
Red Hat Single Sign-On 7.4

Server Administration Guide

For Use with Red Hat Single Sign-On 7.4

Last Updated: 2021-12-16

Red Hat Single Sign-On 7.4 Server Administration Guide

For Use with Red Hat Single Sign-On 7.4

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide consists of information for administrators to configure Red Hat Single Sign-On 7.4

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. OVERVIEW
1.1. FEATURES
1.2. HOW DOES SECURITY WORK?
1.3. CORE CONCEPTS AND TERMS

CHAPTER 2. SERVER INITIALIZATION

CHAPTER 3. ADMIN CONSOLE
3.1. THE MASTER REALM
3.2. CREATE A NEW REALM
3.3. SSL MODE
3.4. CLEARING SERVER CACHES
3.5. EMAIL SETTINGS
3.6. THEMES AND INTERNATIONALIZATION

3.6.1. Internationalization
3.6.1.1. User Locale selection

CHAPTER 4. USER MANAGEMENT
4.1. SEARCHING FOR USERS
4.2. CREATING NEW USERS
4.3. DELETING USERS
4.4. USER ATTRIBUTES
4.5. USER CREDENTIALS

4.5.1. Creating a Password for the User
4.5.2. Creating other credentials

4.5.2.1. Creating an OTP
4.6. REQUIRED ACTIONS

4.6.1. Default Required Actions
4.6.2. Terms and Conditions

4.7. IMPERSONATION
4.8. USER REGISTRATION

4.8.1. reCAPTCHA Support
4.9. PERSONAL DATA COLLECTED BY RED HAT SINGLE SIGN-ON

CHAPTER 5. LOGIN PAGE SETTINGS
5.1. FORGOT PASSWORD
5.2. REMEMBER ME

CHAPTER 6. AUTHENTICATION
6.1. PASSWORD POLICIES

6.1.1. Password Policy Types
6.2. OTP POLICIES

6.2.1. TOTP vs. HOTP
6.2.2. TOTP Configuration Options
6.2.3. HOTP Configuration Options

6.3. AUTHENTICATION FLOWS
6.3.1. Built-in flows

6.3.1.1. Execution requirements
6.3.2. Creating flows
6.3.3. Creating a password-less browser login flow

6.4. KERBEROS

10

11
11
11

12

15

17
18
18
19

20
21
22
23
23

24
24
24
25
26
27
28
28
29
29
30
30
31
32
34
37

38
38
41

43
43
44
45
46
46
47
47
47
48
49
51

53

Table of Contents

1

. .

. .

6.4.1. Setup of Kerberos server
6.4.2. Setup and configuration of Red Hat Single Sign-On server

6.4.2.1. Enable SPNEGO Processing
6.4.2.2. Configure Kerberos User Storage Federation Provider

6.4.3. Setup and configuration of client machines
6.4.4. Credential Delegation
6.4.5. Cross-realm trust
6.4.6. Troubleshooting

6.5. X.509 CLIENT CERTIFICATE USER AUTHENTICATION
6.5.1. Features
6.5.2. Enable X.509 Client Certificate User Authentication
6.5.3. Adding X.509 Client Certificate Authentication to a Browser Flow
6.5.4. Adding X.509 Client Certificate Authentication to a Direct Grant Flow
6.5.5. Client certificate lookup

6.5.5.1. HAProxy certificate lookup provider
6.5.5.2. Apache certificate lookup provider
6.5.5.3. Nginx certificate lookup provider
6.5.5.4. Other reverse proxy implementations

6.5.6. Troubleshooting
6.6. W3C WEB AUTHENTICATION (WEBAUTHN)

6.6.1. Setup
6.6.1.1. Enable Webauthn Authenticator Registration
6.6.1.2. Adding WebAuthn Authentication to a Browser Flow

6.6.2. Authenticate with WebAuthn Authenticator
6.6.3. Managing WebAuthn as an administrator

6.6.3.1. Managing Credentials
6.6.3.2. Managing Policy

6.6.4. Attestation Statement Verification
6.6.5. Managing WebAuthn credentials as a user

6.6.5.1. Register WebAuthn Authenticator
6.6.6. Passwordless WebAuthn together with Two-Factor

6.6.6.1. Setup

CHAPTER 7. SSO PROTOCOLS
7.1. OPENID CONNECT

7.1.1. OIDC Auth Flows
7.1.1.1. Authorization Code Flow
7.1.1.2. Implicit Flow
7.1.1.3. Resource Owner Password Credentials Grant (Direct Access Grants)
7.1.1.4. Client Credentials Grant

7.1.2. Red Hat Single Sign-On Server OIDC URI Endpoints
7.2. SAML

7.2.1. SAML Bindings
7.2.1.1. Redirect Binding
7.2.1.2. POST Binding
7.2.1.3. ECP

7.2.2. Red Hat Single Sign-On Server SAML URI Endpoints
7.3. OPENID CONNECT VS. SAML
7.4. DOCKER REGISTRY V2 AUTHENTICATION

7.4.1. Docker Auth Flow
7.4.2. Red Hat Single Sign-On Docker Registry v2 Authentication Server URI Endpoints

CHAPTER 8. MANAGING CLIENTS

54
54
55
55
57
57
58
60
60
61

62
64
68
69
69
70
70
71
71
72
72
72
73
74
74
75
75
77
77
77
78
78

80
80
80
80
81
81
81
81

82
82
82
83
83
83
83
84
84
85

86

Red Hat Single Sign-On 7.4 Server Administration Guide

2

. .

. .

. .

8.1. OIDC CLIENTS
8.1.1. Advanced Settings
8.1.2. Confidential Client Credentials
8.1.3. Service Accounts
8.1.4. Audience Support

8.1.4.1. Setup
8.1.4.2. Automatically add audience
8.1.4.3. Hardcoded audience

8.2. SAML CLIENTS
8.2.1. IDP Initiated Login
8.2.2. SAML Entity Descriptors

8.3. CLIENT LINKS
8.4. OIDC TOKEN AND SAML ASSERTION MAPPINGS

8.4.1. Priority order
8.4.2. OIDC User Session Note Mappers
8.4.3. Script Mapper

8.5. GENERATING CLIENT ADAPTER CONFIG
8.6. CLIENT SCOPES

8.6.1. Protocol
8.6.2. Consent related settings
8.6.3. Link Client Scope with the Client

8.6.3.1. Example
8.6.4. Evaluating Client Scopes

8.6.4.1. Generating Example Tokens
8.6.5. Client Scopes Permissions
8.6.6. Realm Default Client Scopes
8.6.7. Scopes explained

CHAPTER 9. ROLES
9.1. REALM ROLES
9.2. CLIENT ROLES
9.3. COMPOSITE ROLES
9.4. USER ROLE MAPPINGS

9.4.1. Default Roles
9.5. ROLE SCOPE MAPPINGS

CHAPTER 10. GROUPS
10.1. GROUPS VS. ROLES
10.2. DEFAULT GROUPS

CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND PERMISSIONS
11.1. MASTER REALM ACCESS CONTROL

11.1.1. Global Roles
11.1.2. Realm Specific Roles

11.2. DEDICATED REALM ADMIN CONSOLES
11.3. FINE GRAIN ADMIN PERMISSIONS

11.3.1. Managing One Specific Client
11.3.1.1. Permission Setup
11.3.1.2. Testing It Out.

11.3.2. Restrict User Role Mapping
11.3.2.1. Testing It Out.
11.3.2.2. Per Client map-roles Shortcut

11.3.3. Full List of Permissions
11.3.3.1. Role

86
89
91

94
95
96
97
97
98

102
103
103
104
106
106
106
106
107
107
108
109
109
109
110
110
110
111

112
112
112
113
113
114
115

117
118
118

120
120
120
120
121
121
122
122
126
126
129
129
130
130

Table of Contents

3

. .

. .

. .

11.3.3.2. Client
11.3.3.3. Users
11.3.3.4. Group

11.4. REALM KEYS
11.4.1. Rotating keys
11.4.2. Adding a generated keypair
11.4.3. Adding an existing keypair and certificate
11.4.4. Loading keys from a Java Keystore
11.4.5. Making keys passive
11.4.6. Disabling keys
11.4.7. Compromised keys

CHAPTER 12. IDENTITY BROKERING
12.1. BROKERING OVERVIEW
12.2. DEFAULT IDENTITY PROVIDER
12.3. GENERAL CONFIGURATION
12.4. SOCIAL IDENTITY PROVIDERS

12.4.1. Bitbucket
12.4.2. Facebook
12.4.3. GitHub
12.4.4. GitLab
12.4.5. Google
12.4.6. LinkedIn
12.4.7. Microsoft
12.4.8. OpenShift 3
12.4.9. OpenShift 4
12.4.10. PayPal
12.4.11. Stack Overflow
12.4.12. Twitter
12.4.13. Instagram

12.5. OPENID CONNECT V1.0 IDENTITY PROVIDERS
12.6. SAML V2.0 IDENTITY PROVIDERS

12.6.1. SP Descriptor
12.7. CLIENT-SUGGESTED IDENTITY PROVIDER
12.8. MAPPING CLAIMS AND ASSERTIONS
12.9. AVAILABLE USER SESSION DATA
12.10. FIRST LOGIN FLOW

12.10.1. Default First Login Flow
12.10.2. Automatically Link Existing First Login Flow
12.10.3. Disabling Automatic User Creation

12.11. RETRIEVING EXTERNAL IDP TOKENS
12.12. IDENTITY BROKER LOGOUT

CHAPTER 13. USER SESSION MANAGEMENT
13.1. ADMINISTERING SESSIONS

13.1.1. Limitations of the Logout all Operation
13.1.2. Application Drilldown
13.1.3. User Drilldown

13.2. REVOCATION POLICIES
13.3. SESSION AND TOKEN TIMEOUTS
13.4. OFFLINE ACCESS
13.5. TRANSIENT SESSIONS

CHAPTER 14. USER STORAGE FEDERATION

130
131
131
132
132
133
133
133
133
133
133

135
135
137
137
140
140
144
147
150
152
157
160
163
165
167
169
172
175
180
183
186
186
187
188
188
189
190
190
191
191

192
192
192
192
193
193
194
197
198

199

Red Hat Single Sign-On 7.4 Server Administration Guide

4

. .

. .

. .

. .

. .

14.1. ADDING A PROVIDER
14.2. DEALING WITH PROVIDER FAILURES
14.3. LDAP AND ACTIVE DIRECTORY

14.3.1. Storage Mode
14.3.2. Edit Mode
14.3.3. Other config options
14.3.4. Connect to LDAP over SSL
14.3.5. Sync of LDAP users to Red Hat Single Sign-On
14.3.6. LDAP Mappers
14.3.7. Password Hashing

14.4. SSSD AND FREEIPA IDENTITY MANAGEMENT INTEGRATION
14.4.1. FreeIPA/IdM Server
14.4.2. SSSD and D-Bus
14.4.3. Enabling the SSSD Federation Provider

14.5. CONFIGURING A FEDERATED SSSD STORE
14.6. CUSTOM PROVIDERS

CHAPTER 15. AUDITING AND EVENTS
15.1. LOGIN EVENTS

15.1.1. Event Types
15.1.2. Event Listener

15.2. ADMIN EVENTS

CHAPTER 16. EXPORT AND IMPORT
16.1. ADMIN CONSOLE EXPORT/IMPORT

CHAPTER 17. USING A VAULT TO OBTAIN SECRETS
17.1. KUBERNETES / OPENSHIFT FILES PLAINTEXT VAULT PROVIDER
17.2. ELYTRON CREDENTIAL STORE VAULT PROVIDER
17.3. KEY RESOLVERS
17.4. SAMPLE CONFIGURATION

17.4.1. Configuring the credential store and vault without a mask
17.4.2. Masking the password in the credential store and vault

CHAPTER 18. USER ACCOUNT SERVICE
18.1. THEMEABLE

CHAPTER 19. THREAT MODEL MITIGATION
19.1. HOST
19.2. ADMIN ENDPOINTS AND CONSOLE

19.2.1. IP Restriction
19.2.2. Port Restriction

19.3. PASSWORD GUESS: BRUTE FORCE ATTACKS
19.3.1. Password Policies

19.4. CLICKJACKING
19.5. SSL/HTTPS REQUIREMENT
19.6. CSRF ATTACKS
19.7. UNSPECIFIC REDIRECT URIS
19.8. COMPROMISED ACCESS AND REFRESH TOKENS
19.9. COMPROMISED AUTHORIZATION CODE
19.10. OPEN REDIRECTORS
19.11. PASSWORD DATABASE COMPROMISED
19.12. LIMITING SCOPE
19.13. LIMIT TOKEN AUDIENCE

199
199

200
200
201
201

202
202
202
204
204
205
206
207
207
208

209
209

211
212
214

217
218

220
220
221
222
223
223
224

226
228

229
229
229
229
230
231

233
233
234
234
235
235
235
235
236
236
236

Table of Contents

5

. .

19.14. SQL INJECTION ATTACKS

CHAPTER 20. THE ADMIN CLI
20.1. INSTALLING THE ADMIN CLI
20.2. USING THE ADMIN CLI
20.3. AUTHENTICATING
20.4. WORKING WITH ALTERNATIVE CONFIGURATIONS
20.5. BASIC OPERATIONS AND RESOURCE URIS
20.6. REALM OPERATIONS

Creating a new realm
Listing existing realms
Getting a specific realm
Updating a realm
Deleting a realm
Turning on all login page options for the realm
Listing the realm keys
Generating new realm keys
Adding new realm keys from a Java Key Store file
Making the key passive or disabling the key
Deleting an old key
Configuring event logging for a realm
Flushing the caches
Importing a realm from exported .json file

20.7. ROLE OPERATIONS
Creating a realm role
Creating a client role
Listing realm roles
Listing client roles
Getting a specific realm role
Getting a specific client role
Updating a realm role
Updating a client role
Deleting a realm role
Deleting a client role
Listing assigned, available, and effective realm roles for a composite role
Listing assigned, available, and effective client roles for a composite role
Adding realm roles to a composite role
Removing realm roles from a composite role
Adding client roles to a realm role
Adding client roles to a client role
Removing client roles from a composite role
Adding client roles to a group
Removing client roles from a group

20.8. CLIENT OPERATIONS
Creating a client
Listing clients
Getting a specific client
Getting the current secret for a specific client
Getting an adapter configuration file (keycloak.json) for a specific client
Getting a WildFly subsystem adapter configuration for a specific client
Getting a Docker-v2 example configuration for a specific client
Updating a client
Deleting a client

236

237
237
237
238
239
239
241
241
241
242
242
242
242
242
242
243
243
244
244
245
246
246
246
246
246
247
247
247
247
247
247
248
248
248
249
249
249
249
249
250
250
250
250
250
250
251
251
251
251
251

252

Red Hat Single Sign-On 7.4 Server Administration Guide

6

Adding or removing roles for client’s service account
20.9. USER OPERATIONS

Creating a user
Listing users
Getting a specific user
Updating a user
Deleting a user
Resetting a user’s password
Listing assigned, available, and effective realm roles for a user
Listing assigned, available, and effective client roles for a user
Adding realm roles to a user
Removing realm roles from a user
Adding client roles to a user
Removing client roles from a user
Listing a user’s sessions
Logging out a user from a specific session
Logging out a user from all sessions

20.10. GROUP OPERATIONS
Creating a group
Listing groups
Getting a specific group
Updating a group
Deleting a group
Creating a subgroup
Moving a group under another group
Get groups for a specific user
Adding a user to a group
Removing a user from a group
Listing assigned, available, and effective realm roles for a group
Listing assigned, available, and effective client roles for a group

20.11. IDENTITY PROVIDER OPERATIONS
Listing available identity providers
Listing configured identity providers
Getting a specific configured identity provider
Removing a specific configured identity provider
Configuring a Keycloak OpenID Connect identity provider
Configuring an OpenID Connect identity provider
Configuring a SAML 2 identity provider
Configuring a Facebook identity provider
Configuring a Google identity provider
Configuring a Twitter identity provider
Configuring a GitHub identity provider
Configuring a LinkedIn identity provider
Configuring a Microsoft Live identity provider
Configuring a Stack Overflow identity provider

20.12. STORAGE PROVIDER OPERATIONS
Configuring a Kerberos storage provider
Configuring an LDAP user storage provider
Removing a user storage provider instance
Triggering synchronization of all users for a specific user storage provider
Triggering synchronization of changed users for a specific user storage provider
Test LDAP user storage connectivity
Test LDAP user storage authentication

252
252
252
252
252
252
253
253
253
254
254
254
254
255
255
255
255
255
255
255
256
256
256
256
256
256
257
257
257
257
258
258
258
258
258
258
259
259
259
259
259
260
260
260
260
261
261
261
262
262
262
262
262

Table of Contents

7

20.13. ADDING MAPPERS
Adding a hardcoded role LDAP mapper
Adding an MS Active Directory mapper
Adding a user attribute LDAP mapper
Adding a group LDAP mapper
Adding a full name LDAP mapper

20.14. AUTHENTICATION OPERATIONS
Setting a password policy
Getting the current password policy
Listing authentication flows
Getting a specific authentication flow
Listing executions for a flow
Adding configuration to an execution
Getting configuration for an execution
Updating configuration for an execution
Deleting configuration for an execution

263
263
263
263
264
264
264
264
265
265
266
266
266
266
266
267

Red Hat Single Sign-On 7.4 Server Administration Guide

8

Table of Contents

9

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat Single Sign-On 7.4 Server Administration Guide

10

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. OVERVIEW
Red Hat Single Sign-On is a single sign on solution for web apps and RESTful web services. The goal of
Red Hat Single Sign-On is to make security simple so that it is easy for application developers to secure
the apps and services they have deployed in their organization. Security features that developers
normally have to write for themselves are provided out of the box and are easily tailorable to the
individual requirements of your organization. Red Hat Single Sign-On provides customizable user
interfaces for login, registration, administration, and account management. You can also use Red Hat
Single Sign-On as an integration platform to hook it into existing LDAP and Active Directory servers.
You can also delegate authentication to third party identity providers like Facebook and Google+.

1.1. FEATURES

Single-Sign On and Single-Sign Out for browser applications.

OpenID Connect support.

OAuth 2.0 support.

SAML support.

Identity Brokering - Authenticate with external OpenID Connect or SAML Identity Providers.

Social Login - Enable login with Google, GitHub, Facebook, Twitter, and other social networks.

User Federation - Sync users from LDAP and Active Directory servers.

Kerberos bridge - Automatically authenticate users that are logged-in to a Kerberos server.

Admin Console for central management of users, roles, role mappings, clients and configuration.

Account Management console that allows users to centrally manage their account.

Theme support - Customize all user facing pages to integrate with your applications and
branding.

Two-factor Authentication - Support for TOTP/HOTP via Google Authenticator or FreeOTP.

Login flows - optional user self-registration, recover password, verify email, require password
update, etc.

Session management - Admins and users themselves can view and manage user sessions.

Token mappers - Map user attributes, roles, etc. how you want into tokens and statements.

Not-before revocation policies per realm, application and user.

CORS support - Client adapters have built-in support for CORS.

Client adapters for JavaScript applications, JBoss EAP, Fuse, etc.

Supports any platform/language that has an OpenID Connect Relying Party library or SAML 2.0
Service Provider library.

1.2. HOW DOES SECURITY WORK?

CHAPTER 1. OVERVIEW

11

Red Hat Single Sign-On is a separate server that you manage on your network. Applications are
configured to point to and be secured by this server. Red Hat Single Sign-On uses open protocol
standards like OpenID Connect or SAML 2.0 to secure your applications. Browser applications redirect a
user’s browser from the application to the Red Hat Single Sign-On authentication server where they
enter their credentials. This is important because users are completely isolated from applications and
applications never see a user’s credentials. Applications instead are given an identity token or assertion
that is cryptographically signed. These tokens can have identity information like username, address,
email, and other profile data. They can also hold permission data so that applications can make
authorization decisions. These tokens can also be used to make secure invocations on REST-based
services.

1.3. CORE CONCEPTS AND TERMS

There are some key concepts and terms you should be aware of before attempting to use Red Hat
Single Sign-On to secure your web applications and REST services.

users

Users are entities that are able to log into your system. They can have attributes associated with
themselves like email, username, address, phone number, and birth day. They can be assigned group
membership and have specific roles assigned to them.

authentication

The process of identifying and validating a user.

authorization

The process of granting access to a user.

credentials

Credentials are pieces of data that Red Hat Single Sign-On uses to verify the identity of a user.
Some examples are passwords, one-time-passwords, digital certificates, or even fingerprints.

roles

Roles identify a type or category of user. Admin, user, manager, and employee are all typical roles
that may exist in an organization. Applications often assign access and permissions to specific roles
rather than individual users as dealing with users can be too fine grained and hard to manage.

user role mapping

A user role mapping defines a mapping between a role and a user. A user can be associated with zero
or more roles. This role mapping information can be encapsulated into tokens and assertions so that
applications can decide access permissions on various resources they manage.

composite roles

A composite role is a role that can be associated with other roles. For example a superuser
composite role could be associated with the sales-admin and order-entry-admin roles. If a user is
mapped to the superuser role they also inherit the sales-admin and order-entry-admin roles.

groups

Groups manage groups of users. Attributes can be defined for a group. You can map roles to a group
as well. Users that become members of a group inherit the attributes and role mappings that group
defines.

realms

A realm manages a set of users, credentials, roles, and groups. A user belongs to and logs into a
realm. Realms are isolated from one another and can only manage and authenticate the users that
they control.

clients

Clients are entities that can request Red Hat Single Sign-On to authenticate a user. Most often,

Red Hat Single Sign-On 7.4 Server Administration Guide

12

https://openid.net/connect/
http://saml.xml.org/saml-specifications

clients are applications and services that want to use Red Hat Single Sign-On to secure themselves
and provide a single sign-on solution. Clients can also be entities that just want to request identity
information or an access token so that they can securely invoke other services on the network that
are secured by Red Hat Single Sign-On.

client adapters

Client adapters are plugins that you install into your application environment to be able to
communicate and be secured by Red Hat Single Sign-On. Red Hat Single Sign-On has a number of
adapters for different platforms that you can download. There are also third-party adapters you can
get for environments that we don’t cover.

consent

Consent is when you as an admin want a user to give permission to a client before that client can
participate in the authentication process. After a user provides their credentials, Red Hat Single
Sign-On will pop up a screen identifying the client requesting a login and what identity information is
requested of the user. User can decide whether or not to grant the request.

client scopes

When a client is registered, you must define protocol mappers and role scope mappings for that
client. It is often useful to store a client scope, to make creating new clients easier by sharing some
common settings. This is also useful for requesting some claims or roles to be conditionally based on
the value of scope parameter. Red Hat Single Sign-On provides the concept of a client scope for
this.

client role

Clients can define roles that are specific to them. This is basically a role namespace dedicated to the
client.

identity token

A token that provides identity information about the user. Part of the OpenID Connect specification.

access token

A token that can be provided as part of an HTTP request that grants access to the service being
invoked on. This is part of the OpenID Connect and OAuth 2.0 specification.

assertion

Information about a user. This usually pertains to an XML blob that is included in a SAML
authentication response that provided identity metadata about an authenticated user.

service account

Each client has a built-in service account which allows it to obtain an access token.

direct grant

A way for a client to obtain an access token on behalf of a user via a REST invocation.

protocol mappers

For each client you can tailor what claims and assertions are stored in the OIDC token or SAML
assertion. You do this per client by creating and configuring protocol mappers.

session

When a user logs in, a session is created to manage the login session. A session contains information
like when the user logged in and what applications have participated within single-sign on during that
session. Both admins and users can view session information.

user federation provider

Red Hat Single Sign-On can store and manage users. Often, companies already have LDAP or Active
Directory services that store user and credential information. You can point Red Hat Single Sign-On
to validate credentials from those external stores and pull in identity information.

identity provider

CHAPTER 1. OVERVIEW

13

An identity provider (IDP) is a service that can authenticate a user. Red Hat Single Sign-On is an IDP.

identity provider federation

Red Hat Single Sign-On can be configured to delegate authentication to one or more IDPs. Social
login via Facebook or Google+ is an example of identity provider federation. You can also hook Red
Hat Single Sign-On to delegate authentication to any other OpenID Connect or SAML 2.0 IDP.

identity provider mappers

When doing IDP federation you can map incoming tokens and assertions to user and session
attributes. This helps you propagate identity information from the external IDP to your client
requesting authentication.

required actions

Required actions are actions a user must perform during the authentication process. A user will not
be able to complete the authentication process until these actions are complete. For example, an
admin may schedule users to reset their passwords every month. An update password required
action would be set for all these users.

authentication flows

Authentication flows are work flows a user must perform when interacting with certain aspects of the
system. A login flow can define what credential types are required. A registration flow defines what
profile information a user must enter and whether something like reCAPTCHA must be used to filter
out bots. Credential reset flow defines what actions a user must do before they can reset their
password.

events

Events are audit streams that admins can view and hook into.

themes

Every screen provided by Red Hat Single Sign-On is backed by a theme. Themes define HTML
templates and stylesheets which you can override as needed.

Red Hat Single Sign-On 7.4 Server Administration Guide

14

CHAPTER 2. SERVER INITIALIZATION
After performing all the installation and configuration tasks defined in the Server Installation and
Configuration Guide, you will need to create an initial admin account. Red Hat Single Sign-On does not
have any configured admin account out of the box. This account will allow you to create an admin that
can log into the master realm’s administration console so that you can start creating realms, users and
registering applications to be secured by Red Hat Single Sign-On.

If your server is accessible from localhost, you can boot it up and create this admin user by going to the
http://localhost:8080/auth URL.

Welcome Page

Simply specify the username and password you want for this initial admin.

If you cannot access the server via a localhost address, or just want to provision Red Hat Single Sign-On
from the command line you can do this with the … ​/bin/add-user-keycloak script.

add-user-keycloak script

The parameters are a little different depending if you are using the standalone operation mode or

CHAPTER 2. SERVER INITIALIZATION

15

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_installation_and_configuration_guide/
http://localhost:8080/auth

The parameters are a little different depending if you are using the standalone operation mode or
domain operation mode. For standalone mode, here is how you use the script.

Linux/Unix

$.../bin/add-user-keycloak.sh -r master -u <username> -p <password>

Windows

> ...\bin\add-user-keycloak.bat -r master -u <username> -p <password>

For domain mode, you have to point the script to one of your server hosts using the -sc switch.

Linux/Unix

$.../bin/add-user-keycloak.sh --sc domain/servers/server-one/configuration -r master -u <username>
-p <password>

Windows

> ...\bin\add-user-keycloak.bat --sc domain/servers/server-one/configuration -r master -u
<username> -p <password>

Red Hat Single Sign-On 7.4 Server Administration Guide

16

CHAPTER 3. ADMIN CONSOLE
The bulk of your administrative tasks will be done through the Red Hat Single Sign-On Admin Console.
You can go to the console url directly at http://localhost:8080/auth/admin/

Login Page

Enter the username and password you created on the Welcome Page or the add-user-keycloak script
in the bin directory. This will bring you to the Red Hat Single Sign-On Admin Console.

Admin Console

CHAPTER 3. ADMIN CONSOLE

17

http://localhost:8080/auth/admin/

The left drop down menu allows you to pick a realm you want to manage or to create a new one. The
right drop down menu allows you to view your user account or logout. If you are curious about a certain
feature, button, or field within the Admin Console, simply hover your mouse over any question mark ?
icon. This will pop up tooltip text to describe the area of the console you are interested in. The image
above shows the tooltip in action.

3.1. THE MASTER REALM

When you boot Red Hat Single Sign-On for the first time Red Hat Single Sign-On creates a pre-defined
realm for you. This initial realm is the master realm. It is the highest level in the hierarchy of realms. Admin
accounts in this realm have permissions to view and manage any other realm created on the server
instance. When you define your initial admin account, you create an account in the master realm. Your
initial login to the admin console will also be via the master realm.

We recommend that you do not use the master realm to manage the users and applications in your
organization. Reserve use of the master realm for super admins to create and manage the realms in your
system. Following this security model helps prevent accidental changes and follows the tradition of
permitting user accounts access to only those privileges and powers necessary for the successful
completion of their current task.

It is possible to disable the master realm and define admin accounts within each individual new realm you
create. Each realm has its own dedicated Admin Console that you can log into with local accounts. This
guide talks more about this in the Dedicated Realm Admin Consoles chapter.

3.2. CREATE A NEW REALM

Creating a new realm is very simple. Mouse over the top left corner drop down menu that is titled with
Master. If you are logged in the master realm this drop down menu lists all the realms created. The last
entry of this drop down menu is always Add Realm. Click this to add a realm.

Add Realm Menu

This menu option will bring you to the Add Realm page. Specify the realm name you want to define and

Red Hat Single Sign-On 7.4 Server Administration Guide

18

This menu option will bring you to the Add Realm page. Specify the realm name you want to define and
click the Create button. Alternatively you can import a JSON document that defines your new realm.
We’ll go over this in more detail in the Export and Import chapter.

Create Realm

After creating the realm you are brought back to the main Admin Console page. The current realm will
now be set to the realm you just created. You can switch between managing different realms by doing a
mouse over on the top left corner drop down menu.

3.3. SSL MODE

Each realm has an SSL Mode associated with it. The SSL Mode defines the SSL/HTTPS requirements
for interacting with the realm. Browsers and applications that interact with the realm must honor the
SSL/HTTPS requirements defined by the SSL Mode or they will not be allowed to interact with the
server.

WARNING

Red Hat Single Sign-On generates a self-signed certificate the first time it runs.
Please note that self-signed certificates are not secure, and should only be used for
testing purposes. It is highly recommended that you install a CA-signed certificate
on the Red Hat Single Sign-On server itself or on a reverse proxy in front of the Red
Hat Single Sign-On server. See the Server Installation and Configuration Guide.

To configure the SSL Mode of your realm, you need to click on the Realm Settings left menu item and
go to the Login tab.

Login Tab



CHAPTER 3. ADMIN CONSOLE

19

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_installation_and_configuration_guide/

The Require SSL option allows you to pick the SSL Mode you want. Here is an explanation of each
mode:

external requests

Users can interact with Red Hat Single Sign-On without SSL so long as they stick to private IP
addresses like localhost, 127.0.0.1, 10.x.x.x, 192.168.x.x, and 172.16.x.x. If you try to access Red
Hat Single Sign-On without SSL from a non-private IP address you will get an error.

none

Red Hat Single Sign-On does not require SSL. This should really only be used in development when
you are playing around with things and don’t want to bother configuring SSL on your server.

all requests

Red Hat Single Sign-On requires SSL for all IP addresses.

