
JBoss Enterprise Application Platform 5

HTTP Connectors Load Balancing Guide

HTTP load-balancing for JBoss Enterprise Application Platform

Edition 5.2.0

Last Updated: 2017-10-13

JBoss Enterprise Application Platform 5 HTTP Connectors Load

Balancing Guide

HTTP load-balancing for JBoss Enterprise Application Platform
Edition 5.2.0

Jared Morgan

Joshua Wulf

Laura Bailey

Samuel Mendenhall

James Livingston

Jim Tyrell

Edited by

Eva Kopalova

Petr Penicka

Russell Dickenson

Scott Mumford

Legal Notice

Copyright © 2012 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red
Hat trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Read this guide to install and configure the supported HTTP connectors for use with JBoss
Enterprise Application Platform and JBoss Enterprise Web Server. This guide covers the Apache
Tomcat Connector (mod_jk), JBoss HTTP Connector (mod_cluster), Internet Server API (ISAPI)
and Netscape Server API (NSAPI), and discusses clustering and load-balancing with regard to
each.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE
1. FILE NAME CONVENTIONS

PART I. APACHE TOMCAT CONNECTOR (MOD_JK)

CHAPTER 1. OVERVIEW

CHAPTER 2. DOWNLOAD AND INSTALL

CHAPTER 3. CONFIGURE LOAD BALANCING USING APACHE HTTP SERVER AND MOD_JK
3.1. CONFIGURE WORKER NODES IN MOD_JK
3.2. CONFIGURING JBOSS TO WORK WITH MOD_JK

CHAPTER 4. TROUBLESHOOTING AND OPTIMIZING MOD_JK
4.1. COMMON PROBLEMS
4.2. GENERAL DIAGNOSTICS
4.3. GETTING FURTHER HELP

PART II. JBOSS HTTP CONNECTOR (MOD_CLUSTER)

CHAPTER 5. OVERVIEW
5.1. KEY FEATURES
5.2. COMPONENTS
5.3. LIMITATIONS

CHAPTER 6. INSTALL PROXY SERVER COMPONENTS
6.1. APACHE HTTP SERVER MODULES

6.1.1. mod_manager.so
6.1.2. mod_proxy_cluster.so
6.1.3. mod_advertise.so

6.2. INSTALL PROXY SERVER COMPONENTS

CHAPTER 7. CONFIGURE BASIC PROXY SERVER
7.1. BASIC PROXY CONFIGURATION OVERVIEW
7.2. CONFIGURE A LOAD-BALANCING PROXY USING THE HTTP CONNECTOR

CHAPTER 8. INSTALL NODE WITH BASIC CONFIGURATION
8.1. WORKER NODE REQUIREMENTS
8.2. INSTALL AND CONFIGURE A WORKER NODE

CHAPTER 9. ADVANCED CONFIGURATION
9.1. STATIC PROXY CONFIGURATION
9.2. CLUSTERED NODE OPERATION

CHAPTER 10. JAVA PROPERTIES
10.1. CONFIGURATION PROPERTIES

10.1.1. Proxy Discovery Configuration
10.1.2. Proxy Configuration
10.1.3. SSL Configuration
10.1.4. HA Configuration
10.1.5. Load Configuration

CHAPTER 11. LOAD METRICS
11.1. SERVER-SIDE LOAD METRICS
11.2. WEB CONTAINER METRICS

3
3

4

5

6

7
8
9

11
11
17
18

19

20
20
20
21

23
23
23
25
26
27

29
29
29

32
32
32

36
36
37

39
39
39
40
42
44
44

45
45
46

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

11.3. SYSTEM/JVM METRICS
11.4. OTHER METRICS

CHAPTER 12. LOAD BALANCING DEMONSTRATION
12.1. SET UP THE DEMONSTRATION
12.2. CONFIGURE THE DEMO CLIENT
12.3. INTERACT WITH THE DEMONSTRATION

12.3.1. Generate artificial load

PART III. INTERNET SERVER API (ISAPI)

CHAPTER 13. OVERVIEW
13.1. WHAT IS INTERNET SERVER API

CHAPTER 14. CONFIGURING THE ISAPI CONNECTOR ON WINDOWS
14.1. PREREQUISITES AND CONFIGURATION ASSUMPTIONS
14.2. CONFIGURE SERVER INSTANCE AS A WORKER NODE
14.3. MICROSOFT IIS 6 INITIAL CLUSTERING CONFIGURATION
14.4. MICROSOFT IIS 7 INITIAL CLUSTERING CONFIGURATION
14.5. CONFIGURE A BASIC CLUSTER WITH ISAPI
14.6. CONFIGURE A LOAD-BALANCING CLUSTER WITH ISAPI

PART IV. NETSCAPE SERVER API (NSAPI)

CHAPTER 15. WHAT IS NETSCAPE SERVER API?

CHAPTER 16. CONFIGURING THE NSAPI CONNECTOR ON SOLARIS
16.1. PREREQUISITES AND CONFIGURATION ASSUMPTIONS
16.2. CONFIGURE SERVER INSTANCE AS A WORKER NODE
16.3. INITIAL CLUSTERING CONFIGURATION
16.4. CONFIGURE A BASIC CLUSTER WITH NSAPI
16.5. CONFIGURE A LOAD-BALANCED CLUSTER WITH NSAPI

PART V. COMMON LOAD BALANCING TASKS

CHAPTER 17. HTTP SESSION STATE REPLICATION
17.1. ENABLING SESSION REPLICATION IN YOUR APPLICATION
17.2. HTTPSESSION PASSIVATION AND ACTIVATION

17.2.1. Configuring HttpSession passivation
17.3. CONFIGURE THE JBOSS CACHE INSTANCE USED FOR SESSION STATE REPLICATION

CHAPTER 18. HIGH-AVAILABILITY WEB SESSIONS
18.1. DATASOURCEPERSISTENTMANAGER CONFIGURATION ATTRIBUTES

CHAPTER 19. USING CLUSTERED SINGLE SIGN-ON (SSO)
19.1. CONFIGURATION
19.2. SSO BEHAVIOR
19.3. LIMITATIONS
19.4. CONFIGURING THE COOKIE DOMAIN

CHAPTER 20. COMPLETE WORKING EXAMPLE

APPENDIX A. REFERENCE: WORKERS.PROPERTIES

APPENDIX B. REFERENCE: JAVA PROPERTIES
B.1. PROXY CONFIGURATION

APPENDIX C. REVISION HISTORY

48
49

51
51
53
54
55

57

58
58

59
59
59
60
62
64
67

70

71

72
72
72
73
75
76

79

80
80
83
84
85

87
89

93
93
94
94
95

96

98

101
101

103

HTTP Connectors Load Balancing Guide

2

PREFACE

1. FILE NAME CONVENTIONS

The following naming conventions are used in file paths for readability. Each convention is styled so
that it stands out from the rest of text:

JBOSS_EAP_DIST

The installation root of the JBoss Enterprise Application Platform instance. This folder contains the
main folders that comprise the server such as /jboss-as, /seam, and /resteasy.

JBOSS_EWP_DIST

The installation root of the JBoss Enterprise Web Platform instance. This folder contains the main
folders that comprise the server such as /jboss-as-web, /seam, and /resteasy.

JBOSS_EWS_DIST

The installation root of the JBoss Enterprise Web Server instance. This folder contains the main
folders that comprise the server such as /extras, /httpd, and the /tomcat6 folders.

NATIVE

The installation root of the JBoss Native zip, extracted to the same directory level as
JBOSS_EAP_DIST.

SJWS

The installation root of the Sun Java Web Server instance. The default file locations for this naming
convention are:

for Solaris 10 x86 or SPARC 64: /opt/SUNWwbsrv70/

HTTPD_DIST

The installation root of the Apache HTTP Server. This folder contains the main folders that
comprise the server such as /conf, /webapps, and /bin. The JBoss Enterprise Web Server
JBOSS_EWS_DIST directory contains the root installation of HTTPD_DIST.

PROFILE

The name of the server profile you use as part of your testing or production configuration. The
server profiles reside in JBOSS_EAP_DIST/jboss-as/server or JBOSS_EWP_DIST/jboss-as-
web/server.

PREFACE

3

PART I. APACHE TOMCAT CONNECTOR (MOD_JK)

HTTP Connectors Load Balancing Guide

4

CHAPTER 1. OVERVIEW
Apache HTTP Server ("Apache") is a well-known web server which can be extended using plug-ins. The
Apache Tomcat Connector mod_jk is a plug-in designed to allow request forwarding from Apache
HTTP Server to a servlet container. The module also supports load-balancing HTTP calls to a set of
servlet containers while maintaining sticky sessions.

HTTP session replication is used to replicate the state associated with web client sessions to other
nodes in a cluster. If one node becomes unavailable, another node in the cluster continues to service
the failed node's requests. This involves two distinct operations:

Session state replication

Load-balancing HTTP Requests

Session state replication is handled by JBoss per application, providing the application is configured to
make use of this feature (refer to Section 17.1, “Enabling session replication in your application”).

Load balancing must be handled externally to JBoss, via either hardware or software. A cost-effective
way of enabling load balancing is to set up a software load balancer using Apache HTTP Server and the
Apache Tomcat Connector (mod_jk).

CHAPTER 1. OVERVIEW

5

CHAPTER 2. DOWNLOAD AND INSTALL
Apache HTTP Server is included in the JBoss Enterprise Web Server binary you download from
https://access.redhat.com.

Apache mod_jk is included in the native installation binaries for JBoss Enterprise Application Platform
and JBoss Enterprise Web Server.

Follow the procedures in the JBoss Enterprise Application Platform or JBoss Enterprise Web Server
Installation Guide to download and install the correct platform and native binaries.

HTTP Connectors Load Balancing Guide

6

https://access.redhat.com

CHAPTER 3. CONFIGURE LOAD BALANCING USING APACHE
HTTP SERVER AND MOD_JK
Follow the tasks in this chapter to correctly configure load balancing using Apache HTTP Server and
the mod_jk connector.

Task: Configure Apache HTTP Server to Load mod_jk

Complete this task to configure Apache HTTP Server to load mod_jk.

Prerequisites

Apache HTTP Server and mod_jk installed (Refer to Chapter 2, Download and install).

1. Open HTTPD_DIST/conf/httpd.conf and add the following text at the end of the file.

2. Create a new file named HTTPD_DIST/conf/mod-jk.conf

3. Add the following configuration block to mod-jk.conf.

Include mod_jk's specific configuration file
Include conf/mod-jk.conf

Load mod_jk module
Specify the filename of the mod_jk lib
LoadModule jk_module modules/mod_jk.so

Where to find workers.properties
JkWorkersFile conf/workers.properties

Where to put jk logs
JkLogFile logs/mod_jk.log

Set the jk log level [debug/error/info]
JkLogLevel info

Select the log format
JkLogStampFormat "[%a %b %d %H:%M:%S %Y]"

JkOptions indicates to send SSK KEY SIZE
JkOptions +ForwardKeySize +ForwardURICompat -ForwardDirectories

JkRequestLogFormat
JkRequestLogFormat "%w %V %T"

Mount your applications
JkMount /application/* loadbalancer

Add shared memory.
This directive is present with 1.2.10 and
later versions of mod_jk, and is needed for
for load balancing to work properly
JkShmFile logs/jk.shm

CHAPTER 3. CONFIGURE LOAD BALANCING USING APACHE HTTP SERVER AND MOD_JK

7

4. Confirm that the LoadModule directive references the right path for the mod_jk library. If not,
edit the path.

5. The default configuration specifies that static content is served directly by Apache HTTP
Server and all requests with URL path /application/* are sent to the load balancer. If
mod_jk is only to be used as a load balancer, change the directive to /*.

6. Optional: JKMountFile Directive
In addition to the JkMount directive, you can use the JkMountFile directive to specify a
mount point's configuration file. The configuration file contains multiple Tomcat forwarding
URL mappings.

a. Navigate to HTTPD_DIST/conf.

b. Create a file named uriworkermap.properties.

c. Specify the URL whose requests are to be forwarded and the name of the worker node to
which they are to be forwarded, using the following syntax example as a guide.

The example block will configure mod_jk to forward requests to /jmx-console and
/web-console to Apache HTTP Server.

The syntax required takes the form /url=worker_name.

d. In HTTPD_DIST/conf/mod-jk.conf, append the following directive.

3.1. CONFIGURE WORKER NODES IN MOD_JK

Task: Configure mod_jk Worker Nodes

Complete this task to configure two mod_jk worker node definitions in a weighted round-robin
configuration with sticky sessions active between two servlet containers.

Add jkstatus for managing runtime data
<Location /jkstatus/>
 JkMount status
 Order deny,allow
 Deny from all
 Allow from 127.0.0.1
</Location>

Simple worker configuration file

Mount the Servlet context to the ajp13 worker
/jmx-console=loadbalancer
/jmx-console/*=loadbalancer
/web-console=loadbalancer
/web-console/*=loadbalancer

You can use external file for mount points.
It will be checked for updates each 60 seconds.
The format of the file is: /url=worker
/examples/*=loadbalancer
JkMountFile conf/uriworkermap.properties

HTTP Connectors Load Balancing Guide

8

Prerequisites

Understand the format of the workers.properties directives, as specified in Appendix A, Reference:
workers.properties.

1. Navigate to HTTPD_DIST/conf/.

2. Create a file named workers.properties.

3. Append the following information to workers.properties.

3.2. CONFIGURING JBOSS TO WORK WITH MOD_JK

Task: Configure JBoss Enterprise Application Platform to Operate Using mod_jk

Complete this task to correctly prepare a JBoss Enterprise Application Platform instance on a
clustered node to receive forwarded requests from the mod_jk load balancer.

Repeat this task for each server instance you require, observing the warnings at each step.

Prerequisites

Complete Task: Configure mod_jk Worker Nodes .

1. Navigate to the location of the clustered server instance.

Define list of workers that will be used
for mapping requests
worker.list=loadbalancer,status

Define Node1
modify the host as your host IP or DNS name.
worker.node1.port=8009
worker.node1.host=node1.mydomain.com
worker.node1.type=ajp13
worker.node1.ping_mode=A
worker.node1.lbfactor=1

Define Node2
modify the host as your host IP or DNS name.
worker.node2.port=8009
worker.node2.host=node2.mydomain.com
worker.node2.type=ajp13
worker.node2.ping_mode=A
worker.node2.lbfactor=1

Load-balancing behavior
worker.loadbalancer.type=lb
worker.loadbalancer.balance_workers=node1,node2
worker.loadbalancer.sticky_session=1

Status worker for managing load balancer
worker.status.type=status

CHAPTER 3. CONFIGURE LOAD BALANCING USING APACHE HTTP SERVER AND MOD_JK

9

2. Open JBOSS_EAP_DIST/jboss-
as/server/PROFILE/deploy/jbossweb.sar/server.xml.

3. Specify the node name by appending the jvmRoute attribute to the <Engine> element in
server.xml. The jvmRoute attribute value is the node name defined in
HTTPD_DIST/conf/workers.properties.

IMPORTANT

If you intend to configure more than one server node in a cluster, ensure you
change the jvmRoute attribute value to a unique name each time you repeat this
step.

4. In server.xml, ensure the AJP protocol <connector> element is enabled (uncommented).
The element is uncommented by default in new installations.

5. You now have a correctly configured Apache HTTP Server with mod_jk load balancer, which
balances calls to the servlet containers in the cluster, and ensures clients will always use the
same servlet container (sticky sessions).

NOTE

For supplementary information about using mod_jk with JBoss, refer to the JBoss wiki
page at https://community.jboss.org/wiki/UsingModjk12WithJBoss.

<!--Preceeding syntax removed for readability -->
<Engine name="jboss.web" defaultHost="localhost" jvmRoute="node1">
<!--Proceeding syntax removed for readability -->
</Engine>

<Connector protocol="AJP/1.3" port="8009"
address="${jboss.bind.address}"
 redirectPort="8443" />

HTTP Connectors Load Balancing Guide

10

https://community.jboss.org/wiki/UsingModjk12WithJBoss

CHAPTER 4. TROUBLESHOOTING AND OPTIMIZING MOD_JK
While optimizing the configuration in Apache HTTP Server, mod_jk, mod_proxy, mod_cluster and
JBoss Enterprise Application Platform typically resolves any and all problems and errors in load
balancing, there are exceptions (such as long running servlets that require additional optimization).

In most cases, a correctly tuned configuration is the catch all for mod_jk issues. This section discusses
some problems and how the configuration can be improved to avoid them.

Optimization Considerations

Ensure you are on the latest supported component versions.

Ensure the relevant configurations are tuned correctly. The Red Hat Global Support Services
staff can use interactive tools to assist you with tailored configuration settings. Find the
appropriate contact details at https://access.redhat.com/support/.

If optimizing the configuration does not resolve the issue the problem is most likely on the JBoss/JVM
side. Refer to Procedure 4.5, “JBoss/JVM Problems” for advice about these issues.

4.1. COMMON PROBLEMS

The list below outlines some common configuration problems. Ensuring your implementation is not
subject to one of these may assist to resolve your issue.

Specific errors and general performance issues are discussed later in this section.

Common Configuration Issues

JkShmFile on a NFS share

Placing the JkShmFile on a NFS share can cause unexplained pauses in mod_jk and odd behavior.
It is strongly recommended that the JkShmFile always be placed on local storage to avoid
problems.

A firewall between Apache HTTP Server and JBoss Enterprise Application Platform

If there is a firewall between Apache HTTP Server and JBoss Enterprise Application Platform and
no socket_keepalive parameter is set, the firewall can close connections unexpectedly.

MaxClients higher than maxThreads

Setting the MaxClients parameter in Apache HTTP Server higher than the maxThreads setting in
JBoss (with a high load on the server) will result in Apache HTTP Server overwhelming the JBoss
instance with threads which will cause hung and/or dropped connections.

No connectionTimeout parameter set

The connectionTimeout parameter set in JBoss is required for proper maintenance of old
connections.

No CPing/CPong set

The CPing/CPong property in mod_jk is the most important worker property setting, allowing
mod_jk to test and detect faulty connections. Not setting this parameter can lead to bad
connections not being detected as quickly which can lead to web requests behaving as if 'hung'.

CHAPTER 4. TROUBLESHOOTING AND OPTIMIZING MOD_JK

11

https://access.redhat.com/support/

Running an old version of mod_jk.

There are known issues with sticky sessions in versions prior to mod_jk 1.2.27.

Running an older version of EAP.

There is a bug in EAP 4.2 base and EAP 4.2 CP01 which causes sockets to be left in the
CLOSE_WAIT state, thus causing the appearance of hung requests again. This issue has been
reported and fixed https://jira.jboss.org/jira/browse/JBPAPP-366

Unresponsive back end server

java.lang.OutOfMemoryError errors or high pause times can cause the back end server to
become unresponsive.

All of the problems listed above are typically resolved after optimizing the configuration in Apache
HTTP Server, mod_jk, and JBoss.

Common Errors

"CPing/CPong" Errors

Presents with errors like the following:

These CPing/CPong messages do not indicate a problem with mod_jk at all, they indicate that
JBoss did not respond in the defined CPing/CPong time.

This is seen many times when there is high load on the JVM JBoss is running on causing high
garbage collection or potentially thread contention. It could also be that the JBoss instance is
overloaded, or even that a firewall is blocking the connection or there are network issues.

The following workflow may assist to correct these type of issues:

Procedure 4.1. Resolving "CPing/CPong" Errors

1. Optimize your Apache HTTP Server and JBoss Enterprise Application Platform
configuration. You can contact Red Hat's Global Support Services for assistance with this.

If this does not resolve the issue, proceed to Step 2

2. Confirm that there is no firewall blocking or dropping the AJP connections.

"Tomcat is down" Errors

Presents with errors like the following:

[info] ajp_handle_cping_cpong::jk_ajp_common.c (865): timeout in reply
cpong
...
[error] ajp_connect_to_endpoint::jk_ajp_common.c (957): (nodeA)
cping/cpong after connecting to the backend server failed (errno=110)
[error] ajp_send_request::jk_ajp_common.c (1507): (nodeA) connecting to
backend failed. Tomcat is probably not started or is listening on the
wrong port (errno=110)

HTTP Connectors Load Balancing Guide

12

The above error means that JBoss did not respond in the configured reply_timeout time.
The solution can be one (or both) of the following:

1. Increase the reply_timeout.

2. Verify there are no garbage collection issues/long pause times in JBoss that may
prevent the request from responding thus causing that error.

