‘® redhat.

JBoss Enterprise Application Platform
5

Microcontainer User Guide

for use with JBoss Enterprise Application Platform 5
Edition 5.2.0

Last Updated: 2017-10-13

JBoss Enterprise Application Platform 5 Microcontainer User Guide

for use with JBoss Enterprise Application Platform 5
Edition 5.2.0
Mark Newton

Ales Justin

Edited by

Eva Kopalova

Misty Stanley-Jones
Petr Penicka
Russell Dickenson

Scott Mumford

Legal Notice

Copyright © 2012 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide is intended for Java developers who wish to use the JBoss Microcontainer to deploy
customized, modular Java environments for their applications.

http://creativecommons.org/licenses/by-sa/3.0/

Table of Contents

Table of Contents

PART I. INTRODUCTION TO THE MICROCONTAINER - GUIDED TUTORIAL ccciiiiiiiinnns, 4
CHAPTER 1. PREREQUISITESTOUSING THISGUIDE ciiiiii it i e e e annnnnns, 5
1.1. INSTALL MAVEN 5
1.2. SPECIAL MAVEN SETTINGS FOR THE MICROCONTAINER EXAMPLES 8
1.3. DOWNLOADING THE EXAMPLES 9
CHAPTER 2. INTRODUCTION TO THE MICROCONTAINER ttt i e e iana e 10
2.1. FEATURES 10
2.2. DEFINITIONS 10
2.3. INSTALLATION 11
CHAPTER 3. BUILDING SERVICES ittt ittt ata e e sasa e asaanansnsarnnnnnnns 12
3.1. INTRODUCTION TO THE HUMAN RESOURCES EXAMPLE 12
3.2. COMPILING THE HRMANAGER EXAMPLE PROJECT 13
3.3. CREATING POJOS 13
3.3.1. XML Deployment Descriptors 13

3.4. CONNECTING POJOS TOGETHER 13
3.4.1. Special Considerations 14

3.5. WORKING WITH SERVICES 14
3.5.1. Configuring A Service 14
3.5.2. Testing A Service 15
3.5.3. Packaging A Service 17
CHAPTER 4. USING SERVICESttt ittt a e ta e sataenasaasasasananansnsnsnnnnnnns 19
4.1. BOOTSTRAPPING THE MICROCONTAINER 22
4.2. DEPLOYING THE SERVICE 23
4.3. DIRECT ACCESS 24
4.4. INDIRECT ACCESS 26
4.5. DYNAMIC CLASSLOADING 27
4.5.1. Problems With Classloaders Created with Deployment Descriptors 30
CHAPTER 5. ADDING BEHAVIOR WITH AOP ...ttt ittt i i e e i e s sanannnsasannnnnnnns 32
5.1. CREATING AN ASPECT 32
5.2. CONFIGURING THE MICROCONTAINER FOR AOP 34
5.3. APPLYING AN ASPECT 35
5.4. LIFE CYCLE CALLBACKS 37
5.5. ADDING SERVICE LOOK-UPS THROUGH JNDI 39
PART Il. ADVANCED CONCEPTS WITH THE MICROCONTAINER ...ttt ininannnns 41
CHAPTER 6. COMPONENT MODELSttt it tntaenasasasasasannnansnsarnnnnnnns 42
6.1. ALLOWABLE INTERACTIONS WITH COMPONENT MODELS 42
6.2. A BEAN WITH NO DEPENDENCIES 42
6.3. USING THE MICROCONTAINER WITH SPRING 42
6.4. USING GUICE WITH THE MICROCONTAINER 43
6.5. LEGACY MBEANS, AND MIXING DIFFERENT COMPONENT MODELS 45
6.6. EXPOSING POJOS AS MBEANS 46
CHAPTER 7. ADVANCED DEPENDENCY INJECTION ANDIOC ...ttt iiiiinanasannnnnnnns 50
7.1. VALUE FACTORY 50
7.2. CALLBACKS 51
7.3. BEAN ACCESS MODE 53
7.4. BEAN ALIAS 54

CHAPTER 8. THE VIRTUAL FILE SYSTEM

CHAPTER 9. THE CLASSLOADING LAYER

APPENDIX A. REVISION HISTORY

Microcontainer User Guide

7.5. XML (OR METADATA) ANNOTATIONS SUPPORT
7.6. AUTOWIRE

7.7. BEAN FACTORY

7.8. BEAN METADATA BUILDER
7.9. CUSTOM CLASSLOADER
7.10. CONTROLLER MODE
7.11. CYCLE

7.12. DEMAND AND SUPPLY
7.13. INSTALLS

7.14. LAZY MOCK

7.15. LIFE CYCLE

8.1. VFS PUBLIC API

8.2. VFS ARCHITECTURE

8.3. EXISTING IMPLEMENTATIONS
8.4. EXTENSION HOOKS

8.5. FEATURES

9.1. CLASSLOADER
9.2. CLASSLOADING
9.3. CLASSLOADING VFS

CHAPTER 10. THE VIRTUAL DEPLOYMENT FRAMEWORK

10.1. AGNOSTIC HANDLING OF DEPLOYMENT TYPES

10.2. SEPARATION OF STRUCTURE RECOGNITION FROM DEPLOYMENT LIFE-CYCLE LOGIC
10.3. NATURAL FLOW CONTROL IN THE FORM OF ATTACHMENTS
10.4. CLIENT, USER, AND SERVER USAGE AND IMPLEMENTATION DETAILS

10.5. SINGLE STATE MACHINE
10.6. SCANNING CLASSES FOR ANNOTATIONS

54
56
57
59
60
61
62
62
63
63
64

65
66
73
73
74
75

76
76
82
87

88
88
91
92
92
93

Table of Contents

Microcontainer User Guide

PART I. INTRODUCTION TO THE MICROCONTAINER - GUIDED
TUTORIAL

CHAPTER 1. PREREQUISITES TO USING THIS GUIDE

CHAPTER 1. PREREQUISITES TO USING THIS GUIDE

To use the examples in this guide, you need to install and configure some supporting software, and
download the code for the examples.

1.1. INSTALL MAVEN

The examples used in this project require Maven v2.2.0 or later. Download Maven directly from the
Apache Maven homepage, and install and configure your system as described in Procedure 1.1, “Install
Maven”.

Procedure 1.1. Install Maven

1. Verify Java Developer Kit 1.6 or above is installed. This is also a requirement for the
Enterprise Platform.
Ensure you have Java installed on your system, and have set the JAVA_HOME environment
variable in your ~/ .bash_profile for Linux, or in the System Properties for Windows. For
more information regarding setting environment variables, refer to the Step 4 step in this
procedure.

2. Download Maven

NOTE

This step and future steps assume that you have saved Maven to the suggested
location for your operating system. Maven, as any other Java application, is able
to be installed in any reasonable location on your system.

Visit http://maven.apache.org/download.html.
Click the compiled zip archive link, for example apache-maven-2.2.1-bin.zip
Select a download mirror from the list.

For Linux Users

Save the zip archive to your home directory.

For Windows Users

Save the zip archive to your C:\Documents and Settings\user_name directory.

3. Install Maven

For Linux Users

Extract the zip file to your home directory. If you selected the zip archive in Step 2, and do not
rename the directory, the extracted directory is named apache-maven-version.

For Windows Users

Extract the zip archive to C:\Program Files\Apache Software Foundation. If you selected the zip
archive in Step 2, and do not rename the directory, the extracted directory is named apache-
maven-version.

4. Configure Environment Variables

http://maven.apache.org/download.html

Microcontainer User Guide

For Linux Users

Add the following lines to your ~/ .bash_profile. Ensure you change the [username]to your
actual username, and that the Maven directory is the actual directory name. The version number
may be different than the one listed below.

export M2_HOME=/home/[username]/apache-maven-2.2.1 export
M2=$M2_HOME/bin export
PATH=$M2 : $PATH

By including M2 at the beginning of your path, the Maven version you just installed will be the
default version used. You may also want to set the path of your JAVA_HOME environment
variable to the location of the JDK on your system.

For Windows Users

Add the M2_HOME, M2, and JAVA_HOME environment variables.
1. Press Start+Pause|Break. The System Properties dialog box is displayed.
2. Click the Advanced tab, then click the Environment Variables button.
3. Under System Variables, select Path.

4. Click Edit, and append the two Maven paths using a semi-colon to separate each entry.
Quotation marks are not required around paths.

m Add the variable M2_HOME and set the path to C:\Program Files\Apache
Software Foundation\apache-maven-2.2.1.

m Add the variable M2 and set the value to %M2_HOME%\bin.
5. In the same dialog, create the JAVA_HOME environment variable:

m Add the variable %JAVA_HOME% and set the value to the location of your JDK. For
example C:\Program Files\Java\jdk1.6.0_02.

6. In the same dialog, update or create the Path environment variable:

m Add the variable %M2% to allow Maven to be executed from the command-line.

m Add the variable %JAVA_HOME%\bin to set the path to the correct Java installation.
7. Click OK until the System Properties dialog box closes.

5. Implement changes to .bash_profile

For Linux Users Only

To update the changes made to the .bash_profile in the current terminal session, source your
.bash_profile.

I [localhost]$ source ~/.bash_profile

6. Update gnome-terminal profile

For Linux Users Only

CHAPTER 1. PREREQUISITES TO USING THIS GUIDE

Update the terminal profile to ensure that subsequent iterations of gnome-terminal (or Konsole
terminal) read the new environment variables.

1. Click Edit - Profiles
2. Select Default, and click the Edit button.
3. Inthe Editing Profile dialog, click the Title and Command tab.
4. Select the Run command as login shell check box.
5. Close all open Terminal dialog boxes.
7. Verify the environment variable changes and Maven install

For Linux Users

To verify that the changes have been implemented correctly, open a terminal and execute the
following commands:

o Execute echo $M2_HOME, which should return the following result.

I [localhost]$ echo $M2_HOME /home/username/apache-maven-2.2.1
o Execute echo $M2, which should return the following result.

I [localhost]$ echo $M2 /home/username/apache-maven-2.2.1/bin
o Execute echo $PATH, and verify the Maven /bin directory is included.

I [localhost]$ echo $PATH /home/username/apache-maven-2.2.1/bin
o Execute which mvn, which should display the path to the Maven executable.

I [localhost]$ which mvn ~/apache-maven-2.2.1/bin/mvn

o Execute mvn -version, which should display the Maven version, related Java version, and
operating system information.

[localhost]$ $ mvn -version Apache Maven 2.2.1 (r801777; 2009-08-
07 05:16:01+1000) Java version:

1.6.0_0 Java home: /usr/lib/jvm/java-1.6.0-openjdk-
1.6.0.0/jre Default locale: en_US, platform encoding: UTF-8 0S

name: "Linux" version: "2.6.30.9-96.fc11.i586" arch:
"i386" Family:

"unix"

For Windows Users

To verify that the changes have been implemented correctly, open a terminal and execute the
following command:

o Inacommand prompt, execute mvh -version

Microcontainer User Guide

C:\> mvn -version Apache

Maven 2.2.1 (r801777; 2009-08-06 12:16:01-0700) Java
version: 1.6.0_17 Java home: C:\Sun\SDK\jdk\jre Default

locale: en_US, platform encoding: Cpl1252 0S name: "windows
xp" version: "5.1" arch:

"x86" Family: "windows"

You have now successfully configured Maven for use with the examples in this guide.

1.2. SPECIAL MAVEN SETTINGS FOR THE MICROCONTAINER
EXAMPLES

Maven is a modular build system which pulls in dependencies as needed. The examples in this guide
assume that you have included the block of XML in Example 1.1, “Example settings.xml File” in your
~/.m2/settings.xml (Linux) or C:\Documents and Settings\username\.m2\settings.xml
(Windows). If the file does not exist, you can create it first.

Example 1.1. Example settings.xml File

<settings>
<profiles>
<profile>
<id>jboss-public-repository</id>
<repositories>
<repository>
<id>jboss-public-repository-group</id>

<name>JBoss Public Maven Repository Group</name>

<url>https://repository.jboss.org/nexus/content/groups/public/</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</snapshots>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>jboss-public-repository-group</id>
<name>JBoss Public Maven Repository Group</name>

<url>https://repository.jboss.org/nexus/content/groups/public/</url>

<layout>default</layout>

<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>

</releases>

<snapshots>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>

<url>https://repository.jboss.org/nexus/content/repositories/deprecated/

CHAPTER 1. PREREQUISITES TO USING THIS GUIDE
</url>
<layout>default</layout>

</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>
<profile>
<id>jboss-deprecated-repository</id>
<repositories>
<repository>
<id>jboss-deprecated-repository</id>
<name>JBoss Deprecated Maven Repository</name>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>
<enabled>false</enabled>
<updatePolicy>never</updatePolicy>
</snapshots>
</repository>
</repositories>

</profile>
</profiles>

<activeProfiles>
<activeProfile>jboss-public-repository</activeProfile>
<activeProfile>jboss-deprecated-repository</activeProfile>
</activeProfiles>

</settings>

1.3. DOWNLOADING THE EXAMPLES

The examples in this guide show you how to create a maven project that depends on the JBoss
Microcontainer, using Maven. You can download them from images/examples.zip . This location is
subject to change, but is included for expediency.

After you have downloaded the ZIP file containing the examples, extract it to a convenient location and
look over the examples to familiarize yourself with their structure.

images/examples.zip

Microcontainer User Guide

CHAPTER 2. INTRODUCTION TO THE MICROCONTAINER

The JBoss Microcontainer is a refactoring of the JBoss JMX Microkernel to support direct POJO
deployment and standalone use outside the JBoss application server.

The Microcontainer is designed to meet specific needs of Java developers who want to use object-
oriented programming techniques to rapidly deploy software. In addition, it allows software to be

deployed on a wide range of devices, from mobile computing platforms, large-scale grid-computing
environments, and everything in between.

2.1. FEATURES
e All the features of the JMX Microkernel
e Direct POJO deployment (no need for Standard/XMBean or MBeanProxy)
e Direct I0OC style dependency injection
e Improved life cycle management
e Additional control over dependencies
e Transparent AOP integration
e Virtual File System
e Virtual Deployment Framework

e OSGi classloading

2.2. DEFINITIONS

This guide uses some terms that may not be familiar. Some of them are defined in Microcontainer
Definition List.

Microcontainer Definition List

JMX Microkernel

The JBoss JMX Microkernel is a modular Java environment. It differs from standard environments
like J2EE in that the developer is able to choose exactly which components are part of the
environment, and leave out the rest.

POJO

A Plain Old Java Object (POJO)is a modular, reusable Java object. The name is used to emphasize
that a given object is an ordinary Java Object, not a special object, and in particular not an Enterprise
JavaBean. The term was coined by Martin Fowler, Rebecca Parsons and Josh MacKenzie in
September 2000 in a talk where they were pointing out the many benefits of encoding business logic
into regular java objects rather than using Entity Beans.

Java Bean

A Java Bean is a reusable software component that can be manipulated visually in a builder tool.

10

CHAPTER 2. INTRODUCTION TO THE MICROCONTAINER

A Java Bean is an independent piece of code. It is not required to inherit from any particular base
class or interface. Although Java Beans are primarily created in graphical IDEs, they can also be
developed in simple text editors.

AOP

Aspect-Oriented Programming (AOP) is a programming paradigm in which secondary or supporting
functions are isolated from the main program's business logic. It is a subset of object-oriented
programming.

2.3. INSTALLATION

The Microcontainer is an integral part of the Enterprise Platform. More information about installing and
configuring the Enterprise Platform can be found in the Administration and configuration Guide.

11

Microcontainer User Guide

CHAPTER 3. BUILDING SERVICES

Services are pieces of code which perform work needed by multiple clients. For our purposes, we will put
some additional constraints on the definition of a service. Services should have unique names which can
be referenced, or called, by clients. The internals of a service should be invisible and unimportant to
clients. This is the "black box" concept of object-oriented programming (OOP). In OOP, each object is
independent, and no other object needs to know how it does its job.

In the context of the Microcontainer, services are built from POJOs. A POJO is nearly a service in its own
right, but it can not be accessed by a unique name, and it must be created by the client that needs it.

Although a POJO must be created at run-time by the client, it does not need to be implemented by a
separate class in order to provide a well-defined interface. As long as fields and methods are not
removed, and access to them is not restricted, there is no need to recompile clients to use a newly-
created POJO.

NOTE

Implementing an interface is only necessary in order to allow a client to choose between
alternative implementations. If the client is compiled against an interface, many different
implementations of the interface can be provided without having to recompile the client.

The interface ensures that the method signatures do not change.

The remainder of this guide consists of creating a Human Resources service, using the Microcontainer to
capture and modularize the business logic of the application. After the Microcontainer is installed, the
example code is located in examples/User_Guide/gettingStarted/humanResourcesService.

3.1. INTRODUCTION TO THE HUMAN RESOURCES EXAMPLE

As you familiarize yourself with the directory structure of the files in the example, note that it uses the
Maven Standard Directory Layout.

The Java source files are located in packages beneath the
examples/User_Guide/gettingStarted/humanResourcesService/src/main/java/org/jb
oss/example/service directory, after you have extracted the ZIP file. Each of these classes
represents a simple POJO that does not implement any special interfaces. The most important class is

HRManager, which represents the service entry point providing all of the public methods that clients will
call.

Methods Provided by the HRManager Class
e addEmployee(Employee employee)
e removeEmployee(Employee employee)
e getEmployee(String firstName, String lastName)
e getEmployees()
e getSalary(Employee employee)
e setSalary(Employee employee, Integer newSalary)

e isHiringFreeze()

12

http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

CHAPTER 3. BUILDING SERVICES

e setHiringFreeze(boolean hiringFreeze)
e getSalaryStrategy()
e setSalaryStrategy(SalaryStrategy strategy)

The Human Resources Service is composed of a handful of classes which maintain a list of employees
and their details (addresses and salaries, in this case). Using the SalaryStrategy interface it is
possible to configure the HRManager so that different salary strategy implementations are available to
place minimum and maximum limits on the salaries for different employee roles.

3.2. COMPILING THE HRMANAGER EXAMPLE PROJECT

To compile the source code, issue mvn compile from the humanResourcesService/ directory. This
creates a new directory called target/classes which contains the compiled classes. To clean up the
project and remove the target directory, issue the mvn clean command.

3.3. CREATING POJOS

Before a POJO can be used, you need to create it. You need a naming mechanism that allows you to
register a reference to the POJO instance with a name. Clients need this name to use the POJO.

The Microcontainer provides such a mechanism: a Controller. A Controller allows you to deploy your
POJO-based services into a run-time environment.

