on adding hostnames to the server certificate.

2.2.3. Deploying the Registry

To deploy the integrated container image registry, use the oc adm registry command as a user with
cluster administrator privileges. For example:

$ oc adm registry --config=/etc/origin/master/admin.kubeconfig \ 1
 --service-account=registry \ 2
 --images='registry.redhat.io/openshift3/ose-${component}:${version}' 3

--config is the path to the CLI configuration file for the cluster administrator.

--service-account is the service account used to run the registry’s pod.

Required to pull the correct image for OpenShift Container Platform. ${component} and
${version} are dynamically replaced during installation.

This creates a service and a deployment configuration, both called docker-registry. Once deployed
successfully, a pod is created with a name similar to docker-registry-1-cpty9.

To see a full list of options that you can specify when creating the registry:

$ oc adm registry --help

The value for --fs-group must be permitted by the SCC used by the registry (typically, the restricted
SCC).

2.2.4. Deploying the Registry as a DaemonSet

Use the oc adm registry command to deploy the registry as a DaemonSet with the --daemonset
option.

Daemonsets ensure that when nodes are created, they contain copies of a specified pod. When the
nodes are removed, the pods are garbage collected.

For more information on DaemonSets, see Using Daemonsets.

2.2.5. Registry Compute Resources

By default, the registry is created with no settings for compute resource requests or limits . For
production, it is highly recommended that the deployment configuration for the registry be updated to
set resource requests and limits for the registry pod. Otherwise, the registry pod will be considered a
BestEffort pod.

CHAPTER 2. SETTING UP THE REGISTRY

23

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cli_reference/#cli-reference-manage-cli-profiles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-daemonsets
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-compute-resources
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#quality-of-service-tiers

See Compute Resources for more information on configuring requests and limits.

2.2.6. Storage for the Registry

The registry stores container images and metadata. If you simply deploy a pod with the registry, it uses
an ephemeral volume that is destroyed if the pod exits. Any images anyone has built or pushed into the
registry would disappear.

This section lists the supported registry storage drivers. See the container image registry
documentation for more information.

The following list includes storage drivers that need to be configured in the registry’s configuration file:

Filesystem. Filesystem is the default and does not need to be configured.

S3. See the CloudFront configuration documentation for more information.

OpenStack Swift

Google Cloud Storage (GCS)

Microsoft Azure

Aliyun OSS

General registry storage configuration options are supported. See the container image registry
documentation for more information.

The following storage options need to be configured through the filesystem driver:

GlusterFS Storage

Ceph Rados Block Device

NOTE

For more information on supported persistent storage drivers, see Configuring Persistent
Storage and Persistent Storage Examples .

2.2.6.1. Production Use

For production use, attach a remote volume or define and use the persistent storage method of your
choice.

For example, to use an existing persistent volume claim:

$ oc set volume deploymentconfigs/docker-registry --add --name=registry-storage -t pvc \
 --claim-name=<pvc_name> --overwrite

IMPORTANT

OpenShift Container Platform 3.11 Configuring Clusters

24

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-compute-resources
https://docs.docker.com/registry/configuration/#storage
https://docs.docker.com/registry/storage-drivers/filesystem
https://github.com/docker/docker.github.io/blob/master/registry/storage-drivers/s3.md#cloudfront-as-middleware-with-s3-backend
https://docs.docker.com/registry/storage-drivers/swift/
https://docs.docker.com/registry/storage-drivers/gcs/
https://docs.docker.com/registry/storage-drivers/azure/
https://docs.docker.com/registry/storage-drivers/oss/
https://docs.docker.com/registry/configuration/#maintenance
https://docs.docker.com/registry/storage-drivers/filesystem

1

2

IMPORTANT

Testing shows issues with using the RHEL NFS server as a storage backend for the
container image registry. This includes the OpenShift Container Registry and Quay.
Therefore, using the RHEL NFS server to back PVs used by core services is not
recommended.

Other NFS implementations on the marketplace might not have these issues. Contact
the individual NFS implementation vendor for more information on any testing that was
possibly completed against these OpenShift core components.

2.2.6.1.1. Use Amazon S3 as a Storage Back-end

There is also an option to use Amazon Simple Storage Service storage with the internal container image
registry. It is a secure cloud storage manageable through AWS Management Console. To use it, the
registry’s configuration file must be manually edited and mounted to the registry pod. However, before
you start with the configuration, look at upstream’s recommended steps .

Take a default YAML configuration file as a base and replace the filesystem entry in the storage
section with s3 entry such as below. The resulting storage section may look like this:

Replace with your Amazon access key.

Replace with your Amazon secret key.

All of the s3 configuration options are documented in upstream’s driver reference documentation.

Overriding the registry configuration will take you through the additional steps on mounting the
configuration file into pod.

storage:
 cache:
 layerinfo: inmemory
 delete:
 enabled: true
 s3:
 accesskey: awsaccesskey 1
 secretkey: awssecretkey 2
 region: us-west-1
 regionendpoint: http://myobjects.local
 bucket: bucketname
 encrypt: true
 keyid: mykeyid
 secure: true
 v4auth: false
 chunksize: 5242880
 rootdirectory: /s3/object/name/prefix

CHAPTER 2. SETTING UP THE REGISTRY

25

https://aws.amazon.com/s3/getting-started/
https://docs.docker.com/docker-trusted-registry/configure/config-storage/#amazon-s3
https://docs.docker.com/registry/storage-drivers/s3/

1

WARNING

When the registry runs on the S3 storage back-end, there are reported issues.

If you want to use a S3 region that is not supported by the integrated registry you are using, see S3
Driver Configuration.

2.2.6.2. Non-Production Use

For non-production use, you can use the --mount-host=<path> option to specify a directory for the
registry to use for persistent storage. The registry volume is then created as a host-mount at the
specified <path>.

IMPORTANT

The --mount-host option mounts a directory from the node on which the registry
container lives. If you scale up the docker-registry deployment configuration, it is
possible that your registry pods and containers will run on different nodes, which can
result in two or more registry containers, each with its own local storage. This will lead to
unpredictable behavior, as subsequent requests to pull the same image repeatedly may
not always succeed, depending on which container the request ultimately goes to.

The --mount-host option requires that the registry container run in privileged mode. This is
automatically enabled when you specify --mount-host. However, not all pods are allowed to run
privileged containers by default. If you still want to use this option, create the registry and specify that it
use the registry service account that was created during installation:

$ oc adm registry --service-account=registry \
 --config=/etc/origin/master/admin.kubeconfig \
 --images='registry.redhat.io/openshift3/ose-${component}:${version}' \ 1
 --mount-host=<path>

Required to pull the correct image for OpenShift Container Platform. ${component} and
${version} are dynamically replaced during installation.

IMPORTANT

The container image registry pod runs as user 1001. This user must be able to write to the
host directory. You may need to change directory ownership to user ID 1001 with this
command:

$ sudo chown 1001:root <path>

2.2.7. Enabling the Registry Console

OpenShift Container Platform provides a web-based interface to the integrated registry. This registry



OpenShift Container Platform 3.11 Configuring Clusters

26

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#security-warning

OpenShift Container Platform provides a web-based interface to the integrated registry. This registry
console is an optional component for browsing and managing images. It is deployed as a stateless
service running as a pod.

NOTE

If you installed OpenShift Container Platform as a stand-alone registry, the registry
console is already deployed and secured automatically during installation.

IMPORTANT

If Cockpit is already running, you’ll need to shut it down before proceeding in order to
avoid a port conflict (9090 by default) with the registry console.

2.2.7.1. Deploying the Registry Console

IMPORTANT

You must first have exposed the registry.

1. Create a passthrough route in the default project. You will need this when creating the registry
console application in the next step.

$ oc create route passthrough --service registry-console \
 --port registry-console \
 -n default

2. Deploy the registry console application. Replace <openshift_oauth_url> with the URL of the
OpenShift Container Platform OAuth provider, which is typically the master.

$ oc new-app -n default --template=registry-console \
 -p OPENSHIFT_OAUTH_PROVIDER_URL="https://<openshift_oauth_url>:8443" \
 -p REGISTRY_HOST=$(oc get route docker-registry -n default --template='{{ .spec.host
}}') \
 -p COCKPIT_KUBE_URL=$(oc get route registry-console -n default --template='https://{{
.spec.host }}')

NOTE

If the redirection URL is wrong when you are trying to log in to the registry
console, check your OAuth client with oc get oauthclients.

3. Finally, use a web browser to view the console using the route URI.

2.2.7.2. Securing the Registry Console

By default, the registry console generates self-signed TLS certificates if deployed manually per the
steps in Deploying the Registry Console . See Troubleshooting the Registry Console for more
information.

Use the following steps to add your organization’s signed certificates as a secret volume. This assumes
your certificates are available on the oc client host.

CHAPTER 2. SETTING UP THE REGISTRY

27

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-config-installing-stand-alone-registry

1. Create a .cert file containing the certificate and key. Format the file with:

One or more BEGIN CERTIFICATE blocks for the server certificate and the intermediate
certificate authorities

A block containing a BEGIN PRIVATE KEY or similar for the key. The key must not be
encrypted
For example:

-----BEGIN CERTIFICATE-----
MIIDUzCCAjugAwIBAgIJAPXW+CuNYS6QMA0GCSqGSIb3DQEBCwUAMD8xKTAnBgN
V
BAoMIGI0OGE2NGNkNmMwNTQ1YThhZTgxOTEzZDE5YmJjMmRjMRIwEAYDVQQDD
Als
...
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
MIIDUzCCAjugAwIBAgIJAPXW+CuNYS6QMA0GCSqGSIb3DQEBCwUAMD8xKTAnBgN
V
BAoMIGI0OGE2NGNkNmMwNTQ1YThhZTgxOTEzZDE5YmJjMmRjMRIwEAYDVQQDD
Als
...
-----END CERTIFICATE-----
-----BEGIN PRIVATE KEY-----
MIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQCyOJ5garOYw0sm
8TBCDSqQ/H1awGMzDYdB11xuHHsxYS2VepPMzMzryHR137I4dGFLhvdTvJUH8lUS
...
-----END PRIVATE KEY-----

The secured registry should contain the following Subject Alternative Names (SAN) list:

Two service hostnames.
For example:

docker-registry.default.svc.cluster.local
docker-registry.default.svc

Service IP address.
For example:

172.30.124.220

Use the following command to get the container image registry service IP address:

oc get service docker-registry --template='{{.spec.clusterIP}}'

Public hostname.
For example:

docker-registry-default.apps.example.com

Use the following command to get the container image registry public hostname:

OpenShift Container Platform 3.11 Configuring Clusters

28

oc get route docker-registry --template '{{.spec.host}}'

For example, the server certificate should contain SAN details similar to the following:

X509v3 Subject Alternative Name:
 DNS:docker-registry-public.openshift.com, DNS:docker-registry.default.svc,
DNS:docker-registry.default.svc.cluster.local, DNS:172.30.2.98, IP
Address:172.30.2.98

The registry console loads a certificate from the /etc/cockpit/ws-certs.d directory. It
uses the last file with a .cert extension in alphabetical order. Therefore, the .cert file
should contain at least two PEM blocks formatted in the OpenSSL style.

If no certificate is found, a self-signed certificate is created using the openssl
command and stored in the 0-self-signed.cert file.

2. Create the secret:

$ oc create secret generic console-secret \
 --from-file=/path/to/console.cert

3. Add the secrets to the registry-console deployment configuration:

$ oc set volume dc/registry-console --add --type=secret \
 --secret-name=console-secret -m /etc/cockpit/ws-certs.d

This triggers a new deployment of the registry console to include your signed certificates.

2.2.7.3. Troubleshooting the Registry Console

2.2.7.3.1. Debug Mode

The registry console debug mode is enabled using an environment variable. The following command
redeploys the registry console in debug mode:

$ oc set env dc registry-console G_MESSAGES_DEBUG=cockpit-ws,cockpit-wrapper

Enabling debug mode allows more verbose logging to appear in the registry console’s pod logs.

2.2.7.3.2. Display SSL Certificate Path

To check which certificate the registry console is using, a command can be run from inside the console
pod.

1. List the pods in the default project and find the registry console’s pod name:

$ oc get pods -n default
NAME READY STATUS RESTARTS AGE
registry-console-1-rssrw 1/1 Running 0 1d

2. Using the pod name from the previous command, get the certificate path that the cockpit-ws
process is using. This example shows the console using the auto-generated certificate:

CHAPTER 2. SETTING UP THE REGISTRY

29

$ oc exec registry-console-1-rssrw remotectl certificate
certificate: /etc/cockpit/ws-certs.d/0-self-signed.cert

2.3. ACCESSING THE REGISTRY

2.3.1. Viewing Logs

To view the logs for the container image registry, use the oc logs command with the deployment
configuration:

$ oc logs dc/docker-registry
2015-05-01T19:48:36.300593110Z time="2015-05-01T19:48:36Z" level=info
msg="version=v2.0.0+unknown"
2015-05-01T19:48:36.303294724Z time="2015-05-01T19:48:36Z" level=info msg="redis not
configured" instance.id=9ed6c43d-23ee-453f-9a4b-031fea646002
2015-05-01T19:48:36.303422845Z time="2015-05-01T19:48:36Z" level=info msg="using inmemory
layerinfo cache" instance.id=9ed6c43d-23ee-453f-9a4b-031fea646002
2015-05-01T19:48:36.303433991Z time="2015-05-01T19:48:36Z" level=info msg="Using OpenShift
Auth handler"
2015-05-01T19:48:36.303439084Z time="2015-05-01T19:48:36Z" level=info msg="listening on :5000"
instance.id=9ed6c43d-23ee-453f-9a4b-031fea646002

2.3.2. File Storage

Tag and image metadata is stored in OpenShift Container Platform, but the registry stores layer and
signature data in a volume that is mounted into the registry container at /registry. As oc exec does not
work on privileged containers, to view a registry’s contents you must manually SSH into the node
housing the registry pod’s container, then run docker exec on the container itself:

1. List the current pods to find the pod name of your container image registry:

oc get pods

Then, use oc describe to find the host name for the node running the container:

oc describe pod <pod_name>

2. Log in to the desired node:

ssh node.example.com

3. List the running containers from the default project on the node host and identify the container
ID for the container image registry:

docker ps --filter=name=registry_docker-registry.*_default_

4. List the registry contents using the oc rsh command:

oc rsh dc/docker-registry find /registry
/registry/docker
/registry/docker/registry
/registry/docker/registry/v2

OpenShift Container Platform 3.11 Configuring Clusters

30

1

2

3

4

/registry/docker/registry/v2/blobs 1
/registry/docker/registry/v2/blobs/sha256
/registry/docker/registry/v2/blobs/sha256/ed
/registry/docker/registry/v2/blobs/sha256/ed/ede17b139a271d6b1331ca3d83c648c24f92cece5f
89d95ac6c34ce751111810
/registry/docker/registry/v2/blobs/sha256/ed/ede17b139a271d6b1331ca3d83c648c24f92cece5f
89d95ac6c34ce751111810/data 2
/registry/docker/registry/v2/blobs/sha256/a3
/registry/docker/registry/v2/blobs/sha256/a3/a3ed95caeb02ffe68cdd9fd84406680ae93d633cb1
6422d00e8a7c22955b46d4
/registry/docker/registry/v2/blobs/sha256/a3/a3ed95caeb02ffe68cdd9fd84406680ae93d633cb1
6422d00e8a7c22955b46d4/data
/registry/docker/registry/v2/blobs/sha256/f7
/registry/docker/registry/v2/blobs/sha256/f7/f72a00a23f01987b42cb26f259582bb33502bdb0fcf5
011e03c60577c4284845
/registry/docker/registry/v2/blobs/sha256/f7/f72a00a23f01987b42cb26f259582bb33502bdb0fcf5
011e03c60577c4284845/data
/registry/docker/registry/v2/repositories 3
/registry/docker/registry/v2/repositories/p1
/registry/docker/registry/v2/repositories/p1/pause 4
/registry/docker/registry/v2/repositories/p1/pause/_manifests
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisions
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisions/sha256
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisions/sha256/e9a2ac64189818
97b399d3709f1b4a6d2723cd38a4909215ce2752a5c068b1cf
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisions/sha256/e9a2ac64189818
97b399d3709f1b4a6d2723cd38a4909215ce2752a5c068b1cf/signatures 5
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisions/sha256/e9a2ac64189818
97b399d3709f1b4a6d2723cd38a4909215ce2752a5c068b1cf/signatures/sha256
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisions/sha256/e9a2ac64189818
97b399d3709f1b4a6d2723cd38a4909215ce2752a5c068b1cf/signatures/sha256/ede17b139a2
71d6b1331ca3d83c648c24f92cece5f89d95ac6c34ce751111810
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisions/sha256/e9a2ac64189818
97b399d3709f1b4a6d2723cd38a4909215ce2752a5c068b1cf/signatures/sha256/ede17b139a2
71d6b1331ca3d83c648c24f92cece5f89d95ac6c34ce751111810/link 6
/registry/docker/registry/v2/repositories/p1/pause/_uploads 7
/registry/docker/registry/v2/repositories/p1/pause/_layers 8
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256/a3ed95caeb02ffe68cdd9fd844
06680ae93d633cb16422d00e8a7c22955b46d4
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256/a3ed95caeb02ffe68cdd9fd844
06680ae93d633cb16422d00e8a7c22955b46d4/link 9
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256/f72a00a23f01987b42cb26f25
9582bb33502bdb0fcf5011e03c60577c4284845
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256/f72a00a23f01987b42cb26f25
9582bb33502bdb0fcf5011e03c60577c4284845/link

This directory stores all layers and signatures as blobs.

This file contains the blob’s contents.

This directory stores all the image repositories.

This directory is for a single image repository p1/pause.

CHAPTER 2. SETTING UP THE REGISTRY

31

5

6

7

8

9

This directory contains signatures for a particular image manifest revision.

This file contains a reference back to a blob (which contains the signature data).

This directory contains any layers that are currently being uploaded and staged for the
given repository.

This directory contains links to all the layers this repository references.

This file contains a reference to a specific layer that has been linked into this repository via
an image.

2.3.3. Accessing the Registry Directly

For advanced usage, you can access the registry directly to invoke docker commands. This allows you to
push images to or pull them from the integrated registry directly using operations like docker push or
docker pull. To do so, you must be logged in to the registry using the docker login command. The
operations you can perform depend on your user permissions, as described in the following sections.

2.3.3.1. User Prerequisites

To access the registry directly, the user that you use must satisfy the following, depending on your
intended usage:

For any direct access, you must have a regular user for your preferred identity provider. A
regular user can generate an access token required for logging in to the registry. System users,
such as system:admin, cannot obtain access tokens and, therefore, cannot access the registry
directly.
For example, if you are using HTPASSWD authentication, you can create one using the following
command:

htpasswd /etc/origin/master/htpasswd <user_name>

For pulling images, for example when using the docker pull command, the user must have the
registry-viewer role. To add this role:

$ oc policy add-role-to-user registry-viewer <user_name>

For writing or pushing images, for example when using the docker push command, the user
must have the registry-editor role. To add this role:

$ oc policy add-role-to-user registry-editor <user_name>

For more information on user permissions, see Managing Role Bindings.

2.3.3.2. Logging in to the Registry

NOTE

Ensure your user satisfies the prerequisites for accessing the registry directly.

To log in to the registry directly:

OpenShift Container Platform 3.11 Configuring Clusters

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#users
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#users
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#managing-role-bindings

1. Ensure you are logged in to OpenShift Container Platform as a regular user:

$ oc login

2. Log in to the container image registry by using your access token:

docker login -u openshift -p $(oc whoami -t) <registry_ip>:<port>

NOTE

You can pass any value for the username, the token contains all necessary information.
Passing a username that contains colons will result in a login failure.

2.3.3.3. Pushing and Pulling Images

After logging in to the registry , you can perform docker pull and docker push operations against your
registry.

IMPORTANT

You can pull arbitrary images, but if you have the system:registry role added, you can
only push images to the registry in your project.

In the following examples, we use:

Component Value

<registry_ip> 172.30.124.220

<port> 5000

<project> openshift

<image> busybox

<tag> omitted (defaults to latest)

1. Pull an arbitrary image:

$ docker pull docker.io/busybox

2. Tag the new image with the form <registry_ip>:<port>/<project>/<image>. The project name
must appear in this pull specification for OpenShift Container Platform to correctly place and
later access the image in the registry.

$ docker tag docker.io/busybox 172.30.124.220:5000/openshift/busybox

NOTE

CHAPTER 2. SETTING UP THE REGISTRY

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#image-streams

1

NOTE

Your regular user must have the system:image-builder role for the specified
project, which allows the user to write or push an image. Otherwise, the docker
push in the next step will fail. To test, you can create a new project to push the
busybox image.

3. Push the newly-tagged image to your registry:

$ docker push 172.30.124.220:5000/openshift/busybox
...
cf2616975b4a: Image successfully pushed
Digest: sha256:3662dd821983bc4326bee12caec61367e7fb6f6a3ee547cbaff98f77403cab55

2.3.4. Accessing Registry Metrics

The OpenShift Container Registry provides an endpoint for Prometheus metrics. Prometheus is a
stand-alone, open source systems monitoring and alerting toolkit.

The metrics are exposed at the /extensions/v2/metrics path of the registry endpoint. However, this
route must first be enabled; see Extended Registry Configuration for instructions.

The following is a simple example of a metrics query:

<user> can be arbitrary, but <secret> must match the value specified in the registry configuration.

Another method to access the metrics is to use a cluster role. You still need to enable the endpoint, but
you do not need to specify a <secret>. The part of the configuration file responsible for metrics should
look like this:

openshift:
 version: 1.0

$ curl -s -u <user>:<secret> \ 1
 http://172.30.30.30:5000/extensions/v2/metrics | grep openshift | head -n 10

HELP openshift_build_info A metric with a constant '1' value labeled by major, minor, git commit &
git version from which OpenShift was built.
TYPE openshift_build_info gauge
openshift_build_info{gitCommit="67275e1",gitVersion="v3.6.0-alpha.1+67275e1-
803",major="3",minor="6+"} 1
HELP openshift_registry_request_duration_seconds Request latency summary in microseconds for
each operation
TYPE openshift_registry_request_duration_seconds summary
openshift_registry_request_duration_seconds{name="test/origin-
pod",operation="blobstore.create",quantile="0.5"} 0
openshift_registry_request_duration_seconds{name="test/origin-
pod",operation="blobstore.create",quantile="0.9"} 0
openshift_registry_request_duration_seconds{name="test/origin-
pod",operation="blobstore.create",quantile="0.99"} 0
openshift_registry_request_duration_seconds_sum{name="test/origin-
pod",operation="blobstore.create"} 0
openshift_registry_request_duration_seconds_count{name="test/origin-
pod",operation="blobstore.create"} 5

OpenShift Container Platform 3.11 Configuring Clusters

34

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#create-a-project
https://prometheus.io/docs/introduction/overview/

 metrics:
 enabled: true
...

You must create a cluster role if you do not already have one to access the metrics:

To add this role to a user, run the following command:

See the upstream Prometheus documentation for more advanced queries and recommended
visualizers.

2.4. SECURING AND EXPOSING THE REGISTRY

2.4.1. Overview

By default, the OpenShift Container Platform registry is secured during cluster installation so that it
serves traffic via TLS. A passthrough route is also created by default to expose the service externally.

If for any reason your registry has not been secured or exposed, see the following sections for steps on
how to manually do so.

2.4.2. Manually Securing the Registry

To manually secure the registry to serve traffic via TLS:

1. Deploy the registry.

2. Fetch the service IP and port of the registry:

$ oc get svc/docker-registry
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
docker-registry ClusterIP 172.30.82.152 <none> 5000/TCP 1d

3. You can use an existing server certificate, or create a key and server certificate valid for
specified IPs and host names, signed by a specified CA. To create a server certificate for the
registry service IP and the docker-registry.default.svc.cluster.local host name, run the

$ cat <<EOF |
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: prometheus-scraper
rules:
- apiGroups:
 - image.openshift.io
 resources:
 - registry/metrics
 verbs:
 - get
EOF
oc create -f -

$ oc adm policy add-cluster-role-to-user prometheus-scraper <username>

CHAPTER 2. SETTING UP THE REGISTRY

35

https://prometheus.io/docs/querying/basics/

following command from the first master listed in the Ansible host inventory file, by default
/etc/ansible/hosts:

$ oc adm ca create-server-cert \
 --signer-cert=/etc/origin/master/ca.crt \
 --signer-key=/etc/origin/master/ca.key \
 --signer-serial=/etc/origin/master/ca.serial.txt \
 --hostnames='docker-registry.default.svc.cluster.local,docker-
registry.default.svc,172.30.124.220' \
 --cert=/etc/secrets/registry.crt \
 --key=/etc/secrets/registry.key

If the router will be exposed externally, add the public route host name in the --hostnames flag:

--hostnames='mydocker-registry.example.com,docker-
registry.default.svc.cluster.local,172.30.124.220 \

See Redeploying Registry and Router Certificates for additional details on updating the default
certificate so that the route is externally accessible.

NOTE

The oc adm ca create-server-cert command generates a certificate that is valid
for two years. This can be altered with the --expire-days option, but for security
reasons, it is recommended to not make it greater than this value.

4. Create the secret for the registry certificates:

$ oc create secret generic registry-certificates \
 --from-file=/etc/secrets/registry.crt \
 --from-file=/etc/secrets/registry.key

5. Add the secret to the registry pod’s service accounts (including the default service account):

$ oc secrets link registry registry-certificates
$ oc secrets link default registry-certificates

NOTE

Limiting secrets to only the service accounts that reference them is disabled by
default. This means that if serviceAccountConfig.limitSecretReferences is set
to false (the default setting) in the master configuration file, linking secrets to a
service is not required.

6. Pause the docker-registry service:

$ oc rollout pause dc/docker-registry

7. Add the secret volume to the registry deployment configuration:

$ oc set volume dc/docker-registry --add --type=secret \
 --secret-name=registry-certificates -m /etc/secrets

OpenShift Container Platform 3.11 Configuring Clusters

36

1

8. Enable TLS by adding the following environment variables to the registry deployment
configuration:

$ oc set env dc/docker-registry \
 REGISTRY_HTTP_TLS_CERTIFICATE=/etc/secrets/registry.crt \
 REGISTRY_HTTP_TLS_KEY=/etc/secrets/registry.key

See the Configuring a registry section of the Docker documentation for more information.

9. Update the scheme used for the registry’s liveness probe from HTTP to HTTPS:

$ oc patch dc/docker-registry -p '{"spec": {"template": {"spec": {"containers":[{
 "name":"registry",
 "livenessProbe": {"httpGet": {"scheme":"HTTPS"}}
 }]}}}}'

10. If your registry was initially deployed on OpenShift Container Platform 3.2 or later, update the
scheme used for the registry’s readiness probe from HTTP to HTTPS:

$ oc patch dc/docker-registry -p '{"spec": {"template": {"spec": {"containers":[{
 "name":"registry",
 "readinessProbe": {"httpGet": {"scheme":"HTTPS"}}
 }]}}}}'

11. Resume the docker-registry service:

$ oc rollout resume dc/docker-registry

12. Validate the registry is running in TLS mode. Wait until the latest docker-registry deployment
completes and verify the Docker logs for the registry container. You should find an entry for
listening on :5000, tls.

$ oc logs dc/docker-registry | grep tls
time="2015-05-27T05:05:53Z" level=info msg="listening on :5000, tls" instance.id=deeba528-
c478-41f5-b751-dc48e4935fc2

13. Copy the CA certificate to the Docker certificates directory. This must be done on all nodes in
the cluster:

$ dcertsdir=/etc/docker/certs.d
$ destdir_addr=$dcertsdir/172.30.124.220:5000
$ destdir_name=$dcertsdir/docker-registry.default.svc.cluster.local:5000

$ sudo mkdir -p $destdir_addr $destdir_name
$ sudo cp ca.crt $destdir_addr 1
$ sudo cp ca.crt $destdir_name

The ca.crt file is a copy of /etc/origin/master/ca.crt on the master.

14. When using authentication, some versions of docker also require you to configure your cluster
to trust the certificate at the OS level.

a. Copy the certificate:

CHAPTER 2. SETTING UP THE REGISTRY

37

https://docs.docker.com/registry/configuration/#override-specific-configuration-options

$ cp /etc/origin/master/ca.crt /etc/pki/ca-trust/source/anchors/myregistrydomain.com.crt

b. Run:

$ update-ca-trust enable

15. Remove the --insecure-registry option only for this particular registry in the
/etc/sysconfig/docker file. Then, reload the daemon and restart the docker service to reflect
this configuration change:

$ sudo systemctl daemon-reload
$ sudo systemctl restart docker

16. Validate the docker client connection. Running docker push to the registry or docker pull
from the registry should succeed. Make sure you have logged into the registry.

$ docker tag|push <registry/image> <internal_registry/project/image>

For example:

$ docker pull busybox
$ docker tag docker.io/busybox 172.30.124.220:5000/openshift/busybox
$ docker push 172.30.124.220:5000/openshift/busybox
...
cf2616975b4a: Image successfully pushed
Digest: sha256:3662dd821983bc4326bee12caec61367e7fb6f6a3ee547cbaff98f77403cab55

2.4.3. Manually Exposing a Secure Registry

Instead of logging in to the OpenShift Container Platform registry from within the OpenShift Container
Platform cluster, you can gain external access to it by first securing the registry and then exposing it with
a route. This allows you to log in to the registry from outside the cluster using the route address, and to
tag and push images using the route host.

1. Each of the following prerequisite steps are performed by default during a typical cluster
installation. If they have not been, perform them manually:

a. Manually deploy the registry.

b. Manually secure the registry .

c. Manually deploy a router .

2. A passthrough route should have been created by default for the registry during the initial
cluster installation:

a. Verify whether the route exists:

$ oc get route/docker-registry -o yaml
apiVersion: v1
kind: Route
metadata:
 name: docker-registry
spec:

OpenShift Container Platform 3.11 Configuring Clusters

38

https://docs.docker.com/reference/commandline/push/
https://docs.docker.com/reference/commandline/pull/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#passthrough-termination

1

2

3

1

2

 host: <host> 1
 to:
 kind: Service
 name: docker-registry 2
 tls:
 termination: passthrough 3

The host for your route. You must be able to resolve this name externally via DNS to
the router’s IP address.

The service name for your registry.

Specifies this route as a passthrough route.

NOTE

Re-encrypt routes are also supported for exposing the secure registry.

b. If it does not exist, create the route via the oc create route passthrough command,
specifying the registry as the route’s service. By default, the name of the created route is
the same as the service name:

i. Get the docker-registry service details:

$ oc get svc
NAME CLUSTER_IP EXTERNAL_IP PORT(S) SELECTOR
AGE
docker-registry 172.30.69.167 <none> 5000/TCP docker-
registry=default 4h
kubernetes 172.30.0.1 <none> 443/TCP,53/UDP,53/TCP <none>
4h
router 172.30.172.132 <none> 80/TCP router=router
4h

ii. Create the route:

$ oc create route passthrough \
 --service=docker-registry \ 1
 --hostname=<host>
route "docker-registry" created 2

Specifies the registry as the route’s service.

The route name is identical to the service name.

3. Next, you must trust the certificates being used for the registry on your host system to allow the
host to push and pull images. The certificates referenced were created when you secured your
registry.

$ sudo mkdir -p /etc/docker/certs.d/<host>
$ sudo cp <ca_certificate_file> /etc/docker/certs.d/<host>
$ sudo systemctl restart docker

CHAPTER 2. SETTING UP THE REGISTRY

39

4. Log in to the registry using the information from securing the registry. However, this time point
to the host name used in the route rather than your service IP. When logging in to a secured and
exposed registry, make sure you specify the registry in the docker login command:

docker login -e user@company.com \
 -u f83j5h6 \
 -p Ju1PeM47R0B92Lk3AZp-bWJSck2F7aGCiZ66aFGZrs2 \
 <host>

5. You can now tag and push images using the route host. For example, to tag and push a
busybox image in a project called test:

$ oc get imagestreams -n test
NAME DOCKER REPO TAGS UPDATED

$ docker pull busybox
$ docker tag busybox <host>/test/busybox
$ docker push <host>/test/busybox
The push refers to a repository [<host>/test/busybox] (len: 1)
8c2e06607696: Image already exists
6ce2e90b0bc7: Image successfully pushed
cf2616975b4a: Image successfully pushed
Digest:
sha256:6c7e676d76921031532d7d9c0394d0da7c2906f4cb4c049904c4031147d8ca31

$ docker pull <host>/test/busybox
latest: Pulling from <host>/test/busybox
cf2616975b4a: Already exists
6ce2e90b0bc7: Already exists
8c2e06607696: Already exists
Digest:
sha256:6c7e676d76921031532d7d9c0394d0da7c2906f4cb4c049904c4031147d8ca31
Status: Image is up to date for <host>/test/busybox:latest

$ oc get imagestreams -n test
NAME DOCKER REPO TAGS UPDATED
busybox 172.30.11.215:5000/test/busybox latest 2 seconds ago

NOTE

Your image streams will have the IP address and port of the registry service, not
the route name and port. See oc get imagestreams for details.

2.4.4. Manually Exposing a Non-Secure Registry

Instead of securing the registry in order to expose the registry, you can simply expose a non-secure
registry for non-production OpenShift Container Platform environments. This allows you to have an
external route to the registry without using SSL certificates.

OpenShift Container Platform 3.11 Configuring Clusters

40

WARNING

Only non-production environments should expose a non-secure registry to external
access.

To expose a non-secure registry:

1. Expose the registry:

oc expose service docker-registry --hostname=<hostname> -n default

This creates the following JSON file:

apiVersion: v1
kind: Route
metadata:
 creationTimestamp: null
 labels:
 docker-registry: default
 name: docker-registry
spec:
 host: registry.example.com
 port:
 targetPort: "5000"
 to:
 kind: Service
 name: docker-registry
status: {}

2. Verify that the route has been created successfully:

oc get route
NAME HOST/PORT PATH SERVICE LABELS
INSECURE POLICY TLS TERMINATION
docker-registry registry.example.com docker-registry docker-registry=default

3. Check the health of the registry:

$ curl -v http://registry.example.com/healthz

Expect an HTTP 200/OK message.

After exposing the registry, update your /etc/sysconfig/docker file by adding the port number
to the OPTIONS entry. For example:

OPTIONS='--selinux-enabled --insecure-registry=172.30.0.0/16 --insecure-registry
registry.example.com:80'

IMPORTANT



CHAPTER 2. SETTING UP THE REGISTRY

41

IMPORTANT

The above options should be added on the client from which you are trying to log
in.

Also, ensure that Docker is running on the client.

When logging in to the non-secured and exposed registry, make sure you specify the registry in the
docker login command. For example:

docker login -e user@company.com \
 -u f83j5h6 \
 -p Ju1PeM47R0B92Lk3AZp-bWJSck2F7aGCiZ66aFGZrs2 \
 <host>

2.5. EXTENDED REGISTRY CONFIGURATION

2.5.1. Maintaining the Registry IP Address

OpenShift Container Platform refers to the integrated registry by its service IP address, so if you decide
to delete and recreate the docker-registry service, you can ensure a completely transparent transition
by arranging to re-use the old IP address in the new service. If a new IP address cannot be avoided, you
can minimize cluster disruption by rebooting only the masters.

Re-using the Address

To re-use the IP address, you must save the IP address of the old docker-registry service prior to
deleting it, and arrange to replace the newly assigned IP address with the saved one in the new
docker-registry service.

1. Make a note of the clusterIP for the service:

$ oc get svc/docker-registry -o yaml | grep clusterIP:

2. Delete the service:

$ oc delete svc/docker-registry dc/docker-registry

3. Create the registry definition in registry.yaml, replacing <options> with, for example, those
used in step 3 of the instructions in the Non-Production Use section:

$ oc adm registry <options> -o yaml > registry.yaml

4. Edit registry.yaml, find the Service there, and change its clusterIP to the address noted in step
1.

5. Create the registry using the modified registry.yaml:

$ oc create -f registry.yaml

Rebooting the Masters

If you are unable to re-use the IP address, any operation that uses a pull specification that includes
the old IP address will fail. To minimize cluster disruption, you must reboot the masters:

OpenShift Container Platform 3.11 Configuring Clusters

42

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#image-streams

1

2

3

master-restart api
master-restart controllers

This ensures that the old registry URL, which includes the old IP address, is cleared from the cache.

NOTE

We recommend against rebooting the entire cluster because that incurs unnecessary
downtime for pods and does not actually clear the cache.

2.5.2. Configuring an External Registry Search List

You can use the /etc/containers/registries.conf file to create a list of Docker registries to search for
container images.

The /etc/containers/registries.conf file is a list of registry servers that OpenShift Container Platform
should search against when a user pulls an image using the image short name, such as: myimage:latest.
You can customize the order of the search, specify secure and insecure registries, and define a blocked
registry list. OpenShift Container Platform does not search or allow pulls from registries on the blocked
list.

For example, if a user wants to pull the myimage:latest image, OpenShift Container Platform searches
the registries in the order they appear in the list until it finds the myimage:latest.

The registry search list allows you to curate a set of images and templates that are available for
download by OpenShift Container Platform users. You can place these images in one or more Docker
registries, add the registry to the list, and pull those images into your cluster.

NOTE

When using the registry search list, OpenShift Container Platform will not pull images
from a registry that is not in the search list.

To configure a registry search list:

1. Edit the /etc/containers/registries.conf file to add or edit the following parameters as needed:

[registries.search] 1
registries = ["reg1.example.com", "reg2.example.com"]

[registries.insecure] 2
registries = ["reg3.example.com"]

[registries.block] 3
registries = ['docker.io']

Specify the secure registries from which users can download images using SSL/TLS.

Specify the insecure registries from which users can download images without TLS.

Specify the registries from which users cannot download images.

CHAPTER 2. SETTING UP THE REGISTRY

43

2.5.3. Setting the Registry Host Name

You can configure the host name and port the registry is known by for both internal and external
references. By doing this, image streams will provide hostname based push and pull specifications for
images, allowing consumers of the images to be isolated from changes to the registry service IP and
potentially allowing image streams and their references to be portable between clusters.

To set the hostname used to reference the registry from within the cluster, set the
internalRegistryHostname in the imagePolicyConfig section of the master configuration file. The
external host name is controlled by setting the externalRegistryHostname value in the same location.

Image Policy Configuration

The registry itself must be configured with the same internal hostname value. This can be accomplished
by setting the REGISTRY_OPENSHIFT_SERVER_ADDR environment variable on the registry
deployment configuration, or by setting the value in the OpenShift section of the registry configuration.

NOTE

If you have enabled TLS for your registry the server certificate must include the
hostnames by which you expect the registry to be referenced. See securing the registry
for instructions on adding hostnames to the server certificate.

2.5.4. Overriding the Registry Configuration

You can override the integrated registry’s default configuration, found by default at /config.yml in a
running registry’s container, with your own custom configuration.

NOTE

Upstream configuration options in this file may also be overridden using environment
variables. The middleware section is an exception as there are just a few options that can
be overridden using environment variables. Learn how to override specific configuration
options.

To enable management of the registry configuration file directly and deploy an updated configuration
using a ConfigMap:

1. Deploy the registry.

2. Edit the registry configuration file locally as needed. The initial YAML file deployed on the
registry is provided below. Review supported options .

Registry Configuration File

imagePolicyConfig:
 internalRegistryHostname: docker-registry.default.svc.cluster.local:5000
 externalRegistryHostname: docker-registry.mycompany.com

version: 0.1
log:
 level: debug
http:
 addr: :5000

OpenShift Container Platform 3.11 Configuring Clusters

44

https://docs.docker.com/registry/configuration/#override-specific-configuration-options
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-configmaps

3. Create a ConfigMap holding the content of each file in this directory:

$ oc create configmap registry-config \
 --from-file=</path/to/custom/registry/config.yml>/

4. Add the registry-config ConfigMap as a volume to the registry’s deployment configuration to
mount the custom configuration file at /etc/docker/registry/:

$ oc set volume dc/docker-registry --add --type=configmap \
 --configmap-name=registry-config -m /etc/docker/registry/

5. Update the registry to reference the configuration path from the previous step by adding the
following environment variable to the registry’s deployment configuration:

$ oc set env dc/docker-registry \
 REGISTRY_CONFIGURATION_PATH=/etc/docker/registry/config.yml

This may be performed as an iterative process to achieve the desired configuration. For example, during
troubleshooting, the configuration may be temporarily updated to put it in debug mode.

To update an existing configuration:

storage:
 cache:
 blobdescriptor: inmemory
 filesystem:
 rootdirectory: /registry
 delete:
 enabled: true
auth:
 openshift:
 realm: openshift
middleware:
 registry:
 - name: openshift
 repository:
 - name: openshift
 options:
 acceptschema2: true
 pullthrough: true
 enforcequota: false
 projectcachettl: 1m
 blobrepositorycachettl: 10m
 storage:
 - name: openshift
openshift:
 version: 1.0
 metrics:
 enabled: false
 secret: <secret>

CHAPTER 2. SETTING UP THE REGISTRY

45

WARNING

This procedure will overwrite the currently deployed registry configuration.

1. Edit the local registry configuration file, config.yml.

2. Delete the registry-config configmap:

$ oc delete configmap registry-config

3. Recreate the configmap to reference the updated configuration file:

$ oc create configmap registry-config\
 --from-file=</path/to/custom/registry/config.yml>/

4. Redeploy the registry to read the updated configuration:

$ oc rollout latest docker-registry

TIP

Maintain configuration files in a source control repository.

2.5.5. Registry Configuration Reference

There are many configuration options available in the upstream docker distribution library. Not all
configuration options are supported or enabled. Use this section as a reference when overriding the
registry configuration.

NOTE

Upstream configuration options in this file may also be overridden using environment
variables. However, the middleware section may not be overridden using environment
variables. Learn how to override specific configuration options .

2.5.5.1. Log

Upstream options are supported.

Example:



log:
 level: debug
 formatter: text
 fields:
 service: registry
 environment: staging

OpenShift Container Platform 3.11 Configuring Clusters

46

https://github.com/docker/distribution
https://docs.docker.com/registry/configuration/
https://docs.docker.com/registry/configuration/#override-specific-configuration-options
https://docs.docker.com/registry/configuration/#log

2.5.5.2. Hooks

Mail hooks are not supported.

2.5.5.3. Storage

This section lists the supported registry storage drivers. See the container image registry
documentation for more information.

The following list includes storage drivers that need to be configured in the registry’s configuration file:

Filesystem. Filesystem is the default and does not need to be configured.

S3. See the CloudFront configuration documentation for more information.

OpenStack Swift

Google Cloud Storage (GCS)

Microsoft Azure

Aliyun OSS

General registry storage configuration options are supported. See the container image registry
documentation for more information.

The following storage options need to be configured through the filesystem driver:

GlusterFS Storage

Ceph Rados Block Device

NOTE

For more information on supported persistent storage drivers, see Configuring Persistent
Storage and Persistent Storage Examples .

General Storage Configuration Options

storage:
 delete:
 enabled: true 1
 redirect:
 disable: false
 cache:
 blobdescriptor: inmemory
 maintenance:
 uploadpurging:
 enabled: true
 age: 168h
 interval: 24h
 dryrun: false
 readonly:
 enabled: false

CHAPTER 2. SETTING UP THE REGISTRY

47

https://docs.docker.com/registry/configuration/#storage
https://docs.docker.com/registry/storage-drivers/filesystem
https://github.com/docker/docker.github.io/blob/master/registry/storage-drivers/s3.md#cloudfront-as-middleware-with-s3-backend
https://docs.docker.com/registry/storage-drivers/swift/
https://docs.docker.com/registry/storage-drivers/gcs/
https://docs.docker.com/registry/storage-drivers/azure/
https://docs.docker.com/registry/storage-drivers/oss/
https://docs.docker.com/registry/configuration/#maintenance
https://docs.docker.com/registry/storage-drivers/filesystem

1

1 2 9

3

4

5

6

7

8

This entry is mandatory for image pruning to work properly.

2.5.5.4. Auth

Auth options should not be altered. The openshift extension is the only supported option.

2.5.5.5. Middleware

The repository middleware extension allows to configure OpenShift Container Platform middleware
responsible for interaction with OpenShift Container Platform and image proxying.

These entries are mandatory. Their presence ensures required components are loaded. These
values should not be changed.

Allows you to store manifest schema v2 during a push to the registry. See below for more details.

Allows the registry to act as a proxy for remote blobs. See below for more details.

Allows the registry cache blobs to be served from remote registries for fast access later. The
mirroring starts when the blob is accessed for the first time. The option has no effect if the
pullthrough is disabled.

Prevents blob uploads exceeding the size limit, which are defined in the targeted project.

An expiration timeout for limits cached in the registry. The lower the value, the less time it takes for
the limit changes to propagate to the registry. However, the registry will query limits from the
server more frequently and, as a consequence, pushes will be slower.

An expiration timeout for remembered associations between blob and repository. The higher the
value, the higher probability of fast lookup and more efficient registry operation. On the other
hand, memory usage will raise as well as a risk of serving image layer to user, who is no longer
authorized to access it.

auth:
 openshift:
 realm: openshift

middleware:
 registry:
 - name: openshift 1
 repository:
 - name: openshift 2
 options:
 acceptschema2: true 3
 pullthrough: true 4
 mirrorpullthrough: true 5
 enforcequota: false 6
 projectcachettl: 1m 7
 blobrepositorycachettl: 10m 8
 storage:
 - name: openshift 9

OpenShift Container Platform 3.11 Configuring Clusters

48

https://github.com/docker/distribution/blob/master/docs/spec/manifest-v2-2.md#image-manifest-version-2-schema-2

2.5.5.5.1. S3 Driver Configuration

If you want to use a S3 region that is not supported by the integrated registry you are using, then you
can specify a regionendpoint to avoid the region validation error.

For more information about using Amazon Simple Storage Service storage, see Amazon S3 as a Storage
Back-end.

For example:

NOTE

Verify the region and regionendpoint fields are consistent between themselves.
Otherwise the integrated registry will start, but it can not read or write anything to the S3
storage.

The regionendpoint can also be useful if you use a S3 storage different from the Amazon S3.

2.5.5.5.2. CloudFront Middleware

The CloudFront middleware extension can be added to support AWS, CloudFront CDN storage
provider. CloudFront middleware speeds up distribution of image content internationally. The blobs are
distributed to several edge locations around the world. The client is always directed to the edge with the
lowest latency.

NOTE

version: 0.1
log:
 level: debug
http:
 addr: :5000
storage:
 cache:
 blobdescriptor: inmemory
 delete:
 enabled: true
 s3:
 accesskey: BJKMSZBRESWJQXRWMAEQ
 secretkey: 5ah5I91SNXbeoUXXDasFtadRqOdy62JzlnOW1goS
 bucket: docker.myregistry.com
 region: eu-west-3
 regionendpoint: https://s3.eu-west-3.amazonaws.com
 auth:
 openshift:
 realm: openshift
middleware:
 registry:
 - name: openshift
 repository:
 - name: openshift
 storage:
 - name: openshift

CHAPTER 2. SETTING UP THE REGISTRY

49

https://docs.docker.com/registry/configuration/#cloudfront

1

2

3

4

5

NOTE

The CloudFront middleware extension can be only used with S3 storage. It is utilized only
during blob serving. Therefore, only blob downloads can be speeded up, not uploads.

The following is an example of minimal configuration of S3 storage driver with a CloudFront middleware:

The S3 storage must be configured the same way regardless of CloudFront middleware.

The CloudFront storage middleware needs to be listed before OpenShift middleware.

The CloudFront base URL. In the AWS management console, this is listed as Domain Name of
CloudFront distribution.

The location of your AWS private key on the filesystem. This must be not confused with Amazon
EC2 key pair. See the AWS documentation on creating CloudFront key pairs for your trusted
signers. The file needs to be mounted as a secret into the registry pod.

The ID of your Cloudfront key pair.

2.5.5.5.3. Overriding Middleware Configuration Options

The middleware section cannot be overridden using environment variables. There are a few exceptions,

version: 0.1
log:
 level: debug
http:
 addr: :5000
storage:
 cache:
 blobdescriptor: inmemory
 delete:
 enabled: true
 s3: 1
 accesskey: BJKMSZBRESWJQXRWMAEQ
 secretkey: 5ah5I91SNXbeoUXXDasFtadRqOdy62JzlnOW1goS
 region: us-east-1
 bucket: docker.myregistry.com
auth:
 openshift:
 realm: openshift
middleware:
 registry:
 - name: openshift
 repository:
 - name: openshift
 storage:
 - name: cloudfront 2
 options:
 baseurl: https://jrpbyn0k5k88bi.cloudfront.net/ 3
 privatekey: /etc/docker/cloudfront-ABCEDFGHIJKLMNOPQRST.pem 4
 keypairid: ABCEDFGHIJKLMNOPQRST 5
 - name: openshift

OpenShift Container Platform 3.11 Configuring Clusters

50

https://docs.docker.com/registry/configuration/#cloudfront
https://docs.docker.com/registry/storage-drivers/s3/
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-trusted-signers.html#private-content-creating-cloudfront-key-pairs
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-secrets

1

2

3

4

5

6

The middleware section cannot be overridden using environment variables. There are a few exceptions,
however. For example:

A configuration option that can be overridden by the boolean environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_ACCEPTSCHEMA2, which allows for
the ability to accept manifest schema v2 on manifest put requests. Recognized values are true and
false (which applies to all the other boolean variables below).

A configuration option that can be overridden by the boolean environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_PULLTHROUGH, which enables a
proxy mode for remote repositories.

A configuration option that can be overridden by the boolean environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_MIRRORPULLTHROUGH, which
instructs registry to mirror blobs locally if serving remote blobs.

A configuration option that can be overridden by the boolean environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_ENFORCEQUOTA, which allows the
ability to turn quota enforcement on or off. By default, quota enforcement is off.

A configuration option that can be overridden by the environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_PROJECTCACHETTL, specifying an
eviction timeout for project quota objects. It takes a valid time duration string (for example, 2m). If
empty, you get the default timeout. If zero (0m), caching is disabled.

A configuration option that can be overridden by the environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_BLOBREPOSITORYCACHETTL,
specifying an eviction timeout for associations between blob and containing repository. The format
of the value is the same as in projectcachettl case.

2.5.5.5.4. Image Pullthrough

If enabled, the registry will attempt to fetch requested blob from a remote registry unless the blob
exists locally. The remote candidates are calculated from DockerImage entries stored in status of the
image stream, a client pulls from. All the unique remote registry references in such entries will be tried in
turn until the blob is found.

Pullthrough will only occur if an image stream tag exists for the image being pulled. For example, if the
image being pulled is docker-registry.default.svc:5000/yourproject/yourimage:prod then the registry
will look for an image stream tag named yourimage:prod in the project yourproject. If it finds one, it will
attempt to pull the image using the dockerImageReference associated with that image stream tag.

When performing pullthrough, the registry will use pull credentials found in the project associated with
the image stream tag that is being referenced. This capability also makes it possible for you to pull

middleware:
 repository:
 - name: openshift
 options:
 acceptschema2: true 1
 pullthrough: true 2
 mirrorpullthrough: true 3
 enforcequota: false 4
 projectcachettl: 1m 5
 blobrepositorycachettl: 10m 6

CHAPTER 2. SETTING UP THE REGISTRY

51

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#image-streams

images that reside on a registry they do not have credentials to access, as long as you have access to the
image stream tag that references the image.

You must ensure that your registry has appropriate certificates to trust any external registries you do a
pullthrough against. The certificates need to be placed in the /etc/pki/tls/certs directory on the pod.
You can mount the certificates using a configuration map or secret. Note that the entire
/etc/pki/tls/certs directory must be replaced. You must include the new certificates and replace the
system certificates in your secret or configuration map that you mount.

Note that by default image stream tags use a reference policy type of Source which means that when
the image stream reference is resolved to an image pull specification, the specification used will point to
the source of the image. For images hosted on external registries, this will be the external registry and as
a result the resource will reference and pull the image by the external registry. For example,
registry.redhat.io/openshift3/jenkins-2-rhel7 and pullthrough will not apply. To ensure that resources
referencing image streams use a pull specification that points to the internal registry, the image stream
tag should use a reference policy type of Local. More information is available on Reference Policy.

This feature is on by default. However, it can be disabled using a configuration option.

By default, all the remote blobs served this way are stored locally for subsequent faster access unless
mirrorpullthrough is disabled. The downside of this mirroring feature is an increased storage usage.

NOTE

The mirroring starts when a client tries to fetch at least a single byte of the blob. To pre-
fetch a particular image into integrated registry before it is actually needed, you can run
the following command:

$ oc get imagestreamtag/${IS}:${TAG} -o jsonpath='{
.image.dockerImageLayers[*].name }' | \
 xargs -n1 -I {} curl -H "Range: bytes=0-1" -u user:${TOKEN} \
 http://${REGISTRY_IP}:${PORT}/v2/default/mysql/blobs/{}

NOTE

This OpenShift Container Platform mirroring feature should not be confused with the
upstream registry pull through cache feature, which is a similar but distinct capability.

2.5.5.5.5. Manifest Schema v2 Support

Each image has a manifest describing its blobs, instructions for running it and additional metadata. The
manifest is versioned, with each version having different structure and fields as it evolves over time. The
same image can be represented by multiple manifest versions. Each version will have different digest
though.

The registry currently supports manifest v2 schema 1 (schema1) and manifest v2 schema 2 (schema2).
The former is being obsoleted but will be supported for an extended amount of time.

The default configuration is to store schema2.

You should be wary of compatibility issues with various Docker clients:

Docker clients of version 1.9 or older support only schema1. Any manifest this client pulls or
pushes will be of this legacy schema.

OpenShift Container Platform 3.11 Configuring Clusters

52

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#configmaps-creating-from-directories
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-secrets
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#reference-policy
https://docs.docker.com/registry/recipes/mirror/
https://github.com/docker/distribution/blob/master/docs/spec/manifest-v2-1.md#image-manifest-version-2-schema-1
https://github.com/docker/distribution/blob/master/docs/spec/manifest-v2-2.md#image-manifest-version-2-schema-2

1

2

3

4

5

6

Docker clients of version 1.10 support both schema1 and schema2. And by default, it will push
the latter to the registry if it supports newer schema.

The registry, storing an image with schema1 will always return it unchanged to the client. Schema2 will
be transferred unchanged only to newer Docker client. For the older one, it will be converted on-the-fly
to schema1.

This has significant consequences. For example an image pushed to the registry by a newer Docker
client cannot be pulled by the older Docker by its digest. That’s because the stored image’s manifest is
of schema2 and its digest can be used to pull only this version of manifest.

Once you’re confident that all the registry clients support schema2, you’ll be safe to enable its support
in the registry. See the middleware configuration reference above for particular option.

2.5.5.6. OpenShift

This section reviews the configuration of global settings for features specific to OpenShift Container
Platform. In a future release, openshift-related settings in the Middleware section will be obsoleted.

Currently, this section allows you to configure registry metrics collection:

openshift:
 version: 1.0 1
 server:
 addr: docker-registry.default.svc 2
 metrics:
 enabled: false 3
 secret: <secret> 4
 requests:
 read:
 maxrunning: 10 5
 maxinqueue: 10 6
 maxwaitinqueue 2m 7
 write:
 maxrunning: 10 8
 maxinqueue: 10 9
 maxwaitinqueue 2m 10

A mandatory entry specifying configuration version of this section. The only supported value is 1.0.

The hostname of the registry. Should be set to the same value configured on the master. It can be
overridden by the environment variable REGISTRY_OPENSHIFT_SERVER_ADDR.

Can be set to true to enable metrics collection. It can be overridden by the boolean environment
variable REGISTRY_OPENSHIFT_METRICS_ENABLED.

A secret used to authorize client requests. Metrics clients must use it as a bearer token in
Authorization header. It can be overridden by the environment variable
REGISTRY_OPENSHIFT_METRICS_SECRET.

Maximum number of simultaneous pull requests. It can be overridden by the environment variable
REGISTRY_OPENSHIFT_REQUESTS_READ_MAXRUNNING. Zero indicates no limit.

Maximum number of queued pull requests. It can be overridden by the environment variable
REGISTRY_OPENSHIFT_REQUESTS_READ_MAXINQUEUE. Zero indicates no limit.

CHAPTER 2. SETTING UP THE REGISTRY

53

7

8

9

10

Maximum time a pull request can wait in the queue before being rejected. It can be overridden by
the environment variable REGISTRY_OPENSHIFT_REQUESTS_READ_MAXWAITINQUEUE.

Maximum number of simultaneous push requests. It can be overridden by the environment variable
REGISTRY_OPENSHIFT_REQUESTS_WRITE_MAXRUNNING. Zero indicates no limit.

Maximum number of queued push requests. It can be overridden by the environment variable
REGISTRY_OPENSHIFT_REQUESTS_WRITE_MAXINQUEUE. Zero indicates no limit.

Maximum time a push request can wait in the queue before being rejected. It can be overridden by
the environment variable REGISTRY_OPENSHIFT_REQUESTS_WRITE_MAXWAITINQUEUE.
Zero indicates no limit.

See Accessing Registry Metrics for usage information.

2.5.5.7. Reporting

Reporting is unsupported.

2.5.5.8. HTTP

Upstream options are supported. Learn how to alter these settings via environment variables . Only the
tls section should be altered. For example:

2.5.5.9. Notifications

Upstream options are supported. The REST API Reference provides more comprehensive integration
options.

Example:

2.5.5.10. Redis

Redis is not supported.

http:
 addr: :5000
 tls:
 certificate: /etc/secrets/registry.crt
 key: /etc/secrets/registry.key

notifications:
 endpoints:
 - name: registry
 disabled: false
 url: https://url:port/path
 headers:
 Accept:
 - text/plain
 timeout: 500
 threshold: 5
 backoff: 1000

OpenShift Container Platform 3.11 Configuring Clusters

54

https://docs.docker.com/registry/configuration/#http
https://docs.docker.com/registry/configuration/#notifications
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/api_reference/#rest-api-index

1

2

2.5.5.11. Health

Upstream options are supported. The registry deployment configuration provides an integrated health
check at /healthz.

2.5.5.12. Proxy

Proxy configuration should not be enabled. This functionality is provided by the OpenShift Container
Platform repository middleware extension, pullthrough: true.

2.5.5.13. Cache

The integrated registry actively caches data to reduce the number of calls to slow external resources.
There are two caches:

1. The storage cache that is used to cache blobs metadata. This cache does not have an expiration
time and the data is there until it is explicitly deleted.

2. The application cache contains association between blobs and repositories. The data in this
cache has an expiration time.

In order to completely turn off the cache, you need to change the configuration:

Disables cache of metadata accessed in the storage backend. Without this cache, the registry
server will constantly access the backend for metadata.

Disables the cache in which contains the blob and repository associations. Without this cache, the
registry server will continually re-query the data from the master API and recompute the
associations.

2.6. KNOWN ISSUES

2.6.1. Overview

The following are the known issues when deploying or using the integrated registry.

2.6.2. Concurrent Build with Registry Pull-through

The local docker-registry deployment takes on additional load. By default, it now caches content from

version: 0.1
log:
 level: debug
http:
 addr: :5000
storage:
 cache:
 blobdescriptor: "" 1
openshift:
 version: 1.0
 cache:
 disabled: true 2
 blobrepositoryttl: 10m

CHAPTER 2. SETTING UP THE REGISTRY

55

https://docs.docker.com/registry/configuration/#health

registry.redhat.io. The images from registry.redhat.io for STI builds are now stored in the local registry.
Attempts to pull them result in pulls from the local docker-registry. As a result, there are circumstances
where extreme numbers of concurrent builds can result in timeouts for the pulls and the build can
possibly fail. To alleviate the issue, scale the docker-registry deployment to more than one replica.
Check for timeouts in the builder pod’s logs.

2.6.3. Image Push Errors with Scaled Registry Using Shared NFS Volume

When using a scaled registry with a shared NFS volume, you may see one of the following errors during
the push of an image:

digest invalid: provided digest did not match uploaded content

blob upload unknown

blob upload invalid

These errors are returned by an internal registry service when Docker attempts to push the image. Its
cause originates in the synchronization of file attributes across nodes. Factors such as NFS client side
caching, network latency, and layer size can all contribute to potential errors that might occur when
pushing an image using the default round-robin load balancing configuration.

You can perform the following steps to minimize the probability of such a failure:

1. Ensure that the sessionAffinity of your docker-registry service is set to ClientIP:

$ oc get svc/docker-registry --template='{{.spec.sessionAffinity}}'

This should return ClientIP, which is the default in recent OpenShift Container Platform
versions. If not, change it:

$ oc patch svc/docker-registry -p '{"spec":{"sessionAffinity": "ClientIP"}}'

2. Ensure that the NFS export line of your registry volume on your NFS server has the no_wdelay
options listed. The no_wdelay option prevents the server from delaying writes, which greatly
improves read-after-write consistency, a requirement of the registry.

IMPORTANT

Testing shows issues with using the RHEL NFS server as a storage backend for the
container image registry. This includes the OpenShift Container Registry and Quay.
Therefore, using the RHEL NFS server to back PVs used by core services is not
recommended.

Other NFS implementations on the marketplace might not have these issues. Contact
the individual NFS implementation vendor for more information on any testing that was
possibly completed against these OpenShift core components.

2.6.4. Pull of Internally Managed Image Fails with "not found" Error

This error occurs when the pulled image is pushed to an image stream different from the one it is being
pulled from. This is caused by re-tagging a built image into an arbitrary image stream:

$ oc tag srcimagestream:latest anyproject/pullimagestream:latest

OpenShift Container Platform 3.11 Configuring Clusters

56

And subsequently pulling from it, using an image reference such as:

internal.registry.url:5000/anyproject/pullimagestream:latest

During a manual Docker pull, this will produce a similar error:

Error: image anyproject/pullimagestream:latest not found

To prevent this, avoid the tagging of internally managed images completely, or re-push the built image
to the desired namespace manually.

2.6.5. Image Push Fails with "500 Internal Server Error" on S3 Storage

There are problems reported happening when the registry runs on S3 storage back-end. Pushing to a
container image registry occasionally fails with the following error:

Received unexpected HTTP status: 500 Internal Server Error

To debug this, you need to view the registry logs. In there, look for similar error messages occurring at
the time of the failed push:

time="2016-03-30T15:01:21.22287816-04:00" level=error msg="unknown error completing upload:
driver.Error{DriverName:\"s3\", Enclosed:(*url.Error)(0xc20901cea0)}" http.request.method=PUT
...
time="2016-03-30T15:01:21.493067808-04:00" level=error msg="response completed with error"
err.code=UNKNOWN err.detail="s3: Put https://s3.amazonaws.com/oso-tsi-
docker/registry/docker/registry/v2/blobs/sha256/ab/abe5af443833d60cf672e2ac57589410dddec060ed7
25d3e676f1865af63d2e2/data: EOF" err.message="unknown error" http.request.method=PUT
...
time="2016-04-02T07:01:46.056520049-04:00" level=error msg="error putting into main store: s3:
The request signature we calculated does not match the signature you provided. Check your key and
signing method." http.request.method=PUT
atest

If you see such errors, contact your Amazon S3 support. There may be a problem in your region or with
your particular bucket.

2.6.6. Image Pruning Fails

If you encounter the following error when pruning images:

BLOB sha256:49638d540b2b62f3b01c388e9d8134c55493b1fa659ed84e97cb59b87a6b8e6c error
deleting blob

And your registry log contains the following information:

error deleting blob
\"sha256:49638d540b2b62f3b01c388e9d8134c55493b1fa659ed84e97cb59b87a6b8e6c\": operation
unsupported

It means that your custom configuration file lacks mandatory entries in the storage section, namely
storage:delete:enabled set to true. Add them, re-deploy the registry, and repeat your image pruning
operation.

CHAPTER 2. SETTING UP THE REGISTRY

57

CHAPTER 3. SETTING UP A ROUTER

3.1. ROUTER OVERVIEW

3.1.1. About Routers

There are many ways to get traffic into the cluster . The most common approach is to use the OpenShift
Container Platform router as the ingress point for external traffic destined for services in your
OpenShift Container Platform installation.

OpenShift Container Platform provides and supports the following router plug-ins:

The HAProxy template router is the default plug-in. It uses the openshift3/ose-haproxy-
router image to run an HAProxy instance alongside the template router plug-in inside a
container on OpenShift Container Platform. It currently supports HTTP(S) traffic and TLS-
enabled traffic via SNI. The router’s container listens on the host network interface, unlike most
containers that listen only on private IPs. The router proxies external requests for route names
to the IPs of actual pods identified by the service associated with the route.

The F5 router integrates with an existing F5 BIG-IP® system in your environment to synchronize
routes. F5 BIG-IP® version 11.4 or newer is required in order to have the F5 iControl REST API.

Deploying a Default HAProxy Router

Deploying a Custom HAProxy Router

Configuring the HAProxy Router to Use PROXY Protocol

Configuring Route Timeouts

3.1.2. Router Service Account

Before deploying an OpenShift Container Platform cluster, you must have a service account for the
router, which is automatically created during cluster installation. This service account has permissions to
a security context constraint (SCC) that allows it to specify host ports.

3.1.2.1. Permission to Access Labels

When namespace labels are used, for example in creating router shards, the service account for the
router must have cluster-reader permission.

$ oc adm policy add-cluster-role-to-user \
 cluster-reader \
 system:serviceaccount:default:router

With a service account in place, you can proceed to installing a default HAProxy Router or a customized
HAProxy Router

3.2. USING THE DEFAULT HAPROXY ROUTER

3.2.1. Overview

The oc adm router command is provided with the administrator CLI to simplify the tasks of setting up

OpenShift Container Platform 3.11 Configuring Clusters

58

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#getting-traffic-into-cluster-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-haproxy-router
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-f5-big-ip
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#security-context-constraints
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#labels

1

routers in a new installation. The oc adm router command creates the service and deployment
configuration objects. Use the --service-account option to specify the service account the router will
use to contact the master.

The router service account can be created in advance or created by the oc adm router --service-
account command.

Every form of communication between OpenShift Container Platform components is secured by TLS
and uses various certificates and authentication methods. The --default-certificate .pem format file can
be supplied or one is created by the oc adm router command. When routes are created, the user can
provide route certificates that the router will use when handling the route.

IMPORTANT

When deleting a router, ensure the deployment configuration, service, and secret are
deleted as well.

Routers are deployed on specific nodes. This makes it easier for the cluster administrator and external
network manager to coordinate which IP address will run a router and which traffic the router will handle.
The routers are deployed on specific nodes by using node selectors.

IMPORTANT

Routers use host networking by default, and they directly attach to port 80 and 443 on all
interfaces on a host. Restrict routers to hosts where ports 80/443 are available and not
being consumed by another service, and set this using node selectors and the scheduler
configuration. As an example, you can achieve this by dedicating infrastructure nodes to
run services such as routers.

IMPORTANT

It is recommended to use separate distinct openshift-router service account with your
router. This can be provided using the --service-account flag to the oc adm router
command.

$ oc adm router --dry-run --service-account=router 1

--service-account is the name of a service account for the openshift-router.

IMPORTANT

Router pods created using oc adm router have default resource requests that a node
must satisfy for the router pod to be deployed. In an effort to increase the reliability of
infrastructure components, the default resource requests are used to increase the QoS
tier of the router pods above pods without resource requests. The default values
represent the observed minimum resources required for a basic router to be deployed
and can be edited in the routers deployment configuration and you may want to increase
them based on the load of the router.

3.2.2. Creating a Router

If the router does not exist, run the following to create a router:

CHAPTER 3. SETTING UP A ROUTER

59

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-scheduler
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-service-accounts

$ oc adm router <router_name> --replicas=<number> --service-account=router --extended-
logging=true

--replicas is usually 1 unless a high availability configuration is being created.

--extended-logging=true configures the router to forward logs that are generated by HAProxy to the
syslog container.

To find the host IP address of the router:

$ oc get po <router-pod> --template={{.status.hostIP}}

You can also use router shards to ensure that the router is filtered to specific namespaces or routes, or
set any environment variables after router creation. In this case create a router for each shard.

3.2.3. Other Basic Router Commands

Checking the Default Router

The default router service account, named router, is automatically created during cluster
installations. To verify that this account already exists:

$ oc adm router --dry-run --service-account=router

Viewing the Default Router

To see what the default router would look like if created:

$ oc adm router --dry-run -o yaml --service-account=router

Configuring the Router to Forward HAProxy Logs

You can configure the router to forward logs that are generated by HAProxy to an rsyslog sidecar
container. The --extended-logging=true parameter appends the syslog container to forward
HAProxy logs to standard output.

$ oc adm router --extended-logging=true

The following example is the configuration for a router that uses --extended-logging=true:

$ oc get pod router-1-xhdb9 -o yaml
apiVersion: v1
kind: Pod
spec:
 containers:
 - env:

 - name: ROUTER_SYSLOG_ADDRESS 1
 value: /var/lib/rsyslog/rsyslog.sock

 - command: 2

OpenShift Container Platform 3.11 Configuring Clusters

60

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#env-variables

1

2

1

2

 - /sbin/rsyslogd
 - -n
 - -i
 - /tmp/rsyslog.pid
 - -f
 - /etc/rsyslog/rsyslog.conf
 image: registry.redhat.io/openshift3/ose-haproxy-router:v3.11.188
 imagePullPolicy: IfNotPresent
 name: syslog

The --extended-logging=true parameter creates a socket file for the logs.

The --extended-logging=true parameter adds a container to the router. In the container, the
rsyslog process is running as: /sbin/rsyslogd -n -i /tmp/rsyslog.pid -f /etc/rsyslog/rsyslog.conf.

Use the following commands to view the HAProxy logs:

$ oc set env dc/test-router ROUTER_LOG_LEVEL=info 1
$ oc logs -f <pod-name> -c syslog 2

Set the log level to info or debug. The default is warning.

Specify the name of the router pod to view the logs.

The HAProxy logs take the following form:

2020-04-14T03:05:36.629527+00:00 test-311-node-1 haproxy[43]: 10.0.151.166:59594
[14/Apr/2020:03:05:36.627] fe_no_sni~ be_secure:openshift-console:console/pod:console-
b475748cb-t6qkq:console:10.128.0.5:8443 0/0/1/1/2 200 393 - - --NI 2/1/0/1/0 0/0 "HEAD / HTTP/1.1"
2020-04-14T03:05:36.633024+00:00 test-311-node-1 haproxy[43]: 10.0.151.166:59594
[14/Apr/2020:03:05:36.528] public_ssl be_no_sni/fe_no_sni 95/1/104 2793 -- 1/1/0/0/0 0/0

Deploying the Router to a Labeled Node

To deploy the router to any node(s) that match a specified node label:

$ oc adm router <router_name> --replicas=<number> --selector=<label> \
 --service-account=router

For example, if you want to create a router named router and have it placed on a node labeled with
node-role.kubernetes.io/infra=true:

$ oc adm router router --replicas=1 --selector='node-role.kubernetes.io/infra=true' \
 --service-account=router

During cluster installation, the openshift_router_selector and openshift_registry_selector Ansible
settings are set to node-role.kubernetes.io/infra=true by default. The default router and registry will
only be automatically deployed if a node exists that matches the node-role.kubernetes.io/infra=true
label.

For information on updating labels, see Updating Labels on Nodes.

Multiple instances are created on different hosts according to the scheduler policy .

CHAPTER 3. SETTING UP A ROUTER

61

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#updating-labels-on-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#updating-labels-on-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-scheduler

Using a Different Router Image

To use a different router image and view the router configuration that would be used:

$ oc adm router <router_name> -o <format> --images=<image> \
 --service-account=router

For example:

$ oc adm router region-west -o yaml --images=myrepo/somerouter:mytag \
 --service-account=router

3.2.4. Filtering Routes to Specific Routers

Using the ROUTE_LABELS environment variable, you can filter routes so that they are used only by
specific routers.

For example, if you have multiple routers, and 100 routes, you can attach labels to the routes so that a
portion of them are handled by one router, whereas the rest are handled by another.

1. After creating a router, use the ROUTE_LABELS environment variable to tag the router:

$ oc set env dc/<router=name> ROUTE_LABELS="key=value"

2. Add the label to the desired routes:

oc label route <route=name> key=value

3. To verify that the label has been attached to the route, check the route configuration:

$ oc describe route/<route_name>

Setting the Maximum Number of Concurrent Connections

The router can handle a maximum number of 20000 connections by default. You can change that
limit depending on your needs. Having too few connections prevents the health check from working,
which causes unnecessary restarts. You need to configure the system to support the maximum
number of connections. The limits shown in 'sysctl fs.nr_open' and 'sysctl fs.file-max' must be
large enough. Otherwise, HAproxy will not start.

When the router is created, the --max-connections= option sets the desired limit:

$ oc adm router --max-connections=10000

Edit the ROUTER_MAX_CONNECTIONS environment variable in the router’s deployment
configuration to change the value. The router pods are restarted with the new value. If
ROUTER_MAX_CONNECTIONS is not present, the default value of 20000, is used.

NOTE

A connection includes the frontend and internal backend. This counts as two connections.
Be sure to set ROUTER_MAX_CONNECTIONS to double than the number of
connections you intend to create.

OpenShift Container Platform 3.11 Configuring Clusters

62

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#env-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#env-variables

3.2.5. HAProxy Strict SNI

The HAProxy strict-sni can be controlled through the ROUTER_STRICT_SNI environment variable in
the router’s deployment configuration. It can also be set when the router is created by using the --strict-
sni command line option.

$ oc adm router --strict-sni

3.2.6. TLS Cipher Suites

Set the router cipher suite using the --ciphers option when creating a router:

$ oc adm router --ciphers=modern

The values are: modern, intermediate, or old, with intermediate as the default. Alternatively, a set of ":"
separated ciphers can be provided. The ciphers must be from the set displayed by:

$ openssl ciphers

Alternatively, use the ROUTER_CIPHERS environment variable for an existing router.

3.2.7. Mutual TLS Authentication

Client access to the router and the backend services can be restricted using mutual TLS authentication.
The router will reject requests from clients not in its authenticated set. Mutual TLS authentication is
implemented on client certificates and can be controlled based on the certifying authorities (CAs)
issuing the certificates, the certificate revocation list and/or any certificate subject filters. Use the
mutual tls config options --mutual-tls-auth, --mutual-tls-auth-ca, --mutual-tls-auth-crl and --mutual-
tls-auth-filter when creating a router:

$ oc adm router --mutual-tls-auth=required \
 --mutual-tls-auth-ca=/local/path/to/cacerts.pem

The --mutual-tls-auth values are required, optional, or none, with none as the default. The --mutual-
tls-auth-ca value specifies a file containing one or more CA certificates. These CA certificates are used
by the router to verify a client’s certificate.

The --mutual-tls-auth-crl can be used specify the certificate revocation list to handle cases where
certificates (issued by valid certifying authorities) have been revoked.

$ oc adm router --mutual-tls-auth=required \
 --mutual-tls-auth-ca=/local/path/to/cacerts.pem \
 --mutual-tls-auth-filter='^/CN=my.org/ST=CA/C=US/O=Security/OU=OSE$' \

The --mutual-tls-auth-filter value can be used for fine grain access control based on the certificate
subject. The value is a regular expression, which is to used to match up the certificate’s subject.

NOTE

CHAPTER 3. SETTING UP A ROUTER

63

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#strict-sni
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#ciphers

1

NOTE

The mutual TLS authentication filter example above shows you a restrictive regular
expression (regex) — anchored with ^ and $ — that exactly matches a certificate subject.
If you decide to use a less restrictive regular expression, please be aware that this can
potentially match certificates issued by any CAs you have deemed to be valid. It is
recommended to also use the --mutual-tls-auth-ca option so that you have finer control
over the issued certificates.

Using --mutual-tls-auth=required ensures that you only allow authenticated clients access to the
backend resources. This means that the client is always required to provide authentication information
(aka a client certificate). To make the mutual TLS authentication optional, use --mutual-tls-
auth=optional (or use none to disable it - this is the default). Note here that optional means that you
do not require a client to present any authentication information and if the client provides any
authentication information, that is just passed on to the backend in the X-SSL* HTTP headers.

$ oc adm router --mutual-tls-auth=optional \
 --mutual-tls-auth-ca=/local/path/to/cacerts.pem \

When mutual TLS authentication support is enabled (either using the required or optional value for the
--mutual-tls-auth flag), the client authentication information is passed to the backend in the form of X-
SSL* HTTP headers.

Examples of the X-SSL* HTTP headers X-SSL-Client-DN: the full distinguished name (DN) of the
certificate subject. X-SSL-Client-NotBefore: the client certificate start date in YYMMDDhhmmss[Z]
format. X-SSL-Client-NotAfter: the client certificate end date in YYMMDDhhmmss[Z] format. X-SSL-
Client-SHA1: the SHA-1 fingerprint of the client certificate. X-SSL-Client-DER: provides full access to
the client certificate. Contains the DER formatted client certificate encoded in base-64 format.

3.2.8. Highly-Available Routers

You can set up a highly-available router on your OpenShift Container Platform cluster using IP failover.
This setup has multiple replicas on different nodes so the failover software can switch to another replica
if the current one fails.

3.2.9. Customizing the Router Service Ports

You can customize the service ports that a template router binds to by setting the environment
variables ROUTER_SERVICE_HTTP_PORT and ROUTER_SERVICE_HTTPS_PORT. This can be
done by creating a template router, then editing its deployment configuration.

The following example creates a router deployment with 0 replicas and customizes the router service
HTTP and HTTPS ports, then scales it appropriately (to 1 replica).

$ oc adm router --replicas=0 --ports='10080:10080,10443:10443' 1
$ oc set env dc/router ROUTER_SERVICE_HTTP_PORT=10080 \
 ROUTER_SERVICE_HTTPS_PORT=10443
$ oc scale dc/router --replicas=1

Ensures exposed ports are appropriately set for routers that use the container networking mode --
host-network=false.

IMPORTANT

OpenShift Container Platform 3.11 Configuring Clusters

64

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-high-availability
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#env-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#env-variables

1

IMPORTANT

If you do customize the template router service ports, you will also need to ensure that
the nodes where the router pods run have those custom ports opened in the firewall
(either via Ansible or iptables, or any other custom method that you use via firewall-
cmd).

The following is an example using iptables to open the custom router service ports.

$ iptables -A OS_FIREWALL_ALLOW -p tcp --dport 10080 -j ACCEPT
$ iptables -A OS_FIREWALL_ALLOW -p tcp --dport 10443 -j ACCEPT

3.2.10. Working With Multiple Routers

An administrator can create multiple routers with the same definition to serve the same set of routes.
Each router will be on a different node and will have a different IP address. The network administrator
will need to get the desired traffic to each node.

Multiple routers can be grouped to distribute routing load in the cluster and separate tenants to
different routers or shards. Each router or shard in the group admits routes based on the selectors in the
router. An administrator can create shards over the whole cluster using ROUTE_LABELS. A user can
create shards over a namespace (project) by using NAMESPACE_LABELS.

3.2.11. Adding a Node Selector to a Deployment Configuration

Making specific routers deploy on specific nodes requires two steps:

1. Add a label to the desired node:

$ oc label node 10.254.254.28 "router=first"

2. Add a node selector to the router deployment configuration:

$ oc edit dc <deploymentConfigName>

Add the template.spec.nodeSelector field with a key and value corresponding to the label:

...
 template:
 metadata:
 creationTimestamp: null
 labels:
 router: router1
 spec:
 nodeSelector: 1
 router: "first"
...

The key and value are router and first, respectively, corresponding to the router=first
label.

3.2.12. Using Router Shards

CHAPTER 3. SETTING UP A ROUTER

65

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#router-sharding
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#env-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#env-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#updating-labels-on-nodes

Router sharding uses NAMESPACE_LABELS and ROUTE_LABELS, to filter router namespaces and
routes. This enables you to distribute subsets of routes over multiple router deployments. By using non-
overlapping subsets, you can effectively partition the set of routes. Alternatively, you can define shards
comprising overlapping subsets of routes.

By default, a router selects all routes from all projects (namespaces). Sharding involves adding labels to
routes or namespaces and label selectors to routers. Each router shard comprises the routes that are
selected by a specific set of label selectors or belong to the namespaces that are selected by a specific
set of label selectors.

NOTE

The router service account must have the [cluster reader] permission set to allow access
to labels in other namespaces.

Router Sharding and DNS

Because an external DNS server is needed to route requests to the desired shard, the administrator is
responsible for making a separate DNS entry for each router in a project. A router will not forward
unknown routes to another router.

Consider the following example:

Router A lives on host 192.168.0.5 and has routes with *.foo.com.

Router B lives on host 192.168.1.9 and has routes with *.example.com.

Separate DNS entries must resolve *.foo.com to the node hosting Router A and *.example.com to the
node hosting Router B:

*.foo.com A IN 192.168.0.5

*.example.com A IN 192.168.1.9

Router Sharding Examples

This section describes router sharding using namespace and route labels.

Figure 3.1. Router Sharding Based on Namespace Labels

OpenShift Container Platform 3.11 Configuring Clusters

66

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#router-sharding
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#env-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#env-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#projects

Figure 3.1. Router Sharding Based on Namespace Labels

1. Configure a router with a namespace label selector:

$ oc set env dc/router NAMESPACE_LABELS="router=r1"

2. Because the router has a selector on the namespace, the router will handle routes only for
matching namespaces. In order to make this selector match a namespace, label the namespace
accordingly:

$ oc label namespace default "router=r1"

3. Now, if you create a route in the default namespace, the route is available in the default router:

$ oc create -f route1.yaml

4. Create a new project (namespace) and create a route, route2:

$ oc new-project p1
$ oc create -f route2.yaml

Notice the route is not available in your router.

5. Label namespace p1 with router=r1

CHAPTER 3. SETTING UP A ROUTER

67

$ oc label namespace p1 "router=r1"

Adding this label makes the route available in the router.

Example

A router deployment finops-router is configured with the label selector
NAMESPACE_LABELS="name in (finance, ops)", and a router deployment dev-router is
configured with the label selector NAMESPACE_LABELS="name=dev".
If all routes are in namespaces labeled name=finance, name=ops, and name=dev, then this
configuration effectively distributes your routes between the two router deployments.

In the above scenario, sharding becomes a special case of partitioning, with no overlapping subsets.
Routes are divided between router shards.

The criteria for route selection govern how the routes are distributed. It is possible to have
overlapping subsets of routes across router deployments.

Example

In addition to finops-router and dev-router in the example above, you also have devops-router,
which is configured with a label selector NAMESPACE_LABELS="name in (dev, ops)".
The routes in namespaces labeled name=dev or name=ops now are serviced by two different router
deployments. This becomes a case in which you have defined overlapping subsets of routes, as
illustrated in the procedure in Router Sharding Based on Namespace Labels .

In addition, this enables you to create more complex routing rules, allowing the diversion of higher
priority traffic to the dedicated finops-router while sending lower priority traffic to devops-router.

Router Sharding Based on Route Labels

NAMESPACE_LABELS allows filtering of the projects to service and selecting all the routes from those
projects, but you may want to partition routes based on other criteria associated with the routes
themselves. The ROUTE_LABELS selector allows you to slice-and-dice the routes themselves.

Example

A router deployment prod-router is configured with the label selector
ROUTE_LABELS="mydeployment=prod", and a router deployment devtest-router is configured
with the label selector ROUTE_LABELS="mydeployment in (dev, test)".
This configuration partitions routes between the two router deployments according to the routes'
labels, irrespective of their namespaces.

The example assumes you have all the routes you want to be serviced tagged with a label
"mydeployment=<tag>".

3.2.12.1. Creating Router Shards

This section describes an advanced example of router sharding. Suppose there are 26 routes, named a 
— z, with various labels:

Possible labels on routes

OpenShift Container Platform 3.11 Configuring Clusters

68

1

2

3

4

5

sla=high geo=east hw=modest dept=finance
sla=medium geo=west hw=strong dept=dev
sla=low dept=ops

These labels express the concepts including service level agreement, geographical location, hardware
requirements, and department. The routes can have at most one label from each column. Some routes
may have other labels or no labels at all.

Name(s) SLA Geo HW Dept Other Labels

a high east modest finance type=static

b west strong type=dynamic

c, d, e low modest type=static

g — k medium strong dev

l — s high modest ops

t — z west type=dynamic

Here is a convenience script mkshard that illustrates how oc adm router, oc set env, and oc scale can
be used together to make a router shard.

The created router has name router-shard-<id>.

Specify no scaling for now.

The deployment configuration for the router.

Set the selection expression using oc set env. The selection expression is the value of the
ROUTE_LABELS environment variable.

Scale it up.

Running mkshard several times creates several routers:

#!/bin/bash
Usage: mkshard ID SELECTION-EXPRESSION
id=$1
sel="$2"
router=router-shard-$id 1
oc adm router $router --replicas=0 2
dc=dc/router-shard-$id 3
oc set env $dc ROUTE_LABELS="$sel" 4
oc scale $dc --replicas=3 5

CHAPTER 3. SETTING UP A ROUTER

69

1

2

3

4

5

Router Selection Expression Routes

router-shard-1 sla=high a, l — s

router-shard-2 geo=west b, t — z

router-shard-3 dept=dev g — k

3.2.12.2. Modifying Router Shards

Because a router shard is a construct based on labels, you can modify either the labels (via oc label) or
the selection expression (via oc set env).

This section extends the example started in the Creating Router Shards section, demonstrating how to
change the selection expression.

Here is a convenience script modshard that modifies an existing router to use a new selection
expression:

The modified router has name router-shard-<id>.

The deployment configuration where the modifications occur.

Scale it down.

Set the new selection expression using oc set env. Unlike mkshard from the Creating Router
Shards section, the selection expression specified as the non- ID arguments to modshard must
include the environment variable name as well as its value.

Scale it back up.

NOTE

In modshard, the oc scale commands are not necessary if the deployment strategy for
router-shard-<id> is Rolling.

For example, to expand the department for router-shard-3 to include ops as well as dev:

$ modshard 3 ROUTE_LABELS='dept in (dev, ops)'

The result is that router-shard-3 now selects routes g — s (the combined sets of g — k and l — s).

#!/bin/bash
Usage: modshard ID SELECTION-EXPRESSION...
id=$1
shift
router=router-shard-$id 1
dc=dc/$router 2
oc scale $dc --replicas=0 3
oc set env $dc "$@" 4
oc scale $dc --replicas=3 5

OpenShift Container Platform 3.11 Configuring Clusters

70

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#router-sharding
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cli_reference/#oc-label
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cli_reference/#oc-set-env
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#strategies

This example takes into account that there are only three departments in this example scenario, and
specifies a department to leave out of the shard, thus achieving the same result as the preceding
example:

$ modshard 3 ROUTE_LABELS='dept != finance'

This example specifies three comma-separated qualities, and results in only route b being selected:

$ modshard 3 ROUTE_LABELS='hw=strong,type=dynamic,geo=west'

Similarly to ROUTE_LABELS, which involves a route’s labels, you can select routes based on the labels
of the route’s namespace using the NAMESPACE_LABELS environment variable. This example
modifies router-shard-3 to serve routes whose namespace has the label frequency=weekly:

$ modshard 3 NAMESPACE_LABELS='frequency=weekly'

The last example combines ROUTE_LABELS and NAMESPACE_LABELS to select routes with label
sla=low and whose namespace has the label frequency=weekly:

$ modshard 3 \
 NAMESPACE_LABELS='frequency=weekly' \
 ROUTE_LABELS='sla=low'

3.2.13. Finding the Host Name of the Router

When exposing a service, a user can use the same route from the DNS name that external users use to
access the application. The network administrator of the external network must make sure the host
name resolves to the name of a router that has admitted the route. The user can set up their DNS with a
CNAME that points to this host name. However, the user may not know the host name of the router.
When it is not known, the cluster administrator can provide it.

The cluster administrator can use the --router-canonical-hostname option with the router’s canonical
host name when creating the router. For example:

oc adm router myrouter --router-canonical-hostname="rtr.example.com"

This creates the ROUTER_CANONICAL_HOSTNAME environment variable in the router’s deployment
configuration containing the host name of the router.

For routers that already exist, the cluster administrator can edit the router’s deployment configuration
and add the ROUTER_CANONICAL_HOSTNAME environment variable:

spec:
 template:
 spec:
 containers:
 - env:
 - name: ROUTER_CANONICAL_HOSTNAME
 value: rtr.example.com

The ROUTER_CANONICAL_HOSTNAME value is displayed in the route status for all routers that have
admitted the route. The route status is refreshed every time the router is reloaded.

When a user creates a route, all of the active routers evaluate the route and, if conditions are met, admit

CHAPTER 3. SETTING UP A ROUTER

71

When a user creates a route, all of the active routers evaluate the route and, if conditions are met, admit
it. When a router that defines the ROUTER_CANONICAL_HOSTNAME environment variable admits
the route, the router places the value in the routerCanonicalHostname field in the route status. The
user can examine the route status to determine which, if any, routers have admitted the route, select a
router from the list, and find the host name of the router to pass along to the network administrator.

status:
 ingress:
 conditions:
 lastTransitionTime: 2016-12-07T15:20:57Z
 status: "True"
 type: Admitted
 host: hello.in.mycloud.com
 routerCanonicalHostname: rtr.example.com
 routerName: myrouter
 wildcardPolicy: None

oc describe inclues the host name when available:

$ oc describe route/hello-route3
...
Requested Host: hello.in.mycloud.com exposed on router myroute (host rtr.example.com) 12 minutes
ago

Using the above information, the user can ask the DNS administrator to set up a CNAME from the
route’s host, hello.in.mycloud.com, to the router’s canonical hostname, rtr.example.com. This results
in any traffic to hello.in.mycloud.com reaching the user’s application.

3.2.14. Customizing the Default Routing Subdomain

You can customize the suffix used as the default routing subdomain for your environment by modifying
the master configuration file (the /etc/origin/master/master-config.yaml file by default). Routes that
do not specify a host name would have one generated using this default routing subdomain.

The following example shows how you can set the configured suffix to v3.openshift.test:

routingConfig:
 subdomain: v3.openshift.test

NOTE

This change requires a restart of the master if it is running.

With the OpenShift Container Platform master(s) running the above configuration, the generated host
name for the example of a route named no-route-hostname without a host name added to a
namespace mynamespace would be:

no-route-hostname-mynamespace.v3.openshift.test

3.2.15. Forcing Route Host Names to a Custom Routing Subdomain

If an administrator wants to restrict all routes to a specific routing subdomain, they can pass the --force-
subdomain option to the oc adm router command. This forces the router to override any host names

OpenShift Container Platform 3.11 Configuring Clusters

72

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#route-hostnames

specified in a route and generate one based on the template provided to the --force-subdomain
option.

The following example runs a router, which overrides the route host names using a custom subdomain
template ${name}-${namespace}.apps.example.com.

$ oc adm router --force-subdomain='${name}-${namespace}.apps.example.com'

3.2.16. Using Wildcard Certificates

A TLS-enabled route that does not include a certificate uses the router’s default certificate instead. In
most cases, this certificate should be provided by a trusted certificate authority, but for convenience you
can use the OpenShift Container Platform CA to create the certificate. For example:

$ CA=/etc/origin/master
$ oc adm ca create-server-cert --signer-cert=$CA/ca.crt \
 --signer-key=$CA/ca.key --signer-serial=$CA/ca.serial.txt \
 --hostnames='*.cloudapps.example.com' \
 --cert=cloudapps.crt --key=cloudapps.key

NOTE

The oc adm ca create-server-cert command generates a certificate that is valid for two
years. This can be altered with the --expire-days option, but for security reasons, it is
recommended to not make it greater than this value.

Run oc adm commands only from the first master listed in the Ansible host inventory file,
by default /etc/ansible/hosts.

The router expects the certificate and key to be in PEM format in a single file:

$ cat cloudapps.crt cloudapps.key $CA/ca.crt > cloudapps.router.pem

From there you can use the --default-cert flag:

$ oc adm router --default-cert=cloudapps.router.pem --service-account=router

NOTE

Browsers only consider wildcards valid for subdomains one level deep. So in this example,
the certificate would be valid for a.cloudapps.example.com but not for
a.b.cloudapps.example.com.

3.2.17. Manually Redeploy Certificates

To manually redeploy the router certificates:

1. Check to see if a secret containing the default router certificate was added to the router:

$ oc set volume dc/router

deploymentconfigs/router

CHAPTER 3. SETTING UP A ROUTER

73

 secret/router-certs as server-certificate
 mounted at /etc/pki/tls/private

If the certificate is added, skip the following step and overwrite the secret.

2. Make sure that you have a default certificate directory set for the following variable
DEFAULT_CERTIFICATE_DIR:

$ oc set env dc/router --list

DEFAULT_CERTIFICATE_DIR=/etc/pki/tls/private

If not, create the directory using the following command:

$ oc set env dc/router DEFAULT_CERTIFICATE_DIR=/etc/pki/tls/private

3. Export the certificate to PEM format:

$ cat custom-router.key custom-router.crt custom-ca.crt > custom-router.crt

4. Overwrite or create a router certificate secret:
If the certificate secret was added to the router, overwrite the secret. If not, create a new secret.

To overwrite the secret, run the following command:

$ oc create secret generic router-certs --from-file=tls.crt=custom-router.crt --from-
file=tls.key=custom-router.key --type=kubernetes.io/tls -o json --dry-run | oc replace -f -

To create a new secret, run the following commands:

$ oc create secret generic router-certs --from-file=tls.crt=custom-router.crt --from-
file=tls.key=custom-router.key --type=kubernetes.io/tls

$ oc set volume dc/router --add --mount-path=/etc/pki/tls/private --secret-name='router-certs'
--name router-certs

5. Deploy the router.

$ oc rollout latest dc/router

3.2.18. Using Secured Routes

Currently, password protected key files are not supported. HAProxy prompts for a password upon
starting and does not have a way to automate this process. To remove a passphrase from a keyfile, you
can run:

openssl rsa -in <passwordProtectedKey.key> -out <new.key>

Here is an example of how to use a secure edge terminated route with TLS termination occurring on the
router before traffic is proxied to the destination. The secure edge terminated route specifies the TLS
certificate and key information. The TLS certificate is served by the router front end.

First, start up a router instance:

OpenShift Container Platform 3.11 Configuring Clusters

74

oc adm router --replicas=1 --service-account=router

Next, create a private key, csr and certificate for our edge secured route. The instructions on how to do
that would be specific to your certificate authority and provider. For a simple self-signed certificate for a
domain named www.example.test, see the example shown below:

sudo openssl genrsa -out example-test.key 2048
#
sudo openssl req -new -key example-test.key -out example-test.csr \
 -subj "/C=US/ST=CA/L=Mountain View/O=OS3/OU=Eng/CN=www.example.test"
#
sudo openssl x509 -req -days 366 -in example-test.csr \
 -signkey example-test.key -out example-test.crt

Generate a route using the above certificate and key.

$ oc create route edge --service=my-service \
 --hostname=www.example.test \
 --key=example-test.key --cert=example-test.crt
route "my-service" created

Look at its definition.

$ oc get route/my-service -o yaml
apiVersion: v1
kind: Route
metadata:
 name: my-service
spec:
 host: www.example.test
 to:
 kind: Service
 name: my-service
 tls:
 termination: edge
 key: |
 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----
 certificate: |
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

Make sure your DNS entry for www.example.test points to your router instance(s) and the route to
your domain should be available. The example below uses curl along with a local resolver to simulate the
DNS lookup:

routerip="4.1.1.1" # replace with IP address of one of your router instances.
curl -k --resolve www.example.test:443:$routerip https://www.example.test/

3.2.19. Using Wildcard Routes (for a Subdomain)

The HAProxy router has support for wildcard routes, which are enabled by setting the

CHAPTER 3. SETTING UP A ROUTER

75

The HAProxy router has support for wildcard routes, which are enabled by setting the
ROUTER_ALLOW_WILDCARD_ROUTES environment variable to true. Any routes with a wildcard
policy of Subdomain that pass the router admission checks will be serviced by the HAProxy router.
Then, the HAProxy router exposes the associated service (for the route) per the route’s wildcard policy.

IMPORTANT

To change a route’s wildcard policy, you must remove the route and recreate it with the
updated wildcard policy. Editing only the route’s wildcard policy in a route’s .yaml file
does not work.

$ oc adm router --replicas=0 ...
$ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true
$ oc scale dc/router --replicas=1

Learn how to configure the web console for wildcard routes .

Using a Secure Wildcard Edge Terminated Route

This example reflects TLS termination occurring on the router before traffic is proxied to the
destination. Traffic sent to any hosts in the subdomain example.org (*.example.org) is proxied to the
exposed service.

The secure edge terminated route specifies the TLS certificate and key information. The TLS
certificate is served by the router front end for all hosts that match the subdomain (*.example.org).

1. Start up a router instance:

$ oc adm router --replicas=0 --service-account=router
$ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true
$ oc scale dc/router --replicas=1

2. Create a private key, certificate signing request (CSR), and certificate for the edge secured
route.
The instructions on how to do this are specific to your certificate authority and provider. For a
simple self-signed certificate for a domain named *.example.test, see this example:

sudo openssl genrsa -out example-test.key 2048
#
sudo openssl req -new -key example-test.key -out example-test.csr \
 -subj "/C=US/ST=CA/L=Mountain View/O=OS3/OU=Eng/CN=*.example.test"
#
sudo openssl x509 -req -days 366 -in example-test.csr \
 -signkey example-test.key -out example-test.crt

3. Generate a wildcard route using the above certificate and key:

$ cat > route.yaml <<REOF
apiVersion: v1
kind: Route
metadata:
 name: my-service
spec:
 host: www.example.test

OpenShift Container Platform 3.11 Configuring Clusters

76

 wildcardPolicy: Subdomain
 to:
 kind: Service
 name: my-service
 tls:
 termination: edge
 key: "$(perl -pe 's/\n/\\n/' example-test.key)"
 certificate: "$(perl -pe 's/\n/\\n/' example-test.cert)"
REOF
$ oc create -f route.yaml

Ensure your DNS entry for *.example.test points to your router instance(s) and the route to
your domain is available.

This example uses curl with a local resolver to simulate the DNS lookup:

routerip="4.1.1.1" # replace with IP address of one of your router instances.
curl -k --resolve www.example.test:443:$routerip https://www.example.test/
curl -k --resolve abc.example.test:443:$routerip https://abc.example.test/
curl -k --resolve anyname.example.test:443:$routerip https://anyname.example.test/

For routers that allow wildcard routes (ROUTER_ALLOW_WILDCARD_ROUTES set to true), there are
some caveats to the ownership of a subdomain associated with a wildcard route.

Prior to wildcard routes, ownership was based on the claims made for a host name with the namespace
with the oldest route winning against any other claimants. For example, route r1 in namespace ns1 with
a claim for one.example.test would win over another route r2 in namespace ns2 for the same host
name one.example.test if route r1 was older than route r2.

In addition, routes in other namespaces were allowed to claim non-overlapping hostnames. For example,
route rone in namespace ns1 could claim www.example.test and another route rtwo in namespace d2
could claim c3po.example.test.

This is still the case if there are no wildcard routes claiming that same subdomain (example.test in the
above example).

However, a wildcard route needs to claim all of the host names within a subdomain (host names of the
form *.example.test). A wildcard route’s claim is allowed or denied based on whether or not the oldest
route for that subdomain (example.test) is in the same namespace as the wildcard route. The oldest
route can be either a regular route or a wildcard route.

For example, if there is already a route eldest that exists in the ns1 namespace that claimed a host
named owner.example.test and, if at a later point in time, a new wildcard route wildthing requesting for
routes in that subdomain (example.test) is added, the claim by the wildcard route will only be allowed if
it is the same namespace (ns1) as the owning route.

The following examples illustrate various scenarios in which claims for wildcard routes will succeed or fail.

In the example below, a router that allows wildcard routes will allow non-overlapping claims for hosts in
the subdomain example.test as long as a wildcard route has not claimed a subdomain.

$ oc adm router ...
$ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true

$ oc project ns1
$ oc expose service myservice --hostname=owner.example.test

CHAPTER 3. SETTING UP A ROUTER

77

$ oc expose service myservice --hostname=aname.example.test
$ oc expose service myservice --hostname=bname.example.test

$ oc project ns2
$ oc expose service anotherservice --hostname=second.example.test
$ oc expose service anotherservice --hostname=cname.example.test

$ oc project otherns
$ oc expose service thirdservice --hostname=emmy.example.test
$ oc expose service thirdservice --hostname=webby.example.test

In the example below, a router that allows wildcard routes will not allow the claim for
owner.example.test or aname.example.test to succeed since the owning namespace is ns1.

$ oc adm router ...
$ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true

$ oc project ns1
$ oc expose service myservice --hostname=owner.example.test
$ oc expose service myservice --hostname=aname.example.test

$ oc project ns2
$ oc expose service secondservice --hostname=bname.example.test
$ oc expose service secondservice --hostname=cname.example.test

$ # Router will not allow this claim with a different path name `/p1` as
$ # namespace `ns1` has an older route claiming host `aname.example.test`.
$ oc expose service secondservice --hostname=aname.example.test --path="/p1"

$ # Router will not allow this claim as namespace `ns1` has an older route
$ # claiming host name `owner.example.test`.
$ oc expose service secondservice --hostname=owner.example.test

$ oc project otherns

$ # Router will not allow this claim as namespace `ns1` has an older route
$ # claiming host name `aname.example.test`.
$ oc expose service thirdservice --hostname=aname.example.test

In the example below, a router that allows wildcard routes will allow the claim for `*.example.test to
succeed since the owning namespace is ns1 and the wildcard route belongs to that same namespace.

$ oc adm router ...
$ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true

$ oc project ns1
$ oc expose service myservice --hostname=owner.example.test

$ # Reusing the route.yaml from the previous example.
$ # spec:
$ # host: www.example.test
$ # wildcardPolicy: Subdomain

$ oc create -f route.yaml # router will allow this claim.

OpenShift Container Platform 3.11 Configuring Clusters

78

In the example below, a router that allows wildcard routes will not allow the claim for `*.example.test to
succeed since the owning namespace is ns1 and the wildcard route belongs to another namespace
cyclone.

$ oc adm router ...
$ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true

$ oc project ns1
$ oc expose service myservice --hostname=owner.example.test

$ # Switch to a different namespace/project.
$ oc project cyclone

$ # Reusing the route.yaml from a prior example.
$ # spec:
$ # host: www.example.test
$ # wildcardPolicy: Subdomain

$ oc create -f route.yaml # router will deny (_NOT_ allow) this claim.

Similarly, once a namespace with a wildcard route claims a subdomain, only routes within that
namespace can claim any hosts in that same subdomain.

In the example below, once a route in namespace ns1 with a wildcard route claims subdomain
example.test, only routes in the namespace ns1 are allowed to claim any hosts in that same subdomain.

$ oc adm router ...
$ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true

$ oc project ns1
$ oc expose service myservice --hostname=owner.example.test

$ oc project otherns

$ # namespace `otherns` is allowed to claim for other.example.test
$ oc expose service otherservice --hostname=other.example.test

$ oc project ns1

$ # Reusing the route.yaml from the previous example.
$ # spec:
$ # host: www.example.test
$ # wildcardPolicy: Subdomain

$ oc create -f route.yaml # Router will allow this claim.

$ # In addition, route in namespace otherns will lose its claim to host
$ # `other.example.test` due to the wildcard route claiming the subdomain.

$ # namespace `ns1` is allowed to claim for deux.example.test
$ oc expose service mysecondservice --hostname=deux.example.test

$ # namespace `ns1` is allowed to claim for deux.example.test with path /p1
$ oc expose service mythirdservice --hostname=deux.example.test --path="/p1"

CHAPTER 3. SETTING UP A ROUTER

79

$ oc project otherns

$ # namespace `otherns` is not allowed to claim for deux.example.test
$ # with a different path '/otherpath'
$ oc expose service otherservice --hostname=deux.example.test --path="/otherpath"

$ # namespace `otherns` is not allowed to claim for owner.example.test
$ oc expose service yetanotherservice --hostname=owner.example.test

$ # namespace `otherns` is not allowed to claim for unclaimed.example.test
$ oc expose service yetanotherservice --hostname=unclaimed.example.test

In the example below, different scenarios are shown, in which the owner routes are deleted and
ownership is passed within and across namespaces. While a route claiming host eldest.example.test in
the namespace ns1 exists, wildcard routes in that namespace can claim subdomain example.test. When
the route for host eldest.example.test is deleted, the next oldest route senior.example.test would
become the oldest route and would not affect any other routes. Once the route for host
senior.example.test is deleted, the next oldest route junior.example.test becomes the oldest route
and block the wildcard route claimant.

$ oc adm router ...
$ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true

$ oc project ns1
$ oc expose service myservice --hostname=eldest.example.test
$ oc expose service seniorservice --hostname=senior.example.test

$ oc project otherns

$ # namespace `otherns` is allowed to claim for other.example.test
$ oc expose service juniorservice --hostname=junior.example.test

$ oc project ns1

$ # Reusing the route.yaml from the previous example.
$ # spec:
$ # host: www.example.test
$ # wildcardPolicy: Subdomain

$ oc create -f route.yaml # Router will allow this claim.

$ # In addition, route in namespace otherns will lose its claim to host
$ # `junior.example.test` due to the wildcard route claiming the subdomain.

$ # namespace `ns1` is allowed to claim for dos.example.test
$ oc expose service mysecondservice --hostname=dos.example.test

$ # Delete route for host `eldest.example.test`, the next oldest route is
$ # the one claiming `senior.example.test`, so route claims are unaffacted.
$ oc delete route myservice

$ # Delete route for host `senior.example.test`, the next oldest route is
$ # the one claiming `junior.example.test` in another namespace, so claims
$ # for a wildcard route would be affected. The route for the host

OpenShift Container Platform 3.11 Configuring Clusters

80

$ # `dos.example.test` would be unaffected as there are no other wildcard
$ # claimants blocking it.
$ oc delete route seniorservice

3.2.20. Using the Container Network Stack

The OpenShift Container Platform router runs inside a container and the default behavior is to use the
network stack of the host (i.e., the node where the router container runs). This default behavior benefits
performance because network traffic from remote clients does not need to take multiple hops through
user space to reach the target service and container.

Additionally, this default behavior enables the router to get the actual source IP address of the remote
connection rather than getting the node’s IP address. This is useful for defining ingress rules based on
the originating IP, supporting sticky sessions, and monitoring traffic, among other uses.

This host network behavior is controlled by the --host-network router command line option, and the
default behaviour is the equivalent of using --host-network=true. If you wish to run the router with the
container network stack, use the --host-network=false option when creating the router. For example:

$ oc adm router --service-account=router --host-network=false

Internally, this means the router container must publish the 80 and 443 ports in order for the external
network to communicate with the router.

NOTE

Running with the container network stack means that the router sees the source IP
address of a connection to be the NATed IP address of the node, rather than the actual
remote IP address.

NOTE

On OpenShift Container Platform clusters using multi-tenant network isolation, routers
on a non-default namespace with the --host-network=false option will load all routes in
the cluster, but routes across the namespaces will not be reachable due to network
isolation. With the --host-network=true option, routes bypass the container network and
it can access any pod in the cluster. If isolation is needed in this case, then do not add
routes across the namespaces.

3.2.21. Using the Dynamic Configuration Manager

You can configure the HAProxy router to support the dynamic configuration manager.

The dynamic configuration manager brings certain types of routes online without requiring HAProxy
reload downtime. It handles any route and endpoint life-cycle events such as route and endpoint
addition|deletion|update.

Enable the dynamic configuration manager by setting the ROUTER_HAPROXY_CONFIG_MANAGER
environment variable to true:

$ oc set env dc/<router_name> ROUTER_HAPROXY_CONFIG_MANAGER='true'

If the dynamic configuration manager cannot dynamically configure HAProxy, it rewrites the

CHAPTER 3. SETTING UP A ROUTER

81

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#network-isolation-multitenant

If the dynamic configuration manager cannot dynamically configure HAProxy, it rewrites the
configuration and reloads the HAProxy process. For example, if a new route contains custom
annotations, such as custom timeouts, or if the route requires custom TLS configuration.

The dynamic configuration internally uses the HAProxy socket and configuration API with a pool of pre-
allocated routes and back end servers. The pre-allocated pool of routes is created using route
blueprints. The default set of blueprints supports unsecured routes, edge secured routes without any
custom TLS configuration, and passthrough routes.

IMPORTANT

re-encrypt routes require custom TLS configuration information, so extra configuration is
needed in order to use them with the dynamic configuration manager.

Extend the blueprints that the dynamic configuration manager can use by setting the
ROUTER_BLUEPRINT_ROUTE_NAMESPACE and optionally the
ROUTER_BLUEPRINT_ROUTE_LABELS environment variables.

All routes, or the routes that match the route labels, in the blueprint route namespace are
processed as custom blueprints similar to the default set of blueprints. This includes re-
encrypt routes or routes that use custom annotations or routes with custom TLS
configuration.

The following procedure assumes you have created three route objects: reencrypt-blueprint,
annotated-edge-blueprint, and annotated-unsecured-blueprint. See Route Types for an example of
the different route type objects.

Procedure

1. Create a new project:

$ oc new-project namespace_name

2. Create a new route. This method exposes an existing service:

$ oc create route edge edge_route_name --key=/path/to/key.pem \
 --cert=/path/to/cert.pem --service=<service> --port=8443

3. Label the route:

$ oc label route edge_route_name type=route_label_1

4. Create three different routes from route object definitions . All have the label
type=route_label_1:

$ oc create -f reencrypt-blueprint.yaml
$ oc create -f annotated-edge-blueprint.yaml
$ oc create -f annotated-unsecured-blueprint.json

You can also remove a label from a route, which prevents it from being used as a blueprint route.
For example, to prevent the annotated-unsecured-blueprint from being used as a blueprint
route:

$ oc label route annotated-unsecured-blueprint type-

OpenShift Container Platform 3.11 Configuring Clusters

82

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#route-types
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#creating-routes

5. Create a new router to be used for the blueprint pool:

$ oc adm router

6. Set the environment variables for the new router:

$ oc set env dc/router ROUTER_HAPROXY_CONFIG_MANAGER=true \
 ROUTER_BLUEPRINT_ROUTE_NAMESPACE=namespace_name \
 ROUTER_BLUEPRINT_ROUTE_LABELS="type=route_label_1"

All routes in the namespace or project namespace_name with label type=route_label_1 can
be processed and used as custom blueprints.

Note that you can also add, update, or remove blueprints by managing the routes as you would
normally in that namespace namespace_name. The dynamic configuration manager watches
for changes to routes in the namespace namespace_name similar to how the router watches
for routes and services.

7. The pool sizes of the pre-allocated routes and back end servers can be controlled with the
ROUTER_BLUEPRINT_ROUTE_POOL_SIZE, which defaults to 10, and
ROUTER_MAX_DYNAMIC_SERVERS, which defaults to 5, environment variables. You can also
control how often changes made by the dynamic configuration manager are committed to disk,
which is when the HAProxy configuration is re-written and the HAProxy process is reloaded. The
default is one hour, or 3600 seconds, or when the dynamic configuration manager runs out of
pool space. The COMMIT_INTERVAL environment variable controls this setting:

$ oc set env dc/router -c router ROUTER_BLUEPRINT_ROUTE_POOL_SIZE=20 \
 ROUTER_MAX_DYNAMIC_SERVERS=3 COMMIT_INTERVAL=6h

The example increases the pool size for each blueprint route to 20, reduces the number of
dynamic servers to 3, and increases the commit interval to 6 hours.

3.2.22. Exposing Router Metrics

The HAProxy router metrics are, by default, exposed or published in Prometheus format for
consumption by external metrics collection and aggregation systems (e.g. Prometheus, statsd). Metrics
are also available directly from the HAProxy router in its own HTML format for viewing in a browser or
CSV download. These metrics include the HAProxy native metrics and some controller metrics.

When you create a router using the following command, OpenShift Container Platform makes metrics
available in Prometheus format on the stats port, by default 1936.

$ oc adm router --service-account=router

To extract the raw statistics in Prometheus format run the following command:

curl <user>:<password>@<router_IP>:<STATS_PORT>

For example:

$ curl admin:sLzdR6SgDJ@10.254.254.35:1936/metrics

You can get the information you need to access the metrics from the router service annotations:

CHAPTER 3. SETTING UP A ROUTER

83

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#haproxy-metrics
https://prometheus.io/docs/concepts/data_model/
https://cbonte.github.io/haproxy-dconv/1.5/configuration.html#9

$ oc edit service <router-name>

apiVersion: v1
kind: Service
metadata:
 annotations:
 prometheus.io/port: "1936"
 prometheus.io/scrape: "true"
 prometheus.openshift.io/password: IImoDqON02
 prometheus.openshift.io/username: admin

The prometheus.io/port is the stats port, by default 1936. You might need to configure your
firewall to permit access. Use the previous user name and password to access the metrics. The
path is /metrics.

$ curl <user>:<password>@<router_IP>:<STATS_PORT>
for example:
$ curl admin:sLzdR6SgDJ@10.254.254.35:1936/metrics
...
HELP haproxy_backend_connections_total Total number of connections.
TYPE haproxy_backend_connections_total gauge
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route"} 0
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route-alt"} 0
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route01"} 0
...
HELP haproxy_exporter_server_threshold Number of servers tracked and the current
threshold value.
TYPE haproxy_exporter_server_threshold gauge
haproxy_exporter_server_threshold{type="current"} 11
haproxy_exporter_server_threshold{type="limit"} 500
...
HELP haproxy_frontend_bytes_in_total Current total of incoming bytes.
TYPE haproxy_frontend_bytes_in_total gauge
haproxy_frontend_bytes_in_total{frontend="fe_no_sni"} 0
haproxy_frontend_bytes_in_total{frontend="fe_sni"} 0
haproxy_frontend_bytes_in_total{frontend="public"} 119070
...
HELP haproxy_server_bytes_in_total Current total of incoming bytes.
TYPE haproxy_server_bytes_in_total gauge
haproxy_server_bytes_in_total{namespace="",pod="",route="",server="fe_no_sni",service=""}
0
haproxy_server_bytes_in_total{namespace="",pod="",route="",server="fe_sni",service=""} 0
haproxy_server_bytes_in_total{namespace="default",pod="docker-registry-5-
nk5fz",route="docker-registry",server="10.130.0.89:5000",service="docker-registry"} 0
haproxy_server_bytes_in_total{namespace="default",pod="hello-rc-vkjqx",route="hello-
route",server="10.130.0.90:8080",service="hello-svc-1"} 0
...

To get metrics in a browser:

1. Delete the following environment variables from the router deployment configuration file:

OpenShift Container Platform 3.11 Configuring Clusters

84

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#env-variables

$ oc edit dc router

- name: ROUTER_LISTEN_ADDR
 value: 0.0.0.0:1936
- name: ROUTER_METRICS_TYPE
 value: haproxy

2. Patch the router readiness probe to use the same path as the liveness probe as it is now
served by the haproxy router:

$ oc patch dc router -p '"spec": {"template": {"spec": {"containers": [{"name":
"router","readinessProbe": {"httpGet": {"path": "/healthz"}}}]}}}'

3. Launch the stats window using the following URL in a browser, where the STATS_PORT
value is 1936 by default:

http://admin:<Password>@<router_IP>:<STATS_PORT>

You can get the stats in CSV format by adding ;csv to the URL:

For example:

http://admin:<Password>@<router_IP>:1936;csv

To get the router IP, admin name, and password:

oc describe pod <router_pod>

To suppress metrics collection:

$ oc adm router --service-account=router --stats-port=0

3.2.23. ARP Cache Tuning for Large-scale Clusters

In OpenShift Container Platform clusters with large numbers of routes (greater than the value of
net.ipv4.neigh.default.gc_thresh3, which is 65536 by default), you must increase the default values of
sysctl variables on each node in the cluster running the router pod to allow more entries in the ARP
cache.

When the problem is occuring, the kernel messages would be similar to the following:

[1738.811139] net_ratelimit: 1045 callbacks suppressed
[1743.823136] net_ratelimit: 293 callbacks suppressed

When this issue occurs, the oc commands might start to fail with the following error:

Unable to connect to the server: dial tcp: lookup <hostname> on <ip>:<port>: write udp <ip>:<port>->
<ip>:<port>: write: invalid argument

To verify the actual amount of ARP entries for IPv4, run the following:

ip -4 neigh show nud all | wc -l

CHAPTER 3. SETTING UP A ROUTER

85

1

If the number begins to approach the net.ipv4.neigh.default.gc_thresh3 threshold, increase the
values. Get the current value by running:

sysctl net.ipv4.neigh.default.gc_thresh1
net.ipv4.neigh.default.gc_thresh1 = 128
sysctl net.ipv4.neigh.default.gc_thresh2
net.ipv4.neigh.default.gc_thresh2 = 512
sysctl net.ipv4.neigh.default.gc_thresh3
net.ipv4.neigh.default.gc_thresh3 = 1024

The following sysctl sets the variables to the OpenShift Container Platform current default values.

sysctl net.ipv4.neigh.default.gc_thresh1=8192
sysctl net.ipv4.neigh.default.gc_thresh2=32768
sysctl net.ipv4.neigh.default.gc_thresh3=65536

To make these settings permanent, see this document.

3.2.24. Protecting Against DDoS Attacks

Add timeout http-request to the default HAProxy router image to protect the deployment against
distributed denial-of-service (DDoS) attacks (for example, slowloris):

and the haproxy stats socket is available at /var/run/haproxy.stats
global
 stats socket ./haproxy.stats level admin

defaults
 option http-server-close
 mode http
 timeout http-request 5s
 timeout connect 5s 1
 timeout server 10s
 timeout client 30s

timeout http-request is set up to 5 seconds. HAProxy gives a client 5 seconds *to send its whole
HTTP request. Otherwise, HAProxy shuts the connection with *an error.

Also, when the environment variable ROUTER_SLOWLORIS_TIMEOUT is set, it limits the amount of
time a client has to send the whole HTTP request. Otherwise, HAProxy will shut down the connection.

Setting the environment variable allows information to be captured as part of the router’s deployment
configuration and does not require manual modification of the template, whereas manually adding the
HAProxy setting requires you to rebuild the router pod and maintain your router template file.

Using annotations implements basic DDoS protections in the HAProxy template router, including the
ability to limit the:

number of concurrent TCP connections

rate at which a client can request TCP connections

rate at which HTTP requests can be made

These are enabled on a per route basis because applications can have extremely different traffic

OpenShift Container Platform 3.11 Configuring Clusters

86

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Performance_Tuning_Guide/index.html#custom-profiles

These are enabled on a per route basis because applications can have extremely different traffic
patterns.

Table 3.1. HAProxy Template Router Settings

Setting Description

haproxy.router.openshift.io/rate-limit-
connections

Enables the settings be configured (when set to true,
for example).

haproxy.router.openshift.io/rate-limit-
connections.concurrent-tcp

The number of concurrent TCP connections that can
be made by the same IP address on this route.

haproxy.router.openshift.io/rate-limit-
connections.rate-tcp

The number of TCP connections that can be opened
by a client IP.

haproxy.router.openshift.io/rate-limit-
connections.rate-http

The number of HTTP requests that a client IP can
make in a 3-second period.

3.2.25. Enable HAProxy Threading

Enabled threading with the --threads flag. This flag specifies the number of threads that the HAProxy
router will use.

3.3. DEPLOYING A CUSTOMIZED HAPROXY ROUTER

3.3.1. Overview

The default HAProxy router is intended to satisfy the needs of most users. However, it does not expose
all of the capability of HAProxy. Therefore, users may need to modify the router for their own needs.

You may need to implement new features within the application back-ends, or modify the current
operation. The router plug-in provides all the facilities necessary to make this customization.

The router pod uses a template file to create the needed HAProxy configuration file. The template file is
a golang template. When processing the template, the router has access to OpenShift Container
Platform information, including the router’s deployment configuration, the set of admitted routes, and
some helper functions.

When the router pod starts, and every time it reloads, it creates an HAProxy configuration file, and then
it starts HAProxy. The HAProxy configuration manual describes all of the features of HAProxy and how
to construct a valid configuration file.

A configMap can be used to add the new template to the router pod. With this approach, the router
deployment configuration is modified to mount the configMap as a volume in the router pod. The
TEMPLATE_FILE environment variable is set to the full path name of the template file in the router
pod.

IMPORTANT

CHAPTER 3. SETTING UP A ROUTER

87

http://golang.org/pkg/text/template/
https://cbonte.github.io/haproxy-dconv/configuration-1.5.html

IMPORTANT

It is not guaranteed that router template customizations will still work after you upgrade
OpenShift Container Platform.

Also, router template customizations must be applied to the template version of the
router that is running.

Alternatively, you can build a custom router image and use it when deploying some or all of your routers.
There is no need for all routers to run the same image. To do this, modify the haproxy-template.config
file, and rebuild the router image. The new image is pushed to the cluster’s Docker repository, and the
router’s deployment configuration image: field is updated with the new name. When the cluster is
updated, the image needs to be rebuilt and pushed.

In either case, the router pod starts with the template file.

3.3.2. Obtaining the Router Configuration Template

The HAProxy template file is fairly large and complex. For some changes, it may be easier to modify the
existing template rather than writing a complete replacement. You can obtain a haproxy-
config.template file from a running router by running this on master, referencing the router pod:

oc get po
NAME READY STATUS RESTARTS AGE
router-2-40fc3 1/1 Running 0 11d
oc exec router-2-40fc3 cat haproxy-config.template > haproxy-config.template
oc exec router-2-40fc3 cat haproxy.config > haproxy.config

Alternatively, you can log onto the node that is running the router:

docker run --rm --interactive=true --tty --entrypoint=cat \
 registry.redhat.io/openshift3/ose-haproxy-router:v{product-version} haproxy-config.template

The image name is from container images.

Save this content to a file for use as the basis of your customized template. The saved haproxy.config
shows what is actually running.

3.3.3. Modifying the Router Configuration Template

3.3.3.1. Background

The template is based on the golang template. It can reference any of the environment variables in the
router’s deployment configuration, any configuration information that is described below, and router
provided helper functions.

The structure of the template file mirrors the resulting HAProxy configuration file. As the template is
processed, anything not surrounded by {{" something "}} is directly copied to the configuration file.
Passages that are surrounded by {{" something "}} are evaluated. The resulting text, if any, is copied to
the configuration file.

3.3.3.2. Go Template Actions

The define action names the file that will contain the processed template.

OpenShift Container Platform 3.11 Configuring Clusters

88

https://golang.org/pkg/text/template/

{{define "/var/lib/haproxy/conf/haproxy.config"}}pipeline{{end}}

Table 3.2. Template Router Functions

Function Meaning

processEndpointsForAlias(alias
ServiceAliasConfig, svc ServiceUnit, action
string) []Endpoint

Returns the list of valid endpoints. When action is
"shuffle", the order of endpoints is randomized.

env(variable, default … ​string) string Tries to get the named environment variable from
the pod. If it is not defined or empty, it returns the
optional second argument. Otherwise, it returns an
empty string.

matchPattern(pattern, s string) bool The first argument is a string that contains the
regular expression, the second argument is the
variable to test. Returns a Boolean value indicating
whether the regular expression provided as the first
argument matches the string provided as the second
argument.

isInteger(s string) bool Determines if a given variable is an integer.

firstMatch(s string, allowedValues … ​string)
bool

Compares a given string to a list of allowed strings.
Returns first match scanning left to right through the
list.

matchValues(s string, allowedValues … ​
string) bool

Compares a given string to a list of allowed strings.
Returns "true" if the string is an allowed value,
otherwise returns false.

generateRouteRegexp(hostname, path
string, wildcard bool) string

Generates a regular expression matching the route
hosts (and paths). The first argument is the host
name, the second is the path, and the third is a
wildcard Boolean.

genCertificateHostName(hostname string,
wildcard bool) string

Generates host name to use for serving/matching
certificates. First argument is the host name and the
second is the wildcard Boolean.

isTrue(s string) bool Determines if a given variable contains "true".

These functions are provided by the HAProxy template router plug-in.

3.3.3.3. Router Provided Information

This section reviews the OpenShift Container Platform information that the router makes available to
the template. The router configuration parameters are the set of data that the HAProxy router plug-in is
given. The fields are accessed by (dot) .Fieldname.

The tables below the Router Configuration Parameters expand on the definitions of the various fields. In

CHAPTER 3. SETTING UP A ROUTER

89

The tables below the Router Configuration Parameters expand on the definitions of the various fields. In
particular, .State has the set of admitted routes.

Table 3.3. Router Configuration Parameters

Field Type Description

WorkingDir string The directory that files will be
written to, defaults to
/var/lib/containers/router

State map[string]
(ServiceAliasConfig)

The routes.

ServiceUnits map[string]ServiceUnit The service lookup.

DefaultCertificate string Full path name to the default
certificate in pem format.

PeerEndpoints []Endpoint Peers.

StatsUser string User name to expose stats with (if
the template supports it).

StatsPassword string Password to expose stats with (if
the template supports it).

StatsPort int Port to expose stats with (if the
template supports it).

BindPorts bool Whether the router should bind
the default ports.

Table 3.4. Router ServiceAliasConfig (A Route)

Field Type Description

Name string The user-specified name of the
route.

Namespace string The namespace of the route.

Host string The host name. For example,
www.example.com.

Path string Optional path. For example,
www.example.com/myservic
e where myservice is the path.

OpenShift Container Platform 3.11 Configuring Clusters

90

TLSTermination routeapi.TLSTerminationTyp
e

The termination policy for this
back-end; drives the mapping
files and router configuration.

Certificates map[string]Certificate Certificates used for securing this
back-end. Keyed by the
certificate ID.

Status ServiceAliasConfigStatus Indicates the status of
configuration that needs to be
persisted.

PreferPort string Indicates the port the user wants
to expose. If empty, a port will be
selected for the service.

InsecureEdgeTerminationPol
icy

routeapi.InsecureEdgeTermi
nationPolicyType

Indicates desired behavior for
insecure connections to an edge-
terminated route: none (or
disable), allow, or redirect.

RoutingKeyName string Hash of the route + namespace
name used to obscure the cookie
ID.

IsWildcard bool Indicates this service unit needing
wildcard support.

Annotations map[string]string Annotations attached to this
route.

ServiceUnitNames map[string]int32 Collection of services that
support this route, keyed by
service name and valued on the
weight attached to it with respect
to other entries in the map.

ActiveServiceUnits int Count of the
ServiceUnitNames with a non-
zero weight.

Field Type Description

The ServiceAliasConfig is a route for a service. Uniquely identified by host + path. The default template
iterates over routes using {{range $cfgIdx, $cfg := .State }}. Within such a {{range}} block, the
template can refer to any field of the current ServiceAliasConfig using $cfg.Field.

Table 3.5. Router ServiceUnit

CHAPTER 3. SETTING UP A ROUTER

91

Field Type Description

Name string Name corresponds to a service
name + namespace. Uniquely
identifies the ServiceUnit.

EndpointTable []Endpoint Endpoints that back the service.
This translates into a final back-
end implementation for routers.

ServiceUnit is an encapsulation of a service, the endpoints that back that service, and the routes that
point to the service. This is the data that drives the creation of the router configuration files

Table 3.6. Router Endpoint

Field Type

ID string

IP string

Port string

TargetName string

PortName string

IdHash string

NoHealthCheck bool

Endpoint is an internal representation of a Kubernetes endpoint.

Table 3.7. Router Certificate, ServiceAliasConfigStatus

Field Type Description

Certificate string Represents a public/private key
pair. It is identified by an ID, which
will become the file name. A CA
certificate will not have a
PrivateKey set.

ServiceAliasConfigStatus string Indicates that the necessary files
for this configuration have been
persisted to disk. Valid values:
"saved", "".

OpenShift Container Platform 3.11 Configuring Clusters

92

Table 3.8. Router Certificate Type

Field Type Description

ID string

Contents string The certificate.

PrivateKey string The private key.

Table 3.9. Router TLSTerminationType

Field Type Description

TLSTerminationType string Dictates where the secure
communication will stop.

InsecureEdgeTerminationPol
icyType

string Indicates the desired behavior for
insecure connections to a route.
While each router may make its
own decisions on which ports to
expose, this is normally port 80.

TLSTerminationType and InsecureEdgeTerminationPolicyType dictate where the secure
communication will stop.

Table 3.10. Router TLSTerminationType Values

Constant Value Meaning

TLSTerminationEdge edge Terminate encryption at the edge
router.

TLSTerminationPassthrough passthrough Terminate encryption at the
destination, the destination is
responsible for decrypting traffic.

TLSTerminationReencrypt reencrypt Terminate encryption at the edge
router and re-encrypt it with a
new certificate supplied by the
destination.

Table 3.11. Router InsecureEdgeTerminationPolicyType Values

Type Meaning

Allow Traffic is sent to the server on the insecure port
(default).

CHAPTER 3. SETTING UP A ROUTER

93

Disable No traffic is allowed on the insecure port.

Redirect Clients are redirected to the secure port.

Type Meaning

None ("") is the same as Disable.

3.3.3.4. Annotations

Each route can have annotations attached. Each annotation is just a name and a value.

The name can be anything that does not conflict with existing Annotations. The value is any string. The
string can have multiple tokens separated by a space. For example, aa bb cc. The template uses
{{index}} to extract the value of an annotation. For example:

{{$balanceAlgo := index $cfg.Annotations "haproxy.router.openshift.io/balance"}}

This is an example of how this could be used for mutual client authorization.

{{ with $cnList := index $cfg.Annotations "whiteListCertCommonName" }}
 {{ if ne $cnList "" }}
 acl test ssl_c_s_dn(CN) -m str {{ $cnList }}
 http-request deny if !test
 {{ end }}
{{ end }}

Then, you can handle the white-listed CNs with this command.

$ oc annotate route <route-name> --overwrite whiteListCertCommonName="CN1 CN2 CN3"

See Route-specific Annotations for more information.

3.3.3.5. Environment Variables

The template can use any environment variables that exist in the router pod. The environment variables
can be set in the deployment configuration. New environment variables can be added.

They are referenced by the env function:

{{env "ROUTER_MAX_CONNECTIONS" "20000"}}

The first string is the variable, and the second string is the default when the variable is missing or nil.

apiVersion: v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/timeout: 5500ms
[...]

OpenShift Container Platform 3.11 Configuring Clusters

94

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#route-specific-annotations

The first string is the variable, and the second string is the default when the variable is missing or nil.
When ROUTER_MAX_CONNECTIONS is not set or is nil, 20000 is used. Environment variables are a
map where the key is the environment variable name and the content is the value of the variable.

See Route-specific Environment variables for more information.

3.3.3.6. Example Usage

Here is a simple template based on the HAProxy template file.

Start with a comment:

{{/*
 Here is a small example of how to work with templates
 taken from the HAProxy template file.
*/}}

The template can create any number of output files. Use a define construct to create an output file. The
file name is specified as an argument to define, and everything inside the define block up to the
matching end is written as the contents of that file.

{{ define "/var/lib/haproxy/conf/haproxy.config" }}
global
{{ end }}

The above will copy global to the /var/lib/haproxy/conf/haproxy.config file, and then close the file.

Set up logging based on environment variables.

{{ with (env "ROUTER_SYSLOG_ADDRESS" "") }}
 log {{.}} {{env "ROUTER_LOG_FACILITY" "local1"}} {{env "ROUTER_LOG_LEVEL" "warning"}}
{{ end }}

The env function extracts the value for the environment variable. If the environment variable is not
defined or nil, the second argument is returned.

The with construct sets the value of "." (dot) within the with block to whatever value is provided as an
argument to with. The with action tests Dot for nil. If not nil, the clause is processed up to the end. In
the above, assume ROUTER_SYSLOG_ADDRESS contains /var/log/msg, ROUTER_LOG_FACILITY
is not defined, and ROUTER_LOG_LEVEL contains info. The following will be copied to the output file:

 log /var/log/msg local1 info

Each admitted route ends up generating lines in the configuration file. Use range to go through the
admitted routes:

{{ range $cfgIdx, $cfg := .State }}
 backend be_http_{{$cfgIdx}}
{{end}}

.State is a map of ServiceAliasConfig, where the key is the route name. range steps through the map
and, for each pass, it sets $cfgIdx with the key, and sets $cfg to point to the ServiceAliasConfig that
describes the route. If there are two routes named myroute and hisroute, the above will copy the
following to the output file:

CHAPTER 3. SETTING UP A ROUTER

95

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#env-variables

 backend be_http_myroute
 backend be_http_hisroute

Route Annotations, $cfg.Annotations, is also a map with the annotation name as the key and the
content string as the value. The route can have as many annotations as desired and the use is defined by
the template author. The user codes the annotation into the route and the template author customized
the HAProxy template to handle the annotation.

The common usage is to index the annotation to get the value.

{{$balanceAlgo := index $cfg.Annotations "haproxy.router.openshift.io/balance"}}

The index extracts the value for the given annotation, if any. Therefore, $balanceAlgo will contain the
string associated with the annotation or nil. As above, you can test for a non- nil string and act on it with
the with construct.

{{ with $balanceAlgo }}
 balance $balanceAlgo
{{ end }}

Here when $balanceAlgo is not nil, balance $balanceAlgo is copied to the output file.

In a second example, you want to set a server timeout based on a timeout value set in an annotation.

$value := index $cfg.Annotations "haproxy.router.openshift.io/timeout"

The $value can now be evaluated to make sure it contains a properly constructed string. The
matchPattern function accepts a regular expression and returns true if the argument satisfies the
expression.

matchPattern "[1-9][0-9]*(us\|ms\|s\|m\|h\|d)?" $value

This would accept 5000ms but not 7y. The results can be used in a test.

{{if (matchPattern "[1-9][0-9]*(us\|ms\|s\|m\|h\|d)?" $value) }}
 timeout server {{$value}}
{{ end }}

It can also be used to match tokens:

matchPattern "roundrobin|leastconn|source" $balanceAlgo

Alternatively matchValues can be used to match tokens:

matchValues $balanceAlgo "roundrobin" "leastconn" "source"

3.3.4. Using a ConfigMap to Replace the Router Configuration Template

You can use a ConfigMap to customize the router instance without rebuilding the router image. The
haproxy-config.template, reload-haproxy, and other scripts can be modified as well as creating and
modifying router environment variables.

1. Copy the haproxy-config.template that you want to modify as described above. Modify it as

OpenShift Container Platform 3.11 Configuring Clusters

96

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-configmaps

1

2

3

1. Copy the haproxy-config.template that you want to modify as described above. Modify it as
desired.

2. Create a ConfigMap:

The customrouter ConfigMap now contains a copy of the modified haproxy-config.template
file.

3. Modify the router deployment configuration to mount the ConfigMap as a file and point the
TEMPLATE_FILE environment variable to it. This can be done via oc set env and oc set
volume commands, or alternatively by editing the router deployment configuration.

Using oc commands

Editing the Router Deployment Configuration

Use oc edit dc router to edit the router deployment configuration with a text editor.

In the spec.container.env field, add the TEMPLATE_FILE environment variable to
point to the mounted haproxy-config.template file.

Add the spec.container.volumeMounts field to create the mount point.

Add a new spec.volumes field to mention the ConfigMap.

Save the changes and exit the editor. This restarts the router.

$ oc create configmap customrouter --from-file=haproxy-config.template

$ oc set volume dc/router --add --overwrite \
 --name=config-volume \
 --mount-path=/var/lib/haproxy/conf/custom \
 --source='{"configMap": { "name": "customrouter"}}'
$ oc set env dc/router \
 TEMPLATE_FILE=/var/lib/haproxy/conf/custom/haproxy-config.template

...
 - name: STATS_USERNAME
 value: admin
 - name: TEMPLATE_FILE 1
 value: /var/lib/haproxy/conf/custom/haproxy-config.template
 image: openshift/origin-haproxy-routerp
...
 terminationMessagePath: /dev/termination-log
 volumeMounts: 2
 - mountPath: /var/lib/haproxy/conf/custom
 name: config-volume
 dnsPolicy: ClusterFirst
...
 terminationGracePeriodSeconds: 30
 volumes: 3
 - configMap:
 name: customrouter
 name: config-volume
...

CHAPTER 3. SETTING UP A ROUTER

97

1

3.3.5. Using Stick Tables

The following example customization can be used in a highly-available routing setup to use stick-tables
that synchronize between peers.

Adding a Peer Section

In order to synchronize stick-tables amongst peers you must a define a peers section in your HAProxy
configuration. This section determines how HAProxy will identify and connect to peers. The plug-in
provides data to the template under the .PeerEndpoints variable to allow you to easily identify
members of the router service. You may add a peer section to the haproxy-config.template file inside
the router image by adding:

{{ if (len .PeerEndpoints) gt 0 }}
peers openshift_peers
 {{ range $endpointID, $endpoint := .PeerEndpoints }}
 peer {{$endpoint.TargetName}} {{$endpoint.IP}}:1937
 {{ end }}
{{ end }}

Changing the Reload Script

When using stick-tables, you have the option of telling HAProxy what it should consider the name of the
local host in the peer section. When creating endpoints, the plug-in attempts to set the TargetName to
the value of the endpoint’s TargetRef.Name. If TargetRef is not set, it will set the TargetName to the IP
address. The TargetRef.Name corresponds with the Kubernetes host name, therefore you can add the -
L option to the reload-haproxy script to identify the local host in the peer section.

peer_name=$HOSTNAME 1

if [-n "$old_pid"]; then
 /usr/sbin/haproxy -f $config_file -p $pid_file -L $peer_name -sf $old_pid
else
 /usr/sbin/haproxy -f $config_file -p $pid_file -L $peer_name
fi

Must match an endpoint target name that is used in the peer section.

Modifying Back Ends

Finally, to use the stick-tables within back ends, you can modify the HAProxy configuration to use the
stick-tables and peer set. The following is an example of changing the existing back end for TCP
connections to use stick-tables:

 {{ if eq $cfg.TLSTermination "passthrough" }}
backend be_tcp_{{$cfgIdx}}
 balance leastconn
 timeout check 5000ms
 stick-table type ip size 1m expire 5m{{ if (len $.PeerEndpoints) gt 0 }} peers openshift_peers {{ end
}}
 stick on src
 {{ range $endpointID, $endpoint := $serviceUnit.EndpointTable }}

OpenShift Container Platform 3.11 Configuring Clusters

98

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#configuring-a-highly-available-service

1

2

 server {{$endpointID}} {{$endpoint.IP}}:{{$endpoint.Port}} check inter 5000ms
 {{ end }}
 {{ end }}

After this modification, you can rebuild your router.

3.3.6. Rebuilding Your Router

In order to rebuild the router, you need copies of several files that are present on a running router. Make
a work directory and copy the files from the router:

mkdir - myrouter/conf
cd myrouter
oc get po
NAME READY STATUS RESTARTS AGE
router-2-40fc3 1/1 Running 0 11d
oc exec router-2-40fc3 cat haproxy-config.template > conf/haproxy-config.template
oc exec router-2-40fc3 cat error-page-503.http > conf/error-page-503.http
oc exec router-2-40fc3 cat default_pub_keys.pem > conf/default_pub_keys.pem
oc exec router-2-40fc3 cat ../Dockerfile > Dockerfile
oc exec router-2-40fc3 cat ../reload-haproxy > reload-haproxy

You can edit or replace any of these files. However, conf/haproxy-config.template and reload-
haproxy are the most likely to be modified.

After updating the files:

docker build -t openshift/origin-haproxy-router-myversion .
docker tag openshift/origin-haproxy-router-myversion 172.30.243.98:5000/openshift/haproxy-router-
myversion 1
docker push 172.30.243.98:5000/openshift/origin-haproxy-router-pc:latest 2

Tag the version with the repository. In this case the repository is 172.30.243.98:5000.

Push the tagged version to the repository. It may be necessary to docker login to the repository
first.

To use the new router, edit the router deployment configuration either by changing the image: string or
by adding the --images=<repo>/<image>:<tag> flag to the oc adm router command.

When debugging the changes, it is helpful to set imagePullPolicy: Always in the deployment
configuration to force an image pull on each pod creation. When debugging is complete, you can change
it back to imagePullPolicy: IfNotPresent to avoid the pull on each pod start.

3.4. CONFIGURING THE HAPROXY ROUTER TO USE THE PROXY
PROTOCOL

3.4.1. Overview

By default, the HAProxy router expects incoming connections to unsecure, edge, and re-encrypt routes
to use HTTP. However, you can configure the router to expect incoming requests by using the PROXY
protocol instead. This topic describes how to configure the HAProxy router and an external load

CHAPTER 3. SETTING UP A ROUTER

99

http://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

balancer to use the PROXY protocol.

3.4.2. Why Use the PROXY Protocol?

When an intermediary service such as a proxy server or load balancer forwards an HTTP request, it
appends the source address of the connection to the request’s "Forwarded" header in order to provide
this information to subsequent intermediaries and to the back-end service to which the request is
ultimately forwarded. However, if the connection is encrypted, intermediaries cannot modify the
"Forwarded" header. In this case, the HTTP header will not accurately communicate the original source
address when the request is forwarded.

To solve this problem, some load balancers encapsulate HTTP requests using the PROXY protocol as an
alternative to simply forwarding HTTP. Encapsulation enables the load balancer to add information to
the request without modifying the forwarded request itself. In particular, this means that the load
balancer can communicate the source address even when forwarding an encrypted connection.

The HAProxy router can be configured to accept the PROXY protocol and decapsulate the HTTP
request. Because the router terminates encryption for edge and re-encrypt routes, the router can then
update the "Forwarded" HTTP header (and related HTTP headers) in the request, appending any source
address that is communicated using the PROXY protocol.

WARNING

The PROXY protocol and HTTP are incompatible and cannot be mixed. If you use a
load balancer in front of the router, both must use either the PROXY protocol or
HTTP. Configuring one to use one protocol and the other to use the other protocol
will cause routing to fail.

3.4.3. Using the PROXY Protocol

By default, the HAProxy router does not use the PROXY protocol. The router can be configured using
the ROUTER_USE_PROXY_PROTOCOL environment variable to expect the PROXY protocol for
incoming connections:

Enable the PROXY Protocol

$ oc set env dc/router ROUTER_USE_PROXY_PROTOCOL=true

Set the variable to any value other than true or TRUE to disable the PROXY protocol:

Disable the PROXY Protocol

$ oc set env dc/router ROUTER_USE_PROXY_PROTOCOL=false

If you enable the PROXY protocol in the router, you must configure your load balancer in front of the
router to use the PROXY protocol as well. Following is an example of configuring Amazon’s Elastic Load
Balancer (ELB) service to use the PROXY protocol. This example assumes that ELB is forwarding ports
80 (HTTP), 443 (HTTPS), and 5000 (for the image registry) to the router running on one or more EC2
instances.



OpenShift Container Platform 3.11 Configuring Clusters

100

1

2

3

4

Configure Amazon ELB to Use the PROXY Protocol

1. To simplify subsequent steps, first set some shell variables:

$ lb='infra-lb' 1
$ instances=('i-079b4096c654f563c') 2
$ secgroups=('sg-e1760186') 3
$ subnets=('subnet-cf57c596') 4

The name of your ELB.

The instance or instances on which the router is running.

The security group or groups for this ELB.

The subnet or subnets for this ELB.

2. Next, create the ELB with the appropriate listeners, security groups, and subnets.

NOTE

You must configure all listeners to use the TCP protocol, not the HTTP protocol.

$ aws elb create-load-balancer --load-balancer-name "$lb" \
 --listeners \
 'Protocol=TCP,LoadBalancerPort=80,InstanceProtocol=TCP,InstancePort=80' \
 'Protocol=TCP,LoadBalancerPort=443,InstanceProtocol=TCP,InstancePort=443' \
 'Protocol=TCP,LoadBalancerPort=5000,InstanceProtocol=TCP,InstancePort=5000' \
 --security-groups $secgroups \
 --subnets $subnets
{
 "DNSName": "infra-lb-2006263232.us-east-1.elb.amazonaws.com"
}

3. Register your router instance or instances with the ELB:

$ aws elb register-instances-with-load-balancer --load-balancer-name "$lb" \
 --instances $instances
{
 "Instances": [
 {
 "InstanceId": "i-079b4096c654f563c"
 }
]
}

4. Configure the ELB’s health check:

$ aws elb configure-health-check --load-balancer-name "$lb" \
 --health-check
'Target=HTTP:1936/healthz,Interval=30,UnhealthyThreshold=2,HealthyThreshold=2,Timeout=5
'
{

CHAPTER 3. SETTING UP A ROUTER

101

 "HealthCheck": {
 "HealthyThreshold": 2,
 "Interval": 30,
 "Target": "HTTP:1936/healthz",
 "Timeout": 5,
 "UnhealthyThreshold": 2
 }
}

5. Finally, create a load-balancer policy with the ProxyProtocol attribute enabled, and configure it
on the ELB’s TCP ports 80 and 443:

$ aws elb create-load-balancer-policy --load-balancer-name "$lb" \
 --policy-name "${lb}-ProxyProtocol-policy" \
 --policy-type-name 'ProxyProtocolPolicyType' \
 --policy-attributes 'AttributeName=ProxyProtocol,AttributeValue=true'
$ for port in 80 443
 do
 aws elb set-load-balancer-policies-for-backend-server \
 --load-balancer-name "$lb" \
 --instance-port "$port" \
 --policy-names "${lb}-ProxyProtocol-policy"
 done

Verify the Configuration

You can examine the load balancer as follows to verify that the configuration is correct:

$ aws elb describe-load-balancers --load-balancer-name "$lb" |
 jq '.LoadBalancerDescriptions| [.[]|.ListenerDescriptions]'
[
 [
 {
 "Listener": {
 "InstancePort": 80,
 "LoadBalancerPort": 80,
 "Protocol": "TCP",
 "InstanceProtocol": "TCP"
 },
 "PolicyNames": ["infra-lb-ProxyProtocol-policy"] 1
 },
 {
 "Listener": {
 "InstancePort": 443,
 "LoadBalancerPort": 443,
 "Protocol": "TCP",
 "InstanceProtocol": "TCP"
 },
 "PolicyNames": ["infra-lb-ProxyProtocol-policy"] 2
 },
 {
 "Listener": {
 "InstancePort": 5000,
 "LoadBalancerPort": 5000,
 "Protocol": "TCP",

OpenShift Container Platform 3.11 Configuring Clusters

102

1

2

3

 "InstanceProtocol": "TCP"
 },
 "PolicyNames": [] 3
 }
]
]

The listener for TCP port 80 should have the policy for using the PROXY protocol.

The listener for TCP port 443 should have the same policy.

The listener for TCP port 5000 should not have the policy.

Alternatively, if you already have an ELB configured, but it is not configured to use the PROXY protocol,
you will need to change the existing listener for TCP port 80 to use the TCP protocol instead of HTTP
(TCP port 443 should already be using the TCP protocol):

$ aws elb delete-load-balancer-listeners --load-balancer-name "$lb" \
 --load-balancer-ports 80
$ aws elb create-load-balancer-listeners --load-balancer-name "$lb" \
 --listeners 'Protocol=TCP,LoadBalancerPort=80,InstanceProtocol=TCP,InstancePort=80'

Verify the Protocol Updates

Verify that the protocol has been updated as follows:

$ aws elb describe-load-balancers --load-balancer-name "$lb" |
 jq '[.LoadBalancerDescriptions[]|.ListenerDescriptions]'
[
 [
 {
 "Listener": {
 "InstancePort": 443,
 "LoadBalancerPort": 443,
 "Protocol": "TCP",
 "InstanceProtocol": "TCP"
 },
 "PolicyNames": []
 },
 {
 "Listener": {
 "InstancePort": 5000,
 "LoadBalancerPort": 5000,
 "Protocol": "TCP",
 "InstanceProtocol": "TCP"
 },
 "PolicyNames": []
 },
 {
 "Listener": {
 "InstancePort": 80,
 "LoadBalancerPort": 80,
 "Protocol": "TCP", 1
 "InstanceProtocol": "TCP"
 },

CHAPTER 3. SETTING UP A ROUTER

103

1

 "PolicyNames": []
 }
]
]

All listeners, including the listener for TCP port 80, should be using the TCP protocol.

Then, create a load-balancer policy and add it to the ELB as described in Step 5 above.

OpenShift Container Platform 3.11 Configuring Clusters

104

CHAPTER 4. DEPLOYING RED HAT CLOUDFORMS

4.1. DEPLOYING RED HAT CLOUDFORMS ON OPENSHIFT CONTAINER
PLATFORM

4.1.1. Introduction

The OpenShift Container Platform installer includes the Ansible role openshift-management and
playbooks for deploying Red Hat CloudForms 4.6 (CloudForms Management Engine 5.9, or CFME) on
OpenShift Container Platform.

WARNING

The current implementation is incompatible with the Technology Preview
deployment process of Red Hat CloudForms 4.5 as described in OpenShift
Container Platform 3.6 documentation.

When deploying Red Hat CloudForms on OpenShift Container Platform, there are two major decisions
to make:

1. Do you want an external or a containerized (also referred to as podified) PostgreSQL database?

2. Which storage class will back your persistent volumes (PVs)?

For the first decision, you can deploy Red Hat CloudForms in one of two ways, depending on the
location of the PostgreSQL database to be used by Red Hat CloudForms:

Deployment Variant Description

Fully containerized All application services and the PostgreSQL
database are run as pods on OpenShift Container
Platform.

External database The application utilizes an externally-hosted
PostgreSQL database server, while all other services
are ran as pods on OpenShift Container Platform.

For the second decision, the openshift-management role provides customization options for overriding
many default deployment parameters. This includes the following storage class options to back your
PVs:

Storage Class Description

NFS (default) Local, on cluster



CHAPTER 4. DEPLOYING RED HAT CLOUDFORMS

105

https://docs.openshift.com/container-platform/3.6/install_config/deploying_cfme.html

NFS External NFS somewhere else, like a storage appliance

Cloud Provider Use automatic storage provisioning from your cloud
provider (Google Cloud Engine, Amazon Web
Services, or Microsoft Azure)

Preconfigured (advanced) Assumes you created everything ahead of time

Storage Class Description

Topics in this guide include the requirements for running Red Hat CloudForms on OpenShift Container
Platform, descriptions of the available configuration variables, and instructions on running the installer
either during your initial OpenShift Container Platform installation or after your cluster has been
provisioned.

4.2. REQUIREMENTS FOR RED HAT CLOUDFORMS ON OPENSHIFT
CONTAINER PLATFORM

The default requirements are listed in the table below. These can be overridden by customizing
template parameters.

IMPORTANT

The application performance will suffer, or possibly even fail to deploy, if these
requirements are not satisfied.

Table 4.1. Default Requirements

Item Requirement Description Customization
Parameter

Application Memory ≥ 4.0 Gi Minimum required
memory for the
application

APPLICATION_MEM
_REQ

Application Storage ≥ 5.0 Gi Minimum PV size
required for the
application

APPLICATION_VOL
UME_CAPACITY

PostgreSQL Memory ≥ 6.0 Gi Minimum required
memory for the
database

POSTGRESQL_MEM
_REQ

PostgreSQL Storage ≥ 15.0 Gi Minimum PV size
required for the
database

DATABASE_VOLUM
E_CAPACITY

OpenShift Container Platform 3.11 Configuring Clusters

106

Cluster Hosts ≥ 3 Number of hosts in your
cluster

N/A

Item Requirement Description Customization
Parameter

To sum up these requirements:

You must have several cluster nodes.

Your cluster nodes must have lots of memory available.

You must have several GiB’s of storage available, either locally or on your cloud provider.

PV sizes can be changed by providing override values to template parameters.

4.3. CONFIGURING ROLE VARIABLES

4.3.1. Overview

The following sections describe role variables that may be used in your Ansible inventory file , which is
used to control the behavior of the Red Hat CloudForms installation when running the installer.

4.3.2. General Variables

Variable Required Default Description

openshift
_manage
ment_inst
all_manag
ement

No false Boolean, set to true to install the application.

openshift
_manage
ment_app
_template

Yes cfme-
template

The deployment variant of Red Hat CloudForms to install. Set
cfme-template for a containerized database or cfme-
template-ext-db for an external database.

openshift
_manage
ment_proj
ect

No openshift-
managem
ent

Namespace (project) for the Red Hat CloudForms installation.

openshift
_manage
ment_proj
ect_descri
ption

No CloudFor
ms
Managem
ent
Engine

Namespace (project) description.

CHAPTER 4. DEPLOYING RED HAT CLOUDFORMS

107

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible

openshift
_manage
ment_use
rname

No admin Default management user name. Changing this value does not
change the user name; only change this value if you have
changed the name already and are running integration scripts
(such as the script to add container providers).

openshift
_manage
ment_pas
sword

No smartvm Default management password. Changing this value does not
change the password; only change this value if you have
changed the password already and are running integration
scripts (such as the script to add container providers).

Variable Required Default Description

4.3.3. Customizing Template Parameters

You can use the openshift_management_template_parameters Ansible role variable to specify any
template parameters you want to override in the application or PV templates.

For example, if you wanted to reduce the memory requirement of the PostgreSQL pod, then you could
set the following:

openshift_management_template_parameters={'POSTGRESQL_MEM_REQ': '1Gi'}

When the Red Hat CloudForms template is processed, 1Gi will be used for the value of the
POSTGRESQL_MEM_REQ template parameter.

Not all template parameters are present in both template variants (containerized or external database).
For example, while the podified database template has a POSTGRESQL_MEM_REQ parameter, no
such parameter is present in the external db template, as there is no need for this information due to
there being no databases that require pods.

Therefore, be very careful if you are overriding template parameters. Including parameters not defined
in a template will cause errors. If you do receive an error during the Ensure the Management App is
created task, run the uninstall scripts first before running the installer again.

4.3.4. Database Variables

4.3.4.1. Containerized (Podified) Database

Any POSTGRES_* or DATABASE_* template parameters in the cfme-template.yaml file may be
customized through the openshift_management_template_parameters hash in your inventory file..

4.3.4.2. External Database

Any POSTGRES_* or DATABASE_* template parameters in the cfme-template-ext-db.yaml file may
be customized through the openshift_management_template_parameters hash in your inventory file..

External PostgreSQL databases require you to provide database connection parameters. You must set
the required connection keys in the openshift_management_template_parameters parameter in your
inventory. The following keys are required:

OpenShift Container Platform 3.11 Configuring Clusters

108

1

DATABASE_USER

DATABASE_PASSWORD

DATABASE_IP

DATABASE_PORT (Most PostgreSQL servers run on port 5432)

DATABASE_NAME

NOTE

Ensure your external database is running PostgreSQL 9.5 or you may not be able to
deploy the CloudForms application successfully.

Your inventory would contain a line similar to:

[OSEv3:vars]
openshift_management_app_template=cfme-template-ext-db 1
openshift_management_template_parameters={'DATABASE_USER': 'root',
'DATABASE_PASSWORD': 'mypassword', 'DATABASE_IP': '10.10.10.10', 'DATABASE_PORT':
'5432', 'DATABASE_NAME': 'cfme'}

Set openshift_management_app_template parameter to cfme-template-ext-db.

4.3.5. Storage Class Variables

Variable Required Default Description

openshift_managem
ent_storage_class

No nfs Storage type to use.
Options are nfs,
nfs_external,
preconfigured, or
cloudprovider.

openshift_managem
ent_storage_nfs_ext
ernal_hostname

No false If you are using an
external NFS server,
such as a NetApp
appliance, then you
must set the host name
here. Leave the value as
false if you are not
using external NFS.
Additionally, external
NFS requires that you
create the NFS exports
that will back the
application PV and
optionally the database
PV.

CHAPTER 4. DEPLOYING RED HAT CLOUDFORMS

109

openshift_managem
ent_storage_nfs_bas
e_dir

No /exports/ If you are using external
NFS, then you can set
the base path to the
exports location here.
For local NFS, you can
also change this value if
you want to change the
default path used for
local NFS exports.

openshift_managem
ent_storage_nfs_loc
al_hostname

No false If you do not have an
[nfs] group in your
inventory, or want to
simply manually define
the local NFS host in
your cluster, set this
parameter to the host
name of the preferred
NFS server. The server
must be a part of your
OpenShift Container
Platform cluster.

Variable Required Default Description

4.3.5.1. NFS (Default)

The NFS storage class is best suited for proof-of-concept and test deployments. It is also the default
storage class for deployments. No additional configuration is required for this choice.

This storage class configures NFS on a cluster host (by default, the first master in the inventory file) to
back the required PVs. The application requires a PV, and the database (which may be hosted
externally) may require a second. PV minimum required sizes are 5GiB for the Red Hat CloudForms
application, and 15GiB for the PostgreSQL database (20GiB minimum available space on a volume or
partition if used specifically for NFS purposes).

Customization is provided through the following role variables:

openshift_management_storage_nfs_base_dir

openshift_management_storage_nfs_local_hostname

4.3.5.2. NFS External

External NFS leans on pre-configured NFS servers to provide exports for the required PVs. For external
NFS you must have a cfme-app and optionally a cfme-db (for containerized database) exports.

Configuration is provided through the following role variables:

openshift_management_storage_nfs_external_hostname

openshift_management_storage_nfs_base_dir

OpenShift Container Platform 3.11 Configuring Clusters

110

The openshift_management_storage_nfs_external_hostname parameter must be set to the host
name or IP of your external NFS server.

If /exports is not the parent directory to your exports then you must set the base directory via the
openshift_management_storage_nfs_base_dir parameter.

For example, if your server export is /exports/hosted/prod/cfme-app, then you must set
openshift_management_storage_nfs_base_dir=/exports/hosted/prod.

4.3.5.3. Cloud Provider

If you are using OpenShift Container Platform cloud provider integration for your storage class, Red Hat
CloudForms can also use the cloud provider storage to back its required PVs. For this functionality to
work, you must have configured the openshift_cloudprovider_kind variable (for AWS or GCE) and all
associated parameters specific to your chosen cloud provider.

When the application is created using this storage class, the required PVs are automatically provisioned
using the configured cloud provider storage integration.

There are no additional variables to configure the behavior of this storage class.

4.3.5.4. Preconfigured (Advanced)

The preconfigured storage class implies that you know exactly what you are doing and that all storage
requirements have been taken care ahead of time. Typically this means that you have already created
the correctly sized PVs. The installer will do nothing to modify any storage settings.

There are no additional variables to configure the behavior of this storage class.

4.4. RUNNING THE INSTALLER

4.4.1. Deploying Red Hat CloudForms During or After OpenShift Container Platform
Installation

You can choose to deploy Red Hat CloudForms either during initial OpenShift Container Platform
installation or after the cluster has been provisioned:

1. Ensure that openshift_management_install_management is set to true in your inventory file
under the [OSEv3:vars] section:

[OSEv3:vars]
openshift_management_install_management=true

2. Set any other Red Hat CloudForms role variables in your inventory file as described in
Configuring Role Variables. Resources to assist in this are provided in Example Inventory Files.