The above error likely means that JBoss Enterprise Application Platform did not respond
within the configured core Apache HTTP Server timeout period.

Note that with these messages the [11159:3086420192] portion of the message serves
as an identifier for the connection/request in question. Therefore tracing back from the
point of the error in logs can help clarify the activity around the connection/request that
lead to the error.

In this case, that helps clarify that the error was experienced five minutes after the
response was sent to JBoss, which likely points to a five minute timeout (this is Apache
HTTP Server's Timeout directive default if not specified). If the Timeout is interrupting
mod_jk requests, then it should be increased from the current value to allow for the
maximum acceptable response time.

Procedure 4.2. Resolving "Tomcat is down" Errors

1. Optimize your Apache HTTP Server and JBoss Enterprise Application Platform
configuration. You can contact Red Hat's Global Support Services for assistance with
this.

If this does not resolve the issue, proceed to Step 2

2. Confirm that there is no firewall blocking or dropping the AJP connections.

1. [error] ajp_get_reply::jk_ajp_common.c (2020): (node1) Timeout
with waiting reply from tomcat. Tomcat is down, stopped or network
problems (errno=110)

2. [Fri May 25 11:53:37 2012][11159:3086420192] [debug]
init_ws_service::mod_jk.c (977): Service protocol=HTTP/1.1
method=POST ssl=false host=(null) addr=127.0.0.1 name=localhost
port=80 auth=(null) user=(null) laddr=127.0.0.1 raddr=127.0.0.1
uri=/foo/bar
...
[Fri May 25 11:58:39 2012][11159:3086420192] [debug]
jk_shutdown_socket::jk_connect.c (681): About to shutdown socket
17
[Fri May 25 11:58:39 2012][11159:3086420192] [debug]
jk_shutdown_socket::jk_connect.c (689): Failed sending SHUT_WR for
socket 17
[Fri May 25 11:58:39 2012][11159:3086420192] [info]
ajp_connection_tcp_get_message::jk_ajp_common.c (1150): (node1)
can not receive the response header message from tomcat, network
problems or tomcat (127.0.0.1:8009) is down (errno=104)
[Fri May 25 11:58:39 2012][11159:3086420192] [error]
ajp_get_reply::jk_ajp_common.c (1962): (node1) Tomcat is down or
refused connection. No response has been sent to the client (yet)

CHAPTER 4. TROUBLESHOOTING AND OPTIMIZING MOD_JK

13

General Performance Issues

Presents with errors like the following:

The above exception when using mod_jk in JBoss Web typically indicates a non AJP request sent to
the AJP connector.

Workflows that may assist in resolving these kinds of issues is below:

Procedure 4.3. General Performance Problems

1. Optimize your Apache HTTP Server and JBoss Enterprise Application Platform
configuration. You can contact Red Hat's Global Support Services for assistance with this.

If this does not resolve the issue, proceed to Step 2

2. Gather garbage collection logs for analysis.

If the logs show long garbage collection pause times then you should optimize the Java
Virtual Machine to reduce the garbage collection pauses and gather/recheck updated logs.
Refer to https://access.redhat.com/knowledge/solutions/19932 (Red Hat account
required) for more information.

If this is not the case, or did not resolve the issue, try Step 3 , Step 4 and/or Step 5 until
your issue is resolved.

3. Determine how long the longest request should take. Factor in transaction times. You may
need to increase the reply_timeout to resolve the problem.

If this does not resolve the issue, continue to Step 4.

4. Determine if your current environment can handle the given load. If not, you may need to
upgrade or add more machines.

If this does not resolve the issue, continue to Step 5 .

5. Confirm that there is no firewall blocking or dropping the AJP connections.

Procedure 4.4. 503 Errors

1. Optimize your Apache HTTP Server and JBoss Enterprise Application Platform
configuration. You can contact Red Hat's Global Support Services for assistance with this.

If this does not resolve the issue, proceed to Step 2

2. Gather garbage collection logs for analysis.

If the logs show long garbage collection pause times then you should optimize the Java
Virtual Machine to reduce the garbage collection pauses and gather/recheck updated logs.
Refer to https://access.redhat.com/knowledge/solutions/19932 (Red Hat account
required) for more information.

If this is not the case, or does not resolve the issue, continue to Step 3

ERROR [org.apache.coyote.ajp.AjpMessage] (ajp-192.168.0.101-8001-13)
Invalid message received with signature 12336

HTTP Connectors Load Balancing Guide

14

https://access.redhat.com/knowledge/solutions/19932
https://access.redhat.com/knowledge/solutions/19932

3. Determine how long the longest request should take. Factor in transaction times. You may
need to increase the reply_timeout to resolve the issue.

If this does not resolve the issue, move on to Step 4.

4. Determine if your current environment can handle the given load. If not, you may need to
upgrade or add more machines.

JBoss/JVM-related Issues

May present with errors like:

If Apache HTTP Server and JBoss Enterprise Application Platform are optimized and you still
receive "no more workers left" this typically indicates an issue on the JBoss/JVM side. A number of
JVM-related problems could lead to mod_jk not being able to get a connection to JBoss in the
configured timeouts, thus causing the worker to go into the error state and producing this
message.

Procedure 4.5. JBoss/JVM Problems

1. Enable garbage collection logging.

a. For UNIX based systems, the options should be placed in run.conf, not run.sh. The
run.conf in the server configuration directory (e.g.
<JBOSS_HOME>/server/<PROFILE>/run.conf) takes precedence over the
run.conf in the <JBOSS_HOME>/bin directory (except in JBoss EAP 5.0.0 due to a
regression fixed in version 5.0.1).

b. For Windows, the options need to be added to run.bat, as it does not read run.conf.

c. Check boot.log to see the value of the user.dir environment variable (e.g.
<JBOSS_HOME>/bin), the default location for garbage collection logging when no path
is provided. If you are running multiple instances of JBoss against the same directory
like so:

d. Then for the gc.log files to be properly separated you will need to make sure each
<PROFILE> has a unique run.conf with the JVM_OPTS specific to that <PROFILE>.

For example node1 will contain a <JBOSS_HOME>/server/node1/run.conf with
contents:

e. And <JBOSS_HOME>/server/node2/run.conf with contents:

[error] service::jk_lb_worker.c (1473): All tomcat instances failed, no
more workers left

./run.sh -c node1 -b 127.0.0.1 -Djboss.messaging.ServerPeerID=1

./run.sh -c node2 -b 127.0.0.1 -Djboss.messaging.ServerPeerID=2
-Djboss.service.binding.set=ports-01

JAVA_OPTS="$JAVA_OPTS -verbose:gc -Xloggc:gc_node1.log -
XX:+PrintGCDetails -XX:+PrintGCDateStamps"

CHAPTER 4. TROUBLESHOOTING AND OPTIMIZING MOD_JK

15

IMPORTANT

gc.log is recreated every time JBoss starts.

Be sure to back up gc.log if you are restarting the server. Alternatively
you may be able to add a timestamp to the file name depending on the
OS and/or shell. For example, with OpenJDK or Oracle/Sun JDK on
Linux: -Xloggc:gc.log.`date +%Y%m%d%H%M%S`.

f. On Windows, you can use

2. For the time period when there are slowdowns, hangs, or errors, gather the following data:

Garbage collection logs. Follow Procedure 4.5, “JBoss/JVM Problems”.

High CPU data coupled with thread dumps (depending upon platform):

The links below can assist in gathering Java thread data. A Red Hat subscription is
required.

CPU utilization by Java threads on Linux/Solaris:
https://access.redhat.com/knowledge/node/46596.

CPU utilization by Java threads on Windows:
https://access.redhat.com/knowledge/node/46598.

For cases where the Java application is an application server, gather log files:

In JBoss:

<JBOSS_HOME>/server/<PROFILE>/log/server.log

<JBOSS_HOME>/server/<PROFILE>/log/boot.log

In Tomcat:

catalina.out

3. Determine if the CPU utilization is caused by the JVM (Java application). Here, you want to
validate that a Java process is indeed using an unexpected amount of CPU.

The Java thread data gathered in the first step should help identify this.

4. Assuming a Java process is identified as the cause of high CPU, the most common cause is
java Garbage collection. Determine if the high CPU is caused by Java garbage collection by

JAVA_OPTS="$JAVA_OPTS -verbose:gc -Xloggc:gc_node2.log -
XX:+PrintGCDetails -XX:+PrintGCDateStamps"

for /f "tokens=2-4 delims=/ " %%a in ('date /t') do (set
mydate=%%c-%%a-%%b)
for /f "tokens=1-2 delims=/:" %%a in ("%TIME%") do (set
mytime=%%a%%b)
set "JAVA_OPTS=%JAVA_OPTS% -
Xloggc:C:/log/gv.log.%mydate%_%mytime%

HTTP Connectors Load Balancing Guide

16

https://access.redhat.com/knowledge/node/46596
https://access.redhat.com/knowledge/node/46598

analyzing the garbage collection for long pause times and/or low throughput overall at the
time of the issue.

To find the garbage collection logging related to the issue, it is necessary to determine the
number of seconds after JVM startup that the issue happens (that is the typical format of
garbage collection logging timestamps). To determine the time elapsed, you can use the
first timestamp in the high CPU data gathered and the first timestamp in the console log,
boot.log (JBoss), server.log (JBoss), or catalina.out (Tomcat.)

If you see long pause times and/or low throughput overall, refer to the following
Knowledge Base article (Red Hat subscription required)
https://access.redhat.com/knowledge/node/19932.

5. If Garbage collection is not responsible for the high CPU, use the thread dump information
gathered when validating CPU information to identify the threads.

One area that is not a direct consequence of an unoptimized mod_jk configuration but can still cause
issues with mod_jk is JVM and garbage collection related problems. When there are high pause times
and the JVM is not optimized for the app server, the pause times can cause mod_jk issues even when
mod_jk is tuned.

4.2. GENERAL DIAGNOSTICS

1. Verify the back end server is responsive by making a direct request to it.

2. Monitor high load using one of the following methods:

Twiddle

1. Locate the appropriate Twiddle script for your environment (twiddle.sh,
twiddle.bat or twiddle.jar) in the <JBOSS_HOME>/bin/ directory.

2. Run the following command:

Use the script appropriate to your operating system and environment .

Twiddle may need to be modified for each specific environment, but the above will work
in a default JBoss instance where no ports have been changed and JBoss is starting on
the localhost.

JMX Console

1. Navigate to http://localhost:8080/jmx-console.

2. Find the jboss.web section.

3. Click on name=ajp-localhost/127.0.0.1-8009,type=ThreadPool (or
whichever AJP ThreadPool matches your environment)

4. Investigate the currentThreadsBusy attribute. If this attribute is reaching the
maxThreads there will be a problem as JBoss Web is reaching the defined
ThreadPool capacity.

<TWIDDLE> -u admin -p password get "jboss.web:name=ajp-
127.0.0.1-8009,type=ThreadPool"

CHAPTER 4. TROUBLESHOOTING AND OPTIMIZING MOD_JK

17

https://access.redhat.com/knowledge/node/19932

4.3. GETTING FURTHER HELP

If none of the above information resolves your issue you can contact the Global Support Services staff
for assistance.

You can find the appropriate contact details at https://access.redhat.com/support/.

Please gather the following information prior to your call.

JBoss EAP boot.log.

Apache HTTP Server's httpd.conf and the httpd-mpm.conf file (if it exists).

mod_jk's workers.properties.

mod_jk's mod_jk.conf.

<JBOSS_HOME>/server/<PROFILE>/deploy/JBOSSWEB/server.xml

<JBOSS_HOME>/server/<PROFILE>/deploy/JBOSSWEB/META-INF/jboss-
service.xml

The output of running httpd -V on Apache HTTP Server (httpd -V > httpd.out, for
example).

Note the capital "V". A lowercase "v" will not produced the desired output.

Version of Apache HTTP Server or the JBoss Enterprise Web Server.

/etc/sysconfig/httpd

HTTP Connectors Load Balancing Guide

18

https://access.redhat.com/support/

PART II. JBOSS HTTP CONNECTOR (MOD_CLUSTER)

PART II. JBOSS HTTP CONNECTOR (MOD_CLUSTER)

19

CHAPTER 5. OVERVIEW
The JBoss HTTP Connector mod_cluster is a reduced-configuration, intelligent load-balancing
solution for JBoss Enterprise Application Platform, based on technology originally developed by the
JBoss mod_cluster community project.

The JBoss HTTP connector load-balances HTTP requests to JBoss Enterprise Application Platform
and JBoss Enterprise Web Server worker nodes, using Apache HTTP Server as the proxy server.

5.1. KEY FEATURES

Apache HTTP Server-based

The JBoss HTTP Connector mod-cluster uses Apache HTTP Server as the proxy server.

Real-time load-balancing calculation

The JBoss HTTP Connector mod_cluster creates a feedback network between the worker nodes
and the proxy server. The mod_cluster service is deployed on each of the worker nodes. This
service feeds real-time load information to the proxy server. The proxy server then makes
intelligent decisions about where to allocate work, based on the current load on each worker node.
This real-time adaptive load distribution results in increased optimization of resources.

The information that is reported by the worker nodes and the load-balancing policy used by the
proxy are both customizable.

Routing based on real-time application life-cycle

The JBoss HTTP Connector mod_cluster service deployed on the worker nodes relays application
life-cycle events to the proxy server. This allows the server to dynamically update its routing table.
When an application is undeployed on a node, the proxy server no longer routes traffic for that
application to that node.

Automatic Proxy Discovery

The proxy server can be configured to announce its presence via UDP multicast. New worker nodes
discover the proxy server and add themselves to the load-balancing cluster automatically. This
greatly reduces the configuration and maintenance needed. When UDP multicast is not available or
is undesirable, worker nodes are configured with a static list of proxies.

Multiple Protocol Support

The JBoss HTTP Connector mod_cluster can use HTTP, HTTPS, or Apache JServ Protocol (AJP)
for communication between the proxy and the worker nodes.

5.2. COMPONENTS

Proxy Server

On the proxy server, the JBoss HTTP Connector, mod-cluster, consists of four Apache HTTP Server
modules.

Shared Memory Manager module: mod_slotmem.so

The Shared Memory Manager module, mod_slotmem, makes the real-time worker node information
available to multiple Apache HTTP Server server processes.

HTTP Connectors Load Balancing Guide

20

Cluster Manager module: mod_manager.so

The Cluster Manager module, mod_manager, receives and acknowledges messages from nodes,
including worker node registrations, worker node load data, and worker node application life-cycle
events.

Proxy Balancer module: mod_proxy_cluster.so

The Proxy Balancer module, mod_proxy_cluster, handles the routing of requests to cluster nodes.
The Proxy Balancer selects the appropriate node to forward the request to, based on application
location in the cluster, current state of each of the cluster nodes, and the Session ID (if a request is
part of an established session).

Proxy Advertisement module: mod_advertise.so

The Proxy Advertisement module, mod_advertise.so, broadcasts the existence of the proxy server
via UDP multicast messages. The server advertisement messages contain the IP address and port
number on which the proxy is listening for responses from nodes that wish to join the load-
balancing cluster.

NOTE

Refer to Section 6.1, “Apache HTTP Server modules” for detailed information about the
available modules including user-configurable parameters.

Worker Node Components

The JBoss HTTP Connector client service, mod-cluster.sar, is deployed on each worker node.

Worker node service: mod-cluster.sar

This service provides the proxy with real-time information on the worker node's state and sends
notification of application life-cycle events; as well as allowing the node to discover and register
itself with any proxies running on the same network.

5.3. LIMITATIONS

The JBoss HTTP Connector mod_cluster uses shared memory to keep the nodes description, the
shared memory is created at the startup of httpd and the structure of each item is fixed. Therefore,
when defining proxy server and worker node properties, make sure to follow these character limits:

Maximum Alias length: 100 characters (Alias corresponds to the network name of the
respective virtual host; the name is defined in the Host element)

Maximum context length: 40 characters (for example, if myapp.war is deployed in /myapp,
then /myapp is the context)

Maximum balancer name length: 40 characters (the balancer property in MBean)

Maximum JVMRoute string length: 80 character (JVMRoute in the <Engine> element)

Maximum domain name length: 20 characters (the domain property in MBean)

Maximum hostname length for a node: 64 characters (hostname address in the <Connector>
element)

CHAPTER 5. OVERVIEW

21

Maximum port length for a node: 7 characters (8009 is 4 characters, the port property in the
<Connector> element)

Maximum scheme length for a node: 6 characters (possible values are http, https, ajp, the
protocol of the connector)

Maximum cookie name length: 30 characters (the header cookie name for session ID default
value: JSESSIONID from org.apache.catalina.Globals.SESSION_COOKIE_NAME)

Maximum path name length: 30 characters (the parameter name for the session ID default
value: JSESSIONID from org.apache.catalina.Globals.SESSION_PARAMETER_NAME)

Maximum length of a session ID: 120 characters (session ID resembles the following:
BE81FAA969BF64C8EC2B6600457EAAAA.node01)

HTTP Connectors Load Balancing Guide

22

CHAPTER 6. INSTALL PROXY SERVER COMPONENTS
Read this chapter to install the JBoss HTTP Connector, mod_cluster, on a proxy server.

6.1. APACHE HTTP SERVER MODULES

Read this section for expanded definitions of the Apache HTTP Server proxy server modules discussed
in Section 5.2, “Components” . You specify these modules as part of Task: Install Proxy Server
Components.

6.1.1. mod_manager.so

The Cluster Manager module, mod_manager, receives and acknowledges messages from nodes,
including worker node registrations, worker node load data, and worker node application life-cycle
events.

LoadModule manager_module modules/mod_manager.so

You can also define the following related directives in the <VirtualHost> element:

MemManagerFile

Defines the location for the files in which mod_manager stores configuration details. mod_manager
also uses this location to store generated keys for shared memory and lock files. This must be an
absolute path name.

It is recommended that this path be set explicitly and on a local drive, not an NFS share. The default
value is platform/httpd specific.

Valid paths are:

HP-UX: HTTPD_HOME/cache/mod_cluster

Red Hat Enterprise Linux: /var/cache/mod_cluster

Maxcontext

The maximum number of contexts JBoss mod_cluster will use. The default value is 100.

Maxnode

The maximum number of worker nodes JBoss mod_cluster will use. The default value is 20.

Maxhost

The maximum number of hosts (aliases) JBoss mod_cluster will use. This is also the maximum
number of load balancers. The default value is 10.

Maxsessionid

The maximum number of active session identifiers stored. A session is considered inactive when no
information is received from that session within five minutes. The default value is 0, which disables
this logic.

ManagerBalancerName

CHAPTER 6. INSTALL PROXY SERVER COMPONENTS

23

The name of the load balancer to use when the worker node does not provide a load balancer name.
The default value is mycluster.

PersistSlots

When set to on, nodes, aliases and contexts are persisted in files. The default value is off.

CheckNonce

When set to on, session identifiers are checked to ensure that they are unique, and have not
occurred before. The default is on.

WARNING

Setting this directive to off can leave your server vulnerable to replay attacks.

SetHandler

Defines a handler to display information about worker nodes in the cluster. This is defined in the
Location element:

When accessing the $LOCATION defined in the Location element in your browser, you will see
something like the following. (In this case, $LOCATION was also defined as mod_cluster-
handler.)



<Location $LOCATION>
 SetHandler mod_cluster-manager
 Order deny,allow
 Deny from all
 Allow from 127.0.0.1
</Location>

HTTP Connectors Load Balancing Guide

24

Figure 6.1. mod_cluster Status

Transferred corresponds to the POST data sent to the worker node. Connected corresponds to the
number of requests that had been processed when this status page was requested. Sessions
corresponds to the number of active sessions. This field is not present when Maxsessionid is 0.

6.1.2. mod_proxy_cluster.so

The Proxy Balancer module, mod_proxy_cluster, handles the routing of requests to cluster nodes. The
Proxy Balancer selects the appropriate node to forward the request to, based on application location in
the cluster, current state of each of the cluster nodes, and the Session ID (if a request is part of an
established session).

LoadModule proxy_cluster_module modules/mod_proxy_cluster.so

You can also define the following related directives in the <VirtualHost> element to change load-
balancing behavior.

mod_proxy_cluster directives

CreateBalancers

Defines how load balancers are created in the Apache HTTP Server virtual hosts. The following
values are valid in CreateBalancers :

0

Create load balancers in all virtual hosts defined in Apache HTTP Server. Remember to
configure the load balancers in the ProxyPass directive.

1

Do not create balancers. When using this value, you must also define the load balancer name in
the ProxyPass or ProxyPassMatch .