3.3.1. XML Deployment Descriptors

After compiling the classes, use an XML deployment descriptor to create instances of them. The
descriptor contains a list of beans representing individual instances. Each bean has a unique name, so
that it can be called by clients at run-time. The following descriptor deploys an instance of the
HRManager:

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:jboss:bean-deployer:2.0 bean-deployer_2_0.xsd"
xmlns="urn:jboss:bean-deployer:2.0">

<bean name="HRService" class="org.jboss.example.service.HRManager"/>
</deployment>

This XML creates an instance of the HRManager class and registers it with the name HRService. This
file is passed to an XML deployer associated with the Microcontainer at run-time, which performs the
actual deployment, and instantiates the beans.

3.4. CONNECTING POJOS TOGETHER

Individual POJO instances can only provide relatively simple behavior. The true power of POJOs comes
from connecting them together to perform complex tasks. How can you wire POJOs together to choose
different salary strategy implementations?

The following XML deployment descriptor does just that:

I <?xml version="1.0" encoding="UTF-8"?>

13

Microcontainer User Guide

<deployment xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:jboss:bean-deployer:2.0 bean-deployer_2_0.xsd"
xmlns="urn:jboss:bean-deployer:2.0">

<bean name="HRService" class="org.jboss.example.service.HRManager">

<property name="salaryStrategy'"><inject

bean="AgeBasedSalary"/></property>

</bean>

<bean name="AgeBasedSalary"
class="org.jboss.example.service.util.AgeBasedSalaryStrategy"/>
</deployment>

This XML creates an instance of the chosen salary strategy implementation by including an additional
<bean> element. This time, the AgeBasedSalaryStrategy is chosen. Next the code injects a reference to
this bean into the instance of HRManager created using the HRService bean. Injection is possible
because the HRManager class contains a setSalaryStrategy(SalaryStrategy strategy)
method. Behind the scenes, JBoss Microcontainer calls this method on the newly created HRManager
instance and passes a reference to the AgeBasedSalaryStrategy instance.

The XML deployment descriptor causes the same sequence of events to occur as if you had written the
following code:

HRManager hrService = new HRManager();
AgeBasedSalaryStrategy ageBasedSalary = new AgeBasedSalaryStrategy();
hrService.setSalaryStrategy(ageBasedSalary);

In addition to performing injection via property setter methods, JBoss Microcontainer can also perform
injection via constructor parameters if necessary. For more details please see the 'Injection’ chapter in
Part Il 'POJO Development.'

3.4.1. Special Considerations

Although creating instances of classes using the <bean> element in the deployment descriptor is
possible, it is not always the best way. For example, creating instances of the Employee and Address
classes is unnecessary, because the client creates these in response to input from the user. They
remain part of the service but are not referenced in the deployment descriptor.

Comment Your Code

You can define multiple beans within a deployment descriptor as long as each has a unique name,
which is used to perform injection as shown above. However all of the beans do not necessarily
represent services. While a service can be implemented using a single bean, multiple beans are usually
used together. One bean typically represents the service entry point, and contains the public methods
called by the clients. In this example the entry point is the HRService bean. The XML deployment
descriptor does not indicate whether a bean represents a service or whether a bean is the service entry
point. It is a good idea to use comments and an obvious haming scheme to delineate service beans from
non-service beans.

3.5. WORKING WITH SERVICES

After creating POJOs and connecting them together to form services, you need to configure the services,
test them, and package them.

3.5.1. Configuring A Service

14

CHAPTER 3. BUILDING SERVICES

Services can be configured by at least two ways:
e |Injecting references between POJO instances
e |Injecting values into POJO properties

In this example, the second method is used. The following deployment descriptor configures the
HRManager instance in the following ways:

e A hiring freeze is implemented.
e The AgeBasedSalaryStrategy implements new minimum and maximum salary values.

Injecting references between POJO instances is one way of configuring a service however we can also
inject values into POJO properties. The following deployment descriptor shows how we can configure
the HRManager instance to have a hiring freeze and the AgeBasedSalaryStrategy to have new minimum
and maximum salary values:

<?xml version="1.0" encoding="UTF-8"7?>

<deployment xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:jboss:bean-deployer:2.0 bean-deployer_2_0.xsd"
xmlns="urn:jboss:bean-deployer:2.0">

<bean name="HRService" class="org.jboss.example.service.HRManager">
<property name="hiringFreeze">false</property>
<property name="salaryStrategy'"><inject
bean="AgeBasedSalary"/></property>
</bean>

<bean name="AgeBasedSalary"
class="org.jboss.example.service.util.AgeBasedSalaryStrategy">
<property name="minSalary'">1000</property> <property
name="maxSalary'">80000</property>
</bean>

</deployment>

The classes must have public setter methods for the relevant properties so that values can be injected.
For example, the HRManager class has a setHiringFreeze(boolean hiringFreeze) method
and the AgeBasedSalaryStrategy class has setMinSalary(int minSalary) and
setMaxSalary(int maxSalary) methods.

The values in the deployment descriptor are converted from strings into the relevant types (boolean, int
etc...) by JavaBean PropertyEditors. Many PropertyEditors are provided by default for standard types,
but you can create your own if necessary. See the Properties chapter in Part 11 'POJO Development' for
more details.

3.5.2. Testing A Service

After you have created your POJOs and connected them together to form services, you need to test
them. JBoss Microcontainer allows unit testing individual POJOs as well as services, through the use of
aMicrocontainerTest class.

The org.jboss.test.kernel. junit.MicrocontainerTest class inherits from
junit . framework.TestCase, setting up each test by bootstrapping JBoss Microcontainer and adding

15

Microcontainer User Guide

a BasicXMLDeployer. It then searches the classpath for an XML deployment descriptor with the same
name as the test class, ending in .xml and residing in a directory structure representing the class's

package name. Any beans found in this file are deployed and can then be accessed using a
convenience method called getBean(String name).

Examples of these deployment descriptors can be found in the Example 3.1, “Listing of the
src/test/resources Directory”.

Example 3.1. Listing of the src/test/resources Directory
F— log4j.properties
L— org
L— jboss
L— example

L— service
— HRManagerAgeBasedTestCase.xml
— HRManagerLocationBasedTestCase.xml
— HRManagerTestCase.xml
L— util
— AgeBasedSalaryTestCase.xml
L— LocationBasedSalaryTestCase.xml

The test code is located in the src/test/java directory:

Example 3.2. Listing of the src/test/java Directory
L— org
L— jboss
L— example
L— service
HRManagerAgeBasedTestCase.java
HRManagerLocationBasedTestCase. java

HRManagerTestCase. java
HRManagerTest. java
HRManagerTestSuite.java

util

— AgeBasedSalaryTestCase.java

— LocationBasedSalaryTestCase.java
L— salaryStrategyTestSuite.java

[TTTTT

The HRManagerTest class extends MicrocontainerTest in order to set up a number of employees
to use as the basis for the tests. Individual test cases then subclass HRManagerTest to perform the

actual work. Also included are a couple of TestSuite classes that are used to group individual test
cases together for convenience.

To run the tests, enter mvn test from the humanResourcesService/ directory. You should see
some DEBUG log output which shows JBoss Microcontainer starting up and deploying beans from the

relevant XML file before running each test. At the end of the test the beans are undeployed and the
Microcontainer is shut down.

16

CHAPTER 3. BUILDING SERVICES

NOTE

Some of the tests, such as HRManagerTestCase, AgeBasedSalaryTestCase, and
LocationBasedSalaryTestCase, unit test individual POJOs. Other tests, such as
HRManagerAgeBasedTestCase and HRManagerLocationBasedTestCase unit test
entire services. Either way, the tests are run in the same manner. Using the

MicrocontainerTest class makes it easy to set up and conduct comprehensive tests for
any part of your code.

The Address and Employee classes are not tested here. Writing tests for them is up to
you.

3.5.3. Packaging A Service

After testing your service, it is time to package it up so that others can use it. The simplest way to do this
is to create a JAR containing all of the classes. You can choose to include the deployment descriptor if
there is a sensible default way to configure the service, but this is optional.

Procedure 3.1. Packaging a Service

1. Place the deployment descriptor in the META-INF directory (optional)
If you do choose to include the deployment descriptor, by convention it should be named
jboss-beans.xml and should be placed in aMETA-INF directory. This is the default layout for

the Enterprise Platform, so the JAR deployer recognizes this layout and automatically performs
the deployment.

The deployment descriptor is not included in the Human Resources example, because the
service is configured by editing the descriptor directly, as a separate file.

2. Generate the JAR
To generate a JAR containing all of the compiled classes, enter mvn package from the
humanResourcesService/ directory.

3. Make the JAR available to other Maven projects
To make the JAR available to other Maven projects, enter mvn install in order to copy it to
your local Maven repository. The final layout of the JAR is shown in Example 3.3, “Listing of the
org/jboss/example/service and META-INFDirectories”.

Example 3.3. Listing of the org/jboss/example/service and META-INFDirectories

T-- org
“-- jboss
T-- example
T-- service
| -- Address.java
| -- Employee.java
| -- HRManager.java
T-- util
| -- AgeBasedSalaryStrategy.java
| -- LocationBasedSalaryStrategy.java
"-- SalaryStrategy.java
" --META-INF
" -- MANIFEST.MF

17

Microcontainer User Guide

-- maven
‘-- org.jboss.micrcontainer.examples
"-- humanResourceService

NOTE

The META-INF/maven directory is automatically created by Maven, and will not be
present if you are using a different build system.

ol

18

CHAPTER 4. USING SERVICES

CHAPTER 4. USING SERVICES

The previous chapter guided you through creating, configuring, testing and packaging a service. The
next step is to create a client which will perform actual work using the service.

The client in this example uses a Text User Interface (TUI) to accept input from the user and output
results. This reduces the size and complexity of the example code.

All of the necessary files are located in the
examples/User_Guide/gettingstarted/commandLineClient directory, which follows the
Maven Standard Directory Layout, as seen in Example 4.1, “Listing for
examples/User_Guide/gettingstarted/commandLineClient Directory”.

Example 4.1. Listing for examples/User_Guide/gettingstarted/commandLineClient
Directory
F— pom.xml
F— src
| F— main
| | — assembly
| | | — aop.xml
| | | classloader.xml
| | | common . xml
| | | pojo.xml
| | | config
| | | aop-beans.xml
b
b
b
I N
|
|
|
| | L— client
|
|
|
|
|
|
| L
|
|
|
|
|
|
|
|
|
|

1T

(@]
=)

[TTT

run.sh
a

a

(-
<

-

org
L— jboss
L— example

classloader-beans.xml
pojo-beans.xml
|
|
|
|
| — Client.java
| — ConsolelInput.java
| — EmbeddedBootstrap.java
| L— UserInterface.java
L— resources
L— log4j.properties
st

F— java
|
|
|
|
|
|
|

—+

L— org
L— jboss
L— example
L— client
— ClientTestCase.java
— ClientTestSuite.java
L— MockUserInterface.java
L— resources
L— jboss-beans.xml
L— target
L— classes
L— log4j.properties

19

Microcontainer User Guide

The client consists of three classes and one interface, located in the org/jboss/example/client
directory.

UserInterface describes methods that the client calls at run-time to request user input.
ConsoleInput is an implementation of UserInterface that creates a TUI which the user uses to
interact with the client. The advantage of this design is that you can easily create a Swing
implementation of UserInterface at a later date and replace the TUI with a GUI. You can also
simulate the data-entry process with a script. Then you can check the behavior of the client automatically
using conventional JUnit test cases found in Example 3.2, “Listing of the src/test/java Directory”.

For the build to work you must first build and install auditAspect. jar from the
examples/User_Guide/gettingStarted/auditAspect directory using themvn install
command. A number of different client distributions are created, including one based on AOP which relies
on auditAspect. jar being available in the local Maven repository.

If you previously typed mvn install from the examples/User_Guide/gettingStarted directory
then humanResourcesService. jar and auditAspect . jar have already been built and packaged,
along with the client, so this step will not be necessary.

To compile the source code, all of the steps in Procedure 4.1, “Compiling the Source Code” are
performed when you issue the mvn package command from the commandLineClient directory.

Procedure 4.1. Compiling the Source Code
1. Run the unit tests.
2. Build a client JAR.
3. Assemble a distribution containing all of the necessary files.

After compiling and packaging the client, the directory structure in the commandLineClient/target
directory includes the subdirectories described in Example 4.2, “Subdirectories of the
commandLineClient/target Directory”.

Example 4.2. Subdirectories of the commandLineClient/target Directory
client-pojo

used to call the service without AOP.

client-cl

used to demonstrate classloading features.

client-aop
Adding AOP support. See Chapter 5, Adding Behavior with AOP for more details.

Each sub-directory represents a different distribution with all of the shell scripts, JARs, and XML
deployment descriptors needed to run the client in different configurations. The rest of this chapter uses
the client-pojo distribution found in the client -pojo sub-directory, which is listed in Example 4.3,
“Listing of the client-pojo Directory”.

I Example 4.3. Listing of the client-pojo Directory

20

CHAPTER 4. USING SERVICES

|-- client-1.0.0.jar

| -- jboss-beans.xml

|-- 1lib

| | -- concurrent-1.3.4.jar

| | -- humanResourcesService-1.0.0.jar

| | -- jboss-common-core-2.0.4.GA.jar

| | -- jboss-common-core-2.2.1.GA.jar

| | -- jboss-common-logging-log4j-2.0.4.GA.jar
| | -- jboss-common-logging-spi-2.0.4.GA.jar
| | -- jboss-container-2.0.0.Beta6.jar

| | -- jboss-dependency-2.0.0.Beta6.jar

| | -- jboss-kernel-2.0.0.Beta6.jar

| | -- jbossxb-2.0.0.CR4.jar

| | -- log4j-1.2.14.jar

| “-- xercesImpl-2.7.1.jar

“-- run.sh

To run the client, change to the client-pojo directory and type ./run.sh. The Example 4.4,
“HRManager Menu Screen” appears.
Example 4.4. HRManager Menu Screen
Menu:
d) Deploy Human Resources service
u) Undeploy Human Resources service
a) Add employee
1) List employees
r) Remove employee
g) Get a salary

s) Set a salary
t) Toggle hiring freeze

m) Display menu

p) Print service status
q) Quit

>

To select an option, enter the letter shown on the left-hand side and press RETURN. For example to
display the menu options enter m followed by RETURN. Entering more than one letter or entering an
invalid option results in an error message.

IMPORTANT

The run. sh script sets up the run-time environment by adding all of the JARs found in
the 1ib/ directory to the classpath using the java.ext.dirs system property. It also adds
the current directory and the client-1.0.0. jar using the -cp flag so that the jboss-
beans.xml deployment descriptor can be found at run-time along with the
org.jboss.example.client.Client class which is called to start the application.

21

Microcontainer User Guide

4.1. BOOTSTRAPPING THE MICROCONTAINER

Before using the client to deploy and call your service, take a closer look at what happened during its
construction:

public Client(final boolean useBus) throws Exception {

this.useBus = useBus;

ClassLoader cl = Thread.currentThread().getContextClassLoader();
url = cl.getResource("jboss-beans.xml");

// Start JBoss Microcontainer
bootstrap = new EmbeddedBootstrap();
bootstrap.run();

kernel = bootstrap.getKernel();
controller = kernel.getController();
bus = kernel.getBus();

First of all a URL representing the jboss-beans.xml deployment descriptor is created. This is later
required so that the XML deployer can deploy and undeploy beans declared in the file. The
getResource() method of the application classloader is used because the jboss-beans. xml file is
included on the classpath. This is optional; the name and location of the deployment descriptor are
unimportant as long as the URL is valid and reachable.

Next an instance of JBoss Microcontainer is created, along with an XML deployer. This process is called
bootstrapping and a convenience class called BasicBootstrap is provided as part of the
Microcontainer to allow for programmatic configuration. To add an XML deployer, extend
BasicBootstrap to create an EmbeddedBootstrap class and override the protected bootstrap()
method as follows:

22

public class EmbeddedBootstrap extends BasicBootstrap {

protected BasicXMLDeployer deployer;
public EmbeddedBootstrap() throws Exception {

super();

}

public void bootstrap() throws Throwable {

super .bootstrap();
deployer = new BasicXMLDeployer(getKernel());
Runtime.getRuntime().addShutdownHook(new Shutdown());

}

public void deploy(URL url) {

deployer.deploy(url);

}

CHAPTER 4. USING SERVICES

public void undeploy(URL url) {
deployer.undeploy(url);

}

protected class Shutdown extends Thread {
public void run() {
log.info("Shutting down");
deployer.shutdown();

The shutdown hook ensures that when the JVM exits, all of the beans are undeployed in the correct
order. The public deploy/undeploy methods delegate to the BasicXMLDeployer so that beans
declared in jboss-beans.xml can be deployed and undeployed.

Finally references to the Microcontainer controller and bus are restored, so you can look up bean
references by name and access them directly or indirectly as necessary.

4.2. DEPLOYING THE SERVICE

After creating the client, you can deploy the Human Resources service. This is done by entering the d
option from the TUI. Output indicates that the BasicXMLDeployer has parsed the jboss-beans.xml
file using the URL, and instantiated the beans found within.

NOTE

The Microcontainer is able to instantiate the beans because their classes are available in
the extension classpath inside the 1ib/humanResourcesService. jar file. You can
also place these classes in an exploded directory structure and add it to the application
classpath, but packaging them in a JAR is typically more convenient.

The deployment descriptor is entirely separate from the humanResourcesService. jar file. This
enables easy editing of it for testing purposes. The jboss-beans.xml file in the example contains
some commented-out fragments of XML which show some of the possible configurations.

<?xml version="1.0" encoding="UTF-8"?>
<deployment xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:jboss:bean-deployer:2.0 bean-
deployer_2_0.xsd"
xmlns="urn:jboss:bean-deployer:2.0">

<bean name="HRService" class="org.jboss.example.service.HRManager">
<!-- <property name="hiringFreeze'>true</property>
<property name="salaryStrategy'><inject bean="AgeBasedSalary"/>
</property> -->
</bean>

23

Microcontainer User Guide

<!-- <bean name="AgeBasedSalary"
class="org. jboss.example.service.util.AgeBasedSalaryStrategy">
<property name="minSalary">1000</property>
<property name="maxSalary">80000</property>
</bean>

<bean name="LocationBasedSalary"

class="org. jboss.example.service.util.LocationBasedSalaryStrategy'>
<property name="minSalary">2000</property>
<property name="maxSalary">90000</property>
</bean> -->

</deployment>

IMPORTANT

Depending on how you access the service at run-time, you may need to shut down the
application and restart it again to redeploy the service and see your changes. This
reduces the flexibility of the application, but results in faster performance at run-time.
Alternatively you may be able to simply redeploy the service while the application is
running. This increases flexibility but results in slower run-time performance. Keep these
trade-offs under consideration when designing your applications.