3.4. CLEARING SERVER CACHES

Red Hat Single Sign-On will cache everything it can in memory within the limits of your JVM and/or the
limits you’ve configured it for. If the Red Hat Single Sign-On database is modified by a third party (i.e. a
DBA) outside the scope of the server’s REST APIs or Admin Console there’s a chance parts of the in-
memory cache may be stale. You can clear the realm cache, user cache or cache of external public keys
(Public keys of external clients or Identity providers, which Red Hat Single Sign-On usually uses to verify
signatures of particular external entity) from the Admin Console by going to the Realm Settings left
menu item and the Cache tab.

Cache tab

Red Hat Single Sign-On 7.4 Server Administration Guide

20

Just click the clear button on the cache you want to evict.

3.5. EMAIL SETTINGS

Red Hat Single Sign-On sends emails to users to verify their email address, when they forget their
passwords, or when an admin needs to receive notifications about a server event. To enable Red Hat
Single Sign-On to send emails you need to provide Red Hat Single Sign-On with your SMTP server
settings. This is configured per realm. Go to the Realm Settings left menu item and click the Email tab.

Email Tab

Host

Host denotes the SMTP server hostname used for sending emails.

Port

Port denotes the SMTP server port.

From

From denotes the address used for the From SMTP-Header for the emails sent.

From Display Name

CHAPTER 3. ADMIN CONSOLE

21

From Display Name allows to configure a user friendly email address aliases (optional). If not set the
plain From email address will be displayed in email clients.

Reply To

Reply To denotes the address used for the Reply-To SMTP-Header for the mails sent (optional). If
not set the plain From email address will be used.

Reply To Display Name

Reply To Display Name allows to configure a user friendly email address aliases (optional). If not set
the plain Reply To email address will be displayed.

Envelope From

Envelope From denotes the Bounce Address used for the Return-Path SMTP-Header for the mails
sent (optional).

As emails are used for recovering usernames and passwords it’s recommended to use SSL or TLS,
especially if the SMTP server is on an external network. To enable SSL click on Enable SSL or to enable
TLS click on Enable TLS. You will most likely also need to change the Port (the default port for
SSL/TLS is 465).

If your SMTP server requires authentication click on Enable Authentication and insert the Username
and Password. The value of the Password field can refer a value from an external vault.

3.6. THEMES AND INTERNATIONALIZATION

Themes allow you to change the look and feel of any UI in Red Hat Single Sign-On. Themes are
configured per realm. To change a theme go to the Realm Settings left menu item and click on the
Themes tab.

Themes Tab

Pick the theme you want for each UI category and click Save.

Login Theme

Red Hat Single Sign-On 7.4 Server Administration Guide

22

https://en.wikipedia.org/wiki/Bounce_address

Username password entry, OTP entry, new user registration, and other similar screens related to
login.

Account Theme

Each user has an User Account Management UI.

Admin Console Theme

The skin of the Red Hat Single Sign-On Admin Console.

Email Theme

Whenever Red Hat Single Sign-On has to send out an email, it uses templates defined in this theme
to craft the email.

The Server Developer Guide goes into how to create a new themes or modify existing ones.

3.6.1. Internationalization

Every UI screen is internationalized in Red Hat Single Sign-On. The default language is English, but if you
turn on the Internationalization switch on the Theme tab you can choose which locales you want to
support and what the default locale will be. The next time a user logs in, they will be able to choose a
language on the login page to use for the login screens, User Account Management UI, and Admin
Console. The Server Developer Guide explains how you can offer additional languages.

3.6.1.1. User Locale selection

In order to select the best possible locale for a user there is a locale selector provider that handles
deciding what is the best locale on the information available. One thing to note here is that it is not
always known who the user is. For this reason the previously authenticated users locale is remembered in
a persisted cookie.

The logic for selecting the locale uses the first of the following that is available:

User selected - when the user has selected a locale using the drop-down locale selector

User profile - when there is an authenticated user and the user has a preferred locale set

Client selected - passed by the client using for example ui_locales parameter

Cookie - last locale selected on the browser

Accepted language - locale from Accept-Language header

Realm default

If none of the above, fallback to English

When a user is authenticated an action is triggered to update the locale in the persisted cookie
mentioned earlier. If the user has actively switched the locale through the locale selector on the login
pages the users locale is also updated at this point.

CHAPTER 3. ADMIN CONSOLE

23

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_developer_guide/
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_developer_guide/

CHAPTER 4. USER MANAGEMENT
This section describes the administration functions for managing users.

4.1. SEARCHING FOR USERS

If you need to manage a specific user, click on Users in the left menu bar.

Users

This menu option brings you to the user list page. In the search box you can type in a full name, last
name, or email address you want to search for in the user database. The query will bring up all users that
match your criteria. The View all users button will list every user in the system. This will search just local
Red Hat Single Sign-On database and not the federated database (ie. LDAP) because some backends
like LDAP don’t have a way to page through users. So if you want the users from federated backend to
be synced into Red Hat Single Sign-On database you need to either:

Adjust search criteria. That will sync just the backend users matching the criteria into Red Hat
Single Sign-On database.

Go to User Federation tab and click Sync all users or Sync changed users in the page with
your federation provider.

See User Federation for more details.

4.2. CREATING NEW USERS

To create a user click on Users in the left menu bar.

Users

Red Hat Single Sign-On 7.4 Server Administration Guide

24

This menu option brings you to the user list page. On the right side of the empty user list, you should see
an Add User button. Click that to start creating your new user.

Add User

The only required field is Username. Click save. This will bring you to the management page for your
new user.

4.3. DELETING USERS

To delete a user click on Users in the left menu bar.

Users

CHAPTER 4. USER MANAGEMENT

25

This menu option brings you to the user list page. Click View all users or search to find the user you
intend to delete.

View All Users

In the list of users, click Delete next to the user you want to remove. You will be asked to confirm that
you are sure you want to delete this user. Click Delete in the confirmation box to confirm.

4.4. USER ATTRIBUTES

Beyond basic user metadata like name and email, you can store arbitrary user attributes. Choose a user
to manage then click on the Attributes tab.

Users

Red Hat Single Sign-On 7.4 Server Administration Guide

26

Enter in the attribute name and value in the empty fields and click the Add button next to it to add a new
field. Note that any edits you make on this page will not be stored until you hit the Save button.

4.5. USER CREDENTIALS

When viewing a user if you go to the Credentials tab you can manage a user’s credentials.

Credential Management

The credentials are listed in a table, which has the following fields:

Position

The arrow buttons in this column allows you to shift the priority of the credential for the user, with the
topmost credential having the highest priority. This priority determines which credential will be
shown first to a user in case of a choice during login. The highest priority of those available to the
user will be the one selected.

CHAPTER 4. USER MANAGEMENT

27

Type

This shows the type of the credential, for example password or otp.

User Label

This is an assignable label to recognise the credential when presented as a selection option during
login. It can be set to any value to describe the credential.

Data

This shows the non-confidential technical information about the credential. It is originally hidden, but
you can press Show data… ​ to reveal it for a credential.

Actions

This column has two buttons. Save records the value of the User Label, while Delete will remove the
credential.

4.5.1. Creating a Password for the User

If a user doesn’t have a password, or if the password has been deleted, the Set Password section will be
shown on the page.

Credential Management - Set Password

To create a password for a user, type in a new one. Click on the Set Password button after you’ve typed
everything in. If the Temporary switch is on, this new password can only be used once and the user will
be asked to change their password after they have logged in.

If a user already has a password, it can be reset in the Reset Password section.

Alternatively, if you have email set up, you can send an email to the user that asks them to reset their
password. Choose Update Password from the Reset Actions list box and click Send Email. You can
optionally set the validity of the e-mail link which defaults to the one preset in Tokens tab in the realm
settings. The sent email contains a link that will bring the user to the update password screen.

Note that a user can only have a single credential of type password.

4.5.2. Creating other credentials

You cannot configure other types of credentials for a specific user within the Admin Console. This is the

Red Hat Single Sign-On 7.4 Server Administration Guide

28

You cannot configure other types of credentials for a specific user within the Admin Console. This is the
responsibility of the user. You can only delete credentials for a user on the Credentials tab, for example
if the user has lost an OTP device, or if a credential has been compromised.

4.5.2.1. Creating an OTP

If OTP is conditional in your realm, the user will have to go to the User Account Management service to
re-configure a new OTP generator. If OTP is required, then the user will be asked to re-configure a new
OTP generator when they log in.

Like passwords, you can alternatively send an email to the user that will ask them to reset their OTP
generator. Choose Configure OTP in the Reset Actions list box and click the Send Email button. The
sent email contains a link that will bring the user to the OTP setup screen. You can use this method even
if the user already has an OTP credential, and would like to set up some more.

4.6. REQUIRED ACTIONS

Required Actions are tasks that a user must finish before they are allowed to log in. A user must provide
their credentials before required actions are executed. Once a required action is completed, the user
will not have to perform the action again. Here are explanations of some of the built-in required action
types:

Update Password

When set, a user must change their password.

Configure OTP

When set, a user must configure a one-time password generator on their mobile device using either
the Free OTP or Google Authenticator application.

Verify Email

When set, a user must verify that they have a valid email account. An email will be sent to the user
with a link they have to click. Once this workflow is successfully completed, they will be allowed to log
in.

Update Profile

This required action asks the user to update their profile information, i.e. their name, address, email,
and/or phone number.

Admins can add required actions for each individual user within the user’s Details tab in the Admin
Console.

Setting Required Action

CHAPTER 4. USER MANAGEMENT

29

In the Required User Actions list box, select all the actions you want to add to the account. If you want
to remove one, click the X next to the action name. Also remember to click the Save button after
you’ve decided what actions to add.

4.6.1. Default Required Actions

You can also specify required actions that will be added to an account whenever a new user is created,
i.e. through the Add User button the user list screen, or via the user registration link on the login page.
To specify the default required actions go to the Authentication left menu item and click on the
Required Actions tab.

Default Required Actions

Simply click the checkbox in the Default Action column of the required actions that you want to be
executed when a brand new user logs in.

4.6.2. Terms and Conditions

Many organizations have a requirement that when a new user logs in for the first time, they need to
agree to the terms and conditions of the website. Red Hat Single Sign-On has this functionality

Red Hat Single Sign-On 7.4 Server Administration Guide

30

implemented as a required action, but it requires some configuration. For one, you have to go to the
Required Actions tab described earlier and enable the Terms and Conditions action. You must also
edit the terms.ftl file in the base login theme. See the Server Developer Guide for more information on
extending and creating themes.

4.7. IMPERSONATION

It is often useful for an admin to impersonate a user. For example, a user may be experiencing a bug in
one of your applications and an admin may want to impersonate the user to see if they can duplicate the
problem. Admins with the appropriate permission can impersonate a user. There are two locations an
admin can initiate impersonation. The first is on the Users list tab.

Users

You can see here that the admin has searched for john. Next to John’s account you can see an
impersonate button. Click that to impersonate the user.

Also, you can impersonate the user from the user Details tab.

User Details

CHAPTER 4. USER MANAGEMENT

31

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_developer_guide/

Near the bottom of the page you can see the Impersonate button. Click that to impersonate the user.

When impersonating, if the admin and the user are in the same realm, then the admin will be logged out
and automatically logged in as the user being impersonated. If the admin and user are not in the same
realm, the admin will remain logged in, but additionally be logged in as the user in that user’s realm. In
both cases, the browser will be redirected to the impersonated user’s User Account Management page.

Any user with the realm’s impersonation role can impersonate a user. Please see the Admin Console
Access Control chapter for more details on assigning administration permissions.

4.8. USER REGISTRATION

You can enable Red Hat Single Sign-On to allow user self registration. When enabled, the login page has
a registration link the user can click on to create their new account.

When user self registration is enabled it is possible to use the registration form to detect valid
usernames and emails. It is also possible to enable reCAPTCHA Support.

Enabling registration is pretty simple. Go to the Realm Settings left menu and click it. Then go to the
Login tab. There is a User Registration switch on this tab. Turn it on, then click the Save button.

Login Tab

Red Hat Single Sign-On 7.4 Server Administration Guide

32

After you enable this setting, a Register link should show up on the login page.

Registration Link

Clicking on this link will bring the user to the registration page where they have to enter in some user
profile information and a new password.

Registration Form

CHAPTER 4. USER MANAGEMENT

33

You can change the look and feel of the registration form as well as removing or adding additional fields
that must be entered. See the Server Developer Guide for more information.

4.8.1. reCAPTCHA Support

To safeguard registration against bots, Red Hat Single Sign-On has integration with Google
reCAPTCHA. To enable this you need to first go to Google Recaptcha Website and create an API key so
that you can get your reCAPTCHA site key and secret. (FYI, localhost works by default so you don’t have
to specify a domain).

Red Hat Single Sign-On 7.4 Server Administration Guide

34

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_developer_guide/
https://developers.google.com/recaptcha/

Next, there are a few steps you need to perform in the Red Hat Single Sign-On Admin Console. Click the
Authentication left menu item and go to the Flows tab. Select the Registration flow from the drop
down list on this page.

Registration Flow

Set the 'reCAPTCHA' requirement to Required by clicking the appropriate radio button. This will enable
reCAPTCHA on the screen. Next, you have to enter in the reCAPTCHA site key and secret that you
generated at the Google reCAPTCHA Website. Click on the 'Actions' button that is to the right of the
reCAPTCHA flow entry, then "Config" link, and enter in the reCAPTCHA site key and secret on this
config page.

Recaptcha Config Page

CHAPTER 4. USER MANAGEMENT

35

The final step you have to do is to change some default HTTP response headers that Red Hat Single
Sign-On sets. Red Hat Single Sign-On will prevent a website from including any login page within an
iframe. This is to prevent clickjacking attacks. You need to authorize Google to use the registration page
within an iframe. Go to the Realm Settings left menu item and then go to the Security Defenses tab.
You will need to add https://www.google.com to the values of both the X-Frame-Options and
Content-Security-Policy headers.

Authorizing Iframes

Red Hat Single Sign-On 7.4 Server Administration Guide

36

Once you do this, reCAPTCHA should show up on your registration page. You may want to edit
register.ftl in your login theme to muck around with the placement and styling of the reCAPTCHA
button. See the Server Developer Guide for more information on extending and creating themes.

4.9. PERSONAL DATA COLLECTED BY RED HAT SINGLE SIGN-ON

By default, Red Hat Single Sign-On collects the following:

Basic user profile, such as email, firstname, and lastname

Basic user profile used for social accounts and references to the social account when using a
social login

Device information collected for audit and security purposes, such as the IP address, operating
system name, and browser name

The information collected in Red Hat Single Sign-On is highly customizable. Be aware of the following
guidelines when making customizations:

Registration and account forms could contain custom fields, such as birthday, gender, and
nationality. An administrator could configure Red Hat Single Sign-On to retrieve that data from
a social provider or a user storage provider such as LDAP.

Red Hat Single Sign-On collects user credentials, such as password, OTP codes, and WebAuthn
public keys. This information is encrypted and saved in a database, so it is not visible to Red Hat
Single Sign-On administrators. However, each type of credential can include non-confidential
metadata that is visible to administrators such as the algorithm that is used to hash the
password and the number of hash iterations used to hash the password.

With authorization services and UMA support enabled, Red Hat Single Sign-On can hold
information about some objects for which a particular user is the owner. For example, Red Hat
Single Sign-On can track that the user john is the owner of a photoalbum album with animals
and a few photos called lion picture and cow picture in this album.

CHAPTER 4. USER MANAGEMENT

37

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_developer_guide/

CHAPTER 5. LOGIN PAGE SETTINGS
There are several nice built-in login page features you can enable if you need the functionality.

5.1. FORGOT PASSWORD

If you enable it, users are able to reset their credentials if they forget their password or lose their OTP
generator. Go to the Realm Settings left menu item, and click on the Login tab. Switch on the Forgot
Password switch.

Login Tab

A forgot password link will now show up on your login pages.

Forgot Password Link

Red Hat Single Sign-On 7.4 Server Administration Guide

38

Clicking on this link will bring the user to a page where they can enter in their username or email and
receive an email with a link to reset their credentials.

Forgot Password Page

CHAPTER 5. LOGIN PAGE SETTINGS

39

The text sent in the email is completely configurable. You just need to extend or edit the theme
associated with it. See the Server Developer Guide for more information.

When the user clicks on the email link, they will be asked to update their password, and, if they have an
OTP generator set up, they will also be asked to reconfigure this as well. Depending on the security
requirements of your organization you may not want users to be able to reset their OTP generator
through email. You can change this behavior by going to the Authentication left menu item, clicking on
the Flows tab, and selecting the Reset Credentials flow:

Reset Credentials Flow

If you do not want OTP reset, then just chose the disabled radio button to the right of Reset OTP.

NOTE

Red Hat Single Sign-On 7.4 Server Administration Guide

40

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_developer_guide/

NOTE

Be sure to leave Update Password enabled on the Required Actions tab. Otherwise,
Forgot Password does not work.

5.2. REMEMBER ME

If a logged in user closes their browser, their session is destroyed and they will have to log in again. You
can set things up so that if a user checks a remember me checkbox, they will remain logged in even if the
browser is closed. This basically turns the login cookie from a session-only cookie to a persistence
cookie.

To enable this feature go to Realm Settings left menu item and click on the Login tab and turn on the
Remember Me switch:

Login Tab

Once you save this setting, a remember me checkbox will be displayed on the realm’s login page.

Remember Me

CHAPTER 5. LOGIN PAGE SETTINGS

41

Red Hat Single Sign-On 7.4 Server Administration Guide

42

CHAPTER 6. AUTHENTICATION
There are a few features you should be aware of when configuring authentication for your realm. Many
organizations have strict password and OTP policies that you can enforce via settings in the Admin
Console. You may or may not want to require different credential types for authentication. You may
want to give users the option to login via Kerberos or disable or enable various built-in credential types.
This chapter covers all of these topics.

6.1. PASSWORD POLICIES

Each new realm created has no password policies associated with it. Users can have as short, as long, as
complex, as insecure a password, as they want. Simple settings are fine for development or learning Red
Hat Single Sign-On, but unacceptable in production environments. Red Hat Single Sign-On has a rich
set of password policies you can enable through the Admin Console.

Click on the Authentication left menu item and go to the Password Policy tab. Choose the policy you
want to add in the right side drop down list box. This will add the policy in the table on the screen.
Choose the parameters for the policy. Hit the Save button to store your changes.

Password Policy

After saving your policy, user registration and the Update Password required action will enforce your
new policy. An example of a user failing the policy check:

Failed Password Policy

CHAPTER 6. AUTHENTICATION

43

If the password policy is updated, an Update Password action must be set for every user. An automatic
trigger is scheduled as a future enhancement.

6.1.1. Password Policy Types

Here’s an explanation of each policy type:

Hashing Algorithm

Passwords are not stored as clear text. Instead they are hashed using standard hashing algorithms
before they are stored or validated. Supported values are pbkdf2, pbkdf2-sha256 and pbkdf2-
sha512.

Hashing Iterations

This value specifies the number of times a password will be hashed before it is stored or verified. The
default value is 27,500. This hashing is done in the rare case that a hacker gets access to your
password database. Once they have access to the database, they can reverse engineer user
passwords. The industry recommended value for this parameter changes every year as CPU power
improves. A higher hashing iteration value takes more CPU power for hashing, and can impact
performance. You’ll have to weigh what is more important to you: performance or protecting your
passwords stores. There may be more cost effective ways of protecting your password stores.

Digits

The number of digits required to be in the password string.

Red Hat Single Sign-On 7.4 Server Administration Guide

44

Lowercase Characters

The number of lower case letters required to be in the password string.

Uppercase Characters

The number of upper case letters required to be in the password string.

Special Characters

The number of special characters like '?!#%$' required to be in the password string.

Not Username

When set, the password is not allowed to be the same as the username.

Regular Expression

Define one or more regular expression patterns (defined in java.util.regex.Pattern) that passwords
must match.

Expire Password

The number of days for which the password is valid. After the number of days has expired, the user is
required to change their password.

Not Recently Used

This policy saves a history of previous passwords. The number of old passwords stored is
configurable. When a user changes their password they cannot use any stored passwords.

Password Blacklist

This policy checks if a given password (converted to lowercase) is contained in a blacklist file, which is
potentially a very large file. Password blacklists are UTF-8 plain-text files with Unix line endings
where every line represents a blacklisted password. All passwords in the blacklist must be lowercased
to facilitate case-insensitive comparison. The file name of the blacklist file must be provided as the
password policy value, e.g. 10_million_password_list_top_1000000.txt. Blacklist files are resolved
against ${jboss.server.data.dir}/password-blacklists/ by default. This path can be customized via
the keycloak.password.blacklists.path system property, or the blacklistsPath property of the
passwordBlacklist policy SPI configuration.

6.2. OTP POLICIES

Red Hat Single Sign-On has a number of policies you can set up for your FreeOTP or Google
Authenticator One-Time Password generator. Click on the Authentication left menu item and go to the
OTP Policy tab.

OTP Policy

CHAPTER 6. AUTHENTICATION

45

Any policies you set here will be used to validate one-time passwords. When configuring OTP, FreeOTP
and Google Authenticator can scan a QR code that is generated on the OTP set up page that Red Hat
Single Sign-On has. The bar code is also generated from information configured on the OTP Policy tab.

6.2.1. TOTP vs. HOTP

There are two different algorithms to choose from for your OTP generators. Time Based (TOTP) and
Counter Based (HOTP). For TOTP, your token generator will hash the current time and a shared secret.
The server validates the OTP by comparing all the hashes within a certain window of time to the
submitted value. So, TOTPs are valid only for a short window of time (usually 30 seconds). For HOTP a
shared counter is used instead of the current time. The server increments the counter with each
successful OTP login. So, valid OTPs only change after a successful login.

TOTP is considered a little more secure because the matchable OTP is only valid for a short window of
time while the OTP for HOTP can be valid for an indeterminate amount of time. HOTP is much more
user friendly as the user won’t have to hurry to enter in their OTP before the time interval is up. With the
way Red Hat Single Sign-On has implemented TOTP this distinction becomes a little more blurry. HOTP
requires a database update every time the server wants to increment the counter. This can be a
performance drain on the authentication server when there is heavy load. So, to provide a more efficient
alternative, TOTP does not remember passwords used. This bypasses the need to do any DB updates,
but the downside is that TOTPs can be re-used in the valid time interval. For future versions of Red Hat
Single Sign-On it is planned that you will be able to configure whether TOTP checks older OTPs in the
time interval.

6.2.2. TOTP Configuration Options

OTP Hash Algorithm

Default is SHA1, more secure options are SHA256 and SHA512.

Number of Digits

How many characters is the OTP? Short means more user friendly as it is less the user has to type.
More means more security.

Look Ahead Window

How many intervals ahead should the server try and match the hash? This exists so just in case the
clock of the TOTP generator or authentication server get out of sync. The default value of 1 is usually

Red Hat Single Sign-On 7.4 Server Administration Guide

46

good enough. For example, if the time interval for a new token is every 30 seconds, the default value
of 1 means that it will only accept valid tokens in that 30 second window. Each increment of this
config value will increase the valid window by 30 seconds.

OTP Token Period

Time interval in seconds during which the server will match a hash. Each time the interval passes, a
new TOTP will be generated by the token generator.

6.2.3. HOTP Configuration Options

OTP Hash Algorithm

Default is SHA1, more secure options are SHA256 and SHA512.

Number of Digits

How many characters is the OTP? Short means more user friendly as it is less the user has to type.
More means more security.

Look Ahead Window

How many counters ahead should the server try and match the hash? The default value is 1. This
exists to cover the case where the user’s counter gets ahead of the server’s. This can often happen
as users often increment the counter manually too many times by accident. This value really should
be increased to a value of 10 or so.

Initial Counter

What is the value of the initial counter?

6.3. AUTHENTICATION FLOWS

An authentication flow is a container for all authentications, screens, and actions that must happen
during login, registration, and other Red Hat Single Sign-On workflows. If you go to the admin console
Authentication left menu item and go to the Flows tab, you can view all the defined flows in the system
and what actions and checks each flow requires.

6.3.1. Built-in flows

Red Hat Single Sign-On comes with a certain number of built-in flows. These flows cannot be modified,
but the requirements can be modified to suit your needs.

This section does a walk-through of the built-in browser login flow. In the left drop-down list select
browser to come to the screen shown below:

Browser Flow

If you hover over the tooltip (the tiny question mark) to the right of the flow selection list, this will

CHAPTER 6. AUTHENTICATION

47

If you hover over the tooltip (the tiny question mark) to the right of the flow selection list, this will
describe what the flow is and does.

The Auth Type column is the name of authentication or action that will be executed. If an
authentication is indented this means it is in a sub-flow and may or may not be executed depending on
the behavior of its parent. The Requirement column is a set of radio buttons which define whether or
not the action will execute. Let’s describe what each radio button means in this context.

6.3.1.1. Execution requirements

Required

For a flow to be evaluated as successful, all required elements in the flow must evaluate as
successful. This means that all Required elements in the flow must be sequentially executed, from
top to bottom, unless one of the elements causes the flow to fail. However, this is only true for the
current flow. Any Required element within a sub-flow is only processed if that sub-flow is entered.

Alternative

When a flow contains only Alternative elements, only a single element must evaluate as successful for
the flow to evaluate as successful. Because the Required flow elements within a flow are sufficient to
mark a flow as successful, any Alternative flow element within a flow that contains Required flow
elements will never be executed. In this case, they are functionally Disabled.

Disabled

Any Disabled element is not evaluated and does not count to mark a flow as successful.

Conditional

This requirement type can only be set on sub-flows. A Conditional sub-flow can contain a "Condition"
execution. These "Condition" executions must evaluate as logical statements. If all "Condition"
executions evaluate as true then the Conditional sub-flow acts as Required. If not, the Conditional
sub-flow acts as Disabled. If no "Condition" execution is set, the Conditional sub-flow acts as
Disabled. If a flow contains "Condition" executions and is not set to Conditional, the "Condition"
executions are not evaluated, and can be considered functionally Disabled.

This is better described in an example. Let’s walk through the browser authentication flow.

1. The first authentication type is Cookie. When a user successfully logs in for the first time, a
session cookie is set. If this cookie has already been set, then this authentication type is
successful. In this case, since the cookie provider returned success and each execution at this
level of the flow is alternative, no other execution is executed and this results in a successful
login.

2. The second execution of the flow looks at the Kerberos execution. This authenticator is
disabled by default and will be skipped.

3. The third execution is the Identity Provider Redirector. It can be configured through the
Actions > Config link to automatically redirect to another IdP for identity brokering.

4. The next execution is a sub-flow called Forms. Since this sub-flow is marked as alternative it will
not be executed if the Cookie authentication type passed. This sub-flow contains additional
authentication type that needs to be executed. The executions for this sub-flow are loaded and
the same processing logic occurs.

5. The first execution in the Forms sub-flow is the Username Password Form. This authentication
type renders the username and password page. It is marked as required so the user must enter
in a valid username and password.

6. The second execution in the Forms sub-flow is a new sub-flow: the Browser - Conditional OTP

Red Hat Single Sign-On 7.4 Server Administration Guide

48

sub-flow. Since this sub-flow is conditional, whether it is executed depends on the result of the
evaluation of the Condition - User Configured execution. If it is, the executions for this sub-
flow are loaded and the same processing logic occurs

7. The next execution is the Condition - User Configured. This checks if the other executions in
the flow are configured for the user. Meaning that the Browser - Conditional OTP sub-flow will
only be executed if the user has an OTP credential configured.

8. The final execution is the OTP Form. This is marked as required, but because of the setup in the
conditional subflow, it will only be run if the user has an OTP credential set up. If he doesn’t, the
user will not see an OTP form.

6.3.2. Creating flows

This section explains in greater depth how flows work, and how to create your own flows. Note that there
are important functionality and security considerations when designing your own flow. A badly created
flow could either let no one log in, let users in with less verification than you would like, or simply result in
an error.

To create a flow, you can either:

1. Copy and then modify an existing flow. To do this select an existing flow (for example the
Browser flow), and press the Copy button. This will then ask you to set a name for the new flow,
before creating it.

2. Create a new flow from scratch. To do this press the New button. Since this is the more general
case, we will use this for our example.

When creating a new flow, you will have to create a top level flow

Create a top level flow

With the following options:

Alias

The name of the flow.

Description

The description you can set to the flow.

Top Level Flow Type

The type of flow. the type client is used only for the authentication of clients (applications). For all
other cases choose generic.

CHAPTER 6. AUTHENTICATION

49

Once the flow is created, in addition to the New and Copy buttons, you now have, Delete, Add
execution and Add flow.

An empty new flow

What a flow finally does is determined by the structure of the flow and sub-flows, the executions in those
flows, and the requirements set on the sub-flows and the executions.

Executions can be added with the Add execution button. Executions can have a wide variety of actions,
from sending a reset email to validating an OTP. If you hover over the tooltip (the tiny question mark)
next to Provider, this will describe what the execution does.

Adding an authentication execution

These can be divided into automatic executions and interactive executions. Automatic executions are
similar to the Cookie execution, and will automatically perform their action when they are encountered
in the flow. Interactive executions will halt the flow, usually to get some user input. Executions that
execute successfully will get the success status. This is important, because this is part of whether a flow
is successful or not. For example, an empty Browser flow would not allow anyone to log in. For that it
would need at least one execution that successfully evaluates, for example a Username Password
Form that is corrected filled and submitted.

Sub-flows can be added in top level flow with the Add flow button, which opens a Create Execution
Flow page that is very similar to the Create Top Level Form page. The only difference is that the Flow
Type can be either generic (like before), or form. The form type is used to construct a sub-flow that
generates a single form for the user, like what is done for the built-in Registration flow. Sub-flows are a

Red Hat Single Sign-On 7.4 Server Administration Guide

50

special type of execution that evaluate as successful depending on how the executions they contain
evaluate (and this includes the evaluation of their contained sub-flows). And the logic of this evaluation
depends on the Requirement of each execution and sub-flow.

Fully understanding this requires a more complete explanation of how requirements work when
evaluating a flow, and this also applies to sub-flows. Refer to the execution requirements section above
for more details.