2

Create only the main server. This is the default value for CreateBalancers .

CHAPTER 6. INSTALL PROXY SERVER COMPONENTS

25

UseAlias

Defines whether to check that the defined Alias corresponds to the ServerName . The
following values are valid for UseAlias :

0

Ignore Alias information from worker nodes. This is the default value for UseAlias .

1

Verify that the defined alias corresponds to a worker node's server name.

LBstatusRecalTime

Defines the interval in seconds between the proxy calculating the status of a worker node. The
default interval is 5 seconds.

ProxyPassMatch; ProxyPass

 ProxyPass maps remote servers into the local server namespace. If the local server has an
address http://local.com/, then the following ProxyPass directive would convert a local
request for http://local.com/requested/file1 into a proxy request for
http://worker.local.com/file1.

ProxyPass /requested/ http://worker.local.com/

 ProxyPassMatch uses Regular Expressions to match local paths to which the proxied URL
should apply.

For either directive, ! indicates that a specified path is local, and a request for that path should not
be routed to a remote server. For example, the following directive specifies that .gif files should
be served locally.

ProxyPassMatch ^(/.*\.gif)$!

6.1.3. mod_advertise.so

The Proxy Advertisement module, mod_advertise.so, broadcasts the existence of the proxy server via
UDP multicast messages. The server advertisement messages contain the IP address and port number
where the proxy is listening for responses from nodes that wish to join the load-balancing cluster.

This module must be defined alongside mod_manager in the VirtualHost element. Its identifier in
the following code snippet is advertise_module.

LoadModule advertise_module modules/mod_advertise.so

mod_advertise also takes the following directives:

ServerAdvertise

Enables or disables the advertising mechanism. When set to On, the advertising mechanism is used
to tell worker nodes to send status information to this proxy. When set to Off, the advertising
mechanism is disabled.

HTTP Connectors Load Balancing Guide

26

You can also specify a hostname and port with the following syntax: ServerAdvertise On
http://hostname:port/. This is only required when using a name-based virtual host, or when a
virtual host is not defined.

The default value is Off but it is automatically enabled if any Advertise directive is specified in
defining a VirtualHost.

AdvertiseGroup

Defines the multicast address to advertise on. The syntax is AdvertiseGroup address:port,
where address should correspond to AdvertiseGroupAddress , and port should correspond to
AdvertisePort in your worker nodes.

If your worker node is JBoss Enterprise Application Platform-based, and the -u switch is used at
startup, the default AdvertiseGroupAddress is the value passed via the -u switch.

The default value is 224.0.1.105:23364. If port is not specified, the default port used is 23364.

AdvertiseFrequency

The interval (in seconds) between multicast messages advertising the IP address and port. The
default value is 10.

AdvertiseSecurityKey

Defines a string used to identify the JBoss HTTP Connector mod_cluster in JBoss Web. By default
this directive is not set and no information is sent.

AdvertiseManagerUrl

Defines the URL that the worker node should use to send information to the proxy server. By
default this directive is not set and no information is sent.

AdvertiseBindAddress

Defines the address and port over which to send multicast messages. The syntax is
AdvertiseBindAddress address:port. This allows an address to be specified on machines
with multiple IP addresses. The default value is 0.0.0.0:23364.

6.2. INSTALL PROXY SERVER COMPONENTS

Task: Install Proxy Server Components

Follow this task to install the JBoss HTTP Connector.

The native components are specific to particular operating system and processor architectures. Refer
to the JBoss Enterprise Application Platform Installation Guide to download the correct native
components package for your server operating system and processor architecture.

Prerequisites

An installed Web Server distribution, such as JBoss Enterprise Web Server or HPWS installed
(designated by HTTPD_HOME in this documentation).

JBoss Enterprise Application Platform 5 Native components downloaded.

CHAPTER 6. INSTALL PROXY SERVER COMPONENTS

27

1. Extract Apache HTTP Server modules from Native Components download
Extract the four modules mod_advertise.so, mod_manager.so, mod_proxy_cluster.so,
mod_slotmem.so from the appropriate Native Components package directory for your
processor architecture: either native/lib/httpd/modules or
native/lib64/httpd/modules.

2. Copy Apache HTTP Server modules to HTTPD_HOME
Copy the JBoss HTTP Connector modules to the HTTPD_HOME/httpd/modules directory of
the JBoss Enterprise Web Server.

3. Disable the mod_proxy_balancer module
Edit the HTTPD configuration file HTTPD_HOME/httpd/conf/httpd.conf and mark the
following line as a comment by adding a # character at the start:

LoadModule proxy_balancer_module modules/mod_proxy_balancer.so

This module is incompatible with the JBoss HTTP Connector.

4. Configure the server to load the JBoss HTTP Connector modules

a. Create HTTPD_HOME/httpd/conf/JBoss_HTTP.conf.

b. Add the following lines to HTTPD_HOME/httpd/conf/JBoss_HTTP.conf:

LoadModule slotmem_module HTTPD_HOME/modules/mod_slotmem.so
LoadModule manager_module HTTPD_HOME/modules/mod_manager.so
LoadModule proxy_cluster_module
HTTPD_HOME/modules/mod_proxy_cluster.so
LoadModule advertise_module HTTPD_HOME/modules/mod_advertise.so

5. Restart the HTTPD service
Refer to HTTPD-specific documentation for detailed instructions.

HTTP Connectors Load Balancing Guide

28

CHAPTER 7. CONFIGURE BASIC PROXY SERVER
Follow the instructions in this chapter to configure an HTTPD to use the JBoss HTTP Connector
(mod_cluster).

7.1. BASIC PROXY CONFIGURATION OVERVIEW

Configuration of the proxy server consists of one mandatory and one optional portion:

1. Configure a proxy server listener to receive worker node connection requests and worker node
feedback.

2. Optional: Disable server advertisement.

Server Advertisement

The proxy server can advertise itself using UDP multicast. When UDP multicast is available on the
network between the proxy server and the worker nodes server advertisement allows you to add
worker nodes with no further configuration required on the proxy server, and minimal configuration on
the worker nodes.

If UDP multicast is not available or undesirable, configure the worker nodes with a static list of proxy
servers, as detailed in Section 9.1, “Static proxy configuration” . There is no need in either case to
configure the proxy server with a list of worker nodes.

7.2. CONFIGURE A LOAD-BALANCING PROXY USING THE HTTP
CONNECTOR

Read this section to configure a load balancing proxy that uses the JBoss HTTP Connector.

Task: Configure a Proxy Server Listener

Follow this task to configure the Apache HTTP Server service to act as a load-balancing proxy using
the JBoss HTTP Connector.

Prerequisites

An installed Web Server distribution, such as JBoss Enterprise Web Server or HPWS installed
(designated by HTTPD_HOME in this documentation).

JBoss HTTP Connector modules. Refer to Chapter 6, Install proxy server components for details.

1. Create a listen directive for the proxy server
Edit the configuration file HTTPD_HOME/httpd/conf/JBoss_HTTP.conf and add the
following:

Listen IP_ADDRESS:PORT_NUMBER

Where IP_ADDRESS is the IP address of a server network interface to communicate with the
worker nodes, and PORT_NUMBER is the port on that interface to listen on.

CHAPTER 7. CONFIGURE BASIC PROXY SERVER

29

NOTE

The port PORT_NUMBER must be open on the server firewall for incoming TCP
connections.

Example 7.1. Example Listen Directive

Listen 10.33.144.3:6666

2. Create Virtual Host
Add the following <VirtualHost> block to HTTPD_HOME/httpd/conf/JBoss_HTTP.conf:

IP_ADDRESS and PORT_NUMBER match the values from the Listen directive.

PARTIAL_IP_ADDRESS is the first 1 to 3 bytes of an IP address, to restrict access to a specific
subnet - 10.33.144, for example.

3. Configure SELinux to allow proxy traffic
Enter the following commands as a root-equivalent user to modify the SELinux configuration
to allow the proxy traffic:

4. Optional: Disable Server Advertisement
The presence of the AdvertiseFrequency directive, which is set to five seconds here,
causes the server to periodically send server advertisement messages via UDP multicast.

These server advertisement messages contain the IP_ADDRESS and PORT_NUMBER specified
in the VirtualHost definition. Worker nodes that are configured to respond to server
advertisements use this information to register themselves with the proxy server.

To disable server advertisement, add the following directive to the VirtualHost definition:

ServerAdvertise Off

<VirtualHost IP_ADDRESS:PORT_NUMBER>

 <Location />
 Order deny,allow
 Deny from all
 Allow from PARTIAL_IP_ADDRESS
 </Location>

 KeepAliveTimeout 60
 MaxKeepAliveRequests 0

 ManagerBalancerName mycluster
 AdvertiseFrequency 5

</VirtualHost>

#semanage port -a -t http_port_t -p tcp 8079 #add port to the Apache
port list to enable the next command to work
#setsebool -P httpd_can_network_relay 1 #for mod_proxy to work

HTTP Connectors Load Balancing Guide

30

If server advertisements are disabled, or UDP multicast is not available on the network
between the proxy server and the worker nodes, you must configure worker nodes with a
static list of proxy servers. Refer to Section 9.1, “Static proxy configuration” for directions.

5. Restart the JBoss Enterprise Web Server Apache service
Refer to HTTPD-specific documentation for detailed instructions.

CHAPTER 7. CONFIGURE BASIC PROXY SERVER

31

CHAPTER 8. INSTALL NODE WITH BASIC CONFIGURATION
Read this chapter to install the JBoss HTTP Connector on a worker node, and implement basic
configuration for the node to begin immediate operation.

8.1. WORKER NODE REQUIREMENTS

Supported Worker Node types

JBoss Enterprise Platform 5 JBoss Web component

JBoss Enterprise Web Server Tomcat service

NOTE

JBoss Enterprise Platform worker nodes support all JBoss HTTP Connector
functionality. JBoss Enterprise Web Server Tomcat worker nodes support a subset of
JBoss HTTP Connector functionality.

JBoss HTTP Connector Enterprise Web Server Node Limitations

Non-clustered mode only.

Only one load metric can be used at a time when calculating the load balance factor.

8.2. INSTALL AND CONFIGURE A WORKER NODE

This section contains a number of tasks. Follow the appropriate task to install and configure a worker
node on JBoss Enterprise Application Platform, or JBoss Enterprise Web Server.

NOTE

Make sure your configuration definition meets the following character limits:

Maximum JVMRoute string length: 80 character (JVMRoute in the <Engine>
element)

Maximum hostname length for a node: 64 characters (hostname address in the
<Connector> element)

Maximum port length for a node: 7 characters (8009 is 4 characters, the port
property in the <Connector> element)

Maximum scheme length for a node: 6 characters (possible values are http,
https, ajp, the protocol of the connector)

Task: Install and Configure a JBoss Enterprise Application Platform Worker Node

Follow this procedure to install JBoss HTTP Connector on a JBoss Enterprise Application Platform
instance and configure it for non-clustered operation.

Prerequisites

HTTP Connectors Load Balancing Guide

32

Install a supported JBoss Enterprise Application Platform.

Understand the Proxy Configuration parameters discussed in Appendix B, Reference: Java
properties

1. Deploy the worker node service
Copy mod-cluster.sar from the JBOSS_EAP_DIST/mod_cluster directory to jboss-
as/server/PROFILE/deploy.

2. Add a Listener to JBoss Web
Add the following Listener element beneath the other Listeners in
JBOSS_EAP_DIST/jboss-as/server/PROFILE/deploy/jbossweb.sar/server.xml:

3. Configure the service dependency
Add the following depends element beneath the other depends elements in
JBOSS_EAP_DIST/jboss-as/server/PROFILE/deploy/jbossweb.sar/META-
INF/jboss-beans.xml:

4. Give the worker a unique identity
Edit JBOSS_EAP_DIST/jboss-
as/server/PROFILE/deploy/jbossweb.sar/server.xml and add a jvmRoute
attribute and value to the Engine element, as shown:

Use a unique jvmRoute value for each node.

5. Optional: Configure firewall to receive multicast Proxy Server advertisements
A proxy server using the JBoss HTTP Connector can advertise itself via UDP multicast. To
enable the worker node to dynamically discover proxy servers, open port 23364 for UDP
connections on the worker node's firewall.

Use the following command on Red Hat Enterprise Linux to achieve this:

If you are not using Automatic Proxy Discovery (see Automatic Proxy Discovery), configure
worker nodes with a static list of proxies. Refer to Section 9.1, “Static proxy configuration” for
directions. In this case you can safely ignore the following warning message:

[warning] mod_advertise: ServerAdvertise Address or Port not
defined, Advertise disabled!!!

<Listener
className="org.jboss.web.tomcat.service.deployers.MicrocontainerInte
grationLifecycleListener" delegateBeanName="ModClusterService"/>

<depends>ModClusterService</depends>

<Engine name="jboss.web" defaultHost="localhost"
jvmRoute="worker01">

/sbin/iptables -A INPUT -m state --state NEW -m udp -p udp --dport
23364 -j ACCEPT
-m comment --comment "receive mod_cluster proxy server
advertisements"
/sbin/iptables save

CHAPTER 8. INSTALL NODE WITH BASIC CONFIGURATION

33

IMPORTANT

If your nodes are on different machines that run Red Hat Enterprise Linux, they
may not acknowledge each other automatically. JBoss Clustering relies on the
UDP (User Datagram Protocol) multicasting provided by jGroups. Red Hat
Enterprise Linux blocks these packets by default.

To allow the packets, modify the iptables rules (as root). The following
commands apply to an IP address that matches 192.168.1.x:

Task: Install and Configure a JBoss Enterprise Web Server Worker Node

Follow this procedure to install the JBoss HTTP Connector on a JBoss Enterprise Web Server node and
configure it for non-clustered operation.

Prerequisites

Install a supported JBoss Enterprise Web Server.

Understand the Proxy Configuration parameters discussed in Appendix B, Reference: Java
properties

1. Deploy worker node service
Copy all of the library files in the JBOSS_EAP_DIST/mod_cluster/JBossWeb-Tomcat/lib
directory. Move these files to JBOSS_EWS_DIST/tomcat6/lib/

2. Add a Listener to Tomcat
Add the following Listener element beneath the other Listener elements in
JBOSS_EWS_DIST/tomcat6/conf/server.xml.

3. Give this worker a unique identity
Edit JBOSS_EWS_DIST/tomcat6/conf/server.xml and add a jvmRoute attribute and
value to the <Engine> element, as shown:

4. Optional: Configure firewall to receive Proxy Server advertisements
A proxy server using the JBoss HTTP Connector can advertise itself via UDP multicast. To
receive these multicast messages, open port 23364 for UDP connections on the worker node's

/sbin/iptables -I RH-Firewall-1-INPUT 5 -p udp -d
224.0.1.0/24 -j ACCEPT
/sbin/iptables -I RH-Firewall-1-INPUT 5 -p udp -d
224.0.0.0/4 -j ACCEPT
/sbin/iptables -I RH-Firewall-1-INPUT 9 -p udp -s
192.168.1.0/24 -j ACCEPT
/sbin/iptables -I RH-Firewall-1-INPUT 10 -p tcp -s
192.168.1.0/24 -j ACCEPT
/etc/init.d/iptables save

<Listener className="org.jboss.modcluster.ModClusterListener"
advertise="true" stickySession="true" stickySessionForce="false"
stickySessionRemove="true"/>

<Engine name="Catalina" defaultHost="localhost"
jvmRoute="worker01">

HTTP Connectors Load Balancing Guide

34

firewall.

For Linux users:

If you are not using Automatic Proxy Discovery (see Automatic Proxy Discovery), configure
worker nodes with a static list of proxies. Refer to Section 9.1, “Static proxy configuration” for
directions. In this case you can safely ignore the following warning message:

[warning] mod_advertise: ServerAdvertise Address or Port not
defined, Advertise disabled!!!

/sbin/iptables -A INPUT -m state --state NEW -m udp -p udp --dport
 23364 -j ACCEPT
-m comment -comment "receive mod_cluster proxy server
advertisements"

CHAPTER 8. INSTALL NODE WITH BASIC CONFIGURATION

35

CHAPTER 9. ADVANCED CONFIGURATION
Read this chapter to configure advanced features of the JBoss HTTP Connector.

9.1. STATIC PROXY CONFIGURATION

Server advertisement allows worker nodes to dynamically discover and register themselves with proxy
servers. If UDP broadcast is not available or server advertisement is disabled then worker nodes must
be configured with a static list of proxy server addresses and ports.

NOTE

Make sure your configuration definition meets the following character limits:

Maximum Alias length: 100 character (for example, if myapp.war is deployed in
/myapp, then/myapp is the context)

Maximum balancer name length: 40 (thebalancer property in MBean)

Maximum domain name length: 20 (thedomain property in MBean)

Task: Configure Application Platform Worker Node with Static Proxy List

Follow this task to configure a JBoss Enterprise Application Platform worker node to operate with a
static list of proxy servers.

Prerequisites

JBoss Enterprise Application Platform worker node configured. Refer to Chapter 8, Install node
with basic configuration for directions.

1. Disable dynamic proxy discovery
Edit the file JBOSS_EAP_DIST/jboss-as/server/PROFILE/mod-cluster.sar/META-
INF/mod-cluster-jboss-beans.xml and set the advertise property to false:

2. Choose, and implement, one of the following static proxy options:

Option 1: Create a static proxy server list
Edit JBOSS_EAP_DIST/jboss-as/server/PROFILE/mod-cluster.sar/META-
INF/mod-cluster-jboss-beans.xml and add a comma separated list of proxies in the
form of IP_ADDRESS:PORT in the proxyList property.

Example 9.1. Example Static Proxy List

Option 2: Start the worker node with a static proxy list as a parameter

a. Edit JBOSS_EAP_DIST/server/PROFILE/mod-cluster.sar/META-INF/mod-
cluster-jboss-beans.xml

<property name="advertise">false</property>

<property
name="proxyList">10.33.144.3:6666,10.33.144.1:6666</property>

HTTP Connectors Load Balancing Guide

36

cluster-jboss-beans.xml

b. Add the following line:

c. Add a comma-separated list of proxies in the form of IP_ADDRESS:PORT as the
jboss.modcluster.proxyList parameter when starting the node.

Example 9.2. Example Static Proxy List Parameter

-Djboss.modcluster.domain=10.33.144.3:6666,10.33.144.1:6666

Task: Configure Web Server Worker Node with Static Proxy List

Follow this procedure to configure a JBoss Enterprise Web Server worker node to operate with a static
list of proxy servers.

Prerequisites

JBoss Enterprise Web Server worker node configured. Refer to Chapter 8, Install node with
basic configuration for directions.

Understand the Proxy Configuration parameters discussed in Appendix B, Reference: Java
properties

1. Disable dynamic proxy discovery
Edit JBOSS_EWS_DIST/tomcat6/conf/server.xml. and set the advertise property of
the ModClusterListener to false:

2. Define a mod_cluster listener
Add a <Listener> element to server.xml.

3. Create a static proxy server list
Add a comma separated list of proxies in the form of IP_ADDRESS:PORT as the proxyList
property of the ModClusterListener <Listener> element.

Example 9.3. Example Static Proxy List

9.2. CLUSTERED NODE OPERATION

The JBoss HTTP Connector can operate in either clustered or non-clustered mode.

<property name="domain">${jboss.modcluster.domain:}</property>

<Listener className="org.jboss.modcluster.ModClusterListener"
advertise="false" stickySession="true" stickySessionForce="false"
stickySessionRemove="true"/>

<Listener className="org.jboss.modcluster.ModClusterListener"
advertise="false" stickySession="true" stickySessionForce="false"
stickySessionRemove="true"
proxyList="10.33.144.3:6666,10.33.144.1:6666"/>

CHAPTER 9. ADVANCED CONFIGURATION

37

NOTE

Only JBoss Enterprise Application Platform nodes support clustered operation with the
JBoss HTTP Connector. JBoss Enterprise Web Server nodes support non-clustered
operation only.

JBoss HTTP Connector non-clustered operation

In non-clustered mode each worker node communicates directly with the proxy.

JBoss HTTP Connector clustered operation

In clustered mode multiple worker nodes form a JBoss HA (High Availability) cluster domain. A
single worker node communicates with the proxy on behalf of the other nodes in the cluster
domain.

HTTP Connectors Load Balancing Guide

38

CHAPTER 10. JAVA PROPERTIES

10.1. CONFIGURATION PROPERTIES

The tables below enumerate the configuration properties available to an application server node. The
location for these properties depends on how mod_cluster is configured.