4.3. DIRECT ACCESS

If no parameters are given to the run. sh script when the client is started, a reference to the HRService
bean is looked up using the Microcontainer controller after the service is deployed:

private HRManager manager;

private final static String HRSERVICE = "HRService";

void deploy() {
bootstrap.deploy(url);
if ('useBus && manager == null) {
ControllerContext context = controller.getInstalledContext(HRSERVICE);
if (context !'= null) { manager = (HRManager) context.getTarget(); }

}

Rather than immediately looking up a reference to the bean instance, the example first looks up a
reference to a ControllerContext, then obtains a reference to the bean instance from the context
using the getTarget () method. The bean can exist within the Microcontainer in any of the states listed
in States of a Bean Within the Microcontainer.

24

CHAPTER 4. USING SERVICES

States of a Bean Within the Microcontainer

e NOT_INSTALLED

DESCRIBED

INSTANTIATED

CONFIGURED

INSTALLED

To keep track of which state the bean is in, wrap it in another object called a contextthat describes the
current state. The name of the context is the same as the bean name. Once a context reaches the
INSTALLED state, the bean it represents is considered to be deployed.

After creating a reference to the bean instance representing the service entry point, you can call methods
on it to preform work:

@SuppresswWarnings("unchecked")

Set<Employee> listEmployees() {
if (useBus)

else
return manager.getEmployees();

}

The client is accessing the service directly since it is using a reference to the actual bean instance.
Performance is good, because each method call goes directly to the bean. What happens, however, if
you want to reconfigure the service and redeploy it while the application is running?

Reconfiguration is achieved by making changes to the XML deployment descriptor and saving the file. In
order to redeploy the service, the current instance must be undeployed. During undeployment the
Microcontainer controller releases its reference to the bean instance, along with any dependent beans.
These beans will subsequently become available for garbage collection because they are no longer
required by the application. Redeploying the service creates new bean instances representing the new
configuration. Any subsequent look-ups from clients will retrieve references to these new instances and
they will be able to access the reconfigured service.

The problem is that the reference to the bean instance representing our service entry point is cached
when you deploy the service for the first time. Undeploying the service has no affect, since the bean
instance can still be accessed using the cached reference and it will not be garbage collected until the
client releases it. Along the same line, deploying the service again will not cause another look-up
because the client already has a cached reference. It will therefore continue to use the bean instance
representing the initial service configuration.

You can test this behavior by typing u followed by RETURN to undeploy the current service. You should
still be able to access the service from the client even though it is 'undeployed'. Next, make some
changes to the configuration using the jboss-beans.xml file, save the file, and deploy it again using

25

Microcontainer User Guide

the d option. Printing out the status of the service using thep option shows that the client is still
accessing the initial instance of the service that was deployed.

g WARNING

Even if you modify the client to look up a new reference each time the service is
redeployed, new developers may hand out copies of this reference to other objects,
by mistake. If all of these references are not cleaned up during redeployment, the
same caching problem can occur.

To reliably redeploy the reconfigured service, shut down the application completely using the 'q' option
and restart it again using the run. sh script. For enterprise services such as Transactions, Messaging
and Persistence this is perfectly acceptable behavior, since they are generally always in use. They
cannot be redeployed at run-time and also benefit from the high performance given by using direct
access. If your service falls into this category, consider using direct access via the Microcontainer
controller.

4.4. INDIRECT ACCESS

The run. sh script can be called with an optional parameter bus, which causes calls to the Human
Resources service to use the Microcontainer bus.

Instead of using a direct reference to the bean instance obtained from the Microcontainer controller, the
new behavior is to call an invoke () method on the bus, passing in the bean name, method name,
method arguments and method types. The bus uses this information to call the bean on the client's
behalf.

private final static String HRSERVICE = "HRService";

@SuppresswWarnings("unchecked")
Set<Employee> listEmployees() {
if (useBus)
return (Set<Employee>) invoke(HRSERVICE, '"getEmployees'", new Object[]
{}, new String[] {});
else
return manager.getEmployees();

}

private Object invoke(String serviceName, String methodName, Object][]
args, String[] types) {
Object result = null;
try {
result = bus.invoke(serviceName, methodName, args, types);
} catch (Throwable t) {
t.printStackTrace();
}

return result;

26

CHAPTER 4. USING SERVICES

The bus looks up the reference to the named bean instance and calls the chosen method using
reflection. The client never has a direct reference to the bean instance, so it is said to accesses the
service indirectly. Since the bus does not cache the reference, you can safely make changes to the
service configuration, and it can be redeployed at run-time. Subsequent calls by the client will use the
new reference, as expected. The client and service have been decoupled.

NOTE

This behavior can be tested by deploying the service and using the p option to print out
the status. Undeploy the service using the u option and notice that it is inaccessible. Next,
make some changes to jboss-beans.xml file, save the changes, and deploy it again
using the d option. Print out the status again using the p option. The client is accessing
the new service configuration.

Because the bus uses reflection to call bean instances, it is a slower than direct access. The benefit of
the approach is that only the bus has references to the bean instances. When a service is redeployed, all
of the existing references can be cleaned up and replaced with new ones. This way, a service can be
reliably redeployed at run-time. Services that are not used very often or that are specific to certain
applications are good candidates for indirect access using the Microcontainer bus. Often, the reduction in
performance is outweighed by the flexibility that this provides.

4.5. DYNAMIC CLASSLOADING

So far you have used the extension and application classloaders to load all of the classes in the
application. The application classpath is set up by the run. sh script using the -cp flag to include the
current directory and the client-1.0.0. jar, as shown here:

java -Djava.ext.dirs="pwd /1lib -cp .:client-1.0.0.jar
org.jboss.example.client.Client $1

For convenience the JARs in the 1ib directory were added to the extension classloader's classpath

using the java.ext.dirs system property, rather than listing the full path to each of the JARs after the -cp

flag. Because the classloader extension is the parent of the classloader application, the client

classes is able to find all of the Microcontainer classes and the Human Resources service classes at
run-time.

NOTE

With Java versions 6 and higher, you can use a wild-card to include all JARs in a directory
with the -cp flag: java -cp “pwd /1lib/*:.:client-1.0.0.jar
org.jhoss.example.client.Client $1

Here, all of the classes in the application will be added to the application classloader's
classpath, and the extension classloader's classpath will retain its default value.

What happens if you need to deploy an additional service at run-time? If the new service is packaged in
a JAR file, it must be visible to a classloader before any of its classes can be loaded. Because you have
already set up the classpath for the application classloader (and extension classloader) on start-up, it is
not easy to add the URL of the JAR. The same situation applies if the service classes are contained in a
directory structure. Unless the top-level directory is located in the current directory (which is on the
application classpath) then the classes will not be found by the application classloader.

27

Microcontainer User Guide

If you wish to redeploy an existing service, changing some of its classes, you need to work around
security constraints, which forbid an existing classloader from reloading classes.

The goal is to create a new classloader that knows the location of the new service's classes, or that can
load new versions of an existing service's classes, in order to deploy the service's beans. JBoss
Microcontainer uses the <classloader> element in the deployment descriptor to accomplish this.

The client -cl distribution contains the file listed in the Example 4.5, “Listing of the
commandLineClient/target/client-cl Directory”

| -- jboss-common-core-2.0.4.GA.jar
| -- jboss-common-core-2.2.1.GA.jar
| -- jboss-common-logging-log4j-2.0.4.GA.jar
| -- jboss-common-logging-spi-2.0.4.GA.jar
| -- jboss-container-2.0.0.Beta6.jar
| -- jboss-dependency-2.0.0.Beta6.jar
| -- jboss-kernel-2.0.0.Beta6.jar
| -- jbossxb-2.0.0.CR4.jar
| -- log4j-1.2.14.jar
“-- xercesImpl-2.7.1.jar

-- otherlLib

"-- humanResourcesService-1.0.0.jar
- run.sh

Example 4.5. Listing of the commandLineClient/target/client-cl Directory
|-- client-1.0.0.jar
| -- jboss-beans.xml
|-- 1lib
| | -- concurrent-1.3.4.jar
I
I
I
I
I
I
I
I
I
I
I
I
I

The humanResourcesService. jar file has been moved to a new sub-directory called otherLib. It is

no longer available to either the extension or application classloaders whose classpaths are setup in the
run.sh script:

java -Djava.ext.dirs="pwd /1lib -cp .:client-1.0.0.jar
org.jboss.example.client.Client $1

To work around this, create a new classloader during the deployment of the service, load it in the service

classes, and create instances of the beans. To see how this is done, look at the contents of the jboss -

beans.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:jboss:bean-deployer:2.0 bean-
deployer_2_0.xsd"
xmlns="urn:jboss:bean-deployer:2.0">

<bean name="URL" class="java.net.URL">
<constructor>

<parameter>file:/Users/newtonm/jbossmc/microcontainer/trunk/docs/examples/
User_Guide/gettingStarted/commandLineClient/target/client-

28

CHAPTER 4. USING SERVICES

cl.dir/otherLib/humanResourcesService-1.0.0.jar</parameter>
</constructor>
</bean>

<bean name="customCL" class="java.net.URLClassLoader">
<constructor>
<parameter>
<array>
<inject bean="URL"/>
</array>
</parameter>
</constructor>
</bean>

<bean name="HRService" class="org.jboss.example.service.HRManager">
<classloader><inject bean="customCL"/></classloader>
<!-- <property name="hiringFreeze'">true</property>
<property name='"salaryStrategy'><inject bean="AgeBasedSalary"/>
</property> -->
</bean>

<!-- <bean name="AgeBasedSalary"
class="org. jboss.example.service.util.AgeBasedSalaryStrategy">
<property name="minSalary">1000</property>
<property name="maxSalary">80000</property>
</bean>

<bean name="LocationBasedSalary"

class="org. jboss.example.service.util.LocationBasedSalaryStrategy">
<property name="minSalary">2000</property>

<property name="maxSalary">90000</property>

</bean> -->

</deployment>

1. First, create an instance of java.net.URL called URL, using parameter injection in the
constructor to specify the location of the humanResourcesService. jar file on the local file-
system.

2. Next, create an instance of a URLClassLoader by injecting the URL bean into the constructor
as the only element in an array.

3. Include a <classloader> element in your HRService bean definition and inject the customCL
bean. This specifies that the HRManager class needs to be loaded by the customCL classloader.

You need a way to decide which classloader to use for the other beans in the deployment. All beans in
the deployment use the current thread's context classloader. In this case the thread that handles
deployment is the main thread of the application which has its context classloader set to the application
classloader on start-up. If you wish, you can specify a different classloader for the entire deployment
using a <classloader> element, as shown in Example 4.6, “Specifying a Different Classloader”.

I Example 4.6. Specifying a Different Classloader

29

Microcontainer User Guide

<?xml version="1.0" encoding="UTF-8"?>
<deployment xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:jboss:bean-deployer:2.0 bean-

deployer_2_0.xsd"
xmlns="urn:jboss:bean-deployer:2.0">

<classloader><inject bean="customCL"/></classloader>

<bean name="URL" class="java.net.URL">
<constructor>

<parameter>file:/Users/newtonm/jbossmc/microcontainer/trunk/docs/example
s/User_Guide/gettingStarted/commandLineClient/target/client-
cl.dir/otherLib/humanResourcesService-1.0.0.jar</parameter>
</constructor>
</bean>

<bean name="customCL" class="java.net.URLClassLoader">
<constructor>
<parameter>
<array>
<inject bean="URL"/>
</array>
</parameter>
</constructor>
</bean>

</deployment>

This would be necessary to allow for reconfiguration of the service by uncommenting the
AgeBasedSalary or LocationBasedSalary beans. Classloaders specified at the bean level override
the deployment level classloader. To override the deployment level classloader altogether, and use the
default classloader for a bean, use the <null/> value as follows:

<bean name="HRService" class="org.jboss.example.service.HRManager">
<classloader><null/></classloader>
</bean>

4.5.1. Problems With Classloaders Created with Deployment Descriptors

30

CHAPTER 4. USING SERVICES

If you create a new classloader for your service using the deployment descriptor, you may not be able to
access classes loaded by it from the application classloader. In the HRManager example, the client is no
longer able to cache a direct reference to the bean instance when using the Microcontainer controller.

To see this behavior, start the client using the run. sh command, then try to deploy the service. A
java.lang.NoClassDefFoundError exception is thrown and the application exits.

In this scenario, you must use the bus to access the service indirectly and provide access to any classes

shared by the client in the application classpath. In this example, the affected classes are Address,
Employee, and SalaryStrategy.

31

Microcontainer User Guide

CHAPTER 5. ADDING BEHAVIOR WITH AOP

Object Oriented Programming (OOP) contains many useful techniques for software development
including encapsulation, inheritance, and polymorphism. However, it does not solve the problem of
addressing logic that is often repeated in many different classes. Examples of this include logging,
security, and transactional logic which is traditionally hard-coded into each class. This type of logic is
called a cross-cutting concern.

Aspect Oriented Programming (AOP) works to allow cross-cutting concerns to be applied to classes after
they have been compiled. This keeps the source code free of logic which is not central to the main
purpose of the class and streamlines maintenance. The method depends on the AOP implementation.
Typically if a class implements an interface, each method call to an instance of the class first passes
through a proxy. This proxy implements the same interface, adding the required behavior. Alternatively, if
an interface is not used, then the java bytecode of the compiled class is modified: the original methods
are renamed and replaced by methods that implement the cross-cutting logic. These new methods then
call the original methods after the cross-cutting logic has been executed. Another method to achieve the
same result is modifying the bytecode to create a subclass of the original class that overrides its
methods. The overridden methods then execute the cross-cutting logic before calling the corresponding
methods of the super class.

JBoss AOP is a framework for AOP. Using it, you can create cross-cutting concerns using conventional
java classes and methods. In AOP terminology each concern is represented by an aspect that you
implement using a simple POJO. Behavior is provided by methods within the aspect called advices.
These advices follow certain rules for their parameter, and return types and any exceptions that they
throw. Within this framework, you can use conventional object-oriented notions such as inheritance,
encapsulation, and composition to make your cross-cutting concerns easy to maintain. Aspects are
applied to code using an expression language that allows you to specify which constructors, methods
and even fields to target. You can quickly change the behavior of multiple classes by editing a
configuration file.

This chapter contains examples which demonstrate how to use JBoss AOP alongside the Microcontainer
to create and apply an auditing aspect to the Human Resources Service. The auditing code could be
placed within the HRManager class, but it would clutter the class with code which is not relevant to its
central purpose, bloating it and making it harder to maintain. The design of the aspect also provide
modularity, making it easy to audit other classes in the future, if the scope of the project changes.

AOP can also be used to apply additional behavior during the deployment phase. This example will

create and bind a proxy to a bean instance into a basic JNDI service, allowing it to be accessed using a
JNDI look-up instead of the Microcontainer controller.

5.1. CREATING AN ASPECT

The examples/User_Guide/gettingStarted/auditAspect directory contains all the files needed
to create the aspect.

e pom.xml

e src/main/java/org/jboss/example/aspect/AuditAspect.java

private String logDir;

Example 5.1. Example POJO
private BufferedwWriter out;

| public class AuditAspect {

32

CHAPTER 5. ADDING BEHAVIOR WITH AOP

public AuditAspect() {
logDir = System.getProperty("user.dir") + "/log";

File directory = new File(logDir);
if (!directory.exists()) {
directory.mkdir();
3
}

public Object audit(ConstructorInvocation inv) throws Throwable {
SimpleDateFormat formatter = new SimpleDateFormat("ddMMyyyy-
kkmmss");
Calendar now = Calendar.getInstance();
String filename = "auditlLog-" +
formatter.format(now.getTime());

File auditLog = new File(logDir + "/" + filename);
auditLog.createNewFile();

out = new BufferedWriter(new FileWriter(auditLog));
return inv.invokeNext();

}

public Object audit(MethodInvocation inv) throws Throwable {
String name = inv.getMethod().getName();
Object[] args = inv.getArguments();
Object retVal = inv.invokeNext();

StringBuffer buffer = new StringBuffer();
for (int i=0; i < args.length; i++) {
if (i > 0) {
buffer.append(", ");
}
buffer.append(args[i].toString());

}

if (out !'= null) {
out.write("Method: " + name);
if (buffer.length() > 0) {
out.write(" Args: " + buffer.toString());

}
if (retval != null) {

out.write(" Return: " + retVal.toString());
}

out.write("\n");
out.flush();

}

return retval;

(o

33

Microcontainer User Guide

Procedure 5.1. Creating the POJO

1. The constructor checks for the presence of a 1og directory in the current working directory, and
creates one if not found.

2. Next, an advice is defined. This advice is called whenever the constructor of the target class is
called. This creates a new log file within the 1og directory to record method calls made on
different instances of the target class in separate files.

3. Finally, another advice is defined. This advice applies to each method call made on the target
class.The method name and arguments are stored, along with the return value. This information
is used to construct an audit record and write it to the current log file. Each advice calls
inv.invokeNext (), which chains the advices together if more than one cross-cutting concern
has been applied, or to call the target constructor/method.

NOTE

Each advice is implemented using a method that takes an invocation object as a
parameter, throws Throwable and returns Object. At design time you do not know which
constructors or methods these advices will be applied to, so make the types as generic as
possible.

To compile the class and create an auditAspect. jar file that can be used by other examples, type
mvn install from the auditAspect directory.

5.2. CONFIGURING THE MICROCONTAINER FOR AOP

Before applying the audit aspect to the HR Service, a number of JARs must be added to the extension
classpath. They are in the 1ib sub-directory of the client -aop distribution located in the
examples/User_Guide/gettingStarted/commandLineClient/target/client-aop.dir
directory:

| -- client-1.0.0.jar

| -- jboss-beans.xml

|-- 1lib

| -- auditAspect-1.0.0.jar

| -- concurrent-1.3.4.jar

| -- humanResourcesService-1.0.0.jar

| -- javassist-3.6.0.GA.jar

| -- jboss-aop-2.0.0.betal.jar

| -- jboss-aop-mc-int-2.0.0.Beta6.jar

| -- jboss-common-core-2.0.4.GA.jar

| -- jboss-common-core-2.2.1.GA.jar

| -- jboss-common-logging-log4j-2.0.4.GA.jar
| -- jboss-common-logging-spi-2.0.4.GA.jar

| -- jboss-container-2.0.0.Beta6.jar

| -- jboss-dependency-2.0.0.Beta6.jar

| -- jboss-kernel-2.0.0.Beta6.jar

| -- jbossxb-2.0.0.CR4.jar

| -- log4j-1.2.14.jar

|

Example 5.2. Listing of the
examples/User_Guide/gettingStarted/commandLineClient/target/client-aop.dir Directory
-- trove-2.1.1.jar

34

CHAPTER 5. ADDING BEHAVIOR WITH AOP

"-- xercesImpl-2.7.1.jar
|-- log
“-- auditlLog-18062010-122537
“-- run.sh
First, 1ib/auditAspect-1.0.0. jar is required to create an instance of the aspect at run-time, in
order to execute the logic. Next the jar file for JBoss AOP (jboss-aop.jar), along with its dependencies
javassist and trove, adds the AOP functionality. Finally, the jooss-aop-mc-int jar is required because it
contains an XML schema definition that allows you to define aspects inside an XML deployment
descriptor. It also contains integration code to create dependencies between normal beans and aspect

beans within the Microcontainer, allowing you to add behavior during the deployment and undeployment
phases.