3. Choose which playbook to run depending on whether OpenShift Container Platform is already
provisioned:

a. If you want to install Red Hat CloudForms at the same time you install your OpenShift
Container Platform cluster, call the standard config.yml playbook as described in Running
the Installation Playbooks to begin the OpenShift Container Platform cluster and Red Hat
CloudForms installation.

b. If you want to install Red Hat CloudForms on an already provisioned OpenShift Container

CHAPTER 4. DEPLOYING RED HAT CLOUDFORMS

111

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#running-the-installation-playbooks

1

2

b. If you want to install Red Hat CloudForms on an already provisioned OpenShift Container
Platform cluster, change to the playbook directory and call the Red Hat CloudForms
playbook directly to begin the installation:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -v [-i /path/to/inventory] \
 playbooks/openshift-management/config.yml

4.4.2. Example Inventory Files

The following sections show example snippets of inventory files showing various configurations of Red
Hat CloudForms on OpenShift Container Platform that can help you get started.

NOTE

See Configuring Role Variables for complete variable descriptions.

4.4.2.1. All Defaults

This example is the simplest, using all of the default values and choices. This results in a fully-
containerized (podified) Red Hat CloudForms installation. All application components, as well as the
PostgreSQL database, are created as pods in OpenShift Container Platform:

[OSEv3:vars]
openshift_management_app_template=cfme-template

4.4.2.2. External NFS Storage

This is as the previous example, except that instead of using local NFS services in the cluster, it uses an
existing, external NFS server (such as a storage appliance). Note the two new parameters:

[OSEv3:vars]
openshift_management_app_template=cfme-template
openshift_management_storage_class=nfs_external 1
openshift_management_storage_nfs_external_hostname=nfs.example.com 2

Set to nfs_external.

Set to the host name of the NFS server.

If the external NFS host exports directories under a different parent directory, such as
/exports/hosted/prod, add the following additional variable:

openshift_management_storage_nfs_base_dir=/exports/hosted/prod

4.4.2.3. Override PV Sizes

This example overrides the persistent volume (PV) sizes. PV sizes must be set via
openshift_management_template_parameters, which ensures that the application and database are
able to make claims on created PVs without interfering with each other:

OpenShift Container Platform 3.11 Configuring Clusters

112

[OSEv3:vars]
openshift_management_app_template=cfme-template
openshift_management_template_parameters={'APPLICATION_VOLUME_CAPACITY': '10Gi',
'DATABASE_VOLUME_CAPACITY': '25Gi'}

4.4.2.4. Override Memory Requirements

In a test or proof-of-concept installation, you may need to reduce the application and database memory
requirements to fit within your capacity. Note that reducing memory limits can result in reduced
performance or a complete failure to initialize the application:

[OSEv3:vars]
openshift_management_app_template=cfme-template
openshift_management_template_parameters={'APPLICATION_MEM_REQ': '3000Mi',
'POSTGRESQL_MEM_REQ': '1Gi', 'ANSIBLE_MEM_REQ': '512Mi'}

This example instructs the installer to process the application template with the parameter
APPLICATION_MEM_REQ set to 3000Mi, POSTGRESQL_MEM_REQ set to 1Gi, and
ANSIBLE_MEM_REQ set to 512Mi.

These parameters can be combined with the parameters displayed in the previous example Override PV
Sizes.

4.4.2.5. External PostgreSQL Database

To use an external database, you must change the openshift_management_app_template parameter
value to cfme-template-ext-db.

Additionally, database connection information must be supplied using the
openshift_management_template_parameters variable. See Configuring Role Variables for more
details.

[OSEv3:vars]
openshift_management_app_template=cfme-template-ext-db
openshift_management_template_parameters={'DATABASE_USER': 'root',
'DATABASE_PASSWORD': 'mypassword', 'DATABASE_IP': '10.10.10.10', 'DATABASE_PORT':
'5432', 'DATABASE_NAME': 'cfme'}

IMPORTANT

Ensure your are running PostgreSQL 9.5 or you may not be able to deploy the application
successfully.

4.5. ENABLING CONTAINER PROVIDER INTEGRATION

4.5.1. Adding a Single Container Provider

After deploying Red Hat CloudForms on OpenShift Container Platform as described in Running the
Installer, there are two methods for enabling container provider integration. You can manually add
OpenShift Container Platform as a container provider, or you can try the playbooks included with this
role.

CHAPTER 4. DEPLOYING RED HAT CLOUDFORMS

113

4.5.1.1. Adding Manually

See the following Red Hat CloudForms documentation for steps on manually adding your OpenShift
Container Platform cluster as a container provider:

Integration with OpenShift Container Platform

4.5.1.2. Adding Automatically

Automated container provider integration can be accomplished using the playbooks included with this
role.

This playbook:

1. Gathers the necessary authentication secrets.

2. Finds the public routes to the Red Hat CloudForms application and the cluster API.

3. Makes a REST call to add the OpenShift Container Platform cluster as a container provider.

Change to the playbook directory and run the container provider playbook:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -v [-i /path/to/inventory] \
 openshift-management/add_container_provider.yml

4.5.2. Multiple Container Providers

As well as providing playbooks to integrate your current OpenShift Container Platform cluster into your
Red Hat CloudForms deployment, this role includes a script which allows you to add multiple container
platforms as container providers in any arbitrary Red Hat CloudForms server. The container platforms
can be OpenShift Container Platform or OpenShift Origin.

Using the multiple provider script requires manual configuration and setting an EXTRA_VARS
parameter on the CLI when running the playbook.

4.5.2.1. Preparing the Script

To prepare the multiple provider script, complete the following manual configuration:

1. Copy the /usr/share/ansible/openshift-
ansible/roles/openshift_management/files/examples/container_providers.yml example
somewhere, such as /tmp/cp.yml. You will be modifying this file.

2. If you changed your Red Hat CloudForms name or password, update the hostname, user, and
password parameters in the management_server key in the container_providers.yml file that
you copied.

3. Fill in an entry under the container_providers key for each container platform cluster you want
to add as container providers.

a. The following parameters must be configured:

auth_key - This is the token of a service account that has cluster-admin privileges.

hostname - This is the host name that points to the cluster API. Each container

OpenShift Container Platform 3.11 Configuring Clusters

114

https://access.redhat.com/documentation/en-us/red_hat_cloudforms/4.5/html/integration_with_openshift_container_platform/

1 2

hostname - This is the host name that points to the cluster API. Each container
provider must have a unique host name.

name - This is the name of the cluster to be displayed in the Red Hat CloudForms
server container providers overview page. This must be unique.

TIP

To obtain the auth_key bearer token from your clusters:

$ oc serviceaccounts get-token -n management-infra management-admin

b. The following parameters may be optionally configured:

port - Update this key if your container platform cluster runs the API on a port other
than 8443.

endpoint - You may enable SSL verification (verify_ssl) or change the validation
setting to ssl-with-validation. Support for custom trusted CA certificates is not
currently available.

4.5.2.1.1. Example

As an example, consider the following scenario:

You copied the container_providers.yml file to /tmp/cp.yml.

You want to add two OpenShift Container Platform clusters.

Your Red Hat CloudForms server runs on mgmt.example.com

For this scenario, you would customize /tmp/cp.yml as follows:

Replace <token> with the management token for this cluster.

container_providers:
 - connection_configurations:
 - authentication: {auth_key: "<token>", authtype: bearer, type: AuthToken} 1
 endpoint: {role: default, security_protocol: ssl-without-validation, verify_ssl: 0}
 hostname: "<provider_hostname1>"
 name: <display_name1>
 port: 8443
 type: "ManageIQ::Providers::Openshift::ContainerManager"
 - connection_configurations:
 - authentication: {auth_key: "<token>", authtype: bearer, type: AuthToken} 2
 endpoint: {role: default, security_protocol: ssl-without-validation, verify_ssl: 0}
 hostname: "<provider_hostname2>"
 name: <display_name2>
 port: 8443
 type: "ManageIQ::Providers::Openshift::ContainerManager"
management_server:
 hostname: "<hostname>"
 user: <user_name>
 password: <password>

CHAPTER 4. DEPLOYING RED HAT CLOUDFORMS

115

4.5.2.2. Running the Playbook

To run the multiple-providers integration script, you must provide the path to the container providers
configuration file as an EXTRA_VARS parameter to the ansible-playbook command. Use the -e (or --
extra-vars) parameter to set container_providers_config to the configuration file path. Change to the
playbook directory and run the playbook:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -v [-i /path/to/inventory] \
 -e container_providers_config=/tmp/cp.yml \
 playbooks/openshift-management/add_many_container_providers.yml

After the playbook completes, you should find two new container providers in your Red Hat CloudForms
service. Navigate to the Compute → Containers → Providers page to see an overview.

4.5.3. Refreshing Providers

After adding either a single or multiple container providers, the new provider(s) must be refreshed in Red
Hat CloudForms to get all the latest data about the container provider and the containers being
managed. This involves navigating to each provider in the Red Hat CloudForms web console and
clicking a refresh button for each.

See the following Red Hat CloudForms documentation for steps:

Managing Providers

4.6. UNINSTALLING RED HAT CLOUDFORMS

4.6.1. Running the Uninstall Playbook

To uninstall and erase a deployed Red Hat CloudForms installation from OpenShift Container Platform,
change to the playbook directory and run the uninstall.yml playbook:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -v [-i /path/to/inventory] \
 playbooks/openshift-management/uninstall.yml

IMPORTANT

NFS export definitions and data stored on NFS exports are not automatically removed.
You are urged to manually erase any data from old application or database deployments
before attempting to initialize a new deployment.

4.6.2. Troubleshooting

Failure to erase old PostgreSQL data can result in cascading errors, causing the postgresql pod to
enter a crashloopbackoff state. This blocks the cfme pod from ever starting. The cause of the
crashloopbackoff is due to incorrect file permissions on the database NFS export created during a
previous deployment.

To continue, erase all data from the PostgreSQL export and delete the pod (not the deployer pod). For
example, if you had the following pods:

OpenShift Container Platform 3.11 Configuring Clusters

116

https://access.redhat.com/documentation/en-us/red_hat_cloudforms/4.6/html-single/managing_providers/index#refreshing_cloud_providers

$ oc get pods
NAME READY STATUS RESTARTS AGE
httpd-1-cx7fk 1/1 Running 1 21h
cfme-0 0/1 Running 1 21h
memcached-1-vkc7p 1/1 Running 1 21h
postgresql-1-deploy 1/1 Running 1 21h
postgresql-1-6w2t4 0/1 CrashLoopBackOff 1 21h

Then you would:

1. Erase the data from the database NFS export.

2. Run:

$ oc delete postgresql-1-6w2t4

The PostgreSQL deployer pod will try to scale up a new postgresql pod to replace the one you deleted.
After the postgresql pod is running, the cfme pod will stop blocking and begin application initialization.

CHAPTER 4. DEPLOYING RED HAT CLOUDFORMS

117

CHAPTER 5. PROMETHEUS CLUSTER MONITORING

5.1. OVERVIEW

OpenShift Container Platform ships with a pre-configured and self-updating monitoring stack that is
based on the Prometheus open source project and its wider eco-system. It provides monitoring of
cluster components and ships with a set of alerts to immediately notify the cluster administrator about
any occurring problems and a set of Grafana dashboards.

Highlighted in the diagram above, at the heart of the monitoring stack sits the OpenShift Container
Platform Cluster Monitoring Operator (CMO), which watches over the deployed monitoring components
and resources, and ensures that they are always up to date.

The Prometheus Operator (PO) creates, configures, and manages Prometheus and Alertmanager
instances. It also automatically generates monitoring target configurations based on familiar Kubernetes
label queries.

In addition to Prometheus and Alertmanager, OpenShift Container Platform Monitoring also includes
node-exporter and kube-state-metrics. Node-exporter is an agent deployed on every node to collect
metrics about it. The kube-state-metrics exporter agent converts Kubernetes objects to metrics
consumable by Prometheus.

The targets monitored as part of the cluster monitoring are:

Prometheus itself

Prometheus-Operator

cluster-monitoring-operator

Alertmanager cluster instances

Kubernetes apiserver

kubelets (the kubelet embeds cAdvisor for per container metrics)

OpenShift Container Platform 3.11 Configuring Clusters

118

https://prometheus.io/
https://grafana.com/
https://github.com/prometheus/node_exporter
https://github.com/kubernetes/kube-state-metrics

kube-controllers

kube-state-metrics

node-exporter

etcd (if etcd monitoring is enabled)

All these components are automatically updated.

For more information about the OpenShift Container Platform Cluster Monitoring Operator, see the
Cluster Monitoring Operator GitHub project.

NOTE

In order to be able to deliver updates with guaranteed compatibility, configurability of the
OpenShift Container Platform Monitoring stack is limited to the explicitly available
options.

5.2. CONFIGURING OPENSHIFT CONTAINER PLATFORM CLUSTER
MONITORING

The OpenShift Container Platform Ansible openshift_cluster_monitoring_operator role configures
and deploys the Cluster Monitoring Operator using the variables from the inventory file.

Table 5.1. Ansible variables

Variable Description

openshift_cluster_monitoring_operator_insta
ll

Deploy the Cluster Monitoring Operator if true.
Otherwise, undeploy. This variable is set to true by
default.

openshift_cluster_monitoring_operator_pro
metheus_storage_capacity

The persistent volume claim size for each of the
Prometheus instances. This variable applies only if
openshift_cluster_monitoring_operator_pro
metheus_storage_enabled is set to true.
Defaults to 50Gi.

openshift_cluster_monitoring_operator_alert
manager_storage_capacity

The persistent volume claim size for each of the
Alertmanager instances. This variable applies only if
openshift_cluster_monitoring_operator_alert
manager_storage_enabled is set to true.
Defaults to 2Gi.

openshift_cluster_monitoring_operator_nod
e_selector

Set to the desired, existing node selector to ensure
that pods are placed onto nodes with specific labels.
Defaults to node-role.kubernetes.io/infra=true.

openshift_cluster_monitoring_operator_alert
manager_config

Configures Alertmanager.

CHAPTER 5. PROMETHEUS CLUSTER MONITORING

119

https://github.com/openshift/cluster-monitoring-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-sched-selector

openshift_cluster_monitoring_operator_pro
metheus_storage_enabled

Enable persistent storage of Prometheus' time-
series data. This variable is set to false by default.

openshift_cluster_monitoring_operator_alert
manager_storage_enabled

Enable persistent storage of Alertmanager
notifications and silences. This variable is set to false
by default.

openshift_cluster_monitoring_operator_pro
metheus_storage_class_name

If you enabled the
openshift_cluster_monitoring_operator_pro
metheus_storage_enabled option, set a specific
StorageClass to ensure that pods are configured to
use the PVC with that storageclass. Defaults to
none, which applies the default storage class name.

openshift_cluster_monitoring_operator_alert
manager_storage_class_name

If you enabled the
openshift_cluster_monitoring_operator_alert
manager_storage_enabled option, set a specific
StorageClass to ensure that pods are configured to
use the PVC with that storageclass. Defaults to
none, which applies the default storage class name.

Variable Description

5.2.1. Monitoring prerequisites

The monitoring stack imposes additional resource requirements. See computing resources
recommendations for details.

5.2.2. Installing monitoring stack

The Monitoring stack is installed with OpenShift Container Platform by default. You can prevent it from
being installed. To do that, set this variable to false in the Ansible inventory file:

openshift_cluster_monitoring_operator_install

You can do it by running:

$ ansible-playbook [-i </path/to/inventory>] <OPENSHIFT_ANSIBLE_DIR>/playbooks/openshift-
monitoring/config.yml \
 -e openshift_cluster_monitoring_operator_install=False

A common path for the Ansible directory is /usr/share/ansible/openshift-ansible/. In this case, the path
to the configuration file is /usr/share/ansible/openshift-ansible/playbooks/openshift-
monitoring/config.yml.

5.2.3. Persistent storage

Running cluster monitoring with persistent storage means that your metrics are stored to a persistent
volume and can survive a pod being restarted or recreated. This is ideal if you require your metrics or
alerting data to be guarded from data loss. For production environments, it is highly recommended to
configure persistent storage using block storage technology.

OpenShift Container Platform 3.11 Configuring Clusters

120

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/scaling_and_performance_guide/#cluster-monitoring-recommendations-for-OCP
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#persistent-volumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/scaling_and_performance_guide/#optimizing-persistent-storage

5.2.3.1. Enabling persistent storage

By default, persistent storage is disabled for both Prometheus time-series data and for Alertmanager
notifications and silences. You can configure the cluster to persistently store any one of them or both.

To enable persistent storage of Prometheus time-series data, set this variable to true in the
Ansible inventory file:
openshift_cluster_monitoring_operator_prometheus_storage_enabled

To enable persistent storage of Alertmanager notifications and silences, set this variable to true
in the Ansible inventory file:
openshift_cluster_monitoring_operator_alertmanager_storage_enabled

5.2.3.2. Determining how much storage is necessary

How much storage you need depends on the number of pods. It is administrator’s responsibility to
dedicate sufficient storage to ensure that the disk does not become full. For information on system
requirements for persistent storage, see Capacity Planning for Cluster Monitoring Operator .

5.2.3.3. Setting persistent storage size

To specify the size of the persistent volume claim for Prometheus and Alertmanager, change these
Ansible variables:

openshift_cluster_monitoring_operator_prometheus_storage_capacity (default: 50Gi)

openshift_cluster_monitoring_operator_alertmanager_storage_capacity (default: 2Gi)

Each of these variables applies only if its corresponding storage_enabled variable is set to true.

5.2.3.4. Allocating enough persistent volumes

Unless you use dynamically-provisioned storage, you need to make sure you have a persistent volume
(PV) ready to be claimed by the PVC, one PV for each replica. Prometheus has two replicas and
Alertmanager has three replicas, which amounts to five PVs.

5.2.3.5. Enabling dynamically-provisioned storage

Instead of statically-provisioned storage, you can use dynamically-provisioned storage. See Dynamic
Volume Provisioning for details.

To enable dynamic storage for Prometheus and Alertmanager, set the following parameters to true in
the Ansible inventory file:

openshift_cluster_monitoring_operator_prometheus_storage_enabled (Default: false)

openshift_cluster_monitoring_operator_alertmanager_storage_enabled (Default: false)

After you enable dynamic storage, you can also set the storageclass for the persistent volume claim for
each component in the following parameters in the Ansible inventory file:

openshift_cluster_monitoring_operator_prometheus_storage_class_name (default: "")

openshift_cluster_monitoring_operator_alertmanager_storage_class_name (default: "")

Each of these variables applies only if its corresponding storage_enabled variable is set to true.

CHAPTER 5. PROMETHEUS CLUSTER MONITORING

121

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/scaling_and_performance_guide/#capacity-planning-for-cluster-monitoring-operator
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/

5.2.4. Supported configuration

The supported way of configuring OpenShift Container Platform Monitoring is by configuring it using the
options described in this guide. Beyond those explicit configuration options, it is possible to inject
additional configuration into the stack. However this is unsupported, as configuration paradigms might
change across Prometheus releases, and such cases can only be handled gracefully if all configuration
possibilities are controlled.

Explicitly unsupported cases include:

Creating additional ServiceMonitor objects in the openshift-monitoring namespace, thereby
extending the targets the cluster monitoring Prometheus instance scrapes. This can cause
collisions and load differences that cannot be accounted for, therefore the Prometheus setup
can be unstable.

Creating additional ConfigMap objects, that cause the cluster monitoring Prometheus instance
to include additional alerting and recording rules. Note that this behavior is known to cause a
breaking behavior if applied, as Prometheus 2.0 will ship with a new rule file syntax.

5.3. CONFIGURING ALERTMANAGER

The Alertmanager manages incoming alerts; this includes silencing, inhibition, aggregation, and sending
out notifications through methods such as email, PagerDuty, and HipChat.

The default configuration of the OpenShift Container Platform Monitoring Alertmanager cluster is:

 global:
 resolve_timeout: 5m
 route:
 group_wait: 30s
 group_interval: 5m
 repeat_interval: 12h
 receiver: default
 routes:
 - match:
 alertname: DeadMansSwitch
 repeat_interval: 5m
 receiver: deadmansswitch
 receivers:
 - name: default
 - name: deadmansswitch

This configuration can be overwritten using the Ansible variable
openshift_cluster_monitoring_operator_alertmanager_config from the
openshift_cluster_monitoring_operator role.

The following example configures PagerDuty for notifications. See the PagerDuty documentation for
Alertmanager to learn how to retrieve the service_key.

openshift_cluster_monitoring_operator_alertmanager_config: |+
 global:
 resolve_timeout: 5m
 route:
 group_wait: 30s
 group_interval: 5m

OpenShift Container Platform 3.11 Configuring Clusters

122

https://www.pagerduty.com/
https://www.pagerduty.com/docs/guides/prometheus-integration-guide/

 repeat_interval: 12h
 receiver: default
 routes:
 - match:
 alertname: DeadMansSwitch
 repeat_interval: 5m
 receiver: deadmansswitch
 - match:
 service: example-app
 routes:
 - match:
 severity: critical
 receiver: team-frontend-page
 receivers:
 - name: default
 - name: deadmansswitch
 - name: team-frontend-page
 pagerduty_configs:
 - service_key: "<key>"

The sub-route matches only on alerts that have a severity of critical and sends them using the receiver
called team-frontend-page. As the name indicates, someone should be paged for alerts that are critical.
See Alertmanager configuration for configuring alerting through different alert receivers.

5.3.1. Dead man’s switch

OpenShift Container Platform Monitoring ships with a dead man’s switch to ensure the availability of the
monitoring infrastructure.

The dead man’s switch is a simple Prometheus alerting rule that always triggers. The Alertmanager
continuously sends notifications for the dead man’s switch to the notification provider that supports this
functionality. This also ensures that communication between the Alertmanager and the notification
provider is working.

This mechanism is supported by PagerDuty to issue alerts when the monitoring system itself is down.
For more information, see Dead man’s switch PagerDuty below.

5.3.2. Grouping alerts

After alerts are firing against the Alertmanager, it must be configured to know how to logically group
them.

For this example, a new route is added to reflect alert routing of the frontend team.

Procedure

1. Add new routes. Multiple routes may be added beneath the original route, typically to define the
receiver for the notification. The following example uses a matcher to ensure that only alerts
coming from the service example-app are used:

global:
 resolve_timeout: 5m
route:
 group_wait: 30s
 group_interval: 5m

CHAPTER 5. PROMETHEUS CLUSTER MONITORING

123

https://prometheus.io/docs/alerting/configuration/

 repeat_interval: 12h
 receiver: default
 routes:
 - match:
 alertname: DeadMansSwitch
 repeat_interval: 5m
 receiver: deadmansswitch
 - match:
 service: example-app
 routes:
 - match:
 severity: critical
 receiver: team-frontend-page
receivers:
- name: default
- name: deadmansswitch

The sub-route matches only on alerts that have a severity of critical, and sends them using the
receiver called team-frontend-page. As the name indicates, someone should be paged for
alerts that are critical.

5.3.3. Dead man’s switch PagerDuty

PagerDuty supports this mechanism through an integration called Dead Man’s Snitch. Simply add a
PagerDuty configuration to the default deadmansswitch receiver. Use the process described above to
add this configuration.

Configure Dead Man’s Snitch to page the operator if the Dead man’s switch alert is silent for 15 minutes.
With the default Alertmanager configuration, the Dead man’s switch alert is repeated every five
minutes. If Dead Man’s Snitch triggers after 15 minutes, it indicates that the notification has been
unsuccessful at least twice.

Learn how to configure Dead Man’s Snitch for PagerDuty .

5.3.4. Alerting rules

OpenShift Container Platform Cluster Monitoring ships with the following alerting rules configured by
default. Currently you cannot add custom alerting rules.

Some alerting rules have identical names. This is intentional. They are alerting about the same event
with different thresholds, with different severity, or both. With the inhibition rules, the lower severity is
inhibited when the higher severity is firing.

For more details on the alerting rules, see the configuration file.

Alert Severity Description

ClusterMonitoringOperatorEr
rors

critical Cluster Monitoring Operator is
experiencing X% errors.

AlertmanagerDown critical Alertmanager has disappeared
from Prometheus target
discovery.

OpenShift Container Platform 3.11 Configuring Clusters

124

https://www.pagerduty.com/
https://deadmanssnitch.com/
https://www.pagerduty.com/docs/guides/dead-mans-snitch-integration-guide/
https://github.com/openshift/cluster-monitoring-operator/blob/release-3.11/assets/prometheus-k8s/rules.yaml

ClusterMonitoringOperatorD
own

critical ClusterMonitoringOperator has
disappeared from Prometheus
target discovery.

KubeAPIDown critical KubeAPI has disappeared from
Prometheus target discovery.

KubeControllerManagerDow
n

critical KubeControllerManager has
disappeared from Prometheus
target discovery.

KubeSchedulerDown critical KubeScheduler has disappeared
from Prometheus target
discovery.

KubeStateMetricsDown critical KubeStateMetrics has
disappeared from Prometheus
target discovery.

KubeletDown critical Kubelet has disappeared from
Prometheus target discovery.

NodeExporterDown critical NodeExporter has disappeared
from Prometheus target
discovery.

PrometheusDown critical Prometheus has disappeared
from Prometheus target
discovery.

PrometheusOperatorDown critical PrometheusOperator has
disappeared from Prometheus
target discovery.

KubePodCrashLooping critical Namespace/Pod (Container) is
restarting times / second

KubePodNotReady critical Namespace/Pod is not ready.

KubeDeploymentGeneration
Mismatch

critical Deployment
Namespace/Deployment
generation mismatch

KubeDeploymentReplicasMi
smatch

critical Deployment
Namespace/Deployment replica
mismatch

Alert Severity Description

CHAPTER 5. PROMETHEUS CLUSTER MONITORING

125

KubeStatefulSetReplicasMis
match

critical StatefulSet
Namespace/StatefulSet replica
mismatch

KubeStatefulSetGenerationM
ismatch

critical StatefulSet
Namespace/StatefulSet
generation mismatch

KubeDaemonSetRolloutStuc
k

critical Only X% of desired pods
scheduled and ready for daemon
set Namespace/DaemonSet

KubeDaemonSetNotSchedul
ed

warning A number of pods of daemonset
Namespace/DaemonSet are not
scheduled.

KubeDaemonSetMisSchedul
ed

warning A number of pods of daemonset
Namespace/DaemonSet are
running where they are not
supposed to run.

KubeCronJobRunning warning CronJob Namespace/CronJob is
taking more than 1h to complete.

KubeJobCompletion warning Job Namespaces/Job is taking
more than 1h to complete.

KubeJobFailed warning Job Namespaces/Job failed to
complete.

KubeCPUOvercommit warning Overcommited CPU resource
requests on Pods, cannot tolerate
node failure.

KubeMemOvercommit warning Overcommited Memory resource
requests on Pods, cannot tolerate
node failure.

KubeCPUOvercommit warning Overcommited CPU resource
request quota on Namespaces.

KubeMemOvercommit warning Overcommited Memory resource
request quota on Namespaces.

alerKubeQuotaExceeded warning X% usage of Resource in
namespace Namespace.

Alert Severity Description

OpenShift Container Platform 3.11 Configuring Clusters

126

KubePersistentVolumeUsage
Critical

critical The persistent volume claimed by
PersistentVolumeClaim in
namespace Namespace has X%
free.

KubePersistentVolumeFullIn
FourDays

critical Based on recent sampling, the
persistent volume claimed by
PersistentVolumeClaim in
namespace Namespace is
expected to fill up within four
days. Currently X bytes are
available.

KubeNodeNotReady warning Node has been unready for more
than an hour

KubeVersionMismatch warning There are X different versions of
Kubernetes components running.

KubeClientErrors warning Kubernetes API server client
'Job/Instance' is experiencing X%
errors.'

KubeClientErrors warning Kubernetes API server client
'Job/Instance' is experiencing X
errors / sec.'

KubeletTooManyPods warning Kubelet Instance is running X
pods, close to the limit of 110.

KubeAPILatencyHigh warning The API server has a 99th
percentile latency of X seconds
for Verb Resource.

KubeAPILatencyHigh critical The API server has a 99th
percentile latency of X seconds
for Verb Resource.

KubeAPIErrorsHigh critical API server is erroring for X% of
requests.

KubeAPIErrorsHigh warning API server is erroring for X% of
requests.

KubeClientCertificateExpirati
on

warning Kubernetes API certificate is
expiring in less than 7 days.

Alert Severity Description

CHAPTER 5. PROMETHEUS CLUSTER MONITORING

127

KubeClientCertificateExpirati
on

critical Kubernetes API certificate is
expiring in less than 1 day.

AlertmanagerConfigInconsis
tent

critical Summary: Configuration out of
sync. Description: The
configuration of the instances of
the Alertmanager cluster Service
are out of sync.

AlertmanagerFailedReload warning Summary: Alertmanager’s
configuration reload failed.
Description: Reloading
Alertmanager’s configuration has
failed for Namespace/Pod.

TargetDown warning Summary: Targets are down.
Description: X% of Job targets are
down.

DeadMansSwitch none Summary: Alerting
DeadMansSwitch. Description:
This is a DeadMansSwitch meant
to ensure that the entire Alerting
pipeline is functional.

NodeDiskRunningFull warning Device Device of node-exporter
Namespace/Pod is running full
within the next 24 hours.

NodeDiskRunningFull critical Device Device of node-exporter
Namespace/Pod is running full
within the next 2 hours.

PrometheusConfigReloadFai
led

warning Summary: Reloading Prometheus'
configuration failed. Description:
Reloading Prometheus'
configuration has failed for
Namespace/Pod

PrometheusNotificationQueu
eRunningFull

warning Summary: Prometheus' alert
notification queue is running full.
Description: Prometheus' alert
notification queue is running full
for Namespace/Pod

Alert Severity Description

OpenShift Container Platform 3.11 Configuring Clusters

128

PrometheusErrorSendingAle
rts

warning Summary: Errors while sending
alert from Prometheus.
Description: Errors while sending
alerts from Prometheus
Namespace/Pod to Alertmanager
Alertmanager

PrometheusErrorSendingAle
rts

critical Summary: Errors while sending
alerts from Prometheus.
Description: Errors while sending
alerts from Prometheus
Namespace/Pod to Alertmanager
Alertmanager

PrometheusNotConnectedTo
Alertmanagers

warning Summary: Prometheus is not
connected to any Alertmanagers.
Description: Prometheus
Namespace/Pod is not connected
to any Alertmanagers

PrometheusTSDBReloadsFai
ling

warning Summary: Prometheus has issues
reloading data blocks from disk.
Description: Job at Instance had X
reload failures over the last four
hours.

PrometheusTSDBCompactio
nsFailing

warning Summary: Prometheus has issues
compacting sample blocks.
Description: Job at Instance had X
compaction failures over the last
four hours.

PrometheusTSDBWALCorru
ptions

warning Summary: Prometheus write-
ahead log is corrupted.
Description: Job at Instance has a
corrupted write-ahead log (WAL).

PrometheusNotIngestingSa
mples

warning Summary: Prometheus isn’t
ingesting samples. Description:
Prometheus Namespace/Pod isn’t
ingesting samples.

PrometheusTargetScrapesD
uplicate

warning Summary: Prometheus has many
samples rejected. Description:
Namespace/Pod has many
samples rejected due to duplicate
timestamps but different values

Alert Severity Description

CHAPTER 5. PROMETHEUS CLUSTER MONITORING

129

EtcdInsufficientMembers critical Etcd cluster "Job": insufficient
members (X).

EtcdNoLeader critical Etcd cluster "Job": member
Instance has no leader.

EtcdHighNumberOfLeaderCh
anges

warning Etcd cluster "Job": instance
Instance has seen X leader
changes within the last hour.

EtcdHighNumberOfFailedGR
PCRequests

warning Etcd cluster "Job": X% of requests
for GRPC_Method failed on etcd
instance Instance.

EtcdHighNumberOfFailedGR
PCRequests

critical Etcd cluster "Job": X% of requests
for GRPC_Method failed on etcd
instance Instance.

EtcdGRPCRequestsSlow critical Etcd cluster "Job": gRPC requests
to GRPC_Method are taking X_s
on etcd instance _Instance.

EtcdMemberCommunication
Slow

warning Etcd cluster "Job": member
communication with To is taking
X_s on etcd instance _Instance.

EtcdHighNumberOfFailedPro
posals

warning Etcd cluster "Job": X proposal
failures within the last hour on
etcd instance Instance.

EtcdHighFsyncDurations warning Etcd cluster "Job": 99th
percentile fync durations are X_s
on etcd instance _Instance.

EtcdHighCommitDurations warning Etcd cluster "Job": 99th
percentile commit durations X_s
on etcd instance _Instance.

FdExhaustionClose warning Job instance Instance will exhaust
its file descriptors soon

FdExhaustionClose critical Job instance Instance will exhaust
its file descriptors soon

Alert Severity Description

5.4. CONFIGURING ETCD MONITORING

If the etcd service does not run correctly, successful operation of the whole OpenShift Container
Platform cluster is in danger. Therefore, it is reasonable to configure monitoring of etcd.

OpenShift Container Platform 3.11 Configuring Clusters

130

Follow these steps to configure etcd monitoring:

Procedure

1. Verify that the monitoring stack is running:

$ oc -n openshift-monitoring get pods
NAME READY STATUS RESTARTS AGE
alertmanager-main-0 3/3 Running 0 34m
alertmanager-main-1 3/3 Running 0 33m
alertmanager-main-2 3/3 Running 0 33m
cluster-monitoring-operator-67b8797d79-sphxj 1/1 Running 0 36m
grafana-c66997f-pxrf7 2/2 Running 0 37s
kube-state-metrics-7449d589bc-rt4mq 3/3 Running 0 33m
node-exporter-5tt4f 2/2 Running 0 33m
node-exporter-b2mrp 2/2 Running 0 33m
node-exporter-fd52p 2/2 Running 0 33m
node-exporter-hfqgv 2/2 Running 0 33m
prometheus-k8s-0 4/4 Running 1 35m
prometheus-k8s-1 0/4 ContainerCreating 0 21s
prometheus-operator-6c9fddd47f-9jfgk 1/1 Running 0 36m

2. Open the configuration file for the cluster monitoring stack:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

3. Under config.yaml: |+, add the etcd section.

a. If you run etcd in static pods on your master nodes, you can specify the etcd nodes using
the selector:

...
data:
 config.yaml: |+
 ...
 etcd:
 targets:
 selector:
 openshift.io/component: etcd
 openshift.io/control-plane: "true"

b. If you run etcd on separate hosts, you need to specify the nodes using IP addresses:

...
data:
 config.yaml: |+
 ...
 etcd:
 targets:
 ips:
 - "127.0.0.1"
 - "127.0.0.2"
 - "127.0.0.3"

If the IP addresses for etcd nodes change, you must update this list.

CHAPTER 5. PROMETHEUS CLUSTER MONITORING

131

1

4. Verify that the etcd service monitor is now running:

$ oc -n openshift-monitoring get servicemonitor
NAME AGE
alertmanager 35m
etcd 1m 1
kube-apiserver 36m
kube-controllers 36m
kube-state-metrics 34m
kubelet 36m
node-exporter 34m
prometheus 36m
prometheus-operator 37m

The etcd service monitor.

It might take up to a minute for the etcd service monitor to start.

5. Now you can navigate to the web interface to see more information about the status of etcd
monitoring.

a. To get the URL, run:

$ oc -n openshift-monitoring get routes
NAME HOST/PORT PATH
SERVICES PORT TERMINATION WILDCARD
...
prometheus-k8s prometheus-k8s-openshift-monitoring.apps.msvistun.origin-
gce.dev.openshift.com prometheus-k8s web reencrypt None

b. Using https, navigate to the URL listed for prometheus-k8s. Log in.

6. Ensure the user belongs to the cluster-monitoring-view role. This role provides access to
viewing cluster monitoring UIs.
For example, to add user developer to the cluster-monitoring-view role, run:

$ oc adm policy add-cluster-role-to-user cluster-monitoring-view developer

7. In the web interface, log in as the user belonging to the cluster-monitoring-view role.

8. Click Status, then Targets. If you see an etcd entry, etcd is being monitored.

OpenShift Container Platform 3.11 Configuring Clusters

132

9. While etcd is now being monitored, Prometheus is not yet able to authenticate against etcd,
and so cannot gather metrics.
To configure Prometheus authentication against etcd:

a. Copy the /etc/etcd/ca/ca.crt and /etc/etcd/ca/ca.key credentials files from the master
node to the local machine:

$ ssh -i gcp-dev/ssh-privatekey cloud-user@35.237.54.213

b. Create the openssl.cnf file with these contents:

[req]
req_extensions = v3_req
distinguished_name = req_distinguished_name
[req_distinguished_name]
[v3_req]
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, keyEncipherment, digitalSignature
extendedKeyUsage=serverAuth, clientAuth

c. Generate the etcd.key private key file:

$ openssl genrsa -out etcd.key 2048

d. Generate the etcd.csr certificate signing request file:

$ openssl req -new -key etcd.key -out etcd.csr -subj "/CN=etcd" -config openssl.cnf

e. Generate the etcd.crt certificate file:

$ openssl x509 -req -in etcd.csr -CA ca.crt -CAkey ca.key -CAcreateserial -out etcd.crt -
days 365 -extensions v3_req -extfile openssl.cnf

f. Put the credentials into format used by OpenShift Container Platform:

$ cat <<-EOF > etcd-cert-secret.yaml
apiVersion: v1
data:
 etcd-client-ca.crt: "$(cat ca.crt | base64 --wrap=0)"
 etcd-client.crt: "$(cat etcd.crt | base64 --wrap=0)"
 etcd-client.key: "$(cat etcd.key | base64 --wrap=0)"
kind: Secret
metadata:
 name: kube-etcd-client-certs
 namespace: openshift-monitoring
type: Opaque
EOF

This creates the etcd-cert-secret.yaml file

g. Apply the credentials file to the cluster:

$ oc apply -f etcd-cert-secret.yaml

CHAPTER 5. PROMETHEUS CLUSTER MONITORING

133

10. Now that you have configured authentication, visit the Targets page of the web interface again.
Verify that etcd is now being correctly monitored. It might take several minutes for changes to
take effect.

11. If you want etcd monitoring to be automatically updated when you update OpenShift Container
Platform, set this variable in the Ansible inventory file to true:

openshift_cluster_monitoring_operator_etcd_enabled=true

If you run etcd on separate hosts, specify the nodes by IP addresses using this Ansible variable:

openshift_cluster_monitoring_operator_etcd_hosts=[<address1>, <address2>, ...]

If the IP addresses of the etcd nodes change, you must update this list.

5.5. ACCESSING PROMETHEUS, ALERTMANAGER, AND GRAFANA

OpenShift Container Platform Monitoring ships with a Prometheus instance for cluster monitoring and a
central Alertmanager cluster. In addition to Prometheus and Alertmanager, OpenShift Container
Platform Monitoring also includes a Grafana instance as well as pre-built dashboards for cluster
monitoring troubleshooting. The Grafana instance that is provided with the monitoring stack, along with
its dashboards, is read-only.

To get the addresses for accessing Prometheus, Alertmanager, and Grafana web UIs:

Procedure

1. Run the following command:

$ oc -n openshift-monitoring get routes
NAME HOST/PORT
alertmanager-main alertmanager-main-openshift-monitoring.apps._url_.openshift.com
grafana grafana-openshift-monitoring.apps._url_.openshift.com
prometheus-k8s prometheus-k8s-openshift-monitoring.apps._url_.openshift.com

Make sure to prepend https:// to these addresses. You cannot access web UIs using
unencrypted connections.

2. Authentication is performed against the OpenShift Container Platform identity and uses the
same credentials or means of authentication as is used elsewhere in OpenShift Container
Platform. You must use a role that has read access to all namespaces, such as the cluster-
monitoring-view cluster role.

OpenShift Container Platform 3.11 Configuring Clusters

134

https://grafana.com/

CHAPTER 6. ACCESSING AND CONFIGURING THE RED HAT
REGISTRY

6.1. AUTHENTICATION ENABLED RED HAT REGISTRY

All container images available through the Red Hat Container Catalog are hosted on an image registry,
registry.access.redhat.com. With OpenShift Container Platform 3.11 Red Hat Container Catalog moved
from registry.access.redhat.com to registry.redhat.io.

The new registry, registry.redhat.io, requires authentication for access to images and hosted content
on OpenShift Container Platform. Following the move to the new registry, the existing registry will be
available for a period of time.

NOTE

OpenShift Container Platform pulls images from registry.redhat.io, so you must
configure your cluster to use it.

The new registry uses standard OAuth mechanisms for authentication, with the following methods:

Authentication token. Tokens, which are generated by administrators , are service accounts that
give systems the ability to authenticate against the container image registry. Service accounts
are not affected by changes in user accounts, so the token authentication method is reliable
and resilient. This is the only supported authentication option for production clusters.

Web username and password. This is the standard set of credentials you use to log in to
resources such as access.redhat.com. While it is possible to use this authentication method
with OpenShift Container Platform, it is not supported for production deployments. Restrict this
authentication method to stand-alone projects outside OpenShift Container Platform.

You can use docker login with your credentials, either username and password or authentication token,
to access content on the new registry.

All image streams point to the new registry. Because the new registry requires authentication for access,
there is a new secret in the OpenShift namespace called imagestreamsecret.

You must place your credentials in two places:

OpenShift namespace. Your credentials must exist in the OpenShift namespace so that the
image streams in the OpenShift namespace can import.

Your host. Your credentials must exist on your host because Kubernetes uses the credentials
from your host when it goes to pull images.

To access the new registry:

Verify image import secret, imagestreamsecret, is in your OpenShift namespace. That secret
has credentials that allow you to access the new registry.

Verify all of your cluster nodes have a /var/lib/origin/.docker/config.json, copied from master,
that allows you to access the Red Hat registry.

6.1.1. Creating User accounts

If you are a Red Hat customer with entitlements to Red Hat products, you have an account with

CHAPTER 6. ACCESSING AND CONFIGURING THE RED HAT REGISTRY

135

https://access.redhat.com/terms-based-registry

If you are a Red Hat customer with entitlements to Red Hat products, you have an account with
applicable user credentials. These are the username and password that you use to log in to the Red Hat
Customer Portal.

If you do not have an account, you can acquire one for free by registering for one of the following
options:

Red Hat Developer Program. This account gives you access to developer tools and programs.

30-day Trial Subscription. This account gives you a 30-day trial subscription with access to
select Red Hat software products.

6.1.2. Creating Service Accounts and Authentication Tokens for the Red Hat
Registry

You must create tokens if your organization manages shared accounts. Administrators can create, view,
and delete all tokens associated with an organization.

Prerequisites

User credentials

Procedure

To create a token in order complete a docker login:

1. Navigate to registry.redhat.io.

2. Log in with your Red Hat Network (RHN) username and password.

3. Accept terms when prompted.

If you are not immediately prompted to accept terms, you will be prompted when
proceeding with the following steps.

4. From the Registry Service Accounts page, click Create Service Account

a. Provide a name for the service account. It will be prepended with a random string.

b. Enter a description.

c. Click create.

5. Navigate back to your Service Accounts.

6. Click the Service Account you created.

7. Copy the username, including the prepended string.

8. Copy the token.

6.1.3. Managing Registry Credentials for Installation and Upgrade

You can also manage registry credentials during installation or upgrade using the Ansible installer.

This will set up the following:

OpenShift Container Platform 3.11 Configuring Clusters

136

https://developers.redhat.com/
https://access.redhat.com/products/red-hat-enterprise-linux/evaluation

imagestreamsecret in your OpenShift namespace.

Credentials on all nodes.

The Ansible installer will require credentials when you are using the default value of registry.redhat.io
for either openshift_examples_registryurl or oreg_url.

Prerequisites

User credentials

Service account

Service account token

Procedure

To manage registry credentials during installation or upgrade using the Ansible installer:

During installation or upgrade, specify the oreg_auth_user and oreg_auth_password
variables in your installer inventory.

NOTE

If you have created a token, set oreg_auth_password to the value of the token.

Clusters that require access to additional authenticated registries can configure a list of registries by
setting openshift_additional_registry_credentials. Each registry requires a host and password value,
you can specify a username by setting user. By default the credentials specified are validated by
attempting to inspect the image openshift3/ose-pod on the specified registry.

To specify an alternate image, either:

Set test_image.

Disable credential validation by setting test_login to False.

If the registry is insecure, set tls_verify to False.

All credentials in this list will have an imagestreamsecret created in the OpenShift namespace and
credentials deployed to all nodes.

For example:

openshift_additional_registry_credentials=
[{'host':'registry.example.com','user':'name','password':'pass1','test_login':'False'},
{'host':'registry2.example.com','password':'token12345','tls_verify':'False','test_image':'mongodb/mongod
b'}]

6.1.4. Using Service Accounts with the Red Hat Registry

Once you have created your service accounts and generated tokens for the Red Hat Registry, you can
perform additional tasks.

NOTE

CHAPTER 6. ACCESSING AND CONFIGURING THE RED HAT REGISTRY

137

NOTE

This section provides the manual steps, which can be automatically performed during
installation by providing the inventory variables outlined in the Managing Registry
Credentials for Installation and Upgrade section.

Prerequisites

User credentials

Service account

Service account token

Procedure

From your Registry Service Accounts page, click on your account name. From there, you can perform
the following tasks:

From the Token Information tab, you can view your username (the name you provided
prepended with a random string) and password (token). From this tab, you can regenerate your
token.

From the OpenShift Secret tab, you can:

a. Download the secret by clicking the link in the tab.

b. Submit the secret to the cluster:

oc create -f <account-name>-secret.yml --namespace=openshift

c. Update your Kubernetes configuration by adding a reference to the secret to your
Kubernetes pod configuration with an imagePullSecrets field, for example:

From the Docker Login tab, you can run docker login. For example:

docker login -u='<numerical-string|account-name>'
 -p=<token>

After you successfully log in, copy ~/.docker/config.json to /var/lib/origin/.docker/config.json
and restart the node.

apiVersion: v1
kind: Pod
metadata:
 name: somepod
 namespace: all
 spec:
 containers:
 - name: web
 image: registry.redhat.io/REPONAME

 imagePullSecrets:
 - name: <numerical-string-account-name>-pull-secret

OpenShift Container Platform 3.11 Configuring Clusters

138

https://access.redhat.com/terms-based-registry/

cp -r ~/.docker /var/lib/origin/
 systemctl restart atomic-openshift-node

From the Docker Configuration tab, you can:

a. Download the credentials configuration by clicking the link in the tab.

b. Write the configuration to the disk by placing the file in the Docker configuration directory.
This will overwrite existing credentials. For example:

mv <account-name>-auth.json ~/.docker/config.json

CHAPTER 6. ACCESSING AND CONFIGURING THE RED HAT REGISTRY

139

CHAPTER 7. MASTER AND NODE CONFIGURATION

7.1. CUSTOMIZING MASTER AND NODE CONFIGURATION AFTER
INSTALLATION

The openshift start command (for master servers) and hyperkube command (for node servers) take a
limited set of arguments that are sufficient for launching servers in a development or experimental
environment. However, these arguments are insufficient to describe and control the full set of
configuration and security options that are necessary in a production environment.

You must provide these options in the master configuration file, at /etc/origin/master/master-
config.yaml, and the node configuration maps. These files define options including overriding the
default plug-ins, connecting to etcd, automatically creating service accounts, building image names,
customizing project requests, configuring volume plug-ins, and much more.

This topic covers the available options for customizing your OpenShift Container Platform master and
node hosts, and shows you how to make changes to the configuration after installation.

These files are fully specified with no default values. Therefore, an empty value indicates that you want
to start up with an empty value for that parameter. This makes it easy to reason about exactly what your
configuration is, but it also makes it difficult to remember all of the options to specify. To make this
easier, the configuration files can be created with the --write-config option and then used with the --
config option.

7.2. INSTALLATION DEPENDENCIES

Production environments should be installed using the standard cluster installation process. In
production environments, it is a good idea to use multiple masters for the purposes of high availability
(HA). A cluster architecture of three masters is recommended, and HAproxy is the recommended
solution for this.

CAUTION

If etcd is installed on the master hosts, you must configure your cluster to use at least three masters,
because etcd would not be able to decide which one is authoritative. The only way to successfully run
only two masters is if you install etcd on hosts other than the masters.

7.3. CONFIGURING MASTERS AND NODES

The method you use to configure your master and node configuration files must match the method that
was used to install your OpenShift Container Platform cluster. If you followed the standard cluster
installation processe, then make your configuration changes in the Ansible inventory file.

7.4. MAKING CONFIGURATION CHANGES USING ANSIBLE

For this section, familiarity with Ansible is assumed.

Only a portion of the available host configuration options are exposed to Ansible . After an OpenShift
Container Platform install, Ansible creates an inventory file with some substituted values. Modifying this
inventory file and re-running the Ansible installer playbook is how you customize your OpenShift
Container Platform cluster.

While OpenShift Container Platform supports using Ansible for cluster installation, using an Ansible

OpenShift Container Platform 3.11 Configuring Clusters

140

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#modifying-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-planning
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#multiple-masters
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-high-availability
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-planning
https://github.com/openshift/openshift-ansible/blob/master/inventory/hosts.example

While OpenShift Container Platform supports using Ansible for cluster installation, using an Ansible
playbook and inventory file, you can also use other management tools, such as Puppet, Chef, or Salt.

Use Case: Configuring the cluster to use HTPasswd authentication

NOTE

This use case assumes you have already set up SSH keys to all the nodes
referenced in the playbook.

The htpasswd utility is in the httpd-tools package:

yum install httpd-tools

To modify the Ansible inventory and make configuration changes:

1. Open the ./hosts inventory file.

2. Add the following new variables to the [OSEv3:vars] section of the file:

htpasswd auth
openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login': 'true', 'challenge':
'true', 'kind': 'HTPasswdPasswordIdentityProvider'}]
Defining htpasswd users
#openshift_master_htpasswd_users={'<name>': '<hashed-password>', '<name>': '<hashed-
password>'}
or
#openshift_master_htpasswd_file=/etc/origin/master/htpasswd

For HTPasswd authentication the openshift_master_identity_providers variable enables the
authentication type. You can configure three different authentication options that use
HTPasswd:

Specify only openshift_master_identity_providers if /etc/origin/master/htpasswd is
already configured and present on the host.

Specify both openshift_master_identity_providers and
openshift_master_htpasswd_file to copy a local htpasswd file to the host.

Specify both openshift_master_identity_providers and
openshift_master_htpasswd_users to generate a new htpasswd file on the host.

Because OpenShift Container Platform requires a hashed password to configure HTPasswd
authentication, you can use the htpasswd command, as shown in the following section , to
generate the hashed password(s) for your user(s) or to create the flat file with the users and
associated hashed passwords.

The following example changes the authentication method from the default deny all setting to
htpasswd and uses the specified file to generate user IDs and passwords for the jsmith and
bloblaw users.

htpasswd auth
openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login': 'true', 'challenge':
'true', 'kind': 'HTPasswdPasswordIdentityProvider'}]
Defining htpasswd users

CHAPTER 7. MASTER AND NODE CONFIGURATION

141

https://puppet.com/
https://www.chef.io/
http://saltstack.com/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#ensuring-host-access

openshift_master_htpasswd_users={'jsmith': '$apr1$wIwXkFLI$bAygtKGmPOqaJftB',
'bloblaw': '7IRJ$2ODmeLoxf4I6sUEKfiA$2aDJqLJe'}
or
#openshift_master_htpasswd_file=/etc/origin/master/htpasswd

3. Re-run the ansible playbook for these modifications to take effect:

$ ansible-playbook -b -i ./hosts ~/src/openshift-ansible/playbooks/deploy_cluster.yml

The playbook updates the configuration, and restarts the OpenShift Container Platform master
service to apply the changes.

You have now modified the master and node configuration files using Ansible, but this is just a simple
use case. From here you can see which master and node configuration options are exposed to Ansible
and customize your own Ansible inventory.

7.4.1. Using the htpasswd command

To configure the OpenShift Container Platform cluster to use HTPasswd authentication, you need at
least one user with a hashed password to include in the inventory file.

You can:

Generate the username and password to add directly to the ./hosts inventory file.

Create a flat file to pass the credentials to the ./hosts inventory file.

To create a user and hashed password:

1. Run the following command to add the specified user:

$ htpasswd -n <user_name>

NOTE

You can include the -b option to supply the password on the command line:

$ htpasswd -nb <user_name> <password>

2. Enter and confirm a clear-text password for the user.
For example:

$ htpasswd -n myuser
New password:
Re-type new password:
myuser:$apr1$vdW.cI3j$WSKIOzUPs6Q

The command generates a hashed version of the password.

You can then use the hashed password when configuring HTPasswd authentication. The hashed
password is the string after the :. In the above example,you would enter:

openshift_master_htpasswd_users={'myuser': '$apr1$wIwXkFLI$bAygtISk2eKGmqaJftB'}

OpenShift Container Platform 3.11 Configuring Clusters

142

https://github.com/openshift/openshift-ansible/blob/master/inventory/hosts.example

To create a flat file with a user name and hashed password:

1. Execute the following command:

$ htpasswd -c /etc/origin/master/htpasswd <user_name>

NOTE

You can include the -b option to supply the password on the command line:

$ htpasswd -c -b <user_name> <password>

2. Enter and confirm a clear-text password for the user.
For example:

htpasswd -c /etc/origin/master/htpasswd user1
New password:
Re-type new password:
Adding password for user user1

The command generates a file that includes the user name and a hashed version of the user’s
password.

You can then use the password file when configuring HTPasswd authentication.

NOTE

For more information on the htpasswd command, see HTPasswd Identity Provider .

7.5. MAKING MANUAL CONFIGURATION CHANGES

Use Case: Configure the cluster to use HTPasswd authentication

To manually modify a configuration file:

1. Open the configuration file you want to modify, which in this case is the
/etc/origin/master/master-config.yaml file:

2. Add the following new variables to the identityProviders stanza of the file:

oauthConfig:
 ...
 identityProviders:
 - name: my_htpasswd_provider
 challenge: true
 login: true
 mappingMethod: claim
 provider:
 apiVersion: v1
 kind: HTPasswdPasswordIdentityProvider
 file: /etc/origin/master/htpasswd

3. Save your changes and close the file.

CHAPTER 7. MASTER AND NODE CONFIGURATION

143

4. Restart the master for the changes to take effect:

master-restart api
master-restart controllers

You have now manually modified the master and node configuration files, but this is just a simple use
case. From here you can see all the master and node configuration options, and further customize your
own cluster by making further modifications.

NOTE

To modify a node in your cluster, update the node configuration maps as needed. Do not
manually edit the node-config.yaml file.

7.6. MASTER CONFIGURATION FILES

This section reviews parameters mentioned in the master-config.yaml file.

You can create a new master configuration file to see the valid options for your installed version of
OpenShift Container Platform.

IMPORTANT

Whenever you modify the master-config.yaml file, you must restart the master for the
changes to take effect. See Restarting OpenShift Container Platform services .

7.6.1. Admission Control Configuration

Table 7.1. Admission Control Configuration Parameters

Parameter Name Description

AdmissionConfig Contains the admission control plug-in configuration. OpenShift
Container Platform has a configurable list of admission controller plug-
ins that are triggered whenever API objects are created or modified.
This option allows you to override the default list of plug-ins; for example,
disabling some plug-ins, adding others, changing the ordering, and
specifying configuration. Both the list of plug-ins and their configuration
can be controlled from Ansible.

APIServerArguments Key-value pairs that will be passed directly to the Kube API server that
match the API servers' command line arguments. These are not
migrated, but if you reference a value that does not exist the server will
not start. These values may override other settings in
KubernetesMasterConfig, which may cause invalid configurations.
Use APIServerArguments with the event-ttl value to store events in
etcd. The default is 2h, but it can be set to less to prevent memory
growth:

apiServerArguments:
 event-ttl:
 - "15m"

OpenShift Container Platform 3.11 Configuring Clusters

144

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#modifying-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-admission-controllers

ControllerArguments Key-value pairs that will be passed directly to the Kube controller
manager that match the controller manager’s command line arguments.
These are not migrated, but if you reference a value that does not exist
the server will not start. These values may override other settings in
KubernetesMasterConfig, which may cause invalid configurations.

DefaultAdmissionConfig Used to enable or disable various admission plug-ins. When this type is
present as the configuration object under pluginConfig and if the
admission plug-in supports it, this will cause an off by default admission
plug-in to be enabled.

PluginConfig Allows specifying a configuration file per admission control plug-in.

PluginOrderOverride A list of admission control plug-in names that will be installed on the
master. Order is significant. If empty, a default list of plug-ins is used.

SchedulerArguments Key-value pairs that will be passed directly to the Kube scheduler that
match the scheduler’s command line arguments. These are not migrated,
but if you reference a value that does not exist the server will not start.
These values may override other settings in
KubernetesMasterConfig, which may cause invalid configurations.

Parameter Name Description

7.6.2. Asset Configuration

Table 7.2. Asset Configuration Parameters

Parameter Name Description

AssetConfig If present, then the asset server starts based on the defined parameters.
For example:

assetConfig:
 logoutURL: ""
 masterPublicURL: https://master.ose32.example.com:8443
 publicURL: https://master.ose32.example.com:8443/console/
 servingInfo:
 bindAddress: 0.0.0.0:8443
 bindNetwork: tcp4
 certFile: master.server.crt
 clientCA: ""
 keyFile: master.server.key
 maxRequestsInFlight: 0
 requestTimeoutSeconds: 0

CHAPTER 7. MASTER AND NODE CONFIGURATION

145

corsAllowedOrigins To access the API server from a web application using a different host
name, you must whitelist that host name by specifying
corsAllowedOrigins in the configuration field or by specifying the --
cors-allowed-origins option on openshift start. No pinning or
escaping is done to the value. See Web Console for example usage.

DisabledFeatures A list of features that should not be started. You will likely want to set
this as null. It is very unlikely that anyone will want to manually disable
features and that is not encouraged.

Extensions Files to serve from the asset server file system under a subcontext.

ExtensionDevelopment When set to true, tells the asset server to reload extension scripts and
stylesheets for every request rather than only at startup. It lets you
develop extensions without having to restart the server for every
change.

ExtensionProperties Key- (string) and value- (string) pairs that will be injected into the
console under the global variable
OPENSHIFT_EXTENSION_PROPERTIES.

ExtensionScripts File paths on the asset server files to load as scripts when the web
console loads.

ExtensionStylesheets File paths on the asset server files to load as style sheets when the web
console loads.

LoggingPublicURL The public endpoint for logging (optional).

LogoutURL An optional, absolute URL to redirect web browsers to after logging out
of the web console. If not specified, the built-in logout page is shown.

MasterPublicURL How the web console can access the OpenShift Container Platform
server.

MetricsPublicURL The public endpoint for metrics (optional).

PublicURL URL of the asset server.

Parameter Name Description

7.6.3. Authentication and Authorization Configuration

Table 7.3. Authentication and Authorization Parameters

Parameter Name Description

authConfig Holds authentication and authorization configuration options.

OpenShift Container Platform 3.11 Configuring Clusters

146

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#corsAllowedOrigins

AuthenticationCacheSize Indicates how many authentication results should be cached. If 0, the
default cache size is used.

AuthorizationCacheTTL Indicates how long an authorization result should be cached. It takes a
valid time duration string (e.g. "5m"). If empty, you get the default
timeout. If zero (e.g. "0m"), caching is disabled.

Parameter Name Description

7.6.4. Controller Configuration

Table 7.4. Controller Configuration Parameters

Parameter Name Description

Controllers List of the controllers that should be started. If set to none, no
controllers will start automatically. The default value is * which will start
all controllers. When using *, you may exclude controllers by prepending
a - in front of their name. No other values are recognized at this time.

ControllerLeaseTTL Enables controller election, instructing the master to attempt to acquire
a lease before controllers start and renewing it within a number of
seconds defined by this value. Setting this value non-negative forces
pauseControllers=true. This value defaults off (0, or omitted) and
controller election can be disabled with -1.

PauseControllers Instructs the master to not automatically start controllers, but instead to
wait until a notification to the server is received before launching them.

7.6.5. etcd Configuration

Table 7.5. etcd Configuration Parameters

Parameter Name Description

Address The advertised host:port for client connections to etcd.

etcdClientInfo Contains information about how to connect to etcd. Specifies if etcd is
run as embedded or non-embedded, and the hosts. The rest of the
configuration is handled by the Ansible inventory. For example:

etcdClientInfo:
 ca: ca.crt
 certFile: master.etcd-client.crt
 keyFile: master.etcd-client.key
 urls:
 - https://m1.aos.example.com:4001

CHAPTER 7. MASTER AND NODE CONFIGURATION

147

etcdConfig If present, then etcd starts based on the defined parameters. For
example:

etcdConfig:
 address: master.ose32.example.com:4001
 peerAddress: master.ose32.example.com:7001
 peerServingInfo:
 bindAddress: 0.0.0.0:7001
 certFile: etcd.server.crt
 clientCA: ca.crt
 keyFile: etcd.server.key
 servingInfo:
 bindAddress: 0.0.0.0:4001
 certFile: etcd.server.crt
 clientCA: ca.crt
 keyFile: etcd.server.key
 storageDirectory: /var/lib/origin/openshift.local.etcd

etcdStorageConfig Contains information about how API resources are stored in etcd. These
values are only relevant when etcd is the backing store for the cluster.

KubernetesStoragePrefix The path within etcd that the Kubernetes resources will be rooted under.
This value, if changed, will mean existing objects in etcd will no longer be
located. The default value is kubernetes.io.

KubernetesStorageVersion The API version that Kubernetes resources in etcd should be serialized
to. This value should not be advanced until all clients in the cluster that
read from etcd have code that allows them to read the new version.

OpenShiftStoragePrefix The path within etcd that the OpenShift Container Platform resources
will be rooted under. This value, if changed, will mean existing objects in
etcd will no longer be located. The default value is openshift.io.

OpenShiftStorageVersion API version that OS resources in etcd should be serialized to. This value
should not be advanced until all clients in the cluster that read from etcd
have code that allows them to read the new version.

PeerAddress The advertised host:port for peer connections to etcd.

PeerServingInfo Describes how to start serving the etcd peer.

Parameter Name Description

OpenShift Container Platform 3.11 Configuring Clusters

148

ServingInfo Describes how to start serving. For example:

servingInfo:
 bindAddress: 0.0.0.0:8443
 bindNetwork: tcp4
 certFile: master.server.crt
 clientCA: ca.crt
 keyFile: master.server.key
 maxRequestsInFlight: 500
 requestTimeoutSeconds: 3600

StorageDir The path to the etcd storage directory.

Parameter Name Description

7.6.6. Grant Configuration

Table 7.6. Grant Configuration Parameters

Parameter Name Description

GrantConfig Describes how to handle grants.

GrantHandlerAuto Auto-approves client authorization grant requests.

GrantHandlerDeny Auto-denies client authorization grant requests.

GrantHandlerPrompt Prompts the user to approve new client authorization grant requests.

Method Determines the default strategy to use when an OAuth client requests a
grant.This method will be used only if the specific OAuth client does not
provide a strategy of their own. Valid grant handling methods are:

auto: always approves grant requests, useful for trusted clients

prompt: prompts the end user for approval of grant requests,
useful for third-party clients

deny: always denies grant requests, useful for black-listed
clients

7.6.7. Image Configuration

Table 7.7. Image Configuration Parameters

Parameter Name Description

Format The format of the name to be built for the system component.

CHAPTER 7. MASTER AND NODE CONFIGURATION

149

Latest Determines if the latest tag will be pulled from the registry.

Parameter Name Description

7.6.8. Image Policy Configuration

Table 7.8. Image Policy Configuration Parameters

Parameter Name Description

DisableScheduledImport Allows scheduled background import of images to be disabled.

MaxImagesBulkImportedPer
Repository

Controls the number of images that are imported when a user does a
bulk import of a Docker repository. This number defaults to 5 to prevent
users from importing large numbers of images accidentally. Set -1 for no
limit.

MaxScheduledImageImports
PerMinute

The maximum number of scheduled image streams that will be imported
in the background per minute. The default value is 60.

ScheduledImageImportMini
mumIntervalSeconds

The minimum number of seconds that can elapse between when image
streams scheduled for background import are checked against the
upstream repository. The default value is 15 minutes.

AllowedRegistriesForImport Limits the docker registries that normal users may import images from.
Set this list to the registries that you trust to contain valid Docker images
and that you want applications to be able to import from. Users with
permission to create Images or ImageStreamMappings via the API are
not affected by this policy - typically only administrators or system
integrations will have those permissions.

AdditionalTrustedCA Specified a filepath to a PEM-encoded file listing additional certificate
authorities that should be trusted during imagestream import. This file
needs to be accessible to the API server process. Depending how your
cluster is installed, this may require mounting the file into the API server
pod.

InternalRegistryHostname Sets the hostname for the default internal image registry. The value
must be in hostname[:port] format. For backward compatibility, users
can still use OPENSHIFT_DEFAULT_REGISTRY environment
variable but this setting overrides the environment variable. When this is
set, the internal registry must have its hostname set as well. See setting
the registry hostname for more details.

ExternalRegistryHostname ExternalRegistryHostname sets the hostname for the default external
image registry. The external hostname should be set only when the
image registry is exposed externally. The value is used in
publicDockerImageRepository field in ImageStreams. The value
must be in hostname[:port] format.

OpenShift Container Platform 3.11 Configuring Clusters

150

7.6.9. Kubernetes Master Configuration

Table 7.9. Kubernetes Master Configuration Parameters

Parameter Name Description

APILevels A list of API levels that should be enabled on startup, v1 as examples.

DisabledAPIGroupVersions A map of groups to the versions (or *) that should be disabled.

KubeletClientInfo Contains information about how to connect to kubelets.

KubernetesMasterConfig Contains information about how to connect to kubelet’s
KubernetesMasterConfig. If present, then start the kubernetes master
with this process.

MasterCount The number of expected masters that should be running. This value
defaults to 1 and may be set to a positive integer, or if set to -1, indicates
this is part of a cluster.

MasterIP The public IP address of Kubernetes resources. If empty, the first result
from net.InterfaceAddrs will be used.

MasterKubeConfig File name for the .kubeconfig file that describes how to connect this
node to the master.

PodEvictionTimeout Controls grace period for deleting pods on failed nodes. It takes valid
time duration string. If empty, you get the default pod eviction timeout.
The default is 5m0s.

ProxyClientInfo Specifies the client cert/key to use when proxying to pods.For example:

 proxyClientInfo:
 certFile: master.proxy-client.crt
 keyFile: master.proxy-client.key

ServicesNodePortRange The range to use for assigning service public ports on a host. Default
30000-32767.

ServicesSubnet The subnet to use for assigning service IPs.

StaticNodeNames The list of nodes that are statically known.

7.6.10. Network Configuration

Choose the CIDRs in the following parameters carefully, because the IPv4 address space is shared by all
users of the nodes. OpenShift Container Platform reserves CIDRs from the IPv4 address space for its
own use, and reserves CIDRs from the IPv4 address space for addresses that are shared between the
external user and the cluster.

CHAPTER 7. MASTER AND NODE CONFIGURATION

151

Table 7.10. Network Configuration Parameters

Parameter Name Description

ClusterNetworkCIDR The CIDR string to specify the global overlay network’s L3 space. This is
reserved for the internal use of the cluster networking.

externalIPNetworkCIDRs Controls what values are acceptable for the service external IP field. If
empty, no externalIP may be set. It may contain a list of CIDRs which
are checked for access. If a CIDR is prefixed with !, IPs in that CIDR will
be rejected. Rejections will be applied first, then the IP checked against
one of the allowed CIDRs. You must ensure this range does not overlap
with your nodes, pods, or service CIDRs for security reasons.

HostSubnetLength The number of bits to allocate to each host’s subnet. For example, 8
would mean a /24 network on the host.

ingressIPNetworkCIDR Controls the range to assign ingress IPs from for services of type
LoadBalancer on bare metal. It may contain a single CIDR that it will be
allocated from. By default 172.46.0.0/16 is configured. For security
reasons, you should ensure that this range does not overlap with the
CIDRs reserved for external IPs, nodes, pods, or services.

HostSubnetLength The number of bits to allocate to each host’s subnet. For example, 8
would mean a /24 network on the host.

OpenShift Container Platform 3.11 Configuring Clusters

152

NetworkConfig To be passed to the compiled-in-network plug-in. Many of the options
here can be controlled in the Ansible inventory.

NetworkPluginName (string)

ClusterNetworkCIDR (string)

HostSubnetLength (unsigned integer)

ServiceNetworkCIDR (string)

externalIPNetworkCIDRs (string array): Controls which
values are acceptable for the service external IP field. If empty,
no external IP may be set. It can contain a list of CIDRs which
are checked for access. If a CIDR is prefixed with !, then IPs in
that CIDR are rejected. Rejections are applied first, then the IP
is checked against one of the allowed CIDRs. For security
purposes, you should ensure this range does not overlap with
your nodes, pods, or service CIDRs.

For Example:

networkConfig:
 clusterNetworks
 - cidr: 10.3.0.0/16
 hostSubnetLength: 8
 networkPluginName: example/openshift-ovs-subnet
serviceNetworkCIDR must match
kubernetesMasterConfig.servicesSubnet
 serviceNetworkCIDR: 179.29.0.0/16

NetworkPluginName The name of the network plug-in to use.

ServiceNetwork The CIDR string to specify the service networks.

Parameter Name Description

7.6.11. OAuth Authentication Configuration

Table 7.11. OAuth Configuration Parameters

Parameter Name Description

AlwaysShowProviderSelecti
on

Forces the provider selection page to render even when there is only a
single provider.

AssetPublicURL Used for building valid client redirect URLs for external access.

Error A path to a file containing a go template used to render error pages
during the authentication or grant flow If unspecified, the default error
page is used.

IdentityProviders Ordered list of ways for a user to identify themselves.

CHAPTER 7. MASTER AND NODE CONFIGURATION

153

Login A path to a file containing a go template used to render the login page.
If unspecified, the default login page is used.

MasterCA CA for verifying the TLS connection back to the MasterURL.

MasterPublicURL Used for building valid client redirect URLs for external access.

MasterURL Used for making server-to-server calls to exchange authorization codes
for access tokens.

OAuthConfig If present, then the /oauth endpoint starts based on the defined
parameters. For example:

oauthConfig:
 assetPublicURL:
https://master.ose32.example.com:8443/console/
 grantConfig:
 method: auto
 identityProviders:
 - challenge: true
 login: true
 mappingMethod: claim
 name: htpasswd_all
 provider:
 apiVersion: v1
 kind: HTPasswdPasswordIdentityProvider
 file: /etc/origin/openshift-passwd
 masterCA: ca.crt
 masterPublicURL: https://master.ose32.example.com:8443
 masterURL: https://master.ose32.example.com:8443
 sessionConfig:
 sessionMaxAgeSeconds: 3600
 sessionName: ssn
 sessionSecretsFile: /etc/origin/master/session-secrets.yaml
 tokenConfig:
 accessTokenMaxAgeSeconds: 86400
 authorizeTokenMaxAgeSeconds: 500

OAuthTemplates Allows for customization of pages like the login page.

ProviderSelection A path to a file containing a go template used to render the provider
selection page. If unspecified, the default provider selection page is
used.

SessionConfig Holds information about configuring sessions.

Templates Allows you to customize pages like the login page.

TokenConfig Contains options for authorization and access tokens.

Parameter Name Description

OpenShift Container Platform 3.11 Configuring Clusters

154

7.6.12. Project Configuration

Table 7.12. Project Configuration Parameters

Parameter Name Description

DefaultNodeSelector Holds default project node label selector.

ProjectConfig Holds information about project creation and defaults:

DefaultNodeSelector (string): Holds the default project
node label selector.

ProjectRequestMessage (string): The string presented to a
user if they are unable to request a project via the
projectrequest API endpoint.

ProjectRequestTemplate (string): The template to use for
creating projects in response to projectrequest. It is in the
format <namespace>/<template>. It is optional, and if it is
not specified, a default template is used.

SecurityAllocator: Controls the automatic allocation of UIDs
and MCS labels to a project. If nil, allocation is disabled:

mcsAllocatorRange (string): Defines the range of MCS
categories that will be assigned to namespaces. The
format is <prefix>/<numberOfLabels>[,
<maxCategory>]. The default is s0/2 and will allocate
from c0 → c1023, which means a total of 535k labels are
available. If this value is changed after startup, new
projects may receive labels that are already allocated to
other projects. The prefix may be any valid SELinux set of
terms (including user, role, and type). However, leaving the
prefix at its default allows the server to set them
automatically. For example, s0:/2 would allocate labels
from s0:c0,c0 to s0:c511,c511 whereas s0:/2,512 would
allocate labels from s0:c0,c0,c0 to s0:c511,c511,511.

mcsLabelsPerProject (integer): Defines the number of
labels to reserve per project. The default is 5 to match the
default UID and MCS ranges.

uidAllocatorRange (string): Defines the total set of Unix
user IDs (UIDs) automatically allocated to projects, and the
size of the block that each namespace gets. For example,
1000-1999/10 would allocate ten UIDs per namespace,
and would be able to allocate up to 100 blocks before
running out of space. The default is to allocate from 1 billion
to 2 billion in 10k blocks, which is the expected size of
ranges for container images when user namespaces are
started.

ProjectRequestMessage The string presented to a user if they are unable to request a project via
the project request API endpoint.

ProjectRequestTemplate The template to use for creating projects in response to a
projectrequest. It is in the format namespace/template and it is
optional. If it is not specified, a default template is used.

CHAPTER 7. MASTER AND NODE CONFIGURATION

155

7.6.13. Scheduler Configuration

Table 7.13. Scheduler Configuration Parameters

Parameter Name Description

SchedulerConfigFile Points to a file that describes how to set up the scheduler. If empty, you
get the default scheduling rules

7.6.14. Security Allocator Configuration

Table 7.14. Security Allocator Parameters

Parameter Name Description

MCSAllocatorRange Defines the range of MCS categories that will be assigned to
namespaces. The format is <prefix>/<numberOfLabels>[,
<maxCategory>]. The default is s0/2 and will allocate from c0 to
c1023, which means a total of 535k labels are available (1024 choose 2 ~
535k). If this value is changed after startup, new projects may receive
labels that are already allocated to other projects. Prefix may be any
valid SELinux set of terms (including user, role, and type), although
leaving them as the default will allow the server to set them
automatically.

SecurityAllocator Controls the automatic allocation of UIDs and MCS labels to a project. If
nil, allocation is disabled.

UIDAllocatorRange Defines the total set of Unix user IDs (UIDs) that will be allocated to
projects automatically, and the size of the block that each namespace
gets. For example, 1000-1999/10 will allocate ten UIDs per namespace,
and will be able to allocate up to 100 blocks before running out of space.
The default is to allocate from 1 billion to 2 billion in 10k blocks (which is
the expected size of the ranges container images will use once user
namespaces are started).

7.6.15. Service Account Configuration

Table 7.15. Service Account Configuration Parameters

Parameter Name Description

LimitSecretReferences Controls whether or not to allow a service account to reference any
secret in a namespace without explicitly referencing them.

ManagedNames A list of service account names that will be auto-created in every
namespace. If no names are specified, the
ServiceAccountsController will not be started.

OpenShift Container Platform 3.11 Configuring Clusters

156

MasterCA The CA for verifying the TLS connection back to the master. The service
account controller will automatically inject the contents of this file into
pods so they can verify connections to the master.

PrivateKeyFile A file containing a PEM-encoded private RSA key, used to sign service
account tokens. If no private key is specified, the service account
TokensController will not be started.

PublicKeyFiles A list of files, each containing a PEM-encoded public RSA key. If any file
contains a private key, the public portion of the key is used. The list of
public keys is used to verify presented service account tokens. Each key
is tried in order until the list is exhausted or verification succeeds. If no
keys are specified, no service account authentication will be available.

ServiceAccountConfig Holds options related to service accounts:

LimitSecretReferences (boolean): Controls whether or not
to allow a service account to reference any secret in a
namespace without explicitly referencing them.

ManagedNames (string): A list of service account names that
will be auto-created in every namespace. If no names are
specified, then the ServiceAccountsController will not be
started.

MasterCA (string): The certificate authority for verifying the
TLS connection back to the master. The service account
controller will automatically inject the contents of this file into
pods so that they can verify connections to the master.

PrivateKeyFile (string): Contains a PEM-encoded private
RSA key, used to sign service account tokens. If no private key
is specified, then the service account TokensController will
not be started.

PublicKeyFiles (string): A list of files, each containing a
PEM-encoded public RSA key. If any file contains a private key,
then OpenShift Container Platform uses the public portion of
the key. The list of public keys is used to verify service account
tokens; each key is tried in order until either the list is exhausted
or verification succeeds. If no keys are specified, then service
account authentication will not be available.

Parameter Name Description

7.6.16. Serving Information Configuration

Table 7.16. Serving Information Configuration Parameters

Parameter Name Description

CHAPTER 7. MASTER AND NODE CONFIGURATION

157

AllowRecursiveQueries Allows the DNS server on the master to answer queries recursively. Note
that open resolvers can be used for DNS amplification attacks and the
master DNS should not be made accessible to public networks.

BindAddress The ip:port to serve on.

BindNetwork Controls limits and behavior for importing images.

CertFile A file containing a PEM-encoded certificate.

CertInfo TLS cert information for serving secure traffic.

ClientCA The certificate bundle for all the signers that you recognize for incoming
client certificates.

dnsConfig If present, then start the DNS server based on the defined parameters.
For example:

dnsConfig:
 bindAddress: 0.0.0.0:8053
 bindNetwork: tcp4

DNSDomain Holds the domain suffix.

DNSIP Holds the IP.

KeyFile A file containing a PEM-encoded private key for the certificate specified
by CertFile.

MasterClientConnectionOver
rides

Provides overrides to the client connection used to connect to the
master. This parameter is not supported. To set QPS and burst values,
see Setting Node QPS and Burst Values.

MaxRequestsInFlight The number of concurrent requests allowed to the server. If zero, no
limit.

NamedCertificates A list of certificates to use to secure requests to specific host names.

RequestTimeoutSecond The number of seconds before requests are timed out. The default is 60
minutes. If -1, there is no limit on requests.

ServingInfo The HTTP serving information for the assets.

Parameter Name Description

7.6.17. Volume Configuration

OpenShift Container Platform 3.11 Configuring Clusters

158

Table 7.17. Volume Configuration Parameters

Parameter Name Description

DynamicProvisioningEnable
d

A boolean to enable or disable dynamic provisioning. Default is true.

FSGroup Enables local storage quotas on each node for each FSGroup. At
present this is only implemented for emptyDir volumes, and if the
underlying volumeDirectory is on an XFS filesystem.

MasterVolumeConfig Contains options for configuring volume plug-ins in the master node.

NodeVolumeConfig Contains options for configuring volumes on the node.

VolumeConfig Contains options for configuring volume plug-ins in the node:

DynamicProvisioningEnabled (boolean): Default value is
true, and toggles dynamic provisioning off when false.

VolumeDirectory The directory that volumes are stored under. Use the
openshift_node_group_data_dir parameter to change this value.

7.6.18. Basic Audit

Audit provides a security-relevant chronological set of records documenting the sequence of activities
that have affected system by individual users, administrators, or other components of the system.

Audit works at the API server level, logging all requests coming to the server. Each audit log contains
two entries:

1. The request line containing:

a. A Unique ID allowing to match the response line (see #2)

b. The source IP of the request

c. The HTTP method being invoked

d. The original user invoking the operation

e. The impersonated user for the operation (self meaning himself)

f. The impersonated group for the operation (lookup meaning user’s group)

g. The namespace of the request or <none>

h. The URI as requested

2. The response line containing:

a. The unique ID from #1

CHAPTER 7. MASTER AND NODE CONFIGURATION

159

b. The response code

Example output for user admin asking for a list of pods:

AUDIT: id="5c3b8227-4af9-4322-8a71-542231c3887b" ip="127.0.0.1" method="GET" user="admin"
as="<self>" asgroups="<lookup>" namespace="default" uri="/api/v1/namespaces/default/pods"
AUDIT: id="5c3b8227-4af9-4322-8a71-542231c3887b" response="200"

7.6.18.1. Enable Basic Auditing

The following procedure enables basic auditing post installation.

NOTE

Advanced Audit must be enabled during installation.

1. Edit the /etc/origin/master/master-config.yaml file on all master nodes as shown in the
following example:

2. Restart the API pods in your cluster.

To enable basic auditing during installation, add the following variable declaration to your inventory file.
Adjust values as appropriate.

The audit configuration takes the following parameters:

Table 7.18. Audit Configuration Parameters

Parameter Name Description

enabled A boolean to enable or disable audit logs. Default is false.

auditFilePath File path where the requests should be logged to. If not set, logs are
printed to master logs.

maximumFileRetentionDays Specifies maximum number of days to retain old audit log files based on
the time stamp encoded in their filename.

auditConfig:
 auditFilePath: "/var/log/origin/audit-ocp.log"
 enabled: true
 maximumFileRetentionDays: 14
 maximumFileSizeMegabytes: 500
 maximumRetainedFiles: 15

/usr/local/bin/master-restart api

openshift_master_audit_config={"enabled": true, "auditFilePath": "/var/lib/origin/openpaas-oscp-
audit.log", "maximumFileRetentionDays": 14, "maximumFileSizeMegabytes": 500,
"maximumRetainedFiles": 5}

OpenShift Container Platform 3.11 Configuring Clusters

160

maximumRetainedFiles Specifies the maximum number of old audit log files to retain.

maximumFileSizeMegabytes Specifies maximum size in megabytes of the log file before it gets
rotated. Defaults to 100MB.

Parameter Name Description

Example Audit Configuration

auditConfig:
 auditFilePath: "/var/log/origin/audit-ocp.log"
 enabled: true
 maximumFileRetentionDays: 14
 maximumFileSizeMegabytes: 500
 maximumRetainedFiles: 15

When you define the auditFilePath parameter, the directory is created if it does not exist.

7.6.19. Advanced Audit

The advanced audit feature provides several improvements over the basic audit functionality, including
fine-grained events filtering and multiple output back ends.

To enable the advanced audit feature, you create an audit policy file and specify the following values in
the openshift_master_audit_config and openshift_master_audit_policyfile parameters:

openshift_master_audit_config={"enabled": true, "auditFilePath": "/var/log/origin/audit-ocp.log",
"maximumFileRetentionDays": 14, "maximumFileSizeMegabytes": 500, "maximumRetainedFiles": 5,
"policyFile": "/etc/origin/master/adv-audit.yaml", "logFormat":"json"}
openshift_master_audit_policyfile="/<path>/adv-audit.yaml"

IMPORTANT

You must create the adv-audit.yaml file before you install the cluster and specify its
location in the cluster inventory file.

The following table contains additional options you can use.

Table 7.19. Advanced Audit Configuration Parameters

Parameter Name Description

policyFile Path to the file that defines the audit policy configuration.

policyConfiguration An embedded audit policy configuration.

logFormat Specifies the format of the saved audit logs. Allowed values are legacy
(the format used in basic audit), and json.

CHAPTER 7. MASTER AND NODE CONFIGURATION

161

webHookKubeConfig Path to a .kubeconfig-formatted file that defines the audit webhook
configuration, where the events are sent to.

webHookMode Specifies the strategy for sending audit events. Allowed values are
block (blocks processing another event until the previous has fully
processed) and batch (buffers events and delivers in batches).

Parameter Name Description

IMPORTANT

To enable the advanced audit feature, you must provide either policyFile
orpolicyConfiguration describing the audit policy rules:

Sample Audit Policy Configuration

apiVersion: audit.k8s.io/v1beta1
kind: Policy
rules:

 # Do not log watch requests by the "system:kube-proxy" on endpoints or services
 - level: None 1
 users: ["system:kube-proxy"] 2
 verbs: ["watch"] 3
 resources: 4
 - group: ""
 resources: ["endpoints", "services"]

 # Do not log authenticated requests to certain non-resource URL paths.
 - level: None
 userGroups: ["system:authenticated"] 5
 nonResourceURLs: 6
 - "/api*" # Wildcard matching.
 - "/version"

 # Log the request body of configmap changes in kube-system.
 - level: Request
 resources:
 - group: "" # core API group
 resources: ["configmaps"]
 # This rule only applies to resources in the "kube-system" namespace.
 # The empty string "" can be used to select non-namespaced resources.
 namespaces: ["kube-system"] 7

 # Log configmap and secret changes in all other namespaces at the metadata level.
 - level: Metadata
 resources:
 - group: "" # core API group
 resources: ["secrets", "configmaps"]

 # Log all other resources in core and extensions at the request level.

OpenShift Container Platform 3.11 Configuring Clusters

162

1 8

2

3

4

5

6

7

9

10

There are four possible levels every event can be logged at:

None - Do not log events that match this rule.

Metadata - Log request metadata (requesting user, time stamp, resource, verb, etc.), but
not request or response body. This is the same level as the one used in basic audit.

Request - Log event metadata and request body, but not response body.

RequestResponse - Log event metadata, request, and response bodies.

A list of users the rule applies to. An empty list implies every user.

A list of verbs this rule applies to. An empty list implies every verb. This is Kubernetes verb
associated with API requests (including get, list, watch, create, update, patch, delete,
deletecollection, and proxy).

A list of resources the rule applies to. An empty list implies every resource. Each resource is
specified as a group it is assigned to (for example, an empty for Kubernetes core API, batch,
build.openshift.io, etc.), and a resource list from that group.

A list of groups the rule applies to. An empty list implies every group.

A list of non-resources URLs the rule applies to.

A list of namespaces the rule applies to. An empty list implies every namespace.

Endpoint used by the web console.

Endpoint used by the CLI.

For more information on advanced audit, see the Kubernetes documentation

7.6.20. Specifying TLS ciphers for etcd

You can specify the supported TLS ciphers to use in communication between the master and etcd
servers.

1. On each etcd node, upgrade etcd:

yum update etcd iptables-services

 - level: Request
 resources:
 - group: "" # core API group
 - group: "extensions" # Version of group should NOT be included.

 # A catch-all rule to log all other requests at the Metadata level.
 - level: Metadata 8

 # Log login failures from the web console or CLI. Review the logs and refine your policies.
 - level: Metadata
 nonResourceURLs:
 - /login* 9
 - /oauth* 10

CHAPTER 7. MASTER AND NODE CONFIGURATION

163

https://kubernetes.io/docs/tasks/debug-application-cluster/audit
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#arch-index-how-is-it-secured-tls

2. Confirm that your etcd version is 3.2.22 or later:

etcd --version
etcd Version: 3.2.22

3. On each master host, specify the ciphers to enable in the /etc/origin/master/master-
config.yaml file:

servingInfo:
 ...
 minTLSVersion: VersionTLS12
 cipherSuites:
 - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
 - TLS_RSA_WITH_AES_256_CBC_SHA
 - TLS_RSA_WITH_AES_128_CBC_SHA
...

4. On each master host, restart the master service:

master-restart api
master-restart controllers

5. Confirm that the cipher is applied. For example, for TLSv1.2 cipher ECDHE-RSA-AES128-GCM-
SHA256, run the following command:

openssl s_client -connect etcd1.example.com:2379 1
CONNECTED(00000003)
depth=0 CN = etcd1.example.com
verify error:num=20:unable to get local issuer certificate
verify return:1
depth=0 CN = etcd1.example.com
verify error:num=21:unable to verify the first certificate
verify return:1
139905367488400:error:14094412:SSL routines:ssl3_read_bytes:sslv3 alert bad
certificate:s3_pkt.c:1493:SSL alert number 42
139905367488400:error:140790E5:SSL routines:ssl23_write:ssl handshake
failure:s23_lib.c:177:

Certificate chain
 0 s:/CN=etcd1.example.com
 i:/CN=etcd-signer@1529635004

Server certificate
-----BEGIN CERTIFICATE-----
MIIEkjCCAnqgAwIBAgIBATANBgkqhkiG9w0BAQsFADAhMR8wHQYDVQQDDBZldGNk
........
....
eif87qttt0Sl1vS8DG1KQO1oOBlNkg==
-----END CERTIFICATE-----
subject=/CN=etcd1.example.com
issuer=/CN=etcd-signer@1529635004

Acceptable client certificate CA names
/CN=etcd-signer@1529635004
Client Certificate Types: RSA sign, ECDSA sign

OpenShift Container Platform 3.11 Configuring Clusters

164

1

Requested Signature Algorithms:
RSA+SHA256:ECDSA+SHA256:RSA+SHA384:ECDSA+SHA384:RSA+SHA1:ECDSA+SHA1

Shared Requested Signature Algorithms:
RSA+SHA256:ECDSA+SHA256:RSA+SHA384:ECDSA+SHA384:RSA+SHA1:ECDSA+SHA1

Peer signing digest: SHA384
Server Temp Key: ECDH, P-256, 256 bits

SSL handshake has read 1666 bytes and written 138 bytes

New, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES128-GCM-SHA256
Server public key is 2048 bit
Secure Renegotiation IS supported
Compression: NONE
Expansion: NONE
No ALPN negotiated
SSL-Session:
 Protocol : TLSv1.2
 Cipher : ECDHE-RSA-AES128-GCM-SHA256
 Session-ID:
 Session-ID-ctx:
 Master-Key:
1EFA00A91EE5FC5EDDCFC67C8ECD060D44FD3EB23D834EDED929E4B74536F273C0F
9299935E5504B562CD56E76ED208D
 Key-Arg : None
 Krb5 Principal: None
 PSK identity: None
 PSK identity hint: None
 Start Time: 1529651744
 Timeout : 300 (sec)
 Verify return code: 21 (unable to verify the first certificate)

etcd1.example.com is the name of an etcd host.

7.7. NODE CONFIGURATION FILES

During installation, OpenShift Container Platform creates a configmap in the openshift-node project
for each type of node group:

node-config-master

node-config-infra

node-config-compute

node-config-all-in-one

node-config-master-infra

To make configuration changes to an existing node, edit the appropriate configuration map. A sync pod
on each node watches for changes in the configuration maps. During installation, the sync pods are
created by using sync Daemonsets , and a /etc/origin/node/node-config.yaml file, where the node

CHAPTER 7. MASTER AND NODE CONFIGURATION

165

configuration parameters reside, is added to each node. When a sync pod detects configuration map
change, it updates the node-config.yaml on all nodes in that node group and restarts the atomic-
openshift-node.service on the appropriate nodes.

Example Output

Sample configuration map for the node-config-compute group

$ oc get cm -n openshift-node

NAME DATA AGE
node-config-all-in-one 1 1d
node-config-compute 1 1d
node-config-infra 1 1d
node-config-master 1 1d
node-config-master-infra 1 1d

apiVersion: v1
authConfig: 1
 authenticationCacheSize: 1000
 authenticationCacheTTL: 5m
 authorizationCacheSize: 1000
 authorizationCacheTTL: 5m
dnsBindAddress: 127.0.0.1:53
dnsDomain: cluster.local
dnsIP: 0.0.0.0 2
dnsNameservers: null
dnsRecursiveResolvConf: /etc/origin/node/resolv.conf
dockerConfig:
 dockerShimRootDirectory: /var/lib/dockershim
 dockerShimSocket: /var/run/dockershim.sock
 execHandlerName: native
enableUnidling: true
imageConfig:
 format: registry.reg-aws.openshift.com/openshift3/ose-${component}:${version}
 latest: false
iptablesSyncPeriod: 30s
kind: NodeConfig
kubeletArguments: 3
 bootstrap-kubeconfig:
 - /etc/origin/node/bootstrap.kubeconfig
 cert-dir:
 - /etc/origin/node/certificates
 cloud-config:
 - /etc/origin/cloudprovider/aws.conf
 cloud-provider:
 - aws
 enable-controller-attach-detach:
 - 'true'
 feature-gates:
 - RotateKubeletClientCertificate=true,RotateKubeletServerCertificate=true
 node-labels:
 - node-role.kubernetes.io/compute=true
 pod-manifest-path:

OpenShift Container Platform 3.11 Configuring Clusters

166

1

2

3

4

5

6

7

8

Authentication and authorization configuration options.

IP address prepended to a pod’s /etc/resolv.conf.

Key value pairs that are passed directly to the Kubelet that match the Kubelet’s command line
arguments.

The path to the pod manifest file or directory. A directory must contain one or more manifest files.
OpenShift Container Platform uses the manifest files to create pods on the node.

The pod network settings on the node.

Software defined network (SDN) plug-in. Set to redhat/openshift-ovs-subnet for the ovs-subnet
plug-in; redhat/openshift-ovs-multitenant for the ovs-multitenant plug-in; or redhat/openshift-
ovs-networkpolicy for the ovs-networkpolicy plug-in.

Certificate information for the node.

Optional: PEM-encoded certificate bundle. If set, a valid client certificate must be presented and
validated against the certificate authorities in the specified file before the request headers are
checked for user names.

NOTE

Do not manually modify the /etc/origin/node/node-config.yaml file.

The node configuration file determines the resources of a node. See the Allocating node resources
section in the Cluster Administrator guide for more information.

7.7.1. Pod and Node Configuration

Table 7.20. Pod and Node Configuration Parameters

 - /etc/origin/node/pods 4
 rotate-certificates:
 - 'true'
masterClientConnectionOverrides:
 acceptContentTypes: application/vnd.kubernetes.protobuf,application/json
 burst: 40
 contentType: application/vnd.kubernetes.protobuf
 qps: 20
masterKubeConfig: node.kubeconfig
networkConfig: 5
 mtu: 8951
 networkPluginName: redhat/openshift-ovs-subnet 6
servingInfo: 7
 bindAddress: 0.0.0.0:10250
 bindNetwork: tcp4
 clientCA: client-ca.crt 8
volumeConfig:
 localQuota:
 perFSGroup: null
volumeDirectory: /var/lib/origin/openshift.local.volumes

CHAPTER 7. MASTER AND NODE CONFIGURATION

167

https://kubernetes.io/docs/admin/kubelet/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-allocating-node-resources

1

2

Parameter Name Description

NodeConfig The fully specified configuration starting an OpenShift Container
Platform node.

NodeName The value used to identify this particular node in the cluster. If possible,
this should be your fully qualified hostname. If you are describing a set
of static nodes to the master, this value must match one of the values in
the list.

7.7.2. Docker Configuration

Table 7.21. Docker Configuration Parameters

Parameter Name Description

AllowDisabledDocker If true, the kubelet will ignore errors from Docker. This means that a
node can start on a machine that does not have docker started.

DockerConfig Holds Docker related configuration options

ExecHandlerName The handler to use for executing commands in containers.

7.7.3. Local Storage Configuration

You can use the XFS quota subsystem to limit the size of emptyDir volumes and volumes based on an
emptyDir volume, such as secrets and configuration maps, on each node.

To limit the size of emptyDir volumes in an XFS filesystem, configure local volume quota for each unique
FSGroup using the node-config-compute configuration map in the openshift-node project.

apiVersion: kubelet.config.openshift.io/v1
kind: VolumeConfig
 localQuota: 1
 perFSGroup: 1Gi 2

Contains options for controlling local volume quota on the node.

Set this value to a resource quantity representing the desired quota per [FSGroup], per node, such
as 1Gi, 512Mi, and so forth. Requires the volumeDirectory to be on an XFS filesystem mounted
with the grpquota option. The matching security context constraint fsGroup type must be set to
MustRunAs.

If no FSGroup is specified, indicating the request matched an SCC with RunAsAny, the quota
application is skipped.

NOTE

OpenShift Container Platform 3.11 Configuring Clusters

168

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/ch-xfs
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#authorization-FSGroup

NOTE

Do not edit the /etc/origin/node/volume-config.yaml file directly. The file is created
from the node-config-compute configuration map. Use the node-config-compute
configuration map to create or edit the paramaters in the volume-config.yaml file.

7.7.4. Setting Node Queries per Second (QPS) Limits and Burst Values

The rate at which kubelet talks to API server depends on qps and burst values. The default values are
good enough if there are limited pods running on each node. Provided there are enough CPU and
memory resources on the node, the qps and burst values can be tweaked in the
/etc/origin/node/node-config.yaml file:

NOTE

The qps and burst values above are defaults for OpenShift Container Platform.

Table 7.22. QPS and Burst Configuration Parameters

Parameter Name Description

kube-api-qps The QPS rate at which the Kubelet talks to the APIServer. The default is
20.

kube-api-burst The burst rate at which the Kubelet talks to the APIServer. The default is
40.

ExecHandlerName The handler to use for executing commands in containers.

Then restart OpenShift Container Platform node services .

7.7.5. Parallel Image Pulls with Docker 1.9+

If you are using Docker 1.9+, you may want to consider enabling parallel image pulling, as the default is to
pull images one at a time.

NOTE

There is a potential issue with data corruption prior to Docker 1.9. However, starting with
1.9, the corruption issue is resolved and it is safe to switch to parallel pulls.

kubeletArguments:
 kube-api-qps:
 - "20"
 kube-api-burst:
 - "40"

kubeletArguments:
 serialize-image-pulls:
 - "false" 1

CHAPTER 7. MASTER AND NODE CONFIGURATION

169

1 Change to true to disable parallel pulls. This is the default configuration.

7.8. PASSWORDS AND OTHER SENSITIVE DATA

For some authentication configurations, an LDAP bindPassword or OAuth clientSecret value is
required. Instead of specifying these values directly in the master configuration file, these values may be
provided as environment variables, external files, or in encrypted files.

Environment Variable Example

External File Example

Encrypted External File Example

To create the encrypted file and key file for the above example:

$ oc adm ca encrypt --genkey=bindPassword.key --out=bindPassword.encrypted
> Data to encrypt: B1ndPass0rd!

Run oc adm commands only from the first master listed in the Ansible host inventory file, by default
/etc/ansible/hosts.

WARNING

Encrypted data is only as secure as the decrypting key. Care should be taken to limit
filesystem permissions and access to the key file.

7.9. CREATING NEW CONFIGURATION FILES

When defining an OpenShift Container Platform configuration from scratch, start by creating new
configuration files.

For master host configuration files, use the openshift start command with the --write-config option to
write the configuration files. For node hosts, use the oc adm create-node-config command to write the
configuration files.

The following commands write the relevant launch configuration file(s), certificate files, and any other

 bindPassword:
 env: BIND_PASSWORD_ENV_VAR_NAME

 bindPassword:
 file: bindPassword.txt

 bindPassword:
 file: bindPassword.encrypted
 keyFile: bindPassword.key



OpenShift Container Platform 3.11 Configuring Clusters

170

The following commands write the relevant launch configuration file(s), certificate files, and any other
necessary files to the specified --write-config or --node-dir directory.

Generated certificate files are valid for two years, while the certification authority (CA) certificate is
valid for five years. This can be altered with the --expire-days and --signer-expire-days options, but for
security reasons, it is recommended to not make them greater than these values.

To create configuration files for an all-in-one server (a master and a node on the same host) in the
specified directory:

$ openshift start --write-config=/openshift.local.config

To create a master configuration file and other required files in the specified directory:

$ openshift start master --write-config=/openshift.local.config/master

To create a node configuration file and other related files in the specified directory:

$ oc adm create-node-config \
 --node-dir=/openshift.local.config/node-<node_hostname> \
 --node=<node_hostname> \
 --hostnames=<node_hostname>,<ip_address> \
 --certificate-authority="/path/to/ca.crt" \
 --signer-cert="/path/to/ca.crt" \
 --signer-key="/path/to/ca.key"
 --signer-serial="/path/to/ca.serial.txt"
 --node-client-certificate-authority="/path/to/ca.crt"

When creating node configuration files, the --hostnames option accepts a comma-delimited list of
every host name or IP address you want server certificates to be valid for.

7.10. LAUNCHING SERVERS USING CONFIGURATION FILES

After you have modified the master and node configuration files to your specifications, you can use
them when launching servers by specifying them as an argument. If you specify a configuration file, none
of the other command line options you pass are respected.

NOTE

To modify a node in your cluster, update the node configuration maps as needed. Do not
manually edit the node-config.yaml file.

1. Launch a master server using a master configuration file:

$ openshift start master \
 --config=/openshift.local.config/master/master-config.yaml

2. Start the network proxy and SDN plug-ins using a node configuration file and a
node.kubeconfig file:

$ openshift start network \
 --config=/openshift.local.config/node-<node_hostname>/node-config.yaml \
 --kubeconfig=/openshift.local.config/node-<node_hostname>/node.kubeconfig

CHAPTER 7. MASTER AND NODE CONFIGURATION

171

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#modifying-nodes

3. Launch a node server using a node configuration file:

$ hyperkube kubelet \
 $(/usr/bin/openshift-node-config \
 --config=/openshift.local.config/node-<node_hostname>/node-config.yaml)

7.11. VIEWING MASTER AND NODE LOGS

OpenShift Container Platform collects log messages for debugging, using the systemd-
journald.service for nodes and a script, called master-logs, for masters.

NOTE

The number of lines displayed in the web console is hard-coded at 5000 and cannot be
changed. To see the entire log, use the CLI.

The logging uses five log message severities based on Kubernetes logging conventions, as follows:

Table 7.23. Log Level Options

Option Description

0 Errors and warnings only

2 Normal information

4 Debugging-level information

6 API-level debugging information (request / response)

8 Body-level API debugging information

You can change the log levels independently for masters or nodes as needed.

View node logs

To view logs for the node system, run the following command:

journalctl -r -u <journal_name>

Use the -r option to show the newest entries first.

View master logs

To view logs for the master components, run the following command:

/usr/local/bin/master-logs <component> <container>

For example:

OpenShift Container Platform 3.11 Configuring Clusters

172

/usr/local/bin/master-logs controllers controllers
/usr/local/bin/master-logs api api
/usr/local/bin/master-logs etcd etcd

Redirect master log to a file

To redirect the output of master log in to a file, run the following command:

master-logs api api 2> file

7.11.1. Configuring Logging Levels

You can control which INFO messages are logged by setting the DEBUG_LOGLEVEL option in the
/etc/origin/master/master.env file for the master or /etc/sysconfig/atomic-openshift-node file for
the nodes. Configuring the logs to collect all messages can lead to large logs that are difficult to
interpret and can take up excessive space. Only collect all messages when you need to debug your
cluster.

NOTE

Messages with FATAL, ERROR, WARNING, and some INFO severities appear in the logs
regardless of the log configuration.

To change the logging level:

1. Edit the /etc/origin/master/master.env file for the master or /etc/sysconfig/atomic-
openshift-node file for the nodes.

2. Enter a value from the Log Level Options table in the DEBUG_LOGLEVEL field.
For example:

DEBUG_LOGLEVEL=4

3. Restart the master or node host as appropriate. See Restarting OpenShift Container Platform
services.

After the restart, all new log messages will conform to the new setting. Older messages do not change.

NOTE

The default log level can be set using the standard cluster installation process. For more
information, see Cluster Variables.

The following examples are excerpts of redirected master log files at various log levels. System
information has been removed from these examples.

Excerpt of master-logs api api 2> file output at loglevel=2

W1022 15:08:09.787705 1 server.go:79] Unable to keep dnsmasq up to date, 0.0.0.0:8053 must
point to port 53
I1022 15:08:09.787894 1 logs.go:49] skydns: ready for queries on cluster.local. for
tcp4://0.0.0.0:8053 [rcache 0]

CHAPTER 7. MASTER AND NODE CONFIGURATION

173

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#cluster-variables-table

I1022 15:08:09.787913 1 logs.go:49] skydns: ready for queries on cluster.local. for
udp4://0.0.0.0:8053 [rcache 0]
I1022 15:08:09.889022 1 dns_server.go:63] DNS listening at 0.0.0.0:8053
I1022 15:08:09.893156 1 feature_gate.go:190] feature gates: map[AdvancedAuditing:true]
I1022 15:08:09.893500 1 master.go:431] Starting OAuth2 API at /oauth
I1022 15:08:09.914759 1 master.go:431] Starting OAuth2 API at /oauth
I1022 15:08:09.942349 1 master.go:431] Starting OAuth2 API at /oauth
W1022 15:08:09.977088 1 swagger.go:38] No API exists for predefined swagger description
/oapi/v1
W1022 15:08:09.977176 1 swagger.go:38] No API exists for predefined swagger description
/api/v1
[restful] 2018/10/22 15:08:09 log.go:33: [restful/swagger] listing is available at
https://openshift.com:443/swaggerapi
[restful] 2018/10/22 15:08:09 log.go:33: [restful/swagger] https://openshift.com:443/swaggerui/ is
mapped to folder /swagger-ui/
I1022 15:08:10.231405 1 master.go:431] Starting OAuth2 API at /oauth
W1022 15:08:10.259523 1 swagger.go:38] No API exists for predefined swagger description
/oapi/v1
W1022 15:08:10.259555 1 swagger.go:38] No API exists for predefined swagger description
/api/v1
I1022 15:08:23.895493 1 logs.go:49] http: TLS handshake error from 10.10.94.10:46322: EOF
I1022 15:08:24.449577 1 crdregistration_controller.go:110] Starting crd-autoregister controller
I1022 15:08:24.449916 1 controller_utils.go:1019] Waiting for caches to sync for crd-autoregister
controller
I1022 15:08:24.496147 1 logs.go:49] http: TLS handshake error from 127.0.0.1:39140: EOF
I1022 15:08:24.821198 1 cache.go:39] Caches are synced for APIServiceRegistrationController
controller
I1022 15:08:24.833022 1 cache.go:39] Caches are synced for AvailableConditionController
controller
I1022 15:08:24.865087 1 controller.go:537] quota admission added evaluator for: { events}
I1022 15:08:24.865393 1 logs.go:49] http: TLS handshake error from 127.0.0.1:39162: read tcp4
127.0.0.1:443->127.0.0.1:39162: read: connection reset by peer
I1022 15:08:24.966917 1 controller_utils.go:1026] Caches are synced for crd-autoregister
controller
I1022 15:08:24.967961 1 autoregister_controller.go:136] Starting autoregister controller
I1022 15:08:24.967977 1 cache.go:32] Waiting for caches to sync for autoregister controller
I1022 15:08:25.015924 1 controller.go:537] quota admission added evaluator for: {
serviceaccounts}
I1022 15:08:25.077984 1 cache.go:39] Caches are synced for autoregister controller
W1022 15:08:25.304265 1 lease_endpoint_reconciler.go:176] Resetting endpoints for master
service "kubernetes" to [10.10.94.10]
E1022 15:08:25.472536 1 memcache.go:153] couldn't get resource list for
servicecatalog.k8s.io/v1beta1: the server could not find the requested resource
E1022 15:08:25.550888 1 memcache.go:153] couldn't get resource list for
servicecatalog.k8s.io/v1beta1: the server could not find the requested resource
I1022 15:08:29.480691 1 healthz.go:72] /healthz/log check
I1022 15:08:30.981999 1 controller.go:105] OpenAPI AggregationController: Processing item
v1beta1.servicecatalog.k8s.io
E1022 15:08:30.990914 1 controller.go:111] loading OpenAPI spec for
"v1beta1.servicecatalog.k8s.io" failed with: OpenAPI spec does not exists
I1022 15:08:30.990965 1 controller.go:119] OpenAPI AggregationController: action for item
v1beta1.servicecatalog.k8s.io: Rate Limited Requeue.
I1022 15:08:31.530473 1 trace.go:76] Trace[1253590531]: "Get /api/v1/namespaces/openshift-
infra/serviceaccounts/serviceaccount-controller" (started: 2018-10-22 15:08:30.868387562 +0000
UTC m=+24.277041043) (total time: 661.981642ms):
Trace[1253590531]: [661.903178ms] [661.89217ms] About to write a response

OpenShift Container Platform 3.11 Configuring Clusters

174

I1022 15:08:31.531366 1 trace.go:76] Trace[83808472]: "Get /api/v1/namespaces/aws-
sb/secrets/aws-servicebroker" (started: 2018-10-22 15:08:30.831296749 +0000 UTC
m=+24.239950203) (total time: 700.049245ms):

Excerpt of master-logs api api 2> file output at loglevel=4

I1022 15:08:09.746980 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: AlwaysDeny.
I1022 15:08:09.747597 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: ResourceQuota.
I1022 15:08:09.748038 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: openshift.io/ClusterResourceQuota.
I1022 15:08:09.786771 1 start_master.go:458] Starting master on 0.0.0.0:443 (v3.10.45)
I1022 15:08:09.786798 1 start_master.go:459] Public master address is https://openshift.com:443
I1022 15:08:09.786844 1 start_master.go:463] Using images from
"registry.access.redhat.com/openshift3/ose-<component>:v3.10.45"
W1022 15:08:09.787046 1 dns_server.go:37] Binding DNS on port 8053 instead of 53, which may
not be resolvable from all clients
W1022 15:08:09.787705 1 server.go:79] Unable to keep dnsmasq up to date, 0.0.0.0:8053 must
point to port 53
I1022 15:08:09.787894 1 logs.go:49] skydns: ready for queries on cluster.local. for
tcp4://0.0.0.0:8053 [rcache 0]
I1022 15:08:09.787913 1 logs.go:49] skydns: ready for queries on cluster.local. for
udp4://0.0.0.0:8053 [rcache 0]
I1022 15:08:09.889022 1 dns_server.go:63] DNS listening at 0.0.0.0:8053
I1022 15:08:09.893156 1 feature_gate.go:190] feature gates: map[AdvancedAuditing:true]
I1022 15:08:09.893500 1 master.go:431] Starting OAuth2 API at /oauth
I1022 15:08:09.914759 1 master.go:431] Starting OAuth2 API at /oauth
I1022 15:08:09.942349 1 master.go:431] Starting OAuth2 API at /oauth
W1022 15:08:09.977088 1 swagger.go:38] No API exists for predefined swagger description
/oapi/v1
W1022 15:08:09.977176 1 swagger.go:38] No API exists for predefined swagger description
/api/v1
[restful] 2018/10/22 15:08:09 log.go:33: [restful/swagger] listing is available at
https://openshift.com:443/swaggerapi
[restful] 2018/10/22 15:08:09 log.go:33: [restful/swagger] https://openshift.com:443/swaggerui/ is
mapped to folder /swagger-ui/
I1022 15:08:10.231405 1 master.go:431] Starting OAuth2 API at /oauth
W1022 15:08:10.259523 1 swagger.go:38] No API exists for predefined swagger description
/oapi/v1
W1022 15:08:10.259555 1 swagger.go:38] No API exists for predefined swagger description
/api/v1
[restful] 2018/10/22 15:08:10 log.go:33: [restful/swagger] listing is available at
https://openshift.com:443/swaggerapi
[restful] 2018/10/22 15:08:10 log.go:33: [restful/swagger] https://openshift.com:443/swaggerui/ is
mapped to folder /swagger-ui/
I1022 15:08:10.444303 1 master.go:431] Starting OAuth2 API at /oauth
W1022 15:08:10.492409 1 swagger.go:38] No API exists for predefined swagger description
/oapi/v1
W1022 15:08:10.492507 1 swagger.go:38] No API exists for predefined swagger description
/api/v1
[restful] 2018/10/22 15:08:10 log.go:33: [restful/swagger] listing is available at
https://openshift.com:443/swaggerapi
[restful] 2018/10/22 15:08:10 log.go:33: [restful/swagger] https://openshift.com:443/swaggerui/ is
mapped to folder /swagger-ui/

CHAPTER 7. MASTER AND NODE CONFIGURATION

175

I1022 15:08:10.774824 1 master.go:431] Starting OAuth2 API at /oauth
I1022 15:08:23.808685 1 logs.go:49] http: TLS handshake error from 10.128.0.11:39206: EOF
I1022 15:08:23.815311 1 logs.go:49] http: TLS handshake error from 10.128.0.14:53054: EOF
I1022 15:08:23.822286 1 customresource_discovery_controller.go:174] Starting
DiscoveryController
I1022 15:08:23.822349 1 naming_controller.go:276] Starting NamingConditionController
I1022 15:08:23.822705 1 logs.go:49] http: TLS handshake error from 10.128.0.14:53056: EOF
+24.277041043) (total time: 661.981642ms):
Trace[1253590531]: [661.903178ms] [661.89217ms] About to write a response
I1022 15:08:31.531366 1 trace.go:76] Trace[83808472]: "Get /api/v1/namespaces/aws-
sb/secrets/aws-servicebroker" (started: 2018-10-22 15:08:30.831296749 +0000 UTC
m=+24.239950203) (total time: 700.049245ms):
Trace[83808472]: [700.049245ms] [700.04027ms] END
I1022 15:08:31.531695 1 trace.go:76] Trace[1916801734]: "Get /api/v1/namespaces/aws-
sb/secrets/aws-servicebroker" (started: 2018-10-22 15:08:31.031163449 +0000 UTC
m=+24.439816907) (total time: 500.514208ms):
Trace[1916801734]: [500.514208ms] [500.505008ms] END
I1022 15:08:44.675371 1 healthz.go:72] /healthz/log check
I1022 15:08:46.589759 1 controller.go:537] quota admission added evaluator for: { endpoints}
I1022 15:08:46.621270 1 controller.go:537] quota admission added evaluator for: { endpoints}
I1022 15:08:57.159494 1 healthz.go:72] /healthz/log check
I1022 15:09:07.161315 1 healthz.go:72] /healthz/log check
I1022 15:09:16.297982 1 trace.go:76] Trace[2001108522]: "GuaranteedUpdate etcd3:
*core.Node" (started: 2018-10-22 15:09:15.139820419 +0000 UTC m=+68.548473981) (total time:
1.158128974s):
Trace[2001108522]: [1.158012755s] [1.156496534s] Transaction committed
I1022 15:09:16.298165 1 trace.go:76] Trace[1124283912]: "Patch /api/v1/nodes/master-
0.com/status" (started: 2018-10-22 15:09:15.139695483 +0000 UTC m=+68.548348970) (total time:
1.158434318s):
Trace[1124283912]: [1.158328853s] [1.15713683s] Object stored in database
I1022 15:09:16.298761 1 trace.go:76] Trace[24963576]: "GuaranteedUpdate etcd3: *core.Node"
(started: 2018-10-22 15:09:15.13159057 +0000 UTC m=+68.540244112) (total time: 1.167151224s):
Trace[24963576]: [1.167106144s] [1.165570379s] Transaction committed
I1022 15:09:16.298882 1 trace.go:76] Trace[222129183]: "Patch /api/v1/nodes/node-
0.com/status" (started: 2018-10-22 15:09:15.131269234 +0000 UTC m=+68.539922722) (total time:
1.167595526s):
Trace[222129183]: [1.167517296s] [1.166135605s] Object stored in database

Excerpt of master-logs api api 2> file output at loglevel=8

1022 15:11:58.829357 1 plugins.go:84] Registered admission plugin "NamespaceLifecycle"
I1022 15:11:58.839967 1 plugins.go:84] Registered admission plugin "Initializers"
I1022 15:11:58.839994 1 plugins.go:84] Registered admission plugin
"ValidatingAdmissionWebhook"
I1022 15:11:58.840012 1 plugins.go:84] Registered admission plugin
"MutatingAdmissionWebhook"
I1022 15:11:58.840025 1 plugins.go:84] Registered admission plugin "AlwaysAdmit"
I1022 15:11:58.840082 1 plugins.go:84] Registered admission plugin "AlwaysPullImages"
I1022 15:11:58.840105 1 plugins.go:84] Registered admission plugin
"LimitPodHardAntiAffinityTopology"
I1022 15:11:58.840126 1 plugins.go:84] Registered admission plugin "DefaultTolerationSeconds"
I1022 15:11:58.840146 1 plugins.go:84] Registered admission plugin "AlwaysDeny"
I1022 15:11:58.840176 1 plugins.go:84] Registered admission plugin "EventRateLimit"
I1022 15:11:59.850825 1 feature_gate.go:190] feature gates: map[AdvancedAuditing:true]
I1022 15:11:59.859108 1 register.go:154] Admission plugin AlwaysAdmit is not enabled. It will not

OpenShift Container Platform 3.11 Configuring Clusters

176

be started.
I1022 15:11:59.859284 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: AlwaysAdmit.
I1022 15:11:59.859809 1 register.go:154] Admission plugin NamespaceAutoProvision is not
enabled. It will not be started.
I1022 15:11:59.859939 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: NamespaceAutoProvision.
I1022 15:11:59.860594 1 register.go:154] Admission plugin NamespaceExists is not enabled. It
will not be started.
I1022 15:11:59.860778 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: NamespaceExists.
I1022 15:11:59.863999 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: NamespaceLifecycle.
I1022 15:11:59.864626 1 register.go:154] Admission plugin EventRateLimit is not enabled. It will
not be started.
I1022 15:11:59.864768 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: EventRateLimit.
I1022 15:11:59.865259 1 register.go:154] Admission plugin ProjectRequestLimit is not enabled. It
will not be started.
I1022 15:11:59.865376 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: ProjectRequestLimit.
I1022 15:11:59.866126 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: OriginNamespaceLifecycle.
I1022 15:11:59.866709 1 register.go:154] Admission plugin openshift.io/RestrictSubjectBindings
is not enabled. It will not be started.
I1022 15:11:59.866761 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: openshift.io/RestrictSubjectBindings.
I1022 15:11:59.867304 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: openshift.io/JenkinsBootstrapper.
I1022 15:11:59.867823 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the
following order: openshift.io/BuildConfigSecretInjector.
I1022 15:12:00.015273 1 master_config.go:476] Initializing cache sizes based on 0MB limit
I1022 15:12:00.015896 1 master_config.go:539] Using the lease endpoint reconciler with
TTL=15s and interval=10s
I1022 15:12:00.018396 1 storage_factory.go:285] storing { apiServerIPInfo} in v1, reading as
__internal from storagebackend.Config{Type:"etcd3", Prefix:"kubernetes.io", ServerList:
[]string{"https://master-0.com:2379"}, KeyFile:"/etc/origin/master/master.etcd-client.key",
CertFile:"/etc/origin/master/master.etcd-client.crt", CAFile:"/etc/origin/master/master.etcd-ca.crt",
Quorum:true, Paging:true, DeserializationCacheSize:0, Codec:runtime.Codec(nil),
Transformer:value.Transformer(nil), CompactionInterval:300000000000,
CountMetricPollPeriod:60000000000}
I1022 15:12:00.037710 1 storage_factory.go:285] storing { endpoints} in v1, reading as __internal
from storagebackend.Config{Type:"etcd3", Prefix:"kubernetes.io", ServerList:[]string{"https://master-
0.com:2379"}, KeyFile:"/etc/origin/master/master.etcd-client.key",
CertFile:"/etc/origin/master/master.etcd-client.crt", CAFile:"/etc/origin/master/master.etcd-ca.crt",
Quorum:true, Paging:true, DeserializationCacheSize:0, Codec:runtime.Codec(nil),
Transformer:value.Transformer(nil), CompactionInterval:300000000000,
CountMetricPollPeriod:60000000000}
I1022 15:12:00.054112 1 compact.go:54] compactor already exists for endpoints [https://master-
0.com:2379]
I1022 15:12:00.054678 1 start_master.go:458] Starting master on 0.0.0.0:443 (v3.10.45)
I1022 15:12:00.054755 1 start_master.go:459] Public master address is https://openshift.com:443
I1022 15:12:00.054837 1 start_master.go:463] Using images from
"registry.access.redhat.com/openshift3/ose-<component>:v3.10.45"
W1022 15:12:00.056957 1 dns_server.go:37] Binding DNS on port 8053 instead of 53, which may
not be resolvable from all clients

CHAPTER 7. MASTER AND NODE CONFIGURATION

177

W1022 15:12:00.065497 1 server.go:79] Unable to keep dnsmasq up to date, 0.0.0.0:8053 must
point to port 53
I1022 15:12:00.066061 1 logs.go:49] skydns: ready for queries on cluster.local. for
tcp4://0.0.0.0:8053 [rcache 0]
I1022 15:12:00.066265 1 logs.go:49] skydns: ready for queries on cluster.local. for
udp4://0.0.0.0:8053 [rcache 0]
I1022 15:12:00.158725 1 dns_server.go:63] DNS listening at 0.0.0.0:8053
I1022 15:12:00.167910 1 htpasswd.go:118] Loading htpasswd file /etc/origin/master/htpasswd...
I1022 15:12:00.168182 1 htpasswd.go:118] Loading htpasswd file /etc/origin/master/htpasswd...
I1022 15:12:00.231233 1 storage_factory.go:285] storing {apps.openshift.io deploymentconfigs}
in apps.openshift.io/v1, reading as apps.openshift.io/__internal from
storagebackend.Config{Type:"etcd3", Prefix:"openshift.io", ServerList:[]string{"https://master-
0.com:2379"}, KeyFile:"/etc/origin/master/master.etcd-client.key",
CertFile:"/etc/origin/master/master.etcd-client.crt", CAFile:"/etc/origin/master/master.etcd-ca.crt",
Quorum:true, Paging:true, DeserializationCacheSize:0, Codec:runtime.Codec(nil),
Transformer:value.Transformer(nil), CompactionInterval:300000000000,
CountMetricPollPeriod:60000000000}
I1022 15:12:00.248136 1 compact.go:54] compactor already exists for endpoints [https://master-
0.com:2379]
I1022 15:12:00.248697 1 store.go:1391] Monitoring deploymentconfigs.apps.openshift.io count at
<storage-prefix>//deploymentconfigs
W1022 15:12:00.256861 1 swagger.go:38] No API exists for predefined swagger description
/oapi/v1
W1022 15:12:00.258106 1 swagger.go:38] No API exists for predefined swagger description
/api/v1

7.12. RESTARTING MASTER AND NODE SERVICES

To apply master or node configuration changes, you must restart the respective services.

To reload master configuration changes, restart master services running in control plane static pods
using the master-restart command:

master-restart api
master-restart controllers

To reload node configuration changes, restart the node service on the node host:

systemctl restart atomic-openshift-node

OpenShift Container Platform 3.11 Configuring Clusters

178

CHAPTER 8. OPENSHIFT ANSIBLE BROKER CONFIGURATION

8.1. OVERVIEW

When the OpenShift Ansible broker (OAB) is deployed in a cluster, its behavior is largely dictated by the
broker’s configuration file loaded on startup. The broker’s configuration is stored as a ConfigMap object
in the broker’s namespace (openshift-ansible-service-broker by default).

Example OpenShift Ansible Broker Configuration File

registry: 1
 - type: dockerhub
 name: docker
 url: https://registry.hub.docker.com
 org: <dockerhub_org>
 fail_on_error: false
 - type: rhcc
 name: rhcc
 url: https://registry.redhat.io
 fail_on_error: true
 white_list:
 - "^foo.*-apb$"
 - ".*-apb$"
 black_list:
 - "bar.*-apb$"
 - "^my-apb$"
 - type: local_openshift
 name: lo
 namespaces:
 - openshift
 white_list:
 - ".*-apb$"
dao: 2
 etcd_host: localhost
 etcd_port: 2379
log: 3
 logfile: /var/log/ansible-service-broker/asb.log
 stdout: true
 level: debug
 color: true
openshift: 4
 host: ""
 ca_file: ""
 bearer_token_file: ""
 image_pull_policy: IfNotPresent
 sandbox_role: "edit"
 keep_namespace: false
 keep_namespace_on_error: true
broker: 5
 bootstrap_on_startup: true
 dev_broker: true
 launch_apb_on_bind: false
 recovery: true
 output_request: true

CHAPTER 8. OPENSHIFT ANSIBLE BROKER CONFIGURATION

179

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#arch-ansible-service-broker

1

2

3

4

5

6

See Registry Configuration for details.

See DAO Configuration for details.

See Log Configuration for details.

See OpenShift Configuration for details.

See Broker Configuration for details.

See Secrets Configuration for details.

8.2. AUTHENTICATING ON RED HAT PARTNER CONNECT REGISTRY

Before configuring the Automation Broker, you must run the following command on all nodes of an
OpenShift Container Platform cluster to use the Red Hat Partner Connect:

$ docker --config=/var/lib/origin/.docker login -u <registry-user> -p <registry-password>
registry.connect.redhat.com

8.3. MODIFYING THE OPENSHIFT ANSIBLE BROKER CONFIGURATION

To modify the OAB’s default broker configuration after it has been deployed:

1. Edit the broker-config ConfigMap object in the OAB’s namespace as a user with cluster-
admin privileges:

$ oc edit configmap broker-config -n openshift-ansible-service-broker

2. After saving any updates, redeploy the OAB’s deployment configuration for the changes to take
effect:

$ oc rollout latest dc/asb -n openshift-ansible-service-broker

8.4. REGISTRY CONFIGURATION

The registry section allows you to define the registries that the broker should look at for APBs.

Table 8.1. registry Section Configuration Options

 ssl_cert_key: /path/to/key
 ssl_cert: /path/to/cert
 refresh_interval: "600s"
 auth:
 - type: basic
 enabled: true
secrets: 6
 - title: Database credentials
 secret: db_creds
 apb_name: dh-rhscl-postgresql-apb

OpenShift Container Platform 3.11 Configuring Clusters

180

Field Description Required

name The name of the registry. Used by the broker to identify APBs
from this registry.

Y

user The user name for authenticating to the registry. Not used when
auth_type is set to secret or file.

N

pass The password for authenticating to the registry. Not used when
auth_type is set to secret or file.

N

auth_type How the broker should read the registry credentials if they are
not defined in the broker configuration via user and pass. Can
be secret (uses a secret in the broker namespace) or file (uses a
mounted file).

N

auth_name Name of the secret or file storing the registry credentials that
should be read. Used when auth_type is set to secret.

N, only required
when auth_type
is set to secret or
file.

org The namespace or organization that the image is contained in. N

type The type of registry. Available adapters are mock, rhcc,
openshift, dockerhub, and local_openshift.

Y

namespaces The list of namespaces to configure the local_openshift
registry type with. By default, a user should use openshift.

N

url The URL that is used to retrieve image information. Used
extensively for RHCC while the dockerhub type uses hard-
coded URLs.

N

fail_on_error Should this registry fail, the bootstrap request if it fails. Will stop
the execution of other registries loading.

N

white_list The list of regular expressions used to define which image
names should be allowed through. Must have a white list to allow
APBs to be added to the catalog. The most permissive regular
expression that you can use is .*-apb$ if you would want to
retrieve all APBs in a registry. See APB Filtering for more details.

N

black_list The list of regular expressions used to define which images
names should never be allowed through. See APB Filtering for
more details.

N

images The list of images to be used with an OpenShift Container
Registry.

N

8.4.1. Production or Development

CHAPTER 8. OPENSHIFT ANSIBLE BROKER CONFIGURATION

181

A production broker configuration is designed to be pointed at a trusted container distribution registry,
such as the Red Hat Container Catalog (RHCC):

However, a development broker configuration is primarily used by developers working on the broker. To
enable developer settings, set the registry name to dev and the dev_broker field in the broker section
to true:

8.4.2. Storing Registry Credentials

The broker configuration determines how the broker should read any registry credentials. They can be
read from the user and pass values in the registry section, for example:

If you want to ensure these credentials are not publicly accessible, the auth_type field in the registry
section can be set to the secret or file type. The secret type configures a registry to use a secret from
the broker’s namespace, while the file type configures a registry to use a secret that has been mounted
as a volume.

To use the secret or file type:

1. The associated secret should have the values username and password defined. When using a
secret, you must ensure that the openshift-ansible-service-broker namespace exists, as this is
where the secret will be read from.
For example, create a reg-creds.yaml file:

$ cat reg-creds.yaml

username: <user_name>
password: <password>

registry:
 - name: rhcc
 type: rhcc
 url: https://registry.redhat.io
 tag: v3.11
 white_list:
 - ".*-apb$"
 - type: local_openshift
 name: localregistry
 namespaces:
 - openshift
 white_list: []

registry:
 name: dev

broker:
 dev_broker: true

registry:
 - name: isv
 type: openshift
 url: https://registry.connect.redhat.com
 user: <user>
 pass: <password>

OpenShift Container Platform 3.11 Configuring Clusters

182

2. Create a secret from this file in the openshift-ansible-service-broker namespace:

$ oc create secret generic \
 registry-credentials-secret \
 --from-file reg-creds.yaml \
 -n openshift-ansible-service-broker

3. Choose whether you want to use the secret or file type:

To use the secret type:

a. In the broker configuration, set auth_type to secret and auth_name to the name of
the secret:

b. Set the namespace where the secret is located:

To use the file type:

a. Edit the asb deployment configuration to mount your file into /tmp/registry-
credentials/reg-creds.yaml:

$ oc edit dc/asb -n openshift-ansible-service-broker

In the containers.volumeMounts section, add:

In the volumes section, add:

b. In the broker configuration, set auth_type to file and auth_type to the location of the
file:

registry:
 - name: isv
 type: openshift
 url: https://registry.connect.redhat.com
 auth_type: secret
 auth_name: registry-credentials-secret

openshift:
 namespace: openshift-ansible-service-broker

volumeMounts:
 - mountPath: /tmp/registry-credentials
 name: reg-auth

 volumes:
 - name: reg-auth
 secret:
 defaultMode: 420
 secretName: registry-credentials-secret

registry:
 - name: isv
 type: openshift

CHAPTER 8. OPENSHIFT ANSIBLE BROKER CONFIGURATION

183

8.4.3. APB Filtering

APBs can be filtered out by their image name using a combination of the white_list or black_list
parameters, set on a registry basis inside the broker’s configuration.

Both are optional lists of regular expressions that will be run over the total set of discovered APBs for a
given registry to determine matches.

Table 8.2. APB Filter Behavior

Present Allowed Blocked

Only whitelist Matches a regex in list. Any APB that does not match.

Only blacklist All APBs that do not match. APBs that match a regex in list.

Both present Matches regex in whitelist but not
in blacklist.

APBs that match a regex in
blacklist.

None No APBs from the registry. All APBs from that registry.

For example:

Whitelist Only

Anything matching on foo.*-apb$ and only my-apb will be allowed through in this case. All other APBs
will be rejected.

Blacklist Only

Anything matching on bar.*-apb$ and only foobar-apb will be blocked in this case. All other APBs will be
allowed through.

Whitelist and Blacklist

 url: https://registry.connect.redhat.com
 auth_type: file
 auth_name: /tmp/registry-credentials/reg-creds.yaml

white_list:
 - "foo.*-apb$"
 - "^my-apb$"

black_list:
 - "bar.*-apb$"
 - "^foobar-apb$"

white_list:
 - "foo.*-apb$"
 - "^my-apb$"
black_list:
 - "^foo-rootkit-apb$"

OpenShift Container Platform 3.11 Configuring Clusters

184

Here, foo-rootkit-apb is specifically blocked by the blacklist despite its match in the whitelist because
the whitelist match is overridden.

Otherwise, only those matching on foo.*-apb$ and my-apb will be allowed through.

Example Broker Configuration registry Section:

8.4.4. Mock Registry

A mock registry is useful for reading local APB specs. Instead of going out to a registry to search for
image specs, this uses a list of local specs. Set the name of the registry to mock to use the mock
registry.

8.4.5. Dockerhub Registry

The dockerhub type allows you to load APBs from a specific organization in the DockerHub. For
example, the ansibleplaybookbundle organization.

8.4.6. Ansible Galaxy Registry

The galaxy type allows you to use APB roles from Ansible Galaxy . You can also optionally specify an
organization.

registry:
 - type: dockerhub
 name: dockerhub
 url: https://registry.hub.docker.com
 user: <user>
 pass: <password>
 org: <org>
 white_list:
 - "foo.*-apb$"
 - "^my-apb$"
 black_list:
 - "bar.*-apb$"
 - "^foobar-apb$"

registry:
 - name: mock
 type: mock

registry:
 - name: dockerhub
 type: dockerhub
 org: ansibleplaybookbundle
 user: <user>
 pass: <password>
 white_list:
 - ".*-apb$"

registry:
 - name: galaxy

CHAPTER 8. OPENSHIFT ANSIBLE BROKER CONFIGURATION

185

https://hub.docker.com/u/ansibleplaybookbundle/
https://galaxy.ansible.com

8.4.7. Local OpenShift Container Registry

Using the local_openshift type will allow you to load APBs from the OpenShift Container Registry that
is internal to the OpenShift Container Platform cluster. You can configure the namespaces in which you
want to look for published APBs.

8.4.8. Red Hat Container Catalog Registry

Using the rhcc type will allow you to load APBs that are published to the Red Hat Container Catalog
(RHCC) registry.

8.4.9. Red Hat Partner Connect Registry

Third-party images in the Red Hat Container Catalog are served from the Red Hat Partner Connect
Registry at https://registry.connect.redhat.com. The partner_rhcc type allows the broker to be
bootstrapped from the Partner Registry to retrieve a list of APBs and load their specs. The Partner
Registry requires authentication for pulling images with a valid Red Hat Customer Portal user name and
password.

Because the Partner Registry requires authentication, the following manual step is also required to
configure the broker to use the Partner Registry URL:

 type: galaxy
 # Optional:
 # org: ansibleplaybookbundle
 runner: docker.io/ansibleplaybookbundle/apb-base:latest
 white_list:
 - ".*$"

registry:
 - type: local_openshift
 name: lo
 namespaces:
 - openshift
 white_list:
 - ".*-apb$"

registry:
 - name: rhcc
 type: rhcc
 url: https://registry.redhat.io
 white_list:
 - ".*-apb$"

registry:
 - name: partner_reg
 type: partner_rhcc
 url: https://registry.connect.redhat.com
 user: <registry_user>
 pass: <registry_password>
 white_list:
 - ".*-apb$"

OpenShift Container Platform 3.11 Configuring Clusters

186

https://access.redhat.com/containers
https://registry.connect.redhat.com

1. Run the following command on all nodes of a OpenShift Container Platform cluster:

docker --config=/var/lib/origin/.docker \
 login -u <registry_user> -p <registry_password> \
 registry.connect.redhat.com

8.4.10. Helm Chart Registry

Using the helm type allows you to consume Helm Charts from a Helm Chart Repository.

NOTE

Many Helm charts in the stable repository are not suitable for use with OpenShift
Container Platform and will fail with errors if you use them.

8.4.11. API V2 Docker Registry

Using the apiv2 type allows you to consume images from docker registries that implement the Docker
Registry HTTP API V2 protocol.

If the registry requires authentication for pulling images, this can be achieved by running the following
command on every node in your existing cluster:

$ docker --config=/var/lib/origin/.docker login -u <registry-user> -p <registry-password> <registry_url>

8.4.12. Quay Docker Registry

Using the quay type allows you to load APBs that are published to the CoreOS Quay Registry . If an
authentication token is provided, private repositories that the token is configured to access will load.
Public repositories in the specified organization do not require a token to load.

registry:
 - name: stable
 type: helm
 url: "https://kubernetes-charts.storage.googleapis.com"
 runner: "docker.io/automationbroker/helm-runner:latest"
 white_list:
 - ".*"

registry:
 - name: <registry_name>
 type: apiv2
 url: <registry_url>
 user: <registry-user>
 pass: <registry-password>
 white_list:
 - ".*-apb$"

registry:
 - name: quay_reg
 type: quay
 url: https://quay.io

CHAPTER 8. OPENSHIFT ANSIBLE BROKER CONFIGURATION

187

https://quay.io/about/

If the Quay registry requires authentication for pulling images, this can be achieved by running the
following command on every node in your existing cluster:

$ docker --config=/var/lib/origin/.docker login -u <registry-user> -p <registry-password> quay.io

8.4.13. Multiple Registries

You can use more than one registry to separate APBs into logical organizations and be able to manage
them from the same broker. The registries must have a unique, non-empty name. If there is no unique
name, the service broker will fail to start with an error message alerting you to the problem.

8.5. BROKER AUTHENTICATION

The broker supports authentication, meaning when connecting to the broker, the caller must supply the
Basic Auth or Bearer Auth credentials for each request. Using curl, it is as simple as supplying:

-u <user_name>:<password>

or

-h "Authorization: bearer <token>

to the command. The service catalog must be configured with a secret containing the user name and
password combinations or the bearer token.

8.5.1. Basic Auth

To enable Basic Auth usage, set the following in the broker configuration:

 token: <for_private_repos>
 org: <your_org>
 white_list:
 - ".*-apb$"

registry:
 - name: dockerhub
 type: dockerhub
 org: ansibleplaybookbundle
 user: <user>
 pass: <password>
 white_list:
 - ".*-apb$"
 - name: rhcc
 type: rhcc
 url: <rhcc_url>
 white_list:
 - ".*-apb$"

broker:
 ...
 auth:

OpenShift Container Platform 3.11 Configuring Clusters

188

1

2

1

The type field specifies the type of authentication to use.

The enabled field allows you to disable a particular authentication type. This keeps you from having
to delete the entire section of auth just to disable it.

8.5.1.1. Deployment Template and Secrets

Typically the broker is configured using a ConfigMap in a deployment template. You supply the
authentication configuration the same way as in the file configuration.

The following is an example of the deployment template:

Another part to Basic Auth is the user name and password used to authenticate against the broker.
While the Basic Auth implementation can be backed by different back-end services, the currently
supported one is backed by a secret. The secret must be injected into the pod via a volume mount at the
/var/run/asb_auth location. This is from where the broker will read the user name and password.

In the deployment template, a secret must be specified. For example:

The secret must contain a user name and password. The values must be base64 encoded. The easiest
way to generate the values for those entries is to use the echo and base64 commands:

The -n option is very important.

This secret must now be injected to the pod via a volume mount. This is configured in the deployment
template as well:

 - type: basic 1
 enabled: true 2

auth:
 - type: basic
 enabled: ${ENABLE_BASIC_AUTH}

- apiVersion: v1
 kind: Secret
 metadata:
 name: asb-auth-secret
 namespace: openshift-ansible-service-broker
 data:
 username: ${BROKER_USER}
 password: ${BROKER_PASS}

$ echo -n admin | base64 1
YWRtaW4=

spec:
 serviceAccount: asb
 containers:
 - image: ${BROKER_IMAGE}
 name: asb
 imagePullPolicy: IfNotPresent

CHAPTER 8. OPENSHIFT ANSIBLE BROKER CONFIGURATION

189

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-configmaps
https://github.com/openshift/ansible-service-broker/blob/master/templates/deploy-ansible-service-broker.template.yaml#L220-L222
https://github.com/openshift/ansible-service-broker/blob/61a7fc80e40a7d7ddd836a2216394185094b1b0b/templates/deploy-ansible-service-broker.template.yaml#L168-L175

Then, in the volumes section, mount the secret:

The above will have created a volume mount located at /var/run/asb-auth. This volume will have two
files: a user name and password written by the asb-auth-secret secret.

8.5.1.2. Configuring Service Catalog and Broker Communication

Now that the broker is configured to use Basic Auth, you must tell the service catalog how to
communicate with the broker. This is accomplished by the authInfo section of the broker resource.

The following is an example of creating a broker resource in the service catalog. The spec tells the
service catalog what URL the broker is listening at. The authInfo tells it what secret to read to get the
authentication information.

Starting with v0.0.17 of the service catalog, the broker resource configuration changes:

8.5.2. Bearer Auth

By default, if no authentication is specified the broker will use bearer token authentication (Bearer
Auth). Bearer Auth uses delegated authentication from the Kubernetes apiserver library.

The configuration grants access, through Kubernetes RBAC roles and role bindings, to the URL prefix.

 volumeMounts:
 ...
 - name: asb-auth-volume
 mountPath: /var/run/asb-auth

volumes:
 ...
 - name: asb-auth-volume
 secret:
 secretName: asb-auth-secret

apiVersion: servicecatalog.k8s.io/v1alpha1
kind: Broker
metadata:
 name: ansible-service-broker
spec:
 url: https://asb-1338-openshift-ansible-service-broker.172.17.0.1.nip.io
 authInfo:
 basicAuthSecret:
 namespace: openshift-ansible-service-broker
 name: asb-auth-secret

apiVersion: servicecatalog.k8s.io/v1alpha1
kind: ServiceBroker
metadata:
 name: ansible-service-broker
spec:
 url: https://asb-1338-openshift-ansible-service-broker.172.17.0.1.nip.io
 authInfo:
 basic:
 secretRef:
 namespace: openshift-ansible-service-broker
 name: asb-auth-secret

OpenShift Container Platform 3.11 Configuring Clusters

190

https://github.com/kubernetes/apiserver

The configuration grants access, through Kubernetes RBAC roles and role bindings, to the URL prefix.
The broker has added a configuration option cluster_url to specify the url_prefix. This value defaults to
openshift-ansible-service-broker.

Example Cluster Role

8.5.2.1. Deployment Template and Secrets

The following is an example of creating a secret that the service catalog can use. This example assumes
that the role, access-asb-role, has been created already. From the deployment template:

The above example creates a service account, granting access to access-asb-role and creating a secret
for that service accounts token.

8.5.2.2. Configuring Service Catalog and Broker Communication

Now that the broker is configured to use Bearer Auth tokens, you must tell the service catalog how to
communicate with the broker. This is accomplished by the authInfo section of the broker resource.

The following is an example of creating a broker resource in the service catalog. The spec tells the

- apiVersion: authorization.k8s.io/v1
 kind: ClusterRole
 metadata:
 name: access-asb-role
 rules:
 - nonResourceURLs: ["/ansible-service-broker", "/ansible-service-broker/*"]
 verbs: ["get", "post", "put", "patch", "delete"]

- apiVersion: v1
 kind: ServiceAccount
 metadata:
 name: ansibleservicebroker-client
 namespace: openshift-ansible-service-broker

- apiVersion: authorization.openshift.io/v1
 kind: ClusterRoleBinding
 metadata:
 name: ansibleservicebroker-client
 subjects:
 - kind: ServiceAccount
 name: ansibleservicebroker-client
 namespace: openshift-ansible-service-broker
 roleRef:
 kind: ClusterRole
 name: access-asb-role

- apiVersion: v1
 kind: Secret
 metadata:
 name: ansibleservicebroker-client
 annotations:
 kubernetes.io/service-account.name: ansibleservicebroker-client
 type: kubernetes.io/service-account-token

CHAPTER 8. OPENSHIFT ANSIBLE BROKER CONFIGURATION

191

https://kubernetes.io/docs/admin/authorization/rbac/
https://github.com/openshift/ansible-service-broker/blob/61a7fc80e40a7d7ddd836a2216394185094b1b0b/templates/deploy-ansible-service-broker.template.yaml#L224-L248
https://kubernetes.io/docs/admin/service-accounts-admin/

The following is an example of creating a broker resource in the service catalog. The spec tells the
service catalog what URL the broker is listening at. The authInfo tells it what secret to read to get the
authentication information.

8.6. DAO CONFIGURATION

Field Description Required

etcd_host The URL of the etcd host. Y

etcd_port The port to use when communicating with etcd_host. Y

8.7. LOG CONFIGURATION

Field Description Required

logfile Where to write the broker’s logs. Y

stdout Write logs to stdout. Y

level Level of the log output. Y

color Color the logs. Y

8.8. OPENSHIFT CONFIGURATION

Field Description Required

host OpenShift Container Platform host. N

ca_file Location of the certificate authority file. N

bearer_token_fil
e

Location of bearer token to be used. N

apiVersion: servicecatalog.k8s.io/v1alpha1
kind: ServiceBroker
metadata:
 name: ansible-service-broker
spec:
 url: https://asb.openshift-ansible-service-broker.svc:1338${BROKER_URL_PREFIX}/
 authInfo:
 bearer:
 secretRef:
 kind: Secret
 namespace: openshift-ansible-service-broker
 name: ansibleservicebroker-client

OpenShift Container Platform 3.11 Configuring Clusters

192

image_pull_poli
cy

When to pull the image. Y

namespace The namespace that the broker has been deployed to. Important
for things like passing parameter values via secret.

Y

sandbox_role Role to give to an APB sandbox environment. Y

keep_namespac
e

Always keep namespace after an APB execution. N

keep_namespac
e_on_error

Keep namespace after an APB execution has an error. N

Field Description Required

8.9. BROKER CONFIGURATION

The broker section tells the broker what functionality should be enabled and disabled. It will also tell the
broker where to find files on disk that will enable the full functionality.

Field Description Default Value Required

dev_broker Allow development routes to be accessible. false N

launch_apb_
on_bind

Allow bind to be a no-op. false N

bootstrap_o
n_startup

Allow the broker attempt to bootstrap itself on start
up. Will retrieve the APBs from configured registries.

false N

recovery Allow the broker to attempt to recover itself by
dealing with pending jobs noted in etcd.

false N

output_requ
est

Allow the broker to output the requests to the log
file as they come in for easier debugging.

false N

ssl_cert_key Tells the broker where to find the TLS key file. If not
set, the API server will attempt to create one.

"" N

ssl_cert Tells the broker where to find the TLS .crt file. If not
set, the API server will attempt to create one.

"" N

refresh_inter
val

The interval to query registries for new image specs. "600s" N

auto_escalat
e

Allows the broker to escalate the permissions of a
user while running the APB.

false N

CHAPTER 8. OPENSHIFT ANSIBLE BROKER CONFIGURATION

193

cluster_url Sets the prefix for the URL that the broker is
expecting.

openshift-
ansible-
service-
broker

N

Field Description Default Value Required

NOTE

Async bind and unbind is an experimental feature and is not supported or enabled by
default. With the absence of async bind, setting launch_apb_on_bind to true can cause
the bind action to timeout and will span a retry. The broker will handle this with "409
Conflicts" because it is the same bind request with different parameters.

8.10. SECRETS CONFIGURATION

The secrets section creates associations between secrets in the broker’s namespace and APBs the
broker runs. The broker uses these rules to mount secrets into running APBs, allowing the user to use
secrets to pass parameters without exposing them to the catalog or users.

The section is a list where each entry has the following structure:

Field Description Required

title The title of the rule. This is just for display and output purposes. Y

apb_name The name of the APB to associate with the specified secret. This
is the fully qualified name (<registry_name>-
<image_name>).

Y

secret The name of the secret to pull parameters from. Y

You can download and use the create_broker_secret.py file to create and format this configuration
section.

8.11. RUNNING BEHIND A PROXY

When running the OAB inside of a proxied OpenShift Container Platform cluster, it is important to
understand its core concepts and consider them within the context of a proxy used for external network
access.

As an overview, the broker itself runs as a pod within the cluster. It has a requirement for external
network access depending on how its registries have been configured.

secrets:
- title: Database credentials
 secret: db_creds
 apb_name: dh-rhscl-postgresql-apb

OpenShift Container Platform 3.11 Configuring Clusters

194

https://github.com/openshift/ansible-service-broker/blob/master/scripts/create_broker_secret.py

8.11.1. Registry Adapter Whitelists

The broker’s configured registry adapters must be able to communicate with their external registries in
order to bootstrap successfully and load remote APB manifests. These requests can be made via the
proxy, however, the proxy must ensure that the required remote hosts are accessible.

Example required whitelisted hosts:

Registry Adapter Type Whitelisted Hosts

rhcc registry.redhat.io, access.redhat.com

dockerhub docker.io

8.11.2. Configuring the Broker Behind a Proxy Using Ansible

If during initial installation you configure your OpenShift Container Platform cluster to run behind a
proxy (see Configuring Global Proxy Options), when the OAB is deployed it will:

inherit those cluster-wide proxy settings automatically and

generate the required NO_PROXY list, including the cidr fields and serviceNetworkCIDR,

and no further configuration is needed.

8.11.3. Configuring the Broker Behind a Proxy Manually

If your cluster’s global proxy options were not configured during initial installation or prior to the broker
being deployed, or if you have modified the global proxy settings, you must manually configure the
broker for external access via proxy:

1. Before attempting to run the OAB behind a proxy, review Working with HTTP Proxies and
ensure your cluster is configured accordingly to run behind a proxy.
In particular, the cluster must be configured to not proxy internal cluster requests. This is
typically configured with a NO_PROXY setting of:

.cluster.local,.svc,<serviceNetworkCIDR_value>,<master_IP>,<master_domain>,.default

in addition to any other desired NO_PROXY settings. See Configuring NO_PROXY for more
details.

NOTE

Brokers deploying unversioned, or v1 APBs must also add 172.30.0.1 to their
NO_PROXY list. APBs prior to v2 extracted their credentials from running APB
pods via an exec HTTP request, rather than a secret exchange. Unless you are
running a broker with experimental proxy support in a cluster prior to OpenShift
Container Platform 3.9, you probably do not have to worry about this.

2. Edit the broker’s DeploymentConfig as a user with cluster-admin privileges:

$ oc edit dc/asb -n openshift-ansible-service-broker

CHAPTER 8. OPENSHIFT ANSIBLE BROKER CONFIGURATION

195

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-install-configuring-global-proxy

3. Set the following environment variables:

HTTP_PROXY

HTTPS_PROXY

NO_PROXY

NOTE

See Setting Proxy Environment Variables in Pods for more information.

4. After saving any updates, redeploy the OAB’s deployment configuration for the changes to take
effect:

$ oc rollout latest dc/asb -n openshift-ansible-service-broker

8.11.4. Setting Proxy Environment Variables in Pods

It is common that APB pods themselves may require external access via proxy as well. If the broker
recognizes it has a proxy configuration, it will transparently apply these environment variables to the
APB pods that it spawns. As long as the modules used within the APB respect proxy configuration via
environment variable, the APB will also use these settings to perform its work.

Finally, it is possible the services spawned by the APB may also require external network access via
proxy. The APB must be authored to set these environment variables explicitly if recognizes them in its
own execution environment, or the cluster operator must manually modify the required services to inject
them into their environments.

OpenShift Container Platform 3.11 Configuring Clusters

196

CHAPTER 9. ADDING HOSTS TO AN EXISTING CLUSTER

9.1. ADDING HOSTS

You can add new hosts to your cluster by running the scaleup.yml playbook. This playbook queries the
master, generates and distributes new certificates for the new hosts, and then runs the configuration
playbooks on only the new hosts. Before running the scaleup.yml playbook, complete all prerequisite
host preparation steps.

IMPORTANT

The scaleup.yml playbook configures only the new host. It does not update NO_PROXY
in master services, and it does not restart master services.

You must have an existing inventory file, for example /etc/ansible/hosts, that is representative of your
current cluster configuration in order to run the scaleup.yml playbook. If you previously used the
atomic-openshift-installer command to run your installation, you can check ~/.config/openshift/hosts
for the last inventory file that the installer generated and use that file as your inventory file. You can
modify this file as required. You must then specify the file location with -i when you run the ansible-
playbook.

IMPORTANT

See the cluster maximums section for the recommended maximum number of nodes.

Procedure

1. Ensure you have the latest playbooks by updating the openshift-ansible package:

2. Edit your /etc/ansible/hosts file and add new_<host_type> to the [OSEv3:children] section.
For example, to add a new node host, add new_nodes:

[OSEv3:children]
masters
nodes
new_nodes

To add new master hosts, add new_masters.

3. Create a [new_<host_type>] section to specify host information for the new hosts. Format this
section like an existing section, as shown in the following example of adding a new node:

[nodes]
master[1:3].example.com
node1.example.com openshift_node_group_name='node-config-compute'
node2.example.com openshift_node_group_name='node-config-compute'
infra-node1.example.com openshift_node_group_name='node-config-infra'
infra-node2.example.com openshift_node_group_name='node-config-infra'

[new_nodes]
node3.example.com openshift_node_group_name='node-config-infra'

yum update openshift-ansible

CHAPTER 9. ADDING HOSTS TO AN EXISTING CLUSTER

197

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#preparing-for-advanced-installations-origin
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/scaling_and_performance_guide/#scaling-performance-cluster-maximums

See Configuring Host Variables for more options.

When adding new masters, add hosts to both the [new_masters] section and the [new_nodes]
section to ensure that the new master host is part of the OpenShift SDN:

[masters]
master[1:2].example.com

[new_masters]
master3.example.com

[nodes]
master[1:2].example.com
node1.example.com openshift_node_group_name='node-config-compute'
node2.example.com openshift_node_group_name='node-config-compute'
infra-node1.example.com openshift_node_group_name='node-config-infra'
infra-node2.example.com openshift_node_group_name='node-config-infra'

[new_nodes]
master3.example.com

IMPORTANT

If you label a master host with the node-role.kubernetes.io/infra=true label and
have no other dedicated infrastructure nodes, you must also explicitly mark the
host as schedulable by adding openshift_schedulable=true to the entry.
Otherwise, the registry and router pods cannot be placed anywhere.

4. Change to the playbook directory and run the openshift_node_group.yml playbook. If your
inventory file is located somewhere other than the default of /etc/ansible/hosts, specify the
location with the -i option:

This creates the ConfigMap for the new node groups, and ultimately, the configuration file of
the node on the host.

NOTE

Running the openshift_node_group.yaml playbook only updates new nodes. It
cannot be run to update existing nodes in a cluster.

5. Run the scaleup.yml playbook. If your inventory file is located somewhere other than the default
of /etc/ansible/hosts, specify the location with the -i option.

For additional nodes:

For additional masters:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook [-i /path/to/file] \
 playbooks/openshift-master/openshift_node_group.yml

$ ansible-playbook [-i /path/to/file] \
 playbooks/openshift-node/scaleup.yml

OpenShift Container Platform 3.11 Configuring Clusters

198

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-host-variables

6. Set the node label to logging-infra-fluentd=true, if you deployed the EFK stack in your cluster:

7. After the playbook runs, verify the installation.

8. Move any hosts that you defined in the [new_<host_type>] section to their appropriate section.
By moving these hosts, subsequent playbook runs that use this inventory file treat the nodes
correctly. You can keep the empty [new_<host_type>] section. For example, when adding new
nodes:

[nodes]
master[1:3].example.com
node1.example.com openshift_node_group_name='node-config-compute'
node2.example.com openshift_node_group_name='node-config-compute'
node3.example.com openshift_node_group_name='node-config-compute'
infra-node1.example.com openshift_node_group_name='node-config-infra'
infra-node2.example.com openshift_node_group_name='node-config-infra'

[new_nodes]

9.2. ADDING ETCD HOSTS TO EXISTING CLUSTER

You can add new etcd hosts to your cluster by running the etcd scaleup playbook. This playbook queries
the master, generates and distributes new certificates for the new hosts, and then runs the
configuration playbooks on the new hosts only. Before running the etcd scaleup.yml playbook, complete
all prerequisite host preparation steps.

WARNING

These steps will synchronize the settings in the Ansible inventory with the cluster.
Ensure that any local changes are shown in the Ansible inventory.

To add an etcd host to an existing cluster:

1. Ensure you have the latest playbooks by updating the openshift-ansible package:

yum update openshift-ansible

2. Edit your /etc/ansible/hosts file, add new_<host_type> to the [OSEv3:children] group and
add hosts under the new_<host_type> group. For example, to add a new etcd, add new_etcd:

[OSEv3:children]
masters
nodes

$ ansible-playbook [-i /path/to/file] \
 playbooks/openshift-master/scaleup.yml

oc label node/new-node.example.com logging-infra-fluentd=true



CHAPTER 9. ADDING HOSTS TO AN EXISTING CLUSTER

199

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-verifying-the-installation
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-config-install-host-preparation

etcd
new_etcd

[etcd]
etcd1.example.com
etcd2.example.com

[new_etcd]
etcd3.example.com

3. Change to the playbook directory and run the openshift_node_group.yml playbook. If your
inventory file is located somewhere other than the default of /etc/ansible/hosts, specify the
location with the -i option:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook [-i /path/to/file] \
 playbooks/openshift-master/openshift_node_group.yml

This creates the ConfigMap for the new node groups, and ultimately, the configuration file of
the node on the host.

NOTE

Running the openshift_node_group.yaml playbook only updates new nodes. It
cannot be run to update existing nodes in a cluster.

4. Run the etcd scaleup.yml playbook. If your inventory file is located somewhere other than the
default of /etc/ansible/hosts, specify the location with the -i option:

$ ansible-playbook [-i /path/to/file] \
 playbooks/openshift-etcd/scaleup.yml

5. After the playbook completes successfully, verify the installation.

9.3. REPLACING EXISTING MASTERS WITH ETCD COLOCATED

Follow these steps when you are migrating your machines to a different data center and the network and
IPs assigned to it will change.

1. Back up the primary etcd and master nodes.

IMPORTANT

Ensure that you back up the /etc/etcd/ directory, as noted in the etcd backup
instructions.

2. Provision as many new machines as there are masters to replace.

3. Add or expand the cluster. For example, if you want to add 3 masters with etcd colocated, scale
up 3 master nodes.

IMPORTANT

OpenShift Container Platform 3.11 Configuring Clusters

200

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-verifying-the-installation
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/day_two_operations_guide/#etcd-backup_deprecating-etcd
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/day_two_operations_guide/#creating-master-backup_deprecating-etcd
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/day_two_operations_guide/#backing-up-etcd_deprecating-etcd

IMPORTANT

In the initial release of OpenShift Container Platform version 3.11, the scaleup.yml
playbook does not scale up etcd. This is fixed in OpenShift Container Platform 3.11.59 and
later.

a. Add a master. In step 3 of that process, add the host of the new data center in [new_masters]
and [new_nodes], run the openshift_node_group.yml playbook, and run the master
scaleup.yml playbook.

b. Put the same host in the etcd section, run the openshift_node_group.yml playbook, and run
the etcd scaleup.yml playbook.

c. Verify that the host was added:

oc get nodes

d. Verify that the master host IP was added:

oc get ep kubernetes

e. Verify that etcd was added. The value of ETCDCTL_API depends on the version being used:

source /etc/etcd/etcd.conf
ETCDCTL_API=2 etcdctl --cert-file=$ETCD_PEER_CERT_FILE --key-
file=$ETCD_PEER_KEY_FILE \
 --ca-file=/etc/etcd/ca.crt --endpoints=$ETCD_LISTEN_CLIENT_URLS member list

f. Copy /etc/origin/master/ca.serial.txt from the /etc/origin/master directory to the new
master host that is listed first in your inventory file. By default, this is /etc/ansible/hosts.

1. Remove the etcd hosts.

g. Copy the /etc/etcd/ca directory to the new etcd host that is listed first in your inventory file. By
default, this is /etc/ansible/hosts.

h. Remove the old etcd clients from the master-config.yaml file:

grep etcdClientInfo -A 11 /etc/origin/master/master-config.yaml

i. Restart the masters:

master-restart api
master-restart controllers

j. Remove the old etcd members from the cluster. The value of ETCDCTL_API depends on the
version being used:

source /etc/etcd/etcd.conf
ETCDCTL_API=2 etcdctl --cert-file=$ETCD_PEER_CERT_FILE --key-
file=$ETCD_PEER_KEY_FILE \
 --ca-file=/etc/etcd/ca.crt --endpoints=$ETCD_LISTEN_CLIENT_URLS member list

k. Take the IDs from the output of the command above and remove the old members using the

CHAPTER 9. ADDING HOSTS TO AN EXISTING CLUSTER

201

k. Take the IDs from the output of the command above and remove the old members using the
IDs:

etcdctl --cert-file=$ETCD_PEER_CERT_FILE --key-file=$ETCD_PEER_KEY_FILE \
 --ca-file=/etc/etcd/ca.crt --endpoints=$ETCD_LISTEN_CLIENT_URL member remove
1609b5a3a078c227

l. Stop the etcd services on the old etcd hosts by removing the etcd pod definition:

mkdir -p /etc/origin/node/pods-stopped
mv /etc/origin/node/pods/* /etc/origin/node/pods-stopped/

1. Shut down old master API and controller services by moving definition files out of the static
pods dir /etc/origin/node/pods:

mkdir -p /etc/origin/node/pods/disabled
mv /etc/origin/node/pods/controller.yaml /etc/origin/node/pods/disabled/:

2. Remove the master nodes from the HA proxy configuration, which was installed as a load
balancer by default during the native installation process.