10.1.1. Proxy Discovery Configuration

The list of proxies from which an application expects to receive AJP connections is either defined
statically, via the addresses defined in the proxyList configuration property; or discovered
dynamically via the advertise mechanism.

Using a special mod_advertise module, proxies can advertise their existence by periodically
broadcasting a multicast message containing its address/port.

This functionality is enabled via the advertise configuration property. If configured to listen, a server
can learn of the proxy's existence, then notify that proxy of its own existence, and update its
configuration accordingly. This frees both the proxy and the server from having to define static,
environment-specific configuration values.

Table 10.1. Proxy Discovery

Attribute Default Description

proxyList None Defines a comma-separated list of
httpd proxies with which this
node will initially communicate.
Value should be of the form:

address1:port1,address2
:port2

Using the default configuration,
this property can by manipulated
via the
jboss.modcluster.proxyL
ist system property.

excludedContexts ROOT,admin-
console,invoker,jbossws,jmx-
console,juddi,web-console

List of contexts to exclude from
httpd registration, of the form:

host1:context1,host2:co
ntext2,host3:context3

If no host is indicated, it is
assumed to be the default host of
the server (e.g. localhost).
"ROOT" indicates the root
context. Using the default
configuration, this property can
by manipulated via the
jboss.modcluster.exclud
edContexts system property.

CHAPTER 10. JAVA PROPERTIES

39

autoEnableContexts True If false, the contexts are
registered disabled in httpd, they
need to be enabled via the
enable() MBean method or via
mod_cluster_manager.

stopContextTimeout 10 The number of seconds to wait for
clean shutdown of a context,. This
could be the completion of all
pending requests for a
distributable context or the
destruction/expiration of active
sessions for a non-distributable
context.

proxyURL None If defined, this value will be
prepended to the URL of MCMP
commands.

socketTimeout 20000 Number of milliseconds to wait for
a response from an httpd proxy to
MCMP commands before timing
out and flagging the proxy as in
error.

advertise This is true if proxyList is
undefined, false otherwise.

If enabled, httpd proxies will be
auto-discovered via multicast
announcements. This can be used
either in concert or in place of a
static proxyList.

advertiseGroupAddress 224.0.1.105 The UDP address on which to
listen for httpd proxy multicast
advertisements.

advertisePort 23364 The UDP port on which to listen
for httpd proxy multicast
advertisements.

advertiseSecurityKey None If specified, httpd proxy
advertisements checksums will be
verified using this value as a salt.

Attribute Default Description

10.1.2. Proxy Configuration

The following configuration values are sent to proxies during server startup, when a proxy is detected
via the advertise mechanism, or during the resetting of a proxy's configuration during error recovery.

Table 10.2. Proxy Configuration

HTTP Connectors Load Balancing Guide

40

Attribute Default Description

stickySession true Indicates whether subsequent
requests for a given session
should, if possible, be routed to
the same node.

stickySessionRemove false Indicates whether the httpd proxy
should remove session stickiness
in the event that the balancer is
unable to route a request to the
node to which it is stuck. This
property is ignored if
stickySession is false.

stickySessionForce true Indicates whether the httpd proxy
should return an error in the
event that the balancer is unable
to route a request to the node to
which it is stuck. This property is
ignored if stickySession is
false.

workerTimeout -1 Number of seconds to wait for a
worker to become available to
handle a request. When all the
workers of a balancer are
unusable, mod_cluster will retry
after a specified period
(workerTimeout/100) to find a
usable worker.

A value of -1 indicates that the
httpd will not wait for a worker to
be available and will return an
error if none is available.

maxAttempts 1 Number of times an httpd proxy
will attempt to send a given
request to a worker before giving
up. The minimum value is 1,
meaning try only once.

Note that mod_proxy default is
also 1: no retry.

flushPackets false Enables/disables packet flushing.

flushWait -1 Time to wait before flushing
packets. A value of -1 means
wait forever.

ping 10 seconds Time to wait for an answer to a
ping.

CHAPTER 10. JAVA PROPERTIES

41

smax Determined by httpd
configuration.

Soft maximum idle connection
count (that is the smax in worker
mod_proxy documentation). The
maximum value depends on the
httpd thread configuration
(ThreadsPerChild or 1).

ttl 60 seconds Time to live (in seconds) for idle
connections above smax.

nodeTimeout -1 (none) Timeout (in seconds) for proxy
connections to a node. That is the
time mod_cluster will wait for the
back-end response before
returning an error.

This corresponds to timeout in
the worker mod_proxy
documentation.

Note that mod_cluster always
uses a CPing/CPong before
forwarding a request and the
connectiontimeout value
used by mod_cluster is the ping
value.

balancer mycluster The balancer name.

domain None If specified, load will be balanced
among jvmRoutes with the
same domain. This is primarily
used in conjunction with
partitioned session replication
(e.g. buddy replication).

Attribute Default Description

Note: When nodeTimeout is not defined the ProxyTimeout directive Proxy is used. If ProxyTimeout
is not defined the server timeout (Timeout) is used (default 300 seconds). nodeTimeout,
ProxyTimeout or Timeout is set at the socket level.

10.1.3. SSL Configuration

The communication channel between application servers and httpd proxies uses HTTP by default. This
channel can be secured using HTTPS by setting the ssl parameter to true.

Note: This HTTP/HTTPS channel should not be confused with the processing of HTTP/HTTPS
client requests.

Table 10.3. SSL Configuration

HTTP Connectors Load Balancing Guide

42

Attribute Default Description

ssl false Should connection to proxy use a
secure socket layer.

sslCiphers The default JSSE cipher suites Overrides the cipher suites used
to init an SSL socket ignoring any
unsupported ciphers.

sslProtocol TLS Overrides the default SSL socket
protocol.

sslCertificateEncodingA
lgorithm

The default JSSE key manager
algorithm.

The algorithm of the key manager
factory.

sslKeyStore System.getProperty("use
r.home") + "/.keystore"

The location of the key store
containing client certificates.

sslKeyStorePass changeit The password granting access to
the key store.

sslKeyStoreType JKS The type of key store.

sslKeyStoreProvider The default JSSE security
provider.

The key store provider.

sslTrustAlgorithm The default JSSE trust manager
algorithm.

The algorithm of the trust
manager factory.

sslKeyAlias The alias of the key holding the
client certificates in the key store.

sslCrlFile Certificate revocation list.

sslTrustMaxCertLength 5 The maximum length of a
certificate held in the trust store.

sslTrustStore System.getProperty("jav
ax.net.ssl.trustStorePa
ssword")

The location of the file containing
the trust store.

sslTrustStorePassword System.getProperty("jav
ax.net.ssl.trustStore")

The password granting access to
the trust store.

sslTrustStoreType System.getProperty("jav
ax.net.ssl.trustStoreTy
pe")

The trust store type.

sslTrustStoreProvider System.getProperty("jav
ax.net.ssl.trustStorePr
ovider")

The trust store provider.

CHAPTER 10. JAVA PROPERTIES

43

10.1.4. HA Configuration

Additional configuration properties when mod_cluster is configured in clustered mode.

Table 10.4. HA Configuration

Attribute Default Description

masterPerDomain false If the domain directive is used,
should HA partition use a
singleton master per domain.

10.1.5. Load Configuration

Additional configuration properties used when mod_cluster is configured in JBoss Web standalone or
Tomcat.

Table 10.5. Load Configuration

Attribute Default Description

loadMetricClass org.jboss.modcluster.lo
ad.metric.impl.BusyConn
ectorsLoadMetric

Class name of an object
implementing
org.jboss.load.metric.L
oadMetric.

loadMetricCapacity 1 The capacity of the load metric
defined via the
loadMetricClass property.

loadHistory 9 The number of historic load
values to consider in the load
balance factor computation.

loadDecayFactor 2 The factor by which a historic
load values should degrade in
significance.

HTTP Connectors Load Balancing Guide

44

CHAPTER 11. LOAD METRICS

11.1. SERVER-SIDE LOAD METRICS

A major feature of mod_cluster is the ability to use server-side load metrics to determine how best to
balance requests.

The DynamicLoadBalanceFactorProvider bean computes the load balance factor of a node from
a defined set of load metrics.

Load metrics can be configured with an associated weight and capacity:

1. The weight (default is 1) indicates the significance of a metric with respect to the other
metrics. For example, a metric of weight 2 will have twice the impact on the overall load factor
than a metric of weight 1.

2. The capacity of a metric serves 2 functions:

Each load metric contributes a value to the overall load factor of a node. The load factors from each
metric are aggregated according to their weights.

In general, the load factor contribution of given metric is:

The DynamicLoadBalanceFactorProvider applies a time decay function to the loads returned by each
metric. The aggregate load, with respect to previous load values, can be expressed by the following
formula:

... or more concisely as:

<bean name="DynamicLoadBalanceFactorProvider" class="org.jboss.modcluster.
load.impl.DynamicLoadBalanceFactorProvider" mode="On Demand">
 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jboss.we
b:service=LoadBalanceFactorProvider",exposedInterface=org.jboss.modcluster
.load.impl.DynamicLoadBalanceFactorProviderMBean.class)</annotation>
 <constructor>
 <parameter>
 <set elementClass="org.jboss.modcluster.load.metric.LoadMetric">
 <inject bean="BusyConnectorsLoadMetric"/>
 <inject bean="HeapMemoryUsageLoadMetric"/>
 </set>
 </parameter>
 </constructor>
 <property name="history">9</property>
 <property name="decayFactor">2</property>
</bean>

(load ÷ capacity) × weight ÷ total weight

L = (L0 + L1⁄D + L2⁄D2 + L3⁄D3 + ... + LH⁄DH) × (1 + D + D2 + D3 + ... DH)

H H
L = ∑ Li/Di * ∑ Di
i=0 i=0

CHAPTER 11. LOAD METRICS

45

... where D = decayFactor and H = history.

Setting history = 0 effectively disables the time decay function and only the current load for each
metric will be considered in the load balance factor computation.

The mod_cluster proxy module expects the load factor to be an integer between 0 and 100, where 0
indicates max load and 100 indicates zero load. Therefore, the final load balance factor sent to the
proxy is:

While you are free to write your own load metrics, the following LoadMetrics are available out of the
box:

11.2. WEB CONTAINER METRICS

1. ActiveSessionsLoadMetric

Requires an explicit capacity.

Uses SessionLoadMetricSource to query session managers

Analogous to method=S in mod_jk

For example:

2. BusyConnectorsLoadMetric

Returns the percentage of connector threads from the thread pool that are busy servicing
requests

Uses ThreadPoolLoadMetricSource to query connector thread pools

Analogous to method=B in mod_jk

For example:

100 - (L × 100)

<bean name="ActiveSessionsLoadMetric" class="org.jboss.modcluster.lo
ad.metric.impl.ActiveSessionsLoadMetric" mode="On Demand">
 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jb
oss.web:service=ActiveSessionsLoadMetric",exposedInterface=org.jboss
.modcluster.load.metric.LoadMetricMBean.class)</annotation>
 <constructor>
 <parameter><inject bean="SessionLoadMetricSource"/></parameter>
 </constructor>
 <property name="capacity">1000</property>
</bean>
<bean name="SessionLoadMetricSource" class="org.jboss.modcluster.loa
d.metric.impl.SessionLoadMetricSource" mode="On Demand">
 <constructor>
 <parameter class="javax.management.MBeanServer"><inject bean="JM
XKernel" property="mbeanServer"/></parameter>
 </constructor>
</bean>

HTTP Connectors Load Balancing Guide

46

3. ReceiveTrafficLoadMetric

Returns the incoming request traffic in KB/sec

Requires an explicit capacity

Uses RequestProcessorLoadMetricSource to query request processors

Analogous to method=T in mod_jk

For example:

4. SendTrafficLoadMetric

Returns the outgoing request traffic in KB/sec

Requires an explicit capacity

<bean name="BusyConnectorsLoadMetric" class="org.jboss.modcluster.lo
ad.metric.impl.BusyConnectorsLoadMetric" mode="On Demand">
 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jb
oss.web:service=BusyConnectorsLoadMetric",exposedInterface=org.jboss
.modcluster.load.metric.LoadMetricMBean.class)</annotation>
 <constructor>
 <parameter><inject bean="ThreadPoolLoadMetricSource"/></paramete
r>
 </constructor>
</bean>
<bean name="ThreadPoolLoadMetricSource" class="org.jboss.modcluster.
load.metric.impl.ThreadPoolLoadMetricSource" mode="On Demand">
 <constructor>
 <parameter class="javax.management.MBeanServer"><inject bean="JM
XKernel" property="mbeanServer"/></parameter>
 </constructor>
</bean>

<bean name="ReceiveTrafficLoadMetric" class="org.jboss.modcluster.lo
ad.metric.impl.ReceiveTrafficLoadMetric" mode="On Demand">
 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jb
oss.web:service=ReceiveTrafficLoadMetric",exposedInterface=org.jboss
.modcluster.load.metric.LoadMetricMBean.class)</annotation>
 <constructor>
 <parameter class="org.jboss.modcluster.load.metric.impl.RequestP
rocessorLoadMetricSource"><inject bean="RequestProcessorLoadMetricSo
urce"/></parameter>
 </constructor>
 <property name="capacity">1024</property>
</bean>
<bean name="RequestProcessorLoadMetricSource" class="org.jboss.modcl
uster.load.metric.impl.RequestProcessorLoadMetricSource" mode="On De
mand">
 <constructor>
 <parameter class="javax.management.MBeanServer"><inject bean="JM
XKernel" property="mbeanServer"/></parameter>
 </constructor>
</bean>

CHAPTER 11. LOAD METRICS

47

Uses RequestProcessorLoadMetricSource to query request processors

Analogous to method=T in mod_jk

For example:

5. RequestCountLoadMetric

Returns the number of requests/sec

Requires an explicit capacity

Uses RequestProcessorLoadMetricSource to query request processors

Analogous to method=R in mod_jk

For example:

11.3. SYSTEM/JVM METRICS

1. AverageSystemLoadMetric

Returns CPU load

Requires Java 1.6+.

Uses OperatingSystemLoadMetricSource to generically read attributes

For example:

<bean name="SendTrafficLoadMetric" class="org.jboss.modcluster.load.
metric.impl.SendTrafficLoadMetric" mode="On Demand">
 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jb
oss.web:service=SendTrafficLoadMetric",exposedInterface=org.jboss.mo
dcluster.load.metric.LoadMetricMBean.class)</annotation>
 <constructor>
 <parameter class="org.jboss.modcluster.load.metric.impl.RequestP
rocessorLoadMetricSource"><inject bean="RequestProcessorLoadMetricSo
urce"/></parameter>
 </constructor>
 <property name="capacity">512</property>
</bean>

<bean name="RequestCountLoadMetric" class="org.jboss.modcluster.load
.metric.impl.RequestCountLoadMetric" mode="On Demand">
 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jb
oss.web:service=RequestCountLoadMetric",exposedInterface=org.jboss.m
odcluster.load.metric.LoadMetricMBean.class)</annotation>
 <constructor>
 <parameter class="org.jboss.modcluster.load.metric.impl.RequestP
rocessorLoadMetricSource"><inject bean="RequestProcessorLoadMetricSo
urce"/></parameter>
 </constructor>
 <property name="capacity">1000</property>
</bean>

HTTP Connectors Load Balancing Guide

48

2. SystemMemoryUsageLoadMetric

Returns system memory usage

Requires com.sun.management.OperatingSystemMXBean (available in Sun's JDK or
OpenJDK)

Uses OperatingSystemLoadMetricSource to generically read attributes

For example:

3. HeapMemoryUsageLoadMetric

Returns the heap memory usage as a percentage of max heap size

For example:

11.4. OTHER METRICS

1. ConnectionPoolUsageLoadMetric

<bean name="AverageSystemLoadMetric" class="org.jboss.modcluster.loa
d.metric.impl.AverageSystemLoadMetric" mode="On Demand">
 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jb
oss.web:service=AverageSystemLoadMetric",exposedInterface=org.jboss.
modcluster.load.metric.LoadMetricMBean.class)</annotation>
 <constructor>
 <parameter><inject bean="OperatingSystemLoadMetricSource"/></par
ameter>
 </constructor>
</bean>
<bean name="OperatingSystemLoadMetricSource" class="org.jboss.modclu
ster.load.metric.impl.OperatingSystemLoadMetricSource" mode="On Dema
nd">
</bean>

<bean name="SystemMemoryUsageLoadMetric" class="org.jboss.modcluster
.load.metric.impl.SystemMemoryUsageLoadMetric" mode="On Demand">
 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jb
oss.web:service=SystemMemoryUsageLoadMetric",exposedInterface=org.jb
oss.modcluster.load.metric.LoadMetricMBean.class)</annotation>
 <constructor>
 <parameter><inject bean="OperatingSystemLoadMetricSource"/></par
ameter>
 </constructor>
</bean>

<bean name="HeapMemoryUsageLoadMetric" class="org.jboss.modcluster.l
oad.metric.impl.HeapMemoryUsageLoadMetric" mode="On Demand">
 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jb
oss.web:service=HeapMemoryUsageLoadMetric",exposedInterface=org.jbos
s.modcluster.load.metric.LoadMetricMBean.class)</annotation>
</bean>

CHAPTER 11. LOAD METRICS

49

Returns the percentage of connections from a connection pool that are in use.

Uses ConnectionPoolLoadMetricSource to query JCA connection pools

For example:

<bean name="ConnectionPoolUsageMetric" class="org.jboss.modcluster.load.me
tric.impl.ConnectionPoolUsageLoadMetric" mode="On Demand"> <annotation>@or
g.jboss.aop.microcontainer.aspects.jmx.JMX(name="jboss.web:service=Connect
ionPoolUsageLoadMetric",exposedInterface=org.jboss.modcluster.load.metric.
LoadMetricMBean.class)</annotation>
<constructor>
 <parameter><inject bean="ConnectionPoolLoadMetricSource"/></parameter>
 </constructor>
</bean>
<bean name="ConnectionPoolLoadMetricSource" class="org.jboss.modcluster.lo
ad.metric.impl.ConnectionPoolLoadMetricSource" mode="On Demand">
 <constructor>
 <parameter class="javax.management.MBeanServer"><inject bean="JMXKerne
l" property="mbeanServer"/></parameter> </constructor>
</bean>

HTTP Connectors Load Balancing Guide

50

CHAPTER 12. LOAD BALANCING DEMONSTRATION
The JBoss HTTP Connector includes a load balancing demonstration to show how different server-side
scenarios affect the client request routing performed by the load balancing proxy server. The required
configuration is located in the JBOSS_EAP_DIST/mod_cluster/demo directory.

The application consists of two primary components:

/server/load-demo.war

A WAR file to be deployed in JBoss Enterprise Application Platform or JBoss Enterprise Web
Server. This WAR includes a number of servlets.

/client/lib/mod-cluster-demo.jar

A web application that lets users launch a pool of threads, by sending requests through the load
balancer to the application's primary servlet. The application displays information about which
servers are handling the requests. It can also send separate requests to the application's load-
generation servlets, allowing the user to see how certain load conditions affect request load
balancing.

This application can be used to demonstrate how different worker-side scenarios impact the routing
decisions of the proxy server.

IMPORTANT

If running the demonstration on JBoss Enterprise Web Server, the only metrics
available will be System, and JVM metrics. The demonstration application is not
designed to interact with any other metrics in Tomcat 6.

NOTE

The demonstration application does not show the maximum load a cluster configuration
can handle.

12.1. SET UP THE DEMONSTRATION

The following procedure summarizes how to set up and start the demonstration. These steps will then
be explained in further detail. Once the demonstration is running, refer to Section 12.3, “Interact with
the demonstration”.

Task: Start the Demo

Complete this task to set up the base requirements of the demonstration.

Prerequisites

Install and Configure the Worker Node. Refer to Section 8.2, “Install and configure a worker
node”

Install and Configure the Proxy Server. Refer to Section 9.1, “Static proxy configuration”

1. Start the Proxy Server
Navigate to HTTPD_DIST/sbin and start the proxy server.

CHAPTER 12. LOAD BALANCING DEMONSTRATION

51

[sbin]$ apachectl start

2. Start the Worker Node
In a terminal, execute the following command:

For JBoss Enterprise Web Server:

[home]$./JBOSS_EWS_DIST/tomcat6/bin/startup.sh

For JBoss Enterprise Application Platform:

[home]$./JBOSS_EAP_DIST/bin/run.sh

3. On JBoss Enterprise Web Server, specify the Catalina Service Name
Tomcat 6 only: In $JBOSS_EWS_DIST/mod_cluster/src/demo/resources/web.xml,
under the <web-app> element, append a <context-param> directive, which specifies
Catalina as a service.