Note that after adding an execution, you should check that the Requirement is set to the correct value.
Even if there is only a single possible Requirement, it can happen that it is not set.

When constructing a flow, all elements added to the flow will have an Actions menu on the right-hand
side. All elements added to the flow have a Delete option in this menu to remove it from the flow.
Executions can contain a Config menu option to configure the execution, as is the case for the Identity
Provider Redirector. Sub-flows can also have executions and sub-flows added to them, with their Add
execution and Add flow menu options.

Finally, since the order of execution is important, you can move executions and sub-flows up and down
within their respective flows with the up and down buttons that are set to left of their name.

6.3.3. Creating a password-less browser login flow

To illustrate the creation of flows, this section describes the creation of a more advanced browser login
flow. The purpose of this flow is to allow a user to choose between logging in in a password-less manner
using WebAuthn, and a two-factor authentication with password and OTP. The flow to create is similar
to the standard browser login, but diverges when reaching the username selection. Instead of copying
the flow however, you’ll be creating the flow from the start:

Select a realm, click on Authentication link

Select "new", and give the new flow a distinctive Alias, i.e. "Browser Password-less"

Select "Add execution", and using the drop-down select "Cookie". After pressing "Save", set its
Requirement to Alternative.

Select "Add execution", and using the drop-down select "Kerberos".

Select "Add execution", and using the drop-down select "Identity Provider Redirector". After
pressing "Save", set its Requirement to Alternative.

Select "Add flow", and choose an representative Alias, e.g. "Forms". After pressing "Save", set its
Requirement to Alternative.

The common part with the browser flow

Using the Actions menu on the right-hand side of the "Forms" subflow, select "Add execution".

CHAPTER 6. AUTHENTICATION

51

Using the Actions menu on the right-hand side of the "Forms" subflow, select "Add execution".
Using the drop-down select "Username Form". After pressing "Save", set its Requirement to
Required.

The Username form is similar to "Browser" flow’s Username Password Form, but only asks for a
username, allowing a user to perform a password-less login. However, note that this inevitably allows a
user enumeration attack on your Red Hat Single Sign-On server. This is an unavoidable security risk for
the convenience, so the flow should make sure that an attacker cannot just have to guess a password to
be able to enter.

Using the Actions menu on the right-hand side of the "Forms" subflow, select "Add flow".
Choose an representative Alias, e.g. "Authentication". After pressing "Save", set its Requirement
to Required.

Using the Actions menu on the right-hand side of the "Authentication" subflow, select "Add
execution". Using the drop-down select "Webauthn Passwordless Authenticator". After pressing
"Save", set its Requirement to Alternative.

Using the Actions menu on the right-hand side of the "Authentication" subflow, select "Add
flow". Choose an representative Alias, e.g. "Password with OTP". After pressing "Save", set its
Requirement to Alternative.

Using the Actions menu on the right-hand side of the "Password with OTP" subflow, select
"Add execution". Using the drop-down select "Password Form". After pressing "Save", set its
Requirement to Required.

Using the Actions menu on the right-hand side of the "Password with OTP" subflow, select
"Add execution". Using the drop-down select "OTP Form". After pressing "Save", set its
Requirement to Required.

In the "Bindings" menu, change the browser flow from "Browser" to "Browser Password-less"

The final flow that is produced is the following:

A password-less browser login

Red Hat Single Sign-On 7.4 Server Administration Guide

52

After entering the username, the way this flow works is the following:

If the user has any WebAuthn passwordless credentials recorded, that user will be able to use
any of them to log in directly. This is the password-less login. The user can instead select
"Password with OTP". The user can do this because the "WebAuthn Passwordless" execution
and the "Password with OTP" flow are set to Alternative. Were they set to Required the user
would have to enter WebAuthn, password, and OTP.

If the user selects Try another way link on the screen with "WebAuthn passwordless"
authentication, the user can choose between "Password" and "Security Key" (WebAuthn
passwordless). When selecting the password, the user will need to continue and log in with the
assigned OTP as well. If the user has no WebAuthn credentials, he will have to first enter his
password, and then his OTP. If the user has no OTP credential, he will be asked to record one.

It is important to note that since the WebAuthn Passwordless execution is set to Alternative instead of
Required, this flow will never ask the user to register a WebAuthn credential. For a user to have a
Webauthn credential, that user must have a required action added by an administrator. This is done first
by making sure that the Webauthn Register Passwordless required action is enabled in the realm (see
the WebAuthn documentation), and then by setting the required action by using the Credential Reset
part of a user’s Credentials management menu.

Creating a more advanced flow such as this one can have some subtle side effects. For example, if you
were to enable the ability to reset the password for the user, then this would be accessible from the
password form. In the default "Reset Credentials" flow, the user has to enter his username. Since he’s
already entered his username earlier in the "Browser Password-less" flow, this would be unnecessary for
Red Hat Single Sign-On, and a sub-optimal in terms of user experience. To correct this, you could:

Copy the "Reset Credentials" flow, setting its name to, for example "Reset Credentials for
password-less"

Use the Actions menu on the right-hand side of the "Choose user" execution, select "Delete"

In the "Bindings" menu, change the reset credential flow from "Reset Credentials" to "Reset
Credentials for password-less"

6.4. KERBEROS

Red Hat Single Sign-On supports login with a Kerberos ticket through the SPNEGO protocol. SPNEGO
(Simple and Protected GSSAPI Negotiation Mechanism) is used to authenticate transparently through
the web browser after the user has been authenticated when logging-in his session. For non-web cases
or when ticket is not available during login, Red Hat Single Sign-On also supports login with Kerberos
username/password.

A typical use case for web authentication is the following:

1. User logs into his desktop (Such as a Windows machine in Active Directory domain or Linux
machine with Kerberos integration enabled).

2. User then uses his browser (IE/Firefox/Chrome) to access a web application secured by Red
Hat Single Sign-On.

3. Application redirects to Red Hat Single Sign-On login.

4. Red Hat Single Sign-On renders HTML login screen together with status 401 and HTTP header
WWW-Authenticate: Negotiate

5. In case that the browser has Kerberos ticket from desktop login, it transfers the desktop sign on

CHAPTER 6. AUTHENTICATION

53

5. In case that the browser has Kerberos ticket from desktop login, it transfers the desktop sign on
information to the Red Hat Single Sign-On in header Authorization: Negotiate 'spnego-token'
. Otherwise it just displays the login screen.

6. Red Hat Single Sign-On validates token from the browser and authenticates the user. It
provisions user data from LDAP (in case of LDAPFederationProvider with Kerberos
authentication support) or let user to update his profile and prefill data (in case of
KerberosFederationProvider).

7. Red Hat Single Sign-On returns back to the application. Communication between Red Hat
Single Sign-On and application happens through OpenID Connect or SAML messages. The fact
that Red Hat Single Sign-On was authenticated through Kerberos is hidden from the
application. So Red Hat Single Sign-On acts as broker to Kerberos/SPNEGO login.

For setup there are 3 main parts:

1. Setup and configuration of Kerberos server (KDC)

2. Setup and configuration of Red Hat Single Sign-On server

3. Setup and configuration of client machines

6.4.1. Setup of Kerberos server

This is platform dependent. Exact steps depend on your OS and the Kerberos vendor you’re going to
use. Consult Windows Active Directory, MIT Kerberos and your OS documentation for how exactly to
setup and configure Kerberos server.

At least you will need to:

Add some user principals to your Kerberos database. You can also integrate your Kerberos with
LDAP, which means that user accounts will be provisioned from LDAP server.

Add service principal for "HTTP" service. For example if your Red Hat Single Sign-On server will
be running on www.mydomain.org you may need to add principal
HTTP/www.mydomain.org@MYDOMAIN.ORG assuming that MYDOMAIN.ORG will be your
Kerberos realm.
For example on MIT Kerberos you can run a "kadmin" session. If you are on the same machine
where is MIT Kerberos, you can simply use the command:

sudo kadmin.local

Then add HTTP principal and export his key to a keytab file with the commands like:

addprinc -randkey HTTP/www.mydomain.org@MYDOMAIN.ORG
ktadd -k /tmp/http.keytab HTTP/www.mydomain.org@MYDOMAIN.ORG

The Keytab file /tmp/http.keytab will need to be accessible on the host where Red Hat Single Sign-On
server will be running.

6.4.2. Setup and configuration of Red Hat Single Sign-On server

You need to install a kerberos client on your machine. This is also platform dependent. If you are on
Fedora, Ubuntu or RHEL, you can install the package freeipa-client, which contains a Kerberos client
and several other utilities. Configure the kerberos client (on Linux it’s in file /etc/krb5.conf). You need to

Red Hat Single Sign-On 7.4 Server Administration Guide

54

put your Kerberos realm and at least configure the HTTP domains your server will be running on. For the
example realm MYDOMAIN.ORG you may configure the domain_realm section like this:

[domain_realm]
 .mydomain.org = MYDOMAIN.ORG
 mydomain.org = MYDOMAIN.ORG

Next you need to export the keytab file with the HTTP principal and make sure the file is accessible to
the process under which Red Hat Single Sign-On server is running. For production, it’s ideal if it’s
readable just by this process and not by someone else. For the MIT Kerberos example above, we already
exported keytab to /tmp/http.keytab . If your KDC and Red Hat Single Sign-On are running on same
host, you have that file already available.

6.4.2.1. Enable SPNEGO Processing

Red Hat Single Sign-On does not have the SPNEGO protocol support turned on by default. So, you
have to go to the browser flow and enable Kerberos.

Browser Flow

Switch the Kerberos requirement from disabled to either alternative or required. Alternative basically
means that Kerberos is optional. If the user’s browser hasn’t been configured to work with
SPNEGO/Kerberos, then Red Hat Single Sign-On will fall back to the regular login screens. If you set the
requirement to required then all users must have Kerberos enabled for their browser.

6.4.2.2. Configure Kerberos User Storage Federation Provider

Now that the SPNEGO protocol is turned on at the authentication server, you’ll need to configure how
Red Hat Single Sign-On interprets the Kerberos ticket. This is done through User Storage Federation .
We have 2 different federation providers with Kerberos authentication support.

If you want to authenticate with Kerberos backed by an LDAP server, you have to first configure the
LDAP Federation Provider. If you look at the configuration page for your LDAP provider you’ll see a
Kerberos Integration section.

LDAP Kerberos Integration

CHAPTER 6. AUTHENTICATION

55

Turning on the switch Allow Kerberos authentication will make Red Hat Single Sign-On use the
Kerberos principal to lookup information about the user so that it can be imported into the Red Hat
Single Sign-On environment.

If your Kerberos solution is not backed by an LDAP server, you have to use the Kerberos User Storage
Federation Provider. Go to the User Federation left menu item and select Kerberos from the Add
provider select box.

Kerberos User Storage Provider

Red Hat Single Sign-On 7.4 Server Administration Guide

56

This provider parses the Kerberos ticket for simple principal information and does a small import into the
local Red Hat Single Sign-On database. User profile information like first name, last name, and email are
not provisioned.

6.4.3. Setup and configuration of client machines

Clients need to install kerberos client and setup krb5.conf as described above. Additionally they need to
enable SPNEGO login support in their browser. See configuring Firefox for Kerberos if you are using that
browser. URI .mydomain.org must be allowed in the network.negotiate-auth.trusted-uris config
option.

In a Windows domain, clients usually don’t need to configure anything special as IE is already able to
participate in SPNEGO authentication for the Windows domain.

6.4.4. Credential Delegation

Kerberos 5 supports the concept of credential delegation. In this scenario, your applications may want
access to the Kerberos ticket so that they can re-use it to interact with other services secured by
Kerberos. Since the SPNEGO protocol is processed in the Red Hat Single Sign-On server, you have to
propagate the GSS credential to your application within the OpenID Connect token claim or a SAML
assertion attribute that is transmitted to your application from the Red Hat Single Sign-On server. To

CHAPTER 6. AUTHENTICATION

57

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/configuring_applications_for_sso

have this claim inserted into the token or assertion, each application will need to enable the built-in
protocol mapper called gss delegation credential. This is enabled in the Mappers tab of the
application’s client page. See Protocol Mappers chapter for more details.

Applications will need to deserialize the claim it receives from Red Hat Single Sign-On before it can use
it to make GSS calls against other services. Once you deserialize the credential from the access token to
the GSSCredential object, the GSSContext will need to be created with this credential passed to the
method GSSManager.createContext for example like this:

Note that you also need to configure forwardable kerberos tickets in krb5.conf file and add support for
delegated credentials to your browser.

WARNING

Credential delegation has some security implications so only use it if you really need
it. It’s highly recommended to use it together with HTTPS. See for example this
article for more details.

6.4.5. Cross-realm trust

In the Kerberos V5 protocol, the realm is a set of Kerberos principals defined in the Kerberos database
(typically LDAP server). The Kerberos protocol has a concept of cross-realm trust. For example, if there
are 2 kerberos realms A and B, the cross-realm trust will allow the users from realm A to access
resources (services) of realm B. This means that realm B trusts the realm A.

Kerberos cross-realm trust

// Obtain accessToken in your application.
KeycloakPrincipal keycloakPrincipal = (KeycloakPrincipal) servletReq.getUserPrincipal();
AccessToken accessToken = keycloakPrincipal.getKeycloakSecurityContext().getToken();

// Retrieve kerberos credential from accessToken and deserialize it
String serializedGssCredential = (String) accessToken.getOtherClaims().
 get(org.keycloak.common.constants.KerberosConstants.GSS_DELEGATION_CREDENTIAL);

GSSCredential deserializedGssCredential = org.keycloak.common.util.KerberosSerializationUtils.
 deserializeCredential(serializedGssCredential);

// Create GSSContext to call other kerberos-secured services
GSSContext context = gssManager.createContext(serviceName, krb5Oid,
 deserializedGssCredential, GSSContext.DEFAULT_LIFETIME);



Red Hat Single Sign-On 7.4 Server Administration Guide

58

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/configuring_applications_for_sso

The Red Hat Single Sign-On server has support for cross-realm trust. There are few things which need
to be done to achieve this:

Configure the Kerberos servers for the cross-realm trust. This step is dependent on the
concrete Kerberos server implementations used. In general, it is needed to add the Kerberos
principal krbtgt/B@A to both Kerberos databases of realm A and B. It is needed that this
principal has same keys on both Kerberos realms. This is usually achieved when the principals
have same password, key version number and there are same ciphers used in both realms. It is
recommended to consult the Kerberos server documentation for more details.

NOTE

The cross-realm trust is unidirectional by default. If you want bidirectional trust to have
realm A also trust realm B, you must also add the principal krbtgt/A@B to both Kerberos
databases. However, trust is transitive by default. If realm B trusts realm A and realm C
trusts realm B, then realm C automatically trusts realm A without a need to have principal
krbtgt/C@A available. Some additional configuration (for example capaths) may be
needed to configure on Kerberos client side, so that the clients are able to find the trust
path. Consult the Kerberos documentation for more details.

Configure Red Hat Single Sign-On server

If you use an LDAP storage provider with Kerberos support, you need to configure the
server principal for realm B as in this example: HTTP/mydomain.com@B. The LDAP server
must be able to find the users from realm A if you want users from realm A to successfully
authenticate to Red Hat Single Sign-On, as Red Hat Single Sign-On server must be able to
do SPNEGO flow and then find the users. For example, kerberos principal user john@A
must be available as a user in the LDAP under an LDAP DN such as
uid=john,ou=People,dc=example,dc=com. If you want both users from realm A and B to
authenticate, you need to ensure that LDAP is able to find users from both realms A and B.
We want to improve this limitation in future versions, so you can potentially create more
separate LDAP providers for separate realms and ensure that SPNEGO works for both of
them.

If you use a Kerberos user storage provider (typically the Kerberos without LDAP
integration), you need to configure the server principal as HTTP/mydomain.com@B and
users from both Kerberos realms A and B should be able to authenticate.

CHAPTER 6. AUTHENTICATION

59

WARNING

For the Kerberos user storage provider, it is recommended that there are no
conflicting users among kerberos realms. If conflicting users exist, they will be
mapped to the same Red Hat Single Sign-On user. This is also something, which we
want to improve in future versions and provide some more flexible mappings from
Kerberos principals to Red Hat Single Sign-On usernames.

6.4.6. Troubleshooting

If you have issues, we recommend that you enable additional logging to debug the problem:

Enable Debug flag in admin console for Kerberos or LDAP federation providers

Enable TRACE logging for category org.keycloak in logging section of
standalone/configuration/standalone.xml to receive more info standalone/log/server.log

Add system properties -Dsun.security.krb5.debug=true and -
Dsun.security.spnego.debug=true

6.5. X.509 CLIENT CERTIFICATE USER AUTHENTICATION

Red Hat Single Sign-On supports login with a X.509 client certificate if the server is configured for
mutual SSL authentication.

A typical workflow is as follows:

A client sends an authentication request over SSL/TLS channel

During SSL/TLS handshake, the server and the client exchange their x.509/v3 certificates

The container (JBoss EAP) validates the certificate PKIX path and the certificate expiration

The x.509 client certificate authenticator validates the client certificate as follows:

Optionally checks the certificate revocation status using CRL and/or CRL Distribution
Points

Optionally checks the Certificate revocation status using OCSP (Online Certificate Status
Protocol)

Optionally validates whether the key usage in the certificate matches the expected key
usage

Optionally validates whether the extended key usage in the certificate matches the
expected extended key usage

If any of the above checks fails, the x.509 authentication fails

Otherwise, the authenticator extracts the certificate identity and maps it to an existing user

Once the certificate is mapped to an existing user, the behavior diverges depending on the



Red Hat Single Sign-On 7.4 Server Administration Guide

60

Once the certificate is mapped to an existing user, the behavior diverges depending on the
authentication flow:

In the Browser Flow, the server prompts the user to confirm identity or to ignore it and
instead sign in with username/password

In the case of the Direct Grant Flow, the server signs in the user

6.5.1. Features

Supported Certificate Identity Sources

Match SubjectDN using regular expression

X500 Subject’s e-mail attribute

X500 Subject’s e-mail from Subject Alternative Name Extension (RFC822Name General
Name)

X500 Subject’s other name from Subject Alternative Name Extension. This is typically UPN
(User Principal Name)

X500 Subject’s Common Name attribute

Match IssuerDN using regular expression

Certificate Serial Number

Certificate Serial Number and IssuerDN

SHA-256 Certificate thumbprint

Full certificate in PEM format

Regular Expressions

The certificate identity can be extracted from either Subject DN or Issuer DN using a regular
expression as a filter. For example, the regular expression below will match the e-mail attribute:

emailAddress=(.*?)(?:,|$)

The regular expression filtering is applicable only if the Identity Source is set to either Match
SubjectDN using regular expression or Match IssuerDN using regular expression.

Mapping certificate identity to an existing user

The certificate identity mapping can be configured to map the extracted user identity to an existing
user’s username or e-mail or to a custom attribute which value matches the certificate identity. For
example, setting the Identity source to Subject’s e-mail and User mapping method to Username or
email will have the X.509 client certificate authenticator use the e-mail attribute in the certificate’s
Subject DN as a search criteria to look up an existing user by username or by e-mail.

IMPORTANT

Please notice that if we disable Login with email at realm settings, the same rules will be
applied to certificate authentication. In other words, users won’t be able to log in using e-
mail attribute.

IMPORTANT

CHAPTER 6. AUTHENTICATION

61

IMPORTANT

Usage of Certificate Serial Number and IssuerDN as an identity source requires two
custom attributes - one for serial number and the other for IssuerDN.

IMPORTANT

SHA-256 Certificate thumbprint is lowercase hexadecimal representation of SHA-256
certificate thumbprint.

IMPORTANT

Usage of Full certificate in PEM format as an identity source is limited to custom
attributes mapped to external federation sources like LDAP. You must enable Always
Read Value From LDAP in this case, because certificates cannot be stored in Keycloak
database due to a length limitation.

Other Features: Extended Certificate Validation

Revocation status checking using CRL

Revocation status checking using CRL/Distribution Point

Revocation status checking using OCSP/Responder URI

Certificate KeyUsage validation

Certificate ExtendedKeyUsage validation

6.5.2. Enable X.509 Client Certificate User Authentication

The following sections describe how to configure JBoss EAP/Undertow and the Red Hat Single Sign-On
Server to enable X.509 client certificate authentication.

Enable mutual SSL in JBoss EAP

See Enable SSL for the instructions how to enable SSL in JBoss EAP.

Open RHSSO_HOME/standalone/configuration/standalone.xml and add a new realm:

<security-realms>
 <security-realm name="ssl-realm">
 <server-identities>
 <ssl>
 <keystore path="servercert.jks"
 relative-to="jboss.server.config.dir"
 keystore-password="servercert password"/>
 </ssl>
 </server-identities>
 <authentication>
 <truststore path="truststore.jks"
 relative-to="jboss.server.config.dir"
 keystore-password="truststore password"/>

Red Hat Single Sign-On 7.4 Server Administration Guide

62

https://docs.wildfly.org/19/Admin_Guide.html#enable-ssl

ssl/keystore

The ssl element contains the keystore element that defines how to load the server public key pair
from a JKS keystore

ssl/keystore/path

A path to a JKS keystore

ssl/keystore/relative-to

Defines a path the keystore path is relative to

ssl/keystore/keystore-password

The password to open the keystore

ssl/keystore/alias (optional)

The alias of the entry in the keystore. Set it if the keystore contains multiple entries

ssl/keystore/key-password (optional)

The private key password, if different from the keystore password.

authentication/truststore

Defines how to load a trust store to verify the certificate presented by the remote side of the
inbound/outgoing connection. Typically, the truststore contains a collection of trusted CA
certificates.

authentication/truststore/path

A path to a JKS keystore that contains the certificates of the trusted CAs (certificate authorities)

authentication/truststore/relative-to

Defines a path the truststore path is relative to

authentication/truststore/keystore-password

The password to open the truststore

Enable https listener

See HTTPS Listener for the instructions how to enable HTTPS in WildFly.

Add the <https-listener> element as shown below:

https-listener/security-realm

The value must match the name of the realm from the previous section

https-listener/verify-client

If set to REQUESTED, the server will optionally ask for a client certificate. Setting the attribute to

 </authentication>
 </security-realm>
</security-realms>

<subsystem xmlns="urn:jboss:domain:undertow:10.0">

 <server name="default-server">
 <https-listener name="default"
 socket-binding="https"
 security-realm="ssl-realm"
 verify-client="REQUESTED"/>
 </server>
</subsystem>

CHAPTER 6. AUTHENTICATION

63

https://docs.wildfly.org/19/Admin_Guide.html#https-listener

If set to REQUESTED, the server will optionally ask for a client certificate. Setting the attribute to
REQUIRED will have the server to refuse inbound connections if no client certificate has been
provided.

6.5.3. Adding X.509 Client Certificate Authentication to a Browser Flow

Select a realm, click on Authentication link, select the "Browser" flow

Make a copy of the built-in "Browser" flow. You may want to give the new flow a distinctive
name, i.e. "X.509 Browser"

Using the drop down, select the copied flow, and click on "Add execution"

Select "X509/Validate Username Form" using the drop down and click on "Save"

Using the up/down arrows, change the order of the "X509/Validate Username Form" by moving
it above the "Browser Forms" execution, and set the requirement to "ALTERNATIVE"

Select the "Bindings" tab, find the drop down for "Browser Flow". Select the newly created X509
browser flow from the drop down and click on "Save".

Red Hat Single Sign-On 7.4 Server Administration Guide

64

Configuring X.509 Client Certificate Authentication

CHAPTER 6. AUTHENTICATION

65

User Identity Source

Red Hat Single Sign-On 7.4 Server Administration Guide

66

Defines how to extract the user identity from a client certificate.

Canonical DN representation enabled (optional)

Defines whether to use the canonical format to determine a distinguished name. The format is
described in detail in the official Java API documentation . This option only affects the two User
Identity Sources Match SubjectDN using regular expression and Match IssuerDN using regular
expression. If you setup a new Red Hat Single Sign-On instance it is recommended to enable this
option. Leave this option disabled to remain beckward compatible with existing Red Hat Single Sign-
On instances.

Enable Serial Number hexadecimal representation (optional)

An option to use hexadecimal representation of the Serial Number. See RFC5280, Section-4.1.2.2.
Serial Number with sign bit set to 1 should be left padded with 00 octet. E.g. Serial number with
decimal value 161, or a1 in hexadecimal representation according to RFC5280 must be encoded as
00a1. More details can be found: RFC5280, appendix-B.

A regular expression (optional)

Defines a regular expression to use as a filter to extract the certificate identity. The regular
expression must contain a single group.

User Mapping Method

Defines how to match the certificate identity to an existing user. Username or e-mail will search for
an existing user by username or e-mail. Custom Attribute Mapper will search for an existing user with
a custom attribute which value matches the certificate identity. The name of the custom attribute is
configurable.

A name of user attribute (optional)

A custom attribute which value will be matched against the certificate identity. Multiple custom
attributes are relevant when attribute mapping is related to multiple values, e.g. 'Certificate Serial
Number and IssuerDN'.

CRL Checking Enabled (optional)

Defines whether to check the revocation status of the certificate using Certificate Revocation List.

Enable CRL Distribution Point to check certificate revocation status (optional)

Defines whether to use CDP to check the certificate revocation status. Most PKI authorities include
CDP in their certificates.

CRL file path (optional)

Defines a path to a file that contains a CRL list. The value must be a path to a valid file if CRL
Checking Enabled option is turned on.

OCSP Checking Enabled(optional)

Defines whether to check the certificate revocation status using Online Certificate Status Protocol.

OCSP Responder URI (optional)

Allows to override a value of the OCSP responder URI in the certificate.

Validate Key Usage (optional)

Verifies whether the certificate’s KeyUsage extension bits are set. For example,
"digitalSignature,KeyEncipherment" will verify if bits 0 and 2 in the KeyUsage extension are asserted.
Leave the parameter empty to disable the Key Usage validation. See RFC5280, Section-4.2.1.3. The
server will raise an error only when flagged as critical by the issuing CA and there is a key usage
extension mismatch.

Validate Extended Key Usage (optional)

Verifies one or more purposes as defined in the Extended Key Usage extension. See RFC5280,
Section-4.2.1.12. Leave the parameter empty to disable the Extended Key Usage validation. The
server will raise an error only when flagged as critical by the issuing CA and there is a key usage
extension mismatch.

CHAPTER 6. AUTHENTICATION

67

https://docs.oracle.com/javase/8/docs/api/javax/security/auth/x500/X500Principal.html#getName-java.lang.String-
https://tools.ietf.org/html/rfc5280#section-4.1.2.2
https://tools.ietf.org/html/rfc5280#appendix-B
https://tools.ietf.org/html/rfc5280#section-4.2.1.3
https://tools.ietf.org/html/rfc5280#section-4.2.1.12

Bypass identity confirmation

If set, X.509 client certificate authentication will not prompt the user to confirm the certificate
identity and will automatically sign in the user upon successful authentication.

6.5.4. Adding X.509 Client Certificate Authentication to a Direct Grant Flow

Using Red Hat Single Sign-On admin console, click on "Authentication" and select the "Direct
Grant" flow,

Make a copy of the build-in "Direct Grant" flow. You may want to give the new flow a distinctive
name, i.e. "X509 Direct Grant",

Delete "Username Validation" and "Password" authenticators,

Click on "Add execution" and add "X509/Validate Username" and click on "Save" to add the
execution step to the parent flow.

Change the Requirement to REQUIRED.

Set up the x509 authentication configuration by following the steps described earlier in the
x.509 Browser Flow section.

Select the "Bindings" tab, find the drop down for "Direct Grant Flow". Select the newly created
X509 direct grant flow from the drop down and click on "Save".

Red Hat Single Sign-On 7.4 Server Administration Guide

68

6.5.5. Client certificate lookup

When an HTTP request is sent directly to Red Hat Single Sign-On server, the JBoss EAP undertow
subsystem will establish an SSL handshake and extract the client certificate. The client certificate will be
then saved to the attribute javax.servlet.request.X509Certificate of the HTTP request, as specified in
the servlet specification. The Red Hat Single Sign-On X509 authenticator will be then able to lookup the
certificate from this attribute.

However, when the Red Hat Single Sign-On server listens to HTTP requests behind a load balancer or
reverse proxy, it may be the proxy server which extracts the client certificate and establishes the mutual
SSL connection. A reverse proxy usually puts the authenticated client certificate in the HTTP header of
the underlying request and forwards it to the back end Red Hat Single Sign-On server. In this case, Red
Hat Single Sign-On must be able to look up the X.509 certificate chain from the HTTP headers instead
of from the attribute of HTTP request, as is done for Undertow.

If Red Hat Single Sign-On is behind a reverse proxy, you usually need to configure alternative provider
of the x509cert-lookup SPI in RHSSO_HOME/standalone/configuration/standalone.xml. Along with the
default provider, which looks up the certificate from the HTTP header, we also have two additional built-
in providers: haproxy and apache, which are described next.

6.5.5.1. HAProxy certificate lookup provider

You can use this provider when your Red Hat Single Sign-On server is behind an HAProxy reverse proxy.
Configure the server like this:

In this example configuration, the client certificate will be looked up from the HTTP header,

<spi name="x509cert-lookup">
 <default-provider>haproxy</default-provider>
 <provider name="haproxy" enabled="true">
 <properties>
 <property name="sslClientCert" value="SSL_CLIENT_CERT"/>
 <property name="sslCertChainPrefix" value="CERT_CHAIN"/>
 <property name="certificateChainLength" value="10"/>
 </properties>
 </provider>
</spi>

CHAPTER 6. AUTHENTICATION

69

SSL_CLIENT_CERT, and the other certificates from its chain will be looked up from HTTP headers like
CERT_CHAIN_0 , CERT_CHAIN_1, …​, CERT_CHAIN_9 . The attribute certificateChainLength is the
maximum length of the chain, so the last one tried attribute would be CERT_CHAIN_9 .

Consult the HAProxy documentation for the details of how the HTTP Headers for the client certificate
and client certificate chain can be configured and their proper names.

6.5.5.2. Apache certificate lookup provider

You can use this provider when your Red Hat Single Sign-On server is behind an Apache reverse proxy.
Configure the server like this:

The configuration is same as for the haproxy provider. Consult the Apache documentation on mod_ssl
and mod_headers for the details of how the HTTP Headers for the client certificate and client certificate
chain can be configured and their proper names.