3. Decommission the machine.

m. Stop the node service on the master to be removed by removing the pod definition and
rebooting the host:

mkdir -p /etc/origin/node/pods-stopped
mv /etc/origin/node/pods/* /etc/origin/node/pods-stopped/
reboot

n. Delete the node resource:

oc delete node

9.4. MIGRATING THE NODES

You can migrate nodes individually or in groups (of 2, 5, 10, and so on), depending on what you are
comfortable with and how the services on the node are run and scaled.

1. For the migration node or nodes, provision new VMs for the node’s use in the new data center.

2. To add the new node, scale up the infrastructure. Ensure the labels for the new node are set
properly and that your new API servers are added to your load balancer and successfully serving
traffic.

3. Evaluate and scale down.

a. Mark the current node (in the old data center) unscheduled.

b. Evacuate the node, so that pods on it are scheduled to other nodes.

c. Verify that the evacuated services are running on the new nodes.

4. Remove the node.

a. Verify that the node is empty and does not have running processes.

OpenShift Container Platform 3.11 Configuring Clusters

202

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#marking-nodes-as-unschedulable-or-schedulable
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#evacuating-pods-on-nodes

a. Verify that the node is empty and does not have running processes.

b. Stop the service or delete the node.

CHAPTER 9. ADDING HOSTS TO AN EXISTING CLUSTER

203

CHAPTER 10. ADDING THE DEFAULT IMAGE STREAMS AND
TEMPLATES

10.1. OVERVIEW

If you installed OpenShift Container Platform on servers with x86_64 architecture, your cluster includes
useful sets of Red Hat-provided image streams and templates to make it easy for developers to create
new applications. By default, the cluster installation process automatically create these sets in the
openshift project, which is a default global project to which all users have view access.

If you installed OpenShift Container Platform on servers with IBM POWER architecture, you can add
image streams and templates to your cluster.

10.2. OFFERINGS BY SUBSCRIPTION TYPE

Depending on the active subscriptions on your Red Hat account, the following sets of image streams
and templates are provided and supported by Red Hat. Contact your Red Hat sales representative for
further subscription details.

10.2.1. OpenShift Container Platform Subscription

The core set of image streams and templates are provided and supported with an active OpenShift
Container Platform subscription. This includes the following technologies:

Type Technology

Languages &
Frameworks .NET Core

Node.js

Perl

PHP

Python

Ruby

Databases
MariaDB

MongoDB

MySQL

PostgreSQL

Middleware Services
Red Hat JBoss Web Server (Tomcat)

Red Hat Single Sign-on

OpenShift Container Platform 3.11 Configuring Clusters

204

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-planning
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-using-dot-net-core
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-s2i-images-nodejs
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-s2i-images-perl
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-s2i-images-php
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-s2i-images-python
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-s2i-images-ruby
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-db-images-mariadb
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-db-images-mongodb
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-db-images-mysql
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-db-images-postgresql
https://access.redhat.com/documentation/en/red-hat-jboss-middleware-for-openshift/3/single/red-hat-jboss-web-server-for-openshift/
https://access.redhat.com/documentation/en/red-hat-jboss-middleware-for-openshift/3/single/red-hat-jboss-sso-for-openshift/

Other Services
Jenkins

Jenkins Slaves

Type Technology

10.2.2. xPaaS Middleware Add-on Subscriptions

Support for xPaaS middleware images are provided by xPaaS Middleware add-on subscriptions, which
are separate subscriptions for each xPaaS product. If the relevant subscription is active on your account,
image streams and templates are provided and supported for the following technologies:

Type Technology

Middleware Services
Red Hat JBoss A-MQ

Red Hat JBoss BPM Suite Intelligent Process Server

Red Hat JBoss BRMS Decision Server

Red Hat JBoss Data Grid

Red Hat JBoss EAP

Red Hat Fuse on OpenShift

Red Hat JBoss Data Virtualization

10.3. BEFORE YOU BEGIN

Before you consider performing the tasks in this topic, confirm if these image streams and templates are
already registered in your OpenShift Container Platform cluster by doing one of the following:

Log in to the web console and click Add to Project.

List them for the openshift project using the CLI:

$ oc get is -n openshift
$ oc get templates -n openshift

If the default image streams and templates are ever removed or changed, you can follow this topic to
create the default objects yourself. Otherwise, the following instructions are not necessary.

10.4. PREREQUISITES

Before you can create the default image streams and templates:

The integrated container image registry service must be deployed in your OpenShift Container
Platform installation.

You must be able to run the oc create command with cluster-admin privileges, because they

CHAPTER 10. ADDING THE DEFAULT IMAGE STREAMS AND TEMPLATES

205

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-other-images-jenkins
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-other-images-jenkins-slaves
https://access.redhat.com/documentation/en-us/red_hat_jboss_a-mq/6.3/html-single/red_hat_jboss_a-mq_for_openshift/
https://access.redhat.com/documentation/en-us/red_hat_jboss_bpm_suite/6.4/html-single/red_hat_jboss_bpm_suite_intelligent_process_server_for_openshift/
https://access.redhat.com/documentation/en-us/red_hat_jboss_brms/6.4/html-single/red_hat_jboss_brms_realtime_decision_server_for_openshift/
https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.1/html-single/data_grid_for_openshift/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/red_hat_jboss_enterprise_application_platform_for_openshift/
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/fuse_on_openshift_guide/
https://access.redhat.com/documentation/en-us/red_hat_jboss_data_virtualization/6.4/html/red_hat_jboss_data_virtualization_for_openshift/

You must be able to run the oc create command with cluster-admin privileges, because they
operate on the default openshiftproject.

You must have installed the openshift-ansible RPM package. See Software Prerequisites for
instructions.

For on-premise installations on IBM POWER8 or IBM POWER9 servers, create a secret for
registry.redhat.io in the openshift namespace.

Define shell variables for the directories containing image streams and templates. This
significantly shortens the commands in the following sections. To do this:

For cloud installations and on-premise installations on x86_64 servers:

$ IMAGESTREAMDIR="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/x86_64/image-streams"; \
 XPAASSTREAMDIR="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/x86_64/xpaas-streams"; \
 XPAASTEMPLATES="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/x86_64/xpaas-templates"; \
 DBTEMPLATES="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/x86_64/db-templates"; \
 QSTEMPLATES="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/x86_64/quickstart-templates"

For on-premise installations on IBM POWER8 or IBM POWER9 servers:

IMAGESTREAMDIR="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/ppc64le/image-streams"; \
 DBTEMPLATES="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/ppc64le/db-templates"; \
 QSTEMPLATES="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/ppc64le/quickstart-templates"

10.5. CREATING IMAGE STREAMS FOR OPENSHIFT CONTAINER
PLATFORM IMAGES

If your node hosts are subscribed using Red Hat Subscription Manager and you want to use the core set
of image streams that used Red Hat Enterprise Linux (RHEL) 7 based images:

$ oc create -f $IMAGESTREAMDIR/image-streams-rhel7.json -n openshift

Alternatively, to create the core set of image streams that use the CentOS 7 based images:

$ oc create -f $IMAGESTREAMDIR/image-streams-centos7.json -n openshift

Creating both the CentOS and RHEL sets of image streams is not possible, because they use the same
names. To have both sets of image streams available to users, either create one set in a different
project, or edit one of the files and modify the image stream names to make them unique.

10.6. CREATING IMAGE STREAMS FOR XPAAS MIDDLEWARE IMAGES

The xPaaS Middleware image streams provide images for JBoss EAP, JBoss JWS, JBoss A-MQ, Red

OpenShift Container Platform 3.11 Configuring Clusters

206

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#software-prerequisites
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#creating-secrets

The xPaaS Middleware image streams provide images for JBoss EAP, JBoss JWS, JBoss A-MQ, Red
Hat Fuse on OpenShift, Decision Server, JBoss Data Virtualization and JBoss Data Grid. They can
be used to build applications for those platforms using the provided templates.

To create the xPaaS Middleware set of image streams:

$ oc create -f $XPAASSTREAMDIR/jboss-image-streams.json -n openshift

NOTE

Access to the images referenced by these image streams requires the relevant xPaaS
Middleware subscriptions.

10.7. CREATING DATABASE SERVICE TEMPLATES

The database service templates make it easy to run a database image which can be utilized by other
components. For each database (MongoDB, MySQL, and PostgreSQL), two templates are defined.

One template uses ephemeral storage in the container which means data stored will be lost if the
container is restarted, for example if the pod moves. This template should be used for demonstration
purposes only.

The other template defines a persistent volume for storage, however it requires your OpenShift
Container Platform installation to have persistent volumes configured.

To create the core set of database templates:

$ oc create -f $DBTEMPLATES -n openshift

After creating the templates, users are able to easily instantiate the various templates, giving them quick
access to a database deployment.

10.8. CREATING INSTANT APP AND QUICKSTART TEMPLATES

The Instant App and Quickstart templates define a full set of objects for a running application. These
include:

Build configurations to build the application from source located in a GitHub public repository

Deployment configurations to deploy the application image after it is built.

Services to provide load balancing for the application pods.

Routes to provide external access to the application.

Some of the templates also define a database deployment and service so the application can perform
database operations.

NOTE

The templates which define a database use ephemeral storage for the database content.
These templates should be used for demonstration purposes only as all database data
will be lost if the database pod restarts for any reason.

CHAPTER 10. ADDING THE DEFAULT IMAGE STREAMS AND TEMPLATES

207

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-db-images-mongodb
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-db-images-mysql
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-db-images-postgresql
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#builds
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#pods
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-core-concepts-routes

Using these templates, users are able to easily instantiate full applications using the various language
images provided with OpenShift Container Platform. They can also customize the template parameters
during instantiation so that it builds source from their own repository rather than the sample repository,
so this provides a simple starting point for building new applications.

To create the core Instant App and Quickstart templates:

$ oc create -f $QSTEMPLATES -n openshift

There is also a set of templates for creating applications using various xPaaS Middleware products
(JBoss EAP, JBoss JWS, JBoss A-MQ, Red Hat Fuse on OpenShift, Decision Server, and JBoss
Data Grid), which can be registered by running:

$ oc create -f $XPAASTEMPLATES -n openshift

NOTE

The xPaaS Middleware templates require the xPaaS Middleware image streams , which in
turn require the relevant xPaaS Middleware subscriptions.

NOTE

The templates which define a database use ephemeral storage for the database content.
These templates should be used for demonstration purposes only as all database data
will be lost if the database pod restarts for any reason.

10.9. WHAT’S NEXT?

With these artifacts created, developers can now log in to the web console and follow the flow for
creating from a template. Any of the database or application templates can be selected to create a
running database service or application in the current project. Note that some of the application
templates define their own database services as well.

The example applications are all built out of GitHub repositories which are referenced in the templates
by default, as seen in the SOURCE_REPOSITORY_URL parameter value. Those repositories can be
forked, and the fork can be provided as the SOURCE_REPOSITORY_URL parameter value when
creating from the templates. This allows developers to experiment with creating their own applications.

You can direct your developers to the Using the Instant App and Quickstart Templates section in the
Developer Guide for these instructions.

OpenShift Container Platform 3.11 Configuring Clusters

208

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#creating-from-templates-using-the-web-console
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#using-the-instantapp-templates

1

2

3

CHAPTER 11. CONFIGURING CUSTOM CERTIFICATES

11.1. OVERVIEW

Administrators can configure custom serving certificates for the public host names of the OpenShift
Container Platform API and web console. This can be done during a cluster installation or configured
after installation.

11.2. CONFIGURING A CERTIFICATE CHAIN

If a certificate chain is used, then all certificates must be manually concatenated into a single named
certificate file. These certificates must be placed in the following order:

OpenShift Container Platform master host certificate

Intermediate CA certificate

Root CA certificate

Third party certificate

To create this certificate chain, concatenate the certificates into a common file. You must run this
command for each certificate and ensure that they are in the previously defined order.

$ cat <certificate>.pem >> ca-chain.cert.pem

11.3. CONFIGURING CUSTOM CERTIFICATES DURING INSTALLATION

During cluster installations, custom certificates can be configured using the
openshift_master_named_certificates and openshift_master_overwrite_named_certificates
parameters, which are configurable in the inventory file. More details are available about configuring
custom certificates with Ansible.

Custom Certificate Configuration Parameters

If you provide a value for the openshift_master_named_certificates parameter, set this
parameter to true.

Provisions a master API certificate. If necessary, concatenate all of the required files that form your
certificate chain for the certificate file that is provided to the certFile parameter.

Provisions a router wildcard certificate.

Example parameters for a master API certificate:

openshift_master_overwrite_named_certificates=true

openshift_master_overwrite_named_certificates=true 1
openshift_master_named_certificates=[{"certfile": "/path/on/host/to/crt-file", "keyfile":
"/path/on/host/to/key-file", "names": ["public-master-host.com"], "cafile": "/path/on/host/to/ca-file"}] 2
openshift_hosted_router_certificate={"certfile": "/path/on/host/to/app-crt-file", "keyfile":
"/path/on/host/to/app-key-file", "cafile": "/path/on/host/to/app-ca-file"} 3

CHAPTER 11. CONFIGURING CUSTOM CERTIFICATES

209

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-infrastructure-components-web-console
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-install-custom-certificates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-install-custom-certificates

openshift_master_named_certificates=[{"names": ["master.148.251.233.173.nip.io"], "certfile":
"/home/cloud-user/master.148.251.233.173.nip.io.cert.pem", "keyfile": "/home/cloud-
user/master.148.251.233.173.nip.io.key.pem", "cafile": "/home/cloud-user/master-bundle.cert.pem"}]

Example parameters for a router wildcard certificate:

openshift_hosted_router_certificate={"certfile": "/home/cloud-user/star-
apps.148.251.233.173.nip.io.cert.pem", "keyfile": "/home/cloud-user/star-
apps.148.251.233.173.nip.io.key.pem", "cafile": "/home/cloud-user/ca-chain.cert.pem"}

11.4. CONFIGURING CUSTOM CERTIFICATES FOR THE WEB CONSOLE
OR CLI

You can specify custom certificates for the web console and for the CLI through the servingInfo
section of the master configuration file:

The servingInfo.namedCertificates section serves up custom certificates for the web console.

The servingInfo section serves up custom certificates for the CLI and other API calls.

You can configure multiple certificates this way, and each certificate can be associated with multiple
host names, multiple routers, or the OpenShift Container Platform image registry .

A default certificate must be configured in the servingInfo.certFile and servingInfo.keyFile
configuration sections in addition to namedCertificates.

NOTE

The namedCertificates section should be configured only for the host name associated
with the masterPublicURL and oauthConfig.assetPublicURL settings in the
/etc/origin/master/master-config.yaml file. Using a custom serving certificate for the
host name associated with the masterURL will result in TLS errors as infrastructure
components will attempt to contact the master API using the internal masterURL host.

Custom Certificates Configuration

servingInfo:
 logoutURL: ""
 masterPublicURL: https://openshift.example.com:8443
 publicURL: https://openshift.example.com:8443/console/
 bindAddress: 0.0.0.0:8443
 bindNetwork: tcp4
 certFile: master.server.crt 1
 clientCA: ""
 keyFile: master.server.key 2
 maxRequestsInFlight: 0
 requestTimeoutSeconds: 0
 namedCertificates:
 - certFile: wildcard.example.com.crt 3
 keyFile: wildcard.example.com.key 4
 names:
 - "openshift.example.com"
 metricsPublicURL: "https://metrics.os.example.com/hawkular/metrics"

OpenShift Container Platform 3.11 Configuring Clusters

210

1

2

3

4

Path to the certificate file for the CLI and other API calls.

Path to the key file for the CLI and other API calls.

Path to the certificate file for the public host names of the OpenShift Container Platform API and
web console. If necessary, concatenate all of the required files that form your certificate chain for
the certificate file that is provided to the certFile parameter.

Path to the key file for the public host names of the OpenShift Container Platform API and web
console.

The openshift_master_cluster_public_hostname and openshift_master_cluster_hostname
parameters in the Ansible inventory file , by default /etc/ansible/hosts, must be different. If they are the
same, the named certificates will fail and you will need to re-install them.

Native HA with External LB VIPs
openshift_master_cluster_hostname=internal.paas.example.com
openshift_master_cluster_public_hostname=external.paas.example.com

For more information on using DNS with OpenShift Container Platform, see the DNS installation
prerequisites.

This approach allows you to take advantage of the self-signed certificates generated by OpenShift
Container Platform and add custom trusted certificates to individual components as needed.

Note that the internal infrastructure certificates remain self-signed, which might be perceived as bad
practice by some security or PKI teams. However, any risk here is minimal, as the only clients that trust
these certificates are other components within the cluster. All external users and systems use custom
trusted certificates.

Relative paths are resolved based on the location of the master configuration file. Restart the server to
pick up the configuration changes.

11.5. CONFIGURING A CUSTOM MASTER HOST CERTIFICATE

In order to facilitate trusted connections with external users of OpenShift Container Platform, you can
provision a named certificate that matches the domain name provided in the
openshift_master_cluster_public_hostname paramater in the Ansible inventory file , by default
/etc/ansible/hosts.

You must place this certificate in a directory accessible to Ansible and add the path in the Ansible
inventory file, as follows:

openshift_master_named_certificates=[{"certfile": "/path/to/console.ocp-c1.myorg.com.crt", "keyfile":
"/path/to/console.ocp-c1.myorg.com.key", "names": ["console.ocp-c1.myorg.com"]}]

Where the parameter values are:

certfile is the path to the file that contains the OpenShift Container Platform custom master
API certificate.

keyfile is the path to the file that contains the OpenShift Container Platform custom master
API certificate key.

names is the cluster public hostname.

CHAPTER 11. CONFIGURING CUSTOM CERTIFICATES

211

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#prereq-dns
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible

The file paths must be local to the system where Ansible runs. Certificates are copied to master hosts
and are deployed within the /etc/origin/master directory.

When securing the registry, add the service hostnames and IP addresses to the server certificate for the
registry. The Subject Alternative Names (SAN) must contain the following.

Two service hostnames:

docker-registry.default.svc.cluster.local
docker-registry.default.svc

Service IP address.
For example:

172.30.252.46

Use the following command to get the container image registry service IP address:

oc get service docker-registry --template='{{.spec.clusterIP}}'

Public hostname.

docker-registry-default.apps.example.com

Use the following command to get the container image registry public hostname:

oc get route docker-registry --template '{{.spec.host}}'

For example, the server certificate should contain SAN details similar to the following:

X509v3 Subject Alternative Name:
 DNS:docker-registry-public.openshift.com, DNS:docker-registry.default.svc, DNS:docker-
registry.default.svc.cluster.local, DNS:172.30.2.98, IP Address:172.30.2.98

11.6. CONFIGURING A CUSTOM WILDCARD CERTIFICATE FOR THE
DEFAULT ROUTER

You can configure the OpenShift Container Platform default router with a default wildcard certificate. A
default wildcard certificate provides a convenient way for applications that are deployed in OpenShift
Container Platform to use default encryption without needing custom certificates.

NOTE

Default wildcard certificates are recommended for non-production environments only.

To configure a default wildcard certificate, provision a certificate that is valid for *.<app_domain>,
where <app_domain> is the value of openshift_master_default_subdomain in the Ansible inventory
file, by default /etc/ansible/hosts. Once provisioned, place the certificate, key, and ca certificate files on
your Ansible host, and add the following line to your Ansible inventory file.

OpenShift Container Platform 3.11 Configuring Clusters

212

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible

openshift_hosted_router_certificate={"certfile": "/path/to/apps.c1-ocp.myorg.com.crt", "keyfile":
"/path/to/apps.c1-ocp.myorg.com.key", "cafile": "/path/to/apps.c1-ocp.myorg.com.ca.crt"}

For example:

openshift_hosted_router_certificate={"certfile": "/home/cloud-user/star-
apps.148.251.233.173.nip.io.cert.pem", "keyfile": "/home/cloud-user/star-
apps.148.251.233.173.nip.io.key.pem", "cafile": "/home/cloud-user/ca-chain.cert.pem"}

Where the parameter values are:

certfile is the path to the file that contains the OpenShift Container Platform router wildcard
certificate.

keyfile is the path to the file that contains the OpenShift Container Platform router wildcard
certificate key.

cafile is the path to the file that contains the root CA for this key and certificate. If an
intermediate CA is in use, the file should contain both the intermediate and root CA.

If these certificate files are new to your OpenShift Container Platform cluster, change to the playbook
directory and run the Ansible deploy_router.yml playbook to add these files to the OpenShift Container
Platform configuration files. The playbook adds the certificate files to the /etc/origin/master/
directory.

ansible-playbook [-i /path/to/inventory] \
 /usr/share/ansible/openshift-ansible/playbooks/openshift-hosted/deploy_router.yml

If the certificates are not new , for example, you want to change existing certificates or replace expired
certificates, change to the playbook directory and run the following playbook:

ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/redeploy-certificates.yml

NOTE

For this playbook to run, the certificate names must not change. If the certificate names
change, rerun the Ansible deploy_cluster.yml playbook as if the certificates were new.

11.7. CONFIGURING A CUSTOM CERTIFICATE FOR THE IMAGE
REGISTRY

The OpenShift Container Platform image registry is an internal service that facilitates builds and
deployments. Most of the communication with the registry is handled by internal components in
OpenShift Container Platform. As such, you should not need to replace the certificate used by the
registry service itself.

However, by default, the registry uses routes to allow external systems and users to do pulls and pushes
of images. You can use a re-encrypt route with a custom certificate that is presented to external users
instead of using the internal, self-signed certificate.

To configure this, add the following lines of code to the [OSEv3:vars] section of the Ansible inventory
file, by default /etc/ansible/hosts file. Specify the certificates to use with the registry route.

CHAPTER 11. CONFIGURING CUSTOM CERTIFICATES

213

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-install-configuring-docker-route

1

2

3

openshift_hosted_registry_routehost=registry.apps.c1-ocp.myorg.com 1
openshift_hosted_registry_routecertificates={"certfile": "/path/to/registry.apps.c1-ocp.myorg.com.crt",
"keyfile": "/path/to/registry.apps.c1-ocp.myorg.com.key", "cafile": "/path/to/registry.apps.c1-
ocp.myorg.com-ca.crt"} 2
openshift_hosted_registry_routetermination=reencrypt 3

The host name of the registry.

The locations of the cacert, cert, and key files.

certfile is the path to the file that contains the OpenShift Container Platform registry
certificate.

keyfile is the path to the file that contains the OpenShift Container Platform registry
certificate key.

cafile is the path to the file that contains the root CA for this key and certificate. If an
intermediate CA is in use, the file should contain both the intermediate and root CA.

Specify where encryption is performed:

Set to reencrypt with a re-encrypt route to terminate encryption at the edge router and
re-encrypt it with a new certificate supplied by the destination.

Set to passthrough to terminate encryption at the destination. The destination is
responsible for decrypting traffic.

11.8. CONFIGURING A CUSTOM CERTIFICATE FOR A LOAD BALANCER

If your OpenShift Container Platform cluster uses the default load balancer or an enterprise-level load
balancer, you can use custom certificates to make the web console and API available externally using a
publicly-signed custom certificate. leaving the existing internal certificates for the internal endpoints.

To configure OpenShift Container Platform to use custom certificates in this way:

1. Edit the servingInfo section of the master configuration file:

servingInfo:
 logoutURL: ""
 masterPublicURL: https://openshift.example.com:8443
 publicURL: https://openshift.example.com:8443/console/
 bindAddress: 0.0.0.0:8443
 bindNetwork: tcp4
 certFile: master.server.crt
 clientCA: ""
 keyFile: master.server.key
 maxRequestsInFlight: 0
 requestTimeoutSeconds: 0
 namedCertificates:
 - certFile: wildcard.example.com.crt 1
 keyFile: wildcard.example.com.key 2
 names:
 - "openshift.example.com"
 metricsPublicURL: "https://metrics.os.example.com/hawkular/metrics"

OpenShift Container Platform 3.11 Configuring Clusters

214

1

2

1

2

1

Path to the certificate file for the public host names of the OpenShift Container Platform
API and web console. If necessary, concatenate all of the required files that form your
certificate chain for the certificate file that is provided to the certFile parameter.

Path to the key file for the public host names of the OpenShift Container Platform API and
web console.

NOTE

Configure the namedCertificates section for only the host name associated with
the masterPublicURL and oauthConfig.assetPublicURL settings. Using a
custom serving certificate for the host name associated with the masterURL
causes in TLS errors as infrastructure components attempt to contact the
master API using the internal masterURL host.

2. Specify the openshift_master_cluster_public_hostname and
openshift_master_cluster_hostname paramaters in the Ansible inventory file, by default
/etc/ansible/hosts. These values must be different. If they are the same, the named certificates
will fail.

Native HA with External LB VIPs
openshift_master_cluster_hostname=paas.example.com 1
openshift_master_cluster_public_hostname=public.paas.example.com 2

The FQDN for internal load balancer configured for SSL passthrough.

The FQDN for external the load balancer with custom (public) certificate.

For information specific to your load balancer environment, refer to the OpenShift Container Platform
Reference Architecture for your provider and Custom Certificate SSL Termination (Production) .

11.9. RETROFIT CUSTOM CERTIFICATES INTO A CLUSTER

You can retrofit custom master and custom router certificates into an existing OpenShift Container
Platform cluster.

11.9.1. Retrofit Custom Master Certificates into a Cluster

To retrofit custom certificates:

1. Edit the Ansible inventory file to set the
openshift_master_overwrite_named_certificates=true.

2. Specify the path to the certificate using the openshift_master_named_certificates parameter.

openshift_master_overwrite_named_certificates=true
openshift_master_named_certificates=[{"certfile": "/path/on/host/to/crt-file", "keyfile":
"/path/on/host/to/key-file", "names": ["public-master-host.com"], "cafile": "/path/on/host/to/ca-
file"}] 1

Path to a master API certificate. If necessary, concatenate all of the required files that form
your certificate chain for the certificate file that is provided to the certFile parameter.

CHAPTER 11. CONFIGURING CUSTOM CERTIFICATES

215

https://access.redhat.com/documentation/en-us/reference_architectures/?category=openshift%2520container%2520platform&version=current%2520release
http://v1.uncontained.io/playbooks/installation/load_balancing.html#custom-certificate-ssl-termination-production

1

3. Change to the playbook directory and run the following playbook:

ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/redeploy-certificates.yml

4. If you use named certificates:

a. Update the certificate parameters in the master-config.yaml file on each master node.

b. Restart the OpenShift Container Platform master service to apply the changes.

master-restart api
master-restart controllers

11.9.2. Retrofit Custom Router Certificates into a Cluster

To retrofit custom router certificates:

1. Edit the Ansible inventory file to set the
openshift_master_overwrite_named_certificates=true.

2. Specify the path to the certificate using the openshift_hosted_router_certificate parameter.

Path to a router wildcard certificate.

3. Change to the playbook directory and run the following playbook:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook playbooks/openshift-hosted/redeploy-router-certificates.yml

11.10. USING CUSTOM CERTIFICATES WITH OTHER COMPONENTS

For information on how other components, such as Logging & Metrics, use custom certificates, see
Certificate Management.

openshift_master_overwrite_named_certificates=true
openshift_hosted_router_certificate={"certfile": "/path/on/host/to/app-crt-file", "keyfile":
"/path/on/host/to/app-key-file", "cafile": "/path/on/host/to/app-ca-file"} 1

OpenShift Container Platform 3.11 Configuring Clusters

216

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/day_two_operations_guide/#admin-solutions-certificate-management

CHAPTER 12. REDEPLOYING CERTIFICATES

12.1. OVERVIEW

OpenShift Container Platform uses certificates to provide secure connections for the following
components:

masters (API server and controllers)

etcd

nodes

registry

router

You can use Ansible playbooks provided with the installer to automate checking expiration dates for
cluster certificates. Playbooks are also provided to automate backing up and redeploying these
certificates, which can fix common certificate errors.

Possible use cases for redeploying certificates include:

The installer detected the wrong host names and the issue was identified too late.

The certificates are expired and you need to update them.

You have a new CA and want to create certificates using it instead.

12.2. CHECKING CERTIFICATE EXPIRATIONS

You can use the installer to warn you about any certificates expiring within a configurable window of
days and notify you about any certificates that have already expired. Certificate expiry playbooks use
the Ansible role openshift_certificate_expiry.

Certificates examined by the role include:

Master and node service certificates

Router and registry service certificates from etcd secrets

Master, node, router, registry, and kubeconfig files for cluster-admin users

etcd certificates (including embedded)

Learn how to list all OpenShift TLS certificate expiration dates .

12.2.1. Role Variables

The openshift_certificate_expiry role uses the following variables:

Table 12.1. Core Variables

CHAPTER 12. REDEPLOYING CERTIFICATES

217

https://access.redhat.com/solutions/3930291

Variable Name Default Value Description

openshift_certificate_expiry_config
_base

/etc/origin Base OpenShift Container Platform
configuration directory.

openshift_certificate_expiry_warnin
g_days

365 Flag certificates that will expire in this
many days from now.

openshift_certificate_expiry_show_
all

no Include healthy (non-expired and non-
warning) certificates in results.

Table 12.2. Optional Variables

Variable Name Default Value Description

openshift_certificate_expiry_gener
ate_html_report

no Generate an HTML report of the expiry
check results.

openshift_certificate_expiry_html_r
eport_path

$HOME/cert-
expiry-
report.yyyymm
ddTHHMMSS.ht
ml

The full path for saving the HTML report.
Defaults to consist of home directory and
timestamp suffix of the report file.

openshift_certificate_expiry_save_j
son_results

no Save expiry check results as a JSON file.

openshift_certificate_expiry_json_r
esults_path

$HOME/cert-
expiry-
report.yyyymm
ddTHHMMSS.js
on

The full path for saving the JSON report.
Defaults to consist of home directory and
timestamp suffix of the report file.

12.2.2. Running Certificate Expiration Playbooks

The OpenShift Container Platform installer provides a set of example certificate expiration playbooks,
using different sets of configuration for the openshift_certificate_expiry role.

These playbooks must be used with an inventory file that is representative of the cluster. For best
results, run ansible-playbook with the -v option.

Using the easy-mode.yaml example playbook, you can try the role out before tweaking it to your
specifications as needed. This playbook:

Produces JSON and stylized HTML reports in $HOME directory.

Sets the warning window very large, so you will almost always get results back.

Includes all certificates (healthy or not) in the results.

OpenShift Container Platform 3.11 Configuring Clusters

218

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible

Change to the playbook directory and run the easy-mode.yaml playbook:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -v -i <inventory_file> \
 playbooks/openshift-checks/certificate_expiry/easy-mode.yaml

Other Example Playbooks
The other example playbooks are also available to run directly out of the /usr/share/ansible/openshift-
ansible/playbooks/certificate_expiry/ directory.

Table 12.3. Other Example Playbooks

File Name Usage

default.yaml Produces the default behavior of the
openshift_certificate_expiry role.

html_and_json_default_paths.yaml Generates HTML and JSON artifacts in their default
paths.

longer_warning_period.yaml Changes the expiration warning window to 1500 days.

longer-warning-period-json-results.yaml Changes the expiration warning window to 1500 days
and saves the results as a JSON file.

To run any of these example playbooks:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -v -i <inventory_file> \
 playbooks/openshift-checks/certificate_expiry/<playbook>

12.2.3. Output Formats

As noted above, there are two ways to format your check report. In JSON format for machine parsing, or
as a stylized HTML page for easy skimming.

HTML Report
An example of an HTML report is provided with the installer. You can open the following file in your
browser to view it:

/usr/share/ansible/openshift-ansible/roles/openshift_certificate_expiry/examples/cert-expiry-
report.html

JSON Report
There are two top-level keys in the saved JSON results: data and summary.

The data key is a hash where the keys are the names of each host examined and the values are the
check results for the certificates identified on each respective host.

The summary key is a hash that summarizes the total number of certificates:

examined on the entire cluster

CHAPTER 12. REDEPLOYING CERTIFICATES

219

that are OK

expiring within the configured warning window

already expired

For an example of the full JSON report, see /usr/share/ansible/openshift-
ansible/roles/openshift_certificate_expiry/examples/cert-expiry-report.json.

The summary from the JSON data can be easily checked for warnings or expirations using a variety of
command-line tools. For example, using grep you can look for the word summary and print out the two
lines after the match (-A2):

$ grep -A2 summary $HOME/cert-expiry-report.yyyymmddTHHMMSS.json
 "summary": {
 "warning": 16,
 "expired": 0

If available, the jq tool can also be used to pick out specific values. The first two examples below show
how to select just one value, either warning or expired. The third example shows how to select both
values at once:

$ jq '.summary.warning' $HOME/cert-expiry-report.yyyymmddTHHMMSS.json
16

$ jq '.summary.expired' $HOME/cert-expiry-report.yyyymmddTHHMMSS.json
0

$ jq '.summary.warning,.summary.expired' $HOME/cert-expiry-report.yyyymmddTHHMMSS.json
16
0

12.3. REDEPLOYING CERTIFICATES

WARNING

Redeployment playbooks restart control plane services and might cause cluster
downtime. An error in one service can cause a playbook to fail and affect cluster
health. If a playbook fails, you might need to resolve problems manually and restart
the playbook. A playbook must finish all tasks sequentially to succeed.

Use the following playbooks to redeploy master, etcd, node, registry, and router certificates on all
relevant hosts. You can redeploy all of them at once using the current CA, redeploy certificates for
specific components only, or redeploy a newly generated or custom CA on its own.

Just like the certificate expiry playbooks, these playbooks must be run with an inventory file that is
representative of the cluster.

In particular, the inventory must specify or override all host names and IP addresses set via the following



OpenShift Container Platform 3.11 Configuring Clusters

220

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible

In particular, the inventory must specify or override all host names and IP addresses set via the following
variables such that they match the current cluster configuration:

openshift_public_hostname

openshift_public_ip

openshift_master_cluster_hostname

openshift_master_cluster_public_hostname

The playbooks you need are provided by:

yum install openshift-ansible

NOTE

The validity (length in days until they expire) for any certificates auto-generated while
redeploying can be configured via Ansible as well. See Configuring Certificate Validity.

NOTE

OpenShift Container Platform CA and etcd certificates expire after five years. Signed
OpenShift Container Platform certificates expire after two years.

12.3.1. Redeploying All Certificates Using the Current OpenShift Container Platform
and etcd CA

The redeploy-certificates.yml playbook does not regenerate the OpenShift Container Platform CA
certificate. New master, etcd, node, registry, and router certificates are created using the current CA
certificate to sign new certificates.

This also includes serial restarts of:

etcd

master services

node services

To redeploy master, etcd, and node certificates using the current OpenShift Container Platform CA,
change to the playbook directory and run this playbook, specifying your inventory file:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <inventory_file> \
 playbooks/redeploy-certificates.yml

IMPORTANT

If the OpenShift Container Platform CA was redeployed with the openshift-
master/redeploy-openshift-ca.yml playbook you must add -e
openshift_redeploy_openshift_ca=true to this command.

12.3.2. Redeploying a New or Custom OpenShift Container Platform CA

CHAPTER 12. REDEPLOYING CERTIFICATES

221

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-install-config-certificate-validity

The openshift-master/redeploy-openshift-ca.yml playbook redeploys the OpenShift Container
Platform CA certificate by generating a new CA certificate and distributing an updated bundle to all
components including client kubeconfig files and the node’s database of trusted CAs (the CA-trust).

This also includes serial restarts of:

master services

node services

docker

Additionally, you can specify a custom CA certificate when redeploying certificates instead of relying on
a CA generated by OpenShift Container Platform.

When the master services are restarted, the registry and routers can continue to communicate with the
master without being redeployed because the master’s serving certificate is the same, and the CA the
registry and routers have are still valid.

To redeploy a newly generated or custom CA:

1. If you want to use a custom CA, set the following variable in your inventory file. To use the
current CA, skip this step.

Configure custom ca certificate
NOTE: CA certificate will not be replaced with existing clusters.
This option may only be specified when creating a new cluster or
when redeploying cluster certificates with the redeploy-certificates
playbook.
openshift_master_ca_certificate={'certfile': '</path/to/ca.crt>', 'keyfile': '</path/to/ca.key>'}

If the CA certificate is issued by an intermediate CA, the bundled certificate must contain the
full chain (the intermediate and root certificates) for the CA in order to validate child
certificates.

For example:

$ cat intermediate/certs/intermediate.cert.pem \
 certs/ca.cert.pem >> intermediate/certs/ca-chain.cert.pem

2. Change to the playbook directory and run the openshift-master/redeploy-openshift-ca.yml
playbook, specifying your inventory file:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <inventory_file> \
 playbooks/openshift-master/redeploy-openshift-ca.yml

With the new OpenShift Container Platform CA in place, use the redeploy-certificates.yml
playbook whenever you want to redeploy certificates that are signed by the new CA on all
components.

IMPORTANT

OpenShift Container Platform 3.11 Configuring Clusters

222

IMPORTANT

When using the redeploy-certificates.yml playbook after the new OpenShift
Container Platform CA is in place, you must add -e
openshift_redeploy_openshift_ca=true to the playbook command.

12.3.3. Redeploying a New etcd CA

The openshift-etcd/redeploy-ca.yml playbook redeploys the etcd CA certificate by generating a new
CA certificate and distributing an updated bundle to all etcd peers and master clients.

This also includes serial restarts of:

etcd

master services

To redeploy a newly generated etcd CA:

1. Run the openshift-etcd/redeploy-ca.yml playbook, specifying your inventory file:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <inventory_file> \
 playbooks/openshift-etcd/redeploy-ca.yml

IMPORTANT

After you run the playbooks/openshift-etcd/redeploy-ca.yml playbook for the first
time, a compressed bundle containing the CA signers is persisted to
/etc/etcd/etcd_ca.tgz. Because the CA signers are required for the generation of new
etcd certificates, it is important that they are backed up.

If the playbook is run again, as a precaution it does not overwrite this bundle on disk. To
run the playbook again, back up and move the bundle from this path and then run the
playbook.

With the new etcd CA in place, you can then use the openshift-etcd/redeploy-certificates.yml
playbook at your discretion whenever you want to redeploy certificates signed by the new etcd CA on
etcd peers and master clients. Alternatively, you can use the redeploy-certificates.yml playbook to
redeploy certificates for OpenShift Container Platform components in addition to etcd peers and
master clients.

NOTE

The etcd certificate redeployment can result in copying the serial to all master hosts.

12.3.4. Redeploying Master and Web Console Certificates

The openshift-master/redeploy-certificates.yml playbook redeploys master certificates and web
console certificates. This also includes serial restarts of master services.

To redeploy master certificates and web console certificates, change to the playbook directory and run
this playbook, specifying your inventory file:

CHAPTER 12. REDEPLOYING CERTIFICATES

223

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <inventory_file> \
 playbooks/openshift-master/redeploy-certificates.yml

NOTE

If you use named certificates, you must update the named certificate parameters in the
master-config.yaml file on each master node. If necessary, concatenate all of the
required files that form your certificate chain for the certificate file that is provided to the
certFile parameter.

Then, restart the OpenShift Container Platform master services to apply the changes.

IMPORTANT

After running this playbook, you must regenerate any service signing certificate or key
pairs by deleting existing secrets that contain service serving certificates or removing and
re-adding annotations to appropriate services.

You can set the openshift_redeploy_service_signer=false parameter in the inventory file to skip the
redeployment of the service signer certificate, if required. If you set
openshift_redeploy_openshift_ca=true and openshift_redeploy_service_signer=true in the
inventory file, the service signing certificate is redeployed when you redeploy the master certificates. If
you set openshift_redeploy_openshift_ca=false or omit the parameter, the service signer certificate
is never redeployed.

12.3.5. Redeploying Only Named Certificates

The openshift-master/redeploy-named-certificates.yml playbook redeploys only named certificates.
Running this playbook also completes serial restarts of master services.

To redeploy named certificates only, change to the directory that contains the playbooks, and run this
playbook.

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <inventory_file> \
 playbooks/openshift-master/redeploy-named-certificates.yml

NOTE

The _ openshift_master_named_certificates_ parameter in ansible inventory file must
contain certificates with the same name as in the master-config.yaml file. If the names of
certfile and keyfile are changed, you must update the named certificate parameters in
the master-config.yaml file on each master node and restart the api and controllers
services. The cafile with the full ca chain is added to /etc/origin/master/ca-bundle.crt.

12.3.6. Redeploying etcd Certificates Only

The openshift-etcd/redeploy-certificates.yml playbook only redeploys etcd certificates including
master client certificates.

This also include serial restarts of:

OpenShift Container Platform 3.11 Configuring Clusters

224

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#service-serving-certificate-secrets

etcd

master services.

To redeploy etcd certificates, change to the playbook directory and run this playbook, specifying your
inventory file:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <inventory_file> \
 playbooks/openshift-etcd/redeploy-certificates.yml

12.3.7. Redeploying Node Certificates

By default, node certificates are valid for one year. OpenShift Container Platform automatically rotates
node certificates when they get close to expiring. If automatic approval is not configured, you must
manually approve the certificate signing requests (CSRs) .

If you need to redeploy certificates because the CA certificate was changed, you can use the
playbooks/redeploy-certificates.yml playbook with the -e openshift_redeploy_openshift_ca=true
flag. See Redeploying All Certificates Using the Current OpenShift Container Platform and etcd CA for
details. When running this playbook, the CSRs are automatically approved.

12.3.8. Redeploying Registry or Router Certificates Only

The openshift-hosted/redeploy-registry-certificates.yml and openshift-hosted/redeploy-router-
certificates.yml playbooks replace installer-created certificates for the registry and router. If custom
certificates are in use for these components, see Redeploying Custom Registry or Router Certificates to
replace them manually.

12.3.8.1. Redeploying Registry Certificates Only

To redeploy registry certificates, change to the playbook directory and run the following playbook,
specifying your inventory file:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <inventory_file> \
 playbooks/openshift-hosted/redeploy-registry-certificates.yml

12.3.8.2. Redeploying Router Certificates Only

To redeploy router certificates, change to the playbook directory and run the following playbook,
specifying your inventory file:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <inventory_file> \
 playbooks/openshift-hosted/redeploy-router-certificates.yml

12.3.9. Redeploying Custom Registry or Router Certificates

When nodes are evacuated due to a redeployed CA, registry and router pods are restarted. If the
registry and router certificates were not also redeployed with the new CA, this can cause outages
because they cannot reach the masters using their old certificates.

CHAPTER 12. REDEPLOYING CERTIFICATES

225

12.3.9.1. Redeploying Registry Certificates Manually

To redeploy registry certificates manually, you must add new registry certificates to a secret named
registry-certificates, then redeploy the registry:

1. Switch to the default project for the remainder of these steps:

$ oc project default

2. If your registry was initially created on OpenShift Container Platform 3.1 or earlier, it may still be
using environment variables to store certificates (which has been deprecated in favor of using
secrets).

a. Run the following and look for the OPENSHIFT_CA_DATA, OPENSHIFT_CERT_DATA,
OPENSHIFT_KEY_DATA environment variables:

$ oc set env dc/docker-registry --list

b. If they do not exist, skip this step. If they do, create the following ClusterRoleBinding:

$ cat <<EOF |
apiVersion: v1
groupNames: null
kind: ClusterRoleBinding
metadata:
 creationTimestamp: null
 name: registry-registry-role
roleRef:
 kind: ClusterRole
 name: system:registry
subjects:
- kind: ServiceAccount
 name: registry
 namespace: default
userNames:
- system:serviceaccount:default:registry
EOF
oc create -f -

Then, run the following to remove the environment variables:

$ oc set env dc/docker-registry OPENSHIFT_CA_DATA- OPENSHIFT_CERT_DATA-
OPENSHIFT_KEY_DATA- OPENSHIFT_MASTER-

3. Set the following environment variables locally to make later commands less complex:

$ REGISTRY_IP=`oc get service docker-registry -o jsonpath='{.spec.clusterIP}'`
$ REGISTRY_HOSTNAME=`oc get route/docker-registry -o jsonpath='{.spec.host}'`

4. Create new registry certificates:

$ oc adm ca create-server-cert \
 --signer-cert=/etc/origin/master/ca.crt \
 --signer-key=/etc/origin/master/ca.key \

OpenShift Container Platform 3.11 Configuring Clusters

226

 --hostnames=$REGISTRY_IP,docker-registry.default.svc,docker-
registry.default.svc.cluster.local,$REGISTRY_HOSTNAME \
 --cert=/etc/origin/master/registry.crt \
 --key=/etc/origin/master/registry.key \
 --signer-serial=/etc/origin/master/ca.serial.txt

Run oc adm commands only from the first master listed in the Ansible host inventory file, by
default /etc/ansible/hosts.

5. Update the registry-certificates secret with the new registry certificates:

$ oc create secret generic registry-certificates \
 --from-file=/etc/origin/master/registry.crt,/etc/origin/master/registry.key \
 -o json --dry-run | oc replace -f -

6. Redeploy the registry:

$ oc rollout latest dc/docker-registry

12.3.9.2. Redeploying Router Certificates Manually

To redeploy router certificates manually, you must add new router certificates to a secret named router-
certs, then redeploy the router:

1. Switch to the default project for the remainder of these steps:

$ oc project default

2. If your router was initially created on OpenShift Container Platform 3.1 or earlier, it might still
use environment variables to store certificates, which has been deprecated in favor of using
service serving certificate secret.

a. Run the following command and look for the OPENSHIFT_CA_DATA,
OPENSHIFT_CERT_DATA, OPENSHIFT_KEY_DATA environment variables:

$ oc set env dc/router --list

b. If those variables exist, create the following ClusterRoleBinding:

$ cat <<EOF |
apiVersion: v1
groupNames: null
kind: ClusterRoleBinding
metadata:
 creationTimestamp: null
 name: router-router-role
roleRef:
 kind: ClusterRole
 name: system:router
subjects:
- kind: ServiceAccount
 name: router
 namespace: default
userNames:

CHAPTER 12. REDEPLOYING CERTIFICATES

227

- system:serviceaccount:default:router
EOF
oc create -f -

c. If those variables exist, run the following command to remove them:

$ oc set env dc/router OPENSHIFT_CA_DATA- OPENSHIFT_CERT_DATA-
OPENSHIFT_KEY_DATA- OPENSHIFT_MASTER-

3. Obtain a certificate.

If you use an external Certificate Authority (CA) to sign your certificates, create a new
certificate and provide it to OpenShift Container Platform by following your internal
processes.

If you use the internal OpenShift Container Platform CA to sign certificates, run the
following commands:

IMPORTANT

The following commands generate a certificate that is internally signed. It will
be trusted by only clients that trust the OpenShift Container Platform CA.

$ cd /root
$ mkdir cert ; cd cert
$ oc adm ca create-server-cert \
 --signer-cert=/etc/origin/master/ca.crt \
 --signer-key=/etc/origin/master/ca.key \
 --signer-serial=/etc/origin/master/ca.serial.txt \
 --hostnames='*.hostnames.for.the.certificate' \
 --cert=router.crt \
 --key=router.key \

These commands generate the following files:

A new certificate named router.crt.

A copy of the signing CA certificate chain, /etc/origin/master/ca.crt. This chain can
contain more than one certificate if you use intermediate CAs.

A corresponding private key named router.key.

4. Create a new file that concatenates the generated certificates:

$ cat router.crt /etc/origin/master/ca.crt router.key > router.pem

NOTE

This step is only valid if you are using a certificate signed by the OpenShift CA. If a
custom certificate is used, a file with the correct CA chain should be used instead
of /etc/origin/master/ca.crt.

5. Before you generate a new secret, back up the current one:

OpenShift Container Platform 3.11 Configuring Clusters

228

1

$ oc get -o yaml --export secret router-certs > ~/old-router-certs-secret.yaml

6. Create a new secret to hold the new certificate and key, and replace the contents of the existing
secret:

$ oc create secret tls router-certs --cert=router.pem \ 1
 --key=router.key -o json --dry-run | \
 oc replace -f -

router.pem is the file that contains the concatenation of the certificates that you
generated.

7. Redeploy the router:

$ oc rollout latest dc/router

When routers are initially deployed, an annotation is added to the router’s service that
automatically creates a service serving certificate secret named router-metrics-tls.

To redeploy router-metrics-tls certificates manually, that service serving certificate can be
triggered to be recreated by deleting the secret, removing and re-adding annotations to the
router service, then redeploying the router-metrics-tls secret:

8. Remove the following annotations from the router service:

$ oc annotate service router \
 service.alpha.openshift.io/serving-cert-secret-name- \
 service.alpha.openshift.io/serving-cert-signed-by-

9. Remove the existing router-metrics-tls secret.

$ oc delete secret router-metrics-tls

10. Re-add the annotations:

$ oc annotate service router \
 service.alpha.openshift.io/serving-cert-secret-name=router-metrics-tls

12.4. MANAGING CERTIFICATE SIGNING REQUESTS

Cluster administrators can review certificate signing requests (CSRs) and approve or deny them.

12.4.1. Reviewing Certificate Signing Requests

You can review the list of certificate signing requests (CSRs).

Get the list of current CSRs:

$ oc get csr

View the details of a CSR to verify that it is valid:

CHAPTER 12. REDEPLOYING CERTIFICATES

229

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#service-serving-certificate-secrets

1

1

1

$ oc describe csr <csr_name> 1

<csr_name> is the name of a CSR from the list of current CSRs.

12.4.2. Approving Certificate Signing Requests

You can manually approve certificate signing requests (CSRs) by using the oc certificate approve
command.

Approve a CSR:

$ oc adm certificate approve <csr_name> 1

<csr_name> is the name of a CSR from the list of current CSRs.

Approve all pending CSRs:

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}
{{end}}' | xargs oc adm certificate approve

12.4.3. Denying Certificate Signing Requests

You can manually deny certificate signing requests (CSRs) by using the oc certificate deny command.

Deny a CSR:

$ oc adm certificate deny <csr_name> 1

<csr_name> is the name of a CSR from the list of current CSRs.

12.4.4. Configuring Automatic Approval of Certificate Signing Requests

You can configure automatic approval of node certificate signing requests (CSRs) by specifying adding
the following parameter to your Ansible inventory file when installing your cluster:

openshift_master_bootstrap_auto_approve=true

Adding this parameter allows all CSRs generated by using the bootstrap credential or from a previously
authenticated node with the same host name to be approved without any administrator intervention.

For more information, see Configuring Cluster Variables .

OpenShift Container Platform 3.11 Configuring Clusters

230

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-cluster-variables

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER
AGENT

13.1. OVERVIEW

The OpenShift Container Platform master includes a built-in OAuth server. Developers and
administrators obtain OAuth access tokens to authenticate themselves to the API.

As an administrator, you can configure OAuth using the master configuration file to specify an identity
provider. It is a best practice to configure your identity provider during cluster installation, but you can
configure it after installation.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

The Deny All identity provider is used by default, which denies access for all user names and passwords.
To allow access, you must choose a different identity provider and configure the master configuration
file appropriately (located at /etc/origin/master/master-config.yaml by default).

When you run a master without a configuration file, the Allow All identity provider is used by default,
which allows any non-empty user name and password to log in. This is useful for testing purposes. To
use other identity providers, or to modify any token, grant, or session options, you must run the master
from a configuration file.

NOTE

Roles need to be assigned to administer the setup with an external user.

After making changes to an identity provider, you must restart the master services for the changes to
take effect:

master-restart api
master-restart controllers

13.2. IDENTITY PROVIDER PARAMETERS

There are four parameters common to all identity providers:

Parameter Description

name The provider name is prefixed to provider user names to form an identity name.

challenge When true, unauthenticated token requests from non-web clients (like the CLI) are
sent a WWW-Authenticate challenge header. Not supported by all identity providers.

To prevent cross-site request forgery (CSRF) attacks against browser clients Basic
authentication challenges are only sent if a X-CSRF-Token header is present on the
request. Clients that expect to receive Basic WWW-Authenticate challenges should
set this header to a non-empty value.

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

231

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#oauth
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#api-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-cluster-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#roles

login When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider. Not supported by all identity
providers.

If you want users to be sent to a branded page before being redirected to the identity
provider’s login, then set oauthConfig → alwaysShowProviderSelection: true in
the master configuration file. This provider selection page can be customized.

mappingMethod Defines how new identities are mapped to users when they log in. Enter one of the
following values:

claim
The default value. Provisions a user with the identity’s preferred user name. Fails if a
user with that user name is already mapped to another identity.

lookup
Looks up an existing identity, user identity mapping, and user, but does not
automatically provision users or identities. This allows cluster administrators to set
up identities and users manually, or using an external process. Using this method
requires you to manually provision users. See Manually Provisioning a User When
Using the Lookup Mapping Method.

generate
Provisions a user with the identity’s preferred user name. If a user with the preferred
user name is already mapped to an existing identity, a unique user name is
generated. For example, myuser2. This method should not be used in combination
with external processes that require exact matches between OpenShift Container
Platform user names and identity provider user names, such as LDAP group sync.

add
Provisions a user with the identity’s preferred user name. If a user with that user
name already exists, the identity is mapped to the existing user, adding to any
existing identity mappings for the user. Required when multiple identity providers
are configured that identify the same set of users and map to the same user names.

Parameter Description

NOTE

When adding or changing identity providers, you can map identities from the new
provider to existing users by setting the mappingMethod parameter to add.

13.3. CONFIGURING IDENTITY PROVIDERS

OpenShift Container Platform does not support configuring multiple LDAP servers for the same identity
provider. However, you can extend the basic authentication for more complex configurations such as
LDAP failover.

You can use these parameters to define the identity provider during installation or after installation.

13.3.1. Configuring identity providers with Ansible

For initial cluster installations, the Deny All identity provider is configured by default, though it can be
overriden during installation by configuring openshift_master_identity_providers parameter in the
inventory file. Session options in the OAuth configuration are also configurable in the inventory file.

OpenShift Container Platform 3.11 Configuring Clusters

232

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-cluster-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-install-session-options

1

2 3 4

Example identity provider configuration with Ansible

htpasswd auth
openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login': 'true', 'challenge': 'true', 'kind':
'HTPasswdPasswordIdentityProvider'}]
Defining htpasswd users
#openshift_master_htpasswd_users={'user1': '<pre-hashed password>', 'user2': '<pre-hashed
password>'}
or
#openshift_master_htpasswd_file=/etc/origin/master/htpasswd

Allow all auth
#openshift_master_identity_providers=[{'name': 'allow_all', 'login': 'true', 'challenge': 'true', 'kind':
'AllowAllPasswordIdentityProvider'}]

LDAP auth
#openshift_master_identity_providers=[{'name': 'my_ldap_provider', 'challenge': 'true', 'login': 'true',
'kind': 'LDAPPasswordIdentityProvider', 'attributes': {'id': ['dn'], 'email': ['mail'], 'name': ['cn'],
'preferredUsername': ['uid']}, 'bindDN': '', 'bindPassword': '', 'insecure': 'false', 'url':
'ldap://ldap.example.com:389/ou=users,dc=example,dc=com?uid'}]
Configuring the ldap ca certificate 1
#openshift_master_ldap_ca=<ca text>
or
#openshift_master_ldap_ca_file=<path to local ca file to use> 2

Available variables for configuring certificates for other identity providers:
#openshift_master_openid_ca
#openshift_master_openid_ca_file 3
#openshift_master_request_header_ca
#openshift_master_request_header_ca_file 4

If you specified 'insecure': 'true' in the openshift_master_identity_providers parameter for only
an LDAP identity provider, you can omit the CA certificate.

If you specify a file on the host you run the playbook on, its contents are copied to the
/etc/origin/master/<identity_provider_name>_<identity_provider_type>_ca.crt file. The

identity provider name is the value of the openshift_master_identity_providers parameter, ldap,
openid, or request_header. If you do not specify the CA text or the path to the local CA file, you
must place the CA certificate in this location. If you specify multiple identity providers, you must
manually place the CA certificate for each provider in this location. You cannot change this
location.

You can specify multiple identity providers. If you do, you must place the CA certificate for each identity
provider in the /etc/origin/master/ directory. For example, you include the following providers in your
openshift_master_identity_providers value:

openshift_master_identity_providers:
- name: foo
 provider:
 kind: OpenIDIdentityProvider
 ...
- name: bar
 provider:
 kind: OpenIDIdentityProvider

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

233

 ...
- name: baz
 provider:
 kind: RequestHeaderIdentityProvider
 ...

You must place the CA certificates for these identity providers in the following files:

/etc/origin/master/foo_openid_ca.crt

/etc/origin/master/bar_openid_ca.crt

/etc/origin/master/baz_requestheader_ca.crt

13.3.2. Configuring identity providers in the master configuration file

You can configure the master host for authentication using your desired identity provider by modifying
the master configuration file.

Example 13.1. Example identity provider configuration in the master configuration file

...
oauthConfig:
 identityProviders:
 - name: htpasswd_auth
 challenge: true
 login: true
 mappingMethod: "claim"
...

When set to the default claim value, OAuth will fail if the identity is mapped to a previously-existing user
name.

13.3.2.1. Manually provisioning a user when using the lookup mapping method

When using the lookup mapping method, user provisioning is done by an external system, via the API.
Typically, identities are automatically mapped to users during login. The 'lookup' mapping method
automatically disables this automatic mapping, which requires you to provision users manually.

For more information on identity objects, see the Identity user API obejct.

If you are using the lookup mapping method, use the following steps for each user after configuring the
identity provider:

1. Create an OpenShift Container Platform User, if not created already:

$ oc create user <username>

For example, the following command creates a OpenShift Container Platform User bob:

$ oc create user bob

2. Create an OpenShift Container Platform Identity, if not created already. Use the name of the

OpenShift Container Platform 3.11 Configuring Clusters

234

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#identity

1

2

3

4

2. Create an OpenShift Container Platform Identity, if not created already. Use the name of the
identity provider and the name that uniquely represents this identity in the scope of the identity
provider:

$ oc create identity <identity-provider>:<user-id-from-identity-provider>

The <identity-provider> is the name of the identity provider in the master configuration, as
shown in the appropriate identity provider section below.

For example, the following commands creates an Identity with identity provider ldap_provider
and the identity provider user name bob_s.

$ oc create identity ldap_provider:bob_s

3. Create a user/identity mapping for the created user and identity:

$ oc create useridentitymapping <identity-provider>:<user-id-from-identity-provider>
<username>

For example, the following command maps the identity to the user:

$ oc create useridentitymapping ldap_provider:bob_s bob

13.3.3. Allow all

Set AllowAllPasswordIdentityProvider in the identityProviders stanza to allow any non-empty user
name and password to log in.

Example 13.2. Master configuration using AllowAllPasswordIdentityProvider

oauthConfig:
 ...
 identityProviders:
 - name: my_allow_provider 1
 challenge: true 2
 login: true 3
 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: AllowAllPasswordIdentityProvider

This provider name is prefixed to provider user names to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a
WWW-Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

235

1

2

3

4

13.3.4. Deny all

Set DenyAllPasswordIdentityProvider in the identityProviders stanza to deny access for all user
names and passwords.

Example 13.3. Master configuration using DenyAllPasswordIdentityProvider

oauthConfig:
 ...
 identityProviders:
 - name: my_deny_provider 1
 challenge: true 2
 login: true 3
 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: DenyAllPasswordIdentityProvider

This provider name is prefixed to provider user names to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a
WWW-Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

13.3.5. HTPasswd

Set HTPasswdPasswordIdentityProvider in the identityProviders stanza to validate user names and
passwords against a flat file generated using htpasswd.

NOTE

The htpasswd utility is in the httpd-tools package:

yum install httpd-tools

OpenShift Container Platform supports the Bcrypt, SHA-1, and MD5 cryptographic hash functions, and
MD5 is the default for htpasswd. Plaintext, encrypted text, and other hash functions are not currently
supported.

The flat file is reread if its modification time changes, without requiring a server restart.

IMPORTANT

Because the OpenShift Container Platform master API now runs as a static pod, you
must create the HTPasswdPasswordIdentityProvider htpasswd file in
/etc/origin/master/ so it can be read by the container.

OpenShift Container Platform 3.11 Configuring Clusters

236

http://httpd.apache.org/docs/2.4/programs/htpasswd.html

1

To use the htpasswd command:

To create a flat file with a user name and hashed password, run:

$ htpasswd -c /etc/origin/master/htpasswd <user_name>

Then, enter and confirm a clear-text password for the user. The command generates a hashed
version of the password.

For example:

htpasswd -c /etc/origin/master/htpasswd user1
New password:
Re-type new password:
Adding password for user user1

NOTE

You can include the -b option to supply the password on the command line:

$ htpasswd -c -b <user_name> <password>

For example:

$ htpasswd -c -b file user1 MyPassword!
Adding password for user user1

To add or update a login to the file, run:

$ htpasswd /etc/origin/master/htpasswd <user_name>

To remove a login from the file, run:

$ htpasswd -D /etc/origin/master/htpasswd <user_name>

Example 13.4. Master configuration using HTPasswdPasswordIdentityProvider

oauthConfig:
 ...
 identityProviders:
 - name: my_htpasswd_provider 1
 challenge: true 2
 login: true 3
 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: HTPasswdPasswordIdentityProvider
 file: /etc/origin/master/htpasswd 5

This provider name is prefixed to provider user names to form an identity name.

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

237

2

3

4

5

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a
WWW-Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

File generated using htpasswd.

13.3.6. Keystone

Keystone is an OpenStack project that provides identity, token, catalog, and policy services. You can
integrate your OpenShift Container Platform cluster with Keystone to enable shared authentication
with an OpenStack Keystone v3 server configured to store users in an internal database. This
configuration allows users to log in to OpenShift Container Platform with their Keystone credentials.

You can configure the integration with Keystone so that the new OpenShift Container Platform users
are based on either the Keystone user names or unique Keystone IDs. With both methods, users log in
by entering their Keystone user name and password. Basing the OpenShift Container Platform users off
of the Keystone ID is more secure. If you delete a Keystone user and create a new Keystone user with
that user name, the new user might have access to the old user’s resources.

13.3.6.1. Configuring authentication on the master

1. If you have:

Already completed the installation of Openshift, then copy the
/etc/origin/master/master-config.yaml file into a new directory; for example:

$ cd /etc/origin/master
$ mkdir keystoneconfig; cp master-config.yaml keystoneconfig

Not yet installed OpenShift Container Platform, then start the OpenShift Container
Platform API server, specifying the hostname of the (future) OpenShift Container Platform
master and a directory to store the configuration file created by the start command:

$ openshift start master --public-master=<apiserver> --write-config=<directory>

For example:

$ openshift start master --public-master=https://myapiserver.com:8443 --write-
config=keystoneconfig

NOTE

If you are installing with Ansible, then you must add the identityProvider
configuration to the Ansible playbook. If you use the following steps to
modify your configuration manually after installing with Ansible, then you will
lose any modifications whenever you re-run the install tool or upgrade.

2. Edit the new keystoneconfig/master-config.yaml file’s identityProviders stanza, and copy the

OpenShift Container Platform 3.11 Configuring Clusters

238

http://httpd.apache.org/docs/2.4/programs/htpasswd.html
http://docs.openstack.org/developer/keystone/

1

2

3

4

5

6

7

8

9

10

2. Edit the new keystoneconfig/master-config.yaml file’s identityProviders stanza, and copy the
example KeystonePasswordIdentityProvider configuration and paste it to replace the existing
stanza:

oauthConfig:
 ...
 identityProviders:
 - name: my_keystone_provider 1
 challenge: true 2
 login: true 3
 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: KeystonePasswordIdentityProvider
 domainName: default 5
 url: http://keystone.example.com:5000 6
 ca: ca.pem 7
 certFile: keystone.pem 8
 keyFile: keystonekey.pem 9
 useKeystoneIdentity: false 10

This provider name is prefixed to provider user names to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a
WWW-Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

Controls how mappings are established between this provider’s identities and user objects,
as described above.

Keystone domain name. In Keystone, usernames are domain-specific. Only a single domain
is supported.

The URL to use to connect to the Keystone server (required).

Optional: Certificate bundle to use to validate server certificates for the configured URL.

Optional: Client certificate to present when making requests to the configured URL.

Key for the client certificate. Required if certFile is specified.

When true, indicates that user is authenticated by Keystone ID, not by Keystone user
name. Set to false to authenticate by user name.

3. Make the following modifications to the identityProviders stanza:

a. Change the provider name ("my_keystone_provider") to match your Keystone server. This
name is prefixed to provider user names to form an identity name.

b. If required, change mappingMethod to control how mappings are established between the
provider’s identities and user objects.

c. Change the domainName to the domain name of your OpenStack Keystone server. In

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

239

1

c. Change the domainName to the domain name of your OpenStack Keystone server. In
Keystone, user names are domain-specific. Only a single domain is supported.

d. Specify the url to use to connect to your OpenStack Keystone server.

e. Optionally, to authenticate users by Keystone ID instead of Keystone user name, set
useKeystoneIdentity to true.

f. Optionally, change the ca to the certificate bundle to use in order to validate server
certificates for the configured URL.

g. Optionally, change the certFile to the client certificate to present when making requests to
the configured URL.

h. If certFile is specified, then you must change the keyFile to the key for the client
certificate.

4. Save your changes and close the file.

5. Start the OpenShift Container Platform API server, specifying the configuration file you just
modified:

$ openshift start master --config=<path/to/modified/config>/master-config.yaml

Once configured, any user logging in to the OpenShift Container Platform web console will be
prompted to log in using their Keystone credentials.

13.3.6.2. Creating Users with Keystone Authentication

You do not create users in OpenShift Container Platform when integrating with an external
authentication provider, such as, in this case, Keystone. Keystone is the system of record, meaning that
users are defined in a Keystone database, and any user with a valid Keystone user name for the
configured authentication server can log in.

To add a user to OpenShift Container Platform, the user must exist in the Keystone database, and if
required you must create a new Keystone account for the user.

13.3.6.3. Verifying Users

Once one or more users have logged in, you can run oc get users to view a list of users and verify that
users were created successfully:

Example 13.5. Output of oc get users command

$ oc get users
NAME UID FULL NAME IDENTITIES
bobsmith a0c1d95c-1cb5-11e6-a04a-002186a28631 Bob Smith keystone:bobsmith 1

Identities in OpenShift Container Platform are comprised of the identity provider name
prefixed to the Keystone user name.

From here, you might want to learn how to manage user roles.

OpenShift Container Platform 3.11 Configuring Clusters

240

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#managing-role-bindings

13.3.7. LDAP authentication

Set LDAPPasswordIdentityProvider in the identityProviders stanza to validate user names and
passwords against an LDAPv3 server, using simple bind authentication.

NOTE

If you require failover for your LDAP server, instead of following these steps, extend the
basic authentication method by configuring SSSD for LDAP failover .

During authentication, the LDAP directory is searched for an entry that matches the provided user
name. If a single unique match is found, a simple bind is attempted using the distinguished name (DN) of
the entry plus the provided password.

These are the steps taken:

1. Generate a search filter by combining the attribute and filter in the configured url with the
user-provided user name.

2. Search the directory using the generated filter. If the search does not return exactly one entry,
deny access.

3. Attempt to bind to the LDAP server using the DN of the entry retrieved from the search, and
the user-provided password.

4. If the bind is unsuccessful, deny access.

5. If the bind is successful, build an identity using the configured attributes as the identity, email
address, display name, and preferred user name.

The configured url is an RFC 2255 URL, which specifies the LDAP host and search parameters to use.
The syntax of the URL is:

ldap://host:port/basedn?attribute?scope?filter

For the above example:

URL Component Description

ldap For regular LDAP, use the string ldap. For secure LDAP (LDAPS), use ldaps instead.

host:port The name and port of the LDAP server. Defaults to localhost:389 for ldap and
localhost:636 for LDAPS.

basedn The DN of the branch of the directory where all searches should start from. At the very
least, this must be the top of your directory tree, but it could also specify a subtree in
the directory.

attribute The attribute to search for. Although RFC 2255 allows a comma-separated list of
attributes, only the first attribute will be used, no matter how many are provided. If no
attributes are provided, the default is to use uid. It is recommended to choose an
attribute that will be unique across all entries in the subtree you will be using.

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

241

1

scope The scope of the search. Can be either one or sub. If the scope is not provided, the
default is to use a scope of sub.

filter A valid LDAP search filter. If not provided, defaults to (objectClass=*)

URL Component Description

When doing searches, the attribute, filter, and provided user name are combined to create a search filter
that looks like:

(&(<filter>)(<attribute>=<username>))

For example, consider a URL of:

ldap://ldap.example.com/o=Acme?cn?sub?(enabled=true)

When a client attempts to connect using a user name of bob, the resulting search filter will be (&
(enabled=true)(cn=bob)).

If the LDAP directory requires authentication to search, specify a bindDN and bindPassword to use to
perform the entry search.

Master configuration using LDAPPasswordIdentityProvider

oauthConfig:
 ...
 identityProviders:
 - name: "my_ldap_provider" 1
 challenge: true 2
 login: true 3
 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: LDAPPasswordIdentityProvider
 attributes:
 id: 5
 - dn
 email: 6
 - mail
 name: 7
 - cn
 preferredUsername: 8
 - uid
 bindDN: "" 9
 bindPassword: "" 10
 ca: my-ldap-ca-bundle.crt 11
 insecure: false 12
 url: "ldap://ldap.example.com/ou=users,dc=acme,dc=com?uid" 13

This provider name is prefixed to the returned user ID to form an identity name.

OpenShift Container Platform 3.11 Configuring Clusters

242

2

3

4

5

6

7

8

9

10

11

12

13

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a WWW-
Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are redirected
to a login page backed by this provider.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

List of attributes to use as the identity. First non-empty attribute is used. At least one attribute is
required. If none of the listed attribute have a value, authentication fails.

List of attributes to use as the email address. First non-empty attribute is used.

List of attributes to use as the display name. First non-empty attribute is used.

List of attributes to use as the preferred user name when provisioning a user for this identity. First
non-empty attribute is used.

Optional DN to use to bind during the search phase.

Optional password to use to bind during the search phase. This value may also be provided in an
environment variable, external file, or encrypted file .

Certificate bundle to use to validate server certificates for the configured URL. The contents of
this file are copied to the /etc/origin/master/<identity_provider_name>_ldap_ca.crt file. The
identity provider name is the value of the openshift_master_identity_providers parameter. If you
do not specify the CA text or the path to the local CA file, you must place the CA certificate in the
/etc/origin/master/ directory. If you specify multiple identity providers, you must manually place
the CA certificate for each provider in the /etc/origin/master/ directory. You cannot change this
location. Defining the certificate bundle only applies if insecure: false is set in the inventory file.

When true, no TLS connection is made to the server. When false, ldaps:// URLs connect using TLS,
and ldap:// URLs are upgraded to TLS.

An RFC 2255 URL which specifies the LDAP host and search parameters to use, as described
above.

NOTE

To whitelist users for an LDAP integration, use the lookup mapping method. Before a
login from LDAP would be allowed, a cluster administrator must create an identity and
user object for each LDAP user.

13.3.8. Basic authentication (remote)

Basic Authentication is a generic backend integration mechanism that allows users to log in to OpenShift
Container Platform with credentials validated against a remote identity provider.

Because basic authentication is generic, you can use this identity provider for advanced authentication
configurations. You can configure LDAP failover or use the containerized basic authentication
repository as a starting point for another advanced remote basic authentication configuration.

CAUTION

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

243

https://github.com/openshift/basic-authentication-provider-example

1

CAUTION

Basic authentication must use an HTTPS connection to the remote server to prevent potential snooping
of the user ID and password and man-in-the-middle attacks.

With BasicAuthPasswordIdentityProvider configured, users send their user name and password to
OpenShift Container Platform, which then validates those credentials against a remote server by making
a server-to-server request, passing the credentials as a Basic Auth header. This requires users to send
their credentials to OpenShift Container Platform during login.

NOTE

This only works for user name/password login mechanisms, and OpenShift Container
Platform must be able to make network requests to the remote authentication server.

Set BasicAuthPasswordIdentityProvider in the identityProviders stanza to validate user names and
passwords against a remote server using a server-to-server Basic authentication request. User names
and passwords are validated against a remote URL that is protected by Basic authentication and returns
JSON.

A 401 response indicates failed authentication.

A non-200 status, or the presence of a non-empty "error" key, indicates an error:

{"error":"Error message"}

A 200 status with a sub (subject) key indicates success:

{"sub":"userid"} 1

The subject must be unique to the authenticated user and must not be able to be modified.

A successful response may optionally provide additional data, such as:

A display name using the name key. For example:

{"sub":"userid", "name": "User Name", ...}

An email address using the email key. For example:

{"sub":"userid", "email":"user@example.com", ...}

A preferred user name using the preferred_username key. This is useful when the unique,
unchangeable subject is a database key or UID, and a more human-readable name exists. This is
used as a hint when provisioning the OpenShift Container Platform user for the authenticated
identity. For example:

{"sub":"014fbff9a07c", "preferred_username":"bob", ...}

13.3.8.1. Configuring authentication on the master

1. If you have:

OpenShift Container Platform 3.11 Configuring Clusters

244

1

2

3

4

5

Already completed the installation of Openshift, then copy the
/etc/origin/master/master-config.yaml file into a new directory; for example:

$ mkdir basicauthconfig; cp master-config.yaml basicauthconfig

Not yet installed OpenShift Container Platform, then start the OpenShift Container
Platform API server, specifying the hostname of the (future) OpenShift Container Platform
master and a directory to store the configuration file created by the start command:

$ openshift start master --public-master=<apiserver> --write-config=<directory>

For example:

$ openshift start master --public-master=https://myapiserver.com:8443 --write-
config=basicauthconfig

NOTE

If you are installing with Ansible, then you must add the identityProvider
configuration to the Ansible playbook. If you use the following steps to
modify your configuration manually after installing with Ansible, then you will
lose any modifications whenever you re-run the install tool or upgrade.

2. Edit the new master-config.yaml file’s identityProviders stanza, and copy the example
BasicAuthPasswordIdentityProvider configuration and paste it to replace the existing stanza:

oauthConfig:
 ...
 identityProviders:
 - name: my_remote_basic_auth_provider 1
 challenge: true 2
 login: true 3
 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: BasicAuthPasswordIdentityProvider
 url: https://www.example.com/remote-idp 5
 ca: /path/to/ca.file 6
 certFile: /path/to/client.crt 7
 keyFile: /path/to/client.key 8

This provider name is prefixed to the returned user ID to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a
WWW-Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

Controls how mappings are established between this provider’s identities and user objects,
as described above.

URL accepting credentials in Basic authentication headers.

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

245

6

7

8

Optional: Certificate bundle to use to validate server certificates for the configured URL.

Optional: Client certificate to present when making requests to the configured URL.

Key for the client certificate. Required if certFile is specified.

Make the following modifications to the identityProviders stanza:

a. Set the provider name to something unique and relevant to your deployment. This name is
prefixed to the returned user ID to form an identity name.

b. If required, set mappingMethod to control how mappings are established between the
provider’s identities and user objects.

c. Specify the HTTPS url to use to connect to a server that accepts credentials in Basic
authentication headers.

d. Optionally, set the ca to the certificate bundle to use in order to validate server certificates
for the configured URL, or leave it empty to use the system-trusted roots.

e. Optionally, remove or set the certFile to the client certificate to present when making
requests to the configured URL.

f. If certFile is specified, then you must set the keyFile to the key for the client certificate.

3. Save your changes and close the file.

4. Start the OpenShift Container Platform API server, specifying the configuration file you just
modified:

$ openshift start master --config=<path/to/modified/config>/master-config.yaml

Once configured, any user logging in to the OpenShift Container Platform web console will be
prompted to log in using their Basic authentication credentials.

13.3.8.2. Troubleshooting

The most common issue relates to network connectivity to the backend server. For simple debugging,
run curl commands on the master. To test for a successful login, replace the <user> and <password> in
the following example command with valid credentials. To test an invalid login, replace them with false
credentials.

curl --cacert /path/to/ca.crt --cert /path/to/client.crt --key /path/to/client.key -u <user>:<password> -v
https://www.example.com/remote-idp

Successful responses

A 200 status with a sub (subject) key indicates success:

{"sub":"userid"}

The subject must be unique to the authenticated user, and must not be able to be modified.

A successful response may optionally provide additional data, such as:

OpenShift Container Platform 3.11 Configuring Clusters

246

A display name using the name key:

{"sub":"userid", "name": "User Name", ...}

An email address using the email key:

{"sub":"userid", "email":"user@example.com", ...}

A preferred user name using the preferred_username key:

{"sub":"014fbff9a07c", "preferred_username":"bob", ...}

The preferred_username key is useful when the unique, unchangeable subject is a database
key or UID, and a more human-readable name exists. This is used as a hint when provisioning the
OpenShift Container Platform user for the authenticated identity.

Failed responses

A 401 response indicates failed authentication.

A non-200 status or the presence of a non-empty "error" key indicates an error: {"error":"Error
message"}

13.3.9. Request header

Set RequestHeaderIdentityProvider in the identityProviders stanza to identify users from request
header values, such as X-Remote-User. It is typically used in combination with an authenticating proxy,
which sets the request header value. This is similar to how the remote user plug-in in OpenShift
Enterprise 2 allowed administrators to provide Kerberos, LDAP, and many other forms of enterprise
authentication.

NOTE

You can also use the request header identity provider for advanced configurations such
as the community-supported SAML authentication. Note that SAML authentication is
not supported by Red Hat.

For users to authenticate using this identity provider, they must access
https://<master>/oauth/authorize (and subpaths) via an authenticating proxy. To accomplish this,
configure the OAuth server to redirect unauthenticated requests for OAuth tokens to the proxy
endpoint that proxies to https://<master>/oauth/authorize.

To redirect unauthenticated requests from clients expecting browser-based login flows:

1. Set the login parameter to true.

2. Set the provider.loginURL parameter to the authenticating proxy URL that will authenticate
interactive clients and then proxy the request to https://<master>/oauth/authorize.

To redirect unauthenticated requests from clients expecting WWW-Authenticate challenges:

1. Set the challenge parameter to true.

2. Set the provider.challengeURL parameter to the authenticating proxy URL that will

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

247

https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html/Deployment_Guide/Configuring_OpenShift_Enterprise_Authentication.html
https://github.com/openshift/request-header-saml-service-provider

2. Set the provider.challengeURL parameter to the authenticating proxy URL that will
authenticate clients expecting WWW-Authenticate challenges and then proxy the request to
https://<master>/oauth/authorize.

The provider.challengeURL and provider.loginURL parameters can include the following tokens in
the query portion of the URL:

${url} is replaced with the current URL, escaped to be safe in a query parameter.
For example: https://www.example.com/sso-login?then=${url}

${query} is replaced with the current query string, unescaped.
For example: https://www.example.com/auth-proxy/oauth/authorize?${query}

WARNING

If you expect unauthenticated requests to reach the OAuth server, a clientCA
parameter MUST be set for this identity provider, so that incoming requests are
checked for a valid client certificate before the request’s headers are checked for a
user name. Otherwise, any direct request to the OAuth server can impersonate any
identity from this provider, merely by setting a request header.

Master configuration using RequestHeaderIdentityProvider

oauthConfig:
 ...
 identityProviders:
 - name: my_request_header_provider 1
 challenge: true 2
 login: true 3
 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: RequestHeaderIdentityProvider
 challengeURL: "https://www.example.com/challenging-proxy/oauth/authorize?${query}" 5
 loginURL: "https://www.example.com/login-proxy/oauth/authorize?${query}" 6
 clientCA: /path/to/client-ca.file 7
 clientCommonNames: 8
 - my-auth-proxy
 headers: 9
 - X-Remote-User
 - SSO-User
 emailHeaders: 10
 - X-Remote-User-Email
 nameHeaders: 11
 - X-Remote-User-Display-Name
 preferredUsernameHeaders: 12
 - X-Remote-User-Login



OpenShift Container Platform 3.11 Configuring Clusters

248

1

2

3

4

5

6

7

8

9

10

11

12

This provider name is prefixed to the user name in the request header to form an identity name.

RequestHeaderIdentityProvider can only respond to clients that request WWW-Authenticate
challenges by redirecting to a configured challengeURL. The configured URL should respond with
a WWW-Authenticate challenge.

RequestHeaderIdentityProvider can only respond to clients requesting a login flow by redirecting
to a configured loginURL. The configured URL should respond with a login flow.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

Optional: URL to redirect unauthenticated /oauth/authorize requests to, that will authenticate
clients which expect WWW-Authenticate challenges, and then proxy them to
https://<master>/oauth/authorize. ${url} is replaced with the current URL, escaped to be safe in a
query parameter. ${query} is replaced with the current query string.

Optional: URL to redirect unauthenticated /oauth/authorize requests to, that will authenticate
browser-based clients and then proxy their request to https://<master>/oauth/authorize. The URL
that proxies to https://<master>/oauth/authorize must end with /authorize (with no trailing slash),
and also proxy subpaths, in order for OAuth approval flows to work properly. ${url} is replaced with
the current URL, escaped to be safe in a query parameter. ${query} is replaced with the current
query string.

Optional: PEM-encoded certificate bundle. If set, a valid client certificate must be presented and
validated against the certificate authorities in the specified file before the request headers are
checked for user names.

Optional: list of common names (cn). If set, a valid client certificate with a Common Name (cn) in
the specified list must be presented before the request headers are checked for user names. If
empty, any Common Name is allowed. Can only be used in combination with clientCA.

Header names to check, in order, for the user identity. The first header containing a value is used as
the identity. Required, case-insensitive.

Header names to check, in order, for an email address. The first header containing a value is used as
the email address. Optional, case-insensitive.

Header names to check, in order, for a display name. The first header containing a value is used as
the display name. Optional, case-insensitive.

Header names to check, in order, for a preferred user name, if different than the immutable
identity determined from the headers specified in headers. The first header containing a value is
used as the preferred user name when provisioning. Optional, case-insensitive.

SSPI connection support on Microsoft Windows

IMPORTANT

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

249

IMPORTANT

Using SSPI connection support on Microsoft Windows is a Technology Preview feature.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend to use them for production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information on Red Hat Technology Preview features support scope, see
https://access.redhat.com/support/offerings/techpreview/.

Starting in version 3.11,

oc supports the Security Support Provider Interface (SSPI) to allow for SSO flows on Microsft Windows.
If you use the request header identity provider with a GSSAPI-enabled proxy to connect an Active
Directory server to OpenShift Container Platform, users can automatically authenticate to OpenShift
Container Platform by using the oc command line interface from a domain-joined Microsoft Windows
computer.

Apache authentication using Request header
This example configures an authentication proxy on the same host as the master. Having the proxy and
master on the same host is merely a convenience and may not be suitable for your environment. For
example, if you were already running a router on the master, port 443 would not be available.

It is also important to note that while this reference configuration uses Apache’s mod_auth_gssapi, it is
by no means required and other proxies can easily be used if the following requirements are met:

1. Block the X-Remote-User header from client requests to prevent spoofing.

2. Enforce client certificate authentication in the RequestHeaderIdentityProvider configuration.

3. Require the X-Csrf-Token header be set for all authentication request using the challenge flow.

4. Only the /oauth/authorize endpoint and its subpaths should be proxied, and redirects should
not be rewritten to allow the backend server to send the client to the correct location.

5. The URL that proxies to https://<master>/oauth/authorize must end with /authorize (with no
trailing slash). For example:

https://proxy.example.com/login-proxy/authorize?… ​ →
https://<master>/oauth/authorize?… ​

6. Subpaths of the URL that proxies to https://<master>/oauth/authorize must proxy to subpaths
of https://<master>/oauth/authorize. For example:

https://proxy.example.com/login-proxy/authorize/approve?… ​ →
https://<master>/oauth/authorize/approve?… ​

Installing the prerequisites

1. Obtain the mod_auth_gssapi module from the Optional channel. Install the following packages:

yum install -y httpd mod_ssl mod_session apr-util-openssl mod_auth_gssapi

2. Generate a CA for validating requests that submit the trusted header. This CA should be used
as the file name for clientCA in the master’s identity provider configuration .

OpenShift Container Platform 3.11 Configuring Clusters

250

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/solutions/392003

1

2

oc adm ca create-signer-cert \
 --cert='/etc/origin/master/proxyca.crt' \
 --key='/etc/origin/master/proxyca.key' \
 --name='openshift-proxy-signer@1432232228' \
 --serial='/etc/origin/master/proxyca.serial.txt'

NOTE

The oc adm ca create-signer-cert command generates a certificate that is valid
for five years. This can be altered with the --expire-days option, but for security
reasons, it is recommended to not make it greater than this value.

Run oc adm commands only from the first master listed in the Ansible host
inventory file, by default /etc/ansible/hosts.

3. Generate a client certificate for the proxy. This can be done using any x509 certificate tooling.
For convenience, the oc adm CLI can be used:

oc adm create-api-client-config \
 --certificate-authority='/etc/origin/master/proxyca.crt' \
 --client-dir='/etc/origin/master/proxy' \
 --signer-cert='/etc/origin/master/proxyca.crt' \
 --signer-key='/etc/origin/master/proxyca.key' \
 --signer-serial='/etc/origin/master/proxyca.serial.txt' \
 --user='system:proxy' 1

pushd /etc/origin/master
cp master.server.crt /etc/pki/tls/certs/localhost.crt 2
cp master.server.key /etc/pki/tls/private/localhost.key
cp ca.crt /etc/pki/CA/certs/ca.crt
cat proxy/system\:proxy.crt \
 proxy/system\:proxy.key > \
 /etc/pki/tls/certs/authproxy.pem
popd

The user name can be anything, however it is useful to give it a descriptive name as it will
appear in logs.

When running the authentication proxy on a different host name than the master, it is
important to generate a certificate that matches the host name instead of using the
default master certificate as shown above. The value for masterPublicURL in the
/etc/origin/master/master-config.yaml file must be included in the X509v3 Subject
Alternative Name in the certificate that is specified for SSLCertificateFile. If a new
certificate needs to be created, the oc adm ca create-server-cert command can be used.

NOTE

The oc adm create-api-client-config command generates a certificate that is
valid for two years. This can be altered with the --expire-days option, but for
security reasons, it is recommended to not make it greater than this value. Run
oc adm commands only from the first master listed in the Ansible host inventory
file, by default /etc/ansible/hosts.

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

251

Configuring Apache
This proxy does not need to reside on the same host as the master. It uses a client certificate to connect
to the master, which is configured to trust the X-Remote-User header.

1. Create the certificate for the Apache configuration. The certificate that you specify as the
SSLProxyMachineCertificateFile parameter value is the proxy’s client cert that is used to
authenticate the proxy to the server. It must use TLS Web Client Authentication as the
extended key type.

2. Create the Apache configuration. Use the following template to provide your required settings
and values:

IMPORTANT

Carefully review the template and customize its contents to fit your environment.

LoadModule request_module modules/mod_request.so
LoadModule auth_gssapi_module modules/mod_auth_gssapi.so
Some Apache configurations might require these modules.
LoadModule auth_form_module modules/mod_auth_form.so
LoadModule session_module modules/mod_session.so

Nothing needs to be served over HTTP. This virtual host simply redirects to
HTTPS.
<VirtualHost *:80>
 DocumentRoot /var/www/html
 RewriteEngine On
 RewriteRule ^(.*)$ https://%{HTTP_HOST}$1 [R,L]
</VirtualHost>

<VirtualHost *:443>
 # This needs to match the certificates you generated. See the CN and X509v3
 # Subject Alternative Name in the output of:
 # openssl x509 -text -in /etc/pki/tls/certs/localhost.crt
 ServerName www.example.com

 DocumentRoot /var/www/html
 SSLEngine on
 SSLCertificateFile /etc/pki/tls/certs/localhost.crt
 SSLCertificateKeyFile /etc/pki/tls/private/localhost.key
 SSLCACertificateFile /etc/pki/CA/certs/ca.crt

 SSLProxyEngine on
 SSLProxyCACertificateFile /etc/pki/CA/certs/ca.crt
 # It's critical to enforce client certificates on the Master. Otherwise
 # requests could spoof the X-Remote-User header by accessing the Master's
 # /oauth/authorize endpoint directly.
 SSLProxyMachineCertificateFile /etc/pki/tls/certs/authproxy.pem

 # Send all requests to the console
 RewriteEngine On
 RewriteRule ^/console(.*)$ https://%{HTTP_HOST}:8443/console$1 [R,L]

 # In order to using the challenging-proxy an X-Csrf-Token must be present.
 RewriteCond %{REQUEST_URI} ^/challenging-proxy

OpenShift Container Platform 3.11 Configuring Clusters

252

 RewriteCond %{HTTP:X-Csrf-Token} ^$ [NC]
 RewriteRule ^.* - [F,L]

 <Location /challenging-proxy/oauth/authorize>
 # Insert your backend server name/ip here.
 ProxyPass https://[MASTER]:8443/oauth/authorize
 AuthName "SSO Login"
 # For Kerberos
 AuthType GSSAPI
 Require valid-user
 RequestHeader set X-Remote-User %{REMOTE_USER}s

 GssapiCredStore keytab:/etc/httpd/protected/auth-proxy.keytab
 # Enable the following if you want to allow users to fallback
 # to password based authntication when they do not have a client
 # configured to perform kerberos authentication
 GssapiBasicAuth On

 # For ldap:
 # AuthBasicProvider ldap
 # AuthLDAPURL "ldap://ldap.example.com:389/ou=People,dc=my-domain,dc=com?uid?
sub?(objectClass=*)"

 # It's possible to remove the mod_auth_gssapi usage and replace it with
 # something like mod_auth_mellon, which only supports the login flow.
 </Location>

 <Location /login-proxy/oauth/authorize>
 # Insert your backend server name/ip here.
 ProxyPass https://[MASTER]:8443/oauth/authorize

 AuthName "SSO Login"
 AuthType GSSAPI
 Require valid-user
 RequestHeader set X-Remote-User %{REMOTE_USER}s env=REMOTE_USER

 GssapiCredStore keytab:/etc/httpd/protected/auth-proxy.keytab
 # Enable the following if you want to allow users to fallback
 # to password based authntication when they do not have a client
 # configured to perform kerberos authentication
 GssapiBasicAuth On

 ErrorDocument 401 /login.html
 </Location>

</VirtualHost>

RequestHeader unset X-Remote-User

Configuring the master
The identityProviders stanza in the /etc/origin/master/master-config.yaml file must be updated as
well:

 identityProviders:
 - name: requestheader
 challenge: true

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

253

1

 login: true
 provider:
 apiVersion: v1
 kind: RequestHeaderIdentityProvider
 challengeURL: "https://[MASTER]/challenging-proxy/oauth/authorize?${query}"
 loginURL: "https://[MASTER]/login-proxy/oauth/authorize?${query}"
 clientCA: /etc/origin/master/proxyca.crt
 headers:
 - X-Remote-User

Restarting services
Finally, restart the following services:

systemctl restart httpd
master-restart api
master-restart controllers

Verifying the configuration

1. Test by bypassing the proxy. You should be able to request a token if you supply the correct
client certificate and header:

curl -L -k -H "X-Remote-User: joe" \
 --cert /etc/pki/tls/certs/authproxy.pem \
 https://[MASTER]:8443/oauth/token/request

2. If you do not supply the client certificate, the request should be denied:

curl -L -k -H "X-Remote-User: joe" \
 https://[MASTER]:8443/oauth/token/request

3. This should show a redirect to the configured challengeURL (with additional query
parameters):

curl -k -v -H 'X-Csrf-Token: 1' \
 '<masterPublicURL>/oauth/authorize?client_id=openshift-challenging-
client&response_type=token'

4. This should show a 401 response with a WWW-Authenticate basic challenge, a negotiate
challenge, or both challenges:

curl -k -v -H 'X-Csrf-Token: 1' \
 '<redirected challengeURL from step 3 +query>'

5. Test logging into the oc command line with and without using a Kerberos ticket:

a. If you generated a Kerberos ticket by using kinit, destroy it:

kdestroy -c cache_name 1

Provide the name of your Kerberos cache.

b. Log in to the oc command line by using your Kerberos credentials:

OpenShift Container Platform 3.11 Configuring Clusters

254

oc login

Enter your Kerberos user name and password at the prompt.

c. Log out of the oc command line:

oc logout

d. Use your Kerberos credentials to get a ticket:

kinit

Enter your Kerberos user name and password at the prompt.

e. Confirm that you can log in to the oc command line:

oc login

If your configuration is correct, you are logged in without entering separate credentials.

13.3.10. GitHub and GitHub Enterprise

GitHub uses OAuth, and you can integrate your OpenShift Container Platform cluster to use that OAuth
authentication. OAuth facilitates a token exchange flow between OpenShift Container Platform and
GitHub or GitHub Enterprise.

You can use the GitHub integration to connect to either GitHub or GitHub Enterprise. For GitHub
Enterprise integrations, you must provide the hostname of your instance and can optionally provide a
ca certificate bundle to use in requests to the server.

NOTE

The following steps apply to both GitHub and GitHub Enterprise unless noted.

Configuring GitHub authentication allows users to log in to OpenShift Container Platform with their
GitHub credentials. To prevent anyone with any GitHub user ID from logging in to your OpenShift
Container Platform cluster, you can restrict access to only those in specific GitHub organizations.

13.3.10.1. Registering the application on GitHub

1. Register an application:

For GitHub, click Settings → Developer settings → Register a new OAuth application .

For GitHub Enterprise, go to your GitHub Enterprise home page and then click Settings →
Developer settings → Register a new application.

2. Enter an application name, for example My OpenShift Install.

3. Enter a homepage URL, such as https://myapiserver.com:8443.

4. Optionally, enter an application description.

5. Enter the authorization callback URL, where the end of the URL contains the identity provider

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

255

https://github.com/settings/profile
https://github.com/settings/developers
https://github.com/settings/applications/new
https://myapiserver.com:8443

5. Enter the authorization callback URL, where the end of the URL contains the identity provider
name, which is defined in the identityProviders stanza of the master configuration file, which
you configure in the next section of this topic:

<apiserver>/oauth2callback/<identityProviderName>

For example:

https://myapiserver.com:8443/oauth2callback/github/

6. Click Register application. GitHub provides a Client ID and a Client Secret. Keep this window
open so you can copy these values and paste them into the master configuration file.

13.3.10.2. Configuring authentication on the master

1. If you have:

Already installed OpenShift Container Platform, then copy the /etc/origin/master/master-
config.yaml file into a new directory, for example:

$ cd /etc/origin/master
$ mkdir githubconfig; cp master-config.yaml githubconfig

Not yet installed OpenShift Container Platform, then start the OpenShift Container
Platform API server, specifying the hostname of the (future) OpenShift Container Platform
master and a directory to store the configuration file created by the start command:

$ openshift start master --public-master=<apiserver> --write-config=<directory>

For example:

$ openshift start master --public-master=https://myapiserver.com:8443 --write-
config=githubconfig

NOTE

If you are installing with Ansible, then you must add the identityProvider
configuration to the Ansible playbook. If you use the following steps to
modify your configuration manually after installing with Ansible, then you will
lose any modifications whenever you re-run the install tool or upgrade.

NOTE

Using openshift start master on its own would auto-detect host names, but
GitHub must be able to redirect to the exact host name that you specified
when registering the application. For this reason, you cannot auto-detect the
ID because it might redirect to the wrong address. Instead, you must specify
the hostname that web browsers use to interact with your OpenShift
Container Platform cluster.

2. Edit the new master-config.yaml file’s identityProviders stanza, and copy the example
GitHubIdentityProvider configuration and paste it to replace the existing stanza:

OpenShift Container Platform 3.11 Configuring Clusters

256

1

2

3

4

5

6

7

8

9

10

oauthConfig:
 ...
 identityProviders:
 - name: github 1
 challenge: false 2
 login: true 3
 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: GitHubIdentityProvider
 ca: ... 5
 clientID: ... 6
 clientSecret: ... 7
 hostname: ... 8
 organizations: 9
 - myorganization1
 - myorganization2
 teams: 10
 - myorganization1/team-a
 - myorganization2/team-b

This provider name is prefixed to the GitHub numeric user ID to form an identity name. It is
also used to build the callback URL.

GitHubIdentityProvider cannot be used to send WWW-Authenticate challenges.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to GitHub to log in.

Controls how mappings are established between this provider’s identities and user objects,
as described above.

For GitHub Enterprise, the CA is the optional trusted certificate authority bundle to use
when making requests to the server. Omit this parameter to use the default system root
certificates. For GitHub, omit this parameter.

The client ID of a registered GitHub OAuth application. The application must be configured
with a callback URL of <master>/oauth2callback/<identityProviderName>.

The client secret issued by GitHub. This value may also be provided in an environment
variable, external file, or encrypted file.

For GitHub Enterprise, you must provide the host name of your instance, such as
example.com. This value must match the GitHub Enterprise hostname value in in the
/setup/settings file and cannot include a port number. For GitHub, omit this parameter.

Optional list of organizations. If specified, only GitHub users that are members of at least
one of the listed organizations will be allowed to log in. If the GitHub OAuth application
configured in clientID is not owned by the organization, an organization owner must grant
third-party access in order to use this option. This can be done during the first GitHub
login by the organization’s administrator, or from the GitHub organization settings. Cannot
be used in combination with the teams field.

Optional list of teams. If specified, only GitHub users that are members of at least one of
the listed teams will be allowed to log in. If the GitHub OAuth application configured in
clientID is not owned by the team’s organization, an organization owner must grant third-

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

257

https://github.com/settings/applications/new

clientID is not owned by the team’s organization, an organization owner must grant third-
party access in order to use this option. This can be done during the first GitHub login by
the organization’s administrator, or from the GitHub organization settings. Cannot be used
in combination with the organizations field.

3. Make the following modifications to the identityProviders stanza:

a. Change the provider name to match the callback URL you configured on GitHub.
For example, if you defined the callback URL as
https://myapiserver.com:8443/oauth2callback/github/ then the name must be github.

b. Change clientID to the Client ID from GitHub that you registered previously.

c. Change clientSecret to the Client Secret from GitHub that you registered previously.

d. Change organizations or teams to include a list of one or more GitHub organizations or
teams to which a user must have membership in order to authenticate. If specified, only
GitHub users that are members of at least one of the listed organizations or teams will be
allowed to log in. If this is not specified, then any person with a valid GitHub account can log
in.

4. Save your changes and close the file.

5. Start the OpenShift Container Platform API server, specifying the configuration file you just
modified:

$ openshift start master --config=<path/to/modified/config>/master-config.yaml

Once configured, any user logging in to the OpenShift Container Platform web console will be
prompted to log in using their GitHub credentials. On their first login, the user must click authorize
application to permit GitHub to use their user name, password, and organization membership with
OpenShift Container Platform. The user is then redirected back to the web console.

13.3.10.3. Creating users with GitHub authentication

You do not create users in OpenShift Container Platform when integrating with an external
authentication provider, such as, in this case, GitHub. GitHub, or GitHub Enterprise, is the system of
record, meaning that users are defined by GitHub, and any user belonging to a specified organization
can log in.

To add a user to OpenShift Container Platform, you must add that user to an approved organization on
GitHub or GitHub Enterprise, and if required create a new GitHub account for the user.

13.3.10.4. Verifying users

Once one or more users have logged in, you can run oc get users to view a list of users and verify that
users were created successfully:

Example 13.6. Output of oc get users command

$ oc get users
NAME UID FULL NAME IDENTITIES
bobsmith 433b5641-066f-11e6-a6d8-acfc32c1ca87 Bob Smith github:873654 1

OpenShift Container Platform 3.11 Configuring Clusters

258

https://myapiserver.com:8443/oauth2callback/github/

1

1

2

3

4

5

6

7

Identities in OpenShift Container Platform are comprised of the identity provider name and
GitHub’s internal numeric user ID. This way, if a user changes their GitHub user name or e-mail

From here, you might want to learn how to control user roles .

13.3.11. GitLab

Set GitLabIdentityProvider in the identityProviders stanza to use GitLab.com or any other GitLab
instance as an identity provider. If you use GitLab version 7.7.0 to 11.0, you connect using the OAuth
integration. If you use GitLab version 11.1 or later, you can use OpenID Connect (OIDC) to connect
instead of OAuth.

Example 13.7. Master configuration using GitLabIdentityProvider

oauthConfig:
 ...
 identityProviders:
 - name: gitlab 1
 challenge: true 2
 login: true 3
 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: GitLabIdentityProvider
 legacy: 5
 url: ... 6
 clientID: ... 7
 clientSecret: ... 8
 ca: ... 9

This provider name is prefixed to the GitLab numeric user ID to form an identity name. It is also
used to build the callback URL.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a
WWW-Authenticate challenge header for this provider. This uses the Resource Owner
Password Credentials grant flow to obtain an access token from GitLab.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to GitLab to log in.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

Determines whether to use OAuth or OIDC as the authentication provider. Set to true to use
OAuth and false to use OIDC. You must use GitLab.com or GitLab version 11.1 or later to use
OIDC. If you do not provide a value, OAuth is used to connect to your GitLab instance, and
OIDC is used to connect to GitLab.com.

The host URL of a GitLab provider. This could either be https://gitlab.com/ or any other self
hosted instance of GitLab.

The client ID of a registered GitLab OAuth application. The application must be configured with

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

259

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-manage-rbac
https://gitlab.com/
http://doc.gitlab.com/ce/integration/oauth_provider.html
https://docs.gitlab.com/ce/integration/openid_connect_provider.html
http://doc.gitlab.com/ce/api/oauth2.html#resource-owner-password-credentials

8

9

1

2

The client ID of a registered GitLab OAuth application. The application must be configured with
a callback URL of <master>/oauth2callback/<identityProviderName>.

The client secret issued by GitLab. This value may also be provided in an environment variable,
external file, or encrypted file.

CA is an optional trusted certificate authority bundle to use when making requests to the
GitLab instance. If empty, the default system roots are used.

13.3.12. Google

Set GoogleIdentityProvider in the identityProviders stanza to use Google as an identity provider,
using Google’s OpenID Connect integration.

NOTE

Using Google as an identity provider requires users to get a token using
<master>/oauth/token/request to use with command-line tools.

WARNING

Using Google as an identity provider allows any Google user to authenticate to your
server. You can limit authentication to members of a specific hosted domain with
the hostedDomain configuration attribute, as shown below.

Example 13.8. Master configuration using GoogleIdentityProvider

oauthConfig:
 ...
 identityProviders:
 - name: google 1
 challenge: false 2
 login: true 3
 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: GoogleIdentityProvider
 clientID: ... 5
 clientSecret: ... 6
 hostedDomain: "" 7

This provider name is prefixed to the Google numeric user ID to form an identity name. It is also
used to build the redirect URL.

GoogleIdentityProvider cannot be used to send WWW-Authenticate challenges.

When true, unauthenticated token requests from web clients (like the web console) are



OpenShift Container Platform 3.11 Configuring Clusters

260

https://docs.gitlab.com/ce/api/oauth2.html
https://developers.google.com/identity/protocols/OpenIDConnect

3

4

5

6

7

When true, unauthenticated token requests from web clients (like the web console) are
redirected to Google to log in.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

The client ID of a registered Google project. The project must be configured with a redirect URI
of <master>/oauth2callback/<identityProviderName>.

The client secret issued by Google. This value may also be provided in an environment variable,
external file, or encrypted file.

Optional hosted domain to restrict sign-in accounts to. If empty, any Google account is allowed
to authenticate.

13.3.13. OpenID connect

Set OpenIDIdentityProvider in the identityProviders stanza to integrate with an OpenID Connect
identity provider using an Authorization Code Flow.

You can configure Red Hat Single Sign-On as an OpenID Connect identity provider for OpenShift
Container Platform.

NOTE

ID Token and UserInfo decryptions are not supported.

By default, the openid scope is requested. If required, extra scopes can be specified in the extraScopes
field.

Claims are read from the JWT id_token returned from the OpenID identity provider and, if specified,
from the JSON returned by the UserInfo URL.

At least one claim must be configured to use as the user’s identity. The standard identity claim is sub.

You can also indicate which claims to use as the user’s preferred user name, display name, and email
address. If multiple claims are specified, the first one with a non-empty value is used. The standard
claims are:

sub Short for "subject identifier." The remote identity for the user at the issuer.

preferred_
username

The preferred user name when provisioning a user. A shorthand name that the user wants to
be referred to as, such as janedoe. Typically a value that corresponding to the user’s login or
username in the authentication system, such as username or email.

email Email address.

name Display name.

See the OpenID claims documentation for more information.

NOTE

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

261

https://console.developers.google.com/
https://developers.google.com/identity/protocols/OpenIDConnect#hd-param
http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://access.redhat.com/documentation/en-us/red_hat_jboss_middleware_for_openshift/3/html/red_hat_single_sign-on_for_openshift/tutorials
http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

1

2

3

4

5

6

7

NOTE

Using an OpenID Connect identity provider requires users to get a token using
<master>/oauth/token/request to use with command-line tools.

Standard Master configuration using OpenIDIdentityProvider

oauthConfig:
 ...
 identityProviders:
 - name: my_openid_connect 1
 challenge: true 2
 login: true 3
 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: OpenIDIdentityProvider
 clientID: ... 5
 clientSecret: ... 6
 claims:
 id: 7
 - sub
 preferredUsername:
 - preferred_username
 name:
 - name
 email:
 - email
 urls:
 authorize: https://myidp.example.com/oauth2/authorize 8
 token: https://myidp.example.com/oauth2/token 9

This provider name is prefixed to the value of the identity claim to form an identity name. It is also
used to build the redirect URL.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a WWW-
Authenticate challenge header for this provider. This requires the OpenID provider to support the
Resource Owner Password Credentials grant flow.

When true, unauthenticated token requests from web clients (like the web console) are redirected
to the authorize URL to log in.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

The client ID of a client registered with the OpenID provider. The client must be allowed to redirect
to <master>/oauth2callback/<identityProviderName>.

The client secret. This value may also be provided in an environment variable, external file, or
encrypted file.

List of claims to use as the identity. First non-empty claim is used. At least one claim is required. If
none of the listed claims have a value, authentication fails. For example, this uses the value of the
sub claim in the returned id_token as the user’s identity.

OpenShift Container Platform 3.11 Configuring Clusters

262

https://tools.ietf.org/html/rfc6749#section-1.3.3

8

9

1

2

3

Authorization Endpoint described in the OpenID spec. Must use https.

Token Endpoint described in the OpenID spec. Must use https.

A custom certificate bundle, extra scopes, extra authorization request parameters, and userInfo URL
can also be specified:

Example 13.9. Full Master configuration using OpenIDIdentityProvider

oauthConfig:
 ...
 identityProviders:
 - name: my_openid_connect
 challenge: false
 login: true
 mappingMethod: claim
 provider:
 apiVersion: v1
 kind: OpenIDIdentityProvider
 clientID: ...
 clientSecret: ...
 ca: my-openid-ca-bundle.crt 1
 extraScopes: 2
 - email
 - profile
 extraAuthorizeParameters: 3
 include_granted_scopes: "true"
 claims:
 id: 4
 - custom_id_claim
 - sub
 preferredUsername: 5
 - preferred_username
 - email
 name: 6
 - nickname
 - given_name
 - name
 email: 7
 - custom_email_claim
 - email
 urls:
 authorize: https://myidp.example.com/oauth2/authorize
 token: https://myidp.example.com/oauth2/token
 userInfo: https://myidp.example.com/oauth2/userinfo 8

Certificate bundle to use to validate server certificates for the configured URLs. If empty,
system trusted roots are used.

Optional list of scopes to request, in addition to the openid scope, during the authorization
token request.

Optional map of extra parameters to add to the authorization token request.

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

263

http://openid.net/specs/openid-connect-core-1_0.html#AuthorizationEndpoint
http://openid.net/specs/openid-connect-core-1_0.html#TokenEndpoint

4

5

6

7

8

1

2

List of claims to use as the identity. First non-empty claim is used. At least one claim is required.
If none of the listed claims have a value, authentication fails.

List of claims to use as the preferred user name when provisioning a user for this identity. First
non-empty claim is used.

List of claims to use as the display name. First non-empty claim is used.

List of claims to use as the email address. First non-empty claim is used.

UserInfo Endpoint described in the OpenID spec. Must use https.

13.4. TOKEN OPTIONS

The OAuth server generates two kinds of tokens:

Access
tokens

Longer-lived tokens that grant access to the API.

Authorize
codes

Short-lived tokens whose only use is to be exchanged for an access token.

Use the tokenConfig stanza to set token options:

Example 13.10. Master Configuration Token Options

oauthConfig:
 ...
 tokenConfig:
 accessTokenMaxAgeSeconds: 86400 1
 authorizeTokenMaxAgeSeconds: 300 2

Set accessTokenMaxAgeSeconds to control the lifetime of access tokens. The default
lifetime is 24 hours.

Set authorizeTokenMaxAgeSeconds to control the lifetime of authorize codes. The default
lifetime is five minutes.

NOTE

You can override the accessTokenMaxAgeSeconds value through an OAuthClient
object definition.

13.5. GRANT OPTIONS

When the OAuth server receives token requests for a client to which the user has not previously granted
permission, the action that the OAuth server takes is dependent on the OAuth client’s grant strategy.

OpenShift Container Platform 3.11 Configuring Clusters

264

http://openid.net/specs/openid-connect-core-1_0.html#UserInfo
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#oauthclient

1

2

3

When the OAuth client requesting token does not provide its own grant strategy, the server-wide
default strategy is used. To configure the default strategy, set the method value in the grantConfig
stanza. Valid values for method are:

auto Auto-approve the grant and retry the request.

prompt Prompt the user to approve or deny the grant.

deny Auto-deny the grant and return a failure error to the client.

Example 13.11. Master Configuration Grant Options

oauthConfig:
 ...
 grantConfig:
 method: auto

13.6. SESSION OPTIONS

The OAuth server uses a signed and encrypted cookie-based session during login and redirect flows.

Use the sessionConfig stanza to set session options:

Example 13.12. Master Configuration Session Options

oauthConfig:
 ...
 sessionConfig:
 sessionMaxAgeSeconds: 300 1
 sessionName: ssn 2
 sessionSecretsFile: "..." 3

Controls the maximum age of a session; sessions auto-expire once a token request is complete.
If auto-grant is not enabled, sessions must last as long as the user is expected to take to
approve or reject a client authorization request.

Name of the cookie used to store the session.

File name containing serialized SessionSecrets object. If empty, a random signing and
encryption secret is generated at each server start.

If no sessionSecretsFile is specified, a random signing and encryption secret is generated at each start
of the master server. This means that any logins in progress will have their sessions invalidated if the
master is restarted. It also means they will not be able to decode sessions generated by one of the other
masters.

To specify the signing and encryption secret to use, specify a sessionSecretsFile. This allows you

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

265

1

2

3

To specify the signing and encryption secret to use, specify a sessionSecretsFile. This allows you
separate secret values from the configuration file and keep the configuration file distributable, for
example for debugging purposes.

Multiple secrets can be specified in the sessionSecretsFile to enable rotation. New sessions are signed
and encrypted using the first secret in the list. Existing sessions are decrypted and authenticated by each
secret until one succeeds.

Example 13.13. Session Secret Configuration:

apiVersion: v1
kind: SessionSecrets
secrets: 1
- authentication: "..." 2
 encryption: "..." 3
- authentication: "..."
 encryption: "..."
...

List of secrets used to authenticate and encrypt cookie sessions. At least one secret must be
specified. Each secret must set an authentication and encryption secret.

Signing secret, used to authenticate sessions using HMAC. Recommended to use a secret with
32 or 64 bytes.

Encrypting secret, used to encrypt sessions. Must be 16, 24, or 32 characters long, to select
AES-128, AES-192, or AES-256.

13.7. PREVENTING CLI VERSION MISMATCH WITH USER AGENT

OpenShift Container Platform implements a user agent that can be used to prevent an application
developer’s CLI from accessing the OpenShift Container Platform API.

User agents for the OpenShift Container Platform CLI are constructed from a set of values within
OpenShift Container Platform:

<command>/<version>+<git_commit> (<platform>/<architecture>) <client>/<git_commit>

So, for example, when:

<command> = oc

<version> = The client version. For example, v3.3.0. Requests made against the Kubernetes API
at /api receive the Kubernetes version, while requests made against the OpenShift Container
Platform API at /oapi receive the OpenShift Container Platform version (as specified by oc
version)

<platform> = linux

<architecture> = amd64

<client> = openshift, or kubernetes depending on if the request is made against the Kubernetes
API at /api, or the OpenShift Container Platform API at /oapi

OpenShift Container Platform 3.11 Configuring Clusters

266

<git_commit> = The Git commit of the client version (for example, f034127)

the user agent will be:

oc/v3.3.0+f034127 (linux/amd64) openshift/f034127

You must configure the user agent in the master configuration file, /etc/origin/master/master-
config.yaml. To apply the configuration, restart the API server:

$ /usr/local/bin/master-restart api

As an OpenShift Container Platform administrator, you can prevent clients from accessing the API with
the userAgentMatching configuration setting of a master configuration. So, if a client is using a
particular library or binary, they will be prevented from accessing the API.

The following user agent example denies the Kubernetes 1.2 client binary, OpenShift Origin 1.1.3 binary,
and the POST and PUT httpVerbs:

policyConfig:
 userAgentMatchingConfig:
 defaultRejectionMessage: "Your client is too old. Go to https://example.org to update it."
 deniedClients:
 - regex: '\w+/v(?:(?:1\.1\.1)|(?:1\.0\.1)) \(.+/.+\) openshift/\w{7}'
 - regex: '\w+/v(?:1\.1\.3) \(.+/.+\) openshift/\w{7}'
 httpVerbs:
 - POST
 - PUT
 - regex: '\w+/v1\.2\.0 \(.+/.+\) kubernetes/\w{7}'
 httpVerbs:
 - POST
 - PUT
 requiredClients: null

Administrators can also deny clients that do not exactly match the expected clients:

policyConfig:
 userAgentMatchingConfig:
 defaultRejectionMessage: "Your client is too old. Go to https://example.org to update it."
 deniedClients: []
 requiredClients:
 - regex: '\w+/v1\.1\.3 \(.+/.+\) openshift/\w{7}'
 - regex: '\w+/v1\.2\.0 \(.+/.+\) kubernetes/\w{7}'
 httpVerbs:
 - POST
 - PUT

To deny a client that would otherwise be included in a set of allowed clients, use deniedClients and
requiredClients values together. The following example allows all 1.X client binaries except for 1.13:

policyConfig:
 userAgentMatchingConfig:
 defaultRejectionMessage: "Your client is too old. Go to https://example.org to update it."
 deniedClients:
 - regex: '\w+/v1\.13.0\+\w{7} \(.+/.+\) openshift/\w{7}'

CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT

267

 - regex: '\w+/v1\.13.0\+\w{7} \(.+/.+\) kubernetes/\w{7}'
 requiredClients:
 - regex: '\w+/v1\.[1-9][1-9].[0-9]\+\w{7} \(.+/.+\) openshift/\w{7}'
 - regex: '\w+/v1\.[1-9][1-9].[0-9]\+\w{7} \(.+/.+\) kubernetes/\w{7}'

NOTE

When the client’s user agent mismatches the configuration, errors occur. To ensure that
mutating requests match, enforce a whitelist. Rules are mapped to specific verbs, so you
can ban mutating requests while allowing non-mutating requests.

OpenShift Container Platform 3.11 Configuring Clusters

268

1

2

3

4

5

CHAPTER 14. SYNCING GROUPS WITH LDAP

14.1. OVERVIEW

As an OpenShift Container Platform administrator, you can use groups to manage users, change their
permissions, and enhance collaboration. Your organization may have already created user groups and
stored them in an LDAP server. OpenShift Container Platform can sync those LDAP records with
internal OpenShift Container Platform records, enabling you to manage your groups in one place.
OpenShift Container Platform currently supports group sync with LDAP servers using three common
schemas for defining group membership: RFC 2307, Active Directory, and augmented Active Directory.

NOTE

You must have cluster-admin privileges to sync groups.

14.2. CONFIGURING LDAP SYNC

Before you can run LDAP sync, you need a sync configuration file. This file contains LDAP client
configuration details:

Configuration for connecting to your LDAP server.

Sync configuration options that are dependent on the schema used in your LDAP server.

A sync configuration file can also contain an administrator-defined list of name mappings that maps
OpenShift Container Platform group names to groups in your LDAP server.

14.2.1. LDAP client configuration

LDAP client configuration

The connection protocol, IP address of the LDAP server hosting your database, and the port to
connect to, formatted as scheme://host:port.

Optional distinguished name (DN) to use as the Bind DN. OpenShift Container Platform uses this if
elevated privilege is required to retrieve entries for the sync operation.

Optional password to use to bind. OpenShift Container Platform uses this if elevated privilege is
necessary to retrieve entries for the sync operation. This value may also be provided in an
environment variable, external file, or encrypted file .

When false, secure LDAP (ldaps://) URLs connect using TLS, and insecure LDAP (ldap://) URLs
are upgraded to TLS. When true, no TLS connection is made to the server unless you specify a
ldaps:// URL, in which case URLs still attempt to connect by using TLS.

The certificate bundle to use for validating server certificates for the configured URL. If empty,
OpenShift Container Platform uses system-trusted roots. This only applies if insecure is set to
false.

url: ldap://10.0.0.0:389 1
bindDN: cn=admin,dc=example,dc=com 2
bindPassword: password 3
insecure: false 4
ca: my-ldap-ca-bundle.crt 5

CHAPTER 14. SYNCING GROUPS WITH LDAP

269

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#roles

1

2

3

4

5

6

false.

14.2.2. LDAP query definition

Sync configurations consist of LDAP query definitions for the entries that are required for
synchronization. The specific definition of an LDAP query depends on the schema used to store
membership information in the LDAP server.

LDAP query definition

The distinguished name (DN) of the branch of the directory where all searches will start from. It is
required that you specify the top of your directory tree, but you can also specify a subtree in the
directory.

The scope of the search. Valid values are base, one, or sub. If this is left undefined, then a scope of
sub is assumed. Descriptions of the scope options can be found in the table below.

The behavior of the search with respect to aliases in the LDAP tree. Valid values are never, search,
base, or always. If this is left undefined, then the default is to always dereference aliases.
Descriptions of the dereferencing behaviors can be found in the table below.

The time limit allowed for the search by the client, in seconds. A value of 0 imposes no client-side
limit.

A valid LDAP search filter. If this is left undefined, then the default is (objectClass=*).

The optional maximum size of response pages from the server, measured in LDAP entries. If set to
0, no size restrictions will be made on pages of responses. Setting paging sizes is necessary when
queries return more entries than the client or server allow by default.

Table 14.1. LDAP search scope options

LDAP Search
Scope

Description

base Only consider the object specified by the base DN given for the query.

one Consider all of the objects on the same level in the tree as the base DN for the query.

sub Consider the entire subtree rooted at the base DN given for the query.

Table 14.2. LDAP dereferencing behaviors

baseDN: ou=users,dc=example,dc=com 1
scope: sub 2
derefAliases: never 3
timeout: 0 4
filter: (objectClass=inetOrgPerson) 5
pageSize: 0 6

OpenShift Container Platform 3.11 Configuring Clusters

270

Dereferencing
Behavior

Description

never Never dereference any aliases found in the LDAP tree.

search Only dereference aliases found while searching.

base Only dereference aliases while finding the base object.

always Always dereference all aliases found in the LDAP tree.

14.2.3. User-defined name mapping

A user-defined name mapping explicitly maps the names of OpenShift Container Platform groups to
unique identifiers that find groups on your LDAP server. The mapping uses normal YAML syntax. A
user-defined mapping can contain an entry for every group in your LDAP server or only a subset of
those groups. If there are groups on the LDAP server that do not have a user-defined name mapping,
the default behavior during sync is to use the attribute specified as the OpenShift Container Platform
group’s name.

User-defined name mapping

14.3. RUNNING LDAP SYNC

Once you have created a sync configuration file , then sync can begin. OpenShift Container Platform
allows administrators to perform a number of different sync types with the same server.

NOTE

By default, all group synchronization or pruning operations are dry-run, so you must set
the --confirm flag on the sync-groups command in order to make changes to OpenShift
Container Platform Group records.

To sync all groups from the LDAP server with OpenShift Container Platform:

$ oc adm groups sync --sync-config=config.yaml --confirm

To sync all groups already in OpenShift Container Platform that correspond to groups in the LDAP
server specified in the configuration file:

$ oc adm groups sync --type=openshift --sync-config=config.yaml --confirm

To sync a subset of LDAP groups with OpenShift Container Platform, you can use whitelist files, blacklist
files, or both:

NOTE

groupUIDNameMapping:
 "cn=group1,ou=groups,dc=example,dc=com": firstgroup
 "cn=group2,ou=groups,dc=example,dc=com": secondgroup
 "cn=group3,ou=groups,dc=example,dc=com": thirdgroup

CHAPTER 14. SYNCING GROUPS WITH LDAP

271

NOTE

You can use any combination of blacklist files, whitelist files, or whitelist literals. Whitelist
and blacklist files must contain one unique group identifier per line, and you can include
whitelist literals directly in the command itself. These guidelines apply to groups found on
LDAP servers as well as groups already present in OpenShift Container Platform.

$ oc adm groups sync --whitelist=<whitelist_file> \
 --sync-config=config.yaml \
 --confirm
$ oc adm groups sync --blacklist=<blacklist_file> \
 --sync-config=config.yaml \
 --confirm
$ oc adm groups sync <group_unique_identifier> \
 --sync-config=config.yaml \
 --confirm
$ oc adm groups sync <group_unique_identifier> \
 --whitelist=<whitelist_file> \
 --blacklist=<blacklist_file> \
 --sync-config=config.yaml \
 --confirm
$ oc adm groups sync --type=openshift \
 --whitelist=<whitelist_file> \
 --sync-config=config.yaml \
 --confirm

14.4. RUNNING A GROUP PRUNING JOB

An administrator can also choose to remove groups from OpenShift Container Platform records if the
records on the LDAP server that created them are no longer present. The prune job will accept the
same sync configuration file and white- or black-lists as used for the sync job. More information is
available in Pruning groups section.

14.5. SYNC EXAMPLES

This section contains examples for the RFC 2307, Active Directory, and augmented Active Directory
schemas. All of the following examples synchronize a group named admins that has two members: Jane
and Jim. Each example explains:

How the group and users are added to the LDAP server.

What the LDAP sync configuration file looks like.

What the resulting group record in OpenShift Container Platform will be after synchronization.

NOTE

These examples assume that all users are direct members of their respective groups.
Specifically, no groups have other groups as members. See Nested Membership Sync
Example for information on how to sync nested groups.

14.5.1. Syncing groups by using RFC 2307 schema

In the RFC 2307 schema, both users (Jane and Jim) and groups exist on the LDAP server as first-class

OpenShift Container Platform 3.11 Configuring Clusters

272

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#pruning-groups

1

2

In the RFC 2307 schema, both users (Jane and Jim) and groups exist on the LDAP server as first-class
entries, and group membership is stored in attributes on the group. The following snippet of ldif defines
the users and group for this schema:

LDAP entries that use RFC 2307 schema: rfc2307.ldif

The group is a first-class entry in the LDAP server.

Members of a group are listed with an identifying reference as attributes on the group.

To sync this group, you must first create the configuration file. The RFC 2307 schema requires you to
provide an LDAP query definition for both user and group entries, as well as the attributes with which to
represent them in the internal OpenShift Container Platform records.

For clarity, the group you create in OpenShift Container Platform should use attributes other than the
distinguished name whenever possible for user- or administrator-facing fields. For example, identify the
users of an OpenShift Container Platform group by their e-mail, and use the name of the group as the
common name. The following configuration file creates these relationships:

NOTE

 dn: ou=users,dc=example,dc=com
 objectClass: organizationalUnit
 ou: users

 dn: cn=Jane,ou=users,dc=example,dc=com
 objectClass: person
 objectClass: organizationalPerson
 objectClass: inetOrgPerson
 cn: Jane
 sn: Smith
 displayName: Jane Smith
 mail: jane.smith@example.com

 dn: cn=Jim,ou=users,dc=example,dc=com
 objectClass: person
 objectClass: organizationalPerson
 objectClass: inetOrgPerson
 cn: Jim
 sn: Adams
 displayName: Jim Adams
 mail: jim.adams@example.com

 dn: ou=groups,dc=example,dc=com
 objectClass: organizationalUnit
 ou: groups

 dn: cn=admins,ou=groups,dc=example,dc=com 1
 objectClass: groupOfNames
 cn: admins
 owner: cn=admin,dc=example,dc=com
 description: System Administrators
 member: cn=Jane,ou=users,dc=example,dc=com 2
 member: cn=Jim,ou=users,dc=example,dc=com

CHAPTER 14. SYNCING GROUPS WITH LDAP

273

1

2

3

4

5

6

7

NOTE

If using user-defined name mappings, your configuration file will differ.

LDAP sync configuration that uses RFC 2307 schema: rfc2307_config.yaml

The IP address and host of the LDAP server where this group’s record is stored.

When false, secure LDAP (ldaps://) URLs connect using TLS, and insecure LDAP (ldap://) URLs
are upgraded to TLS. When true, no TLS connection is made to the server unless you specify a
ldaps:// URL, in which case URLs still attempt to connect by using TLS.

The attribute that uniquely identifies a group on the LDAP server. You cannot specify
groupsQuery filters when using DN for groupUIDAttribute. For fine-grained filtering, use the
whitelist / blacklist method.

The attribute to use as the name of the group.

The attribute on the group that stores the membership information.

The attribute that uniquely identifies a user on the LDAP server. You cannot specify usersQuery
filters when using DN for userUIDAttribute. For fine-grained filtering, use the whitelist / blacklist
method.

The attribute to use as the name of the user in the OpenShift Container Platform group record.

To run sync with the rfc2307_config.yaml file:

$ oc adm groups sync --sync-config=rfc2307_config.yaml --confirm

OpenShift Container Platform creates the following group record as a result of the above sync

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389 1
insecure: false 2
rfc2307:
 groupsQuery:
 baseDN: "ou=groups,dc=example,dc=com"
 scope: sub
 derefAliases: never
 pageSize: 0
 groupUIDAttribute: dn 3
 groupNameAttributes: [cn] 4
 groupMembershipAttributes: [member] 5
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub
 derefAliases: never
 pageSize: 0
 userUIDAttribute: dn 6
 userNameAttributes: [uid] 7
 tolerateMemberNotFoundErrors: false
 tolerateMemberOutOfScopeErrors: false

OpenShift Container Platform 3.11 Configuring Clusters

274

1

2

3

4

5

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift Container Platform group created by using the rfc2307_config.yaml file

The last time this OpenShift Container Platform group was synchronized with the LDAP server, in
ISO 6801 format.

The unique identifier for the group on the LDAP server.

The IP address and host of the LDAP server where this group’s record is stored.

The name of the group as specified by the sync file.

The users that are members of the group, named as specified by the sync file.

14.5.1.1. RFC2307 with user-defined name mappings

When syncing groups with user-defined name mappings, the configuration file changes to contain these
mappings as shown below.

LDAP sync configuration that uses RFC 2307 schema with user-defined name mappings:
rfc2307_config_user_defined.yaml

apiVersion: user.openshift.io/v1
kind: Group
metadata:
 annotations:
 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1
 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com 2
 openshift.io/ldap.url: LDAP_SERVER_IP:389 3
 creationTimestamp:
 name: admins 4
users: 5
- jane.smith@example.com
- jim.adams@example.com

kind: LDAPSyncConfig
apiVersion: v1
groupUIDNameMapping:
 "cn=admins,ou=groups,dc=example,dc=com": Administrators 1
rfc2307:
 groupsQuery:
 baseDN: "ou=groups,dc=example,dc=com"
 scope: sub
 derefAliases: never
 pageSize: 0
 groupUIDAttribute: dn 2
 groupNameAttributes: [cn] 3
 groupMembershipAttributes: [member]
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub

CHAPTER 14. SYNCING GROUPS WITH LDAP

275

1

2

3

4

1

The user-defined name mapping.

The unique identifier attribute that is used for the keys in the user-defined name mapping. You
cannot specify groupsQuery filters when using DN for groupUIDAttribute. For fine-grained
filtering, use the whitelist / blacklist method.

The attribute to name OpenShift Container Platform groups with if their unique identifier is not in
the user-defined name mapping.

The attribute that uniquely identifies a user on the LDAP server. You cannot specify usersQuery
filters when using DN for userUIDAttribute. For fine-grained filtering, use the whitelist / blacklist
method.

To run sync with the rfc2307_config_user_defined.yaml file:

$ oc adm groups sync --sync-config=rfc2307_config_user_defined.yaml --confirm

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift Container Platform group created by using the
rfc2307_config_user_defined.yaml file

The name of the group as specified by the user-defined name mapping.

14.5.2. Syncing groups by using RFC 2307 with user-defined error tolerances

By default, if the groups being synced contain members whose entries are outside of the scope defined
in the member query, the group sync fails with an error:

 derefAliases: never
 pageSize: 0
 userUIDAttribute: dn 4
 userNameAttributes: [uid]
 tolerateMemberNotFoundErrors: false
 tolerateMemberOutOfScopeErrors: false

apiVersion: user.openshift.io/v1
kind: Group
metadata:
 annotations:
 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400
 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com
 openshift.io/ldap.url: LDAP_SERVER_IP:389
 creationTimestamp:
 name: Administrators 1
users:
- jane.smith@example.com
- jim.adams@example.com

OpenShift Container Platform 3.11 Configuring Clusters

276

Error determining LDAP group membership for "<group>": membership lookup for user "<user>" in
group "<group>" failed because of "search for entry with dn="<user-dn>" would search outside of the
base dn specified (dn="<base-dn>")".

This often indicates a mis-configured baseDN in the usersQuery field. However, in cases where the
baseDN intentionally does not contain some of the members of the group, setting
tolerateMemberOutOfScopeErrors: true allows the group sync to continue. Out of scope members
will be ignored.

Similarly, when the group sync process fails to locate a member for a group, it fails outright with errors:

Error determining LDAP group membership for "<group>": membership lookup for user "<user>" in
group "<group>" failed because of "search for entry with base dn="<user-dn>" refers to a non-
existent entry".

Error determining LDAP group membership for "<group>": membership lookup for user "<user>" in
group "<group>" failed because of "search for entry with base dn="<user-dn>" and filter "<filter>" did
not return any results".

This often indicates a mis-configured usersQuery field. However, in cases where the group contains
member entries that are known to be missing, setting tolerateMemberNotFoundErrors: true allows the
group sync to continue. Problematic members will be ignored.

WARNING

Enabling error tolerances for the LDAP group sync causes the sync process to
ignore problematic member entries. If the LDAP group sync is not configured
correctly, this could result in synced OpenShift Container Platform groups missing
members.

LDAP entries that use RFC 2307 schema with problematic group membership:
rfc2307_problematic_users.ldif



 dn: ou=users,dc=example,dc=com
 objectClass: organizationalUnit
 ou: users

 dn: cn=Jane,ou=users,dc=example,dc=com
 objectClass: person
 objectClass: organizationalPerson
 objectClass: inetOrgPerson
 cn: Jane
 sn: Smith
 displayName: Jane Smith
 mail: jane.smith@example.com

 dn: cn=Jim,ou=users,dc=example,dc=com
 objectClass: person
 objectClass: organizationalPerson
 objectClass: inetOrgPerson

CHAPTER 14. SYNCING GROUPS WITH LDAP

277

1

2

2

3

A member that does not exist on the LDAP server.

A member that may exist, but is not under the baseDN in the user query for the sync job.

In order to tolerate the errors in the above example, the following additions to your sync configuration
file must be made:

LDAP sync configuration that uses RFC 2307 schema tolerating errors:
rfc2307_config_tolerating.yaml

When true, the sync job tolerates groups for which some members were not found, and members
whose LDAP entries are not found are ignored. The default behavior for the sync job is to fail if a
member of a group is not found.

When true, the sync job tolerates groups for which some members are outside the user scope
given in the usersQuery base DN, and members outside the member query scope are ignored.

 cn: Jim
 sn: Adams
 displayName: Jim Adams
 mail: jim.adams@example.com

 dn: ou=groups,dc=example,dc=com
 objectClass: organizationalUnit
 ou: groups

 dn: cn=admins,ou=groups,dc=example,dc=com
 objectClass: groupOfNames
 cn: admins
 owner: cn=admin,dc=example,dc=com
 description: System Administrators
 member: cn=Jane,ou=users,dc=example,dc=com
 member: cn=Jim,ou=users,dc=example,dc=com
 member: cn=INVALID,ou=users,dc=example,dc=com 1
 member: cn=Jim,ou=OUTOFSCOPE,dc=example,dc=com 2

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389
rfc2307:
 groupsQuery:
 baseDN: "ou=groups,dc=example,dc=com"
 scope: sub
 derefAliases: never
 groupUIDAttribute: dn
 groupNameAttributes: [cn]
 groupMembershipAttributes: [member]
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub
 derefAliases: never
 userUIDAttribute: dn 1
 userNameAttributes: [uid]
 tolerateMemberNotFoundErrors: true 2
 tolerateMemberOutOfScopeErrors: true 3

OpenShift Container Platform 3.11 Configuring Clusters

278

1

1

given in the usersQuery base DN, and members outside the member query scope are ignored.
The default behavior for the sync job is to fail if a member of a group is out of scope.

The attribute that uniquely identifies a user on the LDAP server. You cannot specify usersQuery
filters when using DN for userUIDAttribute. For fine-grained filtering, use the whitelist / blacklist
method.

To run sync with the rfc2307_config_tolerating.yaml file:

$ oc adm groups sync --sync-config=rfc2307_config_tolerating.yaml --confirm

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift Container Platform group created by using the rfc2307_config.yaml file

The users that are members of the group, as specified by the sync file. Members for which lookup
encountered tolerated errors are absent.

14.5.3. Syncing groups by using Active Directory

In the Active Directory schema, both users (Jane and Jim) exist in the LDAP server as first-class
entries, and group membership is stored in attributes on the user. The following snippet of ldif defines
the users and group for this schema:

LDAP entries that use Active Directory schema: active_directory.ldif

apiVersion: user.openshift.io/v1
kind: Group
metadata:
 annotations:
 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400
 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com
 openshift.io/ldap.url: LDAP_SERVER_IP:389
 creationTimestamp:
 name: admins
users: 1
- jane.smith@example.com
- jim.adams@example.com

dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit
ou: users

dn: cn=Jane,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jane
sn: Smith
displayName: Jane Smith
mail: jane.smith@example.com

CHAPTER 14. SYNCING GROUPS WITH LDAP

279

1

1

2

The user’s group memberships are listed as attributes on the user, and the group does not exist as
an entry on the server. The memberOf attribute does not have to be a literal attribute on the user;
in some LDAP servers, it is created during search and returned to the client, but not committed to
the database.

To sync this group, you must first create the configuration file. The Active Directory schema requires you
to provide an LDAP query definition for user entries, as well as the attributes to represent them with in
the internal OpenShift Container Platform group records.

For clarity, the group you create in OpenShift Container Platform should use attributes other than the
distinguished name whenever possible for user- or administrator-facing fields. For example, identify the
users of an OpenShift Container Platform group by their e-mail, but define the name of the group by
the name of the group on the LDAP server. The following configuration file creates these relationships:

LDAP sync configuration that uses Active Directory schema: active_directory_config.yaml

The attribute to use as the name of the user in the OpenShift Container Platform group record.

The attribute on the user that stores the membership information.

To run sync with the active_directory_config.yaml file:

$ oc adm groups sync --sync-config=active_directory_config.yaml --confirm

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

memberOf: admins 1

dn: cn=Jim,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jim
sn: Adams
displayName: Jim Adams
mail: jim.adams@example.com
memberOf: admins

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389
activeDirectory:
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub
 derefAliases: never
 filter: (objectclass=inetOrgPerson)
 pageSize: 0
 userNameAttributes: [uid] 1
 groupMembershipAttributes: [memberOf] 2

OpenShift Container Platform 3.11 Configuring Clusters

280

1

2

3

4

5

OpenShift Container Platform group created by using the active_directory_config.yaml file

The last time this OpenShift Container Platform group was synchronized with the LDAP server, in
ISO 6801 format.

The unique identifier for the group on the LDAP server.

The IP address and host of the LDAP server where this group’s record is stored.

The name of the group as listed in the LDAP server.

The users that are members of the group, named as specified by the sync file.

14.5.4. Syncing groups by using augmented Active Directory

In the augmented Active Directory schema, both users (Jane and Jim) and groups exist in the LDAP
server as first-class entries, and group membership is stored in attributes on the user. The following
snippet of ldif defines the users and group for this schema:

LDAP entries that use augmented Active Directory schema:
augmented_active_directory.ldif

apiVersion: user.openshift.io/v1
kind: Group
metadata:
 annotations:
 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1
 openshift.io/ldap.uid: admins 2
 openshift.io/ldap.url: LDAP_SERVER_IP:389 3
 creationTimestamp:
 name: admins 4
users: 5
- jane.smith@example.com
- jim.adams@example.com

dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit
ou: users

dn: cn=Jane,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jane
sn: Smith
displayName: Jane Smith
mail: jane.smith@example.com
memberOf: cn=admins,ou=groups,dc=example,dc=com 1

dn: cn=Jim,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson

CHAPTER 14. SYNCING GROUPS WITH LDAP

281

1

2

The user’s group memberships are listed as attributes on the user.

The group is a first-class entry on the LDAP server.

To sync this group, you must first create the configuration file. The augmented Active Directory schema
requires you to provide an LDAP query definition for both user entries and group entries, as well as the
attributes with which to represent them in the internal OpenShift Container Platform group records.

For clarity, the group you create in OpenShift Container Platform should use attributes other than the
distinguished name whenever possible for user- or administrator-facing fields. For example, identify the
users of an OpenShift Container Platform group by their e-mail, and use the name of the group as the
common name. The following configuration file creates these relationships.

LDAP sync configuration that uses augmented Active Directory schema:
augmented_active_directory_config.yaml

objectClass: inetOrgPerson
objectClass: testPerson
cn: Jim
sn: Adams
displayName: Jim Adams
mail: jim.adams@example.com
memberOf: cn=admins,ou=groups,dc=example,dc=com

dn: ou=groups,dc=example,dc=com
objectClass: organizationalUnit
ou: groups

dn: cn=admins,ou=groups,dc=example,dc=com 2
objectClass: groupOfNames
cn: admins
owner: cn=admin,dc=example,dc=com
description: System Administrators
member: cn=Jane,ou=users,dc=example,dc=com
member: cn=Jim,ou=users,dc=example,dc=com

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389
augmentedActiveDirectory:
 groupsQuery:
 baseDN: "ou=groups,dc=example,dc=com"
 scope: sub
 derefAliases: never
 pageSize: 0
 groupUIDAttribute: dn 1
 groupNameAttributes: [cn] 2
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub
 derefAliases: never
 filter: (objectclass=inetOrgPerson)

OpenShift Container Platform 3.11 Configuring Clusters

282

1

2

3

4

1

2

3

4

5

The attribute that uniquely identifies a group on the LDAP server. You cannot specify
groupsQuery filters when using DN for groupUIDAttribute. For fine-grained filtering, use the
whitelist / blacklist method.

The attribute to use as the name of the group.

The attribute to use as the name of the user in the OpenShift Container Platform group record.

The attribute on the user that stores the membership information.

To run sync with the augmented_active_directory_config.yaml file:

$ oc adm groups sync --sync-config=augmented_active_directory_config.yaml --confirm

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift group created by using the augmented_active_directory_config.yaml file

The last time this OpenShift Container Platform group was synchronized with the LDAP server, in
ISO 6801 format.

The unique identifier for the group on the LDAP server.

The IP address and host of the LDAP server where this group’s record is stored.

The name of the group as specified by the sync file.

The users that are members of the group, named as specified by the sync file.

14.6. NESTED MEMBERSHIP SYNC EXAMPLE

Groups in OpenShift Container Platform do not nest. The LDAP server must flatten group membership
before the data can be consumed. Microsoft’s Active Directory Server supports this feature via the
LDAP_MATCHING_RULE_IN_CHAIN rule, which has the OID 1.2.840.113556.1.4.1941. Furthermore,

 pageSize: 0
 userNameAttributes: [uid] 3
 groupMembershipAttributes: [memberOf] 4

apiVersion: user.openshift.io/v1
kind: Group
metadata:
 annotations:
 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1
 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com 2
 openshift.io/ldap.url: LDAP_SERVER_IP:389 3
 creationTimestamp:
 name: admins 4
users: 5
- jane.smith@example.com
- jim.adams@example.com

CHAPTER 14. SYNCING GROUPS WITH LDAP

283

https://msdn.microsoft.com/en-us/library/aa746475(v=vs.85).aspx

only explicitly whitelisted groups can be synced when using this matching rule.

This section has an example for the augmented Active Directory schema, which synchronizes a group
named admins that has one user Jane and one group otheradmins as members. The otheradmins
group has one user member: Jim. This example explains:

How the group and users are added to the LDAP server.

What the LDAP sync configuration file looks like.

What the resulting group record in OpenShift Container Platform will be after synchronization.

In the augmented Active Directory schema, both users (Jane and Jim) and groups exist in the LDAP
server as first-class entries, and group membership is stored in attributes on the user or the group. The
following snippet of ldif defines the users and groups for this schema:

LDAP entries that use augmented Active Directory schema with nested members:
augmented_active_directory_nested.ldif

dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit
ou: users

dn: cn=Jane,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jane
sn: Smith
displayName: Jane Smith
mail: jane.smith@example.com
memberOf: cn=admins,ou=groups,dc=example,dc=com 1

dn: cn=Jim,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jim
sn: Adams
displayName: Jim Adams
mail: jim.adams@example.com
memberOf: cn=otheradmins,ou=groups,dc=example,dc=com 2

dn: ou=groups,dc=example,dc=com
objectClass: organizationalUnit
ou: groups

dn: cn=admins,ou=groups,dc=example,dc=com 3
objectClass: group
cn: admins
owner: cn=admin,dc=example,dc=com
description: System Administrators
member: cn=Jane,ou=users,dc=example,dc=com
member: cn=otheradmins,ou=groups,dc=example,dc=com

OpenShift Container Platform 3.11 Configuring Clusters

284

1 2 5

3 4

6

The user’s and group’s memberships are listed as attributes on the object.

The groups are first-class entries on the LDAP server.

The otheradmins group is a member of the admins group.

To sync nested groups with Active Directory, you must provide an LDAP query definition for both user
entries and group entries, as well as the attributes with which to represent them in the internal
OpenShift Container Platform group records. Furthermore, certain changes are required in this
configuration:

The oc adm groups sync command must explicitly whitelist groups.

The user’s groupMembershipAttributes must include "memberOf:1.2.840.113556.1.4.1941:"
to comply with the LDAP_MATCHING_RULE_IN_CHAIN rule.

The groupUIDAttribute must be set to dn.

The groupsQuery:

Must not set filter.

Must set a valid derefAliases.

Should not set baseDN as that value is ignored.

Should not set scope as that value is ignored.

For clarity, the group you create in OpenShift Container Platform should use attributes other than the
distinguished name whenever possible for user- or administrator-facing fields. For example, identify the
users of an OpenShift Container Platform group by their e-mail, and use the name of the group as the
common name. The following configuration file creates these relationships:

LDAP sync configuration that uses augmented Active Directory schema with nested
members: augmented_active_directory_config_nested.yaml

dn: cn=otheradmins,ou=groups,dc=example,dc=com 4
objectClass: group
cn: otheradmins
owner: cn=admin,dc=example,dc=com
description: Other System Administrators
memberOf: cn=admins,ou=groups,dc=example,dc=com 5 6
member: cn=Jim,ou=users,dc=example,dc=com

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389
augmentedActiveDirectory:
 groupsQuery: 1
 derefAliases: never
 pageSize: 0
 groupUIDAttribute: dn 2
 groupNameAttributes: [cn] 3
 usersQuery:

CHAPTER 14. SYNCING GROUPS WITH LDAP

285

https://msdn.microsoft.com/en-us/library/aa746475(v=vs.85).aspx

1

2

3

4

5

1

groupsQuery filters cannot be specified. The groupsQuery base DN and scope values are
ignored. groupsQuery must set a valid derefAliases.

The attribute that uniquely identifies a group on the LDAP server. It must be set to dn.

The attribute to use as the name of the group.

The attribute to use as the name of the user in the OpenShift Container Platform group record.
uid or sAMAccountName are preferred choices in most installations.

The attribute on the user that stores the membership information. Note the use of
LDAP_MATCHING_RULE_IN_CHAIN.

To run sync with the augmented_active_directory_config_nested.yaml file:

$ oc adm groups sync \
 'cn=admins,ou=groups,dc=example,dc=com' \
 --sync-config=augmented_active_directory_config_nested.yaml \
 --confirm

NOTE

You must explicitly whitelist the cn=admins,ou=groups,dc=example,dc=com group.

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift group created by using the augmented_active_directory_config_nested.yaml file

The last time this OpenShift Container Platform group was synchronized with the LDAP server, in
ISO 6801 format.

 baseDN: "ou=users,dc=example,dc=com"
 scope: sub
 derefAliases: never
 filter: (objectclass=inetOrgPerson)
 pageSize: 0
 userNameAttributes: [uid] 4
 groupMembershipAttributes: ["memberOf:1.2.840.113556.1.4.1941:"] 5

apiVersion: user.openshift.io/v1
kind: Group
metadata:
 annotations:
 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1
 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com 2
 openshift.io/ldap.url: LDAP_SERVER_IP:389 3
 creationTimestamp:
 name: admins 4
users: 5
- jane.smith@example.com
- jim.adams@example.com

OpenShift Container Platform 3.11 Configuring Clusters

286

https://msdn.microsoft.com/en-us/library/aa746475(v=vs.85).aspx

2

3

4

5

The unique identifier for the group on the LDAP server.

The IP address and host of the LDAP server where this group’s record is stored.

The name of the group as specified by the sync file.

The users that are members of the group, named as specified by the sync file. Note that members
of nested groups are included since the group membership was flattened by the Microsoft Active
Directory Server.

14.7. LDAP SYNC CONFIGURATION SPECIFICATION

The object specification for the configuration file is below. Note that the different schema objects have
different fields. For example, v1.ActiveDirectoryConfig has no groupsQuery field whereas
v1.RFC2307Config and v1.AugmentedActiveDirectoryConfig both do.

IMPORTANT

There is no support for binary attributes. All attribute data coming from the LDAP server
must be in the format of a UTF-8 encoded string. For example, never use a binary
attribute, such as objectGUID, as an ID attribute. You must use string attributes, such as
sAMAccountName or userPrincipalName, instead.

14.7.1. v1.LDAPSyncConfig

LDAPSyncConfig holds the necessary configuration options to define an LDAP group sync.

Name Description Schema

kind String value representing the
REST resource this object
represents. Servers may infer this
from the endpoint the client
submits requests to. Cannot be
updated. In CamelCase. More
info:
https://github.com/kubernetes/c
ommunity/blob/master/contribut
ors/devel/api-
conventions.md#types-kinds

string

apiVersion Defines the versioned schema of
this representation of an object.
Servers should convert
recognized schemas to the latest
internal value, and may reject
unrecognized values. More info:
https://github.com/kubernetes/c
ommunity/blob/master/contribut
ors/devel/api-
conventions.md#resources

string

CHAPTER 14. SYNCING GROUPS WITH LDAP

287

https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md#types-kinds
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md#resources

url Host is the scheme, host and port
of the LDAP server to connect to:
scheme://host:port

string

bindDN Optional DN to bind to the LDAP
server with.

string

bindPassword Optional password to bind with
during the search phase.

v1.StringSource

insecure If true, indicates the connection
should not use TLS. If false,
ldaps:// URLs connect using TLS,
and ldap:// URLs are upgraded to
a TLS connection using StartTLS
as specified in
https://tools.ietf.org/html/rfc283
0. If you set insecure to true
and use a ldaps:// URL scheme,
URLs still attempt to make a TLS
connection using the specified ca.

boolean

ca Optional trusted certificate
authority bundle to use when
making requests to the server. If
empty, the default system roots
are used.

string

groupUIDNameMapping Optional direct mapping of LDAP
group UIDs to OpenShift
Container Platform group names.

object

rfc2307 Holds the configuration for
extracting data from an LDAP
server set up in a fashion similar
to RFC2307: first-class group
and user entries, with group
membership determined by a
multi-valued attribute on the
group entry listing its members.

v1.RFC2307Config

Name Description Schema

OpenShift Container Platform 3.11 Configuring Clusters

288

https://tools.ietf.org/html/rfc2830

activeDirectory Holds the configuration for
extracting data from an LDAP
server set up in a fashion similar
to that used in Active Directory:
first-class user entries, with group
membership determined by a
multi-valued attribute on
members listing groups they are a
member of.

v1.ActiveDirectoryConfig

augmentedActiveDirectory Holds the configuration for
extracting data from an LDAP
server set up in a fashion similar
to that used in Active Directory as
described above, with one
addition: first-class group entries
exist and are used to hold
metadata but not group
membership.

v1.AugmentedActiveDirectoryCon
fig

Name Description Schema

14.7.2. v1.StringSource

StringSource allows specifying a string inline, or externally via environment variable or file. When it
contains only a string value, it marshals to a simple JSON string.

Name Description Schema

value Specifies the cleartext value, or
an encrypted value if keyFile is
specified.

string

env Specifies an environment variable
containing the cleartext value, or
an encrypted value if the keyFile
is specified.

string

file References a file containing the
cleartext value, or an encrypted
value if a keyFile is specified.

string

keyFile References a file containing the
key to use to decrypt the value.

string

14.7.3. v1.LDAPQuery

LDAPQuery holds the options necessary to build an LDAP query.

CHAPTER 14. SYNCING GROUPS WITH LDAP

289

Name Description Schema

baseDN DN of the branch of the directory
where all searches should start
from.

string

scope The (optional) scope of the
search. Can be base (only the
base object), one (all objects on
the base level), sub (the entire
subtree). Defaults to sub if not
set.

string

derefAliases The (optional) behavior of the
search with regards to alisases.
Can be never (never dereference
aliases), search (only
dereference in searching), base
(only dereference in finding the
base object), always (always
dereference). Defaults to always
if not set.

string

timeout Holds the limit of time in seconds
that any request to the server can
remain outstanding before the
wait for a response is given up. If
this is 0, no client-side limit is
imposed.

integer

filter A valid LDAP search filter that
retrieves all relevant entries from
the LDAP server with the base
DN.

string

pageSize Maximum preferred page size,
measured in LDAP entries. A page
size of 0 means no paging will be
done.

integer

14.7.4. v1.RFC2307Config

RFC2307Config holds the necessary configuration options to define how an LDAP group sync interacts
with an LDAP server using the RFC2307 schema.

Name Description Schema

groupsQuery Holds the template for an LDAP
query that returns group entries.

v1.LDAPQuery

OpenShift Container Platform 3.11 Configuring Clusters

290

groupUIDAttribute Defines which attribute on an
LDAP group entry will be
interpreted as its unique
identifier. (ldapGroupUID)

string

groupNameAttributes Defines which attributes on an
LDAP group entry will be
interpreted as its name to use for
an OpenShift Container Platform
group.

string array

groupMembershipAttributes Defines which attributes on an
LDAP group entry will be
interpreted as its members. The
values contained in those
attributes must be queryable by
your UserUIDAttribute.

string array

usersQuery Holds the template for an LDAP
query that returns user entries.

v1.LDAPQuery

userUIDAttribute Defines which attribute on an
LDAP user entry will be
interpreted as its unique
identifier. It must correspond to
values that will be found from the
GroupMembershipAttributes.

string

userNameAttributes Defines which attributes on an
LDAP user entry will be used, in
order, as its OpenShift Container
Platform user name. The first
attribute with a non-empty value
is used. This should match your
PreferredUsername setting for
your
LDAPPasswordIdentityProvi
der. The attribute to use as the
name of the user in the OpenShift
Container Platform group record.
mail or sAMAccountName are
preferred choices in most
installations.

string array

Name Description Schema

CHAPTER 14. SYNCING GROUPS WITH LDAP

291

tolerateMemberNotFoundErr
ors

Determines the behavior of the
LDAP sync job when missing user
entries are encountered. If true,
an LDAP query for users that
does not find any will be tolerated
and an only and error will be
logged. If false, the LDAP sync
job will fail if a query for users
doesn’t find any. The default
value is 'false'. Misconfigured
LDAP sync jobs with this flag set
to 'true' can cause group
membership to be removed, so it
is recommended to use this flag
with caution.

boolean

tolerateMemberOutOfScopeE
rrors

Determines the behavior of the
LDAP sync job when out-of-
scope user entries are
encountered. If true, an LDAP
query for a user that falls outside
of the base DN given for the all
user query will be tolerated and
only an error will be logged. If
false, the LDAP sync job will fail if
a user query would search outside
of the base DN specified by the all
user query. Misconfigured LDAP
sync jobs with this flag set to true
can result in groups missing users,
so it is recommended to use this
flag with caution.

boolean

Name Description Schema

14.7.5. v1.ActiveDirectoryConfig

ActiveDirectoryConfig holds the necessary configuration options to define how an LDAP group sync
interacts with an LDAP server using the Active Directory schema.

Name Description Schema

usersQuery Holds the template for an LDAP
query that returns user entries.

v1.LDAPQuery

OpenShift Container Platform 3.11 Configuring Clusters

292

userNameAttributes Defines which attributes on an
LDAP user entry will be
interpreted as its OpenShift
Container Platform user name.
The attribute to use as the name
of the user in the OpenShift
Container Platform group record.
mail or sAMAccountName are
preferred choices in most
installations.

string array

groupMembershipAttributes Defines which attributes on an
LDAP user entry will be
interpreted as the groups it is a
member of.

string array

Name Description Schema

14.7.6. v1.AugmentedActiveDirectoryConfig

AugmentedActiveDirectoryConfig holds the necessary configuration options to define how an LDAP
group sync interacts with an LDAP server using the augmented Active Directory schema.

Name Description Schema

usersQuery Holds the template for an LDAP
query that returns user entries.

v1.LDAPQuery

userNameAttributes Defines which attributes on an
LDAP user entry will be
interpreted as its OpenShift
Container Platform user name.
The attribute to use as the name
of the user in the OpenShift
Container Platform group record.
mail or sAMAccountName are
preferred choices in most
installations.

string array

groupMembershipAttributes Defines which attributes on an
LDAP user entry will be
interpreted as the groups it is a
member of.

string array

groupsQuery Holds the template for an LDAP
query that returns group entries.

v1.LDAPQuery

CHAPTER 14. SYNCING GROUPS WITH LDAP

293

groupUIDAttribute Defines which attribute on an
LDAP group entry will be
interpreted as its unique
identifier. (ldapGroupUID)

string

groupNameAttributes Defines which attributes on an
LDAP group entry will be
interpreted as its name to use for
an OpenShift Container Platform
group.

string array

Name Description Schema

OpenShift Container Platform 3.11 Configuring Clusters

294

CHAPTER 15. CONFIGURING LDAP FAILOVER
OpenShift Container Platform provides an authentication provider for use with Lightweight Directory
Access Protocol (LDAP) setups, but it can connect to only a single LDAP server. During OpenShift
Container Platform installation, you can configure the System Security Services Daemon (SSSD) for
LDAP failover to ensure access to your cluster if one LDAP server fails.

The setup for this configuration is advanced and requires a separate authentication server, also called an
remote basic authentication server, for OpenShift Container Platform to communicate with. You
configure this server to pass extra attributes, such as email addresses, to OpenShift Container Platform
so it can display them in the web console.

This topic describes how to complete this set up on a dedicated physical or virtual machine (VM), but
you can also configure SSSD in containers.

IMPORTANT

You must complete all sections of this topic.

15.1. PREREQUISITES FOR CONFIGURING BASIC REMOTE
AUTHENTICATION

Before starting setup, you need to know the following information about your LDAP server:

Whether the directory server is powered by FreeIPA, Active Directory, or another LDAP
solution.

The Uniform Resource Identifier (URI) for the LDAP server, for example,
ldap.example.com.

The location of the CA certificate for the LDAP server.

Whether the LDAP server corresponds to RFC 2307 or RFC2307bis for user groups.

Prepare the servers:

remote-basic.example.com: A VM to use as the remote basic authentication server.

Select an operating system that includes SSSD version 1.12.0 for this server such as Red
Hat Enterprise Linux 7.0 or later.

openshift.example.com: A new installation of OpenShift Container Platform.

You must not have an authentication method configured for this cluster.

Do not start OpenShift Container Platform on this cluster.

15.2. GENERATING AND SHARING CERTIFICATES WITH THE REMOTE
BASIC AUTHENTICATION SERVER

Complete the following steps on the first master host listed in the Ansible host inventory file, by default
/etc/ansible/hosts.

1. To ensure that communication between the remote basic authentication server and OpenShift

CHAPTER 15. CONFIGURING LDAP FAILOVER

295

http://www.freeipa.org/page/Main_Page

1

1. To ensure that communication between the remote basic authentication server and OpenShift
Container Platform is trustworthy, create a set of Transport Layer Security (TLS) certificates to
use during the other phases of this set up. Run the following command:

openshift start \
 --public-master=https://openshift.example.com:8443 \
 --write-config=/etc/origin/

The output inclues the /etc/origin/master/ca.crt and /etc/origin/master/ca.key signing
certificates.

2. Use the signing certificate to generate keys to use on the remote basic authentication server:

mkdir -p /etc/origin/remote-basic/
oc adm ca create-server-cert \
 --cert='/etc/origin/remote-basic/remote-basic.example.com.crt' \
 --key='/etc/origin/remote-basic/remote-basic.example.com.key' \
 --hostnames=remote-basic.example.com \ 1
 --signer-cert='/etc/origin/master/ca.crt' \
 --signer-key='/etc/origin/master/ca.key' \
 --signer-serial='/etc/origin/master/ca.serial.txt'

A comma-separated list of all the host names and interface IP addresses that need to
access the remote basic authentication server.

NOTE

The certificate files that you generate are valid for two years. You can alter this
period by changing the --expire-days and --signer-expire-days values, but for
security reasons, do not make them greater than 730.

IMPORTANT

If you do not list all host names and interface IP addresses that need to access
the remote basic authentication server, the HTTPS connection will fail.

3. Copy the necessary certificates and key to the remote basic authentication server:

scp /etc/origin/master/ca.crt \
 root@remote-basic.example.com:/etc/pki/CA/certs/

scp /etc/origin/remote-basic/remote-basic.example.com.crt \
 root@remote-basic.example.com:/etc/pki/tls/certs/

scp /etc/origin/remote-basic/remote-basic.example.com.key \
 root@remote-basic.example.com:/etc/pki/tls/private/

15.3. CONFIGURING SSSD FOR LDAP FAILOVER

Complete these steps on the remote basic authentication server.