Because you are using Maven2 to assemble the client-aop distribution, you should add these JAR files
by declaring the appropriate dependencies in your pom. xml file and creating a valid assembly
descriptor. A sample pom.xml snippet is shown in Example 5.3, “Example pom.xml Excerpt for AOP”.
To perform your build using Ant, the procedure will be different.

Example 5.3. Example pom.xml Excerpt for AOP
<dependency>
<groupIld>org.jboss.microcontainer.examples</groupId>
<artifactId>jboss-oap</artifactId>
<version>2.0.0</version>
</dependency>
<dependency>
<groupIld>org.jboss.microcontainer.examples</groupId>
<artifactId>javassist</artifactId>
<version>3.6.0.GA</version>
</dependency>
<dependency>
<groupIld>org.jboss.microcontainer.examples</groupId>
<artifactId>trove</artifactId>
<version>2.1.1</version>
</dependency>
<dependency>
<groupIld>org.jboss.microcontainer.examples</groupId>
<artifactId>jboss-aop-mc-int</artifactId>
<version>2.0.0.Beta6</version>
</dependency>

5.3. APPLYING AN ASPECT

Now that you have a valid distribution containing everything you need, you can configure jboss-
beans.xml to apply the audit aspect. It is in
examples/User_Guide/gettingStarted/commandLineClient/target/client-aop.dir.

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:jboss:bean-deployer:2.0 bean-

35

Microcontainer User Guide

deployer_2_0.xsd"
xmlns="urn:jboss:bean-deployer:2.0">

<bean name="AspectManager" class="org.jboss.aop.AspectManager">
<constructor factoryClass="org.jboss.aop.AspectManager"
factoryMethod="instance"/>

</bean>

<aop:aspect xmlns:aop="urn:jboss:aop-beans:1.0"
name="AuditAspect" class="org.jboss.example.aspect.AuditAspect"
method="audit" pointcut="execution(public
org.jboss.example.service.HRManager->new(..)) OR
execution(public * org.jboss.example.service.HRManager->*(..))">
</aop:aspect>

</deployment>

Procedure 5.2. Explanation of the Code to Apply an Aspect

1. Before you can apply your aspect to any classes, you need to create an instance of
org.jhoss.aop.AspectManager using a <bean> element. A factory method is used here
instead of calling a conventional constructor, since only one instance of the AspectManager in
the JVM is necessary at run-time.

2. Next an instance of our aspect called AuditAspect is created, using the <aop:aspect> element.
This looks similar to the <bean> element because it has name and class attributes that are used
in the same way. However it also has method and pointcut attributes that you can use to apply
or bind an advice within the aspect to constructors and methods within other classes. These
attributes bind the audit advice to all public constructors and methods within the HRManager
class. Only the audit method needs to be specified, since it has been overloaded within the
AuditAspect class with different parameters. JBoss AOP knows at run-time which to select,
depending on whether a constructor or method invocation is being made.

This additional configuration is all that is needed to apply the audit aspect at run-time, adding auditing
behavior to the Human Resources service. You can test this by running the client using the run.sh
script. A log directory is created on start-up alongside the 1ib directory when the AuditAspect bean
is created by the Microcontainer. Each deployment of the Human Resources service causes a new log
file to appear within the 1og directory. The log file contains a record of any calls made from the client to
the service. It is named something similar to auditLog-28112007-163902, and contains output
similar to Example 5.4, “Example AOP Log Output”.

Method: addEmployee Args: (Santa Claus, 1 Reindeer Avenue,
Lapland City - 25/12/1860) Return: true
Method: getSalary Args: (Santa Claus, null - Birth date

Example 5.4. Example AOP Log Output
unknown) Return: 10000

| Method: getEmployees Return: []

36

CHAPTER 5. ADDING BEHAVIOR WITH AOP

Lapland City - 25/12/1860)]

Method: isHiringFreeze Return: false

Method: getEmployees Return: [(Santa Claus, 1 Reindeer Avenue,
Lapland City - 25/12/1860)]

Method: getEmployees Return: [(Santa Claus, 1 Reindeer Avenue,
Method: getSalaryStrategy

To remove the auditing behavior, comment out the relevant fragments of XML in the deployment
descriptor and restart the application.

g WARNING
The order of deployment matters. Specifically each aspect must be declared before

the beans that it applies to, so that the Microcontainer deploys them in that order.
This is because the Microcontainer may need to alter the bytecode of the normal
bean class to add the cross-cutting logic, before it creates an instance and stores a
reference to it in the controller. If a normal bean instance has already been created,
this is not possible.

5.4. LIFE CYCLE CALLBACKS

In addition to applying aspects to beans that we instantiate using the Microcontainer we can also add
behavior during the deployment and undeployment process. As mentioned in Section 4.3, “Direct
Access”, a bean goes through several different states as it is deployed. These include:

NOT_INSTALLED

the deployment descriptor containing the bean has been parsed, along with any annotations on the
bean itself.

DESCRIBED

any dependencies created by AOP have been added to the bean, and custom annotations have been
processed.

INSTANTIATED
an instance of the bean has been created.

CONFIGURED
properties have been injected into the bean, along with any references to other beans.

CREATE
the create method, if defined in the bean, has been called.

START
the start method, if defined in the bean, has been called.

37

Microcontainer User Guide

INSTALLED

any custom install actions that were defined in the deployment descriptor have been executed and
the bean is ready to access.

IMPORTANT

The CREATE and START states are included for legacy purposes. This allows services
that were implemented as MBeans in previous versions of the Enterprise Platform to
function correctly when implemented as beans in the Enterprise Platform 5.1. If you do not
define any corresponding create/start methods in your bean, it will pass straight through
these states.

These states represent the bean's life cycle. You can define a number of callbacks to be applied to any
point by using an additional set of <aop> elements:

<aop:lifecycle-describe>

applied when entering/leaving the DESCRIBED state

<aop:lifecycle-instantiate>

applied when entering/leaving the INSTANTIATED state

<aop:lifecycle-configure>

applied when entering/leaving the CONFIGURED state

<aop:lifecycle-create>

applied when entering/leaving the CREATE state

<aop:lifecycle-start>

applied when entering/leaving the START state

<aop:lifecycle-install>

applied when entering/leaving the INSTALLED state

Like the <bean> and <aop:aspect> elements, the <aop:lifecycle-> elements contain name and class
attributes. The Microcontainer uses these attributes to create an instance of the callback class,
naming it so that it can be used as beans enter or leave the relevant state during deployment and
undeployment. You can specify which beans are affected by the callback using the classes attribute, as
shown in Example 5.5, “Using the classes Attribute”.

name="InstallAdvice"
class="org.jboss.test.microcontainer.support.LifecycleCallback"

Example 5.5. Using the classes Attribute
classes="@org.jboss.test.microcontainer.support.Install">

‘ <aop:lifecycle-install xmlns:aop="urn:jboss:aop-beans:1.0"

38

CHAPTER 5. ADDING BEHAVIOR WITH AOP

| | </aop:lifecycle-install>

This code specifies that additional logic in the 1ifecycleCallback class is applied to any bean
classes that are annotated with @org. jboss. test.microcontainer. support.Install before
they enter and after they leave the INSTALLED state.

For the callback class to work, it must contain install and uninstall methods that take
ControllerContext as a parameter, as shown in Example 5.6, “Install and Uninstall Methods”.

Example 5.6. Install and Uninstall Methods
import org.jboss.dependency.spi.ControllerContext;
public class LifecycleCallback {

public void install(ControllerContext ctx) {
System.out.println("Bean " + ctx.getName() + " is being

installed";

}

public void uninstall(ControllerContext ctx) {

System.out.println("Bean " + ctx.getName() + " is being
uninstalled";

}
3

The install method is called during the bean's deployment, and the uninstall method during its
undeployment.

NOTE
Although behavior is being added to the deployment and undeployment process using

callbacks, AOP is not actually used here. The pointcut expression functionality of JBoss
AQOP is used to determine which bean classes the behaviors apply to.

5.5. ADDING SERVICE LOOK-UPS THROUGH JNDI

Until now, you have used the Microcontainer to look up references to bean instances which represent
services. This is not ideal, because it requires a reference to the Microcontainer kernel before the
controller can be accessed. This is shown in Example 5.7, “Looking Up References To Beans”.

Example 5.7. Looking Up References To Beans

I private HRManager manager;

39

Microcontainer User Guide

private EmbeddedBootstrap bootstrap;
private Kernel kernel;
private KernelController controller;

private final static String HRSERVICE = "HRService";

// Start JBoss Microcontainer
bootstrap = new EmbeddedBootstrap();
bootstrap.run();

kernel = bootstrap.getKernel();
controller = kernel.getController();

ControllerContext context = controller.getInstalledContext(HRSERVICE);
if (context !'= null) { manager = (HRManager) context.getTarget(); }

Handing out kernel references to every client that looks up a service is a security risk, because it
provides wide-spread access to the Microcontainer configuration. For better security, apply the
Servicelocator pattern and use a class to performs look-ups on behalf of the clients. Even better, pass
the bean references, along with their names, to the ServiceLocator at deployment time, using a life-cycle
callback. In that scenario, the ServiceLocator can look them up without knowing about the Microcontainer
at all. Undeployment would subsequently remove the bean references from the ServicelLocator to
prevent further look-ups.

It would not be difficult to write your own ServiceLocator implementation. Integrating an existing one such
as JBoss Naming Service (JBoss NS) is even quicker, and has the additional benefit of complying to the

Java Naming and Directory Interface (JNDI) specification. JNDI enables clients to access different,
possibly multiple, naming services using a common API.

Procedure 5.3. Writing Your Own ServicelLocator Implementation

1. First, create an instance of JBoss NS using the Microcontainer.

2. Next, add a life-cycle callback to perform the binding and unbinding of the bean references
during deployment and undeployment.

3. Mark the bean classes you wish to bind references for, using annotations.

4. Now, you can locate the beans at run-time using the shorthand pointcut expression as shown
earlier.

40

PART Il. ADVANCED CONCEPTS WITH THE MICROCONTAINER

PART Il. ADVANCED CONCEPTS WITH THE
MICROCONTAINER

This section covers advanced concepts, and shows some interesting features of the Microcontainer.
Code examples in the rest of the guide are assumed to be incomplete examples, and it is the
programmer's responsibility to extrapolate and extend them as necessary.

41

Microcontainer User Guide

CHAPTER 6. COMPONENT MODELS

The JBoss Microcontainer works within several popular POJO component models. Components are
reusable software programs that you can develop and assemble easily to create sophisticated
applications. Effective integration with these component models was a key goal for the Microcontainer.
Some popular component models which can be used with the Microcontainer are JMX, Spring, and
Guice.

6.1. ALLOWABLE INTERACTIONS WITH COMPONENT MODELS

Before discussing interaction with some of the popular component models, it is important to understand
which types of interactions are allowable. JMX MBeans are one example of a component model. Their
interactions include executing MBean operations, referencing attributes, setting attributes and declaring
explicit dependencies between named MBeans.

The default behaviors and interactions in the Microcontainer are what you also normally get from any
other Inversion of Control (loC) container and are similar to the functionality provided by MBeans,
including plain method invocations for operations, setters/getters for attributes and explicit dependencies.

6.2. A BEAN WITH NO DEPENDENCIES

Example 6.1, “Deployment Descriptor for a Plain POJO” shows a deployment descriptor for a plain POJO
with no dependencies. This is the starting point for integrating the Microcontainer with Spring or Guice.

<bean name="PlainPojo" class="org.jboss.demos.models.plain.Pojo"/>

<beanfactory name="PojoFactory"
class="org.jboss.demos.models.plain.Pojo">
<property
name="factoryClass">org.jboss.demos.models.plain.PojoFactory</property>
</beanfactory>

<deployment xmlns="urn:jboss:bean-deployer:2.0">
</deployment>

| Example 6.1. Deployment Descriptor for a Plain POJO

6.3. USING THE MICROCONTAINER WITH SPRING

<!-- Adding @Spring annotation handler -->
<bean id="SpringAnnotationPlugin"
class="org.jboss.spring.annotations.SpringBeanAnnotationPlugin" />

<bean id="SpringPojo" class="org.jboss.demos.models.spring.Pojo"/>

Example 6.2. Descriptor with Spring Support
</beans>

| <beans xmlns="urn:jboss:spring-beans:2.0">

42

CHAPTER 6. COMPONENT MODELS

This file's namespace is different from the plain Microcontainer bean’s file. The
urn:jboss:spring-beans:2.0 namespace points to your version of the Spring schema port,
which describes your bean's Spring style. The Microcontainer, rather than Spring's bean factory
notion, deploys the beans.

Example 6.3. Using Spring with the Microcontainer

private String beanName;
publlc void setBeanName(String name)

beanName = name;

publlc String getBeanName()

return beanName;

publlc void start()

if ("SprlngPOJo" equals(getBeanName()) == false)
throw new IllegalArgumentException("Name does not match: " +

public class Pojo extends AbstractPojo implements BeanNameAware {
getBeanName()),

Although the SpringPojo bean has a dependency on Spring's library caused by implementing
BeanNameAware interface, its only purpose is to expose and mock some of the Spring's callback
behavior.

6.4. USING GUICE WITH THE MICROCONTAINER

The focus of Guice is type matching. Guice beans are generated and configured using Modules.

Example 6.4. Deployment Descriptor for Guice Integration In the Microcontainer

<bean name="GuicePlugin"
class="org.jboss.guice.spi.GuiceKernelRegistryEntryPlugin">

<deployment xmlns="urn:jboss:bean-deployer:2.0">
<constructor>

43

Microcontainer User Guide

</array>
</parameter>
</constructor>

</bean>

<parameter>
<array elementClass="com.google.inject.Module">
<bean class="org.jboss.demos.models.guice.PojoModule"/>
</deployment>

Two important parts to watch from this file are PojoModule and
GuiceKernelRegistryEntryPlugin. PojoModule configures your beans, as in Example 6.5,
“Configuring Beans for Guice”. GuiceKernelRegistryEntryPlugin provides integration with the
Microcontainer, as shown in Example 6.6, “Guice Integration with the Microcontainer”.

Example 6.5. Configuring Beans for Guice
public class PojoModule extends AbstractModule {
private Controller controller;

@Constructor
public PojoModule(@Inject(
bean = KernelConstants.KERNEL_CONTROLLER_NAME)
Controller controller)
{
this.controller = controller;

}

protected void configure()

{
bind(Controller.class).toInstance(controller);
bind(IPojo.class).to(Pojo.class).in(Scopes.SINGLETON);
bind(IPojo.class).annotatedwWwith(FromMC.class).

toProvider(GuiceIntegration.fromMicrocontainer (IPojo.class,
"PlainPojo"));

}
}

KernelRegistryPlugin {

Example 6.6. Guice Integration with the Microcontainer
private Injector injector;

| public class GuiceKernelRegistryEntryPlugin implements

44

CHAPTER 6. COMPONENT MODELS

public GuiceKernelRegistryEntryPlugin(Module... modules)

{
injector = Guice.createInjector(modules);
}
public void destroy()
{
injector = null;
}
public KernelRegistryEntry getEntry(Object name)
{
KernelRegistryEntry entry = null;
try
{
if (name instanceof Class<?>)
{

Class<?> clazz = (Class<?>)name;
entry = new AbstractKernelRegistryEntry(name,
injector.getInstance(clazz));

}

else if (name instanceof Key)
{
Key<?> key = (Key<?>)name;
entry = new AbstractKernelRegistryEntry(name,
injector.getInstance(key));
}
3
catch (Exception ignored)
{
3

return entry,;

}

(o

NOTE
An Injector is created from the Modules class, then does a look-up on it for matching

beans. See Section 6.5, “Legacy MBeans, and Mixing Different Component Models” for
information about declaring and using legacy MBeans.

6.5. LEGACY MBEANS, AND MIXING DIFFERENT COMPONENT
MODELS

The simplest example of mixing different content models is shown in Example 6.7, “Injecting a POJO
Into an MBean”.

I Example 6.7. Injecting a POJO Into an MBean

45

Microcontainer User Guide

<server>

<mbean code="org.jboss.demos.models.mbeans.Pojo"
name="jboss.demos:service=pojo'">
<attribute name="OtherPojo"><inject bean="PlainPojo"/></attribute>
</mbean>

</server>

To deploy MBeans deployment via the Microcontainer, you must write an entirely new handler for the
component model. See system-jmx-beans.xml for more details. The code from this file lives in the
JBoss Application Server source code: system-jmx sub-project.

6.6. EXPOSING POJOS AS MBEANS

<deployment xmlns="urn:jboss:bean-deployer:2.0">

<bean name="AnnotatedJMXPojo"
class="org.jboss.demos.models. jmx.AtImxPojo" />

<bean name="XmlJMXPojo" class="org.jboss.demos.models.mbeans.Pojo">

<annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(exposedInterfa
ce=org.jboss.demos.models.mbeans.PojoMBean.class,
registerDirectly=true)</annotation>

</bean>

<bean name="ExposedPojo" class="org.jboss.demos.models.jmx.Pojo"/>

<bean name="AnnotatedExposePojo"
class="org.jboss.demos.models. jmx.ExposePojo">
<constructor>
<parameter><inject bean="ExposedPojo"/></parameter>
</constructor>
</bean>

</deployment>

This descriptor exposes an existing POJO as an MBean, and registers it into an MBean server.

Example 6.8. Exposing an Existing POJO as an MBean

To expose a POJO as an MBean, end it with an @JMX annotation, assuming that you have imported
org.jbhoss.aop.microcontainer.aspects.jmx.JMX. The bean can either be exposed directly, or
in its property.