4. Deploy Demo Web Archive to Worker Node
Copy load-demo.war from JBOSS-EAP_DIST/mod_cluster/demo/server into one of the
following directories:

For JBoss Enterprise Web Server:

JBOSS_EWS_DIST/tomcat6/webapps

For JBoss Enterprise Application Platform:

JBOSS_EAP_DIST/jboss-as/server/PROFILE/deploy

5. Start the Demonstration
Navigate to JBOSS_EAP_DIST/mod_cluster/demo/client/, and start the demonstration.

[client]$./run-demo.sh

Result

The demonstration starts, and the Load Balancing Demonstration window opens. Proceed to
Task: Configure Client Control Tab Fields

<context-param>
 <param-name>service-name</param-name>
 <param-value>Catalina</param-value>
</context-param>

HTTP Connectors Load Balancing Guide

52

12.2. CONFIGURE THE DEMO CLIENT

You must configure the demonstration's Client Control parameters to ensure the client operates as
expected throughout the demonstration.

Task: Configure Client Control Tab Fields

Complete this task to configure the Client Control tab of the Load Balancing Demonstration.

Terms

Proxy Hostname

Hostname of the load-balancing proxy server, or the IP address on which the proxy server is
listening for requests. The default value for this field is localhost, or determined by the
mod_cluster.proxy.host system property, if set.

Edit the -Dmod_cluster.proxy.host=localhost value in run-demo.sh to avoid re-setting
this value each time you use the demo.

Proxy Port

Port on which the load-balancing proxy server listens for requests. The default value is 8000, or
determined by the mod_cluster.proxy.port property, if set.

Edit the -Dmod_cluster.proxy.port=8000 value in run-demo.sh to avoid re-setting this
value each time you use the demo.

Context Path

The part of the request URL that specifies the request is for load-demo.war.

Session Life

CHAPTER 12. LOAD BALANCING DEMONSTRATION

53

Number of seconds a client thread should use a session before invalidating or abandoning it. This
should be a small value, or session stickiness can prevent changes in server load from affecting the
proxy server's routing decisions. When sticky sessions are enabled (strongly recommended), the
creation of new sessions allows the proxy to balance the workload.

Invalidate

When checked, specifies that a session is invalidated by the client thread when the thread stops
using a session. When unchecked, the session is abandoned, and exists on the worker node until the
session timeout expires.

Session Timeout

The number of seconds a session can remain unused before the worker node can expire and remove
the session.

Deselecting Invalidate and setting a high value relative to session life causes a significant
number of unused sessions to accumulate on the server.

Num Threads

Number of client threads to launch. Each thread repeatedly makes requests until the Stop button is
pressed, or a request receives a response other than HTTP 200.

Sleep Time

Number of milliseconds that client threads should sleep between requests.

Startup Time

Number of seconds over which the application should stagger client thread start-up. Staggering the
start time of sessions avoids the unrealistic situation where all sessions start and end almost
simultaneously. Staggering the start time allows the proxy to continually see new sessions and
decide how to route them.

Prerequisites

Complete Task: Start the Demo before continuing with this task.

1. Click the Client Control tab.

2. Supply values for all fields on the Client Control tab, referring to the list of terms above.

3. Once you have specified the values, proceed to Task: Interact with the Demonstration .

12.3. INTERACT WITH THE DEMONSTRATION

Terms

Active Sessions

A session is considered active if a client thread will ever send a request associated with the session.
When client threads stop using a session, they can either send a request to invalidate it, or abandon
it by no longer including its session cookie in requests.

Once a session has been abandoned, it is no longer reflected in the Session Balancing chart, but will
continue to exist on the worker node until it is removed based on session timeout values.

HTTP Connectors Load Balancing Guide

54

Total Clients

The number of client threads created since the last time the Start button was clicked.

Live Clients

The number of client threads currently running.

Failed Clients

The number of clients threads that terminated abnormally, for example, a request that resulted in
something other than a HTTP 200 response.

This section shows you how to configure and start using the demo.

Task: Interact with the Demonstration

Complete this task to test the effects of changing load-balancing parameters.

Prerequisites

Complete Task: Start the Demo.

Complete Task: Configure Client Control Tab Fields .

1. Click on the Request Balancing tab to see how many requests are going to each of the
worker nodes.

2. Click on the Session Balancing tab to see how many active sessions are being hosted by
each of the worker nodes.

3. Stop some of the worker nodes, or undeploy load-demo.war, and observe the effect that this
has on request and session balancing.

4. Restart some of the worker nodes, or re-deploy the load-demo.war to some of the workers,
and observe the effect that this has on request and session balancing.

5. Experiment with adding artificial load to one or more worker nodes and observe the effects on
load and session balancing. (See Section 12.3.1, “Generate artificial load” for details.)

12.3.1. Generate artificial load

You can use the Load Balancing Demonstration to instruct your worker nodes to generate various
types of load, and then track how that load affects request and session balancing. Load generation is
controlled in the Server Load Control tab:

Target Hostname, Target Port

The hostname and port number of the server on which to generate load. There are two strategies
for setting these values:

1. Use the hostname and port of the proxy server. The proxy will route the load to a worker
node. However, the client does not maintain a session cookie for these requests, so
subsequent generated load will not necessarily be routed to the same worker.

CHAPTER 12. LOAD BALANCING DEMONSTRATION

55

2. If the worker nodes are running the HttpConnector and the AJP connector, you can specify
the IP address and port on which a worker's HttpConnector is listening. (The default is
8080.)

Load Creation Action

Specifies the type of load the worker node should generate.

Available Actions

Active Sessions

Generates server load by causing session creation on the target server.

Datasource Use

Generates server load by taking connections from the java:DefaultDS datasource for a set
time.

Connection Pool Use

Generates server load by blocking threads in the webserver connections pool for a set time.

Heap Memory Pool Use

Generates server load by filling 50% of free heap memory for a set time.

CPU Use

Generates server CPU load by initiating a tight loop in a thread.

Server Receive Traffic

Generates server traffic receipt load by POSTing a large byte array to the server once per
second for a set time.

Server Send Traffic

Generates server traffic send load by making a request once per second, to which the server
responds with a large byte array.

Request Count

Generates server load by making numerous requests, increasing the request count on the target
server.

Params

Zero or more parameters to pass to the specified load creation servlet, for example, Number of
Connections and Duration, as seen in the screenshot. The parameters displayed, their name, and
their meaning depend on the selected Load Creation Action. The label for each parameter includes
a tooltip that explains its use.

HTTP Connectors Load Balancing Guide

56

PART III. INTERNET SERVER API (ISAPI)

PART III. INTERNET SERVER API (ISAPI)

57

CHAPTER 13. OVERVIEW
Read this chapter for a brief introduction about the Internet Server Application Programming Interface
(ISAPI).

13.1. WHAT IS INTERNET SERVER API

Internet Server Application Programming Interface (ISAPI) is a multi-tier application programming
interface for Microsoft Internet Information Services (IIS) web servers, and other compatible third-
party web servers.

Two application types exist for ISAPI applications:

Extensions (full applications that run on IIS); and

Filters (applications that modify or enhance IIS functionality by constantly filtering for
requests relevant to their functionality).

ISAPI applications are implemented by compiling Extensions or Filters into Dynamic Link Library (DLL)
files. These DLLs must then be registered with the web server before they are available for use.

HTTP Connectors Load Balancing Guide

58

CHAPTER 14. CONFIGURING THE ISAPI CONNECTOR ON
WINDOWS
Read this chapter to learn how to configure the ISAPI connector to use JBoss Enterprise Application
Platform as a worker node for a Windows Server 2003 or 2008 master node.

14.1. PREREQUISITES AND CONFIGURATION ASSUMPTIONS

Complete the following prerequisites before continuing with the tasks that follow:

On the master node install one of the following technology combinations, and the appropriate
Native binary for its operating system and architecture.

Windows Server 2003 (32-bit) with Microsoft IIS 6

Windows Server 2003 (64-bit) with Microsoft IIS 6

Windows Server 2008 (32-bit) with Microsoft IIS 7.0

Windows Server 2008 (64-bit) with Microsoft IIS 7.0

On the worker nodes install JBoss Enterprise Application Platform 5.2 or later. The Native
components are optional for worker nodes.

Refer to the Installation Guide for assistance with these installation prerequisites.

14.2. CONFIGURE SERVER INSTANCE AS A WORKER NODE

Task: Configure Server Instance as a Worker Node

Complete this task to correctly configure your JBoss Enterprise Application Platform instance as a
worker node for use with Microsoft Internet Information Services (IIS).

Prerequisites

Section 14.1, “Prerequisites and configuration assumptions”

1. Create a server profile for each worker node
Make a copy of the server profile you want to configure as a worker node, and rename it -
worker-01 for example.

2. Give each instance a unique name
Edit the following line in the PROFILE\deploy\jbossweb.sar\server.xml file of each
new worker instance:

<Engine name="jboss.web" defaultHost="localhost">

Add a unique jvmRoute value, as shown. This value is the identifier for this node in the
cluster.

<Engine name="jboss.web" defaultHost="localhost" jvmRoute="worker-
01">

CHAPTER 14. CONFIGURING THE ISAPI CONNECTOR ON WINDOWS

59

3. Enable session handling
Uncomment the following line in the PROFILE\deployers\jbossweb.deployer\META-
INF\war-deployers-jboss-beans.xml file of each worker node:

<property name="useJK">false</property>

This property controls whether special session handling is used to coordinate with mod_jk and
other connector variants. Set this property to true in both worker nodes:

<property name="useJK">true</property>

4. Start worker nodes
Start each worker node in a separate command line interface. Ensure that each node is bound
to a different IP address with the --host switch and that the profile is specified with the -c
switch.

JBOSS_EAP_DIST\bin\run.bat --host=127.0.0.1 -c worker-01

14.3. MICROSOFT IIS 6 INITIAL CLUSTERING CONFIGURATION

Microsoft IIS 6 contains basic ISAPI filters and ISAPI mapping as part of the default installation. Here
we create a filter to direct web requests to JBoss Enterprise Application Platform.

Task: Define ISAPI Filter

Complete this task to define the ISAPI Filter on the Master server using the management console.

1. On the master server, open IIS Manager:

Start → Run , then type inetmgr and hit Enter.

Start → Control Panel → Administrative Tools → Internet Information Services (IIS)
Manager

The IIS 6 Manager window opens.

2. In the tree view pane, expand Web Sites

3. Right click on Default Web Site, and then click Properties

The Properties window opens.

4. Click the ISAPI Filters tab.

5. Click the Add button, and specify the following values in the Add/Edit Filter
Properties window:

Filter name:

Specify jboss (exactly as written).

Executable:

Specify NATIVE\sbin\isapi_redirect.dll .

HTTP Connectors Load Balancing Guide

60

6. Click OK to save the values, and close the Add/Edit Filter Properties dialog.

NOTE

The ISAPI Filters tab now displays the jboss filter status and priority as
Unknown because IIS has not yet received requests for the resource. The status
and priority will change to Loaded and High respectively once a request is
executed.

Task: Define ISAPI Virtual Directory

Complete this task to define the ISAPI virtual directory using the IIS management console.

1. Right click on Default Web Site, and then click New → Add Virtual Directory .

The Add Virtual Directory window opens.

2. Specify the following values in the Add Virtual Directory window:

Alias:

Specify jboss (exactly as written).

Physical path:

Specify NATIVE\sbin\ .

3. Click OK to save the values and close the Add Virtual Directory window.

4. In the tree view pane, expand Web Sites → Default Web Site .

5. Right click on the jboss virtual directory, and then click Properties .

6. Click the Virtual Directory tab, and make the following changes:

Execute Permissions:

Select Scripts and Executables .

Read check box:

Select to activate Read access.

7. Click OK to save the values and close the jboss Properties window.

Task: Define ISAPI Web Service Extension

Complete this task to define the ISAPI web service extension using the management console.

1. Click Web Service Extensions, and in the Tasks group select Add a new Web service
extension.

The New Web Service Extension window opens.

2. Add the following values to the New Web Service Extension window:

CHAPTER 14. CONFIGURING THE ISAPI CONNECTOR ON WINDOWS

61

Extension name:

Specify jboss (exactly as written).

Required files:

Specify the path NATIVE\sbin\isapi_redirect.dll .

Set extension status to Allowed:

Select the check box.

3. Click OK to save the values and close the New Web Service Extension window.

4. Confirm the jboss Web Service Extension displays in the list.

14.4. MICROSOFT IIS 7 INITIAL CLUSTERING CONFIGURATION

Microsoft IIS 7 can be managed using the Management Console, or through the command prompt using
the APPCMD.EXE command tool.

Terms

ISAPI and CGI Restrictions

ISAPI and CGI restrictions are request handlers that allow dynamic content to execute on a server.
These restrictions are either CGI files (.exe) or ISAPI extensions (.dll). You can add custom ISAPI
or CGI restrictions if the IIS configuration system allows this. [Configuring ISAPI and CGI
Restrictions in IIS 7] .

Task: Define a JBoss Native ISAPI Restriction

Complete this task to define an ISAPI Restriction using the management console.

1. On the master server, open IIS Manager:

Start → Run , then type inetmgr and hit Enter.

Start → Control Panel → Administrative Tools → Internet Information Services (IIS)
Manager

The IIS 7 Manager window opens.

2. In the tree view pane, select IIS 7 (referred to as Server Home).

The IIS 7 Home Features View opens.

3. Double-click ISAPI and CGI Restrictions.

The ISAPI and CGI Restrictions Features View opens.

4. In the Actions pane, click Add.

The Add ISAPI or CGI Restriction window opens.

5. Specify the following values in the Add ISAPI or CGI Restriction window:

HTTP Connectors Load Balancing Guide

62

http://technet.microsoft.com/en-us/library/cc730912(WS.10).aspx

ISAPI or CGI Path:

Specify NATIVE\sbin\isapi_redirect.dll .

Description:

Specify jboss (exactly as written).

Allow extension path to execute

Select the check box.

6. Click OK to save the values, and close the Add ISAPI or CGI Restriction window.

NOTE

The ISAPI and CGI Restrictions Features View now displays the jboss
restriction and path.

Task: Define a JBoss Native Virtual Directory

Complete this task to define a virtual directory for the JBoss Native binary using the management
console.

1. Right click on Default Web Site, and then click Add Virtual Directory .

The Add Virtual Directory window opens

2. Specify the following values in the Add Virtual Directory window:

Alias:

Specify jboss (exactly as written).

Physical path:

Specify NATIVE\sbin\ .

3. Click OK to save the values and close the Add Virtual Directory window.

Task: Define a JBoss Native ISAPI Redirect Filter

Complete this task to define a JBoss Native ISAPI Redirect Filter using the management console.

1. In the tree view pane, expand Sites → Default Web Site .

2. Double-click ISAPI Filters.

The ISAPI Filters Features View opens.

3. In the Actions pane, click Add.

The Add ISAPI Filter window opens.

4. Specify the following values in the Add ISAPI Filter window:

CHAPTER 14. CONFIGURING THE ISAPI CONNECTOR ON WINDOWS

63

Filter name:

Specify jboss (exactly as written).

Executable:

Specify NATIVE\sbin\isapi_redirect.dll .

5. Click OK to save the values and close the Add ISAPI Filters window.

Task: Enable the ISAPI-dll Handler

Complete this task to enable the ISAPI-dll handler using the management console.

1. In the tree view pane, select IIS 7 (referred to as Server Home).

The IIS 7 Home Features View opens.

2. Double-click Handler Mappings.

The Handler Mappings Features View opens.

3. In the Group by drop down box, select State .

The Handler Mappings are displayed in Enabled and Disabled groups.

4. If ISAPI-dll is in the Disabled group, right mouse click and select Edit Feature Permissions
.

5. Ensure the Read, Script, and Execute check boxes are selected.

6. Click OK to save the values and close the Edit Feature Permissions window.

14.5. CONFIGURE A BASIC CLUSTER WITH ISAPI

Task: Configure ISAPI to serve a Basic Cluster

Complete this task to configure ISAPI to manage applications common to all servers on a single IP
address range, and route application requests to the correct server instance.

Use the configuration as an example when configuring your ISAPI cluster.

NOTE

This task does not provide instructions for load-balancing or server outage fail over.
Refer to Section 14.6, “Configure a load-balancing cluster with ISAPI” for configuration
instructions.

Prerequisites

Complete the relevant Microsoft IIS clustering setup procedure. Refer to Section 14.3,
“Microsoft IIS 6 initial clustering configuration” or Section 14.4, “Microsoft IIS 7 initial
clustering configuration” for more information.

The following steps assume that the C:\connectors directory is used to store logs,

HTTP Connectors Load Balancing Guide

64

properties files, and NSAPI locks.

1. Create isapi_redirect.properties file
Create a new file named isapi_redirect.properties in the NATIVE\sbin\ directory.

IMPORTANT

The isapi_redirect.properties file must be in the same directory as the
isapi_redirect.dll file.

Append the following configuration block to isapi_redirect.properties:

2. Optional: Create rewrite.properties file
The rewrite.properties file allows you to specify simple URL rewrites specific to an
application. This configuration file is optional, and can be excluded from the
isapi_redirect.properties file if URL rewrites are not required.

The functionality offered is similar to Apache HTTP Server's mod_rewrite, but is less powerful.
You specify the rewrite path using name-value pairs. A simple example is where the app_01
application has an abstract directory name, containing images, and you want to remap that
directory to something more intuitive.

3. Create uriworkermap.properties file
The uriworkermap.properties file contains deployed application mapping configuration
information. Append the following lines to the file.

Configuration file for the ISAPI Redirector
Extension uri definition
extension_uri=/jboss/isapi_redirect.dll

Full path to the log file for the ISAPI Redirector
log_file=c:\connectors\isapi_redirect.log

Log level (debug, info, warn, error or trace)
Use debug only testing phase, for production switch to info
log_level=debug

Full path to the workers.properties file
worker_file=c:\connectors\workers.properties

Full path to the uriworkermap.properties file
worker_mount_file=c:\connectors\uriworkermap.properties

#Full path to the rewrite.properties file
rewrite_rule_file=c:\connectors\rewrite.properties

#Simple example, images are accessible under abc path
/app-01/abc/=/app-01/images/

images and css files for path /status are provided by worker01
/status=worker01
/images/*=worker01
/css/*=worker01

CHAPTER 14. CONFIGURING THE ISAPI CONNECTOR ON WINDOWS

65

4. Create workers.properties file
The worker.properties file contains mapping definitions between worker labels and server
instances. Append the following lines to the file.

5. Restart IIS
Restart your IIS server to implement the changes. Execute the following commands for the IIS
version you are running:

IIS 6

C:\> net stop iisadmin /Y
C:\> net start w3svc

IIS 7

C:\> net stop was /Y
C:\> net start w3svc

Path /web-console is provided by worker02
IIS (customized) error page is used for http errors with number
greater or equal to 400
css files are provided by worker01
/web-console/*=worker02;use_server_errors=400
/web-console/css/*=worker01

Example of exclusion from mapping, logo.gif will not be displayed
!/web-console/images/logo.gif=*

Requests to /app-01 or /app-01/something will be routed to
worker01
/app-01|/*=worker01

Requests to /app-02 or /app-02/something will be routed to
worker02
/app-02|/*=worker02

An entry that lists all the workers defined
worker.list=worker01, worker02

Entries that define the host and port associated with these
workers

First EAP server definition, port 8009 is standard port for AJP in
EAP
worker.worker01.host=127.0.0.1
worker.worker01.port=8009
worker.worker01.type=ajp13

Second EAP server definition
worker.worker02.host= 127.0.0.100
worker.worker02.port=8009
worker.worker02.type=ajp13

HTTP Connectors Load Balancing Guide

66

6. Verify the Logs
Ensure you check the ISAPI logs once IIS has restarted. The logs are saved to the file location
specified in the log_file property in isapi_redirect.properties. You should also check
IIS logs and the Event Viewer for other events of type Warning or Error.

14.6. CONFIGURE A LOAD-BALANCING CLUSTER WITH ISAPI

Task: Configure ISAPI to serve a Load-Balancing Cluster

Complete this task to configure ISAPI to manage applications common to all servers, route requests to
JBoss Enterprise Application Platform instances, and redirect requests to live nodes when some nodes
are not online or experiencing connectivity issues.

Use the configuration as an example when configuring your ISAPI cluster.