6.5.5.3. Nginx certificate lookup provider

You can use this provider when your Red Hat Single Sign-On server is behind an Nginx reverse proxy.
Configure the server like this:

NOTE

NGINX SSL/TLS module does not expose the client certificate chain, so Keycloak NGINX
certificate lookup provider is rebuilding it using the Keycloak truststore. Please populate
Keycloak truststore using keytool CLI with all root and intermediate CA’s needed for
rebuilding client certificate chain.

Consult the NGINX documentation for the details of how the HTTP Headers for the client certificate
can be configured. Example of NGINX configuration file :

<spi name="x509cert-lookup">
 <default-provider>apache</default-provider>
 <provider name="apache" enabled="true">
 <properties>
 <property name="sslClientCert" value="SSL_CLIENT_CERT"/>
 <property name="sslCertChainPrefix" value="CERT_CHAIN"/>
 <property name="certificateChainLength" value="10"/>
 </properties>
 </provider>
</spi>

<spi name="x509cert-lookup">
 <default-provider>nginx</default-provider>
 <provider name="nginx" enabled="true">
 <properties>
 <property name="sslClientCert" value="ssl-client-cert"/>
 <property name="sslCertChainPrefix" value="USELESS"/>
 <property name="certificateChainLength" value="2"/>
 </properties>
 </provider>
</spi>

Red Hat Single Sign-On 7.4 Server Administration Guide

70

http://www.haproxy.org/#docs
https://httpd.apache.org/docs/current/mod/mod_ssl.html
https://httpd.apache.org/docs/current/mod/mod_headers.html
http://nginx.org/en/docs/http/ngx_http_ssl_module.html#variables
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_installation_and_configuration_guide/#_truststore

NOTE

all certificates in trusted-ca-list-for-client-auth.pem must be added to Keycloak
truststore.

6.5.5.4. Other reverse proxy implementations

We do not have built-in support for other reverse proxy implementations. However, it is possible that
other reverse proxies can be made to behave in a similar way to apache or haproxy and that some of
those providers can be used. If none of those works, you may need to create your own implementation
of the org.keycloak.services.x509.X509ClientCertificateLookupFactory and
org.keycloak.services.x509.X509ClientCertificateLookup provider. See the Server Developer Guide
for the details on how to add your own provider.

6.5.6. Troubleshooting

Dumping HTTP headers

If you want to view what the reverse proxy is sending to Keycloak, enable the
RequestDumpingHandler Undertow filter and consult server.log file.

Enable TRACE logging under the logging subsystem

WARNING: Don't use RequestDumpingHandler or TRACE logging in production.

Direct Grant authentication with X.509

The following template can be used to request a token using the Resource Owner Password
Credentials Grant:

 ...
 server {
 ...
 ssl_client_certificate trusted-ca-list-for-client-auth.pem;
 ssl_verify_client optional_no_ca;
 ssl_verify_depth 2;
 ...
 location / {
 ...
 proxy_set_header ssl-client-cert $ssl_client_escaped_cert;
 ...
 }
 ...
}

...
 <profile>
 <subsystem xmlns="urn:jboss:domain:logging:3.0">
...
 <logger category="org.keycloak.authentication.authenticators.x509">
 <level name="TRACE"/>
 </logger>
 <logger category="org.keycloak.services.x509">
 <level name="TRACE"/>
 </logger>

CHAPTER 6. AUTHENTICATION

71

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_installation_and_configuration_guide/#_truststore
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_developer_guide/

$ curl https://[host][:port]/auth/realms/master/protocol/openid-connect/token \
 --insecure \
 --data "grant_type=password&scope=openid
profile&username=&password=&client_id=CLIENT_ID&client_secret=CLIENT_SECRET" \
 -E /path/to/client_cert.crt \
 --key /path/to/client_cert.key

[host][:port]

The host and the port number of a remote Red Hat Single Sign-On server that has been configured
to allow users authenticate with x.509 client certificates using the Direct Grant Flow.

CLIENT_ID

A client id.

CLIENT_SECRET

For confidential clients, a client secret; otherwise, leave it empty.

client_cert.crt

A public key certificate that will be used to verify the identity of the client in mutual SSL
authentication. The certificate should be in PEM format.

client_cert.key

A private key in the public key pair. Also expected in PEM format.

6.6. W3C WEB AUTHENTICATION (WEBAUTHN)

Red Hat Single Sign-On provides the limited support for W3C Web Authentication (WebAuthn) . Red
Hat Single Sign-On works as a WebAuthn’s Relying Party (RP).

NOTE

WebAuthn is Technology Preview and is not fully supported. This feature is disabled by
default.

To enable start the server with -Dkeycloak.profile=preview or -
Dkeycloak.profile.feature.web_authn=enabled . For more details see Profiles.

NOTE

Whether WebAuthn’s operations succeed depends on a user’s WebAuthn supporting
authenticator, browser and platform. If you use this WebAuthn support, please clarify to
what extent those entities support the WebAuthn specification.

6.6.1. Setup

The setup procedure of WebAuthn support for 2FA is the following :

6.6.1.1. Enable Webauthn Authenticator Registration

An administrator carries out the following operations on the Admin Console :

Open the Authentication → Required Actions tab.

Click Register.

Red Hat Single Sign-On 7.4 Server Administration Guide

72

https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/#rp-operations
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_installation_and_configuration_guide/#profiles

Select Webauthn Register as Required Action.

Mark Enabled checkbox. Optionally mark Default Action checkbox if you want all new created
users to be required to register WebAuthn credential.

6.6.1.2. Adding WebAuthn Authentication to a Browser Flow

Select a realm, click on Authentication link, select the Browser flow

Make a copy of the built-in "Browser" flow. You may want to give the new flow a distinctive
name, for example "WebAuthn Browser"

Using the drop down, select the copied flow

Delete the WebAuthn Browser Browser - Conditional OTP sub-flow using its Actions menu

If you want to have WebAuthn required for all users:

Using the Actions menu of the WebAuthn Browser Forms, click on Add execution

Select WebAuthn Authenticator using the drop down and click on Save

Set its Requirement to Required.

In the Bindings menu, change the browser flow to WebAuthn Browser

Note that in this scenario, if a user doesn’t have a WebAuthn credential, a required action will be set that
forces that user to register one.

Alternatively, you can have users log in with WebAuthn only if they have a WebAuthn credential
registered, so instead of adding the WebAuthn Authenticator execution:

Using the Actions menu of the WebAuthn Browser Forms, click on Add flow

Set the alias to "Conditional 2FA" and click on Save

Set the Requirement of Conditional 2FA to Conditional

Using the Actions menu of the Conditional 2FA, click on Add execution

CHAPTER 6. AUTHENTICATION

73

Select Condition - User Configured using the drop down and click on Save

Set the Requirement of Condition - User Configured execution to Required

Using the Actions menu of the Conditional 2FA, click on Add execution

Select WebAuthn Authenticator using the drop down and click on Save

Set its Requirement to Alternative.

You can also allow the user to choose between using WebAuthn and OTP for his second factor:

Using the Actions menu of the Conditional 2FA, click on Add execution

Select OTP Form using the drop down and click on Save

Set its Requirement to Alternative.

6.6.2. Authenticate with WebAuthn Authenticator

After registering a WebAuthn authenticator, the user carries out the following operations assuming that
authentication flow configuration above with the conditional subflow using WebAuthn Authenticator
was used:

Open the login form. The user must authenticate with a username and password.

The user’s browser asks the user to authenticate by their WebAuthn authenticator.

6.6.3. Managing WebAuthn as an administrator

Red Hat Single Sign-On 7.4 Server Administration Guide

74

6.6.3.1. Managing Credentials

WebAuthn credentials are managed in a similar manner as other credentials, such as OTP, from the User
credential management:

Users can be assigned a required action to create a WebAuthn credential from the Reset
Actions list, and selecting Webauthn Register

The administrator can delete a WebAuthn credential by pressing Delete.

The administrator can view the credential’s data such as the AAGUID by selecting Show data… ​.

The administrator can set a label for the credential by setting a value in the User Label field and
saving the data.

6.6.3.2. Managing Policy

An administrator can configure WebAuthn related operations as WebAuthn Policy per realm.

An administrator carries out the following operations on the Admin Console :

Open the Authentication → WebAuthn Policy tab.

Configure items and click Save.

The configurable items and their description follow.

Configuration Description

Relying Party Entity Name Human-readable server name as a WebAuthn
Relying Party. This is a mandatory configuration,
which is applied to the operation of registering the
WebAuthn authenticator. The default setting is
"keycloak". For more details, see WebAuthn
Specification.

Signature Algorithms It tells the WebAuthn authenticator which signature
algorithms to use for the Public Key Credential that
can be used for signing and verifying the
Authentication Assertion. Multiple algorithms can be
specified. If no algorithm is specified, ES256 is
adapted. The default setting is ES256. This is an
optional configuration item that is applied to the
operation of registering a WebAuthn authenticator.
For more details, see WebAuthn Specification.

Relying Party ID This is the ID as a WebAuthn Relying Party and
determines the scope of Public Key Credentials. It
must be origin’s effective domain. This is an optional
configuration item that is applied to the operation of
registering a WebAuthn authenticator. If no entry is
entered, the host part of the base URL of Red Hat
Single Sign-On’s server is adapted. For more details,
see WebAuthn Specification.

CHAPTER 6. AUTHENTICATION

75

https://www.w3.org/TR/webauthn/#dictionary-pkcredentialentity
https://www.w3.org/TR/webauthn/#public-key-credential
https://www.w3.org/TR/webauthn/#authentication-assertion
https://tools.ietf.org/html/rfc8152#section-8.1
https://www.w3.org/TR/webauthn/#dictdef-publickeycredentialparameters
https://www.w3.org/TR/webauthn/#rp-id

Attestation Conveyance Preference It tells the WebAuthn API implementation on the
browser (WebAuthn Client) the preference of how to
generate an Attestation Statement. This is an
optional configuration item that is applied to the
operation of registering a WebAuthn authenticator. If
no option is selected, its behavior is the same as
selecting "none". For more details, see WebAuthn
Specification.

Authenticator Attachment It tells the WebAuthn Client an acceptable
attachment pattern of a WebAuthn authenticator.
This is an optional configuration item that is applied
to the operation of registering a WebAuthn
authenticator. If no option is selected, the WebAuthn
Client does not consider the attachment pattern. For
more details, see WebAuthn Specification.

Require Resident Key It tells the WebAuthn authenticator to generate the
Public Key Credential as Client-side-resident Public
Key Credential Source. This is an optional
configuration item that is applied to the operation of
registering a WebAuthn authenticator. If no option is
selected, its behavior is the same as selecting "No".
For more details, see WebAuthn Specification.

User Verification Requirement It tells the WebAuthn authenticator to confirm
actually verifying a user. This is an optional
configuration item that is applied to the operation of
registering a WebAuthn authenticator and
authenticating the user by a WebAuthn
authenticator. If no option is selected, its behavior is
the same as selecting "preferred". For more details,
see WebAuthn Specification for registering a
WebAuthn authenticator and WebAuthn
Specification for authenticating the user by a
WebAuthn authenticator.

Timeout It specifies the timeout value in seconds for
registering a WebAuthn authenticator and
authenticating the user by a WebAuthn
authenticator. If set to 0, its behavior depends on the
WebAuthn authenticator’s implementation. The
default value is 0. For more details, see WebAuthn
Specification for registering a WebAuthn
authenticator and WebAuthn Specification for
authenticating the user by a WebAuthn
authenticator.

Configuration Description

Red Hat Single Sign-On 7.4 Server Administration Guide

76

https://www.w3.org/TR/webauthn/#webauthn-client
https://www.w3.org/TR/webauthn/#attestation-convey
https://www.w3.org/TR/webauthn/#enumdef-authenticatorattachment
https://www.w3.org/TR/webauthn/#client-side-resident-public-key-credential-source
https://www.w3.org/TR/webauthn/#dom-authenticatorselectioncriteria-requireresidentkey
https://www.w3.org/TR/webauthn/#dom-authenticatorselectioncriteria-userverification
https://www.w3.org/TR/webauthn/#dom-publickeycredentialrequestoptions-userverification
https://www.w3.org/TR/webauthn/#dom-publickeycredentialcreationoptions-timeout
https://www.w3.org/TR/webauthn/#dom-publickeycredentialrequestoptions-timeout

Avoid Same Authenticator Registration If set to "ON", the WebAuthn authenticator that has
already been registered can not be newly registered.
This is applied to the operation of registering a
WebAuthn authenticator. The default setting is
"OFF".

Acceptable AAGUIDs The white list of AAGUID of which a WebAuthn
authenticator can be registered. This is applied to the
operation of registering a WebAuthn authenticator. If
no entry is set on this list, any WebAuthn
authenticator can be registered.

Configuration Description

6.6.4. Attestation Statement Verification

When registering a WebAuthn authenticator, Red Hat Single Sign-On verifies an attestation statement
generated by this WebAuthn authenticator. On this verification process, Red Hat Single Sign-On
validates this attestation statement’s trustworthiness. It requires trust anchor’s certificates. Red Hat
Single Sign-On uses the Keycloak truststore so that you need to import these certificates onto it in
advance.

If you want to omit this attestation statement trustworthiness validation, please disable this truststore or
set the WebAuthn policy’s configuration item "Attestation Conveyance Preference" to "none".

6.6.5. Managing WebAuthn credentials as a user

6.6.5.1. Register WebAuthn Authenticator

The appropriate method to register a WebAuthn authenticator depends on if the user has or has not
already registered an account on Red Hat Single Sign-On.

New user

If the WebAuthn Register required action is set as Default Action in a realm, new users are required
to set up the WebAuthn security key after the first successful login. A new user carries out the
following operations :

Open the login form.

Click the Register link.

Fill in items on the register form and click Register.

The user’s browser asks the user to register their WebAuthn authenticator.

After successful registration, the user’s browser asks the user to enter the text as their just
registered WebAuthn authenticator’s label.

Existing user

If WebAuthn Authenticator is set up as required as shown in the first example, then when existing
users try to log in, they are required to register their WebAuthn authenticator automatically :

CHAPTER 6. AUTHENTICATION

77

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_installation_and_configuration_guide/#_truststore

Open the login form.

Fill in items, click Save and click Login.

When the users log in, they are required to register their WebAuthn authenticator.

After successful registration, the user’s browser asks the user to enter the text as their just
registered WebAuthn authenticator’s label.

6.6.6. Passwordless WebAuthn together with Two-Factor

WebAuthn is often used for two-factor authentication, however it can be desired to use it also as first
factor authentication. In this case, a user with passwordless WebAuthn credential will be able to
authenticate to Red Hat Single Sign-On without a password. Red Hat Single Sign-On allows to use
WebAuthn as both the passwordless and two-factor authentication mechanism in the context of a single
realm and even in the context of a single authentication flow.

Administrator may typically require that Security Keys registered by users for the WebAuthn
passwordless authentication must meet different (usually stronger) requirements. For example, those
security keys may require users to authenticate to that security key using a PIN, or the security key
should be attested with stronger certificate authority.

Because of this situation, Red Hat Single Sign-On allows administrator to configure separate WebAuthn
Passwordless Policy. There is a separate required action of type Webauthn Register Passwordless
and separate authenticator of type WebAuthn Passwordless Authenticator.

6.6.6.1. Setup

The setup procedure of WebAuthn passwordless support is the following :

Register new required action for WebAuthn passwordless support. Use the same steps as
described above with the only difference, that you need to register the action called Webauthn
Register Passwordless.

Configure the policy. You can use same steps and configuration options as described above,
however you need to configure them in the admin console in the tab WebAuthn Passwordless
Policy. You can configure this policy as you want, however typically the requirements for the
security key will be stronger than for the two-factor policy. For example the User Verification
Requirement can be set to Required when you configure the passwordless policy.

Finally configure the authentication flow. Let’s assume that we will use same flow called
WebAuthn Browser as described above, but we will configure it as follows:

The WebAuthn Browser Forms subflow will contain Username Form as the first
authenticator. Delete the default Username Password Form authenticator and add the
Username Form authenticator instead. This setting means that the user will provide just his
or her username as the first step.

There will be a required subflow, which can be named for example Passwordless Or Two-
factor . This setting indicates that user can authenticate either with Passwordless
WebAuthn credential or with Two-factor authentication.

Flow will contain WebAuthn Passwordless Authenticator as the first alternative.

The second alternative will be a subflow named for example Password And Two-factor
Webauthn. This subflow will contain a Password Form and a WebAuthn Authenticator.

Red Hat Single Sign-On 7.4 Server Administration Guide

78

The final configuration of the flow will look like the following:

You can now add WebAuthn Register Passwordless as the required action to some user, already
known to Red Hat Single Sign-On, to test this. During the first authentication, the user will be still
required to use the password and second-factor WebAuthn credential. However, once the user registers
the credentials, that user will be able to choose during future authentications. If he uses his or her
WebAuthn Passwordless credential, he won’t need to provide the password and second-factor
WebAuthn credential at all.

CHAPTER 6. AUTHENTICATION

79

CHAPTER 7. SSO PROTOCOLS
The chapter gives a brief overview of the authentication protocols and how the Red Hat Single Sign-On
authentication server and the applications it secures interact with these protocols.

7.1. OPENID CONNECT

OpenID Connect (OIDC) is an authentication protocol that is an extension of OAuth 2.0. While OAuth
2.0 is only a framework for building authorization protocols and is mainly incomplete, OIDC is a full-
fledged authentication and authorization protocol. OIDC also makes heavy use of the Json Web Token
(JWT) set of standards. These standards define an identity token JSON format and ways to digitally
sign and encrypt that data in a compact and web-friendly way.

There are really two types of use cases when using OIDC. The first is an application that asks the Red
Hat Single Sign-On server to authenticate a user for them. After a successful login, the application will
receive an identity token and an access token. The identity token contains information about the user
such as username, email, and other profile information. The access token is digitally signed by the realm
and contains access information (like user role mappings) that the application can use to determine
what resources the user is allowed to access on the application.

The second type of use cases is that of a client that wants to gain access to remote services. In this case,
the client asks Red Hat Single Sign-On to obtain an access token it can use to invoke on other remote
services on behalf of the user. Red Hat Single Sign-On authenticates the user then asks the user for
consent to grant access to the client requesting it. The client then receives the access token. This access
token is digitally signed by the realm. The client can make REST invocations on remote services using
this access token. The REST service extracts the access token, verifies the signature of the token, then
decides based on access information within the token whether or not to process the request.

7.1.1. OIDC Auth Flows

OIDC has different ways for a client or application to authenticate a user and receive an identity and
access token. Which path you use depends greatly on the type of application or client requesting access.
All of these flows are described in the OIDC and OAuth 2.0 specifications so only a brief overview will be
provided here.

7.1.1.1. Authorization Code Flow

This is a browser-based protocol and it is what we recommend you use to authenticate and authorize
browser-based applications. It makes heavy use of browser redirects to obtain an identity and access
token. Here’s a brief summary:

1. Browser visits application. The application notices the user is not logged in, so it redirects the
browser to Red Hat Single Sign-On to be authenticated. The application passes along a callback
URL (a redirect URL) as a query parameter in this browser redirect that Red Hat Single Sign-On
will use when it finishes authentication.

2. Red Hat Single Sign-On authenticates the user and creates a one-time, very short lived,
temporary code. Red Hat Single Sign-On redirects back to the application using the callback
URL provided earlier and additionally adds the temporary code as a query parameter in the
callback URL.

3. The application extracts the temporary code and makes a background out of band REST
invocation to Red Hat Single Sign-On to exchange the code for an identity, access and refresh
token. Once this temporary code has been used once to obtain the tokens, it can never be used
again. This prevents potential replay attacks.

It is important to note that access tokens are usually short lived and often expired after only minutes.

Red Hat Single Sign-On 7.4 Server Administration Guide

80

https://openid.net/connect/
https://tools.ietf.org/html/rfc6749
https://jwt.io

It is important to note that access tokens are usually short lived and often expired after only minutes.
The additional refresh token that was transmitted by the login protocol allows the application to obtain a
new access token after it expires. This refresh protocol is important in the situation of a compromised
system. If access tokens are short lived, the whole system is only vulnerable to a stolen token for the
lifetime of the access token. Future refresh token requests will fail if an admin has revoked access. This
makes things more secure and more scalable.

Another important aspect of this flow is the concept of a public vs. a confidential client. Confidential
clients are required to provide a client secret when they exchange the temporary codes for tokens.
Public clients are not required to provide this client secret. Public clients are perfectly fine so long as
HTTPS is strictly enforced and you are very strict about what redirect URIs are registered for the client.
HTML5/JavaScript clients always have to be public clients because there is no way to transmit the client
secret to them in a secure manner. Again, this is ok so long as you use HTTPS and strictly enforce
redirect URI registration. This guide goes more detail into this in the Managing Clients chapter.

Red Hat Single Sign-On also supports the optional Proof Key for Code Exchange specification.

7.1.1.2. Implicit Flow

This is a browser-based protocol that is similar to Authorization Code Flow except there are fewer
requests and no refresh tokens involved. We do not recommend this flow as there remains the
possibility of access tokens being leaked in the browser history as tokens are transmitted via redirect
URIs (see below). Also, since this flow doesn’t provide the client with a refresh token, access tokens
would either have to be long-lived or users would have to re-authenticate when they expired. This flow
is supported because it is in the OIDC and OAuth 2.0 specification. Here’s a brief summary of the
protocol:

1. Browser visits application. The application notices the user is not logged in, so it redirects the
browser to Red Hat Single Sign-On to be authenticated. The application passes along a callback
URL (a redirect URL) as a query parameter in this browser redirect that Red Hat Single Sign-On
will use when it finishes authentication.

2. Red Hat Single Sign-On authenticates the user and creates an identity and access token. Red
Hat Single Sign-On redirects back to the application using the callback URL provided earlier and
additionally adding the identity and access tokens as query parameters in the callback URL.

3. The application extracts the identity and access tokens from the callback URL.

7.1.1.3. Resource Owner Password Credentials Grant (Direct Access Grants)

This is referred to in the Admin Console as Direct Access Grants . This is used by REST clients that want
to obtain a token on behalf of a user. It is one HTTP POST request that contains the credentials of the
user as well as the id of the client and the client’s secret (if it is a confidential client). The user’s
credentials are sent within form parameters. The HTTP response contains identity, access, and refresh
tokens.

7.1.1.4. Client Credentials Grant

This is also used by REST clients, but instead of obtaining a token that works on behalf of an external
user, a token is created based on the metadata and permissions of a service account that is associated
with the client. More info together with example is in Service Accounts chapter.

7.1.2. Red Hat Single Sign-On Server OIDC URI Endpoints

Here’s a list of OIDC endpoints that the Red Hat Single Sign-On publishes. These URLs are useful if you

CHAPTER 7. SSO PROTOCOLS

81

https://tools.ietf.org/html/rfc7636

are using a non-Red Hat Single Sign-On client adapter to talk OIDC with the auth server. These are all
relative URLs and the root of the URL being the HTTP(S) protocol, hostname, and usually path prefixed
with /auth: i.e. https://localhost:8080/auth

/realms/{realm-name}/protocol/openid-connect/auth

This is the URL endpoint for obtaining a temporary code in the Authorization Code Flow or for
obtaining tokens via the Implicit Flow, Direct Grants, or Client Grants.

/realms/{realm-name}/protocol/openid-connect/token

This is the URL endpoint for the Authorization Code Flow to turn a temporary code into a token.

/realms/{realm-name}/protocol/openid-connect/logout

This is the URL endpoint for performing logouts.

/realms/{realm-name}/protocol/openid-connect/userinfo

This is the URL endpoint for the User Info service described in the OIDC specification.

/realms/{realm-name}/protocol/openid-connect/revoke

This is the URL endpoint for OAuth 2.0 Token Revocation, which is described in RFC7009.

In all of these replace {realm-name} with the name of the realm.

7.2. SAML

SAML 2.0 is a similar specification to OIDC but a lot older and more mature. It has its roots in SOAP and
the plethora of WS-* specifications so it tends to be a bit more verbose than OIDC. SAML 2.0 is
primarily an authentication protocol that works by exchanging XML documents between the
authentication server and the application. XML signatures and encryption is used to verify requests and
responses.

There are really two types of use cases when using SAML. The first is an application that asks the Red
Hat Single Sign-On server to authenticate a user for them. After a successful login, the application will
receive an XML document that contains something called a SAML assertion that specify various
attributes about the user. This XML document is digitally signed by the realm and contains access
information (like user role mappings) that the application can use to determine what resources the user
is allowed to access on the application.

The second type of use cases is that of a client that wants to gain access to remote services. In this case,
the client asks Red Hat Single Sign-On to obtain an SAML assertion it can use to invoke on other remote
services on behalf of the user.

7.2.1. SAML Bindings

SAML defines a few different ways to exchange XML documents when executing the authentication
protocol. The Redirect and Post bindings cover browser based applications. The ECP binding covers
REST invocations. There are other binding types but Red Hat Single Sign-On only supports those three.

7.2.1.1. Redirect Binding

The Redirect Binding uses a series of browser redirect URIs to exchange information. This is a rough
overview of how it works.

1. The user visits the application and the application finds the user is not authenticated. It
generates an XML authentication request document and encodes it as a query param in a URI
that is used to redirect to the Red Hat Single Sign-On server. Depending on your settings, the

Red Hat Single Sign-On 7.4 Server Administration Guide

82

https://tools.ietf.org/html/rfc7009
http://saml.xml.org/saml-specifications

application may also digitally sign this XML document and also stuff this signature as a query
param in the redirect URI to Red Hat Single Sign-On. This signature is used to validate the client
that sent this request.

2. The browser is redirected to Red Hat Single Sign-On. The server extracts the XML auth request
document and verifies the digital signature if required. The user then has to enter in their
credentials to be authenticated.

3. After authentication, the server generates an XML authentication response document. This
document contains a SAML assertion that holds metadata about the user like name, address,
email, and any role mappings the user might have. This document is almost always digitally
signed using XML signatures, and may also be encrypted.

4. The XML auth response document is then encoded as a query param in a redirect URI that
brings the browser back to the application. The digital signature is also included as a query
param.

5. The application receives the redirect URI and extracts the XML document and verifies the
realm’s signature to make sure it is receiving a valid auth response. The information inside the
SAML assertion is then used to make access decisions or display user data.

7.2.1.2. POST Binding

The SAML POST binding works almost the exact same way as the Redirect binding, but instead of GET
requests, XML documents are exchanged by POST requests. The POST Binding uses JavaScript to trick
the browser into making a POST request to the Red Hat Single Sign-On server or application when
exchanging documents. Basically HTTP responses contain an HTML document that contains an HTML
form with embedded JavaScript. When the page is loaded, the JavaScript automatically invokes the
form. You really don’t need to know about this stuff, but it is a pretty clever trick.

POST binding is usually recommended because of security and size restrictions. When using REDIRECT
the SAML response is part of the URL (it is a query parameter as it was explained before), so it can be
captured in logs and it is considered less secure. Regarding size, if the assertion contains a lot or large
attributes sending the document inside the HTTP payload is always better than in the more limited URL.

7.2.1.3. ECP

ECP stands for "Enhanced Client or Proxy", a SAML v.2.0 profile which allows for the exchange of SAML
attributes outside the context of a web browser. This is used most often for REST or SOAP-based
clients.

7.2.2. Red Hat Single Sign-On Server SAML URI Endpoints

Red Hat Single Sign-On really only has one endpoint for all SAML requests.

http(s)://authserver.host/auth/realms/{realm-name}/protocol/saml

All bindings use this endpoint.

7.3. OPENID CONNECT VS. SAML

Choosing between OpenID Connect and SAML is not just a matter of using a newer protocol (OIDC)
instead of the older more mature protocol (SAML).

In most cases Red Hat Single Sign-On recommends using OIDC.

CHAPTER 7. SSO PROTOCOLS

83

SAML tends to be a bit more verbose than OIDC.

Beyond verbosity of exchanged data, if you compare the specifications you’ll find that OIDC was
designed to work with the web while SAML was retrofitted to work on top of the web. For example,
OIDC is also more suited for HTML5/JavaScript applications because it is easier to implement on the
client side than SAML. As tokens are in the JSON format, they are easier to consume by JavaScript. You
will also find several nice features that make implementing security in your web applications easier. For
example, check out the iframe trick that the specification uses to easily determine if a user is still logged
in or not.

SAML has its uses though. As you see the OIDC specifications evolve you see they implement more and
more features that SAML has had for years. What we often see is that people pick SAML over OIDC
because of the perception that it is more mature and also because they already have existing
applications that are secured with it.

7.4. DOCKER REGISTRY V2 AUTHENTICATION

NOTE

Docker authentication is disabled by default. To enable see Profiles.

Docker Registry V2 Authentication is an OIDC-Like protocol used to authenticate users against a
Docker registry. Red Hat Single Sign-On’s implementation of this protocol allows for a Red Hat Single
Sign-On authentication server to be used by a Docker client to authenticate against a registry. While this
protocol uses fairly standard token and signature mechanisms, it has a few wrinkles that prevent it from
being treated as a true OIDC implementation. The largest deviations include a very specific JSON
format for requests and responses as well as the ability to understand how to map repository names and
permissions to the OAuth scope mechanism.

7.4.1. Docker Auth Flow

The Docker API documentation best describes and illustrates this process, however a brief summary will
be given below from the perspective of the Red Hat Single Sign-On authentication server.

NOTE

This flow assumes that a docker login command has already been performed

The flow begins when the Docker client requests a resource from the Docker registry. If the
resource is protected and no auth token is present in the request, the Docker registry server will
respond to the client with a 401 + some information on required permissions and where to find
the authorization server.

The Docker client will construct an authentication request based on the 401 response from the
Docker registry. The client will then use the locally cached credentials (from a previously run
docker login command) as part of a HTTP Basic Authentication request to the Red Hat Single
Sign-On authentication server.

The Red Hat Single Sign-On authentication server will attempt to authenticate the user and
return a JSON body containing an OAuth-style Bearer token.

The Docker client will get the bearer token from the JSON response and use it in the
Authorization header to request the protected resource.