You can configure the SSSD to retrieve attributes, such as email addresses and display names, and pass

OpenShift Container Platform 3.11 Configuring Clusters

296

1

You can configure the SSSD to retrieve attributes, such as email addresses and display names, and pass
them to OpenShift Container Platform to display in the web interface. In the following steps, you
configure the SSSD to provide email addresses to OpenShift Container Platform:

1. Install the required SSSD and the web server components:

yum install -y sssd \
 sssd-dbus \
 realmd \
 httpd \
 mod_session \
 mod_ssl \
 mod_lookup_identity \
 mod_authnz_pam \
 php \
 mod_php

2. Set up SSSD to authenticate this VM against the LDAP server. If the LDAP server is a FreeIPA
or Active Directory environment, then use realmd to join this machine to the domain.

realm join ldap.example.com

For more advanced cases, see the System-Level Authentication Guide

3. To use SSSD to manage failover situations for LDAP, add more entries to the
/etc/sssd/sssd.conf file on the ldap_uri line. Systems that are enrolled with FreeIPA can
automatically handle failover by using DNS SRV records.

4. Modify the [domain/DOMAINNAME] section of the /etc/sssd/sssd.conf file and add this
attribute:

[domain/example.com]
...
ldap_user_extra_attrs = mail 1

Specify the correct attribute to retrieve email addresses for your LDAP solution. For IPA,
specify mail. Other LDAP solutions might use another attribute, such as email.

5. Confirm that the domain parameter in the /etc/sssd/sssd.conf file contains only the domain
name listed in the [domain/DOMAINNAME] section.

domains = example.com

6. Grant Apache permission to retrieve the email attribute. Add the following lines to the [ifp]
section of the /etc/sssd/sssd.conf file:

[ifp]
user_attributes = +mail
allowed_uids = apache, root

7. To ensure that all of the changes are applied properly, restart SSSD:

$ systemctl restart sssd.service

CHAPTER 15. CONFIGURING LDAP FAILOVER

297

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System-Level_Authentication_Guide/authconfig-ldap.html

1

2

8. Test that the user information can be retrieved properly:

$ getent passwd <username>
username:*:12345:12345:Example User:/home/username:/usr/bin/bash

9. Confirm that the mail attribute you specified returns an email address from your domain:

dbus-send --print-reply --system --dest=org.freedesktop.sssd.infopipe \
 /org/freedesktop/sssd/infopipe org.freedesktop.sssd.infopipe.GetUserAttr \
 string:username \ 1
 array:string:mail 2

method return time=1528091855.672691 sender=:1.2787 -> destination=:1.2795 serial=13
reply_serial=2
 array [
 dict entry(
 string "mail"
 variant array [
 string "username@example.com"
]
)
]

Provide a user name in your LDAP solution.

Specify the attribute that you configured.

10. Attempt to log in to the VM as an LDAP user and confirm that you can log in using LDAP
credentials. You can use either the local console or a remote service like SSH to log in.

IMPORTANT

By default, all users can log in to the remote basic authentication server by using their
LDAP credentials. You can change this behavior:

If you use IPA joined systems, configure host-based access control .

If you use Active Directory joined systems, use a group policy object.

For other cases, see the SSSD configuration documentation.

15.4. CONFIGURING APACHE TO USE SSSD

1. Create a /etc/pam.d/openshift file that contains the following contents:

auth required pam_sss.so
account required pam_sss.so

This configuration enables PAM, the pluggable authentication module, to use pam_sss.so to
determine authentication and access control when an authentication request is issued for the
openshift stack.

2. Edit the /etc/httpd/conf.modules.d/55-authnz_pam.conf file and uncomment the following

OpenShift Container Platform 3.11 Configuring Clusters

298

https://www.freeipa.org/page/Howto/HBAC_and_allow_all
https://docs.pagure.org/SSSD.sssd/design_pages/active_directory_gpo_integration.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/sssd

2. Edit the /etc/httpd/conf.modules.d/55-authnz_pam.conf file and uncomment the following
line:

LoadModule authnz_pam_module modules/mod_authnz_pam.so

3. To configure the Apache httpd.conf file for remote basic authentication, create the openshift-
remote-basic-auth.conf file in the /etc/httpd/conf.d directory. Use the following template to
provide your required settings and values:

IMPORTANT

Carefully review the template and customize its contents to fit your environment.

LoadModule request_module modules/mod_request.so
LoadModule php7_module modules/libphp7.so

Nothing needs to be served over HTTP. This virtual host simply redirects to
HTTPS.
<VirtualHost *:80>
 DocumentRoot /var/www/html
 RewriteEngine On
 RewriteRule ^(.*)$ https://%{HTTP_HOST}$1 [R,L]
</VirtualHost>

<VirtualHost *:443>
 # This needs to match the certificates you generated. See the CN and X509v3
 # Subject Alternative Name in the output of:
 # openssl x509 -text -in /etc/pki/tls/certs/remote-basic.example.com.crt
 ServerName remote-basic.example.com

 DocumentRoot /var/www/html

 # Secure all connections with TLS
 SSLEngine on
 SSLCertificateFile /etc/pki/tls/certs/remote-basic.example.com.crt
 SSLCertificateKeyFile /etc/pki/tls/private/remote-basic.example.com.key
 SSLCACertificateFile /etc/pki/CA/certs/ca.crt

 # Require that TLS clients provide a valid certificate
 SSLVerifyClient require
 SSLVerifyDepth 10

 # Other SSL options that may be useful
 # SSLCertificateChainFile ...
 # SSLCARevocationFile ...

 # Send logs to a specific location to make them easier to find
 ErrorLog logs/remote_basic_error_log
 TransferLog logs/remote_basic_access_log
 LogLevel warn

 # PHP script that turns the Apache REMOTE_USER env var
 # into a JSON formatted response that OpenShift understands
 <Location /check_user.php>
 # all requests not using SSL are denied

CHAPTER 15. CONFIGURING LDAP FAILOVER

299

 SSLRequireSSL
 # denies access when SSLRequireSSL is applied
 SSLOptions +StrictRequire
 # Require both a valid basic auth user (so REMOTE_USER is always set)
 # and that the CN of the TLS client matches that of the OpenShift master
 <RequireAll>
 Require valid-user
 Require expr %{SSL_CLIENT_S_DN_CN} == 'system:openshift-master'
 </RequireAll>
 # Use basic auth since OpenShift will call this endpoint with a basic challenge
 AuthType Basic
 AuthName openshift
 AuthBasicProvider PAM
 AuthPAMService openshift

 # Store attributes in environment variables. Specify the email attribute that
 # you confirmed.
 LookupOutput Env
 LookupUserAttr mail REMOTE_USER_MAIL
 LookupUserGECOS REMOTE_USER_DISPLAY_NAME

 # Other options that might be useful

 # While REMOTE_USER is used as the sub field and serves as the immutable ID,
 # REMOTE_USER_PREFERRED_USERNAME could be used to have a different
username
 # LookupUserAttr <attr_name> REMOTE_USER_PREFERRED_USERNAME

 # Group support may be added in a future release
 # LookupUserGroupsIter REMOTE_USER_GROUP
 </Location>

 # Deny everything else
 <Location ~ "^((?!\/check_user\.php).)*$">
 Deny from all
 </Location>
</VirtualHost>

4. Create the check_user.php script in the /var/www/html directory. Include the following code:

<?php
// Get the user based on the Apache var, this should always be
// set because we 'Require valid-user' in the configuration
$user = apache_getenv('REMOTE_USER');

// However, we assume it may not be set and
// build an error response by default
$data = array(
 'error' => 'remote PAM authentication failed'
);

// Build a success response if we have a user
if (!empty($user)) {
 $data = array(
 'sub' => $user
);

OpenShift Container Platform 3.11 Configuring Clusters

300

 // Map of optional environment variables to optional JSON fields
 $env_map = array(
 'REMOTE_USER_MAIL' => 'email',
 'REMOTE_USER_DISPLAY_NAME' => 'name',
 'REMOTE_USER_PREFERRED_USERNAME' => 'preferred_username'
);

 // Add all non-empty environment variables to JSON data
 foreach ($env_map as $env_name => $json_name) {
 $env_data = apache_getenv($env_name);
 if (!empty($env_data)) {
 $data[$json_name] = $env_data;
 }
 }
}

// We always output JSON from this script
header('Content-Type: application/json', true);

// Write the response as JSON
echo json_encode($data);
?>

5. Enable Apache to load the module. Modify the /etc/httpd/conf.modules.d/55-
lookup_identity.conf file and uncomment the following line:

LoadModule lookup_identity_module modules/mod_lookup_identity.so

6. Set an SELinux boolean so that SElinux allows Apache to connect to SSSD over D-BUS:

setsebool -P httpd_dbus_sssd on

7. Set a boolean to tell SELinux that it is acceptable for Apache to contact the PAM subsystem:

setsebool -P allow_httpd_mod_auth_pam on

8. Start Apache:

systemctl start httpd.service

15.5. CONFIGURING OPENSHIFT CONTAINER PLATFORM TO USE
SSSD AS THE BASIC REMOTE AUTHENTICATION SERVER

Modify the default configuration of your cluster to use the new identity provider that you created.
Complete the following steps on the first master host listed in the Ansible host inventory file.

1. Open the /etc/origin/master/master-config.yaml file.

2. Locate the identityProviders section and replace it with the following code:

 identityProviders:
 - name: sssd
 challenge: true

CHAPTER 15. CONFIGURING LDAP FAILOVER

301

 login: true
 mappingMethod: claim
 provider:
 apiVersion: v1
 kind: BasicAuthPasswordIdentityProvider
 url: https://remote-basic.example.com/check_user.php
 ca: /etc/origin/master/ca.crt
 certFile: /etc/origin/master/openshift-master.crt
 keyFile: /etc/origin/master/openshift-master.key

3. Restart OpenShift Container Platform with the updated configuration:

/usr/local/bin/master-restart api api

/usr/local/bin/master-restart controllers controllers

4. Test a login by using the oc CLI:

$ oc login https://openshift.example.com:8443

You can log in only with valid LDAP credentials.

5. List the identities and confirm that an email address is displayed for each user name. Run the
following command:

$ oc get identity -o yaml

OpenShift Container Platform 3.11 Configuring Clusters

302

CHAPTER 16. CONFIGURING THE SDN

16.1. OVERVIEW

The OpenShift SDN enables communication between pods across the OpenShift Container Platform
cluster, establishing a pod network . Three SDN plug-ins are currently available (ovs-subnet, ovs-
multitenant, and ovs-networkpolicy), which provide different methods for configuring the pod
network.

16.2. AVAILABLE SDN PROVIDERS

The upstream Kubernetes project does not come with a default network solution. Instead, Kubernetes
has developed a Container Network Interface (CNI) to allow network providers for integration with their
own SDN solutions.

There are several OpenShift SDN plug-ins available out of the box from Red Hat, as well as third-party
plug-ins.

Red Hat has worked with a number of SDN providers to certify their SDN network solution on OpenShift
Container Platform via the Kubernetes CNI interface, including a support process for their SDN plug-in
through their product’s entitlement process. Should you open a support case with OpenShift, Red Hat
can facilitate an exchange process so that both companies are involved in meeting your needs.

The following SDN solutions are validated and supported on OpenShift Container Platform directly by
the third-party vendor:

Cisco ACI (™)

Juniper Contrail (™)

Nokia Nuage (™)

Tigera Calico (™)

VMware NSX-T (™)

Installing VMware NSX-T (™) on OpenShift Container Platform
VMware NSX-T (™) provides an SDN and security infrastructure to build cloud-native application
environments. In addition to vSphere hypervisors (ESX), these environments include KVM and native
public clouds.

The current integration requires a new install of both NSX-T and OpenShift Container Platform.
Currently, NSX-T version 2.4 is supported, and only supports the use of ESXi and KVM hypervisors at
this time.

See the NSX-T Container Plug-in for OpenShift - Installation and Administration Guide for more
information.

16.3. CONFIGURING THE POD NETWORK WITH ANSIBLE

For initial cluster installations, the ovs-subnet plug-in is installed and configured by default, though it
can be overridden during installation using the os_sdn_network_plugin_name parameter, which is
configurable in the Ansible inventory file.

For example, to override the standard ovs-subnet plug-in and use the ovs-multitenant plug-in instead:

CHAPTER 16. CONFIGURING THE SDN

303

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-sdn
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-sdn
https://docs.vmware.com/en/VMware-NSX-T-Data-Center/2.4/nsxt_24_ncp_openshift.pdf

1

2

3

4

Configure the multi-tenant SDN plugin (default is 'redhat/openshift-ovs-subnet')
os_sdn_network_plugin_name='redhat/openshift-ovs-multitenant'

See Configuring Cluster Variables for descriptions of networking-related Ansible variables that can be
set in your inventory file.

16.4. CONFIGURING THE POD NETWORK ON MASTERS

The cluster administrators can control pod network settings on master hosts by modifying parameters in
the networkConfig section of the master configuration file (located at /etc/origin/master/master-
config.yaml by default):

Configuring a pod network for a single CIDR

Cluster network for node IP allocation

Number of bits for pod IP allocation within a node

Set to redhat/openshift-ovs-subnet for the ovs-subnet plug-in, redhat/openshift-ovs-
multitenant for the ovs-multitenant plug-in, or redhat/openshift-ovs-networkpolicy for the
ovs-networkpolicy plug-in

Service IP allocation for the cluster

Alternatively, you can create a pod network with multiple CIDR ranges by adding separate ranges into
the clusterNetworks field with the range and the hostSubnetLength.

Multiple ranges can be used at once, and the range can be expanded or contracted. Nodes can be
moved from one range to another by evacuating a node, then deleting and re-creating the node. See
the Managing Nodes section for more information. Node allocations occur in the order listed, then when
the range is full, move to the next on the list.

Configuring a pod network for multiple CIDRs

networkConfig:
 clusterNetworks:
 - cidr: 10.128.0.0/14 1
 hostSubnetLength: 9 2
 networkPluginName: "redhat/openshift-ovs-subnet" 3
 serviceNetworkCIDR: 172.30.0.0/16 4

networkConfig:
 clusterNetworks:
 - cidr: 10.128.0.0/14 1
 hostSubnetLength: 9 2
 - cidr: 10.132.0.0/14
 hostSubnetLength: 9
 externalIPNetworkCIDRs: null
 hostSubnetLength: 9
 ingressIPNetworkCIDR: 172.29.0.0/16
 networkPluginName: redhat/openshift-ovs-multitenant 3
 serviceNetworkCIDR: 172.30.0.0/16

OpenShift Container Platform 3.11 Configuring Clusters

304

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-install-networking-variables-table
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-manage-nodes

1

2

3

1

Cluster network for node IP allocation.

Number of bits for pod IP allocation within a node.

Set to redhat/openshift-ovs-subnet for the ovs-subnet plug-in, redhat/openshift-ovs-
multitenant for the ovs-multitenant plug-in, or redhat/openshift-ovs-networkpolicy for the
ovs-networkpolicy plug-in.

You can add elements to the clusterNetworks value, or remove them if no node is using that CIDR
range.

IMPORTANT

The hostSubnetLength value cannot be changed after the cluster is first created, A cidr
field can only be changed to be a larger network that still contains the original network if
nodes are allocated within it’s range , and serviceNetworkCIDR can only be expanded.
For example, given the typical value of 10.128.0.0/14, you could change cidr to
10.128.0.0/9 (i.e., the entire upper half of net 10) but not to 10.64.0.0/16, because that
does not overlap the original value.

You can change serviceNetworkCIDR from 172.30.0.0/16 to 172.30.0.0/15, but not to
172.28.0.0/14, because even though the original range is entirely inside the new range,
the original range must be at the start of the CIDR. See Expanding the service network
for more information.

Ensure that you restart the API and master services for any changes to take effect:

$ master-restart api
$ master-restart controllers

IMPORTANT

The pod network settings on the nodes must match the pod network settings configured
by the networkConfig.clusterNetworks parameter on the masters. This can be done by
modifying parameters in the networkConfig section of the appropriate node
configuration map:

proxyArguments:
 cluster-cidr:
 - 10.128.0.0/12 1

The CIDR value must encompass all the cluster network CIDR ranges defined at the
master level but not conflict with other IP ranges, such as for nodes and services.

After the master services have been restarted the configuration must be propagated to the nodes. On
each node the atomic-openshift-node service and ovs pod must be restarted. To avoid downtime follow
the steps defined in Managing Nodes and described in the following procedure for each node or group
of nodes at a time:

1. Mark the node as unschedulable:

oc adm manage-node <node1> <node2> --schedulable=false

CHAPTER 16. CONFIGURING THE SDN

305

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#modifying-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-manage-nodes

1

1

2. Drain the node:

oc adm drain <node1> <node2>

3. Restart the node:

reboot

4. Mark the node as schedulable again:

oc adm manage-node <node1> <node2> --schedulable

16.5. CHANGING THE VXLAN PORT FOR THE CLUSTER NETWORK

As a cluster administrator, you can change the VXLAN port the system uses.

Because you cannot change the VXLAN port of a running clusternetwork object, you must delete any
existing network configurations and create a new configuration by editing the vxlanPort variable in the
master configuration file.

1. Delete the existing clusternetwork:

oc delete clusternetwork default

2. Edit the master configuration file located at /etc/origin/master/master-config.yaml by
default creating the new clusternetwork:

networkConfig:
 clusterNetworks:
 - cidr: 10.128.0.0/14
 hostSubnetLength: 9
 - cidr: 10.132.0.0/14
 hostSubnetLength: 9
 externalIPNetworkCIDRs: null
 hostSubnetLength: 9
 ingressIPNetworkCIDR: 172.29.0.0/16
 networkPluginName: redhat/openshift-ovs-multitenant
 serviceNetworkCIDR: 172.30.0.0/16
 vxlanPort: 4889 1

Set to the value used by the nodes for the VXLAN Port. It can be an integer between 1-
65535. The default value is 4789.

3. Add the new port to the iptables rule on each cluster node:

iptables -A OS_FIREWALL_ALLOW -p udp -m state --state NEW -m udp --dport 4889 -j
ACCEPT 1

4889 is the vxlanPort value that you set in the master configuration file.

4. Restart the master services:

OpenShift Container Platform 3.11 Configuring Clusters

306

1

2

master-restart api
master-restart controllers

5. Delete any old SDN pods to propagate new pods with the new change:

oc delete pod -l app=sdn -n openshift-sdn

16.6. CONFIGURING THE POD NETWORK ON NODES

The cluster administrators can control pod network settings on nodes by modifying parameters in the
networkConfig section of the appropriate node configuration map:

Maximum transmission unit (MTU) for the pod overlay network

Set to redhat/openshift-ovs-subnet for the ovs-subnet plug-in, redhat/openshift-ovs-
multitenant for the ovs-multitenant plug-in, or redhat/openshift-ovs-networkpolicy for the
ovs-networkpolicy plug-in

NOTE

You must change the MTU size on all masters and nodes that are part of the OpenShift
Container Platform SDN. Also, the MTU size of the tun0 interface must be the same
across all nodes that are part of the cluster.

16.7. EXPANDING THE SERVICE NETWORK

If you are running low on addresses in your service network, you can expand the range as long as you
ensure that the current range is at the beginning of the new range.

NOTE

The service network can only be expanded, it cannot be changed or contracted.

1. Change the serviceNetworkCIDR and servicesSubnet parameters in the configuration files
for all masters (/etc/origin/master/master-config.yaml by default). Change only the number
following the / to a smaller number.

2. Delete the clusterNetwork default object:

$ oc delete clusternetwork default

3. Restart the controllers component on all masters:

master-restart controllers

4. Update the value of the openshift_portal_net variable in the Ansible inventory file to the new

networkConfig:
 mtu: 1450 1
 networkPluginName: "redhat/openshift-ovs-subnet" 2

CHAPTER 16. CONFIGURING THE SDN

307

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#modifying-nodes

4. Update the value of the openshift_portal_net variable in the Ansible inventory file to the new
CIDR:

Configure SDN cluster network and kubernetes service CIDR blocks. These
network blocks should be private and should not conflict with network blocks
in your infrastructure that pods may require access to. Can not be changed
after deployment.
openshift_portal_net=172.30.0.0/<new_CIDR_range>

For each node in the cluster, complete the following steps:

1. Mark the node as unschedulable .

2. Evacuate the pods from the node .

3. Reboot the node.

4. After the node is available again, Mark the node as schedulable again.

16.8. MIGRATING BETWEEN SDN PLUG-INS

If you are already using one SDN plug-in and want to switch to another:

1. Change the networkPluginName parameter on all masters and nodes in their configuration
files.

2. Restart the API and master services on all masters:

master-restart api
master-restart controllers

3. Stop the node service on all masters and nodes:

systemctl stop atomic-openshift-node.service

4. If you are switching between OpenShift SDN plug-ins, restart OpenShift SDN on all masters and
nodes.

oc delete pod --all -n openshift-sdn

5. Restart the node service on all masters and nodes:

systemctl restart atomic-openshift-node.service

6. If you are switching from an OpenShift SDN plug-in to a third-party plug-in, then clean up
OpenShift SDN-specific artifacts:

$ oc delete clusternetwork --all
$ oc delete hostsubnets --all
$ oc delete netnamespaces --all

IMPORTANT

OpenShift Container Platform 3.11 Configuring Clusters

308

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#marking-nodes-as-unschedulable-or-schedulable
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#evacuating-pods-on-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#rebooting-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#marking-nodes-as-unschedulable-or-schedulable

IMPORTANT

Additionally, after switching to ovs-multitenant, the users can no longer provision
services using the Service Catalog. The same applies for openshift-monitoring . To
correct this, make these projects global:

$ oc adm pod-network make-projects-global kube-service-catalog
$ oc adm pod-network make-projects-global openshift-monitoring

This problem does not appear if the cluster was initially installed with ovs-multitenant,
because these commands were executed as part of the Ansible playbooks.

NOTE

When switching from the ovs-subnet to the ovs-multitenant OpenShift SDN plug-in, all
the existing projects in the cluster will be fully isolated (assigned unique VNIDs). The
cluster administrators can choose to modify the project networks using the administrator
CLI.

Check VNIDs by running:

$ oc get netnamespace

16.8.1. Migrating from ovs-multitenant to ovs-networkpolicy

NOTE

The v1 NetworkPolicy features are available only in OpenShift Container Platform. This
means that egress policy types, IPBlock, and combining podSelector and
namespaceSelector are not available in OpenShift Container Platform.

NOTE

Do not apply NetworkPolicy features on default OpenShift Container Platform projects,
because they can disrupt communication with the cluster.

In addition to the generic plug-in migration steps above in the Migrating between SDN plug-ins section ,
there is one additional step when migrating from the ovs-multitenant plug-in to the ovs-networkpolicy
plug-in; you must ensure that every namespace has a unique NetID. This means that if you have
previously joined projects together or made projects global , you will need to undo that before switching
to the ovs-networkpolicy plug-in, or the NetworkPolicy objects may not function correctly.

A helper script is available that fixes NetID’s, creates NetworkPolicy objects to isolate previously-
isolated namespaces, and enables connections between previously-joined namespaces.

Use the following steps to migrate to the ovs-networkpolicy plug-in, by using this helper script, while
still running the ovs-multitenant plug-in:

1. Download the script and add the execution file permission:

$ curl -O https://raw.githubusercontent.com/openshift/origin/release-
3.11/contrib/migration/migrate-network-policy.sh
$ chmod a+x migrate-network-policy.sh

CHAPTER 16. CONFIGURING THE SDN

309

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-pod-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#joining-project-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#making-project-networks-global

2. Run the script (requires the cluster administrator role).

After running this script, every namespace is fully isolated from every other namespace, therefore
connection attempts between pods in different namespaces will fail until you complete the migration to
the ovs-networkpolicy plug-in.

If you want newly-created namespaces to also have the same policies by default, you can set default
NetworkPolicy objects to be created matching the default-deny and allow-from-global-namespaces
policies created by the migration script.

NOTE

In case of script failures or other errors, or if you later decide you want to revert back to
the ovs-multitenant plug-in, you can use the un-migration script. This script undoes the
changes made by the migration script and re-joins previously-joined namespaces.

16.9. EXTERNAL ACCESS TO THE CLUSTER NETWORK

If a host that is external to OpenShift Container Platform requires access to the cluster network, you
have two options:

1. Configure the host as an OpenShift Container Platform node but mark it unschedulable so that
the master does not schedule containers on it.

2. Create a tunnel between your host and a host that is on the cluster network.

Both options are presented as part of a practical use-case in the documentation for configuring routing
from an edge load-balancer to containers within OpenShift SDN.

16.10. USING FLANNEL

As an alternate to the default SDN, OpenShift Container Platform also provides Ansible playbooks for
installing flannel-based networking. This is useful if running OpenShift Container Platform within a cloud
provider platform that also relies on SDN, such as Red Hat OpenStack Platform, and you want to avoid
encapsulating packets twice through both platforms.

Flannel uses a single IP network space for all of the containers allocating a contiguous subset of the
space to each instance. Consequently, nothing prevents a container from attempting to contact any IP
address in the same network space. This hinders multi-tenancy because the network cannot be used to
isolate containers in one application from another.

Depending on whether you prefer mutli-tenancy isolation or performance, you should determine the
appropriate choice when deciding between OpenShift SDN (multi-tenancy) and flannel (performance)
for internal networks.

IMPORTANT

Flannel is only supported for OpenShift Container Platform on Red Hat OpenStack
Platform.

IMPORTANT

$./migrate-network-policy.sh

OpenShift Container Platform 3.11 Configuring Clusters

310

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-networking-networkpolicy-setting-default
https://raw.githubusercontent.com/openshift/origin/release-3.11/contrib/migration/migrate-network-policy.sh
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#marking-nodes-as-unschedulable-or-schedulable

1

2

IMPORTANT

The current version of Neutron enforces port security on ports by default. This prevents
the port from sending or receiving packets with a MAC address different from that on the
port itself. Flannel creates virtual MACs and IP addresses and must send and receive
packets on the port, so port security must be disabled on the ports that carry flannel
traffic.

To enable flannel within your OpenShift Container Platform cluster:

1. Neutron port security controls must be configured to be compatible with Flannel. The default
configuration of Red Hat OpenStack Platform disables user control of port_security. Configure
Neutron to allow users to control the port_security setting on individual ports.

a. On the Neutron servers, add the following to the /etc/neutron/plugins/ml2/ml2_conf.ini
file:

[ml2]
...
extension_drivers = port_security

b. Then, restart the Neutron services:

service neutron-dhcp-agent restart
service neutron-ovs-cleanup restart
service neutron-metadata-agentrestart
service neutron-l3-agent restart
service neutron-plugin-openvswitch-agent restart
service neutron-vpn-agent restart
service neutron-server restart

2. When creating the OpenShift Container Platform instances on Red Hat OpenStack Platform,
disable both port security and security groups in the ports where the container network flannel
interface will be:

neutron port-update $port --no-security-groups --port-security-enabled=False

NOTE

Flannel gather information from etcd to configure and assign the subnets in the
nodes. Therefore, the security group attached to the etcd hosts should allow
access from nodes to port 2379/tcp, and nodes security group should allow
egress communication to that port on the etcd hosts.

a. Set the following variables in your Ansible inventory file before running the installation:

openshift_use_openshift_sdn=false 1
openshift_use_flannel=true 2
flannel_interface=eth0

Set openshift_use_openshift_sdn to false to disable the default SDN.

Set openshift_use_flannel to true to enable flannel in place.

CHAPTER 16. CONFIGURING THE SDN

311

b. Optionally, you can specify the interface to use for inter-host communication using the
flannel_interface variable. Without this variable, the OpenShift Container Platform
installation uses the default interface.

NOTE

Custom networking CIDR for pods and services using flannel will be
supported in a future release. BZ#1473858

3. After the OpenShift Container Platform installation, add a set of iptables rules on every
OpenShift Container Platform node:

iptables -A DOCKER -p all -j ACCEPT
iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE

To persist those changes in the /etc/sysconfig/iptables use the following command on every
node:

cp /etc/sysconfig/iptables{,.orig}
sh -c "tac /etc/sysconfig/iptables.orig | sed -e '0,/:DOCKER -/ s/:DOCKER -/:DOCKER
ACCEPT/' | awk '"\!"p && /POSTROUTING/{print \"-A POSTROUTING -o eth1 -j
MASQUERADE\"; p=1} 1' | tac > /etc/sysconfig/iptables"

NOTE

The iptables-save command saves all the current in memory iptables rules.
However, because Docker, Kubernetes and OpenShift Container Platform create
a high number of iptables rules (services, etc.) not designed to be persisted,
saving these rules can become problematic.

To isolate container traffic from the rest of the OpenShift Container Platform traffic, Red Hat
recommends creating an isolated tenant network and attaching all the nodes to it. If you are using a
different network interface (eth1), remember to configure the interface to start at boot time through
the /etc/sysconfig/network-scripts/ifcfg-eth1 file:

DEVICE=eth1
TYPE=Ethernet
BOOTPROTO=dhcp
ONBOOT=yes
DEFTROUTE=no
PEERDNS=no

OpenShift Container Platform 3.11 Configuring Clusters

312

https://bugzilla.redhat.com/show_bug.cgi?id=1473858

CHAPTER 17. CONFIGURING NUAGE SDN

17.1. NUAGE SDN AND OPENSHIFT CONTAINER PLATFORM

Nuage Networks Virtualized Services Platform (VSP) provides virtual networking and software-defined
networking (SDN) infrastructure to container environments that simplifies IT operations and expands
OpenShift Container Platform’s native networking capabilities.

Nuage Networks VSP supports Docker-based applications running on OpenShift Container Platform to
accelerate the provisioning of virtual networks between pods and traditional workloads, and to enable
security policies across the entire cloud infrastructure. VSP allows for the automation of security
appliances to include granular security and microsegmentation policies for container applications.

Integrating VSP with the OpenShift Container Platform application workflow allows business
applications to be quickly turned up and updated by removing the network lag faced by DevOps teams.
VSP supports different workflows with OpenShift Container Platform in order to accommodate
scenarios where users can choose ease-of-use or complete control using policy-based automation.

See Networking for more information on how VSP is integrated with OpenShift Container Platform.

17.2. DEVELOPER WORKFLOW

This workflow is used in developer environments and requires little input from the developer in setting
up the networking. In this workflow, nuage-openshift-monitor is responsible for creating the VSP
constructs (Zone, Subnets, etc.) needed to provide appropriate policies and networking for pods
created in an OpenShift Container Platform project. When a project is created, a default zone and
default subnet for that project are created by nuage-openshift-monitor . When the default subnet
created for a given project gets depleted, nuage-openshift-monitor dynamically creates additional
subnets.

NOTE

A separate VSP Zone is created for each OpenShift Container Platform project ensuring
isolation amongst the projects.

17.3. OPERATIONS WORKFLOW

This workflow is used by operations teams rolling out applications. In this workflow, the network and
security policies are first configured on the VSD in accordance with the rules set by the organization to
deploy applications. Administrative users can potentially create multiple zones and subnets and map
them to the same project using labels. While spinning up the pods, the user can use the Nuage Labels to
specify what network a pod needs to attach to and what network policies need to be applied to it. This
allows for deployments where inter- and intra-project traffic can be controlled in a fine-grained manner.
For example, inter-project communication is enabled on a project by project basis. This may be used to
connect projects to common services that are deployed in a shared project.

17.4. INSTALLATION

The VSP integration with OpenShift Container Platform works for both virtual machines (VMs) and bare
metal OpenShift Container Platform installations.

An environment with High Availability (HA) can be configured with multiple masters and multiple nodes.

Nuage VSP integration in multi-master mode only supports the native HA configuration method

CHAPTER 17. CONFIGURING NUAGE SDN

313

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#nuage-sdn

Nuage VSP integration in multi-master mode only supports the native HA configuration method
described in this section. This can be combined with any load balancing solution, the default being
HAProxy. The inventory file contains three master hosts, the nodes, an etcd server, and a host that
functions as the HAProxy to balance the master API on all master hosts. The HAProxy host is defined in
the [lb] section of the inventory file enabling Ansible to automatically install and configure HAProxy as
the load balancing solution.

In the Ansible nodes file, the following parameters need to be specified in order to setup Nuage VSP as
the network plug-in:

 # Create and OSEv3 group that contains masters, nodes, load-balancers, and etcd hosts
 masters
 nodes
 etcd
 lb

 # Nuage specific parameters
 openshift_use_openshift_sdn=False
 openshift_use_nuage=True
 os_sdn_network_plugin_name='nuage/vsp-openshift'
 openshift_node_proxy_mode='userspace'

 # VSP related parameters
 vsd_api_url=https://192.168.103.200:8443
 vsp_version=v4_0
 enterprise=nuage
 domain=openshift
 vsc_active_ip=192.168.103.201
 vsc_standby_ip=192.168.103.202
 uplink_interface=eth0

 # rpm locations
 nuage_openshift_rpm=http://location_of_rpm_server/openshift/RPMS/x86_64/nuage-openshift-
monitor-4.0.X.1830.el7.centos.x86_64.rpm
 vrs_rpm=http://location_of_rpm_server/openshift/RPMS/x86_64/nuage-openvswitch-
4.0.X.225.el7.x86_64.rpm
 plugin_rpm=http://location_of_rpm_server/openshift/RPMS/x86_64/vsp-openshift-
4.0.X1830.el7.centos.x86_64.rpm

 # Required for Nuage Monitor REST server and HA
 openshift_master_cluster_method=native
 openshift_master_cluster_hostname=lb.nuageopenshift.com
 openshift_master_cluster_public_hostname=lb.nuageopenshift.com
 nuage_openshift_monitor_rest_server_port=9443

 # Optional parameters
 nuage_interface_mtu=1460
 nuage_master_adminusername='admin's user-name'
 nuage_master_adminuserpasswd='admin's password'
 nuage_master_cspadminpasswd='csp admin password'
 nuage_openshift_monitor_log_dir=/var/log/nuage-openshift-monitor

 # Required for brownfield install (where a {product-title} cluster exists without Nuage as the
networking plugin)
 nuage_dockker_bridge=lbr0

OpenShift Container Platform 3.11 Configuring Clusters

314

 # Specify master hosts
 [masters]
 fqdn_of_master_1
 fqdn_of_master_2
 fqdn_of_master_3

 # Specify load balancer host
 [lb]
 fqdn_of_load_balancer

CHAPTER 17. CONFIGURING NUAGE SDN

315

CHAPTER 18. CONFIGURING NSX-T SDN

18.1. NSX-T SDN AND OPENSHIFT CONTAINER PLATFORM

VMware NSX-T Data Center ™ provides advanced software-defined networking (SDN), security, and
visibility to container environments that simplifies IT operations and extends native OpenShift
Container Platform networking capabilities.

NSX-T Data Center supports virtual machine, bare metal, and container workloads across multiple
clusters. This allows organizations to have complete visibility using a single SDN across the entire
environment.

For more information on how NSX-T integrates with OpenShift Container Platform, see the NSX-T
SDN in Available SDN plug-ins.

18.2. EXAMPLE TOPOLOGY

One typical use case is to have a Tier-0 (T0) router that connects the physical system with the virtual
environment and a Tier-1 (T1) router to act as a default gateway for the OpenShift Container Platform
VMs.

Each VM has two vNICs: One vNIC connects to the Management Logical Switch for accessing the VMs.
The other vNIC connects to a Dump Logical Switch and is used by nsx-node-agent to uplink the Pod
networking. For further details, refer to NSX Container Plug-in for OpenShift .

The LoadBalancer used for configuring OpenShift Container Platform Routes and all project T1 routers
and Logical Switches are created automatically during the OpenShift Container Platform installation.

In this topology, the default OpenShift Container Platform HAProxy Router is used for all infrastructure
components such as Grafana, Prometheus, Console, Service Catalog, and others. Ensure that the DNS
records for the infrastructure components point to the infrastructure node IP addresses, because the
HAProxy uses the host network namespace. This works for infrastructure routes, but in order to avoid
exposing the infrastructure nodes management IPs to the outside world, deploy application-specific
routes to the NSX-T LoadBalancer.

This example topology assumes you are using three OpenShift Container Platform master virtual
machines and four OpenShift Container Platform worker virtual machines (two for infrastructure and
two for compute).

18.3. INSTALLING VMWARE NSX-T

Prerequisites:

ESXi hosts requirements:

ESXi servers that host OpenShift Container Platform node VMs must be NSX-T Transport
Nodes.

Figure 18.1. NSX UI dislaying the Transport Nodes for a typical high availability

OpenShift Container Platform 3.11 Configuring Clusters

316

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#nsx-sdn
https://docs.vmware.com/en/VMware-NSX-T-Data-Center/2.4/nsxt_24_ncp_openshift.pdf

Figure 18.1. NSX UI dislaying the Transport Nodes for a typical high availability
environment:

DNS requirements:

You must add a new entry to your DNS server with a wildcard to the infrastructure nodes.
This allows load balancing by NSX-T or other third-party LoadBalancer. In the hosts file
below, the entry is defined by the openshift_master_default_subdomain variable.

You must update your DNS server with the openshift_master_cluster_hostname and
openshift_master_cluster_public_hostname variables.

Virtual Machine requirements:

The OpenShift Container Platform node VMs must have two vNICs:

A Management vNIC must be connected to the Logical Switch that is uplinked to the
management T1 router.

The second vNIC on all VMs must be tagged in NSX-T so that the NSX Container Plug-in
(NCP) knows which port needs to be used as a parent VIF for all Pods running in a particular
OpenShift Container Platform node. The tags must be the following:

{'ncp/node_name': 'node_name'}
{'ncp/cluster': 'cluster_name'}

The following image shows how the tags in NSX UI for all nodes. For a large scale cluster,
you can automate the tagging using API Call or by using Ansible.

Figure 18.2. NSX UI dislaying node tags

CHAPTER 18. CONFIGURING NSX-T SDN

317

Figure 18.2. NSX UI dislaying node tags

The order of the tags in the NSX UI is opposite from the API. The node name must be
exactly as kubelet expects and the cluster name must be the same as the
nsx_openshift_cluster_name in the Ansible hosts file, as shown below. Ensure that the
proper tags are applied on the second vNIC on every node.

NSX-T requirements:
The following prerequisites need to be met in NSX:

A Tier-0 Router.

An Overlay Transport Zone.

An IP Block for POD networking.

Optionally, an IP Block for routed (NoNAT) POD networking.

An IP Pool for SNAT. By default the subnet given per Project from the Pod networking IP
Block is routable only inside NSX-T. NCP uses this IP Pool to provide connectivity to the
outside.

Optionally, the Top and Bottom firewall sections in a dFW (Distributed Firewall). NCP places
the Kubernetes Network Policy rules between those two sections.

The Open vSwitch and CNI plug-in RPMs need to be hosted on a HTTP server reachable
from the OpenShift Container Platform Node VMs (http://websrv.example.com in this
example). Those files are included in the NCP Tar file, which you can download from
VMware at Download NSX Container Plug-in 2.4.0 .

OpenShift Container Platform requirements:

Run the following command to install required software packages, if any, for OpenShift

OpenShift Container Platform 3.11 Configuring Clusters

318

http://websrv.example.com
https://my.vmware.com/web/vmware/details?downloadGroup=NSX-T-PKS-240&productId=673

1

Run the following command to install required software packages, if any, for OpenShift
Container Platform:

$ ansible-playbook -i hosts openshift-ansible/playbooks/prerequisites.yml

Ensure that the NCP container image is downloaded locally on all nodes

After the prerequisites.yml playbook has successfully executed, run the following
command on all nodes, replacing the xxx with the NCP build version:

$ docker load -i nsx-ncp-rhel-xxx.tar

For example:

$ docker load -i nsx-ncp-rhel-2.4.0.12511604.tar

Get the image name and retag it:

$ docker images
$ docker image tag registry.local/xxxxx/nsx-ncp-rhel nsx-ncp 1

Replace the xxx with the NCP build version. For example:

docker image tag registry.local/2.4.0.12511604/nsx-ncp-rhel nsx-ncp

In the OpenShift Container Platform Ansible hosts file, specify the following parameters to
set up NSX-T as the network plug-in:

[OSEv3:children]
masters
nodes
etcd

[OSEv3:vars]
ansible_ssh_user=root
openshift_deployment_type=origin
openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login': 'true', 'challenge':
'true', 'kind': 'HTPasswdPasswordIdentityProvider'}]
openshift_master_htpasswd_users={"admin" :
"$apr1$H0QeP6oX$HHdscz5gqMdtTcT5eoCJ20"}
openshift_master_default_subdomain=demo.example.com
openshift_use_nsx=true
os_sdn_network_plugin_name=cni
openshift_use_openshift_sdn=false
openshift_node_sdn_mtu=1500
openshift_master_cluster_method=native
openshift_master_cluster_hostname=master01.example.com
openshift_master_cluster_public_hostname=master01.example.com
openshift_hosted_manage_registry=true
openshift_hosted_manage_router=true
openshift_enable_service_catalog=true
openshift_cluster_monitoring_operator_install=true
openshift_web_console_install=true

CHAPTER 18. CONFIGURING NSX-T SDN

319

openshift_console_install=true

NSX-T specific configuration
#nsx_use_loadbalancer=false
nsx_openshift_cluster_name='cluster01'
nsx_api_managers='nsxmgr.example.com'
nsx_api_user='nsx_admin'
nsx_api_password='nsx_api_password_example'
nsx_tier0_router='LR-Tier-0'
nsx_overlay_transport_zone='TZ-Overlay'
nsx_container_ip_block='pod-networking'
nsx_no_snat_ip_block='pod-nonat'
nsx_external_ip_pool='pod-external'
nsx_top_fw_section='containers-top'
nsx_bottom_fw_section='containers-bottom'
nsx_ovs_uplink_port='ens224'
nsx_cni_url='http://websrv.example.com/nsx-cni-buildversion.x86_64.rpm'
nsx_ovs_url='http://websrv.example.com/openvswitch-buildversion.rhel75-1.x86_64.rpm'
nsx_kmod_ovs_url='http://websrv.example.com/kmod-openvswitch-buildversion.rhel75-
1.el7.x86_64.rpm'
nsx_insecure_ssl=true
vSphere Cloud Provider
#openshift_cloudprovider_kind=vsphere
#openshift_cloudprovider_vsphere_username='administrator@example.com'
#openshift_cloudprovider_vsphere_password='viadmin_password'
#openshift_cloudprovider_vsphere_host='vcsa.example.com'
#openshift_cloudprovider_vsphere_datacenter='Example-Datacenter'
#openshift_cloudprovider_vsphere_cluster='example-Cluster'
#openshift_cloudprovider_vsphere_resource_pool='ocp'
#openshift_cloudprovider_vsphere_datastore='example-Datastore-name'
#openshift_cloudprovider_vsphere_folder='ocp'

[masters]
master01.example.com
master02.example.com
master03.example.com

[etcd]
master01.example.com
master02.example.com
master03.example.com

[nodes]
master01.example.com ansible_ssh_host=192.168.220.2
openshift_node_group_name='node-config-master'
master02.example.com ansible_ssh_host=192.168.220.3
openshift_node_group_name='node-config-master'
master03.example.com ansible_ssh_host=192.168.220.4
openshift_node_group_name='node-config-master'
node01.example.com ansible_ssh_host=192.168.220.5
openshift_node_group_name='node-config-infra'
node02.example.com ansible_ssh_host=192.168.220.6
openshift_node_group_name='node-config-infra'
node03.example.com ansible_ssh_host=192.168.220.7

OpenShift Container Platform 3.11 Configuring Clusters

320

openshift_node_group_name='node-config-compute'
node04.example.com ansible_ssh_host=192.168.220.8
openshift_node_group_name='node-config-compute'

For information on the OpenShift Container Platform installation parameters, see
Configuring Your Inventory File.

Procedure

After meeting all of the prerequisites, you can deploy NSX Data Center and OpenShift Container
Platform.

1. Deploy the OpenShift Container Platform cluster:

$ ansible-playbook -i hosts openshift-ansible/playbooks/deploy_cluster.yml

For more information on the OpenShift Container Platform installation, see Installing OpenShift
Container Platform.

2. After the installation is complete, validate that the NCP and nsx-node-agent Pods are running:

$ oc get pods -o wide -n nsx-system
NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE
nsx-ncp-5sggt 1/1 Running 0 1h 192.168.220.8 node04.example.com
<none>
nsx-node-agent-b8nkm 2/2 Running 0 1h 192.168.220.5
node01.example.com <none>
nsx-node-agent-cldks 2/2 Running 0 2h 192.168.220.8
node04.example.com <none>
nsx-node-agent-m2p5l 2/2 Running 28 3h 192.168.220.4
master03.example.com <none>
nsx-node-agent-pcfd5 2/2 Running 0 1h 192.168.220.7
node03.example.com <none>
nsx-node-agent-ptwnq 2/2 Running 26 3h 192.168.220.2
master01.example.com <none>
nsx-node-agent-xgh5q 2/2 Running 26 3h 192.168.220.3
master02.example.com <none>

18.4. CHECK NSX-T AFTER OPENSHIFT CONTAINER PLATFORM
DEPLOYMENT

After installing OpenShift Container Platform and verifying the NCP and nsx-node-agent-* Pods:

Check the routing. Ensure that the Tier-1 routers were created during the installation and are
linked to the Tier-0 router:

Figure 18.3. NSX UI dislaying showing the T1 routers

CHAPTER 18. CONFIGURING NSX-T SDN

321

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-config-configuring-inventory-file
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-running-installation-playbooks

Figure 18.3. NSX UI dislaying showing the T1 routers

Observe the network traceflow and visibility. For example, check the connection between
'console' and 'grafana'.
For more information on securing and optimizing communications between Pods, Projects,
virtual machines, and external services, see the following example:

Figure 18.4. NSX UI dislaying showing network traceflow

Check the load balancing. NSX-T Data center offers Load Balancer and Ingress Controller
capabilities, as shown in the following example:

Figure 18.5. NSX UI dislay showing the load balancers

OpenShift Container Platform 3.11 Configuring Clusters

322

Figure 18.5. NSX UI dislay showing the load balancers

For additional configuration and options, refer to the VMware NSX-T v2.4 OpenShift Plug-In
documentation.

CHAPTER 18. CONFIGURING NSX-T SDN

323

https://docs.vmware.com/en/VMware-NSX-T-Data-Center/2.4/rn/NSX-Container-Plugin-Release-Notes.html

CHAPTER 19. CONFIGURING KURYR SDN

19.1. KURYR SDN AND OPENSHIFT CONTAINER PLATFORM

Kuryr (or more specifically Kuryr-Kubernetes) is an SDN solution built using CNI and OpenStack
Neutron. Its advantages include being able to use a wide range of Neutron SDN backends and providing
inter-connectivity between Kubernetes pods and OpenStack virtual machines (VMs).

Kuryr-Kubernetes and OpenShift Container Platform integration is primarily designed for OpenShift
Container Platform clusters running on OpenStack VMs. Kuryr-Kubernetes components are installed as
pods on OpenShift Container Platform in the kuryr namespace:

kuryr-controller - a single service instance, installed on an infra node. Modeled in OpenShift
Container Platform as a Deployment.

kuryr-cni - container installing and configuring Kuryr as CNI driver on each OpenShift Container
Platform node. Modeled in OpenShift Container Platform as a DaemonSet.

The Kuryr controller watches the OpenShift API server for pod, service, and namespace create, update,
and delete events. It maps the OpenShift Container Platform API calls to corresponding objects in
Neutron and Octavia. This means that every network solution that implements the Neutron trunk port
functionality can be used to back OpenShift Container Platform via Kuryr. This includes open source
solutions such as OVS and OVN as well as Neutron-compatible commercial SDNs.

19.2. INSTALLING KURYR SDN

For the Kuryr SDN installation on an OpenStack cloud, you must follow the steps described in the
OpenStack configuration documentation.

19.3. VERIFICATION

Once the installation of OpenShift Container Platform is finished, you can check if Kuryr pods are
deployed successfully:

$ oc -n kuryr get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
kuryr-cni-ds-66kt2 2/2 Running 0 3d 192.168.99.14 infra-node-
0.openshift.example.com
kuryr-cni-ds-ggcpz 2/2 Running 0 3d 192.168.99.16 master-
0.openshift.example.com
kuryr-cni-ds-mhzjt 2/2 Running 0 3d 192.168.99.6 app-node-
1.openshift.example.com
kuryr-cni-ds-njctb 2/2 Running 0 3d 192.168.99.12 app-node-
0.openshift.example.com
kuryr-cni-ds-v8hp8 2/2 Running 0 3d 192.168.99.5 infra-node-
1.openshift.example.com
kuryr-controller-59fc7f478b-qwk4k 1/1 Running 0 3d 192.168.99.5 infra-node-
1.openshift.example.com

kuryr-cni pods run on every OpenShift Container Platform node. Single kuryr-controller instances run
on any of the infra nodes.

NOTE

OpenShift Container Platform 3.11 Configuring Clusters

324

https://docs.openstack.org/kuryr-kubernetes/latest/
https://github.com/containernetworking/cni
https://docs.openstack.org/neutron/latest/

NOTE

Network policies and nodeport services are not supported when Kuryr SDN is enabled.

CHAPTER 19. CONFIGURING KURYR SDN

325

CHAPTER 20. CONFIGURING FOR AMAZON WEB SERVICES
(AWS)

20.1. OVERVIEW

OpenShift Container Platform can be configured to access an AWS EC2 infrastructure, including using
AWS volumes as persistent storage for application data. After you configure AWS, some additional
configurations must be completed on the OpenShift Container Platform hosts.

20.1.1. Configuring authorization for Amazon Web Services (AWS)

Permissions AWS instances require either IAM account with Programmatic Access using an access and
secret key or IAM role assigned to instances at creation to be able to request and manage load
balancers and storage in OpenShift Container Platform.

The IAM account or IAM role must have the following policy permissions to have full cloud provider
functionality.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ec2:DescribeVolume*",
 "ec2:CreateVolume",
 "ec2:CreateTags",
 "ec2:DescribeInstances",
 "ec2:AttachVolume",
 "ec2:DetachVolume",
 "ec2:DeleteVolume",
 "ec2:DescribeSubnets",
 "ec2:CreateSecurityGroup",
 "ec2:DescribeSecurityGroups",
 "ec2:DeleteSecurityGroup",
 "ec2:DescribeRouteTables",
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:RevokeSecurityGroupIngress",
 "elasticloadbalancing:DescribeTags",
 "elasticloadbalancing:CreateLoadBalancerListeners",
 "elasticloadbalancing:ConfigureHealthCheck",
 "elasticloadbalancing:DeleteLoadBalancerListeners",
 "elasticloadbalancing:RegisterInstancesWithLoadBalancer",
 "elasticloadbalancing:DescribeLoadBalancers",
 "elasticloadbalancing:CreateLoadBalancer",
 "elasticloadbalancing:DeleteLoadBalancer",
 "elasticloadbalancing:ModifyLoadBalancerAttributes",
 "elasticloadbalancing:DescribeLoadBalancerAttributes"
],
 "Resource": "*",
 "Effect": "Allow",
 "Sid": "1"
 }
]
}

OpenShift Container Platform 3.11 Configuring Clusters

326

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html

1

2

3

NOTE

The OpenShift node instances only need the ec2:DescribeInstance permission but the
installer only allows for a single AWS access key and secret to be defined. This can be
bypassed using IAM roles and assigning the permissions above to the master instances
and the ec2:DescribeInstance to nodes.

20.1.1.1. Configuring the OpenShift Container Platform cloud provider at installation

Procedure

To configure the configure the Amazon Web Services cloud provider using an IAM account with an
access and secret key add the following values to the inventory:

A tag assigned to all resources (instances, load balancers, vpc, etc) used for OpenShift.

AWS access key used by the IAM account.

AWS secret key used by the IAM account.

To configure the configure the Amazon Web Services cloud provider using an IAM role add the following
values to the inventory:

[source,yaml]

[OSEv3:vars]
openshift_cloudprovider_kind=aws
openshift_clusterid=openshift 1

<1> A tag assigned to all resources (instances, load balancers, vpc, etc) used for OpenShift.

NOTE: The IAM role takes the place of needing an access and secret key.

20.1.1.2. Configuring the OpenShift Container Platform cloud provider after installation

In the event that the Amazon Web Services cloud provider values were not provided at installation time

aws iam put-role-policy \
 --role-name openshift-role \
 --policy-name openshift-admin \
 --policy-document file: //openshift_iam_policy

aws iam put-user-policy \
 --user-name openshift-admin \
 --policy-name openshift-admin \
 --policy-document file: //openshift_iam_policy

[OSEv3:vars]
openshift_cloudprovider_kind=aws
openshift_clusterid=openshift 1
openshift_cloudprovider_aws_access_key=AKIAJ6VLBLISADPBUA 2
openshift_cloudprovider_aws_secret_key=g/8PmDNYHVSQn0BQE+xtsHzbaZaGYjGNzhbdgwjH 3

CHAPTER 20. CONFIGURING FOR AMAZON WEB SERVICES (AWS)

327

the configuration can be defined and created after the installation. Follow the steps to configure the
configuration file and manually configuring the master and node Manually Configuring OpenShift
Container Platform Masters for AWS.

IMPORTANT

Every master host, node host, and subnet must have the
kubernetes.io/cluster/<clusterid>,Value=(owned|shared) tag.

One security group, preferably the one linked to the nodes, must have the
kubernetes.io/cluster/<clusterid>,Value=(owned|shared) tag.

Do not tag all security groups with the
kubernetes.io/cluster/<clusterid>,Value=(owned|shared) tag or the
Elastic Load Balancing (ELB) will not be able to create a load balancer.

20.2. CONFIGURING A SECURITY GROUP

When installing OpenShift Container Platform on AWS, ensure that you set up the appropriate security
groups.

These are some ports that you must have in your security groups, without which the installation fails. You
may need more depending on the cluster configuration you want to install. For more information and to
adjust your security groups accordingly, see Required Ports for more information.

All OpenShift Container
Platform Hosts tcp/22 from host running the installer/Ansible

etcd Security Group
tcp/2379 from masters

tcp/2380 from etcd hosts

Master Security Group
tcp/8443 from 0.0.0.0/0

tcp/53 from all OpenShift Container Platform hosts for
environments installed prior to or upgraded to 3.2

udp/53 from all OpenShift Container Platform hosts for
environments installed prior to or upgraded to 3.2

tcp/8053 from all OpenShift Container Platform hosts for new
environments installed with 3.2

udp/8053 from all OpenShift Container Platform hosts for new
environments installed with 3.2

Node Security Group
tcp/10250 from masters

udp/4789 from nodes

OpenShift Container Platform 3.11 Configuring Clusters

328

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#required-ports

Infrastructure Nodes (ones that
can host the OpenShift
Container Platform router)

tcp/443 from 0.0.0.0/0

tcp/80 from 0.0.0.0/0

CRI-O If using CRIO, you must open tcp/10010 to allow oc exec and oc rsh
operations.

If configuring external load-balancers (ELBs) for load balancing the masters and/or routers, you also
need to configure Ingress and Egress security groups for the ELBs appropriately.

20.2.1. Overriding Detected IP Addresses and Host Names

In AWS, situations that require overriding the variables include:

Variable Usage

hostname The user is installing in a VPC that is not configured for both DNS
hostnames and DNS resolution.

ip You have multiple network interfaces configured and want to use one
other than the default.

public_hostname
A master instance where the VPC subnet is not configured for
Auto-assign Public IP. For external access to this master,
you need to have an ELB or other load balancer configured that
would provide the external access needed, or you need to
connect over a VPN connection to the internal name of the
host.

A master instance where metadata is disabled.

This value is not actually used by the nodes.

public_ip
A master instance where the VPC subnet is not configured for
Auto-assign Public IP.

A master instance where metadata is disabled.

This value is not actually used by the nodes.

For EC2 hosts in particular, they must be deployed in a VPC that has both DNS host names and DNS
resolution enabled.

20.2.1.1. Configuring the OpenShift Container Platform registry for Amazon Web Services
(AWS)

Amazon Web Services (AWS) provides object cloud storage that OpenShift Container Platform can use
to store container images using the OpenShift Container Platform container registry.

CHAPTER 20. CONFIGURING FOR AMAZON WEB SERVICES (AWS)

329

For more information, see Amazon S3.

Prerequisites

OpenShift Container Platform uses S3 for image storage. A S3 bucket, IAM policy, and IAM user with
Programmatic Access should be created to allow for the installer to configure the registry.

The example below uses awscli to create a bucket with the name of openshift-registry-storage in the
region of us-east-1.

The default policy

20.2.1.1.1. Configuring the OpenShift Container Platform inventory to use S3

Procedure

To configure the Ansible inventory for the registry to use the S3 bucket and IAM user:

aws s3api create-bucket \
 --bucket openshift-registry-storage \
 --region us-east-1

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketLocation",
 "s3:ListBucketMultipartUploads"
],
 "Resource": "arn:aws:s3:::S3_BUCKET_NAME"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:DeleteObject",
 "s3:ListMultipartUploadParts",
 "s3:AbortMultipartUpload"
],
 "Resource": "arn:aws:s3:::S3_BUCKET_NAME/*"
 }
]
}

[OSEv3:vars]
AWS Registry Configuration
openshift_hosted_manage_registry=true
openshift_hosted_registry_storage_kind=object
openshift_hosted_registry_storage_provider=s3
openshift_hosted_registry_storage_s3_accesskey=AKIAJ6VLREDHATSPBUA 1
openshift_hosted_registry_storage_s3_secretkey=g/8PmTYDQVGssFWWFvfawHpDbZyGkjGNZhbW

OpenShift Container Platform 3.11 Configuring Clusters

330

https://aws.amazon.com/s3/

1 1

2

3

4

5

The access key for the IAM user. (Not required with IAM Roles in place)

The secret key for the IAM user. (Not required with IAM Roles in place)

The S3 storage bucket name.

The region in which the bucket exists.

The AWS Key Management Service (AWS KMS) key ID of the encryption key used to encrypt data
in the cluster.

20.2.1.1.2. Manually configuring OpenShift Container Platform registry to use S3

To use Amazon Web Services (AWS) S3 object storage, edit the registry’s configuration file and mount
to the registry pod.

Procedure

1. Export the current config.yml:

2. Create a new configuration file from the old config.yml:

3. Edit the file to include the S3 parameters. Specify the accountname, accountkey, container, and
realm in the storage section of a registry’s configuration file:

QpjH 2
openshift_hosted_registry_storage_s3_bucket=openshift-registry-storage 3
openshift_hosted_registry_storage_s3_region=us-east-1 4
openshift_hosted_registry_storage_s3_chunksize=26214400
openshift_hosted_registry_storage_s3_rootdirectory=/registry
openshift_hosted_registry_storage_s3_encrypt=false
openshift_hosted_registry_storage_s3_kmskeyid=aws_kms_key_id 5
openshift_hosted_registry_pullthrough=true
openshift_hosted_registry_acceptschema2=true
openshift_hosted_registry_enforcequota=true
openshift_hosted_registry_replicas=3

$ oc get secret registry-config \
 -o jsonpath='{.data.config\.yml}' -n default | base64 -d \
 >> config.yml.old

$ cp config.yml.old config.yml

storage:
 delete:
 enabled: true
 cache:
 blobdescriptor: inmemory
 s3:
 accesskey: AKIAJ6VLREDHATSPBUA 1
 secretkey: g/8PmTYDQVGssFWWFvfawHpDbZyGkjGNZhbWQpjH 2
 region: us-east-1 3
 bucket: openshift-registry-storage 4

CHAPTER 20. CONFIGURING FOR AMAZON WEB SERVICES (AWS)

331

1

2

3

4

Replace with an AWS access key that is authorized to access the S3 bucket.

The secret key that corresponds to the defined AWS access key.

The name of the S3 bucket to be used as the registry.

The location in which the registry will store images and metadata. (Default is /registry)

4. Delete the registry-config secret:

5. Recreate the secret to reference the updated configuration file:

6. Redeploy the registry to read the updated configuration:

20.2.1.1.3. Verify the registry is using S3 storage

To verify if the registry is using Amazon S3 storage:

Procedure

1. After a successful registry deployment, the registry deploymentconfig describes registry-
storage as emptydir instead of AWS S3 but the configuration for the AWS S3 bucket resides in
the secret docker-config. The docker-config secret mounts to
REGISTRY_CONFIGURATION_PATH which provides all of the paramaters when using AWS S3
for the registry object storage.

 encrypt: False
 secure: true
 v4auth: true
 rootdirectory: /registry 5
 chunksize: "26214400"

$ oc delete secret registry-config -n default

$ oc create secret generic registry-config \
 --from-file=config.yml -n default

$ oc rollout latest docker-registry -n default

$ oc describe dc docker-registry -n default
...
 Environment:
 REGISTRY_HTTP_ADDR: :5000
 REGISTRY_HTTP_NET: tcp
 REGISTRY_HTTP_SECRET:
SPLR83SDsPaGbGuwSMDfnDwrDRvGf6YXl4h9JQrToQU=
 REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_ENFORCEQUOTA: false
 REGISTRY_HTTP_TLS_KEY: /etc/secrets/registry.key
 OPENSHIFT_DEFAULT_REGISTRY: docker-registry.default.svc:5000
 REGISTRY_CONFIGURATION_PATH: /etc/registry/config.yml
 REGISTRY_OPENSHIFT_SERVER_ADDR: docker-registry.default.svc:5000
 REGISTRY_HTTP_TLS_CERTIFICATE: /etc/secrets/registry.crt
 Mounts:

OpenShift Container Platform 3.11 Configuring Clusters

332

1 The temporary directory that shares a pod’s lifetime.

2. Ensure that the /registry mountpoint is empty:

If it is empty, it is because the S3 configuration is defined in the registry-config secret:

3. The installer creates a config.yml file with the desired configuration using the extended registry
capabilities as seen in Storage in the installation documentation . To view the configuration file,
including the storage section where the storage bucket configuration is stored:

 /etc/registry from docker-config (rw)
 /etc/secrets from registry-certificates (rw)
 /registry from registry-storage (rw)
 Volumes:
 registry-storage:
 Type: EmptyDir (a temporary directory that shares a pod's lifetime) 1
 Medium:
 registry-certificates:
 Type: Secret (a volume populated by a Secret)
 SecretName: registry-certificates
 Optional: false
 docker-config:
 Type: Secret (a volume populated by a Secret)
 SecretName: registry-config
 Optional: false
....

$ oc exec \
 $(oc get pod -l deploymentconfig=docker-registry \
 -o=jsonpath='{.items[0].metadata.name}') -i -t -- ls -l /registry
total 0

$ oc describe secret registry-config
Name: registry-config
Namespace: default
Labels: <none>
Annotations: <none>

Type: Opaque

Data
====
config.yml: 398 bytes

$ oc exec \
 $(oc get pod -l deploymentconfig=docker-registry \
 -o=jsonpath='{.items[0].metadata.name}') \
 cat /etc/registry/config.yml

 version: 0.1
 log:
 level: debug
 http:
 addr: :5000

CHAPTER 20. CONFIGURING FOR AMAZON WEB SERVICES (AWS)

333

Alternatively, you can view the secret:

$ oc get secret registry-config -o jsonpath='{.data.config\.yml}' | base64 -d
version: 0.1
log:
 level: debug
http:
 addr: :5000
 storage:
 delete:
 enabled: true
 cache:
 blobdescriptor: inmemory
 s3:
 accesskey: AKIAJ6VLREDHATSPBUA
 secretkey: g/8PmTYDQVGssFWWFvfawHpDbZyGkjGNZhbWQpjH
 region: us-east-1
 bucket: openshift-registry-storage
 encrypt: False
 secure: true
 v4auth: true
 rootdirectory: /registry
 chunksize: "26214400"
auth:
 openshift:
 realm: openshift

 storage:
 delete:
 enabled: true
 cache:
 blobdescriptor: inmemory
 s3:
 accesskey: AKIAJ6VLREDHATSPBUA
 secretkey: g/8PmTYDQVGssFWWFvfawHpDbZyGkjGNZhbWQpjH
 region: us-east-1
 bucket: openshift-registry-storage
 encrypt: False
 secure: true
 v4auth: true
 rootdirectory: /registry
 chunksize: "26214400"
 auth:
 openshift:
 realm: openshift
 middleware:
 registry:
 - name: openshift
 repository:
 - name: openshift
 options:
 pullthrough: true
 acceptschema2: true
 enforcequota: true
 storage:
 - name: openshift

OpenShift Container Platform 3.11 Configuring Clusters

334

1

middleware:
 registry:
 - name: openshift
 repository:
 - name: openshift
 options:
 pullthrough: true
 acceptschema2: true
 enforcequota: true
 storage:
 - name: openshift

If using an emptyDir volume, the /registry mountpoint looks like the following:

$ oc exec \
 $(oc get pod -l deploymentconfig=docker-registry \
 -o=jsonpath='{.items[0].metadata.name}') -i -t -- df -h /registry
Filesystem Size Used Avail Use% Mounted on
/dev/sdc 100G 226M 30G 1% /registry

$ oc exec \
 $(oc get pod -l deploymentconfig=docker-registry \
 -o=jsonpath='{.items[0].metadata.name}') -i -t -- ls -l /registry
total 0
drwxr-sr-x. 3 1000000000 1000000000 22 Jun 19 12:24 docker

20.3. CONFIGURING AWS VARIABLES

To set the required AWS variables, create a /etc/origin/cloudprovider/aws.conf file with the following
contents on all of your OpenShift Container Platform hosts, both masters and nodes:

[Global]
Zone = us-east-1c 1

This is the Availability Zone of your AWS Instance and where your EBS Volume resides; this
information is obtained from the AWS Management Console.

20.4. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR AWS

You can set the AWS configuration on OpenShift Container Platform in two ways:

using Ansible or

manually, by modifying the master-config.yaml, node-config.yaml, and related
/etc/sysconfig/ files.

20.4.1. Configuring OpenShift Container Platform for AWS with Ansible

During cluster installations, AWS can be configured using the
openshift_cloudprovider_aws_access_key, openshift_cloudprovider_aws_secret_key,
openshift_cloudprovider_kind, openshift_clusterid parameters, which are configurable in the

CHAPTER 20. CONFIGURING FOR AMAZON WEB SERVICES (AWS)

335

inventory file.

Example AWS Configuration with Ansible

Cloud Provider Configuration
#
Note: You may make use of environment variables rather than store
sensitive configuration within the ansible inventory.
For example:
#openshift_cloudprovider_aws_access_key="{{ lookup('env','AWS_ACCESS_KEY_ID') }}"
#openshift_cloudprovider_aws_secret_key="{{ lookup('env','AWS_SECRET_ACCESS_KEY') }}"
#
#openshift_clusterid=unique_identifier_per_availablility_zone
#
AWS (Using API Credentials)
#openshift_cloudprovider_kind=aws
#openshift_cloudprovider_aws_access_key=aws_access_key_id
#openshift_cloudprovider_aws_secret_key=aws_secret_access_key
#
AWS (Using IAM Profiles)
#openshift_cloudprovider_kind=aws
Note: IAM roles must exist before launching the instances.

NOTE

When Ansible configures AWS, it automatically makes the necessary changes to the
following files:

/etc/origin/cloudprovider/aws.conf

/etc/origin/master/master-config.yaml

/etc/origin/node/node-config.yaml

20.4.2. Manually Configuring OpenShift Container Platform Masters for AWS

Edit or create the master configuration file on all masters (/etc/origin/master/master-config.yaml by
default) and update the contents of the apiServerArguments and controllerArguments sections:

Currently, the nodeName must match the instance name in AWS in order for the cloud provider
integration to work properly. The name must also be RFC1123 compliant.

IMPORTANT

kubernetesMasterConfig:
 ...
 apiServerArguments:
 cloud-provider:
 - "aws"
 cloud-config:
 - "/etc/origin/cloudprovider/aws.conf"
 controllerArguments:
 cloud-provider:
 - "aws"
 cloud-config:
 - "/etc/origin/cloudprovider/aws.conf"

OpenShift Container Platform 3.11 Configuring Clusters

336

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible

IMPORTANT

When triggering a containerized installation, only the directories of /etc/origin and
/var/lib/origin are mounted to the master and node container. Therefore, aws.conf
should be in /etc/origin/ instead of /etc/.

20.4.3. Manually Configuring OpenShift Container Platform Nodes for AWS

Edit the appropriate node configuration map and update the contents of the kubeletArguments
section:

IMPORTANT

When triggering a containerized installation, only the directories of /etc/origin and
/var/lib/origin are mounted to the master and node container. Therefore, aws.conf
should be in /etc/origin/ instead of /etc/.

20.4.4. Manually Setting Key-Value Access Pairs

Make sure the following environment variables are set in the /etc/origin/master/master.env file on
masters and the /etc/sysconfig/atomic-openshift-node file on nodes:

AWS_ACCESS_KEY_ID=<key_ID>
AWS_SECRET_ACCESS_KEY=<secret_key>

NOTE

Access keys are obtained when setting up your AWS IAM user.

20.5. APPLYING CONFIGURATION CHANGES

Start or restart OpenShift Container Platform services on all master and node hosts to apply your
configuration changes, see Restarting OpenShift Container Platform services :

master-restart api
master-restart controllers
systemctl restart atomic-openshift-node

NOTE

Kubernetes architecture expects reliable endpoints from cloud providers. When a cloud
provider is down, the kubelet prevents OpenShift Container Platform from restarting. If
the underlying cloud provider endpoints are not reliable, do not install a cluster that uses
the cloud provider integration. Install the cluster as if it is a bare metal environment. It is
not recommended to toggle cloud provider integration on or off in an installed cluster.
However, if that scenario is unavoidable, then complete the following process.

kubeletArguments:
 cloud-provider:
 - "aws"
 cloud-config:
 - "/etc/origin/cloudprovider/aws.conf"

CHAPTER 20. CONFIGURING FOR AMAZON WEB SERVICES (AWS)

337

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#modifying-nodes

Switching from not using a cloud provider to using a cloud provider produces an error message. Adding
the cloud provider tries to delete the node because the node switches from using the hostname as the
externalID (which would have been the case when no cloud provider was being used) to using the cloud
provider’s instance-id (which is what the cloud provider specifies). To resolve this issue:

1. Log in to the CLI as a cluster administrator.

2. Check and back up existing node labels:

3. Delete the nodes:

4. On each node host, restart the OpenShift Container Platform service.

systemctl restart atomic-openshift-node

5. Add back any labels on each node that you previously had.

20.6. LABELING CLUSTERS FOR AWS

If you configure AWS provider credentials, you must also ensure that all hosts are labeled.

To correctly identify which resources are associated with a cluster, tag resources with the key
kubernetes.io/cluster/<clusterid>, where:

<clusterid> is a unique name for the cluster.

Set the corresponding value to owned if the node belongs exclusively to the cluster or to shared if it is
a resource shared with other systems.

Tagging all resources with the kubernetes.io/cluster/<clusterid>,Value=(owned|shared) tag avoids
potential issues with multiple zones or multiple clusters.

See Pods and Services to learn more about labeling and tagging in OpenShift Container Platform.

20.6.1. Resources That Need Tags

There are four types of resources that need to be tagged:

Instances

Security Groups

Load Balancers

EBS Volumes

20.6.2. Tagging an Existing Cluster

A cluster uses the value of the kubernetes.io/cluster/<clusterid>,Value=(owned|shared) tag to
determine which resources belong to the AWS cluster. This means that all relevant resources must be

$ oc describe node <node_name> | grep -Poz '(?s)Labels.*\n.*(?=Taints)'

$ oc delete node <node_name>

OpenShift Container Platform 3.11 Configuring Clusters

338

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#updating-labels-on-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#labels

labeled with the kubernetes.io/cluster/<clusterid>,Value=(owned|shared) tag using the same values
for that key. These resources include:

All hosts.

All relevant load balancers to be used in the AWS instances.

All EBS volumes. The EBS Volumes that need to be tagged can found with:

All relevant security groups to be used with the AWS instances.

NOTE

Do not tag all existing security groups with the
kubernetes.io/cluster/<name>,Value=<clusterid> tag, or the Elastic Load
Balancing (ELB) will not be able to create a load balancer.

After tagging any resources, restart the master services on the master and restart the node service on
all nodes. See the Applying Configuration Section .

20.6.3. About Red Hat OpenShift Container Storage

Red Hat OpenShift Container Storage (RHOCS) is a provider of agnostic persistent storage for
OpenShift Container Platform either in-house or in hybrid clouds. As a Red Hat storage solution,
RHOCS is completely integrated with OpenShift Container Platform for deployment, management, and
monitoring regardless if it is installed on OpenShift Container Platform (converged) or with OpenShift
Container Platform (independent). OpenShift Container Storage is not limited to a single availability
zone or node, which makes it likely to survive an outage. You can find complete instructions for using
RHOCS in the RHOCS3.11 Deployment Guide.

$ oc get pv -o json|jq '.items[].spec.awsElasticBlockStore.volumeID'

CHAPTER 20. CONFIGURING FOR AMAZON WEB SERVICES (AWS)

339

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/deployment_guide/index

1

2

3

4

5

6

7

CHAPTER 21. CONFIGURING FOR RED HAT VIRTUALIZATION
You can configure OpenShift Container Platform for Red Hat Virtualization by creating a bastion virtual
machine and using it to install OpenShift Container Platform.

21.1. CREATING THE BASTION VIRTUAL MACHINE

Create a bastion virtual machine in Red Hat Virtualization to install OpenShift Container Platform.

Procedure

1. Log in to the Manager machine by using SSH.

2. Create a temporary bastion installation directory, for example, /bastion_installation, for the
installation files.

3. Create an encrypted /bastion_installation/secure_vars.yaml file with ansible-vault and record
the password:

ansible-vault create secure_vars.yaml

4. Add the following parameter values to the secure_vars.yaml file:

Password for logging in to the Administration Portal.

Root password for the bastion virtual machine.

Red Hat Subscription Manager credentials.

Pool ID of the Red Hat Virtualization Manager subscription pool.

OpenShift Container Platform root password.

Red Hat Virtualization Manager CA certificate. The engine_cafile value is required if you
are not running the playbook from the Manager machine. The Manager CA certificate’s
default location is /etc/pki/ovirt-engine/ca.pem.

If you are using an image registry that requires authentication, add the credentials.

5. Save the file.

6. Obtain the Red Hat Enterprise Linux KVM Guest Image download link:

engine_password: <Manager_password> 1
bastion_root_password: <bastion_root_password> 2
rhsub_user: <Red_Hat_Subscription_Manager_username> 3
rhsub_pass: <Red_Hat_Subscription_Manager_password>
rhsub_pool: <Red_Hat_Subscription_Manager_pool_id> 4
root_password: <OpenShift_node_root_password> 5
engine_cafile: <RHVM_CA_certificate> 6
oreg_auth_user: <image_registry_authentication_username> 7
oreg_auth_password: <image_registry_authentication_password>

OpenShift Container Platform 3.11 Configuring Clusters

340

a. Navigate to Red Hat Customer Portal: Download Red Hat Enterprise Linux .

b. In the Product Software tab, locate the Red Hat Enterprise Linux KVM Guest Image.

c. Right-click Download Now, copy the link, and save it.
The link is time-sensitive and must be copied just before you create the bastion virtual
machine.

7. Create the /bastion_installation/create-bastion-machine-playbook.yaml file with the
following content and update its parameter values:

- name: Create a bastion machine
 hosts: localhost
 connection: local
 gather_facts: false
 no_log: true

 roles:
 - oVirt.image-template
 - oVirt.vm-infra
 no_log: true

 vars:
 engine_url: https://_Manager_FQDN_/ovirt-engine/api 1
 engine_user: <admin@internal>
 engine_password: "{{ engine_password }}"
 engine_cafile: /etc/pki/ovirt-engine/ca.pem

 qcow_url: <RHEL_KVM_guest_image_download_link> 2
 template_cluster: Default
 template_name: rhelguest7
 template_memory: 4GiB
 template_cpu: 2
 wait_for_ip: true
 debug_vm_create: false

 vms:
 - name: rhel-bastion
 cluster: "{{ template_cluster }}"
 profile:
 cores: 2
 template: "{{ template_name }}"
 root_password: "{{ root_password }}"
 ssh_key: "{{ lookup('file', '/root/.ssh/id_rsa_ssh_ocp_admin.pub') }}"
 state: running
 cloud_init:
 custom_script: |
 rh_subscription:
 username: "{{ rhsub_user }}"
 password: "{{ rhsub_pass }}"
 auto-attach: true
 disable-repo: ['*']
 # 'rhel-7-server-rhv-4.2-manager-rpms' supports RHV 4.2 and 4.3
 enable-repo: ['rhel-7-server-rpms', 'rhel-7-server-extras-rpms', 'rhel-7-server-ansible-
2.7-rpms', 'rhel-7-server-ose-3.11-rpms', 'rhel-7-server-supplementary-rpms', 'rhel-7-server-

CHAPTER 21. CONFIGURING FOR RED HAT VIRTUALIZATION

341

https://access.redhat.com/downloads/content/69/ver=/rhel---7/latest/x86_64/product-software

1

2

FQDN of the Manager machine.

<qcow_url> is the download link of the Red Hat Enterprise Linux KVM Guest Image. The
Red Hat Enterprise Linux KVM Guest Image includes the cloud-init package, which is
required by this playbook. If you are not using Red Hat Enterprise Linux, download the
cloud-init package and install it manually before running this playbook.

8. Create the bastion virtual machine:

rhv-4.2-manager-rpms']
 packages:
 - ansible
 - ovirt-ansible-roles
 - openshift-ansible
 - python-ovirt-engine-sdk4
 pre_tasks:
 - name: Create an ssh key-pair for OpenShift admin
 user:
 name: root
 generate_ssh_key: yes
 ssh_key_file: .ssh/id_rsa_ssh_ocp_admin

 roles:
 - oVirt.image-template
 - oVirt.vm-infra

- name: post installation tasks on the bastion machine
 hosts: rhel-bastion
 tasks:
 - name: create ovirt-engine PKI dir
 file:
 state: directory
 dest: /etc/pki/ovirt-engine/
 - name: Copy the engine ca cert to the bastion machine
 copy:
 src: "{{ engine_cafile }}"
 dest: "{{ engine_cafile }}"
 - name: Copy the secured vars to the bastion machine
 copy:
 src: secure_vars.yaml
 dest: secure_vars.yaml
 decrypt: false
 - file:
 state: directory
 path: /root/.ssh
 - name: copy the OpenShift_admin keypair to the bastion machine
 copy:
 src: "{{ item }}"
 dest: "{{ item }}"
 mode: 0600
 with_items:
 - /root/.ssh/id_rsa_ssh_ocp_admin
 - /root/.ssh/id_rsa_ssh_ocp_admin.pub

OpenShift Container Platform 3.11 Configuring Clusters

342

https://access.redhat.com/downloads/content/69/ver=/rhel---7/7.7/x86_64/packages

ansible-playbook -i localhost create-bastion-machine-playbook.yaml -e @secure_vars.yaml
--ask-vault-pass

9. Log in to the Administration Portal.

10. Click Compute → Virtual Machines to verify that the rhel-bastion virtual machine was created
successfully.

21.2. INSTALLING OPENSHIFT CONTAINER PLATFORM WITH THE
BASTION VIRTUAL MACHINE

Install OpenShift Container Platform by using the bastion virtual machine in Red Hat Virtualization.

Procedure

1. Log in to rhel-bastion.

2. Create an install_ocp.yaml file that contains the following content:

3. Create a setup_dns.yaml file that contains the following content:

- name: Openshift on RHV
 hosts: localhost
 connection: local
 gather_facts: false

 vars_files:
 - vars.yaml
 - secure_vars.yaml

 pre_tasks:
 - ovirt_auth:
 url: "{{ engine_url }}"
 username: "{{ engine_user }}"
 password: "{{ engine_password }}"
 insecure: "{{ engine_insecure }}"
 ca_file: "{{ engine_cafile | default(omit) }}"

 roles:
 - role: openshift_ovirt

- import_playbook: setup_dns.yaml
- import_playbook: /usr/share/ansible/openshift-ansible/playbooks/prerequisites.yml
- import_playbook: /usr/share/ansible/openshift-ansible/playbooks/openshift-
node/network_manager.yml
- import_playbook: /usr/share/ansible/openshift-ansible/playbooks/deploy_cluster.yml

- hosts: masters
 strategy: free
 tasks:
 - shell: "echo {{ ansible_default_ipv4.address }} {{ inventory_hostname }} etcd.{{
inventory_hostname.split('.', 1)[1] }} openshift-master.{{ inventory_hostname.split('.', 1)[1] }}
openshift-public-master.{{ inventory_hostname.split('.', 1)[1] }} docker-registry-default.apps.{{

CHAPTER 21. CONFIGURING FOR RED HAT VIRTUALIZATION

343

4. Create an /etc/ansible/openshift_3_11.hosts Ansible inventory file that contains the following
content:

inventory_hostname.split('.', 1)[1] }} webconsole.openshift-web-console.svc registry-console-
default.apps.{{ inventory_hostname.split('.', 1)[1] }} >> /etc/hosts"
 when: openshift_ovirt_all_in_one is defined | ternary((openshift_ovirt_all_in_one | bool),
false)

[workstation]
localhost ansible_connection=local

[all:vars]
openshift_ovirt_dns_zone="{{ public_hosted_zone }}"
openshift_web_console_install=true
openshift_master_overwrite_named_certificates=true
openshift_master_cluster_hostname="openshift-master.{{ public_hosted_zone }}"
openshift_master_cluster_public_hostname="openshift-public-master.{{ public_hosted_zone
}}"
openshift_master_default_subdomain="{{ public_hosted_zone }}"
openshift_public_hostname="{{openshift_master_cluster_public_hostname}}"
openshift_deployment_type=openshift-enterprise
openshift_service_catalog_image_version="{{ openshift_image_tag }}"

[OSEv3:vars]
General variables
debug_level=1
containerized=false
ansible_ssh_user=root
os_firewall_use_firewalld=true
openshift_enable_excluders=false
openshift_install_examples=false
openshift_clock_enabled=true
openshift_debug_level="{{ debug_level }}"
openshift_node_debug_level="{{ node_debug_level | default(debug_level,true) }}"
osn_storage_plugin_deps=[]
openshift_master_bootstrap_auto_approve=true
openshift_master_bootstrap_auto_approver_node_selector={"node-
role.kubernetes.io/master":"true"}
osm_controller_args={"experimental-cluster-signing-duration": ["20m"]}
osm_default_node_selector="node-role.kubernetes.io/compute=true"
openshift_enable_service_catalog=false

Docker
container_runtime_docker_storage_type=overlay2
openshift_docker_use_system_container=false

[OSEv3:children]
nodes
masters
etcd
lb

[masters]
[nodes]
[etcd]
[lb]

OpenShift Container Platform 3.11 Configuring Clusters

344

5. Obtain the Red Hat Enterprise Linux KVM Guest Image download link:

a. Navigate to Red Hat Customer Portal: Download Red Hat Enterprise Linux .

b. In the Product Software tab, locate the Red Hat Enterprise Linux KVM Guest Image.

c. Right-click Download Now, copy the link, and save it.
Do not use the link that you copied when you created the bastion virtual machine. The
download link is time-sensitive and must be copied just before you run the installation
playbook.

6. Create the vars.yaml file with the following content and update its parameter values:

For detailed documentation of variables, see
openshift_ovirt: https://github.com/openshift/openshift-
ansible/tree/master/roles/openshift_ovirt#role-variables
openshift installation: https://github.com/openshift/openshift-ansible/tree/master/inventory
engine_url: https://<Manager_FQDN>/ovirt-engine/api 1
engine_user: admin@internal
engine_password: "{{ engine_password }}"
engine_insecure: false
engine_cafile: /etc/pki/ovirt-engine/ca.pem

openshift_ovirt_vm_manifest:
 - name: 'master'
 count: 1
 profile: 'master_vm'
 - name: 'compute'
 count: 0
 profile: 'node_vm'
 - name: 'lb'
 count: 0
 profile: 'node_vm'
 - name: 'etcd'
 count: 0
 profile: 'node_vm'
 - name: infra
 count: 0
 profile: node_vm

Currently, only all-in-one installation (`openshift_ovirt_all_in_one: true`) is supported.
Multi-node installation (master and node VMs installed separately) will be supported in a
future release.
openshift_ovirt_all_in_one: true
openshift_ovirt_cluster: Default
openshift_ovirt_data_store: data
openshift_ovirt_ssh_key: "{{ lookup('file', '/root/.ssh/id_rsa_ssh_ocp_admin.pub') }}"

public_hosted_zone:
Uncomment to disable install-time checks, for smaller scale installations
#openshift_disable_check: memory_availability,disk_availability,docker_image_availability

qcow_url: <RHEL_KVM_guest_image_download_link> 2
image_path: /var/tmp

CHAPTER 21. CONFIGURING FOR RED HAT VIRTUALIZATION

345

https://access.redhat.com/downloads/content/69/ver=/rhel---7/latest/x86_64/product-software

template_name: rhelguest7
template_cluster: "{{ openshift_ovirt_cluster }}"
template_memory: 4GiB
template_cpu: 1
template_disk_storage: "{{ openshift_ovirt_data_store }}"
template_disk_size: 100GiB
template_nics:
 - name: nic1
 profile_name: ovirtmgmt
 interface: virtio

debug_vm_create: false
wait_for_ip: true
vm_infra_wait_for_ip_retries: 30
vm_infra_wait_for_ip_delay: 20

node_item: &node_item
 cluster: "{{ openshift_ovirt_cluster }}"
 template: "{{ template_name }}"
 memory: "8GiB"
 cores: "2"
 high_availability: true
 disks:
 - name: docker
 size: 15GiB
 interface: virtio
 storage_domain: "{{ openshift_ovirt_data_store }}"
 - name: openshift
 size: 30GiB
 interface: virtio
 storage_domain: "{{ openshift_ovirt_data_store }}"
 state: running
 cloud_init:
 root_password: "{{ root_password }}"
 authorized_ssh_keys: "{{ openshift_ovirt_ssh_key }}"
 custom_script: "{{ cloud_init_script_node | to_nice_yaml }}"

openshift_ovirt_vm_profile:
 master_vm:
 <<: *node_item
 memory: 16GiB
 cores: "{{ vm_cores | default(4) }}"
 disks:
 - name: docker
 size: 15GiB
 interface: virtio
 storage_domain: "{{ openshift_ovirt_data_store }}"
 - name: openshift_local
 size: 30GiB
 interface: virtio
 storage_domain: "{{ openshift_ovirt_data_store }}"
 - name: etcd
 size: 25GiB
 interface: virtio
 storage_domain: "{{ openshift_ovirt_data_store }}"
 cloud_init:

OpenShift Container Platform 3.11 Configuring Clusters

346

1

2

FQDN of the Manager machine.

<qcow_url> is the download link of the Red Hat Enterprise Linux KVM Guest Image. The
Red Hat Enterprise Linux KVM Guest Image includes the cloud-init package, which is
required by this playbook. If you are not using Red Hat Enterprise Linux, download the
cloud-init package and install it manually before running this playbook.

7. Install OpenShift Container Platform:

export ANSIBLE_ROLES_PATH="/usr/share/ansible/roles/:/usr/share/ansible/openshift-

 root_password: "{{ root_password }}"
 authorized_ssh_keys: "{{ openshift_ovirt_ssh_key }}"
 custom_script: "{{ cloud_init_script_master | to_nice_yaml }}"
 node_vm:
 <<: *node_item
 etcd_vm:
 <<: *node_item
 lb_vm:
 <<: *node_item

cloud_init_script_node: &cloud_init_script_node
 packages:
 - ovirt-guest-agent
 runcmd:
 - sed -i 's/# ignored_nics =.*/ignored_nics = docker0 tun0 /' /etc/ovirt-guest-agent.conf
 - systemctl enable ovirt-guest-agent
 - systemctl start ovirt-guest-agent
 - mkdir -p /var/lib/docker
 - mkdir -p /var/lib/origin/openshift.local.volumes
 - /usr/sbin/mkfs.xfs -L dockerlv /dev/vdb
 - /usr/sbin/mkfs.xfs -L ocplv /dev/vdc
 mounts:
 - ['/dev/vdb', '/var/lib/docker', 'xfs', 'defaults,gquota']
 - ['/dev/vdc', '/var/lib/origin/openshift.local.volumes', 'xfs', 'defaults,gquota']
 power_state:
 mode: reboot
 message: cloud init finished - boot and install openshift
 condition: True
cloud_init_script_master:
 <<: *cloud_init_script_node
 runcmd:
 - sed -i 's/# ignored_nics =.*/ignored_nics = docker0 tun0 /' /etc/ovirt-guest-agent.conf
 - systemctl enable ovirt-guest-agent
 - systemctl start ovirt-guest-agent
 - mkdir -p /var/lib/docker
 - mkdir -p /var/lib/origin/openshift.local.volumes
 - mkdir -p /var/lib/etcd
 - /usr/sbin/mkfs.xfs -L dockerlv /dev/vdb
 - /usr/sbin/mkfs.xfs -L ocplv /dev/vdc
 - /usr/sbin/mkfs.xfs -L etcdlv /dev/vdd
 mounts:
 - ['/dev/vdb', '/var/lib/docker', 'xfs', 'defaults,gquota']
 - ['/dev/vdc', '/var/lib/origin/openshift.local.volumes', 'xfs', 'defaults,gquota']
 - ['/dev/vdd', '/var/lib/etcd', 'xfs', 'defaults,gquota']

CHAPTER 21. CONFIGURING FOR RED HAT VIRTUALIZATION

347

https://access.redhat.com/downloads/content/69/ver=/rhel---7/7.7/x86_64/packages

ansible/roles"
export ANSIBLE_JINJA2_EXTENSIONS="jinja2.ext.do"
ansible-playbook -i /etc/ansible/openshift_3_11.hosts install_ocp.yaml -e @vars.yaml -e
@secure_vars.yaml --ask-vault-pass

8. Create DNS entries for the routers, for each infrastructure instance.

9. Configure round-robin routing so that the router can pass traffic to the applications.

10. Create a DNS entry for the OpenShift Container Platform web console.

11. Specify the IP address of the load balancer node.

OpenShift Container Platform 3.11 Configuring Clusters

348

CHAPTER 22. CONFIGURING FOR OPENSTACK

22.1. OVERVIEW

When deployed on OpenStack, OpenShift Container Platform can be configured to access the
OpenStack infrastructure, including using OpenStack Cinder volumes as persistent storage for
application data.

IMPORTANT

OpenShift Container Platform 3.11 is supported for use with Red Hat OpenStack Platform
13.

The latest OpenShift Container Platform release supports both the latest Red Hat
OpenStack Platform long life release and intermediate release. The release cycles of
OpenShift Container Platform and Red Hat OpenStack Platform are different and
versions tested may vary in the future depending on the release dates of both products.

22.2. BEFORE YOU BEGIN

22.2.1. OpenShift Container Platform SDN

The default OpenShift Container Platform SDN is OpenShiftSDN. There is another option: use Kuryr
SDN.

22.2.2. Kuryr SDN

Kuryr is a CNI plug-in that uses Neutron and Octavia to provide networking for pods and services. It is
primarily designed for OpenShift Container Platform clusters that run on OpenStack virtual machines.
Kuryr improves the network performance by plugging OpenShift Container Platform pods into
OpenStack SDN. In addition it provides interconnectivity between OpenShift Container Platform pods
and OpenStack virtual instances.

Kuryr is recommended for OpenShift Container Platform deployments on encapsulated OpenStack
tenant networks in order to avoid double encapsulation, such as running an encapsulated OpenShift
SDN over an OpenStack network. Kuryr is recommended whenever VXLAN, GRE, or GENEVE are
required.

Conversely, implementing Kuryr does not make sense in the following cases:

You use provider networks, tenant VLANs, or a third party commercial SDN such as Cisco ACI or
Juniper Contrail.

The deployment will use many services on a few hypervisors, or OpenShift Container Platform
virtual machine nodes. Each OpenShift Container Platform service creates an Octavia Amphora
virtual machine in OpenStack that hosts a required load balancer.

To enable Kuryr SDN, your environment must meet the following requirements:

Running OpenStack 13 or later

Overcloud with Octavia

Neutron Trunk ports extension enabled

CHAPTER 22. CONFIGURING FOR OPENSTACK

349

https://www.openstack.org/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-sdn

If ML2/OVS Neutron driver is used the OpenvSwitch firewall driver must be used, instead of the
ovs-hybrid one.

IMPORTANT

To use Kuryr with OpenStack 13.0.13, the Kuryr container images must be version 3.11.306
or higher.

22.2.3. OpenShift Container Platform Prerequisites

A successful deployment of OpenShift Container Platform requires many prerequisites. This consists of
a set of infrastructure and host configuration steps prior to the actual installation of OpenShift
Container Platform using Ansible. In the following subsequent sections, details regarding the
prerequisites and configuration changes required for an OpenShift Container Platform on a OpenStack
environment are discussed in detail.

NOTE

All of the OpenStack CLI commands in this reference environment are executed using
the CLI openstack commands within a different node from the director node. The
commands are executed in the other node to avoid package conflicts with Ansible version
2.6 and above. Be sure to install the following packages in the specified repositories.

Example:

Enable the rhel-7-server-openstack-13-tools-rpms and the required OpenShift Container Platform
repositories from Set Up Repositories.

$ sudo subscription-manager repos \
--enable rhel-7-server-openstack-{rhosp_version}-tools-rpms \
--enable rhel-7-server-openstack-14-tools-rpms
$ sudo subscription-manager repo-override --repo=rhel-7-server-openstack-14-tools-rpms --
add=includepkgs:"python2-openstacksdk.* python2-keystoneauth1.* python2-os-service-types.*"
$ sudo yum install -y python2-openstackclient python2-heatclient python2-octaviaclient ansible

Verify the packages are of at least the following versions (use rpm -q <package_name>):

python2-openstackclient - 3.14.1.-1

python2-heatclient 1.14.0-1

python2-octaviaclient 1.4.0-1

python2-openstacksdk 0.17.2

22.2.3.1. Enabling Octavia: OpenStack Load Balancing as a Service (LBaaS)

Octavia is a supported load balancer solution that is recommended to be used in conjunction with
OpenShift Container Platform in order to load balance the external incoming traffic and provide a single
view of the OpenShift Container Platform master services for the applications.

In order to enable Octavia, the Octavia service must be included during the installation of the
OpenStack overcloud or upgraded if the overcloud already exists. The following steps provide basic
non-custom steps in enabling Octavia and apply to both either a clean install of the overcloud or an

OpenShift Container Platform 3.11 Configuring Clusters

350

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/getting_started/#set-up-repositories

overcloud update.

NOTE

The following steps only capture the key pieces required during the deployment of
OpenStack when dealing with Octavia. For more information visit the documentation of
Installation of OpenStack. It is also important to note that registry methods vary. For
more information visit the documentation on Registry Methods . This example used the
local registry method.

If using the local registry, create a template to upload the images to the registry. Example shown below.

(undercloud) $ openstack overcloud container image prepare \
-e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/octavia.yaml \
--namespace=registry.access.redhat.com/rhosp13 \
--push-destination=<local-ip-from-undercloud.conf>:8787 \
--prefix=openstack- \
--tag-from-label {version}-{release} \
--output-env-file=/home/stack/templates/overcloud_images.yaml \
--output-images-file /home/stack/local_registry_images.yaml

Verify that the created local_registry_images.yaml contains the Octavia images.

Octavia images in local registry file

...
- imagename: registry.access.redhat.com/rhosp13/openstack-octavia-api:13.0-43
 push_destination: <local-ip-from-undercloud.conf>:8787
- imagename: registry.access.redhat.com/rhosp13/openstack-octavia-health-manager:13.0-45
 push_destination: <local-ip-from-undercloud.conf>:8787
- imagename: registry.access.redhat.com/rhosp13/openstack-octavia-housekeeping:13.0-45
 push_destination: <local-ip-from-undercloud.conf>:8787
- imagename: registry.access.redhat.com/rhosp13/openstack-octavia-worker:13.0-44
 push_destination: <local-ip-from-undercloud.conf>:8787

NOTE

The versions of the Octavia containers will vary depending upon the specific Red Hat
OpenStack Platform release installed.

The following step pulls the container images from registry.redhat.io to the undercloud node. This
process might take some time depending on the speed of the network and undercloud disk.

(undercloud) $ sudo openstack overcloud container image upload \
 --config-file /home/stack/local_registry_images.yaml \
 --verbose

As an Octavia Load Balancer is used to access the OpenShift API, there is a need to increase their
listeners default timeouts for the connections. The default timeout is 50 seconds. Increase the timeout
to 20 minutes by passying the following file to the overcloud deploy command:

(undercloud) $ cat octavia_timeouts.yaml
parameter_defaults:

CHAPTER 22. CONFIGURING FOR OPENSTACK

351

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/director_installation_and_usage/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/director_installation_and_usage/configuring-a-container-image-source#registry-methods

 OctaviaTimeoutClientData: 1200000
 OctaviaTimeoutMemberData: 1200000

NOTE

This is not needed from Red Hat OpenStack Platform 14 and onwards.

Install or update your overcloud environment with Octavia:

openstack overcloud deploy --templates \
.
.
.
 -e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/octavia.yaml \
 -e octavia_timeouts.yaml
.
.
.

NOTE

The command above only includes the files associated with Octavia. This command will
vary based upon your specifc installation of OpenStack. See the official OpenStack
documentation for further information. For more information on customizing your
Octavia installation, see installation of Octavia using Director.

NOTE

If Kuryr SDN is used, the overcloud installation requires the "trunk" extension to be
enabled at Neutron. This is enabled by default on Director deployments. Use the
openvswitch firewall instead of the default ovs-hybrid when the Neutron backend is
ML2/OVS. There is no need for modifications if the backend is ML2/OVN.

22.2.3.2. Creating OpenStack User Accounts, Projects, and Roles

Before installing OpenShift Container Platform, the Red Hat OpenStack Platform (RHOSP)
environment requires a project, often referred to as a tenant, that stores the OpenStack instances that
are to install the OpenShift Container Platform. This project requires ownership by a user and the role of
that user to be set to _member_.

The following steps show how to accomplish the above.

As the OpenStack overcloud administrator,

1. Create a project (tenant) that is to store the RHOSP instances

$ openstack project create <project>

2. Create a RHOSP user that has ownership of the previously created project:

$ openstack user create --password <password> <username>

3. Set the role of the user:

OpenShift Container Platform 3.11 Configuring Clusters

352

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/#planning_your_octavia_deployment

1

1

$ openstack role add --user <username> --project <project> _member_

The default quotas assigned to new RH OSP projects are not high enough for OpenShift Container
Platform installations. Increase the quotas to at least 30 security groups, 200 security group rules, and
200 ports.

$ openstack quota set --secgroups 30 --secgroup-rules 200 --ports 200 <project>
1

For <project>, specify the name of the project to modify

22.2.3.3. Extra steps for Kuryr SDN

If Kuryr SDN is enabled, especially if you are using namespace isolation, increase your project’s quotas to
meet these minimum requirements:

300 security groups - one for each namespace plus one for each load balancer

150 networks - one for each namespace

150 subnets - one for each namespace

500 security group rules

500 ports - one port per Pod and additional ports for pools to speed up Pod creation

NOTE

This is not a global recommendation. Adjust your quotas to meet your requirements.

If you are using namespace isolation, each namespace is given a new network and subnet. Additionally, a
security group is created to enable traffic between Pods in the namespace.

$ openstack quota set --networks 150 --subnets 150 --secgroups 300 --secgroup-rules 500 --ports
500 <project>
1

For <project>, specify the name of the project to modify

If you enabled namespace isolation, you must add the project ID to the octavia.conf configuration file
after you create the project. This step ensures that required LoadBalancer security groups belong to
that project and that they can be updated to enforce services isolation across namespaces.

1. Get the project ID

$ openstack project show *<project>*
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	
domain_id	default
enabled	True

CHAPTER 22. CONFIGURING FOR OPENSTACK

353

id	PROJECT_ID
is_domain	False
name	*<project>*
parent_id	default
tags	[]
+-------------+----------------------------------+

2. Add the project ID to [filename]octavia.conf on the controllers and restart octavia worker.

$ source stackrc # undercloud credentials
$ openstack server list
+--------------------------------------+--------------+--------+-----------------------+----------------+-----
-------+
│
| ID | Name | Status | Networks
| Image | Flavor |
│
+--------------------------------------+--------------+--------+-----------------------+----------------+-----
-------+
│
| 6bef8e73-2ba5-4860-a0b1-3937f8ca7e01 | controller-0 | ACTIVE |
ctlplane=192.168.24.8 | overcloud-full | controller |
│
| dda3173a-ab26-47f8-a2dc-8473b4a67ab9 | compute-0 | ACTIVE |
ctlplane=192.168.24.6 | overcloud-full | compute |
│
+--------------------------------------+--------------+--------+-----------------------+----------------+-----
-------+

$ ssh heat-admin@192.168.24.8 # ssh into the controller(s)

controller-0$ vi /var/lib/config-data/puppet-generated/octavia/etc/octavia/octavia.conf
[controller_worker]
List of project ids that are allowed to have Load balancer security groups
belonging to them.
amp_secgroup_allowed_projects = PROJECT_ID

controller-0$ sudo docker restart octavia_worker

22.2.3.4. Configuring the RC file

After you configure the project, an OpenStack administrator can create an RC file with all the required
information to the user(s) implementing the OpenShift Container Platform environment.

An example RC file:

$ cat path/to/examplerc
Clear any old environment that may conflict.
for key in $(set | awk '{FS="="} /^OS_/ {print $1}'); do unset $key ; done
export OS_PROJECT_DOMAIN_NAME=Default
export OS_USER_DOMAIN_NAME=Default
export OS_PROJECT_NAME=<project-name>
export OS_USERNAME=<username>
export OS_PASSWORD=<password>
export OS_AUTH_URL=http://<ip>:5000//v3

OpenShift Container Platform 3.11 Configuring Clusters

354

export OS_CLOUDNAME=<cloud-name>
export OS_IDENTITY_API_VERSION=3

Add OS_CLOUDNAME to PS1
if [-z "${CLOUDPROMPT_ENABLED:-}"]; then
 export PS1=${PS1:-""}
 export PS1=\${OS_CLOUDNAME:+"(\$OS_CLOUDNAME)"}\ $PS1
 export CLOUDPROMPT_ENABLED=1
fi

NOTE

Changing _OS_PROJECT_DOMAIN_NAME and _OS_USER_DOMAIN_NAME from the
Default value is supported as long as both reference the same domain.

As the user(s) implementing the OpenShift Container Platform environment, within the OpenStack
director node or workstation, ensure to source the credentials as follows:

$ source path/to/examplerc

22.2.3.5. Create an OpenStack Flavor

Within OpenStack, flavors define the size of a virtual server by defining the compute, memory, and
storage capacity of nova computing instances. Since the base image within this reference architecture
is Red Hat Enterprise Linux 7.5, a m1.node and m1.master sized flavor is created with the following
specifications as shown in Table 22.1, “Minimum System Requirements for OpenShift” .

IMPORTANT

Although the minimum system requirements are sufficient to run a cluster, to improve
performance, it is recommended to increase vCPU on master nodes. Additionally, more
memory is recommended if etcd is co-located on the master nodes.

Table 22.1. Minimum System Requirements for OpenShift

Node Type CPU RAM Root Disk Flavor

Masters 4 16 GB 45 GB m1.master

Nodes 1 8 GB 20 GB m1.node

As an OpenStack administrator,

$ openstack flavor create <flavor_name> \
 --id auto \
 --ram <ram_in_MB> \
 --disk <disk_in_GB> \
 --vcpus <num_vcpus>

An example below showing the creation of flavors within this reference environment.

CHAPTER 22. CONFIGURING FOR OPENSTACK

355

$ openstack flavor create m1.master \
 --id auto \
 --ram 16384 \
 --disk 45 \
 --vcpus 4
$ openstack flavor create m1.node \
 --id auto \
 --ram 8192 \
 --disk 20 \
 --vcpus 1

NOTE

If access to OpenStack administrator privileges to create new flavors is unavailable, use
existing flavors within the OpenStack environment that meet the requirements in
Table 22.1, “Minimum System Requirements for OpenShift” .

Verification of the OpenStack flavors via:

$ openstack flavor list

22.2.3.6. Creating an OpenStack Keypair

Red Hat OpenStack Platform uses cloud-init to place an ssh public key on each instance as it is
created to allow ssh access to the instance. Red Hat OpenStack Platform expects the user to hold the
private key.

WARNING

Losing the private key will cause the inability to access the instances.

To generate a keypair, use the following command:

$ openstack keypair create <keypair-name> > /path/to/<keypair-name>.pem

Verification of the keypair creation can be done via:

$ openstack keypair list

Once the keypair is created, set the permissions to 600 thus only allowing the owner of the file to read
and write to that file.

$ chmod 600 /path/to/<keypair-name>.pem

22.2.3.7. Setting up DNS for OpenShift Container Platform

DNS service is an important component in the OpenShift Container Platform environment. Regardless



OpenShift Container Platform 3.11 Configuring Clusters

356

DNS service is an important component in the OpenShift Container Platform environment. Regardless
of the provider of DNS, an organization is required to have certain records in place to serve the various
OpenShift Container Platform components.

WARNING

Using /etc/hosts is not valid, a proper DNS service must exist.

Using the key secret of the DNS, you can provide the information to the OpenShift Ansible Installer and
it will automatically add A records for the target instances and the various OpenShift Container
Platform components. This process setup is described later when configuring the OpenShift Ansible
Installer.

Access to a DNS server is expected. You can use Red Hat Labs DNS Helper for assistance with access.

Application DNS

Applications served by OpenShift are accessible by the router on ports 80/TCP and 443/TCP. The
router uses a wildcard record to map all host names under a specific sub domain to the same IP address
without requiring a separate record for each name.

This allows OpenShift Container Platform to add applications with arbitrary names as long as they are
under that sub domain.

For example, a wildcard record for *.apps.example.com causes DNS name lookups for
tax.apps.example.com and home-goods.apps.example.com to both return the same IP address:
10.19.x.y. All traffic is forwarded to the OpenShift Routers. The Routers examine the HTTP headers of
the queries and forward them to the correct destination.

With a load-balancer such as Octavia, host address of 10.19.x.y, the wildcard DNS record can be added
as follows:

Table 22.2. Load Balancer DNS records

IP Address Hostname Purpose

10.19.x.y *.apps.example.com User access to application web
services

22.2.3.8. Creation of OpenShift Container Platform Networks via OpenStack

When deploying OpenShift Container Platform on Red Hat OpenStack Platform as described in this
segment, the requirements are two networks — public and internal network.

Public Network

The public network is a network that contains external access and can be reached by the outside world.
The public network creation can be only done by an OpenStack administrator.

The following commands provide an example of creating an OpenStack provider network for public



CHAPTER 22. CONFIGURING FOR OPENSTACK

357

https://access.redhat.com/labsinfo/dnshelper

The following commands provide an example of creating an OpenStack provider network for public
network access.

As an OpenStack administrator (overcloudrc access),

$ source /path/to/examplerc

$ openstack network create <public-net-name> \
 --external \
 --provider-network-type flat \
 --provider-physical-network datacentre

$ openstack subnet create <public-subnet-name> \
 --network <public-net-name> \
 --dhcp \
 --allocation-pool start=<float_start_ip>,end=<float_end_ip> \
 --gateway <ip> \
 --subnet-range <CIDR>

Once the network and subnet have been created verify via:

$ openstack network list
$ openstack subnet list

NOTE

<float_start_ip> and <float_end_ip> are the associated floating IP pool provided to the
network labeled public network. The Classless Inter-Domain Routing (CIDR) uses the
format <ip>/<routing_prefix>, i.e. 10.0.0.1/24.

Internal Network

The internal network is connected to the public network via a router during the network setup. This
allows each Red Hat OpenStack Platform instance attached to the internal network the ability to
request a floating IP from the public network for public access. The internal network is created
automically by the OpenShift Ansible installer via setting the
openshift_openstack_private_network_name. More information regarding changes required for the
OpenShift Ansible installer are described later.

22.2.3.9. Creating OpenStack Deployment Host Security Group

OpenStack networking allows the user to define inbound and outbound traffic filters that can be applied
to each instance on a network. This allows the user to limit network traffic to each instance based on the
function of the instance services and not depend on host based filtering. The OpenShift Ansible installer
handles the proper creation of all the ports and services required for each type of host that is part of the
OpenShift Container Platform cluster except for the deployment host.

The following command creates an empty security group with no rules set for the deployment host.

$ source path/to/examplerc
$ openstack security group create <deployment-sg-name>

Verify the creation of the security group:

OpenShift Container Platform 3.11 Configuring Clusters

358

$ openstack security group list

Deployment Host Security Group

The deployment instance only needs to allow inbound ssh. This instance exists to give operators a
stable base to deploy, monitor and manage the OpenShift Container Platform environment.

Table 22.3. Deployment Host Security Group TCP ports

Port/Protocol Service Remote source Purpose

ICMP ICMP Any Allow ping, traceroute,
etc.

22/TCP SSH Any Secure shell login

Creation of the above security group rules is as follows:

$ source /path/to/examplerc
$ openstack security group rule create \
 --ingress \
 --protocol icmp \
 <deployment-sg-name>
$ openstack security group rule create \
 --ingress \
 --protocol tcp \
 --dst-port 22 \
 <deployment-sg-name>

Verification of the security group rules is as follows:

$ openstack security group rule list <deployment-sg-name>
+--------------------------------------+-------------+-----------+------------+-----------------------+
| ID | IP Protocol | IP Range | Port Range | Remote Security Group |
+--------------------------------------+-------------+-----------+------------+-----------------------+
7971fc03-4bfe-4153-8bde-5ae0f93e94a8	icmp	0.0.0.0/0		None
b8508884-e82b-4ee3-9f36-f57e1803e4a4	None	None		None
cb914caf-3e84-48e2-8a01-c23e61855bf6	tcp	0.0.0.0/0	22:22	None
e8764c02-526e-453f-b978-c5ea757c3ac5	None	None		None
+--------------------------------------+-------------+-----------+------------+-----------------------+

22.2.3.10. OpenStack Cinder Volumes

OpenStack Block Storage provides persistent block storage management via the cinder service. Block
storage enables the OpenStack user to create a volume that may be attached to different OpenStack
instances.

22.2.3.10.1. Docker Volume

The master and node instances contain a volume to store docker images. The purpose of the volume is
to ensure that a large image or container does not compromise node performance or abilities of the
existing node.

NOTE

CHAPTER 22. CONFIGURING FOR OPENSTACK

359

NOTE

A docker volume of a minimum of 15GB is required for running containers. This may need
adjustment depending on the size and number of containers each node will run.

The docker volume is created by the OpenShift Ansible installer via the variable
openshift_openstack_docker_volume_size. More information regarding changes required for the
OpenShift Ansible installer are described later.

22.2.3.10.2. Registry volume

The OpenShift image registry requires a cinder volume to ensure that images are saved in the event
that the registry needs to migrate to another node. The following steps show how to create the image
registry via OpenStack. Once the volume is created, the volume ID will be included in the OpenShift
Ansible Installer OSEv3.yml file via the parameter
openshift_hosted_registry_storage_openstack_volumeID as described later.

$ source /path/to/examplerc
$ openstack volume create --size <volume-size-in-GB> <registry-name>

NOTE

The registry volume size should be at least 30GB.

Verify the creation of the volume.

$ openstack volume list
--+--+
| ID | Name | Status | Size | Attached to |
+--------------------------------------+---+
| d65209f0-9061-4cd8-8827-ae6e2253a18d | <registry-name>| available | 30 | |
+--------------------------------------+---+

22.2.3.11. Creating and Configuring the Deployment Instance

The role of the deployment instance is to serve as a utility host for the deployment and management of
OpenShift Container Platform.

Creating the Deployment Host Network and Router

Prior to instance creation, an internal network and router must be created for communication with the
deployment host. The following commands create that network and router.

$ source path/to/examplerc

$ openstack network create <deployment-net-name>

$ openstack subnet create --network <deployment-net-name> \
 --subnet-range <subnet_range> \
 --dns-nameserver <dns-ip> \
 <deployment-subnet-name>

$ openstack router create <deployment-router-name>

OpenShift Container Platform 3.11 Configuring Clusters

360

$ openstack router set --external-gateway <public-net-name> <deployment-router-name>

$ openstack router add subnet <deployment-router-name> <deployment-subnet-name>

Deploying the Deployment Instance

With the network and security group created, deploy the instance.

$ domain=<domain>
$ netid1=$(openstack network show <deployment-net-name> -f value -c id)
$ openstack server create \
 --nic net-id=$netid1 \
 --flavor <flavor> \
 --image <image> \
 --key-name <keypair> \
 --security-group <deployment-sg-name> \
 deployment.$domain

NOTE

If the m1.small flavor does not exist by default then use an existing flavor that meets the
requirements of 1 vCPU and 2GB of RAM.

Creating and Adding Floating IP to the Deployment Instance

Once the deployment instance is created, a floating IP must be created and then allocated to the
instance. The following shows an example.

$ source /path/to/examplerc
$ openstack floating ip create <public-network-name>
+---------------------+--------------------------------------+
| Field | Value |
+---------------------+--------------------------------------+
created_at	2017-08-24T22:44:03Z
description	
fixed_ip_address	None
floating_ip_address	10.20.120.150
floating_network_id	084884f9-d9d2-477a-bae7-26dbb4ff1873
headers	
id	2bc06e39-1efb-453e-8642-39f910ac8fd1
port_id	None
project_id	ca304dfee9a04597b16d253efd0e2332
project_id	ca304dfee9a04597b16d253efd0e2332
revision_number	1
router_id	None
status	DOWN
updated_at	2017-08-24T22:44:03Z
+---------------------+--------------------------------------+

Within the above output, the floating_ip_address field shows that the floating IP 10.20.120.150 is
created. In order to assign this IP to the deployment instance, run the following command:

CHAPTER 22. CONFIGURING FOR OPENSTACK

361

$ source /path/to/examplerc
$ openstack server add floating ip <deployment-instance-name> <ip>

For example, if instance deployment.example.com is to be assigned IP 10.20.120.150 the command
would be:

$ source /path/to/examplerc
$ openstack server add floating ip deployment.example.com 10.20.120.150

Adding the RC File to the Deployment Host

Once the deployment host exists, copy the RC file created earlier to the deployment host via scp as
follows

scp <rc-file-deployment-host> cloud-user@<ip>:/home/cloud-user/

22.2.3.12. Deployment Host Configuration for OpenShift Container Platform

The following subsections describe all the steps needed to properly configure the deployment instance.

Configure ~/.ssh/config to use Deployment Host as a Jumphost

To easily connect to the OpenShift Container Platform environment, follow the steps below.

On the OpenStack director node or local workstation with the private key, <keypair-name>.pem:

$ exec ssh-agent bash

$ ssh-add /path/to/<keypair-name>.pem
Identity added: /path/to/<keypair-name>.pem (/path/to/<keypair-name>.pem)

Add to the ~/.ssh/config file:

Host deployment
 HostName <deployment_fqdn_hostname OR IP address>
 User cloud-user
 IdentityFile /path/to/<keypair-name>.pem
 ForwardAgent yes

ssh into the deployment host with the -A option that enables forwarding of the authentication agent
connection.

Ensure the permissions are read write only for the owner of the ~/.ssh/config file:

$ chmod 600 ~/.ssh/config

$ ssh -A cloud-user@deployment

Once logged into the deployment host, verify the ssh agent forwarding is working via checking for the
SSH_AUTH_SOCK

$ echo "$SSH_AUTH_SOCK"
/tmp/ssh-NDFDQD02qB/agent.1387

OpenShift Container Platform 3.11 Configuring Clusters

362

Subscription Manager and Enabling OpenShift Container Platform Repositories

Within the deployment instance, register it with the Red Hat Subscription Manager. This can be
accomplished by using credentials:

$ sudo subscription-manager register --username <user> --password '<password>'

Alternatively, you can use an activation key:

$ sudo subscription-manager register --org="<org_id>" --activationkey=<keyname>

Once registered, enable the following repositories as follows.

$ sudo subscription-manager repos \
 --enable="rhel-7-server-rpms" \
 --enable="rhel-7-server-extras-rpms" \
 --enable="rhel-7-server-ose-3.11-rpms" \
 --enable="rhel-7-server-ansible-2.6-rpms" \
 --enable="rhel-7-server-openstack-13-rpms" \
 --enable="rhel-7-server-openstack-13-tools-rpms"

NOTE

Refer to the Set Up Repositories to confirm the proper OpenShift Container Platform
repositories and Ansible versions to enable. The above file is just a sample.

Required Packages on the Deployment Host

The following packages are required to be installed on the deployment host.

Install the following packages:

openshift-ansible

python-openstackclient

python2-heatclient

python2-octaviaclient

python2-shade

python-dns

git

ansible

$ sudo yum -y install openshift-ansible python-openstackclient python2-heatclient python2-
octaviaclient python2-shade python-dns git ansible

Configure Ansible

ansible is installed on the deployment instance to perform the registration, installation of packages, and

CHAPTER 22. CONFIGURING FOR OPENSTACK

363

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/getting_started/#set-up-repositories

ansible is installed on the deployment instance to perform the registration, installation of packages, and
the deployment of the OpenShift Container Platform environment on the master and node instances.

Before running playbooks, it is important to create an ansible.cfg file to reflect the environment you
wish to deploy:

$ cat ~/ansible.cfg

[defaults]
forks = 20
host_key_checking = False
remote_user = openshift
gathering = smart
fact_caching = jsonfile
fact_caching_connection = $HOME/ansible/facts
fact_caching_timeout = 600
log_path = $HOME/ansible.log
nocows = 1
callback_whitelist = profile_tasks
inventory = /usr/share/ansible/openshift-ansible/playbooks/openstack/inventory.py,/home/cloud-
user/inventory

[ssh_connection]
ssh_args = -o ControlMaster=auto -o ControlPersist=600s -o UserKnownHostsFile=/dev/null -o
StrictHostKeyChecking=false
control_path = %(directory)s/%%h-%%r
pipelining = True
timeout = 10

[persistent_connection]
connect_timeout = 30
connect_retries = 30
connect_interval = 1

WARNING

The following parameters values are important to the ansible.cfg file.

The remote_user must remain as the user openshift.

The inventory parameter ensure that there is no space between the two
inventories.

Example: inventory = path/to/inventory1,path/to/inventory2

The code block above can overwrite the default values in the file. Ensure to populate <keypair-name>
with the keypair that was copied to the deployment instance.

NOTE



OpenShift Container Platform 3.11 Configuring Clusters

364

NOTE

The inventory folder is created in Section 22.3.1, “Preparing the Inventory for
Provisioning”.

OpenShift Authentication

OpenShift Container Platform provides the ability to use many different authentication platforms. A
listing of authentication options are available at Configuring Authentication and User Agent .

Configuring the default identity provider is important as the default configuration is to Deny All.

22.3. PROVISIONING OPENSHIFT CONTAINER PLATFORM
INSTANCES USING THE OPENSHIFT ANSIBLE PLAYBOOKS

Once the creation and configuration of the deployment host is complete, we turn to preparing the
environment for the deployment of OpenShift Container Platform using Ansible. In the following
subsections, Ansible is configured and certain YAML files are modified to achieve a successful
OpenShift Container Platform on OpenStack deployment.

22.3.1. Preparing the Inventory for Provisioning

With the installation of the openshift-ansible package complete via our previous steps, there resides a
sample-inventory directory that we will copy to our cloud-user home directory of the deployment host.

On the deployment host,

$ cp -r /usr/share/ansible/openshift-ansible/playbooks/openstack/sample-inventory/ ~/inventory

Within this inventory directory, the all.yml file contains all the different parameters that must be set in to
order to achieve successful provisioning of the RHOCP instances. The OSEv3.yml file contains some
references required by the all.yml file and all the available OpenShift Container Platform cluster
parameters that you can customize.

22.3.1.1. OpenShiftSDN All YAML file

The all.yml file has many options that can be modified to meet your specific needs. The information
gathered in this file is for the provisioning portion of the instances required for a successful deployment
of OpenShift Container Platform. It is important to review these carefully. This document will provide a
condensed version of the All YAML file and focus on the most critical parameters that need to be set for
a successful deployment.

$ cat ~/inventory/group_vars/all.yml

openshift_openstack_clusterid: "openshift"
openshift_openstack_public_dns_domain: *"example.com"*
openshift_openstack_dns_nameservers: *["10.19.115.228"]*
openshift_openstack_public_hostname_suffix: "-public"
openshift_openstack_nsupdate_zone: "{{ openshift_openstack_public_dns_domain }}"

openshift_openstack_keypair_name: *"openshift"*
openshift_openstack_external_network_name: *"public"*

openshift_openstack_default_image_name: *"rhel75"*

CHAPTER 22. CONFIGURING FOR OPENSTACK

365

Optional (Recommended) - This removes the need for floating IPs
on the OpenShift Cluster nodes
openshift_openstack_node_subnet_name: *<deployment-subnet-name>*
openshift_openstack_router_name: *<deployment-router-name>*
openshift_openstack_master_floating_ip: *false*
openshift_openstack_infra_floating_ip: *false*
openshift_openstack_compute_floating_ip: *false*
End of Optional Floating IP section

openshift_openstack_num_masters: *3*
openshift_openstack_num_infra: *3*
openshift_openstack_num_cns: *0*
openshift_openstack_num_nodes: *2*

openshift_openstack_master_flavor: *"m1.master"*
openshift_openstack_default_flavor: *"m1.node"*

openshift_openstack_use_lbaas_load_balancer: *true*

openshift_openstack_docker_volume_size: "15"

Roll-your-own DNS
openshift_openstack_external_nsupdate_keys:
 public:
 key_secret: '/alb8h0EAFWvb4i+CMA12w=='
 key_name: "update-key"
 key_algorithm: 'hmac-md5'
 server: '<ip-of-DNS>'
 private:
 key_secret: '/alb8h0EAFWvb4i+CMA12w=='
 key_name: "update-key"
 key_algorithm: 'hmac-md5'
 server: '<ip-of-DNS>'

ansible_user: openshift

cloud config
openshift_openstack_disable_root: true
openshift_openstack_user: openshift

NOTE

Due to using an external DNS server, the private and public sections use the public IP
address of the DNS server as the DNS server does not reside in the OpenStack
environment.

The values above that are enclosed by asterisks (*) require modification based upon your OpenStack
environment and DNS server.

In order to properly modify the DNS portion of the All YAML file, login to the DNS server and perform
the following commands to capture the key name, key algorithm and key secret:

$ ssh <ip-of-DNS>
$ sudo -i

OpenShift Container Platform 3.11 Configuring Clusters

366

cat /etc/named/<key-name.key>
key "update-key" {
 algorithm hmac-md5;
 secret "/alb8h0EAFWvb4i+CMA02w==";
};

NOTE

The key name may vary and the above is only an example.

22.3.1.2. KuryrSDN All YAML file

The following all.yml file enables Kuryr SDN instead of the default OpenShiftSDN. Note that the
example below is a condensed version and it is important to review the default template carefully.

$ cat ~/inventory/group_vars/all.yml

openshift_openstack_clusterid: "openshift"
openshift_openstack_public_dns_domain: *"example.com"*
openshift_openstack_dns_nameservers: *["10.19.115.228"]*
openshift_openstack_public_hostname_suffix: "-public"
openshift_openstack_nsupdate_zone: "{{ openshift_openstack_public_dns_domain }}"

openshift_openstack_keypair_name: *"openshift"*
openshift_openstack_external_network_name: *"public"*

openshift_openstack_default_image_name: *"rhel75"*

Optional (Recommended) - This removes the need for floating IPs
on the OpenShift Cluster nodes
openshift_openstack_node_subnet_name: *<deployment-subnet-name>*
openshift_openstack_router_name: *<deployment-router-name>*
openshift_openstack_master_floating_ip: *false*
openshift_openstack_infra_floating_ip: *false*
openshift_openstack_compute_floating_ip: *false*
End of Optional Floating IP section

openshift_openstack_num_masters: *3*
openshift_openstack_num_infra: *3*
openshift_openstack_num_cns: *0*
openshift_openstack_num_nodes: *2*

openshift_openstack_master_flavor: *"m1.master"*
openshift_openstack_default_flavor: *"m1.node"*

Kuryr configuration
openshift_use_kuryr: True
openshift_use_openshift_sdn: False
use_trunk_ports: True
os_sdn_network_plugin_name: cni
openshift_node_proxy_mode: userspace
kuryr_openstack_pool_driver: nested
openshift_kuryr_precreate_subports: 5

kuryr_openstack_public_net_id: *<public_ID>*

CHAPTER 22. CONFIGURING FOR OPENSTACK

367

To disable namespace isolation, comment out the next 2 lines
openshift_kuryr_subnet_driver: namespace
openshift_kuryr_sg_driver: namespace
If you enable namespace isolation, `default` and `openshift-monitoring` become the
global namespaces. Global namespaces can access all namespaces. All
namespaces can access global namespaces.
To make other namespaces global, include them here:
kuryr_openstack_global_namespaces: default,openshift-monitoring

If OpenStack cloud endpoints are accessible over HTTPS, provide the CA certificate
kuryr_openstack_ca: *<path-to-ca-certificate>*

openshift_master_open_ports:
- service: dns tcp
 port: 53/tcp
- service: dns udp
 port: 53/udp
openshift_node_open_ports:
- service: dns tcp
 port: 53/tcp
- service: dns udp
 port: 53/udp

To set the pod network CIDR range, uncomment the following property and set its value:
#
openshift_openstack_kuryr_pod_subnet_prefixlen: 24
#
The subnet prefix length value must be smaller than the CIDR value that is
set in the inventory file as openshift_openstack_kuryr_pod_subnet_cidr.
By default, this value is /24.

openshift_portal_net is the range that OpenShift services and their associated Octavia
load balancer VIPs use. Amphora VMs use Neutron ports in the range that is defined by
openshift_openstack_kuryr_service_pool_start and openshift_openstack_kuryr_service_pool_end.
#
The value of openshift_portal_net in the OSEv3.yml file must be within the range that is
defined by openshift_openstack_kuryr_service_subnet_cidr. This range must be half
of openshift_openstack_kuryr_service_subnet_cidr's range. This practice ensures that
openshift_portal_net does not overlap with the range that load balancers' VMs use, which is
defined by openshift_openstack_kuryr_service_pool_start and
openshift_openstack_kuryr_service_pool_end.
#
For reference only, copy the value in the next line from OSEv3.yml:
openshift_portal_net: *"172.30.0.0/16"*

openshift_openstack_kuryr_service_subnet_cidr: *"172.30.0.0/15"*
openshift_openstack_kuryr_service_pool_start: *"172.31.0.1"*
openshift_openstack_kuryr_service_pool_end: *"172.31.255.253"*

End of Kuryr configuration

openshift_openstack_use_lbaas_load_balancer: *true*

openshift_openstack_docker_volume_size: "15"

OpenShift Container Platform 3.11 Configuring Clusters

368

Roll-your-own DNS
openshift_openstack_external_nsupdate_keys:
 public:
 key_secret: '/alb8h0EAFWvb4i+CMA12w=='
 key_name: "update-key"
 key_algorithm: 'hmac-md5'
 server: '<ip-of-DNS>'
 private:
 key_secret: '/alb8h0EAFWvb4i+CMA12w=='
 key_name: "update-key"
 key_algorithm: 'hmac-md5'
 server: '<ip-of-DNS>'

ansible_user: openshift

cloud config
openshift_openstack_disable_root: true
openshift_openstack_user: openshift

NOTE

If you are using namespace isolation, the Kuryr-controller creates a new Neutron network
and subnet for each namespace.

NOTE

Network policies and nodeport services are not supported when Kuryr SDN is enabled.

NOTE

If Kuryr is enabled, OpenShift Container Platform services are implemented through
OpenStack Octavia Amphora VMs.

Octavia does not support UDP load balancing. Services that expose UDP ports are not
supported.

22.3.1.2.1. Configuring global namespace access

The kuryr_openstack_global_namespace parameter contains a list that defines global namespaces.
By default, only the default and openshift-monitoring namespaces are included in this list.

If you are upgrading from a previous z-release of OpenShift Container Platform 3.11, note that access to
other namespaces from global namespaces is controlled by the security group *-allow_from_default.

Although the remote_group_id rule can control access to other namespaces from global namespaces,
using it can cause scaling and connectivity problems. To avoid these problems, switch from using
remote_group_id at *_allow_from_default to remote_ip_prefix:

1. From a command line, retrieve your networks' subnetCIDR value:

$ oc get kuryrnets ns-default -o yaml | grep subnetCIDR
 subnetCIDR: 10.11.13.0/24

2. Create TCP and UDP rules for this range:

CHAPTER 22. CONFIGURING FOR OPENSTACK

369

$ openstack security group rule create --remote-ip 10.11.13.0/24 --protocol tcp openshift-
ansible-openshift.example.com-allow_from_default
$ openstack security group rule create --remote-ip 10.11.13.0/24 --protocol udp openshift-
ansible-openshift.example.com-allow_from_default

3. Remove the security group rule that uses remote_group_id:

$ openstack security group show *-allow_from_default | grep remote_group_id
$ openstack security group rule delete REMOTE_GROUP_ID

Table 22.4. Description of Variables in the All YAML file

Variable Description

openshift_openstack_clusterid Cluster identification name

openshift_openstack_public_dns_domain Public DNS domain name

openshift_openstack_dns_nameservers IP of DNS nameservers

openshift_openstack_public_hostname_suffix Adds a suffix to the node hostname in the DNS
record for both public and private

openshift_openstack_nsupdate_zone Zone to be updated with OCP instance IPs

openshift_openstack_keypair_name Keypair name used to log in to OCP instances

openshift_openstack_external_network_name OpenStack public network name

openshift_openstack_default_image_name OpenStack image used for OCP instances

openshift_openstack_num_masters Number of master nodes to deploy

openshift_openstack_num_infra Number of infrastructure nodes to deploy

openshift_openstack_num_cns Number of container native storage nodes to deploy

openshift_openstack_num_nodes Number of application nodes to deploy

openshift_openstack_master_flavor Name of the OpenStack flavor used for master
instances

openshift_openstack_default_flavor Name of the Openstack flavor used for all instances,
if specific flavor not specified.

openshift_openstack_use_lbaas_load_balancer Boolean value enabling Octavia load balancer
(Octavia must be installed)

OpenShift Container Platform 3.11 Configuring Clusters

370

openshift_openstack_docker_volume_size Minimum size of the Docker volume (required
variable)

openshift_openstack_external_nsupdate_keys Updating the DNS with the instance IP addresses

ansible_user Ansible user used to deploy OpenShift Container
Platform. "openshift" is the required name and must
not be changed.

openshift_openstack_disable_root Boolean value that disables root access

openshift_openstack_user OCP instances created with this user

openshift_openstack_node_subnet_name Name of existing OpenShift subnet to use for
deployment. This should be the same subnet name
used for your deployment host.

openshift_openstack_router_name Name of existing OpenShift router to use for
deployment. This should be the same router name
used for your deployment host.

openshift_openstack_master_floating_ip Default is true. Must set to false if you do not want
floating IPs assigned to master nodes.

openshift_openstack_infra_floating_ip Default is true. Must set to false if you do not want
floating IPs assigned to infrastructure nodes.

openshift_openstack_compute_floating_ip Default is true. Must set to false if you do not want
floating IPs assigned to compute nodes.

openshift_use_openshift_sdn Must set to false if you want to disable openshift-
sdn

openshift_use_kuryr Must set to true if you want to enable kuryr sdn

use_trunk_ports Must be set to true to create the OpenStack VMs
with trunk ports (required by kuryr)

os_sdn_network_plugin_name selection of the SDN behavior. Must set to cni for
kuryr

openshift_node_proxy_mode Must set to userspace for Kuryr

openshift_master_open_ports Ports to be opened on the VMs when using Kuryr

Variable Description

CHAPTER 22. CONFIGURING FOR OPENSTACK

371

kuryr_openstack_public_net_id Need by Kuryr. ID of the public OpenStack network
from where FIPs are obtained

openshift_kuryr_subnet_driver Kuryr Subnet driver. Must be namespace for
creating a subnet per namespace

openshift_kuryr_sg_driver Kuryr Security Group driver. Must be namespace
for namespace isolation

kuryr_openstack_global_namespaces Global namespaces to use for namespace isolation.
The default values are default, openshift-
monitoring.

kuryr_openstack_ca Path to the CA certificate of the cloud. Required if
OpenStack cloud endpoints are accessible over
HTTPS.

Variable Description

22.3.1.3. OSEv3 YAML file

The OSEv3 YAML file specifies all the different parameters and customizations relating the installation
of OpenShift.

Below is a condensed version of the file with all required variables for a successful deployment.
Additional variables may be required depending on what customization is required for your specific
OpenShift Container Platform deployment.

$ cat ~/inventory/group_vars/OSEv3.yml

openshift_deployment_type: openshift-enterprise
openshift_release: v3.11
oreg_url: registry.access.redhat.com/openshift3/ose-${component}:${version}
openshift_examples_modify_imagestreams: true
oreg_auth_user: <oreg_auth_user>
oreg_auth_password: <oreg_auth_pw>
The following is required if you want to deploy the Operator Lifecycle Manager (OLM)
openshift_additional_registry_credentials:
[{'host':'registry.connect.redhat.com','user':'REGISTRYCONNECTUSER','password':'REGISTRYCONN
ECTPASSWORD','test_image':'mongodb/enterprise-operator:0.3.2'}]

openshift_master_default_subdomain: "apps.{{ (openshift_openstack_clusterid|trim == '') |
ternary(openshift_openstack_public_dns_domain, openshift_openstack_clusterid + '.' +
openshift_openstack_public_dns_domain) }}"

openshift_master_cluster_public_hostname: "console.{{ (openshift_openstack_clusterid|trim == '') |
ternary(openshift_openstack_public_dns_domain, openshift_openstack_clusterid + '.' +
openshift_openstack_public_dns_domain) }}"

#OpenStack Credentials:

OpenShift Container Platform 3.11 Configuring Clusters

372

openshift_cloudprovider_kind: openstack
openshift_cloudprovider_openstack_auth_url: "{{ lookup('env','OS_AUTH_URL') }}"
openshift_cloudprovider_openstack_username: "{{ lookup('env','OS_USERNAME') }}"
openshift_cloudprovider_openstack_password: "{{ lookup('env','OS_PASSWORD') }}"
openshift_cloudprovider_openstack_tenant_name: "{{ lookup('env','OS_PROJECT_NAME') }}"
openshift_cloudprovider_openstack_blockstorage_version: v2
openshift_cloudprovider_openstack_domain_name: "{{ lookup('env','OS_USER_DOMAIN_NAME') }}"
openshift_cloudprovider_openstack_conf_file: <path_to_local_openstack_configuration_file>

#Use Cinder volume for Openshift registry:
openshift_hosted_registry_storage_kind: openstack
openshift_hosted_registry_storage_access_modes: ['ReadWriteOnce']
openshift_hosted_registry_storage_openstack_filesystem: xfs
openshift_hosted_registry_storage_volume_size: 30Gi

openshift_hosted_registry_storage_openstack_volumeID: d65209f0-9061-4cd8-8827-ae6e2253a18d
openshift_hostname_check: false
ansible_become: true

#Setting SDN (defaults to ovs-networkpolicy) not part of OSEv3.yml
#For more info, on which to choose, visit:
#https://docs.openshift.com/container-platform/3.11/architecture/networking/sdn.html#overview
networkPluginName: redhat/ovs-networkpolicy
#networkPluginName: redhat/ovs-multitenant

#Configuring identity providers with Ansible
#For initial cluster installations, the Deny All identity provider is configured
#by default. It is recommended to be configured with either htpasswd
#authentication, LDAP authentication, or Allowing all authentication (not recommended)
#For more info, visit:
#https://docs.openshift.com/container-
platform/3.10/install_config/configuring_authentication.html#identity-providers-ansible
#Example of Allowing All
#openshift_master_identity_providers: [{'name': 'allow_all', 'login': 'true', 'challenge': 'true', 'kind':
'AllowAllPasswordIdentityProvider'}]

#Optional Metrics (uncomment below lines for installation)

#openshift_metrics_install_metrics: true
#openshift_metrics_cassandra_storage_type: dynamic
#openshift_metrics_storage_volume_size: 25Gi
#openshift_metrics_cassandra_nodeselector: {"node-role.kubernetes.io/infra":"true"}
#openshift_metrics_hawkular_nodeselector: {"node-role.kubernetes.io/infra":"true"}
#openshift_metrics_heapster_nodeselector: {"node-role.kubernetes.io/infra":"true"}

#Optional Aggregated Logging (uncomment below lines for installation)

#openshift_logging_install_logging: true
#openshift_logging_es_pvc_dynamic: true
#openshift_logging_es_pvc_size: 30Gi
#openshift_logging_es_cluster_size: 3
#openshift_logging_es_number_of_replicas: 1

CHAPTER 22. CONFIGURING FOR OPENSTACK

373

#openshift_logging_es_nodeselector: {"node-role.kubernetes.io/infra":"true"}
#openshift_logging_kibana_nodeselector: {"node-role.kubernetes.io/infra":"true"}
#openshift_logging_curator_nodeselector: {"node-role.kubernetes.io/infra":"true"}

For further details on any of the variables listed, see an example OpenShift-Ansible host inventory .

22.3.2. OpenStack Prerequisites Playbook

The OpenShift Container Platform Ansible Installer provides a playbook to ensure all the provisioning
steps of the OpenStack instances have been met.

Prior to running the playbook, ensure to source the RC file

$ source path/to/examplerc

Via the ansible-playbook command on the deployment host, ensure all the prerequisites are met using
prerequisites.yml playbook:

$ ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/openstack/openshift-
cluster/prerequisites.yml

Once the prerequisite playbook completes successfully, run the provision playbook as follows:

$ ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/openstack/openshift-
cluster/provision.yml

IMPORTANT

If provision.yml prematurely errors, check if the status of the OpenStack stack and wait
for it finish

$ watch openstack stack list
+--------------------------------------+-------------------+--------------------+----------------------
+--------------+
| ID | Stack Name | Stack Status | Creation Time |
Updated Time |
+--------------------------------------+-------------------+--------------------+----------------------
+--------------+
| 87cb6d1c-8516-40fc-892b-49ad5cb87fac | openshift-cluster |
CREATE_IN_PROGRESS | 2018-08-20T23:44:46Z | None |
+--------------------------------------+-------------------+--------------------+----------------------
+--------------+

If the stack shows a CREATE_IN_PROGRESS, wait for the stack to complete with a final
result such as CREATE_COMPLETE. If the stack does complete successfully, re-run the
provision.yml playbook for it to finish all the additional required steps.

If the stack shows a CREATE_FAILED, make sure to run the following command to see
what caused the errors:

$ openstack stack failures list openshift-cluster

OpenShift Container Platform 3.11 Configuring Clusters

374

https://github.com/openshift/openshift-ansible/blob/master/inventory/hosts.example

22.3.3. Stack Name Configuration

By default, the Heat stack that is created by OpenStack for the OpenShift Container Platform cluster is
named openshift-cluster. If you want to use a different name then you must set the
OPENSHIFT_CLUSTER environment variable before running the playbooks:

$ export OPENSHIFT_CLUSTER=openshift.example.com

If you use a non-default stack name and run the openshift-ansible playbooks to update your
deployment, you must set OPENSHIFT_CLUSTER to your stack name to avoid errors.

22.4. REGISTERING WITH SUBSCRIPTION MANAGER THE OPENSHIFT
CONTAINER PLATFORM INSTANCES

With the nodes successfully provisioned, the next step is to ensure all the nodes are successfully
registered via subscription-manager to install all the required packages for a successful OpenShift
Container Platform installation. For simplicity, a repos.yml file has been created and provided.

$ cat ~/repos.yml

- name: Enable the proper repositories for OpenShift installation
 hosts: OSEv3
 become: yes
 tasks:
 - name: Register with activationkey and consume subscriptions matching Red Hat Cloud Suite or
Red Hat OpenShift Container Platform
 redhat_subscription:
 state: present
 activationkey: <key-name>
 org_id: <orig_id>
 pool: '^(Red Hat Cloud Suite|Red Hat OpenShift Container Platform)$'

 - name: Disable all current repositories
 rhsm_repository:
 name: '*'
 state: disabled

 - name: Enable Repositories
 rhsm_repository:
 name: "{{ item }}"
 state: enabled
 with_items:
 - rhel-7-server-rpms
 - rhel-7-server-extras-rpms
 - rhel-7-server-ansible-2.6-rpms
 - rhel-7-server-ose-3.11-rpms

NOTE

Refer to the Set Up Repositories to confirm the proper repositories and versions to
enable. The above file is just a sample.

With the repos.yml, run the ansible-playbook command:

CHAPTER 22. CONFIGURING FOR OPENSTACK

375

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/getting_started/#set-up-repositories

$ ansible-playbook repos.yml

The above example uses Ansible’s redhat_subscription and rhsm_repository modules for all
registration, disabling and enabling of repositories. This specific example takes advantage of using a Red
Hat activation key. If you don’t have an activation key, ensure to visit the Ansible redhat_subscription
module to modify using a username and password instead as shown in the examples:
https://docs.ansible.com/ansible/2.6/modules/redhat_subscription_module.html

NOTE

At times, the redhat_subscription module may fail on certain nodes. If this issue occurs,
please manually register that OpenShift Container Platform instance using subscription-
manager.

22.5. INSTALLING OPENSHIFT CONTAINER PLATFORM BY USING AN
ANSIBLE PLAYBOOK

With the OpenStack instances provisioned, the focus shifts to the installation OpenShift Container
Platform. The installation and configuration is done via a series of Ansible playbooks and roles provided
by the OpenShift RPM packages. Review the OSEv3.yml file that was previous configured to ensure all
the options have been properly set.

Prior to running the installer playbook, ensure all the {rhocp} prerequisites are met via:

$ ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/prerequisites.yml

Run the installer playbook to install Red Hat OpenShift Container Platform:

$ ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/openstack/openshift-
cluster/install.yml

NOTE

OpenShift Container Platform version 3.11 is supported on RH OSP 14 and RH OSP 13.
OpenShift Container Platform version 3.10 is supported on RH OSP 13.

22.6. APPLYING CONFIGURATION CHANGES TO EXISTING
OPENSHIFT CONTAINER PLATFORM ENVIRONMENT

Start or restart OpenShift Container Platform services on all master and node hosts to apply your
configuration changes, see Restarting OpenShift Container Platform services :

master-restart api
master-restart controllers
systemctl restart atomic-openshift-node

NOTE

OpenShift Container Platform 3.11 Configuring Clusters

376

https://docs.ansible.com/ansible/2.6/modules/redhat_subscription_module.html

NOTE

Kubernetes architecture expects reliable endpoints from cloud providers. When a cloud
provider is down, the kubelet prevents OpenShift Container Platform from restarting. If
the underlying cloud provider endpoints are not reliable, do not install a cluster that uses
the cloud provider integration. Install the cluster as if it is a bare metal environment. It is
not recommended to toggle cloud provider integration on or off in an installed cluster.
However, if that scenario is unavoidable, then complete the following process.

Switching from not using a cloud provider to using a cloud provider produces an error message. Adding
the cloud provider tries to delete the node because the node switches from using the hostname as the
externalID (which would have been the case when no cloud provider was being used) to using the cloud
provider’s instance-id (which is what the cloud provider specifies). To resolve this issue:

1. Log in to the CLI as a cluster administrator.

2. Check and back up existing node labels:

3. Delete the nodes:

4. On each node host, restart the OpenShift Container Platform service.

systemctl restart atomic-openshift-node

5. Add back any labels on each node that you previously had.

22.6.1. Configuring OpenStack Variables on an existing OpenShift Environment

To set the required OpenStack variables, modify the /etc/origin/cloudprovider/openstack.conf file
with the following contents on all of your OpenShift Container Platform hosts, both masters and nodes:

[Global]
auth-url = <OS_AUTH_URL>
username = <OS_USERNAME>
password = <password>
domain-id = <OS_USER_DOMAIN_ID>
tenant-id = <OS_TENANT_ID>
region = <OS_REGION_NAME>

[LoadBalancer]
subnet-id = <UUID of the load balancer subnet>

Consult your OpenStack administrators for values of the OS_ variables, which are commonly used in
OpenStack configuration.

22.6.2. Configuring Zone Labels for Dynamically Created OpenStack PVs

Administrators can configure zone labels for dynamically created OpenStack PVs. This option is useful if
the OpenStack Cinder zone name does not match the compute zone names, for example, if there is only
one Cinder zone and many compute zones. Administrators can create Cinder volumes dynamically and

$ oc describe node <node_name> | grep -Poz '(?s)Labels.*\n.*(?=Taints)'

$ oc delete node <node_name>

CHAPTER 22. CONFIGURING FOR OPENSTACK

377

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#updating-labels-on-nodes

then check the labels.

To view the zone labels for the PVs:

oc get pv --show-labels
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS
CLAIM STORAGECLASS REASON AGE LABELS
pvc-1faa6f93-64ac-11e8-930c-fa163e3c373c 1Gi RWO Delete Bound openshift-
node/pvc1 standard 12s failure-domain.beta.kubernetes.io/zone=nova

The default setting is enabled. Using the oc get pv --show-labels command returns the failure-
domain.beta.kubernetes.io/zone=nova label.

To disable the zone label, update the openstack.conf file by adding:

[BlockStorage]
ignore-volume-az = yes

The PVs created after restarting the master services will not have the zone label.

OpenShift Container Platform 3.11 Configuring Clusters

378

CHAPTER 23. CONFIGURING FOR GOOGLE COMPUTE
ENGINE

You can configure OpenShift Container Platform to access an existing Google Compute Engine (GCE)
infrastructure, including using GCE volumes as persistent storage for application data.

23.1. BEFORE YOU BEGIN

23.1.1. Configuring authorization for Google Cloud Platform

Roles

Configuring GCP for OpenShift Container Platform requires the following GCP role:

roles/owner Needed for creating service accounts, cloud storage, instances, images,
templates, Cloud DNS entries, and to deploy load balancers and health checks.

delete permissions might also be required if the user is expected to redeploy the environment during
testing phases.

You can also create a service account to avoid using personal users when deploying GCP objects.

See the Understanding roles section of the GCP documentation for more information, including steps
for how to configure roles.

Scopes and service accounts

GCP uses scopes to determine if an authenticated identity is authorized to perform operations within a
resource. For example, if application A with a read-only scope access token can only read, while
application B with a read-write scope access token can read and modify data.

The scopes are defined at the GCP API level as https://www.googleapis.com/auth/compute.readonly.

You can specify scopes using the --scopes=[SCOPE,… ​] option when creating instances, or you can use
the --no-scopes option to create the instance without scopes if you don’t want the instance accessing
the GCP API.

See the Scopes section of the GCP documentation for more information.

All GCP projects include a default
[PROJECT_NUMBER]-compute@developer.gserviceaccount.com service account with project
editor permissions.

By default, a newly created instance is automatically enabled to run as the default service account with
the following access scopes:

https://www.googleapis.com/auth/devstorage.read_only

https://www.googleapis.com/auth/logging.write

https://www.googleapis.com/auth/monitoring.write

https://www.googleapis.com/auth/pubsub

CHAPTER 23. CONFIGURING FOR GOOGLE COMPUTE ENGINE

379

https://cloud.google.com/compute/docs/disks/
https://cloud.google.com/iam/docs/understanding-roles
https://www.googleapis.com/auth/compute.readonly
https://cloud.google.com/compute/docs/access/service-accounts#accesscopesiam
mailto:compute@developer.gserviceaccount.com
https://www.googleapis.com/auth/devstorage.read_only
https://www.googleapis.com/auth/logging.write
https://www.googleapis.com/auth/monitoring.write
https://www.googleapis.com/auth/pubsub

https://www.googleapis.com/auth/service.management.readonly

https://www.googleapis.com/auth/servicecontrol

https://www.googleapis.com/auth/trace.append

https://www.googleapis.com/auth/bigquery

https://www.googleapis.com/auth/cloud-platform

https://www.googleapis.com/auth/compute.readonly

https://www.googleapis.com/auth/compute

https://www.googleapis.com/auth/datastore

https://www.googleapis.com/auth/logging.write

https://www.googleapis.com/auth/monitoring

https://www.googleapis.com/auth/monitoring.write

https://www.googleapis.com/auth/servicecontrol

https://www.googleapis.com/auth/service.management.readonly

https://www.googleapis.com/auth/sqlservice.admin

https://www.googleapis.com/auth/devstorage.full_control

https://www.googleapis.com/auth/devstorage.read_only

https://www.googleapis.com/auth/devstorage.read_write

https://www.googleapis.com/auth/taskqueue

https://www.googleapis.com/auth/userinfo.email

You can specify another service account with the --service-account=SERVICE_ACCOUNT option
when creating the instance, or explicitly disabling service accounts for the instance using the --no-
service-account option using the gcloud CLI.

See the Creating a new service account section of the GCP documentation for more information.

23.1.2. Google Compute Engine objects

Integrating OpenShift Container Platform with Google Compute Engine (GCE) requires the following
components or services.

A GCP project

A GCP project is the base level organizing entity that forms the basis for creating, enabling, and
using all GCP services. This includes managing APIs, enabling billing, adding and removing
collaborators, and managing permissions.

See the project resource section in the GCP documentation for more information.

IMPORTANT

OpenShift Container Platform 3.11 Configuring Clusters

380

https://www.googleapis.com/auth/service.management.readonly
https://www.googleapis.com/auth/servicecontrol
https://www.googleapis.com/auth/trace.append
https://www.googleapis.com/auth/bigquery
https://www.googleapis.com/auth/cloud-platform
https://www.googleapis.com/auth/compute.readonly
https://www.googleapis.com/auth/compute
https://www.googleapis.com/auth/datastore
https://www.googleapis.com/auth/logging.write
https://www.googleapis.com/auth/monitoring
https://www.googleapis.com/auth/monitoring.write
https://www.googleapis.com/auth/servicecontrol
https://www.googleapis.com/auth/service.management.readonly
https://www.googleapis.com/auth/sqlservice.admin
https://www.googleapis.com/auth/devstorage.full_control
https://www.googleapis.com/auth/devstorage.read_only
https://www.googleapis.com/auth/devstorage.read_write
https://www.googleapis.com/auth/taskqueue
https://www.googleapis.com/auth/userinfo.email
https://cloud.google.com/compute/docs/access/create-enable-service-accounts-for-instances
https://cloud.google.com/resource-manager/docs/cloud-platform-resource-hierarchy#projects

IMPORTANT

Project IDs are unique identifiers, and project IDs must be unique across all of Google
Cloud Engine. This means you cannot use myproject as a project ID if someone else has
created a project with that ID before.

Billing

You cannot create new resources unless billing is attached to an account. The new project can be
linked to an existing project or new information can be entered.

See Create, Modify, or Close Your Billing Account in the GCP documentation for more information.

Cloud identity and access management

Deploying OpenShift Container Platform requires the proper permissions. A user must be able to
create service accounts, cloud storage, instances, images, templates, Cloud DNS entries, and deploy
load balancers and health checks. Delete permissions are also helpful in order to be able to redeploy
the environment while testing.

You can create service accounts with specific permissions, then use them to deploy infrastructure
components instead of regular users. You can also create roles to limit access to different users or
service accounts.

GCP instances use service accounts to allow applications to call GCP APIs. For example, OpenShift
Container Platform node hosts can call the GCP disk API to provide a persistent volume to an
application.

Access control to the various infrastructure, service resources, and fine-grained roles are available using
the IAM service. For more information, see the Access cloud overview section of the GCP
documentation.

SSH keys

GCP injects SSH public keys as authorized keys so you can log in using SSH in the created instances.
You can configure the SSH keys per instance or per project.

You can use existing SSH keys. GCP metadata can help with storing the SSH keys that are injected at
boot time in the instances to allow SSH access.

See the Metadata section of the GCP documentation for more information.

GCP regions and zones

GCP has a global infrastructure that covers regions and availability zones. While deploying OpenShift
Container Platform in GCP on different zones can help avoid single-point-of-failures, there are some
caveats regarding storage.

GCP disks are created within a zone. Therefore, if a OpenShift Container Platform node host goes down
in zone "A" and the pods move to zone "B", the persistent storage cannot be attached to those pods
because the disks are in a different zone.

Deploying a single zone of multizone OpenShift Container Platform environment is an important
decision to make before installing OpenShift Container Platform. If deploying a multizone environment,
the recommended setup is to use three different zones in a single region.

See the GCP documentation on regions and zones and the Kubernetes documentation on multiple
zones for more information.

CHAPTER 23. CONFIGURING FOR GOOGLE COMPUTE ENGINE

381

https://cloud.google.com/billing/docs/how-to/manage-billing-account
https://cloud.google.com/compute/docs/access/
https://cloud.google.com/compute/docs/storing-retrieving-metadata
https://cloud.google.com/compute/docs/zones
https://cloud.google.com/kubernetes-engine/docs/concepts/regional-clusters

External IP address

So that GCP instances can communicate with the Internet, you must attach an external IP address to
the instance. Also, an external IP address is required to communicate with instances deployed in GCP
from outside the Virtual Private Cloud (VPC) Network.

WARNING

Requiring an External IP address for internet access is a limitation of the provider.
You can configure firewall rules to block incoming external traffic in instances if not
needed.

See the GCP documentation on external IP address for more information.

Cloud DNS

GCP cloud DNS is a DNS service used to publish domain names to the global DNS using GCP DNS
servers.

The public cloud DNS zone requires a domain name that you purchased either through Google’s
"Domains" service or through a third-party provider. When you create the zone, you must add the name
servers provided by Google to the registrar.

See the GCP documentation on Cloud DNS for more information.

NOTE

GCP VPC networks have an internal DNS service that automatically resolves internal host
names.

The internal fully qualified domain name (FQDN) for an instance follows the
[HOST_NAME].c.[PROJECT_ID].internal format.

See the GCP documentation on Internal DNS for more information.

Load balancing

The GCP load balancing service enables the distribution of traffic across multiple instances in the
GCP cloud.

There are five types of Load Balancing:

Internal

Network load balancing

HTTP(S) load balancing

SSL Proxy load balancing

TCP Proxy load balancing

NOTE



OpenShift Container Platform 3.11 Configuring Clusters

382

https://cloud.google.com/vpc/docs/vpc#internet_access_reqs
https://cloud.google.com/compute/docs/ip-addresses/
https://cloud.google.com/dns/update-name-servers#change_your_domain_registrars_name_servers_for_your_domain
https://cloud.google.com/dns/overview
https://cloud.google.com/compute/docs/internal-dns
https://cloud.google.com/compute/docs/load-balancing/internal/
https://cloud.google.com/compute/docs/load-balancing/network
https://cloud.google.com/compute/docs/load-balancing/http
https://cloud.google.com/compute/docs/load-balancing/tcp-ssl/
https://cloud.google.com/load-balancing/docs/tcp/

NOTE

HTTPS and TCP proxy load balancing are the only options for using HTTPS health checks
for master nodes, which checks the status of /healthz.

Because HTTPS load balancing requires a custom certificate, this implementation uses
TCP Proxy load balancing to simplify the process.

See the GCP documentation on Load balancing for more information.

Instances sizes

A successful OpenShift Container Platform environment requires some minimum hardware
requirements:

Table 23.1. Instances sizes

Role Size

Master n1-standard-8

Node n1-standard-4

GCP allows you to create custom instance sizes to fit different requirements. See Creating an Instance
with a Custom Machine Type for more information, or see Machine types and OpenShift Container
Platform Minimum Hardware Requirements for more information about instance sizes.

Storage Options

By default, each GCP instance has a small root persistent disk that contains the operating system.
When applications running on the instance require more storage space, you can add additional
storage options to the instance:

Standard persistent disks

SSD persistent disks

Local SSDs

Cloud storage buckets

For more information, see the GCP documentation on Storage options .

23.2. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR GCE

You can configure OpenShift Container Platform for GCE in two ways:

Using Ansible

Manually by modifying the master-config.yaml file

23.2.1. Option 1: Configuring OpenShift Container Platform for GCP using Ansible

You can configure OpenShift Container Platform for Google Compute Platform (GCP) by modifying

CHAPTER 23. CONFIGURING FOR GOOGLE COMPUTE ENGINE

383

https://cloud.google.com/compute/docs/load-balancing-and-autoscaling
https://cloud.google.com/compute/docs/instances/creating-instance-with-custom-machine-type
https://cloud.google.com/compute/docs/machine-types
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#hardware
https://cloud.google.com/compute/docs/disks/

1

2

3

4

You can configure OpenShift Container Platform for Google Compute Platform (GCP) by modifying
the Ansible inventory file at installation time or after installation.

Procedure

1. At minimum, you must define the openshift_cloudprovider_kind, openshift_gcp_project and
openshift_gcp_prefix parameters, as well as the optional openshift_gcp_multizone for
multizone deployments and openshift_gcp_network_name if you are not using the default
network name.
Add the following section to the Ansible inventory file at installation to configure your
OpenShift Container Platform environment for GCP:

[OSEv3:vars]
openshift_cloudprovider_kind=gce
openshift_gcp_project=<projectid> 1
openshift_gcp_prefix=<uid> 2
openshift_gcp_multizone=False 3
openshift_gcp_network_name=<network name> 4

Provide the GCP project ID where the existing instances are running. This ID is generated
when you create the project in the Google Cloud Platform Console.

Provide a unique string to identify each OpenShift Container Platform cluster. This must
be unique across GCP.

Optionally, set to True to trigger multizone deployments on GCP. Set to False by default.

Optionally, provide the network name if not using default network.

Installing with Ansible also creates and configures the following files to fit your GCP
environment:

/etc/origin/cloudprovider/gce.conf

/etc/origin/master/master-config.yaml

/etc/origin/node/node-config.yaml

2. If you are running load balancer services using GCP , the Compute Engine VM node instances
require the ocp suffix. For example, if the value of the openshift_gcp_prefix parameter is set
to mycluster, you must tag the nodes with myclusterocp. See Adding and Removing Network
Tags for more information on how to add network tags to Compute Engine VM instances.

3. Optionally, you can configure multizone support.
The cluster installation process configures single-zone support by default, but you can
configure for multiple zones to avoid single-point-of-failures.

Because GCP disks are created within a zone, deploying OpenShift Container Platform in GCP
on different zones can cause problems with storage. If an OpenShift Container Platform node
host goes down in zone "A" and the pods move to zone "B", the persistent storage cannot be
attached to those pods because the disks are now in a different zone. See Multiple zone
limitations in the Kubernetes documentation for more information.

To enable multizone support using the Ansible inventory file, add the following parameter:

OpenShift Container Platform 3.11 Configuring Clusters

384

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible
https://cloud.google.com/vpc/docs/add-remove-network-tags
https://kubernetes.io/docs/admin/multiple-zones/#limitations

1

2

3

4

5

[OSEv3:vars]
openshift_gcp_multizone=true

To return to single-zone support, set the openshift_gcp_multizone value to false and rerun
the Ansible inventory file.

23.2.2. Option 2: Manually configuring OpenShift Container Platform for GCE

23.2.2.1. Manually configuring master hosts for GCE

Perform the following procedure on all master hosts.