Prerequisites

Complete the relevant Microsoft IIS clustering setup procedure. Refer to Section 14.3,
“Microsoft IIS 6 initial clustering configuration” or Section 14.4, “Microsoft IIS 7 initial
clustering configuration” for more information.

The following steps assume that the C:\connectors directory is used to store logs,
properties files, and NSAPI locks.

1. Create isapi_redirect.properties file
Create a new file named isapi_redirect.properties in the NATIVE\sbin\ directory.

IMPORTANT

The isapi_redirect.properties file must be in the same directory as the
isapi_redirect.dll file.

Append the following configuration block to the file:

Configuration file for the ISAPI Redirector
Extension uri definition
extension_uri=/jboss/isapi_redirect.dll

Full path to the log file for the ISAPI Redirector
log_file=c:\connectors\isapi_redirect.log

Log level (debug, info, warn, error or trace)
Use debug only testing phase, for production switch to info
log_level=debug

Full path to the workers.properties file
worker_file=c:\connectors\workers.properties

Full path to the uriworkermap.properties file
worker_mount_file=c:\connectors\uriworkermap.properties

#OPTIONAL: Full path to the rewrite.properties file
rewrite_rule_file=c:\connectors\rewrite.properties

CHAPTER 14. CONFIGURING THE ISAPI CONNECTOR ON WINDOWS

67

2. Optional: Create rewrite.properties file
The rewrite.properties file allows you to specify simple URL rewrites specific to an
application. This configuration file is optional, and can be excluded from the
isapi_redirect.properties file if URL rewrites are not required.

The functionality offered is similar to Apache HTTP Server's mod_rewrite, but is less powerful.
You specify the rewrite path using name-value pairs. A simple example is where the app_01
application has an abstract directory name containing images, and you want to remap that
directory to something more intuitive.

3. Create uriworkermap.properties file
The uriworkermap.properties file contains deployed application mapping configuration
information. Append the following lines to the file.

4. Create workers.properties file
The worker.properties file contains mapping definitions between worker labels and server
instances. Append the following lines to the file.

#Simple example, images are accessible under abc path
/app-01/abc/=/app-01/images/

images, css files, path /status and /web-console will provided by
nodes defined in load-balancer
/css/*=router
/images/*=router
/status=router
/web-console|/*=router

Example of exclusion from mapping, logo.gif will not be displayed
!/web-console/images/logo.gif=*

Requests to /app-01 and /app-02 will be routed to nodes defined in
load-balancer
/app-01|/*=router
/app-02|/*=router

mapping for management console, nodes in cluster can be enabled or
disabled here
/jkmanager|/*=status

The advanced router LB worker
worker.list=router,status

First EAP server definition, port 8009 is standard port for AJP in
EAP
#
lbfactor defines how much the worker will be used.
The higher the number, the more requests are served
lbfactor is useful when one machine is more powerful
ping_mode=A – all possible probes will be used to determine that
connections are still working

worker.worker01.port=8009
worker.worker01.host=127.0.0.1

HTTP Connectors Load Balancing Guide

68

NOTE

For an explanation of workers.properties directives, refer to Appendix A,
Reference: workers.properties.

5. Restart IIS
Restart your IIS server to implement the changes. Execute the following commands for the IIS
version you are running:

IIS 6

C:\> net stop iisadmin /Y
C:\> net start w3svc

IIS 7

C:\> net stop was /Y
C:\> net start w3svc

6. Verify the Logs
Ensure you check the ISAPI logs once IIS has restarted. The logs are saved to the file location
specified in the log_file property in isapi_redirect.properties. You should also check
IIS logs and the Event Viewer for other events of type Warning or Error.

worker.worker01.type=ajp13
worker.worker01.ping_mode=A
worker.worker01.socket_timeout=10
worker.worker01.lbfactor=3

Second EAP server definition
worker.worker02.port=8009
worker.worker02.host= 127.0.0.100
worker.worker02.type=ajp13
worker.worker02.ping_mode=A
worker.worker02.socket_timeout=10
worker.worker02.lbfactor=1

Define the LB worker
worker.router.type=lb
worker.router.balance_workers=worker01,worker02

Define the status worker for jkmanager
worker.status.type=status

CHAPTER 14. CONFIGURING THE ISAPI CONNECTOR ON WINDOWS

69

PART IV. NETSCAPE SERVER API (NSAPI)

HTTP Connectors Load Balancing Guide

70

CHAPTER 15. WHAT IS NETSCAPE SERVER API?
Read this chapter to gain a basic understanding of the Netscape Server API (NSAPI).

NSAPI is a programming interface that allows developers to extend the functionality of web server
software by creating applications (referred to as plug-ins) that run inside the server process itself.

The goal of NSAPI, and its plug-ins, is to provide a method of creating different functional interfaces
between the web server and the back-end applications which run on it.

The NSAPI plug-ins are designed to implement Server Application Functions (SAFs). SAFs consume a
HTTP request and take input from a server configuration database, and return a response to the client
based on the inputs. Each SAF is linked to a particular class, which directly relates to the request-
response step it helps implement.

The request-response steps (classes) are summarized in the following list:

1. Authorization translation;

2. Name translation;

3. Path checks;

4. Object type;

5. Request response;

6. Log transaction.

You are not required to provide a SAF for each request-response step: NSAPI allows you to substitute
your own custom functionality to the core request-response steps. You also have the choice of
applying the SAF globally, or constraining the SAF to a directory, file group, or individual file.

CHAPTER 15. WHAT IS NETSCAPE SERVER API?

71

CHAPTER 16. CONFIGURING THE NSAPI CONNECTOR ON
SOLARIS
The following tasks describe how to configure the NSAPI connector to use a JBoss Enterprise
Application Platform instance as a worker node for a Sun Java System Web Server (SJWS) master
node. Sun Java System Web Server has been renamed to the Oracle iPlanet Web Server. The old name
is used throughout this guide for clarity.

In this section, all of the server instances are on the same machine. To use different machines for each
instance, use the -b switch to bind your instance of JBoss Enterprise Application Platform to a public
IP address. Remember to edit the workers.properties file on the SJWS machine to reflect these
changes in IP address.

16.1. PREREQUISITES AND CONFIGURATION ASSUMPTIONS

Worker nodes are already installed with JBoss Enterprise Application Platform 5.2 or later.
The Native components are not a requirement of the NSAPI connector. Refer to the Installation
Guide for assistance with this prerequisite.

The master node is already installed with one of the following technology combinations, and
the appropriate Native binary for its operating system and architecture. Refer to the
Installation Guide for assistance with this installation prerequisite.

Solaris 10 x86 with Sun Java System Web Server 7.0 U8

Solaris 10 SPARC 64 with Sun Java System Web Server 7.0 U8

16.2. CONFIGURE SERVER INSTANCE AS A WORKER NODE

Task: Configure a JBoss Enterprise Application Platform Worker Node

Follow this task to correctly configure a JBoss Enterprise Application Platform instance as a SJWS
worker node.

Prerequisites

Section 16.1, “Prerequisites and configuration assumptions”

1. Create a server profile for each worker node
Make a copy of the server profile that you wish to configure as a worker node. (This procedure
uses the default server profile.)

[user@workstation jboss-ep-5.2]$ cd jboss-as/server
[user@workstation server]$ cp -r default/ default-01
[user@workstation server]$ cp -r default/ default-02

2. Give each instance a unique name
Edit the following line in the deploy/jbossweb.sar/server.xml file of each new worker
instance:

<Engine name="jboss.web" defaultHost="localhost">

HTTP Connectors Load Balancing Guide

72

Add a unique jvmRoute value, as shown. This value is the identifier for this node in the
cluster.

For the default-01 server profile:

<Engine name="jboss.web" defaultHost="localhost"
jvmRoute="worker01">

For the default-02 server profile:

<Engine name="jboss.web" defaultHost="localhost"
jvmRoute="worker02">

3. Enable session handling
Uncomment the following line in the deployers/jbossweb.deployer/META-INF/war-
deployers-jboss-beans.xml file of each worker node:

<property name="useJK">false</property>

This property controls whether special session handling is used to coordinate with mod_jk and
other connector variants. Set this property to true in both worker nodes:

<property name="useJK">true</property>

4. Start your worker nodes
Start each worker node in a separate command line interface. Ensure that each node is bound
to a different IP address with the -b switch.

[user@workstation jboss-eap-5.2]$./jboss-as/bin/run.sh -b 127.0.0.1
-c default-01

[user@workstation jboss-eap-5.2]$./jboss-as/bin/run.sh -b
127.0.0.100 -c default-02

16.3. INITIAL CLUSTERING CONFIGURATION

Task: Configure Required Elements

Complete this task to configure the basic elements required for clustering using Sun Java Web Server
(SJWS) and NSAPI.

Prerequisites

Task: Configure a JBoss Enterprise Application Platform Worker Node

Native zip archive extracted to the directory /tmp/connectors/. The directory
/tmp/connectors/jboss-ep-5.2/native/ is referred to as NATIVE in this procedure.

The directory /tmp/connectors is used as the storage location for logs, properties files, and
NSAPI locks.

CHAPTER 16. CONFIGURING THE NSAPI CONNECTOR ON SOLARIS

73

SJWS is installed in one of the locations specified in the SJWS file path abbreviation in
Section 1, “File Name Conventions” .

1. Disable servlet mappings
Under Built In Servlet Mappings in the SJWS/PROFILE/config/default-web.xml file,
disable the mappings for the following servlets, by commenting them out as shown:

default

invoker

jsp

<!-- ==================== Built In Servlet Mappings
===================== -->

<!-- The servlet mappings for the built in servlets defined above. -
->

<!-- The mapping for the default servlet -->
<!--servlet-mapping>
 <servlet-name>default</servlet-name>
 <url-pattern>/</url-pattern>
</servlet-mapping-->

<!-- The mapping for the invoker servlet -->
<!--servlet-mapping>
 <servlet-name>invoker</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
</servlet-mapping-->

<!-- The mapping for the JSP servlet -->
<!--servlet-mapping>
 <servlet-name>jsp</servlet-name>
 <url-pattern>*.jsp</url-pattern>
</servlet-mapping-->

2. Load the required modules and properties
Append the following lines to the SJWS/PROFILE/config/magnus.conf file:

Init fn="load-modules" funcs="jk_init,jk_service"
shlib="NATIVE/lib/nsapi_redirector.so" shlib_flags="(global|now)"
Init fn="jk_init" worker_file="/tmp/connectors/workers.properties"
log_level="debug" log_file="/tmp/connectors/nsapi.log"
shm_file="/tmp/connectors/jk_shm"

These lines define the location of the nsapi_redirector.so module used by the jk_init
and jk_service functions, and the location of the workers.properties file, which defines
the worker nodes and their attributes.

NOTE

The lib directory in the NATIVE/lib/nsapi_redirector.so path applies
only to 32-bit machines. On 64-bit machines, this directory is called lib64.

HTTP Connectors Load Balancing Guide

74

16.4. CONFIGURE A BASIC CLUSTER WITH NSAPI

Task: Configure a Basic Cluster with NSAPI

Complete this task to configure a basic cluster, where requests for particular paths are forwarded to
particular worker nodes. The procedure specifies that worker02 serves the /nc path, while worker01
serves /status and all other paths defined in the first part of the obj.conf file.

Prerequisites

Task: Configure Required Elements

SJWS is installed in one of the locations specified in the SJWS file path abbreviation in
Section 1, “File Name Conventions” .

1. Define the paths to serve via NSAPI
Edit the SJWS/PROFILE/config/obj.conf file. Define paths that should be served via
NSAPI at the end of the default Object definition, as shown:

<Object name="default">
 [...]
 NameTrans fn="assign-name" from="/status" name="jknsapi"
 NameTrans fn="assign-name" from="/images(|/*)" name="jknsapi"
 NameTrans fn="assign-name" from="/css(|/*)" name="jknsapi"
 NameTrans fn="assign-name" from="/nc(|/*)" name="jknsapi"
 NameTrans fn="assign-name" from="/jmx-console(|/*)"
name="jknsapi"
</Object>

You can map the path of any application deployed on your JBoss Enterprise Platform instance
in this obj.conf file. In the example code, the /nc path is mapped to an application deployed
under the name nc.

2. Define the worker that serves each path
Edit the SJWS/PROFILE/config/obj.conf file and add the following jknsapi Object
definition after the default Object definition.

<Object name="jknsapi">
 ObjectType fn=force-type type=text/plain
 Service fn="jk_service" worker="worker01" path="/status"
 Service fn="jk_service" worker="worker02" path="/nc(/*)"
 Service fn="jk_service" worker="worker01"
</Object>

This jknsapi Object defines the worker nodes used to serve each path that was assigned to
name="jknsapi" in the default Object.

In the example code, the third Service definition does not specify a path value, so the
worker node defined (worker01) serves all of the paths assigned to jknsapi by default. In
this case, the first Service definition in the example code, which assigns the /status path to
worker01, is superfluous.

3. Define the workers and their attributes
Create a workers.properties file in the location you defined in Step 2.

CHAPTER 16. CONFIGURING THE NSAPI CONNECTOR ON SOLARIS

75

Define the list of worker nodes and each worker node's properties in this file:

An entry that lists all the workers defined
worker.list=worker01, worker02

Entries that define the host and port associated with these
workers
worker.worker01.host=127.0.0.1
worker.worker01.port=8009
worker.worker01.type=ajp13

worker.worker02.host=127.0.0.100
worker.worker02.port=8009
worker.worker02.type=ajp13

4. Restart the server
Once your Sun Java System Web Server instance is configured, restart it so that your changes
take effect.

For Sun Java System Web Server 6.1:

SJWS/PROFILE/stop
SJWS/PROFILE/start

For Sun Java System Web Server 7.0:

SJWS/PROFILE/bin/stopserv
SJWS/PROFILE/bin/startserv

16.5. CONFIGURE A LOAD-BALANCED CLUSTER WITH NSAPI

Task: Configure a Load-balanced Cluster with NSAPI

Complete this task to configure a load-balanced cluster consisting of two worker nodes.

Prerequisites

Task: Configure Required Elements

SJWS is installed in one of the locations specified in the SJWS file path abbreviation in
Section 1, “File Name Conventions” .

1. Define the paths to serve via NSAPI
Open SJWS/PROFILE/config/obj.conf and define paths that should be served through
NSAPI at the end of the default Object definition, as shown:

<Object name="default">
 [...]
 NameTrans fn="assign-name" from="/status" name="jknsapi"
 NameTrans fn="assign-name" from="/images(|/*)" name="jknsapi"
 NameTrans fn="assign-name" from="/css(|/*)" name="jknsapi"
 NameTrans fn="assign-name" from="/nc(|/*)" name="jknsapi"
 NameTrans fn="assign-name" from="/jmx-console(|/*)"

HTTP Connectors Load Balancing Guide

76

name="jknsapi"
 NameTrans fn="assign-name" from="/jkmanager/*" name="jknsapi"
</Object>

You can map the path of any application deployed on your JBoss Enterprise Platform instance
in this obj.conf file. In the example code, the /nc path is mapped to an application deployed
under the name nc.

2. Define the worker that serves each path
Open SJWS/PROFILE/config/obj.conf and add the following jknsapi Object definition
after the default Object definition.

<Object name="jknsapi">
 ObjectType fn=force-type type=text/plain
 Service fn="jk_service" worker="status" path="/jkmanager(/*)"
 Service fn="jk_service" worker="router"
</Object>

This jknsapi Object defines the worker nodes used to serve each path that was assigned to
name="jknsapi" in the default Object.

3. Define the workers and their attributes
Create SJWS/PROFILE/config/workers.properties.

Define the list of worker nodes and each worker node's properties in this file:

NOTE

For an explanation of workers.properties directives, refer to Appendix A,
Reference: workers.properties

The advanced router LB worker
worker.list=router,status

#First EAP server definition, port 8009 is standard port for AJP in
EAP
#
#lbfactor defines how much the worker will be used.
#The higher the number, the more requests are served
#lbfactor is useful when one machine is more powerful
#ping_mode=A – all possible probes will be used to determine that
#connections are still working
worker.worker01.port=8009
worker.worker01.host=127.0.0.1
worker.worker01.type=ajp13
worker.worker01.ping_mode=A
worker.worker01.socket_timeout=10
worker.worker01.lbfactor=3

#Second EAP server definition
worker.worker02.port=8009
worker.worker02.host=127.0.0.100
worker.worker02.type=ajp13
worker.worker02.ping_mode=A

CHAPTER 16. CONFIGURING THE NSAPI CONNECTOR ON SOLARIS

77

worker.worker02.socket_timeout=10
worker.worker02.lbfactor=1

Define the LB worker
worker.router.type=lb
worker.router.balance_workers=worker01,worker02

Define the status worker
worker.status.type=status

4. Restart the server
Once your Sun Java System Web Server instance is configured, restart it so that your changes
take effect.

For Sun Java System Web Server 6.1:

SJWS/PROFILE/stop
SJWS/PROFILE/start

For Sun Java System Web Server 7.0:

SJWS/PROFILE/bin/stopserv
SJWS/PROFILE/bin/startserv

HTTP Connectors Load Balancing Guide

78

PART V. COMMON LOAD BALANCING TASKS

PART V. COMMON LOAD BALANCING TASKS

79

CHAPTER 17. HTTP SESSION STATE REPLICATION
HTTP session state replication is a means of distributing clients' state across multiple servers. The
following terms are important in understanding load balancing. Refer to the Clustering Guide part of
the Administration and Configuration Guide for details of associated JBoss Enterprise Application
Platform high availability options.

Software Load Balancer

A dedicated software-based service designed to distribute HTTP client session requests across
multiple computer servers (cluster). The primary directive of a software load balancer is to maximize
resource utilization, reduce request response times, and prevent server overload. The load balancer
forwards client session requests to a server cluster, based on server load and availability.

Client Session

A semi-permanent connection between the client (an application) and the server. The load balancer
determines whether the client session is created with persistence, or whether a client session is
redistributed based on server load and availability.

Session Persistence

Session persistence is a feature where information about a client's session is stored by the server so
that if the client's connection is interrupted temporarily, the session can continue at the time the
connection error occurred. A persistent session is also commonly known as a sticky session .

Sticky Session

See Session Persistence.

Section 3.1, “Configure worker nodes in mod_jk” describes how to configure session state persistence
in the load balancer to ensure a client in a session is always routed to the same server node.

Session persistence on its own is not a best-practice solution because if a server fails, all session state
data is lost. For example, if a customer is about to make a purchase on a web site, and the server
hosting the shopping cart instance fails, session state data associated with the cart is lost
permanently.

One way of preventing client session data loss is to replicate session data across the servers in the
cluster. If a server node fails or is shut down, the load balancer can fail over the next client request to
any server node and obtain the same session state.

Using a load balancer that supports session persistence, but not configuring web applications for
session replication, allows you to scale your implementation by avoiding the cost of session state
replication: each request for a session will always be handled by the same node.

Session state replication is more expensive than basic session persistence, but the reliability it
provides for session state data makes it important when creating a load balanced cluster.

17.1. ENABLING SESSION REPLICATION IN YOUR APPLICATION

To enable replication of your web application you must tag the application as distributable in the
web.xml descriptor. Here's an example:

<?xml version="1.0"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

HTTP Connectors Load Balancing Guide

80

You can further configure session replication using the replication-config element in the
jboss-web.xml file. However, the replication-config element only needs to be set if one or
more of the default values described below is unacceptable. All of the configuration elements are
optional, and can be omitted if the default value is acceptable.

Here is an example:

<replication-trigger>

element determines when the container should consider that session data must be replicated
across the cluster. The rationale for this setting is that after a mutable object stored as a session
attribute is accessed from the session, in the absence of a setAttribute call, the container has no
clear way to know if the object (and hence the session state) has been modified and needs to be
replicated. This element has 3 valid values:

SET_AND_GET is conservative but not optimal (performance-wise): it will always replicate session
data even if its content has only been accessed and not modified. This setting made (a little) sense
in JBoss Enterprise Application Platform 4 since using it was a way to ensure that every request
triggered replication of the session's timestamp. Since setting max_unreplicated_interval to
0 accomplishes the same thing at much lower cost, using SET_AND_GET makes no sense with
JBoss Enterprise Application Platform 5 or JBoss Enterprise Web Platform 5.