When the Docker registry receives the new request for the protected resource with the token

Red Hat Single Sign-On 7.4 Server Administration Guide

84

https://openid.net/specs/openid-connect-session-1_0.html#ChangeNotification
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_installation_and_configuration_guide/#profiles
https://docs.docker.com/registry/spec/auth/
https://docs.docker.com/registry/spec/auth/token/
https://tools.ietf.org/html/rfc2617

When the Docker registry receives the new request for the protected resource with the token
from the Red Hat Single Sign-On server, the registry validates the token and grants access to
the requested resource (if appropriate).

NOTE

No user session is created on the Red Hat Single Sign-On side after successful
authentication with the Docker protocol. The Docker protocol is not used in case of a
browser SSO session and it does not have a way to refresh the token or ask Red Hat
Single Sign-On server if a particular token/session is still valid. So creating the session is
unnecessary overhead for this protocol. For more details, see the transient session
section.

7.4.2. Red Hat Single Sign-On Docker Registry v2 Authentication Server URI
Endpoints

Red Hat Single Sign-On really only has one endpoint for all Docker auth v2 requests.

http(s)://authserver.host/auth/realms/{realm-name}/protocol/docker-v2

CHAPTER 7. SSO PROTOCOLS

85

CHAPTER 8. MANAGING CLIENTS
Clients are entities that can request authentication of a user. Clients come in two forms. The first type
of client is an application that wants to participate in single-sign-on. These clients just want Red Hat
Single Sign-On to provide security for them. The other type of client is one that is requesting an access
token so that it can invoke other services on behalf of the authenticated user. This section discusses
various aspects around configuring clients and various ways to do it.

8.1. OIDC CLIENTS

OpenID Connect is the preferred protocol to secure applications. It was designed from the ground up to
be web friendly and work best with HTML5/JavaScript applications.

To create an OIDC client go to the Clients left menu item. On this page you’ll see a Create button on
the right.

Clients

This will bring you to the Add Client page.

Add Client

Enter in the Client ID of the client. This should be a simple alpha-numeric string that will be used in
requests and in the Red Hat Single Sign-On database to identify the client. Next select openid-connect
in the Client Protocol drop down box. Finally enter in the base URL of your application in the Root URL
field and click Save. This will create the client and bring you to the client Settings tab.

Red Hat Single Sign-On 7.4 Server Administration Guide

86

Client Settings

Let’s walk through each configuration item on this page.

Client ID

This specifies an alpha-numeric string that will be used as the client identifier for OIDC requests.

Name

This is the display name for the client whenever it is displayed in a Red Hat Single Sign-On UI screen.
You can localize the value of this field by setting up a replacement string value i.e. ${myapp}. See the
Server Developer Guide for more information.

Description

This specifies the description of the client. This can also be localized.

Enabled

If this is turned off, the client will not be allowed to request authentication.

Consent Required

If this is on, then users will get a consent page which asks the user if they grant access to that
application. It will also display the metadata that the client is interested in so that the user knows exactly
what information the client is getting access to. If you’ve ever done a social login to Google, you’ll often
see a similar page. Red Hat Single Sign-On provides the same functionality.

CHAPTER 8. MANAGING CLIENTS

87

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_developer_guide/

Access Type

This defines the type of the OIDC client.

confidential

Confidential access type is for server-side clients that need to perform a browser login and require a
client secret when they turn an access code into an access token, (see Access Token Request in the
OAuth 2.0 spec for more details). This type should be used for server-side applications.

public

Public access type is for client-side clients that need to perform a browser login. With a client-side
application there is no way to keep a secret safe. Instead it is very important to restrict access by
configuring correct redirect URIs for the client.

bearer-only

Bearer-only access type means that the application only allows bearer token requests. If this is
turned on, this application cannot participate in browser logins.

Standard Flow Enabled

If this is on, clients are allowed to use the OIDC Authorization Code Flow.

Implicit Flow Enabled

If this is on, clients are allowed to use the OIDC Implicit Flow.

Direct Access Grants Enabled

If this is on, clients are allowed to use the OIDC Direct Access Grants .

Root URL

If Red Hat Single Sign-On uses any configured relative URLs, this value is prepended to them.

Valid Redirect URIs

This is a required field. Enter in a URL pattern and click the + sign to add. Click the - sign next to URLs
you want to remove. Remember that you still have to click the Save button! Wildcards (*) are only
allowed at the end of a URI, i.e. http://host.com/*

You should take extra precautions when registering valid redirect URI patterns. If you make them too
general you are vulnerable to attacks. See Threat Model Mitigation chapter for more information.

Base URL

If Red Hat Single Sign-On needs to link to the client, this URL is used.

Admin URL

For Red Hat Single Sign-On specific client adapters, this is the callback endpoint for the client. The Red
Hat Single Sign-On server will use this URI to make callbacks like pushing revocation policies, performing
backchannel logout, and other administrative operations. For Red Hat Single Sign-On servlet adapters,
this can be the root URL of the servlet application. For more information see Securing Applications and
Services Guide.

Web Origins

This option centers around CORS which stands for Cross-Origin Resource Sharing. If browser

Red Hat Single Sign-On 7.4 Server Administration Guide

88

https://tools.ietf.org/html/rfc6749#section-4.1.3
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/securing_applications_and_services_guide/
http://www.w3.org/TR/cors/

JavaScript tries to make an AJAX HTTP request to a server whose domain is different from the one the
JavaScript code came from, then the request must use CORS. The server must handle CORS requests
in a special way, otherwise the browser will not display or allow the request to be processed. This
protocol exists to protect against XSS, CSRF and other JavaScript-based attacks.

Red Hat Single Sign-On has support for validated CORS requests. The way it works is that the domains
listed in the Web Origins setting for the client are embedded within the access token sent to the client
application. The client application can then use this information to decide whether or not to allow a
CORS request to be invoked on it. This is an extension to the OIDC protocol so only Red Hat Single
Sign-On client adapters support this feature. See Securing Applications and Services Guide for more
information.

To fill in the Web Origins data, enter in a base URL and click the + sign to add. Click the - sign next to
URLs you want to remove. Remember that you still have to click the Save button!

8.1.1. Advanced Settings

OAuth 2.0 Mutual TLS Certificate Bound Access Tokens Enabled

Mutual TLS binds an access token and a refresh token with a client certificate exchanged during TLS
handshake. This prevents an attacker who finds a way to steal these tokens from exercising the tokens.
This type of token is called a holder-of-key token. Unlike bearer tokens, the recipient of a holder-of-key
token can verify whether the sender of the token is legitimate.

If the following conditions are satisfied on a token request, Red Hat Single Sign-On will bind an access
token and a refresh token with a client certificate and issue them as holder-of-key tokens. If all
conditions are not met, Red Hat Single Sign-On rejects the token request.

The feature is turned on

A token request is sent to the token endpoint in an authorization code flow or a hybrid flow

On TLS handshake, Red Hat Single Sign-On requests a client certificate and a client send its
client certificate

On TLS handshake, Red Hat Single Sign-On successfully verifies the client certificate

To enable mutual TLS in Red Hat Single Sign-On, see Enable mutual SSL in WildFly .

In the following cases, Red Hat Single Sign-On will verify the client sending the access token or the
refresh token; if verification fails, Red Hat Single Sign-On rejects the token.

A token refresh request is sent to the token endpoint with a holder-of-key refresh token

A UserInfo request is sent to UserInfo endpoint with a holder-of-key access token

A logout request is sent to Logout endpoint with a holder-of-key refresh token

Please see Mutual TLS Client Certificate Bound Access Tokens in the OAuth 2.0 Mutual TLS Client
Authentication and Certificate Bound Access Tokens for more details.

CHAPTER 8. MANAGING CLIENTS

89

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/securing_applications_and_services_guide/
https://tools.ietf.org/html/draft-ietf-oauth-mtls-08#section-3

WARNING

None of the keycloak client adapters currently support holder-of-key token
verification. Instead, keycloak adapters currently treat access and refresh tokens as
bearer tokens.

Proof Key for Code Exchange (PKCE)

When an attacker steals an authorization code that was issued to a legitimate client, PKCE prevents the
attacker from receiving the tokens that apply to that code.

The administrator can select the following three options:

Proof Key for Code Exchange Code Challenge Method

(blank) : Red Hat Single Sign-On does not apply PKCE unless the client sends PKCE’s
parameters appropriately to Red Hat Single Sign-On’s authorization endpoint. It is the default
setting.

S256 : Red Hat Single Sign-On applies to the client PKCE whose code challenge method is
S256.

plain : Red Hat Single Sign-On applies to the client PKCE whose code challenge method is plain.

Please see RFC 7636 Proof Key for Code Exchange by OAuth Public Clients for more details.

Signed and Encrypted ID Token Support

Red Hat Single Sign-On can encrypt ID token according to Json Web Encryption (JWE) specification.
The administrator can determine whether encrypting ID token or not per client. This feature is disabled
as default.

The key for encrypting ID token is called Content Encryption Key (CEK). Red Hat Single Sign-On and a
client need to negotiate which CEK is used and how to deliver it. The way to do so is called Key
Management Mode.

JWE specification determines 5 types of Key Management Mode. Red Hat Single Sign-On supports Key
Encryption among them.

In Key Encryption, the client generates a key pair of asymmetric cryptography. The public key is used to
encrypt CEK. Red Hat Single Sign-On generates CEK per ID token, encrypts the ID token by this
generated CEK and encrypts this CEK by this client’s public key. The client decrypts this encrypted CEK
by their private key, and decrypt the ID token by decrypted CEK. Therefore, any party other than the
client is not able to decrypt ID token.

The client needs to pass their public key for encrypting CEK onto Red Hat Single Sign-On. Red Hat
Single Sign-On supports downloading public keys from the URL the client provides. The client needs to
provide their public keys according to Json Web Keys (JWK) specification. The way to do so is defined in
Signed JWT of Confidential Client Credentials. The detailed procedure is as follows:

open the client’s Credentials tab



Red Hat Single Sign-On 7.4 Server Administration Guide

90

https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc7517

select Signed Jwt from Client Authenticator pulldown menu

set ON to JWKS URL switch

input the client’s public key providing URL on JWKS URL textbox

Key Encryption’s algorithms are defined in Json Web Algorithm (JWA) specification. Red Hat Single
Sign-On supports RSAES-PKCS1-v1_5(RSA1_5) and RSAES OAEP using default parameters (RSA-
OAEP). The detailed procedure to select this algorithm is as follows:

open the client’s Settings tab

open Advanced Settings

select RSA1_5 or RSA-OAEP from ID Token Encryption Key Management Algorithm
pulldown menu

ID token encryption algorithms by CEK are also defined in JWA specification. Red Hat Single Sign-On
supports AES_128_CBC_HMAC_SHA_256 authenticated encryption (A128CBC-HS256) and AES GCM
using 128-bit key (A128GCM). The detailed procedure to select this algorithm is as follows:

open the client’s Settings tab

open Advanced Settings

select A128CBC-HS256 or A128GCM from ID Token Encryption Content Encryption
Algorithm pulldown menu

8.1.2. Confidential Client Credentials

If you’ve set the client’s access type to confidential in the client’s Settings tab, a new Credentials tab
will show up. As part of dealing with this type of client you have to configure the client’s credentials.

Credentials Tab

The Client Authenticator list box specifies the type of credential you are going to use for your
confidential client. It defaults to client ID and secret. The secret is automatically generated for you and
the Regenerate Secret button allows you to recreate this secret if you want or need to.

Alternatively, you can opt to use a signed Json Web Token (JWT) or x509 certificate validation (also
called Mutual TLS) instead of a secret.

CHAPTER 8. MANAGING CLIENTS

91

https://tools.ietf.org/html/rfc7518#section-4.1
https://tools.ietf.org/html/rfc7518#section-5.1

Signed JWT

When choosing this credential type you will have to also generate a private key and certificate for the
client. The private key will be used to sign the JWT, while the certificate is used by the server to verify
the signature. Click on the Generate new keys and certificate button to start this process.

Generate Keys

When you generate these keys, Red Hat Single Sign-On will store the certificate, and you’ll need to
download the private key and certificate for your client to use. Pick the archive format you want and
specify the password for the private key and store.

You can also opt to generate these via an external tool and just import the client’s certificate.

Import Certificate

Red Hat Single Sign-On 7.4 Server Administration Guide

92

There are multiple formats you can import from, just choose the archive format you have the certificate
stored in, select the file, and click the Import button.

Finally note that you don’t even need to import certificate if you choose to Use JWKS URL . In that
case, you can provide the URL where client publishes its public key in JWK format. This is flexible
because when client changes its keys, Red Hat Single Sign-On will automatically download them without
need to re-import anything on Red Hat Single Sign-On side.

If you use client secured by Red Hat Single Sign-On adapter, you can configure the JWKS URL like
https://myhost.com/myapp/k_jwks assuming that https://myhost.com/myapp is the root URL of your
client application. See Server Developer Guide for additional details.

WARNING

For the performance purposes, Red Hat Single Sign-On caches the public keys of
the OIDC clients. If you think that private key of your client was compromised, it is
obviously good to update your keys, but it’s also good to clear the keys cache. See
Clearing the cache section for more details.

Signed JWT with Client Secret

If you select this option in the Client Authenticator list box, you can use a JWT signed by client secret
instead of the private key.

This client secret will be used to sign the JWT by the client.

X509 Certificate

By enabling this option Red Hat Single Sign-On will validate if the client uses proper X509 certificate
during the TLS Handshake.

NOTE

This option requires mutual TLS in Red Hat Single Sign-On, see Enable mutual SSL in
WildFly.



CHAPTER 8. MANAGING CLIENTS

93

https://self-issued.info/docs/draft-ietf-jose-json-web-key.html
https://myhost.com/myapp/k_jwks
https://myhost.com/myapp
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_developer_guide/

X509 Certificate

The validator checks also the certificate’s Subject DN field with configured regexp validation expression.
For some use cases, it is sufficient to accept all certificates. In that case, you can use (.*?)(?:$)
expression.

There are two ways for Red Hat Single Sign-On to obtain the Client ID from the request. The first option
is the client_id parameter in the query (described in Section 2.2 of the OAuth 2.0 Specification). The
second option is to supply client_id as a form parameter.

8.1.3. Service Accounts

Each OIDC client has a built-in service account which allows it to obtain an access token. This is covered
in the OAuth 2.0 specifiation under Client Credentials Grant. To use this feature you must set the
Access Type of your client to confidential. When you do this, the Service Accounts Enabled switch will
appear. You need to turn on this switch. Also make sure that you have configured your client credentials.

To use it you must have registered a valid confidential Client and you need to check the switch Service
Accounts Enabled in Red Hat Single Sign-On admin console for this client. In tab Service Account
Roles you can configure the roles available to the service account retrieved on behalf of this client.
Remember that you must have the roles available in Role Scope Mappings (tab Scope) of this client as
well, unless you have Full Scope Allowed on. As in a normal login, roles from access token are the
intersection of:

Role scope mappings of particular client combined with the role scope mappings inherited from
linked client scopes

Service account roles

The REST URL to invoke on is /auth/realms/{realm-name}/protocol/openid-connect/token. Invoking
on this URL is a POST request and requires you to post the client credentials. By default, client
credentials are represented by clientId and clientSecret of the client in Authorization: Basic header,
but you can also authenticate the client with a signed JWT assertion or any other custom mechanism for
client authentication. You also need to use the parameter grant_type=client_credentials as per the
OAuth2 specification.

For example the POST invocation to retrieve a service account can look like this:

 POST /auth/realms/demo/protocol/openid-connect/token
 Authorization: Basic cHJvZHVjdC1zYS1jbGllbnQ6cGFzc3dvcmQ=

Red Hat Single Sign-On 7.4 Server Administration Guide

94

https://tools.ietf.org/html/rfc6749

 Content-Type: application/x-www-form-urlencoded

 grant_type=client_credentials

The response would be this standard JSON document from the OAuth 2.0 specification.

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
 "access_token":"2YotnFZFEjr1zCsicMWpAA",
 "token_type":"bearer",
 "expires_in":60
}

Only the access token is returned by default. No refresh token is returned and also no user session is
created on the Red Hat Single Sign-On side upon successful authentication by default. Due the lack of
refresh token, there is a need to re-authenticate when the access token expires, however this does not
mean any additional overhead on the Red Hat Single Sign-On server side because sessions are not
created by default.

In this situation, logout is unnecessary. However, issued access tokens can be revoked by sending
requests to the OAuth2 Revocation Endpoint as described in the OpenID Connect Endpoints section.

8.1.4. Audience Support

The typical environment where the Red Hat Single Sign-On is deployed generally consists of a set of
confidential or public client applications (frontend client applications) which use Red Hat Single Sign-On
for authentication.

There are also services (called Resource Servers in the OAuth 2 specification), which serve requests
from frontend client applications and provide resources. These services typically require an Access
token (Bearer token) to be sent to them to authenticate for a particular request. This token was
previously obtained by the frontend application when it tries to log in against Red Hat Single Sign-On.

In the environment where the trust among services is low, you may encounter this scenario:

1. A frontend client called my-app is required to be authenticated against Red Hat Single Sign-On.

2. A user is authenticated in Red Hat Single Sign-On. Red Hat Single Sign-On then issued tokens
to the my-app application.

3. The application my-app used the token to invoke the service evil-service. The application
needs to invoke evil-service as the service is able to serve some very useful data.

4. The evil-service application returned the response to my-app. However, at the same time, it
kept the token previously sent to it.

5. The evil-service application then invoked another service called good-service with the
previously kept token. The invocation was successful and good-service returned the data. This
results in broken security as the evil-service misused the token to access other services on
behalf of the client my-app.

This flow may not be an issue in many environments with the high level of trust among services. However

CHAPTER 8. MANAGING CLIENTS

95

https://tools.ietf.org/html/rfc6749#section-4.4.3

This flow may not be an issue in many environments with the high level of trust among services. However
in other environments, where the trust among services is lower, this can be problematic.

NOTE

In some environments, this example work flow may be even requested behavior as the
evil-service may need to retrieve additional data from good-service to be able to
properly return the requested data to the original caller (my-app client). You may notice
similarities with the Kerberos Credential Delegation. As with the Kerberos Credential
Delegation, an unlimited audience is a mixed blessing as it is only useful when a high level
of trust exists among services. Otherwise, it is recommended to limit audience as
described next. You can limit audience and at the same time allow the evil-service to
retrieve required data from the good-service. In this case, you need to ensure that both
the evil-service and good-service are added as audiences to the token.

To prevent any misuse of the access token as in the example above, it is recommended to limit Audience
on the token and configure your services to verify the audience on the token. If this is done, the flow
above will change, like this:

1. A frontend client called my-app is required to be authenticated against Red Hat Single Sign-On.

2. A user is authenticated in Red Hat Single Sign-On. Red Hat Single Sign-On then issued tokens
to the my-app application. The client application already knows that it will need to invoke
service evil-service, so it used scope=evil-service in the authentication request sent to the
Red Hat Single Sign-On server. See Client Scopes section for more details about the scope
parameter. The token issued to the my-app client contains the audience, as in "audience": [
"evil-service"], which declares that the client wants to use this access token to invoke just the
service evil-service.

3. The evil-service application served the request to the my-app. At the same time, it kept the
token previously sent to it.

4. The evil-service application then invoked the good-service with the previously kept token.
Invocation was not successful because good-service checks the audience on the token and it
sees that audience is only evil-service. This is expected behavior and security is not broken.

If the client wants to invoke the good-service later, it will need to obtain another token by issuing the
SSO login with the scope=good-service. The returned token will then contain good-service as an
audience:

and can be used to invoke good-service.

8.1.4.1. Setup

To properly set up audience checking:

Ensure that services are configured to check audience on the access token sent to them by
adding the flag verify-token-audience in the adapter configuration. See Adapter configuration
for details.

Ensure that when an access token is issued by Red Hat Single Sign-On, it contains all requested
audiences and does not contain any audiences that are not needed. The audience can be either
automatically added due the client roles as described in the next section or it can be hardcoded

"audience": ["good-service"]

Red Hat Single Sign-On 7.4 Server Administration Guide

96

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/securing_applications_and_services_guide/#_java_adapter_config

as described below.

8.1.4.2. Automatically add audience

In the default client scope roles, there is an Audience Resolve protocol mapper defined. This protocol
mapper will check all the clients for which current token has at least one client role available. Then the
client ID of each of those clients will be added as an audience automatically. This is especially useful if
your service (usually bearer-only) clients rely on client roles.

As an example, let us assume that you have a bearer-only client good-service and the confidential client
my-app, which you want to authenticate and then use the access token issued for the my-app to invoke
the good-service REST service. If the following are true:

The good-service client has any client roles defined on itself

Target user has at least one of those client roles assigned

Client my-app has the role scope mappings for the assigned role

then the good-service will be automatically added as an audience to the access token issued for the
my-app.

NOTE

If you want to ensure that audience is not added automatically, do not configure role
scope mappings directly on the my-app client, but instead create a dedicated client
scope, for example called good-service, which will contain the role scope mappings for
the client roles of the good-service client. Assuming that this client scope will be added
as an optional client scope to the my-app client, the client roles and audience will be
added to the token just if explicitly requested by the scope=good-service parameter.

NOTE

The frontend client itself is not automatically added to the access token audience. This
allows for easy differentiation between the access token and the ID token, because the
access token will not contain the client for which the token was issued as an audience. So
in the example above, the my-app won’t be added as an audience. If you need the client
itself as an audience, see the hardcoded audience option. However, using the same client
as both frontend and REST service is not recommended.

8.1.4.3. Hardcoded audience

For the case when your service relies on realm roles or does not rely on the roles in the token at all, it can
be useful to use hardcoded audience. This is a protocol mapper, which will add client ID of the specified
service client as an audience to the token. You can even use any custom value, for example some URL, if
you want different audience than client ID.

You can add protocol mapper directly to the frontend client, however than the audience will be always
added. If you want more fine-grain control, you can create protocol mapper on the dedicated client
scope, which will be called for example good-service.

Audience Protocol Mapper

CHAPTER 8. MANAGING CLIENTS

97

From the Installation tab of the good-service client, you can generate the adapter
configuration and you can confirm that verify-token-audience option will be set to true. This
indicates that the adapter will require verifying the audience if you use this generated
configuration.

Finally, you need to ensure that the my-app frontend client is able to request good-service as
an audience in its tokens. On the my-app client, click the Client Scopes tab. Then assign good-
service as an optional (or default) client scope. See Client Scopes Linking section for more
details.

You can optionally Evaluate Client Scopes and generate an example access token. If you do,
notice that good-service will be added to the audience of the generated access token only if
good-service is included in the scope parameter in the case you assigned it as an optional client
scope.

In your my-app application, you must ensure that scope parameter is used with the value good-
service always included when you want to issue the token for accessing the good-service. See
the parameters forwarding section, if your application uses the servlet adapter, or the javascript
adapter section, if your application uses the javascript adapter.

NOTE

If you are unsure what the correct audience and roles in the token will be, it is always a
good idea to Evaluate Client Scopes in the admin console and do some testing around it.

NOTE

Both the Audience and Audience Resolve protocol mappers add the audiences just to the
access token by default. The ID Token typically contains only single audience, which is the
client ID of the client for which the token was issued. This is a requirement of the OpenID
Connect specification. On the other hand, the access token does not necessarily have the
client ID of the client, which was the token issued for, unless any of the audience mappers
added it.

8.2. SAML CLIENTS

Red Hat Single Sign-On supports SAML 2.0 for registered applications. Both POST and Redirect
bindings are supported. You can choose to require client signature validation and can have the server
sign and/or encrypt responses as well.

Red Hat Single Sign-On 7.4 Server Administration Guide

98

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/securing_applications_and_services_guide/#_params_forwarding
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/securing_applications_and_services_guide/#_javascript_adapter

To create a SAML client go to the Clients left menu item. On this page you’ll see a Create button on the
right.

Clients

This will bring you to the Add Client page.

Add Client

Enter in the Client ID of the client. This is often a URL and will be the expected issuer value in SAML
requests sent by the application. Next select saml in the Client Protocol drop down box. Finally enter in
the Client SAML Endpoint URL. Enter the URL you want the Red Hat Single Sign-On server to send
SAML requests and responses to. Usually applications have only one URL for processing SAML
requests. If your application has different URLs for its bindings, don’t worry, you can fix this in the
Settings tab of the client. Click Save. This will create the client and bring you to the client Settings tab.

Client Settings

CHAPTER 8. MANAGING CLIENTS

99

Client ID

This value must match the issuer value sent with AuthNRequests. Red Hat Single Sign-On will pull the
issuer from the Authn SAML request and match it to a client by this value.

Name

This is the display name for the client whenever it is displayed in a Red Hat Single Sign-On UI screen.
You can localize the value of this field by setting up a replacement string value i.e. ${myapp}. See the
Server Developer Guide for more information.

Description

This specifies the description of the client. This can also be localized.

Enabled

If this is turned off, the client will not be allowed to request authentication.

Consent Required

If this is on, then users will get a consent page which asks the user if they grant access to that
application. It will also display the metadata that the client is interested in so that the user knows
exactly what information the client is getting access to. If you’ve ever done a social login to Google,
you’ll often see a similar page. Red Hat Single Sign-On provides the same functionality.

Include AuthnStatement

SAML login responses may specify the authentication method used (password, etc.) as well as
timestamps of the login and the session expiration. This is enabled by default, which means that
AuthStatement element will be included in login responses. Note that setting this to off would
prevent the client from determining the maximum session length which could result into never
expiring client session.

Sign Documents

When turned on, Red Hat Single Sign-On will sign the document using the realm’s private key.

Optimize REDIRECT signing key lookup

Red Hat Single Sign-On 7.4 Server Administration Guide

100

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_developer_guide/

When turned on, the SAML protocol messages will include Red Hat Single Sign-On native extension
that contains a hint with signing key ID. When the SP understands this extension, it can use it for
signature validation instead of attempting to validate signature with all known keys. This option only
applies to REDIRECT bindings where the signature is transferred in query parameters where there is
no place with this information in the signature information (contrary to POST binding messages
where key ID is always included in document signature). Currently this is relevant to situations where
both IDP and SP are provided by Red Hat Single Sign-On server and adapter. This option is only
relevant when Sign Documents is switched on.

Sign Assertions

The Sign Documents switch signs the whole document. With this setting the assertion is also signed
and embedded within the SAML XML Auth response.

Signature Algorithm

Choose between a variety of algorithms for signing SAML documents.

SAML Signature Key Name

Signed SAML documents sent via POST binding contain identification of signing key in KeyName
element. This by default contains Red Hat Single Sign-On key ID. However various vendors might
expect a different key name or no key name at all. This switch controls whether KeyName contains
key ID (option KEY_ID), subject from certificate corresponding to the realm key (option
CERT_SUBJECT - expected for instance by Microsoft Active Directory Federation Services), or
that the key name hint is completely omitted from the SAML message (option NONE).

Canonicalization Method

Canonicalization method for XML signatures.

Encrypt Assertions

Encrypt assertions in SAML documents with the realm’s private key. The AES algorithm is used with a
key size of 128 bits.

Client Signature Required

Expect that documents coming from a client are signed. Red Hat Single Sign-On will validate this
signature using the client public key or cert set up in the SAML Keys tab.

Force POST Binding

By default, Red Hat Single Sign-On will respond using the initial SAML binding of the original
request. By turning on this switch, you will force Red Hat Single Sign-On to always respond using the
SAML POST Binding even if the original request was the Redirect binding.

Front Channel Logout

If true, this application requires a browser redirect to be able to perform a logout. For example, the
application may require a cookie to be reset which could only be done via a redirect. If this switch is
false, then Red Hat Single Sign-On will invoke a background SAML request to logout the application.

Force Name ID Format

If the request has a name ID policy, ignore it and used the value configured in the admin console
under Name ID Format

Name ID Format

Name ID Format for the subject. If no name ID policy is specified in the request or if the Force Name
ID Format attribute is true, this value is used. Properties used for each of the respective formats are
defined below.

Root URL

If Red Hat Single Sign-On uses any configured relative URLs, this value is prepended to them.

Valid Redirect URIs

This is an optional field. Enter in a URL pattern and click the + sign to add. Click the - sign next to
URLs you want to remove. Remember that you still have to click the Save button! Wildcards (*) are

CHAPTER 8. MANAGING CLIENTS

101

only allowed at the end of a URI, i.e. http://host.com/*. This field is used when the exact SAML
endpoints are not registered and Red Hat Single Sign-On is pulling the Assertion Consumer URL
from the request.

Base URL

If Red Hat Single Sign-On needs to link to the client, this URL would be used.

Master SAML Processing URL

This URL will be used for all SAML requests and the response will be directed to the SP. It will be
used as the Assertion Consumer Service URL and the Single Logout Service URL. If a login request
contains the Assertion Consumer Service URL, that will take precedence, but this URL must be
validated by a registered Valid Redirect URI pattern

Assertion Consumer Service POST Binding URL

POST Binding URL for the Assertion Consumer Service.

Assertion Consumer Service Redirect Binding URL

Redirect Binding URL for the Assertion Consumer Service.

Logout Service POST Binding URL

POST Binding URL for the Logout Service.

Logout Service Redirect Binding URL

Redirect Binding URL for the Logout Service.

8.2.1. IDP Initiated Login

IDP Initiated Login is a feature that allows you to set up an endpoint on the Red Hat Single Sign-On
server that will log you into a specific application/client. In the Settings tab for your client, you need to
specify the IDP Initiated SSO URL Name. This is a simple string with no whitespace in it. After this you
can reference your client at the following URL: root/auth/realms/{realm}/protocol/saml/clients/{url-
name}

The IDP initiated login implementation prefers POST over REDIRECT binding (check saml bindings for
more information). Therefore the final binding and SP URL are selected in the following way:

1. If the specific Assertion Consumer Service POST Binding URL is defined (inside Fine Grain
SAML Endpoint Configuration section of the client settings) POST binding is used through
that URL.

2. If the general Master SAML Processing URL is specified then POST binding is used again
throught this general URL.

3. As the last resort, if the Assertion Consumer Service Redirect Binding URL is configured
(inside Fine Grain SAML Endpoint Configuration) REDIRECT binding is used with this URL.

If your client requires a special relay state, you can also configure this on the Settings tab in the IDP
Initiated SSO Relay State field. Alternatively, browsers can specify the relay state in a RelayState query
parameter, i.e. root/auth/realms/{realm}/protocol/saml/clients/{url-name}?RelayState=thestate.