46

I Example 6.9. Exposing a POJO as an MBean Using Its Property

CHAPTER 6. COMPONENT MODELS

<deployment xmlns="urn:jboss:bean-deployer:2.0">
<bean name="XMLLoginConfig"
class="org.jboss.demos.models.old.XMLLoginConfig" />
<bean name="SecurityConfig"
class="org.jboss.demos.models.old.SecurityConfig">
<property name="defaultLoginConfig"><inject
bean="XMLLoginConfig"/></property>
</bean>
<bean name="SecurityChecker"
class="org.jboss.demos.models.old.Checker">
<property name="loginConfig"><inject
bean="jboss.security:service=XMLLoginConfig"/></property>
<property name="securityConfig"><inject

bean="jboss.security:service=SecurityConfig"/></property>
</bean>

</deployment>

You can use any of the injection look-up types, by either looking up a plain POJO or getting a handle to
an MBean from the MBean server. One of the injection options is to use type injection, sometimes called
autowiring, and shown in Example 6.10, “Autowiring”.

Example 6.10. Autowiring
<deployment xmlns="urn:jboss:bean-deployer:2.0">
<bean name="FromGuice"
class="org.jboss.demos.models.plain.FromGuice">
<constructor><parameter><inject
bean="PlainPojo"/></parameter></constructor>
<property name="guicePojo'"><inject/></property>
</bean>
<bean name="AllPojos" class="org.jboss.demos.models.plain.AllPojos'">
<property name="directMBean'"><inject
bean="jboss.demos:service=pojo'"/></property>
<property name="exposedMBean"><inject
bean="jboss.demos:service=ExposedPojo"/></property>
<property name="exposedMBean"><inject

bean="jboss.demos:service=ExposedPojo"/></property>
</bean>

</deployment>

47

Microcontainer User Guide

The FromGuice bean injects the Guice bean via type matching, where PlainPojo is injected with a

common name injection. Now, you can test if Guice binding works as expected, as shown in
Example 6.11, “Testing Guice Functionality”.

Example 6.11. Testing Guice Functionality
public class FromGuice {
private IPojo plainPojo;
private org.jboss.demos.models.guice.Pojo guicePojo;
publlc FromGuice(IPojo plainPojo)
thlS plainPojo = plainPojo;
public void setGuicePojo(org.jboss.demos.models.guice.Pojo

gu1cePOJo)
thlS guicePojo = guicePojo;

publlc void start()

f (plalnPOJo = guicePojo.getMcPojo())

throw new IllegalArgumentException("Pojos are not the same:

plalnPOJo + "1=" + guicePojo.getMcPojo());

Example 6.11, “Testing Guice Functionality” only provides an alias component model. The alias is a

trivial, but necessary feature. It must be introduced as a new component model inside the

Microcontainer, in order to implement it as a true dependency. The implementation details are shown in

Example 6.12, “AbstractController Source Code”.

<alias name="SpringPojo">springPojo</alias>

</deployment>

Example 6.12. AbstractController Source Code
‘ <deployment xmlns="urn:jboss:bean-deployer:2.0">

48

CHAPTER 6. COMPONENT MODELS

This descriptor maps the SpringPojo name to the springPojo alias. The benefit of aliases as true
component models is that timing of bean deployment becomes less important. The alias waits in a non-
installed state until the real bean triggers it.

49

Microcontainer User Guide

CHAPTER 7. ADVANCED DEPENDENCY INJECTION AND IOC

Today, Dependency injection (DI), also called Inversion of Control (IoC), lies at the core of many
frameworks that embrace the notion of a container or a component model. Component models were
discussed in a previous chapter. JBoss JMX kernel, the precursor to the Microcontainer, provided only
lightweight DI/1oC support, primarily due to the limitations of accessing MBeans through the MBeans
server. However with the new POJO-based component model, several new and interesting features are
available.

This chapter shows how you can apply different DI concepts with the help of the JBoss Microcontainer.
These concepts will be expressed via XML code, but you can also apply most of these features using
annotations.

7.1. VALUE FACTORY

A value factory is a bean which has one or more methods devoted to generating values for you. See
Example 7.1, “Value Factory”.

Example 7.1. Value Factory
<bean name="Binding" class="org.jboss.demos.ioc.vf.PortBindingManager">
<constructor>
<parameter>
<map keyClass="java.lang.String" valueClass="java.lang.Integer">

<entry>
<key>http</key>
<value>80</value>
</entry>
<entry>
<key>ssh</key>
<value>22</value>
</entry>
</map>
</parameter>
</constructor>
</bean>
<bean name="PortsConfig" class="org.jboss.demos.ioc.vf.PortsConfig">
<property name="http"><value-factory bean="Binding" method="getPort"
parameter="http"/></property>
<property name="ssh'"><value-factory bean="Binding" method="getPort"
parameter="ssh"/></property>
<property name="ftp">
<value-factory bean="Binding" method="getPort'">
<parameter>ftp</parameter>
<parameter>21</parameter>
</value-factory>
</property>
<property name="mail'">
<value-factory bean="Binding" method="getPort'">
<parameter>mail</parameter>
<parameter>25</parameter>
</value-factory>
</property>
</bean>

50

CHAPTER 7. ADVANCED DEPENDENCY INJECTION AND IOC

Example 7.2, “PortsConfig” shows how the PortsConfig bean uses Binding bean to get its values via the
getPort method invocation.

Example 7.2. PortsConfig
public class PortBindingManager {
private Map<String, Integer> bindings;

public PortBindingManager (Map<String, Integer> bindings)
{
this.bindings = bindings;
}
public Integer getPort(String key)
{
return getPort(key, null);
}
public Integer getPort(String key, Integer defaultValue)
{
if (bindings == null)
return defaultValue;
Integer value = bindings.get(key);
if (value != null)
return value;
if (defaultvalue != null)
bindings.put(key, defaultValue);
return defaultValue;
}
}

7.2. CALLBACKS

The descriptor shown in Example 7.3, “Callbacks to Collect and Filter Beans” allows you to collect all
beans of a certain type, and even limit the number of matching beans.

In conjunction with the descriptor in Example 7.3, “Callbacks to Collect and Filter Beans”, the Java code
shown in Example 7.4, “A Parser to Collect all Editors” shows a Parser which collects all Editors.

<constructor>
<parameter>
<value-factory bean="parser" method="parse">
<parameter>

Example 7.3. Callbacks to Collect and Filter Beans
<array elementClass="java.lang.Object">

| <bean name="checker" class="org.jboss.demos.ioc.callback.Checker">

51

</parameter>
</constructor>

<bean name="parser" class="org.jboss.demos.ioc.callback.Parser">

<incallback method="addEditor" cardinality="4..n"/>

Microcontainer User Guide
<value>http://www.jboss.org</value>
<value>SI</value>
<value>3.14</value>
<value>42</value>

</array>
</parameter>
</bean>
<bean name="editorA" class="org.jboss.demos.ioc.callback.DoubleEditor"/>
<uncallback method="removeEditor"/>
</bean>

</value-factory>
<bean name="editorB" class="org.jboss.demos.ioc.callback.LocaleEditor"/>
<bean name="editorC" class="org.jboss.demos.ioc.callback.LongEditor"/>

<bean name="editorD" class="org.jboss.demos.ioc.callback.URLEditor"/>

publlc void addEditor(Editor editor)
edltors add(editor);
publlc void removeEditor(Editor editor)

Example 7.4. A Parser to Collect all Editors
public class Parser {
private Set<Editor> editors = new HashSet<Editor>();
edltors remove (editor);

Notice that incallback and uncallback use the method name for matching.

<incallback method="addEditor" cardinality="4..n"/>
<uncallback method="removeEditor"/>

52

CHAPTER 7. ADVANCED DEPENDENCY INJECTION AND IOC

A bottom limit controls how many editors actually cause the bean to progress from a Configured state:
cardinality=4..n/>

Eventually, Checker gets created and checks the parser. This is illustrated in Example 7.5, “The
Checker for the Parser”.

Example 7.5. The Checker for the Parser
public void create() throws Throwable {
Set<String> strings = new TreeSet<String>
(String.CASE_INSENSITIVE_ORDER);
for (Object element : elements)
strings.add(element.toString());
if (expected.equals(strings) == false)
throw new IllegalArgumentException("Illegal expected set: " + expected
+ "I=" + strings);

}

7.3. BEAN ACCESS MODE

With the default BeanAccessMode, a bean's fields are not inspected. However, if you specify a different
BeanAccessMode, the fields are accessible as part of the bean's properties. See Example 7.6, “Possible
BeanAccessMode Definitions”, Example 7.7, “Setting the BeanAccessMode”, and Example 7.8, “The
FieldsBean Class” for an implementation.

public enum BeanAccessMode {
STANDARD (BeanInfoCreator.STANDARD), // Getters and Setters
FIELDS(BeanInfoCreator.FIELDS), // Getters/Setters and fields without
getters and setters
ALL(BeanInfoCreator.ALL); // As above but with non public fields
included

Example 7.6. Possible BeanAccessMode Definitions
3

Here, a String value is set to a private String field:

access-mode="ALL">
<property name="string">InternalString</property>

Example 7.7. Setting the BeanAccessMode
</bean>

| <bean name="FieldsBean" class="org.jboss.demos.ioc.access.FieldsBean"

53

Microcontainer User Guide

Example 7.8. The FieldsBean Class
public class FieldsBean {
private String string;
if (strlng == null)

publlc void start()
throw new IllegalArgumentException("Strings should be set!");

7.4. BEAN ALIAS

Each bean can have any number of aliases. Since Microcontainer component names are treated as
Objects, the alias type is not limited. By default a system property replacement is not done; you need to
set the replace flag explicitly, as shown in Example 7.9, “A Simple Bean Alias”.

<alias>SimpleAlias</alias>

<alias replace="true">%${some.system.property}</alias>

<alias class="java.lang.Integer'">12345</alias>

<alias><javabean xmlns="urn:jboss:javabean:2.0"
class="org.jboss.demos.bootstrap.Main"/></alias>

Example 7.9. A Simple Bean Alias
<bean name="SimpleName" class="java.lang.Object">
</bean>

7.5. XML (OR METADATA) ANNOTATIONS SUPPORT

AOP support is a prime feature in JBoss Microcontainer. You can use AOP aspects and plain beans in
any combination. Example 7.10, “Intercepting a Method based on Annotation” attempts to intercept a
method invocation based on an annotation. The annotation can come from anywhere. It might be a true
class annotation or an annotation added through the xml configuration.

Example 7.10. Intercepting a Method based on Annotation

54

CHAPTER 7. ADVANCED DEPENDENCY INJECTION AND IOC

<interceptor xmlns="urn:jboss:aop-beans:1.0" name="StopWatchInterceptor"
class="org.jboss.demos.ioc.annotations.StopwWatchInterceptor"/>
<bind xmlns="urn:jboss:aop-beans:1.0" pointcut="execution(*

@org.jboss.demos.ioc.annotations.StopwatchLog->*(..)) OR execution(* *-
>@org.jboss.demos.ioc.annotations.StopwatchLog(..))">
<interceptor-ref name="StopwWatchInterceptor"/>
</bind>
</interceptor>

public class StopWatchInterceptor implements Interceptor {

public Object invoke(Invocation invocation) throws Throwable
{
Object target = invocation.getTargetObject();
long time = System.currentTimeMillis();
log.info("Invocation [" + target + "] start: " + time);
try
{

return invocation.invokeNext();

}
finally

{
log.info("Invocation [" + target + "] time: " +
(System.currentTimeMillis() - time));
3
}

(S

Example 7.11, “A true class annotated executor” and Example 7.12, “Simple executor with XML
annotation” show some different ways to implement executors.

Example 7.11. A true class annotated executor

<bean name="AnnotatedExecutor"
class="org.jboss.demos.ioc.annotations.AnnotatedExecutor">

public class AnnotatedExecutor implements Executor {

@StopwatchLog // <-- Pointcut match!
public void execute() throws Exception {

55

Microcontainer User Guide

delegate.execute();
}
3

Example 7.12. Simple executor with XML annotation

<bean name="SimpleExecutor"

class="org.jboss.demos.ioc.annotations.SimpleExecutor">
<annotation>@org.jboss.demos.ioc.annotations.StopwWatchLog</annotation>

// <-- Pointcut match!

</bean>

private static Random random = new Random();
public void execute() throws Exception

{
Thread.sleep(Math.abs(random.nextLong() % 101));

}

(S

‘ public class SimpleExecutor implements Executor {

After adding executor invoker beans, you can see the executors in action during employment, by looking
for log output such as Example 7.13, “Executor Logging Output”.

[org.jboss.demos.ioc.annotations.AnnotatedExecutor@4d28c7] start:
1229345859234

JBoss-MC-Demo INFO [15-12-2008 13:57:39] StopwWatch - Invocation
[org.jboss.demos.ioc.annotations.AnnotatedExecutor@4d28c7] time: 31

JBoss-MC-Demo INFO [15-12-2008 13:57:39] StopwWatch - Invocation
[org.jboss.demos.ioc.annotations.SimpleExecutor@1b044df] start:
1229345859265

JBoss-MC-Demo INFO [15-12-2008 13:57:39] StopwWatch - Invocation

JBoss-MC-Demo INFO [15-12-2008 13:57:39] StopwWatch - Invocation
[org.jboss.demos.ioc.annotations.SimpleExecutor@1b044df] time: 47

| Example 7.13. Executor Logging Output

7.6. AUTOWIRE

56

CHAPTER 7. ADVANCED DEPENDENCY INJECTION AND IOC

Autowiring, or contextual injection, is a common feature with loC frameworks. Example 7.14, “Include
and Exclude with Autowiring” shows you how to use or exclude beans with autowiring.

autowire-candidate="false"/>
<bean name="Circle" class="org.jboss.demos.ioc.autowire.Circle"/>
<bean name="ShapeUser" class="org.jboss.demos.ioc.autowire.ShapeUser">
<constructor>
<parameter><inject/></parameter>
</constructor>
</bean>
<bean name="ShapeHolder"
class="org.jboss.demos.ioc.autowire.ShapeHolder">
<incallback method="addShape"/>
<uncallback method="removeShape"/>
</bean>
<bean name="ShapeChecker"

<bean name="Square" class="org.jboss.demos.ioc.autowire.Square"
class="org.jboss.demos.ioc.autowire.ShapesChecker"/>

| Example 7.14. Include and Exclude with Autowiring

In both cases - ShapeUser and ShapeChecker - only Circle should be used, since Square is excluded in
the contextual binding.

7.7. BEAN FACTORY

When you want more than one instance of a particular bean, you need to use the bean factory pattern.
The job of the Microcontainer is to configure and install the bean factory as if it were a plain bean. Then
you need to invoke the bean factory's createBean method.

By default, the Microcontainer creates a GenericBeanFactory instance, but you can configure your
own factory. The only limitation is that its signature and configuration hooks are similar to the one of
AbstractBeanFactory.

Example 7.15. Generic Bean Factory
<bean name="Object" class="java.lang.Object"/>
<beanfactory name="DefaultPrototype"

class="org.jboss.demos.ioc.factory.Prototype'">
<property name="value'"><inject bean="0Object"/></property>
</beanfactory>
<beanfactory name="EnhancedPrototype"
class="org.jboss.demos.ioc.factory.Prototype"
factoryClass="org.jboss.demos.ioc.factory.EnhancedBeanFactory">
<property name="value'"><inject bean="0Object"/></property>
</beanfactory>
<beanfactory name="ProxiedPrototype"
class="org.jboss.demos.ioc.factory.UnmodifiablePrototype"
factoryClass="org.jboss.demos.ioc.factory.EnhancedBeanFactory">
<property name="value'><inject bean="0Object"/></property>
</beanfactory>
<bean name="PrototypeCreator"
class="org.jboss.demos.ioc.factory.PrototypeCreator'">

57

Microcontainer User Guide

<property name="enhanced"><inject
bean="EnhancedPrototype"/></property>
<property name="proxied'"><inject bean="ProxiedPrototype"/></property>

<property name="default'><inject bean="DefaultPrototype"/></property>
</bean>

See Example 7.16, “Extended BeanFactory” for usage of an extended BeanFactory.

Example 7.16. Extended BeanFactory

public class EnhancedBeanFactory extends GenericBeanFactory {
public EnhancedBeanFactory(KernelConfigurator configurator)
{

super(configurator);

}
public Object createBean() throws Throwable
{

Object bean = super.createBean();

Class clazz = bean.getClass();

if (clazz.isAnnotationPresent(SetterProxy.class))
{
Set<Class> interfaces = new HashSet<Class>();
addInterfaces(clazz, interfaces);
return Proxy.newProxyInstance(
clazz.getClassLoader(),
interfaces.toArray(new Class[interfaces.size()]),
new SetterInterceptor(bean)
)
3
else
{
return bean;
3
}
protected static void addInterfaces(Class clazz, Set<Class>
interfaces)
{
if (clazz == null)
return;
interfaces.addAll(Arrays.aslList(clazz.getInterfaces()));
addInterfaces(clazz.getSuperclass(), interfaces);
}
private class SetterInterceptor implements InvocationHandler
{
private Object target;

private SetterInterceptor(Object target)
{

}
public Object invoke(Object proxy, Method method, Object[] args) throws

this.target = target;

58

CHAPTER 7. ADVANCED DEPENDENCY INJECTION AND IOC

return method.invoke(target, args);

}

public class PrototypeCreator {

public void create() throws Throwable
{
ValueInvoker vil = (ValueInvoker)bfDefault.createBean();
vil.setValue("default");
ValueInvoker vi2 = (ValueInvoker)enhanced.createBean();
vi2.setValue("enhanced");
ValueInvoker vi3 = (ValueInvoker)proxied.createBean();
try
{
vi3.setValue("default");
throw new Error("Should not be here.");
3
catch (Exception ignored)
{
3

Throwable

{

String methodName = method.getName();

if (methodName.startswith("set"))

throw new IllegalArgumentException("Cannot invoke setters.");
| }

7.8. BEAN METADATA BUILDER

When using the Microcontainer in your code, use BeanMetaDataBuilder to create and configure your
bean metadata.