SET_AND_NON_PRIMITIVE_GET is conservative but will only replicate if an object of a non-
primitive type has been accessed (in effect, the object is not of a well-known immutable JDK type
such as Integer, Long, String, etc.) This is the default value.

 http://java.sun.com/xml/ns/j2ee/web-
app_2_4.xsd"
 version="2.4">

 <distributable/>

</web-app>

<!DOCTYPE jboss-web PUBLIC
 "-//JBoss//DTD Web Application 5.0//EN"
 "http://www.jboss.org/j2ee/dtd/jboss-web_5_0.dtd">

<jboss-web>

 <replication-config>
 <cache-name>custom-session-cache</cache-name>
 <replication-trigger>SET</replication-trigger>
 <replication-granularity>ATTRIBUTE</replication-granularity>
 <replication-field-batch-mode>true</replication-field-batch-mode>
 <use-jk>false</use-jk>
 <max-unreplicated-interval>30</max-unreplicated-interval>
 <snapshot-mode>INSTANT</snapshot-mode>
 <snapshot-interval>1000</snapshot-interval>
 <session-notification-
policy>com.example.CustomSessionNotificationPolicy</session-notification-
policy>
 </replication-config>

</jboss-web>

CHAPTER 17. HTTP SESSION STATE REPLICATION

81

SET assumes that the developer will explicitly call setAttribute on the session if the data needs
to be replicated. This setting prevents unnecessary replication and can have a major beneficial
impact on performance, but requires very good coding practices to ensure setAttribute is
always called whenever a mutable object stored in the session is modified.

In all cases, calling setAttribute marks the session as needing replication.

<cacheName>

Specifies the name of the JBoss Cache configuration that should be used for storing distributable
sessions and replicating them around the cluster. This element lets web applications that require
different caching characteristics specify the use of separate, differently configured, JBoss Cache
instances. In JBoss Enterprise Application Platform 4 the cache to use was a server-wide
configuration that could not be changed per web application. The default value is standard-
session-cache. See Section 17.3, “Configure the JBoss Cache instance used for session state
replication” for more details on JBoss Cache configuration for web-tier clustering.

<replication-field-batch-mode>

Specifies whether all replication messages associated with a request will be batched into one
message. This is applicable only if replication-granularity is FIELD. If replication-
field-batch-mode is set to true, fine-grained changes made to objects stored in the session
attribute map will replicate only when the HTTP request is finished; otherwise they replicate as
they occur. Setting this to false is not advised because it increases the number of replication
requests and the chance of session state being out of sync. Default is true.

IMPORTANT

The FIELD granularity option is now deprecated as JBoss Cache, which provides this
feature, is to be subsituted by Infinispan (Infinispan does not support this
granularity).

<useJK>

Specifies whether the container should assume that a JK-based software load balancer (for
example,. mod_jk, mod_proxy, mod_cluster) is being used for load balancing for this web
application. If set to true, the container will examine the session ID associated with every request
and replace the jvmRoute portion of the session ID if it detects a failover.

You need only set this to false for web applications whose URL cannot be handled by the JK load
balancer.

<max-unreplicated-interval>

Specifies the maximum interval between requests, in seconds, after which a request will trigger
replication of the session's timestamp regardless of whether the request has otherwise made the
session dirty. Such replication ensures that other nodes in the cluster are aware of the most recent
value for the session's timestamp and will not incorrectly expire an unreplicated session upon
failover. It also results in correct values for HttpSession.getLastAccessedTime() calls
following failover.

The default value is null (in effect, unspecified). In this case the session manager will use the
presence or absence of a jvmRoute configuration on its enclosing JBoss Web Engine (see
Section 3.2, “Configuring JBoss to work with mod_jk”) to determine whether JK is used.

HTTP Connectors Load Balancing Guide

82

A value of 0 means the timestamp will be replicated whenever the session is accessed. A value of -
1 means the timestamp will be replicated only if some other activity during the request (for
example,. modifying an attribute) has resulted in other replication work involving the session. A
positive value greater than the HttpSession.getMaxInactiveInterval() value will be
treated as probable misconfiguration and converted to 0; (in effect, replicate the metadata on
every request). Default value is 60.

<snapshot-mode>

Specifies when sessions are replicated to the other nodes. Possible values are INSTANT (the
default) and INTERVAL.

The typical value, INSTANT, replicates changes to the other nodes at the end of requests, using the
request processing thread to perform the replication. In this case, the snapshot-interval
property is ignored.

With INTERVAL mode, a background task is created that runs every snapshot-interval
milliseconds, checking for modified sessions and replicating them.

Note that this property has no effect if replication-granularity is set to FIELD. If it is FIELD,
INSTANT mode will be used.

<snapshot-interval>

Specifies how often (in milliseconds) the background task that replicates modified sessions should
be started for this web application. Only meaningful if snapshot-mode is set to INTERVAL.

<session-notification-policy>

Specifies the fully qualified class name of the implementation of the
ClusteredSessionNotificationPolicy interface that should be used to govern whether
servlet specification notifications should be emitted to any registered HttpSessionListener,
HttpSessionAttributeListener and/or HttpSessionBindingListener.

IMPORTANT

Event notifications that may be appropriate in non-clustered environment may not
necessarily be appropriate in a clustered environment; see
https://jira.jboss.org/jira/browse/JBAS-5778 for an example of why a notification
may not be desired. Configuring an appropriate
ClusteredSessionNotificationPolicy gives the application author fine-
grained control over what notifications are issued.

17.2. HTTPSESSION PASSIVATION AND ACTIVATION

Passivation

The process of controlling memory usage by removing relatively unused sessions from memory while
storing them in persistent storage.

If a passivated session is requested by a client, it can be "activated" back into memory and removed
from the persistent store. JBoss Enterprise Application Platform 5 supports HttpSession passivation
from clustered web applications where the web.xml file includes the distributable directive.

CHAPTER 17. HTTP SESSION STATE REPLICATION

83

https://jira.jboss.org/jira/browse/JBAS-5778

Passivation occurs at three points during the life cycle of a web application:

When the container requests the creation of a new session. If the number of currently active
sessions exceeds a configurable limit, an attempt is made to passivate sessions to make room
in memory.

Periodically (by default every ten seconds) as the JBoss Web background task thread runs.

When the web application is deployed and a backup copy of sessions active on other servers is
acquired by the newly deploying web application's session manager.

A session is passivated if one of the following conditions is true:

The session has not been in use for longer than a configurable maximum idle time.

The number of active sessions exceeds a configurable maximum and the session has not been
in use for longer than a configurable minimum idle time.

In both cases, sessions are passivated on a Least Recently Used (LRU) basis.

17.2.1. Configuring HttpSession passivation

Session passivation behavior is configured in the jboss-web.xml deployment descriptor in your web
application's WEB-INF directory.

max-active-sessions

Determines the maximum number of active sessions allowed. If the number of sessions
managed by the session manager exceeds this value and passivation is enabled, the excess will
be passivated based on the configured passivation-min-idle-time. If after passivation is
completed (or if passivation is disabled), the number of active sessions still exceeds this limit,
attempts to create new sessions will be rejected. If set to -1 (the default), there is no limit.

The total number of sessions in memory includes sessions replicated from other cluster nodes
that are not being accessed on this node. Take this into account when setting max-active-
sessions. Whether or not buddy replication is enabled will also affect the number of sessions
replicated from other nodes.

Say, for example, that you have an eight node cluster, and each node handles requests from
100 users. With total replication, each node would store 800 sessions in memory. With buddy

<!DOCTYPE jboss-web PUBLIC
 "-//JBoss//DTD Web Application 5.0//EN"
 "http://www.jboss.org/j2ee/dtd/jboss-web_5_0.dtd">

<jboss-web>

 <max-active-sessions>20</max-active-sessions>
 <passivation-config>
 <use-session-passivation>true</use-session-passivation>
 <passivation-min-idle-time>60</passivation-min-idle-time>
 <passivation-max-idle-time>600</passivation-max-idle-time>
 </passivation-config>

</jboss-web>

HTTP Connectors Load Balancing Guide

84

replication enabled, and the default numBuddies setting (1), each node will store 200 sessions
in memory.

use-session-passivation

Determines whether session passivation will be enabled for the web application. Default is
false.

passivation-min-idle-time

Determines the minimum time (in seconds) that a session must have been inactive before the
container will consider passivating it in order to reduce the active session count to obey the
value defined by max-active-sessions. A value of -1 (the default) disables passivating
sessions before passivation-max-idle-time. Neither a value of -1 nor a high value are
recommended if max-active-sessions is set.

passivation-max-idle-time

Determines the maximum time (in seconds) that a session can be inactive before the container
should attempt to passivate it to save memory. Passivation of such sessions will take place
regardless of whether the active session count exceeds max-active-sessions. Should be
less than the session-timeout setting in web.xml . A value of -1 (the default) disables
passivation based on maximum inactivity.

17.3. CONFIGURE THE JBOSS CACHE INSTANCE USED FOR SESSION
STATE REPLICATION

The container for a distributable web application makes use of JBoss Cache to provide HTTP session
replication services around the cluster. It integrates with the CacheManager service to obtain a
reference to a JBoss Cache instance. For more information, refer to the Distributed Caching with JBoss
Cache and JBoss Cache Configuration and Deployment chapters in the Administration and Configuration
Guide

The name of the JBoss Cache configuration to use is controlled by the cacheName element in the
application's jboss-web.xml (see Section 17.1, “Enabling session replication in your application”). In
most cases this does not need to be set because the default value of standard-session-cache is
appropriate.

The JBoss Cache configurations in the CacheManager service expose a number of options.

The standard-session-cache configuration is already optimized for the web session replication
use case, and most of the settings should not be altered. Administrators may be interested in altering
the following settings:

cacheMode

The default is REPL_ASYNC, which specifies that a session replication message sent to the
cluster does not wait for responses from other cluster nodes confirming that the message has
been received and processed. The alternative mode, REPL_SYNC, offers a greater degree of
confirmation that session state has been received, but reduces performance significantly.

enabled property in the buddyReplicationConfig section

Set to true to enable buddy replication. Default is false.

CHAPTER 17. HTTP SESSION STATE REPLICATION

85

numBuddies property in the buddyReplicationConfig section

Set to a value greater than the default (1) to increase the number of backup nodes onto which
sessions are replicated. Only relevant if buddy replication is enabled.

buddyPoolName property in the buddyReplicationConfig section

A way to specify a preferred replication group when buddy replication is enabled. JBoss Cache
tries to pick a buddy who shares the same pool name (falling back to other buddies if not
available). Only relevant if buddy replication is enabled.

multiplexerStack

Name of the JGroups protocol stack the cache should use.

clusterName

Identifying name JGroups will use for this cache's channel. Only change this if you create a
new cache configuration, in which case this property should have a different value from all
other cache configurations.

If you wish to use a completely new JBoss Cache configuration rather than editing one of the existing
ones, refer to Deployment via the CacheManager Service section in the Administration and Configuration
Guide .

HTTP Connectors Load Balancing Guide

86

CHAPTER 18. HIGH-AVAILABILITY WEB SESSIONS
JBoss Enterprise Application Server allows you to make web sessions highly available by storing them
in a database table.

IMPORTANT

HTTP session replication with JBoss Cache is the preferred approach to securing web
session failover. It is strongly recommended to use this approach if possible (refer to
Chapter 17, HTTP session state replication).

To provide high availability web sessions, you can configure JBoss Application Server to store the web
session state in a database table. If the server then becomes unavailable, the web session state is still
preserved in the database table and can be used by failover servers, while if using session replication,
the web session is available on the server and the respective failover nodes. The high availability web
session setup can be useful in a WAN with several application server instance or in combination with
session replication.

To make web sessions highly available, you need to do the following:

configure the server to use the session manager set on your web application (JBoss
Application Server by default ignores the web application session manager and switches to
JBossCacheManager automatically);

configure your web applications to use DataSourcePersistentManager as their session
manager (the manager handles the storing of web sessions to the defined database table);

create the web session table in the target database and deploy the datasource, which will
provide the connection between the session manager and the database table.

Configuring JBoss Enterprise Application Server

To configure JBoss Enterprise Application Server to allow storing of sessions in a database, disable
overriding of the session manager set on your web application (overriden to JBossCacheManager; this
allows the web application to use its own session manager):

1. Open the JBOSS_HOME/server/PROFILE/deployers/jbossweb.deployer/META-
INF/war-deployers-jboss-beans.xml file for editing.

2. Set the overrideDistributableManager property of the WarDeployer bean to false:

Configuring Web Application

<bean name="WarDeployer"
class="org.jboss.web.tomcat.service.deployers.TomcatDeployer">

 . . .

 <!-- "False" disables overriding the session manager for
distributable webapps -->
 <property name="overrideDistributableManager">false</property>

</bean>

CHAPTER 18. HIGH-AVAILABILITY WEB SESSIONS

87

Configure your web application to use the database persistent session manager:

1. In the application's WEB-INF directory, create the context.xml file, which will define what
session manager is to be used as well as the manager's attributes.

IMPORTANT

Note that it is not recommended to add the manager definition to the jboss-
web.xml file, although it is the standard web application deployment descriptor.
The goal of using the context.xml file instead is to avoid any unnecessary
changes to the existing JBoss Application Server code.

2. In the context.xml file, add the Manager element and its attributes:

className

fully-qualified class name of the session manager implementation

dataSourceJndiName

datasource that allows the session manager to communicate with the database that stores
the web sessions

NOTE

The className and dataSourceJndiName are compulsory attributes. You can
also define further Context and Manager attributes (refer to Section 18.1,
“DataSourcePersistentManager Configuration Attributes”.

Configuring Database and Datasource

Create the database session table, which will hold the web session data and then create the respective
datasource:

1. Create the web session (httpsessions) database table:

You can change the name of the table and of the columns; however, make sure to configure
the DataSourcePersistentManager attributes appropriately.

Individual columns must be able to store values of particular datatypes:

creationtime and lastaccess : java long values

maxinactive and version : java int value

<Context cookies="true" crossContext="true">

 <Manager
className="org.jboss.web.tomcat.service.session.persistent.DataSourc
ePersistentManager"
 dataSourceJndiName="java:HttpSessionDS"/>

:</Context>

HTTP Connectors Load Balancing Guide

88

metadata : serialized java objects (currently not used)

attributes : serialized java objects (stores the session attributes map; should be large
enough to store your largest sessions)

primary key : synthetic primary key (optional, make sure there is a UNIQUE INDEX on app +
id).

The following command creates the table with default settings in the most common databases
(MySQL, IBM DB2, Oracle Database):

2. Deploy an appropriate datasource to allow the DataSourcePersistentManager to communicate
with the database (refer to the chapter on Datasource Configuration in the Administration and
Configuration Guide. Make sure the datasource is set up as local-tx-datasource (xa-datasources
are not supported).

3. Add the dataSourceJndiName with the jndi-name of the created datasource to
DataSourcePersistentManager element in the context.xml file.

18.1. DATASOURCEPERSISTENTMANAGER CONFIGURATION
ATTRIBUTES

The DataSourcePersistentManager element must define the className and dataSourceJndiName
attributes. Apart from these, it can define other properties to specify manager's behavior and the way
it interacts with the database.

Compulsory Properties

className

fully-qualified class name of the org.apache.catalina.Manager implementation (that is,
org.jboss.web.tomcat.service.session.persistent.DataSourcePersistentManage
r)

dataSourceJndiName

JNDI name of the data source, which defines the database connection to the httpsessions

Properties Defining the Database Connection Properties

connectionName

value of the username parameter to pass to the DataSource.getConnection method (if
null, the getConnection with no arguments is called)

CREATE TABLE httpsessions (app VARCHAR(255) NOT NULL, id
VARCHAR(255) NOT NULL,
 fullId VARCHAR(255) NOT NULL, creationtime BIGINT NOT NULL,
 maxinactive BIGINT NOT NULL, version INT NOT NULL, lastaccess
BIGINT NOT NULL,
 isnew CHAR(1) NOT NULL, valid CHAR(1) NOT NULL, metadata
VARBINARY NULL,
 attributes LONGVARBINARY NOT NULL,
 CONSTRAINT app_id PRIMARY KEY (app, id))

CHAPTER 18. HIGH-AVAILABILITY WEB SESSIONS

89

connectionPassword

password to pass to DataSource.getConnection

sessionTable

name of the database session table in which sessions are stored (by default httpsessions)

sessionAppCol

name of the column with the web application name associated with the session (by default app)

sessionIdCol

name of the column with the core, immutable part of a session ID (by default id; this and the
sessionAppCol columns form the unique index for the table)

sessionFullIdCol

name of the column with the full session ID (including any mutable element added to the core
session ID, for example a jvmRoute; by default fullid)

sessionCreationTimeCol

name of the column with the time when the session was created (of the long datatype, by default
creationtime)

sessionMaxInactiveCol

name of the column with the maximum number of milliseconds the session can remain unaccessed
before expiring (by default maxinactive)

sessionVersionCol

name of the column which stores the session's "version" (session version is incremented each time
the session is persisted; by default version)

sessionLastAccessedCol

name of the column with the timestamp of the last session access (take the long data type value; by
default lastaccess)

sessionNewCol

Name of the column with the flag indicating whether the session is new (session is considered new if
it was not yet joined by the client; by default isnew

sessionValidCol

name of the column with the flag indicating whether the session is valid (by default isvalid

sessionMetadataCol

name of the column which can store serialized metadata about the session (currently unused; by
default metadata

sessionAttributeCol

name of the column with the serialized session attribute map (by default attributes)

HTTP Connectors Load Balancing Guide

90

Properties Defining the Manager's Behavior

cleanupInterval

minimum period of time in seconds that must lapse from the last cleaning of old "abandoned"
sessions from the database before the next cleaning (by default 14400 seconds, that is, 4 hours)

A session is abandoned if the only server that was handling the session requests was shut down
before the session expired, no further requests for the session were received so that the session did
not fail over to another server. Such session do not expire on the normal session expiration checks.
Therefore a special process runs periodically to clean the session from the database.

replicationTriggerString

activity executed during a request that makes the session database persistent (the activity with the
replication-trigger property SET)

maxUnreplicatedInterval

maximum interval between requests, in seconds, after which the session's timestamp is persisted
regardless of whether the request caused the session to become dirty in any other way

useJK

flag determining whether the container assumes a JK-based software load balancer is used for load
balancing (if set to true, the container examines the session ID associated with every request and
replace the jvmRoute portion of the session ID if it detects a failover)

maxActiveAllowed

maximum number of active sessions

useSessionPassivation

flag for enabling/disabling session passivation (session is removed from memory but remains
always in the persistent store)

passivationMinIdleTime

minimum time, in seconds, a session must be inactive before passivated

passivationMaxIdleTime

maximum time, in seconds, a session can be inactive before passivated

processExpiresFrequency

frequency at which the background process thread calls the session manager to perform
background processes (for example, expire or passivate sessions; (by default, every 10 seconds)

This configuration is defined as value N with the background cleanup process called 1 in N callings
to the session manager. Default is 1, that is, the cleanup process is performed every time the
manager is called by the background process, that is cleanup is performed every 10 seconds. For
example, if set to 6, the manager performs the cleanup once a minute (1/6, that is once in 60
seconds).

sessionNotificationPolicy

CHAPTER 18. HIGH-AVAILABILITY WEB SESSIONS

91

fully qualified class name of the implementation of the ClusteredSessionNotificationPolicy
interface that is used to govern whether servlet specification notifications is emitted to any
registered HttpSessionListener, HttpSessionAttributeListener or HttpSessionBindingListener.

HTTP Connectors Load Balancing Guide

92

CHAPTER 19. USING CLUSTERED SINGLE SIGN-ON (SSO)
JBoss supports clustered single sign-on (SSO), allowing a user to authenticate to one web application
and to be recognized on all web applications that are deployed on the same virtual host, regardless of
whether they are deployed on that same machine or on another node in the cluster.

Authentication replication is handled by JBoss Cache. Clustered single sign-on support is a JBoss-
specific extension of the non-clustered org.apache.catalina.authenticator.SingleSignOn
valve that is a standard part of Tomcat and JBoss Web.

19.1. CONFIGURATION

To enable clustered single sign-on, you must add the ClusteredSingleSignOn valve to the
appropriate Host elements of the
JBOSS_HOME/server/PROFILE/deploy/jbossweb.sar/server.xml file. The valve element is
already included in the standard file; you just need to uncomment it. The valve configuration is shown
here:

The element supports the following attributes:

className is a required attribute to set the Java class name of the valve implementation to
use. This must be set to org.jboss.web.tomcat.service.sso.ClusteredSingleSign.

cacheConfig is the name of the cache configuration to use for the clustered SSO cache.
Default is clustered-sso.