When using identity brokering, it is possible to set up an IDP Initiated Login for a client from an external
IDP. The actual client is set up for IDP Initiated Login at broker IDP as described above. The external
IDP has to set up the client for application IDP Initiated Login that will point to a special URL pointing to
the broker and representing IDP Initiated Login endpoint for a selected client at the brokering IDP. This
means that in client settings at the external IDP:

IDP Initiated SSO URL Name is set to a name that will be published as IDP Initiated Login initial
point,

Red Hat Single Sign-On 7.4 Server Administration Guide

102

Assertion Consumer Service POST Binding URL in the Fine Grain SAML Endpoint
Configuration section has to be set to the following URL: broker-root/auth/realms/{broker-
realm}/broker/{idp-name}/endpoint/clients/{client-id}, where:

broker-root is base broker URL

broker-realm is name of the realm at broker where external IDP is declared

idp-name is name of the external IDP at broker

client-id is the value of IDP Initiated SSO URL Name attribute of the SAML client defined
at broker. It is this client, which will be made available for IDP Initiated Login from the
external IDP.

Please note that you can import basic client settings from the brokering IDP into client settings of the
external IDP - just use SP Descriptor available from the settings of the identity provider in the brokering
IDP, and add clients/client-id to the endpoint URL.

8.2.2. SAML Entity Descriptors

Instead of manually registering a SAML 2.0 client, you can import it via a standard SAML Entity
Descriptor XML file. There is an Import option on the Add Client page.

Add Client

Click the Select File button and load your entity descriptor file. You should review all the information
there to make sure everything is set up correctly.

Some SAML client adapters like mod-auth-mellon need the XML Entity Descriptor for the IDP. You can
obtain this by going to this public URL: root/auth/realms/{realm}/protocol/saml/descriptor

8.3. CLIENT LINKS

For scenarios where one wants to link from one client to another, Red Hat Single Sign-On provides a
special redirect endpoint: /realms/realm_name/clients/{client-id}/redirect.

If a client accesses this endpoint via an HTTP GET request, Red Hat Single Sign-On returns the
configured base URL for the provided Client and Realm in the form of an HTTP 307 (Temporary
Redirect) via the response’s Location header.

CHAPTER 8. MANAGING CLIENTS

103

Thus, a client only needs to know the Realm name and the Client ID in order to link to them. This
indirection helps avoid hard-coding client base URLs.

As an example, given the realm master and the client-id account:

http://host:port/auth/realms/master/clients/account/redirect

Would temporarily redirect to: http://host:port/auth/realms/master/account

8.4. OIDC TOKEN AND SAML ASSERTION MAPPINGS

Applications that receive ID Tokens, Access Tokens, or SAML assertions may need or want different
user metadata and roles. Red Hat Single Sign-On allows you to define what exactly is transferred. You
can hardcode roles, claims and custom attributes. You can pull user metadata into a token or assertion.
You can rename roles. Basically you have a lot of control of what exactly goes back to the client.

Within the Admin Console, if you go to an application you’ve registered, you’ll see a Mappers tab. Here’s
one for an OIDC based client.

Mappers Tab

The new client does not have any built-in mappers, however it usually inherits some mappers from the
client scopes as described in the client scopes section. Protocol mappers map things like, for example,
email address to a specific claim in the identity and access token. Their function should each be self
explanatory from their name. There are additional pre-configured mappers that are not attached to the
client that you can add by clicking the Add Builtin button.

Each mapper has common settings as well as additional ones depending on which type of mapper you
are adding. Click the Edit button next to one of the mappers in the list to get to the config screen.

Mapper Config

Red Hat Single Sign-On 7.4 Server Administration Guide

104

The best way to learn about a config option is to hover over its tooltip.

Most OIDC mappers also allow you to control where the claim gets put. You can opt to include or
exclude the claim from both the id and access tokens by fiddling with the Add to ID token and Add to
access token switches.

Finally, you can also add other mapper types. If you go back to the Mappers tab, click the Create button.

Add Mapper

Pick a Mapper Type from the list box. If you hover over the tooltip, you’ll see a description of what that
mapper type does. Different config parameters will appear for different mapper types.

CHAPTER 8. MANAGING CLIENTS

105

8.4.1. Priority order

Mapper implementations have priority order. This priority order is not the configuration property of the
mapper; rather, it is the property of the concrete implementation of the mapper.

Mappers are sorted in the admin console by the order in the list of mappers and the changes in the
token or assertion will be applied using that order with the lowest being applied first. This means that
implementations which are dependent on other implementations are processed in the needed order.

For example, when we first want to compute the roles which will be included with a token, we first resolve
audiences based on those roles. Then, we process a JavaScript script that uses the roles and audiences
already available in the token.

8.4.2. OIDC User Session Note Mappers

User session details are via mappers and depend on various criteria. User session details are
automatically included when you use or enable a feature on a client. You can also click the Add builtin
button to include session details.

Impersonated user sessions provide the following details:

IMPERSONATOR_ID: The ID of an impersonating user

IMPERSONATOR_USERNAME: The username of an impersonating user

Service account sessions provide the following details:

clientId: The client ID of the service account

clientAddress: The remote host IP of the service account authenticated device

clientHost: The remote host name of the service account authenticated device

8.4.3. Script Mapper

The Script Mapper allows you to map claims to tokens by running a user-defined JavaScript code. For
more details about how to deploy scripts to the server, please take a look at JavaScript Providers.

Once you have your scripts deployed, you should be able to select the scripts you deployed from the list
of available mappers.

8.5. GENERATING CLIENT ADAPTER CONFIG

The Red Hat Single Sign-On can pre-generate configuration files that you can use to install a client
adapter for in your application’s deployment environment. A number of adapter types are supported for
both OIDC and SAML. Go to the Installation tab of the client you want to generate configuration for.

Red Hat Single Sign-On 7.4 Server Administration Guide

106

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_developer_guide/#_script_providers

Select the Format Option you want configuration generated for. All Red Hat Single Sign-On client
adapters for OIDC and SAML are supported. The mod-auth-mellon Apache HTTPD adapter for SAML
is supported as well as standard SAML entity descriptor files.

8.6. CLIENT SCOPES

If you have many applications you need to secure and register within your organization, it can become
tedious to configure the protocol mappers and role scope mappings for each of these clients. Red Hat
Single Sign-On allows you to define a shared client configuration in an entity called a client scope.

Client scopes also provide support for the OAuth 2 scope parameter, which allows a client application to
request more or fewer claims or roles in the access token, according to the application needs.

To create a client scope, follow these steps:

Go to the Client Scopes left menu item. This initial screen shows you a list of currently defined
client scopes.

Client Scopes List

Click the Create button. Name the client scope and save. A client scope will have similar tabs to
a regular clients. You can define protocol mappers and role scope mappings, which can be
inherited by other clients, and which are configured to inherit from this client scope.

8.6.1. Protocol

When you are creating the client scope, you must choose the Protocol. Only the clients which use same
protocol can then be linked with this client scope.

Once you have created new realm, you can see that there is a list of pre-defined (builtin) client scopes in
the menu.

For the SAML protocol, there is one builtin client scope, roles_list, which contains one protocol
mapper for showing the roles list in the SAML assertion.

For the OpenID Connect protocol, there are client scopes profile, email, address, phone,
offline_access, roles, web-origins and microprofile-jwt.

The client scope, offline_access, is useful when client wants to obtain offline tokens. Learn about offline
tokens in the Offline Access section or in the OpenID Connect specification, where scope parameter is
defined with the value offline_access.

The client scopes profile, email, address and phone are also defined in the OpenID Connect
specification. These client scopes do not have any role scope mappings defined, but they have some
protocol mappers defined, and these mappers correspond to the claims defined in the OpenID Connect

CHAPTER 8. MANAGING CLIENTS

107

https://openid.net/specs/openid-connect-core-1_0.html#OfflineAccess
https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims

specification.

For example, when you click to open the phone client scope and open the Mappers tab, you will see the
protocol mappers, which correspond to the claims defined in the specification for the scope phone.

Client Scope Mappers

When the phone client scope is linked to a client, that client automatically inherits all the protocol
mappers defined in the phone client scope. Access tokens issued for this client will contain the phone
number information about the user, assuming that the user has a defined phone number.

Builtin client scopes contain exactly the protocol mappers as defined per the specification, however you
are free to edit client scopes and create/update/remove any protocol mappers (or role scope
mappings).

The client scope roles is not defined in the OpenID Connect specification and it is also not added
automatically to the scope claim in the access token. This client scope has some mappers, which are
used to add roles of the user to the access token and possibly add some audiences for the clients with
at least one client role as described in the Audience section.

The client scope web-origins is also not defined in the OpenID Connect specification and not added to
the scope claim. This is used to add allowed web origins to the access token allowed-origins claim.

The client scope microprofile-jwt was created to handle the claims defined in the MicroProfile/JWT
Auth Specification. This client scope defines a user property mapper for the upn claim and also a realm
role mapper for the groups claim. These mappers can be changed as needed so that different
properties can be used to create the MicroProfile/JWT specific claims.

8.6.2. Consent related settings

Client scope contains options related to the consent screen. Those options are useful only if the linked
client is configured to require consent (if the Consent Required switch is enabled on the client).

Display On Consent Screen

If on, and if this client scope is added to a client with consent required, then the text specified by
Consent Screen Text will be displayed on the consent screen, which is shown once the user is
authenticated and right before he is redirected from Red Hat Single Sign-On to the client. If the
switch is off, then this client scope will not be displayed on the consent screen.

Consent Screen Text

The text shown on the consent screen when this client scope is added to some client with consent
required defaults to the name of client scope. The value for this text is localizable by specifying a
substitution variable with ${var-name} strings. The localized value is then configured within property
files in your theme. See the Server Developer Guide for more information on localization.

Red Hat Single Sign-On 7.4 Server Administration Guide

108

https://wiki.eclipse.org/MicroProfile/JWT_Auth
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_developer_guide/

8.6.3. Link Client Scope with the Client

Linking between client scope and client is configured in the Client Scopes tab of the particular client.
There are 2 ways of linking between client scope and client.

Default Client Scopes

This is applicable for both OpenID Connect and SAML clients. Default client scopes are always
applied when issuing OpenID Connect tokens or SAML assertions for this client. The client will inherit
Protocol mappers and Role Scope Mappings defined on the client scope. For the OpenID Connect
Protocol, the Mappers and Role Scope Mappings are always applied, regardless of the value used for
the scope parameter in the OpenID Connect authorization request.

Optional Client Scopes

This is applicable only for OpenID Connect clients. Optional client scopes are applied when issuing
tokens for this client, but only when they are requested by the scope parameter in the OpenID
Connect authorization request.

8.6.3.1. Example

For this example, we assume that the client has profile and email linked as default client scopes, and
phone and address are linked as optional client scopes. The client will use the value of the scope
parameter when sending a request to the OpenID Connect authorization endpoint:

scope=openid phone

The scope parameter contains the string, with the scope values divided by space (which is also the
reason why a client scope name cannot contain a space character in it). The value openid is the meta-
value used for all OpenID Connect requests, so we will ignore it for this example. The token will contain
mappers and role scope mappings from the client scopes profile, email (which are default scopes) and
phone (an optional client scope requested by the scope parameter).

8.6.4. Evaluating Client Scopes

The tabs Mappers and Scope of the client contain the protocol mappers and role scope mappings
declared solely for this client. They do not contain the mappers and scope mappings inherited from
client scopes. However, it may be useful to see what the effective protocol mappers will be (protocol
mappers defined on the client itself as well as inherited from the linked client scopes) and the effective
role scope mappings used when you generate the token for the particular client.

You can see all of these when you click the Client Scopes tab for the client and then open the sub-tab
Evaluate. From here you can select the optional client scopes that you want to apply. This will also show
you the value of the scope parameter, which needs to be sent from the application to the Red Hat
Single Sign-On OpenID Connect authorization endpoint.

Evaluating Client Scopes

CHAPTER 8. MANAGING CLIENTS

109

NOTE

If you want to see how you can send a custom value for a scope parameter from your
application, see the parameters forwarding section, if your application uses the servlet
adapter, or the javascript adapter section , if your application uses the javascript adapter.

8.6.4.1. Generating Example Tokens

To see an example of a real access token, generated for the particular user and issued for the particular
client, with the specified value of scope parameter, select the user from the Evaluate screen. This will
generate an example token that includes all of the claims and role mappings used.

8.6.5. Client Scopes Permissions

When issuing tokens for a particular user, the client scope is applied only if the user is permitted to use
it. In the case that a client scope does not have any role scope mappings defined on itself, then each user
is automatically permitted to use this client scope. However, when a client scope has any role scope
mappings defined on itself, then the user must be a member of at least one of the roles. In other words,
there must be an intersection between the user roles and the roles of the client scope. Composite roles
are taken into account when evaluating this intersection.

If a user is not permitted to use the client scope, then no protocol mappers or role scope mappings will
be used when generating tokens and the client scope will not appear in the scope value in the token.

8.6.6. Realm Default Client Scopes

The Realm Default Client Scopes allow you to define set of client scopes, which will be automatically
linked to newly created clients.

Open the left menu item Client Scopes and then select Default Client Scopes.

From here, select the client scopes that you want to add as Default Client Scopes to newly created
clients and Optional Client Scopes to newly created clients.

Red Hat Single Sign-On 7.4 Server Administration Guide

110

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/securing_applications_and_services_guide/#_params_forwarding
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/securing_applications_and_services_guide/#_javascript_adapter

Default Client Scopes

Once the client is created, you can unlink the default client scopes, if needed. This is similar to how you
remove Default Roles.

8.6.7. Scopes explained

The term scope is used in Red Hat Single Sign-On on few places. Various occurrences of scopes are
related to each other, but may have a different context and meaning. To clarify, here we explain the
various scopes used in Red Hat Single Sign-On.

Client scope

Referenced in this chapter. Client scopes are entities in Red Hat Single Sign-On, which are
configured at the realm level and they can be linked to clients. The client scopes are referenced by
their name when a request is sent to the Red Hat Single Sign-On authorization endpoint with a
corresponding value of the scope parameter. The details are described in the section about client
scopes linking.

Role scope mapping

This can be seen when you open tab Scope of a client or client scope. Role scope mapping allows you
to limit the roles which can be used in the access tokens. The details are described in the Role Scope
Mappings section.

CHAPTER 8. MANAGING CLIENTS

111

CHAPTER 9. ROLES
Roles identify a type or category of user. Admin, user, manager, and employee are all typical roles that
may exist in an organization. Applications often assign access and permissions to specific roles rather
than individual users as dealing with users can be too fine grained and hard to manage. For example, the
Admin Console has specific roles which give permission to users to access parts of the Admin Console UI
and perform certain actions. There is a global namespace for roles and each client also has its own
dedicated namespace where roles can be defined.

9.1. REALM ROLES

Realm-level roles are a global namespace to define your roles. You can see the list of built-in and
created roles by clicking the Roles left menu item.

To create a role, click Add Role on this page, enter in the name and description of the role, and click
Save.

Add Role

The value for the description field is localizable by specifying a substitution variable with ${var-name}
strings. The localized value is then configured within property files in your theme. See the Server
Developer Guide for more information on localization.

9.2. CLIENT ROLES

Client roles are basically a namespace dedicated to a client. Each client gets its own namespace. Client

Red Hat Single Sign-On 7.4 Server Administration Guide

112

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_developer_guide/

Client roles are basically a namespace dedicated to a client. Each client gets its own namespace. Client
roles are managed under the Roles tab under each individual client. You interact with this UI the same
way you do for realm-level roles.

9.3. COMPOSITE ROLES

Any realm or client level role can be turned into a composite role. A composite role is a role that has one
or more additional roles associated with it. When a composite role is mapped to the user, the user also
gains the roles associated with that composite. This inheritance is recursive so any composite of
composites also gets inherited.

To turn a regular role into a composite role, go to the role detail page and flip the Composite Role
switch on.

Composite Role

Once you flip this switch the role selection UI will be displayed lower on the page and you’ll be able to
associate realm level and client level roles to the composite you are creating. In this example, the
employee realm-level role was associated with the developer composite role. Any user with the
developer role will now also inherit the employee role too.

NOTE

When tokens and SAML assertions are created, any composite will also have its
associated roles added to the claims and assertions of the authentication response sent
back to the client.

9.4. USER ROLE MAPPINGS

User role mappings can be assigned individually to each user through the Role Mappings tab for that
single user.

CHAPTER 9. ROLES

113

Role Mappings

In the above example, we are about to assign the composite role developer that was created in the
Composite Roles chapter.

Effective Role Mappings

Once the developer role is assigned, you see that the employee role that is associated with the
developer composite shows up in the Effective Roles. Effective Roles are all roles that are explicitly
assigned to the user as well as any roles that are inherited from composites.

9.4.1. Default Roles

Default roles allow you to automatically assign user role mappings when any user is newly created or
imported through Identity Brokering. To specify default roles go to the Roles left menu item, and click
the Default Roles tab.

Default Roles

Red Hat Single Sign-On 7.4 Server Administration Guide

114

As you can see from the screenshot, there are already a number of default roles set up by default.

9.5. ROLE SCOPE MAPPINGS

When an OIDC access token or SAML assertion is created, all the user role mappings of the user are, by
default, added as claims within the token or assertion. Applications use this information to make access
decisions on the resources controlled by that application. In Red Hat Single Sign-On, access tokens are
digitally signed and can actually be re-used by the application to invoke on other remotely secured REST
services. This means that if an application gets compromised or there is a rogue client registered with
the realm, attackers can get access tokens that have a broad range of permissions and your whole
network is compromised. This is where role scope mappings becomes important.

Role Scope Mappings is a way to limit the roles that get declared inside an access token. When a client
requests that a user be authenticated, the access token they receive back will only contain the role
mappings you’ve explicitly specified for the client’s scope. This allows you to limit the permissions each
individual access token has rather than giving the client access to all of the user’s permissions. By
default, each client gets all the role mappings of the user. You can view this in the Scope tab of each
client.

Full Scope

You can see from the picture that the effective roles of the scope are every declared role in the realm.
To change this default behavior, you must explicitly turn off the Full Scope Allowed switch and declare
the specific roles you want in each individual client. Alternatively, you can also use client scopes to define
the same role scope mappings for a whole set of clients.

Partial Scope

CHAPTER 9. ROLES

115

Red Hat Single Sign-On 7.4 Server Administration Guide

116

CHAPTER 10. GROUPS
Groups in Red Hat Single Sign-On allow you to manage a common set of attributes and role mappings
for a set of users. Users can be members of zero or more groups. Users inherit the attributes and role
mappings assigned to each group. To manage groups go to the Groups left menu item.

Groups

Groups are hierarchical. A group can have many subgroups, but a group can only have one parent.
Subgroups inherit the attributes and role mappings from the parent. This applies to the user as well. So,
if you have a parent group and a child group and a user that only belongs to the child group, the user
inherits the attributes and role mappings of both the parent and child. In this example, we have a top
level Sales group and a child North America subgroup. To add a group, click on the parent you want to
add a new child to and click New button. Select the Groups icon in the tree to make a top-level group.
Entering in a group name in the Create Group screen and hitting Save will bring you to the individual
group management page.

Group

The Attributes and Role Mappings tab work exactly as the tabs with similar names under a user. Any
attributes and role mappings you define will be inherited by the groups and users that are members of
this group.

To add a user to a group you need to go all the way back to the user detail page and click on the Groups
tab there.

User Groups

CHAPTER 10. GROUPS

117

Select a group from the Available Groups tree and hit the join button to add the user to a group. Vice
versa to remove a group. Here we’ve added the user Jim to the North America sales group. If you go
back to the detail page for that group and select the Membership tab, Jim is now displayed there.

Group Membership

10.1. GROUPS VS. ROLES

In the IT world the concepts of Group and Role are often blurred and interchangeable. In Red Hat Single
Sign-On, Groups are just a collection of users that you can apply roles and attributes to in one place.
Roles define a type of user and applications assign permission and access control to roles.

Aren’t Composite Roles also similar to Groups? Logically they provide the same exact functionality, but
the difference is conceptual. Composite roles should be used to apply the permission model to your set
of services and applications. Groups should focus on collections of users and their roles in your
organization. Use groups to manage users. Use composite roles to manage applications and services.

10.2. DEFAULT GROUPS

Default groups allow you to automatically assign group membership whenever any new user is created
or imported through Identity Brokering. To specify default groups go to the Groups left menu item, and
click the Default Groups tab.

Default Groups

Red Hat Single Sign-On 7.4 Server Administration Guide

118

CHAPTER 10. GROUPS

119

CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND
PERMISSIONS

Each realm created on the Red Hat Single Sign-On has a dedicated Admin Console from which that
realm can be managed. The master realm is a special realm that allows admins to manage more than one
realm on the system. You can also define fine-grained access to users in different realms to manage the
server. This chapter goes over all the scenarios for this.

11.1. MASTER REALM ACCESS CONTROL

The master realm in Red Hat Single Sign-On is a special realm and treated differently than other realms.
Users in the Red Hat Single Sign-On master realm can be granted permission to manage zero or more
realms that are deployed on the Red Hat Single Sign-On server. When a realm is created, Red Hat Single
Sign-On automatically creates various roles that grant fine-grain permissions to access that new realm.
Access to The Admin Console and Admin REST endpoints can be controlled by mapping these roles to
users in the master realm. It’s possible to create multiple super users, as well as users that can only
manage specific realms.

11.1.1. Global Roles

There are two realm-level roles in the master realm. These are:

admin

create-realm

Users with the admin role are super users and have full access to manage any realm on the server. Users
with the create-realm role are allowed to create new realms. They will be granted full access to any new
realm they create.

11.1.2. Realm Specific Roles

Admin users within the master realm can be granted management privileges to one or more other
realms in the system. Each realm in Red Hat Single Sign-On is represented by a client in the master
realm. The name of the client is <realm name>-realm. These clients each have client-level roles defined
which define varying level of access to manage an individual realm.

The roles available are:

view-realm

view-users

view-clients

view-events

manage-realm

manage-users

create-client

manage-clients

Red Hat Single Sign-On 7.4 Server Administration Guide

120

manage-events

view-identity-providers

manage-identity-providers

impersonation

Assign the roles you want to your users and they will only be able to use that specific part of the
administration console.

IMPORTANT

Admins with the manage-users role will only be able to assign admin roles to users that
they themselves have. So, if an admin has the manage-users role but doesn’t have the
manage-realm role, they will not be able to assign this role.

11.2. DEDICATED REALM ADMIN CONSOLES

Each realm has a dedicated Admin Console that can be accessed by going to the url
/auth/admin/{realm-name}/console. Users within that realm can be granted realm management
permissions by assigning specific user role mappings.

Each realm has a built-in client called realm-management. You can view this client by going to the
Clients left menu item of your realm. This client defines client-level roles that specify permissions that
can be granted to manage the realm.

view-realm

view-users

view-clients

view-events

manage-realm

manage-users

create-client

manage-clients

manage-events

view-identity-providers

manage-identity-providers

impersonation

Assign the roles you want to your users and they will only be able to use that specific part of the
administration console.

11.3. FINE GRAIN ADMIN PERMISSIONS

NOTE

CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND PERMISSIONS

121

NOTE

Fine Grain Admin Permissions is Technology Preview and is not fully supported. This
feature is disabled by default.

To enable start the server with -Dkeycloak.profile=preview or -
Dkeycloak.profile.feature.admin_fine_grained_authz=enabled . For more details see
Profiles.

Sometimes roles like manage-realm or manage-users are too coarse grain and you want to create
restricted admin accounts that have more fine grain permissions. Red Hat Single Sign-On allows you to
define and assign restricted access policies for managing a realm. Things like:

Managing one specific client

Managing users that belong to a specific group

Managing membership of a group

Limited user management.

Fine grain impersonization control

Being able to assign a specific restricted set of roles to users.

Being able to assign a specific restricted set of roles to a composite role.

Being able to assign a specific restricted set of roles to a client’s scope.

New general policies for viewing and managing users, groups, roles, and clients.

There’s some important things to note about fine grain admin permissions:

Fine grain admin permissions were implemented on top of Authorization Services. It is highly
recommended that you read up on those features before diving into fine grain permissions.

Fine grain permissions are only available within dedicated admin consoles and admins defined
within those realms. You cannot define cross-realm fine grain permissions.

Fine grain permissions are used to grant additional permissions. You cannot override the default
behavior of the built in admin roles.

11.3.1. Managing One Specific Client

Let’s look first at allowing an admin to manage one client and one client only. In our example we have a
realm called test and a client called sales-application. In realm test we will give a user in that realm
permission to only manage that application.

IMPORTANT

You cannot do cross realm fine grain permissions. Admins in the master realm are limited
to the predefined admin roles defined in previous chapters.

11.3.1.1. Permission Setup

The first thing we must do is login to the Admin Console so we can set up permissions for that client. We

Red Hat Single Sign-On 7.4 Server Administration Guide

122

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_installation_and_configuration_guide/#profiles
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/authorization_services_guide/

The first thing we must do is login to the Admin Console so we can set up permissions for that client. We
navigate to the management section of the client we want to define fine-grain permissions for.

Client Management

You should see a tab menu item called Permissions. Click on that tab.

Client Permissions Tab

By default, each client is not enabled to do fine grain permissions. So turn the Permissions Enabled
switch to on to initialize permissions.

IMPORTANT

If you turn the Permissions Enabled switch to off, it will delete any and all permissions
you have defined for this client.

Client Permissions Tab

CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND PERMISSIONS

123

When you switch Permissions Enabled to on, it initializes various permission objects behind the scenes
using Authorization Services. For this example, we’re interested in the manage permission for the client.
Clicking on that will redirect you to the permission that handles the manage permission for the client.
All authorization objects are contained in the realm-management client’s Authorization tab.

Client Manage Permission

When first initialized the manage permission does not have any policies associated with it. You will need
to create one by going to the policy tab. To get there fast, click on the Authorization link shown in the
above image. Then click on the policies tab.

There’s a pull down menu on this page called Create policy. There’s a multitude of policies you can
define. You can define a policy that is associated with a role or a group or even define rules in
JavaScript. For this simple example, we’re going to create a User Policy.

User Policy

Red Hat Single Sign-On 7.4 Server Administration Guide

124

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/authorization_services_guide/

This policy will match a hard-coded user in the user database. In this case it is the sales-admin user. We
must then go back to the sales-application client’s manage permission page and assign the policy to
the permission object.

Assign User Policy

The sales-admin user can now has permission to manage the sales-application client.

There’s one more thing we have to do. Go to the Role Mappings tab and assign the query-clients role
to the sales-admin.

Assign query-clients

CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND PERMISSIONS

125

Why do you have to do this? This role tells the Admin Console what menu items to render when the
sales-admin visits the Admin Console. The query-clients role tells the Admin Console that it should
render client menus for the sales-admin user.

IMPORTANT If you do not set the query-clients role, restricted admins like sales-admin will not see any
menu options when they log into the Admin Console

11.3.1.2. Testing It Out.

Next we log out of the master realm and re-login to the dedicated admin console for the test realm
using the sales-admin as a username. This is located under /auth/admin/test/console.

Sales Admin Login

This admin is now able to manage this one client.

11.3.2. Restrict User Role Mapping

Another thing you might want to do is to restrict the set a roles an admin is allowed to assign to a user.
Continuing our last example, let’s expand the permission set of the 'sales-admin' user so that he can
also control which users are allowed to access this application. Through fine grain permissions we can
enable it so that the sales-admin can only assign roles that grant specific access to the sales-
application. We can also restrict it so that the admin can only map roles and not perform any other
types of user administration.

The sales-application has defined three different client roles.

Sales Application Roles

Red Hat Single Sign-On 7.4 Server Administration Guide

126

We want the sales-admin user to be able to map these roles to any user in the system. The first step to
do this is to allow the role to be mapped by the admin. If we click on the viewLeads role, you’ll see that
there is a Permissions tab for this role.

View Leads Role Permission Tab

If we click on that tab and turn the Permissions Enabled on, you’ll see that there are a number of
actions we can apply policies to.

View Leads Permissions

The one we are interested in is map-role. Click on this permission and add the same User Policy that was
created in the earlier example.

Map-roles Permission

CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND PERMISSIONS

127

What we’ve done is say that the sales-admin can map the viewLeads role. What we have not done is
specify which users the admin is allowed to map this role too. To do that we must go to the Users
section of the admin console for this realm. Clicking on the Users left menu item brings us to the users
interface of the realm. You should see a Permissions tab. Click on that and enable it.

Users Permissions

The permission we are interested in is map-roles. This is a restrictive policy in that it only allows admins
the ability to map roles to a user. If we click on the map-roles permission and again add the User Policy
we created for this, our sales-admin will be able to map roles to any user.

The last thing we have to do is add the view-users role to the sales-admin. This will allow the admin to
view users in the realm he wants to add the sales-application roles to.

Add view-users

Red Hat Single Sign-On 7.4 Server Administration Guide

128

11.3.2.1. Testing It Out.

Next we log out of the master realm and re-login to the dedicated admin console for the test realm
using the sales-admin as a username. This is located under /auth/admin/test/console.

You will see that now the sales-admin can view users in the system. If you select one of the users you’ll
see that each user detail page is read only, except for the Role Mappings tab. Going to these tab you’ll
find that there are no Available roles for the admin to map to the user except when we browse the
sales-application roles.

Add viewLeads

We’ve only specified that the sales-admin can map the viewLeads role.

11.3.2.2. Per Client map-roles Shortcut

It would be tedious if we had to do this for every client role that the sales-application published. to
make things easier, there’s a way to specify that an admin can map any role defined by a client. If we log

CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND PERMISSIONS

129

back into the admin console to our master realm admin and go back to the sales-application
permissions page, you’ll see the map-roles permission.

Client map-roles Permission

If you grant access to this particular parmission to an admin, that admin will be able map any role defined
by the client.

11.3.3. Full List of Permissions

You can do a lot more with fine grain permissions beyond managing a specific client or the specific roles
of a client. This chapter defines the whole list of permission types that can be described for a realm.

11.3.3.1. Role

When going to the Permissions tab for a specific role, you will see these permission types listed.

map-role

Policies that decide if an admin can map this role to a user. These policies only specify that the role
can be mapped to a user, not that the admin is allowed to perform user role mapping tasks. The
admin will also have to have manage or role mapping permissions. See Users Permissions for more
information.

map-role-composite

Policies that decide if an admin can map this role as a composite to another role. An admin can
define roles for a client if he has manage permissions for that client but he will not be able to add
composites to those roles unless he has the map-role-composite privileges for the role he wants to
add as a composite.

map-role-client-scope

Policies that decide if an admin can apply this role to the scope of a client. Even if the admin can
manage the client, he will not have permission to create tokens for that client that contain this role
unless this privilege is granted.