Example 7.17. BeanMetaDataBuilder

class="org.jboss.demos.ioc.builder.Builderutil"/>
<bean name="BuilderExampleHolder"
class="org.jboss.demos.ioc.builder.BuilderExampleHolder">
<constructor>
<parameter><inject bean="BUExample'"/></parameter>
</constructor>

<bean name="Builderutil"
</bean>

Using this concept, you do not expose your code to any Microcontainer implementation details.

public class BuilderuUtil {
private KernelController controller;
@Constructor
public BuilderUtil(@Inject(bean =
KernelConstants.KERNEL_CONTROLLER_NAME) KernelController controller) {
this.controller = controller;

59

Microcontainer User Guide

}

public void create() throws Throwable {
BeanMetaDataBuilder builder =
BeanMetaDataBuilder.createBuilder ("BUExample",
BuilderExample.class.getName());
builder.addStartParameter(Kernel.class.getName(),
builder.createInject(KernelConstants.KERNEL_NAME));
controller.install(builder.getBeanMetaData());

}

public void destroy() {
controller.uninstall("BUExample");

}
}

7.9. CUSTOM CLASSLOADER

In the Microcontainer you can define a custom ClassLoader per bean. When defining a classloader for
the whole deployment, make sure you do not create a cyclic dependency -- for instance, a newly defined
classloader that depends on itself.

| Example 7.18. Defining a ClassLoader Per Bean

<classloader><inject bean="custom-classloader:0.0.0"/></classloader>
<!-- this will be explained in future article -->
<classloader name="custom-classloader" xmlns="urn:jboss:classloader:1.0"
export-all="NON_EMPTY" import-all="true"/>
<bean name="CustomCL"
class="org.jboss.demos.ioc.classloader.CustomClassLoader">
<constructor>
<parameter><inject bean='"custom-classloader:0.0.0"/></parameter>
</constructor>
<property name="pattern'">org\.jboss\.demos\.ioc\..+</property>
</bean>
<bean name="CB1" class="org.jboss.demos.ioc.classloader.CustomBean'"/>
<bean name="CB2" class="org.jboss.demos.ioc.classloader.CustomBean'">
<classloader><inject bean="CustomCL"/></classloader>
</bean>

Example 7.19, “Custom ClasslLoader Test” shows a test to verify that the CB2 bean uses a custom
ClassLoader, which limits the loadable package scope.

Example 7.19. Custom ClassLoader Test

60

public class CustomClassLoader extends ClassLoader {

CHAPTER 7. ADVANCED DEPENDENCY INJECTION AND IOC

private Pattern pattern;
public CustomClassLoader(ClassLoader parent) {
super (parent);
}
public Class<?> loadClass(String name) throws
ClassNotFoundException {

if (pattern == null || pattern.matcher(name).matches())
return super.loadClass(name);
else
throw new ClassNotFoundException("Name '" + name + "' does not
match pattern: " + pattern);
}

public void setPattern(String regexp) {
pattern = Pattern.compile(regexp);

}

(o

7.10. CONTROLLER MODE

By default, the Microcontainer uses the AUTO controller mode. It pushes beans as far as they go with
respect to dependencies. But there are two other modes: MANUAL and ON_DEMAND.

If the bean is marked as ON_DEMAND, it will not be used or installed installed until some other bean
explicitly depends on it. In MANUAL mode, the Microcontainer user must push the bean forward and
backward along the state ladder.

‘ Example 7.20. Bean Controller Mode

<bean name="OptionalService"
class="org.jboss.demos.ioc.mode.OptionalService" mode="On Demand"/>
<bean name="OptionalServiceUser"
class="org.jboss.demos.ioc.mode.OptionalServiceUser"/>
<bean name="ManualService"
class="org.jboss.demos.ioc.mode.ManualService" mode="Manual"/>
<bean name="ManualServiceUser"
class="org.jboss.demos.ioc.mode.ManualServiceUser">

<start>

<parameter><inject bean="ManualService" fromContext="context"

state="Not Installed"/></parameter>

</start>
</bean>

61

Microcontainer User Guide

NOTE

Using the fromContext attribute of the inject class, you can inject beans, as well as
their unmodifiable Microcontainer component representation.

Review the code of OptionalServiceUser and ManualServiceUser for how to use the
Microcontainer APl for ON_DEMAND and MANUAL bean handling.

7.11. CYCLE

Beans may depend on each other in a cycle. For instance, A depends on B at construction, but B
depends on A at setter. Because of the Microcontainer’s fine-grained state life cycle separation, this
problem can be solved easily.

Example 7.21. Bean life cycle separation
<bean name="cycleA" class="org.jboss.demos.ioc.cycle.CyclePojo">
<property name="dependency"><inject bean='"cycleB"/></property>

</bean>

<bean name="cycleB" class="org.jboss.demos.ioc.cycle.CyclePojo">
<constructor><parameter><inject bean="cycleA"

state="Instantiated"/></parameter></constructor>

</bean>

<bean name="cycleC" class="org.jboss.demos.ioc.cycle.CyclePojo">
<property name="dependency"><inject bean='"cycleD"/></property>

</bean>

<bean name="cycleD" class="org.jboss.demos.ioc.cycle.CyclePojo">
<property name="dependency"><inject bean="cycleC"

state="Instantiated"/></property>

</bean>

7.12. DEMAND AND SUPPLY

Sometimes, such as with an injection, a dependency between two beans may not be readily apparent.
Such dependencies should be expressed in a clear way, such as shown in Example 7.22, “Static Code
Usage”.

<demand>TM</demand>
</bean>
<bean name="SimpleTMSupply"
class="org.jboss.demos.ioc.demandsupply.SimpleTMSupplyer">
<supply>TM</supply>

Example 7.22. Static Code Usage
</bean>

<bean name="TMDemand"
class="org.jboss.demos.ioc.demandsupply.TMDemander">

62

CHAPTER 7. ADVANCED DEPENDENCY INJECTION AND IOC

7.13. INSTALLS

As a bean moves through different states, you might want to invoke some methods on other beans or the
same bean. Example 7.23, “Invoking Methods in Different-States” shows how Entry invokes
RepositoryManager's add and removeEntry methods to register and unregister itself.

Example 7.23. Invoking Methods in Different-States
<bean name="RepositoryManager"
class="org.jboss.demos.ioc.install.RepositoryManager">
<install method="addEntry">

<parameter><inject fromContext="name"/></parameter>
<parameter><this/></parameter>
</install>
<uninstall method="removeEntry">
<parameter><inject fromContext="name"/></parameter>
</uninstall>
</bean>
<bean name="Entry" class="org.jboss.demos.ioc.install.SimpleEntry">
<install bean="RepositoryManager" method="addEntry"
state="Instantiated">
<parameter><inject fromContext="name"/></parameter>
<parameter><this/></parameter>
</install>
<uninstall bean="RepositoryManager" method="removeEntry"
state="Configured">
<parameter><inject fromContext="name"/></parameter>
</uninstall>
</bean>

7.14. LAZY MOCK

You might have a dependency on a bean that is rarely used, but takes a long time to configure. You can
use a lazy mock of the bean, demonstrated in Example 7.24, “Lazy Mock”, to resolve the dependency.
When you actually need the bean, invoke and use the target bean, hoping it has been installed by then.

<constructor>
<parameter>
<lazy bean="lazyB">

Example 7.24. Lazy Mock
<interface>org.jboss.demos.ioc.lazy.ILazyPojo</interface>

| <bean name="lazyA" class="org.jboss.demos.ioc.lazy.LazyImpl">

63

Microcontainer User Guide

</lazy>
</parameter>
</constructor>
</bean>
<bean name="lazyB" class="org.jboss.demos.ioc.lazy.LazyImpl">
<constructor>
<parameter>
<lazy bean="lazyA">
<interface>org.jboss.demos.ioc.lazy.IlLazyPojo</interface>
</lazy>
</parameter>
</constructor>
</bean>
<lazy name="anotherLazy" bean="Pojo" exposeClass="true'"/>
<bean name="Pojo" class="org.jboss.demos.ioc.lazy.Pojo"/>

7.15. LIFE CYCLE

By default the Microcontainer uses create, start, and destroy methods when it moves through the
various states. However, you may not want the Microcontainer to invoke them. For this reason, an ignore
flag is available.

64

‘ Example 7.25. Bean Life cycles

<bean name="FullLifecycleBean-3"

class="org.jboss.demos.ioc.lifecycle.FullLifecycleBean"/>

<bean name="FullLifecycleBean-2"

class="org.jboss.demos.ioc.lifecycle.FullLifecycleBean">
<create ignored="true"/>

</bean>

<bean name="FullLifecycleBean-1"

class="org.jboss.demos.ioc.lifecycle.FullLifecycleBean">
<start ignored="true"/>

</bean>

CHAPTER 8. THE VIRTUAL FILE SYSTEM

CHAPTER 8. THE VIRTUAL FILE SYSTEM

Duplication of resource-handling code is a common problem for developers. In most cases, the code
deals with determining information about a particular resource, which might be a file, a directory, or, in
the case of a JAR, a remote URL. Another duplication problem is code for the processing of nested

archives. Example 8.1, “Resource Duplication Problem” illustrates the problem.

Example 8.1. Resource Duplication Problem

public static URL[] search(ClassLoader cl, String prefix, String suffix)

throws IOException {

Enumeration[] e = new Enumeration[]{
cl.getResources(prefix),
cl.getResources(prefix + "MANIFEST.MF")

}

Set all = new LinkedHashSet();

URL url;

URLConnection conn;

JarFile jarFile;

for (int 1 = 0, s = e.length; i < s; ++1i)

{
while (e[i].hasMoreElements())
{
url = (URL)e[i].nextElement();
conn = url.openConnection();
conn.setUseCaches(false);
conn.setDefaultUseCaches(false);
if (conn instanceof JarURLConnection)
{
jarFile = ((JarURLConnection)conn).getJarFile();
}
else
{
jarFile = getAlternativeJdarFile(url);
}
if (jarFile != null)
{
searchJar(cl, all, jarFile, prefix, suffix);
}
else
{

boolean searchDone = searchDir(all, new
File(URLDecoder.decode(url.getFile(), "UTF-8")), suffix);
if (searchbDone == false)

{

}
}
}
}

}

searchFromURL(all, prefix, suffix, url);

return (URL[])all.toArray(new URL[all.size()]);

private static boolean searchDir(Set result, File file, String suffix)

throws IOException

{

65

Microcontainer User Guide

if (file.exists() && file.isDirectory())
{
File[] fc = file.listFiles();
String path;
for (int 1 = 0; i < fc.length; i++)

path = fc[i].getAbsolutePath();
if (fc[i].isDirectory())

~

searchDir(result, fc[i], suffix);

(o

else if (path.endsWith(suffix))

~

result.add(fc[i].toURL());

(o]
(o

return true;

return false;

There are also many problems with file locking on Windows systems, forcing developers to copy all hot-
deployable archives to another location to prevent locking those in deploy folders (which would prevent
their deletion and file-system based undeploy). File locking is a major problem whose only solution used
to be centralizing all the resource loading code in one place.

The VFS project was created solve all of these issues. VFS stands for Virtual File System.

8.1. VFS PUBLIC API

VFS is used for two main purposes, as shown in Uses for VFS.

Uses for VFS

e simple resource navigation
e visitor pattern AP/ (Application Programmer Interface)
As mentioned, in plain JDK, handling and navigating resources are complex. You must always check the

resource type, and these checks can be cumbersome. VFS abstracts resources into a single resource
type, VirtualFile.

/**
* Get certificates.

* @return the certificates associated with this virtual file
Certlflcate[] getCertificates()

/**

Example 8.2. The VirtualFile Resource Type
* Get the simple VF name (X.java)

| public class VirtualFile implements Serializable {

66

CHAPTER 8. THE VIRTUAL FILE SYSTEM

*

* @return the simple file name
* @throws IllegalStateException if the file is closed
*/

String getName()

/**
* Get the VFS relative path name (org/jboss/X.java)
*

* @return the VFS relative path name
* @throws IllegalStateException if the file is closed
*/

String getPathName ()

/**
* Get the VF URL (file://root/org/jboss/X.java)
*
* @return the full URL to the VF in the VFS.
* @throws MalformedURLException if a url cannot be parsed
* @throws URISyntaxException if a uri cannot be parsed
* @throws IllegalStateException if the file is closed
*/

URL toURL() throws MalformedURLException, URISyntaxException

/**
* Get the VF URI (file://root/org/jboss/X.java)
*
* @return the full URI to the VF in the VFS.
* @throws URISyntaxException if a uri cannot be parsed
* @throws IllegalStateException if the file is closed
* @throws MalformedURLException for a bad url
*/
URI toURI() throws MalformedURLException, URISyntaxException

/**

* When the file was last modified

*

* @return the last modified time

* @throws IOException for any problem accessing the virtual file
system

* @throws IllegalStateException if the file is closed

*/

long getLastModified() throws IOException

/**
* Returns true 1if the file has been modified since this method was
last called
* Last modified time is initialized at handler instantiation.
*
* @return true if modifed, false otherwise
* @throws IOException for any error
*/
boolean hasBeenModified() throws IOException

/**
* Get the size

67

Microcontainer User Guide

*

* @return the size

* @throws IOException for any problem accessing the virtual file
system

* @throws IllegalStateException if the file is closed

*/

long getSize() throws IOException

**

* Tests whether the underlying implementation file still exists.

* @return true if the file exists, false otherwise.

* @throws IOException - thrown on failure to detect existence.

Whether it is a simple leaf of the VFS,
i.e. whether it can contain other files

@return true if a simple file.
@throws IOException for any problem accessing the virtual file
system
* @throws IllegalStateException if the file is closed
*/
boolean isLeaf () throws IOException

**

* Is the file archive.

*

*/
boolean exists() throws IOException

* @return true if archive, false otherwise
* @throws IOException for any error

*/

boolean isArchive() throws IOException

Whether it is hidden

@return true when hidden
@throws IOException for any problem accessing the virtual file
system
* @throws IllegalStateException if the file is closed
*/
boolean isHidden() throws IOException

Access the file contents.

@throws IOException for any error accessing the file system
@throws IllegalStateException if the file is closed

*/

InputStream openStream() throws IOException

*
*
* @return an InputStream for the file contents.
*
*

**

* Do file cleanup.
*

68

CHAPTER 8. THE VIRTUAL FILE SYSTEM

* e.g. delete temp files
*/
void cleanup()

/**
* Close the file resources (stream, etc.)
*/
void close()

/**
* Delete this virtual file
*
* @return true if file was deleted
* @throws IOException if an error occurs
*/
boolean delete() throws IOException

/**
* Delete this virtual file
*
* @param gracePeriod max time to wait for any locks (in
milliseconds)
* @return true if file was deleted
* @throws IOException if an error occurs
*/
boolean delete(int gracePeriod) throws IOException

/**
* Get the VFS instance for this virtual file
*
* @return the VFS
* @throws IllegalStateException if the file is closed
*/
VFS getVFS()

/**
Get the parent

*
*
* @return the parent or null if there is no parent
* @throws IOException for any problem accessing the virtual file
system

* @throws IllegalStateException if the file is closed

*/

VirtualFile getParent() throws IOException

/**
Get a child

@param path the path
@return the child or <code>null</code> if not found
@throws IOException for any problem accessing the VFS
@throws IllegalArgumentException if the path is null
@throws IllegalStateException if the file is closed or it 1is a
leaf node
*/
VirtualFile getChild(String path) throws IOException

* % % % % % %

69

Microcontainer User Guide

70

* Get the children

*

* @return the children

* @throws IOException for any problem accessing the virtual file
system

* @throws IllegalStateException if the file is closed

*/

List<VirtualFile> getChildren() throws IOException
Get the children

*
*
* @param filter to filter the children

* @return the children

* @throws IOException for any problem accessing the virtual file
system

* @throws IllegalStateException if the file is closed or it 1is a
leaf node

*/

List<VirtualFile> getChildren(VirtualFileFilter filter) throws
IOException

**

Get all the children recursively<p>
This always uses {@link VisitorAttributes#RECURSE}

@return the children
@throws IOException for any problem accessing the virtual file

* % % % % %

system
* @throws IllegalStateException if the file is closed
*/
List<VirtualFile> getChildrenRecursively() throws IOException

Get all the children recursively<p>
This always uses {@link VisitorAttributes#RECURSE}

@param filter to filter the children
@return the children
@throws IOException for any problem accessing the virtual file
system

* @throws IllegalStateException if the file is closed or it 1is a
leaf node

*/

List<VirtualFile> getChildrenRecursively(VirtualFileFilter
filter) throws IOException

Visit the virtual file system

*

*

* @param visitor the visitor

* @throws IOException for any problem accessing the virtual file

CHAPTER 8. THE VIRTUAL FILE SYSTEM

* @throws IllegalStateException if the file is closed
*/
void visit(VirtualFileVisitor visitor) throws IOException

system
* @throws IllegalArgumentException if the visitor is null
}

All of the usual read-only File System operations are available, plus a few options to cleanup or delete
the resource. Cleanup or deletion handling is needed when dealing with some internal temporary files,
such as files created to handle nested jars.

*

static VFS getVFS(URI rootURI) throws IOException

/**
* Create new root

To switch from the JDK's File or URL resource handling to new VirtualFile you need a root VirtualFile,
* @param rootURI the root url
* @return the virtual file

which is provided by the VFS class, with the help of URL or URI parameter.
Example 8.3. Using the VFS Class
public class VFS {

/**
* Get the virtual file system for a root uri
*
* @param rootURI the root URI
* @return the virtual file system

@throws IOException if there is a problem accessing the VFS

* @throws IOException if there is a problem accessing the VFS
* @throws IllegalArgumentException if the rootURL

* @throws IllegalArgumentException if the rootURL is null
*/

*/
static VirtualFile createNewRoot (URI rootURI) throws IOException

/**
* Get the root virtual file

* @param rootURI the root uri

* @return the virtual file

* @throws IOException if there is a problem accessing the VFS
@throws IllegalArgumentException if the rootURL is null

*/

static VirtualFile getRoot(URI rootURI) throws IOException

*

/**

* Get the virtual file system for a root url

*

* @param rootURL the root url

* @return the virtual file system
@throws IOException if there is a problem accessing the VFS
* @throws IllegalArgumentException if the rootURL is null

*

ral

Microcontainer User Guide

*/
static VFS getVFS(URL rootURL) throws IOException
/**
* Create new root
*
* @param rootURL the root url
* @return the virtual file
* @throws IOException if there is a problem accessing the VFS
@throws IllegalArgumentException if the rootURL
*/
static VirtualFile createNewRoot (URL rootURL) throws IOException
/**
* Get the root virtual file
@param rootURL the root url
@return the virtual file
@throws IOException if there is a problem accessing the VFS
@throws IllegalArgumentException if the rootURL
}

*/
static VirtualFile getRoot(URL rootURL) throws IOException

/**
* Get the root file of this VFS

*

* @return the root
* @throws IOException for any problem accessing the VFS
*/

VirtualFile getRoot() throws IOException

The three different methods look similar.
e getVFS
e createNewRoot
e getRoot

getVFS returns a VFS instance but does not yet create a VirtualFile instance. This is important because
there are methods which help with configuring a VFS instance (see VFS class API javadocs), before
instructing it to create a VirtualFile root.

The other two methods, on the other hand, use default settings for root creation. The difference between
createNewRoot and getRoot is in caching details, which are covered later.

VFS vfs = VFS.getVFS(rootURL);
// configure vfs instance

Example 8.4. Using getVFS
VirtualFile rootl = vfs.getRoot();

| URL rootURL = ...; // get root url

72

CHAPTER 8. THE VIRTUAL FILE SYSTEM

VirtualFile root2 = VFS.crateNewRoot(rootURL);

// or you can get root directly
VirtualFile root3 = VFS.getRoot(rootURL);

Another useful thing about VFS API is its implementation of a proper visitor pattern. It is very simple to
recursively gather different resources, a task which is difficult to do with plain JDK resource loading.