NOTE

For more information about cache configuration, refer to The JBoss Enterprise
Application Platform CacheManager Service section in the Administration and
Configuration Guide .

treeCacheName is deprecated; use cacheConfig. Specifies a JMX ObjectName of the JBoss
Cache MBean to use for the clustered SSO cache. If no cache can be located from the
CacheManager service using the value of cacheConfig, an attempt to locate an MBean
registered in JMX under this ObjectName will be made. Default value is
jboss.cache:service=TomcatClusteringCache.

cookieDomain is used to set the host domain to be used for SSO cookies. See Section 19.4,
“Configuring the cookie domain” for more. Default is "/".

maxEmptyLife is the maximum number of seconds an SSO with no active sessions will be
usable by a request. The clustered SSO valve tracks which cluster nodes are managing
sessions related to an SSO. When a node is shutdown, all local copies of a session are
invalidated. If a further user request is made within the time specified by maxEmptyLife, the
request will fail over to another cluster node, activating the backup copy of the session. If
maxEmptyLife is set to 0, the SSO valve terminates together with the local session copies.
Default is 1800, (30 minutes).

processExpiresInterval is the minimum number of seconds between efforts by the valve to
find and invalidate SSOs that have exceeded their maxEmptyLife. Does not imply effort will

Valve className="org.jboss.web.tomcat.service.sso.ClusteredSingleSignOn" /

CHAPTER 19. USING CLUSTERED SINGLE SIGN-ON (SSO)

93

be spent on such cleanup every processExpiresInterval, just that it will not occur more
frequently than that. Default is 60.

requireReauthentication is a flag to determine whether each request needs to be
reauthenticated to the security Realm. If true, this valve uses cached security credentials
(username and password) to reauthenticate to the JBoss Web security Realm for each request
associated with an SSO session. If false, the valve can itself authenticate requests based on
the presence of a valid SSO cookie, without rechecking with the Realm. Setting to true can
allow web applications with different security-domain configurations to share an SSO.
Default is false.

19.2. SSO BEHAVIOR

The user will not be challenged as long as they access only unprotected resources in any of the web
applications on the virtual host.

Upon access to a protected resource in any web app, the user will be challenged to authenticate, using
the log in method defined for the web app.

Once authenticated, the roles associated with this user will be utilized for access control decisions
across all of the associated web applications, without challenging the user to authenticate themselves
to each application individually.

If the web application invalidates a session (by invoking the
javax.servlet.http.HttpSession.invalidate() method), the user's sessions in all web
applications will be invalidated.

A session timeout does not invalidate the SSO if other sessions are still valid.

19.3. LIMITATIONS

There are a number of known limitations to this Tomcat valve-based SSO implementation:

Only useful within a cluster of EAP instances; SSO does not propagate to other resources.

Requires use of container-managed authentication (via login-config element in web.xml).

Requires cookies. SSO is maintained via a cookie and URL rewriting is not supported.

Unless requireReauthentication is set to true, all web applications configured for the
same SSO valve must share the same JBoss Web Realm and JBoss Security security-
domain. This means:

In server.xml you can nest the Realm element inside the Host element (or the
surrounding Engine element), but not inside a context.xml packaged with one of the
involved web applications.

The security-domain configured in jboss-web.xml or jboss-app.xml must be
consistent for all of the web applications.

Even if you set requireReauthentication to true and use a different security-
domain (or, less likely, a different Realm) for different webapps, the varying security
integrations must all accept the same credentials (for example,. username and password).

HTTP Connectors Load Balancing Guide

94

19.4. CONFIGURING THE COOKIE DOMAIN

The SSO valve supports a cookieDomain configuration attribute. This attribute allows configuration
of the SSO cookie's domain (the set of hosts to which the browser will present the cookie). By default
the domain is "/", meaning the browser will only present the cookie to the host that issued it. The
cookieDomain attribute allows the cookie to be scoped to a wider domain.

For example, suppose we have a case where two apps, with URLs http://app1.xyz.com and
http://app2.xyz.com, that wish to share an SSO context. These apps could be running on different
servers in a cluster or the virtual host with which they are associated could have multiple aliases. This
can be supported with the following configuration:

Valve className="org.jboss.web.tomcat.service.sso.ClusteredSingleSignOn"
 cookieDomain="xyz.com" /

CHAPTER 19. USING CLUSTERED SINGLE SIGN-ON (SSO)

95

CHAPTER 20. COMPLETE WORKING EXAMPLE
Following are a set of example configuration files for a complete working example.

Proxy Server

A proxy server listening on localhost:

LoadModule slotmem_module modules/mod_slotmem.so
LoadModule manager_module modules/mod_manager.so
LoadModule proxy_cluster_module modules/mod_proxy_cluster.so
LoadModule advertise_module modules/mod_advertise.so

Listen 127.0.0.1:6666
<VirtualHost 127.0.0.1:6666>

 <Directory />
 Order deny,allow
 Deny from all
 Allow from 127.0.0.1
 </Directory>

 KeepAliveTimeout 60
 MaxKeepAliveRequests 0

 ManagerBalancerName mycluster
 ServerAdvertise On
 AdvertiseFrequency 5

</VirtualHost>

<Location /mod_cluster-manager>
 SetHandler mod_cluster-manager
 Order deny,allow
 Deny from all
 Allow from 127.0.0.1
</Location>

JBoss Web Client Listener

Following are the listener definitions for
JBOSS_EAP_DIST/server/PROFILE/deploy/jbossweb.sar/server.xml.

<!-- Non-clustered mode -->
<Listener
className="org.jboss.web.tomcat.service.deployers.MicrocontainerIntegratio
nLifecycleListener" delegateBeanName="ModClusterService"/>
<!-- Clustered mode
 Listener
className="org.jboss.web.tomcat.service.deployers.MicrocontainerIntegratio
nLifecycleListener" delegateBeanName="HAModClusterService"/-->

JBoss Web Client Service Dependencies

HTTP Connectors Load Balancing Guide

96

Following are the required dependencies for the WebServer bean in
JBOSS_EAP_DIST/server/PROFILE/deploy/jbossweb.sar/META-INF/jboss-beans.xml.
Add them to the existing dependencies.

<bean name="WebServer"
class="org.jboss.web.tomcat.service.deployers.TomcatService">
 <!-- ... -->
 <depends>ModClusterService</depends><!-- Non-clustered mode -->
 <!--depends>HAModClusterService</depends--><!-- Clustered mode -->
 <!-- ... -->
</bean>

Example iptables Firewall Rules

Following are a set of example firewall rules using iptables, for a cluster node on the 192.168.1.0/24
subnet.

/sbin/iptables -I INPUT 5 -p udp -d 224.0.1.0/24 -j ACCEPT -m comment --
comment "mod_cluster traffic"
/sbin/iptables -I INPUT 6 -p udp -d 224.0.0.0/4 -j ACCEPT -m comment --
comment "JBoss Cluster traffic"
/sbin/iptables -I INPUT 9 -p udp -s 192.168.1.0/24 -j ACCEPT -m comment --
comment "cluster subnet for inter-node communication"
/sbin/iptables -I INPUT 10 -p tcp -s 192.168.1.0/24 -j ACCEPT -m comment -
-comment "cluster subnet for inter-node communication"
/etc/init.d/iptables save

CHAPTER 20. COMPLETE WORKING EXAMPLE

97

APPENDIX A. REFERENCE: WORKERS.PROPERTIES
Apache HTTP Server worker nodes are Servlet containers that are mapped to the mod_jk load
balancer. The worker nodes are defined in HTTPD_DIST/conf/workers.properties. This file
specifies where the different Servlet containers are located, and how calls should be load-balanced
across them.

The workers.properties file contains two sections:

Global Properties

This section contains directives that apply to all workers.

Worker Properties

This section contains directives that apply to each individual worker.

Each node is defined using the Worker Properties naming convention. The worker name can only
contain alphanumeric characters, limited to [a-z][A-Z][0-9][_\-].

The structure of a Worker Property is worker.worker_name.directive.

worker

The constant prefix for all worker properties.

worker_name

The arbitrary name given to the worker. For example: node1, node_01, Node_1.

directive

The specific directive required.

The main directives required to configure worker nodes are described below.

NOTE

For the full list of worker.properties configuration directives, refer directly to the
Apache Tomcat Connector - Reference Guide

worker.properties Global Directives

worker.list

Specifies the list of worker names used by mod_jk. The workers in this list are available to map
requests to.

NOTE

A single node configuration, which is not managed by a load balancer, must be set to
worker.list=[worker name].

workers.properties Mandatory Directives

HTTP Connectors Load Balancing Guide

98

http://tomcat.apache.org/connectors-doc/reference/workers.html

type

Specifies the type of worker, which determines the directives applicable to the worker. The default
value is ajp13, which is the preferred worker type to select for communication between the web
server and Apache HTTP Server.

Other values include ajp14, lb, status.

For detailed information about ajp13, refer to The Apache Tomcat Connector - AJP Protocol
Reference

workers.properties Connection Directives

host

The hostname or IP address of the worker. The worker node must support the ajp13 protocol stack.
The default value is localhost.

You can specify the port directive as part of the host directive by appending the port number after
the hostname or IP address. For example: worker.node1.host=192.168.2.1:8009 or
worker.node1.host=node1.example.com:8009

port

The port number of the remote server instance listening for defined protocol requests. The default
value is 8009, which is the default listen port for AJP13 workers. If you are using AJP14 workers,
this value must be set to 8011.

ping_mode

Specifies the conditions under which connections are probed for their current network health.

The probe uses an empty AJP13 packet for the CPing, and expects a CPong in return, within a
specified timeout.

You specify the conditions by using a combination of the directive flags. The flags are not comma-
separated. For example, a correct directive flag set is worker.node1.ping_mode=CI, which
specifies that the connection will be pinged on connecting to the server and at regular intervals
afterward.

C (connect)

Specifies the connection is probed once after connecting to the server. You specify the timeout
using the connect_timeout directive, otherwise the value for ping_timeout is used.

P (prepost)

Specifies the connection is probed before sending each request to the server. You specify the
timeout using the prepost_timeout directive, otherwise the value for ping_timeout is used.

I (interval)

Specifies the connection is probed during regular internal maintenance cycles. You specify the
idle time between each interval using the connection_ping_interval directive, otherwise
the value for ping_timeout is used.

A (all)

APPENDIX A. REFERENCE: WORKERS.PROPERTIES

99

http://tomcat.apache.org/connectors-doc/ajp/ajpv13a.html

The most common setting, which specifies all directive flags are applied. For information about
the *_timeout advanced directives, refer directly to Apache Tomcat Connector - Reference
Guide.

ping_timeout

Specifies the time to wait for CPong answers to a CPing connection probe (refer to ping_mode).
The default value is 10000 (milliseconds).

worker.properties Load Balancing Directives

lbfactor

Specifies the load-balancing factor for an individual worker, and is only specified for a member
worker of a load balancer.

This directive defines the relative amount of HTTP request load distributed to the worker compared
to other workers in the cluster.

A common example where this directive applies is where you want to differentiate servers with
greater processing power than others in the cluster. For example, if you require a worker to take
three times the load of other workers, specify worker.worker name.lbfactor=3

balance_workers

Specifies the worker nodes that the load balancer must manage. The directive can be used multiple
times for the same load balancer, and consists of a comma-separated list of worker names as
specified in the workers.properties file.

sticky_session

Specifies whether requests for workers with SESSION IDs are routed back to the same worker. The
default is 0 (false). When set to 1 (true), load balancer persistence is enabled.

For example, if you specify worker.loadbalancer.sticky_session=0, each request is load
balanced between each node in the cluster. In other words, different requests for the same session
will go to different servers based on server load.

If worker.loadbalancer.sticky_session=1, each session is persisted (locked) to one server
until the session is terminated, providing that server is available.

HTTP Connectors Load Balancing Guide

100

http://tomcat.apache.org/connectors-doc/reference/workers.html

APPENDIX B. REFERENCE: JAVA PROPERTIES
Read this appendix to learn about the JBoss HTTP Connector (mod_cluster) configuration properties
that apply to either a JBoss Enterprise Application Platform or JBoss Enterprise Application Platform
server node.

B.1. PROXY CONFIGURATION

The configuration values are sent to proxies under the following conditions:

During server startup;

When a proxy is detected through the advertise mechanism;

During error recovery, when a proxy's configuration is reset.

Proxy Configuration Attributes

stickySession

Specifies whether subsequent requests for a given session should be routed to the same node, if
possible. Default is true.

stickySessionRemove

Specifies whether the httpd proxy should remove session stickiness if the balancer is unable to
route a request to the node to which it is stuck. This property is ignored if stickySession is
false. Default is false.

stickySessionForce

Specifies whether the httpd proxy should return an error if the balancer is unable to route a request
to the node to which it is stuck. This property is ignored if stickySession is false. Default is
true.

workerTimeout

Specifies the number of seconds to wait for a worker to become available to handle a request. When
all the workers of a balancer are usable, mod_cluster will retry after a while (workerTimeout/100) to
find a usable worker.

A value of -1 indicates that the httpd will not wait for a worker to be available and will return an
error if no workers are available. Default is -1.

maxAttempts

Specifies the number of times the httpd proxy will attempt to send a given request to a worker
before aborting. The minimum value is 1: try once before aborting. Default is 1.

flushPackets

Specifies whether packet flushing is enabled or disabled. Default is false.

flushWait

Specifies the time to wait before flushing packets. A value of -1 means wait forever. Default is -1.

APPENDIX B. REFERENCE: JAVA PROPERTIES

101

ping

Time to wait (in seconds) for a pong answer to a ping. Default is 10.

smax

Specifies the soft maximum idle connection count. The maximum value is determined by the httpd
thread configuration (ThreadsPerChild or 1).

ttl

Specifies the time (in seconds) idle connections persist, above the smax threshold. Default is 60.

nodeTimeout

Specifies the time (in seconds) mod_cluster waits for the back-end server response before
returning an error.

mod_cluster always uses a CPing/CPong before forwarding a request. The connectiontimeout
value used by mod_cluster is the ping value. Default is -1.

balancer

Specifies the name of the load-balancer. Default is mycluster.

domain

Optional parameter, which specifies how load is balanced across jvmRoutes within the same
domain. domain is used in conjunction with partitioned session replication (for example, buddy
replication).

HTTP Connectors Load Balancing Guide

102

APPENDIX C. REVISION HISTORY

Revision 5.2.0-103.400 2013-10-30 Rüdiger Landmann
Rebuild with publican 4.0.0

Revision 5.2.0-103 Thu Jul 12 2013 Russell Dickenson
Incorporated changes for JBoss Enterprise Application Platform 5.2.0 GA. For information about documentation changes to
this guide, refer to Release Notes 5.2.0.

Revision 5.1.2-100 Thu Dec 8 2011 Jared Morgan
Incorporated changes for JBoss Enterprise Application Platform 5.1.2 GA. For information about documentation changes to
this guide, refer to Release Notes 5.1.2 .

Revision 5.1.1-100 Mon Jul 18 2011 Jared Morgan
Incorporated changes for JBoss Enterprise Application Platform 5.1.1 GA. For information about documentation changes to
this guide, refer to Release Notes 5.1.1 .

APPENDIX C. REVISION HISTORY

103

	Table of Contents
	PREFACE
	1. FILE NAME CONVENTIONS

	PART I. APACHE TOMCAT CONNECTOR (MOD_JK)
	CHAPTER 1. OVERVIEW
	CHAPTER 2. DOWNLOAD AND INSTALL
	CHAPTER 3. CONFIGURE LOAD BALANCING USING APACHE HTTP SERVER AND MOD_JK
	3.1. CONFIGURE WORKER NODES IN MOD_JK
	3.2. CONFIGURING JBOSS TO WORK WITH MOD_JK

	CHAPTER 4. TROUBLESHOOTING AND OPTIMIZING MOD_JK
	4.1. COMMON PROBLEMS
	4.2. GENERAL DIAGNOSTICS
	4.3. GETTING FURTHER HELP

	PART II. JBOSS HTTP CONNECTOR (MOD_CLUSTER)
	CHAPTER 5. OVERVIEW
	5.1. KEY FEATURES
	5.2. COMPONENTS
	5.3. LIMITATIONS

	CHAPTER 6. INSTALL PROXY SERVER COMPONENTS
	6.1. APACHE HTTP SERVER MODULES
	6.1.1. mod_manager.so
	6.1.2. mod_proxy_cluster.so
	6.1.3. mod_advertise.so

	6.2. INSTALL PROXY SERVER COMPONENTS

	CHAPTER 7. CONFIGURE BASIC PROXY SERVER
	7.1. BASIC PROXY CONFIGURATION OVERVIEW
	7.2. CONFIGURE A LOAD-BALANCING PROXY USING THE HTTP CONNECTOR

	CHAPTER 8. INSTALL NODE WITH BASIC CONFIGURATION
	8.1. WORKER NODE REQUIREMENTS
	8.2. INSTALL AND CONFIGURE A WORKER NODE

	CHAPTER 9. ADVANCED CONFIGURATION
	9.1. STATIC PROXY CONFIGURATION
	9.2. CLUSTERED NODE OPERATION

	CHAPTER 10. JAVA PROPERTIES
	10.1. CONFIGURATION PROPERTIES
	10.1.1. Proxy Discovery Configuration
	10.1.2. Proxy Configuration
	10.1.3. SSL Configuration
	10.1.4. HA Configuration
	10.1.5. Load Configuration

	CHAPTER 11. LOAD METRICS
	11.1. SERVER-SIDE LOAD METRICS
	11.2. WEB CONTAINER METRICS
	11.3. SYSTEM/JVM METRICS
	11.4. OTHER METRICS

	CHAPTER 12. LOAD BALANCING DEMONSTRATION
	12.1. SET UP THE DEMONSTRATION
	12.2. CONFIGURE THE DEMO CLIENT
	12.3. INTERACT WITH THE DEMONSTRATION
	12.3.1. Generate artificial load

	PART III. INTERNET SERVER API (ISAPI)
	CHAPTER 13. OVERVIEW
	13.1. WHAT IS INTERNET SERVER API

	CHAPTER 14. CONFIGURING THE ISAPI CONNECTOR ON WINDOWS
	14.1. PREREQUISITES AND CONFIGURATION ASSUMPTIONS
	14.2. CONFIGURE SERVER INSTANCE AS A WORKER NODE
	14.3. MICROSOFT IIS 6 INITIAL CLUSTERING CONFIGURATION
	14.4. MICROSOFT IIS 7 INITIAL CLUSTERING CONFIGURATION
	14.5. CONFIGURE A BASIC CLUSTER WITH ISAPI
	14.6. CONFIGURE A LOAD-BALANCING CLUSTER WITH ISAPI

	PART IV. NETSCAPE SERVER API (NSAPI)
	CHAPTER 15. WHAT IS NETSCAPE SERVER API?
	CHAPTER 16. CONFIGURING THE NSAPI CONNECTOR ON SOLARIS
	16.1. PREREQUISITES AND CONFIGURATION ASSUMPTIONS
	16.2. CONFIGURE SERVER INSTANCE AS A WORKER NODE
	16.3. INITIAL CLUSTERING CONFIGURATION
	16.4. CONFIGURE A BASIC CLUSTER WITH NSAPI
	16.5. CONFIGURE A LOAD-BALANCED CLUSTER WITH NSAPI

	PART V. COMMON LOAD BALANCING TASKS
	CHAPTER 17. HTTP SESSION STATE REPLICATION
	17.1. ENABLING SESSION REPLICATION IN YOUR APPLICATION
	17.2. HTTPSESSION PASSIVATION AND ACTIVATION
	17.2.1. Configuring HttpSession passivation

	17.3. CONFIGURE THE JBOSS CACHE INSTANCE USED FOR SESSION STATE REPLICATION

	CHAPTER 18. HIGH-AVAILABILITY WEB SESSIONS
	18.1. DATASOURCEPERSISTENTMANAGER CONFIGURATION ATTRIBUTES

	CHAPTER 19. USING CLUSTERED SINGLE SIGN-ON (SSO)
	19.1. CONFIGURATION
	19.2. SSO BEHAVIOR
	19.3. LIMITATIONS
	19.4. CONFIGURING THE COOKIE DOMAIN

	CHAPTER 20. COMPLETE WORKING EXAMPLE
	APPENDIX A. REFERENCE: WORKERS.PROPERTIES
	APPENDIX B. REFERENCE: JAVA PROPERTIES
	B.1. PROXY CONFIGURATION

	APPENDIX C. REVISION HISTORY