11.3.3.2. Client

When going to the Permissions tab for a specific client, you will see these permission types listed.

view

Policies that decide if an admin can view the client’s configuration.

manage

Policies that decide if an admin can view and manage the client’s configuration. There is some issues

Red Hat Single Sign-On 7.4 Server Administration Guide

130

with this in that privileges could be leaked unintentionally. For example, the admin could define a
protocol mapper that hardcoded a role even if the admin does not have privileges to map the role to
the client’s scope. This is currently the limitation of protocol mappers as they don’t have a way to
assign individual permissions to them like roles do.

configure

Reduced set of prileges to manage the client. Its like the manage scope except the admin is not
allowed to define protocol mappers, change the client template, or the client’s scope.

map-roles

Policies that decide if an admin can map any role defined by the client to a user. This is a shortcut,
easy-of-use feature to avoid having to defin policies for each and every role defined by the client.

map-roles-composite

Policies that decide if an admin can map any role defined by the client as a composite to another role.
This is a shortcut, easy-of-use feature to avoid having to define policies for each and every role
defined by the client.

map-roles-client-scope

Policies that decide if an admin can map any role defined by the client to the scope of another client.
This is a shortcut, easy-of-use feature to avoid having to define policies for each and every role
defined by the client.

11.3.3.3. Users

When going to the Permissions tab for all users, you will see these permission types listed.

view

Policies that decide if an admin can view all users in the realm.

manage

Policies that decide if an admin can manage all users in the realm. This permission grants the admin
the privilege to perfor user role mappings, but it does not specify which roles the admin is allowed to
map. You’ll need to define the privilege for each role you want the admin to be able to map.

map-roles

This is a subset of the privileges granted by the manage scope. In this case the admin is only allowed
to map roles. The admin is not allowed to perform any other user management operation. Also, like
manage, the roles that the admin is allowed to apply must be specified per role or per set of roles if
dealing with client roles.

manage-group-membership

Similar to map-roles except that it pertains to group membership: which groups a user can be added
or removed from. These policies just grant the admin permission to manage group membership, not
which groups the admin is allowed to manage membership for. You’ll have to specify policies for each
group’s manage-members permission.

impersonate

Policies that decide if the admin is allowed to impersonate other users. These policies are applied to
the admin’s attributes and role mappings.

user-impersonated

Policies that decide which users can be impersonated. These policies will be applied to the user
being impersonated. For example, you might want to define a policy that will forbid anybody from
impersonating a user that has admin privileges.

11.3.3.4. Group

CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND PERMISSIONS

131

When going to the Permissions tab for a specific group, you will see these permission types listed.

view

Policies that decide if the admin can view information about the group.

manage

Policies that decide if the admin can manage the configuration of the group.

view-members

Policies that decide if the admin can view the user details of members of the group.

manage-members

Policies that decide if the admin can manage the users that belong to this group.

manage-membership

Policies that decide if an admin can change the membership of the group. Add or remove members
from the group.

11.4. REALM KEYS

The authentication protocols that are used by Red Hat Single Sign-On require cryptographic signatures
and sometimes encryption. Red Hat Single Sign-On uses asymmetric key pairs, a private and public key,
to accomplish this.

Red Hat Single Sign-On has a single active keypair at a time, but can have several passive keys as well.
The active keypair is used to create new signatures, while the passive keypairs can be used to verify
previous signatures. This makes it possible to regularly rotate the keys without any downtime or
interruption to users.

When a realm is created a key pair and a self-signed certificate is automatically generated.

To view the active keys for a realm select the realm in the admin console click on Realm settings then
Keys. This will show the currently active keys for the realm.

To view passive or disabled keys select Passive or Disabled. A keypair can have the status Active, but
still not be selected as the currently active keypair for the realm. The selected active pair which is used
for signatures is selected based on the first key provider sorted by priority that is able to provide an
active keypair.

11.4.1. Rotating keys

It’s recommended to regularly rotate keys. To do so you should start by creating new keys with a higher
priority than the existing active keys. Or create new keys with the same priority and making the previous
keys passive.

Once new keys are available all new tokens and cookies will be signed with the new keys. When a user
authenticates to an application the SSO cookie is updated with the new signature. When OpenID
Connect tokens are refreshed new tokens are signed with the new keys. This means that over time all
cookies and tokens will use the new keys and after a while the old keys can be removed.

How long you wait to delete old keys is a tradeoff between security and making sure all cookies and
tokens are updated. In general it should be acceptable to drop old keys after a few weeks. Users that
have not been active in the period between the new keys where added and the old keys removed will
have to re-authenticate.

This also applies to offline tokens. To make sure they are updated the applications need to refresh the
tokens before the old keys are removed.

Red Hat Single Sign-On 7.4 Server Administration Guide

132

As a guideline, it may be a good idea to create new keys every 3-6 months and delete old keys 1-2
months after the new keys were created.

11.4.2. Adding a generated keypair

To add a new generated keypair select Providers and choose rsa-generated from the dropdown. You
can change the priority to make sure the new keypair becomes the active keypair. You can also change
the keysize if you want smaller or larger keys (default is 2048, supported values are 1024, 2048 and
4096).

Click Save to add the new keys. This will generated a new keypair including a self-signed certificate.

Changing the priority for a provider will not cause the keys to be re-generated, but if you want to
change the keysize you can edit the provider and new keys will be generated.

11.4.3. Adding an existing keypair and certificate

To add a keypair and certificate obtained elsewhere select Providers and choose rsa from the
dropdown. You can change the priority to make sure the new keypair becomes the active keypair.

Click on Select file for Private RSA Key to upload your private key. The file should be encoded in PEM
format. You don’t need to upload the public key as it is automatically extracted from the private key.

If you have a signed certificate for the keys click on Select file next to X509 Certificate. If you don’t
have one you can skip this and a self-signed certificate will be generated.

11.4.4. Loading keys from a Java Keystore

To add a keypair and certificate stored in a Java Keystore file on the host select Providers and choose
java-keystore from the dropdown. You can change the priority to make sure the new keypair becomes
the active keypair.

Fill in the values for Keystore, Keystore Password, Key Alias and Key Password and click on Save.

11.4.5. Making keys passive

Locate the keypair in Active then click on the provider in the Provider column. This will take you to the
configuration screen for the key provider for the keys. Click on Active to turn it OFF, then click on Save.
The keys will no longer be active and can only be used for verifying signatures.

11.4.6. Disabling keys

Locate the keypair in Active then click on the provider in the Provider column. This will take you to the
configuration screen for the key provider for the keys. Click on Enabled to turn it OFF, then click on
Save. The keys will no longer be enabled.

Alternatively, you can delete the provider from the Providers table.

11.4.7. Compromised keys

Red Hat Single Sign-On has the signing keys stored just locally and they are never shared with the client
applications, users or other entities. However if you think that your realm signing key was compromised,
you should first generate new keypair as described above and then immediately remove the
compromised keypair.

CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND PERMISSIONS

133

Then to ensure that client applications won’t accept the tokens signed by the compromised key, you
should update and push not-before policy for the realm, which is doable from the admin console.
Pushing new policy will ensure that client applications won’t accept the existing tokens signed by the
compromised key, but also the client application will be forced to download new keypair from the Red
Hat Single Sign-On, hence the tokens signed by the compromised key won’t be valid anymore. Note
that your REST and confidential clients must have set Admin URL, so that Red Hat Single Sign-On is
able to send them the request about pushed not-before policy.

Red Hat Single Sign-On 7.4 Server Administration Guide

134

CHAPTER 12. IDENTITY BROKERING
An Identity Broker is an intermediary service that connects multiple service providers with different
identity providers. As an intermediary service, the identity broker is responsible for creating a trust
relationship with an external identity provider in order to use its identities to access internal services
exposed by service providers.

From a user perspective, an identity broker provides a user-centric and centralized way to manage
identities across different security domains or realms. An existing account can be linked with one or more
identities from different identity providers or even created based on the identity information obtained
from them.

An identity provider is usually based on a specific protocol that is used to authenticate and communicate
authentication and authorization information to their users. It can be a social provider such as Facebook,
Google or Twitter. It can be a business partner whose users need to access your services. Or it can be a
cloud-based identity service that you want to integrate with.

Usually, identity providers are based on the following protocols:

SAML v2.0

OpenID Connect v1.0

OAuth v2.0

In the next sections we’ll see how to configure and use Red Hat Single Sign-On as an identity broker,
covering some important aspects such as:

Social Authentication

OpenID Connect v1.0 Brokering

SAML v2.0 Brokering

Identity Federation

12.1. BROKERING OVERVIEW

When using Red Hat Single Sign-On as an identity broker, users are not forced to provide their
credentials in order to authenticate in a specific realm. Instead, they are presented with a list of identity
providers from which they can authenticate.

You can also configure a default identity provider. In this case the user will not be given a choice, but will
instead be redirected directly to the default provider.

The following diagram demonstrates the steps involved when using Red Hat Single Sign-On to broker an
external identity provider:

Identity Broker Flow

CHAPTER 12. IDENTITY BROKERING

135

1. User is not authenticated and requests a protected resource in a client application.

2. The client applications redirects the user to Red Hat Single Sign-On to authenticate.

3. At this point the user is presented with the login page where there is a list of identity providers
configured in a realm.

4. User selects one of the identity providers by clicking on its respective button or link.

5. Red Hat Single Sign-On issues an authentication request to the target identity provider asking
for authentication and the user is redirected to the login page of the identity provider. The
connection properties and other configuration options for the identity provider were previously
set by the administrator in the Admin Console.

6. User provides his credentials or consent in order to authenticate with the identity provider.

7. Upon a successful authentication by the identity provider, the user is redirected back to Red
Hat Single Sign-On with an authentication response. Usually this response contains a security
token that will be used by Red Hat Single Sign-On to trust the authentication performed by the
identity provider and retrieve information about the user.

8. Now Red Hat Single Sign-On is going to check if the response from the identity provider is valid.
If valid, it will import and create a new user or just skip that if the user already exists. If it is a new
user, Red Hat Single Sign-On may ask the identity provider for information about the user if
that info doesn’t already exist in the token. This is what we call identity federation. If the user
already exists Red Hat Single Sign-On may ask him to link the identity returned from the
identity provider with the existing account. We call this process account linking . What exactly is
done is configurable and can be specified by setup of First Login Flow. At the end of this step,
Red Hat Single Sign-On authenticates the user and issues its own token in order to access the
requested resource in the service provider.

Red Hat Single Sign-On 7.4 Server Administration Guide

136

9. Once the user is locally authenticated, Red Hat Single Sign-On redirects the user to the service
provider by sending the token previously issued during the local authentication.

10. The service provider receives the token from Red Hat Single Sign-On and allows access to the
protected resource.

There are some variations of this flow that we will talk about later. For instance, instead of presenting a
list of identity providers, the client application can request a specific one. Or you can tell Red Hat Single
Sign-On to force the user to provide additional information before federating his identity.

NOTE

Different protocols may require different authentication flows. At this moment, all the
identity providers supported by Red Hat Single Sign-On use a flow just like described
above. However, regardless of the protocol in use, user experience should be pretty
much the same.

As you may notice, at the end of the authentication process Red Hat Single Sign-On will always issue its
own token to client applications. What this means is that client applications are completely decoupled
from external identity providers. They don’t need to know which protocol (eg.: SAML, OpenID Connect,
OAuth, etc) was used or how the user’s identity was validated. They only need to know about Red Hat
Single Sign-On.

12.2. DEFAULT IDENTITY PROVIDER

It is possible to automatically redirect to a identity provider instead of displaying the login form. To
enable this go to the Authentication page in the administration console and select the Browser flow.
Then click on config for the Identity Provider Redirector authenticator. Set Default Identity Provider
to the alias of the identity provider you want to automatically redirect users to.

If the configured default identity provider is not found the login form will be displayed instead.

This authenticator is also responsible for dealing with the kc_idp_hint query parameter. See client
suggested identity provider section for more details.

12.3. GENERAL CONFIGURATION

The identity broker configuration is all based on identity providers. Identity providers are created for
each realm and by default they are enabled for every single application. That means that users from a
realm can use any of the registered identity providers when signing in to an application.

In order to create an identity provider click the Identity Providers left menu item.

Identity Providers

CHAPTER 12. IDENTITY BROKERING

137

In the drop down list box, choose the identity provider you want to add. This will bring you to the
configuration page for that identity provider type.

Add Identity Provider

Red Hat Single Sign-On 7.4 Server Administration Guide

138

Above is an example of configuring a Google social login provider. Once you configure an IDP, it will
appear on the Red Hat Single Sign-On login page as an option.

IDP login page

Social

Social providers allow you to enable social authentication in your realm. Red Hat Single Sign-On
makes it easy to let users log in to your application using an existing account with a social network.
Currently supported providers include: Twitter, Facebook, Google, LinkedIn, Instagram, Microsoft,
PayPal, Openshift v3, GitHub, GitLab, Bitbucket, and Stack Overflow.

Protocol-based

Protocol-based providers are those that rely on a specific protocol in order to authenticate and
authorize users. They allow you to connect to any identity provider compliant with a specific protocol.
Red Hat Single Sign-On provides support for SAML v2.0 and OpenID Connect v1.0 protocols. It
makes it easy to configure and broker any identity provider based on these open standards.

Although each type of identity provider has its own configuration options, all of them share some very
common configuration. Regardless of which identity provider you are creating, you’ll see the following
configuration options available:

Table 12.1. Common Configuration

Configuration Description

Alias The alias is a unique identifier for an identity provider.
It is used to reference an identity provider internally.
Some protocols such as OpenID Connect require a
redirect URI or callback url in order to communicate
with an identity provider. In this case, the alias is used
to build the redirect URI. Every single identity
provider must have an alias. Examples are facebook,
google, idp.acme.com, etc.

CHAPTER 12. IDENTITY BROKERING

139

Enabled Turn the provider on/off.

Hide on Login Page When this switch is on, this provider will not be shown
as a login option on the login page. Clients can still
request to use this provider by using the 'kc_idp_hint'
parameter in the URL they use to request a login.

Account Linking Only When this switch is on, this provider cannot be used
to login users and will not be shown as an option on
the login page. Existing accounts can still be linked
with this provider though.

Store Tokens Whether or not to store the token received from the
identity provider.

Stored Tokens Readable Whether or not users are allowed to retrieve the
stored identity provider token. This also applies to
the broker client-level role read token.

Trust Email If the identity provider supplies an email address this
email address will be trusted. If the realm required
email validation, users that log in from this IDP will
not have to go through the email verification process.

GUI Order The order number that sorts how the available IDPs
are listed on the login page.

First Login Flow This is the authentication flow that will be triggered
for users that log into Red Hat Single Sign-On
through this IDP for the first time ever.

Post Login Flow Authentication flow that is triggered after the user
finishes logging in with the external identity provider.

Configuration Description

12.4. SOCIAL IDENTITY PROVIDERS

For Internet facing applications, it is quite burdensome for users to have to register at your site to obtain
access. It requires them to remember yet another username and password combination. Social identity
providers allow you to delegate authentication to a semi-trusted and respected entity where the user
probably already has an account. Red Hat Single Sign-On provides built-in support for the most
common social networks out there, such as Google, Facebook, Twitter, GitHub, LinkedIn, Microsoft and
Stack Overflow.

12.4.1. Bitbucket

There are a number of steps you have to complete to be able to enable login with Bitbucket.

First, open the Identity Providers left menu item and select Bitbucket from the Add provider drop
down list. This will bring you to the Add identity provider page.

Red Hat Single Sign-On 7.4 Server Administration Guide

140

Add Identity Provider

Before you can click Save, you must obtain a Client ID and Client Secret from Bitbucket.

NOTE

You will use the Redirect URI from this page in a later step, which you will provide to
Bitbucket when you register Red Hat Single Sign-On as a client there.

Add a New App

To enable login with Bitbucket you must first register an application project in OAuth on Bitbucket
Cloud.

NOTE

Bitbucket often changes the look and feel of application registration, so what you see on
the Bitbucket site may differ. If in doubt, see the Bitbucket documentation.

CHAPTER 12. IDENTITY BROKERING

141

https://confluence.atlassian.com/bitbucket/oauth-on-bitbucket-cloud-238027431.html

Click the Add consumer button.

Register App

Red Hat Single Sign-On 7.4 Server Administration Guide

142

Copy the Redirect URI from the Red Hat Single Sign-On Add Identity Provider page and enter it into
the Callback URL field on the Bitbucket Add OAuth Consumer page.

On the same page, mark the Email and Read boxes under Account to allow your application to read
user email.

Bitbucket App Page

CHAPTER 12. IDENTITY BROKERING

143

When you are done registering, click Save. This will open the application management page in
Bitbucket. Find the client ID and secret from this page so you can enter them into the Red Hat Single
Sign-On Add identity provider page. Click Save.

12.4.2. Facebook

There are a number of steps you have to complete to be able to enable login with Facebook. First, go to
the Identity Providers left menu item and select Facebook from the Add provider drop down list. This
will bring you to the Add identity provider page.

Add Identity Provider

You can’t click save yet, as you’ll need to obtain a Client ID and Client Secret from Facebook. One
piece of data you’ll need from this page is the Redirect URI. You’ll have to provide that to Facebook
when you register Red Hat Single Sign-On as a client there, so copy this URI to your clipboard.

To enable login with Facebook you first have to create a project and a client in the Facebook Developer
Console.

Red Hat Single Sign-On 7.4 Server Administration Guide

144

https://developers.facebook.com/

NOTE

Facebook often changes the look and feel of the Facebook Developer Console, so these
directions might not always be up to date and the configuration steps might be slightly
different.

Once you’ve logged into the console there is a pull down menu in the top right corner of the screen that
says My Apps. Select the Add a New App menu item.

Add a New App

Select the Website icon. Click the Skip and Create App ID button.

Create a New App ID

CHAPTER 12. IDENTITY BROKERING

145

The email address and app category are required fields. Once you’re done with that, you will be brought
to the dashboard for the application. Click the Settings left menu item.

Create a New App ID

Click on the + Add Platform button at the end of this page and select the Website icon. Copy and
paste the Redirect URI from the Red Hat Single Sign-On Add identity provider page into the Site
URL of the Facebook Website settings block.

Specify Website

Red Hat Single Sign-On 7.4 Server Administration Guide

146

After this it is necessary to make the Facebook app public. Click App Review left menu item and switch
button to "Yes".

You will need also to obtain the App ID and App Secret from this page so you can enter them into the
Red Hat Single Sign-On Add identity provider page. To obtain this click on the Dashboard left menu
item and click on Show under App Secret. Go back to Red Hat Single Sign-On and specify those items
and finally save your Facebook Identity Provider.

One config option to note on the Add identity provider page for Facebook is the Default Scopes field.
This field allows you to manually specify the scopes that users must authorize when authenticating with
this provider. For a complete list of scopes, please take a look at
https://developers.facebook.com/docs/graph-api. By default, Red Hat Single Sign-On uses the
following scopes: email.

12.4.3. GitHub

There are a number of steps you have to complete to be able to enable login with GitHub. First, go to the
Identity Providers left menu item and select GitHub from the Add provider drop down list. This will
bring you to the Add identity provider page.

Add Identity Provider

CHAPTER 12. IDENTITY BROKERING

147

https://developers.facebook.com/docs/graph-api

You can’t click save yet, as you’ll need to obtain a Client ID and Client Secret from GitHub. One piece
of data you’ll need from this page is the Redirect URI. You’ll have to provide that to GitHub when you
register Red Hat Single Sign-On as a client there, so copy this URI to your clipboard.

To enable login with GitHub you first have to register an application project in GitHub Developer
applications.

NOTE

GitHub often changes the look and feel of application registration, so these directions
might not always be up to date and the configuration steps might be slightly different.

Add a New App

Red Hat Single Sign-On 7.4 Server Administration Guide

148

https://github.com/settings/developers

Click the Register a new application button.

Register App

You’ll have to copy the Redirect URI from the Red Hat Single Sign-On Add Identity Provider page and

CHAPTER 12. IDENTITY BROKERING

149

You’ll have to copy the Redirect URI from the Red Hat Single Sign-On Add Identity Provider page and
enter it into the Authorization callback URL field on the GitHub Register a new OAuth application
page. Once you’ve completed this page you will be brought to the application’s management page.

GitHub App Page

You will need to obtain the client ID and secret from this page so you can enter them into the Red Hat
Single Sign-On Add identity provider page. Go back to Red Hat Single Sign-On and specify those
items.

12.4.4. GitLab

There are a number of steps you have to complete to be able to enable login with GitLab.

First, go to the Identity Providers left menu item and select GitLab from the Add provider drop down
list. This will bring you to the Add identity provider page.

Add Identity Provider

Red Hat Single Sign-On 7.4 Server Administration Guide

150

Before you can click Save, you must obtain a Client ID and Client Secret from GitLab.

NOTE

You will use the Redirect URI from this page in a later step, which you will provide to
GitLab when you register Red Hat Single Sign-On as a client there.

To enable login with GitLab you first have to register an application in GitLab as OAuth2 authentication
service provider.

NOTE

GitLab often changes the look and feel of application registration, so what you see on the
GitLab site may differ. If in doubt, see the GitLab documentation.

Add a New App

CHAPTER 12. IDENTITY BROKERING

151

https://docs.gitlab.com/ee/integration/oauth_provider.html

Copy the Redirect URI from the Red Hat Single Sign-On Add Identity Provider page and enter it into
the Redirect URI field on the GitLab Add new application page.

GitLab App Page

When you are done registering, click Save application. This will open the application management page
in GitLab. Find the client ID and secret from this page so you can enter them into the Red Hat Single
Sign-On Add identity provider page.

To finish, return to Red Hat Single Sign-On and enter them. Click Save.

12.4.5. Google

Red Hat Single Sign-On 7.4 Server Administration Guide

152

There are a number of steps you have to complete to be able to enable login with Google. First, go to the
Identity Providers left menu item and select Google from the Add provider drop down list. This will
bring you to the Add identity provider page.

Add Identity Provider

You can’t click save yet, as you’ll need to obtain a Client ID and Client Secret from Google. One piece
of data you’ll need from this page is the Redirect URI. You’ll have to provide that to Google when you
register Red Hat Single Sign-On as a client there, so copy this URI to your clipboard.

To enable login with Google you first have to create a project and a client in the Google Developer
Console. Then you need to copy the client ID and secret into the Red Hat Single Sign-On Admin
Console.

NOTE

Google often changes the look and feel of the Google Developer Console, so these
directions might not always be up to date and the configuration steps might be slightly
different.

Let’s see first how to create a project with Google.

Log in to the Google Developer Console.

Google Developer Console

CHAPTER 12. IDENTITY BROKERING

153

https://console.cloud.google.com/project
https://console.cloud.google.com/project

Click the Create Project button. Use any value for Project name and Project ID you want, then click the
Create button. Wait for the project to be created (this may take a while). Once created you will be
brought to the project’s dashboard.

Dashboard

Then navigate to the APIs & Services section in the Google Developer Console. On that screen,
navigate to Credentials administration.

When users log into Google from Red Hat Single Sign-On they will see a consent screen from Google
which will ask the user if Red Hat Single Sign-On is allowed to view information about their user profile.
Thus Google requires some basic information about the product before creating any secrets for it. For a
new project, you have first to configure OAuth consent screen.

For the very basic setup, filling in the Application name is sufficient. You can also set additional details
like scopes for Google APIs in this page.

Red Hat Single Sign-On 7.4 Server Administration Guide

154

Fill in OAuth consent screen details

The next step is to create OAuth client ID and client secret. Back in Credentials administration, navigate
to Credentials tab and select OAuth client ID under the Create credentials button.

Create credentials

CHAPTER 12. IDENTITY BROKERING

155

You will then be brought to the Create OAuth client ID page. Select Web application as the
application type. Specify the name you want for your client. You’ll also need to copy and paste the
Redirect URI from the Red Hat Single Sign-On Add Identity Provider page into the Authorized
redirect URIs field. After you do this, click the Create button.

Create OAuth client ID

After you click Create you will be brought to the Credentials page. Click on your new OAuth 2.0 Client
ID to view the settings of your new Google Client.

Google Client Credentials

Red Hat Single Sign-On 7.4 Server Administration Guide

156

You will need to obtain the client ID and secret from this page so you can enter them into the Red Hat
Single Sign-On Add identity provider page. Go back to Red Hat Single Sign-On and specify those
items.

One config option to note on the Add identity provider page for Google is the Default Scopes field.
This field allows you to manually specify the scopes that users must authorize when authenticating with
this provider. For a complete list of scopes, please take a look at
https://developers.google.com/oauthplayground/ . By default, Red Hat Single Sign-On uses the
following scopes: openid profile email.

If your organization uses the G Suite and you want to restrict access to only members of your
organization, you must enter the domain that is used for the G Suite into the Hosted Domain field to
enable it.

12.4.6. LinkedIn

There are a number of steps you have to complete to be able to enable login with LinkedIn. First, go to
the Identity Providers left menu item and select LinkedIn from the Add provider drop down list. This
will bring you to the Add identity provider page.

Add Identity Provider

CHAPTER 12. IDENTITY BROKERING

157

https://developers.google.com/oauthplayground/

You can’t click save yet, as you’ll need to obtain a Client ID and Client Secret from LinkedIn. One piece
of data you’ll need from this page is the Redirect URI. You’ll have to provide that to LinkedIn when you
register Red Hat Single Sign-On as a client there, so copy this URI to your clipboard.

To enable login with LinkedIn you first have to create an application in LinkedIn Developer Network .

NOTE

LinkedIn may change the look and feel of application registration, so these directions may
not always be up to date.

Developer Network

Red Hat Single Sign-On 7.4 Server Administration Guide

158

https://www.linkedin.com/developer/apps

Click on the Create Application button. This will bring you to the Create a New Application Page.

Create App

CHAPTER 12. IDENTITY BROKERING

159

Fill in the form with the appropriate values, then click the Submit button. This will bring you to the new
application’s settings page.

App Settings

Select r_basicprofile and r_emailaddress in the Default Application Permissions section. You’ll have
to copy the Redirect URI from the Red Hat Single Sign-On Add Identity Provider page and enter it
into the OAuth 2.0 Authorized Redirect URLs field on the LinkedIn app settings page. Don’t forget to
click the Update button after you do this!

You will then need to obtain the client ID and secret from this page so you can enter them into the Red
Hat Single Sign-On Add identity provider page. Go back to Red Hat Single Sign-On and specify those
items.

12.4.7. Microsoft

There are a number of steps you have to complete to be able to enable login with Microsoft. First, go to
the Identity Providers left menu item and select Microsoft from the Add provider drop down list. This
will bring you to the Add identity provider page.

Add Identity Provider

Red Hat Single Sign-On 7.4 Server Administration Guide

160

You can’t click save yet, as you’ll need to obtain a Client ID and Client Secret from Microsoft. One
piece of data you’ll need from this page is the Redirect URI. You’ll have to provide that to Microsoft
when you register Red Hat Single Sign-On as a client there, so copy this URI to your clipboard.

To enable login with Microsoft account you first have to register an OAuth application at Microsoft. Go
to the Microsoft Application Registration url.

NOTE

Microsoft often changes the look and feel of application registration, so these directions
might not always be up to date and the configuration steps might be slightly different.

Register Application

CHAPTER 12. IDENTITY BROKERING

161

https://account.live.com/developers/applications/create

Enter in the application name and click Create application. This will bring you to the application settings
page of your new application.

Settings

You’ll have to copy the Redirect URI from the Red Hat Single Sign-On Add Identity Provider page and
add it to the Redirect URIs field on the Microsoft application page. Be sure to click the Add Url button
and Save your changes.

Finally, you will need to obtain the Application ID and secret from this page so you can enter them back
on the Red Hat Single Sign-On Add identity provider page. Go back to Red Hat Single Sign-On and
specify those items.

Red Hat Single Sign-On 7.4 Server Administration Guide

162

WARNING

From November 2018 onwards, Microsoft is removing support for the Live SDK API
in favor of the new Microsoft Graph API. The Red Hat Single Sign-On Microsoft
identity provider has been updated to use the new endpoints so make sure to
upgrade to Red Hat Single Sign-On version 7.2.5 or later in order to use this
provider. Furthermore, client applications registered with Microsoft under "Live SDK
applications" will need to be re-registered in the Microsoft Application Registration
portal to obtain an application id that is compatible with the Microsoft Graph API.

12.4.8. OpenShift 3

NOTE

OpenShift Online is currently in the developer preview mode. This documentation has
been based on on-premise installations and local minishift development environment.

There are a just a few steps you have to complete to be able to enable login with OpenShift. First, go to
the Identity Providers left menu item and select OpenShift from the Add provider drop down list. This
will bring you to the Add identity provider page.

Add Identity Provider



CHAPTER 12. IDENTITY BROKERING

163

https://account.live.com/developers/applications/create

1

2

3

Registering OAuth client

You can register your client using oc command line tool.

The name of your OAuth client. Passed as client_id request parameter when making requests to
<openshift_master>/oauth/authorize and <openshift_master>/oauth/token.

secret is used as the client_secret request parameter.

The redirect_uri parameter specified in requests to <openshift_master>/oauth/authorize and
<openshift_master>/oauth/token must be equal to (or prefixed by) one of the URIs in
redirectURIs.

$ oc create -f <(echo '
kind: OAuthClient
apiVersion: v1
metadata:
 name: kc-client 1
secret: "..." 2
redirectURIs:
 - "http://www.example.com/" 3
grantMethod: prompt 4
')

Red Hat Single Sign-On 7.4 Server Administration Guide

164

4 The grantMethod is used to determine what action to take when this client requests tokens and
has not yet been granted access by the user.

Use client ID and secret defined by oc create command to enter them back on the Red Hat Single Sign-
On Add identity provider page. Go back to Red Hat Single Sign-On and specify those items.

Please refer to official OpenShift documentation for more detailed guides.