Procedure

1. Add the GCE parameters to the apiServerArguments and controllerArguments sections of
the master configuration file at /etc/origin/master/master-config.yaml by default:

2. When you configure OpenShift Container Platform for GCP using Ansible, the
/etc/origin/cloudprovider/gce.conf file is created automatically. Because you are manually
configuring OpenShift Container Platform for GCP, you must create the file and enter the
following:

[Global]
project-id = <project-id> 1
network-name = <network-name> 2
node-tags = <node-tags> 3
node-instance-prefix = <instance-prefix> 4
multizone = true 5

Provide the GCP project ID where the existing instances are running.

Provide the network name if not using the default.

Provide the tag for the GCP nodes. Must contain ocp as a suffix. For example, if the value
of the node-instance-prefix parameter is set to mycluster, the nodes must be tagged
with myclusterocp.

Provide a unique string to identify your OpenShift Container Platform cluster.

Set to true to trigger multizone deployments on GCP. Set to False by default.

The cluster installation process configures single-zone support by default.

apiServerArguments:
 cloud-provider:
 - "gce"
 cloud-config:
 - "/etc/origin/cloudprovider/gce.conf"
controllerArguments:
 cloud-provider:
 - "gce"
 cloud-config:
 - "/etc/origin/cloudprovider/gce.conf"

CHAPTER 23. CONFIGURING FOR GOOGLE COMPUTE ENGINE

385

Deploying OpenShift Container Platform in GCP on different zones can be helpful to avoid
single-point-of-failures, but can cause problems with storage. This is because GCP disks are
created within a zone. If an OpenShift Container Platform node host goes down in zone "A" and
the pods should be moved to zone "B", the persistent storage cannot be attached to those
pods, because the disks are now in a different zone. See Multiple zone limitations in the
Kubernetes documentation for more information.

IMPORTANT

For running load balancer services using GCP , the Compute Engine VM node
instances require the ocp suffix: <openshift_gcp_prefix>ocp. For example, if
the value of the openshift_gcp_prefix parameter is set to mycluster, you must
tag the nodes with myclusterocp. See Adding and Removing Network Tags for
more information on how to add network tags to Compute Engine VM instances.

3. Restart the OpenShift Container Platform host services:

To return to single-zone support, set the multizone value to false and restart the master and node host
services.

23.2.2.2. Manually configuring node hosts for GCE

Perform the following on all node hosts.

Procedure

1. Edit the appropriate node configuration map and update the contents of the
kubeletArguments section:

IMPORTANT

The nodeName must match the instance name in GCP in order for the cloud
provider integration to work properly. The name must also be RFC1123 compliant.

2. Restart the OpenShift Container Platform services on all nodes.

23.2.3. Configuring the OpenShift Container Platform registry for GCP

Google Cloud Platform (GCP) provides object cloud storage that OpenShift Container Platform can
use to store container images using the OpenShift Container Platform container image registry.

master-restart api
master-restart controllers
systemctl restart atomic-openshift-node

kubeletArguments:
 cloud-provider:
 - "gce"
 cloud-config:
 - "/etc/origin/cloudprovider/gce.conf"

systemctl restart atomic-openshift-node

OpenShift Container Platform 3.11 Configuring Clusters

386

https://kubernetes.io/docs/admin/multiple-zones/#limitations
https://cloud.google.com/vpc/docs/add-remove-network-tags
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#modifying-nodes

1

2

3

4

For more information, see Cloud Storage in the GCP documentation .

Prerequisites

You must create the bucket to host the registry images before the installation. The following commands
create a regional bucket using the configured service account:

gsutil mb -c regional -l <region> gs://ocp-registry-bucket
cat <<EOF > labels.json
{
 "ocp-cluster": "mycluster"
}
EOF
gsutil label set labels.json gs://ocp-registry-bucket
rm -f labels.json

NOTE

A bucket’s data is automatically encrypted using a Google-managed key by default. To
specify a different key to encrypt the data, see the Data Encryption Options available in
GCP.

See the Creating storage buckets documentation for more information.

Procedure

To configure the Ansible inventory file for the registry to use a Google Cloud Storage (GCS) bucket:

[OSEv3:vars]
GCP Provider Configuration
openshift_hosted_registry_storage_provider=gcs
openshift_hosted_registry_storage_kind=object
openshift_hosted_registry_replicas=1 1
openshift_hosted_registry_storage_gcs_bucket=<bucket_name> 2
openshift_hosted_registry_storage_gcs_keyfile=<bucket_keyfile> 3
openshift_hosted_registry_storage_gcs_rootdirectory=<registry_directory> 4

The number of replicas to configure.

The bucket name to for registry storage.

The path on the installer host where the bucket’s keyfile is located if you use a custom key file to
encrypt the data.

Directory used to store the data. /registry by default

For more information, see Cloud Storage in the GCP documentation .

23.2.3.1. Manually configuring OpenShift Container Platform registry for GCP

To use GCP object storage, edit the registry’s configuration file and mount to the registry pod.

See the Google Cloud Storage Driver documentation for more information about storage driver
configuration files.

CHAPTER 23. CONFIGURING FOR GOOGLE COMPUTE ENGINE

387

https://cloud.google.com/storage/docs/
https://cloud.google.com/storage/docs/encryption/
https://cloud.google.com/storage/docs/creating-buckets
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible
https://cloud.google.com/storage/docs/
https://docs.docker.com/registry/storage-drivers/gcs/

1

2

Procedure

1. Export the current /etc/registry/config.yml file:

2. Create a new configuration file from the old /etc/registry/config.yml file:

3. Edit the file to include the GCP parameters. Specify the bucket and keyfile in the storage
section of a registry’s configuration file:

Replace with the GCP bucket name.

A private service account key file in JSON format. If using the Google Application Default
Credentials, do not specify the keyfile parameter.

4. Delete the registry-config secret:

5. Recreate the secret to reference the updated configuration file:

6. Redeploy the registry to read the updated configuration:

23.2.3.1.1. Verify the registry is using GCP object storage

To verify if the registry is using GCP bucket storage:

Procedure

1. After a successful registry deployment using GCP storage, the registry deploymentconfig does
not show any information if the registry is using an emptydir instead of GCP bucket storage:

$ oc get secret registry-config \
 -o jsonpath='{.data.config\.yml}' -n default | base64 -d \
 >> config.yml.old

$ cp config.yml.old config.yml

storage:
 delete:
 enabled: true
 cache:
 blobdescriptor: inmemory
 gcs:
 bucket: ocp-registry 1
 keyfile: mykeyfile 2

$ oc delete secret registry-config -n default

$ oc create secret generic registry-config \
 --from-file=config.yml -n default

$ oc rollout latest docker-registry -n default

$ oc describe dc docker-registry -n default

OpenShift Container Platform 3.11 Configuring Clusters

388

1 The temporary directory that shares a pod’s lifetime.

2. Check if the /registry mountpoint is empty. This is the volume GCP storage will use:

3. If it is empty, it is because the GCP bucket configuration is performed in the registry-config
secret:

4. The installer creates a config.yml file with the desired configuration using the extended registry
capabilities as seen in Storage in the installation documentation . To view the configuration file,
including the storage section where the storage bucket configuration is stored:

...
Mounts:
 ...
 /registry from registry-storage (rw)
Volumes:
registry-storage:
Type: EmptyDir 1
...

$ oc exec \
 $(oc get pod -l deploymentconfig=docker-registry \
 -o=jsonpath='{.items[0].metadata.name}') -i -t -- ls -l /registry
total 0

$ oc describe secret registry-config
Name: registry-config
Namespace: default
Labels: <none>
Annotations: <none>

Type: Opaque

Data
====
config.yml: 398 bytes

$ oc exec \
 $(oc get pod -l deploymentconfig=docker-registry \
 -o=jsonpath='{.items[0].metadata.name}') \
 cat /etc/registry/config.yml

version: 0.1
log:
 level: debug
http:
 addr: :5000
storage:
 delete:
 enabled: true
 cache:
 blobdescriptor: inmemory
 gcs:
 bucket: ocp-registry

CHAPTER 23. CONFIGURING FOR GOOGLE COMPUTE ENGINE

389

Or you can view the secret:

You can verify that any image push was successful by viewing Storage in the GCP console, then
clicking Browser and selecting the bucket, or by running the gsutil command:

auth:
 openshift:
 realm: openshift
middleware:
 registry:
 - name: openshift
 repository:
 - name: openshift
 options:
 pullthrough: True
 acceptschema2: True
 enforcequota: False
 storage:
 - name: openshift

$ oc get secret registry-config -o jsonpath='{.data.config\.yml}' | base64 -d
version: 0.1
log:
 level: debug
http:
 addr: :5000
storage:
 delete:
 enabled: true
 cache:
 blobdescriptor: inmemory
 gcs:
 bucket: ocp-registry
auth:
 openshift:
 realm: openshift
middleware:
 registry:
 - name: openshift
 repository:
 - name: openshift
 options:
 pullthrough: True
 acceptschema2: True
 enforcequota: False
 storage:
 - name: openshift

$ gsutil ls gs://ocp-registry/
gs://ocp-registry/docker/

$ gsutil du gs://ocp-registry/
7660385 gs://ocp-
registry/docker/registry/v2/blobs/sha256/03/033565e6892e5cc6dd03187d00a4575720a928db1
11274e0fbf31b410a093c10/data

OpenShift Container Platform 3.11 Configuring Clusters

390

If using an emptyDir volume, the /registry mountpoint looks similar to the following:

23.2.4. Configuring OpenShift Container Platform to use GCP storage

OpenShift Container Platform can use GCP storage using persistent volumes mechanisms. OpenShift
Container Platform creates the disk in GCP and attaches the disk to the correct instance.

GCP disks are ReadWriteOnce access mode, which means the volume can be mounted as read-write by
a single node. See the Access modes section of the Architecture guide for more information.

Procedure

1. OpenShift Container Platform creates the following storageclass when you use the gce-pd
provisioner and if you use the openshift_cloudprovider_kind=gce and openshift_gcp_*
variables in the Ansible inventory. Otherwise, if you configured OpenShift Container Platform
without using Ansible and the storageclass has not been created at installation time, you can
create it manually:

After you request a PV and using the storageclass shown in the previous step, OpenShift
Container Platform creates disks in the GCP infrastructure. To verify that the disks were
created:

7660385 gs://ocp-
registry/docker/registry/v2/blobs/sha256/03/033565e6892e5cc6dd03187d00a4575720a928db1
11274e0fbf31b410a093c10/
7660385 gs://ocp-registry/docker/registry/v2/blobs/sha256/03/
...

$ oc exec \
 $(oc get pod -l deploymentconfig=docker-registry \
 -o=jsonpath='{.items[0].metadata.name}') -i -t -- df -h /registry
Filesystem Size Used Avail Use% Mounted on
/dev/sdc 30G 226M 30G 1% /registry

$ oc exec \
 $(oc get pod -l deploymentconfig=docker-registry \
 -o=jsonpath='{.items[0].metadata.name}') -i -t -- ls -l /registry
total 0
drwxr-sr-x. 3 1000000000 1000000000 22 Jun 19 12:24 docker

$ oc get --export storageclass standard -o yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 annotations:
 storageclass.kubernetes.io/is-default-class: "true"
 creationTimestamp: null
 name: standard
 selfLink: /apis/storage.k8s.io/v1/storageclasses/standard
parameters:
 type: pd-standard
provisioner: kubernetes.io/gce-pd
reclaimPolicy: Delete

CHAPTER 23. CONFIGURING FOR GOOGLE COMPUTE ENGINE

391

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#pv-access-modes

23.2.5. About Red Hat OpenShift Container Storage

Red Hat OpenShift Container Storage (RHOCS) is a provider of agnostic persistent storage for
OpenShift Container Platform either in-house or in hybrid clouds. As a Red Hat storage solution,
RHOCS is completely integrated with OpenShift Container Platform for deployment, management, and
monitoring regardless if it is installed on OpenShift Container Platform (converged) or with OpenShift
Container Platform (independent). OpenShift Container Storage is not limited to a single availability
zone or node, which makes it likely to survive an outage. You can find complete instructions for using
RHOCS in the RHOCS3.11 Deployment Guide.

23.3. USING THE GCP EXTERNAL LOAD BALANCER AS A SERVICE

You can configure OpenShift Container Platform to use the GCP load balancer by exposing services
externally using a LoadBalancer service. OpenShift Container Platform creates the load balancer in
GCP and creates the necessary firewall rules.

Procedure

1. Create a new application:

2. Expose the load balancer service:

This command creates a LoadBalancer service similar to the following example:

$ gcloud compute disks list | grep kubernetes
kubernetes-dynamic-pvc-10ded514-7625-11e8-8c52-42010af00003 us-west1-b 10 pd-
standard READY

$ oc new-app openshift/hello-openshift

$ oc expose dc hello-openshift --name='hello-openshift-external' --type='LoadBalancer'

apiVersion: v1
kind: Service
metadata:
 labels:
 app: hello-openshift
 name: hello-openshift-external
spec:
 externalTrafficPolicy: Cluster
 ports:
 - name: port-1
 nodePort: 30714
 port: 8080
 protocol: TCP
 targetPort: 8080
 - name: port-2
 nodePort: 30122
 port: 8888
 protocol: TCP
 targetPort: 8888
 selector:
 app: hello-openshift

OpenShift Container Platform 3.11 Configuring Clusters

392

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/deployment_guide/index

3. To verify that the service has been created:

The LoadBalancer type and External IP values indicate that the service is using GCP load
balancers to expose the application.

OpenShift Container Platform creates the required objects in the GCP infrastructure such as:

Firewall rules:

NOTE

These firewall rules are applied to instances tagged with
<openshift_gcp_prefix>ocp. For example, if the value of the
openshift_gcp_prefix parameter is set to mycluster, you must tag the nodes
with myclusterocp. See Adding and Removing Network Tags for more
information on how to add network tags to Compute Engine VM instances.

Health checks:

A load balancer:

To verify that the load balancer is properly configured, run the following command from an external
host:

 deploymentconfig: hello-openshift
 sessionAffinity: None
 type: LoadBalancer

$ oc get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
hello-openshift ClusterIP 172.30.62.10 <none> 8080/TCP,8888/TCP
20m
hello-openshift-external LoadBalancer 172.30.147.214 35.230.97.224
8080:31521/TCP,8888:30843/TCP 19m

$ gcloud compute firewall-rules list | grep k8s
k8s-4612931a3a47c204-node-http-hc my-net INGRESS 1000 tcp:10256
k8s-fw-a1a8afaa7762811e88c5242010af0000 my-net INGRESS 1000
tcp:8080,tcp:8888

$ gcloud compute http-health-checks list | grep k8s
k8s-4612931a3a47c204-node 10256 /healthz

$ gcloud compute target-pools list | grep k8s
a1a8afaa7762811e88c5242010af0000 us-west1 NONE k8s-
4612931a3a47c204-node
$ gcloud compute forwarding-rules list | grep a1a8afaa7762811e88c5242010af0000
a1a8afaa7762811e88c5242010af0000 us-west1 35.230.97.224 TCP us-
west1/targetPools/a1a8afaa7762811e88c5242010af0000

$ curl 35.230.97.224:8080
Hello OpenShift!

CHAPTER 23. CONFIGURING FOR GOOGLE COMPUTE ENGINE

393

https://cloud.google.com/vpc/docs/add-remove-network-tags

1

CHAPTER 24. CONFIGURING FOR AZURE
You can configure OpenShift Container Platform to use Microsoft Azure load balancers and disks for
persistent application data.

24.1. BEFORE YOU BEGIN

24.1.1. Configuring authorization for Microsoft Azure

Azure roles

Configuring Microsoft Azure for OpenShift Container Platform requires the following Microsoft Azure
role:

Contributor To create and manage all types of Microsoft Azure resources.

See the Classic subscription administrator roles vs. Azure RBAC roles vs. Azure AD administrator roles
documentation for more information.

Permissions

Configuring Microsoft Azure for OpenShift Container Platform requires a service principal, which allows
the creation and management of Kubernetes service load balancers and disks for persistent storage.
The service principal values are defined at installation time and deployed to the Azure configuration file,
located at /etc/origin/cloudprovider/azure.conf on OpenShift Container Platform master and node
hosts.

Procedure

1. Using the Azure CLI, obtain the account subscription ID:

az account list
[
{
 "cloudName": "AzureCloud",
 "id": "<subscription>", 1
 "isDefault": false,
 "name": "Pay-As-You-Go",
 "state": "Enabled",
 "tenantId": "<tenant-id>",
 "user": {
 "name": "admin@example.com",
 "type": "user"
 }
]

The subscription ID to use to create the new permissions.

2. Create the service principal with the Microsoft Azure role of contributor and with the scope of
the Microsoft Azure subscription and the resource group. Record the output of these values to
be used when defining the inventory. Use the <subscription> value from the previous step in
place of the value below:

OpenShift Container Platform 3.11 Configuring Clusters

394

https://azure.microsoft.com/en-us/services/storage/disks/
https://docs.microsoft.com/en-us/azure/role-based-access-control/rbac-and-directory-admin-roles

az ad sp create-for-rbac --name openshiftcloudprovider \
 --password <secret> --role contributor \
 --scopes /subscriptions/<subscription>/resourceGroups/<resource-group>

Retrying role assignment creation: 1/36
Retrying role assignment creation: 2/36
{
 "appId": "<app-id>",
 "displayName": "ocpcloudprovider",
 "name": "http://ocpcloudprovider",
 "password": "<secret>",
 "tenant": "<tenant-id>"
}

24.1.2. Configuring Microsoft Azure objects

Integrating OpenShift Container Platform with Microsoft Azure requires the following components or
services to create a highly-available and full-featured environment.

IMPORTANT

To ensure that the appropriate amount of instances can be launched, request an increase
in CPU quota from Microsoft before creating instances.

A resource group

Resource groups contain all Microsoft Azure components for a deployment, including networking,
load balancers, virtual machines, and DNS. Quotas and permissions can be applied to resources
groups to control and manage resources deployed on Microsoft Azure. Resource groups are created
and defined per geographic region. All resources created for an OpenShift Container Platform
environment should be within the same geographic region and within the same resource group.

See Azure Resource Manager overview for more information.

Azure Virtual Networks

Azure Virtual Networks are used to isolate Azure cloud networks from one another. Instances and
load balancers use the virtual network to allow communication with each other and to and from the
Internet. The virtual network allows for the creation of one or many subnets to be used by
components within a resource group. You can also connect virtual networks to various VPN services,
allowing communication with on-premise services.

See What is Azure Virtual Network? for more information.

Azure DNS

Azure offers a managed DNS service that provides internal and Internet-accessible host name and
load balancer resolution. The reference environment uses a DNS zone to host three DNS A records
to allow for mapping of public IPs to OpenShift Container Platform resources and a bastion.

See What is Azure DNS? for more information.

Load balancing

Azure load balancers allow network connectivity for scaling and high availability of services running
on virtual machines within the Azure environment.

CHAPTER 24. CONFIGURING FOR AZURE

395

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/en-us/azure/dns/dns-overview

See What is Azure Load Balancer?

Storage Account

Storage Accounts allow for resources, such as virtual machines, to access the different type of
storage components offered by Microsoft Azure. During installation, the storage account defines the
location of the object-based blob storage used for the OpenShift Container Platform registry.

See Introduction to Azure Storage for more information, or the Configuring the OpenShift Container
Platform registry for Microsoft Azure section for steps to create the storage account for the registry.

Service Principal

Azure offers the ability to create service accounts, which access, manage, or create components
within Azure. The service account grants API access to specific services. For example, a service
principal allows Kubernetes or OpenShift Container Platform instances to request persistent storage
and load balancers. Service principals allow for granular access to be given to instances or users for
specific functions.

See Application and service principal objects in Azure Active Directory for more information.

Availability Sets

Availability sets ensure that the deployed VMs are distributed across multiple isolated hardware
nodes in a cluster. The distribution helps to ensure that when maintenance on the cloud provider
hardware occurs, instances will not all run on one specific node.

You should segment instances to different availability sets based on their role. For example, one
availability set containing three master hosts, one availability set containing infrastructure hosts, and
one availability set containing application hosts. This allows for segmentation and the ability to use
external load balancers within OpenShift Container Platform.

See Manage the availability of Linux virtual machines for more information.

Network Security Groups

Network Security Groups (NSGs) provide a list of rules to either allow or deny traffic to resources
deployed within an Azure Virtual Network. NSGs use numeric priority values and rules to define what
items are allowed to communicate with each other. You can place restrictions on where
communication is allowed to occur, such as within only the virtual network, from load balancers, or
from everywhere.

Priority values allow for administrators to grant granular values on the order in which port communication
is allowed or not allowed to occur.

See Plan virtual networks for more information.

Instances sizes

A successful OpenShift Container Platform environment requires some minimum hardware
requirements.

See the Minimum Hadware Requirements section in the OpenShift Container Platform documentation
or Sizes for Cloud Services for more information.

24.2. THE AZURE CONFIGURATION FILE

Configuring OpenShift Container Platform for Azure requires the /etc/azure/azure.conf file, on each
node host.

OpenShift Container Platform 3.11 Configuring Clusters

396

https://docs.microsoft.com/en-us/azure/load-balancer/load-balancer-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-introduction
https://docs.microsoft.com/en-us/azure/active-directory/develop/app-objects-and-service-principals
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/manage-availability
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-nsg
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#hardware
https://docs.microsoft.com/en-us/azure/cloud-services/cloud-services-sizes-specs

1

2

3

4

5

6

7

8

9

10

11

If the file does not exist, you can create it.

tenantId: <> 1
subscriptionId: <> 2
aadClientId: <> 3
aadClientSecret: <> 4
aadTenantId: <> 5
resourceGroup: <> 6
cloud: <> 7
location: <> 8
vnetName: <> 9
securityGroupName: <> 10
primaryAvailabilitySetName: <> 11

The AAD tenant ID for the subscription that the cluster is deployed in.

The Azure subscription ID that the cluster is deployed in.

The client ID for an AAD application with RBAC access to talk to Azure RM APIs.

The client secret for an AAD application with RBAC access to talk to Azure RM APIs.

Ensure this is the same as tenant ID (optional).

The Azure Resource Group name that the Azure VM belongs to.

The specific cloud region. For example, AzurePublicCloud.

The compact style Azure region. For example, southeastasia (optional).

Virtual network containing instances and used when creating load balancers.

Security group name associated with instances and load balancers.

Availability set to use when creating resources such as load balancers (optional).

IMPORTANT

The NIC used for accessing the instance must have an internal-dns-name set or the
node will not be able to rejoin the cluster, display build logs to the console, and will cause
oc rsh to not work correctly.

24.3. EXAMPLE INVENTORY FOR OPENSHIFT CONTAINER
PLATFORM ON MICROSOFT AZURE

The example inventory below assumes that the following items have been created:

A resource group

An Azure virtual network

One or more network security groups that contain the required OpenShift Container Platform
ports

CHAPTER 24. CONFIGURING FOR AZURE

397

A storage account

A service principal

Two load balancers

Two or more DNS entries for the routers and for the OpenShift Container Platform web
console

Three Availability Sets

Three master instances

Three infrastructure instances

One or more application instances

The inventory below uses the default storageclass to create persistent volumes to be used by the
metrics, logging, and service catalog components managed by a service principal. The registry uses
Microsoft Azure blob storage.

IMPORTANT

If the Microsoft Azure instances use managed disks, provide the following variable in the
inventory:

openshift_storageclass_parameters={'kind': 'managed', 'storageaccounttype':
'Premium_LRS'}

or

openshift_storageclass_parameters={'kind': 'managed', 'storageaccounttype':
'Standard_LRS'}

This ensures the storageclass creates the correct disk type for PVs as it relates to the
instances deployed. If unmanaged disks are used, the storageclass will use the shared
parameter allowing for unmanged disks to be created for PVs.

[OSEv3:children]
masters
etcd
nodes

[OSEv3:vars]
ansible_ssh_user=cloud-user
ansible_become=true
openshift_cloudprovider_kind=azure

#cloudprovider
openshift_cloudprovider_kind=azure
openshift_cloudprovider_azure_client_id=v9c97ead-1v7E-4175-93e3-623211bed834
openshift_cloudprovider_azure_client_secret=s3r3tR3gistryN0special
openshift_cloudprovider_azure_tenant_id=422r3f91-21fe-4esb-vad5-d96dfeooee5d
openshift_cloudprovider_azure_subscription_id=6003c1c9-d10d-4366-86cc-e3ddddcooe2d
openshift_cloudprovider_azure_resource_group=openshift
openshift_cloudprovider_azure_location=eastus

OpenShift Container Platform 3.11 Configuring Clusters

398

#endcloudprovider

oreg_auth_user=service_account 1
oreg_auth_password=service_account_token 2
openshift_master_api_port=443
openshift_master_console_port=443
openshift_hosted_router_replicas=3
openshift_hosted_registry_replicas=1
openshift_master_cluster_method=native
openshift_master_cluster_hostname=openshift-master.example.com
openshift_master_cluster_public_hostname=openshift-master.example.com
openshift_master_default_subdomain=apps.openshift.example.com
openshift_deployment_type=openshift-enterprise
openshift_master_identity_providers=[{'name': 'idm', 'challenge': 'true', 'login': 'true', 'kind':
'LDAPPasswordIdentityProvider', 'attributes': {'id': ['dn'], 'email': ['mail'], 'name': ['cn'],
'preferredUsername': ['uid']}, 'bindDN': 'uid=admin,cn=users,cn=accounts,dc=example,dc=com',
'bindPassword': 'ldapadmin', 'ca': '/etc/origin/master/ca.crt', 'insecure': 'false', 'url':
'ldap://ldap.example.com/cn=users,cn=accounts,dc=example,dc=com?uid?sub?(memberOf=cn=ose-
user,cn=groups,cn=accounts,dc=example,dc=com)'}]
networkPluginName=redhat/ovs-networkpolicy
openshift_examples_modify_imagestreams=true

Storage Class change to use managed storage
openshift_storageclass_parameters={'kind': 'managed', 'storageaccounttype': 'Standard_LRS'}

service catalog
openshift_enable_service_catalog=true
openshift_hosted_etcd_storage_kind=dynamic
openshift_hosted_etcd_storage_volume_name=etcd-vol
openshift_hosted_etcd_storage_access_modes=["ReadWriteOnce"]
openshift_hosted_etcd_storage_volume_size=SC_STORAGE
openshift_hosted_etcd_storage_labels={'storage': 'etcd'}

metrics
openshift_metrics_install_metrics=true
openshift_metrics_cassandra_storage_type=dynamic
openshift_metrics_storage_volume_size=20Gi
openshift_metrics_hawkular_nodeselector={"node-role.kubernetes.io/infra": "true"}
openshift_metrics_cassandra_nodeselector={"node-role.kubernetes.io/infra": "true"}
openshift_metrics_heapster_nodeselector={"node-role.kubernetes.io/infra": "true"}

logging
openshift_logging_install_logging=true
openshift_logging_es_pvc_dynamic=true
openshift_logging_storage_volume_size=50Gi
openshift_logging_kibana_nodeselector={"node-role.kubernetes.io/infra": "true"}
openshift_logging_curator_nodeselector={"node-role.kubernetes.io/infra": "true"}
openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra": "true"}

Setup azure blob registry storage
openshift_hosted_registry_storage_kind=object
openshift_hosted_registry_storage_azure_blob_accountkey=uZdkVlbca6xzwBqK8VDz15/loLUoc8I6cPfP
31ZS+QOSxL6ylWT6CLrcadSqvtNTMgztxH4CGjYfVnRNUhvMiA==
openshift_hosted_registry_storage_provider=azure_blob
openshift_hosted_registry_storage_azure_blob_accountname=registry

CHAPTER 24. CONFIGURING FOR AZURE

399

1 2

1

openshift_hosted_registry_storage_azure_blob_container=registry
openshift_hosted_registry_storage_azure_blob_realm=core.windows.net

[masters]
ocp-master-1
ocp-master-2
ocp-master-3

[etcd]
ocp-master-1
ocp-master-2
ocp-master-3

[nodes]
ocp-master-1 openshift_node_group_name="node-config-master"
ocp-master-2 openshift_node_group_name="node-config-master"
ocp-master-3 openshift_node_group_name="node-config-master"
ocp-infra-1 openshift_node_group_name="node-config-infra"
ocp-infra-2 openshift_node_group_name="node-config-infra"
ocp-infra-3 openshift_node_group_name="node-config-infra"
ocp-app-1 openshift_node_group_name="node-config-compute"

If you use a container registry that requires authentication, such as the default container image
registry, specify the credentials for that account. See Accessing and Configuring the Red Hat
Registry.

24.4. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR
MICROSOFT AZURE

You can configure OpenShift Container Platform for Microsoft Azure in two ways:

Using Ansible

Manually by modifying the master-config.yaml file

24.4.1. Configuring OpenShift Container Platform for Azure by using Ansible

You can configure OpenShift Container Platform for Azure at installation time.

Add the following to the Ansible inventory file located at /etc/ansible/hosts by default to configure
your OpenShift Container Platform environment for Microsoft Azure:

[OSEv3:vars]
openshift_cloudprovider_kind=azure
openshift_cloudprovider_azure_client_id=<app_ID> 1
openshift_cloudprovider_azure_client_secret=<secret> 2
openshift_cloudprovider_azure_tenant_id=<tenant_ID> 3
openshift_cloudprovider_azure_subscription_id=<subscription> 4
openshift_cloudprovider_azure_resource_group=<resource_group> 5
openshift_cloudprovider_azure_location=<location> 6

The app ID value for the service principal.

OpenShift Container Platform 3.11 Configuring Clusters

400

2

3

4

5

6

The secret containing the password for the service principal.

The tenant in which the service principal exists.

The subscription used by the service principal.

The resource group where the service account exists.

The Microsoft Azure location where the resource group exists.

Installing with Ansible also creates and configures the following files to fit your Microsoft Azure
environment:

/etc/origin/cloudprovider/azure.conf

/etc/origin/master/master-config.yaml

/etc/origin/node/node-config.yaml

24.4.2. Manually configuring OpenShift Container Platform for Microsoft Azure

24.4.2.1. Manually configuring master hosts for Microsoft Azure

Perform the following on all master hosts.

Procedure

1. Edit the master configuration file located at /etc/origin/master/master-config.yaml by default
on all masters and update the contents of the apiServerArguments and controllerArguments
sections:

IMPORTANT

When triggering a containerized installation, only the /etc/origin and
/var/lib/origin directories are mounted to the master and node container.
Therefore, ensure master-config.yaml is in the /etc/origin/master directory
instead of /etc/.

2. When you configure OpenShift Container Platform for Microsoft Azure using Ansible, the
/etc/origin/cloudprovider/azure.conf file is created automatically. Because you are manually
configuring OpenShift Container Platform for Microsoft Azure, you must create the file on all

kubernetesMasterConfig:
 ...
 apiServerArguments:
 cloud-provider:
 - "azure"
 cloud-config:
 - "/etc/origin/cloudprovider/azure.conf"
 controllerArguments:
 cloud-provider:
 - "azure"
 cloud-config:
 - "/etc/origin/cloudprovider/azure.conf"

CHAPTER 24. CONFIGURING FOR AZURE

401

1

2

3

4

5

6

7

node instances and include the following:

tenantId: <tenant_ID> 1
subscriptionId: <subscription> 2
aadClientId: <app_ID> 3
aadClientSecret: <secret> 4
aadTenantId: <tenant_ID> 5
resourceGroup: <resource_group> 6
location: <location> 7

The tenant in which the service principal exists.

The subscription used by the service principal.

The appID value for the service principal.

The secret containing the password for the service principal.

The tenant in which the service principal exists.

The resource group where the service account exists.

The Microsoft Azure location where the resource group exists.

3. Restart the OpenShift Container Platform master services:

24.4.2.2. Manually configuring node hosts for Microsoft Azure

Perform the following on all node hosts.

Procedure

1. Edit the appropriate node configuration map and update the contents of the
kubeletArguments section:

IMPORTANT

The NIC used for accessing the instance must have an internal DNS name set or
the node will not be able to rejoin the cluster, display build logs to the console,
and will cause oc rsh to not work correctly.

2. Restart the OpenShift Container Platform services on all nodes:

master-restart api
master-restart controllers

kubeletArguments:
 cloud-provider:
 - "azure"
 cloud-config:
 - "/etc/origin/cloudprovider/azure.conf"

OpenShift Container Platform 3.11 Configuring Clusters

402

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#modifying-nodes

24.4.3. Configuring the OpenShift Container Platform registry for Microsoft Azure

Microsoft Azure provides object cloud storage that OpenShift Container Platform can use to store
container images using the OpenShift Container Platform container image registry.

For more information, see Cloud Storage in the Azure documentation .

You can configure the registry either using Ansible or manually by configuring the registry configuration
file.

Prerequisites

You must create a storage account to host the registry images before installation. The following
command creates a storage account which is used during installation for image storage:

You can use Microsoft Azure blob storage for storing container images. The OpenShift Container
Platform registry uses blob storage to allow for the registry to grow dynamically in size without the need
for intervention from an administrator.

1. Create an Azure storage account:

az storage account create
--name <account_name> \
--resource-group <resource_group> \
--location <location> \
--sku Standard_LRS

This creates an account key. To view the account key:

az storage account keys list \
 --account-name <account-name> \
 --resource-group <resource-group> \
 --output table

KeyName Permissions Value
key1 Full <account-key>
key2 Full <extra-account-key>

Only one account key value is required for the configuration of the OpenShift Container Platform
registry.

Option 1: Configuring the OpenShift Container Platform registry for Azure using Ansible

Procedure

1. Configure the Ansible inventory for the registry to use the storage account:

[OSEv3:vars]
Azure Registry Configuration
openshift_hosted_registry_replicas=1 1
openshift_hosted_registry_storage_kind=object
openshift_hosted_registry_storage_azure_blob_accountkey=<account_key> 2

systemctl restart atomic-openshift-node

CHAPTER 24. CONFIGURING FOR AZURE

403

https://azure.microsoft.com/en-us/services/storage/blobs/

1

2

3

4

1

2

3

4

openshift_hosted_registry_storage_provider=azure_blob
openshift_hosted_registry_storage_azure_blob_accountname=<account_name> 3
openshift_hosted_registry_storage_azure_blob_container=<registry> 4
openshift_hosted_registry_storage_azure_blob_realm=core.windows.net

The number of replicas to configure.

The account key associated with the <account-name>.

The storage account name.

Directory used to store the data. registry by default

Option 2: Manually configuring OpenShift Container Platform registry for Microsoft Azure

To use Microsoft Azure object storage, edit the registry’s configuration file and mount to the registry
pod.

Procedure

1. Export the current config.yml:

2. Create a new configuration file from the old config.yml:

3. Edit the file to include the Azure parameters:

Replace with the storage account name.

The account key associated to the <account-name>.

Directory used to store the data. registry by default

Storage realm core.windows.net by default

4. Delete the registry-config secret:

$ oc get secret registry-config \
 -o jsonpath='{.data.config\.yml}' -n default | base64 -d \
 >> config.yml.old

$ cp config.yml.old config.yml

storage:
 delete:
 enabled: true
 cache:
 blobdescriptor: inmemory
 azure:
 accountname: <account-name> 1
 accountkey: <account-key> 2
 container: registry 3
 realm: core.windows.net 4

OpenShift Container Platform 3.11 Configuring Clusters

404

1

5. Recreate the secret to reference the updated configuration file:

6. Redeploy the registry to read the updated configuration:

Verifying the registry is using blob object storage

To verify if the registry is using Microsoft Azure blob storage:

Procedure

1. After a successful registry deployment, the registry deploymentconfig will always show that
the registry is using an emptydir instead of Microsoft Azure blob storage:

The temporary directory that shares a pod’s lifetime.

2. Check if the /registry mount point is empty. This is the volume Microsoft Azure storage will use:

3. If it is empty, it is because the Microsoft Azure blob configuration is performed in the registry-
config secret:

$ oc delete secret registry-config -n default

$ oc create secret generic registry-config \
 --from-file=config.yml -n default

$ oc rollout latest docker-registry -n default

$ oc describe dc docker-registry -n default
...
Mounts:
 ...
 /registry from registry-storage (rw)
Volumes:
registry-storage:
Type: EmptyDir 1
...

$ oc exec \
 $(oc get pod -l deploymentconfig=docker-registry \
 -o=jsonpath='{.items[0].metadata.name}') -i -t -- ls -l /registry
total 0

$ oc describe secret registry-config
Name: registry-config
Namespace: default
Labels: <none>
Annotations: <none>

Type: Opaque

Data
====
config.yml: 398 bytes

CHAPTER 24. CONFIGURING FOR AZURE

405

4. The installer creates a config.yml file with the desired configuration using the extended registry
capabilities as seen in Storage in the installation documentation . To view the configuration file,
including the storage section where the storage bucket configuration is stored:

Or you can view the secret:

$ oc get secret registry-config -o jsonpath='{.data.config\.yml}' | base64 -d
version: 0.1
log:
 level: debug
http:
 addr: :5000
storage:
 delete:
 enabled: true
 cache:
 blobdescriptor: inmemory
 azure:
 accountname: registry

$ oc exec \
 $(oc get pod -l deploymentconfig=docker-registry \
 -o=jsonpath='{.items[0].metadata.name}') \
 cat /etc/registry/config.yml

 version: 0.1
 log:
 level: debug
 http:
 addr: :5000
 storage:
 delete:
 enabled: true
 cache:
 blobdescriptor: inmemory
 azure:
 accountname: registry
 accountkey:
uZekVBJBa6xzwAqK8EDz15/hoHUoc8I6cPfP31ZS+QOSxLfo7WT7CLrVPKaqvtNTMgztxH7C
GjYfpFRNUhvMiA==
 container: registry
 realm: core.windows.net
 auth:
 openshift:
 realm: openshift
 middleware:
 registry:
 - name: openshift
 repository:
 - name: openshift
 options:
 pullthrough: True
 acceptschema2: True
 enforcequota: False
 storage:
 - name: openshift

OpenShift Container Platform 3.11 Configuring Clusters

406

 accountkey:
uZekVBJBa6xzwAqK8EDz15/hoHUoc8I6cPfP31ZS+QOSxLfo7WT7CLrVPKaqvtNTMgztxH7C
GjYfpFRNUhvMiA==
 container: registry
 realm: core.windows.net
auth:
 openshift:
 realm: openshift
middleware:
 registry:
 - name: openshift
 repository:
 - name: openshift
 options:
 pullthrough: True
 acceptschema2: True
 enforcequota: False
 storage:
 - name: openshift

If using an emptyDir volume, the /registry mountpoint looks like the following:

$ oc exec \
 $(oc get pod -l deploymentconfig=docker-registry \
 -o=jsonpath='{.items[0].metadata.name}') -i -t -- df -h /registry
Filesystem Size Used Avail Use% Mounted on
/dev/sdc 30G 226M 30G 1% /registry

$ oc exec \
 $(oc get pod -l deploymentconfig=docker-registry \
 -o=jsonpath='{.items[0].metadata.name}') -i -t -- ls -l /registry
total 0
drwxr-sr-x. 3 1000000000 1000000000 22 Jun 19 12:24 docker

24.4.4. Configuring OpenShift Container Platform to use Microsoft Azure storage

OpenShift Container Platform can use Microsoft Azure storage using persistent volumes mechanisms.
OpenShift Container Platform creates the disk in the resource group and attaches the disk to the
correct instance.

Procedure

1. The following storageclass is created when you configure the Azure cloud provider at
installation using the openshift_cloudprovider_kind=azure and
openshift_cloud_provider_azure variables in the Ansible inventory:

$ oc get --export storageclass azure-standard -o yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 annotations:
 storageclass.kubernetes.io/is-default-class: "true"
 creationTimestamp: null
 name: azure-standard

CHAPTER 24. CONFIGURING FOR AZURE

407

If you did not use Ansible to enable OpenShift Container Platform and Microsoft Azure
integration, you can create the storageclass manually. See the Dynamic provisioning and
creating storage classes section for more information.

2. Currently, the default storageclass kind is shared which means that the Microsoft Azure
instances must use unmanaged disks. You can optionally modify this by allowing instances to
use managed disks by providing the openshift_storageclass_parameters={'kind': 'Managed',
'storageaccounttype': 'Premium_LRS'} or openshift_storageclass_parameters={'kind':
'Managed', 'storageaccounttype': 'Standard_LRS'} variables in the Ansible inventory file at
installation.

NOTE

Microsoft Azure disks are ReadWriteOnce access mode, which means the volume can be
mounted as read-write by a single node. See the Access modes section of the
Architecture guide for more information.

24.4.5. About Red Hat OpenShift Container Storage

Red Hat OpenShift Container Storage (RHOCS) is a provider of agnostic persistent storage for
OpenShift Container Platform either in-house or in hybrid clouds. As a Red Hat storage solution,
RHOCS is completely integrated with OpenShift Container Platform for deployment, management, and
monitoring regardless if it is installed on OpenShift Container Platform (converged) or with OpenShift
Container Platform (independent). OpenShift Container Storage is not limited to a single availability
zone or node, which makes it likely to survive an outage. You can find complete instructions for using
RHOCS in the RHOCS3.11 Deployment Guide.

24.5. USING THE MICROSOFT AZURE EXTERNAL LOAD BALANCER AS
A SERVICE

OpenShift Container Platform can leverage the Microsoft Azure load balancer by exposing services
externally using a LoadBalancer service. OpenShift Container Platform creates the load balancer in
Microsoft Azure and creates the proper firewall rules.

IMPORTANT

Currently, a bug causes extra variables to be included in the Microsoft Azure
infrastructure when using it as a cloud provider and when using it as an external load
balancer. See the following for more information:

https://bugzilla.redhat.com/show_bug.cgi?id=1613546

Prerequisites

Ensure the the Azure configuration file located at /etc/origin/cloudprovider/azure.conf is correctly
configured with the appropriate objects. See the Manually configuring OpenShift Container Platform
for Microsoft Azure section for an example /etc/origin/cloudprovider/azure.conf file.

parameters:
 kind: Shared
 storageaccounttype: Standard_LRS
provisioner: kubernetes.io/azure-disk
reclaimPolicy: Delete
volumeBindingMode: Immediate

OpenShift Container Platform 3.11 Configuring Clusters

408

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#pv-access-modes
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/deployment_guide/index
https://bugzilla.redhat.com/show_bug.cgi?id=1613546

Once the values are added, restart the OpenShift Container Platform services on all hosts:

24.5.1. Deploying a sample application using a load balancer

Procedure

1. Create a new application:

2. Expose the load balancer service:

$ oc expose dc hello-openshift --name='hello-openshift-external' --type='LoadBalancer'

This creates a Loadbalancer service similar to the following:

3. Verify that the service has been created:

$ oc get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
hello-openshift ClusterIP 172.30.223.255 <none> 8080/TCP,8888/TCP

systemctl restart atomic-openshift-node
master-restart api
master-restart controllers

$ oc new-app openshift/hello-openshift

apiVersion: v1
kind: Service
metadata:
 labels:
 app: hello-openshift
 name: hello-openshift-external
spec:
 externalTrafficPolicy: Cluster
 ports:
 - name: port-1
 nodePort: 30714
 port: 8080
 protocol: TCP
 targetPort: 8080
 - name: port-2
 nodePort: 30122
 port: 8888
 protocol: TCP
 targetPort: 8888
 selector:
 app: hello-openshift
 deploymentconfig: hello-openshift
 sessionAffinity: None
 type: LoadBalancer

CHAPTER 24. CONFIGURING FOR AZURE

409

1

1m
hello-openshift-external LoadBalancer 172.30.99.54 40.121.42.180
8080:30714/TCP,8888:30122/TCP 4m

The LoadBalancer type and External-IP fields indicate that the service is using Microsoft
Azure load balancers to expose the application.

This creates the following required objects in the Azure infrastructure:

A load balancer:

To verify that the load balancer is properly configured, run the following from an external host:

Replace with the values from the EXTERNAL-IP verification step above as well as the port number.

az network lb list -o table
Location Name ProvisioningState ResourceGroup ResourceGuid
---------- ----------- ------------------- --------------- ------------------------------------
eastus kubernetes Succeeded refarch-azr 30ec1980-b7f5-407e-aa4f-
e570f06f168d
eastus OcpMasterLB Succeeded refarch-azr acb537b2-8a1a-45d2-aae1-
ea9eabfaea4a
eastus OcpRouterLB Succeeded refarch-azr 39087c4c-a5dc-457e-a5e6-
b25359244422

$ curl 40.121.42.180:8080 1
Hello OpenShift!

OpenShift Container Platform 3.11 Configuring Clusters

410

CHAPTER 25. CONFIGURING FOR VMWARE VSPHERE
You can configure OpenShift Container Platform to use VMware vSphere VMDKs as to back
PersistentVolumes. This configuration can include using VMware vSphere VMDKs as persistent storage
for application data.

The vSphere Cloud Provider allows using vSphere-managed storage in OpenShift Container Platform
and supports every storage primitive that Kubernetes uses:

PersistentVolume (PV)

PersistentVolumesClaim (PVC)

StorageClass

PersistentVolumes requested by stateful containerized applications can be provisioned on VMware
vSAN, VVOL, VMFS, or NFS datastores.

Kubernetes PVs are defined in Pod specifications. They can reference VMDK files directly if you use
Static Provisioning or PVCs when you use Dynamic Provisioning, which is preferred.

The latest updates to the vSphere Cloud Provider are in vSphere Storage for Kubernetes .

25.1. BEFORE YOU BEGIN

25.1.1. Requirements

VMware vSphere

IMPORTANT

Standalone ESXi is not supported.

vSphere version 6.0.x minimum recommended version 6.7 U1b is required if you intend to
support a complete VMware Validate Design.

vSAN, VMFS and NFS supported.

vSAN support is limited to one cluster in one vCenter.

NOTE

OpenShift Container Platform 3.11 is supported and deploys on vSphere 7 clusters. If you
use the vSphere in-tree storage driver, vSAN, VMFS and NFS storage options are also
supported.

Prerequisites

You must install the VMware Tools on each Node VM. See Installing VMware tools for more information.

You can use the open source VMware govmomi CLI tool for additional configuration and
troubleshooting. For example, see the following govc CLI configuration:

 export GOVC_URL='vCenter IP OR FQDN'

CHAPTER 25. CONFIGURING FOR VMWARE VSPHERE

411

https://www.vmware.com/au/products/vsphere.html
https://vmware.github.io/vsphere-storage-for-kubernetes/documentation/index.html
https://docs.vmware.com/en/VMware-Validated-Design/5.0.1/rn/vmware-validated-design-501-release-notes.html
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.html.hostclient.doc/GUID-ED3ECA21-5763-4919-8947-A819A17980FB.html

 export GOVC_USERNAME='vCenter User'
 export GOVC_PASSWORD='vCenter Password'
 export GOVC_INSECURE=1

25.1.1.1. Permissions

Create and assign roles to the vSphere Cloud Provider. A vCenter user with the required set of
privileges is required.

In general, the vSphere user designated to the vSphere Cloud Provider must have the following
permissions:

Read permission on the parent entities of the node VMs such as folder, host, datacenter,
datastore folder, datastore cluster, and so on.

VirtualMachine.Inventory.Create/Delete permission on the vsphere.conf defined resource
pool - this is used to create and delete test VMs.

See the vSphere Documentation Center for steps to create a custom role, user, and role assignment.

vSphere Cloud Provider supports OpenShift Container Platform clusters that span multiple vCenters.
Make sure that all above privileges are correctly set for all vCenters.

DYNAMIC PROVISIONING PERMISSIONS

Dynamic persistent volume creation is the recommended practice.

Roles Privileges Entities Propagate to children

manage-k8s-node-vms Resource.AssignVMToP
ool,
VirtualMachine.Config.A
ddExistingDisk,
VirtualMachine.Config.A
ddNewDisk,
VirtualMachine.Config.A
ddRemoveDevice,
VirtualMachine.Config.R
emoveDisk,
VirtualMachine.Inventor
y.Create,
VirtualMachine.Inventor
y.Delete,
VirtualMachine.Config.S
ettings

Cluster, Hosts, VM
Folder

Yes

manage-k8s-volumes Datastore.AllocateSpac
e,
Datastore.FileManagem
ent (Low level file
operations)

Datastore No

OpenShift Container Platform 3.11 Configuring Clusters

412

https://vmware.github.io/vsphere-storage-for-kubernetes/documentation/vcp-roles.html
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.security.doc/GUID-18071E9A-EED1-4968-8D51-E0B4F526FDA3.html

k8s-system-read-and-
spbm-profile-view

StorageProfile.View
(Profile-driven storage
view)

vCenter No

Read-only (pre-existing
default role)

System.Anonymous,
System.Read,
System.View

Datacenter, Datastore
Cluster, Datastore
Storage Folder

No

Roles Privileges Entities Propagate to children

STATIC PROVISIONING PERMISSIONS

Datastore.FileManagement is required for only the manage-k8s-volumes role, if you
create PVCs to bind with statically provisioned PVs and set the reclaim policy to delete.
When the PVC is deleted, associated statically provisioned PVs are also deleted.

Roles Privileges Entities Propagate to Children

manage-k8s-node-vms VirtualMachine.Config.A
ddExistingDisk,
VirtualMachine.Config.A
ddNewDisk,
VirtualMachine.Config.A
ddRemoveDevice,
VirtualMachine.Config.R
emoveDisk

VM Folder Yes

manage-k8s-volumes Datastore.FileManagem
ent (Low level file
operations)

Datastore No

Read-only (pre-existing
default role)

System.Anonymous,
System.Read,
System.View

vCenter, Datacenter,
Datastore Cluster,
Datastore Storage
Folder, Cluster, Hosts

No …​

Procedure

1. Create a VM folder and move OpenShift Container Platform Node VMs to this folder.

2. Set the disk.EnableUUID parameter to true for each Node VM. This setting ensures that the
VMware vSphere’s Virtual Machine Disk (VMDK) always presents a consistent UUID to the VM,
allowing the disk to be mounted properly.
Every VM node that will be participating in the cluster must have the disk.EnableUUID
parameter set to true. To set this value, follow the steps for either the vSphere console or govc
CLI tool:

a. From the vSphere HTML Client navigate to VM properties → VM Options → Advanced →
Configuration Parameters → disk.enableUUID=TRUE

CHAPTER 25. CONFIGURING FOR VMWARE VSPHERE

413

https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.vcenterhost.doc/GUID-031BDB12-D3B2-4E2D-80E6-604F304B4D0C.html

b. Or using the govc CLI, find the Node VM paths:

i. Set disk.EnableUUID to true for all VMs:

NOTE

If OpenShift Container Platform node VMs are created from a virtual machine template,
then you can set disk.EnableUUID=1 on the template VM. VMs cloned from this
template inherit this property.

25.1.1.2. Using OpenShift Container Platform with vMotion

IMPORTANT

OpenShift Container Platform generally supports compute-only vMotion. Using Storage
vMotion can cause issues and is not supported.

If you are using vSphere volumes in your pods, migrating a VM across datastores either manually or
through Storage vMotion causes invalid references within OpenShift Container Platform persistent
volume (PV) objects. These references prevent affected pods from starting up and can result in data
loss.

Similarly, OpenShift Container Platform does not support selective migration of VMDKs across
datastores, using datastore clusters for VM provisioning or for dynamic or static provisioning of PVs, or
using a datastore that is part of a datastore cluster for dynamic or static provisioning of PVs.

25.2. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR
VSPHERE

You can configure OpenShift Container Platform for vSphere in two ways:

Using Ansible

Manually by modifying the master-config.yaml file

25.2.1. Option 1: Configuring OpenShift Container Platform for vSphere using
Ansible

You can configure OpenShift Container Platform for VMware vSphere (VCP) by modifying the Ansible
inventory file. These changes can be made before installation, or to an existing cluster.

Procedure

1. Add the following to the Ansible inventory file:

[OSEv3:vars]
openshift_cloudprovider_kind=vsphere
openshift_cloudprovider_vsphere_username=administrator@vsphere.local 1

$govc ls /datacenter/vm/<vm-folder-name>

$govc vm.change -e="disk.enableUUID=1" -vm='VM Path'

OpenShift Container Platform 3.11 Configuring Clusters

414

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible

1

2

3

4

openshift_cloudprovider_vsphere_password=<password>
openshift_cloudprovider_vsphere_host=10.x.y.32 2
openshift_cloudprovider_vsphere_datacenter=<Datacenter> 3
openshift_cloudprovider_vsphere_datastore=<Datastore> 4

The user name with the appropriate permissions to create and attach disks in vSphere.

The vCenter server address.

The vCenter Datacenter name where the OpenShift Container Platform VMs are located.

The datastore used for creating VMDKs.

2. Run the deploy_cluster.yml playbook.

$ ansible-playbook -i <inventory_file> \
 playbooks/deploy_cluster.yml

Installing with Ansible also creates and configures the following files to fit your vSphere environment:

/etc/origin/cloudprovider/vsphere.conf

/etc/origin/master/master-config.yaml

/etc/origin/node/node-config.yaml

As a reference, a full inventory is shown as follows:

The openshift_cloudprovider_vsphere_ values are required for OpenShift Container Platform to be
able to create vSphere resources such as VMDKs on datastores for persistent volumes.

$ cat /etc/ansible/hosts

[OSEv3:children]
ansible
masters
infras
apps
etcd
nodes
lb

[OSEv3:vars]
become=yes
ansible_become=yes
ansible_user=root
oreg_auth_user=service_account 1
oreg_auth_password=service_account_token 2
openshift_deployment_type=openshift-enterprise
Required per https://access.redhat.com/solutions/3480921
oreg_url=registry.access.redhat.com/openshift3/ose-${component}:${version}
openshift_examples_modify_imagestreams=true

vSphere Cloud provider

CHAPTER 25. CONFIGURING FOR VMWARE VSPHERE

415

openshift_cloudprovider_kind=vsphere
openshift_cloudprovider_vsphere_username="administrator@vsphere.local"
openshift_cloudprovider_vsphere_password="password"
openshift_cloudprovider_vsphere_host="vcsa65-dc1.example.com"
openshift_cloudprovider_vsphere_datacenter=Datacenter
openshift_cloudprovider_vsphere_cluster=Cluster
openshift_cloudprovider_vsphere_resource_pool=ResourcePool
openshift_cloudprovider_vsphere_datastore="datastore"
openshift_cloudprovider_vsphere_folder="folder"

Service catalog
openshift_hosted_etcd_storage_kind=dynamic
openshift_hosted_etcd_storage_volume_name=etcd-vol
openshift_hosted_etcd_storage_access_modes=["ReadWriteOnce"]
openshift_hosted_etcd_storage_volume_size=1G
openshift_hosted_etcd_storage_labels={'storage': 'etcd'}

openshift_master_ldap_ca_file=/home/cloud-user/mycert.crt
openshift_master_identity_providers=[{'name': 'idm', 'challenge': 'true', 'login': 'true', 'kind':
'LDAPPasswordIdentityProvider', 'attributes': {'id': ['dn'], 'email': ['mail'], 'name': ['cn'],
'preferredUsername': ['uid']}, 'bindDN': 'uid=admin,cn=users,cn=accounts,dc=example,dc=com',
'bindPassword': 'ldapadmin', 'ca': '/etc/origin/master/ca.crt', 'insecure': 'false', 'url':
'ldap://ldap.example.com/cn=users,cn=accounts,dc=example,dc=com?uid?sub?(memberOf=cn=ose-
user,cn=groups,cn=accounts,dc=openshift,dc=com)'}]

Setup vsphere registry storage
openshift_hosted_registry_storage_kind=vsphere
openshift_hosted_registry_storage_access_modes=['ReadWriteOnce']
openshift_hosted_registry_storage_annotations=['volume.beta.kubernetes.io/storage-provisioner:
kubernetes.io/vsphere-volume']
openshift_hosted_registry_replicas=1

openshift_hosted_router_replicas=3
openshift_master_cluster_method=native
openshift_node_local_quota_per_fsgroup=512Mi

default_subdomain=example.com
openshift_master_cluster_hostname=openshift.example.com
openshift_master_cluster_public_hostname=openshift.example.com
openshift_master_default_subdomain=apps.example.com

os_sdn_network_plugin_name='redhat/openshift-ovs-networkpolicy'
osm_use_cockpit=true

Red Hat subscription name and password
rhsub_user=username
rhsub_pass=password
rhsub_pool=8a85f9815e9b371b015e9b501d081d4b

metrics
openshift_metrics_install_metrics=true
openshift_metrics_storage_kind=dynamic
openshift_metrics_storage_volume_size=25Gi

logging
openshift_logging_install_logging=true

OpenShift Container Platform 3.11 Configuring Clusters

416

1 2 If you use a container registry that requires authentication, such as the default container image
registry, specify the credentials for that account. See Accessing and Configuring the Red Hat
Registry.

openshift_logging_es_pvc_dynamic=true
openshift_logging_es_pvc_size=30Gi
openshift_logging_elasticsearch_storage_type=pvc
openshift_logging_es_cluster_size=1
openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra": "true"}
openshift_logging_kibana_nodeselector={"node-role.kubernetes.io/infra": "true"}
openshift_logging_curator_nodeselector={"node-role.kubernetes.io/infra": "true"}
openshift_logging_fluentd_nodeselector={"node-role.kubernetes.io/infra": "true"}
openshift_logging_storage_kind=dynamic

#registry
openshift_public_hostname=openshift.example.com

[ansible]
localhost

[masters]
master-0.example.com vm_name=master-0 ipv4addr=10.x.y.103
master-1.example.com vm_name=master-1 ipv4addr=10.x.y.104
master-2.example.com vm_name=master-2 ipv4addr=10.x.y.105

[infras]
infra-0.example.com vm_name=infra-0 ipv4addr=10.x.y.100
infra-1.example.com vm_name=infra-1 ipv4addr=10.x.y.101
infra-2.example.com vm_name=infra-2 ipv4addr=10.x.y.102

[apps]
app-0.example.com vm_name=app-0 ipv4addr=10.x.y.106
app-1.example.com vm_name=app-1 ipv4addr=10.x.y.107
app-2.example.com vm_name=app-2 ipv4addr=10.x.y.108

[etcd]
master-0.example.com
master-1.example.com
master-2.example.com

[lb]
haproxy-0.example.com vm_name=haproxy-0 ipv4addr=10.x.y.200

[nodes]
master-0.example.com openshift_node_group_name="node-config-master"
openshift_schedulable=true
master-1.example.com openshift_node_group_name="node-config-master"
openshift_schedulable=true
master-2.example.com openshift_node_group_name="node-config-master"
openshift_schedulable=true
infra-0.example.com openshift_node_group_name="node-config-infra"
infra-1.example.com openshift_node_group_name="node-config-infra"
infra-2.example.com openshift_node_group_name="node-config-infra"
app-0.example.com openshift_node_group_name="node-config-compute"
app-1.example.com openshift_node_group_name="node-config-compute"
app-2.example.com openshift_node_group_name="node-config-compute"

CHAPTER 25. CONFIGURING FOR VMWARE VSPHERE

417

NOTE

Deploying a vSphere VM environment is not officially supported by Red Hat, but it can be
configured.

25.2.2. Option 2: Manually configuring OpenShift Container Platform for vSphere

25.2.2.1. Manually configuring master hosts for vSphere

Perform the following on all master hosts.

Procedure

1. Edit the master configuration file at /etc/origin/master/master-config.yaml by default on all
masters and update the contents of the apiServerArguments and controllerArguments
sections:

IMPORTANT

When triggering a containerized installation, only the /etc/origin and
/var/lib/origin directories are mounted to the master and node container.
Therefore, master-config.yaml must be in /etc/origin/master rather than /etc/.

2. When you configure OpenShift Container Platform for vSphere using Ansible, the
/etc/origin/cloudprovider/vsphere.conf file is created automatically. Because you are
manually configuring OpenShift Container Platform for vSphere, you must create the file.
Before you create the file, decide if you want multiple vCenter zones or not.
The cluster installation process configures single-zone or single vCenter by default. However,
deploying OpenShift Container Platform in vSphere on different zones can be helpful to avoid
single-point-of-failures, but creates the need for shared storage across zones. If an OpenShift
Container Platform node host goes down in zone "A" and the pods should be moved to zone "B".
See Running in multiple zones in the Kubernetes documentation for more information.

To configure a single vCenter server, use the following format for the
/etc/origin/cloudprovider/vsphere.conf file:

[Global] 1
 user = "myusername" 2
 password = "mypassword" 3
 port = "443" 4

kubernetesMasterConfig:
 ...
 apiServerArguments:
 cloud-provider:
 - "vsphere"
 cloud-config:
 - "/etc/origin/cloudprovider/vsphere.conf"
 controllerArguments:
 cloud-provider:
 - "vsphere"
 cloud-config:
 - "/etc/origin/cloudprovider/vsphere.conf"

OpenShift Container Platform 3.11 Configuring Clusters

418

https://access.redhat.com/documentation/en-us/reference_architectures/2019/html-single/deploying_and_managing_openshift_3.11_on_a_vmware_software-defined_data_center/index#deploying_a_vsphere_vm_environment_optional
https://kubernetes.io/docs/setup/best-practices/multiple-zones/

1

2

3

4

5

6

7

8

9

10

11

12

13

14

 insecure-flag = "1" 5
 datacenters = "mydatacenter" 6

[VirtualCenter "10.10.0.2"] 7
 user = "myvCenterusername"
 password = "password"

[Workspace] 8
 server = "10.10.0.2" 9
 datacenter = "mydatacenter"
 folder = "path/to/vms" 10
 default-datastore = "shared-datastore" 11
 resourcepool-path = "myresourcepoolpath" 12

[Disk]
 scsicontrollertype = pvscsi 13

[Network]
 public-network = "VM Network" 14

Any properties set in the [Global] section are used for all specified vcenters unless
overriden by the settings in the individual [VirtualCenter] sections.

vCenter username for the vSphere cloud provider.

vCenter password for the specified user.

Optional. Port number for the vCenter server. Defaults to port 443.

Set to 1 if the vCenter uses a self-signed certificate.

Name of the data center on which Node VMs are deployed.

Override specific [Global] properties for this Virtual Center. Possible setting scan be
[Port], [user], [insecure-flag], [datacenters]. Any settings not specified are pulled
from the [Global] section.

Set any properties used for various vSphere Cloud Provider functionality. For example,
dynamic provisioning, Storage Profile Based Volume provisioning, and others.

IP Address or FQDN for the vCenter server.

Path to the VM directory for node VMs.

Set to the name of the datastore to use for provisioning volumes using the storage
classes or dynamic provisioning. Prior to OpenShift Container Platform 3.9, if the
datastore was located in a storage directory or is a member of a datastore cluster, the
full path was required.

Optional. Set to the path to the resource pool where dummy VMs for Storage Profile
Based volume provisioning must be created.

Type of SCSI controller the VMDK will be attached to the VM as.

Set to the network port group for vSphere to access the node, which is called VM
Network by default. This is the node host’s ExternalIP that is registered with
Kubernetes.

CHAPTER 25. CONFIGURING FOR VMWARE VSPHERE

419

1

2

3

4

5

6

7

8

Kubernetes.

To configure a multiple vCenter servers, use the following format for the
/etc/origin/cloudprovider/vsphere.conf file:

[Global] 1
 user = "myusername" 2
 password = "mypassword" 3
 port = "443" 4
 insecure-flag = "1" 5
 datacenters = "us-east, us-west" 6

[VirtualCenter "10.10.0.2"] 7
 user = "myvCenterusername"
 password = "password"

[VirtualCenter "10.10.0.3"]
 port = "448"
 insecure-flag = "0"

[Workspace] 8
 server = "10.10.0.2" 9
 datacenter = "mydatacenter"
 folder = "path/to/vms" 10
 default-datastore = "shared-datastore" 11
 resourcepool-path = "myresourcepoolpath" 12

[Disk]
 scsicontrollertype = pvscsi 13

[Network]
 public-network = "VM Network" 14

Any properties set in the [Global] section are used for all specified vcenters unless
overriden by the settings in the individual [VirtualCenter] sections.

vCenter username for the vSphere cloud provider.

vCenter password for the specified user.

Optional. Port number for the vCenter server. Defaults to port 443.

Set to 1 if the vCenter uses a self-signed certificate.

Name of the data centers on which Node VMs are deployed.

Override specific [Global] properties for this Virtual Center. Possible setting scan be
[Port], [user], [insecure-flag], [datacenters]. Any settings not specified are pulled
from the [Global] section.

Set any properties used for various vSphere Cloud Provider functionality. For example,
dynamic provisioning, Storage Profile Based Volume provisioning, and others.

OpenShift Container Platform 3.11 Configuring Clusters

420

9

10

11

12

13

14

IP Address or FQDN for the vCenter server where the Cloud Provider communicates.

Path to the VM directory for node VMs.

Set to the name of the datastore to use for provisioning volumes using the storage
classes or dynamic provisioning. Prior to OpenShift Container Platform 3.9, if the
datastore was located in a storage directory or is a member of a datastore cluster, the
full path was required.

Optional. Set to the path to the resource pool where dummy VMs for Storage Profile
Based volume provisioning must be created.

Type of SCSI controller the VMDK will be attached to the VM as.

Set to the network port group for vSphere to access the node, which is called VM
Network by default. This is the node host’s ExternalIP that is registered with
Kubernetes.

3. Restart the OpenShift Container Platform host services:

25.2.2.2. Manually configuring node hosts for vSphere

Perform the following on all node hosts.

Procedure

To configure the OpenShift Container Platform nodes for vSphere:

1. Edit the appropriate node configuration map and update the contents of the
kubeletArguments section:

IMPORTANT

The nodeName must match the VM name in vSphere in order for the cloud
provider integration to work properly. The name must also be RFC1123 compliant.

2. Restart the OpenShift Container Platform services on all nodes.

25.2.2.3. Applying Configuration Changes

Start or restart OpenShift Container Platform services on all master and node hosts to apply your

master-restart api
master-restart controllers
systemctl restart atomic-openshift-node

kubeletArguments:
 cloud-provider:
 - "vsphere"
 cloud-config:
 - "/etc/origin/cloudprovider/vsphere.conf"

systemctl restart atomic-openshift-node

CHAPTER 25. CONFIGURING FOR VMWARE VSPHERE

421

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#modifying-nodes

Start or restart OpenShift Container Platform services on all master and node hosts to apply your
configuration changes, see Restarting OpenShift Container Platform services :

master-restart api
master-restart controllers
systemctl restart atomic-openshift-node

NOTE

Kubernetes architecture expects reliable endpoints from cloud providers. When a cloud
provider is down, the kubelet prevents OpenShift Container Platform from restarting. If
the underlying cloud provider endpoints are not reliable, do not install a cluster that uses
the cloud provider integration. Install the cluster as if it is a bare metal environment. It is
not recommended to toggle cloud provider integration on or off in an installed cluster.
However, if that scenario is unavoidable, then complete the following process.

Switching from not using a cloud provider to using a cloud provider produces an error message. Adding
the cloud provider tries to delete the node because the node switches from using the hostname as the
externalID (which would have been the case when no cloud provider was being used) to using the cloud
provider’s instance-id (which is what the cloud provider specifies). To resolve this issue:

1. Log in to the CLI as a cluster administrator.

2. Check and back up existing node labels:

3. Delete the nodes:

4. On each node host, restart the OpenShift Container Platform service.

systemctl restart atomic-openshift-node

5. Add back any labels on each node that you previously had.

25.3. CONFIGURING OPENSHIFT CONTAINER PLATFORM TO USE
VSPHERE STORAGE

OpenShift Container Platform supports VMware vSphere’s Virtual Machine Disk (VMDK) volumes. You
can provision your OpenShift Container Platform cluster with persistent storage using VMware vSphere.
Some familiarity with Kubernetes and VMware vSphere is assumed.

OpenShift Container Platform creates the disk in vSphere and attaches the disk to the correct instance.

The OpenShift Container Platform persistent volume (PV) framework allows administrators to provision
a cluster with persistent storage and gives users a way to request those resources without having any
knowledge of the underlying infrastructure. vSphere VMDK volumes can be provisioned dynamically.

PVs are not bound to a single project or namespace; they can be shared across the OpenShift Container
Platform cluster. PV claims, however, are specific to a project or namespace and can be requested by
users.

$ oc describe node <node_name> | grep -Poz '(?s)Labels.*\n.*(?=Taints)'

$ oc delete node <node_name>

OpenShift Container Platform 3.11 Configuring Clusters

422

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#updating-labels-on-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage
https://www.vmware.com/au/products/vsphere.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#persistent-volume-claims

1

2

3

4

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

Prerequisites
Before creating PVs using vSphere, ensure your OpenShift Container Platform cluster meets the
following requirements:

OpenShift Container Platform must first be configured for vSphere.

Each node host in the infrastructure must match the vSphere VM name.

Each node host must be in the same resource group.

25.3.1. Dynamically Provisioning VMware vSphere volumes

Dynamically provisioning VMware vSphere volumes is the preferred provisioning method.

1. If you did not specify the openshift_cloudprovider_kind=vsphere and openshift_vsphere_*
variables in the Ansible inventory file when you provisioned the cluster, you must manually
create the following StorageClass to use the vsphere-volume provisioner:

The name of the StorageClass.

The type of storage provisioner. Specify vsphere-volume.

The type of disk. Specify either zeroedthick or thin.

The source datastore where the disks will be created.

2. After you request a PV, using the StorageClass shown in the previous step, OpenShift Container
Platform automatically creates VMDK disks in the vSphere infrastructure. To verify that the
disks were created, use the Datastore browser in vSphere.

NOTE

vSphere-volume disks are ReadWriteOnce access mode, which means the
volume can be mounted as read-write by a single node. See the Access modes
section of the Architecture guide for more information.

25.3.2. Statically Provisioning VMware vSphere volumes

$ oc get --export storageclass vsphere-standard -o yaml
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: "vsphere-standard" 1
provisioner: kubernetes.io/vsphere-volume 2
parameters:
 diskformat: thin 3
 datastore: "YourvSphereDatastoreName" 4
reclaimPolicy: Delete

CHAPTER 25. CONFIGURING FOR VMWARE VSPHERE

423

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#pv-access-modes

1

2

3

4

5

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform. After ensuring OpenShift Container Platform is configured for vSphere, all that is
required for OpenShift Container Platform and vSphere is a VM folder path, file system type, and the
PersistentVolume API.

25.3.2.1. Creating PersistentVolumes

1. Define a PV object definition, for example vsphere-pv.yaml:

The name of the volume. This must be how it is identified by PV claims or from pods.

The amount of storage allocated to this volume.

The volume type being used. This example uses vsphereVolume. The label is used to
mount a vSphere VMDK volume into pods. The contents of a volume are preserved when it
is unmounted. The volume type supports VMFS and VSAN datastore.

The existing VMDK volume to use. You must enclose the datastore name in square
brackets ([]) in the volume definition, as shown.

The file system type to mount. For example, ext4, xfs, or other file-systems.

IMPORTANT

Changing the value of the fsType parameter after the volume is formatted and
provisioned can result in data loss and pod failure.

2. Create the PV:

3. Verify that the PV was created:

Now you can request storage using PV claims , which can now use your PV.

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001 1
spec:
 capacity:
 storage: 2Gi 2
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Retain
 vsphereVolume: 3
 volumePath: "[datastore1] volumes/myDisk" 4
 fsType: ext4 5

$ oc create -f vsphere-pv.yaml
 persistentvolume "pv0001" created

$ oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE
pv0001 <none> 2Gi RWO Available 2s

OpenShift Container Platform 3.11 Configuring Clusters

424

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-persistent-volumes

1

2

3

4

IMPORTANT

PV claims only exist in the user’s namespace and can only be referenced by a pod within
that same namespace. Any attempt to access a PV from a different namespace causes
the pod to fail.

25.3.2.2. Formatting VMware vSphere volumes

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that the
volume contains a file system as specified by the fsType parameter in the PV definition. If the device is
not formatted with the file system, all data from the device is erased, and the device is automatically
formatted with the given file system.

Because OpenShift Container Platform formats them before the first use, you can use unformatted
vSphere volumes as PVs.

25.4. CONFIGURING THE OPENSHIFT CONTAINER PLATFORM
REGISTRY FOR VSPHERE

25.4.1. Configuring the OpenShift Container Platform registry for vSphere using
Ansible

Procedure

To configure the Ansible inventory for the registry to use a vSphere volume:

The storage type.

vSphere volumes only support RWO.

The annotation for the volume.

The number of replicas to configure.

NOTE

The brackets in the configuration file above are required.

25.4.2. Dynamically provisioning storage for OpenShift Container Platform registry

To use vSphere volume storage, edit the registry’s configuration file and mount to the registry pod.

Procedure

[OSEv3:vars]
vSphere Provider Configuration
openshift_hosted_registry_storage_kind=vsphere 1
openshift_hosted_registry_storage_access_modes=['ReadWriteOnce'] 2
openshift_hosted_registry_storage_annotations=['volume.beta.kubernetes.io/storage-provisioner:
kubernetes.io/vsphere-volume'] 3
openshift_hosted_registry_replicas=1 4

CHAPTER 25. CONFIGURING FOR VMWARE VSPHERE

425

1. Create a new configuration file from the vSphere volume:

2. Create the file in OpenShift Container Platform:

3. Update the volume configuration to use the new PVC:

4. Redeploy the registry to read the updated configuration:

5. Verify the volume has been assigned:

25.4.3. Manually provisioning storage for OpenShift Container Platform registry

Running the following commands manually creates storage, which is used to create storage for the
registry if a StorageClass is unavailable or not used.

25.4.4. About Red Hat OpenShift Container Storage

Red Hat OpenShift Container Storage (RHOCS) is a provider of agnostic persistent storage for
OpenShift Container Platform either in-house or in hybrid clouds. As a Red Hat storage solution,

 kind: PersistentVolumeClaim
 apiVersion: v1
 metadata:
 name: vsphere-registry-storage
 annotations:
 volume.beta.kubernetes.io/storage-class: vsphere-standard
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 30Gi

$ oc create -f pvc-registry.yaml

$ oc set volume dc docker-registry --add --name=registry-storage -t \
pvc --claim-name=vsphere-registry-storage --overwrite

$ oc rollout latest docker-registry -n default

$ oc set volume dc docker-registry -n default

VMFS
cd /vmfs/volumes/datastore1/
mkdir kubevols # Not needed but good hygiene

VSAN
cd /vmfs/volumes/vsanDatastore/
/usr/lib/vmware/osfs/bin/osfs-mkdir kubevols # Needed

cd kubevols

vmkfstools -c 25G registry.vmdk

OpenShift Container Platform 3.11 Configuring Clusters

426

RHOCS is completely integrated with OpenShift Container Platform for deployment, management, and
monitoring regardless if it is installed on OpenShift Container Platform (converged) or with OpenShift
Container Platform (independent). OpenShift Container Storage is not limited to a single availability
zone or node, which makes it likely to survive an outage. You can find complete instructions for using
RHOCS in the RHOCS3.11 Deployment Guide.

25.5. BACKUP OF PERSISTENT VOLUMES

OpenShift Container Platform provisions new volumes as independent persistent disks to freely attach
and detach the volume on any node in the cluster. As a consequence, it is not possible to back up
volumes that use snapshots.

To create a backup of PVs:

1. Stop the application using the PV.

2. Clone the persistent disk.

3. Restart the application.

4. Create a backup of the cloned disk.

5. Delete the cloned disk.

CHAPTER 25. CONFIGURING FOR VMWARE VSPHERE

427

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/deployment_guide/index
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.vm_admin.doc/GUID-53F65726-A23B-4CF0-A7D5-48E584B88613.html

CHAPTER 26. CONFIGURING LOCAL VOLUMES

26.1. OVERVIEW

OpenShift Container Platform can be configured to access local volumes for application data.

Local volumes are persistent volumes (PV) that represent locally-mounted file systems, including raw
block devices. A raw device offers a more direct route to the physical device and allows an application
more control over the timing of I/O operations to that physical device. This makes raw devices suitable
for complex applications such as database management systems that typically do their own caching.
Local volumes have a few unique features. Any pod that uses a local volume PV is scheduled on the
node where the local volume is mounted.

In addition, local volumes include a provisioner that automatically creates PVs for locally-mounted
devices. This provisioner currently scans only pre-configured directories. This provisioner cannot
dynamically provision volumes, but this feature might be implemented in a future release.

The local volume provisioner allows using local storage within OpenShift Container Platform and
supports:

Volumes

PVs

IMPORTANT

Local volumes is a Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs), might not be
functionally complete, and Red Hat does not recommend to use them for production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process. For more
information on Red Hat Technology Preview features support scope, see
https://access.redhat.com/support/offerings/techpreview/.

26.2. MOUNTING LOCAL VOLUMES

NOTE

All local volumes must be manually mounted before they can be consumed by OpenShift
Container Platform as PVs.

To mount local volumes:

1. Mount all volumes into the /mnt/local-storage/<storage-class-name>/<volume> path.
Administrators must create local devices as needed using any method such as disk partition or
LVM, create suitable file systems on these devices, and mount these devices using a script or
/etc/fstab entries, for example:

device name # mount point # FS # options # extra
/dev/sdb1 /mnt/local-storage/ssd/disk1 ext4 defaults 1 2
/dev/sdb2 /mnt/local-storage/ssd/disk2 ext4 defaults 1 2

OpenShift Container Platform 3.11 Configuring Clusters

428

https://access.redhat.com/support/offerings/techpreview/

1

2

3

/dev/sdb3 /mnt/local-storage/ssd/disk3 ext4 defaults 1 2
/dev/sdc1 /mnt/local-storage/hdd/disk1 ext4 defaults 1 2
/dev/sdc2 /mnt/local-storage/hdd/disk2 ext4 defaults 1 2

2. Make all volumes accessible to the processes running within the containers. You can change the
labels of mounted file systems to allow this, for example:

26.3. CONFIGURING THE LOCAL PROVISIONER

OpenShift Container Platform depends on an external provisioner to create PVs for local devices and to
clean up PVs when they are not in use to enable reuse.

NOTE

The local volume provisioner is different from most provisioners and does not
support dynamic provisioning.

The local volume provisioner requires administrators to preconfigure the local
volumes on each node and mount them under discovery directories. The
provisioner then manages the volumes by creating and cleaning up PVs for each
volume.

To configure the local provisioner:

1. Configure the external provisioner using a ConfigMap to relate directories with storage classes.
This configuration must be created before the provisioner is deployed, for example:

Name of the storage class.

Path to the directory on the host. It must be a subdirectory of /mnt/local-storage.

Path to the directory in the provisioner pod. We recommend using the same directory
structure as used on the host and mountDir can be omitted in this case.

2. (Optional) Create a standalone namespace for the local volume provisioner and its
configuration, for example: oc new-project local-storage.

$ chcon -R unconfined_u:object_r:svirt_sandbox_file_t:s0 /mnt/local-storage/

apiVersion: v1
kind: ConfigMap
metadata:
 name: local-volume-config
data:
 storageClassMap: |
 local-ssd: 1
 hostDir: /mnt/local-storage/ssd 2
 mountDir: /mnt/local-storage/ssd 3
 local-hdd:
 hostDir: /mnt/local-storage/hdd
 mountDir: /mnt/local-storage/hdd

CHAPTER 26. CONFIGURING LOCAL VOLUMES

429

1

With this configuration, the provisioner creates:

One PV with storage class local-ssd for every subdirectory mounted in the /mnt/local-
storage/ssd directory

One PV with storage class local-hdd for every subdirectory mounted in the /mnt/local-
storage/hdd directory

26.4. DEPLOYING THE LOCAL PROVISIONER

NOTE

Before starting the provisioner, mount all local devices and create a ConfigMap with
storage classes and their directories.

To deploy the local provisioner:

1. Install the local provisioner from the local-storage-provisioner-template.yaml file.

2. Create a service account that allows running pods as a root user, using hostPath volumes, and
using any SELinux context to monitor, manage, and clean local volumes:

To allow the provisioner pod to delete content on local volumes created by any pod, root
privileges and any SELinux context are required. hostPath is required to access the /mnt/local-
storage path on the host.

3. Install the template:

4. Instantiate the template by specifying values for the CONFIGMAP, SERVICE_ACCOUNT,
NAMESPACE, and PROVISIONER_IMAGE parameters:

Provide your OpenShift Container Platform version number, such as v3.11.

5. Add the necessary storage classes:

For example:

$ oc create serviceaccount local-storage-admin
$ oc adm policy add-scc-to-user privileged -z local-storage-admin

$ oc create -f https://raw.githubusercontent.com/openshift/origin/release-
3.11/examples/storage-examples/local-examples/local-storage-provisioner-template.yaml

$ oc new-app -p CONFIGMAP=local-volume-config \
 -p SERVICE_ACCOUNT=local-storage-admin \
 -p NAMESPACE=local-storage \
 -p PROVISIONER_IMAGE=registry.redhat.io/openshift3/local-storage-provisioner:v3.11 \
1

 local-storage-provisioner

$ oc create -f ./storage-class-ssd.yaml
$ oc create -f ./storage-class-hdd.yaml

OpenShift Container Platform 3.11 Configuring Clusters

430

https://raw.githubusercontent.com/openshift/origin/release-3.11/examples/storage-examples/local-examples/local-storage-provisioner-template.yaml

storage-class-ssd.yaml

storage-class-hdd.yaml

See the local storage provisioner template for other configurable options. This template creates a
DaemonSet that runs a pod on every node. The pod watches the directories that are specified in the
ConfigMap and automatically creates PVs for them.

The provisioner runs with root permissions because it removes all data from the modified directories
when a PV is released.

26.5. ADDING NEW DEVICES

Adding a new device is semi-automatic. The provisioner periodically checks for new mounts in
configured directories. Administrators must create a new subdirectory, mount a device, and allow pods
to use the device by applying the SELinux label, for example:

IMPORTANT

Omitting any of these steps may result in the wrong PV being created.

26.6. CONFIGURING RAW BLOCK DEVICES

It is possible to statically provision raw block devices using the local volume provisioner. This feature is
disabled by default and requires additional configuration.

To configure raw block devices:

1. Enable the BlockVolume feature gate on all masters. Edit or create the master configuration
file on all masters (/etc/origin/master/master-config.yaml by default) and add
BlockVolume=true under the apiServerArguments and controllerArguments sections:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: local-ssd
provisioner: kubernetes.io/no-provisioner
volumeBindingMode: WaitForFirstConsumer

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: local-hdd
provisioner: kubernetes.io/no-provisioner
volumeBindingMode: WaitForFirstConsumer

$ chcon -R unconfined_u:object_r:svirt_sandbox_file_t:s0 /mnt/local-storage/

apiServerArguments:
 feature-gates:
 - BlockVolume=true
...

CHAPTER 26. CONFIGURING LOCAL VOLUMES

431

https://raw.githubusercontent.com/openshift/origin/release-3.11/examples/storage-examples/local-examples/local-storage-provisioner-template.yaml

2. Enable the feature gate on all nodes by editing the node configuration ConfigMap:

3. Ensure that all ConfigMaps contain BlockVolume=true in the feature gates array of the
kubeletArguments, for example:

node configmap feature-gates setting

4. Restart the master. The nodes restart automatically after the configuration change. This may
take several minutes.

26.6.1. Preparing raw block devices

Before you start the provisioner, link all the raw block devices that pods can use to the /mnt/local-
storage/<storage class> directory structure. For example, to make directory /dev/dm-36 available:

1. Create a directory for the device’s storage class in /mnt/local-storage:

2. Create a symbolic link that points to the device:

NOTE

To avoid possible name conflicts, use the same name for the symbolic link and
the link from the /dev/disk/by-uuid or /dev/disk/by-id directory .

3. Create or update the ConfigMap that configures the provisioner:

 controllerArguments:
 feature-gates:
 - BlockVolume=true
...

$ oc edit configmap node-config-compute --namespace openshift-node
$ oc edit configmap node-config-master --namespace openshift-node
$ oc edit configmap node-config-infra --namespace openshift-node

kubeletArguments:
 feature-gates:
 -
RotateKubeletClientCertificate=true,RotateKubeletServerCertificate=true,BlockVolume=true

$ mkdir -p /mnt/local-storage/block-devices

$ ln -s /dev/dm-36 dm-uuid-LVM-1234

apiVersion: v1
kind: ConfigMap
metadata:
 name: local-volume-config
data:
 storageClassMap: |

OpenShift Container Platform 3.11 Configuring Clusters

432

1

2

3

Name of the storage class.

Path to the directory on the host. It must be a subdirectory of /mnt/local-storage.

Path to the directory in the provisioner pod. If you use the directory structure that the host
uses, which is recommended, omit the mountDir parameter.

4. Change the SELinux label of the device and the /mnt/local-storage/:

5. Create a storage class for the raw block devices:

The block device /dev/dm-36 is now ready to be used by the provisioner and provisioned as a PV.

26.6.2. Deploying raw block device provisioners

Deploying the provisioner for raw block devices is similar to deploying the provisioner on local volumes.
There are two differences:

1. The provisioner must run in a privileged container.

2. The provisioner must have access to the /dev file system from the host.

To deploy the provisioner for raw block devices:

1. Download the template from the local-storage-provisioner-template.yaml file.

2. Edit the template:

a. Set the privileged attribute of the securityContext of the container spec to true:

b. Mount the host /dev/ file system to the container using hostPath:

 block-devices: 1
 hostDir: /mnt/local-storage/block-devices 2
 mountDir: /mnt/local-storage/block-devices 3

$ chcon -R unconfined_u:object_r:svirt_sandbox_file_t:s0 /mnt/local-storage/
$ chcon unconfined_u:object_r:svirt_sandbox_file_t:s0 /dev/dm-36

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: block-devices
provisioner: kubernetes.io/no-provisioner
volumeBindingMode: WaitForFirstConsumer

...
 containers:
...
 name: provisioner
...
 securityContext:
 privileged: true
...

CHAPTER 26. CONFIGURING LOCAL VOLUMES

433

https://raw.githubusercontent.com/openshift/origin/release-3.11/examples/storage-examples/local-examples/local-storage-provisioner-template.yaml

3. Create the template from the modified YAML file:

4. Start the provisioner:

26.6.3. Using raw block device persistent volumes

To use the raw block device in the pod, create a persistent volume claim (PVC) with volumeMode: set
to Block and storageClassName set to block-devices, for example:

Pod using the raw block device PVC

...
 containers:
...
 name: provisioner
...
 volumeMounts:
 - mountPath: /dev
 name: dev
...
 volumes:
 - hostPath:
 path: /dev
 name: dev
...

$ oc create -f local-storage-provisioner-template.yaml

$ oc new-app -p CONFIGMAP=local-volume-config \
 -p SERVICE_ACCOUNT=local-storage-admin \
 -p NAMESPACE=local-storage \
 -p
 PROVISIONER_IMAGE=registry.redhat.io/openshift3/local-storage-provisioner:v3.11 \
 local-storage-provisioner

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: block-pvc
spec:
 storageClassName: block-devices
 accessModes:
 - ReadWriteOnce
 volumeMode: Block
 resources:
 requests:
 storage: 1Gi

apiVersion: v1
kind: Pod
metadata:
 name: busybox-test
 labels:

OpenShift Container Platform 3.11 Configuring Clusters

434

NOTE

The volume is not mounted in the pod but is exposed as the /dev/xvda raw block device.

 name: busybox-test
spec:
 restartPolicy: Never
 containers:
 - resources:
 limits :
 cpu: 0.5
 image: gcr.io/google_containers/busybox
 command:
 - "/bin/sh"
 - "-c"
 - "while true; do date; sleep 1; done"
 name: busybox
 volumeDevices:
 - name: vol
 devicePath: /dev/xvda
 volumes:
 - name: vol
 persistentVolumeClaim:
 claimName: block-pvc

CHAPTER 26. CONFIGURING LOCAL VOLUMES

435

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

27.1. OVERVIEW

The Kubernetes persistent volume framework allows you to provision an OpenShift Container Platform
cluster with persistent storage using networked storage available in your environment. This can be done
after completing the initial OpenShift Container Platform installation depending on your application
needs, giving users a way to request those resources without having any knowledge of the underlying
infrastructure.

These topics show how to configure persistent volumes in OpenShift Container Platform using the
following supported volume plug-ins:

NFS

GlusterFS

OpenStack Cinder

Ceph RBD

AWS Elastic Block Store (EBS)

GCE Persistent Disk

iSCSI

Fibre Channel

Azure Disk

Azure File

FlexVolume

VMware vSphere

Container Storage Interface (CSI)

Dynamic Provisioning and Creating Storage Classes

Volume Security

Selector-Label Volume Binding

27.2. PERSISTENT STORAGE USING NFS

27.2.1. Overview

OpenShift Container Platform clusters can be provisioned with persistent storage using NFS. Persistent
volumes (PVs) and persistent volume claims (PVCs) provide a convenient method for sharing a volume
across a project. While the NFS-specific information contained in a PV definition could also be defined
directly in a pod definition, doing so does not create the volume as a distinct cluster resource, making
the volume more susceptible to conflicts.

This topic covers the specifics of using the NFS persistent storage type. Some familiarity with OpenShift

OpenShift Container Platform 3.11 Configuring Clusters

436

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage

1

2

3

4

5

6

7

This topic covers the specifics of using the NFS persistent storage type. Some familiarity with OpenShift
Container Platform and NFS is beneficial. See the Persistent Storage concept topic for details on the
OpenShift Container Platform persistent volume (PV) framework in general.

27.2.2. Provisioning

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform. To provision NFS volumes, a list of NFS servers and export paths are all that is
required.

You must first create an object definition for the PV:

Example 27.1. PV Object Definition Using NFS

The name of the volume. This is the PV identity in various oc <command> pod commands.

The amount of storage allocated to this volume.

Though this appears to be related to controlling access to the volume, it is actually used
similarly to labels and used to match a PVC to a PV. Currently, no access rules are enforced
based on the accessModes.

The volume type being used, in this case the nfs plug-in.

The path that is exported by the NFS server.

The host name or IP address of the NFS server.

The reclaim policy for the PV. This defines what happens to a volume when released from its
claim. See Reclaiming Resources.

NOTE

Each NFS volume must be mountable by all schedulable nodes in the cluster.

Save the definition to a file, for example nfs-pv.yaml, and create the PV:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001 1
spec:
 capacity:
 storage: 5Gi 2
 accessModes:
 - ReadWriteOnce 3
 nfs: 4
 path: /tmp 5
 server: 172.17.0.2 6
 persistentVolumeReclaimPolicy: Retain 7

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

437

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-nfs.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage

1

2

$ oc create -f nfs-pv.yaml
persistentvolume "pv0001" created

Verify that the PV was created:

oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON
AGE
pv0001 <none> 5368709120 RWO Available 31s

The next step can be to create a PVC, which binds to the new PV:

Example 27.2. PVC Object Definition

As mentioned above for PVs, the accessModes do not enforce security, but rather act as labels
to match a PV to a PVC.

This claim looks for PVs offering 1Gi or greater capacity.

Save the definition to a file, for example nfs-claim.yaml, and create the PVC:

oc create -f nfs-claim.yaml

27.2.3. Enforcing Disk Quotas

You can use disk partitions to enforce disk quotas and size constraints. Each partition can be its own
export. Each export is one PV. OpenShift Container Platform enforces unique names for PVs, but the
uniqueness of the NFS volume’s server and path is up to the administrator.

Enforcing quotas in this way allows the developer to request persistent storage by a specific amount (for
example, 10Gi) and be matched with a corresponding volume of equal or greater capacity.

27.2.4. NFS Volume Security

This section covers NFS volume security, including matching permissions and SELinux considerations.
The user is expected to understand the basics of POSIX permissions, process UIDs, supplemental
groups, and SELinux.

NOTE

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: nfs-claim1
spec:
 accessModes:
 - ReadWriteOnce 1
 resources:
 requests:
 storage: 1Gi 2

OpenShift Container Platform 3.11 Configuring Clusters

438

NOTE

See the full Volume Security topic before implementing NFS volumes.

Developers request NFS storage by referencing, in the volumes section of their pod definition, either a
PVC by name or the NFS volume plug-in directly.

The /etc/exports file on the NFS server contains the accessible NFS directories. The target NFS
directory has POSIX owner and group IDs. The OpenShift Container Platform NFS plug-in mounts the
container’s NFS directory with the same POSIX ownership and permissions found on the exported NFS
directory. However, the container is not run with its effective UID equal to the owner of the NFS mount,
which is the desired behavior.

As an example, if the target NFS directory appears on the NFS server as:

ls -lZ /opt/nfs -d
drwxrws---. nfsnobody 5555 unconfined_u:object_r:usr_t:s0 /opt/nfs

id nfsnobody
uid=65534(nfsnobody) gid=65534(nfsnobody) groups=65534(nfsnobody)

Then the container must match SELinux labels, and either run with a UID of 65534 (nfsnobody owner)
or with 5555 in its supplemental groups in order to access the directory.

NOTE

The owner ID of 65534 is used as an example. Even though NFS’s root_squash maps
root (0) to nfsnobody (65534), NFS exports can have arbitrary owner IDs. Owner 65534
is not required for NFS exports.

27.2.4.1. Group IDs

The recommended way to handle NFS access (assuming it is not an option to change permissions on the
NFS export) is to use supplemental groups. Supplemental groups in OpenShift Container Platform are
used for shared storage, of which NFS is an example. In contrast, block storage, such as Ceph RBD or
iSCSI, use the fsGroup SCC strategy and the fsGroup value in the pod’s securityContext.

NOTE

It is generally preferable to use supplemental group IDs to gain access to persistent
storage versus using user IDs. Supplemental groups are covered further in the full
Volume Security topic.

Because the group ID on the example target NFS directory shown above is 5555, the pod can define
that group ID using supplementalGroups under the pod-level securityContext definition. For
example:

spec:
 containers:
 - name:
 ...
 securityContext: 1
 supplementalGroups: [5555] 2

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

439

1

2

1

2

securityContext must be defined at the pod level, not under a specific container.

An array of GIDs defined for the pod. In this case, there is one element in the array; additional GIDs
would be comma-separated.

Assuming there are no custom SCCs that might satisfy the pod’s requirements, the pod likely matches
the restricted SCC. This SCC has the supplementalGroups strategy set to RunAsAny, meaning that
any supplied group ID is accepted without range checking.

As a result, the above pod passes admissions and is launched. However, if group ID range checking is
desired, a custom SCC, as described in pod security and custom SCCs , is the preferred solution. A
custom SCC can be created such that minimum and maximum group IDs are defined, group ID range
checking is enforced, and a group ID of 5555 is allowed.

NOTE

To use a custom SCC, you must first add it to the appropriate service account. For
example, use the default service account in the given project unless another has been
specified on the pod specification. See Add an SCC to a User, Group, or Project for
details.

27.2.4.2. User IDs

User IDs can be defined in the container image or in the pod definition. The full Volume Security topic
covers controlling storage access based on user IDs, and should be read prior to setting up NFS
persistent storage.

NOTE

It is generally preferable to use supplemental group IDs to gain access to persistent
storage versus using user IDs.

In the example target NFS directory shown above, the container needs its UID set to 65534 (ignoring
group IDs for the moment), so the following can be added to the pod definition:

Pods contain a securityContext specific to each container (shown here) and a pod-level
securityContext which applies to all containers defined in the pod.

65534 is the nfsnobody user.

Assuming the default project and the restricted SCC, the pod’s requested user ID of 65534 is not
allowed, and therefore the pod fails. The pod fails for the following reasons:

It requests 65534 as its user ID.

All SCCs available to the pod are examined to see which SCC allows a user ID of 65534 (actually,

spec:
 containers: 1
 - name:
 ...
 securityContext:
 runAsUser: 65534 2

OpenShift Container Platform 3.11 Configuring Clusters

440

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#add-scc-to-user-group-project

All SCCs available to the pod are examined to see which SCC allows a user ID of 65534 (actually,
all policies of the SCCs are checked but the focus here is on user ID).

Because all available SCCs use MustRunAsRange for their runAsUser strategy, UID range
checking is required.

65534 is not included in the SCC or project’s user ID range.

It is generally considered a good practice not to modify the predefined SCCs. The preferred way to fix
this situation is to create a custom SCC, as described in the full Volume Security topic. A custom SCC
can be created such that minimum and maximum user IDs are defined, UID range checking is still
enforced, and the UID of 65534 is allowed.

NOTE

To use a custom SCC, you must first add it to the appropriate service account. For
example, use the default service account in the given project unless another has been
specified on the pod specification. See Add an SCC to a User, Group, or Project for
details.

27.2.4.3. SELinux

NOTE

See the full Volume Security topic for information on controlling storage access in
conjunction with using SELinux.

By default, SELinux does not allow writing from a pod to a remote NFS server. The NFS volume mounts
correctly, but is read-only.

To enable writing to NFS volumes with SELinux enforcing on each node, run:

setsebool -P virt_use_nfs 1

The -P option above makes the bool persistent between reboots.

The virt_use_nfs boolean is defined by the docker-selinux package. If an error is seen indicating that
this bool is not defined, ensure this package has been installed.

27.2.4.4. Export Settings

In order to enable arbitrary container users to read and write the volume, each exported volume on the
NFS server should conform to the following conditions:

Each export must be:

/<example_fs> *(rw,root_squash)

The firewall must be configured to allow traffic to the mount point.

For NFSv4, configure the default port 2049 (nfs).

NFSv4

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

441

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#add-scc-to-user-group-project

iptables -I INPUT 1 -p tcp --dport 2049 -j ACCEPT

For NFSv3, there are three ports to configure: 2049 (nfs), 20048 (mountd), and 111
(portmapper).

NFSv3

iptables -I INPUT 1 -p tcp --dport 2049 -j ACCEPT
iptables -I INPUT 1 -p tcp --dport 20048 -j ACCEPT
iptables -I INPUT 1 -p tcp --dport 111 -j ACCEPT

The NFS export and directory must be set up so that it is accessible by the target pods. Either
set the export to be owned by the container’s primary UID, or supply the pod group access using
supplementalGroups, as shown in Group IDs above. See the full Volume Security topic for
additional pod security information as well.

27.2.5. Reclaiming Resources

NFS implements the OpenShift Container Platform Recyclable plug-in interface. Automatic processes
handle reclamation tasks based on policies set on each persistent volume.

By default, PVs are set to Retain.

Once claim to a PV is released (that is, the PVC is deleted), the PV object should not be re-used.
Instead, a new PV should be created with the same basic volume details as the original.

For example, the administrator creates a PV named nfs1:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: nfs1
spec:
 capacity:
 storage: 1Mi
 accessModes:
 - ReadWriteMany
 nfs:
 server: 192.168.1.1
 path: "/"

The user creates PVC1, which binds to nfs1. The user then deletes PVC1, releasing claim to nfs1, which
causes nfs1 to be Released. If the administrator wishes to make the same NFS share available, they
should create a new PV with the same NFS server details, but a different PV name:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: nfs2
spec:
 capacity:
 storage: 1Mi
 accessModes:
 - ReadWriteMany

OpenShift Container Platform 3.11 Configuring Clusters

442

 nfs:
 server: 192.168.1.1
 path: "/"

Deleting the original PV and re-creating it with the same name is discouraged. Attempting to manually
change the status of a PV from Released to Available causes errors and potential data loss.

27.2.6. Automation

Clusters can be provisioned with persistent storage using NFS in the following ways:

Enforce storage quotas using disk partitions.

Enforce security by restricting volumes to the project that has a claim to them.

Configure reclamation of discarded resources for each PV.

There are many ways that you can use scripts to automate the preceding tasks. You can use an example
Ansible playbook that is associated with the OpenShift Container Platform 3.11 release to help you get
started.

27.2.7. Additional Configuration and Troubleshooting

Depending on what version of NFS is being used and how it is configured, there may be additional
configuration steps needed for proper export and security mapping. The following are some that may
apply:

NFSv4 mount incorrectly shows
all files with ownership of
nobody:nobody

Could be attributed to the ID mapping settings
(/etc/idmapd.conf) on your NFS

See this Red Hat Solution.

Disabling ID mapping on NFSv4
On the NFS server, run:

echo 'Y' >
/sys/module/nfsd/parameters/nfs4_disable_idmapping

On the NFS client, run:

echo 'Y' >
/sys/module/nfs/parameters/nfs4_disable_idmapping

27.3. PERSISTENT STORAGE USING RED HAT GLUSTER STORAGE

27.3.1. Overview

Red Hat Gluster Storage can be configured to provide persistent storage and dynamic provisioning for
OpenShift Container Platform. It can be used both containerized within OpenShift Container Platform
(converged mode) and non-containerized on its own nodes (independent mode).

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

443

https://github.com/openshift/openshift-ansible/tree/release-3.11/roles/openshift_storage_nfs
https://access.redhat.com/solutions/33455

27.3.1.1. converged mode

With converged mode, Red Hat Gluster Storage runs containerized directly on OpenShift Container
Platform nodes. This allows for compute and storage instances to be scheduled and run from the same
set of hardware.

Figure 27.1. Architecture - converged mode

converged mode is available in Red Hat Gluster Storage 3.4. See converged mode for OpenShift
Container Platform for additional documentation.

27.3.1.2. independent mode

With independent mode, Red Hat Gluster Storage runs on its own dedicated nodes and is managed by
an instance of heketi, the GlusterFS volume management REST service. This heketi service must run as
containerized, and not as standalone. Containerization allows for an easy mechanism to provide high-
availability to the service. This documentation focuses on the containerized heketi configuration.

27.3.1.3. Standalone Red Hat Gluster Storage

If you have a standalone Red Hat Gluster Storage cluster available in your environment, you can make
use of volumes on that cluster using OpenShift Container Platform’s GlusterFS volume plug-in. This
solution is a conventional deployment where applications run on dedicated compute nodes, an
OpenShift Container Platform cluster, and storage is provided from its own dedicated nodes.

Figure 27.2. Architecture - Standalone Red Hat Gluster Storage Cluster Using OpenShift Container

OpenShift Container Platform 3.11 Configuring Clusters

444

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/deployment_guide/index#chap-Documentation-Red_Hat_Gluster_Storage_Container_Native_with_OpenShift_Platform-RHGS_Container_Converged_with_OS
https://github.com/heketi/heketi

Figure 27.2. Architecture - Standalone Red Hat Gluster Storage Cluster Using OpenShift Container
Platform's GlusterFS Volume Plug-in

See the Red Hat Gluster Storage Installation Guide and the Red Hat Gluster Storage Administration
Guide for more on Red Hat Gluster Storage.

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

27.3.1.4. GlusterFS Volumes

GlusterFS volumes present a POSIX-compliant filesystem and are comprised of one or more "bricks"
across one or more nodes in their cluster. A brick is just a directory on a given storage node and is
typically the mount point for a block storage device. GlusterFS handles distribution and replication of
files across a given volume’s bricks per that volume’s configuration.

It is recommended to use heketi for most common volume management operations such as create,
delete, and resize. OpenShift Container Platform expects heketi to be present when using the
GlusterFS provisioner. heketi by default will create volumes that are three-ray replica, that is volumes
where each file has three copies across three different nodes. As such it is recommended that any Red
Hat Gluster Storage clusters which will be used by heketi have at least three nodes available.

There are many features available for GlusterFS volumes, but they are beyond the scope of this
documentation.

27.3.1.5. gluster-block Volumes

gluster-block volumes are volumes that can be mounted over iSCSI. This is done by creating a file on an
existing GlusterFS volume and then presenting that file as a block device via an iSCSI target. Such
GlusterFS volumes are called block-hosting volumes.

gluster-block volumes present a sort of trade-off. Being consumed as iSCSI targets, gluster-block

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

445

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.4/html/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.4/html/administration_guide/

gluster-block volumes present a sort of trade-off. Being consumed as iSCSI targets, gluster-block
volumes can only be mounted by one node/client at a time which is in contrast to GlusterFS volumes
which can be mounted by multiple nodes/clients. Being files on the backend, however, allows for
operations which are typically costly on GlusterFS volumes (e.g. metadata lookups) to be converted to
ones which are typically much faster on GlusterFS volumes (e.g. reads and writes). This leads to
potentially substantial performance improvements for certain workloads.

IMPORTANT

For more information about OpenShift Container Storage and OpenShift Container
Platform interoperability, see link: OpenShift Container Storage and OpenShift Container
Platform interoperability matrix.

27.3.1.6. Gluster S3 Storage

The Gluster S3 service allows user applications to access GlusterFS storage via an S3 interface. The
service binds to two GlusterFS volumes, one for object data and one for object metadata, and
translates incoming S3 REST requests into filesystem operations on the volumes. It is recommended to
run the service as a pod inside OpenShift Container Platform.

IMPORTANT

At this time, use and installation of the Gluster S3 service is in tech preview.

27.3.2. Considerations

This section covers a few topics that should be taken into consideration when using Red Hat Gluster
Storage with OpenShift Container Platform.

27.3.2.1. Software Prerequisites

To access GlusterFS volumes, the mount.glusterfs command must be available on all schedulable
nodes. For RPM-based systems, the glusterfs-fuse package must be installed:

yum install glusterfs-fuse

This package comes installed on every RHEL system. However, it is recommended to update to the
latest available version from Red Hat Gluster Storage if your servers use x86_64 architecture. To do
this, the following RPM repository must be enabled:

subscription-manager repos --enable=rh-gluster-3-client-for-rhel-7-server-rpms

If glusterfs-fuse is already installed on the nodes, ensure that the latest version is installed:

yum update glusterfs-fuse

27.3.2.2. Hardware Requirements

Any nodes used in a converged mode or independent mode cluster are considered storage nodes.
Storage nodes can be grouped into distinct cluster groups, though a single node can not be in multiple
groups. For each group of storage nodes:

A minimum of one or more storage nodes per group is required based on storage gluster

OpenShift Container Platform 3.11 Configuring Clusters

446

https://access.redhat.com/articles/3403951

A minimum of one or more storage nodes per group is required based on storage gluster
volumetype option.

Each storage node must have a minimum of 8 GB of RAM. This is to allow running the Red Hat
Gluster Storage pods, as well as other applications and the underlying operating system.

Each GlusterFS volume also consumes memory on every storage node in its storage cluster,
which is about 30 MB. The total amount of RAM should be determined based on how many
concurrent volumes are desired or anticipated.

Each storage node must have at least one raw block device with no present data or metadata.
These block devices will be used in their entirety for GlusterFS storage. Make sure the following
are not present:

Partition tables (GPT or MSDOS)

Filesystems or residual filesystem signatures

LVM2 signatures of former Volume Groups and Logical Volumes

LVM2 metadata of LVM2 physical volumes

If in doubt, wipefs -a <device> should clear any of the above.

IMPORTANT

It is recommended to plan for two clusters: one dedicated to storage for infrastructure
applications (such as an OpenShift Container Registry) and one dedicated to storage for
general applications. This would require a total of six storage nodes. This
recommendation is made to avoid potential impacts on performance in I/O and volume
creation.

27.3.2.3. Storage Sizing

Every GlusterFS cluster must be sized based on the needs of the anticipated applications that will use
its storage. For example, there are sizing guides available for both OpenShift Logging and OpenShift
Metrics.

Some additional things to consider are:

For each converged mode or independent mode cluster, the default behavior is to create
GlusterFS volumes with three-way replication. As such, the total storage to plan for should be
the desired capacity times three.

As an example, each heketi instance creates a heketidbstorage volume that is 2 GB in size,
requiring a total of 6 GB of raw storage across three nodes in the storage cluster. This
capacity is always required and should be taken into consideration for sizing calculations.

Applications like an integrated OpenShift Container Registry share a single GlusterFS
volume across multiple instances of the application.

gluster-block volumes require the presence of a GlusterFS block-hosting volume with enough
capacity to hold the full size of any given block volume’s capacity.

By default, if no such block-hosting volume exists, one will be automatically created at a set
size. The default for this size is 100 GB. If there is not enough space in the cluster to create
the new block-hosting volume, the creation of the block volume will fail. Both the auto-

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

447

create behavior and the auto-created volume size are configurable.

Applications with multiple instances that use gluster-block volumes, such as OpenShift
Logging and OpenShift Metrics, will use one volume per instance.

The Gluster S3 service binds to two GlusterFS volumes. In a default cluster installation, these
volumes are 1 GB each, consuming a total of 6 GB of raw storage.

27.3.2.4. Volume Operation Behaviors

Volume operations, such as create and delete, can be impacted by a variety of environmental
circumstances and can in turn affect applications as well.

If the application pod requests a dynamically provisioned GlusterFS persistent volume claim
(PVC), then extra time might have to be considered for the volume to be created and bound to
the corresponding PVC. This effects the startup time for an application pod.

NOTE

Creation time of GlusterFS volumes scales linearly depending on the number of
volumes. As an example, given 100 volumes in a cluster using recommended
hardware specifications, each volume took approximately 6 seconds to be
created, allocated, and bound to a pod.

When a PVC is deleted, that action will trigger the deletion of the underlying GlusterFS volume.
While PVCs will disappear immediately from the oc get pvc output, this does not mean the
volume has been fully deleted. A GlusterFS volume can only be considered deleted when it does
not show up in the command-line outputs for heketi-cli volume list and gluster volume list.

NOTE

The time to delete the GlusterFS volume and recycle its storage depends on and
scales linearly with the number of active GlusterFS volumes. While pending
volume deletes do not affect running applications, storage administrators should
be aware of and be able to estimate how long they will take, especially when
tuning resource consumption at scale.

27.3.2.5. Volume Security

This section covers Red Hat Gluster Storage volume security, including Portable Operating System
Interface [for Unix] (POSIX) permissions and SELinux considerations. Understanding the basics of
Volume Security , POSIX permissions, and SELinux is presumed.

IMPORTANT

In OpenShift Container Storage 3.11, you must enable SSL encryption to ensure secure
access control to persistent volumes.

For more information, see the Red Hat OpenShift Container Storage 3.11 Operations
Guide.

27.3.2.5.1. POSIX Permissions

Red Hat Gluster Storage volumes present POSIX-compliant file systems. As such, access permissions

OpenShift Container Platform 3.11 Configuring Clusters

448

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-planning
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/operations_guide/index#chap-Documentation-Red_Hat_Gluster_Storage_Container_Native_with_OpenShift_Platform-Enabling_Encryption

1

Red Hat Gluster Storage volumes present POSIX-compliant file systems. As such, access permissions
can be managed using standard command-line tools such as chmod and chown.

For converged mode and independent mode, it is also possible to specify a group ID that will own the
root of the volume at volume creation time. For static provisioning, this is specified as part of the
heketi-cli volume creation command:

WARNING

The PersistentVolume that will be associated with this volume must be annotated
with the group ID so that pods consuming the PersistentVolume can have access to
the file system. This annotation takes the form of:

pv.beta.kubernetes.io/gid: "<GID>" ---

For dynamic provisioning, the provisioner automatically generates and applies a group ID. It is possible
to control the range from which this group ID is selected using the gidMin and gidMax StorageClass
parameters (see Dynamic Provisioning). The provisioner also takes care of annotating the generated
PersistentVolume with the group ID.

27.3.2.5.2. SELinux

By default, SELinux does not allow writing from a pod to a remote Red Hat Gluster Storage server. To
enable writing to Red Hat Gluster Storage volumes with SELinux on, run the following on each node
running GlusterFS:

The -P option makes the boolean persistent between reboots.

NOTE

The virt_sandbox_use_fusefs boolean is defined by the docker-selinux package. If you
get an error saying it is not defined, ensure that this package is installed.

NOTE

If you use Atomic Host, the SELinux booleans are cleared when you upgrade Atomic
Host. When you upgrade Atomic Host, you must set these boolean values again.

27.3.3. Support Requirements

The following requirements must be met to create a supported integration of Red Hat Gluster Storage
and OpenShift Container Platform.

$ heketi-cli volume create --size=100 --gid=10001000



$ sudo setsebool -P virt_sandbox_use_fusefs on 1
$ sudo setsebool -P virt_use_fusefs on

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

449

For independent mode or standalone Red Hat Gluster Storage:

Minimum version: Red Hat Gluster Storage 3.4

All Red Hat Gluster Storage nodes must have valid subscriptions to Red Hat Network channels
and Subscription Manager repositories.

Red Hat Gluster Storage nodes must adhere to the requirements specified in the Planning Red
Hat Gluster Storage Installation.

Red Hat Gluster Storage nodes must be completely up to date with the latest patches and
upgrades. Refer to the Red Hat Gluster Storage Installation Guide to upgrade to the latest
version.

A fully-qualified domain name (FQDN) must be set for each Red Hat Gluster Storage node.
Ensure that correct DNS records exist, and that the FQDN is resolvable via both forward and
reverse DNS lookup.

27.3.4. Installation

For standalone Red Hat Gluster Storage, there is no component installation required to use it with
OpenShift Container Platform. OpenShift Container Platform comes with a built-in GlusterFS volume
driver, allowing it to make use of existing volumes on existing clusters. See provisioning for more on how
to make use of existing volumes.

For converged mode and independent mode, it is recommended to use the cluster installation process
to install the required components.

27.3.4.1. independent mode: Installing Red Hat Gluster Storage Nodes

For independent mode, each Red Hat Gluster Storage node must have the appropriate system
configurations (e.g. firewall ports, kernel modules) and the Red Hat Gluster Storage services must be
running. The services should not be further configured, and should not have formed a Trusted Storage
Pool.

The installation of Red Hat Gluster Storage nodes is beyond the scope of this documentation. For more
information, see Setting Up independent mode.

27.3.4.2. Using the Installer

IMPORTANT

Use separate nodes for glusterfs and glusterfs_registry node groups. Each instance
must be a separate gluster instance as they are managed independently. Using the same
node for glusterfs and glusterfs_registry node groups causes deployment failure.

The cluster installation process can be used to install one or both of two GlusterFS node groups:

glusterfs: A general storage cluster for use by user applications.

glusterfs_registry: A dedicated storage cluster for use by infrastructure applications such as an
integrated OpenShift Container Registry.

It is recommended to deploy both groups to avoid potential impacts on performance in I/O and volume
creation. Both of these are defined in the inventory hosts file.

OpenShift Container Platform 3.11 Configuring Clusters

450

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.4/html/installation_guide/chap-planning_red_hat_storage_installation
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.4/html/installation_guide/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-planning
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/deployment_guide/index#chap-Documentation-Container_on_RHGS
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-planning

To define the storage clusters, include the relevant names in the [OSEv3:children] group, creating
similarly named groups. Then populate the groups with the node information.

In the [OSEv3:children] group, you add the masters, nodes, etcd, and the glusterfs and
glusterfs_registry storage clusters.

After the groups are created and populated, you then configure the clusters by defining more
parameter values in the [OSEv3:vars] group. The variables interact with the GlusterFS clusters. and are
stored in the inventory file, as shown in the following example.

glusterfs variables begin with openshift_storage_glusterfs_.

glusterfs_registry variables begin with openshift_storage_glusterfs_registry_.

The following example of an inventory file illustrates the use of variables when deploying the two
GlusterFS node groups:

`[OSEv3:children]
masters
nodes
etcd
glusterfs
glusterfs_registry`

[OSEv3:vars]
install_method=rpm
os_update=false
install_update_docker=true
docker_storage_driver=devicemapper
ansible_ssh_user=root
openshift_release=v3.11
oreg_url=registry.access.redhat.com/openshift3/ose-${component}:v3.11
#openshift_cockpit_deployer_image='registry.redhat.io/openshift3/registry-console:v3.11'
openshift_docker_insecure_registries=registry.access.redhat.com
openshift_deployment_type=openshift-enterprise
openshift_web_console_install=true
openshift_enable_service_catalog=false
osm_use_cockpit=false
osm_cockpit_plugins=['cockpit-kubernetes']
debug_level=5
openshift_set_hostname=true
openshift_override_hostname_check=true
openshift_disable_check=docker_image_availability
openshift_check_min_host_disk_gb=2
openshift_check_min_host_memory_gb=1
openshift_portal_net=172.31.0.0/16
openshift_master_cluster_method=native
openshift_clock_enabled=true
openshift_use_openshift_sdn=true

openshift_master_dynamic_provisioning_enabled=true

logging
openshift_logging_install_logging=true
openshift_logging_es_pvc_dynamic=true

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

451

openshift_logging_kibana_nodeselector={"node-role.kubernetes.io/infra": "true"}
openshift_logging_curator_nodeselector={"node-role.kubernetes.io/infra": "true"}
openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra": "true"}
openshift_logging_es_pvc_size=20Gi
openshift_logging_es_pvc_storage_class_name="glusterfs-registry-block"

metrics
openshift_metrics_install_metrics=true
openshift_metrics_storage_kind=dynamic
openshift_metrics_hawkular_nodeselector={"node-role.kubernetes.io/infra": "true"}
openshift_metrics_cassandra_nodeselector={"node-role.kubernetes.io/infra": "true"}
openshift_metrics_heapster_nodeselector={"node-role.kubernetes.io/infra": "true"}
openshift_metrics_storage_volume_size=20Gi
openshift_metrics_cassandra_pvc_storage_class_name="glusterfs-registry-block"

glusterfs
openshift_storage_glusterfs_timeout=900
openshift_storage_glusterfs_namespace=glusterfs
openshift_storage_glusterfs_storageclass=true
openshift_storage_glusterfs_storageclass_default=false
openshift_storage_glusterfs_block_storageclass=true
openshift_storage_glusterfs_block_storageclass_default=false
openshift_storage_glusterfs_block_deploy=true
openshift_storage_glusterfs_block_host_vol_create=true
openshift_storage_glusterfs_block_host_vol_size=100

glusterfs_registry
openshift_storage_glusterfs_registry_namespace=glusterfs-registry
openshift_storage_glusterfs_registry_storageclass=true
openshift_storage_glusterfs_registry_storageclass_default=false
openshift_storage_glusterfs_registry_block_storageclass=true
openshift_storage_glusterfs_registry_block_storageclass_default=false
openshift_storage_glusterfs_registry_block_deploy=true
openshift_storage_glusterfs_registry_block_host_vol_create=true
openshift_storage_glusterfs_registry_block_host_vol_size=100

glusterfs_registry_storage
openshift_hosted_registry_storage_kind=glusterfs
openshift_hosted_registry_storage_volume_size=20Gi
openshift_hosted_registry_selector="node-role.kubernetes.io/infra=true"

openshift_storage_glusterfs_heketi_admin_key='adminkey'
openshift_storage_glusterfs_heketi_user_key='heketiuserkey'

openshift_storage_glusterfs_image='registry.access.redhat.com/rhgs3/rhgs-server-rhel7:v3.11'

openshift_storage_glusterfs_heketi_image='registry.access.redhat.com/rhgs3/rhgs-volmanager-
rhel7:v3.11'

openshift_storage_glusterfs_block_image='registry.access.redhat.com/rhgs3/rhgs-gluster-block-prov-
rhel7:v3.11'

OpenShift Container Platform 3.11 Configuring Clusters

452

openshift_master_cluster_hostname=node101.redhat.com
openshift_master_cluster_public_hostname=node101.redhat.com

[masters]
node101.redhat.com

[etcd]
node101.redhat.com

[nodes]
node101.redhat.com openshift_node_group_name="node-config-master"
node102.redhat.com openshift_node_group_name="node-config-infra"
node103.redhat.com openshift_node_group_name="node-config-compute"
node104.redhat.com openshift_node_group_name="node-config-compute"
node105.redhat.com openshift_node_group_name="node-config-compute"
node106.redhat.com openshift_node_group_name="node-config-compute"
node107.redhat.com openshift_node_group_name="node-config-compute"
node108.redhat.com openshift_node_group_name="node-config-compute"

[glusterfs]
node103.redhat.com glusterfs_zone=1 glusterfs_devices='["/dev/sdd"]'
node104.redhat.com glusterfs_zone=2 glusterfs_devices='["/dev/sdd"]'
node105.redhat.com glusterfs_zone=3 glusterfs_devices='["/dev/sdd"]'

[glusterfs_registry]
node106.redhat.com glusterfs_zone=1 glusterfs_devices='["/dev/sdd"]'
node107.redhat.com glusterfs_zone=2 glusterfs_devices='["/dev/sdd"]'
node108.redhat.com glusterfs_zone=3 glusterfs_devices='["/dev/sdd"]'

27.3.4.2.1. Host variables

Each host in the glusterfs and glusterfs_registry groups must have the glusterfs_devices variable
defined. This variable defines the list of block devices that will be managed as part of the GlusterFS
cluster. You must have at least one device, which must be bare, with no partitions or LVM PVs.

You can also define the following variables for each host. If they are defined, these variables further
control the host configuration as a GlusterFS node:

glusterfs_cluster: The ID of the cluster this node belongs to.

glusterfs_hostname: A host name or IP address to be used for internal GlusterFS
communication.

glusterfs_ip: The IP address that the pods use to communicate with the GlusterFS node.

glusterfs_zone: A zone number for the node. Within the cluster, zones determine how to
distribute the bricks of GlusterFS volumes.

27.3.4.2.2. Role variables

To control the integration of a GlusterFS cluster into a new or existing OpenShift Container Platform
cluster, you can also define a number of role variables, which are stored in the inventory file. Each role
variable also has a corresponding variable to optionally configure a separate GlusterFS cluster for use as
storage for an integrated Docker registry.

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

453

27.3.4.2.3. Image name and version tag variables

To prevent OpenShift Container Platform pods from upgrading after an outage leading to a cluster with
different OpenShift Container Platform versions, it is recommended that you specify the image name
and version tags for all containerized components. These variables are:

openshift_storage_glusterfs_image

openshift_storage_glusterfs_block_image

openshift_storage_glusterfs_s3_image

openshift_storage_glusterfs_heketi_image

NOTE

The image variables for gluster-block and gluster-s3 are only necessary if the
corresponding deployment variables (the variables ending in _block_deploy and
_s3_deploy) are true.

A valid image tag is required for your deployment to succeed. Replace <tag> with the version of Red Hat
Gluster Storage that is compatible with OpenShift Container Platform 3.11 as described in the
interoperability matrix for the following variables in your inventory file:

openshift_storage_glusterfs_image=registry.redhat.io/rhgs3/rhgs-server-rhel7:<tag>

openshift_storage_glusterfs_block_image=registry.redhat.io/rhgs3/rhgs-gluster-block-
prov-rhel7:<tag>

openshift_storage_glusterfs_s3_image=registry.redhat.io/rhgs3/rhgs-s3-server-rhel7:
<tag>

openshift_storage_glusterfs_heketi_image=registry.redhat.io/rhgs3/rhgs-volmanager-
rhel7:<tag>

openshift_storage_glusterfs_registry_image=registry.redhat.io/rhgs3/rhgs-server-rhel7:
<tag>

openshift_storage_glusterfs_block_registry_image=registry.redhat.io/rhgs3/rhgs-gluster-
block-prov-rhel7:<tag>

openshift_storage_glusterfs_s3_registry_image=registry.redhat.io/rhgs3/rhgs-s3-server-
rhel7:<tag>

openshift_storage_glusterfs_heketi_registry_image=registry.redhat.io/rhgs3/rhgs-
volmanager-rhel7:<tag>

For a complete list of variables, see the GlusterFS role README on GitHub.

Once the variables are configured, there are several playbooks available depending on the
circumstances of the installation:

The main playbook for cluster installations can be used to deploy the GlusterFS clusters in
tandem with an initial installation of OpenShift Container Platform.

This includes deploying an integrated OpenShift Container Registry that uses GlusterFS
storage.

OpenShift Container Platform 3.11 Configuring Clusters

454

https://access.redhat.com/articles/3930371
https://github.com/openshift/openshift-ansible/tree/release-3.11/roles/openshift_storage_glusterfs

This does not include OpenShift Logging or OpenShift Metrics, as that is currently still a
separate step. See converged mode for OpenShift Logging and Metrics for more
information.

playbooks/openshift-glusterfs/config.yml can be used to deploy the clusters onto an existing
OpenShift Container Platform installation.

playbooks/openshift-glusterfs/registry.yml can be used to deploy the clusters onto an
existing OpenShift Container Platform installation. In addition, this will deploy an integrated
OpenShift Container Registry which uses GlusterFS storage.

IMPORTANT

There must not be a pre-existing registry in the OpenShift Container Platform
cluster.

playbooks/openshift-glusterfs/uninstall.yml can be used to remove existing clusters
matching the configuration in the inventory hosts file. This is useful for cleaning up the
OpenShift Container Platform environment in the case of a failed deployment due to
configuration errors.

NOTE

The GlusterFS playbooks are not guaranteed to be idempotent.

NOTE

Running the playbooks more than once for a given installation is currently not
supported without deleting the entire GlusterFS installation (including disk data)
and starting over.

27.3.4.2.4. Example: Basic converged mode Installation

1. In your inventory file, include the following variables in the [OSEv3:vars] section, and adjust
them as required for your configuration:

[OSEv3:vars]
...
openshift_storage_glusterfs_namespace=app-storage
openshift_storage_glusterfs_storageclass=true
openshift_storage_glusterfs_storageclass_default=false
openshift_storage_glusterfs_block_deploy=true
openshift_storage_glusterfs_block_host_vol_size=100
openshift_storage_glusterfs_block_storageclass=true
openshift_storage_glusterfs_block_storageclass_default=false

2. Add glusterfs in the [OSEv3:children] section to enable the [glusterfs] group:

[OSEv3:children]
masters
nodes
glusterfs

3. Add a [glusterfs] section with entries for each storage node that will host the GlusterFS

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

455

storage. For each node, set glusterfs_devices to a list of raw block devices that will be
completely managed as part of a GlusterFS cluster. There must be at least one device listed.
Each device must be bare, with no partitions or LVM PVs. Specifying the variable takes the form:

<hostname_or_ip> glusterfs_devices='["</path/to/device1/>", "</path/to/device2>", ...]'

For example:

[glusterfs]
node11.example.com glusterfs_devices='["/dev/xvdc", "/dev/xvdd"]'
node12.example.com glusterfs_devices='["/dev/xvdc", "/dev/xvdd"]'
node13.example.com glusterfs_devices='["/dev/xvdc", "/dev/xvdd"]'

4. Add the hosts listed under [glusterfs] to the [nodes] group:

[nodes]
...
node11.example.com openshift_node_group_name="node-config-compute"
node12.example.com openshift_node_group_name="node-config-compute"
node13.example.com openshift_node_group_name="node-config-compute"

NOTE

The preceding steps only provide some of the options that must be added to the
inventory file. Use the complete inventory file to deploy Red Hat Gluster
Storage.

5. Change to the playbook directory and run the installation playbook. Provide the relative path for
the inventory file as an option.

For a new OpenShift Container Platform installation:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <path_to_inventory_file> playbooks/prerequisites.yml
$ ansible-playbook -i <path_to_inventory_file> playbooks/deploy_cluster.yml

For an installation onto an existing OpenShift Container Platform cluster:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <path_to_inventory_file> playbooks/openshift-glusterfs/config.yml

27.3.4.2.5. Example: Basic independent mode Installation

1. In your inventory file, include the following variables in the [OSEv3:vars] section, and adjust
them as required for your configuration:

[OSEv3:vars]
...
openshift_storage_glusterfs_namespace=app-storage
openshift_storage_glusterfs_storageclass=true
openshift_storage_glusterfs_storageclass_default=false
openshift_storage_glusterfs_block_deploy=true
openshift_storage_glusterfs_block_host_vol_size=100

OpenShift Container Platform 3.11 Configuring Clusters

456

openshift_storage_glusterfs_block_storageclass=true
openshift_storage_glusterfs_block_storageclass_default=false
openshift_storage_glusterfs_is_native=false
openshift_storage_glusterfs_heketi_is_native=true
openshift_storage_glusterfs_heketi_executor=ssh
openshift_storage_glusterfs_heketi_ssh_port=22
openshift_storage_glusterfs_heketi_ssh_user=root
openshift_storage_glusterfs_heketi_ssh_sudo=false
openshift_storage_glusterfs_heketi_ssh_keyfile="/root/.ssh/id_rsa"

2. Add glusterfs in the [OSEv3:children] section to enable the [glusterfs] group:

[OSEv3:children]
masters
nodes
glusterfs

3. Add a [glusterfs] section with entries for each storage node that will host the GlusterFS
storage. For each node, set glusterfs_devices to a list of raw block devices that will be
completely managed as part of a GlusterFS cluster. There must be at least one device listed.
Each device must be bare, with no partitions or LVM PVs. Also, set glusterfs_ip to the IP
address of the node. Specifying the variable takes the form:

<hostname_or_ip> glusterfs_ip=<ip_address> glusterfs_devices='["</path/to/device1/>", "
</path/to/device2>", ...]'

For example:

[glusterfs]
gluster1.example.com glusterfs_ip=192.168.10.11 glusterfs_devices='["/dev/xvdc",
"/dev/xvdd"]'
gluster2.example.com glusterfs_ip=192.168.10.12 glusterfs_devices='["/dev/xvdc",
"/dev/xvdd"]'
gluster3.example.com glusterfs_ip=192.168.10.13 glusterfs_devices='["/dev/xvdc",
"/dev/xvdd"]'

NOTE

The preceding steps only provide some of the options that must be added to the
inventory file. Use the complete inventory file to deploy Red Hat Gluster
Storage.

4. Change to the playbook directory and run the installation playbook. Provide the relative path for
the inventory file as an option.

For a new OpenShift Container Platform installation:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <path_to_inventory_file> playbooks/prerequisites.yml
$ ansible-playbook -i <path_to_inventory_file> playbooks/deploy_cluster.yml

For an installation onto an existing OpenShift Container Platform cluster:

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

457

1

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <path_to_inventory_file> playbooks/openshift-glusterfs/config.yml

27.3.4.2.6. Example: converged mode with an Integrated OpenShift Container Registry

1. In your inventory file, set the following variable under [OSEv3:vars] section, and adjust them as
required for your configuration:

[OSEv3:vars]
...
openshift_hosted_registry_storage_kind=glusterfs 1
openshift_hosted_registry_storage_volume_size=5Gi
openshift_hosted_registry_selector='node-role.kubernetes.io/infra=true'

Running the integrated OpenShift Container Registry, on infrastructure nodes is
recommended. Infrastructure node are nodes dedicated to running applications deployed
by administrators to provide services for the OpenShift Container Platform cluster.

2. Add glusterfs_registry in the [OSEv3:children] section to enable the [glusterfs_registry]
group:

[OSEv3:children]
masters
nodes
glusterfs_registry

3. Add a [glusterfs_registry] section with entries for each storage node that will host the
GlusterFS storage. For each node, set glusterfs_devices to a list of raw block devices that will
be completely managed as part of a GlusterFS cluster. There must be at least one device listed.
Each device must be bare, with no partitions or LVM PVs. Specifying the variable takes the form:

<hostname_or_ip> glusterfs_devices='["</path/to/device1/>", "</path/to/device2>", ...]'

For example:

[glusterfs_registry]
node11.example.com glusterfs_devices='["/dev/xvdc", "/dev/xvdd"]'
node12.example.com glusterfs_devices='["/dev/xvdc", "/dev/xvdd"]'
node13.example.com glusterfs_devices='["/dev/xvdc", "/dev/xvdd"]'

4. Add the hosts listed under [glusterfs_registry] to the [nodes] group:

[nodes]
...
node11.example.com openshift_node_group_name="node-config-infra"
node12.example.com openshift_node_group_name="node-config-infra"
node13.example.com openshift_node_group_name="node-config-infra"

NOTE

OpenShift Container Platform 3.11 Configuring Clusters

458

NOTE

The preceding steps only provide some of the options that must be added to the
inventory file. Use the complete inventory file to deploy Red Hat Gluster
Storage.

5. Change to the playbook directory and run the installation playbook. Provide the relative path for
the inventory file as an option.

For a new OpenShift Container Platform installation:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <path_to_inventory_file> playbooks/prerequisites.yml
$ ansible-playbook -i <path_to_inventory_file> playbooks/deploy_cluster.yml

For an installation onto an existing OpenShift Container Platform cluster:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <path_to_inventory_file> playbooks/openshift-glusterfs/config.yml

27.3.4.2.7. Example: converged mode for OpenShift Logging and Metrics

1. In your inventory file, set the following variables under [OSEv3:vars] section, and adjust them
as required for your configuration:

[OSEv3:vars]
...

openshift_metrics_install_metrics=true
openshift_metrics_hawkular_nodeselector={"node-role.kubernetes.io/infra": "true"} 1
openshift_metrics_cassandra_nodeselector={"node-role.kubernetes.io/infra": "true"} 2
openshift_metrics_heapster_nodeselector={"node-role.kubernetes.io/infra": "true"} 3
openshift_metrics_storage_kind=dynamic
openshift_metrics_storage_volume_size=10Gi
openshift_metrics_cassandra_pvc_storage_class_name="glusterfs-registry-block" 4

openshift_logging_install_logging=true
openshift_logging_kibana_nodeselector={"node-role.kubernetes.io/infra": "true"} 5
openshift_logging_curator_nodeselector={"node-role.kubernetes.io/infra": "true"} 6
openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra": "true"} 7
openshift_logging_storage_kind=dynamic
openshift_logging_es_pvc_size=10Gi 8
openshift_logging_elasticsearch_storage_type=pvc 9
openshift_logging_es_pvc_storage_class_name="glusterfs-registry-block" 10

openshift_storage_glusterfs_registry_namespace=infra-storage
openshift_storage_glusterfs_registry_block_deploy=true
openshift_storage_glusterfs_registry_block_host_vol_size=100
openshift_storage_glusterfs_registry_block_storageclass=true
openshift_storage_glusterfs_registry_block_storageclass_default=false

It is recommended to run the integrated OpenShift Container Registry,

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

459

1 2 3 5 6 7

4 10

8

9

It is recommended to run the integrated OpenShift Container Registry,
Logging, and Metrics on nodes dedicated to "infrastructure" applications,

that is applications deployed by administrators to provide services for the OpenShift
Container Platform cluster.

Specify the StorageClass to be used for Logging and Metrics. This name is generated
from the name of the target GlusterFS cluster (e.g., glusterfs-<name>-block). In this
example, this defaults to registry.

OpenShift Logging requires that a PVC size be specified. The supplied value is only an
example, not a recommendation.

If using Persistent Elasticsearch Storage, set the storage type to pvc.

NOTE

See the GlusterFS role README for details on these and other variables.

2. Add glusterfs_registry in the [OSEv3:children] section to enable the [glusterfs_registry]
group:

[OSEv3:children]
masters
nodes
glusterfs_registry

3. Add a [glusterfs_registry] section with entries for each storage node that will host the
GlusterFS storage. For each node, set glusterfs_devices to a list of raw block devices that will
be completely managed as part of a GlusterFS cluster. There must be at least one device listed.
Each device must be bare, with no partitions or LVM PVs. Specifying the variable takes the form:

<hostname_or_ip> glusterfs_devices='["</path/to/device1/>", "</path/to/device2>", ...]'

For example:

[glusterfs_registry]
node11.example.com glusterfs_devices='["/dev/xvdc", "/dev/xvdd"]'
node12.example.com glusterfs_devices='["/dev/xvdc", "/dev/xvdd"]'
node13.example.com glusterfs_devices='["/dev/xvdc", "/dev/xvdd"]'

4. Add the hosts listed under [glusterfs_registry] to the [nodes] group:

[nodes]
...
node11.example.com openshift_node_group_name="node-config-infra"
node12.example.com openshift_node_group_name="node-config-infra"
node13.example.com openshift_node_group_name="node-config-infra"

NOTE

The preceding steps only provide some of the options that must be added to the
inventory file. Use the complete inventory file to deploy Red Hat Gluster
Storage.

5. Change to the playbook directory and run the installation playbook. Provide the relative path for

OpenShift Container Platform 3.11 Configuring Clusters

460

https://github.com/openshift/openshift-ansible/tree/release-3.11/roles/openshift_storage_glusterfs

5. Change to the playbook directory and run the installation playbook. Provide the relative path for
the inventory file as an option.

For a new OpenShift Container Platform installation:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <path_to_inventory_file> playbooks/prerequisites.yml
$ ansible-playbook -i <path_to_inventory_file> playbooks/deploy_cluster.yml

For an installation onto an existing OpenShift Container Platform cluster:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <path_to_inventory_file> playbooks/openshift-glusterfs/config.yml

27.3.4.2.8. Example: converged mode for Applications, Registry, Logging, and Metrics

1. In your inventory file, set the following variables under [OSEv3:vars] section, and adjust them
as required for your configuration:

[OSEv3:vars]
...
openshift_hosted_registry_storage_kind=glusterfs 1
openshift_hosted_registry_storage_volume_size=5Gi
openshift_hosted_registry_selector='node-role.kubernetes.io/infra=true'

openshift_metrics_install_metrics=true
openshift_metrics_hawkular_nodeselector={"node-role.kubernetes.io/infra": "true"} 2
openshift_metrics_cassandra_nodeselector={"node-role.kubernetes.io/infra": "true"} 3
openshift_metrics_heapster_nodeselector={"node-role.kubernetes.io/infra": "true"} 4
openshift_metrics_storage_kind=dynamic
openshift_metrics_storage_volume_size=10Gi
openshift_metrics_cassandra_pvc_storage_class_name="glusterfs-registry-block" 5

openshift_logging_install_logging=true
openshift_logging_kibana_nodeselector={"node-role.kubernetes.io/infra": "true"} 6
openshift_logging_curator_nodeselector={"node-role.kubernetes.io/infra": "true"} 7
openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra": "true"} 8
openshift_logging_storage_kind=dynamic
openshift_logging_es_pvc_size=10Gi 9
openshift_logging_elasticsearch_storage_type=pvc 10
openshift_logging_es_pvc_storage_class_name="glusterfs-registry-block" 11

openshift_storage_glusterfs_namespace=app-storage
openshift_storage_glusterfs_storageclass=true
openshift_storage_glusterfs_storageclass_default=false
openshift_storage_glusterfs_block_deploy=true
openshift_storage_glusterfs_block_host_vol_size=100 12
openshift_storage_glusterfs_block_storageclass=true
openshift_storage_glusterfs_block_storageclass_default=false

openshift_storage_glusterfs_registry_namespace=infra-storage
openshift_storage_glusterfs_registry_block_deploy=true

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

461

1 2 3 4 6 7 8

5 11

9

10

12

openshift_storage_glusterfs_registry_block_host_vol_size=100
openshift_storage_glusterfs_registry_block_storageclass=true
openshift_storage_glusterfs_registry_block_storageclass_default=false

Running the integrated OpenShift Container Registry, Logging, and
Metrics on infrastructure nodes is recommended. Infrastructure node are

nodes dedicated to running applications deployed by administrators to provide services for
the OpenShift Container Platform cluster.

Specify the StorageClass to be used for Logging and Metrics. This name is generated
from the name of the target GlusterFS cluster, for example glusterfs-<name>-block. In
this example, <name> defaults to registry.

Specifying a PVC size is required for OpenShift Logging. The supplied value is only an
example, not a recommendation.

If using Persistent Elasticsearch Storage, set the storage type to pvc.

Size, in GB, of GlusterFS volumes that will be automatically created to host glusterblock
volumes. This variable is used only if there is not enough space is available for a
glusterblock volume create request. This value represents an upper limit on the size of
glusterblock volumes unless you manually create larger GlusterFS block-hosting volumes.

2. Add glusterfs and glusterfs_registry in the [OSEv3:children] section to enable the
[glusterfs] and [glusterfs_registry] groups:

[OSEv3:children]
...
glusterfs
glusterfs_registry

3. Add [glusterfs] and [glusterfs_registry] sections with entries for each storage node that will
host the GlusterFS storage. For each node, set glusterfs_devices to a list of raw block devices
that will be completely managed as part of a GlusterFS cluster. There must be at least one
device listed. Each device must be bare, with no partitions or LVM PVs. Specifying the variable
takes the form:

<hostname_or_ip> glusterfs_devices='["</path/to/device1/>", "</path/to/device2>", ...]'

For example:

[glusterfs]
node11.example.com glusterfs_devices='["/dev/xvdc", "/dev/xvdd"]'
node12.example.com glusterfs_devices='["/dev/xvdc", "/dev/xvdd"]'
node13.example.com glusterfs_devices='["/dev/xvdc", "/dev/xvdd"]'

[glusterfs_registry]
node14.example.com glusterfs_devices='["/dev/xvdc", "/dev/xvdd"]'
node15.example.com glusterfs_devices='["/dev/xvdc", "/dev/xvdd"]'
node16.example.com glusterfs_devices='["/dev/xvdc", "/dev/xvdd"]'

4. Add the hosts listed under [glusterfs] and [glusterfs_registry] to the [nodes] group:

[nodes]

OpenShift Container Platform 3.11 Configuring Clusters

462

1 2 3 4 5 6

...
node11.example.com openshift_node_group_name='node-config-compute' 1
node12.example.com openshift_node_group_name='node-config-compute' 2
node13.example.com openshift_node_group_name='node-config-compute' 3
node14.example.com openshift_node_group_name='node-config-infra'" 4
node15.example.com openshift_node_group_name='node-config-infra'" 5
node16.example.com openshift_node_group_name='node-config-infra'" 6

The nodes are marked to denote whether they will allow general applications
or infrastructure applications to be scheduled on them. It is up to the

administrator to configure how applications will be constrained.

NOTE

The preceding steps only provide some of the options that must be added to the
inventory file. Use the complete inventory file to deploy Red Hat Gluster
Storage.

5. Change to the playbook directory and run the installation playbook. Provide the relative path for
the inventory file as an option.

For a new OpenShift Container Platform installation:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <path_to_inventory_file> playbooks/prerequisites.yml
$ ansible-playbook -i <path_to_inventory_file> playbooks/deploy_cluster.yml

For an installation onto an existing OpenShift Container Platform cluster:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <path_to_inventory_file> playbooks/openshift-glusterfs/config.yml

27.3.4.2.9. Example: independent mode for Applications, Registry, Logging, and Metrics

1. In your inventory file, set the following variables under [OSEv3:vars] section, and adjust them
as required for your configuration:

[OSEv3:vars]
...
openshift_hosted_registry_storage_kind=glusterfs 1
openshift_hosted_registry_storage_volume_size=5Gi
openshift_hosted_registry_selector='node-role.kubernetes.io/infra=true'

openshift_metrics_install_metrics=true
openshift_metrics_hawkular_nodeselector={"node-role.kubernetes.io/infra": "true"} 2
openshift_metrics_cassandra_nodeselector={"node-role.kubernetes.io/infra": "true"} 3
openshift_metrics_heapster_nodeselector={"node-role.kubernetes.io/infra": "true"} 4
openshift_metrics_storage_kind=dynamic
openshift_metrics_storage_volume_size=10Gi
openshift_metrics_cassandra_pvc_storage_class_name="glusterfs-registry-block" 5

openshift_logging_install_logging=true

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

463

1 2 3 4 6 7 8

5 11

9

10

12

openshift_logging_kibana_nodeselector={"node-role.kubernetes.io/infra": "true"} 6
openshift_logging_curator_nodeselector={"node-role.kubernetes.io/infra": "true"} 7
openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra": "true"} 8
openshift_logging_storage_kind=dynamic
openshift_logging_es_pvc_size=10Gi 9
openshift_logging_elasticsearch_storage_type 10
openshift_logging_es_pvc_storage_class_name="glusterfs-registry-block" 11

openshift_storage_glusterfs_namespace=app-storage
openshift_storage_glusterfs_storageclass=true
openshift_storage_glusterfs_storageclass_default=false
openshift_storage_glusterfs_block_deploy=true
openshift_storage_glusterfs_block_host_vol_size=100 12
openshift_storage_glusterfs_block_storageclass=true
openshift_storage_glusterfs_block_storageclass_default=false
openshift_storage_glusterfs_is_native=false
openshift_storage_glusterfs_heketi_is_native=true
openshift_storage_glusterfs_heketi_executor=ssh
openshift_storage_glusterfs_heketi_ssh_port=22
openshift_storage_glusterfs_heketi_ssh_user=root
openshift_storage_glusterfs_heketi_ssh_sudo=false
openshift_storage_glusterfs_heketi_ssh_keyfile="/root/.ssh/id_rsa"

openshift_storage_glusterfs_registry_namespace=infra-storage
openshift_storage_glusterfs_registry_block_deploy=true
openshift_storage_glusterfs_registry_block_host_vol_size=100
openshift_storage_glusterfs_registry_block_storageclass=true
openshift_storage_glusterfs_registry_block_storageclass_default=false
openshift_storage_glusterfs_registry_is_native=false
openshift_storage_glusterfs_registry_heketi_is_native=true
openshift_storage_glusterfs_registry_heketi_executor=ssh
openshift_storage_glusterfs_registry_heketi_ssh_port=22
openshift_storage_glusterfs_registry_heketi_ssh_user=root
openshift_storage_glusterfs_registry_heketi_ssh_sudo=false
openshift_storage_glusterfs_registry_heketi_ssh_keyfile="/root/.ssh/id_rsa"

It is recommended to run the integrated OpenShift Container Registry on
nodes dedicated to "infrastructure" applications, that is applications

deployed by administrators to provide services for the OpenShift Container Platform
cluster. It is up to the administrator to select and label nodes for infrastructure
applications.

Specify the StorageClass to be used for Logging and Metrics. This name is generated
from the name of the target GlusterFS cluster (e.g., glusterfs-<name>-block). In this
example, this defaults to registry.

OpenShift Logging requires that a PVC size be specified. The supplied value is only an
example, not a recommendation.

If using Persistent Elasticsearch Storage, set the storage type to pvc.

Size, in GB, of GlusterFS volumes that will be automatically created to host glusterblock
volumes. This variable is used only if there is not enough space is available for a
glusterblock volume create request. This value represents an upper limit on the size of
glusterblock volumes unless you manually create larger GlusterFS block-hosting volumes.

OpenShift Container Platform 3.11 Configuring Clusters

464

2. Add glusterfs and glusterfs_registry in the [OSEv3:children] section to enable the
[glusterfs] and [glusterfs_registry] groups:

[OSEv3:children]
...
glusterfs
glusterfs_registry

3. Add [glusterfs] and [glusterfs_registry] sections with entries for each storage node that will
host the GlusterFS storage. For each node, set glusterfs_devices to a list of raw block devices
that will be completely managed as part of a GlusterFS cluster. There must be at least one
device listed. Each device must be bare, with no partitions or LVM PVs. Also, set glusterfs_ip to
the IP address of the node. Specifying the variable takes the form:

<hostname_or_ip> glusterfs_ip=<ip_address> glusterfs_devices='["</path/to/device1/>", "
</path/to/device2>", ...]'

For example:

[glusterfs]
gluster1.example.com glusterfs_ip=192.168.10.11 glusterfs_devices='["/dev/xvdc",
"/dev/xvdd"]'
gluster2.example.com glusterfs_ip=192.168.10.12 glusterfs_devices='["/dev/xvdc",
"/dev/xvdd"]'
gluster3.example.com glusterfs_ip=192.168.10.13 glusterfs_devices='["/dev/xvdc",
"/dev/xvdd"]'

[glusterfs_registry]
gluster4.example.com glusterfs_ip=192.168.10.14 glusterfs_devices='["/dev/xvdc",
"/dev/xvdd"]'
gluster5.example.com glusterfs_ip=192.168.10.15 glusterfs_devices='["/dev/xvdc",
"/dev/xvdd"]'
gluster6.example.com glusterfs_ip=192.168.10.16 glusterfs_devices='["/dev/xvdc",
"/dev/xvdd"]'

NOTE

The preceding steps only provide some of the options that must be added to the
inventory file. Use the complete inventory file to deploy Red Hat Gluster
Storage.

4. Change to the playbook directory and run the installation playbook. Provide the relative path for
the inventory file as an option.

For a new OpenShift Container Platform installation:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <path_to_inventory_file> playbooks/prerequisites.yml
$ ansible-playbook -i <path_to_inventory_file> playbooks/deploy_cluster.yml

For an installation onto an existing OpenShift Container Platform cluster:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <path_to_inventory_file> playbooks/openshift-glusterfs/config.yml

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

465

27.3.5. Uninstall converged mode

For converged mode, an OpenShift Container Platform install comes with a playbook to uninstall all
resources and artifacts from the cluster. To use the playbook, provide the original inventory file that was
used to install the target instance of converged mode, change to the playbook directory, and run the
following playbook:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <path_to_inventory_file> playbooks/openshift-glusterfs/uninstall.yml

In addition, the playbook supports the use of a variable called openshift_storage_glusterfs_wipe
which, when enabled, destroys any data on the block devices that were used for Red Hat Gluster
Storage backend storage. To use the openshift_storage_glusterfs_wipe variable, change to the
playbook directory and run the following playbook:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <path_to_inventory_file> -e \
 "openshift_storage_glusterfs_wipe=true" \
 playbooks/openshift-glusterfs/uninstall.yml

WARNING

This procedure destroys data. Proceed with caution.

27.3.6. Provisioning

GlusterFS volumes can be provisioned either statically or dynamically. Static provisioning is available
with all configurations. Only converged mode and independent mode support dynamic provisioning.

27.3.6.1. Static Provisioning

1. To enable static provisioning, first create a GlusterFS volume. See the Red Hat Gluster Storage
Administration Guide for information on how to do this using the gluster command-line
interface or the heketi project site for information on how to do this using heketi-cli. For this
example, the volume will be named myVol1.

2. Define the following Service and Endpoints in gluster-endpoints.yaml:



apiVersion: v1
kind: Service
metadata:
 name: glusterfs-cluster 1
spec:
 ports:
 - port: 1

apiVersion: v1

OpenShift Container Platform 3.11 Configuring Clusters

466

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.4/html/administration_guide
https://github.com/heketi/heketi

1 2

3 5 7

4 6 8

These names must match.

The ip values must be the actual IP addresses of a Red Hat Gluster Storage server, not
hostnames.

The port number is ignored.

3. From the OpenShift Container Platform master host, create the Service and Endpoints:

4. Verify that the Service and Endpoints were created:

NOTE

Endpoints are unique per project. Each project accessing the GlusterFS volume
needs its own Endpoints.

5. In order to access the volume, the container must run with either a user ID (UID) or group ID
(GID) that has access to the file system on the volume. This information can be discovered in
the following manner:

kind: Endpoints
metadata:
 name: glusterfs-cluster 2
subsets:
 - addresses:
 - ip: 192.168.122.221 3
 ports:
 - port: 1 4
 - addresses:
 - ip: 192.168.122.222 5
 ports:
 - port: 1 6
 - addresses:
 - ip: 192.168.122.223 7
 ports:
 - port: 1 8

$ oc create -f gluster-endpoints.yaml
service "glusterfs-cluster" created
endpoints "glusterfs-cluster" created

$ oc get services
NAME CLUSTER_IP EXTERNAL_IP PORT(S) SELECTOR AGE
glusterfs-cluster 172.30.205.34 <none> 1/TCP <none> 44s

$ oc get endpoints
NAME ENDPOINTS AGE
docker-registry 10.1.0.3:5000 4h
glusterfs-cluster 192.168.122.221:1,192.168.122.222:1,192.168.122.223:1 11s
kubernetes 172.16.35.3:8443 4d

$ mkdir -p /mnt/glusterfs/myVol1

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

467

1

2

1

2

3

4

5

6

The UID is 592.

The GID is 590.

6. Define the following PersistentVolume (PV) in gluster-pv.yaml:

The name of the volume.

The GID on the root of the GlusterFS volume.

The amount of storage allocated to this volume.

accessModes are used as labels to match a PV and a PVC. They currently do not define
any form of access control.

The Endpoints resource previously created.

The GlusterFS volume that will be accessed.

7. From the OpenShift Container Platform master host, create the PV:

8. Verify that the PV was created:

$ mount -t glusterfs 192.168.122.221:/myVol1 /mnt/glusterfs/myVol1

$ ls -lnZ /mnt/glusterfs/
drwxrwx---. 592 590 system_u:object_r:fusefs_t:s0 myVol1 1 2

apiVersion: v1
kind: PersistentVolume
metadata:
 name: gluster-default-volume 1
 annotations:
 pv.beta.kubernetes.io/gid: "590" 2
spec:
 capacity:
 storage: 2Gi 3
 accessModes: 4
 - ReadWriteMany
 glusterfs:
 endpoints: glusterfs-cluster 5
 path: myVol1 6
 readOnly: false
 persistentVolumeReclaimPolicy: Retain

$ oc create -f gluster-pv.yaml

$ oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM
REASON AGE
gluster-default-volume <none> 2147483648 RWX Available 2s

OpenShift Container Platform 3.11 Configuring Clusters

468

1

2

3

9. Create a PersistentVolumeClaim (PVC) that will bind to the new PV in gluster-claim.yaml:

The claim name is referenced by the pod under its volumes section.

Must match the accessModes of the PV.

This claim will look for PVs offering 1Gi or greater capacity.

10. From the OpenShift Container Platform master host, create the PVC:

11. Verify that the PV and PVC are bound:

NOTE

PVCs are unique per project. Each project accessing the GlusterFS volume needs its own
PVC. PVs are not bound to a single project, so PVCs across multiple projects may refer to
the same PV.

27.3.6.2. Dynamic Provisioning

1. To enable dynamic provisioning, first create a StorageClass object definition. The definition
below is based on the minimum requirements needed for this example to work with OpenShift
Container Platform. See Dynamic Provisioning and Creating Storage Classes for additional
parameters and specification definitions.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: gluster-claim 1
spec:
 accessModes:
 - ReadWriteMany 2
 resources:
 requests:
 storage: 1Gi 3

$ oc create -f gluster-claim.yaml

$ oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON
AGE
gluster-pv <none> 1Gi RWX Available gluster-claim 37s

$ oc get pvc
NAME LABELS STATUS VOLUME CAPACITY ACCESSMODES AGE
gluster-claim <none> Bound gluster-pv 1Gi RWX 24s

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: glusterfs
provisioner: kubernetes.io/glusterfs

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

469

1

2

The heketi server URL.

Since authentication is not turned on in this example, set to false.

2. From the OpenShift Container Platform master host, create the StorageClass:

oc create -f gluster-storage-class.yaml
storageclass "glusterfs" created

3. Create a PVC using the newly-created StorageClass. For example:

4. From the OpenShift Container Platform master host, create the PVC:

oc create -f glusterfs-dyn-pvc.yaml
persistentvolumeclaim "gluster1" created

5. View the PVC to see that the volume was dynamically created and bound to the PVC:

oc get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES
STORAGECLASS AGE
gluster1 Bound pvc-78852230-d8e2-11e6-a3fa-0800279cf26f 30Gi RWX
glusterfs 42s

27.4. PERSISTENT STORAGE USING OPENSTACK CINDER

27.4.1. Overview

You can provision your OpenShift Container Platform cluster with persistent storage using OpenStack
Cinder. Some familiarity with Kubernetes and OpenStack is assumed.

IMPORTANT

Before you create persistent volumes (PVs) using Cinder, configured OpenShift
Container Platform for OpenStack.

parameters:
 resturl: "http://10.42.0.0:8080" 1
 restauthenabled: "false" 2

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: gluster1
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 30Gi
 storageClassName: glusterfs

OpenShift Container Platform 3.11 Configuring Clusters

470

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-openstack-platform/version-7/red-hat-enterprise-linux-openstack-platform-7-architecture-guide/chapter-1-components#comp-cinder

1

2

3

4

5

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure. You can provision OpenStack Cinder volumes dynamically.

Persistent volumes are not bound to a single project or namespace; they can be shared across the
OpenShift Container Platform cluster. Persistent volume claims , however, are specific to a project or
namespace and can be requested by users.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

27.4.2. Provisioning Cinder PVs

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform. After ensuring that OpenShift Container Platform is configured for OpenStack, all
that is required for Cinder is a Cinder volume ID and the PersistentVolume API.

27.4.2.1. Creating the Persistent Volume

You must define your PV in an object definition before creating it in OpenShift Container Platform:

1. Save your object definition to a file, for example cinder-pv.yaml:

The name of the volume that is used by persistent volume claims or pods.

The amount of storage allocated to this volume.

The volume type, in this case cinder.

File system type to mount.

The Cinder volume to use.

IMPORTANT

Do not change the fstype parameter value after the volume is formatted and
provisioned. Changing this value can result in data loss and pod failure.

2. Create the persistent volume:

apiVersion: "v1"
kind: "PersistentVolume"
metadata:
 name: "pv0001" 1
spec:
 capacity:
 storage: "5Gi" 2
 accessModes:
 - "ReadWriteOnce"
 cinder: 3
 fsType: "ext3" 4
 volumeID: "f37a03aa-6212-4c62-a805-9ce139fab180" 5

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

471

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#persistent-volume-claims
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage

oc create -f cinder-pv.yaml

persistentvolume "pv0001" created

3. Verify that the persistent volume exists:

oc get pv

NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON
AGE
pv0001 <none> 5Gi RWO Available 2s

Users can then request storage using persistent volume claims , which can now utilize your new persistent
volume.

IMPORTANT

Persistent volume claims exist only in the user’s namespace and can be referenced by a
pod within that same namespace. Any attempt to access a persistent volume claim from a
different namespace causes the pod to fail.

27.4.2.2. Cinder PV format

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that it
contains a file system as specified by the fsType parameter in the persistent volume definition. If the
device is not formatted with the file system, all data from the device is erased and the device is
automatically formatted with the given file system.

This allows using unformatted Cinder volumes as persistent volumes, because OpenShift Container
Platform formats them before the first use.

27.4.2.3. Cinder volume security

If you use Cinder PVs in your application, configure security for their deployment configurations.

NOTE

Review the Volume Security information before implementing Cinder volumes.

1. Create an SCC that uses the appropriate fsGroup strategy.

2. Create a service account and add it to the SCC:

[source,bash]
$ oc create serviceaccount <service_account>
$ oc adm policy add-scc-to-user <new_scc> -z <service_account> -n <project>

3. In your application’s deployment configuration, provide the service account name and
securityContext:

apiVersion: v1
kind: ReplicationController
metadata:

OpenShift Container Platform 3.11 Configuring Clusters

472

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-persistent-volumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#creating-new-security-context-constraints

1

2

3

4

5

6

7

The number of copies of the pod to run.

The label selector of the pod to run.

A template for the pod the controller creates.

The labels on the pod must include labels from the label selector.

The maximum name length after expanding any parameters is 63 characters.

Specify the service account you created.

Specify an fsGroup for the pods.

27.4.2.4. Cinder volume limit

By default, a maximum of 256 Cinder volumes can be attached to each node in a cluster. To change this
limit:

1. Set the KUBE_MAX_PD_VOLS environment variable to an integer. For example, in
/etc/origin/master/master.env:

KUBE_MAX_PD_VOLS=26

2. From a command line, restart the API service:

master-restart api

3. From a command line, restart the controllers service:

master-restart controllers

 name: frontend-1
spec:
 replicas: 1 1
 selector: 2
 name: frontend
 template: 3
 metadata:
 labels: 4
 name: frontend 5
 spec:
 containers:
 - image: openshift/hello-openshift
 name: helloworld
 ports:
 - containerPort: 8080
 protocol: TCP
 restartPolicy: Always
 serviceAccountName: <service_account> 6
 securityContext:
 fsGroup: 7777 7

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

473

27.5. PERSISTENT STORAGE USING CEPH RADOS BLOCK DEVICE
(RBD)

27.5.1. Overview

OpenShift Container Platform clusters can be provisioned with persistent storage using Ceph RBD.