Example 8.5. Recursively Gathering Resources
public interface VirtualFileVisitor {
/**
* Get the search attribues for this visitor

*

* @return the attributes
*/
VisitorAttributes getAttributes();

/**
* Visit a virtual file

*

* @param virtualFile the virtual file being visited
*/
void visit(VirtualFile virtualFile);

}

VirtualFile root = ...; // get root

VirtualFileVisitor visitor = new SuffixVisitor(".class"); // get all
classes

root.visit(visitor);

8.2. VFS ARCHITECTURE

While the public APl is quite intuitive, real implementation details add complexity. Some concepts need
to be explained in more detail.

Each time you create a VFS instance, its matching VFSContext instance is created. This creation is
done via VFSContextFactory. Different protocols map to different VFSContextFactory instances.
For example, file/vfsfile maps to FileSystemContextFactory, while zip/vfszip maps to
ZipEntryContextFactory.

Each time a VirtualFile instance is created, its matching VirtualFileHandler is created. This
VirtualFileHandler instance knows how to handle different resource types properly; the VirtualFile
APl only delegates invocations to its VirtualFileHandler reference.

The VFSContext instance knows how to create VirtualFileHandler instances accordingly to a resource
type. For example, ZipEntryContextFactory creates ZipEntryContext, which then creates
ZipEntryHandler.

8.3. EXISTING IMPLEMENTATIONS

Apart from files, directories (FileHandler) and zip archives (ZipEntryHandler) the Microcontainer also

73

Microcontainer User Guide

supports other more advanced use cases. The first one is Assembled, which is similar to what Eclipse
calls Linked Resources. Its purpose is to take existing resources from different trees, and "mock" them
into single resource tree.

Example 8.6. Implementation of Assembled VirtualFileHandlers

AssembledDirectory sar =
AssembledContextFactory.getInstance().create("assembled.sar");

URL url = getResource("/vfs/test/jarl.jar");
VirtualFile jarl = VFS.getRoot(url);
sar.addChild(jar1);

url = getResource("/tmp/app/ext.jar");
VirtualFile extl = VFS.getRoot(url);
sar .addChild(ext);

AssembledDirectory metainf = sar.mkdir ("META-INF");

url = getResource("/config/jboss-service.xml");
VirtualFile serviceVF = VFS.getRoot(url);
metainf.addChild(serviceVF);

AssembledDirectory app = sar.mkdir("app.jar");
url = getResource("/app/someapp/classes");
VirtualFile appVF = VFS.getRoot(url);
app.addPath(appVF, new SuffixFilter(".class"));

Another implementation is in-memory files. This implementation arose out of a need to easily handle
AOP generated bytes. Instead of using temporary files, you can drop bytes into in-memory
VirtualFileHandlers.

URL url = new URL("vfsmemory://aopdomain/org/acme/test/Test.class");
byte[] bytes = ...; // some AOP generated class bytes
MemoryFileFactory.putFile(url, bytes);

VirtualFile classFile = VFS.getVirtualFile(new
URL("vfsmemory://aopdomain"), "org/acme/test/Test.class");

InputStream bis = classFile.openStream(); // e.g. load class from input
Stream

‘ Example 8.7. Implementation of In-Memory VirtualFileHandlers

8.4. EXTENSION HOOKS

It is easy to extend VFS with a new protocol, similar to what we've done with Assembled and Memory.
All you need is a combination of VFSContexFactory, VFSContext, VirtualFileHandler,
FileHandlerPlugin, and URLStreamHandler implementations. The VFSContextFactory is
trivial, while the others depend on the complexity of your task. You could implement rar, tar, gzip, or
even remote access.

74

CHAPTER 8. THE VIRTUAL FILE SYSTEM

After implementing a new protocol, register the new VFSContextFactory with
VFSContextFactoryLocator.

8.5. FEATURES

One of the first major problems the Microcontainer developers faced was proper usage of nested
resources, more specifically nested jar files: For example, normal ear deployments:
gema.ear/ui.war/WEB-INF/1lib/struts. jar.

In order to read contents of struts. jar we have two options:
e handle resources in memory
e create top level temporary copies of nested jars, recursively

The first option is easier to implement, but it's very memory-consuming, requiring potentially large
applications to reside in memory. The other approach leaves behind a large number of temporary files,
which should be invisible to the end user and therefore should disappear after undeployment.

Consider the following scenario: A user accesses a VFS URL instance, which points to some nested
resource.

The way plain VFS would handle this is to re-create the entire path from scratch: it would unpack nested
resources over and over again. This leads to a great number of temporary files.

The Microcontainer avoids this by using VFSRegistry, VFSCache, and TempInfo.

When you ask for VirtualFile over VFS (getRoot, not createNewRoot), VFS asks the VFSRegistry
implementation to provide the file. The existing DefaultVFSRegistry first checks if a matching root
VFSContext exists for the provided URI. If it does, DefaultVFSRegistry first tries to navigate to the
existing TempInfo (link to a temporary files), falling back to regular navigation if no such temporary file
exists. In this way you completely reuse any temporary files which have already been unpacked, saving
time and disk space. If no matching VFSContext is found in cache, the code will create a new
VFSCache entry and continue with default navigation.

Determining how the VFSCache handles cached VFSContext entries depends on the implementation
used. VFSCache is configurable via VFSCacheFactory. By default, nothing is cached, but there are a
few useful existing VFSCache implementations, using algorithms such as Least Recently Used
(LRU) or timed cache.

75

Microcontainer User Guide

CHAPTER 9. THE CLASSLOADING LAYER

JBoss has always had a unique way of dealing with classloading, and the new classloading layer that
comes with the Microcontainer is no exception ClassLoading is an optional add-on that you can use
when you want non-default classloading. With the rising demand for OSGi-style classloading, and a
number of new Java classloading specifications on the horizon, the changes to the ClassLoading layer of
EAP 5.1 are useful and timely.
The Microcontainer ClassLoading layer is an abstraction layer. Most of the details are hidden behind
private and package-private methods, without compromising the extensibility and functionality available
through public classes and methods that make the API. This means that you code against policy and not
against classloader details.
The ClassLoader project is split into 3 sub-projects

e classloader

e classloading

e classloading-vfs

classloader contains a custom java.lang.ClassLoader extension without any specific
classloading policy. A classloading policy includes knowledge of where to load from and how to load.

Classloading is an extension of Microcontainer’'s dependency mechanisms. lts VFS-backed
implementation is classloading-vfs. See Chapter 8, The Virtual File System for more information on
VFS.

9.1. CLASSLOADER

The ClassLoader implementation supports pluggable policies and is itself a final class, not meant to be
altered. To write your own ClassLoader implementations, write a ClassLoaderPolicy which provides
a simpler API for locating classes and resources, and for specifying other rules associated with the
classloader.

To customize classloading, instantiate a ClassLoaderPolicy and register it with a
ClassLoaderSystem to create a custom ClassLoader. You can also create a ClassLoaderDomain
to partition the ClassLoaderSystem.

The ClassLoader layer also includes the implementation of things like DelegateLoader model,
classloading, resource filters, and parent-child delegation policies.

The run-time is JMX enabled to expose the policy used for each classloader. It also provides
classloading statistics and debugging methods to help determine where things are loaded from.

The ClassLoaderPolicy controls the way your classloading works.

public DelegatelLoader getExported()

Example 9.1. ClassLoaderPolicy Class
public String[] getPackageNames()

| public abstract class ClassLoaderPolicy extends BaseClassLoaderPolicy {

protected List<? extends DelegatelLoader> getDelegates()

76

CHAPTER 9. THE CLASSLOADING LAYER

protected boolean isImportAll()
protected boolean isCacheable()
protected boolean isBlackListable()
public abstract URL getResource(String path);
protected ProtectionDomain getProtectionDomain(String className,

public InputStream getResourceAsStream(String path)

public abstract void getResources(String name, Set<URL> urls)
throws IOException;

String path)

public PackageInformation getPackageInformation(String
packageName)

public PackageInformation getClassPackageInformation(String
className, String packageName)

protected ClassLoader isJDKRequest(String name)

}

(o

The following two examples of ClassLoaderPolicy. The first one retrieves resources based on
regular expressions, while the second one handles encrypted resources.

private VirtualFile[] roots;
private String[] packageNames;

publlc RegexpClassLoaderPolicy(VirtualFile[] roots)
thlS roots = roots;

@Ooverride
publlc String[] getPackageNames()
if (packageNames == null)

Set<Str1ng> exportedPackages =
PackageVisitor.determineAllPackages(roots, null, ExportAll.NON_EMPTY,
null, null, null);

packageNames = exportedPackages.toArray(new

Strlng[exportedPackages size()]);

Example 9.2. ClassLoaderPolicy with Regular Expression Support
return packageNames;

| public class RegexpClassLoaderPolicy extends ClassLoaderPolicy {

77

Microcontainer User Guide

protected Pattern createPattern(String regexp)
{

boolean outside = true;

StringBuilder builder = new StringBuilder();

for (int i = 0; 1 < regexp.length(); i++)

{
char ch = regexp.charAt(1i);
if ((ch == '"['" || ch = "]" || ch == "'"."') && escaped(regexp, 1) ==
false)
{
switch (ch)
{
case '[' : outside = false; break;
case ']' : outside = true; break;
case '.' : if (outside) builder.append("\\"); break;
}
}
builder.append(ch);
3
return Pattern.compile(builder.toString());
}
protected boolean escaped(String regexp, int 1i)
{
return 1 > 0 && regexp.charAt(i - 1) == "\\'';
}

public URL getResource(String path)

{
Pattern pattern = createPattern(path);
for (VirtualFile root : roots)

{
URL url = findURL(root, root, pattern);
if (url !'= null)
return url;

}

return null;

}

private URL findURL(VirtualFile root, VirtualFile file, Pattern
pattern)

{

try
{
String path = AbstractStructureDeployer.getRelativePath(root, file);
Matcher matcher = pattern.matcher(path);
if (matcher.matches())
return file.toURL();

List<VirtualFile> children = file.getChildren();
for (VirtualFile child : children)
{
URL url = findURL(root, child, pattern);
if (url !'= null)

78

CHAPTER 9. THE CLASSLOADING LAYER

return url;

}
return null;
}
catch (Exception e)
{
throw new RuntimeException(e);
}

}

public void getResources(String name, Set<URL> urls) throws
IOException
{
Pattern pattern = createPattern(name);
for (VirtualFile root : roots)
{
RegexpVisitor visitor = new RegexpVisitor(root, pattern);
root.visit(visitor);
urls.addAll(visitor.getUrls());
3
}

private static class RegexpVisitor implements VirtualFileVisitor
{

private VirtualFile root;

private Pattern pattern;

private Set<URL> urls = new HashSet<URL>();

private RegexpVisitor(VirtualFile root, Pattern pattern)

{
this.root = root;
this.pattern = pattern;

}
public VisitorAttributes getAttributes()
{
return VisitorAttributes.RECURSE_LEAVES_ONLY;
}
public void visit(VirtualFile file)
{
try
{

String path = AbstractStructureDeployer.getRelativePath(root,
file);
Matcher matcher = pattern.matcher(path);
if (matcher.matches())
urls.add(file.toURL());

}
catch (Exception e)
{
throw new RuntimeException(e);
}
}

79

Microcontainer User Guide

public Set<URL> getUrls()
{

}

return urls;

RegexpClassLoaderPolicy uses a simplistic mechanism to find matching resources. Real-world
implementations would be more comprehensive and elegant.

public class RegexpService extends PrintService {
public void start() throws Exception
{

System.out.println();

ClassLoader cl = getClass().getClassLoader();

Enumeration<URL> urls = cl.getResources("config/[A.]+\\.[~.]{1,4}");
while (urls.hasMoreElements())

{
URL url = urls.nextElement();
print(url.openStream(), url.toExternalForm());
3
}

The regexp service uses the regular expression pattern config/[/. J+\\.[*.]{1, 4} to list

resources under the config// directory. The suffix length is limited, such that file names such as
excluded.properties will be ignored.

private Crypter crypter;

public CrypterClassLoaderPolicy(String name, VirtualFile[] roots,
VirtualFile[] excludedRoots, Crypter crypter) {
super(name, roots, excludedRoots);
this.crypter = crypter;

Example 9.3. ClassLoaderPolicy with Encryption Support
public class CrypterClassLoaderPolicy extends VFSClassLoaderPolicy {
@Override
public URL getResource(String path) {
try
{
URL resource = super.getResource(path);
return wrap(resource);

80

CHAPTER 9. THE CLASSLOADING LAYER

}
catch (IOException e)
{
throw new RuntimeException(e);
}
}
@Override

public InputStream getResourceAsStream(String path) {
InputStream stream = super.getResourceAsStream(path);
return crypter.crypt(stream);

}

@Override
public void getResources(String name, Set<URL> urls) throws
IOException {
super.getResources(name, urls);
Set<URL> temp = new HashSet<URL>(urls.size());
for (URL url : urls)

{
}

urls.clear();
urls.addAll(temp);

temp.add(wrap(url));

}

protected URL wrap(URL url) throws IOException {
return new URL(url.getProtocol(), url.getHost(), url.getPort(),
url.getFile(), new CrypterURLStreamHandler(crypter));
}
}

Example 9.3, “ClassLoaderPolicy with Encryption Support” shows how to encrypt JARs. You can
configure which resources to encrypt by specifying a proper filter. Here, everything is encrypted
except for the contents of the META-INF/ directory.

public class EncryptedService extends PrintService {
public void start() throws Exception

{
ClassLoader cl = getClass().getClassLoader();

URL url = cl.getResource("config/settings.txt");
if (url == null)
throw new IllegalArgumentException("No such settings.txt.");

InputStream is = url.openStream();
print(is, "Printing settings:\n");

is = cl.getResourceAsStream('"config/properties.xml");

if (is == null)
throw new IllegalArgumentException("No such properties.xml.");

81

Microcontainer User Guide

print(is, "\nPrinting properties:\n");

}

This service prints out the contents of two configuration files. It shows that decryption of any
encrypted resources is hidden behind the classloading layer.

To properly test this, either encrypt the policy module yourself or use an existing encrypted one. To
put this into action, you need to properly tie EncryptedService to ClassLoaderSystem and
deployers.

Partitioning ClassLoaderSystem is discussed later in this chapter.

9.2. CLASSLOADING

Instead of using the ClassLoader abstraction directly, you can create ClassLoading modules which
contain declarations of ClassLoader dependencies. Once the dependencies are specified the
ClassLoaderPolicys are constructed and wired together accordingly.

To facilitate defining the ClassLoaders before they actually exist, the abstraction includes a
ClassLoadingMetaData model.

The ClassLoadingMetaData can be exposed as a Managed Object within the new JBoss EAP profile
service. This helps system administrators to deal with more abstract policy details rather than the
implementation details.

82

Example 9.4. ClassLoadingMetaData Exposed as a Managed Object

public class ClassLoadingMetaData extends NameAndVersionSupport {

/** The serialVersionUID */
private static final long serialVersionUID = -2782951093046585620L;

/** The classloading domain */
private String domain;

/** The parent domain */
private String parentDomain;

/** Whether to make a subdeployment classloader a top-level

classloader */

private boolean topLevelClassLoader = false;

/** Whether to enforce j2se classloading compliance */
private boolean j2seClassLoadingCompliance = true;

/** Whether we are cacheable */
private boolean cacheable = true;

/** Whether we are blacklistable */
private boolean blackListable = true;

CHAPTER 9. THE CLASSLOADING LAYER

/** The excluded for export */
private String excludedExportPackages;

/** The included packages */
private ClassFilter included;

/** The excluded packages */
private ClassFilter excluded;

/** The excluded for export */
private ClassFilter excludedExport;

/** The requirements */
private RequirementsMetaData requirements
RequirementsMetaData();

new

/** The capabilities */
private CapabilitiesMetaData capabilities
CapabilitiesMetaData();

new

/** Whether to export all */

private ExportAll exportAll;

/** Whether to import all */

private boolean importAll;

/** The included packages */

private String includedPackages;

/** The excluded packages */

private String excludedPackages;
setters & getters

Example 9.5, “ClassLoading API Defined in XML” and Example 9.6, “ClassLoading API Defined in Java”
show the ClassLoading API defined in XML and Java, respectively.

name="ptd-jsf-1.0.war"
domain="ptd-jsf-1.0.war"
parent-domain="ptd-ear-1.0.ear"
export-all="NON_EMPTY"
import-all="true"

Example 9.5. ClassLoading API Defined in XML
parent-first="true"/>

| <classloading xmlns="urn:jboss:classloading:1.0"

83

Microcontainer User Guide

| Example 9.6. ClassLoading API Defined in Java

if (name != null)

clmd.setDomain(name + "_Domain");
clmd.setParentDomain(parentDomain);
clmd.setImportAll(true);
clmd.setExportAll(ExportAll.NON_EMPTY);

ClassLoadingMetaData clmd = new ClassLoadingMetaData();
clmd.setVersion(Version.DEFAULT_VERSION);

You can add ClassLoadingMetaData to your deployment either programmatically, or declaratively, via
jboss-classloading.xml.

Example 9.7. Adding ClassLoadingMetaData Using jboss-classloading.xml

domain="DefaultDomain"
top-level-classloader="true"
export-all="NON_EMPTY"
import-all="true">

<classloading xmlns="urn:jboss:classloading:1.0"
</classloading>

The DefaultDomain is shared among all the applications that do not define their own domains.

domain="IsolatedDomain"
export-all="NON_EMPTY"
import-all="true">

<classloading xmlns="urn:jboss:classloading:1.0"
</classloading>

| Example 9.8. Typical Domain-Level Isolation

domain="IsolatedwWithParentDomain"
parent-domain="DefaultDomain"
export-all="NON_EMPTY"
import-all="true">

Example 9.9. Isolation with a Specific Parent
</classloading>

‘ <classloading xmlns="urn:jboss:classloading:1.0"

84

CHAPTER 9. THE CLASSLOADING LAYER

Example 9.10. Non-Compliance with j2seClassLoadingCompliance

<classloading xmlns="urn:jboss:classloading:1.0"
parent-first="false'">
</classloading>

.war deployments use this method by default. Instead of doing default parent-first lookups, you first
check your own resources.

Example 9.11. Typical OSGi Implementation

<classloading xmlns="urn:jboss:classloading:1.0">
<requirements>
<package name="org.jboss.dependency.spi'"/>
</requirements>
<capabilities>
<package name="org.jboss.cache.api'"/>
<package name="org.jboss.kernel.spi"/>
</capabilities>
</classloading>

Example 9.12. Importing and Exporting Whole Modules and Libraries, Rather than Fine-
Grained Packages

<classloading xmlns="urn:jboss:classloading:1.0">
<requirements>
<module name="jboss-reflect.jar"/>
</requirements>
<capabilities>
<module name="jboss-cache.jar"/>
</capabilities>
</classloading>

<classloading xmlns="urn:jboss:classloading:1.0">
<requirements>
<package name="si.acme.foobar"/>

85

Microcontainer User Guide
<module name="jboss-reflect.jar"/>
</requirements>
<capabilities>
<module name="jboss-cache.jar"/>
</capabilities>

<package name="org.alesj.cl"/>
</classloading>

You can also mix the requirements and capabilities types, using packages and modules.
The classloading sub-project uses a very small resource-visitor-pattern implementation.
In the ClassLoader project, the connection between deployment and classloading is done through the

Module class, which holds all of the required information to properly apply restrictions on the visitor
pattern, such as filtering.

Example 9.13. The ResourceVisitor and ResourceContext Interfaces
public interface ResourceVisitor {
ResourceFilter getFilter();
void visit(ResourceContext resource);
}
public interface ResourceContext {

URL getUrl();

ClassLoader getClassLoader();

String getResourceName();

String getClassName();

boolean isClass();

Class<?> loadClass();

InputStream getInputStream() throws IOException;

byte[] getBytes() throws IOException;
}

To use the module, instantiate your ResourceVisitor instance and pass it to Module: :visit method.
This feature is used in the deployment framework to index annotations usage in deployments.

86

CHAPTER 9. THE CLASSLOADING LAYER

9.3. CLASSLOADING VFS

These examples provide an implementation of the ClassLoaderPolicy that uses a JBoss Virtual File
System project to load classes and resources. You can use this idea directly or in combination with a
classloading framework.

Optionally, you can set up your modules inside the Microcontainer configuration.

Example 9.14. Classloading Module Deployer
<deployment xmlns="urn:jboss:bean-deployer:2.0">

<classloader name="anys-classloader"
xmlns="urn:jboss:classloader:1.0" import-all="true" domain="Anys"
parent-domain="DefaultDomain">
<capabilities>
<package
name="org.jboss.test.deployers.vfs.reflect.support.web"/>
</capabilities>
<root>${jboss.tests.url}</root>
</classloader>

<bean name="AnyServlet"
class="org.jboss.test.deployers.vfs.reflect.support.web.AnyServlet'">
<classloader><inject bean="anys-classloader:0.0.0"/></classloader>
</bean>

</deployment>

The VFSClassLoaderFactory class transforms the XML deployer into a
VFSClassLoaderPolicyModule, which then creates the actualClassLoader instance. You can then
directly use this new ClassLoader instance with your beans.

NOTE

VFSClassLoaderFactory extends ClassLoadingMetaData, so all examples
pertaining to ClassLoadingMetaData apply in this case as well.

-

87

Microcontainer User Guide

CHAPTER 10. THE VIRTUAL DEPLOYMENT FRAMEWORK

The new Virtual Deployment Framework (VDF) is an improved way to manage deployers in the
Microcontainer. This chapter details some of its useful features.

10.1. AGNOSTIC HANDLING OF DEPLOYMENT TYPES

The traditional type of virtual deployment is based on classes which already exist in a shared class-
space or domain. In this case, the end product is a new service installed onto the server from your main
client. The traditional way to do this is to upload a descriptor file. The new VDF simplifies this process by
passing over the bytes and serializing them into a Deployment instance.

The other type of deployment, which extends the first one, is a plain file-system-based deployment,

backed up by Microcontainer VFS. This approach is described in more detail in Chapter 8, The Virtual
File System.

10.2. SEPARATION OF STRUCTURE RECOGNITION FROM
DEPLOYMENT LIFE-CYCLE LOGIC

In order to do any real work on top of a deployment, you must first understand its structure, including its
classpaths and metadata locations.

Metadata locations include the configuration files such as my-jboss-beans.xml, web.xml, ejb-
jar.xml. Classpaths are classloader roots, such as WEB-INF/classes or myapp.ear/1lib.

Bearing the structure in mind, you can proceed to actual deployment handling.

A typical deployment life cycle

1. The MainDeployer passes the deployment to the set of StructuralDeployers for
recognition, and receives back a Deployment context.

2. Next, the MainDeployer passes the resulting Deployment context to the Deployers for
handling by the appropriate Deployer.

In this way, the MainDeployer is a broker with the responsibility of deciding which Deployers to use.
In the case of virtual or programmatic deployment, an existing predetermined StructureMetaData

information reads the structure information and handles it in one of the ways explained in Handling
StructuredMetaData Information.

Handling StructuredMetaData Information

VFS-based deployments
the structure recognition is forwarded to a set of StructureDeployers.

JEE-specification-defined structures
we have matching StructureDeployer implementations:

e EarStructure

e WarStructure

88

CHAPTER 10. THE VIRTUAL DEPLOYMENT FRAMEWORK

e JarStructure

DeclarativeStructures
looks for META-INF/jboss-structure.xml file inside your deployment, and parses it to construct
a proper StructureMetaData.

FileStructures
only recognizes known configuration files, such as files like - jboss-beans.xml or -
service.xml.

p'">
<path name=""/>
<metaDataPath>
<path name="META-INF"/>
</metaDataPath>
<classpath>
<path name="1lib" suffixes=".jar'"/>
</classpath>
</context>

<structure>
<context
comparator="org.jboss.test.deployment.test.SomeDeploymentComparatorTo
</structure>

‘ Example 10.1. An example of jboss-structure.xml

In the case of EarStructure, first recognize a top level deployment, then recursively process sub-
deployments.

You can implement a custom StructureDeployer with the help of the generic GroupingStructure
class provided by the generic StructureDeployer interface.

After you have a recognized deployment structure, you can pass it to real deployers. The Deployers
object knows how to deal with the real deployers, using a chain of deployers per DeploymentStage.

/** The not installed stage - nothing is done here */
DeploymentStage NOT_INSTALLED = new DeploymentStage("Not Installed");

/** The pre parse stage - where pre parsing stuff can be prepared,;

altbb, ignore, ... */
DeploymentStage PRE_PARSE = new DeploymentStage('"PreParse",
NOT_INSTALLED);

/** The parse stage - where metadata is read */
DeploymentStage PARSE = new DeploymentStage('"Parse", PRE_PARSE);

/** The post parse stage - where metadata can be fixed up */

Example 10.2. Deployment Stages
DeploymentStage POST_PARSE = new DeploymentStage('"PostParse",

| public interface DeploymentStages {

89

Microcontainer User Guide

PARSE) ;
/** The pre describe stage - where default dependencies metadata can
be created */
DeploymentStage PRE_DESCRIBE = new DeploymentStage("PreDescribe'",
POST_PARSE);

/** The describe stage - where dependencies are established */
DeploymentStage DESCRIBE = new DeploymentStage('Describe",
PRE_DESCRIBE);

/** The classloader stage - where classloaders are created */
DeploymentStage CLASSLOADER = new DeploymentStage('"ClassLoader",
DESCRIBE);

/** The post classloader stage - e.g. aop */
DeploymentStage POST_CLASSLOADER = new
DeploymentStage("PostClassLoader", CLASSLOADER);

/** The pre real stage - where before real deployments are done */
DeploymentStage PRE_REAL = new DeploymentStage('"PreReal",
POST_CLASSLOADER);

/** The real stage - where real deployment processing is done */
DeploymentStage REAL = new DeploymentStage('"Real", PRE_REAL);

/** The installed stage - could be used to provide valve in future?
*/
DeploymentStage INSTALLED = new DeploymentStage("Installed", REAL);

(S

Preexisting deployment stages are mapped to the Microcontainer's built-in controller states. They provide
a deployment/life cycle focused view of generic controller states.

Inside Deployers, the deployment is converted into the Microcontainer's component
DeploymentControllerContext. The Microcontainer's state machine handles dependencies.

Deployments are handled sequentially by deployment stage. For each deployer, the entire deployed
hierarchy order is handled, using the deployer's parent-first property. This property is set to true
by default.

You can also specify which hierarchy levels your deployer handles. You can choose all, top level,
components only, or no components.

The way the Microcontainer handles component models and dependency handling applies here as well.
If there are unresolved dependencies, the deployment will wait in the current state, potentially reporting
an error if the current state is not the required state.

Adding a new deployer is accomplished by extending one of the many existing helper deployers.

Some deployers actually need VFS backed deployment, while others can use a general deployment. In
most cases the parsing deployers are the ones that need VFS backing.

90

CHAPTER 10. THE VIRTUAL DEPLOYMENT FRAMEWORK

! WARNING
Also be aware that deployers run recursively through every deployment, sub-

deployment, and component. Your code needs to determine, as early in the process
as possible, whether the deployer should handle the current deployment or not.

public class StdioDeployer extends AbstractDeployer {
public void deploy(DeploymentUnit unit) throws DeploymentException

{

System.out.println("Deploying unit: " + unit);

(o

@override
public void undeploy(DeploymentUnit unit)

{

System.out.println("Undeploying unit: " + unit);

(o

Example 10.3. Simple Deployer which Outputs Information About Its Deployment
3

Add this description into one of the -jboss-beans.xml files in deployers/ directory in JBoss
Application Server, and MainDeployerImpl bean will pick up this deployer via the Microcontainer's 1oC
callback handling.

Example 10.4. Simple Deployment Descriptor

I <bean name="StdioDeployer" class="org.jboss.acme.StdioDeployer"/>

10.3. NATURAL FLOW CONTROL IN THE FORM OF ATTACHMENTS

VDF includes a mechanism called aftachments, which facilitates the passing of information from one
deployer to the next. Attachments are implemented as a slightly-enhanced java.util.Map, whose
entries each represent an attachment.

Some deployers are producers, while others are consumers. The same deployer can also perform both
functions. Some deployers create metadata or utility instances, putting them into the attachments map.
Other deployers only declare their need for these attachments and pull the data from the attachments
map, before doing additional work on that data.

Natural order refers to the way that deployers are ordered. A common natural order uses the relative

terms before and after. However, with the attachments mechanism already in place, you can order
deployers by the way in which they produce and/or consume the attachments.

91

Microcontainer User Guide

Each attachment has a key, and deployers pass keys to the attachments they produce. If the deployer
produces an attachment, then that key is called output. If the deployer consumes an attachment, then
that key is called input.

Deployers have ordinary inputs and required inputs. Ordinary inputs are only used to help determine the
natural order. Required inputs also help determine order, but they have another function too. They help
to determine if the deployer is actually relevant for the given deployment, by checking to see if an
attachment corresponding to that required input exists in the attachments map.

'E WARNING
While relative ordering is still supported, it is considered bad practice, and could be

deprecated in future releases.

10.4. CLIENT, USER, AND SERVER USAGE AND IMPLEMENTATION
DETAILS

These features hide the implementation details, making the usage less error-prone, while at the same
time streamlining the development process.

The goal is for clients to only see a Deployment API, while developers see a DeploymentUnit, and server
implementation details are contained in a DeploymentContext. Only the necessary information is
exposed to a particular level of deployment's life cycle.

Components have already been mentioned as part of deployers' hierarchy handling. While top level
deployment and sub-deployments are a natural representation of the deployment's structure hierarchy,
components are a new VDF concept. The idea of components is that they have a 1:1 mapping with the
ControllerContexts inside the Microcontainer. See Why Components Map 1:1 with the
ControllerContexts for the reasons behind this assertion.

Why Components Map 1:1 with the ControllerContexts

Naming
The component unit's name is the same as the ControllerContext's name.

get*Scope() and get*MetaData()
return the same MDR context that will be used by the Microcontainer for that instance.

IncompleteDeploymentException (IDE)

In order for the IDE to print out what dependencies are missing for a deployment, it needs to know the
ControllerContext names. It discovers the name by collecting the Component DeploymentUnit's
names in Component Deployers that specify them, such as BeanMetaDataDeployer or the
setUseUnitName() method in AbstractRealDeployer.

10.5. SINGLE STATE MACHINE

92

CHAPTER 10. THE VIRTUAL DEPLOYMENT FRAMEWORK

All Microcontainer components are handled by a single entry point, or single state machine.
Deployments are no exception.

You can take advantage of this feature by using the jboss-dependency.xml configuration file in your
deployments.

Example 10.5. jboss-dependency.xml

<dependency xmlns="urn:jboss:dependency:1.0">
<item whenRequired="Real"
dependentState="Create">TransactionManager</item> (1)
<item>my-human-readable-deployment-alias</item> (2)
</dependency>

Note the artificial call-outs in the XML: (1) and (2).

(1) shows how to describe dependency on another service. This example requires
TransactionManager to be created before the deployment is in the 'Real’ stage.

(2) is a bit more complex, since you are missing additional information. By default, deployment names
inside the Microcontainer are URI names, which makes typing them by hand an error prone
proposition. So, in order to be able to easily declare dependence on other deployments, you need an
aliasing mechanism to avoid URI names. You can add a plain text file named aliases. txt into
your deployment. Each line of the file contains an alias, giving a deployment archive one or more
simple names used to refer to it.

10.6. SCANNING CLASSES FOR ANNOTATIONS

Current JEE specifications reduce the number of configuration files, but the container is now required to
do most of the work using @annotations. In order to get @annotation info, containers must scan classes.
This scanning creates a performance penalty.

But to reduce the amount of scanning, the Microcontainer provides another descriptor hook, by means of
jboss-scanning.xml.

Example 10.6. jboss-scanning.xml

<scanning xmlns="urn:jboss:scanning:1.0">
<path name="myejbs.jar'">
<include name="com.acme.fo00"/>
<exclude name="com.acme.foo.bar"/>
</path>
<path name="my.war/WEB-INF/classes">
<include name="com.acme.fo00"/>
</path>
</scanning>

This example shows a simple description of relative paths to include or exclude when scanning for
Java Enterprise Edition version 5 and greater annotated metadata information.

93

Microcontainer User Guide

APPENDIX A. REVISION HISTORY

Revision 5.2.0-100.400 2013-10-31 Riidiger Landmann
Rebuild with publican 4.0.0

Revision 5.2.0-100 Wed 23 Jan 2013 Russell Dickenson
Incorporated changes for JBoss Enterprise Application Platform 5.2.0 GA. For information about documentation changes to this
guide, refer to Release Notes 5.2.0.

Revision 5.1.2-100 Thu 8 December 2011 Russell Dickenson
Incorporated changes for JBoss Enterprise Application Platform 5.1.2 GA. For information about documentation changes to this
guide, refer to Release Notes 5.1.2.

94

	Table of Contents
	PART I. INTRODUCTION TO THE MICROCONTAINER - GUIDED TUTORIAL
	CHAPTER 1. PREREQUISITES TO USING THIS GUIDE
	1.1. INSTALL MAVEN
	1.2. SPECIAL MAVEN SETTINGS FOR THE MICROCONTAINER EXAMPLES
	1.3. DOWNLOADING THE EXAMPLES

	CHAPTER 2. INTRODUCTION TO THE MICROCONTAINER
	2.1. FEATURES
	2.2. DEFINITIONS
	2.3. INSTALLATION

	CHAPTER 3. BUILDING SERVICES
	3.1. INTRODUCTION TO THE HUMAN RESOURCES EXAMPLE
	3.2. COMPILING THE HRMANAGER EXAMPLE PROJECT
	3.3. CREATING POJOS
	3.3.1. XML Deployment Descriptors

	3.4. CONNECTING POJOS TOGETHER
	3.4.1. Special Considerations

	3.5. WORKING WITH SERVICES
	3.5.1. Configuring A Service
	3.5.2. Testing A Service
	3.5.3. Packaging A Service

	CHAPTER 4. USING SERVICES
	4.1. BOOTSTRAPPING THE MICROCONTAINER
	4.2. DEPLOYING THE SERVICE
	4.3. DIRECT ACCESS
	4.4. INDIRECT ACCESS
	4.5. DYNAMIC CLASSLOADING
	4.5.1. Problems With Classloaders Created with Deployment Descriptors

	CHAPTER 5. ADDING BEHAVIOR WITH AOP
	5.1. CREATING AN ASPECT
	5.2. CONFIGURING THE MICROCONTAINER FOR AOP
	5.3. APPLYING AN ASPECT
	5.4. LIFE CYCLE CALLBACKS
	5.5. ADDING SERVICE LOOK-UPS THROUGH JNDI

	PART II. ADVANCED CONCEPTS WITH THE MICROCONTAINER
	CHAPTER 6. COMPONENT MODELS
	6.1. ALLOWABLE INTERACTIONS WITH COMPONENT MODELS
	6.2. A BEAN WITH NO DEPENDENCIES
	6.3. USING THE MICROCONTAINER WITH SPRING
	6.4. USING GUICE WITH THE MICROCONTAINER
	6.5. LEGACY MBEANS, AND MIXING DIFFERENT COMPONENT MODELS
	6.6. EXPOSING POJOS AS MBEANS

	CHAPTER 7. ADVANCED DEPENDENCY INJECTION AND IOC
	7.1. VALUE FACTORY
	7.2. CALLBACKS
	7.3. BEAN ACCESS MODE
	7.4. BEAN ALIAS
	7.5. XML (OR METADATA) ANNOTATIONS SUPPORT
	7.6. AUTOWIRE
	7.7. BEAN FACTORY
	7.8. BEAN METADATA BUILDER
	7.9. CUSTOM CLASSLOADER
	7.10. CONTROLLER MODE
	7.11. CYCLE
	7.12. DEMAND AND SUPPLY
	7.13. INSTALLS
	7.14. LAZY MOCK
	7.15. LIFE CYCLE

	CHAPTER 8. THE VIRTUAL FILE SYSTEM
	8.1. VFS PUBLIC API
	8.2. VFS ARCHITECTURE
	8.3. EXISTING IMPLEMENTATIONS
	8.4. EXTENSION HOOKS
	8.5. FEATURES

	CHAPTER 9. THE CLASSLOADING LAYER
	9.1. CLASSLOADER
	9.2. CLASSLOADING
	9.3. CLASSLOADING VFS

	CHAPTER 10. THE VIRTUAL DEPLOYMENT FRAMEWORK
	10.1. AGNOSTIC HANDLING OF DEPLOYMENT TYPES
	10.2. SEPARATION OF STRUCTURE RECOGNITION FROM DEPLOYMENT LIFE-CYCLE LOGIC
	10.3. NATURAL FLOW CONTROL IN THE FORM OF ATTACHMENTS
	10.4. CLIENT, USER, AND SERVER USAGE AND IMPLEMENTATION DETAILS
	10.5. SINGLE STATE MACHINE
	10.6. SCANNING CLASSES FOR ANNOTATIONS

	APPENDIX A. REVISION HISTORY