Persistent volumes (PVs) and persistent volume claims (PVCs) can share volumes across a single
project. While the Ceph RBD-specific information contained in a PV definition could also be defined
directly in a pod definition, doing so does not create the volume as a distinct cluster resource, making
the volume more susceptible to conflicts.

This topic presumes some familiarity with OpenShift Container Platform and Ceph RBD. See the
Persistent Storage concept topic for details on the OpenShift Container Platform persistent volume
(PV) framework in general.

NOTE

Project and namespace are used interchangeably throughout this document. See
Projects and Users for details on the relationship.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

27.5.2. Provisioning

To provision Ceph volumes, the following are required:

An existing storage device in your underlying infrastructure.

The Ceph key to be used in an OpenShift Container Platform secret object.

The Ceph image name.

The file system type on top of the block storage (e.g., ext4).

ceph-common installed on each schedulable OpenShift Container Platform node in your
cluster:

yum install ceph-common

27.5.2.1. Creating the Ceph Secret

Define the authorization key in a secret configuration, which is then converted to base64 for use by
OpenShift Container Platform.

NOTE

In order to use Ceph storage to back a persistent volume, the secret must be created in
the same project as the PVC and pod. The secret cannot simply be in the default project.

1. Run ceph auth get-key on a Ceph MON node to display the key value for the client.admin user:

OpenShift Container Platform 3.11 Configuring Clusters

474

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-persistent-volumes
https://access.redhat.com/products/red-hat-ceph-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#namespaces

1

2

2. Save the secret definition to a file, for example ceph-secret.yaml, then create the secret:

$ oc create -f ceph-secret.yaml

3. Verify that the secret was created:

oc get secret ceph-secret
NAME TYPE DATA AGE
ceph-secret kubernetes.io/rbd 1 23d

27.5.2.2. Creating the Persistent Volume

Developers request Ceph RBD storage by referencing either a PVC, or the Gluster volume plug-in
directly in the volumes section of a pod specification. A PVC exists only in the user’s namespace and
can be referenced only by pods within that same namespace. Any attempt to access a PV from a
different namespace causes the pod to fail.

1. Define the PV in an object definition before creating it in OpenShift Container Platform:

Example 27.3. Persistent Volume Object Definition Using Ceph RBD

The name of the PV that is referenced in pod definitions or displayed in various oc
volume commands.

The amount of storage allocated to this volume.

apiVersion: v1
kind: Secret
metadata:
 name: ceph-secret
data:
 key: QVFBOFF2SlZheUJQRVJBQWgvS2cwT1laQUhPQno3akZwekxxdGc9PQ==
type: kubernetes.io/rbd

apiVersion: v1
kind: PersistentVolume
metadata:
 name: ceph-pv 1
spec:
 capacity:
 storage: 2Gi 2
 accessModes:
 - ReadWriteOnce 3
 rbd: 4
 monitors: 5
 - 192.168.122.133:6789
 pool: rbd
 image: ceph-image
 user: admin
 secretRef:
 name: ceph-secret 6
 fsType: ext4 7
 readOnly: false
 persistentVolumeReclaimPolicy: Retain

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

475

3

4

5

6

7

1

2

accessModes are used as labels to match a PV and a PVC. They currently do not define
any form of access control. All block storage is defined to be single user (non-shared

The volume type being used, in this case the rbd plug-in.

An array of Ceph monitor IP addresses and ports.

The Ceph secret used to create a secure connection from OpenShift Container
Platform to the Ceph server.

The file system type mounted on the Ceph RBD block device.

IMPORTANT

Changing the value of the fstype parameter after the volume has been
formatted and provisioned can result in data loss and pod failure.

2. Save your definition to a file, for example ceph-pv.yaml, and create the PV:

oc create -f ceph-pv.yaml

3. Verify that the persistent volume was created:

oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM
REASON AGE
ceph-pv <none> 2147483648 RWO Available 2s

4. Create a PVC that will bind to the new PV:

Example 27.4. PVC Object Definition

The accessModes do not enforce access right, but instead act as labels to match a PV
to a PVC.

This claim looks for PVs offering 2Gi or greater capacity.

5. Save the definition to a file, for example ceph-claim.yaml, and create the PVC:

oc create -f ceph-claim.yaml

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: ceph-claim
spec:
 accessModes: 1
 - ReadWriteOnce
 resources:
 requests:
 storage: 2Gi 2

OpenShift Container Platform 3.11 Configuring Clusters

476

1

2

oc create -f ceph-claim.yaml

27.5.3. Ceph Volume Security

NOTE

See the full Volume Security topic before implementing Ceph RBD volumes.

A significant difference between shared volumes (NFS and GlusterFS) and block volumes (Ceph RBD,
iSCSI, and most cloud storage), is that the user and group IDs defined in the pod definition or container
image are applied to the target physical storage. This is referred to as managing ownership of the block
device. For example, if the Ceph RBD mount has its owner set to 123 and its group ID set to 567, and if
the pod defines its runAsUser set to 222 and its fsGroup to be 7777, then the Ceph RBD physical
mount’s ownership will be changed to 222:7777.

NOTE

Even if the user and group IDs are not defined in the pod specification, the resulting pod
may have defaults defined for these IDs based on its matching SCC, or its project. See
the full Volume Security topic which covers storage aspects of SCCs and defaults in
greater detail.

A pod defines the group ownership of a Ceph RBD volume using the fsGroup stanza under the pod’s
securityContext definition:

The securityContext must be defined at the pod level, not under a specific container.

All containers in the pod will have the same fsGroup ID.

27.6. PERSISTENT STORAGE USING AWS ELASTIC BLOCK STORE

27.6.1. Overview

OpenShift Container Platform supports AWS Elastic Block Store volumes (EBS). You can provision your
OpenShift Container Platform cluster with persistent storage using AWS EC2. Some familiarity with
Kubernetes and AWS is assumed.

IMPORTANT

Before creating persistent volumes using AWS, OpenShift Container Platform must first
be properly configured for AWS ElasticBlockStore.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the

spec:
 containers:
 - name:
 ...
 securityContext: 1
 fsGroup: 7777 2

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

477

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage

1

2

3

4

5

underlying infrastructure. AWS Elastic Block Store volumes can be provisioned dynamically. Persistent
volumes are not bound to a single project or namespace; they can be shared across the OpenShift
Container Platform cluster. Persistent volume claims , however, are specific to a project or namespace
and can be requested by users.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

27.6.2. Provisioning

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform. After ensuring OpenShift is configured for AWS Elastic Block Store, all that is
required for OpenShift and AWS is an AWS EBS volume ID and the PersistentVolume API.

27.6.2.1. Creating the Persistent Volume

You must define your persistent volume in an object definition before creating it in OpenShift Container
Platform:

Example 27.5. Persistent Volume Object Definition Using AWS

The name of the volume. This will be how it is identified via persistent volume claims or from
pods.

The amount of storage allocated to this volume.

This defines the volume type being used, in this case the awsElasticBlockStore plug-in.

File system type to mount.

This is the AWS volume that will be used.

IMPORTANT

Changing the value of the fstype parameter after the volume has been formatted and
provisioned can result in data loss and pod failure.

apiVersion: "v1"
kind: "PersistentVolume"
metadata:
 name: "pv0001" 1
spec:
 capacity:
 storage: "5Gi" 2
 accessModes:
 - "ReadWriteOnce"
 awsElasticBlockStore: 3
 fsType: "ext4" 4
 volumeID: "vol-f37a03aa" 5

OpenShift Container Platform 3.11 Configuring Clusters

478

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#persistent-volume-claims
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage

Save your definition to a file, for example aws-pv.yaml, and create the persistent volume:

oc create -f aws-pv.yaml
persistentvolume "pv0001" created

Verify that the persistent volume was created:

oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE
pv0001 <none> 5Gi RWO Available 2s

Users can then request storage using persistent volume claims , which can now utilize your new persistent
volume.

IMPORTANT

Persistent volume claims only exist in the user’s namespace and can only be referenced
by a pod within that same namespace. Any attempt to access a persistent volume from a
different namespace causes the pod to fail.

27.6.2.2. Volume Format

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that it
contains a file system as specified by the fsType parameter in the persistent volume definition. If the
device is not formatted with the file system, all data from the device is erased and the device is
automatically formatted with the given file system.

This allows using unformatted AWS volumes as persistent volumes, because OpenShift Container
Platform formats them before the first use.

27.6.2.3. Maximum Number of EBS Volumes on a Node

By default, OpenShift Container Platform supports a maximum of 39 EBS volumes attached to one
node. This limit is consistent with the AWS Volume Limits .

OpenShift Container Platform can be configured to have a higher limit by setting the environment
variable KUBE_MAX_PD_VOLS. However, AWS requires a particular naming scheme (AWS Device
Naming) for attached devices, which only supports a maximum of 52 volumes. This limits the number of
volumes that can be attached to a node via OpenShift Container Platform to 52.

27.7. PERSISTENT STORAGE USING GCE PERSISTENT DISK

27.7.1. Overview

OpenShift Container Platform supports GCE Persistent Disk volumes (gcePD). You can provision your
OpenShift Container Platform cluster with persistent storage using GCE. Some familiarity with
Kubernetes and GCE is assumed.

IMPORTANT

Before creating persistent volumes using GCE, OpenShift Container Platform must first
be properly configured for GCE Persistent Disk .

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

479

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-persistent-volumes
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/volume_limits.html#linux-specific-volume-limits
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/device_naming.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage
https://cloud.google.com/compute/docs/disks/

1

2

3

4

5

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure. GCE Persistent Disk volumes can be provisioned dynamically. Persistent
volumes are not bound to a single project or namespace; they can be shared across the OpenShift
Container Platform cluster. Persistent volume claims , however, are specific to a project or namespace
and can be requested by users.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

27.7.2. Provisioning

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform. After ensuring OpenShift Container Platform is configured for GCE PersistentDisk ,
all that is required for OpenShift Container Platform and GCE is an GCE Persistent Disk volume ID and
the PersistentVolume API.

27.7.2.1. Creating the Persistent Volume

You must define your persistent volume in an object definition before creating it in OpenShift Container
Platform:

Example 27.6. Persistent Volume Object Definition Using GCE

The name of the volume. This will be how it is identified via persistent volume claims or from
pods.

The amount of storage allocated to this volume.

This defines the volume type being used, in this case the gcePersistentDisk plug-in.

File system type to mount.

This is the GCE Persistent Disk volume that will be used.

IMPORTANT

apiVersion: "v1"
kind: "PersistentVolume"
metadata:
 name: "pv0001" 1
spec:
 capacity:
 storage: "5Gi" 2
 accessModes:
 - "ReadWriteOnce"
 gcePersistentDisk: 3
 fsType: "ext4" 4
 pdName: "pd-disk-1" 5

OpenShift Container Platform 3.11 Configuring Clusters

480

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#persistent-volume-claims
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage

IMPORTANT

Changing the value of the fstype parameter after the volume has been formatted and
provisioned can result in data loss and pod failure.

Save your definition to a file, for example gce-pv.yaml, and create the persistent volume:

oc create -f gce-pv.yaml
persistentvolume "pv0001" created

Verify that the persistent volume was created:

oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE
pv0001 <none> 5Gi RWO Available 2s

Users can then request storage using persistent volume claims , which can now utilize your new persistent
volume.

IMPORTANT

Persistent volume claims only exist in the user’s namespace and can only be referenced
by a pod within that same namespace. Any attempt to access a persistent volume from a
different namespace causes the pod to fail.

27.7.2.2. Volume Format

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that it
contains a file system as specified by the fsType parameter in the persistent volume definition. If the
device is not formatted with the file system, all data from the device is erased and the device is
automatically formatted with the given file system.

This allows using unformatted GCE volumes as persistent volumes, because OpenShift Container
Platform formats them before the first use.

27.8. PERSISTENT STORAGE USING ISCSI

27.8.1. Overview

You can provision your OpenShift Container Platform cluster with persistent storage using iSCSI. Some
familiarity with Kubernetes and iSCSI is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

27.8.2. Provisioning

Verify that the storage exists in the underlying infrastructure before mounting it as a volume in

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

481

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-persistent-volumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-iscsi.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-persistent-volumes

Verify that the storage exists in the underlying infrastructure before mounting it as a volume in
OpenShift Container Platform. All that is required for the iSCSI is the iSCSI target portal, a valid iSCSI
Qualified Name (IQN), a valid LUN number, the filesystem type, and the PersistentVolume API.

Optionally, multipath portals and Challenge Handshake Authentication Protocol (CHAP) configuration
can be provided.

Example 27.7. Persistent Volume Object Definition

27.8.2.1. Enforcing Disk Quotas

Use LUN partitions to enforce disk quotas and size constraints. Each LUN is one persistent volume.
Kubernetes enforces unique names for persistent volumes.

Enforcing quotas in this way allows the end user to request persistent storage by a specific amount (e.g,
10Gi) and be matched with a corresponding volume of equal or greater capacity.

27.8.2.2. iSCSI Volume Security

Users request storage with a PersistentVolumeClaim. This claim only lives in the user’s namespace and
can only be referenced by a pod within that same namespace. Any attempt to access a persistent
volume across a namespace causes the pod to fail.

Each iSCSI LUN must be accessible by all nodes in the cluster.

27.8.2.3. iSCSI Multipathing

For iSCSI-based storage, you can configure multiple paths by using the same IQN for more than one
target portal IP address. Multipathing ensures access to the persistent volume when one or more of the
components in a path fail.

To specify multi-paths in pod specification use the portals field. For example:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: iscsi-pv
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 iscsi:
 targetPortal: 10.16.154.81:3260
 portals: ['10.16.154.82:3260', '10.16.154.83:3260']
 iqn: iqn.2014-12.example.server:storage.target00
 lun: 0
 fsType: 'ext4'
 readOnly: false
 chapAuthDiscovery: true
 chapAuthSession: true
 secretRef:
 name: chap-secret

OpenShift Container Platform 3.11 Configuring Clusters

482

1

1

Add additional target portals using the portals field.

27.8.2.4. iSCSI Custom Initiator IQN

Configure the custom initiator iSCSI Qualified Name (IQN) if the iSCSI targets are restricted to certain
IQNs, but the nodes that the iSCSI PVs are attached to are not guaranteed to have these IQNs.

To specify custom initiator IQN, use initiatorName field.

To add an additional custom initiator IQN, use initiatorName field.

27.9. PERSISTENT STORAGE USING FIBRE CHANNEL

27.9.1. Overview

You can provision your OpenShift Container Platform cluster with persistent storage using Fibre
Channel (FC). Some familiarity with Kubernetes and FC is assumed.

apiVersion: v1
kind: PersistentVolume
metadata:
 name: iscsi-pv
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 iscsi:
 targetPortal: 10.0.0.1:3260
 portals: ['10.0.2.16:3260', '10.0.2.17:3260', '10.0.2.18:3260'] 1
 iqn: iqn.2016-04.test.com:storage.target00
 lun: 0
 fsType: ext4
 readOnly: false

apiVersion: v1
kind: PersistentVolume
metadata:
 name: iscsi-pv
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 iscsi:
 targetPortal: 10.0.0.1:3260
 portals: ['10.0.2.16:3260', '10.0.2.17:3260', '10.0.2.18:3260']
 iqn: iqn.2016-04.test.com:storage.target00
 lun: 0
 initiatorName: iqn.2016-04.test.com:custom.iqn 1
 fsType: ext4
 readOnly: false

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

483

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-fibrechanel.html

1

2 3

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

27.9.2. Provisioning

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform. All that is required for FC persistent storage is the PersistentVolume API, the
wwids or the targetWWNs with a valid lun number, and the fsType. Persistent volume and a LUN have
one-to-one mapping between them.

Persistent Volume Object Definition

Optional: World wide identifiers (WWIDs). Either FC wwids or a combination of FC targetWWNs
and lun must be set, but not both simultaneously. The FC WWID identifier is recommended over
the WWNs target because it is guaranteed to be unique for every storage device, and independent
of the path that is used to access the device. The WWID identifier can be obtained by issuing a
SCSI Inquiry to retrieve the Device Identification Vital Product Data (page 0x83) or Unit Serial
Number (page 0x80). FC WWIDs are identified as /dev/disk/by-id/ to reference the data on the
disk, even if the path to the device changes and even when accessing the device from different
systems.

Optional: World wide names (WWNs). Either FC wwids or a combination of FC targetWWNs and
lun must be set, but not both simultaneously. The FC WWID identifier is recommended over the
WWNs target because it is guaranteed to be unique for every storage device, and independent of
the path that is used to access the device. FC WWNs are identified as /dev/disk/by-path/pci-
<identifier>-fc-0x<wwn>-lun-<lun_#>, but you do not need to provide any part of the path leading
up to the <wwn>, including the 0x, and anything after, including the - (hyphen).

IMPORTANT

Changing the value of the fstype parameter after the volume has been formatted and
provisioned can result in data loss and pod failure.

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 fc:
 wwids: [scsi-3600508b400105e210000900000490000] 1
 targetWWNs: ['500a0981891b8dc5', '500a0981991b8dc5'] 2
 lun: 2 3
 fsType: ext4

OpenShift Container Platform 3.11 Configuring Clusters

484

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-persistent-volumes

27.9.2.1. Enforcing Disk Quotas

Use LUN partitions to enforce disk quotas and size constraints. Each LUN is one persistent volume.
Kubernetes enforces unique names for persistent volumes.

Enforcing quotas in this way allows the end user to request persistent storage by a specific amount, such
as 10 Gi, and be matched with a corresponding volume of equal or greater capacity.

27.9.2.2. Fibre Channel Volume Security

Users request storage with a PersistentVolumeClaim. This claim only lives in the namespace of the
user and can only be referenced by a pod within that same namespace. Any attempt to access a
persistent volume claim across a namespace causes the pod to fail.

Each FC LUN must be accessible by all nodes in the cluster.

27.10. PERSISTENT STORAGE USING AZURE DISK

27.10.1. Overview

OpenShift Container Platform supports Microsoft Azure Disk volumes. You can provision your
OpenShift Container Platform cluster with persistent storage using Azure. Some familiarity with
Kubernetes and Azure is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure.

Azure Disk volumes can be provisioned dynamically. Persistent volumes are not bound to a single project
or namespace; they can be shared across the OpenShift Container Platform cluster. Persistent volume
claims, however, are specific to a project or namespace and can be requested by users.

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

27.10.2. Prerequisites

Before creating persistent volumes using Azure, ensure your OpenShift Container Platform cluster
meets the following requirements:

OpenShift Container Platform must first be configured for Azure Disk.

Each node host in the infrastructure must match the Azure virtual machine name.

Each node host must be in the same resource group.

27.10.3. Provisioning

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform. After ensuring OpenShift Container Platform is configured for Azure Disk, all that is
required for OpenShift Container Platform and Azure is an Azure Disk Name and Disk URI and the
PersistentVolume API.

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

485

https://azure.microsoft.com/en-us/services/storage/disks/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#persistent-volume-claims

1

2

3

4

5

6

7

27.10.4. Configuring Azure Disk for regional cloud

Azure has multiple regions on which to deploy an instance. To specify a desired region, add the following
to the azure.conf file:

cloud: <region>

The region can be any of the following:

German cloud: AZUREGERMANCLOUD

China cloud: AZURECHINACLOUD

Public cloud: AZUREPUBLICCLOUD

US cloud: AZUREUSGOVERNMENTCLOUD

27.10.4.1. Creating the Persistent Volume

You must define your persistent volume in an object definition before creating it in OpenShift Container
Platform:

Example 27.8. Persistent Volume Object Definition Using Azure

The name of the volume. This will be how it is identified via persistent volume claims or from
pods.

The amount of storage allocated to this volume.

This defines the volume type being used (azureDisk plug-in, in this example).

The name of the data disk in the blob storage.

The URI of the data disk in the blob storage.

Host caching mode: None, ReadOnly, or ReadWrite.

File system type to mount (for example, ext4, xfs, and so on).

Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in

apiVersion: "v1"
kind: "PersistentVolume"
metadata:
 name: "pv0001" 1
spec:
 capacity:
 storage: "5Gi" 2
 accessModes:
 - "ReadWriteOnce"
 azureDisk: 3
 diskName: test2.vhd 4
 diskURI: https://someacount.blob.core.windows.net/vhds/test2.vhd 5
 cachingMode: ReadWrite 6
 fsType: ext4 7
 readOnly: false 8

OpenShift Container Platform 3.11 Configuring Clusters

486

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage

8 Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in
VolumeMounts.

IMPORTANT

Changing the value of the fsType parameter after the volume is formatted and
provisioned can result in data loss and pod failure.

1. Save your definition to a file, for example azure-pv.yaml, and create the persistent volume:

oc create -f azure-pv.yaml
persistentvolume "pv0001" created

2. Verify that the persistent volume was created:

oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON
AGE
pv0001 <none> 5Gi RWO Available 2s

Now you can request storage using persistent volume claims , which can now use your new persistent
volume.

IMPORTANT

For a pod that has a mounted volume through an Azure disk PVC, scheduling the pod to a
new node takes a few minutes. Wait for two to three minutes to complete the Disk
Detach operation, and then start a new deployment. If a new pod creation request is
started before completing the Disk Detach operation, the Disk Attach operation initiated
by the pod creation fails, resulting in pod creation failure.

IMPORTANT

Persistent volume claims only exist in the user’s namespace and can only be referenced
by a pod within that same namespace. Any attempt to access a persistent volume from a
different namespace causes the pod to fail.

27.10.4.2. Volume Format

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that it
contains a file system as specified by the fsType parameter in the persistent volume definition. If the
device is not formatted with the file system, all data from the device is erased and the device is
automatically formatted with the given file system.

This allows unformatted Azure volumes to be used as persistent volumes because OpenShift Container
Platform formats them before the first use.

27.11. PERSISTENT STORAGE USING AZURE FILE

27.11.1. Overview

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

487

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-persistent-volumes

OpenShift Container Platform supports Microsoft Azure File volumes. You can provision your OpenShift
Container Platform cluster with persistent storage using Azure. Some familiarity with Kubernetes and
Azure is assumed.

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

27.11.2. Before you begin

1. Install samba-client, samba-common, and cifs-utils on all nodes:

$ sudo yum install samba-client samba-common cifs-utils

2. Enable SELinux booleans on all nodes:

$ /usr/sbin/setsebool -P virt_use_samba on
$ /usr/sbin/setsebool -P virt_sandbox_use_samba on

3. Run the mount command to check dir_mode and file_mode permissions, for example:

$ mount

If the dir_mode and file_mode permissions are set to 0755, change the default value 0755 to 0777 or
0775. This manual step is required because the default dir_mode and file_mode permissions changed
from 0777 to 0755 in OpenShift Container Platform 3.9. The following examples show configuration
files with the changed values.

Considerations when using Azure File

The following file system features are not supported by Azure File:

Symlinks

Hard links

Extended attributes

Sparse files

Named pipes

Additionally, the owner user identifier (UID) of the Azure File mounted directory is different from the
process UID of the container.

CAUTION

You might experience instability in your environment if you use any container images that use
unsupported file system features. Containers for PostgreSQL and MySQL are known to have issues
when used with Azure File.

Workaround for using MySQL with Azure File

If you use MySQL containers, you must modify the PV configuration as a workaround to a file ownership

OpenShift Container Platform 3.11 Configuring Clusters

488

https://azure.microsoft.com/en-us/services/storage/files/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage

If you use MySQL containers, you must modify the PV configuration as a workaround to a file ownership
mismatch between the mounted directory UID and the container process UID. Make the following
changes to your PV configuration file:

1. Specify the Azure File mounted directory UID in the runAsUser variable in the PV configuration
file:

2. Specify the container process UID under mountOptions in the PV configuration file:

27.11.3. Example configuration files

The following example configuration file displays a PV configuration using Azure File:

PV configuration file example

The following example configuration file displays a storage class using Azure File:

Storage class configuration file example

spec:
 containers:
 ...
 securityContext:
 runAsUser: <mounted_dir_uid>

mountOptions:
 - dir_mode=0700
 - file_mode=0600
 - uid=<container_process_uid>
 - gid=0

apiVersion: "v1"
kind: "PersistentVolume"
metadata:
 name: "azpv"
spec:
 capacity:
 storage: "1Gi"
 accessModes:
 - "ReadWriteMany"
 azureFile:
 secretName: azure-secret
 shareName: azftest
 readOnly: false
 mountOptions:
 - dir_mode=0777
 - file_mode=0777

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: azurefile
provisioner: kubernetes.io/azure-file
mountOptions:

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

489

27.11.4. Configuring Azure File for regional cloud

While Azure Disk is compatible with multiple regional clouds , Azure File supports only the Azure public
cloud, because the endpoint is hard-coded.

27.11.5. Creating the Azure Storage Account secret

Define the Azure Storage Account name and key in a secret configuration, which is then converted to
base64 for use by OpenShift Container Platform.

1. Obtain an Azure Storage Account name and key and encode to base64:

2. Save the secret definition to a file, for example azure-secret.yaml, then create the secret:

$ oc create -f azure-secret.yaml

3. Verify that the secret was created:

$ oc get secret azure-secret
NAME TYPE DATA AGE
azure-secret Opaque 1 23d

4. Define the PV in an object definition before creating it in OpenShift Container Platform:

PV object definition using Azure File example

 - dir_mode=0777
 - file_mode=0777
parameters:
 storageAccount: ocp39str
 location: centralus

apiVersion: v1
kind: Secret
metadata:
 name: azure-secret
type: Opaque
data:
 azurestorageaccountname: azhzdGVzdA==
 azurestorageaccountkey:
eElGMXpKYm5ub2pGTE1Ta0JwNTBteDAyckhzTUsyc2pVN21GdDRMMTNob0I3ZHJBYUo4a
kQ2K0E0NDNqSm9nVjd5MkZVT2hRQ1dQbU02WWFOSHk3cWc9PQ==

apiVersion: "v1"
kind: "PersistentVolume"
metadata:
 name: "pv0001" 1
spec:
 capacity:
 storage: "5Gi" 2
 accessModes:
 - "ReadWriteMany"
 azureFile: 3

OpenShift Container Platform 3.11 Configuring Clusters

490

1

2

3

4

5

6

The name of the volume. This is how it is identified via PV claims or from pods.

The amount of storage allocated to this volume.

This defines the volume type being used: azureFile plug-in.

The name of the secret used.

The name of the file share.

Defaults to false (read/write). ReadOnly here forces the ReadOnly setting in
VolumeMounts.

5. Save your definition to a file, for example azure-file-pv.yaml, and create the PV:

$ oc create -f azure-file-pv.yaml
persistentvolume "pv0001" created

6. Verify that the PV was created:

$ oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON
AGE
pv0001 <none> 5Gi RWM Available 2s

You can now request storage using PV claims , which can now use your new PV.

IMPORTANT

PV claims only exist in the user’s namespace and can only be referenced by a pod within
that same namespace. Any attempt to access a PV from a different namespace causes
the pod to fail.

27.12. PERSISTENT STORAGE USING FLEXVOLUME PLUG-INS

27.12.1. Overview

OpenShift Container Platform has built-in volume plug-ins to use different storage technologies. To use
storage from a back-end that does not have a built-in plug-in, you can extend OpenShift Container
Platform through FlexVolume drivers and provide persistent storage to applications.

27.12.2. FlexVolume drivers

A FlexVolume driver is an executable file that resides in a well-defined directory on all machines in the
cluster, both masters and nodes. OpenShift Container Platform calls the FlexVolume driver whenever it
needs to attach, detach, mount, or unmount a volume represented by a PersistentVolume with
flexVolume as the source.

The first command-line argument of the driver is always an operation name. Other parameters are

 secretName: azure-secret 4
 shareName: example 5
 readOnly: false 6

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

491

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-persistent-volumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage

1

2

3

4

The first command-line argument of the driver is always an operation name. Other parameters are
specific to each operation. Most of the operations take a JavaScript Object Notation (JSON) string as a
parameter. This parameter is a complete JSON string, and not the name of a file with the JSON data.

The FlexVolume driver contains:

All flexVolume.options.

Some options from flexVolume prefixed by kubernetes.io/, such as fsType and readwrite.

The content of the referenced secret, if specified, prefixed by kubernetes.io/secret/.

FlexVolume driver JSON input example

All options from flexVolume.options.

The value of flexVolume.fsType.

ro/rw based on flexVolume.readOnly.

All keys and their values from the secret referenced by flexVolume.secretRef.

OpenShift Container Platform expects JSON data on standard output of the driver. When not specified,
the output describes the result of the operation.

FlexVolume Driver Default Output

Exit code of the driver should be 0 for success and 1 for error.

Operations should be idempotent, which means that the attachment of an already attached volume or
the mounting of an already mounted volume should result in a successful operation.

The FlexVolume driver can work in two modes:

with the master-initated attach/detach operation, or

without the master-initated attach/detach operation.

The attach/detach operation is used by the OpenShift Container Platform master to attach a volume to
a node and to detach it from a node. This is useful when a node becomes unresponsive for any reason.
Then, the master can kill all pods on the node, detach all volumes from it, and attach the volumes to

{
 "fooServer": "192.168.0.1:1234", 1
 "fooVolumeName": "bar",
 "kubernetes.io/fsType": "ext4", 2
 "kubernetes.io/readwrite": "ro", 3
 "kubernetes.io/secret/<key name>": "<key value>", 4
 "kubernetes.io/secret/<another key name>": "<another key value>",
}

{
 "status": "<Success/Failure/Not supported>",
 "message": "<Reason for success/failure>"
}

OpenShift Container Platform 3.11 Configuring Clusters

492

1

other nodes to resume the applications while the original node is still not reachable.

IMPORTANT

Not all storage back-end supports master-initiated detachment of a volume from
another machine.

27.12.2.1. FlexVolume drivers with master-initiated attach/detach

A FlexVolume driver that supports master-controlled attach/detach must implement the following
operations:

init

Initializes the driver. It is called during initialization of masters and nodes.

Arguments: none

Executed on: master, node

Expected output: default JSON

getvolumename

Returns the unique name of the volume. This name must be consistent among all masters and nodes,
because it is used in subsequent detach call as <volume-name>. Any / characters in the <volume-
name> are automatically replaced by ~.

Arguments: <json>

Executed on: master, node

Expected output: default JSON + volumeName:

The unique name of the volume in storage back-end foo.

attach

Attaches a volume represented by the JSON to a given node. This operation should return the name
of the device on the node if it is known, that is, if it has been assigned by the storage back-end
before it runs. If the device is not known, the device must be found on the node by the subsequent
waitforattach operation.

Arguments: <json> <node-name>

Executed on: master

Expected output: default JSON + device, if known:

{
 "status": "Success",
 "message": "",
 "volumeName": "foo-volume-bar" 1
}

{

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

493

1

1

1

The name of the device on the node, if known.

waitforattach

Waits until a volume is fully attached to a node and its device emerges. If the previous attach
operation has returned <device-name>, it is provided as an input parameter. Otherwise, <device-
name> is empty and the operation must find the device on the node.

Arguments: <device-name> <json>

Executed on: node

Expected output: default JSON + device

The name of the device on the node.

detach

Detaches the given volume from a node. <volume-name> is the name of the device returned by the
getvolumename operation. Any / characters in the <volume-name> are automatically replaced by ~.

Arguments: <volume-name> <node-name>

Executed on: master

Expected output: default JSON

isattached

Checks that a volume is attached to a node.

Arguments: <json> <node-name>

Executed on: master

Expected output: default JSON + attached

The status of attachment of the volume to the node.

 "status": "Success",
 "message": "",
 "device": "/dev/xvda" 1
}

{
 "status": "Success",
 "message": "",
 "device": "/dev/xvda" 1
}

{
 "status": "Success",
 "message": "",
 "attached": true 1
}

OpenShift Container Platform 3.11 Configuring Clusters

494

mountdevice

Mounts a volume’s device to a directory. <device-name> is name of the device as returned by the
previous waitforattach operation.

Arguments: <mount-dir> <device-name> <json>

Executed on: node

Expected output: default JSON

unmountdevice

Unmounts a volume’s device from a directory.

Arguments: <mount-dir>

Executed on: node

All other operations should return JSON with {"status": "Not supported"} and exit code 1.

NOTE

Master-initiated attach/detach operations are enabled by default. When not enabled, the
attach/detach operations are initiated by a node where the volume should be attached to
or detached from. Syntax and all parameters of FlexVolume driver invocations are the
same in both cases.

27.12.2.2. FlexVolume drivers without master-initiated attach/detach

FlexVolume drivers that do not support master-controlled attach/detach are executed only on the node
and must implement these operations:

init

Initializes the driver. It is called during initialization of all nodes.

Arguments: none

Executed on: node

Expected output: default JSON

mount

Mounts a volume to directory. This can include anything that is necessary to mount the volume,
including attaching the volume to the node, finding the its device, and then mounting the device.

Arguments: <mount-dir> <json>

Executed on: node

Expected output: default JSON

unmount

Unmounts a volume from a directory. This can include anything that is necessary to clean up the
volume after unmounting, such as detaching the volume from the node.

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

495

Arguments: <mount-dir>

Executed on: node

Expected output: default JSON

All other operations should return JSON with {"status": "Not supported"} and exit code 1.

27.12.3. Installing FlexVolume drivers

To install the FlexVolume driver:

1. Ensure that the executable file exists on all masters and nodes in the cluster.

2. Place the executable file at the volume plug-in path: /usr/libexec/kubernetes/kubelet-
plugins/volume/exec/<vendor>~<driver>/<driver>.

For example, to install the FlexVolume driver for the storage foo, place the executable file at:
/usr/libexec/kubernetes/kubelet-plugins/volume/exec/openshift.com~foo/foo.

In OpenShift Container Platform 3.11, since controller-manager runs as a static pod, the FlexVolume
binary file that performs the attach and detach operations must be a self-contained executable file with
no external dependencies.

On Atomic hosts, the default location of the FlexVolume plug-in directory is /etc/origin/kubelet-
plugins/. You must place the FlexVolume executable file in the /etc/origin/kubelet-
plugins/volume/exec/<vendor>~<driver>/<driver> directory on all master and nodes in the cluster.

27.12.4. Consuming storage using FlexVolume drivers

Use the PersistentVolume object to reference the installed storage. Each PersistentVolume object in
OpenShift Container Platform represents one storage asset, typically a volume, in the storage back-end.

Persistent volume object definition using FlexVolume drivers example

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001 1
spec:
 capacity:
 storage: 1Gi 2
 accessModes:
 - ReadWriteOnce
 flexVolume:
 driver: openshift.com/foo 3
 fsType: "ext4" 4
 secretRef: foo-secret 5
 readOnly: true 6
 options: 7
 fooServer: 192.168.0.1:1234
 fooVolumeName: bar

OpenShift Container Platform 3.11 Configuring Clusters

496

1

2

3

4

5

6

7

The name of the volume. This is how it is identified through persistent volume claims or from pods.
This name can be different from the name of the volume on back-end storage.

The amount of storage allocated to this volume.

The name of the driver. This field is mandatory.

The file system that is present on the volume. This field is optional.

The reference to a secret. Keys and values from this secret are provided to the FlexVolume driver
on invocation. This field is optional.

The read-only flag. This field is optional.

The additional options for the FlexVolume driver. In addition to the flags specified by the user in
the options field, the following flags are also passed to the executable:

"fsType":"<FS type>",
"readwrite":"<rw>",
"secret/key1":"<secret1>"
...
"secret/keyN":"<secretN>"

NOTE

Secrets are passed only to mount/unmount call-outs.

27.13. USING VMWARE VSPHERE VOLUMES FOR PERSISTENT
STORAGE

27.13.1. Overview

OpenShift Container Platform supports VMware vSphere’s Virtual Machine Disk (VMDK) volumes. You
can provision your OpenShift Container Platform cluster with persistent storage using VMware vSphere.
Some familiarity with Kubernetes and VMware vSphere is assumed.

OpenShift Container Platform creates the disk in vSphere and attaches the disk to the correct instance.

The OpenShift Container Platform persistent volume (PV) framework allows administrators to provision
a cluster with persistent storage and gives users a way to request those resources without having any
knowledge of the underlying infrastructure. vSphere VMDK volumes can be provisioned dynamically.

PVs are not bound to a single project or namespace; they can be shared across the OpenShift Container
Platform cluster. PV claims, however, are specific to a project or namespace and can be requested by
users.

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

Prerequisites
Before creating PVs using vSphere, ensure your OpenShift Container Platform cluster meets the
following requirements:

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

497

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage
https://www.vmware.com/au/products/vsphere.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#persistent-volume-claims

1

2

3

4

OpenShift Container Platform must first be configured for vSphere.

Each node host in the infrastructure must match the vSphere VM name.

Each node host must be in the same resource group.

27.13.2. Dynamically Provisioning VMware vSphere volumes

Dynamically provisioning VMware vSphere volumes is the preferred provisioning method.

1. If you did not specify the openshift_cloudprovider_kind=vsphere and openshift_vsphere_*
variables in the Ansible inventory file when you provisioned the cluster, you must manually
create the following StorageClass to use the vsphere-volume provisioner:

The name of the StorageClass.

The type of storage provisioner. Specify vsphere-volume.

The type of disk. Specify either zeroedthick or thin.

The source datastore where the disks will be created.

2. After you request a PV, using the StorageClass shown in the previous step, OpenShift Container
Platform automatically creates VMDK disks in the vSphere infrastructure. To verify that the
disks were created, use the Datastore browser in vSphere.

NOTE

vSphere-volume disks are ReadWriteOnce access mode, which means the
volume can be mounted as read-write by a single node. See the Access modes
section of the Architecture guide for more information.

27.13.3. Statically Provisioning VMware vSphere volumes

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform. After ensuring OpenShift Container Platform is configured for vSphere, all that is
required for OpenShift Container Platform and vSphere is a VM folder path, file system type, and the
PersistentVolume API.

27.13.3.1. Create the VMDKs

IMPORTANT

$ oc get --export storageclass vsphere-standard -o yaml
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: "vsphere-standard" 1
provisioner: kubernetes.io/vsphere-volume 2
parameters:
 diskformat: thin 3
 datastore: "YourvSphereDatastoreName" 4
reclaimPolicy: Delete

OpenShift Container Platform 3.11 Configuring Clusters

498

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#pv-access-modes

1

2

3

4

5

IMPORTANT

Create VMDK using one of the following methods before using them.

Create using vmkfstools:
Access ESX through Secure Shell (SSH) and then use following command to create a VMDK
volume:

Create using vmware-vdiskmanager:

27.13.3.2. Creating PersistentVolumes

1. Define a PV object definition, for example vsphere-pv.yaml:

The name of the volume. This must be how it is identified by PV claims or from pods.

The amount of storage allocated to this volume.

The volume type being used. This example uses vsphereVolume. The label is used to
mount a vSphere VMDK volume into pods. The contents of a volume are preserved when it
is unmounted. The volume type supports VMFS and VSAN datastore.

The existing VMDK volume to use. You must enclose the datastore name in square
brackets ([]) in the volume definition, as shown.

The file system type to mount. For example, ext4, xfs, or other file-systems.

IMPORTANT

Changing the value of the fsType parameter after the volume is formatted and
provisioned can result in data loss and pod failure.

2. Create the PV:

vmkfstools -c 40G /vmfs/volumes/DatastoreName/volumes/myDisk.vmdk

shell vmware-vdiskmanager -c -t 0 -s 40GB -a lsilogic myDisk.vmdk

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001 1
spec:
 capacity:
 storage: 2Gi 2
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Retain
 vsphereVolume: 3
 volumePath: "[datastore1] volumes/myDisk" 4
 fsType: ext4 5

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

499

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage

3. Verify that the PV was created:

Now you can request storage using PV claims , which can now use your PV.

IMPORTANT

PV claims only exist in the user’s namespace and can only be referenced by a pod within
that same namespace. Any attempt to access a PV from a different namespace causes
the pod to fail.

27.13.3.3. Formatting VMware vSphere volumes

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that the
volume contains a file system as specified by the fsType parameter in the PV definition. If the device is
not formatted with the file system, all data from the device is erased, and the device is automatically
formatted with the given file system.

Because OpenShift Container Platform formats them before the first use, you can use unformatted
vSphere volumes as PVs.

27.14. PERSISTENT STORAGE USING LOCAL VOLUME

27.14.1. Overview

OpenShift Container Platform clusters can be provisioned with persistent storage by using local
volumes. Local persistent volume allows you to access local storage devices such as a disk, partition or
directory by using the standard PVC interface.

Local volumes can be used without manually scheduling pods to nodes, because the system is aware of
the volume’s node constraints. However, local volumes are still subject to the availability of the
underlying node and are not suitable for all applications.

NOTE

Local volumes is an alpha feature and may change in a future release of OpenShift
Container Platform. See Feature Status(Local Volume) section for details on known
issues and workarounds.

WARNING

Local volumes can only be used as a statically created Persistent Volume.

$ oc create -f vsphere-pv.yaml
 persistentvolume "pv0001" created

$ oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE
pv0001 <none> 2Gi RWO Available 2s



OpenShift Container Platform 3.11 Configuring Clusters

500

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-persistent-volumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage

1

2

27.14.2. Provisioning

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform. Ensure that OpenShift Container Platform is configured for Local Volumes, before
using the PersistentVolume API.

27.14.3. Creating Local Persistent Volume

Define the persistent volume in an object definition.

27.14.4. Creating Local Persistent Volume Claim

Define the persistent volume claim in an object definition.

The required size of storage volume.

The name of storage class, which is used for local PVs.

27.14.5. Feature Status

apiVersion: v1
kind: PersistentVolume
metadata:
 name: example-local-pv
spec:
 capacity:
 storage: 5Gi
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Delete
 storageClassName: local-storage
 local:
 path: /mnt/disks/ssd1
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - my-node

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: example-local-claim
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 5Gi 1
 storageClassName: local-storage 2

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

501

What Works:

Creating a PV by specifying a directory with node affinity.

A Pod using the PVC that is bound to the previously mentioned PV always get scheduled to that
node.

External static provisioner daemonset that discovers local directories, creates, cleans up and
deletes PVs.

What does not work:

Multiple local PVCs in a single pod.

PVC binding does not consider pod scheduling requirements and may make sub-optimal or
incorrect decisions.

Workarounds:

Run those pods first, which requires local volume.

Give the pods high priority.

Run a workaround controller that unbinds PVCs for pods that are stuck pending.

If mounts are added after the external provisioner is started, then external provisioner cannot
detect the correct capcity of mounts.

Workarounds:

Before adding any new mount points, first stop the daemonset, add the new mount
points, and then start the daemonset.

fsgroup conflict occurs if multiple pods using the same PVC specify different fsgroup 's.

27.15. PERSISTENT STORAGE USING CONTAINER STORAGE
INTERFACE (CSI)

27.15.1. Overview

Container Storage Interface (CSI) allows OpenShift Container Platform to consume storage from
storage backends that implement the CSI interface as persistent storage.

IMPORTANT

CSI volumes are currently in Technology Preview and not for production workloads. CSI
volumes may change in a future release of OpenShift Container Platform. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs), might not be functionally complete, and Red Hat does not recommend to use
them for production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

See the link:https://access.redhat.com/support/offerings/techpreview/[Red Hat

NOTE

OpenShift Container Platform 3.11 Configuring Clusters

502

https://github.com/container-storage-interface/spec
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage

NOTE

OpenShift Container Platform does not ship with any CSI drivers. It is recommended to
use the CSI drivers provided by community or storage vendors .

OpenShift Container Platform 3.11 supports version 0.2.0 of the CSI specification.

27.15.2. Architecture

CSI drivers are typically shipped as container images. These containers are not aware of OpenShift
Container Platform where they run. To use CSI-compatible storage backend in OpenShift Container
Platform, the cluster administrator must deploy several components that serve as a bridge between
OpenShift Container Platform and the storage driver.

The following diagram provides a high-level overview about the components running in pods in the
OpenShift Container Platform cluster.

It is possible to run multiple CSI drivers for different storage backends. Each driver needs its own
external controllers' deployment and DaemonSet with the driver and CSI registrar.

27.15.2.1. External CSI Controllers

External CSI Controllers is a deployment that deploys one or more pods with three containers:

External CSI attacher container that translates attach and detach calls from OpenShift
Container Platform to respective ControllerPublish and ControllerUnpublish calls to CSI
driver

External CSI provisioner container that translates provision and delete calls from OpenShift
Container Platform to respective CreateVolume and DeleteVolume calls to CSI driver

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

503

https://kubernetes-csi.github.io/docs/Drivers.html
https://github.com/container-storage-interface/spec

CSI driver container

The CSI attacher and CSI provisioner containers talk to the CSI driver container using UNIX Domain
Sockets, ensuring that no CSI communication leaves the pod. The CSI driver is not accessible from
outside of the pod.

NOTE

attach, detach, provision, and delete operations typically require the CSI driver to use
credentials to the storage backend. Run the CSI controller pods on infrastructure nodes
so the credentials never leak to user processes, even in the event of a catastrophic
security breach on a compute node.

NOTE

The external attacher must also run for CSI drivers that do not support third-party
attach/detach operations. The external attacher will not issue any ControllerPublish or
ControllerUnpublish operations to the CSI driver. However, it still must run to implement
the necessary OpenShift Container Platform attachment API.

27.15.2.2. CSI Driver DaemonSet

Finally, the CSI driver DaemonSet runs a pod on every node that allows OpenShift Container Platform
to mount storage provided by the CSI driver to the node and use it in user workloads (pods) as
persistent volumes (PVs). The pod with the CSI driver installed contains the following containers:

CSI driver registrar, which registers the CSI driver into the openshift-node service running on
the node. The openshift-node process running on the node then directly connects with the CSI
driver using the UNIX Domain Socket available on the node.

CSI driver.

The CSI driver deployed on the node should have as few credentials to the storage backend as possible.
OpenShift Container Platform will only use the node plug-in set of CSI calls such as
NodePublish/NodeUnpublish and NodeStage/NodeUnstage (if implemented).

27.15.3. Example Deployment

Since OpenShift Container Platform does not ship with any CSI driver installed, this example shows how
to deploy a community driver for OpenStack Cinder in OpenShift Container Platform.

1. Create a new project where the CSI components will run and a new service account that will run
the components. Explicit node selector is used to run the Daemonset with the CSI driver also on
master nodes.

2. Apply this YAML file to create the deployment with the external CSI attacher and provisioner

oc adm new-project csi --node-selector=""
Now using project "csi" on server "https://example.com:8443".

oc create serviceaccount cinder-csi
serviceaccount "cinder-csi" created

oc adm policy add-scc-to-user privileged system:serviceaccount:csi:cinder-csi
scc "privileged" added to: ["system:serviceaccount:csi:cinder-csi"]

OpenShift Container Platform 3.11 Configuring Clusters

504

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-dedicated-infrastructure-nodes

2. Apply this YAML file to create the deployment with the external CSI attacher and provisioner
and DaemonSet with the CSI driver.

This YAML file contains all API objects that are necessary to run Cinder CSI
driver.
#
In production, this needs to be in separate files, e.g. service account and
role and role binding needs to be created once.
#
It serves as an example of how to use external attacher and external provisioner
images that are shipped with OpenShift Container Platform with a community CSI driver.

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: cinder-csi-role
rules:
 - apiGroups: [""]
 resources: ["persistentvolumes"]
 verbs: ["create", "delete", "get", "list", "watch", "update", "patch"]
 - apiGroups: [""]
 resources: ["events"]
 verbs: ["create", "get", "list", "watch", "update", "patch"]
 - apiGroups: [""]
 resources: ["persistentvolumeclaims"]
 verbs: ["get", "list", "watch", "update", "patch"]
 - apiGroups: [""]
 resources: ["nodes"]
 verbs: ["get", "list", "watch", "update", "patch"]
 - apiGroups: ["storage.k8s.io"]
 resources: ["storageclasses"]
 verbs: ["get", "list", "watch"]
 - apiGroups: ["storage.k8s.io"]
 resources: ["volumeattachments"]
 verbs: ["get", "list", "watch", "update", "patch"]
 - apiGroups: [""]
 resources: ["configmaps"]
 verbs: ["get", "list", "watch", "create", "update", "patch"]

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: cinder-csi-role
subjects:
 - kind: ServiceAccount
 name: cinder-csi
 namespace: csi
roleRef:
 kind: ClusterRole
 name: cinder-csi-role
 apiGroup: rbac.authorization.k8s.io

apiVersion: v1

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

505

data:
 cloud.conf:
W0dsb2JhbF0KYXV0aC11cmwgPSBodHRwczovL2V4YW1wbGUuY29tOjEzMDAwL3YyLjAvC
nVzZXJuYW1lID0gYWxhZGRpbgpwYXNzd29yZCA9IG9wZW5zZXNhbWUKdGVuYW50LWlkI
D0gZTBmYTg1YjZhMDY0NDM5NTlkMmQzYjQ5NzE3NGJlZDYKcmVnaW9uID0gcmVnaW9u
T25lCg== 1
kind: Secret
metadata:
 creationTimestamp: null
 name: cloudconfig

kind: Deployment
apiVersion: apps/v1
metadata:
 name: cinder-csi-controller
spec:
 replicas: 2
 selector:
 matchLabels:
 app: cinder-csi-controllers
 template:
 metadata:
 labels:
 app: cinder-csi-controllers
 spec:
 serviceAccount: cinder-csi
 containers:
 - name: csi-attacher
 image: registry.redhat.io/openshift3/csi-attacher:v3.11
 args:
 - "--v=5"
 - "--csi-address=$(ADDRESS)"
 - "--leader-election"
 - "--leader-election-namespace=$(MY_NAMESPACE)"
 - "--leader-election-identity=$(MY_NAME)"
 env:
 - name: MY_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: MY_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 - name: ADDRESS
 value: /csi/csi.sock
 volumeMounts:
 - name: socket-dir
 mountPath: /csi
 - name: csi-provisioner
 image: registry.redhat.io/openshift3/csi-provisioner:v3.11
 args:
 - "--v=5"
 - "--provisioner=csi-cinderplugin"
 - "--csi-address=$(ADDRESS)"
 env:

OpenShift Container Platform 3.11 Configuring Clusters

506

 - name: ADDRESS
 value: /csi/csi.sock
 volumeMounts:
 - name: socket-dir
 mountPath: /csi
 - name: cinder-driver
 image: quay.io/jsafrane/cinder-csi-plugin
 command: ["/bin/cinder-csi-plugin"]
 args:
 - "--nodeid=$(NODEID)"
 - "--endpoint=unix://$(ADDRESS)"
 - "--cloud-config=/etc/cloudconfig/cloud.conf"
 env:
 - name: NODEID
 valueFrom:
 fieldRef:
 fieldPath: spec.nodeName
 - name: ADDRESS
 value: /csi/csi.sock
 volumeMounts:
 - name: socket-dir
 mountPath: /csi
 - name: cloudconfig
 mountPath: /etc/cloudconfig
 volumes:
 - name: socket-dir
 emptyDir:
 - name: cloudconfig
 secret:
 secretName: cloudconfig

kind: DaemonSet
apiVersion: apps/v1
metadata:
 name: cinder-csi-ds
spec:
 selector:
 matchLabels:
 app: cinder-csi-driver
 template:
 metadata:
 labels:
 app: cinder-csi-driver
 spec:
 2
 serviceAccount: cinder-csi
 containers:
 - name: csi-driver-registrar
 image: registry.redhat.io/openshift3/csi-driver-registrar:v3.11
 securityContext:
 privileged: true
 args:
 - "--v=5"
 - "--csi-address=$(ADDRESS)"

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

507

 env:
 - name: ADDRESS
 value: /csi/csi.sock
 - name: KUBE_NODE_NAME
 valueFrom:
 fieldRef:
 fieldPath: spec.nodeName
 volumeMounts:
 - name: socket-dir
 mountPath: /csi
 - name: cinder-driver
 securityContext:
 privileged: true
 capabilities:
 add: ["SYS_ADMIN"]
 allowPrivilegeEscalation: true
 image: quay.io/jsafrane/cinder-csi-plugin
 command: ["/bin/cinder-csi-plugin"]
 args:
 - "--nodeid=$(NODEID)"
 - "--endpoint=unix://$(ADDRESS)"
 - "--cloud-config=/etc/cloudconfig/cloud.conf"
 env:
 - name: NODEID
 valueFrom:
 fieldRef:
 fieldPath: spec.nodeName
 - name: ADDRESS
 value: /csi/csi.sock
 volumeMounts:
 - name: socket-dir
 mountPath: /csi
 - name: cloudconfig
 mountPath: /etc/cloudconfig
 - name: mountpoint-dir
 mountPath: /var/lib/origin/openshift.local.volumes/pods/
 mountPropagation: "Bidirectional"
 - name: cloud-metadata
 mountPath: /var/lib/cloud/data/
 - name: dev
 mountPath: /dev
 volumes:
 - name: cloud-metadata
 hostPath:
 path: /var/lib/cloud/data/
 - name: socket-dir
 hostPath:
 path: /var/lib/kubelet/plugins/csi-cinderplugin
 type: DirectoryOrCreate
 - name: mountpoint-dir
 hostPath:
 path: /var/lib/origin/openshift.local.volumes/pods/
 type: Directory
 - name: cloudconfig
 secret:
 secretName: cloudconfig

OpenShift Container Platform 3.11 Configuring Clusters

508

1

2

Replace with cloud.conf for your OpenStack deployment, as described in OpenStack
configuration. For example, the Secret can be generated using the oc create secret
generic cloudconfig --from-file cloud.conf --dry-run -o yaml.

Optionally, add nodeSelector to the CSI driver pod template to configure the nodes on
which the CSI driver starts. Only nodes matching the selector run pods that use volumes
that are served by the CSI driver. Without nodeSelector, the driver runs on all nodes in the
cluster.

27.15.4. Dynamic Provisioning

Dynamic provisioning of persistent storage depends on the capabilities of the CSI driver and underlying
storage backend. The provider of the CSI driver should document how to create a StorageClass in
OpenShift Container Platform and the parameters available for configuration.

As seen in the OpenStack Cinder example, you can deploy this StorageClass to enable dynamic
provisioning. The following example creates a new default storage class that ensures that all PVCs that
do not require any special storage class are provisioned by the installed CSI driver:

27.15.5. Usage

Once the CSI driver is deployed and the StorageClass for dynamic provisioning is created, OpenShift
Container Platform is ready to use CSI. The following example installs a default MySQL template
without any changes to the template:

27.16. PERSISTENT STORAGE USING OPENSTACK MANILA

 - name: dev
 hostPath:
 path: /dev

oc create -f - << EOF
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: cinder
 annotations:
 storageclass.kubernetes.io/is-default-class: "true"
provisioner: csi-cinderplugin
parameters:
EOF

oc new-app mysql-persistent
--> Deploying template "openshift/mysql-persistent" to project default
...

oc get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
mysql Bound kubernetes-dynamic-pv-3271ffcb4e1811e8 1Gi RWO cinder
3s

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

509

27.16.1. Overview

IMPORTANT

Persistent volume (PV) provisioning using OpenStack Manila is a Technology Preview
feature only. Technology Preview features are not supported with Red Hat production
service level agreements (SLAs), might not be functionally complete, and Red Hat does
not recommend to use them for production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information on Red Hat Technology Preview features support scope, see
https://access.redhat.com/support/offerings/techpreview/.

OpenShift Container Platform is capable of provisioning PVs using the OpenStack Manila shared file
system service.

It is assumed the OpenStack Manila service has been correctly set up and is accessible from the
OpenShift Container Platform cluster. Only the NFS share types can be provisioned.

Familiarity with PVs, persistent volume claims (PVCs) , dynamic provisioning, and RBAC authorization is
recommended.

27.16.2. Installation and Setup

The feature is provided by an external provisioner. You must install and configure it in the OpenShift
Container Platform cluster.

27.16.2.1. Starting the External Provisioner

The external provisioner service is distributed as a container image and can be run in the OpenShift
Container Platform cluster as usual.

To allow the containers managing the API objects, configure the required role-based access control
(RBAC) rules as a cluster administrator:

1. Create a ServiceAccount:

2. Create a ClusterRole:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: manila-provisioner-runner

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: manila-provisioner-role
rules:
 - apiGroups: [""]
 resources: ["persistentvolumes"]
 verbs: ["get", "list", "watch", "create", "delete"]
 - apiGroups: [""]

OpenShift Container Platform 3.11 Configuring Clusters

510

https://access.redhat.com/support/offerings/techpreview/
https://wiki.openstack.org/wiki/Manila
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
http://blog.kubernetes.io/2016/10/dynamic-provisioning-and-storage-in-kubernetes.html
https://kubernetes.io/docs/admin/authorization/rbac/

1

2

3. Bind the rules via ClusterRoleBinding:

4. Create a new StorageClass:

The Manila share type the provisioner will create for the volume.

Set of Manila availability zones that the volume might be created in.

Configure the provisioner to connect, authenticate, and authorize to the Manila servic using
environment variables. Select the appropriate combination of environment variables for your installation
from the following list:

OS_USERNAME
OS_PASSWORD
OS_AUTH_URL
OS_DOMAIN_NAME
OS_TENANT_NAME

OS_USERID
OS_PASSWORD
OS_AUTH_URL
OS_TENANT_ID

 resources: ["persistentvolumeclaims"]
 verbs: ["get", "list", "watch", "update"]
 - apiGroups: ["storage.k8s.io"]
 resources: ["storageclasses"]
 verbs: ["get", "list", "watch"]
 - apiGroups: [""]
 resources: ["events"]
 verbs: ["list", "watch", "create", "update", "patch"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: manila-provisioner
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: manila-provisioner-role
subjects:
- kind: ServiceAccount
 name: manila-provisioner-runner
 namespace: default

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: "manila-share"
provisioner: "externalstorage.k8s.io/manila"
parameters:
 type: "default" 1
 zones: "nova" 2

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

511

https://docs.openstack.org/manila/latest/admin/shared-file-systems-share-types.html

OS_USERNAME
OS_PASSWORD
OS_AUTH_URL
OS_DOMAIN_ID
OS_TENANT_NAME

OS_USERNAME
OS_PASSWORD
OS_AUTH_URL
OS_DOMAIN_ID
OS_TENANT_ID

To pass the variables to the provisioner, use a Secret. The following example shows a Secret configured
for the first variables combination

NOTE

Newer OpenStack versions use "project" instead of "tenant." However, the environment
variables used by the provisioner must use TENANT in their names.

The last step is to start the provisioner itself, for example, using a deployment:

apiVersion: v1
kind: Secret
metadata:
 name: manila-provisioner-env
type: Opaque
data:
 os_username: <base64 encoded Manila username>
 os_password: <base64 encoded password>
 os_auth_url: <base64 encoded OpenStack Keystone URL>
 os_domain_name: <base64 encoded Manila service Domain>
 os_tenant_name: <base64 encoded Manila service Tenant/Project name>

kind: Deployment
apiVersion: extensions/v1beta1
metadata:
 name: manila-provisioner
spec:
 replicas: 1
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: manila-provisioner
 spec:
 serviceAccountName: manila-provisioner-runner
 containers:
 - image: "registry.redhat.io/openshift3/manila-provisioner:latest"
 imagePullPolicy: "IfNotPresent"
 name: manila-provisioner
 env:

OpenShift Container Platform 3.11 Configuring Clusters

512

27.16.3. Usage

After the provisioner is running, you can provision PVs using a PVC and the corresponding StorageClass:

The PersistentVolumeClaim is then bound to a PersistentVolume backed by the newly provisioned
Manila share. When the PersistentVolumeClaim and subsequently the PersistentVolume are deleted,
the provisioner deletes and unexports the Manila share.

27.17. DYNAMIC PROVISIONING AND CREATING STORAGE CLASSES

27.17.1. Overview

The StorageClass resource object describes and classifies storage that can be requested, as well as
provides a means for passing parameters for dynamically provisioned storage on demand.
StorageClass objects can also serve as a management mechanism for controlling different levels of

 - name: "OS_USERNAME"
 valueFrom:
 secretKeyRef:
 name: manila-provisioner-env
 key: os_username
 - name: "OS_PASSWORD"
 valueFrom:
 secretKeyRef:
 name: manila-provisioner-env
 key: os_password
 - name: "OS_AUTH_URL"
 valueFrom:
 secretKeyRef:
 name: manila-provisioner-env
 key: os_auth_url
 - name: "OS_DOMAIN_NAME"
 valueFrom:
 secretKeyRef:
 name: manila-provisioner-env
 key: os_domain_name
 - name: "OS_TENANT_NAME"
 valueFrom:
 secretKeyRef:
 name: manila-provisioner-env
 key: os_tenant_name

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: manila-nfs-pvc
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 2G
 storageClassName: manila-share

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

513

storage and access to the storage. Cluster Administrators (cluster-admin) or Storage Administrators
(storage-admin) define and create the StorageClass objects that users can request without needing
any intimate knowledge about the underlying storage volume sources.

The OpenShift Container Platform persistent volume framework enables this functionality and allows
administrators to provision a cluster with persistent storage. The framework also gives users a way to
request those resources without having any knowledge of the underlying infrastructure.

Many storage types are available for use as persistent volumes in OpenShift Container Platform. While
all of them can be statically provisioned by an administrator, some types of storage are created
dynamically using the built-in provider and plug-in APIs.

NOTE

To enable dynamic provisioning, add the
openshift_master_dynamic_provisioning_enabled variable to the [OSEv3:vars]
section of the Ansible inventory file and set its value to True.

[OSEv3:vars]

openshift_master_dynamic_provisioning_enabled=True

27.17.2. Available dynamically provisioned plug-ins

OpenShift Container Platform provides the following provisioner plug-ins, which have generic
implementations for dynamic provisioning that use the cluster’s configured provider’s API to create new
storage resources:

Storage Type Provisioner Plug-in
Name

Required Configuration Notes

OpenStack Cinder kubernetes.io/cinder Configuring for
OpenStack

AWS Elastic Block Store
(EBS)

kubernetes.io/aws-
ebs

Configuring for AWS For dynamic
provisioning when using
multiple clusters in
different zones, tag each
node with
Key=kubernetes.io/cl
uster/xxxx,Value=clu
sterid where xxxx and
clusterid are unique
per cluster.

OpenShift Container Platform 3.11 Configuring Clusters

514

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage

GCE Persistent Disk
(gcePD)

kubernetes.io/gce-pd Configuring for GCE In multi-zone
configurations, it is
advisable to run one
Openshift cluster per
GCE project to avoid
PVs from getting
created in zones where
no node from current
cluster exists.

GlusterFS kubernetes.io/gluste
rfs

Configuring GlusterFS

Ceph RBD kubernetes.io/rbd Configuring Ceph RBD

Trident from NetApp netapp.io/trident Configuring for Trident Storage orchestrator for
NetApp ONTAP,
SolidFire, and E-Series
storage.

VMWare vSphere kubernetes.io/vsphe
re-volume

Getting Started with
vSphere and Kubernetes

Azure Disk kubernetes.io/azure-
disk

Configuring for Azure

Storage Type Provisioner Plug-in
Name

Required Configuration Notes

IMPORTANT

Any chosen provisioner plug-in also requires configuration for the relevant cloud, host, or
third-party provider as per the relevant documentation.

27.17.3. Defining a StorageClass

StorageClass objects are currently a globally scoped object and need to be created by cluster-admin or
storage-admin users.

NOTE

For GCE and AWS, a default StorageClass is created during OpenShift Container
Platform installation. You can change the default StorageClass or delete it.

There are currently six plug-ins that are supported. The following sections describe the basic object
definition for a StorageClass and specific examples for each of the supported plug-in types.

27.17.3.1. Basic StorageClass object definition

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

515

https://github.com/NetApp/trident
https://www.vmware.com/support/vsphere.html
http://kubernetes.io/docs/getting-started-guides/vsphere/

1

2

3

4

5

6

StorageClass Basic object definition

(required) The API object type.

(required) The current apiVersion.

(required) The name of the StorageClass.

(optional) Annotations for the StorageClass

(required) The type of provisioner associated with this storage class.

(optional) The parameters required for the specific provisioner, this will change from plug-in to
plug-in.

27.17.3.2. StorageClass annotations

To set a StorageClass as the cluster-wide default:

 storageclass.kubernetes.io/is-default-class: "true"

This enables any Persistent Volume Claim (PVC) that does not specify a specific volume to
automatically be provisioned through the default StorageClass

NOTE

Beta annotation storageclass.beta.kubernetes.io/is-default-class is still working.
However it will be removed in a future release.

To set a StorageClass description:

 kubernetes.io/description: My StorageClass Description

27.17.3.3. OpenStack Cinder object definition

cinder-storageclass.yaml

kind: StorageClass 1
apiVersion: storage.k8s.io/v1 2
metadata:
 name: foo 3
 annotations: 4
 ...
provisioner: kubernetes.io/plug-in-type 5
parameters: 6
 param1: value
 ...
 paramN: value

kind: StorageClass
apiVersion: storage.k8s.io/v1

OpenShift Container Platform 3.11 Configuring Clusters

516

1

2

3

1

2

3

4

5

6

Volume type created in Cinder. Default is empty.

Availability Zone. If not specified, volumes are generally round-robined across all active zones
where the OpenShift Container Platform cluster has a node.

File system that is created on dynamically provisioned volumes. This value is copied to the fsType
field of dynamically provisioned persistent volumes and the file system is created when the volume
is mounted for the first time. The default value is ext4.

27.17.3.4. AWS ElasticBlockStore (EBS) object definition

aws-ebs-storageclass.yaml

Select from io1, gp2, sc1, st1. The default is gp2. See AWS documentation for valid Amazon
Resource Name (ARN) values.

AWS zone. If no zone is specified, volumes are generally round-robined across all active zones
where the OpenShift Container Platform cluster has a node. Zone and zones parameters must not
be used at the same time.

Only for io1 volumes. I/O operations per second per GiB. The AWS volume plug-in multiplies this
with the size of the requested volume to compute IOPS of the volume. The value cap is 20,000
IOPS, which is the maximum supported by AWS. See AWS documentation for further details.

Denotes whether to encrypt the EBS volume. Valid values are true or false.

Optional. The full ARN of the key to use when encrypting the volume. If none is supplied, but
encypted is set to true, then AWS generates a key. See AWS documentation for a valid ARN value.

File system that is created on dynamically provisioned volumes. This value is copied to the fsType
field of dynamically provisioned persistent volumes and the file system is created when the volume
is mounted for the first time. The default value is ext4.

metadata:
 name: gold
provisioner: kubernetes.io/cinder
parameters:
 type: fast 1
 availability: nova 2
 fsType: ext4 3

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: slow
provisioner: kubernetes.io/aws-ebs
parameters:
 type: io1 1
 zone: us-east-1d 2
 iopsPerGB: "10" 3
 encrypted: "true" 4
 kmsKeyId: keyvalue 5
 fsType: ext4 6

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

517

http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

1

2

3

4

1

27.17.3.5. GCE PersistentDisk (gcePD) object definition

gce-pd-storageclass.yaml

Select either pd-standard or pd-ssd. The default is pd-ssd.

GCE zone. If no zone is specified, volumes are generally round-robined across all active zones
where the OpenShift Container Platform cluster has a node. Zone and zones parameters must not
be used at the same time.

A comma-separated list of GCE zone(s). If no zone is specified, volumes are generally round-
robined across all active zones where the OpenShift Container Platform cluster has a node. Zone
and zones parameters must not be used at the same time.

File system that is created on dynamically provisioned volumes. This value is copied to the fsType
field of dynamically provisioned persistent volumes and the file system is created when the volume
is mounted for the first time. The default value is ext4.

27.17.3.6. GlusterFS object definition

glusterfs-storageclass.yaml

Listed are mandatory and a few optional parameters. Please refer to Registering a Storage Class
for additional parameters.

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: slow
provisioner: kubernetes.io/gce-pd
parameters:
 type: pd-standard 1
 zone: us-central1-a 2
 zones: us-central1-a, us-central1-b, us-east1-b 3
 fsType: ext4 4

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: slow
provisioner: kubernetes.io/glusterfs
parameters: 1
 resturl: http://127.0.0.1:8081 2
 restuser: admin 3
 secretName: heketi-secret 4
 secretNamespace: default 5
 gidMin: "40000" 6
 gidMax: "50000" 7
 volumeoptions: group metadata-cache, nl-cache on 8
 volumetype: replicate:3 9
 volumenameprefix: custom 10

OpenShift Container Platform 3.11 Configuring Clusters

518

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/operations_guide/#sect_file_reg_storageclass

2

3

4

5

6

7

8

9

10

1

heketi (volume management REST service for Gluster) URL that provisions GlusterFS volumes on
demand. The general format should be {http/https}://{IPaddress}:{Port}. This is a mandatory

heketi user who has access to create volumes. Usually "admin".

Identification of a Secret that contains a user password to use when talking to heketi. Optional; an
empty password will be used when both secretNamespace and secretName are omitted. The
provided secret must be of type "kubernetes.io/glusterfs".

The namespace of mentioned secretName. Optional; an empty password will be used when both
secretNamespace and secretName are omitted. The provided secret must be of type
"kubernetes.io/glusterfs".

Optional. The minimum value of the GID range for volumes of this StorageClass.

Optional. The maximum value of the GID range for volumes of this StorageClass.

Optional. Options for newly created volumes. It allows for performance tuning. See Tuning Volume
Options for more GlusterFS volume options.

Optional. The type of volume to use.

Optional. Enables custom volume name support using the following format:
<volumenameprefix>_<namespace>_<claimname>_UUID. If you create a new PVC called
myclaim in your project project1 using this storageClass, the volume name will be custom-
project1-myclaim-UUID.

NOTE

When the gidMin and gidMax values are not specified, their defaults are 2000 and
2147483647, respectively. Each dynamically provisioned volume will be given a GID in this
range (gidMin-gidMax). This GID is released from the pool when the respective volume is
deleted. The GID pool is per StorageClass. If two or more storage classes have GID
ranges that overlap there may be duplicate GIDs dispatched by the provisioner.

When heketi authentication is used, a Secret containing the admin key should also exist:

heketi-secret.yaml

base64 encoded password, for example: echo -n "mypassword" | base64

NOTE

apiVersion: v1
kind: Secret
metadata:
 name: heketi-secret
 namespace: default
data:
 key: bXlwYXNzd29yZA== 1
type: kubernetes.io/glusterfs

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

519

https://github.com/heketi/heketi
https://docs.gluster.org/en/v3/Administrator Guide/Managing Volumes/#tuning-volume-options
https://docs.gluster.org/en/v3/Quick-Start-Guide/Architecture/

1

2

3

4

5

6

7

8

NOTE

When the PVs are dynamically provisioned, the GlusterFS plug-in automatically creates
an Endpoints and a headless Service named gluster-dynamic-<claimname>. When the
PVC is deleted, these dynamic resources are deleted automatically.

27.17.3.7. Ceph RBD object definition

ceph-storageclass.yaml

Ceph monitors, comma-delimited. It is required.

Ceph client ID that is capable of creating images in the pool. Default is "admin".

Secret Name for adminId. It is required. The provided secret must have type "kubernetes.io/rbd".

The namespace for adminSecret. Default is "default".

Ceph RBD pool. Default is "rbd".

Ceph client ID that is used to map the Ceph RBD image. Default is the same as adminId.

The name of Ceph Secret for userId to map Ceph RBD image. It must exist in the same
namespace as PVCs. It is required.

File system that is created on dynamically provisioned volumes. This value is copied to the fsType
field of dynamically provisioned persistent volumes and the file system is created when the volume
is mounted for the first time. The default value is ext4.

27.17.3.8. Trident object definition

trident.yaml

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: fast
provisioner: kubernetes.io/rbd
parameters:
 monitors: 10.16.153.105:6789 1
 adminId: admin 2
 adminSecretName: ceph-secret 3
 adminSecretNamespace: kube-system 4
 pool: kube 5
 userId: kube 6
 userSecretName: ceph-secret-user 7
 fsType: ext4 8

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: gold
provisioner: netapp.io/trident 1

OpenShift Container Platform 3.11 Configuring Clusters

520

1

2

1

2

Trident uses the parameters as selection criteria for the different pools of storage that are registered
with it. Trident itself is configured separately.

For more information about installing Trident with OpenShift Container Platform, see the Trident
documentation.

For more information about supported parameters, see the storage attributes section of the
Trident documentation.

27.17.3.9. VMware vSphere object definition

vsphere-storageclass.yaml

For more information about using VMWare vSphere with OpenShift Container Platform, see the
VMWare vSphere documentation.

diskformat: thin, zeroedthick and eagerzeroedthick. See vSphere docs for details. Default: thin

27.17.3.10. Azure File object definition

To configure Azure file dynamic provisioning:

1. Create the role in the user’s project:

$ cat azf-role.yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: system:controller:persistent-volume-binder
 namespace: <user's project name>
rules:
 - apiGroups: [""]
 resources: ["secrets"]
 verbs: ["create", "get", "delete"]

2. Create the role binding to the persistent-volume-binder service account in the kube-system
project:

$ cat azf-rolebind.yaml

parameters: 2
 media: "ssd"
 provisioningType: "thin"
 snapshots: "true"

kind: StorageClass
apiVersion: storage.k8s.io/v1beta1
metadata:
 name: slow
provisioner: kubernetes.io/vsphere-volume 1
parameters:
 diskformat: thin 2

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

521

https://github.com/NetApp/trident
https://github.com/NetApp/trident#storage-attributes
https://vmware.github.io/vsphere-storage-for-kubernetes/documentation/index.html

1

2

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: system:controller:persistent-volume-binder
 namespace: <user's project>
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: system:controller:persistent-volume-binder
subjects:
- kind: ServiceAccount
 name: persistent-volume-binder
namespace: kube-system

3. Add the service account as admin to the user’s project:

$ oc policy add-role-to-user admin system:serviceaccount:kube-system:persistent-volume-
binder -n <user's project>

4. Create a storage class for the Azure file:

$ cat azfsc.yaml | oc create -f -
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: azfsc
provisioner: kubernetes.io/azure-file
mountOptions:
 - dir_mode=0777
 - file_mode=0777

The user can now create a PVC that uses this storage class.

27.17.3.11. Azure Disk object definition

azure-advanced-disk-storageclass.yaml

Azure storage account name. This must reside in the same resource group as the cluster. If a
storage account is specified, the location is ignored. If a storage account is not specified, a new
storage account gets created in the same resource group as the cluster. If you are specifying a
storageAccount, the value for kind must be Dedicated.

Azure storage account SKU tier. Default is empty. Note: Premium VM can attach both
Standard_LRS and Premium_LRS disks, Standard VM can only attach Standard_LRS disks,
Managed VM can only attach managed disks, and unmanaged VM can only attach unmanaged

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: slow
provisioner: kubernetes.io/azure-disk
parameters:
 storageAccount: azure_storage_account_name 1
 storageaccounttype: Standard_LRS 2
 kind: Dedicated 3

OpenShift Container Platform 3.11 Configuring Clusters

522

3

1

Managed VM can only attach managed disks, and unmanaged VM can only attach unmanaged
disks.

Possible values are Shared (default), Dedicated, and Managed.

a. If kind is set to Shared, Azure creates all unmanaged disks in a few shared storage
accounts in the same resource group as the cluster.

b. If kind is set to Managed, Azure creates new managed disks.

c. If kind is set to Dedicated and a storageAccount is specified, Azure uses the specified
storage account for the new unmanaged disk in the same resource group as the cluster.
For this to work:

The specified storage account must be in the same region.

Azure Cloud Provider must have a write access to the storage account.

d. If kind is set to Dedicated and a storageAccount is not specified, Azure creates a new
dedicated storage account for the new unmanaged disk in the same resource group as the
cluster.

IMPORTANT

Azure StorageClass is revised in OpenShift Container Platform version 3.7. If you
upgraded from a previous version, either:

specify the property kind: dedicated to continue using the Azure StorageClass
created before the upgrade. Or,

add the location parameter (for example, "location": "southcentralus",) in the
azure.conf file to use the default property kind: shared. Doing this creates new
storage accounts for future use.

27.17.4. Changing the default StorageClass

If you are using GCE and AWS, use the following process to change the default StorageClass:

1. List the StorageClass:

(default) denotes the default StorageClass.

2. Change the value of the annotation storageclass.kubernetes.io/is-default-class to false for
the default StorageClass:

$ oc get storageclass

NAME TYPE
gp2 (default) kubernetes.io/aws-ebs 1
standard kubernetes.io/gce-pd

$ oc patch storageclass gp2 -p '{"metadata": {"annotations": \
 {"storageclass.kubernetes.io/is-default-class": "false"}}}'

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

523

3. Make another StorageClass the default by adding or modifying the annotation as
storageclass.kubernetes.io/is-default-class=true.

NOTE

If more than one StorageClass is marked as default, a PVC can only be created if the
storageClassName is explicitly specified. Therefore, only one StorageClass should be
set as the default.

1. Verify the changes:

27.17.5. Additional information and examples

Examples and uses of StorageClasses for Dynamic Provisioning

Examples and uses of StorageClasses without Dynamic Provisioning

27.18. VOLUME SECURITY

27.18.1. Overview

This topic provides a general guide on pod security as it relates to volume security. For information on
pod-level security in general, see Managing Security Context Constraints (SCC) and the Security
Context Constraint concept topic. For information on the OpenShift Container Platform persistent
volume (PV) framework in general, see the Persistent Storage concept topic.

Accessing persistent storage requires coordination between the cluster and/or storage administrator
and the end developer. The cluster administrator creates PVs, which abstract the underlying physical
storage. The developer creates pods and, optionally, PVCs, which bind to PVs, based on matching
criteria, such as capacity.

Multiple persistent volume claims (PVCs) within the same project can bind to the same PV. However,
once a PVC binds to a PV, that PV cannot be bound by a claim outside of the first claim’s project. If the
underlying storage needs to be accessed by multiple projects, then each project needs its own PV, which
can point to the same physical storage. In this sense, a bound PV is tied to a project. For a detailed PV
and PVC example, see the example for Deploying WordPress and MySQL with Persistent Volumes .

For the cluster administrator, granting pods access to PVs involves:

knowing the group ID and/or user ID assigned to the actual storage,

understanding SELinux considerations, and

ensuring that these IDs are allowed in the range of legal IDs defined for the project and/or the

$ oc patch storageclass standard -p '{"metadata": {"annotations": \
 {"storageclass.kubernetes.io/is-default-class": "true"}}}'

$ oc get storageclass

NAME TYPE
gp2 kubernetes.io/aws-ebs
standard (default) kubernetes.io/gce-pd

OpenShift Container Platform 3.11 Configuring Clusters

524

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-manage-scc
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#security-context-constraints
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/

ensuring that these IDs are allowed in the range of legal IDs defined for the project and/or the
SCC that matches the requirements of the pod.

Group IDs, the user ID, and SELinux values are defined in the SecurityContext section in a pod
definition. Group IDs are global to the pod and apply to all containers defined in the pod. User IDs can
also be global, or specific to each container. Four sections control access to volumes:

supplementalGroups

fsGroup

runAsUser

seLinuxOptions

27.18.2. SCCs, Defaults, and Allowed Ranges

SCCs influence whether or not a pod is given a default user ID, fsGroup ID, supplemental group ID, and
SELinux label. They also influence whether or not IDs supplied in the pod definition (or in the image) will
be validated against a range of allowable IDs. If validation is required and fails, then the pod will also fail.

SCCs define strategies, such as runAsUser, supplementalGroups, and fsGroup. These strategies help
decide whether the pod is authorized. Strategy values set to RunAsAny are essentially stating that the
pod can do what it wants regarding that strategy. Authorization is skipped for that strategy and no
OpenShift Container Platform default is produced based on that strategy. Therefore, IDs and SELinux
labels in the resulting container are based on container defaults instead of OpenShift Container
Platform policies.

For a quick summary of RunAsAny:

Any ID defined in the pod definition (or image) is allowed.

Absence of an ID in the pod definition (and in the image) results in the container assigning an ID,
which is root (0) for Docker.

No SELinux labels are defined, so Docker will assign a unique label.

For these reasons, SCCs with RunAsAny for ID-related strategies should be protected so that ordinary
developers do not have access to the SCC. On the other hand, SCC strategies set to MustRunAs or
MustRunAsRange trigger ID validation (for ID-related strategies), and cause default values to be
supplied by OpenShift Container Platform to the container when those values are not supplied directly in
the pod definition or image.

CAUTION

Allowing access to SCCs with a RunAsAny FSGroup strategy can also prevent users from accessing
their block devices. Pods need to specify an fsGroup in order to take over their block devices. Normally,
this is done when the SCC FSGroup strategy is set to MustRunAs. If a user’s pod is assigned an SCC
with a RunAsAny FSGroup strategy, then the user may face permission denied errors until they
discover that they need to specify an fsGroup themselves.

SCCs may define the range of allowed IDs (user or groups). If range checking is required (for example,
using MustRunAs) and the allowable range is not defined in the SCC, then the project determines the
ID range. Therefore, projects support ranges of allowable ID. However, unlike SCCs, projects do not
define strategies, such as runAsUser.

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

525

1

2

3

Allowable ranges are helpful not only because they define the boundaries for container IDs, but also
because the minimum value in the range becomes the default value for the ID in question. For example,
if the SCC ID strategy value is MustRunAs, the minimum value of an ID range is 100, and the ID is absent
from the pod definition, then 100 is provided as the default for this ID.

As part of pod admission, the SCCs available to a pod are examined (roughly, in priority order followed
by most restrictive) to best match the requests of the pod. Setting a SCC’s strategy type to RunAsAny
is less restrictive, whereas a type of MustRunAs is more restrictive. All of these strategies are evaluated.
To see which SCC was assigned to a pod, use the oc get pod command:

oc get pod <pod_name> -o yaml
...
metadata:
 annotations:
 openshift.io/scc: nfs-scc 1
 name: nfs-pod1 2
 namespace: default 3
...

Name of the SCC that the pod used (in this case, a custom SCC).

Name of the pod.

Name of the project. "Namespace" is interchangeable with "project" in OpenShift Container
Platform. See Projects and Users for details.

It may not be immediately obvious which SCC was matched by a pod, so the command above can be
very useful in understanding the UID, supplemental groups, and SELinux relabeling in a live container.

Any SCC with a strategy set to RunAsAny allows specific values for that strategy to be defined in the
pod definition (and/or image). When this applies to the user ID (runAsUser) it is prudent to restrict
access to the SCC to prevent a container from being able to run as root.

Because pods often match the restricted SCC, it is worth knowing the security this entails. The
restricted SCC has the following characteristics:

User IDs are constrained due to the runAsUser strategy being set to MustRunAsRange. This
forces user ID validation.

Because a range of allowable user IDs is not defined in the SCC (see oc get -o yaml --export
scc restricted` for more details), the project’s openshift.io/sa.scc.uid-range range will be used
for range checking and for a default ID, if needed.

A default user ID is produced when a user ID is not specified in the pod definition and the
matching SCC’s runAsUser is set to MustRunAsRange.

An SELinux label is required (seLinuxContext set to MustRunAs), which uses the project’s
default MCS label.

fsGroup IDs are constrained to a single value due to the FSGroup strategy being set to
MustRunAs, which dictates that the value to use is the minimum value of the first range
specified.

Because a range of allowable fsGroup IDs is not defined in the SCC, the minimum value of the

OpenShift Container Platform 3.11 Configuring Clusters

526

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#namespaces

1

2

3

Because a range of allowable fsGroup IDs is not defined in the SCC, the minimum value of the
project’s openshift.io/sa.scc.supplemental-groups range (or the same range used for user
IDs) will be used for validation and for a default ID, if needed.

A default fsGroup ID is produced when a fsGroup ID is not specified in the pod and the
matching SCC’s FSGroup is set to MustRunAs.

Arbitrary supplemental group IDs are allowed because no range checking is required. This is a
result of the supplementalGroups strategy being set to RunAsAny.

Default supplemental groups are not produced for the running pod due to RunAsAny for the
two group strategies above. Therefore, if no groups are defined in the pod definition (or in the
image), the container(s) will have no supplemental groups predefined.

The following shows the default project and a custom SCC (my-custom-scc), which summarizes the
interactions of the SCC and the project:

$ oc get project default -o yaml 1
...
metadata:
 annotations: 2
 openshift.io/sa.scc.mcs: s0:c1,c0 3
 openshift.io/sa.scc.supplemental-groups: 1000000000/10000 4
 openshift.io/sa.scc.uid-range: 1000000000/10000 5

$ oc get scc my-custom-scc -o yaml
...
fsGroup:
 type: MustRunAs 6
 ranges:
 - min: 5000
 max: 6000
runAsUser:
 type: MustRunAsRange 7
 uidRangeMin: 1000100000
 uidRangeMax: 1000100999
seLinuxContext: 8
 type: MustRunAs
 SELinuxOptions: 9
 user: <selinux-user-name>
 role: ...
 type: ...
 level: ...
supplementalGroups:
 type: MustRunAs 10
 ranges:
 - min: 5000
 max: 6000

default is the name of the project.

Default values are only produced when the corresponding SCC strategy is not RunAsAny.

SELinux default when not defined in the pod definition or in the SCC.

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

527

4

5

6 10

7

8

9

Range of allowable group IDs. ID validation only occurs when the SCC strategy is RunAsAny. There
can be more than one range specified, separated by commas. See below for supported formats .

Same as <4> but for user IDs. Also, only a single range of user IDs is supported.

MustRunAs enforces group ID range checking and provides the container’s groups default. Based
on this SCC definition, the default is 5000 (the minimum ID value). If the range was omitted from
the SCC, then the default would be 1000000000 (derived from the project). The other supported
type, RunAsAny, does not perform range checking, thus allowing any group ID, and produces no
default groups.

MustRunAsRange enforces user ID range checking and provides a UID default. Based on this SCC,
the default UID is 1000100000 (the minimum value). If the minimum and maximum range were
omitted from the SCC, the default user ID would be 1000000000 (derived from the project).
MustRunAsNonRoot and RunAsAny are the other supported types. The range of allowed IDs can
be defined to include any user IDs required for the target storage.

When set to MustRunAs, the container is created with the SCC’s SELinux options, or the MCS
default defined in the project. A type of RunAsAny indicates that SELinux context is not required,
and, if not defined in the pod, is not set in the container.

The SELinux user name, role name, type, and labels can be defined here.

Two formats are supported for allowed ranges:

1. M/N, where M is the starting ID and N is the count, so the range becomes M through (and
including) M+N-1.

2. M-N, where M is again the starting ID and N is the ending ID. The default group ID is the starting
ID in the first range, which is 1000000000 in this project. If the SCC did not define a minimum
group ID, then the project’s default ID is applied.

27.18.3. Supplemental Groups

NOTE

Read SCCs, Defaults, and Allowed Ranges before working with supplemental groups.

TIP

It is generally preferable to use group IDs (supplemental or fsGroup) to gain access to persistent
storage versus using user IDs.

Supplemental groups are regular Linux groups. When a process runs in Linux, it has a UID, a GID, and
one or more supplemental groups. These attributes can be set for a container’s main process. The
supplementalGroups IDs are typically used for controlling access to shared storage, such as NFS and
GlusterFS, whereas fsGroup is used for controlling access to block storage, such as Ceph RBD and
iSCSI.

The OpenShift Container Platform shared storage plug-ins mount volumes such that the POSIX
permissions on the mount match the permissions on the target storage. For example, if the target
storage’s owner ID is 1234 and its group ID is 5678, then the mount on the host node and in the
container will have those same IDs. Therefore, the container’s main process must match one or both of
those IDs in order to access the volume.

OpenShift Container Platform 3.11 Configuring Clusters

528

1

2

3

For example, consider the following NFS export.

On an OpenShift Container Platform node:

NOTE

showmount requires access to the ports used by rpcbind and rpc.mount on the NFS
server

showmount -e <nfs-server-ip-or-hostname>
Export list for f21-nfs.vm:
/opt/nfs *

On the NFS server:

cat /etc/exports
/opt/nfs *(rw,sync,root_squash)
...

ls -lZ /opt/nfs -d
drwx------. 1000100001 5555 unconfined_u:object_r:usr_t:s0 /opt/nfs

The /opt/nfs/ export is accessible by UID 1000100001 and the group 5555. In general, containers
should not run as root. So, in this NFS example, containers which are not run as UID 1000100001 and are
not members the group 5555 will not have access to the NFS export.

Often, the SCC matching the pod does not allow a specific user ID to be specified, thus using
supplemental groups is a more flexible way to grant storage access to a pod. For example, to grant NFS
access to the export above, the group 5555 can be defined in the pod definition:

Name of the volume mount. Must match the name in the volumes section.

NFS export path as seen in the container.

Pod global security context. Applies to all containers inside the pod. Each container can also define

apiVersion: v1
kind: Pod
...
spec:
 containers:
 - name: ...
 volumeMounts:
 - name: nfs 1
 mountPath: /usr/share/... 2
 securityContext: 3
 supplementalGroups: [5555] 4
 volumes:
 - name: nfs 5
 nfs:
 server: <nfs_server_ip_or_host>
 path: /opt/nfs 6

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

529

4

5

6

Pod global security context. Applies to all containers inside the pod. Each container can also define
its securityContext, however group IDs are global to the pod and cannot be defined for individual

Supplemental groups, which is an array of IDs, is set to 5555. This grants group access to the
export.

Name of the volume. Must match the name in the volumeMounts section.

Actual NFS export path on the NFS server.

All containers in the above pod (assuming the matching SCC or project allows the group 5555) will be
members of the group 5555 and have access to the volume, regardless of the container’s user ID.
However, the assumption above is critical. Sometimes, the SCC does not define a range of allowable
group IDs but instead requires group ID validation (a result of supplementalGroups set to
MustRunAs). Note that this is not the case for the restricted SCC. The project will not likely allow a
group ID of 5555, unless the project has been customized to access this NFS export. So, in this scenario,
the above pod will fail because its group ID of 5555 is not within the SCC’s or the project’s range of
allowed group IDs.

Supplemental Groups and Custom SCCs

To remedy the situation in the previous example , a custom SCC can be created such that:

a minimum and max group ID are defined,

ID range checking is enforced, and

the group ID of 5555 is allowed.

It is often better to create a new SCC rather than modifying a predefined SCC, or changing the range of
allowed IDs in the predefined projects.

The easiest way to create a new SCC is to export an existing SCC and customize the YAML file to meet
the requirements of the new SCC. For example:

1. Use the restricted SCC as a template for the new SCC:

$ oc get -o yaml --export scc restricted > new-scc.yaml

2. Edit the new-scc.yaml file to your desired specifications.

3. Create the new SCC:

$ oc create -f new-scc.yaml

NOTE

The oc edit scc command can be used to modify an instantiated SCC.

Here is a fragment of a new SCC named nfs-scc:

$ oc get -o yaml --export scc nfs-scc

allowHostDirVolumePlugin: false 1

OpenShift Container Platform 3.11 Configuring Clusters

530

1

2

3

4

5

...
kind: SecurityContextConstraints
metadata:
 ...
 name: nfs-scc 2
priority: 9 3
...
supplementalGroups:
 type: MustRunAs 4
 ranges:
 - min: 5000 5
 max: 6000
...

The allow booleans are the same as for the restricted SCC.

Name of the new SCC.

Numerically larger numbers have greater priority. Nil or omitted is the lowest priority. Higher
priority SCCs sort before lower priority SCCs and thus have a better chance of matching a new
pod.

supplementalGroups is a strategy and it is set to MustRunAs, which means group ID checking is
required.

Multiple ranges are supported. The allowed group ID range here is 5000 through 5999, with the
default supplemental group being 5000.

When the same pod shown earlier runs against this new SCC (assuming, of course, the pod matches the
new SCC), it will start because the group 5555, supplied in the pod definition, is now allowed by the
custom SCC.

27.18.4. fsGroup

NOTE

Read SCCs, Defaults, and Allowed Ranges before working with supplemental groups.

TIP

It is generally preferable to use group IDs (supplemental or fsGroup) to gain access to persistent
storage versus using user IDs.

fsGroup defines a pod’s "file system group" ID, which is added to the container’s supplemental groups.
The supplementalGroups ID applies to shared storage, whereas the fsGroup ID is used for block
storage.

Block storage, such as Ceph RBD, iSCSI, and various cloud storage, is typically dedicated to a single pod
which has requested the block storage volume, either directly or using a PVC. Unlike shared storage,
block storage is taken over by a pod, meaning that user and group IDs supplied in the pod definition (or
image) are applied to the actual, physical block device. Typically, block storage is not shared.

A fsGroup definition is shown below in the following pod definition fragment:

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

531

1

2

1

2

As with supplementalGroups, fsGroup must be defined globally to the pod, not per container.

5555 will become the group ID for the volume’s group permissions and for all new files created in
the volume.

As with supplementalGroups, all containers in the above pod (assuming the matching SCC or project
allows the group 5555) will be members of the group 5555, and will have access to the block volume,
regardless of the container’s user ID. If the pod matches the restricted SCC, whose fsGroup strategy is
MustRunAs, then the pod will fail to run. However, if the SCC has its fsGroup strategy set to RunAsAny,
then any fsGroup ID (including 5555) will be accepted. Note that if the SCC has its fsGroup strategy
set to RunAsAny and no fsGroup ID is specified, the "taking over" of the block storage does not occur
and permissions may be denied to the pod.

fsGroups and Custom SCCs

To remedy the situation in the previous example, a custom SCC can be created such that:

a minimum and maximum group ID are defined,

ID range checking is enforced, and

the group ID of 5555 is allowed.

It is better to create new SCCs versus modifying a predefined SCC, or changing the range of allowed IDs
in the predefined projects.

Consider the following fragment of a new SCC definition:

oc get -o yaml --export scc new-scc
...
kind: SecurityContextConstraints
...
fsGroup:
 type: MustRunAs 1
 ranges: 2
 - max: 6000
 min: 5000 3
...

MustRunAs triggers group ID range checking, whereas RunAsAny does not require range
checking.

The range of allowed group IDs is 5000 through, and including, 5999. Multiple ranges are
supported but not used. The allowed group ID range here is 5000 through 5999, with the default
fsGroup being 5000.

kind: Pod
...
spec:
 containers:
 - name: ...
 securityContext: 1
 fsGroup: 5555 2
 ...

OpenShift Container Platform 3.11 Configuring Clusters

532

3 The minimum value (or the entire range) can be omitted from the SCC, and thus range checking
and generating a default value will defer to the project’s openshift.io/sa.scc.supplemental-

When the pod shown above runs against this new SCC (assuming, of course, the pod matches the new
SCC), it will start because the group 5555, supplied in the pod definition, is allowed by the custom SCC.
Additionally, the pod will "take over" the block device, so when the block storage is viewed by a process
outside of the pod, it will actually have 5555 as its group ID.

A list of volumes supporting block ownership include:

AWS Elastic Block Store

OpenStack Cinder

Ceph RBD

GCE Persistent Disk

iSCSI

emptyDir

NOTE

This list is potentially incomplete.

27.18.5. User IDs

NOTE

Read SCCs, Defaults, and Allowed Ranges before working with supplemental groups.

TIP

It is generally preferable to use group IDs (supplemental or fsGroup) to gain access to persistent
storage versus using user IDs.

User IDs can be defined in the container image or in the pod definition. In the pod definition, a single
user ID can be defined globally to all containers, or specific to individual containers (or both). A user ID is
supplied as shown in the pod definition fragment below:

ID 1000100001 in the above is container-specific and matches the owner ID on the export. If the NFS
export’s owner ID was 54321, then that number would be used in the pod definition. Specifying
securityContext outside of the container definition makes the ID global to all containers in the pod.

Similar to group IDs, user IDs may be validated according to policies set in the SCC and/or project. If the

spec:
 containers:
 - name: ...
 securityContext:
 runAsUser: 1000100001

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

533

Similar to group IDs, user IDs may be validated according to policies set in the SCC and/or project. If the
SCC’s runAsUser strategy is set to RunAsAny, then any user ID defined in the pod definition or in the
image is allowed.

WARNING

This means even a UID of 0 (root) is allowed.

If, instead, the runAsUser strategy is set to MustRunAsRange, then a supplied user ID will be validated
against a range of allowed IDs. If the pod supplies no user ID, then the default ID is set to the minimum
value of the range of allowable user IDs.

Returning to the earlier NFS example , the container needs its UID set to 1000100001, which is shown in
the pod fragment above. Assuming the default project and the restricted SCC, the pod’s requested
user ID of 1000100001 will not be allowed, and therefore the pod will fail. The pod fails because:

it requests 1000100001 as its user ID,

all available SCCs use MustRunAsRange for their runAsUser strategy, so UID range checking
is required, and

1000100001 is not included in the SCC or in the project’s user ID range.

To remedy this situation, a new SCC can be created with the appropriate user ID range. A new project
could also be created with the appropriate user ID range defined. There are also other, less-preferred
options:

The restricted SCC could be modified to include 1000100001 within its minimum and maximum
user ID range. This is not recommended as you should avoid modifying the predefined SCCs if
possible.

The restricted SCC could be modified to use RunAsAny for the runAsUser value, thus
eliminating ID range checking. This is strongly not recommended, as containers could run as
root.

The default project’s UID range could be changed to allow a user ID of 1000100001. This is not
generally advisable because only a single range of user IDs can be specified, and thus other
pods may not run if the range is altered.

User IDs and Custom SCCs

It is good practice to avoid modifying the predefined SCCs if possible. The preferred approach is to
create a custom SCC that better fits an organization’s security needs, or create a new project that
supports the desired user IDs.

To remedy the situation in the previous example, a custom SCC can be created such that:

a minimum and maximum user ID is defined,

UID range checking is still enforced, and

the UID of 1000100001 is allowed.



OpenShift Container Platform 3.11 Configuring Clusters

534

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#create-a-project

1

2

3

4

5

For example:

$ oc get -o yaml --export scc nfs-scc

allowHostDirVolumePlugin: false 1
...
kind: SecurityContextConstraints
metadata:
 ...
 name: nfs-scc 2
priority: 9 3
requiredDropCapabilities: null
runAsUser:
 type: MustRunAsRange 4
 uidRangeMax: 1000100001 5
 uidRangeMin: 1000100001
...

The allowXX bools are the same as for the restricted SCC.

The name of this new SCC is nfs-scc.

Numerically larger numbers have greater priority. Nil or omitted is the lowest priority. Higher
priority SCCs sort before lower priority SCCs, and thus have a better chance of matching a new
pod.

The runAsUser strategy is set to MustRunAsRange, which means UID range checking is enforced.

The UID range is 1000100001 through 1000100001 (a range of one value).

Now, with runAsUser: 1000100001 shown in the previous pod definition fragment, the pod matches
the new nfs-scc and is able to run with a UID of 1000100001.

27.18.6. SELinux Options

All predefined SCCs, except for the privileged SCC, set the seLinuxContext to MustRunAs. So the
SCCs most likely to match a pod’s requirements will force the pod to use an SELinux policy. The
SELinux policy used by the pod can be defined in the pod itself, in the image, in the SCC, or in the
project (which provides the default).

SELinux labels can be defined in a pod’s securityContext.seLinuxOptions section, and supports user,
role, type, and level:

NOTE

Level and MCS label are used interchangeably in this topic.

...
 securityContext: 1
 seLinuxOptions:
 level: "s0:c123,c456" 2
...

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

535

1

2

1

2

level can be defined globally for the entire pod, or individually for each container.

SELinux level label.

Here are fragments from an SCC and from the default project:

$ oc get -o yaml --export scc scc-name
...
seLinuxContext:
 type: MustRunAs 1

oc get -o yaml --export namespace default
...
metadata:
 annotations:
 openshift.io/sa.scc.mcs: s0:c1,c0 2
...

MustRunAs causes volume relabeling.

If the label is not provided in the pod or in the SCC, then the default comes from the project.

All predefined SCCs, except for the privileged SCC, set the seLinuxContext to MustRunAs. This
forces pods to use MCS labels, which can be defined in the pod definition, the image, or provided as a
default.

The SCC determines whether or not to require an SELinux label and can provide a default label. If the
seLinuxContext strategy is set to MustRunAs and the pod (or image) does not define a label,
OpenShift Container Platform defaults to a label chosen from the SCC itself or from the project.

If seLinuxContext is set to RunAsAny, then no default labels are provided, and the container
determines the final label. In the case of Docker, the container will use a unique MCS label, which will not
likely match the labeling on existing storage mounts. Volumes which support SELinux management will
be relabeled so that they are accessible by the specified label and, depending on how exclusionary the
label is, only that label.

This means two things for unprivileged containers:

The volume is given a type that is accessible by unprivileged containers. This type is usually
container_file_t in Red Hat Enterprise Linux (RHEL) version 7.5 and later. This type treats
volumes as container content. In previous RHEL versions, RHEL 7.4, 7.3, and so forth, the
volume is given the svirt_sandbox_file_t type.

If a level is specified, the volume is labeled with the given MCS label.

For a volume to be accessible by a pod, the pod must have both categories of the volume. So a pod with
s0:c1,c2 will be able to access a volume with s0:c1,c2. A volume with s0 will be accessible by all pods.

If pods fail authorization, or if the storage mount is failing due to permissions errors, then there is a
possibility that SELinux enforcement is interfering. One way to check for this is to run:

ausearch -m avc --start recent

This examines the log file for AVC (Access Vector Cache) errors.

OpenShift Container Platform 3.11 Configuring Clusters

536

27.19. SELECTOR-LABEL VOLUME BINDING

27.19.1. Overview

This guide provides the steps necessary to enable binding of persistent volume claims (PVCs) to
persistent volumes (PVs) via selector and label attributes. By implementing selectors and labels, regular
users are able to target provisioned storage by identifiers defined by a cluster administrator.

27.19.2. Motivation

In cases of statically provisioned storage, developers seeking persistent storage are required to know a
handful of identifying attributes of a PV in order to deploy and bind a PVC. This creates several
problematic situations. Regular users might have to contact a cluster administrator to either deploy the
PVC or provide the PV values. PV attributes alone do not convey the intended use of the storage
volumes, nor do they provide methods by which volumes can be grouped.

Selector and label attributes can be used to abstract away PV details from the user while providing
cluster administrators with a way of identifying volumes by a descriptive and customizable tag. Through
the selector-label method of binding, users are only required to know which labels are defined by the
administrator.

NOTE

The selector-label feature is currently only available for statically provisioned storage and
is currently not implemented for storage provisioned dynamically.

27.19.3. Deployment

This section reviews how to define and deploy PVCs.

27.19.3.1. Prerequisites

1. A running OpenShift Container Platform 3.3+ cluster

2. A volume provided by a supported storage provider

3. A user with a cluster-admin role binding

27.19.3.2. Define the Persistent Volume and Claim

1. As the cluster-admin user, define the PV. For this example, we will be using a GlusterFS volume.
See the appropriate storage provider for your provider’s configuration.

Example 27.9. Persistent Volume with Labels

apiVersion: v1
kind: PersistentVolume
metadata:
 name: gluster-volume
 labels: 1
 volume-type: ssd
 aws-availability-zone: us-east-1
spec:
 capacity:

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

537

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage

1

1

2

 storage: 2Gi
 accessModes:
 - ReadWriteMany
 glusterfs:
 endpoints: glusterfs-cluster
 path: myVol1
 readOnly: false
 persistentVolumeReclaimPolicy: Retain

A PVC whose selectors match all of a PV’s labels will be bound, assuming a PV is
available.

2. Define the PVC:

Example 27.10. Persistent Volume Claim with Selectors

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: gluster-claim
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi
 selector: 1
 matchLabels: 2
 volume-type: ssd
 aws-availability-zone: us-east-1

Begin selectors section.

List all labels by which the user is requesting storage. Must match all labels of targeted
PV.

27.19.3.3. Optional: Bind a PVC to a specific PV

A PVC that does not specify a PV name or selector will match any PV.

To bind a PVC to a specific PV as a cluster administrator:

Use pvc.spec.volumeName if you know the PV name.

Use pvc.spec.selector if you know the PV labels.
By specifying a selector, the PVC requires the PV to have specific labels.

27.19.3.4. Optional: Reserve a PV to a specific PVC

To reserve a PV for specific tasks, you have two options: create a specific storage class, or pre-bind the
PV to your PVC.

OpenShift Container Platform 3.11 Configuring Clusters

538

1. Request a specific storage class for the PV by specifying the storage class’s name.
The following resource shows the required values that you use to configure a StorageClass. This
example uses the AWS ElasticBlockStore (EBS) object definition.

Example 27.11. StorageClass definition for EBS

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: kafka
provisioner: kubernetes.io/aws-ebs
...

IMPORTANT

If necessary in a multi-tenant environment, use a quota definition to reserve the
storage class and PV(s) only to a specific namespace.

2. Pre-bind the PV to your PVC using the PVC namespace and name. A PV defined as such will
bind only to the specified PVC and to nothing else, as shown in the following example:

Example 27.12. claimRef in PV definition

apiVersion: v1
kind: PersistentVolume
metadata:
 name: mktg-ops--kafka--kafka-broker01
spec:
 capacity:
 storage: 15Gi
 accessModes:
 - ReadWriteOnce
 claimRef:
 apiVersion: v1
 kind: PersistentVolumeClaim
 name: kafka-broker01
 namespace: default
...

27.19.3.5. Deploy the Persistent Volume and Claim

As the cluster-admin user, create the persistent volume:

Example 27.13. Create the Persistent Volume

oc create -f gluster-pv.yaml
persistentVolume "gluster-volume" created

oc get pv

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

539

NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON
AGE
gluster-volume map[] 2147483648 RWX Available 2s

Once the PV is created, any user whose selectors match all its labels can create their PVC.

Example 27.14. Create the Persistent Volume Claim

oc create -f gluster-pvc.yaml
persistentVolumeClaim "gluster-claim" created
oc get pvc
NAME LABELS STATUS VOLUME
gluster-claim Bound gluster-volume

27.20. ENABLING CONTROLLER-MANAGED ATTACHMENT AND
DETACHMENT

27.20.1. Overview

By default, the controller running on the cluster’s master manages volume attach and detach operations
on behalf of a set of nodes, as opposed to letting them manage their own volume attach and detach
operations.

Controller-managed attachment and detachment has the following benefits:

If a node is lost, volumes that were attached to it can be detached by the controller and
reattached elsewhere.

Credentials for attaching and detaching do not need to be made present on every node,
improving security.

27.20.2. Determining What Is Managing Attachment and Detachment

If a node has set the annotation volumes.kubernetes.io/controller-managed-attach-detach on itself,
then its attach and detach operations are being managed by the controller. The controller will
automatically inspect all nodes for this annotation and act according to whether it is present or not.
Therefore, you may inspect the node for this annotation to determine if it has enabled controller-
managed attach and detach.

To further ensure that the node is opting for controller-managed attachment and detachment, its logs
can be searched for the following line:

Setting node annotation to enable volume controller attach/detach

If the above line is not found, the logs should instead contain:

Controller attach/detach is disabled for this node; Kubelet will attach and detach volumes

To check from the controller’s end that it is managing a particular node’s attach and detach operations,
the logging level must first be set to at least 4. Then, the following line should be found:

OpenShift Container Platform 3.11 Configuring Clusters

540

processVolumesInUse for node <node_hostname>

For information on how to view logs and configure logging levels, see Configuring Logging Levels .

27.20.3. Configuring Nodes to Enable Controller-managed Attachment and
Detachment

Enabling controller-managed attachment and detachment is done by configuring individual nodes to
opt in and disable their own node-level attachment and detachment management. See Node
Configuration Files for information on what node configuration file to edit and add the following:

Once a node is configured, it must be restarted for the setting to take effect.

27.21. PERSISTENT VOLUME SNAPSHOTS

27.21.1. Overview

IMPORTANT

Persistent Volume Snapshots are a Technology Preview feature. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs),
might not be functionally complete, and Red Hat does not recommend to use them for
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information on Red Hat Technology Preview features support scope, see
https://access.redhat.com/support/offerings/techpreview/.

Many storage systems provide the ability to create "snapshots" of a persistent volume (PV) to protect
against data loss. The external snapshot controller and provisioner provide means to use the feature in
the OpenShift Container Platform cluster and handle volume snapshots through the OpenShift
Container Platform API.

This document describes the current state of volume snapshot support in OpenShift Container
Platform. Familiarity with PVs, persistent volume claims (PVCs) , and dynamic provisioning is
recommended.

27.21.2. Features

Create snapshot of a PersistentVolume bound to a PersistentVolumeClaim

List existing VolumeSnapshots

Delete existing VolumeSnapshot

Create a new PersistentVolume from an existing VolumeSnapshot

Supported PersistentVolume types:

kubeletArguments:
 enable-controller-attach-detach:
 - "true"

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

541

https://access.redhat.com/support/offerings/techpreview/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes

AWS Elastic Block Store (EBS)

Google Compute Engine (GCE) Persistent Disk (PD)

27.21.3. Installation and Setup

The external controller and provisioner are the external components that provide volume snapshotting.
These external components run in the cluster. The controller is responsible for creating, deleting, and
reporting events on volume snapshots. The provisioner creates new PersistentVolumes from the
volume snapshots. See Create Snapshot and Restore Snapshot for more information.

27.21.3.1. Starting the External Controller and Provisioner

The external controller and provisioner services are distributed as container images and can be run in
the OpenShift Container Platform cluster as usual. There are also RPM versions for the controller and
provisioner.

To allow the containers managing the API objects, the necessary role-based access control (RBAC)
rules need to be configured by the administrator:

1. Create a ServiceAccount and ClusterRole:

2. Bind the rules via ClusterRoleBinding:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: snapshot-controller-runner
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: snapshot-controller-role
rules:
 - apiGroups: [""]
 resources: ["persistentvolumes"]
 verbs: ["get", "list", "watch", "create", "delete"]
 - apiGroups: [""]
 resources: ["persistentvolumeclaims"]
 verbs: ["get", "list", "watch", "update"]
 - apiGroups: ["storage.k8s.io"]
 resources: ["storageclasses"]
 verbs: ["get", "list", "watch"]
 - apiGroups: [""]
 resources: ["events"]
 verbs: ["list", "watch", "create", "update", "patch"]
 - apiGroups: ["apiextensions.k8s.io"]
 resources: ["customresourcedefinitions"]
 verbs: ["create", "list", "watch", "delete"]
 - apiGroups: ["volumesnapshot.external-storage.k8s.io"]
 resources: ["volumesnapshots"]
 verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]
 - apiGroups: ["volumesnapshot.external-storage.k8s.io"]
 resources: ["volumesnapshotdatas"]
 verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]

OpenShift Container Platform 3.11 Configuring Clusters

542

If the external controller and provisioner are deployed in Amazon Web Services (AWS), they must be
able to authenticate using the access key. To provide the credential to the pod, the administrator
creates a new secret:

The AWS deployment of the external controller and provisioner containers (note that both pod
containers use the secret to access the AWS cloud provider API):

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
 name: snapshot-controller
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: snapshot-controller-role
subjects:
- kind: ServiceAccount
 name: snapshot-controller-runner
 namespace: default

apiVersion: v1
kind: Secret
metadata:
 name: awskeys
type: Opaque
data:
 access-key-id: <base64 encoded AWS_ACCESS_KEY_ID>
 secret-access-key: <base64 encoded AWS_SECRET_ACCESS_KEY>

kind: Deployment
apiVersion: extensions/v1beta1
metadata:
 name: snapshot-controller
spec:
 replicas: 1
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: snapshot-controller
 spec:
 serviceAccountName: snapshot-controller-runner
 containers:
 - name: snapshot-controller
 image: "registry.redhat.io/openshift3/snapshot-controller:latest"
 imagePullPolicy: "IfNotPresent"
 args: ["-cloudprovider", "aws"]
 env:
 - name: AWS_ACCESS_KEY_ID
 valueFrom:
 secretKeyRef:
 name: awskeys
 key: access-key-id
 - name: AWS_SECRET_ACCESS_KEY

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

543

For GCE, there is no need to use secrets to access the GCE cloud provider API. The administrator can
proceed with the deployment:

27.21.3.2. Managing Snapshot Users

Depending on the cluster configuration, it might be necessary to allow non-administrator users to
manipulate the VolumeSnapshot objects on the API server. This can be done by creating a
ClusterRole bound to a particular user or group.

For example, assume the user 'alice' needs to work with snapshots in the cluster. The cluster
administrator completes the following steps:

 valueFrom:
 secretKeyRef:
 name: awskeys
 key: secret-access-key
 - name: snapshot-provisioner
 image: "registry.redhat.io/openshift3/snapshot-provisioner:latest"
 imagePullPolicy: "IfNotPresent"
 args: ["-cloudprovider", "aws"]
 env:
 - name: AWS_ACCESS_KEY_ID
 valueFrom:
 secretKeyRef:
 name: awskeys
 key: access-key-id
 - name: AWS_SECRET_ACCESS_KEY
 valueFrom:
 secretKeyRef:
 name: awskeys
 key: secret-access-key

kind: Deployment
apiVersion: extensions/v1beta1
metadata:
 name: snapshot-controller
spec:
 replicas: 1
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: snapshot-controller
 spec:
 serviceAccountName: snapshot-controller-runner
 containers:
 - name: snapshot-controller
 image: "registry.redhat.io/openshift3/snapshot-controller:latest"
 imagePullPolicy: "IfNotPresent"
 args: ["-cloudprovider", "gce"]
 - name: snapshot-provisioner
 image: "registry.redhat.io/openshift3/snapshot-provisioner:latest"
 imagePullPolicy: "IfNotPresent"
 args: ["-cloudprovider", "gce"]

OpenShift Container Platform 3.11 Configuring Clusters

544

1. Define a new ClusterRole:

2. Bind the cluster role to the user 'alice' by creating a ClusterRoleBinding object:

NOTE

This is only an example of API access configuration. The VolumeSnapshot objects
behave similar to other OpenShift Container Platform API objects. See the API access
control documentation for more information on managing the API RBAC.

27.21.4. Lifecycle of a Volume Snapshot and Volume Snapshot Data

27.21.4.1. Persistent Volume Claim and Persistent Volume

The PersistentVolumeClaim is bound to a PersistentVolume. The PersistentVolume type must be
one of the snapshot supported persistent volume types.

27.21.4.1.1. Snapshot Promoter

To create a StorageClass:

apiVersion: v1
kind: ClusterRole
metadata:
 name: volumesnapshot-admin
rules:
- apiGroups:
 - "volumesnapshot.external-storage.k8s.io"
 attributeRestrictions: null
 resources:
 - volumesnapshots
 verbs:
 - create
 - delete
 - deletecollection
 - get
 - list
 - patch
 - update
 - watch

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
 name: volumesnapshot-admin
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: volumesnapshot-admin
subjects:
- kind: User
 name: alice

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

545

https://kubernetes.io/docs/admin/accessing-the-api/

This StorageClass is necessary to restore a PersistentVolume from a VolumeSnapshot that was
previously created.

27.21.4.2. Create Snapshot

To take a snapshot of a PV, create a new VolumeSnapshot object:

persistentVolumeClaimName is the name of the PersistentVolumeClaim bound to a
PersistentVolume. This particular PV is snapshotted.

A VolumeSnapshotData object is then automatically created based on the VolumeSnapshot. The
relationship between VolumeSnapshot and VolumeSnapshotData is similar to the relationship
between PersistentVolumeClaim and PersistentVolume.

Depending on the PV type, the operation might go through several phases, which are reflected by the
VolumeSnapshot status:

1. The new VolumeSnapshot object is created.

2. The controller starts the snapshot operation. The snapshotted PersistentVolume might need
to be frozen and the applications paused.

3. The storage system finishes creating the snapshot (the snapshot is "cut") and the snapshotted
PersistentVolume might return to normal operation. The snapshot itself is not yet ready. The
last status condition is of Pending type with status value True. A new VolumeSnapshotData
object is created to represent the actual snapshot.

4. The newly created snapshot is complete and ready to use. The last status condition is of Ready
type with status value True.

IMPORTANT

It is the user’s responsibility to ensure data consistency (stop the pod/application, flush
caches, freeze the file system, and so on).

NOTE

In case of error, the VolumeSnapshot status is appended with an Error condition.

To display the VolumeSnapshot status:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: snapshot-promoter
provisioner: volumesnapshot.external-storage.k8s.io/snapshot-promoter

apiVersion: volumesnapshot.external-storage.k8s.io/v1
kind: VolumeSnapshot
metadata:
 name: snapshot-demo
spec:
 persistentVolumeClaimName: ebs-pvc

OpenShift Container Platform 3.11 Configuring Clusters

546

$ oc get volumesnapshot -o yaml

The status is displayed.

27.21.4.3. Restore Snapshot

To restore a PV from a VolumeSnapshot, create a PVC:

annotations: snapshot.alpha.kubernetes.io/snapshot is the name of the VolumeSnapshot to be
restored. storageClassName: StorageClass is created by the administrator for restoring
VolumeSnapshots.

A new PersistentVolume is created and bound to the PersistentVolumeClaim. The process may take
several minutes depending on the PV type.

27.21.4.4. Delete Snapshot

To delete a snapshot-demo:

apiVersion: volumesnapshot.external-storage.k8s.io/v1
kind: VolumeSnapshot
metadata:
 clusterName: ""
 creationTimestamp: 2017-09-19T13:58:28Z
 generation: 0
 labels:
 Timestamp: "1505829508178510973"
 name: snapshot-demo
 namespace: default
 resourceVersion: "780"
 selfLink: /apis/volumesnapshot.external-
storage.k8s.io/v1/namespaces/default/volumesnapshots/snapshot-demo
 uid: 9cc5da57-9d42-11e7-9b25-90b11c132b3f
spec:
 persistentVolumeClaimName: ebs-pvc
 snapshotDataName: k8s-volume-snapshot-9cc8813e-9d42-11e7-8bed-90b11c132b3f
status:
 conditions:
 - lastTransitionTime: null
 message: Snapshot created successfully
 reason: ""
 status: "True"
 type: Ready
 creationTimestamp: null

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: snapshot-pv-provisioning-demo
 annotations:
 snapshot.alpha.kubernetes.io/snapshot: snapshot-demo
spec:
 storageClassName: snapshot-promoter

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

547

$ oc delete volumesnapshot/snapshot-demo

The VolumeSnapshotData bound to the VolumeSnapshot is automatically deleted.

27.22. USING HOSTPATH

A hostPath volume in an OpenShift Container Platform cluster mounts a file or directory from the host
node’s file system into your pod. Most pods do not need a hostPath volume, but it does offer a quick
option for testing should an application require it.

IMPORTANT

The cluster administrator must configure pods to run as privileged. This grants access to
pods in the same node.

27.22.1. Overview

OpenShift Container Platform supports hostPath mounting for development and testing on a single-
node cluster.

In a production cluster, you would not use hostPath. Instead, a cluster administrator provisions a network
resource, such as a GCE Persistent Disk volume or an Amazon EBS volume. Network resources support
the use of storage classes to set up dynamic provisioning.

A hostPath volume must be provisioned statically.

27.22.2. Configuring hostPath volumes in the Pod specification

You can use hostPath volumes to access read-write files on nodes. This can be useful for pods that can
configure and monitor the host from the inside. You can also use hostPath volumes to mount volumes
on the host using mountPropagation.

WARNING

Using hostPath volumes can be dangerous, as they allow pods to read and write any
file on the host. Proceed with caution.

It is recommended that you specify hostPath volumes directly in the Pod specification, rather than in a
PersistentVolume object. This is useful because the pod already knows the path it needs to access
when configuring nodes.

Procedure

1. Create a privileged pod:



 apiVersion: v1
 kind: Pod
 metadata:
 name: pod-name

OpenShift Container Platform 3.11 Configuring Clusters

548

1

2

1

The path used to mount the hostPath share inside the privileged pod.

The path on the host that is used to share into the privileged pod.

In this example, the pod can see the path of the host inside /etc/motd.confg as /host/etc/motd.confg.
As a result, the motd can be configured without accessing the host directly.

27.22.3. Statically provisioning hostPath volumes

A pod that uses a hostPath volume must be referenced by manual, or static, provisioning.

NOTE

Using persistent volumes with hostPath should only be used when there is no persistent
storage available.

Procedure

1. Define the persistent volume (PV). Create a pv.yaml file with the PersistentVolume object
definition:

The name of the volume. This name is how it is identified by persistent volume claims or
pods.

 spec:
 containers:
 ...
 securityContext:
 privileged: true
 volumeMounts:
 - mountPath: /host/etc/motd.confg 1
 name: hostpath-privileged
 ...
 volumes:
 - name: hostpath-privileged
 hostPath:
 path: /etc/motd.confg 2

 apiVersion: v1
 kind: PersistentVolume
 metadata:
 name: task-pv-volume 1
 labels:
 type: local
 spec:
 storageClassName: manual 2
 capacity:
 storage: 5Gi
 accessModes:
 - ReadWriteOnce 3
 persistentVolumeReclaimPolicy: Retain
 hostPath:
 path: "/mnt/data" 4

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

549

2

3

4

Used to bind persistent volume claim requests to this persistent volume.

The volume can be mounted as read-write by a single node.

The configuration file specifies that the volume is at /mnt/data on the cluster’s node.

2. Create the PV from the file:

3. Define the persistent volume claim (PVC). Create a pvc.yaml file with the
PersistentVolumeClaim object definition:

4. Create the PVC from the file:

27.22.4. Mounting the hostPath share in a privileged pod

After the persistent volume claim has been created, it can be used inside of a pod by an application. The
following example demonstrates mounting this share inside of a pod.

Prerequisites

A persistent volume claim exists that is mapped to the underlying hostPath share.

Procedure

Create a privileged pod that mounts the existing persistent volume claim:

$ oc create -f pv.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: task-pvc-volume
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi
 storageClassName: manual

$ oc create -f pvc.yaml

apiVersion: v1
kind: Pod
metadata:
 name: pod-name 1
spec:
 containers:
 ...
 securityContext:
 privileged: true 2
 volumeMounts:
 - mountPath: /data 3

OpenShift Container Platform 3.11 Configuring Clusters

550

1

2

3

4

The name of the pod.

The pod must run as privileged to access the node’s storage.

The path to mount the hostPath share inside the privileged pod.

The name of the PersistentVolumeClaim object that has been previously created.

27.22.5. Additional resources

Mount Propagation

 name: hostpath-privileged
 ...
 securityContext: {}
 volumes:
 - name: hostpath-privileged
 persistentVolumeClaim:
 claimName: task-pvc-volume 4

CHAPTER 27. CONFIGURING PERSISTENT STORAGE

551

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

28.1. OVERVIEW

The following sections provide detailed, comprehensive instructions on setting up and configuring
common storage use cases. These examples cover both the administration of persistent volumes and
their security, and how to claim against the volumes as a user of the system.

Sharing an NFS PV Across Two Pods

Ceph-RBD Block Storage Volume

Shared Storage Using a GlusterFS Volume

Dynamic Provisioning Storage Using GlusterFS

Mounting a PV to Privileged Pods

Backing Container Image Registry with GlusterFS Storage

Binding Persistent Volumes by Labels

Using StorageClasses for Dynamic Provisioning

Using StorageClasses for Existing Legacy Storage

Configuring Azure Blob Storage for Integrated Container Image Registry

28.2. SHARING AN NFS MOUNT ACROSS TWO PERSISTENT VOLUME
CLAIMS

28.2.1. Overview

The following use case describes how a cluster administrator wanting to leverage shared storage for use
by two separate containers would configure the solution. This example highlights the use of NFS, but
can easily be adapted to other shared storage types, such as GlusterFS. In addition, this example will
show configuration of pod security as it relates to shared storage.

Persistent Storage Using NFS provides an explanation of persistent volumes (PVs), persistent volume
claims (PVCs), and using NFS as persistent storage. This topic shows and end-to-end example of using
an existing NFS cluster and OpenShift Container Platform persistent store, and assumes an existing
NFS server and exports exist in your OpenShift Container Platform infrastructure.

NOTE

All oc commands are executed on the OpenShift Container Platform master host.

28.2.2. Creating the Persistent Volume

Before creating the PV object in OpenShift Container Platform, the persistent volume (PV) file is
defined:

Example 28.1. Persistent Volume Object Definition Using NFS

OpenShift Container Platform 3.11 Configuring Clusters

552

1

2

3

4

5

6

7

The name of the PV, which is referenced in pod definitions or displayed in various oc volume
commands.

The amount of storage allocated to this volume.

accessModes are used as labels to match a PV and a PVC. They currently do not define any
form of access control.

The volume reclaim policy Retain indicates that the volume will be preserved after the pods
accessing it terminates.

This defines the volume type being used, in this case the NFS plug-in.

This is the NFS mount path.

This is the NFS server. This can also be specified by IP address.

Save the PV definition to a file, for example nfs-pv.yaml, and create the persistent volume:

oc create -f nfs-pv.yaml
persistentvolume "nfs-pv" created

Verify that the persistent volume was created:

oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE
nfs-pv <none> 1Gi RWX Available 37s

28.2.3. Creating the Persistent Volume Claim

A persistent volume claim (PVC) specifies the desired access mode and storage capacity. Currently,
based on only these two attributes, a PVC is bound to a single PV. Once a PV is bound to a PVC, that PV
is essentially tied to the PVC’s project and cannot be bound to by another PVC. There is a one-to-one
mapping of PVs and PVCs. However, multiple pods in the same project can use the same PVC. This is
the use case we are highlighting in this example.

apiVersion: v1
kind: PersistentVolume
metadata:
 name: nfs-pv 1
spec:
 capacity:
 storage: 1Gi 2
 accessModes:
 - ReadWriteMany 3
 persistentVolumeReclaimPolicy: Retain 4
 nfs: 5
 path: /opt/nfs 6
 server: nfs.f22 7
 readOnly: false

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

553

1

2

3

1

1

2

Example 28.2. PVC Object Definition

The claim name is referenced by the pod under its volumes section.

As mentioned above for PVs, the accessModes do not enforce access right, but rather act as
labels to match a PV to a PVC.

This claim will look for PVs offering 1Gi or greater capacity.

Save the PVC definition to a file, for example nfs-pvc.yaml, and create the PVC:

oc create -f nfs-pvc.yaml
persistentvolumeclaim "nfs-pvc" created

Verify that the PVC was created and bound to the expected PV:

oc get pvc
NAME LABELS STATUS VOLUME CAPACITY ACCESSMODES AGE
nfs-pvc <none> Bound nfs-pv 1Gi RWX 24s
 1

The claim, nfs-pvc, was bound to the nfs-pv PV.

28.2.4. Ensuring NFS Volume Access

Access is necessary to a node in the NFS server. On this node, examine the NFS export mount:

[root@nfs nfs]# ls -lZ /opt/nfs/
total 8
-rw-r--r--. 1 root 100003 system_u:object_r:usr_t:s0 10 Oct 12 23:27 test2b
 1
 2

the owner has ID 0.

the group has ID 100003.

In order to access the NFS mount, the container must match the SELinux label, and either run with a UID

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: nfs-pvc 1
spec:
 accessModes:
 - ReadWriteMany 2
 resources:
 requests:
 storage: 1Gi 3

OpenShift Container Platform 3.11 Configuring Clusters

554

1

2

3

4

5

6

In order to access the NFS mount, the container must match the SELinux label, and either run with a UID
of 0, or with 100003 in its supplemental groups range. Gain access to the volume by matching the NFS
mount’s groups, which will be defined in the pod definition below.

By default, SELinux does not allow writing from a pod to a remote NFS server. To enable writing to NFS
volumes with SELinux enforcing on each node, run:

setsebool -P virt_use_nfs on

28.2.5. Creating the Pod

A pod definition file or a template file can be used to define a pod. Below is a pod specification that
creates a single container and mounts the NFS volume for read-write access:

Example 28.3. Pod Object Definition

The name of this pod as displayed by oc get pod.

The image run by this pod.

The name of the volume. This name must be the same in both the containers and volumes
sections.

The mount path as seen in the container.

The group ID to be assigned to the container.

The PVC that was created in the previous step.

apiVersion: v1
kind: Pod
metadata:
 name: hello-openshift-nfs-pod 1
 labels:
 name: hello-openshift-nfs-pod
spec:
 containers:
 - name: hello-openshift-nfs-pod
 image: openshift/hello-openshift 2
 ports:
 - name: web
 containerPort: 80
 volumeMounts:
 - name: nfsvol 3
 mountPath: /usr/share/nginx/html 4
 securityContext:
 supplementalGroups: [100003] 5
 privileged: false
 volumes:
 - name: nfsvol
 persistentVolumeClaim:
 claimName: nfs-pvc 6

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

555

Save the pod definition to a file, for example nfs.yaml, and create the pod:

oc create -f nfs.yaml
pod "hello-openshift-nfs-pod" created

Verify that the pod was created:

oc get pods
NAME READY STATUS RESTARTS AGE
hello-openshift-nfs-pod 1/1 Running 0 4s

More details are shown in the oc describe pod command:

[root@ose70 nfs]# oc describe pod hello-openshift-nfs-pod
Name: hello-openshift-nfs-pod
Namespace: default 1
Image(s): fedora/S3
Node: ose70.rh7/192.168.234.148 2
Start Time: Mon, 21 Mar 2016 09:59:47 -0400
Labels: name=hello-openshift-nfs-pod
Status: Running
Reason:
Message:
IP: 10.1.0.4
Replication Controllers: <none>
Containers:
 hello-openshift-nfs-pod:
 Container ID:
docker://a3292104d6c28d9cf49f440b2967a0fc5583540fc3b062db598557b93893bc6f
 Image: fedora/S3
 Image ID:
docker://403d268c640894cbd76d84a1de3995d2549a93af51c8e16e89842e4c3ed6a00a
 QoS Tier:
 cpu: BestEffort
 memory: BestEffort
 State: Running
 Started: Mon, 21 Mar 2016 09:59:49 -0400
 Ready: True
 Restart Count: 0
 Environment Variables:
Conditions:
 Type Status
 Ready True
Volumes:
 nfsvol:
 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)
 ClaimName: nfs-pvc 3
 ReadOnly: false
 default-token-a06zb:
 Type: Secret (a secret that should populate this volume)
 SecretName: default-token-a06zb
Events: 4
 FirstSeen LastSeen Count From SubobjectPath Reason Message
 ───────── ──────── ───── ──── ───────────── ──────

OpenShift Container Platform 3.11 Configuring Clusters

556

1

2

3

4

───────
 4m 4m 1 {scheduler } Scheduled Successfully assigned hello-openshift-
nfs-pod to ose70.rh7
 4m 4m 1 {kubelet ose70.rh7} implicitly required container POD Pulled Container image
"openshift3/ose-pod:v3.1.0.4" already present on machine
 4m 4m 1 {kubelet ose70.rh7} implicitly required container POD Created Created with docker
id 866a37108041
 4m 4m 1 {kubelet ose70.rh7} implicitly required container POD Started Started with docker
id 866a37108041
 4m 4m 1 {kubelet ose70.rh7} spec.containers{hello-openshift-nfs-pod} Pulled Container image
"fedora/S3" already present on machine
 4m 4m 1 {kubelet ose70.rh7} spec.containers{hello-openshift-nfs-pod} Created Created with
docker id a3292104d6c2
 4m 4m 1 {kubelet ose70.rh7} spec.containers{hello-openshift-nfs-pod} Started Started with docker
id a3292104d6c2

The project (namespace) name.

The IP address of the OpenShift Container Platform node running the pod.

The PVC name used by the pod.

The list of events resulting in the pod being launched and the NFS volume being mounted. The
container will not start correctly if the volume cannot mount.

There is more internal information, including the SCC used to authorize the pod, the pod’s user and
group IDs, the SELinux label, and more, shown in the oc get pod <name> -o yaml command:

[root@ose70 nfs]# oc get pod hello-openshift-nfs-pod -o yaml
apiVersion: v1
kind: Pod
metadata:
 annotations:
 openshift.io/scc: restricted 1
 creationTimestamp: 2016-03-21T13:59:47Z
 labels:
 name: hello-openshift-nfs-pod
 name: hello-openshift-nfs-pod
 namespace: default 2
 resourceVersion: "2814411"
 selflink: /api/v1/namespaces/default/pods/hello-openshift-nfs-pod
 uid: 2c22d2ea-ef6d-11e5-adc7-000c2900f1e3
spec:
 containers:
 - image: fedora/S3
 imagePullPolicy: IfNotPresent
 name: hello-openshift-nfs-pod
 ports:
 - containerPort: 80
 name: web
 protocol: TCP
 resources: {}
 securityContext:
 privileged: false
 terminationMessagePath: /dev/termination-log

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

557

1

2

3

4

 volumeMounts:
 - mountPath: /usr/share/S3/html
 name: nfsvol
 - mountPath: /var/run/secrets/kubernetes.io/serviceaccount
 name: default-token-a06zb
 readOnly: true
 dnsPolicy: ClusterFirst
 host: ose70.rh7
 imagePullSecrets:
 - name: default-dockercfg-xvdew
 nodeName: ose70.rh7
 restartPolicy: Always
 securityContext:
 supplementalGroups:
 - 100003 3
 serviceAccount: default
 serviceAccountName: default
 terminationGracePeriodSeconds: 30
 volumes:
 - name: nfsvol
 persistentVolumeClaim:
 claimName: nfs-pvc 4
 - name: default-token-a06zb
 secret:
 secretName: default-token-a06zb
status:
 conditions:
 - lastProbeTime: null
 lastTransitionTime: 2016-03-21T13:59:49Z
 status: "True"
 type: Ready
 containerStatuses:
 - containerID: docker://a3292104d6c28d9cf49f440b2967a0fc5583540fc3b062db598557b93893bc6f
 image: fedora/S3
 imageID: docker://403d268c640894cbd76d84a1de3995d2549a93af51c8e16e89842e4c3ed6a00a
 lastState: {}
 name: hello-openshift-nfs-pod
 ready: true
 restartCount: 0
 state:
 running:
 startedAt: 2016-03-21T13:59:49Z
 hostIP: 192.168.234.148
 phase: Running
 podIP: 10.1.0.4
 startTime: 2016-03-21T13:59:47Z

The SCC used by the pod.

The project (namespace) name.

The supplemental group ID for the pod (all containers).

The PVC name used by the pod.

OpenShift Container Platform 3.11 Configuring Clusters

558

1

2

3

4

5

6

28.2.6. Creating an Additional Pod to Reference the Same PVC

This pod definition, created in the same namespace, uses a different container. However, we can use the
same backing storage by specifying the claim name in the volumes section below:

Example 28.4. Pod Object Definition

The name of this pod as displayed by oc get pod.

The image run by this pod.

The name of the volume. This name must be the same in both the containers and volumes
sections.

The mount path as seen in the container.

The group ID to be assigned to the container.

The PVC that was created earlier and is also being used by a different container.

Save the pod definition to a file, for example nfs-2.yaml, and create the pod:

oc create -f nfs-2.yaml
pod "busybox-nfs-pod" created

Verify that the pod was created:

apiVersion: v1
kind: Pod
metadata:
 name: busybox-nfs-pod 1
 labels:
 name: busybox-nfs-pod
spec:
 containers:
 - name: busybox-nfs-pod
 image: busybox 2
 command: ["sleep", "60000"]
 volumeMounts:
 - name: nfsvol-2 3
 mountPath: /usr/share/busybox 4
 readOnly: false
 securityContext:
 supplementalGroups: [100003] 5
 privileged: false
 volumes:
 - name: nfsvol-2
 persistentVolumeClaim:
 claimName: nfs-pvc 6

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

559

oc get pods
NAME READY STATUS RESTARTS AGE
busybox-nfs-pod 1/1 Running 0 3s

More details are shown in the oc describe pod command:

[root@ose70 nfs]# oc describe pod busybox-nfs-pod
Name: busybox-nfs-pod
Namespace: default
Image(s): busybox
Node: ose70.rh7/192.168.234.148
Start Time: Mon, 21 Mar 2016 10:19:46 -0400
Labels: name=busybox-nfs-pod
Status: Running
Reason:
Message:
IP: 10.1.0.5
Replication Controllers: <none>
Containers:
 busybox-nfs-pod:
 Container ID:
docker://346d432e5a4824ebf5a47fceb4247e0568ecc64eadcc160e9bab481aecfb0594
 Image: busybox
 Image ID: docker://17583c7dd0dae6244203b8029733bdb7d17fccbb2b5d93e2b24cf48b8bfd06e2
 QoS Tier:
 cpu: BestEffort
 memory: BestEffort
 State: Running
 Started: Mon, 21 Mar 2016 10:19:48 -0400
 Ready: True
 Restart Count: 0
 Environment Variables:
Conditions:
 Type Status
 Ready True
Volumes:
 nfsvol-2:
 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)
 ClaimName: nfs-pvc
 ReadOnly: false
 default-token-32d2z:
 Type: Secret (a secret that should populate this volume)
 SecretName: default-token-32d2z
Events:
 FirstSeen LastSeen Count From SubobjectPath Reason Message
 ───────── ──────── ───── ──── ───────────── ────── ───────
 4m 4m 1 {scheduler } Scheduled Successfully assigned busybox-nfs-pod to ose70.rh7
 4m 4m 1 {kubelet ose70.rh7} implicitly required container POD Pulled Container image
"openshift3/ose-pod:v3.1.0.4" already present on machine
 4m 4m 1 {kubelet ose70.rh7} implicitly required container POD Created Created with docker id
249b7d7519b1
 4m 4m 1 {kubelet ose70.rh7} implicitly required container POD Started Started with docker id
249b7d7519b1
 4m 4m 1 {kubelet ose70.rh7} spec.containers{busybox-nfs-pod} Pulled Container image "busybox"
already present on machine

OpenShift Container Platform 3.11 Configuring Clusters

560

 4m 4m 1 {kubelet ose70.rh7} spec.containers{busybox-nfs-pod} Created Created with docker id
346d432e5a48
 4m 4m 1 {kubelet ose70.rh7} spec.containers{busybox-nfs-pod} Started Started with docker id
346d432e5a48

As you can see, both containers are using the same storage claim that is attached to the same NFS
mount on the back end.

28.3. COMPLETE EXAMPLE USING CEPH RBD

28.3.1. Overview

This topic provides an end-to-end example of using an existing Ceph cluster as an OpenShift Container
Platform persistent store. It is assumed that a working Ceph cluster is already set up. If not, consult the
Overview of Red Hat Ceph Storage .

Persistent Storage Using Ceph Rados Block Device provides an explanation of persistent volumes
(PVs), persistent volume claims (PVCs), and using Ceph RBD as persistent storage.

NOTE

All oc … ​ commands are executed on the OpenShift Container Platform master host.

28.3.2. Installing the ceph-common Package

The ceph-common library must be installed on all schedulable OpenShift Container Platform nodes:

NOTE

The OpenShift Container Platform all-in-one host is not often used to run pod workloads
and, thus, is not included as a schedulable node.

yum install -y ceph-common

28.3.3. Creating the Ceph Secret

The ceph auth get-key command is run on a Ceph MON node to display the key value for the
client.admin user:

Example 28.5. Ceph Secret Definition

This base64 key is generated on one of the Ceph MON nodes using the ceph auth get-key

apiVersion: v1
kind: Secret
metadata:
 name: ceph-secret
data:
 key: QVFBOFF2SlZheUJQRVJBQWgvS2cwT1laQUhPQno3akZwekxxdGc9PQ== 1
type: kubernetes.io/rbd 2

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

561

https://access.redhat.com/products/red-hat-ceph-storage

1

2

1

2

3

This base64 key is generated on one of the Ceph MON nodes using the ceph auth get-key
client.admin | base64 command, then copying the output and pasting it as the secret key’s
value.

This value is required for Ceph RBD to work with dynamic provisioning.

Save the secret definition to a file, for example ceph-secret.yaml, then create the secret:

$ oc create -f ceph-secret.yaml
secret "ceph-secret" created

Verify that the secret was created:

oc get secret ceph-secret
NAME TYPE DATA AGE
ceph-secret kubernetes.io/rbd 1 23d

28.3.4. Creating the Persistent Volume

Next, before creating the PV object in OpenShift Container Platform, define the persistent volume file:

Example 28.6. Persistent Volume Object Definition Using Ceph RBD

The name of the PV, which is referenced in pod definitions or displayed in various oc volume
commands.

The amount of storage allocated to this volume.

accessModes are used as labels to match a PV and a PVC. They currently do not define any
form of access control. All block storage is defined to be single user (non-shared storage).

apiVersion: v1
kind: PersistentVolume
metadata:
 name: ceph-pv 1
spec:
 capacity:
 storage: 2Gi 2
 accessModes:
 - ReadWriteOnce 3
 rbd: 4
 monitors: 5
 - 192.168.122.133:6789
 pool: rbd
 image: ceph-image
 user: admin
 secretRef:
 name: ceph-secret 6
 fsType: ext4 7
 readOnly: false
 persistentVolumeReclaimPolicy: Retain

OpenShift Container Platform 3.11 Configuring Clusters

562

4

5

6

7

1

2

This defines the volume type being used. In this case, the rbd plug-in is defined.

This is an array of Ceph monitor IP addresses and ports.

This is the Ceph secret, defined above. It is used to create a secure connection from OpenShift
Container Platform to the Ceph server.

This is the file system type mounted on the Ceph RBD block device.

Save the PV definition to a file, for example ceph-pv.yaml, and create the persistent volume:

oc create -f ceph-pv.yaml
persistentvolume "ceph-pv" created

Verify that the persistent volume was created:

oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON
AGE
ceph-pv <none> 2147483648 RWO Available 2s

28.3.5. Creating the Persistent Volume Claim

A persistent volume claim (PVC) specifies the desired access mode and storage capacity. Currently,
based on only these two attributes, a PVC is bound to a single PV. Once a PV is bound to a PVC, that PV
is essentially tied to the PVC’s project and cannot be bound to by another PVC. There is a one-to-one
mapping of PVs and PVCs. However, multiple pods in the same project can use the same PVC.

Example 28.7. PVC Object Definition

As mentioned above for PVs, the accessModes do not enforce access right, but rather act as
labels to match a PV to a PVC.

This claim will look for PVs offering 2Gi or greater capacity.

Save the PVC definition to a file, for example ceph-claim.yaml, and create the PVC:

oc create -f ceph-claim.yaml

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: ceph-claim
spec:
 accessModes: 1
 - ReadWriteOnce
 resources:
 requests:
 storage: 2Gi 2

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

563

1

1

2

3 5

4

6

persistentvolumeclaim "ceph-claim" created

#and verify the PVC was created and bound to the expected PV:
oc get pvc
NAME LABELS STATUS VOLUME CAPACITY ACCESSMODES AGE
ceph-claim <none> Bound ceph-pv 1Gi RWX 21s
 1

the claim was bound to the ceph-pv PV.

28.3.6. Creating the Pod

A pod definition file or a template file can be used to define a pod. Below is a pod specification that
creates a single container and mounts the Ceph RBD volume for read-write access:

Example 28.8. Pod Object Definition

The name of this pod as displayed by oc get pod.

The image run by this pod. In this case, we are telling busybox to sleep.

The name of the volume. This name must be the same in both the containers and volumes
sections.

The mount path as seen in the container.

The PVC that is bound to the Ceph RBD cluster.

Save the pod definition to a file, for example ceph-pod1.yaml, and create the pod:

oc create -f ceph-pod1.yaml
pod "ceph-pod1" created

apiVersion: v1
kind: Pod
metadata:
 name: ceph-pod1 1
spec:
 containers:
 - name: ceph-busybox
 image: busybox 2
 command: ["sleep", "60000"]
 volumeMounts:
 - name: ceph-vol1 3
 mountPath: /usr/share/busybox 4
 readOnly: false
 volumes:
 - name: ceph-vol1 5
 persistentVolumeClaim:
 claimName: ceph-claim 6

OpenShift Container Platform 3.11 Configuring Clusters

564

1

1

2

#verify pod was created
oc get pod
NAME READY STATUS RESTARTS AGE
ceph-pod1 1/1 Running 0 2m
 1

After a minute or so, the pod will be in the Running state.

28.3.7. Defining Group and Owner IDs (Optional)

When using block storage, such as Ceph RBD, the physical block storage is managed by the pod. The
group ID defined in the pod becomes the group ID of both the Ceph RBD mount inside the container,
and the group ID of the actual storage itself. Thus, it is usually unnecessary to define a group ID in the
pod specifiation. However, if a group ID is desired, it can be defined using fsGroup, as shown in the
following pod definition fragment:

Example 28.9. Group ID Pod Definition

securityContext must be defined at the pod level, not under a specific container.

All containers in the pod will have the same fsGroup ID.

28.3.8. Setting ceph-user-secret as Default for Projects

If you would like to make the persistent storage available to every project you have to modify the
default project template. You can read more on modifying the default project template. Read more on
modifying the default project template. Adding this to your default project template allows every user
who has access to create a project access to the Ceph cluster.

Default Project Example

...
spec:
 containers:
 - name:
 ...
 securityContext: 1
 fsGroup: 7777 2
...

...
apiVersion: v1
kind: Template
metadata:
 creationTimestamp: null
 name: project-request
objects:
- apiVersion: v1
 kind: Project
 metadata:
 annotations:

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

565

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#selfprovisioning-projects

1 Place your Ceph user key here in base64 format.

28.4. USING CEPH RBD FOR DYNAMIC PROVISIONING

28.4.1. Overview

This topic provides a complete example of using an existing Ceph cluster for OpenShift Container
Platform persistent storage. It is assumed that a working Ceph cluster is already set up. If not, consult
the Overview of Red Hat Ceph Storage .

Persistent Storage Using Ceph Rados Block Device provides an explanation of persistent volumes
(PVs), persistent volume claims (PVCs), and how to use Ceph Rados Block Device (RBD) as persistent
storage.

NOTE

Run all oc commands on the OpenShift Container Platform master host.

The OpenShift Container Platform all-in-one host is not often used to run pod
workloads and, thus, is not included as a schedulable node.

28.4.2. Creating a pool for dynamic volumes

1. Install the latest ceph-common package:

NOTE

The ceph-common library must be installed on all schedulable OpenShift
Container Platform nodes.

2. From an administrator or MON node, create a new pool for dynamic volumes, for example:

 openshift.io/description: ${PROJECT_DESCRIPTION}
 openshift.io/display-name: ${PROJECT_DISPLAYNAME}
 openshift.io/requester: ${PROJECT_REQUESTING_USER}
 creationTimestamp: null
 name: ${PROJECT_NAME}
 spec: {}
 status: {}
- apiVersion: v1
 kind: Secret
 metadata:
 name: ceph-user-secret
 data:
 key: yoursupersecretbase64keygoeshere 1
 type:
 kubernetes.io/rbd
...

yum install -y ceph-common

OpenShift Container Platform 3.11 Configuring Clusters

566

https://access.redhat.com/products/red-hat-ceph-storage

1

2

NOTE

Using the default pool of RBD is an option, but not recommended.

28.4.3. Using an existing Ceph cluster for dynamic persistent storage

To use an existing Ceph cluster for dynamic persistent storage:

1. Generate the client.admin base64-encoded key:

Ceph secret definition example

This base64 key is generated on one of the Ceph MON nodes using the ceph auth get-
key client.admin | base64 command, then copying the output and pasting it as the secret
key’s value.

This value is required for Ceph RBD to work with dynamic provisioning.

2. Create the Ceph secret for the client.admin:

3. Verify that the secret was created:

4. Create the storage class:

Ceph storage class example

$ ceph osd pool create kube 1024
$ ceph auth get-or-create client.kube mon 'allow r, allow command "osd blacklist"' osd 'allow
class-read object_prefix rbd_children, allow rwx pool=kube' -o ceph.client.kube.keyring

$ ceph auth get client.admin

apiVersion: v1
kind: Secret
metadata:
 name: ceph-secret
 namespace: kube-system
data:
 key: QVFBOFF2SlZheUJQRVJBQWgvS2cwT1laQUhPQno3akZwekxxdGc9PQ== 1
type: kubernetes.io/rbd 2

$ oc create -f ceph-secret.yaml
secret "ceph-secret" created

$ oc get secret ceph-secret
NAME TYPE DATA AGE
ceph-secret kubernetes.io/rbd 1 5d

$ oc create -f ceph-storageclass.yaml
storageclass "dynamic" created

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

567

1

2

3

4

5

6

7

A comma-delimited list of IP addresses Ceph monitors. This value is required.

The Ceph client ID that is capable of creating images in the pool. The default is admin.

The secret name for adminId. This value is required. The secret that you provide must have
kubernetes.io/rbd.

The namespace for adminSecret. The default is default.

The Ceph RBD pool. The default is rbd, but this value is not recommended.

The Ceph client ID used to map the Ceph RBD image. The default is the same as the secret
name for adminId.

The name of the Ceph secret for userId to map the Ceph RBD image. It must exist in the
same namespace as the PVCs. Unless you set the Ceph secret as the default in new
projects, you must provide this parameter value.

5. Verify that the storage class was created:

6. Create the PVC object definition:

PVC object definition example

apiVersion: storage.k8s.io/v1beta1
kind: StorageClass
metadata:
 name: dynamic
 annotations:
 storageclass.kubernetes.io/is-default-class: "true"
provisioner: kubernetes.io/rbd
parameters:
 monitors: 192.168.1.11:6789,192.168.1.12:6789,192.168.1.13:6789 1
 adminId: admin 2
 adminSecretName: ceph-secret 3
 adminSecretNamespace: kube-system 4
 pool: kube 5
 userId: kube 6
 userSecretName: ceph-user-secret 7

$ oc get storageclasses
NAME TYPE
dynamic (default) kubernetes.io/rbd

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: ceph-claim-dynamic
spec:
 accessModes: 1
 - ReadWriteOnce

OpenShift Container Platform 3.11 Configuring Clusters

568

1

2

1

2

3

4

5

The accessModes do not enforce access rights but instead act as labels to match a PV to
a PVC.

This claim looks for PVs that offer 2Gi or greater capacity.

7. Create the PVC:

8. Verify that the PVC was created and bound to the expected PV:

9. Create the pod object definition:

Pod object definition example

The name of this pod as displayed by oc get pod.

The image run by this pod. In this case, busybox is set to sleep.

The name of the volume. This name must be the same in both the containers and
volumes sections.

The mount path in the container.

The PVC that is bound to the Ceph RBD cluster.

 resources:
 requests:
 storage: 2Gi 2

$ oc create -f ceph-pvc.yaml
persistentvolumeclaim "ceph-claim-dynamic" created

$ oc get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES AGE
ceph-claim Bound pvc-f548d663-3cac-11e7-9937-0024e8650c7a 2Gi RWO 1m

apiVersion: v1
kind: Pod
metadata:
 name: ceph-pod1 1
spec:
 containers:
 - name: ceph-busybox
 image: busybox 2
 command: ["sleep", "60000"]
 volumeMounts:
 - name: ceph-vol1 3
 mountPath: /usr/share/busybox 4
 readOnly: false
 volumes:
 - name: ceph-vol1
 persistentVolumeClaim:
 claimName: ceph-claim-dynamic 5

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

569

1

10. Create the pod:

11. Verify that the pod was created:

After a minute or so, the pod status changes to Running.

28.4.4. Setting ceph-user-secret as the default for projects

To make persistent storage available to every project, you must modify the default project template.
Adding this to your default project template allows every user who has access to create a project access
to the Ceph cluster. See modifying the default project template for more information.

Default project example

Place your Ceph user key here in base64 format.

28.5. COMPLETE EXAMPLE USING GLUSTERFS

$ oc create -f ceph-pod1.yaml
pod "ceph-pod1" created

$ oc get pod
NAME READY STATUS RESTARTS AGE
ceph-pod1 1/1 Running 0 2m

...
apiVersion: v1
kind: Template
metadata:
 creationTimestamp: null
 name: project-request
objects:
- apiVersion: v1
 kind: Project
 metadata:
 annotations:
 openshift.io/description: ${PROJECT_DESCRIPTION}
 openshift.io/display-name: ${PROJECT_DISPLAYNAME}
 openshift.io/requester: ${PROJECT_REQUESTING_USER}
 creationTimestamp: null
 name: ${PROJECT_NAME}
 spec: {}
 status: {}
- apiVersion: v1
 kind: Secret
 metadata:
 name: ceph-user-secret
 data:
 key: QVFCbEV4OVpmaGJtQ0JBQW55d2Z0NHZtcS96cE42SW1JVUQvekE9PQ== 1
 type:
 kubernetes.io/rbd
...

OpenShift Container Platform 3.11 Configuring Clusters

570

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#selfprovisioning-projects

1

28.5.1. Overview

This topic provides an end-to-end example of how to use an existing converged mode, independent
mode, or standalone Red Hat Gluster Storage cluster as persistent storage for OpenShift Container
Platform. It is assumed that a working Red Hat Gluster Storage cluster is already set up. For help
installing converged mode or independent mode, see Persistent Storage Using Red Hat Gluster
Storage. For standalone Red Hat Gluster Storage, consult the Red Hat Gluster Storage Administration
Guide.

For an end-to-end example of how to dynamically provision GlusterFS volumes, see Complete Example
Using GlusterFS for Dynamic Provisioning.

NOTE

All oc commands are executed on the OpenShift Container Platform master host.

28.5.2. Prerequisites

To access GlusterFS volumes, the mount.glusterfs command must be available on all schedulable
nodes. For RPM-based systems, the glusterfs-fuse package must be installed:

yum install glusterfs-fuse

This package comes installed on every RHEL system. However, it is recommended to update to the
latest available version from Red Hat Gluster Storage if your servers use x86_64 architecture. To do
this, the following RPM repository must be enabled:

subscription-manager repos --enable=rh-gluster-3-client-for-rhel-7-server-rpms

If glusterfs-fuse is already installed on the nodes, ensure that the latest version is installed:

yum update glusterfs-fuse

By default, SELinux does not allow writing from a pod to a remote Red Hat Gluster Storage server. To
enable writing to Red Hat Gluster Storage volumes with SELinux on, run the following on each node
running GlusterFS:

The -P option makes the boolean persistent between reboots.

NOTE

The virt_sandbox_use_fusefs boolean is defined by the docker-selinux package. If you
get an error saying it is not defined, ensure that this package is installed.

NOTE

If you use Atomic Host, the SELinux booleans are cleared when you upgrade Atomic
Host. When you upgrade Atomic Host, you must set these boolean values again.

$ sudo setsebool -P virt_sandbox_use_fusefs on 1
$ sudo setsebool -P virt_use_fusefs on

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

571

https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3.3/html/Administration_Guide/index.html

1 2

3 5 7

4 6 8

28.5.3. Static Provisioning

1. To enable static provisioning, first create a GlusterFS volume. See the Red Hat Gluster Storage
Administration Guide for information on how to do this using the gluster command-line
interface or the heketi project site for information on how to do this using heketi-cli. For this
example, the volume will be named myVol1.

2. Define the following Service and Endpoints in gluster-endpoints.yaml:

These names must match.

The ip values must be the actual IP addresses of a Red Hat Gluster Storage server, not
hostnames.

The port number is ignored.

3. From the OpenShift Container Platform master host, create the Service and Endpoints:

4. Verify that the Service and Endpoints were created:

apiVersion: v1
kind: Service
metadata:
 name: glusterfs-cluster 1
spec:
 ports:
 - port: 1

apiVersion: v1
kind: Endpoints
metadata:
 name: glusterfs-cluster 2
subsets:
 - addresses:
 - ip: 192.168.122.221 3
 ports:
 - port: 1 4
 - addresses:
 - ip: 192.168.122.222 5
 ports:
 - port: 1 6
 - addresses:
 - ip: 192.168.122.223 7
 ports:
 - port: 1 8

$ oc create -f gluster-endpoints.yaml
service "glusterfs-cluster" created
endpoints "glusterfs-cluster" created

$ oc get services
NAME CLUSTER_IP EXTERNAL_IP PORT(S) SELECTOR AGE
glusterfs-cluster 172.30.205.34 <none> 1/TCP <none> 44s

OpenShift Container Platform 3.11 Configuring Clusters

572

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.4/html/administration_guide
https://github.com/heketi/heketi

1

2

1

2

3

4

NOTE

Endpoints are unique per project. Each project accessing the GlusterFS volume
needs its own Endpoints.

5. In order to access the volume, the container must run with either a user ID (UID) or group ID
(GID) that has access to the file system on the volume. This information can be discovered in
the following manner:

The UID is 592.

The GID is 590.

6. Define the following PersistentVolume (PV) in gluster-pv.yaml:

The name of the volume.

The GID on the root of the GlusterFS volume.

The amount of storage allocated to this volume.

accessModes are used as labels to match a PV and a PVC. They currently do not define
any form of access control.

$ oc get endpoints
NAME ENDPOINTS AGE
docker-registry 10.1.0.3:5000 4h
glusterfs-cluster 192.168.122.221:1,192.168.122.222:1,192.168.122.223:1 11s
kubernetes 172.16.35.3:8443 4d

$ mkdir -p /mnt/glusterfs/myVol1

$ mount -t glusterfs 192.168.122.221:/myVol1 /mnt/glusterfs/myVol1

$ ls -lnZ /mnt/glusterfs/
drwxrwx---. 592 590 system_u:object_r:fusefs_t:s0 myVol1 1 2

apiVersion: v1
kind: PersistentVolume
metadata:
 name: gluster-default-volume 1
 annotations:
 pv.beta.kubernetes.io/gid: "590" 2
spec:
 capacity:
 storage: 2Gi 3
 accessModes: 4
 - ReadWriteMany
 glusterfs:
 endpoints: glusterfs-cluster 5
 path: myVol1 6
 readOnly: false
 persistentVolumeReclaimPolicy: Retain

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

573

5

6

1

2

3

any form of access control.

The Endpoints resource previously created.

The GlusterFS volume that will be accessed.

7. From the OpenShift Container Platform master host, create the PV:

8. Verify that the PV was created:

9. Create a PersistentVolumeClaim (PVC) that will bind to the new PV in gluster-claim.yaml:

The claim name is referenced by the pod under its volumes section.

Must match the accessModes of the PV.

This claim will look for PVs offering 1Gi or greater capacity.

10. From the OpenShift Container Platform master host, create the PVC:

11. Verify that the PV and PVC are bound:

NOTE

$ oc create -f gluster-pv.yaml

$ oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM
REASON AGE
gluster-default-volume <none> 2147483648 RWX Available 2s

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: gluster-claim 1
spec:
 accessModes:
 - ReadWriteMany 2
 resources:
 requests:
 storage: 1Gi 3

$ oc create -f gluster-claim.yaml

$ oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON
AGE
gluster-pv <none> 1Gi RWX Available gluster-claim 37s

$ oc get pvc
NAME LABELS STATUS VOLUME CAPACITY ACCESSMODES AGE
gluster-claim <none> Bound gluster-pv 1Gi RWX 24s

OpenShift Container Platform 3.11 Configuring Clusters

574

1

NOTE

PVCs are unique per project. Each project accessing the GlusterFS volume needs its own
PVC. PVs are not bound to a single project, so PVCs across multiple projects may refer to
the same PV.

28.5.4. Using the Storage

At this point, you have a dynamically created GlusterFS volume bound to a PVC. You can now utilize this
PVC in a pod.

1. Create the pod object definition:

The name of the PVC created in the previous step.

2. From the OpenShift Container Platform master host, create the pod:

oc create -f hello-openshift-pod.yaml
pod "hello-openshift-pod" created

3. View the pod. Give it a few minutes, as it might need to download the image if it does not already
exist:

oc get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
hello-openshift-pod 1/1 Running 0 9m 10.38.0.0 node1

4. oc exec into the container and create an index.html file in the mountPath definition of the pod:

$ oc exec -ti hello-openshift-pod /bin/sh
$ cd /usr/share/nginx/html
$ echo 'Hello OpenShift!!!' > index.html

apiVersion: v1
kind: Pod
metadata:
 name: hello-openshift-pod
 labels:
 name: hello-openshift-pod
spec:
 containers:
 - name: hello-openshift-pod
 image: openshift/hello-openshift
 ports:
 - name: web
 containerPort: 80
 volumeMounts:
 - name: gluster-vol1
 mountPath: /usr/share/nginx/html
 readOnly: false
 volumes:
 - name: gluster-vol1
 persistentVolumeClaim:
 claimName: gluster1 1

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

575

$ ls
index.html
$ exit

5. Now curl the URL of the pod:

curl http://10.38.0.0
Hello OpenShift!!!

6. Delete the pod, recreate it, and wait for it to come up:

oc delete pod hello-openshift-pod
pod "hello-openshift-pod" deleted
oc create -f hello-openshift-pod.yaml
pod "hello-openshift-pod" created
oc get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
hello-openshift-pod 1/1 Running 0 9m 10.37.0.0 node1

7. Now curl the pod again and it should still have the same data as before. Note that its IP address
may have changed:

curl http://10.37.0.0
Hello OpenShift!!!

8. Check that the index.html file was written to GlusterFS storage by doing the following on any of
the nodes:

$ mount | grep heketi
/dev/mapper/VolGroup00-LogVol00 on /var/lib/heketi type xfs
(rw,relatime,seclabel,attr2,inode64,noquota)
/dev/mapper/vg_f92e09091f6b20ab12b02a2513e4ed90-
brick_1e730a5462c352835055018e1874e578 on
/var/lib/heketi/mounts/vg_f92e09091f6b20ab12b02a2513e4ed90/brick_1e730a5462c35283505
5018e1874e578 type xfs
(rw,noatime,seclabel,nouuid,attr2,inode64,logbsize=256k,sunit=512,swidth=512,noquota)
/dev/mapper/vg_f92e09091f6b20ab12b02a2513e4ed90-
brick_d8c06e606ff4cc29ccb9d018c73ee292 on
/var/lib/heketi/mounts/vg_f92e09091f6b20ab12b02a2513e4ed90/brick_d8c06e606ff4cc29ccb9d
018c73ee292 type xfs
(rw,noatime,seclabel,nouuid,attr2,inode64,logbsize=256k,sunit=512,swidth=512,noquota)

$ cd
/var/lib/heketi/mounts/vg_f92e09091f6b20ab12b02a2513e4ed90/brick_d8c06e606ff4cc29ccb9d
018c73ee292/brick
$ ls
index.html
$ cat index.html
Hello OpenShift!!!

28.6. COMPLETE EXAMPLE USING GLUSTERFS FOR DYNAMIC
PROVISIONING

OpenShift Container Platform 3.11 Configuring Clusters

576

1

28.6.1. Overview

This topic provides an end-to-end example of how to use an existing converged mode, independent
mode, or standalone Red Hat Gluster Storage cluster as dynamic persistent storage for OpenShift
Container Platform. It is assumed that a working Red Hat Gluster Storage cluster is already set up. For
help installing converged mode or independent mode, see Persistent Storage Using Red Hat Gluster
Storage. For standalone Red Hat Gluster Storage, consult the Red Hat Gluster Storage Administration
Guide.

NOTE

All oc commands are executed on the OpenShift Container Platform master host.

28.6.2. Prerequisites

To access GlusterFS volumes, the mount.glusterfs command must be available on all schedulable
nodes. For RPM-based systems, the glusterfs-fuse package must be installed:

yum install glusterfs-fuse

This package comes installed on every RHEL system. However, it is recommended to update to the
latest available version from Red Hat Gluster Storage if your servers use x86_64 architecture. To do
this, the following RPM repository must be enabled:

subscription-manager repos --enable=rh-gluster-3-client-for-rhel-7-server-rpms

If glusterfs-fuse is already installed on the nodes, ensure that the latest version is installed:

yum update glusterfs-fuse

By default, SELinux does not allow writing from a pod to a remote Red Hat Gluster Storage server. To
enable writing to Red Hat Gluster Storage volumes with SELinux on, run the following on each node
running GlusterFS:

The -P option makes the boolean persistent between reboots.

NOTE

The virt_sandbox_use_fusefs boolean is defined by the docker-selinux package. If you
get an error saying it is not defined, ensure that this package is installed.

NOTE

If you use Atomic Host, the SELinux booleans are cleared when you upgrade Atomic
Host. When you upgrade Atomic Host, you must set these boolean values again.

28.6.3. Dynamic Provisioning

1. To enable dynamic provisioning, first create a StorageClass object definition. The definition

$ sudo setsebool -P virt_sandbox_use_fusefs on 1
$ sudo setsebool -P virt_use_fusefs on

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

577

https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3.3/html/Administration_Guide/index.html

1

2

below is based on the minimum requirements needed for this example to work with OpenShift
Container Platform. See Dynamic Provisioning and Creating Storage Classes for additional
parameters and specification definitions.

The heketi server URL.

Since authentication is not turned on in this example, set to false.

2. From the OpenShift Container Platform master host, create the StorageClass:

oc create -f gluster-storage-class.yaml
storageclass "glusterfs" created

3. Create a PVC using the newly-created StorageClass. For example:

4. From the OpenShift Container Platform master host, create the PVC:

oc create -f glusterfs-dyn-pvc.yaml
persistentvolumeclaim "gluster1" created

5. View the PVC to see that the volume was dynamically created and bound to the PVC:

oc get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES
STORAGECLASS AGE
gluster1 Bound pvc-78852230-d8e2-11e6-a3fa-0800279cf26f 30Gi RWX
glusterfs 42s

28.6.4. Using the Storage

At this point, you have a dynamically created GlusterFS volume bound to a PVC. You can now utilize this

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: glusterfs
provisioner: kubernetes.io/glusterfs
parameters:
 resturl: "http://10.42.0.0:8080" 1
 restauthenabled: "false" 2

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: gluster1
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 30Gi
 storageClassName: glusterfs

OpenShift Container Platform 3.11 Configuring Clusters

578

1

At this point, you have a dynamically created GlusterFS volume bound to a PVC. You can now utilize this
PVC in a pod.

1. Create the pod object definition:

The name of the PVC created in the previous step.

2. From the OpenShift Container Platform master host, create the pod:

oc create -f hello-openshift-pod.yaml
pod "hello-openshift-pod" created

3. View the pod. Give it a few minutes, as it might need to download the image if it does not already
exist:

oc get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
hello-openshift-pod 1/1 Running 0 9m 10.38.0.0 node1

4. oc exec into the container and create an index.html file in the mountPath definition of the pod:

$ oc exec -ti hello-openshift-pod /bin/sh
$ cd /usr/share/nginx/html
$ echo 'Hello OpenShift!!!' > index.html
$ ls
index.html
$ exit

5. Now curl the URL of the pod:

curl http://10.38.0.0
Hello OpenShift!!!

apiVersion: v1
kind: Pod
metadata:
 name: hello-openshift-pod
 labels:
 name: hello-openshift-pod
spec:
 containers:
 - name: hello-openshift-pod
 image: openshift/hello-openshift
 ports:
 - name: web
 containerPort: 80
 volumeMounts:
 - name: gluster-vol1
 mountPath: /usr/share/nginx/html
 readOnly: false
 volumes:
 - name: gluster-vol1
 persistentVolumeClaim:
 claimName: gluster1 1

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

579

6. Delete the pod, recreate it, and wait for it to come up:

oc delete pod hello-openshift-pod
pod "hello-openshift-pod" deleted
oc create -f hello-openshift-pod.yaml
pod "hello-openshift-pod" created
oc get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
hello-openshift-pod 1/1 Running 0 9m 10.37.0.0 node1

7. Now curl the pod again and it should still have the same data as before. Note that its IP address
may have changed:

curl http://10.37.0.0
Hello OpenShift!!!

8. Check that the index.html file was written to GlusterFS storage by doing the following on any of
the nodes:

$ mount | grep heketi
/dev/mapper/VolGroup00-LogVol00 on /var/lib/heketi type xfs
(rw,relatime,seclabel,attr2,inode64,noquota)
/dev/mapper/vg_f92e09091f6b20ab12b02a2513e4ed90-
brick_1e730a5462c352835055018e1874e578 on
/var/lib/heketi/mounts/vg_f92e09091f6b20ab12b02a2513e4ed90/brick_1e730a5462c35283505
5018e1874e578 type xfs
(rw,noatime,seclabel,nouuid,attr2,inode64,logbsize=256k,sunit=512,swidth=512,noquota)
/dev/mapper/vg_f92e09091f6b20ab12b02a2513e4ed90-
brick_d8c06e606ff4cc29ccb9d018c73ee292 on
/var/lib/heketi/mounts/vg_f92e09091f6b20ab12b02a2513e4ed90/brick_d8c06e606ff4cc29ccb9d
018c73ee292 type xfs
(rw,noatime,seclabel,nouuid,attr2,inode64,logbsize=256k,sunit=512,swidth=512,noquota)

$ cd
/var/lib/heketi/mounts/vg_f92e09091f6b20ab12b02a2513e4ed90/brick_d8c06e606ff4cc29ccb9d
018c73ee292/brick
$ ls
index.html
$ cat index.html
Hello OpenShift!!!

28.7. MOUNTING VOLUMES ON PRIVILEGED PODS

28.7.1. Overview

Persistent volumes can be mounted to pods with the privileged security context constraint (SCC)
attached.

NOTE

While this topic uses GlusterFS as a sample use-case for mounting volumes onto
privileged pods, it can be adapted to use any supported storage plug-in .

OpenShift Container Platform 3.11 Configuring Clusters

580

28.7.2. Prerequisites

An existing Gluster volume.

glusterfs-fuse installed on all hosts.

Definitions for GlusterFS:

Endpoints and services : gluster-endpoints-service.yaml and gluster-endpoints.yaml

Persistent volumes: gluster-pv.yaml

Persistent volume claims : gluster-pvc.yaml

Privileged pods: gluster-S3-pod.yaml

A user with the cluster-admin role binding. For this guide, that user is called admin.

28.7.3. Creating the Persistent Volume

Creating the PersistentVolume makes the storage accessible to users, regardless of projects.

1. As the admin, create the service, endpoint object, and persistent volume:

$ oc create -f gluster-endpoints-service.yaml
$ oc create -f gluster-endpoints.yaml
$ oc create -f gluster-pv.yaml

2. Verify that the objects were created:

$ oc get svc
NAME CLUSTER_IP EXTERNAL_IP PORT(S) SELECTOR AGE
gluster-cluster 172.30.151.58 <none> 1/TCP <none> 24s

$ oc get ep
NAME ENDPOINTS AGE
gluster-cluster 192.168.59.102:1,192.168.59.103:1 2m

$ oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM
REASON AGE
gluster-default-volume <none> 2Gi RWX Available 2d

28.7.4. Creating a Regular User

Adding a regular user to the privileged SCC (or to a group given access to the SCC) allows them to run
privileged pods:

1. As the admin, add a user to the SCC:

$ oc adm policy add-scc-to-user privileged <username>

2. Log in as the regular user:

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

581

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#persistent-volume-claims
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#managing-role-bindings
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#users

1

2

$ oc login -u <username> -p <password>

3. Then, create a new project:

$ oc new-project <project_name>

28.7.5. Creating the Persistent Volume Claim

1. As a regular user, create the PersistentVolumeClaim to access the volume:

$ oc create -f gluster-pvc.yaml -n <project_name>

2. Define your pod to access the claim:

Example 28.10. Pod Definition

Volume mount within the pod.

The gluster-claim must reflect the name of the PersistentVolume.

3. Upon pod creation, the mount directory is created and the volume is attached to that mount
point.
As regular user, create a pod from the definition:

$ oc create -f gluster-S3-pod.yaml

4. Verify that the pod created successfully:

$ oc get pods
NAME READY STATUS RESTARTS AGE
gluster-S3-pod 1/1 Running 0 36m

apiVersion: v1
id: gluster-S3-pvc
kind: Pod
metadata:
 name: gluster-nginx-priv
spec:
 containers:
 - name: gluster-nginx-priv
 image: fedora/nginx
 volumeMounts:
 - mountPath: /mnt/gluster 1
 name: gluster-volume-claim
 securityContext:
 privileged: true
 volumes:
 - name: gluster-volume-claim
 persistentVolumeClaim:
 claimName: gluster-claim 2

OpenShift Container Platform 3.11 Configuring Clusters

582

It can take several minutes for the pod to create.

28.7.6. Verifying the Setup

28.7.6.1. Checking the Pod SCC

1. Export the pod configuration:

$ oc get -o yaml --export pod <pod_name>

2. Examine the output. Check that openshift.io/scc has the value of privileged:

Example 28.11. Export Snippet

28.7.6.2. Verifying the Mount

1. Access the pod and check that the volume is mounted:

$ oc rsh <pod_name>
[root@gluster-S3-pvc /]# mount

2. Examine the output for the Gluster volume:

Example 28.12. Volume Mount

192.168.59.102:gv0 on /mnt/gluster type fuse.gluster
(rw,relatime,user_id=0,group_id=0,default_permissions,allow_other,max_read=131072)

28.8. MOUNT PROPAGATION

28.8.1. Overview

Mount propagation allows for sharing volumes mounted by a container to other containers in the same
pod, or even to other pods on the same node.

28.8.2. Values

Mount propagation of a volume is controlled by the mountPropagation field in
Container.volumeMounts. Its values are:

none - This volume mount does not receive any subsequent mounts that are mounted to this
volume or any of its subdirectories by the host. In similar fashion, no mounts created by the
container are visible on the host. This is the default mode, and is equal to private mount
propagation in Linux kernels.

HostToContainer - This volume mount receives all subsequent mounts that are mounted to this

metadata:
 annotations:
 openshift.io/scc: privileged

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

583

volume or any of its subdirectories. In other words, if the host mounts anything inside the volume
mount, the container acknowledges it mounted there. This mode is equal to rslave mount
propagation in Linux kernels.

Bidirectional - This volume mount behaves the same as the HostToContainer mount. In
addition, all volume mounts created by the container are propagated back to the host and to all
containers of all pods that use the same volume. A typical use case for this mode is a Pod with a
FlexVolume or CSI driver or a Pod that needs to mount something on the host using a hostPath
volume. This mode is equal to rshared mount propagation in Linux kernels.

IMPORTANT

Bidirectional mount propagation can be dangerous. It can damage the host operating
system and therefore it is allowed only in privileged containers. Familiarity with Linux
kernel behavior is strongly recommended. In addition, any volume mounts created by
containers in pods must be destroyed, or unmounted, by the containers on termination.

28.8.3. Configuration

Before mount propagation can work properly on some deployments, such as CoreOS, Red Hat
Enterprise Linux/Centos, or Ubuntu, the mount share must be configured correctly in Docker.

Procedure

1. Edit your Docker’s systemd service file. Set MountFlags as follows:

Alternatively, remove MountFlags=slave, if present.

2. Restart the Docker daemon:

28.9. SWITCHING AN INTEGRATED OPENSHIFT CONTAINER
REGISTRY TO GLUSTERFS

28.9.1. Overview

This topic reviews how to attach a GlusterFS volume to an integrated OpenShift Container Registry.
This can be done with any of converged mode, independent mode, or standalone Red Hat Gluster
Storage. It is assumed that the registry has already been started and a volume has been created.

28.9.2. Prerequisites

An existing registry deployed without configuring storage.

An existing GlusterFS volume

glusterfs-fuse installed on all schedulable nodes.

A user with the cluster-admin role binding.

For this guide, that user is admin.

MountFlags=shared

$ sudo systemctl daemon-reload
$ sudo systemctl restart docker

OpenShift Container Platform 3.11 Configuring Clusters

584

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#managing-role-bindings

1 2

3 5 7

4 6 8

For this guide, that user is admin.

NOTE

All oc commands are executed on the master node as the admin user.

28.9.3. Manually Provision the GlusterFS PersistentVolumeClaim

1. To enable static provisioning, first create a GlusterFS volume. See the Red Hat Gluster Storage
Administration Guide for information on how to do this using the gluster command-line
interface or the heketi project site for information on how to do this using heketi-cli. For this
example, the volume will be named myVol1.

2. Define the following Service and Endpoints in gluster-endpoints.yaml:

These names must match.

The ip values must be the actual IP addresses of a Red Hat Gluster Storage server, not
hostnames.

The port number is ignored.

3. From the OpenShift Container Platform master host, create the Service and Endpoints:

apiVersion: v1
kind: Service
metadata:
 name: glusterfs-cluster 1
spec:
 ports:
 - port: 1

apiVersion: v1
kind: Endpoints
metadata:
 name: glusterfs-cluster 2
subsets:
 - addresses:
 - ip: 192.168.122.221 3
 ports:
 - port: 1 4
 - addresses:
 - ip: 192.168.122.222 5
 ports:
 - port: 1 6
 - addresses:
 - ip: 192.168.122.223 7
 ports:
 - port: 1 8

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

585

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.4/html/administration_guide
https://github.com/heketi/heketi

1

2

4. Verify that the Service and Endpoints were created:

NOTE

Endpoints are unique per project. Each project accessing the GlusterFS volume
needs its own Endpoints.

5. In order to access the volume, the container must run with either a user ID (UID) or group ID
(GID) that has access to the file system on the volume. This information can be discovered in
the following manner:

The UID is 592.

The GID is 590.

6. Define the following PersistentVolume (PV) in gluster-pv.yaml:

$ oc create -f gluster-endpoints.yaml
service "glusterfs-cluster" created
endpoints "glusterfs-cluster" created

$ oc get services
NAME CLUSTER_IP EXTERNAL_IP PORT(S) SELECTOR AGE
glusterfs-cluster 172.30.205.34 <none> 1/TCP <none> 44s

$ oc get endpoints
NAME ENDPOINTS AGE
docker-registry 10.1.0.3:5000 4h
glusterfs-cluster 192.168.122.221:1,192.168.122.222:1,192.168.122.223:1 11s
kubernetes 172.16.35.3:8443 4d

$ mkdir -p /mnt/glusterfs/myVol1

$ mount -t glusterfs 192.168.122.221:/myVol1 /mnt/glusterfs/myVol1

$ ls -lnZ /mnt/glusterfs/
drwxrwx---. 592 590 system_u:object_r:fusefs_t:s0 myVol1 1 2

apiVersion: v1
kind: PersistentVolume
metadata:
 name: gluster-default-volume 1
 annotations:
 pv.beta.kubernetes.io/gid: "590" 2
spec:
 capacity:
 storage: 2Gi 3
 accessModes: 4
 - ReadWriteMany
 glusterfs:
 endpoints: glusterfs-cluster 5

OpenShift Container Platform 3.11 Configuring Clusters

586

1

2

3

4

5

6

1

2

3

The name of the volume.

The GID on the root of the GlusterFS volume.

The amount of storage allocated to this volume.

accessModes are used as labels to match a PV and a PVC. They currently do not define
any form of access control.

The Endpoints resource previously created.

The GlusterFS volume that will be accessed.

7. From the OpenShift Container Platform master host, create the PV:

8. Verify that the PV was created:

9. Create a PersistentVolumeClaim (PVC) that will bind to the new PV in gluster-claim.yaml:

The claim name is referenced by the pod under its volumes section.

Must match the accessModes of the PV.

This claim will look for PVs offering 1Gi or greater capacity.

10. From the OpenShift Container Platform master host, create the PVC:

11. Verify that the PV and PVC are bound:

 path: myVol1 6
 readOnly: false
 persistentVolumeReclaimPolicy: Retain

$ oc create -f gluster-pv.yaml

$ oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM
REASON AGE
gluster-default-volume <none> 2147483648 RWX Available 2s

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: gluster-claim 1
spec:
 accessModes:
 - ReadWriteMany 2
 resources:
 requests:
 storage: 1Gi 3

$ oc create -f gluster-claim.yaml

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

587

NOTE

PVCs are unique per project. Each project accessing the GlusterFS volume needs its own
PVC. PVs are not bound to a single project, so PVCs across multiple projects may refer to
the same PV.

28.9.4. Attach the PersistentVolumeClaim to the Registry

Before moving forward, ensure that the docker-registry service is running.

$ oc get svc
NAME CLUSTER_IP EXTERNAL_IP PORT(S) SELECTOR AGE
docker-registry 172.30.167.194 <none> 5000/TCP docker-registry=default 18m

NOTE

If either the docker-registry service or its associated pod is not running, refer back to
the registry setup instructions for troubleshooting before continuing.

Then, attach the PVC:

$ oc set volume deploymentconfigs/docker-registry --add --name=registry-storage -t pvc \
 --claim-name=gluster-claim --overwrite

Setting up the Registry provides more information on using an OpenShift Container Registry.

28.10. BINDING PERSISTENT VOLUMES BY LABELS

28.10.1. Overview

This topic provides an end-to-end example for binding persistent volume claims (PVCs) to persistent
volumes (PVs), by defining labels in the PV and matching selectors in the PVC. This feature is available
for all storage options. It is assumed that a OpenShift Container Platform cluster contains persistent
storage resources which are available for binding by PVCs.

A Note on Labels and Selectors

Labels are an OpenShift Container Platform feature that support user-defined tags (key-value pairs) as
part of an object’s specification. Their primary purpose is to enable the arbitrary grouping of objects by
defining identical labels among them. These labels can then be targeted by selectors to match all
objects with specified label values. It is this functionality we will take advantage of to enable our PVC to
bind to our PV. For a more in-depth look at labels, see Pods and Services.

NOTE

$ oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON
AGE
gluster-pv <none> 1Gi RWX Available gluster-claim 37s

$ oc get pvc
NAME LABELS STATUS VOLUME CAPACITY ACCESSMODES AGE
gluster-claim <none> Bound gluster-pv 1Gi RWX 24s

OpenShift Container Platform 3.11 Configuring Clusters

588

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#persistent-volume-claims
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#persistent-volumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#labels

1

2

NOTE

For this example, we will be using modified GlusterFS PV and PVC specifications.
However, implementation of selectors and labels is generic across for all storage options.
See the relevant storage option for your volume provider to learn more about its unique
configuration.

28.10.1.1. Assumptions

It is assumed that you have:

An existing OpenShift Container Platform cluster with at least one master and one node

At least one supported storage volume

A user with cluster-admin privileges

28.10.2. Defining Specifications

NOTE

These specifications are tailored to GlusterFS. Consult the relevant storage option for
your volume provider to learn more about its unique configuration.

28.10.2.1. Persistent Volume with Labels

Example 28.13. glusterfs-pv.yaml

Use labels to identify common attributes or characteristics shared among volumes. In this case,
we defined the Gluster volume to have a custom attribute (key) named storage-tier with a
value of gold assigned. A claim will be able to select a PV with storage-tier=gold to match this
PV.

Endpoints define the Gluster trusted pool and are discussed below.

apiVersion: v1
kind: PersistentVolume
metadata:
 name: gluster-volume
 labels: 1
 storage-tier: gold
 aws-availability-zone: us-east-1
spec:
 capacity:
 storage: 2Gi
 accessModes:
 - ReadWriteMany
 glusterfs:
 endpoints: glusterfs-cluster 2
 path: myVol1
 readOnly: false
 persistentVolumeReclaimPolicy: Retain

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

589

1

28.10.2.2. Persistent Volume Claim with Selectors

A claim with a selector stanza (see example below) attempts to match existing, unclaimed, and non-
prebound PVs. The existence of a PVC selector ignores a PV’s capacity. However, accessModes are still
considered in the matching criteria.

It is important to note that a claim must match all of the key-value pairs included in its selector stanza. If
no PV matches the claim, then the PVC will remain unbound (Pending). A PV can subsequently be
created and the claim will automatically check for a label match.

Example 28.14. glusterfs-pvc.yaml

The selector stanza defines all labels necessary in a PV in order to match this claim.

28.10.2.3. Volume Endpoints

To attach the PV to the Gluster volume, endpoints should be configured before creating our objects.

Example 28.15. glusterfs-ep.yaml

28.10.2.4. Deploy the PV, PVC, and Endpoints

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: gluster-claim
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi
 selector: 1
 matchLabels:
 storage-tier: gold
 aws-availability-zone: us-east-1

apiVersion: v1
kind: Endpoints
metadata:
 name: glusterfs-cluster
subsets:
 - addresses:
 - ip: 192.168.122.221
 ports:
 - port: 1
 - addresses:
 - ip: 192.168.122.222
 ports:
 - port: 1

OpenShift Container Platform 3.11 Configuring Clusters

590

For this example, run the oc commands as a cluster-admin privileged user. In a production environment,
cluster clients might be expected to define and create the PVC.

oc create -f glusterfs-ep.yaml
endpoints "glusterfs-cluster" created
oc create -f glusterfs-pv.yaml
persistentvolume "gluster-volume" created
oc create -f glusterfs-pvc.yaml
persistentvolumeclaim "gluster-claim" created

Lastly, confirm that the PV and PVC bound successfully.

oc get pv,pvc
NAME CAPACITY ACCESSMODES STATUS CLAIM REASON AGE
gluster-volume 2Gi RWX Bound gfs-trial/gluster-claim 7s
NAME STATUS VOLUME CAPACITY ACCESSMODES AGE
gluster-claim Bound gluster-volume 2Gi RWX 7s

NOTE

PVCs are local to a project, whereas PVs are a cluster-wide, global resource. Developers
and non-administrator users may not have access to see all (or any) of the available PVs.

28.11. USING STORAGE CLASSES FOR DYNAMIC PROVISIONING

28.11.1. Overview

In these examples we will walk through a few scenarios of various configuratons of StorageClasses and
Dynamic Provisioning using Google Cloud Platform Compute Engine (GCE). These examples assume
some familiarity with Kubernetes, GCE and Persistent Disks and OpenShift Container Platform is
installed and properly configured to use GCE .

Basic Dynamic Provisioning

Defaulting Cluster Dynamic Provisioning Behavior

28.11.2. Scenario 1: Basic Dynamic Provisioning with Two Types of StorageClasses

StorageClasses can be used to differentiate and delineate storage levels and usages. In this case, the
cluster-admin or storage-admin sets up two distinct classes of storage in GCE.

slow: Cheap, efficient, and optimized for sequential data operations (slower reading and
writing)

fast: Optimized for higher rates of random IOPS and sustained throughput (faster reading and
writing)

By creating these StorageClasses, the cluster-admin or storage-admin allows users to create claims
requesting a particular level or service of StorageClass.

Example 28.16. StorageClass Slow Object Definitions

kind: StorageClass

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

591

1

2

3

4

Name of the StorageClass.

The provisioner plug-in to be used. This is a required field for StorageClasses.

PD type. This example uses pd-standard, which has a slightly lower cost, rate of sustained IOPS,
and throughput versus pd-ssd, which carries more sustained IOPS and throughput.

The zone is required.

Example 28.17. StorageClass Fast Object Definition

As a cluster-admin or storage-admin, save both definitions as YAML files. For example, slow-gce.yaml
and fast-gce.yaml. Then create the StorageClasses.

oc create -f slow-gce.yaml
storageclass "slow" created

oc create -f fast-gce.yaml
storageclass "fast" created

oc get storageclass
NAME TYPE
fast kubernetes.io/gce-pd
slow kubernetes.io/gce-pd

IMPORTANT

cluster-admin or storage-admin users are responsible for relaying the correct
StorageClass name to the correct users, groups, and projects.

As a regular user, create a new project:

oc new-project rh-eng

apiVersion: storage.k8s.io/v1
metadata:
 name: slow 1
provisioner: kubernetes.io/gce-pd 2
parameters:
 type: pd-standard 3
 zone: us-east1-d 4

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: fast
provisioner: kubernetes.io/gce-pd
parameters:
 type: pd-ssd
 zone: us-east1-d

OpenShift Container Platform 3.11 Configuring Clusters

592

Create the claim YAML definition, save it to a file (pvc-fast.yaml):

Add the claim with the oc create command:

oc create -f pvc-fast.yaml
persistentvolumeclaim "pvc-engineering" created

Check to see if your claim is bound:

oc get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES AGE
pvc-engineering Bound pvc-e9b4fef7-8bf7-11e6-9962-42010af00004 10Gi RWX 2m

IMPORTANT

Since this claim was created and bound in the rh-eng project, it can be shared by any user
in the same project.

As a cluster-admin or storage-admin user, view the recent dynamically provisioned Persistent Volume
(PV).

oc get pv
NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS
CLAIM REASON AGE
pvc-e9b4fef7-8bf7-11e6-9962-42010af00004 10Gi RWX Delete Bound rh-
eng/pvc-engineering 5m

IMPORTANT

Notice the RECLAIMPOLICY is Delete by default for all dynamically provisioned volumes.
This means the volume only lasts as long as the claim still exists in the system. If you
delete the claim, the volume is also deleted and all data on the volume is lost.

Finally, check the GCE console. The new disk has been created and is ready for use.

kubernetes-dynamic-pvc-e9b4fef7-8bf7-11e6-9962-42010af00004 SSD persistent disk 10 GB us-
east1-d

Pods can now reference the persistent volume claim and start using the volume.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-engineering
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 10Gi
 storageClassName: fast

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

593

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage

1

2

28.11.3. Scenario 2: How to enable Default StorageClass behavior for a Cluster

In this example, a cluster-admin or storage-admin enables a default storage class for all other users and
projects that do not implicitly specify a StorageClass in their claim. This is useful for a cluster-admin or
storage-admin to provide easy management of a storage volume without having to set up or
communicate specialized StorageClasses across the cluster.

This example builds upon Section 28.11.2, “Scenario 1: Basic Dynamic Provisioning with Two Types of
StorageClasses”. The cluster-admin or storage-admin will create another StorageClass for designation
as the defaultStorageClass.

Example 28.18. Default StorageClass Object Definition

Name of the StorageClass, which needs to be unique in the cluster.

Annotation that marks this StorageClass as the default class. You must use "true" quoted in this
version of the API. Without this annotation, OpenShift Container Platform considers this not the
default StorageClass.

As a cluster-admin or storage-admin save the definition to a YAML file (generic-gce.yaml), then
create the StorageClasses:

oc create -f generic-gce.yaml
storageclass "generic" created

oc get storageclass
NAME TYPE
generic kubernetes.io/gce-pd
fast kubernetes.io/gce-pd
slow kubernetes.io/gce-pd

As a regular user, create a new claim definition without any StorageClass requirement and save it to a file
(generic-pvc.yaml).

Example 28.19. default Storage Claim Object Definition

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: generic 1
 annotations:
 storageclass.kubernetes.io/is-default-class: "true" 2
provisioner: kubernetes.io/gce-pd
parameters:
 type: pd-standard
 zone: us-east1-d

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-engineering2
spec:

OpenShift Container Platform 3.11 Configuring Clusters

594

1

1

2

Execute it and check the claim is bound:

oc create -f generic-pvc.yaml
persistentvolumeclaim "pvc-engineering2" created
 3s
oc get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES AGE
pvc-engineering Bound pvc-e9b4fef7-8bf7-11e6-9962-42010af00004 10Gi RWX 41m
pvc-engineering2 Bound pvc-a9f70544-8bfd-11e6-9962-42010af00004 5Gi RWX 7s
1

pvc-engineering2 is bound to a dynamically provisioned Volume by default.

As a cluster-admin or storage-admin, view the Persistent Volumes defined so far:

oc get pv
NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS
CLAIM REASON AGE
pvc-a9f70544-8bfd-11e6-9962-42010af00004 5Gi RWX Delete Bound rh-
eng/pvc-engineering2 5m 1
pvc-ba4612ce-8b4d-11e6-9962-42010af00004 5Gi RWO Delete Bound
mytest/gce-dyn-claim1 21h
pvc-e9b4fef7-8bf7-11e6-9962-42010af00004 10Gi RWX Delete Bound rh-
eng/pvc-engineering 46m 2

This PV was bound to our default dynamic volume from the default StorageClass.

This PV was bound to our first PVC from Section 28.11.2, “Scenario 1: Basic Dynamic Provisioning
with Two Types of StorageClasses” with our fast StorageClass.

Create a manually provisioned disk using GCE (not dynamically provisioned). Then create a Persistent
Volume that connects to the new GCE disk (pv-manual-gce.yaml).

Example 28.20. Manual PV Object Defition

 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 5Gi

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv-manual-gce
spec:
 capacity:
 storage: 35Gi
 accessModes:
 - ReadWriteMany
 gcePersistentDisk:

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

595

https://cloud.google.com/compute/docs/disks/

Execute the object definition file:

oc create -f pv-manual-gce.yaml

Now view the PVs again. Notice that a pv-manual-gce volume is Available.

oc get pv
NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS
CLAIM REASON AGE
pv-manual-gce 35Gi RWX Retain Available
4s
pvc-a9f70544-8bfd-11e6-9962-42010af00004 5Gi RWX Delete Bound rh-
eng/pvc-engineering2 12m
pvc-ba4612ce-8b4d-11e6-9962-42010af00004 5Gi RWO Delete Bound
mytest/gce-dyn-claim1 21h
pvc-e9b4fef7-8bf7-11e6-9962-42010af00004 10Gi RWX Delete Bound rh-
eng/pvc-engineering 53m

Now create another claim identical to the generic-pvc.yaml PVC definition but change the name and
do not set a storage class name.

Example 28.21. Claim Object Definition

Because default StorageClass is enabled in this instance, the manually created PV does not satisfy the
claim request. The user receives a new dynamically provisioned Persistent Volume.

oc get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES AGE
pvc-engineering Bound pvc-e9b4fef7-8bf7-11e6-9962-42010af00004 10Gi RWX 1h
pvc-engineering2 Bound pvc-a9f70544-8bfd-11e6-9962-42010af00004 5Gi RWX 19m
pvc-engineering3 Bound pvc-6fa8e73b-8c00-11e6-9962-42010af00004 15Gi RWX 6s

IMPORTANT

 readOnly: false
 pdName: the-newly-created-gce-PD
 fsType: ext4

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-engineering3
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 15Gi

OpenShift Container Platform 3.11 Configuring Clusters

596

1

IMPORTANT

Since the default StorageClass is enabled on this system, for the manually created
Persistent Volume to get bound by the above claim and not have a new dynamic
provisioned volume be bound, the PV would need to have been created in the default
StorageClass.

Since the default StorageClass is enabled on this system, you would need to create the PV in the default
StorageClass for the manually created Persistent Volume to get bound to the above claim and not have
a new dynamic provisioned volume bound to the claim.

To fix this, the cluster-admin or storage-admin user simply needs to create another GCE disk or delete
the first manual PV and use a PV object definition that assigns a StorageClass name (pv-manual-
gce2.yaml) if necessary:

Example 28.22. Manual PV Spec with default StorageClass name

The name for previously created generic StorageClass.

Execute the object definition file:

oc create -f pv-manual-gce2.yaml

List the PVs:

oc get pv
NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS
CLAIM REASON AGE
pv-manual-gce 35Gi RWX Retain Available
4s 1
pv-manual-gce2 35Gi RWX Retain Bound rh-eng/pvc-
engineering3 4s 2
pvc-a9f70544-8bfd-11e6-9962-42010af00004 5Gi RWX Delete Bound rh-
eng/pvc-engineering2 12m
pvc-ba4612ce-8b4d-11e6-9962-42010af00004 5Gi RWO Delete Bound

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv-manual-gce2
spec:
 capacity:
 storage: 35Gi
 accessModes:
 - ReadWriteMany
 gcePersistentDisk:
 readOnly: false
 pdName: the-newly-created-gce-PD
 fsType: ext4
 storageClassName: generic 1

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

597

1

2

1

2

3

mytest/gce-dyn-claim1 21h
pvc-e9b4fef7-8bf7-11e6-9962-42010af00004 10Gi RWX Delete Bound rh-
eng/pvc-engineering 53m

The original manual PV, still unbound and Available. This is because it was not created in the default
StorageClass.

The second PVC (other than the name) is bound to the Available manually created PV pv-manual-
gce2.

IMPORTANT

Notice that all dynamically provisioned volumes by default have a RECLAIMPOLICY of
Delete. Once the PVC dynamically bound to the PV is deleted, the GCE volume is deleted
and all data is lost. However, the manually created PV has a default RECLAIMPOLICY of
Retain.

28.12. USING STORAGE CLASSES FOR EXISTING LEGACY STORAGE

28.12.1. Overview

In this example, a legacy data volume exists and a cluster-admin or storage-admin needs to make it
available for consumption in a particular project. Using StorageClasses decreases the likelihood of other
users and projects gaining access to this volume from a claim because the claim would have to have an
exact matching value for the StorageClass name. This example also disables dynamic provisioning. This
example assumes:

Some familiarity with OpenShift Container Platform, GCE, and Persistent Disks

OpenShift Container Platform is properly configured to use GCE .

28.12.1.1. Scenario 1: Link StorageClass to existing Persistent Volume with Legacy Data

As a cluster-admin or storage-admin, define and create the StorageClass for historical financial data.

Example 28.23. StorageClass finance-history Object Definitions

Name of the StorageClass.

This is a required field, but since there is to be no dynamic provisioning, a value must be put here
as long as it is not an actual provisioner plug-in type.

Parameters can simply be left blank, since these are only used for the dynamic provisioner.

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: finance-history 1
provisioner: no-provisioning 2
parameters: 3

OpenShift Container Platform 3.11 Configuring Clusters

598

2

1

Save the definitions to a YAML file (finance-history-storageclass.yaml) and create the StorageClass.

oc create -f finance-history-storageclass.yaml
storageclass "finance-history" created

oc get storageclass
NAME TYPE
finance-history no-provisioning

IMPORTANT

cluster-admin or storage-admin users are responsible for relaying the correct
StorageClass name to the correct users, groups, and projects.

The StorageClass exists. A cluster-admin or storage-admin can create the Persistent Volume (PV) for
use with the StorageClass. Create a manually provisioned disk using GCE (not dynamically provisioned)
and a Persistent Volume that connects to the new GCE disk (gce-pv.yaml).

Example 28.24. Finance History PV Object

The StorageClass name, that must match exactly.

The name of the GCE disk that already exists and contains the legacy data.

As a cluster-admin or storage-admin, create and view the PV.

oc create -f gce-pv.yaml
persistentvolume "pv-finance-history" created

oc get pv
NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM
REASON AGE
pv-finance-history 35Gi RWX Retain Available 2d

Notice you have a pv-finance-history Available and ready for consumption.

As a user, create a Persistent Volume Claim (PVC) as a YAML file and specify the correct StorageClass

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv-finance-history
spec:
 capacity:
 storage: 35Gi
 accessModes:
 - ReadWriteMany
 gcePersistentDisk:
 readOnly: false
 pdName: the-existing-PD-volume-name-that-contains-the-valuable-data 1
 fsType: ext4
 storageClassName: finance-history 2

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

599

https://cloud.google.com/compute/docs/disks/

1

As a user, create a Persistent Volume Claim (PVC) as a YAML file and specify the correct StorageClass
name:

Example 28.25. Claim for finance-history Object Definition

The StorageClass name, that must match exactly or the claim will go unbound until it is deleted
or another StorageClass is created that matches the name.

Create and view the PVC and PV to see if it is bound.

oc create -f pvc-finance-history.yaml
persistentvolumeclaim "pvc-finance-history" created

oc get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES AGE
pvc-finance-history Bound pv-finance-history 35Gi RWX 9m

oc get pv (cluster/storage-admin)
NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM
REASON AGE
pv-finance-history 35Gi RWX Retain Bound default/pvc-finance-history
5m

IMPORTANT

You can use StorageClasses in the same cluster for both legacy data (no dynamic
provisioning) and with dynamic provisioning.

28.13. CONFIGURING AZURE BLOB STORAGE FOR INTEGRATED
CONTAINER IMAGE REGISTRY

28.13.1. Overview

This topic reviews how to configure Microsoft Azure Blob Storage for OpenShift integrated container
image registry.

28.13.2. Before You Begin

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-finance-history
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 20Gi
 storageClassName: finance-history 1

OpenShift Container Platform 3.11 Configuring Clusters

600

https://azure.microsoft.com/en-us/services/storage/blobs/

1

2

Create a storage container using Microsoft Azure Portal, Microsoft Azure CLI, or Microsoft
Azure Storage Explorer. Keep a note of the storage account name, storage account key and
container name.

Deploy the integrated container image registry if it is not deployed.

28.13.3. Overriding Registry Configuration

To create a new registry pod and replace the old pod automatically:

1. Create a new registry configuration file called registryconfig.yaml and add the following
information:

Replace the values for accountname, acountkey, and container with storage account
name, storage account key, and storage container name respectively.

If using Azure regional cloud, set to the desired realm. For example, core.cloudapi.de for
the Germany regional cloud.

2. Create a new registry configuration:

version: 0.1
log:
 level: debug
http:
 addr: :5000
storage:
 cache:
 blobdescriptor: inmemory
 delete:
 enabled: true
 azure: 1
 accountname: azureblobacc
 accountkey: azureblobacckey
 container: azureblobname
 realm: core.windows.net 2
auth:
 openshift:
 realm: openshift
middleware:
 registry:
 - name: openshift
 repository:
 - name: openshift
 options:
 acceptschema2: false
 pullthrough: true
 enforcequota: false
 projectcachettl: 1m
 blobrepositorycachettl: 10m
 storage:
 - name: openshift

$ oc create secret generic registry-config --from-file=config.yaml=registryconfig.yaml

CHAPTER 28. PERSISTENT STORAGE EXAMPLES

601

3. Add the secret:

4. Set the REGISTRY_CONFIGURATION_PATH environment variable:

5. If you already created a registry configuration:

a. Delete the secret:

b. Create a new registry configuration:

c. Update the configuration by starting a new rollout:

$ oc set volume dc/docker-registry --add --type=secret \
 --secret-name=registry-config -m /etc/docker/registry/

$ oc set env dc/docker-registry \
 REGISTRY_CONFIGURATION_PATH=/etc/docker/registry/config.yaml

$ oc delete secret registry-config

$ oc create secret generic registry-config --from-file=config.yaml=registryconfig.yaml

$ oc rollout latest docker-registry

OpenShift Container Platform 3.11 Configuring Clusters

602

CHAPTER 29. CONFIGURING EPHEMERAL STORAGE

29.1. OVERVIEW

OpenShift Container Platform can be configured to allow management of ephemeral storage of pod
and container working data. While containers have been able to utilize writable layers, logs directories,
and EmptyDir volumes, this storage has been subject to a number of limitations, as discussed here.

Ephemeral storage management permits administrators to limit the resources consumed by individual
pods and containers, and for pods and containers to specify requests and limits on their use of such
ephemeral storage. This is a technology preview and is disabled by default.

NOTE

This technology preview does not change any of the mechanisms for making local
storage available in OpenShift Container Platform; the existing mechanisms, root
directory or runtime directory, still apply. This technology preview only provides a
mechanism for managing the use of this resource.

29.2. ENABLING EPHEMERAL STORAGE

To enable ephemeral storage:

1. Edit or create the master configuration file on all masters, /etc/origin/master/master-
config.yaml by default, and add LocalStorageCapacityIsolation=true in the
apiServerArguments and controllerArguments sections:

2. Edit the ConfigMap for all nodes to enable the LocalStorageCapacityIsolation on the command
line. You can identify the ConfigMaps that need to be edited as follows:

$ oc get cm -n openshift-node
NAME DATA AGE
node-config-compute 1 52m
node-config-infra 1 52m
node-config-master 1 52m

For each of these maps, node-config-compute, node-config-infra, and node-config-master,
you need to add the feature gate:

oc edit cm node-config-master -n openshift-node

If there is already a feature-gates: declaration, add the following text to the list of feature gates:

apiServerArguments:
 feature-gates:
 - LocalStorageCapacityIsolation=true
...

 controllerArguments:
 feature-gates:
 - LocalStorageCapacityIsolation=true
...

CHAPTER 29. CONFIGURING EPHEMERAL STORAGE

603

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#ephemeral-storage

,LocalStorageCapacityIsolation=true

If there is no feature-gates: declaration, add the following section:

 feature-gates:
 - LocalStorageCapacityIsolation=true

3. Repeat for node-config-compute, node-config-infra, and any other ConfigMaps.

4. Restart OpenShift Container Platform and delete the container running the apiserver.

NOTE

Omitting any of these steps may result in ephemeral storage management not being
enabled.

OpenShift Container Platform 3.11 Configuring Clusters

604

CHAPTER 30. WORKING WITH HTTP PROXIES

30.1. OVERVIEW

Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS
proxy available. Configuring OpenShift Container Platform to use these proxies can be as simple as
setting standard environment variables in configuration or JSON files. This can be done during an
cluster installation or configured after installation.

The proxy configuration must be the same on each host in the cluster. Therefore, when setting up the
proxy or modifying it, you must update the files on each OpenShift Container Platform host to the same
values. Then, you must restart OpenShift Container Platform services on each host in the cluster.

The NO_PROXY, HTTP_PROXY, and HTTPS_PROXY environment variables are found in each host’s
/etc/origin/master/master.env and /etc/sysconfig/atomic-openshift-node files.

30.2. CONFIGURING NO_PROXY

The NO_PROXY environment variable lists all of the OpenShift Container Platform components and all
IP addresses that are managed by OpenShift Container Platform.

On the OpenShift service accepting the CIDR, NO_PROXY accepts a comma-separated list of hosts, IP
addresses, or IP ranges in CIDR format:

For master hosts

Node host name

Master IP or host name

IP address of etcd hosts

For node hosts

Master IP or host name

For the Docker service

Registry service IP and host name

Registry service URL docker-registry.default.svc.cluster.local

Registry route host name (if created)

NOTE

When using Docker, Docker accepts a comma-separated list of hosts, domain extensions,
or IP addresses, but does not accept IP ranges in CIDR format, which are only accepted
by OpenShift services. The `no_proxy' variable should contain a comma-separated list of
domain extensions that the proxy should not be used for.

For example, if no_proxy is set to .school.edu, the proxy will not be used to retrieve
documents from the specific school.

CHAPTER 30. WORKING WITH HTTP PROXIES

605

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-install-configuring-global-proxy

1

NO_PROXY also includes the SDN network and service IP addresses as found in the master-
config.yaml file.

/etc/origin/master/master-config.yaml

networkConfig:
 clusterNetworks:
 - cidr: 10.1.0.0/16
 hostSubnetLength: 9
 serviceNetworkCIDR: 172.30.0.0/16

OpenShift Container Platform does not accept * as a wildcard attached to a domain suffix. For example,
the following would be accepted:

NO_PROXY=.example.com

However, the following would not be:

NO_PROXY=*.example.com

The only wildcard NO_PROXY accepts is a single * character, which matches all hosts, and effectively
disables the proxy.

Each name in this list is matched as either a domain which contains the host name as a suffix, or the host
name itself.

NOTE

When scaling up nodes, use a domain name rather than a list of hostnames.

For instance, example.com would match example.com, example.com:80, and www.example.com.

30.3. CONFIGURING HOSTS FOR PROXIES

1. Edit the proxy environment variables in the OpenShift Container Platform control files. Ensure
all of the files in the cluster are correct.

HTTP_PROXY=http://<user>:<password>@<ip_addr>:<port>/
HTTPS_PROXY=https://<user>:<password>@<ip_addr>:<port>/
NO_PROXY=master.hostname.example.com,10.1.0.0/16,172.30.0.0/16 1

Supports host names and CIDRs. Must include the SDN network and service IP ranges
10.1.0.0/16,172.30.0.0/16 by default.

2. Restart the master or node host:

master-restart api
master-restart controllers
systemctl restart atomic-openshift-node

30.4. CONFIGURING HOSTS FOR PROXIES USING ANSIBLE

OpenShift Container Platform 3.11 Configuring Clusters

606

During cluster installations, the NO_PROXY, HTTP_PROXY, and HTTPS_PROXY environment
variables can be configured using the openshift_no_proxy, openshift_http_proxy, and
openshift_https_proxy parameters, which are configurable in the inventory file.

Example Proxy Configuration with Ansible

Global Proxy Configuration
These options configure HTTP_PROXY, HTTPS_PROXY, and NOPROXY environment
variables for docker and master services.
openshift_http_proxy=http://<user>:<password>@<ip_addr>:<port>
openshift_https_proxy=https://<user>:<password>@<ip_addr>:<port>
openshift_no_proxy='.hosts.example.com,some-host.com'
#
Most environments do not require a proxy between OpenShift masters, nodes, and
etcd hosts. So automatically add those host names to the openshift_no_proxy list.
If all of your hosts share a common domain you may wish to disable this and
specify that domain above.
openshift_generate_no_proxy_hosts=True

NOTE

There are additional proxy settings that can be configured for builds using Ansible
parameters. For example:

The openshift_builddefaults_git_http_proxy and
openshift_builddefaults_git_https_proxy parameters allow you to use a proxy for Git
cloning

The openshift_builddefaults_http_proxy and openshift_builddefaults_https_proxy
parameters can make environment variables available to the Docker build strategy and
Custom build strategy processes.

30.5. PROXYING DOCKER PULL

OpenShift Container Platform node hosts need to perform push and pull operations to Docker
registries. If you have a registry that does not need a proxy for nodes to access, include the NO_PROXY
parameter with:

the registry’s host name,

the registry service’s IP address, and

the service name.

This blacklists that registry, leaving the external HTTP proxy as the only option.

1. Retrieve the registry service’s IP address docker_registy_ip by running:

$ oc describe svc/docker-registry -n default

Name: docker-registry
Namespace: default
Labels: docker-registry=default
Selector: docker-registry=default
Type: ClusterIP

CHAPTER 30. WORKING WITH HTTP PROXIES

607

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-install-configuring-global-proxy
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#using-a-proxy-for-git-cloning
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#docker-strategy-environment
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#custom-strategy-environment

1

IP: 172.30.163.183 1
Port: 5000-tcp 5000/TCP
Endpoints: 10.1.0.40:5000
Session Affinity: ClientIP
No events.

Registry service IP.

2. Edit the /etc/sysconfig/docker file and add the NO_PROXY variables in shell format, replacing
<docker_registry_ip> with the IP address from the previous step.

HTTP_PROXY=http://<user>:<password>@<ip_addr>:<port>/
HTTPS_PROXY=https://<user>:<password>@<ip_addr>:<port>/
NO_PROXY=master.hostname.example.com,<docker_registry_ip>,docker-
registry.default.svc.cluster.local

3. Restart the Docker service:

systemctl restart docker

30.6. USING MAVEN BEHIND A PROXY

Using Maven with proxies requires using the HTTP_PROXY_NONPROXYHOSTS variable.

See the Red Hat JBoss Enterprise Application Platform for OpenShift documentation for information
about configuring your OpenShift Container Platform environment for Red Hat JBoss Enterprise
Application Platform, including the step for setting up Maven behind a proxy.

30.7. CONFIGURING S2I BUILDS FOR PROXIES

S2I builds fetch dependencies from various locations. You can use a .s2i/environment file to specify
simple shell variables and OpenShift Container Platform will react accordingly when seeing build images.

The following are the supported proxy environment variables with example values:

HTTP_PROXY=http://USERNAME:PASSWORD@10.0.1.1:8080/
HTTPS_PROXY=https://USERNAME:PASSWORD@10.0.0.1:8080/
NO_PROXY=master.hostname.example.com

30.8. CONFIGURING DEFAULT TEMPLATES FOR PROXIES

The example templates available in OpenShift Container Platform by default do not include settings for
HTTP proxies. For existing applications based on these templates, modify the source section of the
application’s build configuration and add proxy settings:

...
source:
 type: Git
 git:
 uri: https://github.com/openshift/ruby-hello-world
 httpProxy: http://proxy.example.com

OpenShift Container Platform 3.11 Configuring Clusters

608

https://access.redhat.com/documentation/en-us/red_hat_jboss_middleware_for_openshift/3/html-single/red_hat_jboss_enterprise_application_platform_for_openshift/#configuring_eap_for_openshift
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#environment-files

 httpsProxy: https://proxy.example.com
 noProxy: somedomain.com, otherdomain.com
...

This is similar to the process for using proxies for Git cloning .

30.9. SETTING PROXY ENVIRONMENT VARIABLES IN PODS

You can set the NO_PROXY, HTTP_PROXY, and HTTPS_PROXY environment variables in the
templates.spec.containers stanza in a deployment configuration to pass proxy connection information.
The same can be done for configuring a Pod’s proxy at runtime:

...
containers:
- env:
 - name: "HTTP_PROXY"
 value: "http://<user>:<password>@<ip_addr>:<port>"
...

You can also use the oc set env command to update an existing deployment configuration with a new
environment variable:

$ oc set env dc/frontend HTTP_PROXY=http://<user>:<password>@<ip_addr>:<port>

If you have a ConfigChange trigger set up in your OpenShift Container Platform instance, the changes
happen automatically. Otherwise, manually redeploy your application for the changes to take effect.

30.10. GIT REPOSITORY ACCESS

If your Git repository can only be accessed using a proxy, you can define the proxy to use in the source
section of the BuildConfig. You can configure both a HTTP and HTTPS proxy to use. Both fields are
optional. Domains for which no proxying should be performed can also be specified via the NoProxy
field.

NOTE

Your source URI must use the HTTP or HTTPS protocol for this to work.

source:
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 httpProxy: http://proxy.example.com
 httpsProxy: https://proxy.example.com
 noProxy: somedomain.com, otherdomain.com

CHAPTER 30. WORKING WITH HTTP PROXIES

609

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#triggers

CHAPTER 31. CONFIGURING GLOBAL BUILD DEFAULTS AND
OVERRIDES

31.1. OVERVIEW

Developers can define settings in specific build configurations within their projects, such as configuring a
proxy for Git cloning. Rather than requiring developers to define certain settings in each build
configuration, administrators can use admission control plug-ins to configure global build defaults and
overrides that automatically use these settings in any build.

The settings from these plug-ins are used only during the build process but are not set in the build
configurations or builds themselves. Configuring the settings through the plug-ins allows administrators
to change the global configuration at any time, and any builds that are re-run from existing build
configurations or builds are assigned the new settings.

The BuildDefaults admission control plug-in allows administrators to set global defaults for
settings such as the Git HTTP and HTTPS proxy, as well as default environment variables. These
defaults do not overwrite values that have been configured for a specific build. However, if
those values are not present on the build definition, they are set to the default value.

The BuildOverrides admission control plug-in allows administrators to override a setting in a
build, regardless of the value stored in the build.
The plug-in currently supports overriding the forcePull flag on a build strategy to force
refreshing the local image from the registry during a build. This means that an access check is
performed on an image every time a build starts, ensuring that users can build only with images
they are allowed to pull. A forced refresh provides multitenancy for your build. However, you can
no longer rely on the local cache of the image stored on the build node; you must always have
access to the registry.

The plug-in can also be configured to apply a set of image labels to every built image.

For information on configuring the BuildOverrides admission control plug-in and the values you
can override, see Manually Setting Global Build Overrides .

The default node selectors and the BuildDefaults or BuildOverrides admission plug-ins work together
as follows:

The default project node selector, defined in the projectConfig.defaultNodeSelector field in
the master configuration file, is applied to the pods created in all projects without a specified
nodeSelector value. These settings are applied to builds with nodeSelector="null" on clusters
where the BuildDefaults or BuildOverrides nodeselector is not set.

The cluster-wide default build node selector,
admissionConfig.pluginConfig.BuildDefaults.configuration.nodeSelector, is applied only if
the nodeSelector="null" parameter is set in the build configuration. nodeSelector=null is the
default setting.

With a default project or cluster-wide node selector, the default setting is added as an AND to
the build node selector, which is set by the BuildDefaults or BuildOverrides admission plug-
ins. These settings mean that the build will be scheduled only to nodes that satisfy the
BuildOverrides node selector AND the project default node selector.

NOTE

OpenShift Container Platform 3.11 Configuring Clusters

610

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#using-a-proxy-for-git-cloning

NOTE

You can define a hard limit on how long build pods can run by using the
RunOnceDuration plugin.

31.2. SETTING GLOBAL BUILD DEFAULTS

You can set global build defaults two ways:

using Ansible

manually by modifying the master-config.yaml file

31.2.1. Configuring Global Build Defaults with Ansible

During cluster installations, the BuildDefaults plug-in can be configured using the following parameters,
which are configurable in the inventory file:

openshift_builddefaults_http_proxy

openshift_builddefaults_https_proxy

openshift_builddefaults_no_proxy

openshift_builddefaults_git_http_proxy

openshift_builddefaults_git_https_proxy

openshift_builddefaults_git_no_proxy

openshift_builddefaults_image_labels

openshift_builddefaults_nodeselectors

openshift_builddefaults_annotations

openshift_builddefaults_resources_requests_cpu

openshift_builddefaults_resources_requests_memory

openshift_builddefaults_resources_limits_cpu

openshift_builddefaults_resources_limits_memory

Example 31.1. Example Build Defaults Configuration with Ansible

These options configure the BuildDefaults admission controller which injects
configuration into Builds. Proxy related values will default to the global proxy
config values. You only need to set these if they differ from the global proxy settings.
openshift_builddefaults_http_proxy=http://USER:PASSWORD@HOST:PORT
openshift_builddefaults_https_proxy=https://USER:PASSWORD@HOST:PORT
openshift_builddefaults_no_proxy=mycorp.com
openshift_builddefaults_git_http_proxy=http://USER:PASSWORD@HOST:PORT
openshift_builddefaults_git_https_proxy=https://USER:PASSWORD@HOST:PORT
openshift_builddefaults_git_no_proxy=mycorp.com
openshift_builddefaults_image_labels=[{'name':'imagelabelname1','value':'imagelabelvalue1'}]

CHAPTER 31. CONFIGURING GLOBAL BUILD DEFAULTS AND OVERRIDES

611

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#manage-pods-limit-run-once-duration
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-install-configuring-global-proxy

openshift_builddefaults_nodeselectors={'nodelabel1':'nodelabelvalue1'}
openshift_builddefaults_annotations={'annotationkey1':'annotationvalue1'}
openshift_builddefaults_resources_requests_cpu=100m
openshift_builddefaults_resources_requests_memory=256Mi
openshift_builddefaults_resources_limits_cpu=1000m
openshift_builddefaults_resources_limits_memory=512Mi

Or you may optionally define your own build defaults configuration serialized as json
#openshift_builddefaults_json='{"BuildDefaults":{"configuration":{"apiVersion":"v1","env":
[{"name":"HTTP_PROXY","value":"http://proxy.example.com.redhat.com:3128"},
{"name":"NO_PROXY","value":"ose3-
master.example.com"}],"gitHTTPProxy":"http://proxy.example.com:3128","gitNoProxy":"ose3-
master.example.com","kind":"BuildDefaultsConfig"}}}'

31.2.2. Manually Setting Global Build Defaults

To configure the BuildDefaults plug-in:

1. Add a configuration for it in the /etc/origin/master/master-config.yaml file on the master
nodes:

admissionConfig:
 pluginConfig:
 BuildDefaults:
 configuration:
 apiVersion: v1
 kind: BuildDefaultsConfig
 gitHTTPProxy: http://my.proxy:8080 1
 gitHTTPSProxy: https://my.proxy:8443 2
 gitNoProxy: somedomain.com, otherdomain.com 3
 env:
 - name: HTTP_PROXY 4
 value: http://my.proxy:8080
 - name: HTTPS_PROXY 5
 value: https://my.proxy:8443
 - name: BUILD_LOGLEVEL 6
 value: 4
 - name: CUSTOM_VAR 7
 value: custom_value
 imageLabels:
 - name: url 8
 value: https://containers.example.org
 - name: vendor
 value: ExampleCorp Ltd.
 nodeSelector: 9
 key1: value1
 key2: value2
 annotations: 10
 key1: value1
 key2: value2
 resources: 11
 requests:
 cpu: "100m"

OpenShift Container Platform 3.11 Configuring Clusters

612

1

2

3

4

5

6

7

8

9

10

11

Sets the HTTP proxy to use when cloning source code from a Git repository.

Sets the HTTPS proxy to use when cloning source code from a Git repository.

Sets the list of domains for which proxying should not be performed.

Default environment variable that sets the HTTP proxy to use during the build. This can be
used for downloading dependencies during the assemble and build phases.

Default environment variable that sets the HTTPS proxy to use during the build. This can
be used for downloading dependencies during the assemble and build phases.

Default environment variable that sets the build log level during the build.

Additional default environment variable that will be added to every build.

Labels to be applied to every image built. Users can override these in their BuildConfig.

Build pods will only run on nodes with the key1=value2 and key2=value2 labels. Users can
define a different set of nodeSelectors for their builds in which case these values will be
ignored.

Build pods will have these annotations added to them.

Sets the default resources to the build pod if the BuildConfig does not have related
resource defined.

2. Restart the master services for the changes to take effect:

master-restart api
master-restart controllers

31.3. SETTING GLOBAL BUILD OVERRIDES

You can set global build overrides two ways:

using Ansible

manually by modifying the master-config.yaml file

31.3.1. Configuring Global Build Overrides with Ansible

During cluster installations, the BuildOverrides plug-in can be configured using the following
parameters, which are configurable in the inventory file:

openshift_buildoverrides_force_pull

openshift_buildoverrides_image_labels

openshift_buildoverrides_nodeselectors

 memory: "256Mi"
 limits:
 cpu: "100m"
 memory: "256Mi"

CHAPTER 31. CONFIGURING GLOBAL BUILD DEFAULTS AND OVERRIDES

613

openshift_buildoverrides_annotations

openshift_buildoverrides_tolerations

Example 31.2. Example Build Overrides Configuration with Ansible

These options configure the BuildOverrides admission controller which injects
configuration into Builds.
openshift_buildoverrides_force_pull=true
openshift_buildoverrides_image_labels=[{'name':'imagelabelname1','value':'imagelabelvalue1'}]
openshift_buildoverrides_nodeselectors={'nodelabel1':'nodelabelvalue1'}
openshift_buildoverrides_annotations={'annotationkey1':'annotationvalue1'}
openshift_buildoverrides_tolerations=
[{'key':'mykey1','value':'myvalue1','effect':'NoSchedule','operator':'Equal'}]

Or you may optionally define your own build overrides configuration serialized as json
#openshift_buildoverrides_json='{"BuildOverrides":{"configuration":
{"apiVersion":"v1","kind":"BuildOverridesConfig","forcePull":"true","tolerations":
[{'key':'mykey1','value':'myvalue1','effect':'NoSchedule','operator':'Equal'}]}}}'

NOTE

You must use a BuildOverrides node selector in order to override tolerations using the
BuildOverrides plug-in.

31.3.2. Manually Setting Global Build Overrides

To configure the BuildOverrides plug-in:

1. Add a configuration for it in the /etc/origin/master/master-config.yaml file on masters:

admissionConfig:
 pluginConfig:
 BuildOverrides:
 configuration:
 apiVersion: v1
 kind: BuildOverridesConfig
 forcePull: true 1
 imageLabels:
 - name: distribution-scope 2
 value: private
 nodeSelector: 3
 key1: value1
 key2: value2
 annotations: 4
 key1: value1
 key2: value2
 tolerations: 5
 - key: mykey1
 value: myvalue1
 effect: NoSchedule
 operator: Equal
 - key: mykey2

OpenShift Container Platform 3.11 Configuring Clusters

614

1

2

3

4

5

Force all builds to pull their builder image and any source images before starting the build.

Additional labels to be applied to every image built. Labels defined here take precedence
over labels defined in BuildConfig.

Build pods will only run on nodes with the key1=value2 and key2=value2 labels. Users can
define additional key/value labels to further constrain the set of nodes a build runs on, but
the node must have at least these labels.

Build pods will have these annotations added to them.

Build pods will have any existing tolerations overridden by those listed here.

NOTE

You must use a BuildOverrides node selector in order to override tolerations
using the BuildOverrides plug-in.

2. Restart the master services for the changes to take effect:

master-restart api
master-restart controllers

 value: myvalue2
 effect: NoExecute
 operator: Equal

CHAPTER 31. CONFIGURING GLOBAL BUILD DEFAULTS AND OVERRIDES

615

1

2

3

4

5

CHAPTER 32. CONFIGURING PIPELINE EXECUTION

32.1. OVERVIEW

The first time a user creates a build configuration using the Pipeline build strategy, OpenShift Container
Platform looks for a template named jenkins-ephemeral in the openshift namespace and instantiates
it within the user’s project. The jenkins-ephemeral template that ships with OpenShift Container
Platform creates, upon instantiation:

a deployment configuration for Jenkins using the official OpenShift Container Platform Jenkins
image

a service and route for accessing the Jenkins deployment

a new Jenkins service account

rolebindings to grant the service account edit access to the project

Cluster administrators can control what is created by either modifying the content of the built-in
template, or by editing the cluster configuration to direct the cluster to a different template location.

To modify the content of the default template:

$ oc edit template jenkins-ephemeral -n openshift

To use a different template, such as the jenkins-persistent template which uses persistent storage for
Jenkins, add the following to your master configuration file:

Defaults to true if unspecified. If false, then no template will be instantiated.

Namespace containing the template to be instantiated.

Name of the template to be instantiated.

Name of the service to be created by the template upon instantiation.

Optional values to pass to the template during instantiation.

When a Pipeline build configuration is created, OpenShift Container Platform looks for a Service
matching serviceName. This means serviceName must be chosen such that it is unique in the project.
If no Service is found, OpenShift Container Platform instantiates the jenkinsPipelineConfig template.
If this is not desirable (if you would like to use a Jenkins server external to OpenShift Container Platform,
for example), there are a few things you can do, depending on who you are.

If you are a cluster administrator, simply set autoProvisionEnabled to false. This will disable

jenkinsPipelineConfig:
 autoProvisionEnabled: true 1
 templateNamespace: openshift 2
 templateName: jenkins-persistent 3
 serviceName: jenkins-persistent-svc 4
 parameters: 5
 key1: value1
 key2: value2

OpenShift Container Platform 3.11 Configuring Clusters

616

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#pipeline-build

If you are a cluster administrator, simply set autoProvisionEnabled to false. This will disable
autoprovisioning across the cluster.

If you are an unpriviledged user, a Service must be created for OpenShift Container Platform to
use. The service name must match the cluster configuration value of serviceName in the
jenkinsPipelineConfig. The default value is jenkins. If you are disabling autoprovisioning
because you are running a Jenkins server outside your project, it is recommended that you point
this new service to your existing Jenkins server. See: Integrating External Services

The latter option could also be used to disable autoprovisioning in select projects only.

32.2. OPENSHIFT JENKINS CLIENT PLUGIN

The OpenShift Jenkins Client Plugin is a Jenkins plugin which aims to provide a readable, concise,
comprehensive, and fluent Jenkins Pipeline syntax for rich interactions with an OpenShift API Server.
The plugin leverages the OpenShift command line tool (oc) which must be available on the nodes
executing the script.

For more information about installing and configuring the plugin, use the links provided below that
reference the official documentation.

Installing

Configuring an OpenShift Cluster

Setting up Credentials

Setting up Jenkins Nodes

NOTE

Are you a developer looking for information about using this plugin? If so, see OpenShift
Pipeline Overview.

32.3. OPENSHIFT JENKINS SYNC PLUGIN

This Jenkins plugin keeps OpenShift BuildConfig and Build objects in sync with Jenkins Jobs and Builds.

The OpenShift jenkins Sync Plugin provides the following:

Dynamic job/run creation in Jenkins.

Dynamic creation of slave pod templates from ImageStreams, ImageStreamTags, or
ConfigMaps.

Injecting of environment variables.

Pipeline visualization in the OpenShift web console.

Integration with the Jenkins git plugin, which passes commit information from OpenShift builds
to the Jenkins git plugin.

For more information about this plugin, see:

OpenShift Jenkins Sync Plug-in

CHAPTER 32. CONFIGURING PIPELINE EXECUTION

617

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-integrating-external-services
https://github.com/openshift/jenkins-client-plugin/blob/master/README.md#installing
https://github.com/openshift/jenkins-client-plugin/blob/master/README.md#configuring-an-openshift-cluster
https://github.com/openshift/jenkins-client-plugin/blob/master/README.md#setting-up-credentials
https://github.com/openshift/jenkins-client-plugin/blob/master/README.md#setting-up-jenkins-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#pipeline-overview
https://github.com/openshift/jenkins-sync-plugin/blob/master/README.md

OpenShift Container Platform Sync Plug-in

OpenShift Container Platform 3.11 Configuring Clusters

618

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#sync-plug-in

CHAPTER 33. CONFIGURING ROUTE TIMEOUTS
After installing OpenShift Container Platform and deploying a router, you can configure the default
timeouts for an existing route when you have services in need of a low timeout, as required for Service
Level Availability (SLA) purposes, or a high timeout, for cases with a slow back end.

Using the oc annotate command, add the timeout to the route:

oc annotate route <route_name> \
 --overwrite haproxy.router.openshift.io/timeout=<timeout><time_unit>

For example, to set a route named myroute to a timeout of two seconds:

oc annotate route myroute --overwrite haproxy.router.openshift.io/timeout=2s

Supported time units are microseconds (us), milliseconds (ms), seconds (s), minutes (m), hours (h), or
days (d).

CHAPTER 33. CONFIGURING ROUTE TIMEOUTS

619

CHAPTER 34. CONFIGURING NATIVE CONTAINER ROUTING

34.1. NETWORK OVERVIEW

The following describes a general network setup:

11.11.0.0/16 is the container network.

The 11.11.x.0/24 subnet is reserved for each node and assigned to the Docker Linux bridge.

Each node has a route to the router for reaching anything in the 11.11.0.0/16 range, except the
local subnet.

The router has routes for each node, so it can be directed to the right node.

Existing nodes do not need any changes when new nodes are added, unless the network
topology is modified.

IP forwarding is enabled on each node.

The following diagram shows the container networking setup described in this topic. It uses one Linux
node with two network interface cards serving as a router, two switches, and three nodes connected to
these switches.

34.2. CONFIGURE NATIVE CONTAINER ROUTING

You can set up container networking using existing switches and routers, and the kernel networking
stack in Linux.

As a network administrator, you must modify, or create a script to modify, the router or routers when new
nodes are added to the cluster.

You can adapt this process to use with any type of router.

OpenShift Container Platform 3.11 Configuring Clusters

620

34.3. SETTING UP A NODE FOR CONTAINER NETWORKING

1. Assign an unused 11.11.x.0/24 subnet IP address to the Linux bridge on the node:

brctl addbr lbr0
ip addr add 11.11.1.1/24 dev lbr0
ip link set dev lbr0 up

2. Modify the Docker startup script to use the new bridge. By default, the startup script is the
/etc/sysconfig/docker file:

docker -d -b lbr0 --other-options

3. Add a route to the router for the 11.11.0.0/16 network:

ip route add 11.11.0.0/16 via 192.168.2.2 dev p3p1

4. Enable IP forwarding on the node:

sysctl -w net.ipv4.ip_forward=1

34.4. SETTING UP A ROUTER FOR CONTAINER NETWORKING

The following procedure assumes a Linux box with multiple NICs is used as a router. Modify the steps as
required to use the syntax for a particular router:

1. Enable IP forwarding on the router:

sysctl -w net.ipv4.ip_forward=1

2. Add a route for each node added to the cluster:

ip route add <node_subnet> via <node_ip_address> dev <interface through which node is
L2 accessible>
ip route add 11.11.1.0/24 via 192.168.2.1 dev p3p1
ip route add 11.11.2.0/24 via 192.168.3.3 dev p3p2
ip route add 11.11.3.0/24 via 192.168.3.4 dev p3p2

CHAPTER 34. CONFIGURING NATIVE CONTAINER ROUTING

621

CHAPTER 35. ROUTING FROM EDGE LOAD BALANCERS

35.1. OVERVIEW

Pods inside of an OpenShift Container Platform cluster are only reachable via their IP addresses on the
cluster network. An edge load balancer can be used to accept traffic from outside networks and proxy
the traffic to pods inside the OpenShift Container Platform cluster. In cases where the load balancer is
not part of the cluster network, routing becomes a hurdle as the internal cluster network is not
accessible to the edge load balancer.

To solve this problem where the OpenShift Container Platform cluster is using OpenShift Container
Platform SDN as the cluster networking solution, there are two ways to achieve network access to the
pods.

35.2. INCLUDING THE LOAD BALANCER IN THE SDN

If possible, run an OpenShift Container Platform node instance on the load balancer itself that uses
OpenShift SDN as the networking plug-in. This way, the edge machine gets its own Open vSwitch
bridge that the SDN automatically configures to provide access to the pods and nodes that reside in
the cluster. The routing table is dynamically configured by the SDN as pods are created and deleted,
and thus the routing software is able to reach the pods.

Mark the load balancer machine as an unschedulable node so that no pods end up on the load balancer
itself:

$ oc adm manage-node <load_balancer_hostname> --schedulable=false

If the load balancer comes packaged as a container, then it is even easier to integrate with OpenShift
Container Platform: Simply run the load balancer as a pod with the host port exposed. The pre-
packaged HAProxy router in OpenShift Container Platform runs in precisely this fashion.

35.3. ESTABLISHING A TUNNEL USING A RAMP NODE

In some cases, the previous solution is not possible. For example, an F5 BIG-IP® host cannot run an
OpenShift Container Platform node instance or the OpenShift Container Platform SDN because F5®
uses a custom, incompatible Linux kernel and distribution.

Instead, to enable F5 BIG-IP® to reach pods, you can choose an existing node within the cluster network
as a ramp node and establish a tunnel between the F5 BIG-IP® host and the designated ramp node.
Because it is otherwise an ordinary OpenShift Container Platform node, the ramp node has the
necessary configuration to route traffic to any pod on any node in the cluster network. The ramp node
thus assumes the role of a gateway through which the F5 BIG-IP® host has access to the entire cluster
network.

Following is an example of establishing an ipip tunnel between an F5 BIG-IP® host and a designated
ramp node.

On the F5 BIG-IP® host:

1. Set the following variables:

F5_IP=10.3.89.66 1
RAMP_IP=10.3.89.89 2

OpenShift Container Platform 3.11 Configuring Clusters

622

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#pods
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#openshift-sdn
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#marking-nodes-as-unschedulable-or-schedulable
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#routers

1 2

3

4

1

2

TUNNEL_IP1=10.3.91.216 3
CLUSTER_NETWORK=10.128.0.0/14 4

The F5_IP and RAMP_IP variables refer to the F5 BIG-IP® host’s and the ramp node’s IP
addresses, respectively, on a shared, internal network.

An arbitrary, non-conflicting IP address for the F5® host’s end of the ipip tunnel.

The overlay network CIDR range that the OpenShift SDN uses to assign addresses to
pods.

2. Delete any old route, self, tunnel and SNAT pool:

tmsh delete net route $CLUSTER_NETWORK || true
tmsh delete net self SDN || true
tmsh delete net tunnels tunnel SDN || true
tmsh delete ltm snatpool SDN_snatpool || true

3. Create the new tunnel, self, route and SNAT pool and use the SNAT pool in the virtual servers:

tmsh create net tunnels tunnel SDN \
 \{ description "OpenShift SDN" local-address \
 $F5_IP profile ipip remote-address $RAMP_IP \}
tmsh create net self SDN \{ address \
 ${TUNNEL_IP1}/24 allow-service all vlan SDN \}
tmsh create net route $CLUSTER_NETWORK interface SDN
tmsh create ltm snatpool SDN_snatpool members add { $TUNNEL_IP1 }
tmsh modify ltm virtual ose-vserver source-address-translation { type snat pool
SDN_snatpool }
tmsh modify ltm virtual https-ose-vserver source-address-translation { type snat pool
SDN_snatpool }

On the ramp node:

NOTE

The following creates a configuration that is not persistent, meaning that when the ramp
node or the openvswitch service is restarted, the settings disappear.

1. Set the following variables:

F5_IP=10.3.89.66
TUNNEL_IP1=10.3.91.216
TUNNEL_IP2=10.3.91.217 1
CLUSTER_NETWORK=10.128.0.0/14 2

A second, arbitrary IP address for the ramp node’s end of the ipip tunnel.

The overlay network CIDR range that the OpenShift SDN uses to assign addresses to
pods.

2. Delete any old tunnel:

CHAPTER 35. ROUTING FROM EDGE LOAD BALANCERS

623

ip tunnel del tun1 || true

3. Create the ipip tunnel on the ramp node, using a suitable L2-connected interface (e.g., eth0):

ip tunnel add tun1 mode ipip \
 remote $F5_IP dev eth0
ip addr add $TUNNEL_IP2 dev tun1
ip link set tun1 up
ip route add $TUNNEL_IP1 dev tun1
ping -c 5 $TUNNEL_IP1

4. SNAT the tunnel IP with an unused IP from the SDN subnet:

source /run/openshift-sdn/config.env
tap1=$(ip -o -4 addr list tun0 | awk '{print $4}' | cut -d/ -f1 | head -n 1)
subaddr=$(echo ${OPENSHIFT_SDN_TAP1_ADDR:-"$tap1"} | cut -d "." -f 1,2,3)
export RAMP_SDN_IP=${subaddr}.254

5. Assign this RAMP_SDN_IP as an additional address to tun0 (the local SDN’s gateway):

ip addr add ${RAMP_SDN_IP} dev tun0

6. Modify the OVS rules for SNAT:

ipflowopts="cookie=0x999,ip"
arpflowopts="cookie=0x999, table=0, arp"
#
ovs-ofctl -O OpenFlow13 add-flow br0 \

"${ipflowopts},nw_src=${TUNNEL_IP1},actions=mod_nw_src:${RAMP_SDN_IP},resubmit(,0)"

ovs-ofctl -O OpenFlow13 add-flow br0 \

"${ipflowopts},nw_dst=${RAMP_SDN_IP},actions=mod_nw_dst:${TUNNEL_IP1},resubmit(,0)"

ovs-ofctl -O OpenFlow13 add-flow br0 \
 "${arpflowopts}, arp_tpa=${RAMP_SDN_IP}, actions=output:2"
ovs-ofctl -O OpenFlow13 add-flow br0 \
 "${arpflowopts}, priority=200, in_port=2, arp_spa=${RAMP_SDN_IP},
arp_tpa=${CLUSTER_NETWORK}, actions=goto_table:30"
ovs-ofctl -O OpenFlow13 add-flow br0 \
 "arp, table=5, priority=300, arp_tpa=${RAMP_SDN_IP}, actions=output:2"
ovs-ofctl -O OpenFlow13 add-flow br0 \
 "ip,table=5,priority=300,nw_dst=${RAMP_SDN_IP},actions=output:2"
ovs-ofctl -O OpenFlow13 add-flow br0
"${ipflowopts},nw_dst=${TUNNEL_IP1},actions=output:2"

7. Optionally, if you do not plan on configuring the ramp node to be highly available, mark the ramp
node as unschedulable. Skip this step if you do plan to follow the next section and plan on
creating a highly available ramp node.

$ oc adm manage-node <ramp_node_hostname> --schedulable=false

OpenShift Container Platform 3.11 Configuring Clusters

624

1

35.3.1. Configuring a Highly Available Ramp Node

You can use OpenShift Container Platform’s ipfailover feature, which uses keepalived internally, to
make the ramp node highly available from F5 BIG-IP®'s point of view. To do so, first bring up two nodes,
for example called ramp-node-1 and ramp-node-2, on the same L2 subnet.

Then, choose some unassigned IP address from within the same subnet to use for your virtual IP, or VIP.
This will be set as the RAMP_IP variable with which you will configure your tunnel on F5 BIG-IP®.

For example, suppose you are using the 10.20.30.0/24 subnet for your ramp nodes, and you have
assigned 10.20.30.2 to ramp-node-1 and 10.20.30.3 to ramp-node-2. For your VIP, choose some
unassigned address from the same 10.20.30.0/24 subnet, for example 10.20.30.4. Then, to configure
ipfailover, mark both nodes with a label, such as f5rampnode:

$ oc label node ramp-node-1 f5rampnode=true
$ oc label node ramp-node-2 f5rampnode=true

Similar to instructions from the ipfailover documentation, you must now create a service account and
add it to the privileged SCC. First, create the f5ipfailover service account:

$ oc create serviceaccount f5ipfailover -n default

Next, you can add the f5ipfailover service to the privileged SCC. To add the f5ipfailover in the default
namespace to the privileged SCC, run:

$ oc adm policy add-scc-to-user privileged system:serviceaccount:default:f5ipfailover

Finally, configure ipfailover using your chosen VIP (the RAMP_IP variable) and the f5ipfailover service
account, assigning the VIP to your two nodes using the f5rampnode label you set earlier:

RAMP_IP=10.20.30.4
IFNAME=eth0 1
oc adm ipfailover <name-tag> \
 --virtual-ips=$RAMP_IP \
 --interface=$IFNAME \
 --watch-port=0 \
 --replicas=2 \
 --service-account=f5ipfailover \
 --selector='f5rampnode=true'

The interface where RAMP_IP should be configured.

With the above setup, the VIP (the RAMP_IP variable) is automatically re-assigned when the ramp node
host that currently has it assigned fails.

CHAPTER 35. ROUTING FROM EDGE LOAD BALANCERS

625

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-high-availability

CHAPTER 36. AGGREGATING CONTAINER LOGS

36.1. OVERVIEW

As an OpenShift Container Platform cluster administrator, you can deploy the EFK stack to aggregate
logs for a range of OpenShift Container Platform services. Application developers can view the logs of
the projects for which they have view access. The EFK stack aggregates logs from hosts and
applications, whether coming from multiple containers or even deleted pods.

The EFK stack is a modified version of the ELK stack and is comprised of:

Elasticsearch (ES): An object store where all logs are stored.

Fluentd: Gathers logs from nodes and feeds them to Elasticsearch.

Kibana: A web UI for Elasticsearch.

After deployment in a cluster, the stack aggregates logs from all nodes and projects into Elasticsearch,
and provides a Kibana UI to view any logs. Cluster administrators can view all logs, but application
developers can only view logs for projects they have permission to view. The stack components
communicate securely.

NOTE

Managing Docker Container Logs discusses the use of json-file logging driver options to
manage container logs and prevent filling node disks.

36.2. PRE-DEPLOYMENT CONFIGURATION

1. An Ansible playbook is available to deploy and upgrade aggregated logging. You should
familiarize yourself with the Installing Clusters guide. This provides information for preparing to
use Ansible and includes information about configuration. Parameters are added to the Ansible
inventory file to configure various areas of the EFK stack.

2. Review the sizing guidelines to determine how best to configure your deployment.

3. Ensure that you have deployed a router for the cluster.

4. Ensure that you have the necessary storage for Elasticsearch. Note that each Elasticsearch
node requires its own storage volume. See Elasticsearch for more information.

5. Determine if you need highly-available Elasticsearch . A highly-available environment requires at
least three Elasticsearch nodes, each on a different host. By default, OpenShift Container
Platform creates one shard for each index and zero replicas of those shards. High availability
also requires multiple replicas of each shard. To create high availability, set the
openshift_logging_es_number_of_replicas Ansible variable to a value higher than 1. See
Elasticsearch for more information.

36.3. SPECIFYING LOGGING ANSIBLE VARIABLES

You can override the default parameter values by specifying parameters for the EFK deployment in the
inventory host file .

Read the Elasticsearch and the Fluentd sections before choosing parameters:

OpenShift Container Platform 3.11 Configuring Clusters

626

https://www.elastic.co/videos/introduction-to-the-elk-stack
https://www.elastic.co/products/elasticsearch
http://www.fluentd.org/architecture
https://www.elastic.co/guide/en/kibana/current/introduction.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#managing-docker-container-logs
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-planning
https://github.com/openshift/openshift-ansible/blob/release-3.11/roles/openshift_logging/defaults/main.yml
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible

NOTE

By default, the Elasticsearch service uses port 9300 for TCP communication between
nodes in a cluster.

Parameter Description

openshift_logging_install
_logging

Set to true to install logging. Set to false to uninstall logging. When set to
true, you must specify a node selector using
openshift_logging_es_nodeselector.

openshift_logging_use_o
ps

If set to true, configures a second Elasticsearch cluster and Kibana for
operations logs. Fluentd splits logs between the main cluster and a cluster
reserved for operations logs, which consists of the logs from the projects
default, openshift, and openshift-infra, as well as Docker, OpenShift, and
system logs from the journal. This means a second Elasticsearch cluster and
Kibana are deployed. The deployments are distinguishable by the -ops
suffix included in their names and have parallel deployment options listed
below and described in Creating the Curator Configuration. If set to true,
openshift_logging_es_ops_nodeselector is mandatory.

openshift_logging_maste
r_url

The URL for the Kubernetes master, this does not need to be public facing
but should be accessible from within the cluster. For example,
https://<PRIVATE-MASTER-URL>:8443.

openshift_logging_purge
_logging

The common uninstall keeps PVC to prevent unwanted data loss during
reinstalls. To ensure that the Ansible playbook completely and irreversibly
removes all logging persistent data including PVC, set
openshift_logging_install_logging to false to trigger uninstallation
and openshift_logging_purge_logging to true. The default is set to
false.

openshift_logging_install
_eventrouter

Coupled with openshift_logging_install_logging. When both are set to
true, eventrouter will be installed. When both are false, eventrouter will be
uninstalled.

openshift_logging_eventr
outer_image

The image version for Eventrouter. For example:
registry.redhat.io/openshift3/ose-logging-eventrouter:v3.11

openshift_logging_eventr
outer_image_version

The image version for the logging eventrouter.

openshift_logging_eventr
outer_sink

Select a sink for eventrouter, supported stdout and glog. The default is
set to stdout.

openshift_logging_eventr
outer_nodeselector

A map of labels, such as "node":"infra","region":"west", to select the
nodes where the pod will land.

openshift_logging_eventr
outer_replicas

The default is set to 1.

CHAPTER 36. AGGREGATING CONTAINER LOGS

627

https://:8443

openshift_logging_eventr
outer_cpu_limit

The minimum amount of CPU to allocate to eventrouter. The default is set
to 100m.

openshift_logging_eventr
outer_memory_limit

The memory limit for eventrouter pods. The default is set to 128Mi.

openshift_logging_eventr
outer_namespace

The project where eventrouter is deployed. The default is set to default.

IMPORTANT

Do not set the project to anything other than default or
openshift-*. If you specify a different project, event
information from the other project can leak into indices that
are not restricted to operations users. To use a non-default
project, create the project as usual using oc new-project.

openshift_logging_image
_pull_secret

Specify the name of an existing pull secret to be used for pulling
component images from an authenticated registry.

openshift_logging_curato
r_image

The image version for Curator. For example:
registry.redhat.io/openshift3/ose-logging-curator5:v3.11

openshift_logging_curato
r_default_days

The default minimum age (in days) Curator uses for deleting log records.

openshift_logging_curato
r_run_hour

The hour of the day Curator will run.

openshift_logging_curato
r_run_minute

The minute of the hour Curator will run.

openshift_logging_curato
r_run_timezone

The timezone Curator uses for figuring out its run time. Provide the
timezone as a string in the tzselect(8) or timedatectl(1) "Region/Locality"
format, for example America/New_York or UTC.

openshift_logging_curato
r_script_log_level

The script log level for Curator.

openshift_logging_curato
r_log_level

The log level for the Curator process.

openshift_logging_curato
r_cpu_limit

The amount of CPU to allocate to Curator.

openshift_logging_curato
r_memory_limit

The amount of memory to allocate to Curator.

Parameter Description

OpenShift Container Platform 3.11 Configuring Clusters

628

openshift_logging_curato
r_nodeselector

A node selector that specifies which nodes are eligible targets for deploying
Curator instances.

openshift_logging_curato
r_ops_cpu_limit

Equivalent to openshift_logging_curator_cpu_limit for Ops cluster
when openshift_logging_use_ops is set to true.

openshift_logging_curato
r_ops_memory_limit

Equivalent to openshift_logging_curator_memory_limit for Ops
cluster when openshift_logging_use_ops is set to true.

openshift_logging_curato
r_replace_configmap

Set to no to prevent the upgrade from replacing the logging-curator
ConfigMap. Set to yes to allow the ConfigMap to be overridden.

openshift_logging_kibana
_image

The image version for Kibana. For example:
registry.redhat.io/openshift3/ose-logging-kibana5:v3.11

openshift_logging_kibana
_hostname

The external host name for web clients to reach Kibana.

openshift_logging_kibana
_cpu_limit

The amount of CPU to allocate to Kibana.

openshift_logging_kibana
_memory_limit

The amount of memory to allocate to Kibana.

openshift_logging_kibana
_proxy_image

The image version for the Kibana proxy. For example:
registry.redhat.io/openshift3/oauth-proxy:v3.11

openshift_logging_kibana
_proxy_debug

When true, set the Kibana Proxy log level to DEBUG.

openshift_logging_kibana
_proxy_cpu_limit

The amount of CPU to allocate to Kibana proxy.

openshift_logging_kibana
_proxy_memory_limit

The amount of memory to allocate to Kibana proxy.

openshift_logging_kibana
_replica_count

The number of nodes to which Kibana should be scaled up.

openshift_logging_kibana
_nodeselector

A node selector that specifies which nodes are eligible targets for deploying
Kibana instances.

openshift_logging_kibana
_env_vars

A map of environment variables to add to the Kibana deployment
configuration. For example,
{"ELASTICSEARCH_REQUESTTIMEOUT":"30000"}.

Parameter Description

CHAPTER 36. AGGREGATING CONTAINER LOGS

629

openshift_logging_kibana
_key

The public facing key to use when creating the Kibana route.

openshift_logging_kibana
_cert

The cert that matches the key when creating the Kibana route.

openshift_logging_kibana
_ca

Optional. The CA to goes with the key and cert used when creating the
Kibana route.

openshift_logging_kibana
_ops_hostname

Equivalent to openshift_logging_kibana_hostname for Ops cluster
when openshift_logging_use_ops is set to true.

openshift_logging_kibana
_ops_cpu_limit

Equivalent to openshift_logging_kibana_cpu_limit for Ops cluster
when openshift_logging_use_ops is set to true.

openshift_logging_kibana
_ops_memory_limit

Equivalent to openshift_logging_kibana_memory_limit for Ops
cluster when openshift_logging_use_ops is set to true.

openshift_logging_kibana
_ops_proxy_debug

Equivalent to openshift_logging_kibana_proxy_debug for Ops
cluster when openshift_logging_use_ops is set to true.

openshift_logging_kibana
_ops_proxy_cpu_limit

Equivalent to openshift_logging_kibana_proxy_cpu_limit for Ops
cluster when openshift_logging_use_ops is set to true.

openshift_logging_kibana
_ops_proxy_memory_limi
t

Equivalent to openshift_logging_kibana_proxy_memory_limit for
Ops cluster when openshift_logging_use_ops is set to true.

openshift_logging_kibana
_ops_replica_count

Equivalent to openshift_logging_kibana_replica_count for Ops
cluster when openshift_logging_use_ops is set to true.

openshift_logging_es_all
ow_external

Set to true to expose Elasticsearch as a reencrypt route. Set to false by
default.

openshift_logging_es_ho
stname

The external-facing hostname to use for the route and the TLS server
certificate. The default is set to es.

For example, if openshift_master_default_subdomain is set to
=example.test, then the default value of
openshift_logging_es_hostname will be es.example.test.

openshift_logging_es_cer
t

The location of the certificate Elasticsearch uses for the external TLS server
cert. The default is a generated cert.

openshift_logging_es_ke
y

The location of the key Elasticsearch uses for the external TLS server cert.
The default is a generated key.

Parameter Description

OpenShift Container Platform 3.11 Configuring Clusters

630

openshift_logging_es_ca
_ext

The location of the CA cert Elasticsearch uses for the external TLS server
cert. The default is the internal CA.

openshift_logging_es_op
s_allow_external

Set to true to expose Elasticsearch as a reencrypt route. Set to false by
default.

openshift_logging_es_op
s_hostname

The external-facing hostname to use for the route and the TLS server
certificate. The default is set to es-ops.

For example, if openshift_master_default_subdomain is set to
=example.test, then the default value of
openshift_logging_es_ops_hostname will be es-ops.example.test.

openshift_logging_es_op
s_cert

The location of the certificate Elasticsearch uses for the external TLS server
cert. The default is a generated cert.

openshift_logging_es_op
s_key

The location of the key Elasticsearch uses for the external TLS server cert.
The default is a generated key.

openshift_logging_es_op
s_ca_ext

The location of the CA cert Elasticsearch uses for the external TLS server
cert. The default is the internal CA.

openshift_logging_fluent
d_image

The image version for Fluentd. For example:
registry.redhat.io/openshift3/ose-logging-fluentd:v3.11

openshift_logging_fluent
d_nodeselector

A node selector that specifies which nodes are eligible targets for deploying
Fluentd instances. Any node where Fluentd should run (typically, all) must
have this label before Fluentd is able to run and collect logs.

When scaling up the Aggregated Logging cluster after installation, the
openshift_logging role labels nodes provided by
openshift_logging_fluentd_hosts with this node selector.

As part of the installation, it is recommended that you add the Fluentd node
selector label to the list of persisted node labels.

openshift_logging_fluent
d_cpu_limit

The CPU limit for Fluentd pods.

openshift_logging_fluent
d_memory_limit

The memory limit for Fluentd pods.

openshift_logging_fluent
d_journal_read_from_hea
d

Set to true if Fluentd should read from the head of Journal when first
starting up, using this may cause a delay in Elasticsearch receiving current
log records.

Parameter Description

CHAPTER 36. AGGREGATING CONTAINER LOGS

631

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-node-host-labels

openshift_logging_fluent
d_hosts

List of nodes that should be labeled for Fluentd to be deployed. The
default is to label all nodes with ['--all']. The null value is
openshift_logging_fluentd_hosts={}. To spin up Fluentd pods update
the daemonset’s nodeSelector to a valid label. For example,
['host1.example.com', 'host2.example.com'].

openshift_logging_fluent
d_audit_container_engine

When openshift_logging_fluentd_audit_container_engine is set to
true, the audit log of the container engine is collected and stored in ES.
Enabling this variable allows the EFK to watch the specified audit log file or
the default /var/log/audit.log file, collects audit information for the
container engine for the platform, then puts it into Kibana.

openshift_logging_fluent
d_audit_file

Location of audit log file. The default is /var/log/audit/audit.log. Enabling
this variable allows the EFK to watch the specified audit log file or the
default /var/log/audit.log file, collects audit information for the container
engine for the platform, then puts it into Kibana.

openshift_logging_fluent
d_audit_pos_file

Location of the Fluentd in_tail position file for the audit log file. The default
is /var/log/audit/audit.log.pos. Enabling this variable allows the EFK to
watch the specified audit log file or the default /var/log/audit.log file,
collects audit information for the container engine for the platform, then
puts it into Kibana.

openshift_logging_fluent
d_merge_json_log

Set to true to enable processing of JSON logs embedded in the log or
MESSAGE field of the record. The default is true.

openshift_logging_fluent
d_extra_keep_fields

Specify a comma-separated list of fields that you do not want to be altered
when processing the extra fields generated when using
openshift_logging_fluentd_merge_json_log. Otherwise, Fluentd
processes the fields according to the other undefined field settings below.
The default is empty.

openshift_logging_fluent
d_keep_empty_fields

Specify a list of comma-delimited fields to keep as empty fields when using
openshift_logging_fluentd_merge_json_log. By default, Fluentd
removes fields with empty values from the record, except for the message
field.

openshift_logging_fluent
d_replace_configmap

Set to no to prevent the upgrade from replacing the logging-fluentd
ConfigMap. Set to yes to allow the ConfigMap to be overridden.

openshift_logging_fluent
d_use_undefined

Set to true to move fields generated by
openshift_logging_fluentd_merge_json_log into a sub-field named
by the openshift_logging_fluentd_undefined_name parameter. By
default, Fluentd keeps these at the top-level of the record, which can lead
to Elasticsearch conflicts and schema errors.

Parameter Description

OpenShift Container Platform 3.11 Configuring Clusters

632

openshift_logging_fluent
d_undefined_name

Specify the name of the field to move undefined fields into when using
openshift_logging_fluentd_use_undefined. The default is
undefined.

openshift_logging_fluent
d_undefined_to_string

Set to true to convert all undefined field values into their JSON string
representation when using
openshift_logging_fluentd_merge_json_log. The default is false.

openshift_logging_fluent
d_undefined_dot_replace
_char

Specify a character to replace any . characters in a field name, such as _
when using openshift_logging_fluentd_merge_json_log. Undefined
fields with a . character in the name causes problems with Elasticsearch. The
default is UNUSED which means . in the field name is preserved.

openshift_logging_fluent
d_undefined_max_num_fi
elds

Specify a limit to the number of undefined fields when using
openshift_logging_fluentd_merge_json_log. Logs can contain
hundreds of undefined fields, which causes problems with Elasticsearch. If
there are more than the specified number of fields, the fields will be
converted into a JSON hash string and stored in the
openshift_logging_fluentd_undefined_name field. The default value
is -1 which means an unlimited number of fields.

openshift_logging_fluent
d_use_multiline_json

Set to true to force Fluentd to reconstruct any split log lines into a single
line when using openshift_logging_fluentd_merge_json_log. With
the json-file driver, Docker splits log lines at a size of 16k bytes. The default
is false.

openshift_logging_fluent
d_use_multiline_journal

Set to true to force Fluentd to reconstruct the split lines into a single line
when using openshift_logging_fluentd_merge_json_log. With the
journald driver, Docker splits log lines at a size of 16k bytes. The default is
false.

openshift_logging_es_ho
st

The name of the Elasticsearch service where Fluentd should send logs.

openshift_logging_es_po
rt

The port for the Elasticsearch service where Fluentd should send logs.

openshift_logging_es_ca The location of the CA Fluentd uses to communicate with
openshift_logging_es_host.

openshift_logging_es_cli
ent_cert

The location of the client certificate Fluentd uses for
openshift_logging_es_host.

openshift_logging_es_cli
ent_key

The location of the client key Fluentd uses for
openshift_logging_es_host.

Parameter Description

CHAPTER 36. AGGREGATING CONTAINER LOGS

633

openshift_logging_es_clu
ster_size

Elasticsearch nodes to deploy. High availability requires three or more.

openshift_logging_es_cp
u_limit

The amount of CPU limit for the Elasticsearch cluster.

openshift_logging_es_me
mory_limit

Amount of RAM to reserve per Elasticsearch instance. It must be at least
512M. Possible suffixes are G,g,M,m.

openshift_logging_es_nu
mber_of_replicas

The number of replicas per primary shard for each new index. Defaults to '0'.
A minimum of 1 is advisable for production clusters. For a highly-available
environment, set this value to 1 or higher and have at least three
Elasticsearch nodes, each on a different host. If you change the number of
replicas, the new value applies to the new indices only. The new number
does not apply to existing indices. For information on how to change the
number of replicas for the existing indices, see Changing the Number of
Elasticsearch Replicas.

openshift_logging_es_nu
mber_of_shards

The number of primary shards for every new index created in ES. Defaults to
1.

openshift_logging_es_pv
_selector

A key/value map added to a PVC in order to select specific PVs.

openshift_logging_es_pv
c_dynamic

To dynamically provision the backing storage, set the parameter value to
true. When set to true, the storageClass spec is omitted from the PVC
definition. When set to false, you must specify a value for the
openshift_logging_es_pvc_size parameter.

If you set a value for the
openshift_logging_es_pvc_storage_class_name parameter, its
value overrides the value of the openshift_logging_es_pvc_dynamic
parameter.

openshift_logging_es_pv
c_storage_class_name

To use a non-default storage class, specify the storage class name, such as
glusterprovisioner or cephrbdprovisioner. After you specify the
storage class name, dynamic volume provisioning is active regardless of the
openshift_logging_es_pvc_dynamic value.

openshift_logging_es_pv
c_size

Size of the persistent volume claim to create per Elasticsearch instance. For
example, 100G. If omitted, no PVCs are created, and ephemeral volumes
are used instead. If you set this parameter, the logging installer sets
openshift_logging_elasticsearch_storage_type to pvc.

If the openshift_logging_es_pvc_dynamic parameter has been set to
false, you must set a value for this parameter. Read the description of
openshift_logging_es_pvc_prefix for more information.

Parameter Description

OpenShift Container Platform 3.11 Configuring Clusters

634

openshift_logging_elastic
search_image

The image version for Elasticsearch. For example:
registry.redhat.io/openshift3/ose-logging-elasticsearch5:v3.11

openshift_logging_elastic
search_storage_type

Sets the Elasticsearch storage type. If you are using Persistent
Elasticsearch Storage, the logging installer sets this to pvc.

openshift_logging_es_pv
c_prefix

Prefix for the names of persistent volume claims to be used as storage for
Elasticsearch nodes. A number is appended per node, such as logging-es-1.
If they do not already exist, they are created with size es-pvc-size.

When openshift_logging_es_pvc_prefix is set, and:

openshift_logging_es_pvc_dynamic=true, the value for
openshift_logging_es_pvc_size is optional.

openshift_logging_es_pvc_dynamic=false, the value for
openshift_logging_es_pvc_size must be set.

openshift_logging_es_rec
over_after_time

The amount of time Elasticsearch will wait before it tries to recover.
Supported time units are seconds (s) or minutes (m).

openshift_logging_es_sto
rage_group

Number of a supplemental group ID for access to Elasticsearch storage
volumes. Backing volumes should allow access by this group ID.

openshift_logging_es_no
deselector

A node selector specified as a map that determines which nodes are eligible
targets for deploying Elasticsearch nodes. Use this map to place these
instances on nodes that are reserved or optimized for running them. For
example, the selector could be {"node-
role.kubernetes.io/infra":"true"}. At least one active node must have
this label before Elasticsearch will deploy. This parameter is mandatory
when installing logging.

openshift_logging_es_op
s_host

Equivalent to openshift_logging_es_host for Ops cluster when
openshift_logging_use_ops is set to true.

openshift_logging_es_op
s_port

Equivalent to openshift_logging_es_port for Ops cluster when
openshift_logging_use_ops is set to true.

openshift_logging_es_op
s_ca

Equivalent to openshift_logging_es_ca for Ops cluster when
openshift_logging_use_ops is set to true.

openshift_logging_es_op
s_client_cert

Equivalent to openshift_logging_es_client_cert for Ops cluster when
openshift_logging_use_ops is set to true.

openshift_logging_es_op
s_client_key

Equivalent to openshift_logging_es_client_key for Ops cluster when
openshift_logging_use_ops is set to true.

Parameter Description

CHAPTER 36. AGGREGATING CONTAINER LOGS

635

openshift_logging_es_op
s_cluster_size

Equivalent to openshift_logging_es_cluster_size for Ops cluster
when openshift_logging_use_ops is set to true.

openshift_logging_es_op
s_cpu_limit

Equivalent to openshift_logging_es_cpu_limit for Ops cluster when
openshift_logging_use_ops is set to true.

openshift_logging_es_op
s_memory_limit

Equivalent to openshift_logging_es_memory_limit for Ops cluster
when openshift_logging_use_ops is set to true.

openshift_logging_es_op
s_pv_selector

Equivalent to openshift_logging_es_pv_selector for Ops cluster when
openshift_logging_use_ops is set to true.

openshift_logging_es_op
s_pvc_dynamic

Equivalent to openshift_logging_es_pvc_dynamic for Ops cluster
when openshift_logging_use_ops is set to true.

openshift_logging_es_op
s_pvc_size

Equivalent to openshift_logging_es_pvc_size for Ops cluster when
openshift_logging_use_ops is set to true.

openshift_logging_es_op
s_pvc_prefix

Equivalent to openshift_logging_es_pvc_prefix for Ops cluster when
openshift_logging_use_ops is set to true.

openshift_logging_es_op
s_storage_group

Equivalent to openshift_logging_es_storage_group for Ops cluster
when openshift_logging_use_ops is set to true.

openshift_logging_es_op
s_nodeselector

A node selector that specifies which nodes are eligible targets for deploying
Elasticsearch nodes. This can be used to place these instances on nodes
reserved or optimized for running them. For example, the selector could be
node-type=infrastructure. At least one active node must have this label
before Elasticsearch will deploy. This parameter is mandatory when
openshift_logging_use_ops is set to true.

openshift_logging_elastic
search_kibana_index_mo
de

The default value, unique, allows users to each have their own Kibana index.
In this mode, their saved queries, visualizations, and dashboards are not
shared.

You may also set the value shared_ops. In this mode, all operations users
share a Kibana index which allows each operations user to see the same
queries, visualizations, and dashboards. To determine if you are an
operations user:

#oc auth can-i view pod/logs -n default
yes

If you do not have appropriate access, contact your cluster administrator.

Parameter Description

OpenShift Container Platform 3.11 Configuring Clusters

636

openshift_logging_elastic
search_poll_timeout_min
utes

Adjusts the time that the Ansible playbook waits for the Elasticsearch
cluster to enter a green state after upgrading a given Elasticsearch node.
Large shards, 50 GB or more, can take more than 60 minutes to initialize,
causing the Ansible playbook to abort the upgrade procedure. The default is
60.

openshift_logging_kibana
_ops_nodeselector

A node selector that specifies which nodes are eligible targets for deploying
Kibana instances.

openshift_logging_curato
r_ops_nodeselector

A node selector that specifies which nodes are eligible targets for deploying
Curator instances.

openshift_logging_elastic
search_replace_configma
p

Set to true to replace your logging-elasticsearch ConfigMap with the
current default values. Your current ConfigMap is saved to logging-
elasticsearch.old, which you can use to copy customizations to the new
ConfigMap. In some cases, using an older ConfigMap can cause the upgrade
to fail. The default is set to false.

Parameter Description

Custom Certificates

You can specify custom certificates using the following inventory variables instead of relying on those
generated during the deployment process. These certificates are used to encrypt and secure
communication between a user’s browser and Kibana. The security-related files will be generated if they
are not supplied.

File Name Description

openshift_logging_kibana
_cert

A browser-facing certificate for the Kibana server.

openshift_logging_kibana
_key

A key to be used with the browser-facing Kibana certificate.

openshift_logging_kibana
_ca

The absolute path on the control node to the CA file to use for the browser
facing Kibana certs.

openshift_logging_kibana
_ops_cert

A browser-facing certificate for the Ops Kibana server.

openshift_logging_kibana
_ops_key

A key to be used with the browser-facing Ops Kibana certificate.

openshift_logging_kibana
_ops_ca

The absolute path on the control node to the CA file to use for the browser
facing ops Kibana certs.

If you need to redeploy these certificates, see Redeploy EFK Certificates.

CHAPTER 36. AGGREGATING CONTAINER LOGS

637

1

2

3

4

36.4. DEPLOYING THE EFK STACK

The EFK stack is deployed using an Ansible playbook to the EFK components. Run the playbook from the
default OpenShift Ansible location using the default inventory file.

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook [-i </path/to/inventory>] \
 playbooks/openshift-logging/config.yml

Running the playbook deploys all resources needed to support the stack; such as Secrets,
ServiceAccounts, and DeploymentConfigs, deployed to the project openshift-logging. The playbook
waits to deploy the component pods until the stack is running. If the wait steps fail, the deployment
could still be successful; it may be retrieving the component images from the registry which can take up
to a few minutes. You can watch the process with:

$ oc get pods -w

logging-curator-1541129400-l5h77 0/1 Running 0 11h 1
logging-es-data-master-ecu30lr4-1-deploy 0/1 Running 0 11h 2
logging-fluentd-2lgwn 1/1 Running 0 11h 3
logging-fluentd-lmvms 1/1 Running 0 11h
logging-fluentd-p9nd7 1/1 Running 0 11h
logging-kibana-1-zk94k 2/2 Running 0 11h 4

The Curator pod. Only one pod is needed for Curator.

The Elasticsearch pod on this host.

The Fliuentd pods. There is one pod for each node in the cluster.

The Kibana pods.

You can use the `oc get pods -o wide command to see the nodes where the Fluentd pod are deployed:

$ oc get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE
logging-es-data-master-5av030lk-1-2x494 2/2 Running 0 38m 154.128.0.80 ip-153-
12-8-6.wef.internal <none>
logging-fluentd-lqdxg 1/1 Running 0 2m 154.128.0.85 ip-153-12-8-
6.wef.internal <none>
logging-kibana-1-gj5kc 2/2 Running 0 39m 154.128.0.77 ip-153-12-8-
6.wef.internal <none>

They will eventually enter Running status. For additional details about the status of the pods during
deployment by retrieving associated events:

$ oc describe pods/<pod_name>

Check the logs if the pods do not run successfully:

$ oc logs -f <pod_name>

OpenShift Container Platform 3.11 Configuring Clusters

638

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible

36.5. UNDERSTANDING AND ADJUSTING THE DEPLOYMENT

This section describes adjustments that you can make to deployed components.

36.5.1. Ops Cluster

NOTE

The logs for the default, openshift, and openshift-infra projects are automatically
aggregated and grouped into the .operations item in the Kibana interface.

The project where you have deployed the EFK stack (logging, as documented here) is not
aggregated into .operations and is found under its ID.

If you set openshift_logging_use_ops to true in your inventory file, Fluentd is configured to split logs
between the main Elasticsearch cluster and another cluster reserved for operations logs, which are
defined as node system logs and the projects default, openshift, and openshift-infra. Therefore, a
separate Elasticsearch cluster, a separate Kibana, and a separate Curator are deployed to index, access,
and manage operations logs. These deployments are set apart with names that include -ops. Keep
these separate deployments in mind if you enable this option. Most of the following discussion also
applies to the operations cluster if present, just with the names changed to include -ops.

36.5.2. Elasticsearch

Elasticsearch (ES) is an object store where all logs are stored.

Elasticsearch organizes the log data into datastores, each called an index. Elasticsearch subdivides each
index into multiple pieces called shards, which it spreads across a set of Elasticsearch nodes in your
cluster. You can configure Elasticsearch to make copies of the shards, called replicas. Elasticsearch also
spreads replicas across the Elactisearch nodes. The combination of shards and replicas is intended to
provide redundancy and resilience to failure. For example, if you configure three shards for the index
with one replica, Elasticsearch generates a total of six shards for that index: three primary shards and
three replicas as a backup.

The OpenShift Container Platform logging installer ensures each Elasticsearch node is deployed using a
unique deployment configuration that includes its own storage volume. You can create an additional
deployment configuration for each Elasticsearch node you add to the logging system. During
installation, you can use the openshift_logging_es_cluster_size Ansible variable to specify the
number of Elasticsearch nodes.

Alternatively, you can scale up your existing cluster by modifying the
openshift_logging_es_cluster_size in the inventory file and re-running the logging playbook.
Additional clustering parameters can be modified and are described in Specifying Logging Ansible
Variables.

Refer to Elastic’s documentation for considerations involved in choosing storage and network location
as directed below.

NOTE

A highly-available Elasticsearch environment requires at least three Elasticsearch nodes,
each on a different host, and setting the openshift_logging_es_number_of_replicas
Ansible variable to a value of 1 or higher to create replicas.

CHAPTER 36. AGGREGATING CONTAINER LOGS

639

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html

Viewing all Elasticsearch Deployments

To view all current Elasticsearch deployments:

$ oc get dc --selector logging-infra=elasticsearch

Configuring Elasticsearch for High Availability

A highly-available Elasticsearch environment requires at least three Elasticsearch nodes, each on a
different host, and setting the openshift_logging_es_number_of_replicas Ansible variable to a value
of 1 or higher to create replicas.

Use the following scenarios as a guide for an OpenShift Container Platform cluster with three
Elasticsearch nodes:

With openshift_logging_es_number_of_replicas set to 1, two nodes have a copy of all of the
Elasticsearch data in the cluster. This ensures that if a node with Elasticsearch data goes down,
another node has a copy of all of the Elasticsearch data in the cluster.

With openshift_logging_es_number_of_replicas set to 3, four nodes have a copy of all of the
Elasticsearch data in the cluster. This ensures that if three nodes with Elasticsearch data go
down, one node has a copy of all of the Elasticsearch data in the cluster.
In this scenario, with multiple Elasticsearch nodes going down, Elasticsearch status would be
RED, and new Elasticsearch shards would not be allocated. However, because of the high
availability, you do not lose your Elasticsearch data.

Note that there is a trade-off between high availability and performance. For example, having
openshift_logging_es_number_of_replicas=2 and openshift_logging_es_number_of_shards=3
requires Elasticsearch to spend significant resources replicating the shard data among the nodes in the
cluster. Also, using a higher number of replicas requires doubling or tripling the data storage
requirements on each node, so you must take that into account when planning persistent storage for
Elasticsearch.

Considerations when Configuring the Number of Shards

For the openshift_logging_es_number_of_shards parameter, consider:

For higher performance, increase the number of shards. For example, in a three node cluster,
set openshift_logging_es_number_of_shards=3. This will cause each index to be split into
three parts (shards), and the load for processing the index will be spread out over all 3 nodes.

If you have a large number of projects, you might see performance degradation if you have more
than a few thousand shards in the cluster. Either reduce the number of shards or reduce the
curation time.

If you have a small number of very large indices, you might want to configure
openshift_logging_es_number_of_shards=3 or higher. Elasticsearch recommends using a
maximum shard size of less than 50 GB.

Node Selector

Because Elasticsearch can use a lot of resources, all members of a cluster should have low latency
network connections to each other and to any remote storage. Ensure this by directing the instances to
dedicated nodes, or a dedicated region within your cluster, using a node selector.

To configure a node selector, specify the openshift_logging_es_nodeselector configuration option in

OpenShift Container Platform 3.11 Configuring Clusters

640

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#using-node-selectors

the inventory file. This applies to all Elasticsearch deployments; if you need to individualize the node
selectors, you must manually edit each deployment configuration after deployment. The node selector
is specified as a python compatible dict. For example, {"node-type":"infra", "region":"east"}.

36.5.2.1. Persistent Elasticsearch Storage

By default, the openshift_logging Ansible role creates an ephemeral deployment in which all data in a
pod is lost upon pod restart.

For production environments, each Elasticsearch deployment configuration requires a persistent storage
volume. You can specify an existing persistent volume claim or allow OpenShift Container Platform to
create one.

Use existing PVCs. If you create your own PVCs for the deployment, OpenShift Container
Platform uses those PVCs.
Name the PVCs to match the openshift_logging_es_pvc_prefix setting, which defaults to
logging-es. Assign each PVC a name with a sequence number added to it: logging-es-0,
logging-es-1, logging-es-2, and so on.

Allow OpenShift Container Platform to create a PVC. If a PVC for Elsaticsearch does not
exist, OpenShift Container Platform creates the PVC based on parameters in the Ansible
inventory file.

Parameter Description

openshift_logging_es_
pvc_size

Specify the size of the PVC request.

openshift_logging_elas
ticsearch_storage_type

Specify the storage type as pvc.

NOTE

This is an optional parameter. If you set the
openshift_logging_es_pvc_size parameter to a
value greater than 0, the logging installer
automatically sets this parameter to pvc by default.

openshift_logging_es_
pvc_prefix

Optionally, specify a custom prefix for the PVC.

For example:

If using dynamically provisioned PVs, the OpenShift Container Platform logging installer creates PVCs
that use the default storage class or the PVC specified with the
openshift_logging_elasticsearch_pvc_storage_class_name parameter.

If using NFS storage, the OpenShift Container Platform installer creates the persistent volumes, based
on the openshift_logging_storage_* parameters and the OpenShift Container Platform logging
installer creates PVCs, using the openshift_logging_es_pvc_* parameters. Make sure you specify the

openshift_logging_elasticsearch_storage_type=pvc
openshift_logging_es_pvc_size=104802308Ki
openshift_logging_es_pvc_prefix=es-logging

CHAPTER 36. AGGREGATING CONTAINER LOGS

641

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#persistent-volume-claims
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible

correct parameters in order to use persistent volumes with EFK. Also set the
openshift_enable_unsupported_configurations=true parameter in the Ansible inventory file, as the
logging installer blocks the installation of NFS with core infrastructure by default.

WARNING

Using NFS storage as a volume or a persistent volume, or using NAS such as Gluster,
is not supported for Elasticsearch storage, as Lucene relies on file system behavior
that NFS does not supply. Data corruption and other problems can occur.

If your environment requires NFS storage, use one of the following methods:

NFS as a persistent volume

NFS storage as local storage

36.5.2.1.1. Using NFS as a persistent volume

You can deploy NFS as an automatically provisioned persistent volume or using a predefined NFS
volume.

For more information, see Sharing an NFS mount across two persistent volume claims to leverage
shared storage for use by two separate containers.

Using automatically provisioned NFS

To use NFS as a persistent volume where NFS is automatically provisioned:

1. Add the following lines to the Ansible inventory file to create an NFS auto-provisioned storage
class and dynamically provision the backing storage:

openshift_logging_es_pvc_storage_class_name=$nfsclass
openshift_logging_es_pvc_dynamic=true

2. Use the following command to deploy the NFS volume using the logging playbook:

ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/openshift-logging/config.yml

3. Use the following steps to create a PVC:

a. Edit the Ansible inventory file to set the PVC size:

openshift_logging_es_pvc_size=50Gi

NOTE

The logging playbook selects a volume based on size and might use an
unexpected volume if any other persistent volume has same size.



OpenShift Container Platform 3.11 Configuring Clusters

642

1 2

b. Use the following command to rerun the Ansible deploy_cluster.yml playbook:

ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/deploy_cluster.yml

The installer playbook creates the NFS volume based on the openshift_logging_storage
variables.

Using a predefined NFS volume

To deploy logging alongside the OpenShift Container Platform cluster using an existing NFS volume:

1. Edit the Ansible inventory file to configure the NFS volume and set the PVC size:

openshift_logging_storage_kind=nfs
openshift_logging_storage_access_modes=['ReadWriteOnce']
openshift_logging_storage_nfs_directory=/share 1
openshift_logging_storage_nfs_options='*(rw,root_squash)' 2
openshift_logging_storage_labels={'storage': 'logging'}
openshift_logging_elasticsearch_storage_type=pvc
openshift_logging_es_pvc_size=10Gi
openshift_logging_es_pvc_storage_class_name=''
openshift_logging_es_pvc_dynamic=true
openshift_logging_es_pvc_prefix=logging

These parameters work only with the /usr/share/ansible/openshift-
ansible/playbooks/deploy_cluster.yml installation playbook. The parameters will not
work with the /usr/share/ansible/openshift-ansible/playbooks/openshift-
logging/config.yml playbook.

2. Use the following command to redeploy the EFK stack:

ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/deploy_cluster.yml

36.5.2.1.2. Using NFS as local storage

You can allocate a large file on an NFS server and mount the file to the nodes. You can then use the file
as a host path device.

$ mount -F nfs nfserver:/nfs/storage/elasticsearch-1 /usr/local/es-storage
$ chown 1000:1000 /usr/local/es-storage

Then, use /usr/local/es-storage as a host-mount as described below. Use a different backing file as
storage for each Elasticsearch node.

This loopback must be maintained manually outside of OpenShift Container Platform, on the node. You
must not maintain it from inside a container.

It is possible to use a local disk volume (if available) on each node host as storage for an Elasticsearch
replica. Doing so requires some preparation as follows.

1. The relevant service account must be given the privilege to mount and edit a local volume:

 $ oc adm policy add-scc-to-user privileged \
 system:serviceaccount:openshift-logging:aggregated-logging-elasticsearch

CHAPTER 36. AGGREGATING CONTAINER LOGS

643

1

NOTE

If you upgraded from an earlier version of OpenShift Container Platform, cluster
logging might have been installed in the logging project. You should adjust the
service account accordingly.

2. Each Elasticsearch node definition must be patched to claim that privilege, for example:

$ for dc in $(oc get deploymentconfig --selector component=es -o name); do
 oc scale $dc --replicas=0
 oc patch $dc \
 -p '{"spec":{"template":{"spec":{"containers":[{"name":"elasticsearch","securityContext":
{"privileged": true}}]}}}}'
 done

3. The Elasticsearch replicas must be located on the correct nodes to use the local storage, and
must not move around, even if those nodes are taken down for a period of time. This requires
giving each Elasticsearch replica a node selector that is unique to a node where an administrator
has allocated storage for it. To configure a node selector, edit each Elasticsearch deployment
configuration, adding or editing the nodeSelector section to specify a unique label that you
have applied for each desired node:

apiVersion: v1
kind: DeploymentConfig
spec:
 template:
 spec:
 nodeSelector:
 logging-es-node: "1" 1

This label must uniquely identify a replica with a single node that bears that label, in this case
logging-es-node=1.

1. Create a node selector for each required node.

2. Use the oc label command to apply labels to as many nodes as needed.

For example, if your deployment has three infrastructure nodes, you could add labels for those nodes as
follows:

$ oc label node <nodename1> logging-es-node=0
$ oc label node <nodename2> logging-es-node=1
$ oc label node <nodename3> logging-es-node=2

For information about adding a label to a node, see Updating Labels on Nodes.

To automate applying the node selector, you can instead use the oc patch command:

$ oc patch dc/logging-es-<suffix> \
 -p '{"spec":{"template":{"spec":{"nodeSelector":{"logging-es-node":"0"}}}}}'

Once you have completed these steps, you can apply a local host mount to each replica. The following

OpenShift Container Platform 3.11 Configuring Clusters

644

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#updating-labels-on-nodes

Once you have completed these steps, you can apply a local host mount to each replica. The following
example assumes storage is mounted at the same path on each node.

$ for dc in $(oc get deploymentconfig --selector component=es -o name); do
 oc set volume $dc \
 --add --overwrite --name=elasticsearch-storage \
 --type=hostPath --path=/usr/local/es-storage
 oc rollout latest $dc
 oc scale $dc --replicas=1
 done

36.5.2.1.3. Configuring hostPath storage for Elasticsearch

You can provision OpenShift Container Platform clusters using hostPath storage for Elasticsearch.

To use a local disk volume on each node host as storage for an Elasticsearch replica:

1. Create a local mount point on each infrastructure node for the local Elasticsearch storage:

$ mkdir /usr/local/es-storage

2. Create a filesystem on the Elasticsearch volume:

$ mkfs.ext4 /dev/xxx

3. Mount the elasticsearch volume:

$ mount /dev/xxx /usr/local/es-storage

4. Add the following line to /etc/fstab:

$ /dev/xxx /usr/local/es-storage ext4

5. Change ownership for the mount point:

$ chown 1000:1000 /usr/local/es-storage

6. Give the privilege to mount and edit a local volume to the relevant service account:

 $ oc adm policy add-scc-to-user privileged \
 system:serviceaccount:openshift-logging:aggregated-logging-elasticsearch

NOTE

If you upgraded from an earlier version of OpenShift Container Platform, cluster
logging might have been installed in the logging project. You should adjust the
service account accordingly.

7. To claim that privilege, patch each Elasticsearch replica definition, as shown in the example,
which specifies --selector component=es-ops for an Ops cluster:

 $ for dc in $(oc get deploymentconfig --selector component=es -o name);

CHAPTER 36. AGGREGATING CONTAINER LOGS

645

do
 oc scale $dc --replicas=0
 oc patch $dc \
 -p '{"spec":{"template":{"spec":{"containers":[{"name":"elasticsearch","securityContext":
{"privileged":
true}}]}}}}'
done

8. Locate the Elasticsearch replicas on the correct nodes to use the local storage, and do not
move them around, even if those nodes are taken down for a period of time. To specify the
node location, give each Elasticsearch replica a node selector that is unique to a node where an
administrator has allocated storage for it.
To configure a node selector, edit each Elasticsearch deployment configuration, adding or
editing the nodeSelector section to specify a unique label that you have applied for each node
you desire:

apiVersion: v1
kind: DeploymentConfig
spec:
 template:
 spec:
 nodeSelector:
 logging-es-node: "1"

The label must uniquely identify a replica with a single node that bears that label, in this case
logging-es-node=1.

9. Create a node selector for each required node. Use the oc label command to apply labels to as
many nodes as needed.
For example, if your deployment has three infrastructure nodes, you could add labels for those
nodes as follows:

 $ oc label node <nodename1> logging-es-node=0
 $ oc label node <nodename2> logging-es-node=1
 $ oc label node <nodename3> logging-es-node=2

To automate application of the node selector, use the oc patch command instead of the oc
label command, as follows:

 $ oc patch dc/logging-es-<suffix> \
 -p '{"spec":{"template":{"spec":{"nodeSelector":{"logging-es-node":"1"}}}}}'

10. Once you have completed these steps, you can apply a local host mount to each replica. The
following example assumes storage is mounted at the same path on each node, and specifies --
selector component=es-ops for an Ops cluster.

$ for dc in $(oc get deploymentconfig --selector component=es -o name);
do
 oc set volume $dc \
 --add --overwrite --name=elasticsearch-storage \
 --type=hostPath --path=/usr/local/es-storage
 oc rollout latest $dc
 oc scale $dc --replicas=1
done

OpenShift Container Platform 3.11 Configuring Clusters

646

1

36.5.2.1.4. Changing the Scale of Elasticsearch

If you need to scale up the number of Elasticsearch nodes in your cluster, you can create a deployment
configuration for each Elasticsearch node you want to add.

Due to the nature of persistent volumes and how Elasticsearch is configured to store its data and
recover the cluster, you cannot simply increase the nodes in an Elasticsearch deployment configuration.

The simplest way to change the scale of Elasticsearch is to modify the inventory host file and re-run the
logging playbook as described previously. If you have supplied persistent storage for the deployment,
this should not be disruptive.

NOTE

Resizing an Elasticsearch cluster using the logging playbook is only possible when the new
openshift_logging_es_cluster_size value is higher than the current number of
Elasticsearch nodes (scaled up) in the cluster.

36.5.2.1.5. Changing the Number of Elasticsearch Replicas

You can change the number of Elasticsearch replicas by editing the
openshift_logging_es_number_of_replicas value in the inventory host file and re-running the logging
playbook as described previously.

The changes apply only to the new indices. Existing indices continue to use the previous number of
replicas. For example, if you change the number of indices from 3 to 2, your cluster will use 2 replicas for
new indices and 3 replicas for existing indices.

You can modify the replica count for the existing indices by running the following command:

$ oc exec -c elasticsearch $pod -- es_util --query=project.* -d '{"index":{"number_of_replicas":"2"}}'
1

Specify the number of replicas you want for existing indices.

36.5.2.1.6. Expose Elasticsearch as a Route

By default, Elasticsearch deployed with OpenShift aggregated logging is not accessible from outside
the logging cluster. You can enable a route for external access to Elasticsearch for those tools that want
to access its data.

You have access to Elasticsearch using your OpenShift token, and you can provide the external
Elasticsearch and Elasticsearch Ops hostnames when creating the server certificate (similar to Kibana).

1. To access Elasticsearch as a reencrypt route, define the following variables:

openshift_logging_es_allow_external=True
openshift_logging_es_hostname=elasticsearch.example.com

2. Change to the playbook directory and run the following Ansible playbook:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook [-i </path/to/inventory>] \
 playbooks/openshift-logging/config.yml

CHAPTER 36. AGGREGATING CONTAINER LOGS

647

3. To log in to Elasticsearch remotely, the request must contain three HTTP headers:

Authorization: Bearer $token
X-Proxy-Remote-User: $username
X-Forwarded-For: $ip_address

4. You must have access to the project in order to be able to access to the logs. For example:

$ oc login <user1>
$ oc new-project <user1project>
$ oc new-app <httpd-example>

5. You need to get the token of this ServiceAccount to be used in the request:

$ token=$(oc whoami -t)

6. Using the token previously configured, you should be able access Elasticsearch through the
exposed route:

$ curl -k -H "Authorization: Bearer $token" -H "X-Proxy-Remote-User: $(oc whoami)" -H "X-
Forwarded-For: 127.0.0.1" https://es.example.test/project.my-project.*/_search?q=level:err |
python -mjson.tool

36.5.3. Fluentd

Fluentd is deployed as a DaemonSet that deploys nodes according to a node label selector, which you
can specify with the inventory parameter openshift_logging_fluentd_nodeselector and the default is
logging-infra-fluentd. As part of the OpenShift cluster installation, it is recommended that you add the
Fluentd node selector to the list of persisted node labels.

Fluentd uses journald as the system log source. These are log messages from the operating system, the
container runtime, and OpenShift.

The available container runtimes provide minimal information to identify the source of log messages.
Log collection and normalization of logs can occur after a pod is deleted and additional metadata
cannot be retrieved from the API server, such as labels or annotations.

If a pod with a given name and namespace is deleted before the log collector finishes processing logs,
there might not be a way to distinguish the log messages from a similarly named pod and namespace.
This can cause logs to be indexed and annotated to an index that is not owned by the user who deployed
the pod.

IMPORTANT

The available container runtimes provide minimal information to identify the source of log
messages and do not guarantee unique individual log messages or that these messages
can be traced to their source.

Clean installations of OpenShift Container Platform 3.9 or later use json-file as the default log driver,
but environments upgraded from OpenShift Container Platform 3.7 will maintain their existing journald
log driver configuration. It is recommended to use the json-file log driver. See Changing the
Aggregated Logging Driver for instructions to change your existing log driver configuration to json-file.

OpenShift Container Platform 3.11 Configuring Clusters

648

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-node-host-labels

1

1

2

Viewing Fluentd Logs

How you view logs depends upon the LOGGING_FILE_PATH setting.

If LOGGING_FILE_PATH points to a file, use the logs utility to print out the contents of
Fluentd log files:

oc exec <pod> -- logs 1

Specify the name of the Fluentd pod. Note the space before logs.

For example:

oc exec logging-fluentd-lmvms -- logs

The contents of log files are printed out, starting with the oldest log. Use -f option to follow what
is being written into the logs.

If you are using LOGGING_FILE_PATH=console, Fluentd writes logs to its default location,
/var/log/fluentd/fluentd.log. You can retrieve the logs with the oc logs -f <pod_name>
command.
For example

oc logs -f fluentd.log

Configuring Fluentd Log Location

Fluentd writes logs to a specified file, by default /var/log/fluentd/fluentd.log, or to the console, based
on the LOGGING_FILE_PATH environment variable.

To change the default output location for the Fluentd logs, use the LOGGING_FILE_PATH parameter
in the default inventory file. You can specify a particular file or use the Fluentd default location:

LOGGING_FILE_PATH=console 1
LOGGING_FILE_PATH=<path-to-log/fluentd.log> 2

Sends the log output to the Fluentd default location. Retrieve the logs with the oc logs -f
<pod_name> command.

Sends the log output to the specified file. Retrieve the logs with the oc exec <pod_name> — logs
command.

After changing these parameters, re-run the logging installer playbook :

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook [-i </path/to/inventory>] \
 playbooks/openshift-logging/config.yml

Configuring Fluentd Log Rotation

When the current Fluentd log file reaches a specified size, OpenShift Container Platform automatically
renames the fluentd.log log file so that new logging data can be collected. Log rotation is enabled by
default.
The following example shows logs in a cluster where the maximum log size is 1Mb and four logs should

CHAPTER 36. AGGREGATING CONTAINER LOGS

649

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible

The following example shows logs in a cluster where the maximum log size is 1Mb and four logs should
be retained. When the fluentd.log reaches 1Mb, OpenShift Container Platform deletes the current
fluentd.log.4, renames each of the Fluentd logs in turn, and creates a new fluentd.log.

fluentd.log 0b
fluentd.log.1 1Mb
fluentd.log.2 1Mb
fluentd.log.3 1Mb
fluentd.log.4 1Mb

You can control the size of the Fluentd log files and how many of the renamed files that OpenShift
Container Platform retains using environment variables.

Table 36.1. Parameters for configuring Fluentd log rotation

Parameter Description

LOGGING_FILE_SIZE The maximum size of a single Fluentd log file in Bytes. If the size of the
flientd.log file exceeds this value, OpenShift Container Platform renames
the fluentd.log.* files and creates a new fluentd.log. The default is
1024000 (1MB).

LOGGING_FILE_AGE The number of logs that Fluentd retains before deleting. The default value
is 10.

For example:

$ oc set env ds/logging-fluentd LOGGING_FILE_AGE=30 LOGGING_FILE_SIZE=1024000"

Turn off log rotation by setting LOGGING_FILE_PATH=console. This causes Fluentd to write logs to
the Fluentd default location, /var/log/fluentd/fluentd.log, where you can retrieve them using the oc
logs -f <pod_name> command.

$ oc set env ds/fluentd LOGGING_FILE_PATH=console

Disabling JSON parsing of logs with MERGE_JSON_LOG

By default, Fluentd determines if a log message is in JSON format and merges the message into the
JSON payload document posted to Elasticsearch.

When using JSON parsing you might experience:

log loss due to Elasticsearch rejecting documents due to inconsistent type mappings;

buffer storage leaks caused by rejected message cycling;

overwritten data for fields with same names.

For information on how to mitigate some of these problems, see Configuring how the log collector
normalizes logs.

You can disable JSON parsing to avoid these problems or if you do not need to parse JSON from your
logs.

OpenShift Container Platform 3.11 Configuring Clusters

650

1

To disable JSON parsing:

1. Run the following command:

oc set env ds/logging-fluentd MERGE_JSON_LOG=false 1

Set this to false to disable this feature or true to enable this feature.

To ensure this setting is applied each time you run Ansible, add
openshift_logging_fluentd_merge_json_log="false" to your Ansible inventory.

Configuring how the log collector normalizes logs

Cluster Logging uses a specific data model, like a database schema, to store log records and their
metadata in the logging store. There are some restrictions on the data:

There must be a "message" field containing the actual log message.

There must be a "@timestamp" field containing the log record timestamp in RFC 3339 format,
preferably millisecond or better resolution.

There must be a "level" field with the log level, such as err, info, unknown, and so forth.

NOTE

For more information on the data model, see Exported Fields.

Because of these requirements, conflicts and inconsistencies can arise with log data collected from
different subsystems.

For example, if you use the MERGE_JSON_LOG feature (MERGE_JSON_LOG=true), it can be
extremely useful to have your applications log their output in JSON, and have the log collector
automatically parse and index the data in Elasticsearch. However, this leads to several problems,
including:

field names can be empty, or contain characters that are illegal in Elasticsearch;

different applications in the same namespace might output the same field name with a different
value data type;

applications might emit too many fields;

fields may conflict with the cluster logging built-in fields.

You can configure how cluster logging treats fields from disparate sources by editing the Fluentd log
collector daemonset and setting environment variables in the table below.

Undefined fields. Fields unknown to the ViaQ data model are called undefined. Log data from
disparate systems can contain undefined fields. The data model requires all top-level fields to
be defined and described.
Use the parameters to configure how OpenShift Container Platform moves any undefined
fields under a top-level field called undefined to avoid conflicting with the well known top-level
fields. You can add undefined fields to the top-level fields and move others to an undefined
container.

CHAPTER 36. AGGREGATING CONTAINER LOGS

651

https://github.com/openshift/origin-aggregated-logging/blob/master/docs/com.redhat.viaq-openshift-project.asciidoc

You can also replace special characters in undefined fields and convert undefined fields to their
JSON string representation. Converting to JSON string preserves the structure of the value, so
that you can retrieve the value later and convert it back to a map or an array.

Simple scalar values like numbers and booleans are changed to a quoted string. For
example: 10 becomes "10", 3.1415 becomes "3.1415", false becomes "false".

Map/dict values and array values are converted to their JSON string representation:
"mapfield":{"key":"value"} becomes "mapfield":"{\"key\":\"value\"}" and "arrayfield":
[1,2,"three"] becomes "arrayfield":"[1,2,\"three\"]".

Defined fields. Defined fields appear in the top levels of the logs. You can configure which
fields are considered defined fields.
The default top-level fields, defined through the CDM_DEFAULT_KEEP_FIELDS parameter,
are CEE, time, @timestamp, aushape, ci_job, collectd, docker, fedora-ci, file, foreman,
geoip, hostname, ipaddr4, ipaddr6, kubernetes, level, message, namespace_name,
namespace_uuid, offset, openstack, ovirt, pid, pipeline_metadata, service, systemd, tags,
testcase, tlog, viaq_msg_id.

Any fields not included in ${CDM_DEFAULT_KEEP_FIELDS} or
${CDM_EXTRA_KEEP_FIELDS} are moved to ${CDM_UNDEFINED_NAME} if
CDM_USE_UNDEFINED is true. See the table below for more information on these
parameters.

NOTE

The CDM_DEFAULT_KEEP_FIELDS parameter is for only advanced users, or if
you are instructed to do so by Red Hat support.

Empty fields. Empty fields have no data. You can determine which empty fields to retain from
logs.

Table 36.2. Environment parameters for log normalization

Parameters Definition Example

CDM_EXTRA_KEEP_
FIELDS

Specify an extra set of defined fields to be kept at
the top level of the logs in addition to the
CDM_DEFAULT_KEEP_FIELDS. The default is
"".

CDM_EXTRA_KEEP_
FIELDS="broker"

CDM_KEEP_EMPTY_
FIELDS

Specify fields to retain in CSV format even if empty.
Empty defined fields not specified are dropped. The
default is "message", keep empty messages.

CDM_KEEP_EMPTY_
FIELDS="message"

CDM_USE_UNDEFIN
ED

Set to true to move undefined fields to the
undefined top level field. The default is false. If
true, values in CDM_DEFAULT_KEEP_FIELDS
and CDM_EXTRA_KEEP_FIELDS are not moved
to undefined.

CDM_USE_UNDEFIN
ED=true

OpenShift Container Platform 3.11 Configuring Clusters

652

CDM_UNDEFINED_N
AME

Specify a name for the undefined top level field if
using CDM_USE_UNDEFINED. The default
is`undefined`. Enabled only when
CDM_USE_UNDEFINED is true.

CDM_UNDEFINED_N
AME="undef"

CDM_UNDEFINED_M
AX_NUM_FIELDS

If the number of undefined fields is greater than this
number, all undefined fields are converted to their
JSON string representation and stored in the
CDM_UNDEFINED_NAME field. If the record
contains more than this value of undefined fields, no
further processing takes place on these fields.
Instead, the fields will be converted to a single string
JSON value, stored in the top-level
CDM_UNDEFINED_NAME field. Keeping the
default of -1 allows for an unlimited number of
undefined fields, which is not recommended.

NOTE: This parameter is honored even if
CDM_USE_UNDEFINED is false.

CDM_UNDEFINED_M
AX_NUM_FIELDS=4

CDM_UNDEFINED_T
O_STRING

Set to true to convert all undefined fields to their
JSON string representation. The default is false.

CDM_UNDEFINED_T
O_STRING=true

CDM_UNDEFINED_D
OT_REPLACE_CHA
R

Specify a character to use in place of a dot character
'.' in an undefined field. MERGE_JSON_LOG must
be true. The default is UNUSED. If you set the
MERGE_JSON_LOG parameter to true, see the
Note below.

CDM_UNDEFINED_D
OT_REPLACE_CHA
R="_"

Parameters Definition Example

NOTE

If you set the MERGE_JSON_LOG parameter in the Fluentd log collector daemonset
and CDM_UNDEFINED_TO_STRING environment variables to true, you might receive an
Elasticsearch 400 error. When MERGE_JSON_LOG=true, the log collector adds fields
with data types other than string. If you set CDM_UNDEFINED_TO_STRING=true, the
log collector attempts to add those fields as a string value resulting in the Elasticsearch
400 error. The error clears when the log collector rolls over the indices for the next day’s
logs

When the log collector rolls over the indices, it creates a brand new index. The field
definitions are updated and you will not get the 400 error. For more information, see
Setting MERGE_JSON_LOG and CDM_UNDEFINED_TO_STRING .

To configure undefined and empty field processing, edit the logging-fluentd daemonset:

1. Configure how to process fields, as needed:

a. Specify the fields to move using CDM_EXTRA_KEEP_FIELDS.

b. Specify any empty fields to retain in the CDM_KEEP_EMPTY_FIELDS parameter in CSV
format.

CHAPTER 36. AGGREGATING CONTAINER LOGS

653

2. Configure how to process undefined fields, as needed:

a. Set CDM_USE_UNDEFINED to true to move undefined fields to the top-level undefined
field:

b. Specify a name for the undefined fields using the CDM_UNDEFINED_NAME parameter.

c. Set CDM_UNDEFINED_MAX_NUM_FIELDS to a value other than the default -1, to set an
upper bound on the number of undefined fields in a single record.

3. Specify CDM_UNDEFINED_DOT_REPLACE_CHAR to change any dot . characters in an
undefined field name to another character. For example, if
CDM_UNDEFINED_DOT_REPLACE_CHAR=@@@ and there is a field named foo.bar.baz the
field is transformed into foo@@@bar@@@baz.

4. Set UNDEFINED_TO_STRING to true to convert undefined fields to their JSON string
representation.

NOTE

If you configure the CDM_UNDEFINED_TO_STRING or
CDM_UNDEFINED_MAX_NUM_FIELDS parameters, you use the
CDM_UNDEFINED_NAME to change the undefined field name. This field is needed
because CDM_UNDEFINED_TO_STRING or CDM_UNDEFINED_MAX_NUM_FIELDS
could change the value type of the undefined field. When
CDM_UNDEFINED_TO_STRING or CDM_UNDEFINED_MAX_NUM_FIELDS is set to
true and there are more undefined fields in a log, the value type becomes string.
Elasticsearch stops accepting records if the value type is changed, for example, from
JSON to JSON string.

For example, when CDM_UNDEFINED_TO_STRING is false or
CDM_UNDEFINED_MAX_NUM_FIELDS is the default, -1, the value type of the
undefined field is json. If you change CDM_UNDEFINED_MAX_NUM_FIELDS to a value
other than default and there are more undefined fields in a log, the value type becomes
string (JSON string). Elasticsearch stops accepting records if the value type is changed.

Setting MERGE_JSON_LOG and CDM_UNDEFINED_TO_STRING

If you set the MERGE_JSON_LOG and CDM_UNDEFINED_TO_STRING environment variables to
true, you might receive an Elasticsearch 400 error. When MERGE_JSON_LOG=true, the log collector
adds fields with data types other than string. If you set CDM_UNDEFINED_TO_STRING=true, Fluentd
attempts to add those fields as a string value resulting in the Elasticsearch 400 error. The error clears
when the indices roll over for the next day.

When Fluentd rolls over the indices for the next day’s logs, it will create a brand new index. The field
definitions are updated and you will not get the 400 error.

Records that have hard errors, such as schema violations, corrupted data, and so forth, cannot be
retried. The log collector sends the records for error handling. If you add a <label @ERROR> section to
your Fluentd config, as the last <label>, you can handle these records as needed.

For example:

data:
 fluent.conf:

OpenShift Container Platform 3.11 Configuring Clusters

654

https://docs.fluentd.org/v1.0/articles/config-file#@error-label

....

 <label @ERROR>
 <match **>
 @type file
 path /var/log/fluent/dlq
 time_slice_format %Y%m%d
 time_slice_wait 10m
 time_format %Y%m%dT%H%M%S%z
 compress gzip
 </match>
 </label>

This section writes error records to the Elasticsearch dead letter queue (DLQ) file . See the fluentd
documentation for more information about the file output.

Then you can edit the file to clean up the records manually, edit the file to use with the Elasticsearch
/_bulk index API and use cURL to add those records. For more information on Elasticsearch Bulk API,
see the Elasticsearch documentation.

Join Multi-line Docker Logs

You can configure Fluentd to reconstruct whole log records from Docker log partial fragments. With this
feature active, Fluentd reads multi-line Docker logs, reconstructs them, and stores the logs as one
record in Elasticsearch with no missing data.

However, because this feature can cause a performance regression, the feature is off by default and
must be manually enabled.

The following Fluentd environment variables configure cluster logging to process multi-line Docker logs:

Parameter Description

USE_MULTILINE_JSON Set to true to process multi-line Docker logs when using the json-file log
driver. This parameter is set to false by default.

USE_MULTILINE_JOURNAL Set to true to process multi-line Docker logs when using the journald log
driver, Fluentd reconstructs whole log records from the docker log partial
fragments. This parameter is set to false by default.

You can use the following command to determine which log driver is being used:

$ docker info | grep -i log

One of the following is output:

Logging Driver: json-file

Logging Driver: journald

To turn on multi-line Docker logs processing:

1. Use the following command to enable the multiline Docker logs:

CHAPTER 36. AGGREGATING CONTAINER LOGS

655

https://www.elastic.co/guide/en/logstash/current/dead-letter-queues.html
https://docs.fluentd.org/v/0.12/output/file
https://www.elastic.co/guide/en/elasticsearch/reference/5.6/docs-bulk.html

For the json-file log driver:

oc set env daemonset/logging-fluentd USE_MULTILINE_JSON=true

For the journald log driver:

oc set env daemonset/logging-fluentd USE_MULTILINE_JOURNAL=true

The Fluentd pods in the cluster restart.

Configuring Fluentd to Send Logs to an External Log Aggregator

You can configure Fluentd to send a copy of its logs to an external log aggregator, in addition to the
default Elasticsearch, using the secure-forward plug-in. From there, you can further process log
records after the locally hosted Fluentd has processed them.

IMPORTANT

You cannot configure the secure_foward plug-in with a client certificate. Authentication
can be run through SSL/TLS protocol but require the shared_key and the destination
Fluentd to be configured with the secure_foward input plug-in.

The logging deployment provides a secure-forward.conf section in the Fluentd configmap for
configuring the external aggregator:

<store>
@type secure_forward
self_hostname pod-${HOSTNAME}
shared_key thisisasharedkey
secure yes
enable_strict_verification yes
ca_cert_path /etc/fluent/keys/your_ca_cert
ca_private_key_path /etc/fluent/keys/your_private_key
ca_private_key_passphrase passphrase
<server>
 host ose1.example.com
 port 24284
</server>
<server>
 host ose2.example.com
 port 24284
 standby
</server>
<server>
 host ose3.example.com
 port 24284
 standby
</server>
</store>

This can be updated using the oc edit command:

$ oc edit configmap/logging-fluentd

OpenShift Container Platform 3.11 Configuring Clusters

656

Certificates to be used in secure-forward.conf can be added to the existing secret that is mounted on
the Fluentd pods. The your_ca_cert and your_private_key values must match what is specified in
secure-forward.conf in configmap/logging-fluentd:

$ oc patch secrets/logging-fluentd --type=json \
 --patch "[{'op':'add','path':'/data/your_ca_cert','value':'$(base64 -w 0 /path/to/your_ca_cert.pem)'}]"
$ oc patch secrets/logging-fluentd --type=json \
 --patch "[{'op':'add','path':'/data/your_private_key','value':'$(base64 -w 0
/path/to/your_private_key.pem)'}]"

NOTE

Replace your_private_key with a generic name. This is a link to the JSON path, not a
path on your host system.

When configuring the external aggregator, it must be able to accept messages securely from Fluentd.

If the external aggregator is another Fluentd server, it must have the fluent-plugin-secure-forward
plug-in installed and make use of the input plug-in it provides:

<source>
 @type secure_forward

 self_hostname ${HOSTNAME}
 bind 0.0.0.0
 port 24284

 shared_key thisisasharedkey

 secure yes
 cert_path /path/for/certificate/cert.pem
 private_key_path /path/for/certificate/key.pem
 private_key_passphrase secret_foo_bar_baz
</source>

You can find further explanation of how to set up the fluent-plugin-secure-forward plug-in in the
fluent-plugin-secure-forward repository.

Reducing the Number of Connections from Fluentd to the API Server

IMPORTANT

mux is a Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs), might not be
functionally complete, and Red Hat does not recommend to use them for production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information on Red Hat Technology Preview features support scope, see
https://access.redhat.com/support/offerings/techpreview/.

mux is a Secure Forward listener service.

CHAPTER 36. AGGREGATING CONTAINER LOGS

657

https://github.com/tagomoris/fluent-plugin-secure-forward
https://access.redhat.com/support/offerings/techpreview/

Parameter Description

openshift_logging_use_m
ux

The default is set to False. If set to True, a service called mux is deployed.
This service acts as a Fluentd secure_forward aggregator for the node
agent Fluentd daemonsets running in the cluster. Use
openshift_logging_use_mux to reduce the number of connections to
the OpenShift API server, and configure each node in Fluentd to send raw
logs to mux and turn off the Kubernetes metadata plug-in. This requires
the use of openshift_logging_mux_client_mode.

openshift_logging_mux_c
lient_mode

Values for openshift_logging_mux_client_mode are minimal and
maximal, and there is no default.
openshift_logging_mux_client_mode causes the Fluentd node agent
to send logs to mux rather than directly to Elasticsearch. The value
maximal means that Fluentd does as much processing as possible at the
node before sending the records to mux. The maximal value is
recommended for using mux. The value minimal means that Fluentd does
no processing at all, and sends the raw logs to mux for processing. It is not
recommended to use the minimal value.

openshift_logging_mux_a
llow_external

The default is set to False. If set to True, the mux service is deployed, and
it is configured to allow Fluentd clients running outside of the cluster to
send logs using secure_forward. This allows OpenShift logging to be
used as a central logging service for clients other than OpenShift, or other
OpenShift clusters.

openshift_logging_mux_
hostname

The default is mux plus openshift_master_default_subdomain. This is
the hostname external_clients will use to connect to mux, and is used in
the TLS server cert subject.

openshift_logging_mux_
port

24284

openshift_logging_mux_c
pu_limit

500M

openshift_logging_mux_
memory_limit

2Gi

openshift_logging_mux_
default_namespaces

The default is mux-undefined. The first value in the list is the namespace
to use for undefined projects, followed by any additional namespaces to
create by default. Usually, you do not need to set this value.

openshift_logging_mux_
namespaces

The default value is empty, allowing for additional namespaces to create for
external mux clients to associate with their logs. You will need to set this
value.

Throttling logs in Fluentd

For projects that are especially verbose, an administrator can throttle down the rate at which the logs
are read in by Fluentd before being processed.

OpenShift Container Platform 3.11 Configuring Clusters

658

WARNING

Throttling can contribute to log aggregation falling behind for the configured
projects; log entries can be lost if a pod is deleted before Fluentd catches up.

NOTE

Throttling does not work when using the systemd journal as the log source. The throttling
implementation depends on being able to throttle the reading of the individual log files
for each project. When reading from the journal, there is only a single log source, no log
files, so no file-based throttling is available. There is not a method of restricting the log
entries that are read into the Fluentd process.

To tell Fluentd which projects it should be restricting, edit the throttle configuration in its ConfigMap
after deployment:

$ oc edit configmap/logging-fluentd

The format of the throttle-config.yaml key is a YAML file that contains project names and the desired
rate at which logs are read in on each node. The default is 1000 lines at a time per node. For example:

Projects

project-name:
 read_lines_limit: 50

second-project-name:
 read_lines_limit: 100

Logging

logging:
 read_lines_limit: 500

test-project:
 read_lines_limit: 10

.operations:
 read_lines_limit: 100

To make changes to Fluentd, change the configuration and restart the Fluentd pods to apply the
changes. To make changes to Elasticsearch, you must first scale down Fluentd and then scale down
Elasticsearch to zero. After making your changes, scale Elasticsearch first and then scale Fluentd back to
its original setting.

To scale Elasticsearch to zero:

$ oc scale --replicas=0 dc/<ELASTICSEARCH_DC>



CHAPTER 36. AGGREGATING CONTAINER LOGS

659

Change nodeSelector in the daemonset configuration to match zero:

Get the Fluentd node selector:

$ oc get ds logging-fluentd -o yaml |grep -A 1 Selector
 nodeSelector:
 logging-infra-fluentd: "true"

Use the oc patch command to modify the daemonset nodeSelector:

$ oc patch ds logging-fluentd -p '{"spec":{"template":{"spec":{"nodeSelector":
{"nonexistlabel":"true"}}}}}'

Get the Fluentd node selector:

$ oc get ds logging-fluentd -o yaml |grep -A 1 Selector
 nodeSelector:
 "nonexistlabel: "true"

Scale Elasticsearch back up from zero:

$ oc scale --replicas=# dc/<ELASTICSEARCH_DC>

Change nodeSelector in the daemonset configuration back to logging-infra-fluentd: "true".

Use the oc patch command to modify the daemonset nodeSelector:

oc patch ds logging-fluentd -p '{"spec":{"template":{"spec":{"nodeSelector":{"logging-infra-
fluentd":"true"}}}}}'

Tune Buffer Chunk Limit

If Fluentd logger is unable to keep up with a high number of logs, it will need to switch to file buffering to
reduce memory usage and prevent data loss.

The Fluentd buffer_chunk_limit is determined by the environment variable BUFFER_SIZE_LIMIT,
which has the default value 8m. The file buffer size per output is determined by the environment
variable FILE_BUFFER_LIMIT, which has the default value 256Mi. The permanent volume size must be
larger than FILE_BUFFER_LIMIT multiplied by the output.

On the Fluentd and Mux pods, permanent volume /var/lib/fluentd should be prepared by the PVC or
hostmount, for example. That area is then used for the file buffers.

The buffer_type and buffer_path are configured in the Fluentd configuration files as follows:

$ egrep "buffer_type|buffer_path" *.conf
output-es-config.conf:
 buffer_type file
 buffer_path `/var/lib/fluentd/buffer-output-es-config`
output-es-ops-config.conf:
 buffer_type file
 buffer_path `/var/lib/fluentd/buffer-output-es-ops-config`

OpenShift Container Platform 3.11 Configuring Clusters

660

The Fluentd buffer_queue_limit is the value of the variable BUFFER_QUEUE_LIMIT. This value is 32
by default.

The environment variable BUFFER_QUEUE_LIMIT is calculated as (FILE_BUFFER_LIMIT /
(number_of_outputs * BUFFER_SIZE_LIMIT)).

If the BUFFER_QUEUE_LIMIT variable has the default set of values:

FILE_BUFFER_LIMIT = 256Mi

number_of_outputs = 1

BUFFER_SIZE_LIMIT = 8Mi

The value of buffer_queue_limit will be 32. To change the buffer_queue_limit, you need to change the
value of FILE_BUFFER_LIMIT.

In this formula, number_of_outputs is 1 if all the logs are sent to a single resource, and it is incremented
by 1 for each additional resource. For example, the value of number_of_outputs is:

1 - if all logs are sent to a single ElasticSearch pod

2 - if application logs are sent to an ElasticSearch pod and ops logs are sent to another
ElasticSearch pod

4 - if application logs are sent to an ElasticSearch pod, ops logs are sent to another
ElasticSearch pod, and both of them are forwarded to other Fluentd instances

36.5.4. Kibana

To access the Kibana console from the OpenShift Container Platform web console, add the
loggingPublicURL parameter in the master webconsole-config configmap file, with the URL of the
Kibana console (the kibana-hostname parameter). The value must be an HTTPS URL:

...
clusterInfo:
 ...
 loggingPublicURL: "https://kibana.example.com"
...

Setting the loggingPublicURL parameter creates a View Archive button on the OpenShift Container
Platform web console under the Browse → Pods → <pod_name> → Logs tab. This links to the Kibana
console.

NOTE

You need to log in to the Kibana console when your valid login cookie expires, for
example: you need to log in:

on the first use

after logging out

filter-pre-mux-client.conf:
 buffer_type file
 buffer_path `/var/lib/fluentd/buffer-mux-client`

CHAPTER 36. AGGREGATING CONTAINER LOGS

661

You can scale the Kibana deployment as usual for redundancy:

$ oc scale dc/logging-kibana --replicas=2

NOTE

To ensure the scale persists across multiple executions of the logging playbook, make
sure to update the openshift_logging_kibana_replica_count in the inventory file.

You can see the user interface by visiting the site specified by the
openshift_logging_kibana_hostname variable.

See the Kibana documentation for more information on Kibana.

Kibana Visualize

Kibana Visualize enables you to create visualizations and dashboards for monitoring container and pod
logs allows administrator users (cluster-admin or cluster-reader) to view logs by deployment,
namespace, pod, and container.

Kibana Visualize exists inside the Elasticsearch and ES-OPS pod, and must be run inside those pods. To
load dashboards and other Kibana UI objects, you must first log in to Kibana as the user you want to add
the dashboards to, then log out. This will create the necessary per-user configuration that the next step
relies on. Then, run:

$ oc exec <$espod> -- es_load_kibana_ui_objects <user-name>

Where $espod is the name of any one of your Elasticsearch pods.

Adding Custom Fields to Kibana Visualize

If your OpenShift Container Platform cluster generates logs in JSON format that contain custom fields
that are not defined in the Elasticsearch .operations.* or the project.* indices, you cannot create
visualizations with these fields because the custom fields are not available in Kibana.

However, you can add the custom fields to the Elasticsearch indices, which allows you to add the fields to
the Kibana index patterns for use in Kibana Visualize.

NOTE

The custom fields are applied to only the indices created after the template is updated.

To add custom fields to Kibana Visualize:

1. Add custom fields to an Elasticsearch index template:

a. Determine which Elasticsearch index you want to add the fields to, either the .operations.*
or the project.* index. If there is a specific project that has the custom fields, you add the
fields to a specific index for the project, for example: project.this-project-has-time-fields.*.

b. Create a JSON file for the custom fields, similar to the following:
For example:

{

OpenShift Container Platform 3.11 Configuring Clusters

662

https://www.elastic.co/guide/en/kibana/4.5/discover.html

1

2

1 3

2

 "order": 20,
 "mappings": {
 "_default_": {
 "properties": {
 "mytimefield1": { 1
 "doc_values": true,
 "format": "yyyy-MM-dd HH:mm:ss,SSSZ||yyyy-MM-dd'T'HH:mm:ss.SSSSSSZ||yyyy-
MM-dd'T'HH:mm:ssZ||dateOptionalTime",
 "index": "not_analyzed",
 "type": "date"
 },
 "mytimefield2": {
 "doc_values": true,
 "format": "yyyy-MM-dd HH:mm:ss,SSSZ||yyyy-MM-dd'T'HH:mm:ss.SSSSSSZ||yyyy-
MM-dd'T'HH:mm:ssZ||dateOptionalTime",
 "index": "not_analyzed",
 "type": "date"
 }
 }
 }
 },
 "template": "project.<project-name>.*" 2
}

Add a custom field and parameters.

Specify the .operations.* or project.* index.

c. Change to the openshift-logging project:

$ oc project openshift-logging

d. Get the name of one of the Elasticsearch pods:

$ oc get -n logging pods -l component=es

NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE
logging-es-data-master-5av030lk-1-2x494 2/2 Running 0 38m
154.128.0.80 ip-153-12-8-6.wef.internal <none>

e. Load the JSON file into the Elasticsearch pod:

$ cat <json-file-name> | \ 1
oc exec -n logging -i -c elasticsearch <es-pod-name> -- \ 2
 curl -s -k --cert /etc/elasticsearch/secret/admin-cert \
 --key /etc/elasticsearch/secret/admin-key \
 https://localhost:9200/_template/<json-file-name> -XPUT -d@- | \ 3
python -mjson.tool

The name of the JSON file you created.

The name of the Elasticsearch pod.

CHAPTER 36. AGGREGATING CONTAINER LOGS

663

1 3

2

1

2

{
 "acknowledged": true
}

f. If you have a separate OPS cluster, get the name of one of the es-ops Elasticsearch pods:

$ oc get -n logging pods -l component=es-ops

NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE
logging-es-ops-data-master-o7nhcbo4-5-b7stm 2/2 Running 0 38m
154.128.0.80 ip-153-12-8-6.wef.internal <none>

g. Load the JSON file into the es-ops Elasticsearch pod:

$ cat <json-file-name> | \ 1
oc exec -n logging -i -c elasticsearch <esops-pod-name> -- \ 2
 curl -s -k --cert /etc/elasticsearch/secret/admin-cert \
 --key /etc/elasticsearch/secret/admin-key \
 https://localhost:9200/_template/<json-file-name> -XPUT -d@- | \ 3
python -mjson.tool

The name of the JSON file you created.

The name of the OPS cluster Elasticsearch pod.

The output appears similar to the following:

{
 "acknowledged": true
}

h. Verify that the indices are updated:

oc exec -n logging -i -c elasticsearch <es-pod-name> -- \ 1
 curl -s -k --cert /etc/elasticsearch/secret/admin-cert \
 --key /etc/elasticsearch/secret/admin-key \
 https://localhost:9200/project.*/_search?sort=<custom-field>:desc | \ 2
python -mjson.tool

The name of the Elasticsearch or OPS cluster Elasticsearch pod.

The name of a custom field you added.

The command outputs the index records for your custom fields sorted in descending order.

NOTE

The settings do not apply to existing indices. If you want to apply the settings
to existing indices, perform a re-index.

OpenShift Container Platform 3.11 Configuring Clusters

664

2. Add the custom fields to Kibana:

a. Get the existing index pattern file from your Elasticsearch container:

$ mkdir index_patterns
$ cd index_patterns
$ oc project openshift-logging
$ for espod in $(oc get pods -l component=es -o jsonpath='{.items[*].metadata.name}') ;
do
> for ff in $(oc exec -c elasticsearch <es-pod-name> -- ls
/usr/share/elasticsearch/index_patterns) ; do
> oc exec -c elasticsearch <es-pod-name> -- cat
/usr/share/elasticsearch/index_patterns/$ff > $ff
> done
> break
> done

The index pattern files are downloaded to the /usr/share/elasticsearch/index_patterns
directory.

For example:

index_patterns $ ls

com.redhat.viaq-openshift.index-pattern.json

b. Edit the corresponding index pattern files to add a definition for each custom field to the
fields value:
For example:

{\"count\": 0, \"name\": \"mytimefield2\", \"searchable\": true, \"aggregatable\": true,
\"readFromDocValues\": true, \"type\": \"date\", \"scripted\": false},

The definition must contain the \"searchable\": true, and \"aggregatable\": true,
parameters in order to be used in visualizations. The data type must correspond to the
Elasticsearch field definition you added above. For example, if you added the myfield field
in Elasticsearch that is a number type, you cannot add myfield to Kibana as a string type.

c. In the index pattern file, add the name of the Kibana index pattern to the index pattern files:
For example, to use the operations.* index pattern:

"title": "*operations.*"

To use the project.MYNAMESPACE.* index pattern:

"title": "project.MYNAMESPACE.*"

d. Identify the user name and get the hash value of the user name. The index patterns are
stored using the hash of the user name. Run the following two commands in order:

$ get_hash() {
> printf "%s" "$1" | sha1sum | awk '{print $1}'
> }

CHAPTER 36. AGGREGATING CONTAINER LOGS

665

1

2

$ get_hash admin

d0aeb5660fc2140aec35850c4da997

e. Apply the index pattern file to Elasticsearch:

cat com.redhat.viaq-openshift.index-pattern.json | \ 1
 oc exec -i -c elasticsearch <espod-name> -- es_util \
 --query=".kibana.<user-hash>/index-pattern/<index>" -XPUT --data-binary @- | \ 2
 python -mjson.tool

The name of the index pattern file.

The user hash and the index, either .operations.* or project.*.

For example:

cat index-pattern.json | \
 oc exec -i -c elasticsearch mypod-23-gb9pl -- es_util \
 --query=".kibana.d0aeb5660fc2140aec35850c4da997/index-
pattern/project.MYNAMESPACE.*" -XPUT --data-binary @- | \
 python -mjson.tool

The output appears similar to the following:

{
 "_id": ".operations.*",
 "_index": ".kibana.d0aeb5660fc2140aec35850c4da997",
 "_shards": {
 "failed": 0,
 "successful": 2,
 "total": 2
 },
 "_type": "index-pattern",
 "_version": 1,
 "created": true,
 "result": "created"
}

f. Exit and restart the Kibana console for the custom fields to appear in the Available Fields
list and in the fields list on the Management → Index Patterns page.

36.5.5. Curator

Curator allows administrators to configure scheduled Elasticsearch maintenance operations to be
performed automatically on a per-project basis. It is scheduled to perform actions daily based on its
configuration. Only one Curator pod is recommended per Elasticsearch cluster. Curator pods only run at
the time stated in the cronjob and then the pod terminates upon completion. Curator is configured via a
YAML configuration file with the following structure:

NOTE

The time zone is set based on the host node where the curator pod runs.

OpenShift Container Platform 3.11 Configuring Clusters

666

$PROJECT_NAME:
 $ACTION:
 $UNIT: $VALUE

$PROJECT_NAME:
 $ACTION:
 $UNIT: $VALUE
 ...

The available parameters are:

Variable Name Description

PROJECT_NAME The actual name of a project, such as myapp-devel. For OpenShift
Container Platform operations logs, use the name .operations as the
project name.

ACTION The action to take, currently only delete is allowed.

UNIT One of days, weeks, or months.

VALUE An integer for the number of units.

.defaults Use .defaults as the $PROJECT_NAME to set the defaults for projects
that are not specified.

.regex The list of regular expressions that match project names.

pattern The valid and properly escaped regular expression pattern enclosed by
single quotation marks.

For example, to configure Curator to:

Delete indices in the myapp-dev project older than 1 day

Delete indices in the myapp-qe project older than 1 week

Delete operations logs older than 8 weeks

Delete all other projects indices after they are 31 days old

Delete indices older than 1 day that are matched by the '^project\..+\-dev.*$' regex

Delete indices older than 2 days that are matched by the '^project\..+\-test.*$' regex

Use:

config.yaml: |
 myapp-dev:
 delete:
 days: 1

CHAPTER 36. AGGREGATING CONTAINER LOGS

667

 myapp-qe:
 delete:
 weeks: 1

 .operations:
 delete:
 weeks: 8

 .defaults:
 delete:
 days: 31

 .regex:
 - pattern: '^project\..+\-dev\..*$'
 delete:
 days: 1
 - pattern: '^project\..+\-test\..*$'
 delete:
 days: 2

IMPORTANT

When you use months as the $UNIT for an operation, Curator starts counting at the first
day of the current month, not the current day of the current month. For example, if today
is April 15, and you want to delete indices that are 2 months older than today (delete:
months: 2), Curator does not delete indices that are dated older than February 15; it
deletes indices older than February 1. That is, it goes back to the first day of the current
month, then goes back two whole months from that date. If you want to be exact with
Curator, it is best to use days (for example, delete: days: 30).

36.5.5.1. Using the Curator Actions File

Setting the OpenShift Container Platform custom configuration file format ensures internal indices are
not mistakenly deleted.

To use the actions file, add an exclude rule to your Curator configuration to retain these indices. You
must manually add all of the required patterns.

actions.yaml: |
actions:

 action: delete_indices
 description: be careful!
 filters:
 - exclude: false
 kind: regex
 filtertype: pattern
 value: '^project\.myapp\..*$'
 - direction: older
 filtertype: age
 source: name
 timestring: '%Y.%m.%d'
 unit_count: 7
 unit: days
 options:

OpenShift Container Platform 3.11 Configuring Clusters

668

 continue_if_exception: false
 timeout_override: '300'
 ignore_empty_list: true

 action: delete_indices
 description: be careful!
 filters:
 - exclude: false
 kind: regex
 filtertype: pattern
 value: '^\.operations\..*$'
 - direction: older
 filtertype: age
 source: name
 timestring: '%Y.%m.%d'
 unit_count: 56
 unit: days
 options:
 continue_if_exception: false
 timeout_override: '300'
 ignore_empty_list: true

 action: delete_indices
 description: be careful!
 filters:
 - exclude: true
 kind: regex
 filtertype: pattern
 value: '^project\.myapp\..*$|^\.operations\..*$|^\.searchguard\..*$|^\.kibana$'
 - direction: older
 filtertype: age
 source: name
 timestring: '%Y.%m.%d'
 unit_count: 30
 unit: days
 options:
 continue_if_exception: false
 timeout_override: '300'
 ignore_empty_list: true

36.5.5.2. Creating the Curator Configuration

The openshift_logging Ansible role provides a ConfigMap from which Curator reads its configuration.
You may edit or replace this ConfigMap to reconfigure Curator. Currently the logging-curator
ConfigMap is used to configure both your ops and non-ops Curator instances. Any .operations
configurations are in the same location as your application logs configurations.

1. To create the Curator configuration, edit the configuration in the deployed ConfigMap:

$ oc edit configmap/logging-curator

Or, manually create the jobs from a cronjob:

oc create job --from=cronjob/logging-curator <job_name>

For scripted deployments, copy the configuration file that was created by the installer and

CHAPTER 36. AGGREGATING CONTAINER LOGS

669

1

For scripted deployments, copy the configuration file that was created by the installer and
create your new OpenShift Container Platform custom configuration:

$ oc extract configmap/logging-curator --keys=curator5.yaml,config.yaml --to=/my/config
 edit /my/config/curator5.yaml
 edit /my/config/config.yaml
$ oc delete configmap logging-curator ; sleep 1
$ oc create configmap logging-curator \
 --from-file=curator5.yaml=/my/config/curator5.yaml \
 --from-file=config.yaml=/my/config/config.yaml \
 ; sleep 1

Alternatively, if you are using the actions file:

$ oc extract configmap/logging-curator --keys=curator5.yaml,actions.yaml --
to=/my/config
 edit /my/config/curator5.yaml
 edit /my/config/actions.yaml
$ oc delete configmap logging-curator ; sleep 1
$ oc create configmap logging-curator \
 --from-file=curator5.yaml=/my/config/curator5.yaml \
 --from-file=actions.yaml=/my/config/actions.yaml \
 ; sleep 1

The next scheduled job uses this configuration.

You can use the following commands to control the cronjob:

suspend cronjob
oc patch cronjob logging-curator -p '{"spec":{"suspend":true}}'

resume cronjob
oc patch cronjob logging-curator -p '{"spec":{"suspend":false}}

change cronjob schedule
oc patch cronjob logging-curator -p '{"spec":{"schedule":"0 0 * * *"}}' 1

The schedule option accepts schedules in cron format.

36.6. CLEANUP

Remove everything generated during the deployment.

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook [-i </path/to/inventory>] \
 playbooks/openshift-logging/config.yml \
 -e openshift_logging_install_logging=False

36.7. SENDING LOGS TO AN EXTERNAL ELASTICSEARCH INSTANCE

Fluentd sends logs to the value of the ES_HOST, ES_PORT, OPS_HOST, and OPS_PORT

OpenShift Container Platform 3.11 Configuring Clusters

670

https://en.wikipedia.org/wiki/Cron

1

Fluentd sends logs to the value of the ES_HOST, ES_PORT, OPS_HOST, and OPS_PORT
environment variables of the Elasticsearch deployment configuration. The application logs are directed
to the ES_HOST destination, and operations logs to OPS_HOST.

NOTE

Sending logs directly to an AWS Elasticsearch instance is not supported. Use Fluentd
Secure Forward to direct logs to an instance of Fluentd that you control and that is
configured with the fluent-plugin-aws-elasticsearch-service plug-in.

To direct logs to a specific Elasticsearch instance, edit the deployment configuration and replace the
value of the above variables with the desired instance:

$ oc edit ds/<daemon_set>

For an external Elasticsearch instance to contain both application and operations logs, you can set
ES_HOST and OPS_HOST to the same destination, while ensuring that ES_PORT and OPS_PORT
also have the same value.

Only Mutual TLS configuration is supported, as the provided Elasticsearch instance does. Patch or
recreate the logging-fluentd secret with your client key, client cert, and CA.

NOTE

If you are not using the provided Kibana and Elasticsearch images, you will not have the
same multi-tenant capabilities and your data will not be restricted by user access to a
particular project.

36.8. SENDING LOGS TO AN EXTERNAL SYSLOG SERVER

Use the fluent-plugin-remote-syslog plug-in on the host to send logs to an external syslog server.

Set environment variables in the logging-fluentd or logging-mux daemonsets:

The desired remote syslog host. Required for each host.

This will build two destinations. The syslog server on host1 will be receiving messages on the default
port of 514, while host2 will be receiving the same messages on port 5555.

Alternatively, you can configure your own custom fluent.conf in the logging-fluentd or logging-mux
ConfigMaps.

Fluentd Environment Variables

- name: REMOTE_SYSLOG_HOST 1
 value: host1
- name: REMOTE_SYSLOG_HOST_BACKUP
 value: host2
- name: REMOTE_SYSLOG_PORT_BACKUP
 value: 5555

CHAPTER 36. AGGREGATING CONTAINER LOGS

671

Parameter Description

USE_REMOTE_SYSLOG Defaults to false. Set to true to enable use of the fluent-plugin-remote-
syslog gem

REMOTE_SYSLOG_HOST (Required) Hostname or IP address of the remote syslog server.

REMOTE_SYSLOG_PORT Port number to connect on. Defaults to 514.

REMOTE_SYSLOG_SEVE
RITY

Set the syslog severity level. Defaults to debug.

REMOTE_SYSLOG_FACI
LITY

Set the syslog facility. Defaults to local0.

REMOTE_SYSLOG_USE_
RECORD

Defaults to false. Set to true to use the record’s severity and facility fields
to set on the syslog message.

REMOTE_SYSLOG_REM
OVE_TAG_PREFIX

Removes the prefix from the tag, defaults to '' (empty).

REMOTE_SYSLOG_TAG_
KEY

If specified, uses this field as the key to look on the record, to set the tag on
the syslog message.

REMOTE_SYSLOG_PAYL
OAD_KEY

If specified, uses this field as the key to look on the record, to set the
payload on the syslog message.

REMOTE_SYSLOG_TYPE Set the transport layer protocol type. Defaults to syslog_buffered, which
sets the TCP protocol. To switch to UDP, set this to syslog.

WARNING

This implementation is insecure, and should only be used in environments where you
can guarantee no snooping on the connection.

Fluentd Logging Ansible Variables

Parameter Description

openshift_logging_fluent
d_remote_syslog

The default is set to false. Set to true to enable use of the fluent-plugin-
remote-syslog gem.

openshift_logging_fluent
d_remote_syslog_host

Hostname or IP address of the remote syslog server, this is mandatory.



OpenShift Container Platform 3.11 Configuring Clusters

672

openshift_logging_fluent
d_remote_syslog_port

Port number to connect on, defaults to 514.

openshift_logging_fluent
d_remote_syslog_severit
y

Set the syslog severity level, defaults to debug.

openshift_logging_fluent
d_remote_syslog_facility

Set the syslog facility, defaults to local0.

openshift_logging_fluent
d_remote_syslog_use_re
cord

The default is set to false. Set to true to use the record’s severity and
facility fields to set on the syslog message.

openshift_logging_fluent
d_remote_syslog_remove
_tag_prefix

Removes the prefix from the tag, defaults to '' (empty).

openshift_logging_fluent
d_remote_syslog_tag_ke
y

If string is specified, uses this field as the key to look on the record, to set
the tag on the syslog message.

openshift_logging_fluent
d_remote_syslog_payloa
d_key

If string is specified, uses this field as the key to look on the record, to set
the payload on the syslog message.

Parameter Description

Mux Logging Ansible Variables

Parameter Description

openshift_logging_mux_r
emote_syslog

The default is set to false. Set to true to enable use of the fluent-plugin-
remote-syslog gem.

openshift_logging_mux_r
emote_syslog_host

Hostname or IP address of the remote syslog server, this is mandatory.

openshift_logging_mux_r
emote_syslog_port

Port number to connect on, defaults to 514.

openshift_logging_mux_r
emote_syslog_severity

Set the syslog severity level, defaults to debug.

openshift_logging_mux_r
emote_syslog_facility

Set the syslog facility, defaults to local0.

CHAPTER 36. AGGREGATING CONTAINER LOGS

673

openshift_logging_mux_r
emote_syslog_use_recor
d

The default is set to false. Set to true to use the record’s severity and
facility fields to set on the syslog message.

openshift_logging_mux_r
emote_syslog_remove_ta
g_prefix

Removes the prefix from the tag, defaults to '' (empty).

openshift_logging_mux_r
emote_syslog_tag_key

If string is specified, uses this field as the key to look on the record, to set
the tag on the syslog message.

openshift_logging_mux_r
emote_syslog_payload_k
ey

If string is specified, uses this field as the key to look on the record, to set
the payload on the syslog message.

Parameter Description

36.9. PERFORMING ADMINISTRATIVE ELASTICSEARCH OPERATIONS

As of logging version 3.2.0, an administrator certificate, key, and CA that can be used to communicate
with and perform administrative operations on Elasticsearch are provided within the logging-
elasticsearch secret.

NOTE

To confirm whether or not your EFK installation provides these, run:

$ oc describe secret logging-elasticsearch

1. Connect to an Elasticsearch pod that is in the cluster on which you are attempting to perform
maintenance.

2. To find a pod in a cluster use either:

$ oc get pods -l component=es -o name | head -1
$ oc get pods -l component=es-ops -o name | head -1

3. Connect to a pod:

$ oc rsh <your_Elasticsearch_pod>

4. Once connected to an Elasticsearch container, you can use the certificates mounted from the
secret to communicate with Elasticsearch per its Indices APIs documentation.
Fluentd sends its logs to Elasticsearch using the index format project.{project_name}.
{project_uuid}.YYYY.MM.DD where YYYY.MM.DD is the date of the log record.

For example, to delete all logs for the openshift-logging project with uuid 3b3594fa-2ccd-
11e6-acb7-0eb6b35eaee3 from June 15, 2016, we can run:

OpenShift Container Platform 3.11 Configuring Clusters

674

https://www.elastic.co/guide/en/elasticsearch/reference/2.3/indices.html

$ curl --key /etc/elasticsearch/secret/admin-key \
 --cert /etc/elasticsearch/secret/admin-cert \
 --cacert /etc/elasticsearch/secret/admin-ca -XDELETE \
 "https://localhost:9200/project.logging.3b3594fa-2ccd-11e6-acb7-
0eb6b35eaee3.2016.06.15"

36.10. REDEPLOYING EFK CERTIFICATES

You can use an Ansible playbook to perform a certificate rotation for the EFK stack without needing to
run the install/upgrade playbook.

This playbook deletes the current certificate files, generates new EFK certificates, updates certificate
secrets, and restarts Kibana and Elasticsearch to force those components to read in the updated
certificates.

To redeploy EFK certificates:

1. Use the Ansible playbook to redeploy the EFK certificates:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook playbooks/openshift-logging/redeploy-certificates.yml

36.11. CHANGING THE AGGREGATED LOGGING DRIVER

For aggregated logging, it is recommended to use the json-file log driver.

IMPORTANT

When using the json-file driver, ensure that you are using Docker version docker-1.12.6-
55.gitc4618fb.el7_4 now or later.

Fluentd determines the driver Docker is using by checking the /etc/docker/daemon.json and
/etc/sysconfig/docker files.

You can determine which driver Docker is using with the docker info command:

docker info | grep Logging

Logging Driver: journald

To change to json-file:

1. Modify either the /etc/sysconfig/docker or /etc/docker/daemon.json files.
For example:

cat /etc/sysconfig/docker
OPTIONS=' --selinux-enabled --log-driver=json-file --log-opt max-size=1M --log-opt max-
file=3 --signature-verification=False'

cat /etc/docker/daemon.json
{
"log-driver": "json-file",
"log-opts": {

CHAPTER 36. AGGREGATING CONTAINER LOGS

675

2. Restart the Docker service:

systemctl restart docker

3. Restart Fluentd.

WARNING

Restarting Fluentd on more than a dozen nodes at once will create a large
load on the Kubernetes scheduler. Exercise caution when using the
following the directions to restart Fluentd.

There are two methods for restarting Fluentd. You can restart the Fluentd on one node or a set
of nodes, or on all nodes.

a. The following steps demonstrate how to restart Fluentd on one node or a set of nodes.

i. List the nodes where Fluentd is running:

$ oc get nodes -l logging-infra-fluentd=true

ii. For each node, remove the label and turn off Fluentd:

$ oc label node $node logging-infra-fluentd-

iii. Verify Fluentd is off:

$ oc get pods -l component=fluentd

iv. For each node, restart Fluentd:

$ oc label node $node logging-infra-fluentd=true

b. The following steps demonstrate how to restart the Fluentd all nodes.

i. Turn off Fluentd on all nodes:

$ oc label node -l logging-infra-fluentd=true --overwrite logging-infra-fluentd=false

ii. Verify Fluentd is off:

$ oc get pods -l component=fluentd

"max-size": "1M",
"max-file": "1"
}
}



OpenShift Container Platform 3.11 Configuring Clusters

676

iii. Restart Fluentd on all nodes:

$ oc label node -l logging-infra-fluentd=false --overwrite logging-infra-fluentd=true

iv. Verify Fluentd is on:

$ oc get pods -l component=fluentd

36.12. MANUAL ELASTICSEARCH ROLLOUTS

As of OpenShift Container Platform 3.7 the Aggregated Logging stack updated the Elasticsearch
Deployment Config object so that it no longer has a Config Change Trigger, meaning any changes to
the dc will not result in an automatic rollout. This was to prevent unintended restarts happening in the
Elasticsearch cluster, which could create excessive shard rebalancing as cluster members restart.

This section presents two restart procedures: rolling-restart and full-restart. Where a rolling restart
applies appropriate changes to the Elasticsearch cluster without down time (provided three masters are
configured) and a full restart safely applies major changes without risk to existing data.

36.12.1. Performing an Elasticsearch Rolling Cluster Restart

A rolling restart is recommended, when any of the following changes are made:

nodes on which Elasticsearch pods run require a reboot

logging-elasticsearch configmap

logging-es-* deployment configuration

new image deployment, or upgrade

This will be the recommended restart policy going forward.

NOTE

Any action you do for an Elasticsearch cluster will need to be repeated for the ops cluster
if openshift_logging_use_ops was configured to be True.

1. Prevent shard balancing when purposely bringing down nodes:

$ oc exec -c elasticsearch <any_es_pod_in_the_cluster> -- \
 curl -s \
 --cacert /etc/elasticsearch/secret/admin-ca \
 --cert /etc/elasticsearch/secret/admin-cert \
 --key /etc/elasticsearch/secret/admin-key \
 -XPUT 'https://localhost:9200/_cluster/settings' \
 -d '{ "transient": { "cluster.routing.allocation.enable" : "none" } }'

2. Once complete, for each dc you have for an Elasticsearch cluster, run oc rollout latest to
deploy the latest version of the dc object:

$ oc rollout latest <dc_name>

You will see a new pod deployed. Once the pod has two ready containers, you can move on to

CHAPTER 36. AGGREGATING CONTAINER LOGS

677

You will see a new pod deployed. Once the pod has two ready containers, you can move on to
the next dc.

3. Once all `dc`s for the cluster have been rolled out, re-enable shard balancing:

$ oc exec -c elasticsearch <any_es_pod_in_the_cluster> -- \
 curl -s \
 --cacert /etc/elasticsearch/secret/admin-ca \
 --cert /etc/elasticsearch/secret/admin-cert \
 --key /etc/elasticsearch/secret/admin-key \
 -XPUT 'https://localhost:9200/_cluster/settings' \
 -d '{ "transient": { "cluster.routing.allocation.enable" : "all" } }'

36.12.2. Performing an Elasticsearch Full Cluster Restart

A full restart is recommended when changing major versions of Elasticsearch or other changes which
might put data integrity a risk during the change process.

NOTE

Any action you do for an Elasticsearch cluster will need to be repeated for the ops cluster
if openshift_logging_use_ops was configured to be True.

NOTE

When making changes to the logging-es-ops service use components "es-ops-blocked"
and "es-ops" instead in the patch

1. Disable all external communications to the Elasticsearch cluster while it is down. Edit your non-
cluster logging service (for example, logging-es, logging-es-ops) to no longer match the
Elasticsearch pods running:

$ oc patch svc/logging-es -p '{"spec":{"selector":{"component":"es-
blocked","provider":"openshift"}}}'

2. Perform a shard synced flush to ensure there are no pending operations waiting to be written to
disk prior to shutting down:

$ oc exec -c elasticsearch <any_es_pod_in_the_cluster> -- \
 curl -s \
 --cacert /etc/elasticsearch/secret/admin-ca \
 --cert /etc/elasticsearch/secret/admin-cert \
 --key /etc/elasticsearch/secret/admin-key \
 -XPOST 'https://localhost:9200/_flush/synced'

3. Prevent shard balancing when purposely bringing down nodes:

$ oc exec -c elasticsearch <any_es_pod_in_the_cluster> -- \
 curl -s \
 --cacert /etc/elasticsearch/secret/admin-ca \
 --cert /etc/elasticsearch/secret/admin-cert \

OpenShift Container Platform 3.11 Configuring Clusters

678

 --key /etc/elasticsearch/secret/admin-key \
 -XPUT 'https://localhost:9200/_cluster/settings' \
 -d '{ "transient": { "cluster.routing.allocation.enable" : "none" } }'

4. Once complete, for each dc you have for an Elasticsearch cluster, scale down all nodes:

$ oc scale dc <dc_name> --replicas=0

5. Once scale down is complete, for each dc you have for an Elasticsearch cluster, run oc rollout
latest to deploy the latest version of the dc object:

$ oc rollout latest <dc_name>

You will see a new pod deployed. Once the pod has two ready containers, you can move on to
the next dc.

6. Once deployment is complete, for each dc you have for an Elasticsearch cluster, scale up the
nodes:

$ oc scale dc <dc_name> --replicas=1

7. Once the scale up is complete, enable all external communications to the ES cluster. Edit your
non-cluster logging service (for example, logging-es, logging-es-ops) to match the
Elasticsearch pods running again:

$ oc patch svc/logging-es -p '{"spec":{"selector":{"component":"es","provider":"openshift"}}}'

36.13. TROUBLESHOOTING EFK

The following is troubleshooting information for a number of commonly identified issues with cluster
logging deployments:

36.13.1. Troubleshooting related to all EFK components

The following troubleshooting issues apply to the EFK stack in general.

Deployment fails, ReplicationControllers scaled to 0

If you perform a deployment that does not successfully bring up an instance before a ten-minute
timeout, OpenShift Container Platform considers the deployment as failed and scales down to zero
instances. The oc get pods command shows a deployer pod with a non-zero exit code and no deployed
pods.

In the following example, the deployer pod name for an Elasticsearch deployment is shown; this is from
ReplicationController logging-es-2e7ut0iq-1, which is a deployment of DeploymentConfig logging-es-
2e7ut0iq.

NAME READY STATUS RESTARTS AGE
logging-es-2e7ut0iq-1-deploy 1/1 ExitCode:255 0 1m

Deployment failure can happen for a number of transitory reasons, such as the image pull taking too
long or nodes being unresponsive.

CHAPTER 36. AGGREGATING CONTAINER LOGS

679

Examine the deployer pod logs for possible reasons or attempt to redeploy:

$ oc deploy --latest logging-es-2e7ut0iq

Alternatively, attempt to scale up the existing deployment:

$ oc scale --replicas=1 logging-es-2e7ut0iq-1

If the problem persists, examine the pod, events, and systemd unit logs to determine the source of the
problem.

Cannot resolve kubernetes.default.svc.cluster.local

This internal alias for the master must be resolvable by the included DNS server on the master.
Depending on your platform, you can run the dig command (for example, in a container) against the
master to check whether this is the case:

$ dig kubernetes.default.svc.cluster.local @localhost
[...]
;; QUESTION SECTION:
;kubernetes.default.svc.cluster.local. IN A

;; ANSWER SECTION:
kubernetes.default.svc.cluster.local. 30 IN A 172.30.0.1

Older versions of cluster logging did not automatically define this internal alias for the master. You might
need to upgrade your cluster in order to use aggregated logging. If your cluster is up to date, there
might be a problem with your pods reaching the SkyDNS resolver at the master or the pod could have
been blocked from running. You must resolve this problem before deploying again.

Cannot connect to the master or services

If DNS resolution does not return at all or the address cannot be connected to from within a pod (such
as the fluentd pod), this could be an indication of a system firewall/network problem. You must debug
this problem.

36.13.2. Troubleshooting related to ElasticSearch

The following troubleshooting issues apply to the ElasticSearch components of the EFK stack.

Elasticsearch deployments never succeed and rollback to previous version

This situation typically occurs itself on OpenShift Container Platform with cluster logging deployed on
AWS. Describing the Elasticsearch pods typically reveals issues re-attaching the pods storage:

$ oc describe pod <elasticsearch-pod>

Consider patching each Elasticsearch deployment configuration to allow more time for AWS to make the
storage available:

$ oc patch dc <elasticsearch-deployment-config> -p '{"spec":{"strategy":{"recreateParams":
{"timeoutSeconds":1800}}}}'

Searchguard index remains red

This is a known issue related to upgrading and moving to a single SearchGuard index per cluster instead

OpenShift Container Platform 3.11 Configuring Clusters

680

This is a known issue related to upgrading and moving to a single SearchGuard index per cluster instead
of one index per deployment configuration. The Elasticsearch Explain API is used to discover the reason
and removing the index to node assignment is required:

$ oc -c elasticsearch exec ${pod} -- es_util --query=".searchguard/_settings" -XPUT -d "
{\"index.routing.allocation.include._name\": \"\"}"

Elasticsearch pods never become ready

This is known issue when the initialization and seeding process fails, which can be from a red
.searchguard index.

for p in $(oc get pods -l component=es -o jsonpath={.items[*].metadata.name}); do \
 oc exec -c elasticsearch $p -- touch /opt/app-root/src/init_failures; \
done

36.13.3. Kibana

The following troubleshooting issues apply to the Kibana components of the EFK stack.

Looping log in on Kibana

If you launch the Kibana console and login successfully, you are incorrectly redirected back to Kibana,
which immediately redirects back to the login screen.

The likely cause for this issue is that the OAuth2 proxy in front of Kibana must share a secret with the
master’s OAuth2 server in order to identify it as a valid client. This problem could indicate that the
secrets do not match. Nothing reports this problem in a way that can be exposed.

This can happen when you deploy logging more than once. For example, if you fix the initial deployment
and the secret used by Kibana is replaced while the matching master oauthclient entry to match is not
replaced.

You can do the following:

$ oc delete oauthclient/kibana-proxy

Follow the openshift-ansible instructions to re-run the openshift_logging role. This replaces the
oauthclient and your next successful login should not loop.

"error":"invalid_request" on login

Login error on Kibana

When attempting to visit the Kibana console, you might receive a browser error instead:

{"error":"invalid_request","error_description":"The request is missing a required parameter,
 includes an invalid parameter value, includes a parameter more than once, or is otherwise
malformed."}

This problem can be caused by a mismatch between the OAuth2 client and server. The return address
for the client must be in a whitelist so the server can securely redirect back after logging in. If there is a
mismatch, the error message is shown.

This can be caused by an oauthclient entry lingering from a previous deployment, in which case you can

CHAPTER 36. AGGREGATING CONTAINER LOGS

681

This can be caused by an oauthclient entry lingering from a previous deployment, in which case you can
replace it:

$ oc delete oauthclient/kibana-proxy

Follow the openshift-ansible instructions to re-run the openshift_logging role, which replaces the
oauthclient entry. Return to the Kibana console and log in again.

If the problem persists, check that you are accessing Kibana at a URL listed in the OAuth client. This
issue can be caused by accessing the URL at a forwarded port, such as 1443 instead of the standard 443
HTTPS port.

You can adjust the server whitelist by editing its oauthclient:

$ oc edit oauthclient/kibana-proxy

Edit the list of redirect URIs accepted to include the address you are actually using. After you save and
exit, this should resolve the error.

Kibana access shows 503 error

If you receive a proxy error when viewing the Kibana console, it could be caused by one of two issues.

Kibana might not be recognizing pods. If ElasticSearch is slow in starting up, Kibana might error
out trying to reach ElasticSearch and Kibana does not consider it alive. You can check whether
the relevant service has any endpoints:

$ oc describe service logging-kibana
Name: logging-kibana
[...]
Endpoints: <none>

If any Kibana pods are live, endpoints should be listed. If they are not, check the state of the
Kibana pod(s) and deployment.

The named route for accessing the Kibana service might be masked.
This can happen if you perform a test deployment in one project, then deploy in a different
project without completely removing the first deployment. When multiple routes are sent to the
same destination, the default router only routes to the first destination created. Check the
problematic route to see if it is defined in multiple places:

$ oc get route --all-namespaces --selector logging-infra=support
NAMESPACE NAME HOST/PORT PATH SERVICE
logging kibana kibana.example.com logging-kibana
logging kibana-ops kibana-ops.example.com logging-kibana-ops

In this example there are no overlapping routes.

OpenShift Container Platform 3.11 Configuring Clusters

682

CHAPTER 37. AGGREGATE LOGGING SIZING GUIDELINES

37.1. OVERVIEW

The Elasticsearch, Fluentd, and Kibana (EFK) stack aggregates logs from nodes and applications
running inside your OpenShift Container Platform installation. Once deployed it uses Fluentd to
aggregate logs from all nodes, and pods into Elasticsearch (ES). It also provides a centralized Kibana
web UI where users and administrators can create rich visualizations and dashboards with the
aggregated data.

37.2. INSTALLATION

The general procedure for installing an aggregate logging stack in OpenShift Container Platform is
described in Aggregating Container Logs. There are some important things to keep in mind while going
through the installation guide:

In order for the logging pods to spread evenly across your cluster, an empty node selector should be
used when creating the project.

$ oc adm new-project logging --node-selector=""

In conjunction with node labeling, which is done later, this controls pod placement across the logging
project.

Elasticsearch (ES) should be deployed with a cluster size of at least three for resiliency to node failures.
This is specified by setting the openshift_logging_es_cluster_size parameter in the inventory host
file.

Refer to Ansible Variables for a full list of parameters.

Kibana requires a host name that can be resolved from wherever the browser will be used to access it.
For example, you might need to add a DNS alias for Kibana to your corporate name service in order to
access Kibana from the web browser running on your laptop. Logging deployment creates a Route to
Kibana on one of your "infra" nodes or wherever the OpenShift router is running. The Kibana hostname
alias should point to this machine. This hostname is specified as the Ansible
openshift_logging_kibana_hostname variable.

Installation can take some time depending on whether the images were already retrieved from the
registry or not, and on the size of your cluster.

Inside the openshift-logging project, you can check your deployment with oc get all.

$ oc get all

NAME REVISION REPLICAS TRIGGERED BY
logging-curator 1 1
logging-es-6cvk237t 1 1
logging-es-e5x4t4ai 1 1
logging-es-xmwvnorv 1 1
logging-kibana 1 1
NAME DESIRED CURRENT AGE
logging-curator-1 1 1 3d
logging-es-6cvk237t-1 1 1 3d
logging-es-e5x4t4ai-1 1 1 3d

CHAPTER 37. AGGREGATE LOGGING SIZING GUIDELINES

683

http://www.fluentd.org/architecture
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/guide/en/kibana/current/introduction.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#using-node-selectors

logging-es-xmwvnorv-1 1 1 3d
logging-kibana-1 1 1 3d
NAME HOST/PORT PATH SERVICE TERMINATION
LABELS
logging-kibana kibana.example.com logging-kibana reencrypt
component=support,logging-infra=support,provider=openshift
logging-kibana-ops kibana-ops.example.com logging-kibana-ops reencrypt
component=support,logging-infra=support,provider=openshift
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
logging-es 172.24.155.177 <none> 9200/TCP 3d
logging-es-cluster None <none> 9300/TCP 3d
logging-es-ops 172.27.197.57 <none> 9200/TCP 3d
logging-es-ops-cluster None <none> 9300/TCP 3d
logging-kibana 172.27.224.55 <none> 443/TCP 3d
logging-kibana-ops 172.25.117.77 <none> 443/TCP 3d
NAME READY STATUS RESTARTS AGE
logging-curator-1-6s7wy 1/1 Running 0 3d
logging-deployer-un6ut 0/1 Completed 0 3d
logging-es-6cvk237t-1-cnpw3 1/1 Running 0 3d
logging-es-e5x4t4ai-1-v933h 1/1 Running 0 3d
logging-es-xmwvnorv-1-adr5x 1/1 Running 0 3d
logging-fluentd-156xn 1/1 Running 0 3d
logging-fluentd-40biz 1/1 Running 0 3d
logging-fluentd-8k847 1/1 Running 0 3d

You should end up with a similar setup to the following.

$ oc get pods -o wide

NAME READY STATUS RESTARTS AGE NODE
logging-curator-1-6s7wy 1/1 Running 0 3d ip-172-31-24-239.us-west-
2.compute.internal
logging-deployer-un6ut 0/1 Completed 0 3d ip-172-31-6-152.us-west-
2.compute.internal
logging-es-6cvk237t-1-cnpw3 1/1 Running 0 3d ip-172-31-24-238.us-west-
2.compute.internal
logging-es-e5x4t4ai-1-v933h 1/1 Running 0 3d ip-172-31-24-235.us-west-
2.compute.internal
logging-es-xmwvnorv-1-adr5x 1/1 Running 0 3d ip-172-31-24-233.us-west-
2.compute.internal
logging-fluentd-156xn 1/1 Running 0 3d ip-172-31-24-241.us-west-
2.compute.internal
logging-fluentd-40biz 1/1 Running 0 3d ip-172-31-24-236.us-west-
2.compute.internal
logging-fluentd-8k847 1/1 Running 0 3d ip-172-31-24-237.us-west-
2.compute.internal
logging-fluentd-9a3qx 1/1 Running 0 3d ip-172-31-24-231.us-west-
2.compute.internal
logging-fluentd-abvgj 1/1 Running 0 3d ip-172-31-24-228.us-west-
2.compute.internal
logging-fluentd-bh74n 1/1 Running 0 3d ip-172-31-24-238.us-west-
2.compute.internal
...
...

By default the amount of RAM allocated to each ES instance is 16GB.

OpenShift Container Platform 3.11 Configuring Clusters

684

openshift_logging_es_memory_limit is the parameter used in the openshift-ansible host inventory
file. Keep in mind that half of this value will be passed to the individual elasticsearch pods java processes
heap size.

Learn more about installing EFK .

37.2.1. Large Clusters

At 100 nodes or more, it is recommended to first pre-pull the logging images from docker pull
registry.redhat.io/openshift3/logging-fluentd:v3.11. After deploying the logging infrastructure pods
(Elasticsearch, Kibana, and Curator), node labeling should be done in steps of 20 nodes at a time. For
example:

Using a simple loop:

$ while read node; do oc label nodes $node logging-infra-fluentd=true; done < 20_fluentd.lst

The following also works:

$ oc label nodes 10.10.0.{100..119} logging-infra-fluentd=true

Labeling nodes in groups paces the DaemonSets used by OpenShift logging, helping to avoid
contention on shared resources such as the image registry.

NOTE

Check for the occurence of any "CrashLoopBackOff | ImagePullFailed | Error" issues. oc
logs <pod>, oc describe pod <pod> and oc get event are helpful diagnostic
commands.

37.3. SYSTEMD-JOURNALD AND RSYSLOG

In Red Hat Enterprise Linux (RHEL) 7 the systemd-journald.socket unit creates /dev/log during the
boot process, and then passes input to systemd-journald.service. Every syslog() call goes to the
journal.

The default rate limiting for systemd-journald causes some system logs to be dropped before Fluentd
can read them. To prevent this add the following to the /etc/systemd/journald.conf file:

Disable rate limiting
RateLimitInterval=1s
RateLimitBurst=10000
Storage=volatile
Compress=no
MaxRetentionSec=30s

Then restart the services.

$ systemctl restart systemd-journald.service
$ systemctl restart rsyslog.service

These settings account for the bursty nature of uploading in bulk.

CHAPTER 37. AGGREGATE LOGGING SIZING GUIDELINES

685

https://www.elastic.co/guide/en/elasticsearch/guide/current/heap-sizing.html#_give_half_your_memory_to_lucene

After removing the rate limit, you may see increased CPU utilization on the system logging daemons as
it processes any messages that would have previously been throttled.

37.4. SCALING UP EFK LOGGING

If you do not indicate the desired scale at first deployment, the least disruptive way of adjusting your
cluster is by re-running the Ansible logging playbook after updating the inventory file with an updated
openshift_logging_es_cluster_size value. parameter. Refer to the Performing Administrative
Elasticsearch Operations section for more in-depth information.

NOTE

A highly-available Elasticsearch environment requires at least three Elasticsearch nodes,
each on a different host, and setting the openshift_logging_es_number_of_replicas
Ansible variable to a value of 1 or higher to create replicas.

37.4.1. Master Events are Aggregated to EFK as Logs

The eventrouter pod scrapes the events from kubernetes API and and outputs to STDOUT. The
fluentd plug-in transforms the log message and sends it to Elasticsearch (ES).

Enable openshift_logging_install_eventrouter by setting it to true. It is off by default. Eventrouter is
deployed to the default namespace. Collected information is in operation indices of ES and only cluster
administrators have visual access.

37.5. STORAGE CONSIDERATIONS

An Elasticsearch index is a collection of shards and their corresponding replicas. This is how ES
implements high availability internally, so there is little need to use hardware based mirroring RAID
variants. RAID 0 can still be used to increase overall disk performance.

A persistent volume is added to each Elasticsearch deployment configuration. On OpenShift Container
Platform this is usually achieved through Persistent Volume Claims .

The PVCs is named based on the openshift_logging_es_pvc_prefix setting. Refer to Persistent
Elasticsearch Storage for more details.

Fluentd ships any logs from systemd journal and /var/lib/docker/containers/*.log to Elasticsearch.
Learn more .

Local SSD drives are recommended in order to achieve the best performance. In Red Hat Enterprise
Linux (RHEL) 7, the deadline IO scheduler is the default for all block devices except SATA disks. For
SATA disks, the default IO scheduler is cfq.

Sizing storage for ES is greatly dependent on how you optimize your indices. Therefore, consider how
much data you need in advance and that you are aggregating application log data. Some Elasticsearch
users have found that it is necessary to keep absolute storage consumption around 50% and below 70%
at all times. This helps to avoid Elasticsearch becoming unresponsive during large merge operations.

OpenShift Container Platform 3.11 Configuring Clusters

686

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#persistent-volume-claims
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#managing-docker-container-logs
https://access.redhat.com/articles/425823
https://signalfx.com/blog/how-we-monitor-and-run-elasticsearch-at-scale/

CHAPTER 38. ENABLING CLUSTER METRICS

38.1. OVERVIEW

The kubelet exposes metrics that can be collected and stored in back-ends by Heapster.

As an OpenShift Container Platform administrator, you can view a cluster’s metrics from all containers
and components in one user interface.

NOTE

Previous versions of OpenShift Container Platform used metrics from Heapster to
configure horizontal pod autoscalers. Now horizontal pod autoscalers use metrics from
the OpenShift Container Platform metrics server. See Requirements for Using Horizontal
Pod Autoscalers for detailed information.

This topic describes using Hawkular Metrics as a metrics engine which stores the data persistently in a
Cassandra database. When this is configured, CPU, memory and network-based metrics are viewable
from the OpenShift Container Platform web console.

Heapster retrieves a list of all nodes from the master server, then contacts each node individually
through the /stats endpoint. From there, Heapster scrapes the metrics for CPU, memory and network
usage, then exports them into Hawkular Metrics.

The storage volume metrics available on the kubelet are not available through the /stats endpoint, but
are available through the /metrics endpoint. See Prometheus Monitoring for detailed information.

Browsing individual pods in the web console displays separate sparkline charts for memory and CPU.
The time range displayed is selectable, and these charts automatically update every 30 seconds. If there
are multiple containers on the pod, then you can select a specific container to display its metrics.

If resource limits are defined for your project, then you can also see a donut chart for each pod. The
donut chart displays usage against the resource limit. For example: 145 Available of 200 MiB, with the
donut chart showing 55 MiB Used.

38.2. BEFORE YOU BEGIN

An Ansible playbook is available to deploy and upgrade cluster metrics. You should familiarize yourself
with the Installing Clusters guide. This provides information for preparing to use Ansible and includes
information about configuration. Parameters are added to the Ansible inventory file to configure various
areas of cluster metrics.

The following describes the various areas and the parameters that can be added to the Ansible
inventory file in order to modify the defaults.

38.3. METRICS DATA STORAGE

You can store the metrics data to either persistent storage or to a temporary pod volume.

38.3.1. Persistent Storage

Running OpenShift Container Platform cluster metrics with persistent storage means that your metrics
are stored to a persistent volume and are able to survive a pod being restarted or recreated. This is ideal

CHAPTER 38. ENABLING CLUSTER METRICS

687

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#kubelet
https://github.com/kubernetes/heapster
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#req-for-using-hpas
https://github.com/hawkular/hawkular-metrics
http://cassandra.apache.org/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-limits
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-planning
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-volumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#persistent-volumes

if you require your metrics data to be guarded from data loss. For production environments it is highly
recommended to configure persistent storage for your metrics pods.

The size requirement of the Cassandra storage is dependent on the number of pods. It is the
administrator’s responsibility to ensure that the size requirements are sufficient for their setup and to
monitor usage to ensure that the disk does not become full. The size of the persisted volume claim is
specified with the openshift_metrics_cassandra_pvc_sizeansible variable which is set to 10 GB by
default.

If you would like to use dynamically provisioned persistent volumes set the
openshift_metrics_cassandra_storage_typevariable to dynamic in the inventory file.

38.3.2. Capacity Planning for Cluster Metrics

After running the openshift_metrics Ansible role, the output of oc get pods should resemble the
following:

 # oc get pods -n openshift-infra
 NAME READY STATUS RESTARTS AGE
 hawkular-cassandra-1-l5y4g 1/1 Running 0 17h
 hawkular-metrics-1t9so 1/1 Running 0 17h
 heapster-febru 1/1 Running 0 17h

OpenShift Container Platform metrics are stored using the Cassandra database, which is deployed with
settings of openshift_metrics_cassandra_limits_memory: 2G; this value could be adjusted further
based upon the available memory as determined by the Cassandra start script. This value should cover
most OpenShift Container Platform metrics installations, but using environment variables you can
modify the MAX_HEAP_SIZE along with heap new generation size, HEAP_NEWSIZE, in the Cassandra
Dockerfile prior to deploying cluster metrics.

By default, metrics data is stored for seven days. After seven days, Cassandra begins to purge the oldest
metrics data. Metrics data for deleted pods and projects is not automatically purged; it is only removed
once the data is more than seven days old.

Example 38.1. Data Accumulated by 10 Nodes and 1000 Pods

In a test scenario including 10 nodes and 1000 pods, a 24 hour period accumulated 2.5 GB of metrics
data. Therefore, the capacity planning formula for metrics data in this scenario is:

(((2.5 × 109) ÷ 1000) ÷ 24) ÷ 10 6 = ~0.125 MB/hour per pod.

Example 38.2. Data Accumulated by 120 Nodes and 10000 Pods

In a test scenario including 120 nodes and 10000 pods, a 24 hour period accumulated 25 GB of
metrics data. Therefore, the capacity planning formula for metrics data in this scenario is:

(((11.410 × 109) ÷ 1000) ÷ 24) ÷ 10 6 = 0.475 MB/hour

OpenShift Container Platform 3.11 Configuring Clusters

688

 1000 pods 10000 pods

Cassandra storage data
accumulated over 24 hours
(default metrics parameters)

2.5 GB 11.4 GB

If the default value of 7 days for openshift_metrics_duration and 30 seconds for
openshift_metrics_resolution are preserved, then weekly storage requirements for the Cassandra pod
would be:

 1000 pods 10000 pods

Cassandra storage data
accumulated over seven days
(default metrics parameters)

20 GB 90 GB

In the previous table, an additional 10 percent was added to the expected storage space as a buffer for
unexpected monitored pod usage.

WARNING

If the Cassandra persisted volume runs out of sufficient space, then data loss
occurs.

For cluster metrics to work with persistent storage, ensure that the persistent volume has the
ReadWriteOnce access mode. If this mode is not active, then the persistent volume claim cannot locate
the persistent volume, and Cassandra fails to start.

To use persistent storage with the metric components, ensure that a persistent volume of sufficient size
is available. The creation of persistent volume claims is handled by the OpenShift Ansible
openshift_metrics role.

OpenShift Container Platform metrics also supports dynamically-provisioned persistent volumes. To
use this feature with OpenShift Container Platform metrics, it is necessary to set the value of
openshift_metrics_cassandra_storage_type to dynamic. You can use EBS, GCE, and Cinder storage
back-ends to dynamically provision persistent volumes.

For information on configuring the performance and scaling the cluster metrics pods, see the Scaling
Cluster Metrics topic.

Table 38.1. Cassandra Database storage requirements based on number of nodes/pods in the
cluster



CHAPTER 38. ENABLING CLUSTER METRICS

689

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#persistent-volumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#persistent-volume-claims
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/scaling_and_performance_guide/#scaling-performance-cluster-metrics

Number of Nodes Number of Pods Cassandra
Storage growth
speed

Cassandra
storage growth
per day

Cassandra
storage growth
per week

210 10500 500 MB per hour 15 GB 75 GB

990 11000 1 GB per hour 30 GB 210 GB

In the above calculation, approximately 20 percent of the expected size was added as overhead to
ensure that the storage requirements do not exceed calculated value.

If the METRICS_DURATION and METRICS_RESOLUTION values are kept at the default (7 days and
15 seconds respectively), it is safe to plan Cassandra storage size requrements for week, as in the values
above.

WARNING

Because OpenShift Container Platform metrics uses the Cassandra database as a
datastore for metrics data, if USE_PERSISTANT_STORAGE=true is set during the
metrics set up process, PV will be on top in the network storage, with NFS as the
default. However, using network storage in combination with Cassandra is not
recommended, as per the Cassandra documentation.

Known Issues and Limitations
Testing found that the heapster metrics component is capable of handling up to 25,000 pods. If the
amount of pods exceed that number, Heapster begins to fall behind in metrics processing, resulting in
the possibility of metrics graphs no longer appearing. Work is ongoing to increase the number of pods
that Heapster can gather metrics on, as well as upstream development of alternate metrics-gathering
solutions.

38.3.3. Non-Persistent Storage

Running OpenShift Container Platform cluster metrics with non-persistent storage means that any
stored metrics are deleted when the pod is deleted. While it is much easier to run cluster metrics with
non-persistent data, running with non-persistent data does come with the risk of permanent data loss.
However, metrics can still survive a container being restarted.

In order to use non-persistent storage, you must set the
openshift_metrics_cassandra_storage_typevariable to emptydir in the inventory file.

NOTE

When using non-persistent storage, metrics data is written to
/var/lib/origin/openshift.local.volumes/pods on the node where the Cassandra pod
runs Ensure /var has enough free space to accommodate metrics storage.

38.4. METRICS ANSIBLE ROLE



OpenShift Container Platform 3.11 Configuring Clusters

690

http://docs.datastax.com/en/landing_page/doc/landing_page/planning/planningAntiPatterns.html#planningAntiPatterns__AntiPatNAS

The OpenShift Container Platform Ansible openshift_metrics role configures and deploys all of the
metrics components using the variables from the Configuring Ansible inventory file.

38.4.1. Specifying Metrics Ansible Variables

The openshift_metrics role included with OpenShift Ansible defines the tasks to deploy cluster metrics.
The following is a list of role variables that can be added to your inventory file if it is necessary to
override them.

Table 38.2. Ansible Variables

Variable Description

openshift_metrics_install_metrics Deploy metrics if true. Otherwise, undeploy.

openshift_metrics_start_cluster Start the metrics cluster after deploying the
components.

openshift_metrics_startup_timeout The time, in seconds, to wait until Hawkular Metrics
and Heapster start up before attempting a restart.

openshift_metrics_duration The number of days to store metrics before they are
purged.

openshift_metrics_resolution The frequency that metrics are gathered. Defined as
a number and time identifier: seconds (s), minutes
(m), hours (h).

openshift_metrics_cassandra_pvc_name Use this variable to specify the exact name of the
Cassandra volume to use. If a volume with the
specified name does not exist, it is created. This
variable can only be used with a single Cassandra
replica. For multiple Cassandra replicas, use the
variable
openshift_metrics_cassandra_pvc_prefix
instead.

openshift_metrics_cassandra_pvc_prefix The persistent volume claim prefix created for
Cassandra. A serial number is appended to the prefix
starting from 1.

openshift_metrics_cassandra_pvc_size The persistent volume claim size for each of the
Cassandra nodes.

openshift_metrics_cassandra_pvc_storage_
class_name

Specify the storage class to use. If you want to
explicitly set the storage class, also set
openshift_metrics_cassandra_storage_type=
pv.

CHAPTER 38. ENABLING CLUSTER METRICS

691

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible

openshift_metrics_cassandra_storage_type Use emptydir for ephemeral storage (for testing);
pv for persistent volumes, which need to be created
before the installation; or dynamic for dynamic
persistent volumes. If you want to explicitly set the
storage class, specify pv and set a
openshift_metrics_cassandra_pvc_storage_
class_name.

openshift_metrics_cassandra_replicas The number of Cassandra nodes for the metrics
stack. This value dictates the number of Cassandra
replication controllers.

openshift_metrics_cassandra_limits_memor
y

The memory limit for the Cassandra pod. For
example, a value of 2Gi would limit Cassandra to 2
GB of memory. This value could be further adjusted
by the start script based on available memory of the
node on which it is scheduled.

openshift_metrics_cassandra_limits_cpu The CPU limit for the Cassandra pod. For example, a
value of 4000m (4000 millicores) would limit
Cassandra to 4 CPUs.

openshift_metrics_cassandra_requests_me
mory

The amount of memory to request for Cassandra
pod. For example, a value of 2Gi would request 2 GB
of memory.

openshift_metrics_cassandra_requests_cpu The CPU request for the Cassandra pod. For
example, a value of 4000m (4000 millicores) would
request 4 CPUs.

openshift_metrics_cassandra_storage_grou
p

The supplemental storage group to use for
Cassandra.

openshift_metrics_cassandra_nodeselector Set to the desired, existing node selector to ensure
that pods are placed onto nodes with specific labels.
For example, {"node-
role.kubernetes.io/infra":"true"}. If not
specified, the Cassandra pod is deployed on any
schedulable node.

openshift_metrics_hawkular_ca An optional certificate authority (CA) file used to
sign the Hawkular certificate.

openshift_metrics_hawkular_cert The certificate file used for re-encrypting the route
to Hawkular metrics. The certificate must contain the
host name used by the route. If unspecified, the
default router certificate is used.

openshift_metrics_hawkular_key The key file used with the Hawkular certificate.

Variable Description

OpenShift Container Platform 3.11 Configuring Clusters

692

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-sched-selector

openshift_metrics_hawkular_limits_memory The amount of memory to limit the Hawkular pod.
For example, a value of 2Gi would limit the Hawkular
pod to 2 GB of memory. This value could be further
adjusted by the start script based on available
memory of the node on which it is scheduled.

openshift_metrics_hawkular_limits_cpu The CPU limit for the Hawkular pod. For example, a
value of 4000m (4000 millicores) would limit the
Hawkular pod to 4 CPUs.

openshift_metrics_hawkular_replicas The number of replicas for Hawkular metrics.

openshift_metrics_hawkular_requests_mem
ory

The amount of memory to request for the Hawkular
pod. For example, a value of 2Gi would request 2 GB
of memory.

openshift_metrics_hawkular_requests_cpu The CPU request for the Hawkular pod. For example,
a value of 4000m (4000 millicores) would request 4
CPUs.

openshift_metrics_hawkular_nodeselector Set to the desired, existing node selector to ensure
that pods are placed onto nodes with specific labels.
For example, {"node-
role.kubernetes.io/infra":"true"}. If not
specified, the Hawkular pod is deployed on any
schedulable node.

openshift_metrics_heapster_allowed_users A comma-separated list of CN to accept. By default,
this is set to allow the OpenShift service proxy to
connect. Add system:master-proxy to the list
when overriding in order to allow horizontal pod
autoscaling to function properly.

openshift_metrics_heapster_limits_memory The amount of memory to limit the Heapster pod.
For example, a value of 2Gi would limit the Heapster
pod to 2 GB of memory.

openshift_metrics_heapster_limits_cpu The CPU limit for the Heapster pod. For example, a
value of 4000m (4000 millicores) would limit the
Heapster pod to 4 CPUs.

openshift_metrics_heapster_requests_memo
ry

The amount of memory to request for Heapster pod.
For example, a value of 2Gi would request 2 GB of
memory.

openshift_metrics_heapster_requests_cpu The CPU request for the Heapster pod. For example,
a value of 4000m (4000 millicores) would request 4
CPUs.

Variable Description

CHAPTER 38. ENABLING CLUSTER METRICS

693

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-sched-selector
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-pod-autoscaling

openshift_metrics_heapster_standalone Deploy only Heapster, without the Hawkular Metrics
and Cassandra components.

openshift_metrics_heapster_nodeselector Set to the desired, existing node selector to ensure
that pods are placed onto nodes with specific labels.
For example, {"node-
role.kubernetes.io/infra":"true"}. If not
specified, the Heapster pod is deployed on any
schedulable node.

openshift_metrics_hawkular_hostname Set when executing the openshift_metrics Ansible
role, since it uses the host name for the Hawkular
Metrics route. This value should correspond to a fully
qualified domain name.

Variable Description

See Compute Resources for further discussion on how to specify requests and limits.

If you are using persistent storage with Cassandra, it is the administrator’s responsibility to set a
sufficient disk size for the cluster using the openshift_metrics_cassandra_pvc_size variable. It is also
the administrator’s responsibility to monitor disk usage to make sure that it does not become full.

WARNING

Data loss results if the Cassandra persisted volume runs out of sufficient space.

All of the other variables are optional and allow for greater customization. For instance, if you have a
custom install in which the Kubernetes master is not available under https://kubernetes.default.svc:443
you can specify the value to use instead with the openshift_metrics_master_url parameter.

38.4.2. Using Secrets

The OpenShift Container Platform Ansible openshift_metrics role auto-generates self-signed
certificates for use between its components and generates a re-encrypting route to expose the
Hawkular Metrics service. This route is what allows the web console to access the Hawkular Metrics
service.

In order for the browser running the web console to trust the connection through this route, it must
trust the route’s certificate. This can be accomplished by providing your own certificates signed by a
trusted Certificate Authority. The openshift_metrics role allows you to specify your own certificates,
which it then uses when creating the route.

The router’s default certificate are used if you do not provide your own.

38.4.2.1. Providing Your Own Certificates

To provide your own certificate, which is used by the re-encrypting route , you can set the



OpenShift Container Platform 3.11 Configuring Clusters

694

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-sched-selector
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-compute-resources
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#secured-routes

To provide your own certificate, which is used by the re-encrypting route , you can set the
openshift_metrics_hawkular_cert, openshift_metrics_hawkular_key, and
openshift_metrics_hawkular_cavariables in your inventory file.

The hawkular-metrics.pem value needs to contain the certificate in its .pem format. You may also need
to provide the certificate for the Certificate Authority which signed this pem file via the hawkular-
metrics-ca.cert secret.

For more information, see the re-encryption route documentation .

38.5. DEPLOYING THE METRIC COMPONENTS

Because deploying and configuring all the metric components is handled with OpenShift Container
Platform Ansible, you can deploy everything in one step.

The following examples show you how to deploy metrics with and without persistent storage using the
default parameters.

IMPORTANT

The host that you run the Ansible playbook on must have at least 75MiB of free memory
per host in the inventory.

IMPORTANT

In accordance with upstream Kubernetes rules, metrics can be collected only on the
default interface of eth0.

Example 38.3. Deploying with Persistent Storage

The following command sets the Hawkular Metrics route to use hawkular-metrics.example.com and
is deployed using persistent storage.

You must have a persistent volume of sufficient size available.

$ ansible-playbook [-i </path/to/inventory>] <OPENSHIFT_ANSIBLE_DIR>/playbooks/openshift-
metrics/config.yml \
 -e openshift_metrics_install_metrics=True \
 -e openshift_metrics_hawkular_hostname=hawkular-metrics.example.com \
 -e openshift_metrics_cassandra_storage_type=pv

Example 38.4. Deploying without Persistent Storage

The following command sets the Hawkular Metrics route to use hawkular-metrics.example.com and
deploy without persistent storage.

$ ansible-playbook [-i </path/to/inventory>] <OPENSHIFT_ANSIBLE_DIR>/playbooks/openshift-
metrics/config.yml \
 -e openshift_metrics_install_metrics=True \
 -e openshift_metrics_hawkular_hostname=hawkular-metrics.example.com

CHAPTER 38. ENABLING CLUSTER METRICS

695

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#secured-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#secured-routes

WARNING

Because this is being deployed without persistent storage, metric data loss can
occur.

38.5.1. Metrics Diagnostics

The are some diagnostics for metrics to assist in evaluating the state of the metrics stack. To execute
diagnostics for metrics:

$ oc adm diagnostics MetricsApiProxy

38.6. SETTING THE METRICS PUBLIC URL

The OpenShift Container Platform web console uses the data coming from the Hawkular Metrics
service to display its graphs. The URL for accessing the Hawkular Metrics service must be configured
with the metricsPublicURL option in the master webconsole-config configmap file. This URL
corresponds to the route created with the openshift_metrics_hawkular_hostname inventory variable
used during the deployment of the metrics components.

NOTE

You must be able to resolve the openshift_metrics_hawkular_hostname from the
browser accessing the console.

For example, if your openshift_metrics_hawkular_hostname corresponds to hawkular-
metrics.example.com, then you must make the following change in the webconsole-config configmap
file:

After you update and save the webconsole-config configmap file, your web console pods restart after
the delay set by the liveness probe configuration, which is 30 seconds by default.

When your OpenShift Container Platform server is back up and running, metrics are displayed on the
pod overview pages.

CAUTION

If you are using self-signed certificates, remember that the Hawkular Metrics service is hosted under a
different host name and uses different certificates than the console. You may need to explicitly open a
browser tab to the value specified in metricsPublicURL and accept that certificate.

To avoid this issue, use certificates which are configured to be acceptable by your browser.

38.7. ACCESSING HAWKULAR METRICS DIRECTLY



clusterInfo:
 ...
 metricsPublicURL: "https://hawkular-metrics.example.com/hawkular/metrics"

OpenShift Container Platform 3.11 Configuring Clusters

696

To access and manage metrics more directly, use the Hawkular Metrics API .

NOTE

When accessing Hawkular Metrics from the API, you are only able to perform reads.
Writing metrics is disabled by default. If you want individual users to also be able to write
metrics, you must set the openshift_metrics_hawkular_user_write_accessvariable to
true.

However, it is recommended to use the default configuration and only have metrics enter
the system via Heapster. If write access is enabled, any user can write metrics to the
system, which can affect performance and cause Cassandra disk usage to unpredictably
increase.

The Hawkular Metrics documentation covers how to use the API, but there are a few differences when
dealing with the version of Hawkular Metrics configured for use on OpenShift Container Platform:

38.7.1. OpenShift Container Platform Projects and Hawkular Tenants

Hawkular Metrics is a multi-tenanted application. It is configured so that a project in OpenShift
Container Platform corresponds to a tenant in Hawkular Metrics.

As such, when accessing metrics for a project named MyProject you must set the Hawkular-Tenant
header to MyProject.

There is also a special tenant named _system which contains system level metrics. This requires either a
cluster-reader or cluster-admin level privileges to access.

38.7.2. Authorization

The Hawkular Metrics service authenticates the user against OpenShift Container Platform to
determine if the user has access to the project it is trying to access.

Hawkular Metrics accepts a bearer token from the client and verifies that token with the OpenShift
Container Platform server using a SubjectAccessReview. If the user has proper read privileges for the
project, they are allowed to read the metrics for that project. For the _system tenant, the user
requesting to read from this tenant must have cluster-reader permission.

When accessing the Hawkular Metrics API, you must pass a bearer token in the Authorization header.

38.8. SCALING OPENSHIFT CONTAINER PLATFORM CLUSTER
METRICS PODS

Information about scaling cluster metrics capabilities is available in the Scaling and Performance Guide .

38.9. CLEANUP

You can remove everything deployed by the OpenShift Container Platform Ansible openshift_metrics
role by performing the following steps:

$ ansible-playbook [-i </path/to/inventory>] <OPENSHIFT_ANSIBLE_DIR>/playbooks/openshift-
metrics/config.yml \
 -e openshift_metrics_install_metrics=False

CHAPTER 38. ENABLING CLUSTER METRICS

697

https://github.com/openshift/origin-metrics/blob/master/docs/hawkular_metrics.adoc#accessing-metrics-using-hawkular-metrics
http://www.hawkular.org/docs/rest/rest-metrics.html
http://www.hawkular.org/docs/rest/rest-metrics.html#_tenant_header
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/scaling_and_performance_guide/#cluster-metrics-scaling-openshift-metrics-pods

CHAPTER 39. CUSTOMIZING THE WEB CONSOLE

39.1. OVERVIEW

Administrators can customize the web console using extensions, which let you run scripts and load
custom stylesheets when the web console loads. Extension scripts allow you to override the default
behavior of the web console and customize it for your needs.

For example, extension scripts can be used to add your own company’s branding or to add company-
specific capabilities. A common use case for this is rebranding or white-labeling for different
environments. You can use the same extension code, but provide settings that change the web console.

CAUTION

Take caution making extensive changes to the web console styles or behavior that are not documented
below. While you add any scripts or stylesheets, significant customizations might need to be reworked on
upgrades as the web console markup and behavior change in future versions.

39.2. LOADING EXTENSION SCRIPTS AND STYLESHEETS

You can host extension scripts and stylesheets at any https:// URL as long as the URL is accessible from
the browser. The files might be hosted from a pod on the platform using a publicly accessible route, or
on another server outside of OpenShift Container Platform.

To add scripts and stylesheets, edit the webconsole-config ConfigMap in the openshift-web-console
namespace. The web console configuration is available in the webconsole-config.yaml key of the
ConfigMap.

$ oc edit configmap/webconsole-config -n openshift-web-console

To add scripts, update the extensions.scriptURLs property. The value is an array of URLs.

To add stylesheets, update the extensions.stylesheetURLs property. The value is an array of URLs.

Example extensions.stylesheetURLs Setting

After saving the ConfigMap, the web console containers will be updated automatically for the new
extension files within a few minutes.

NOTE

apiVersion: v1
kind: ConfigMap
data:
 webconsole-config.yaml: |
 apiVersion: webconsole.config.openshift.io/v1
 extensions:
 scriptURLs:
 - https://example.com/scripts/menu-customization.js
 - https://example.com/scripts/nav-customization.js
 stylesheetURLs:
 - https://example.com/styles/logo.css
 - https://example.com/styles/custom-styles.css
 [...]

OpenShift Container Platform 3.11 Configuring Clusters

698

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-infrastructure-components-web-console

NOTE

Scripts and stylesheets must be served with the correct content type or they will not be
run by the browser. Scripts must be served with Content-Type: application/javascript
and stylesheets with Content-Type: text/css.

It is a best practice to wrap extension scripts in an Immediately Invoked Function Expression (IIFE). This
ensures that you do not create global variables that conflict with the names used by the web console or
by other extensions. For example:

The examples in the following sections show common ways you can customize the web console.

NOTE

Additional extension examples are available in the OpenShift Origin repository on
GitHub.

39.2.1. Setting Extension Properties

If you have a specific extension, but want to use different text in it for each of the environments, you can
define the environment in the web console configuration, and use the same extension script across
environments.

To add extension properties, edit the webconsole-config ConfigMap in the openshift-web-console
namespace. The web console configuration is available in the webconsole-config.yaml key of the
ConfigMap.

$ oc edit configmap/webconsole-config -n openshift-web-console

Update the extensions.properties value, which is a map of key-value pairs.

This results in a global variable that can be accessed by the extension, as if the following code was
executed:

(function() {
 // Put your extension code here...
}());

apiVersion: v1
kind: ConfigMap
data:
 webconsole-config.yaml: |
 apiVersion: webconsole.config.openshift.io/v1
 extensions:
 [...]
 properties:
 doc_url: https://docs.openshift.com
 key1: value1
 key2: value2
 [...]

window.OPENSHIFT_EXTENSION_PROPERTIES = {
 doc_url: "https://docs.openshift.com",
 key1: "value1",

CHAPTER 39. CUSTOMIZING THE WEB CONSOLE

699

https://github.com/openshift/origin-web-console/tree/master/extensions/examples

39.3. EXTENSION OPTION FOR EXTERNAL LOGGING SOLUTIONS

You can use the extension option to link to external logging solutions instead of using OpenShift
Container Platform’s EFK logging stack:

Add the script as described in Loading Extension Scripts and Stylesheets.

39.4. CUSTOMIZING AND DISABLING THE GUIDED TOUR

A guided tour will pop up the first time a user logs in on a particular browser. You can enable the
auto_launch for new users:

Add the script as described in Loading Extension Scripts and Stylesheets.

39.5. CUSTOMIZING DOCUMENTATION LINKS

Documentation links on the landing page are customizable.
window.OPENSHIFT_CONSTANTS.CATALOG_HELP_RESOURCES is an array of objects containing
a title and an href. These will be turned into links. You can completely override the array, push or pop
additional links, or modify the attributes of existing links. For example:

Add the script as described in Loading Extension Scripts and Stylesheets.

39.6. CUSTOMIZING THE LOGO

The following style changes the logo in the web console header:

 key2: "value2"
}

'use strict';
angular.module("mylinkextensions", ['openshiftConsole'])
 .run(function(extensionRegistry) {
 extensionRegistry.add('log-links', _.spread(function(resource, options) {
 return {
 type: 'dom',
 node: '' + resource.metadata.name +
'|'
 };
 }));
 });
hawtioPluginLoader.addModule("mylinkextensions");

window.OPENSHIFT_CONSTANTS.GUIDED_TOURS.landing_page_tour.auto_launch = true;

window.OPENSHIFT_CONSTANTS.CATALOG_HELP_RESOURCES.links.push({
 title: 'Blog',
 href: 'https://blog.openshift.com'
});

#header-logo {
 background-image: url("https://www.example.com/images/logo.png");

OpenShift Container Platform 3.11 Configuring Clusters

700

1

Replace the example.com URL with a URL to an actual image, and adjust the width and height. The ideal
height is 20px.

Add the stylesheet as described in Loading Extension Scripts and Stylesheets.

39.7. CUSTOMIZING THE MEMBERSHIP WHITELIST

The default whitelist in the membership page shows a subset of cluster roles, such as admin, basic-
user, edit, and so on. It also shows custom roles defined within a project.

For example, to add your own set of custom cluster roles to the whitelist:

Add the script as described in Loading Extension Scripts and Stylesheets.

39.8. CHANGING LINKS TO DOCUMENTATION

Links to external documentation are shown in various sections of the web console. The following
example changes the URL for two given links to the documentation:

Alternatively, you can change the base URL for all documentation links.

This example would result in the default help URL https://example.com/docs/welcome/index.html:

The path must end in a /.

Add the script as described in Loading Extension Scripts and Stylesheets.

39.9. ADDING OR CHANGING LINKS TO DOWNLOAD THE CLI

The About page in the web console provides download links for the command line interface (CLI) tools.

 width: 190px;
 height: 20px;
}

window.OPENSHIFT_CONSTANTS.MEMBERSHIP_WHITELIST = [
 "admin",
 "basic-user",
 "edit",
 "system:deployer",
 "system:image-builder",
 "system:image-puller",
 "system:image-pusher",
 "view",
 "custom-role-1",
 "custom-role-2"
];

window.OPENSHIFT_CONSTANTS.HELP['get_started_cli'] = "https://example.com/doc1.html";
window.OPENSHIFT_CONSTANTS.HELP['basic_cli_operations'] = "https://example.com/doc2.html";

window.OPENSHIFT_CONSTANTS.HELP_BASE_URL = "https://example.com/docs/"; 1

CHAPTER 39. CUSTOMIZING THE WEB CONSOLE

701

The About page in the web console provides download links for the command line interface (CLI) tools.
These links can be configured by providing both the link text and URL, so that you can choose to point
them directly to file packages, or to an external page that points to the actual packages.

For example, to point directly to packages that can be downloaded, where the link text is the package
platform:

Alternatively, to point to a page that links the actual download packages, with the Latest Release link
text:

Add the script as described in Loading Extension Scripts and Stylesheets.

39.9.1. Customizing the About Page

To provide a custom About page for the web console:

1. Write an extension that looks like:

2. Write a customized template.
Start from the version of about.html from the OpenShift Container Platform release you are
using. Within the template, there are two angular scope variables available:
version.master.openshift and version.master.kubernetes.

3. Host the template at a URL with the correct Cross-Origin Resource Sharing (CORS) response
headers for the web console.

a. Set Access-Control-Allow-Origin response to allow requests from the web console
domain.

b. Set Access-Control-Allow-Methods to include GET.

window.OPENSHIFT_CONSTANTS.CLI = {
 "Linux (32 bits)": "https://<cdn>/openshift-client-tools-linux-32bit.tar.gz",
 "Linux (64 bits)": "https://<cdn>/openshift-client-tools-linux-64bit.tar.gz",
 "Windows": "https://<cdn>/openshift-client-tools-windows.zip",
 "Mac OS X": "https://<cdn>/openshift-client-tools-mac.zip"
};

window.OPENSHIFT_CONSTANTS.CLI = {
 "Latest Release": "https://<cdn>/openshift-client-tools/latest.html"
};

angular
 .module('aboutPageExtension', ['openshiftConsole'])
 .config(function($routeProvider) {
 $routeProvider
 .when('/about', {
 templateUrl: 'https://example.com/extensions/about/about.html',
 controller: 'AboutController'
 });
 }
);

hawtioPluginLoader.addModule('aboutPageExtension');

OpenShift Container Platform 3.11 Configuring Clusters

702

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cli_reference/#cli-reference-index
https://github.com/openshift/origin-web-console/blob/master/app/views/about.html
https://github.com/openshift/origin-web-console/branches

c. Set Access-Control-Allow-Headers to include Content-Type.

Alternatively, you can include the template directly in your JavaScript using AngularJS $templateCache.

Add the script as described in Loading Extension Scripts and Stylesheets.

39.10. CONFIGURING NAVIGATION MENUS

39.10.1. Top Navigation Dropdown Menus

The top navigation bar of the web console contains the help icon and the user dropdown menus. You
can add additional menu items to these using the angular-extension-registry.

The available extension points are:

nav-help-dropdown - the help icon dropdown menu, visible at desktop screen widths

nav-user-dropdown - the user dropdown menu, visible at desktop screen widths

nav-dropdown-mobile - the single menu for top navigation items at mobile screen widths

The following example extends the nav-help-dropdown menu, with a name of <myExtensionModule>:

NOTE

<myExtensionModule> is a placeholder name. Each dropdown menu extension must be
unique enough so that it does not clash with any future angular modules.

angular
 .module('<myExtensionModule>', ['openshiftConsole'])
 .run([
 'extensionRegistry',
 function(extensionRegistry) {
 extensionRegistry
 .add('nav-help-dropdown', function() {
 return [
 {
 type: 'dom',
 node: 'Report a Bug'
 }, {
 type: 'dom',
 node: '<li class="divider">' // If you want a horizontal divider to appear in the menu
 }, {
 type: 'dom',
 node: 'System Status
'
 }
];
 });
 }
]);

hawtioPluginLoader.addModule('<myExtensionModule>');

CHAPTER 39. CUSTOMIZING THE WEB CONSOLE

703

https://docs.angularjs.org/api/ng/service/$templateCache
https://github.com/openshift/angular-extension-registry

Add the script as described in Loading Extension Scripts and Stylesheets.

39.10.2. Application Launcher

The top navigation bar also contains an optional application launcher for linking to other web
applications. This dropdown menu is empty by default, but when links are added, appears to the left of
the help menu in the masthead.

Add the script as described in Loading Extension Scripts and Stylesheets.

39.10.3. System Status Badge

The top navigation bar can also include an optional system status badge in order to notify users of
system-wide events such as maintenance windows. To make use of the existing styles using a yellow
warning icon for the badge, follow the example below.

// Add items to the application launcher dropdown menu.
window.OPENSHIFT_CONSTANTS.APP_LAUNCHER_NAVIGATION = [{
 title: "Dashboard", // The text label
 iconClass: "fa fa-dashboard", // The icon you want to appear
 href: "http://example.com/dashboard", // Where to go when this item is clicked
 tooltip: 'View dashboard' // Optional tooltip to display on hover
}, {
 title: "Manage Account",
 iconClass: "pficon pficon-user",
 href: "http://example.com/account",
 tooltip: "Update email address or password."
}];

'use strict';

angular
 .module('mysystemstatusbadgeextension', ['openshiftConsole'])
 .run([
 'extensionRegistry',
 function(extensionRegistry) {
 // Replace http://status.example.com/ with your domain
 var system_status_elem = $('<a href="http://status.example.com/"' +
 'target="_blank" class="nav-item-iconic system-status"><span title="' +
 'System Status" class="fa status-icon pficon-warning-triangle-o">' +
 '');

 // Add the extension point to the registry so the badge appears
 // To disable the badge, comment this block out
 extensionRegistry
 .add('nav-system-status', function() {
 return [{
 type: 'dom',
 node: system_status_elem
 }];
 });
 }
]);

hawtioPluginLoader.addModule('mysystemstatusbadgeextension');

OpenShift Container Platform 3.11 Configuring Clusters

704

Add the script as described in Loading Extension Scripts and Stylesheets.

39.10.4. Project Left Navigation

When navigating within a project, a menu appears on the left with primary and secondary navigation.
This menu structure is defined as a constant and can be overridden or modified.

NOTE

Significant customizations to the project navigation may affect the user experience and
should be done with careful consideration. You may need to update this customization in
future upgrades if you modify existing navigation items.

// Append a new primary nav item. This is a simple direct navigation item
// with no secondary menu.
window.OPENSHIFT_CONSTANTS.PROJECT_NAVIGATION.push({
 label: "Dashboard", // The text label
 iconClass: "fa fa-dashboard", // The icon you want to appear
 href: "/dashboard" // Where to go when this nav item is clicked.
 // Relative URLs are pre-pended with the path
 // '/project/<project-name>'
});

// Splice a primary nav item to a specific spot in the list. This primary item has
// a secondary menu.
window.OPENSHIFT_CONSTANTS.PROJECT_NAVIGATION.splice(2, 0, { // Insert at the third spot
 label: "Git",
 iconClass: "fa fa-code",
 secondaryNavSections: [// Instead of an href, a sub-menu can be defined
 {
 items: [
 {
 label: "Branches",
 href: "/git/branches",
 prefixes: [
 "/git/branches/" // Defines prefix URL patterns that will cause
 // this nav item to show the active state, so
 // tertiary or lower pages show the right context
]
 }
]
 },
 {
 header: "Collaboration", // Sections within a sub-menu can have an optional header
 items: [
 {
 label: "Pull Requests",
 href: "/git/pull-requests",
 prefixes: [
 "/git/pull-requests/"
]
 }
]
 }

CHAPTER 39. CUSTOMIZING THE WEB CONSOLE

705

Add the script as described in Loading Extension Scripts and Stylesheets.

39.11. CONFIGURING FEATURED APPLICATIONS

The web console has an optional list of featured application links in its landing page catalog. These
appear near the top of the page and can have an icon, a title, a short description, and a link.

]
});

// Add a primary item to the top of the list. This primary item is shown conditionally.
window.OPENSHIFT_CONSTANTS.PROJECT_NAVIGATION.unshift({
 label: "Getting Started",
 iconClass: "pficon pficon-screen",
 href: "/getting-started",
 prefixes: [// Primary nav items can also specify prefixes to trigger
 "/getting-started/" // active state
],
 isValid: function() { // Primary or secondary items can define an isValid
 return isNewUser; // function. If present it will be called to test whether
 // the item should be shown, it should return a boolean
 }
});

// Modify an existing menu item
var applicationsMenu = _.find(window.OPENSHIFT_CONSTANTS.PROJECT_NAVIGATION, { label:
'Applications' });
applicationsMenu.secondaryNavSections.push({ // Add a new secondary nav section to the
Applications menu
 // my secondary nav section
});

// Add featured applications to the top of the catalog.
window.OPENSHIFT_CONSTANTS.SAAS_OFFERINGS = [{
 title: "Dashboard", // The text label
 icon: "fa fa-dashboard", // The icon you want to appear
 url: "http://example.com/dashboard", // Where to go when this item is clicked
 description: "Open application dashboard." // Short description
}, {
 title: "System Status",
 icon: "fa fa-heartbeat",
 url: "http://example.com/status",
 description: "View system alerts and outages."

OpenShift Container Platform 3.11 Configuring Clusters

706

Add the script as described in Loading Extension Scripts and Stylesheets.

39.12. CONFIGURING CATALOG CATEGORIES

Catalog categories organize the display of items in the web console catalog landing page. Each
category has one or more subcategories. A builder image, template, or service is grouped in a
subcategory if it includes a tag listed in the matching subcategory tags, and an item can appear in more
than one subcategory. Categories and subcategories only display if they contain at least one item.

NOTE

Significant customizations to the catalog categories may affect the user experience and
should be done with careful consideration. You may need to update this customization in
future upgrades if you modify existing category items.

}, {
 title: "Manage Account",
 icon: "pficon pficon-user",
 url: "http://example.com/account",
 description: "Update email address or password."
}];

// Find the Languages category.
var category = _.find(window.OPENSHIFT_CONSTANTS.SERVICE_CATALOG_CATEGORIES,
 { id: 'languages' });
// Add Go as a new subcategory under Languages.
category.subCategories.splice(2,0,{ // Insert at the third spot.
 // Required. Must be unique.
 id: "go",
 // Required.
 label: "Go",
 // Optional. If specified, defines a unique icon for this item.
 icon: "icon-go-gopher",
 // Required. Items matching any tag will appear in this subcategory.
 tags: [
 "go",
 "golang"
]
});

// Add a Featured category as the first category tab.
window.OPENSHIFT_CONSTANTS.SERVICE_CATALOG_CATEGORIES.unshift({
 // Required. Must be unique.
 id: "featured",
 // Required
 label: "Featured",
 subCategories: [
 {
 // Required. Must be unique.
 id: "go",
 // Required.
 label: "Go",
 // Optional. If specified, defines a unique icon for this item.
 icon: "icon-go-gopher",

CHAPTER 39. CUSTOMIZING THE WEB CONSOLE

707

Add the script as described in Loading Extension Scripts and Stylesheets.

39.13. CONFIGURING QUOTA NOTIFICATION MESSAGES

Whenever a user reaches a quota, a quota notification is put into the notification drawer. A custom
quota notification message, per quota resource type, can be added to the notification. For example:

The "Upgrade to…​" part of the notification is the custom message and may contain HTML such as links
to additional resources.

NOTE

Since the quota message is HTML markup, any special characters need to be properly
escaped for HTML.

Set the window.OPENSHIFT_CONSTANTS.QUOTA_NOTIFICATION_MESSAGE property in an
extension script to customize the message for each resource.

Add the script as described in Loading Extension Scripts and Stylesheets.

39.14. CONFIGURING THE CREATE FROM URL NAMESPACE

 // Required. Items matching any tag will appear in this subcategory.
 tags: [
 "go",
 "golang"
]
 },
 {
 // Required. Must be unique.
 id: "jenkins",
 // Required.
 label: "Jenkins",
 // Optional. If specified, defines a unique icon for this item.
 icon: "icon-jenkins",
 // Required. Items matching any tag will appear in this subcategory.
 tags: [
 "jenkins"
]
 }
]
});

Your project is over quota. It is using 200% of 2 cores CPU (Limit). Upgrade
to OpenShift Online Pro if you need
additional resources.

// Set custom notification messages per quota type/key
window.OPENSHIFT_CONSTANTS.QUOTA_NOTIFICATION_MESSAGE = {
 'pods': 'Upgrade to OpenShift Online Pro if you need
additional resources.',
 'limits.memory': 'Upgrade to OpenShift Online Pro if you
need additional resources.'
};

OpenShift Container Platform 3.11 Configuring Clusters

708

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-managed-by-quota

39.14. CONFIGURING THE CREATE FROM URL NAMESPACE
WHITELIST

Create from URL only works with image streams or templates from namespaces that have been
explicitly specified in OPENSHIFT_CONSTANTS.CREATE_FROM_URL_WHITELIST. To add
namespaces to the whitelist, follow these steps:

NOTE

openshift is included in the whitelist by default. Do not remove it.

Add the script as described in Loading Extension Scripts and Stylesheets.

39.15. DISABLING THE COPY LOGIN COMMAND

The web console allows users to copy a login command, including the current access token, to the
clipboard from the user menu and the Command Line Tools page. This function can be changed so that
the user’s access token is not included in the copied command.

Add the script as described in Loading Extension Scripts and Stylesheets.

39.15.1. Enabling Wildcard Routes

If you enabled wildcard routes for a router, you can also enable wildcard routes in the web console. This
lets users enter hostnames starting with an asterisk like *.example.com when creating a route. To
enable wildcard routes:

Add the script as described in Loading Extension Scripts and Stylesheets.

Learn how to configure HAProxy routers to allow wildcard routes .

39.16. CUSTOMIZING THE LOGIN PAGE

You can also change the login page, and the login provider selection page for the web console. Run the
following commands to create templates you can modify:

$ oc adm create-login-template > login-template.html
$ oc adm create-provider-selection-template > provider-selection-template.html

Edit the file to change the styles or add content, but be careful not to remove any required parameters
inside the curly brackets.

// Add a namespace containing the image streams and/or templates
window.OPENSHIFT_CONSTANTS.CREATE_FROM_URL_WHITELIST.push(
 'shared-stuff'
);

// Do not copy the user's access token in the copy login command.
window.OPENSHIFT_CONSTANTS.DISABLE_COPY_LOGIN_COMMAND = true;

window.OPENSHIFT_CONSTANTS.DISABLE_WILDCARD_ROUTES = false;

CHAPTER 39. CUSTOMIZING THE WEB CONSOLE

709

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-create-from-url

To use your custom login page or provider selection page, set the following options in the master
configuration file:

Relative paths are resolved relative to the master configuration file. You must restart the server after
changing this configuration.

When there are multiple login providers configured or when the alwaysShowProviderSelection option
in the master-config.yaml file is set to true, each time a user’s token to OpenShift Container Platform
expires, the user is presented with this custom page before they can proceed with other tasks.

39.16.1. Example Usage

Custom login pages can be used to create Terms of Service information. They can also be helpful if you
use a third-party login provider, like GitHub or Google, to show users a branded page that they trust and
expect before being redirected to the authentication provider.

39.17. CUSTOMIZING THE OAUTH ERROR PAGE

When errors occur during authentication, you can change the page shown.

1. Run the following command to create a template you can modify:

$ oc adm create-error-template > error-template.html

2. Edit the file to change the styles or add content.
You can use the Error and ErrorCode variables in the template. To use your custom error page,
set the following option in the master configuration file:

Relative paths are resolved relative to the master configuration file.

3. You must restart the server after changing this configuration.

39.18. CHANGING THE LOGOUT URL

You can change the location a console user is sent to when logging out of the console by modifying the
clusterInfo.logoutPublicURL parameter in the webconsole-config ConfigMap.

$ oc edit configmap/webconsole-config -n openshift-web-console

Here is an example that changes the logout URL to https://www.example.com/logout:

oauthConfig:
 ...
 templates:
 login: /path/to/login-template.html
 providerSelection: /path/to/provider-selection-template.html

oauthConfig:
 ...
 templates:
 error: /path/to/error-template.html

apiVersion: v1

OpenShift Container Platform 3.11 Configuring Clusters

710

https://www.example.com/logout

This can be useful when authenticating with Request Header and OAuth or OpenID identity providers,
which require visiting an external URL to destroy single sign-on sessions.

39.19. CONFIGURING WEB CONSOLE CUSTOMIZATIONS WITH
ANSIBLE

During cluster installations, many modifications to the web console can be configured using the
following parameters, which are configurable in the inventory file:

openshift_master_logout_url

openshift_web_console_extension_script_urls

openshift_web_console_extension_stylesheet_urls

openshift_master_oauth_templates

openshift_master_metrics_public_url

openshift_master_logging_public_url

Example Web Console Customization with Ansible

kind: ConfigMap
data:
 webconsole-config.yaml: |
 apiVersion: webconsole.config.openshift.io/v1
 clusterInfo:
 [...]
 logoutPublicURL: "https://www.example.com/logout"
 [...]

Configure `clusterInfo.logoutPublicURL` in the web console configuration
See:
https://docs.openshift.com/enterprise/latest/install_config/web_console_customization.html#changing-
the-logout-url
#openshift_master_logout_url=https://example.com/logout

Configure extension scripts for web console customization
See:
https://docs.openshift.com/enterprise/latest/install_config/web_console_customization.html#loading-
custom-scripts-and-stylesheets
#openshift_web_console_extension_script_urls=['https://example.com/scripts/menu-
customization.js','https://example.com/scripts/nav-customization.js']

Configure extension stylesheets for web console customization
See:
https://docs.openshift.com/enterprise/latest/install_config/web_console_customization.html#loading-
custom-scripts-and-stylesheets
#openshift_web_console_extension_stylesheet_urls=
['https://example.com/styles/logo.css','https://example.com/styles/custom-styles.css']

Configure a custom login template in the master config
See:
https://docs.openshift.com/enterprise/latest/install_config/web_console_customization.html#customizing-

CHAPTER 39. CUSTOMIZING THE WEB CONSOLE

711

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-planning

39.20. CHANGING THE WEB CONSOLE URL PORT AND CERTIFICATES

To ensure your custom certificate is served when users access the web console URL, add the certificate
and URL to the namedCertificates section of the master-config.yaml file. See Configuring Custom
Certificates for the Web Console or CLI for more information.

To set or modify the redirect URL for the web console, modify the openshift-web-console
oauthclient:

$ oc edit oauthclient openshift-web-console

To ensure users are correctly redirected, update the PublicUrls for the openshift-web-console
configmap:

$ oc edit configmap/webconsole-config -n openshift-web-console

Then, update the value for consolePublicURL.

the-login-page
#openshift_master_oauth_templates={'login': '/path/to/login-template.html'}

Configure `clusterInfo.metricsPublicURL` in the web console configuration for cluster metrics.
Ansible is also able to configure metrics for you.
See: https://docs.openshift.com/enterprise/latest/install_config/cluster_metrics.html
#openshift_master_metrics_public_url=https://hawkular-metrics.example.com/hawkular/metrics

Configure `clusterInfo.loggingPublicURL` in the web console configuration for aggregate logging.
Ansible is also able to install logging for you.
See: https://docs.openshift.com/enterprise/latest/install_config/aggregate_logging.html
#openshift_master_logging_public_url=https://kibana.example.com

OpenShift Container Platform 3.11 Configuring Clusters

712

CHAPTER 40. DEPLOYING EXTERNAL PERSISTENT VOLUME
PROVISIONERS

40.1. OVERVIEW

IMPORTANT

The external provisioner for AWS EFS on OpenShift Container Platform is a Technology
Preview feature. Technology Preview features are not supported with Red Hat production
service-level agreements (SLAs) and might not be functionally complete, and Red Hat
does not recommend using them for production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process. For more information, see Red Hat
Technology Preview Features Support Scope.

An external provisioner is an application that enables dynamic provisioning for a particular storage
provider. External provisioners can run alongside the provisioner plug-ins provided by OpenShift
Container Platform and are configured in a similar way as the StorageClass objects are configured, as
described in the Dynamic Provisioning and Creating Storage Classes section. Since these provisioners
are external, you can deploy and update them independently of OpenShift Container Platform.

40.2. BEFORE YOU BEGIN

An Ansible Playbook is also available to deploy and upgrade external provisioners.

NOTE

Before proceeding, familiarize yourself with the Configuring Cluster Metrics and the
Configuring Cluster Logging sections.

40.2.1. External Provisioners Ansible Role

The OpenShift Ansible openshift_provisioners role configures and deploys external provisioners using
the variables from the Ansible inventory file. You must specify which provisioners to install by overriding
their respective install variables to true.

40.2.2. External Provisioners Ansible Variables

Following is a list of role variables that apply to all provisioners for which the install variable is true.

Table 40.1. Ansible Variables

Variable Description

openshift_provisioners_install_provisioners If true, deploy all provisioners that have their
respective install variables set as true, otherwise,
remove them.

CHAPTER 40. DEPLOYING EXTERNAL PERSISTENT VOLUME PROVISIONERS

713

https://access.redhat.com/support/offerings/techpreview/
https://github.com/openshift/openshift-ansible/blob/master/playbooks/openshift-provisioners/config.yml
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-install-cluster-metrics
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-install-cluster-logging
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible

openshift_provisioners_image_prefix The prefix for the component images. For example,
with Defaults to registry.redhat.io/openshift3/,
set it to a different value if you are using an
alternative registry.

openshift_provisioners_image_version The version for the component images. For example,
with openshift3/ose-efs-provisioner:v3.11, set
version as v3.11.

openshift_provisioners_project The project to deploy provisioners in. Defaults to
openshift-infra.

Variable Description

40.2.3. AWS EFS Provisioner Ansible Variables

The AWS EFS provisioner dynamically provisions NFS PVs backed by dynamically created directories in
a given EFS file system’s directory. You must satisfy the following requirements before the AWS EFS
Provisioner Ansible variables can be configured:

An IAM user assigned with the AmazonElasticFileSystemReadOnlyAccess policy (or better).

An EFS file system in your cluster’s region.

Mount targets and security groups such that any node (in any zone in the cluster’s region) can
mount the EFS file system by its File system DNS name .

Table 40.2. Required EFS Ansible Variables

Variable Description

openshift_provisioners_efs_fsid The File system ID of the EFS file system, for
example: fs-47a2c22e

openshift_provisioners_efs_region The Amazon EC2 region for the EFS file system.

openshift_provisioners_efs_aws_access_ke
y_id

The AWS access key of the IAM user (to check that
the specified EFS file system exists).

openshift_provisioners_efs_aws_secret_acc
ess_key

The AWS secret access key of the IAM user (to check
that the specified EFS file system exists).

Table 40.3. Optional EFS Ansible Variables

Variable Description

openshift_provisioners_efs If true, the AWS EFS provisioner is installed or
uninstalled according to whether
openshift_provisioners_install_provisioners
is true or false, respectively. Defaults to false.

OpenShift Container Platform 3.11 Configuring Clusters

714

http://docs.aws.amazon.com/efs/latest/ug/accessing-fs.html
http://docs.aws.amazon.com/efs/latest/ug/accessing-fs-create-security-groups.html
http://docs.aws.amazon.com/efs/latest/ug/mounting-fs-mount-cmd-dns-name.html
http://docs.aws.amazon.com/efs/latest/ug/gs-step-two-create-efs-resources.html

openshift_provisioners_efs_path The path of the directory in the EFS file system, in
which the EFS provisioner will create a directory to
back each PV it creates. It must exist and be
mountable by the EFS provisioner. Defaults to
/persistentvolumes.

openshift_provisioners_efs_name The provisioner name that StorageClasses specify.
Defaults to openshift.org/aws-efs.

openshift_provisioners_efs_nodeselector A map of labels to select the nodes where the pod
will land. For example:
{"node":"infra","region":"west"}.

openshift_provisioners_efs_supplementalgr
oup

The supplemental group to give the pod, in case it is
needed for permission to write to the EFS file system.
Defaults to 65534.

Variable Description

40.3. DEPLOYING THE PROVISIONERS

You can deploy all provisioners at once or one provisioner at a time according to the configuration
specified in the OpenShift Ansible variables. The following example shows you how to deploy a given
provisioner and then create and configure a corresponding StorageClass.

40.3.1. Deploying the AWS EFS Provisioner

The following command sets the directory in the EFS volume to /data/persistentvolumes. This
directory must exist in the file system and must be mountable and writeable by the provisioner pod.
Change to the playbook directory and run the following playbook:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -v -i <inventory_file> \
 playbooks/openshift-provisioners/config.yml \
 -e openshift_provisioners_install_provisioners=True \
 -e openshift_provisioners_efs=True \
 -e openshift_provisioners_efs_fsid=fs-47a2c22e \
 -e openshift_provisioners_efs_region=us-west-2 \
 -e openshift_provisioners_efs_aws_access_key_id=AKIAIOSFODNN7EXAMPLE \
 -e
openshift_provisioners_efs_aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEK
EY \
 -e openshift_provisioners_efs_path=/data/persistentvolumes

40.3.1.1. AWS EFS Object Definition

aws-efs-storageclass.yaml

kind: StorageClass
apiVersion: storage.k8s.io/v1beta1
metadata:

CHAPTER 40. DEPLOYING EXTERNAL PERSISTENT VOLUME PROVISIONERS

715

1

2

3

Set this value same as the value of openshift_provisioners_efs_name variable, which defaults to
openshift.org/aws-efs.

The minimum value of GID range for the StorageClass. (Optional)

The maximum value of GID range for the StorageClass. (Optional)

Each dynamically provisioned volume’s corresponding NFS directory is assigned a unique GID owner
from the range gidMin-gidMax. If it is not specified, gidMin defaults to 2000 and gidMax defaults to
2147483647. Any pod that consumes a provisioned volume via a claim automatically runs with the
needed GID as a supplemental group and is able to read & write to the volume. Other mounters that do
not have the supplemental group (and are not running as root) will not be able to read or write to the
volume. For more information on using the supplemental groups to manage NFS access, see the Group
IDs section of NFS Volume Security topic.

40.4. CLEANUP

You can remove everything deployed by the OpenShift Ansible openshift_provisioners role by running
the following command:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -v -i <inventory_file> \
 playbooks/openshift-provisioners/config.yml \
 -e openshift_provisioners_install_provisioners=False

 name: slow
provisioner: openshift.org/aws-efs 1
parameters:
 gidMin: "40000" 2
 gidMax: "50000" 3

OpenShift Container Platform 3.11 Configuring Clusters

716

CHAPTER 41. INSTALLING THE OPERATOR FRAMEWORK
(TECHNOLOGY PREVIEW)

Red Hat has announced the Operator Framework, an open source toolkit designed to manage
Kubernetes native applications, called Operators, in a more effective, automated, and scalable way.

The following sections provide instructions for trying out the Technology Preview Operator Framework
in OpenShift Container Platform 3.11 as a cluster administrator.

IMPORTANT

The Operator Framework is a Technology Preview feature. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs), might not
be functionally complete, and Red Hat does not recommend to use them for production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information on Red Hat Technology Preview features support scope, see
https://access.redhat.com/support/offerings/techpreview/.

41.1. WHAT’S IN THE TECHNOLOGY PREVIEW?

The Technology Preview Operator Framework installs the Operator Lifecycle Manager (OLM), which
aids cluster administrators in installing, upgrading, and granting access to Operators running on their
OpenShift Container Platform cluster.

The OpenShift Container Platform web console is also updated with new management screens for
cluster administrators to install Operators, as well as grant specific projects access to use the catalog of
Operators available on the cluster.

For developers, a self-service experience allows provisioning and configuring instances of databases,
monitoring, and big data services without having to be subject matter experts, because the Operator
has that knowledge baked into it.

Figure 41.1. Operator Catalog Sources

CHAPTER 41. INSTALLING THE OPERATOR FRAMEWORK (TECHNOLOGY PREVIEW)

717

https://coreos.com/blog/introducing-operator-framework
https://access.redhat.com/support/offerings/techpreview/
https://github.com/operator-framework/operator-lifecycle-manager

Figure 41.1. Operator Catalog Sources

In the screenshot, you can see the pre-loaded catalog sources of partner Operators from leading
software vendors:

Couchbase Operator

Couchbase offers a NoSQL database that provides a mechanism for storage and retrieval of data
which is modeled in means other than the tabular relations used in relational databases. Available on
OpenShift Container Platform 3.11 as a developer preview, supported by Couchbase, the Operator
allows you to run Couchbase deployments natively on OpenShift Container Platform. It installs and
can more effectively failover your NoSQL clusters.

Dynatrace Operator

Dynatrace application monitoring provides performance metrics in real time and can help detect and
diagnose problems automatically. The Operator will more easily install the container-focused
monitoring stack and connect it back to the Dynatrace monitoring cloud, watching custom resources
and monitoring desired states constantly.

MongoDB Operator

MongoDB is a distributed, transactional database that stores data in flexible, JSON-like documents.

OpenShift Container Platform 3.11 Configuring Clusters

718

MongoDB is a distributed, transactional database that stores data in flexible, JSON-like documents.
The Operator supports deploying both production-ready replica sets and sharded clusters, and
standalone dev/test instances. It works in conjunction with MongoDB Ops Manager, ensuring all
clusters are deployed according to operational best practices.

Also included are the following Red Hat-provided Operators:

Red Hat AMQ Streams Operator

Red Hat AMQ Streams is a massively scalable, distributed, and high performance data streaming
platform based on the Apache Kafka project. It offers a distributed backbone that allows
microservices and other applications to share data with extremely high throughput and extremely low
latency.

etcd Operator

etcd is a distributed key-value store that provides a reliable way to store data across a cluster of
machines. This Operator enables users to configure and manage the complexities of etcd using a
simple declarative configuration that creates, configures, and manages etcd clusters.

Prometheus Operator

Prometheus is a cloud native monitoring system co-hosted with Kubernetes within the CNCF. This
Operator includes application domain knowledge to take care of common tasks like create/destroy,
simple configuration, automatic generating of monitoring target configurations via labels, and more.

41.2. INSTALLING OPERATOR LIFECYCLE MANAGER USING ANSIBLE

To install the Technology Preview Operator Framework, you can use the included playbook with the
OpenShift Container Platform openshift-ansible installer after installing your cluster.

NOTE

Alternatively, the Technology Preview Operator Framework can be installed during initial
cluster installation. See Configuring Your Inventory File for separate instructions.

Prerequisites

An existing OpenShift Container Platform 3.11 cluster

Access to the cluster using an account with cluster-admin permissions

Ansible playbooks provided by the latest openshift-ansible installer

Procedure

1. In the inventory file used to install and manage your OpenShift Container Platform cluster, add
the openshift_additional_registry_credentials variable in the [OSEv3:vars] section, setting
credentials required to pull the Operator containers:

openshift_additional_registry_credentials=
[{'host':'registry.connect.redhat.com','user':'<your_user_name>','password':'<your_password>','t
est_image':'mongodb/enterprise-operator:0.3.2'}]

Set user and password to the credentials that you use to log in to the Red Hat Customer
Portal at https://access.redhat.com.

The test_image represents an image that will be used to test the credentials you provided.

CHAPTER 41. INSTALLING THE OPERATOR FRAMEWORK (TECHNOLOGY PREVIEW)

719

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-the-operator-lifecycle-manager
https://access.redhat.com

2. Change to the playbook directory and run the registry authorization playbook using your
inventory file to authorize your nodes using your credentials from the previous step:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <inventory_file> \
 playbooks/updates/registry_auth.yml

3. Change to the playbook directory and run the OLM installation playbook using your inventory
file:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i <inventory_file> \
 playbooks/olm/config.yml

4. Navigate to the cluster’s web console using a browser. A new section should now be available in
the navigation on the left side of the page:

Figure 41.2. New Operators navigation section

This is where you can install Operators, grant projects access to them, and then launch
instances for all of your environments.

41.3. LAUNCHING YOUR FIRST OPERATOR

This section walks through creating a new Couchbase cluster using the Couchbase Operator.

Prerequisites

OpenShift Container Platform 3.11 with Technology Preview OLM enabled

Access to the cluster using an account with cluster-admin permissions

Couchbase Operator loaded to the Operator catalog (loaded by default with Technology
Preview OLM)

Procedure

OpenShift Container Platform 3.11 Configuring Clusters

720

1

1. As a cluster administrator (a user with the cluster-admin role), create a new project in the
OpenShift Container Platform web console for this procedure. This example uses a project
called couchbase-test.

2. Installing an Operator within a project is done through a Subscription object, which the cluster
administrator can create and manage across the entire cluster. To view the available
Subscriptions, navigate to the Cluster Console from the drop-down menu, then to the
Operators → Catalog Sources screen in the left navigation.

NOTE

If you want to enable additional users to view, create, and manage Subscriptions
in a project, they must have the admin and view roles for that project, as well as
the view role for the operator-lifecycle-manager project. Cluster administrators
can add these roles using the following commands:

$ oc policy add-role-to-user admin <user> -n <target_project>
$ oc policy add-role-to-user view <user> -n <target_project>
$ oc policy add-role-to-user view <user> -n operator-lifecycle-manager

This experience will be simplified in future releases of the OLM.

3. Subscribe the desired project to the Couchbase catalog source from either the web console or
CLI.
Choose one of the following methods:

For the web console method, ensure you are viewing the desired project, then click Create
Subscription on an Operator from this screen to install it to the project.

For the CLI method, create a YAML file using the following definition:

couchbase-subscription.yaml file

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 generateName: couchbase-enterprise-
 namespace: couchbase-test 1
spec:
 source: certified-operators
 name: couchbase-enterprise
 startingCSV: couchbase-operator.v1.0.0
 channel: preview

Ensure the namespace field in the metadata section is set to the desired project.

Then, create the Subscription using the CLI:

$ oc create -f couchbase-subscription.yaml

4. After the Subscription is created, the Operator then appears in the Cluster Service Versions
screen, which is the catalog users can use to launch the software provided by the Operator.
Click on the Couchbase Operator to view more details about this Operator’s features:

Figure 41.3. Couchbase Operator overview

CHAPTER 41. INSTALLING THE OPERATOR FRAMEWORK (TECHNOLOGY PREVIEW)

721

1

Figure 41.3. Couchbase Operator overview

5. Before creating the Couchbase cluster, create a secret with the following definition using the
web console or CLI that holds credentials for the super user account. The Operator reads this
upon start up and configures the database with these details:

Couchbase secret

apiVersion: v1
kind: Secret
metadata:
 name: couchbase-admin-creds
 namespace: couchbase-test 1
type: Opaque
stringData:
 username: admin
 password: password

Ensure the namespace field in the metadata section is set to the desired project.

Choose one of the following methods:

OpenShift Container Platform 3.11 Configuring Clusters

722

For the web console method, click Workloads → Secrets from the left navigation, then click
Create and choose Secret from YAML to enter the secret definition.

For the CLI method, save the secret definition to a YAML file (for example, couchbase-
secret.yaml) and use the CLI to create it in the desired project:

$ oc create -f couchbase-secret.yaml

6. Create the new Couchbase cluster.

NOTE

All users with the edit role in a given project can create, manage, and delete
application instances (a Couchbase cluster, in this example) managed by
Operators that have already been installed in the project, in a self-service
manner, just like a cloud service. If you want to enable additional users with this
ability, cluster administrators can add the role using the following command:

$ oc policy add-role-to-user edit <user> -n <target_project>

a. From the Cluster Service Versions section of the web console, click Create Couchbase
Operator from the Operator’s Overview screen to begin creating a new
CouchbaseCluster object. This object is a new type that the Operator has made available
in the cluster. The object works similar to the built-in Deployment or ReplicaSet objects,
but contains logic specific to managing Couchbase.

TIP

When clicking the Create Couchbase Operator button, you may receive a 404 error the
first time. This is a known issue; as a workaround, refresh this page to continue.
(BZ#1609731)

The web console contains a minimal starting template, but you can read the Couchbase
documentation for all of the features the Operator supports.

Figure 41.4. Creating a Couchbase cluster

CHAPTER 41. INSTALLING THE OPERATOR FRAMEWORK (TECHNOLOGY PREVIEW)

723

https://bugzilla.redhat.com/show_bug.cgi?id=1609731
https://docs.couchbase.com/operator/1.0/couchbase-cluster-config.html

Figure 41.4. Creating a Couchbase cluster

b. Ensure that you configure the name of the secret that contains the admin credentials:

OpenShift Container Platform 3.11 Configuring Clusters

724

apiVersion: couchbase.com/v1
kind: CouchbaseCluster
metadata:
 name: cb-example
 namespace: couchbase-test
spec:
 authSecret: couchbase-admin-creds
 baseImage: registry.connect.redhat.com/couchbase/server
 [...]

c. When you have finalized your object definition, click Create in the web console (or use the
CLI) to create your object. This triggers the Operator to start up the pods, services, and
other components of the Couchbase cluster.

7. Your project now contains a number of resources created and configured automatically by the
Operator:

Figure 41.5. Couchbase cluster details

Click the Resources tab to verify that a Kubernetes service has been created that allows you to
access the database from other pods in your project.

Using the cb-example service, you can connect to the database using the credentials saved in
the secret. Other application pods can mount and use this secret and communicate with the
service.

You now have a fault-tolerant installation of Couchbase that will react to failures and rebalance data as
pods become unhealthy or are migrated between nodes in the cluster. Most importantly, cluster
administrators or developers can easily obtain this database cluster by supplying high-level
configuration; it is not required to have deep knowledge of the nuances of Couchbase clustering or
failover.

Read more about the capabilities of the Couchbase Autonomous Operator in the official Couchbase

CHAPTER 41. INSTALLING THE OPERATOR FRAMEWORK (TECHNOLOGY PREVIEW)

725

Read more about the capabilities of the Couchbase Autonomous Operator in the official Couchbase
documentation.

41.4. GETTING INVOLVED

The OpenShift team would love to hear about your experience using the Operator Framework and
suggestions you have for services you would like to see offered as an Operator.

Get in touch with the team by emailing openshift-operators@redhat.com.

OpenShift Container Platform 3.11 Configuring Clusters

726

https://docs.couchbase.com/operator/1.0/overview.html
mailto:openshift-operators@redhat.com

CHAPTER 42. UNINSTALLING OPERATOR LIFECYCLE
MANAGER

After installing your cluster, you can uninstall the Operator Lifecycle Manager by using the OpenShift
Container Platform openshift-ansible installer.

42.1. UNINSTALLING OPERATOR LIFECYCLE MANAGER USING
ANSIBLE

After installing your cluster, you can use this procedure with the OpenShift Container Platform
openshift-ansible installer to uninstall the Technology Preview Operator Framework.

You must check the following prerequisites before uninstalling the Technology Preview Operator
Framework:

An existing OpenShift Container Platform 3.11 cluster

Access to the cluster using an account with cluster-admin permissions

Ansible playbooks provided by the latest openshift-ansible installer

1. Add the following variables to your config.yml playbook:

operator_lifecycle_manager_install=false
operator_lifecycle_manager_remove=true

2. Change to the playbook directory:

$ cd /usr/share/ansible/openshift-ansible

3. Run the OLM installation playbook to uninstall OLM using your inventory file:

$ ansible-playbook -i <inventory_file> playbooks/olm/config.yml

CHAPTER 42. UNINSTALLING OPERATOR LIFECYCLE MANAGER

727

	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. SETTING UP THE REGISTRY
	2.1. INTERNAL REGISTRY OVERVIEW
	2.1.1. About the Registry
	2.1.2. Integrated or Stand-alone Registries

	2.2. DEPLOYING A REGISTRY ON EXISTING CLUSTERS
	2.2.1. Overview
	2.2.2. Setting the Registry Host Name
	2.2.3. Deploying the Registry
	2.2.4. Deploying the Registry as a DaemonSet
	2.2.5. Registry Compute Resources
	2.2.6. Storage for the Registry
	2.2.6.1. Production Use
	2.2.6.2. Non-Production Use

	2.2.7. Enabling the Registry Console
	2.2.7.1. Deploying the Registry Console
	2.2.7.2. Securing the Registry Console
	2.2.7.3. Troubleshooting the Registry Console

	2.3. ACCESSING THE REGISTRY
	2.3.1. Viewing Logs
	2.3.2. File Storage
	2.3.3. Accessing the Registry Directly
	2.3.3.1. User Prerequisites
	2.3.3.2. Logging in to the Registry
	2.3.3.3. Pushing and Pulling Images

	2.3.4. Accessing Registry Metrics

	2.4. SECURING AND EXPOSING THE REGISTRY
	2.4.1. Overview
	2.4.2. Manually Securing the Registry
	2.4.3. Manually Exposing a Secure Registry
	2.4.4. Manually Exposing a Non-Secure Registry

	2.5. EXTENDED REGISTRY CONFIGURATION
	2.5.1. Maintaining the Registry IP Address
	2.5.2. Configuring an External Registry Search List
	2.5.3. Setting the Registry Host Name
	2.5.4. Overriding the Registry Configuration
	2.5.5. Registry Configuration Reference
	2.5.5.1. Log
	2.5.5.2. Hooks
	2.5.5.3. Storage
	2.5.5.4. Auth
	2.5.5.5. Middleware
	2.5.5.6. OpenShift
	2.5.5.7. Reporting
	2.5.5.8. HTTP
	2.5.5.9. Notifications
	2.5.5.10. Redis
	2.5.5.11. Health
	2.5.5.12. Proxy
	2.5.5.13. Cache

	2.6. KNOWN ISSUES
	2.6.1. Overview
	2.6.2. Concurrent Build with Registry Pull-through
	2.6.3. Image Push Errors with Scaled Registry Using Shared NFS Volume
	2.6.4. Pull of Internally Managed Image Fails with "not found" Error
	2.6.5. Image Push Fails with "500 Internal Server Error" on S3 Storage
	2.6.6. Image Pruning Fails

	CHAPTER 3. SETTING UP A ROUTER
	3.1. ROUTER OVERVIEW
	3.1.1. About Routers
	3.1.2. Router Service Account
	3.1.2.1. Permission to Access Labels

	3.2. USING THE DEFAULT HAPROXY ROUTER
	3.2.1. Overview
	3.2.2. Creating a Router
	3.2.3. Other Basic Router Commands
	3.2.4. Filtering Routes to Specific Routers
	3.2.5. HAProxy Strict SNI
	3.2.6. TLS Cipher Suites
	3.2.7. Mutual TLS Authentication
	3.2.8. Highly-Available Routers
	3.2.9. Customizing the Router Service Ports
	3.2.10. Working With Multiple Routers
	3.2.11. Adding a Node Selector to a Deployment Configuration
	3.2.12. Using Router Shards
	3.2.12.1. Creating Router Shards
	3.2.12.2. Modifying Router Shards

	3.2.13. Finding the Host Name of the Router
	3.2.14. Customizing the Default Routing Subdomain
	3.2.15. Forcing Route Host Names to a Custom Routing Subdomain
	3.2.16. Using Wildcard Certificates
	3.2.17. Manually Redeploy Certificates
	3.2.18. Using Secured Routes
	3.2.19. Using Wildcard Routes (for a Subdomain)
	3.2.20. Using the Container Network Stack
	3.2.21. Using the Dynamic Configuration Manager
	3.2.22. Exposing Router Metrics
	3.2.23. ARP Cache Tuning for Large-scale Clusters
	3.2.24. Protecting Against DDoS Attacks
	3.2.25. Enable HAProxy Threading

	3.3. DEPLOYING A CUSTOMIZED HAPROXY ROUTER
	3.3.1. Overview
	3.3.2. Obtaining the Router Configuration Template
	3.3.3. Modifying the Router Configuration Template
	3.3.3.1. Background
	3.3.3.2. Go Template Actions
	3.3.3.3. Router Provided Information
	3.3.3.4. Annotations
	3.3.3.5. Environment Variables
	3.3.3.6. Example Usage

	3.3.4. Using a ConfigMap to Replace the Router Configuration Template
	3.3.5. Using Stick Tables
	3.3.6. Rebuilding Your Router

	3.4. CONFIGURING THE HAPROXY ROUTER TO USE THE PROXY PROTOCOL
	3.4.1. Overview
	3.4.2. Why Use the PROXY Protocol?
	3.4.3. Using the PROXY Protocol

	CHAPTER 4. DEPLOYING RED HAT CLOUDFORMS
	4.1. DEPLOYING RED HAT CLOUDFORMS ON OPENSHIFT CONTAINER PLATFORM
	4.1.1. Introduction

	4.2. REQUIREMENTS FOR RED HAT CLOUDFORMS ON OPENSHIFT CONTAINER PLATFORM
	4.3. CONFIGURING ROLE VARIABLES
	4.3.1. Overview
	4.3.2. General Variables
	4.3.3. Customizing Template Parameters
	4.3.4. Database Variables
	4.3.4.1. Containerized (Podified) Database
	4.3.4.2. External Database

	4.3.5. Storage Class Variables
	4.3.5.1. NFS (Default)
	4.3.5.2. NFS External
	4.3.5.3. Cloud Provider
	4.3.5.4. Preconfigured (Advanced)

	4.4. RUNNING THE INSTALLER
	4.4.1. Deploying Red Hat CloudForms During or After OpenShift Container Platform Installation
	4.4.2. Example Inventory Files
	4.4.2.1. All Defaults
	4.4.2.2. External NFS Storage
	4.4.2.3. Override PV Sizes
	4.4.2.4. Override Memory Requirements
	4.4.2.5. External PostgreSQL Database

	4.5. ENABLING CONTAINER PROVIDER INTEGRATION
	4.5.1. Adding a Single Container Provider
	4.5.1.1. Adding Manually
	4.5.1.2. Adding Automatically

	4.5.2. Multiple Container Providers
	4.5.2.1. Preparing the Script
	4.5.2.2. Running the Playbook

	4.5.3. Refreshing Providers

	4.6. UNINSTALLING RED HAT CLOUDFORMS
	4.6.1. Running the Uninstall Playbook
	4.6.2. Troubleshooting

	CHAPTER 5. PROMETHEUS CLUSTER MONITORING
	5.1. OVERVIEW
	5.2. CONFIGURING OPENSHIFT CONTAINER PLATFORM CLUSTER MONITORING
	5.2.1. Monitoring prerequisites
	5.2.2. Installing monitoring stack
	5.2.3. Persistent storage
	5.2.3.1. Enabling persistent storage
	5.2.3.2. Determining how much storage is necessary
	5.2.3.3. Setting persistent storage size
	5.2.3.4. Allocating enough persistent volumes
	5.2.3.5. Enabling dynamically-provisioned storage

	5.2.4. Supported configuration

	5.3. CONFIGURING ALERTMANAGER
	5.3.1. Dead man’s switch
	5.3.2. Grouping alerts
	5.3.3. Dead man’s switch PagerDuty
	5.3.4. Alerting rules

	5.4. CONFIGURING ETCD MONITORING
	5.5. ACCESSING PROMETHEUS, ALERTMANAGER, AND GRAFANA

	CHAPTER 6. ACCESSING AND CONFIGURING THE RED HAT REGISTRY
	6.1. AUTHENTICATION ENABLED RED HAT REGISTRY
	6.1.1. Creating User accounts
	6.1.2. Creating Service Accounts and Authentication Tokens for the Red Hat Registry
	6.1.3. Managing Registry Credentials for Installation and Upgrade
	6.1.4. Using Service Accounts with the Red Hat Registry

	CHAPTER 7. MASTER AND NODE CONFIGURATION
	7.1. CUSTOMIZING MASTER AND NODE CONFIGURATION AFTER INSTALLATION
	7.2. INSTALLATION DEPENDENCIES
	7.3. CONFIGURING MASTERS AND NODES
	7.4. MAKING CONFIGURATION CHANGES USING ANSIBLE
	7.4.1. Using the htpasswd command

	7.5. MAKING MANUAL CONFIGURATION CHANGES
	7.6. MASTER CONFIGURATION FILES
	7.6.1. Admission Control Configuration
	7.6.2. Asset Configuration
	7.6.3. Authentication and Authorization Configuration
	7.6.4. Controller Configuration
	7.6.5. etcd Configuration
	7.6.6. Grant Configuration
	7.6.7. Image Configuration
	7.6.8. Image Policy Configuration
	7.6.9. Kubernetes Master Configuration
	7.6.10. Network Configuration
	7.6.11. OAuth Authentication Configuration
	7.6.12. Project Configuration
	7.6.13. Scheduler Configuration
	7.6.14. Security Allocator Configuration
	7.6.15. Service Account Configuration
	7.6.16. Serving Information Configuration
	7.6.17. Volume Configuration
	7.6.18. Basic Audit
	7.6.18.1. Enable Basic Auditing

	7.6.19. Advanced Audit
	7.6.20. Specifying TLS ciphers for etcd

	7.7. NODE CONFIGURATION FILES
	7.7.1. Pod and Node Configuration
	7.7.2. Docker Configuration
	7.7.3. Local Storage Configuration
	7.7.4. Setting Node Queries per Second (QPS) Limits and Burst Values
	7.7.5. Parallel Image Pulls with Docker 1.9+

	7.8. PASSWORDS AND OTHER SENSITIVE DATA
	7.9. CREATING NEW CONFIGURATION FILES
	7.10. LAUNCHING SERVERS USING CONFIGURATION FILES
	7.11. VIEWING MASTER AND NODE LOGS
	7.11.1. Configuring Logging Levels

	7.12. RESTARTING MASTER AND NODE SERVICES

	CHAPTER 8. OPENSHIFT ANSIBLE BROKER CONFIGURATION
	8.1. OVERVIEW
	8.2. AUTHENTICATING ON RED HAT PARTNER CONNECT REGISTRY
	8.3. MODIFYING THE OPENSHIFT ANSIBLE BROKER CONFIGURATION
	8.4. REGISTRY CONFIGURATION
	8.4.1. Production or Development
	8.4.2. Storing Registry Credentials
	8.4.3. APB Filtering
	8.4.4. Mock Registry
	8.4.5. Dockerhub Registry
	8.4.6. Ansible Galaxy Registry
	8.4.7. Local OpenShift Container Registry
	8.4.8. Red Hat Container Catalog Registry
	8.4.9. Red Hat Partner Connect Registry
	8.4.10. Helm Chart Registry
	8.4.11. API V2 Docker Registry
	8.4.12. Quay Docker Registry
	8.4.13. Multiple Registries

	8.5. BROKER AUTHENTICATION
	8.5.1. Basic Auth
	8.5.1.1. Deployment Template and Secrets
	8.5.1.2. Configuring Service Catalog and Broker Communication

	8.5.2. Bearer Auth
	8.5.2.1. Deployment Template and Secrets
	8.5.2.2. Configuring Service Catalog and Broker Communication

	8.6. DAO CONFIGURATION
	8.7. LOG CONFIGURATION
	8.8. OPENSHIFT CONFIGURATION
	8.9. BROKER CONFIGURATION
	8.10. SECRETS CONFIGURATION
	8.11. RUNNING BEHIND A PROXY
	8.11.1. Registry Adapter Whitelists
	8.11.2. Configuring the Broker Behind a Proxy Using Ansible
	8.11.3. Configuring the Broker Behind a Proxy Manually
	8.11.4. Setting Proxy Environment Variables in Pods

	CHAPTER 9. ADDING HOSTS TO AN EXISTING CLUSTER
	9.1. ADDING HOSTS
	Procedure

	9.2. ADDING ETCD HOSTS TO EXISTING CLUSTER
	9.3. REPLACING EXISTING MASTERS WITH ETCD COLOCATED
	9.4. MIGRATING THE NODES

	CHAPTER 10. ADDING THE DEFAULT IMAGE STREAMS AND TEMPLATES
	10.1. OVERVIEW
	10.2. OFFERINGS BY SUBSCRIPTION TYPE
	10.2.1. OpenShift Container Platform Subscription
	10.2.2. xPaaS Middleware Add-on Subscriptions

	10.3. BEFORE YOU BEGIN
	10.4. PREREQUISITES
	10.5. CREATING IMAGE STREAMS FOR OPENSHIFT CONTAINER PLATFORM IMAGES
	10.6. CREATING IMAGE STREAMS FOR XPAAS MIDDLEWARE IMAGES
	10.7. CREATING DATABASE SERVICE TEMPLATES
	10.8. CREATING INSTANT APP AND QUICKSTART TEMPLATES
	10.9. WHAT’S NEXT?

	CHAPTER 11. CONFIGURING CUSTOM CERTIFICATES
	11.1. OVERVIEW
	11.2. CONFIGURING A CERTIFICATE CHAIN
	11.3. CONFIGURING CUSTOM CERTIFICATES DURING INSTALLATION
	11.4. CONFIGURING CUSTOM CERTIFICATES FOR THE WEB CONSOLE OR CLI
	11.5. CONFIGURING A CUSTOM MASTER HOST CERTIFICATE
	11.6. CONFIGURING A CUSTOM WILDCARD CERTIFICATE FOR THE DEFAULT ROUTER
	11.7. CONFIGURING A CUSTOM CERTIFICATE FOR THE IMAGE REGISTRY
	11.8. CONFIGURING A CUSTOM CERTIFICATE FOR A LOAD BALANCER
	11.9. RETROFIT CUSTOM CERTIFICATES INTO A CLUSTER
	11.9.1. Retrofit Custom Master Certificates into a Cluster
	11.9.2. Retrofit Custom Router Certificates into a Cluster

	11.10. USING CUSTOM CERTIFICATES WITH OTHER COMPONENTS

	CHAPTER 12. REDEPLOYING CERTIFICATES
	12.1. OVERVIEW
	12.2. CHECKING CERTIFICATE EXPIRATIONS
	12.2.1. Role Variables
	12.2.2. Running Certificate Expiration Playbooks
	Other Example Playbooks

	12.2.3. Output Formats
	HTML Report
	JSON Report

	12.3. REDEPLOYING CERTIFICATES
	12.3.1. Redeploying All Certificates Using the Current OpenShift Container Platform and etcd CA
	12.3.2. Redeploying a New or Custom OpenShift Container Platform CA
	12.3.3. Redeploying a New etcd CA
	12.3.4. Redeploying Master and Web Console Certificates
	12.3.5. Redeploying Only Named Certificates
	12.3.6. Redeploying etcd Certificates Only
	12.3.7. Redeploying Node Certificates
	12.3.8. Redeploying Registry or Router Certificates Only
	12.3.8.1. Redeploying Registry Certificates Only
	12.3.8.2. Redeploying Router Certificates Only

	12.3.9. Redeploying Custom Registry or Router Certificates
	12.3.9.1. Redeploying Registry Certificates Manually
	12.3.9.2. Redeploying Router Certificates Manually

	12.4. MANAGING CERTIFICATE SIGNING REQUESTS
	12.4.1. Reviewing Certificate Signing Requests
	12.4.2. Approving Certificate Signing Requests
	12.4.3. Denying Certificate Signing Requests
	12.4.4. Configuring Automatic Approval of Certificate Signing Requests

	CHAPTER 13. CONFIGURING AUTHENTICATION AND USER AGENT
	13.1. OVERVIEW
	13.2. IDENTITY PROVIDER PARAMETERS
	13.3. CONFIGURING IDENTITY PROVIDERS
	13.3.1. Configuring identity providers with Ansible
	13.3.2. Configuring identity providers in the master configuration file
	13.3.2.1. Manually provisioning a user when using the lookup mapping method

	13.3.3. Allow all
	13.3.4. Deny all
	13.3.5. HTPasswd
	13.3.6. Keystone
	13.3.6.1. Configuring authentication on the master
	13.3.6.2. Creating Users with Keystone Authentication
	13.3.6.3. Verifying Users

	13.3.7. LDAP authentication
	13.3.8. Basic authentication (remote)
	13.3.8.1. Configuring authentication on the master
	13.3.8.2. Troubleshooting

	13.3.9. Request header
	SSPI connection support on Microsoft Windows
	Apache authentication using Request header

	13.3.10. GitHub and GitHub Enterprise
	13.3.10.1. Registering the application on GitHub
	13.3.10.2. Configuring authentication on the master
	13.3.10.3. Creating users with GitHub authentication
	13.3.10.4. Verifying users

	13.3.11. GitLab
	13.3.12. Google
	13.3.13. OpenID connect

	13.4. TOKEN OPTIONS
	13.5. GRANT OPTIONS
	13.6. SESSION OPTIONS
	13.7. PREVENTING CLI VERSION MISMATCH WITH USER AGENT

	CHAPTER 14. SYNCING GROUPS WITH LDAP
	14.1. OVERVIEW
	14.2. CONFIGURING LDAP SYNC
	14.2.1. LDAP client configuration
	14.2.2. LDAP query definition
	14.2.3. User-defined name mapping

	14.3. RUNNING LDAP SYNC
	14.4. RUNNING A GROUP PRUNING JOB
	14.5. SYNC EXAMPLES
	14.5.1. Syncing groups by using RFC 2307 schema
	14.5.1.1. RFC2307 with user-defined name mappings

	14.5.2. Syncing groups by using RFC 2307 with user-defined error tolerances
	14.5.3. Syncing groups by using Active Directory
	14.5.4. Syncing groups by using augmented Active Directory

	14.6. NESTED MEMBERSHIP SYNC EXAMPLE
	14.7. LDAP SYNC CONFIGURATION SPECIFICATION
	14.7.1. v1.LDAPSyncConfig
	14.7.2. v1.StringSource
	14.7.3. v1.LDAPQuery
	14.7.4. v1.RFC2307Config
	14.7.5. v1.ActiveDirectoryConfig
	14.7.6. v1.AugmentedActiveDirectoryConfig

	CHAPTER 15. CONFIGURING LDAP FAILOVER
	15.1. PREREQUISITES FOR CONFIGURING BASIC REMOTE AUTHENTICATION
	15.2. GENERATING AND SHARING CERTIFICATES WITH THE REMOTE BASIC AUTHENTICATION SERVER
	15.3. CONFIGURING SSSD FOR LDAP FAILOVER
	15.4. CONFIGURING APACHE TO USE SSSD
	15.5. CONFIGURING OPENSHIFT CONTAINER PLATFORM TO USE SSSD AS THE BASIC REMOTE AUTHENTICATION SERVER

	CHAPTER 16. CONFIGURING THE SDN
	16.1. OVERVIEW
	16.2. AVAILABLE SDN PROVIDERS
	Installing VMware NSX-T (™) on OpenShift Container Platform

	16.3. CONFIGURING THE POD NETWORK WITH ANSIBLE
	16.4. CONFIGURING THE POD NETWORK ON MASTERS
	16.5. CHANGING THE VXLAN PORT FOR THE CLUSTER NETWORK
	16.6. CONFIGURING THE POD NETWORK ON NODES
	16.7. EXPANDING THE SERVICE NETWORK
	16.8. MIGRATING BETWEEN SDN PLUG-INS
	16.8.1. Migrating from ovs-multitenant to ovs-networkpolicy

	16.9. EXTERNAL ACCESS TO THE CLUSTER NETWORK
	16.10. USING FLANNEL

	CHAPTER 17. CONFIGURING NUAGE SDN
	17.1. NUAGE SDN AND OPENSHIFT CONTAINER PLATFORM
	17.2. DEVELOPER WORKFLOW
	17.3. OPERATIONS WORKFLOW
	17.4. INSTALLATION

	CHAPTER 18. CONFIGURING NSX-T SDN
	18.1. NSX-T SDN AND OPENSHIFT CONTAINER PLATFORM
	18.2. EXAMPLE TOPOLOGY
	18.3. INSTALLING VMWARE NSX-T
	18.4. CHECK NSX-T AFTER OPENSHIFT CONTAINER PLATFORM DEPLOYMENT

	CHAPTER 19. CONFIGURING KURYR SDN
	19.1. KURYR SDN AND OPENSHIFT CONTAINER PLATFORM
	19.2. INSTALLING KURYR SDN
	19.3. VERIFICATION

	CHAPTER 20. CONFIGURING FOR AMAZON WEB SERVICES (AWS)
	20.1. OVERVIEW
	20.1.1. Configuring authorization for Amazon Web Services (AWS)
	20.1.1.1. Configuring the OpenShift Container Platform cloud provider at installation
	20.1.1.2. Configuring the OpenShift Container Platform cloud provider after installation

	20.2. CONFIGURING A SECURITY GROUP
	20.2.1. Overriding Detected IP Addresses and Host Names
	20.2.1.1. Configuring the OpenShift Container Platform registry for Amazon Web Services (AWS)

	20.3. CONFIGURING AWS VARIABLES
	20.4. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR AWS
	20.4.1. Configuring OpenShift Container Platform for AWS with Ansible
	20.4.2. Manually Configuring OpenShift Container Platform Masters for AWS
	20.4.3. Manually Configuring OpenShift Container Platform Nodes for AWS
	20.4.4. Manually Setting Key-Value Access Pairs

	20.5. APPLYING CONFIGURATION CHANGES
	20.6. LABELING CLUSTERS FOR AWS
	20.6.1. Resources That Need Tags
	20.6.2. Tagging an Existing Cluster
	20.6.3. About Red Hat OpenShift Container Storage

	CHAPTER 21. CONFIGURING FOR RED HAT VIRTUALIZATION
	21.1. CREATING THE BASTION VIRTUAL MACHINE
	21.2. INSTALLING OPENSHIFT CONTAINER PLATFORM WITH THE BASTION VIRTUAL MACHINE

	CHAPTER 22. CONFIGURING FOR OPENSTACK
	22.1. OVERVIEW
	22.2. BEFORE YOU BEGIN
	22.2.1. OpenShift Container Platform SDN
	22.2.2. Kuryr SDN
	22.2.3. OpenShift Container Platform Prerequisites
	22.2.3.1. Enabling Octavia: OpenStack Load Balancing as a Service (LBaaS)
	22.2.3.2. Creating OpenStack User Accounts, Projects, and Roles
	22.2.3.3. Extra steps for Kuryr SDN
	22.2.3.4. Configuring the RC file
	22.2.3.5. Create an OpenStack Flavor
	22.2.3.6. Creating an OpenStack Keypair
	22.2.3.7. Setting up DNS for OpenShift Container Platform
	22.2.3.8. Creation of OpenShift Container Platform Networks via OpenStack
	22.2.3.9. Creating OpenStack Deployment Host Security Group
	22.2.3.10. OpenStack Cinder Volumes
	22.2.3.11. Creating and Configuring the Deployment Instance
	22.2.3.12. Deployment Host Configuration for OpenShift Container Platform

	22.3. PROVISIONING OPENSHIFT CONTAINER PLATFORM INSTANCES USING THE OPENSHIFT ANSIBLE PLAYBOOKS
	22.3.1. Preparing the Inventory for Provisioning
	22.3.1.1. OpenShiftSDN All YAML file
	22.3.1.2. KuryrSDN All YAML file
	22.3.1.3. OSEv3 YAML file

	22.3.2. OpenStack Prerequisites Playbook
	22.3.3. Stack Name Configuration

	22.4. REGISTERING WITH SUBSCRIPTION MANAGER THE OPENSHIFT CONTAINER PLATFORM INSTANCES
	22.5. INSTALLING OPENSHIFT CONTAINER PLATFORM BY USING AN ANSIBLE PLAYBOOK
	22.6. APPLYING CONFIGURATION CHANGES TO EXISTING OPENSHIFT CONTAINER PLATFORM ENVIRONMENT
	22.6.1. Configuring OpenStack Variables on an existing OpenShift Environment
	22.6.2. Configuring Zone Labels for Dynamically Created OpenStack PVs

	CHAPTER 23. CONFIGURING FOR GOOGLE COMPUTE ENGINE
	23.1. BEFORE YOU BEGIN
	23.1.1. Configuring authorization for Google Cloud Platform
	23.1.2. Google Compute Engine objects

	23.2. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR GCE
	23.2.1. Option 1: Configuring OpenShift Container Platform for GCP using Ansible
	23.2.2. Option 2: Manually configuring OpenShift Container Platform for GCE
	23.2.2.1. Manually configuring master hosts for GCE
	23.2.2.2. Manually configuring node hosts for GCE

	23.2.3. Configuring the OpenShift Container Platform registry for GCP
	23.2.3.1. Manually configuring OpenShift Container Platform registry for GCP

	23.2.4. Configuring OpenShift Container Platform to use GCP storage
	23.2.5. About Red Hat OpenShift Container Storage

	23.3. USING THE GCP EXTERNAL LOAD BALANCER AS A SERVICE

	CHAPTER 24. CONFIGURING FOR AZURE
	24.1. BEFORE YOU BEGIN
	24.1.1. Configuring authorization for Microsoft Azure
	24.1.2. Configuring Microsoft Azure objects

	24.2. THE AZURE CONFIGURATION FILE
	24.3. EXAMPLE INVENTORY FOR OPENSHIFT CONTAINER PLATFORM ON MICROSOFT AZURE
	24.4. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR MICROSOFT AZURE
	24.4.1. Configuring OpenShift Container Platform for Azure by using Ansible
	24.4.2. Manually configuring OpenShift Container Platform for Microsoft Azure
	24.4.2.1. Manually configuring master hosts for Microsoft Azure
	24.4.2.2. Manually configuring node hosts for Microsoft Azure

	24.4.3. Configuring the OpenShift Container Platform registry for Microsoft Azure
	24.4.4. Configuring OpenShift Container Platform to use Microsoft Azure storage
	24.4.5. About Red Hat OpenShift Container Storage

	24.5. USING THE MICROSOFT AZURE EXTERNAL LOAD BALANCER AS A SERVICE
	24.5.1. Deploying a sample application using a load balancer

	CHAPTER 25. CONFIGURING FOR VMWARE VSPHERE
	25.1. BEFORE YOU BEGIN
	25.1.1. Requirements
	25.1.1.1. Permissions
	25.1.1.2. Using OpenShift Container Platform with vMotion

	25.2. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR VSPHERE
	25.2.1. Option 1: Configuring OpenShift Container Platform for vSphere using Ansible
	25.2.2. Option 2: Manually configuring OpenShift Container Platform for vSphere
	25.2.2.1. Manually configuring master hosts for vSphere
	25.2.2.2. Manually configuring node hosts for vSphere
	25.2.2.3. Applying Configuration Changes

	25.3. CONFIGURING OPENSHIFT CONTAINER PLATFORM TO USE VSPHERE STORAGE
	Prerequisites
	25.3.1. Dynamically Provisioning VMware vSphere volumes
	25.3.2. Statically Provisioning VMware vSphere volumes
	25.3.2.1. Creating PersistentVolumes
	25.3.2.2. Formatting VMware vSphere volumes

	25.4. CONFIGURING THE OPENSHIFT CONTAINER PLATFORM REGISTRY FOR VSPHERE
	25.4.1. Configuring the OpenShift Container Platform registry for vSphere using Ansible
	25.4.2. Dynamically provisioning storage for OpenShift Container Platform registry
	25.4.3. Manually provisioning storage for OpenShift Container Platform registry
	25.4.4. About Red Hat OpenShift Container Storage

	25.5. BACKUP OF PERSISTENT VOLUMES

	CHAPTER 26. CONFIGURING LOCAL VOLUMES
	26.1. OVERVIEW
	26.2. MOUNTING LOCAL VOLUMES
	26.3. CONFIGURING THE LOCAL PROVISIONER
	26.4. DEPLOYING THE LOCAL PROVISIONER
	26.5. ADDING NEW DEVICES
	26.6. CONFIGURING RAW BLOCK DEVICES
	26.6.1. Preparing raw block devices
	26.6.2. Deploying raw block device provisioners
	26.6.3. Using raw block device persistent volumes

	CHAPTER 27. CONFIGURING PERSISTENT STORAGE
	27.1. OVERVIEW
	27.2. PERSISTENT STORAGE USING NFS
	27.2.1. Overview
	27.2.2. Provisioning
	27.2.3. Enforcing Disk Quotas
	27.2.4. NFS Volume Security
	27.2.4.1. Group IDs
	27.2.4.2. User IDs
	27.2.4.3. SELinux
	27.2.4.4. Export Settings

	27.2.5. Reclaiming Resources
	27.2.6. Automation
	27.2.7. Additional Configuration and Troubleshooting

	27.3. PERSISTENT STORAGE USING RED HAT GLUSTER STORAGE
	27.3.1. Overview
	27.3.1.1. converged mode
	27.3.1.2. independent mode
	27.3.1.3. Standalone Red Hat Gluster Storage
	27.3.1.4. GlusterFS Volumes
	27.3.1.5. gluster-block Volumes
	27.3.1.6. Gluster S3 Storage

	27.3.2. Considerations
	27.3.2.1. Software Prerequisites
	27.3.2.2. Hardware Requirements
	27.3.2.3. Storage Sizing
	27.3.2.4. Volume Operation Behaviors
	27.3.2.5. Volume Security

	27.3.3. Support Requirements
	27.3.4. Installation
	27.3.4.1. independent mode: Installing Red Hat Gluster Storage Nodes
	27.3.4.2. Using the Installer

	27.3.5. Uninstall converged mode
	27.3.6. Provisioning
	27.3.6.1. Static Provisioning
	27.3.6.2. Dynamic Provisioning

	27.4. PERSISTENT STORAGE USING OPENSTACK CINDER
	27.4.1. Overview
	27.4.2. Provisioning Cinder PVs
	27.4.2.1. Creating the Persistent Volume
	27.4.2.2. Cinder PV format
	27.4.2.3. Cinder volume security
	27.4.2.4. Cinder volume limit

	27.5. PERSISTENT STORAGE USING CEPH RADOS BLOCK DEVICE (RBD)
	27.5.1. Overview
	27.5.2. Provisioning
	27.5.2.1. Creating the Ceph Secret
	27.5.2.2. Creating the Persistent Volume

	27.5.3. Ceph Volume Security

	27.6. PERSISTENT STORAGE USING AWS ELASTIC BLOCK STORE
	27.6.1. Overview
	27.6.2. Provisioning
	27.6.2.1. Creating the Persistent Volume
	27.6.2.2. Volume Format
	27.6.2.3. Maximum Number of EBS Volumes on a Node

	27.7. PERSISTENT STORAGE USING GCE PERSISTENT DISK
	27.7.1. Overview
	27.7.2. Provisioning
	27.7.2.1. Creating the Persistent Volume
	27.7.2.2. Volume Format

	27.8. PERSISTENT STORAGE USING ISCSI
	27.8.1. Overview
	27.8.2. Provisioning
	27.8.2.1. Enforcing Disk Quotas
	27.8.2.2. iSCSI Volume Security
	27.8.2.3. iSCSI Multipathing
	27.8.2.4. iSCSI Custom Initiator IQN

	27.9. PERSISTENT STORAGE USING FIBRE CHANNEL
	27.9.1. Overview
	27.9.2. Provisioning
	27.9.2.1. Enforcing Disk Quotas
	27.9.2.2. Fibre Channel Volume Security

	27.10. PERSISTENT STORAGE USING AZURE DISK
	27.10.1. Overview
	27.10.2. Prerequisites
	27.10.3. Provisioning
	27.10.4. Configuring Azure Disk for regional cloud
	27.10.4.1. Creating the Persistent Volume
	27.10.4.2. Volume Format

	27.11. PERSISTENT STORAGE USING AZURE FILE
	27.11.1. Overview
	27.11.2. Before you begin
	27.11.3. Example configuration files
	27.11.4. Configuring Azure File for regional cloud
	27.11.5. Creating the Azure Storage Account secret

	27.12. PERSISTENT STORAGE USING FLEXVOLUME PLUG-INS
	27.12.1. Overview
	27.12.2. FlexVolume drivers
	27.12.2.1. FlexVolume drivers with master-initiated attach/detach
	27.12.2.2. FlexVolume drivers without master-initiated attach/detach

	27.12.3. Installing FlexVolume drivers
	27.12.4. Consuming storage using FlexVolume drivers

	27.13. USING VMWARE VSPHERE VOLUMES FOR PERSISTENT STORAGE
	27.13.1. Overview
	Prerequisites

	27.13.2. Dynamically Provisioning VMware vSphere volumes
	27.13.3. Statically Provisioning VMware vSphere volumes
	27.13.3.1. Create the VMDKs
	27.13.3.2. Creating PersistentVolumes
	27.13.3.3. Formatting VMware vSphere volumes

	27.14. PERSISTENT STORAGE USING LOCAL VOLUME
	27.14.1. Overview
	27.14.2. Provisioning
	27.14.3. Creating Local Persistent Volume
	27.14.4. Creating Local Persistent Volume Claim
	27.14.5. Feature Status

	27.15. PERSISTENT STORAGE USING CONTAINER STORAGE INTERFACE (CSI)
	27.15.1. Overview
	27.15.2. Architecture
	27.15.2.1. External CSI Controllers
	27.15.2.2. CSI Driver DaemonSet

	27.15.3. Example Deployment
	27.15.4. Dynamic Provisioning
	27.15.5. Usage

	27.16. PERSISTENT STORAGE USING OPENSTACK MANILA
	27.16.1. Overview
	27.16.2. Installation and Setup
	27.16.2.1. Starting the External Provisioner

	27.16.3. Usage

	27.17. DYNAMIC PROVISIONING AND CREATING STORAGE CLASSES
	27.17.1. Overview
	27.17.2. Available dynamically provisioned plug-ins
	27.17.3. Defining a StorageClass
	27.17.3.1. Basic StorageClass object definition
	27.17.3.2. StorageClass annotations
	27.17.3.3. OpenStack Cinder object definition
	27.17.3.4. AWS ElasticBlockStore (EBS) object definition
	27.17.3.5. GCE PersistentDisk (gcePD) object definition
	27.17.3.6. GlusterFS object definition
	27.17.3.7. Ceph RBD object definition
	27.17.3.8. Trident object definition
	27.17.3.9. VMware vSphere object definition
	27.17.3.10. Azure File object definition
	27.17.3.11. Azure Disk object definition

	27.17.4. Changing the default StorageClass
	27.17.5. Additional information and examples

	27.18. VOLUME SECURITY
	27.18.1. Overview
	27.18.2. SCCs, Defaults, and Allowed Ranges
	27.18.3. Supplemental Groups
	27.18.4. fsGroup
	27.18.5. User IDs
	27.18.6. SELinux Options

	27.19. SELECTOR-LABEL VOLUME BINDING
	27.19.1. Overview
	27.19.2. Motivation
	27.19.3. Deployment
	27.19.3.1. Prerequisites
	27.19.3.2. Define the Persistent Volume and Claim
	27.19.3.3. Optional: Bind a PVC to a specific PV
	27.19.3.4. Optional: Reserve a PV to a specific PVC
	27.19.3.5. Deploy the Persistent Volume and Claim

	27.20. ENABLING CONTROLLER-MANAGED ATTACHMENT AND DETACHMENT
	27.20.1. Overview
	27.20.2. Determining What Is Managing Attachment and Detachment
	27.20.3. Configuring Nodes to Enable Controller-managed Attachment and Detachment

	27.21. PERSISTENT VOLUME SNAPSHOTS
	27.21.1. Overview
	27.21.2. Features
	27.21.3. Installation and Setup
	27.21.3.1. Starting the External Controller and Provisioner
	27.21.3.2. Managing Snapshot Users

	27.21.4. Lifecycle of a Volume Snapshot and Volume Snapshot Data
	27.21.4.1. Persistent Volume Claim and Persistent Volume
	27.21.4.2. Create Snapshot
	27.21.4.3. Restore Snapshot
	27.21.4.4. Delete Snapshot

	27.22. USING HOSTPATH
	27.22.1. Overview
	27.22.2. Configuring hostPath volumes in the Pod specification
	27.22.3. Statically provisioning hostPath volumes
	27.22.4. Mounting the hostPath share in a privileged pod
	27.22.5. Additional resources

	CHAPTER 28. PERSISTENT STORAGE EXAMPLES
	28.1. OVERVIEW
	28.2. SHARING AN NFS MOUNT ACROSS TWO PERSISTENT VOLUME CLAIMS
	28.2.1. Overview
	28.2.2. Creating the Persistent Volume
	28.2.3. Creating the Persistent Volume Claim
	28.2.4. Ensuring NFS Volume Access
	28.2.5. Creating the Pod
	28.2.6. Creating an Additional Pod to Reference the Same PVC

	28.3. COMPLETE EXAMPLE USING CEPH RBD
	28.3.1. Overview
	28.3.2. Installing the ceph-common Package
	28.3.3. Creating the Ceph Secret
	28.3.4. Creating the Persistent Volume
	28.3.5. Creating the Persistent Volume Claim
	28.3.6. Creating the Pod
	28.3.7. Defining Group and Owner IDs (Optional)
	28.3.8. Setting ceph-user-secret as Default for Projects

	28.4. USING CEPH RBD FOR DYNAMIC PROVISIONING
	28.4.1. Overview
	28.4.2. Creating a pool for dynamic volumes
	28.4.3. Using an existing Ceph cluster for dynamic persistent storage
	28.4.4. Setting ceph-user-secret as the default for projects

	28.5. COMPLETE EXAMPLE USING GLUSTERFS
	28.5.1. Overview
	28.5.2. Prerequisites
	28.5.3. Static Provisioning
	28.5.4. Using the Storage

	28.6. COMPLETE EXAMPLE USING GLUSTERFS FOR DYNAMIC PROVISIONING
	28.6.1. Overview
	28.6.2. Prerequisites
	28.6.3. Dynamic Provisioning
	28.6.4. Using the Storage

	28.7. MOUNTING VOLUMES ON PRIVILEGED PODS
	28.7.1. Overview
	28.7.2. Prerequisites
	28.7.3. Creating the Persistent Volume
	28.7.4. Creating a Regular User
	28.7.5. Creating the Persistent Volume Claim
	28.7.6. Verifying the Setup
	28.7.6.1. Checking the Pod SCC
	28.7.6.2. Verifying the Mount

	28.8. MOUNT PROPAGATION
	28.8.1. Overview
	28.8.2. Values
	28.8.3. Configuration

	28.9. SWITCHING AN INTEGRATED OPENSHIFT CONTAINER REGISTRY TO GLUSTERFS
	28.9.1. Overview
	28.9.2. Prerequisites
	28.9.3. Manually Provision the GlusterFS PersistentVolumeClaim
	28.9.4. Attach the PersistentVolumeClaim to the Registry

	28.10. BINDING PERSISTENT VOLUMES BY LABELS
	28.10.1. Overview
	28.10.1.1. Assumptions

	28.10.2. Defining Specifications
	28.10.2.1. Persistent Volume with Labels
	28.10.2.2. Persistent Volume Claim with Selectors
	28.10.2.3. Volume Endpoints
	28.10.2.4. Deploy the PV, PVC, and Endpoints

	28.11. USING STORAGE CLASSES FOR DYNAMIC PROVISIONING
	28.11.1. Overview
	28.11.2. Scenario 1: Basic Dynamic Provisioning with Two Types of StorageClasses
	28.11.3. Scenario 2: How to enable Default StorageClass behavior for a Cluster

	28.12. USING STORAGE CLASSES FOR EXISTING LEGACY STORAGE
	28.12.1. Overview
	28.12.1.1. Scenario 1: Link StorageClass to existing Persistent Volume with Legacy Data

	28.13. CONFIGURING AZURE BLOB STORAGE FOR INTEGRATED CONTAINER IMAGE REGISTRY
	28.13.1. Overview
	28.13.2. Before You Begin
	28.13.3. Overriding Registry Configuration

	CHAPTER 29. CONFIGURING EPHEMERAL STORAGE
	29.1. OVERVIEW
	29.2. ENABLING EPHEMERAL STORAGE

	CHAPTER 30. WORKING WITH HTTP PROXIES
	30.1. OVERVIEW
	30.2. CONFIGURING NO_PROXY
	30.3. CONFIGURING HOSTS FOR PROXIES
	30.4. CONFIGURING HOSTS FOR PROXIES USING ANSIBLE
	30.5. PROXYING DOCKER PULL
	30.6. USING MAVEN BEHIND A PROXY
	30.7. CONFIGURING S2I BUILDS FOR PROXIES
	30.8. CONFIGURING DEFAULT TEMPLATES FOR PROXIES
	30.9. SETTING PROXY ENVIRONMENT VARIABLES IN PODS
	30.10. GIT REPOSITORY ACCESS

	CHAPTER 31. CONFIGURING GLOBAL BUILD DEFAULTS AND OVERRIDES
	31.1. OVERVIEW
	31.2. SETTING GLOBAL BUILD DEFAULTS
	31.2.1. Configuring Global Build Defaults with Ansible
	31.2.2. Manually Setting Global Build Defaults

	31.3. SETTING GLOBAL BUILD OVERRIDES
	31.3.1. Configuring Global Build Overrides with Ansible
	31.3.2. Manually Setting Global Build Overrides

	CHAPTER 32. CONFIGURING PIPELINE EXECUTION
	32.1. OVERVIEW
	32.2. OPENSHIFT JENKINS CLIENT PLUGIN
	32.3. OPENSHIFT JENKINS SYNC PLUGIN

	CHAPTER 33. CONFIGURING ROUTE TIMEOUTS
	CHAPTER 34. CONFIGURING NATIVE CONTAINER ROUTING
	34.1. NETWORK OVERVIEW
	34.2. CONFIGURE NATIVE CONTAINER ROUTING
	34.3. SETTING UP A NODE FOR CONTAINER NETWORKING
	34.4. SETTING UP A ROUTER FOR CONTAINER NETWORKING

	CHAPTER 35. ROUTING FROM EDGE LOAD BALANCERS
	35.1. OVERVIEW
	35.2. INCLUDING THE LOAD BALANCER IN THE SDN
	35.3. ESTABLISHING A TUNNEL USING A RAMP NODE
	35.3.1. Configuring a Highly Available Ramp Node

	CHAPTER 36. AGGREGATING CONTAINER LOGS
	36.1. OVERVIEW
	36.2. PRE-DEPLOYMENT CONFIGURATION
	36.3. SPECIFYING LOGGING ANSIBLE VARIABLES
	36.4. DEPLOYING THE EFK STACK
	36.5. UNDERSTANDING AND ADJUSTING THE DEPLOYMENT
	36.5.1. Ops Cluster
	36.5.2. Elasticsearch
	36.5.2.1. Persistent Elasticsearch Storage

	36.5.3. Fluentd
	36.5.4. Kibana
	36.5.5. Curator
	36.5.5.1. Using the Curator Actions File
	36.5.5.2. Creating the Curator Configuration

	36.6. CLEANUP
	36.7. SENDING LOGS TO AN EXTERNAL ELASTICSEARCH INSTANCE
	36.8. SENDING LOGS TO AN EXTERNAL SYSLOG SERVER
	36.9. PERFORMING ADMINISTRATIVE ELASTICSEARCH OPERATIONS
	36.10. REDEPLOYING EFK CERTIFICATES
	36.11. CHANGING THE AGGREGATED LOGGING DRIVER
	36.12. MANUAL ELASTICSEARCH ROLLOUTS
	36.12.1. Performing an Elasticsearch Rolling Cluster Restart
	36.12.2. Performing an Elasticsearch Full Cluster Restart

	36.13. TROUBLESHOOTING EFK
	36.13.1. Troubleshooting related to all EFK components
	36.13.2. Troubleshooting related to ElasticSearch
	36.13.3. Kibana

	CHAPTER 37. AGGREGATE LOGGING SIZING GUIDELINES
	37.1. OVERVIEW
	37.2. INSTALLATION
	37.2.1. Large Clusters

	37.3. SYSTEMD-JOURNALD AND RSYSLOG
	37.4. SCALING UP EFK LOGGING
	37.4.1. Master Events are Aggregated to EFK as Logs

	37.5. STORAGE CONSIDERATIONS

	CHAPTER 38. ENABLING CLUSTER METRICS
	38.1. OVERVIEW
	38.2. BEFORE YOU BEGIN
	38.3. METRICS DATA STORAGE
	38.3.1. Persistent Storage
	38.3.2. Capacity Planning for Cluster Metrics
	Known Issues and Limitations

	38.3.3. Non-Persistent Storage

	38.4. METRICS ANSIBLE ROLE
	38.4.1. Specifying Metrics Ansible Variables
	38.4.2. Using Secrets
	38.4.2.1. Providing Your Own Certificates

	38.5. DEPLOYING THE METRIC COMPONENTS
	38.5.1. Metrics Diagnostics

	38.6. SETTING THE METRICS PUBLIC URL
	38.7. ACCESSING HAWKULAR METRICS DIRECTLY
	38.7.1. OpenShift Container Platform Projects and Hawkular Tenants
	38.7.2. Authorization

	38.8. SCALING OPENSHIFT CONTAINER PLATFORM CLUSTER METRICS PODS
	38.9. CLEANUP

	CHAPTER 39. CUSTOMIZING THE WEB CONSOLE
	39.1. OVERVIEW
	39.2. LOADING EXTENSION SCRIPTS AND STYLESHEETS
	39.2.1. Setting Extension Properties

	39.3. EXTENSION OPTION FOR EXTERNAL LOGGING SOLUTIONS
	39.4. CUSTOMIZING AND DISABLING THE GUIDED TOUR
	39.5. CUSTOMIZING DOCUMENTATION LINKS
	39.6. CUSTOMIZING THE LOGO
	39.7. CUSTOMIZING THE MEMBERSHIP WHITELIST
	39.8. CHANGING LINKS TO DOCUMENTATION
	39.9. ADDING OR CHANGING LINKS TO DOWNLOAD THE CLI
	39.9.1. Customizing the About Page

	39.10. CONFIGURING NAVIGATION MENUS
	39.10.1. Top Navigation Dropdown Menus
	39.10.2. Application Launcher
	39.10.3. System Status Badge
	39.10.4. Project Left Navigation

	39.11. CONFIGURING FEATURED APPLICATIONS
	39.12. CONFIGURING CATALOG CATEGORIES
	39.13. CONFIGURING QUOTA NOTIFICATION MESSAGES
	39.14. CONFIGURING THE CREATE FROM URL NAMESPACE WHITELIST
	39.15. DISABLING THE COPY LOGIN COMMAND
	39.15.1. Enabling Wildcard Routes

	39.16. CUSTOMIZING THE LOGIN PAGE
	39.16.1. Example Usage

	39.17. CUSTOMIZING THE OAUTH ERROR PAGE
	39.18. CHANGING THE LOGOUT URL
	39.19. CONFIGURING WEB CONSOLE CUSTOMIZATIONS WITH ANSIBLE
	39.20. CHANGING THE WEB CONSOLE URL PORT AND CERTIFICATES

	CHAPTER 40. DEPLOYING EXTERNAL PERSISTENT VOLUME PROVISIONERS
	40.1. OVERVIEW
	40.2. BEFORE YOU BEGIN
	40.2.1. External Provisioners Ansible Role
	40.2.2. External Provisioners Ansible Variables
	40.2.3. AWS EFS Provisioner Ansible Variables

	40.3. DEPLOYING THE PROVISIONERS
	40.3.1. Deploying the AWS EFS Provisioner
	40.3.1.1. AWS EFS Object Definition

	40.4. CLEANUP

	CHAPTER 41. INSTALLING THE OPERATOR FRAMEWORK (TECHNOLOGY PREVIEW)
	41.1. WHAT’S IN THE TECHNOLOGY PREVIEW?
	41.2. INSTALLING OPERATOR LIFECYCLE MANAGER USING ANSIBLE
	41.3. LAUNCHING YOUR FIRST OPERATOR
	41.4. GETTING INVOLVED

	CHAPTER 42. UNINSTALLING OPERATOR LIFECYCLE MANAGER
	42.1. UNINSTALLING OPERATOR LIFECYCLE MANAGER USING ANSIBLE