12.4.9. OpenShift 4

NOTE

Prior to configuring OpenShift 4 Identity Provider, please locate the correct OpenShift 4
API URL up. In some scenarios, that URL might be hidden from users. The easiest way to
obtain it is to invoke the following command (this might require installing jq command
separately) curl -s -k -H "Authorization: Bearer $(oc whoami -t)" https://<openshift-
user-facing-api-url>/apis/config.openshift.io/v1/infrastructures/cluster | jq
".status.apiServerURL". In most cases, the address will be protected by HTTPS.
Therefore, it is essential to configure X509_CA_BUNDLE in the container and set it to
/var/run/secrets/kubernetes.io/serviceaccount/ca.crt. Otherwise, Red Hat Single Sign-
On won’t be able to communicate with the API Server.

There are a just a few steps you have to complete to be able to enable login with OpenShift 4. First, go
to the Identity Providers left menu item and select OpenShift v4 from the Add provider drop down
list. This will bring you to the Add identity provider page.

Add Identity Provider

CHAPTER 12. IDENTITY BROKERING

165

https://docs.okd.io/latest/authentication/configuring-internal-oauth.html#oauth-register-additional-client_configuring-internal-oauth

1

2

3

Registering OAuth client

You can register your client using oc command line tool.

The name of your OAuth client. Passed as client_id request parameter when making requests to
<openshift_master>/oauth/authorize and <openshift_master>/oauth/token. The name
parameter needs to be the same in OAuthClient object as well as in Red Hat Single Sign-On
configuration.

secret is used as the client_secret request parameter.

The redirect_uri parameter specified in requests to <openshift_master>/oauth/authorize and
<openshift_master>/oauth/token must be equal to (or prefixed by) one of the URIs in
redirectURIs. The easiest way to configure it correctly is to copy-paste it from Red Hat Single

$ oc create -f <(echo '
kind: OAuthClient
apiVersion: v1
metadata:
 name: keycloak-broker 1
secret: "..." 2
redirectURIs:
 - "<copy pasted Redirect URI from OpenShift 4 Identity Providers page>" 3
grantMethod: prompt 4
')

Red Hat Single Sign-On 7.4 Server Administration Guide

166

4

Sign-On OpenShift 4 Identity Provider configuration page (Redirect URI field).

The grantMethod is used to determine what action to take when this client requests tokens and
has not yet been granted access by the user.

Use the client ID and secret defined by oc create command to enter them back on the Red Hat Single
Sign-On Add identity provider page. Go back to Red Hat Single Sign-On and specify those items.

TIP

The OpenShift API server returns The client is not authorized to request a token using this method
whenever OAuthClient name, secret or redirectURIs is incorrect. Make sure you copy-pasted them
into Red Hat Single Sign-On OpenShift 4 Identity Provider page correctly.

Please refer to official OpenShift documentation for more detailed guides.

12.4.10. PayPal

There are a number of steps you have to complete to be able to enable login with PayPal. First, go to the
Identity Providers left menu item and select PayPal from the Add provider drop down list. This will
bring you to the Add identity provider page.

Add Identity Provider

CHAPTER 12. IDENTITY BROKERING

167

https://docs.okd.io/latest/authentication/configuring-internal-oauth.html#oauth-register-additional-client_configuring-internal-oauth

You can’t click save yet, as you’ll need to obtain a Client ID and Client Secret from PayPal. One piece
of data you’ll need from this page is the Redirect URI. You’ll have to provide that to PayPal when you
register Red Hat Single Sign-On as a client there, so copy this URI to your clipboard.

To enable login with PayPal you first have to register an application project in PayPal Developer
applications.

Add a New App

Click the Create App button.

Register App

Red Hat Single Sign-On 7.4 Server Administration Guide

168

https://developer.paypal.com/developer/applications

You will now be brought to the app settings page.

Do the following changes

Choose to configure either Sandbox or Live (choose Live if you haven’t enabled the Target
Sandbox switch on the Add identity provider page)

Copy Client ID and Secret so you can paste them into the Red Hat Single Sign-On Add identity
provider page.

Scroll down to App Settings

Copy the Redirect URI from the Red Hat Single Sign-On Add Identity Provider page and
enter it into the Return URL field.

Check the Log In with PayPal checkbox.

Check the Full name checkbox under the personal information section.

Check the Email address checkbox under the address information section.

Add both a privacy and a user agreement URL pointing to the respective pages on your domain.

12.4.11. Stack Overflow

There are a number of steps you have to complete to be able to enable login with Stack Overflow. First,
go to the Identity Providers left menu item and select Stack Overflow from the Add provider drop
down list. This will bring you to the Add identity provider page.

Add Identity Provider

CHAPTER 12. IDENTITY BROKERING

169

To enable login with Stack Overflow you first have to register an OAuth application on StackApps. Go to
registering your application on Stack Apps URL and login.

NOTE

Stack Overflow often changes the look and feel of application registration, so these
directions might not always be up to date and the configuration steps might be slightly
different.

Register Application

Red Hat Single Sign-On 7.4 Server Administration Guide

170

https://stackapps.com/
https://stackapps.com/apps/oauth/register

Enter in the application name and the OAuth Domain Name of your application and click Register your
Application. Type in anything you want for the other items.

Settings

Finally, you will need to obtain the client ID, secret, and key from this page so you can enter them back

CHAPTER 12. IDENTITY BROKERING

171

Finally, you will need to obtain the client ID, secret, and key from this page so you can enter them back
on the Red Hat Single Sign-On Add identity provider page. Go back to Red Hat Single Sign-On and
specify those items.

12.4.12. Twitter

There are a number of steps you have to complete to be able to enable login with Twitter. First, go to the
Identity Providers left menu item and select Twitter from the Add provider drop down list. This will
bring you to the Add identity provider page.

Add Identity Provider

You can’t click save yet, as you’ll need to obtain a Client ID and Client Secret from Twitter. One piece
of data you’ll need from this page is the Redirect URI. You’ll have to provide that to Twitter when you
register Red Hat Single Sign-On as a client there, so copy this URI to your clipboard.

To enable login with Twtter you first have to create an application in the Twitter Application
Management.

Register Application

Red Hat Single Sign-On 7.4 Server Administration Guide

172

https://developer.twitter.com/apps/

Click on the Create New App button. This will bring you to the Create an Application page.

Register Application

Enter in a Name and Description. The Website can be anything, but cannot have a localhost address.
For the Callback URL you must copy the Redirect URI from the Red Hat Single Sign-On Add Identity
Provider page.

CHAPTER 12. IDENTITY BROKERING

173

WARNING

You cannot use localhost in the Callback URL. Instead replace it with 127.0.0.1 if
you are trying to test drive Twitter login on your laptop.

After clicking save you will be brought to the Details page.

App Details

Next go to the Keys and Access Tokens tab.

Keys and Access Tokens



Red Hat Single Sign-On 7.4 Server Administration Guide

174

Finally, you will need to obtain the API Key and secret from this page and copy them back into the Client
ID and Client Secret fields on the Red Hat Single Sign-On Add identity provider page.

12.4.13. Instagram

There are a number of steps you have to complete to be able to enable login with Instagram. First, go to
the Identity Providers left menu item and select Instagram from the Add provider drop down list. This
will bring you to the Add identity provider page.

Add Identity Provider

CHAPTER 12. IDENTITY BROKERING

175

You can’t click save yet, as you’ll need to obtain a Client ID and Client Secret from Instagram. One
piece of data you’ll need from this page is the Redirect URI. You’ll have to provide that to Instagram
when you register Red Hat Single Sign-On as a client there, so copy this URI to your clipboard.

To enable login with Instagram you first have to create a project and a client. Instagram API is managed
through the Facebook Developer Console.

NOTE

Facebook often changes the look and feel of the Facebook Developer Console, so these
directions might not always be up to date and the configuration steps might be slightly
different.

Once you’ve logged into the console there is a menu in the top right corner of the screen that says My
Apps. Select the Add a New App menu item.

Add a New App

Red Hat Single Sign-On 7.4 Server Administration Guide

176

https://developers.facebook.com/

Select For Everything Else.

Create a New App ID

Fill all required fields. Once you’re done with that, you will be brought to the dashboard for the
application. In the menu in the left navigation panel select Basic under Settings.

Add Platform

CHAPTER 12. IDENTITY BROKERING

177

Select + Add Platform at the bottom and then click [Website] with the globe icon. Specify URL of your
site.

Add a Product

Select Dashboard from the left menu and click Set Up in the Instagram box. In the left menu then select
Basic Display under Instagram and click Create New App.

Create a New Instagram App ID

Red Hat Single Sign-On 7.4 Server Administration Guide

178

Specify Display Name.

Setup the App

Copy and paste the Redirect URI from the Red Hat Single Sign-On Add identity provider page into
the Valid OAuth Redirect URIs of the Instagram Client OAuth Settings settings block.

You can use this URL also for Deauthorize Callback URL and Data Deletion Request URL. Red Hat
Single Sign-On currently doesn’t support either of them, but the Facebook Developer Console requires
both of them to be filled.

CHAPTER 12. IDENTITY BROKERING

179

You will need also to obtain the App ID and App Secret from this page so you can enter them into the
Red Hat Single Sign-On Add identity provider page. To obtain this click on Show under App Secret.
Go back to Red Hat Single Sign-On and specify those items and finally save your Instagram Identity
Provider.

After this it is necessary to make the Instagram app public. Click App Review left menu item and then
Requests. After that follow the instructions on screen.

12.5. OPENID CONNECT V1.0 IDENTITY PROVIDERS

Red Hat Single Sign-On can broker identity providers based on the OpenID Connect protocol. These
IDPs must support the Authorization Code Flow as defined by the specification in order to authenticate
the user and authorize access.

To begin configuring an OIDC provider, go to the Identity Providers left menu item and select OpenID
Connect v1.0 from the Add provider drop down list. This will bring you to the Add identity provider
page.

Add Identity Provider

The initial configuration options on this page are described in General IDP Configuration. You must

Red Hat Single Sign-On 7.4 Server Administration Guide

180

The initial configuration options on this page are described in General IDP Configuration. You must
define the OpenID Connect configuration options as well. They basically describe the OIDC IDP you are
communicating with.

Table 12.2. OpenID Connect Config

Configuration Description

Authorization URL Authorization URL endpoint required by the OIDC
protocol.

Token URL Token URL endpoint required by the OIDC protocol.

Logout URL Logout URL endpoint defined in the OIDC protocol.
This value is optional.

Backchannel Logout Backchannel logout is a background, out-of-band,
REST invocation to the IDP to logout the user. Some
IDPs can only perform logout through browser
redirects as they may only be able to identity
sessions via a browser cookie.

User Info URL User Info URL endpoint defined by the OIDC
protocol. This is an endpoint from which user profile
information can be downloaded.

Client Authentication Switch to define the Client Authentication method to
be used with the Authorization Code Flow. In the
case of JWT signed with private key, the realm
private key is used. In the other cases, a client secret
has to be defined. For more details, see the Client
Authentication specifications.

Client ID This realm will act as an OIDC client to the external
IDP. Your realm will need an OIDC client ID when
using the Authorization Code Flow to interact with
the external IDP.

Client Secret This realm will need a client secret to use when using
the Authorization Code Flow. The value of this field
can refer a value from an external vault.

Issuer Responses from the IDP may contain an issuer claim.
This config value is optional. If specified, this claim
will be validated against the value you provide.

Default Scopes Space-separated list of OIDC scopes to send with
the authentication request. The default is openid.

CHAPTER 12. IDENTITY BROKERING

181

https://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication

Prompt Another optional switch. This is the prompt
parameter defined by the OIDC specification.
Through it you can force re-authentication and other
options. See the specification for more details.

Accepts prompt=none forward from client Specifies whether the IDP accepts forwarded
authentication requests that contain the
prompt=none query parameter or not. When a realm
receives an auth request with prompt=none it
checks if the user is currently authenticated and
normally returns a login_required error if the user is
not logged in. However, when a default IDP can be
determined for the auth request (either via
kc_idp_hint query param or by setting up a default
IDP for the realm) we should be able to forward the
auth request with prompt=none to the default IDP
so that it checks if the user is currently authenticated
there. Because not all IDPs support requests with
prompt=none this switch is used to indicate if the
default IDP supports the param before redirecting
the auth request.

It is important to note that if the user is not
authenticated in the IDP, the client will still get a
login_required error. Even if the user is currently
authenticated in the IDP, the client might still get an
interaction_required error if authentication or
consent pages requiring user interaction would be
otherwise displayed. This includes required actions
(e.g. change password), consent screens and any
screens set to be displayed by the first broker
login flow or post broker login flow.

Validate Signatures Another optional switch. This is to specify if Red Hat
Single Sign-On will verify the signatures on the
external ID Token signed by this identity provider. If
this is on, the Red Hat Single Sign-On will need to
know the public key of the external OIDC identity
provider. See below for how to set it up. WARNING:
For the performance purposes, Red Hat Single Sign-
On caches the public key of the external OIDC
identity provider. If you think that private key of your
identity provider was compromised, it is obviously
good to update your keys, but it’s also good to clear
the keys cache. See Clearing the cache section for
more details.

Configuration Description

Red Hat Single Sign-On 7.4 Server Administration Guide

182

Use JWKS URL Applicable if Validate Signatures is on. If the
switch is on, then identity provider public keys will be
downloaded from given JWKS URL. This allows great
flexibility because new keys will be always re-
downloaded when the identity provider generates
new keypair. If the switch is off, then public key (or
certificate) from the Red Hat Single Sign-On DB is
used, so whenever the identity provider keypair
changes, you will always need to import the new key
to the Red Hat Single Sign-On DB as well.

JWKS URL URL where the identity provider JWK keys are stored.
See the JWK specification for more details. If you use
an external Red Hat Single Sign-On as an identity
provider, then you can use URL like http://broker-
keycloak:8180/auth/realms/test/protocol/openid-
connect/certs assuming your brokered Red Hat
Single Sign-On is running on http://broker-
keycloak:8180 and it’s realm is test.

Validating Public Key Applicable if Use JWKS URL is off. Here is the
public key in PEM format that must be used to verify
external IDP signatures.

Validating Public Key Id Applicable if Use JWKS URL is off. This field
specifies ID of the public key in PEM format. This
config value is optional. As there is no standard way
for computing key ID from key, various external
identity providers might use different algorithm from
Red Hat Single Sign-On. If the value of this field is
not specified, the validating public key specified
above is used for all requests regardless of key ID
sent by external IDP. When set, value of this field
serves as key ID used by Red Hat Single Sign-On for
validating signatures from such providers and must
match the key ID specified by the IDP.

Configuration Description

You can also import all this configuration data by providing a URL or file that points to OpenID Provider
Metadata (see OIDC Discovery specification). If you are connecting to a Red Hat Single Sign-On
external IDP, you can import the IDP settings from the url <root>/auth/realms/{realm-name}/.well-
known/openid-configuration. This link is a JSON document describing metadata about the IDP.

12.6. SAML V2.0 IDENTITY PROVIDERS

Red Hat Single Sign-On can broker identity providers based on the SAML v2.0 protocol.

To begin configuring an SAML v2.0 provider, go to the Identity Providers left menu item and select
SAML v2.0 from the Add provider drop down list. This will bring you to the Add identity provider page.

Add Identity Provider

CHAPTER 12. IDENTITY BROKERING

183

https://self-issued.info/docs/draft-ietf-jose-json-web-key.html
http://broker-keycloak:8180/auth/realms/test/protocol/openid-connect/certs
http://broker-keycloak:8180

The initial configuration options on this page are described in General IDP Configuration. You must
define the SAML configuration options as well. They basically describe the SAML IDP you are
communicating with.

Table 12.3. SAML Config

Configuration Description

Service Provider Entity ID This is a required field and specifies the SAML Entity
ID that the remote Identity Provider will use to
identify requests coming from this Service Provider.
By default it is set to the realm base URL
<root>/auth/realms/{realm-name}.

Single Sign-On Service URL This is a required field and specifies the SAML
endpoint to start the authentication process. If your
SAML IDP publishes an IDP entity descriptor, the
value of this field will be specified there.

Red Hat Single Sign-On 7.4 Server Administration Guide

184

Single Logout Service URL This is an optional field that specifies the SAML
logout endpoint. If your SAML IDP publishes an IDP
entity descriptor, the value of this field will be
specified there.

Backchannel Logout Enable if your SAML IDP supports backchannel
logout.

NameID Policy Format Specifies the URI reference corresponding to a name
identifier format. Defaults to
urn:oasis:names:tc:SAML:2.0:nameid-
format:persistent.

Principal Type Specifies which part of the SAML assertion will be
used to identify and track external user identities.
Can be either Subject NameID or SAML attribute
(either by name or by friendly name).

Principal Attribute If Principal is set to either "Attribute [Name]" or
"Attribute [Friendly Name]", this field will specify the
name or the friendly name of the identifying
attribute, respectively.

HTTP-POST Binding Response When this realm responds to any SAML requests sent
by the external IDP, which SAML binding should be
used? If set to off, then the Redirect Binding will be
used.

HTTP-POST Binding for AuthnRequest When this realm requests authentication from the
external SAML IDP, which SAML binding should be
used? If set to off, then the Redirect Binding will be
used.

Want AuthnRequests Signed If true, it will use the realm’s keypair to sign requests
sent to the external SAML IDP.

Signature Algorithm If Want AuthnRequests Signed is on, then you
can also pick the signature algorithm to use.

Configuration Description

CHAPTER 12. IDENTITY BROKERING

185

SAML Signature Key Name Signed SAML documents sent via POST binding
contain identification of signing key in KeyName
element. This by default contains Red Hat Single
Sign-On key ID. However various external SAML
IDPs might expect a different key name or no key
name at all. This switch controls whether KeyName
contains key ID (option KEY_ID), subject from
certificate corresponding to the realm key (option
CERT_SUBJECT - expected for instance by
Microsoft Active Directory Federation Services), or
that the key name hint is completely omitted from
the SAML message (option NONE).

Force Authentication Indicates that the user will be forced to enter their
credentials at the external IDP even if they are
already logged in.

Validate Signature Whether or not the realm should expect that SAML
requests and responses from the external IDP to be
digitally signed. It is highly recommended you turn
this on!

Validating X509 Certificate The public certificate that will be used to validate the
signatures of SAML requests and responses from the
external IDP.

Configuration Description

You can also import all this configuration data by providing a URL or file that points to the SAML IDP
entity descriptor of the external IDP. If you are connecting to a Red Hat Single Sign-On external IDP, you
can import the IDP settings from the URL <root>/auth/realms/{realm-
name}/protocol/saml/descriptor. This link is an XML document describing metadata about the IDP.

You can also import all this configuration data by providing a URL or XML file that points to the entity
descriptor of the external SAML IDP you want to connect to.

12.6.1. SP Descriptor

Once you create a SAML provider, there is an EXPORT button that appears when viewing that provider.
Clicking this button will export a SAML SP entity descriptor which you can use to import into the
external SP.

This metadata is also available publicly by going to the URL.

http[s]://{host:port}/auth/realms/{realm-name}/broker/{broker-alias}/endpoint/descriptor

12.7. CLIENT-SUGGESTED IDENTITY PROVIDER

OIDC applications can bypass the Red Hat Single Sign-On login page by specifying a hint on which
identity provider they want to use.

This is done by setting the kc_idp_hint query parameter in the Authorization Code Flow authorization

Red Hat Single Sign-On 7.4 Server Administration Guide

186

This is done by setting the kc_idp_hint query parameter in the Authorization Code Flow authorization
endpoint.

Red Hat Single Sign-On OIDC client adapters also allow you to specify this query parameter when you
access a secured resource at the application.

For example:

GET /myapplication.com?kc_idp_hint=facebook HTTP/1.1
Host: localhost:8080

In this case, it is expected that your realm has an identity provider with an alias facebook. If this provider
doesn’t exist the login form will be displayed.

If you are using keycloak.js adapter, you can also achieve the same behavior:

The kc_idp_hint query parameter also allows the client to override the default identity provider if one is
configured for the Identity Provider Redirector authenticator. The client can also disable the
automatic redirecting by setting the kc_idp_hint query parameter to an empty value.

12.8. MAPPING CLAIMS AND ASSERTIONS

You can import the SAML and OpenID Connect metadata provided by the external IDP you are
authenticating with into the environment of the realm. This allows you to extract user profile metadata
and other information so that you can make it available to your applications.

Each new user that logs into your realm via an external identity provider will have an entry for them
created in the local Red Hat Single Sign-On database, based on the metadata from the SAML or OIDC
assertions and claims.

If you click on an identity provider listed in the Identity Providers page for your realm, you will be
brought to the IDPs Settings tab. On this page there is also a Mappers tab. Click on that tab to start
mapping your incoming IDP metadata.

There is a Create button on this page. Clicking on this create button allows you to create a broker

var keycloak = new Keycloak('keycloak.json');

keycloak.createLoginUrl({
 idpHint: 'facebook'
});

CHAPTER 12. IDENTITY BROKERING

187

There is a Create button on this page. Clicking on this create button allows you to create a broker
mapper. Broker mappers can import SAML attributes or OIDC ID/Access token claims into user
attributes and user role mappings.

Select a mapper from the Mapper Type list. Hover over the tooltip to see a description of what the
mapper does. The tooltips also describe what configuration information you need to enter. Click Save
and your new mapper will be added.

For JSON based claims, you can use dot notation for nesting and square brackets to access array fields
by index. For example 'contact.address[0].country'.

To investigate the structure of user profile JSON data provided by social providers you can enable the
DEBUG level logger org.keycloak.social.user_profile_dump. This is done in the server’s app-server
configuration file (domain.xml or standalone.xml).

12.9. AVAILABLE USER SESSION DATA

After a user logs in from the external IDP, there is some additional user session note data that Red Hat
Single Sign-On stores that you can access. This data can be propagated to the client requesting a login
via the token or SAML assertion being passed back to it by using an appropriate client mapper.

identity_provider

This is the IDP alias of the broker used to perform the login.

identity_provider_identity

This is the IDP username of the currently authenticated user. This is often the same as the Red Hat
Single Sign-On username, but doesn’t necessarily needs to be. For example Red Hat Single Sign-On
user john can be linked to the Facebook user john123@gmail.com, so in that case value of user
session note will be john123@gmail.com .

You can use a Protocol Mapper of type User Session Note to propagate this information to your
clients.

12.10. FIRST LOGIN FLOW

When a user logs in through identity brokering some aspects of the user are imported and linked within

Red Hat Single Sign-On 7.4 Server Administration Guide

188

When a user logs in through identity brokering some aspects of the user are imported and linked within
the realm’s local database. When Red Hat Single Sign-On successfully authenticates users through an
external identity provider there can be two situations:

There is already a Red Hat Single Sign-On user account imported and linked with the
authenticated identity provider account. In this case, Red Hat Single Sign-On will just
authenticate as the existing user and redirect back to application.

There is not yet an existing Red Hat Single Sign-On user account imported and linked for this
external user. Usually you just want to register and import the new account into Red Hat Single
Sign-On database, but what if there is an existing Red Hat Single Sign-On account with the
same email? Automatically linking the existing local account to the external identity provider is a
potential security hole as you can’t always trust the information you get from the external
identity provider.

Different organizations have different requirements when dealing with some of the conflicts and
situations listed above. For this, there is a First Login Flow option in the IDP settings which allows you
to choose a workflow that will be used after a user logs in from an external IDP the first time. By default
it points to first broker login flow, but you can configure and use your own flow and use different flows
for different identity providers.

The flow itself is configured in admin console under Authentication tab. When you choose First Broker
Login flow, you will see what authenticators are used by default. You can re-configure the existing flow.
(For example you can disable some authenticators, mark some of them as required, configure some
authenticators, etc).

12.10.1. Default First Login Flow

Let’s describe the default behavior provided by First Broker Login flow.

Review Profile

This authenticator might display the profile info page, where the user can review their profile
retrieved from an identity provider. The authenticator is configurable. You can set the Update
Profile On First Login option. When On, users will be always presented with the profile page asking
for additional information in order to federate their identities. When missing, users will be presented
with the profile page only if some mandatory information (email, first name, last name) is not
provided by the identity provider. If Off, the profile page won’t be displayed, unless user clicks in later
phase on Review profile info link (page displayed in later phase by Confirm Link Existing Account
authenticator).

Create User If Unique

This authenticator checks if there is already an existing Red Hat Single Sign-On account with the
same email or username like the account from the identity provider. If it’s not, then the authenticator
just creates a new local Red Hat Single Sign-On account and links it with the identity provider and
the whole flow is finished. Otherwise it goes to the next Handle Existing Account subflow. If you
always want to ensure that there is no duplicated account, you can mark this authenticator as
REQUIRED. In this case, the user will see the error page if there is an existing Red Hat Single Sign-
On account and the user will need to link his identity provider account through Account
management.

Confirm Link Existing Account

On the info page, the user will see that there is an existing Red Hat Single Sign-On account with the
same email. They can review their profile again and use different email or username (flow is restarted
and goes back to Review Profile authenticator). Or they can confirm that they want to link their

CHAPTER 12. IDENTITY BROKERING

189

identity provider account with their existing Red Hat Single Sign-On account. Disable this
authenticator if you don’t want users to see this confirmation page, but go straight to linking identity
provider account by email verification or re-authentication.

Verify Existing Account By Email

This authenticator is ALTERNATIVE by default, so it’s used only if the realm has SMTP setup
configured. It will send email to the user, where they can confirm that they want to link the identity
provider with their Red Hat Single Sign-On account. Disable this if you don’t want to confirm linking
by email, but instead you always want users to reauthenticate with their password (and alternatively
OTP).

Verify Existing Account By Re-authentication

This authenticator is used if email authenticator is disabled or not available (SMTP not configured for
realm). It will display a login screen where the user needs to authenticate to link their Red Hat Single
Sign-On account with the Identity provider. User can also re-authenticate with some different
identity provider, which is already linked to their Red Hat Single Sign-On account. You can also force
users to use OTP. Otherwise it’s optional and used only if OTP is already set for the user account.

12.10.2. Automatically Link Existing First Login Flow

WARNING

The AutoLink authenticator would be dangerous in a generic environment where
users can register themselves using arbitrary usernames/email addresses. Do not
use this authenticator unless registration of users is carefully curated and
usernames/email addresses are assigned, not requested.

In order to configure a first login flow in which users are automatically linked without being prompted,
create a new flow with the following two authenticators:

Create User If Unique

This authenticator ensures that unique users are handled. Set the authenticator requirement to
"Alternative".

Automatically Set Existing User

Automatically sets an existing user to the authentication context without any verification. Set the
authenticator requirement to "Alternative".

NOTE

The described setup uses two authenticators. This setup is the simplest one, but it is
possible to use other authenticators according to your needs. For example, you can add
the Review Profile authenticator to the beginning of the flow if you still want end users to
confirm their profile information. You can also add authentication mechanisms to this
flow, forcing a user to verify his credentials. This would require a more complex flow, for
example setting the "Automatically Set Existing User" and "Password Form" as
"Required" in an "Alternative" sub-flow.

12.10.3. Disabling Automatic User Creation



Red Hat Single Sign-On 7.4 Server Administration Guide

190

The Default first login flow will look up a Keycloak account matching the external identity, and will then
offer to link them; if there is no matching Keycloak account, it will automatically create one. This default
behavior may be unsuitable for some setups, for example, when using read-only LDAP user store (which
means all users are pre-created). In this case, automatic user creation should be turned off. To disable
user creation:

open the First Broker Login flow configuration;

set Create User If Unique to DISABLED;

set Confirm Link Existing Account to DISABLED.

This configuration also implies that Keycloak itself won’t be able to determine which internal account
would correspond to the external identity. Therefore, the Verify Existing Account By Re-
authentication authenticator will ask the user to provide both username and password.

12.11. RETRIEVING EXTERNAL IDP TOKENS

Red Hat Single Sign-On allows you to store tokens and responses from the authentication process with
the external IDP. For that, you can use the Store Token configuration option on the IDP’s settings page.

Application code can retrieve these tokens and responses to pull in extra user information, or to securely
invoke requests on the external IDP. For example, an application might want to use the Google token to
invoke on other Google services and REST APIs. To retrieve a token for a particular identity provider you
need to send a request as follows:

GET /auth/realms/{realm}/broker/{provider_alias}/token HTTP/1.1
Host: localhost:8080
Authorization: Bearer <KEYCLOAK ACCESS TOKEN>

An application must have authenticated with Red Hat Single Sign-On and have received an access
token. This access token will need to have the broker client-level role read-token set. This means that
the user must have a role mapping for this role and the client application must have that role within its
scope. In this case, given that you are accessing a protected service in Red Hat Single Sign-On, you need
to send the access token issued by Red Hat Single Sign-On during the user authentication. In the broker
configuration page you can automatically assign this role to newly imported users by turning on the
Stored Tokens Readable switch.

These external tokens can be re-established by either logging in again through the provider, or using the
client-initiated account linking API.

12.12. IDENTITY BROKER LOGOUT

When logout from Red Hat Single Sign-On is triggered, Red Hat Single Sign-On will send a request to
the external identity provider that was used to login to Keycloak, and the user will be logged out from
this identity provider as well. It is possible to skip this behavior and avoid logout at the external identity
provider. See adapter logout documentation for more details.

CHAPTER 12. IDENTITY BROKERING

191

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/securing_applications_and_services_guide/#_java_adapter_logout

CHAPTER 13. USER SESSION MANAGEMENT
When a user logs into a realm, Red Hat Single Sign-On maintains a user session for them and
remembers each and every client they have visited within the session. There are a lot of administrative
functions that realm admins can perform on these user sessions. They can view login stats for the entire
realm and dive down into each client to see who is logged in and where. Admins can logout a user or a
set of users from the Admin Console. They can revoke tokens and set up all the token and session
timeouts there too.

13.1. ADMINISTERING SESSIONS

If you go to the Sessions left menu item you can see a top level view of the number of sessions that are
currently active in the realm.

Sessions

A list of clients is given and how many active sessions there currently are for that client. You can also log
out all users in the realm by clicking the Logout all button on the right side of this list.

13.1.1. Limitations of the Logout all Operation

Any SSO cookies set will now be invalid and clients that request authentication in active browser
sessions will now have to re-login. Only certain clients are notified of this logout event, specifically
clients that are using the Red Hat Single Sign-On OIDC client adapter. Other client types, such as SAML,
will not receive a backchannel logout request.

It is important to note that any outstanding access tokens are not revoked by clicking Logout all. They
have to expire naturally. You have to push a revocation policy out to clients, but that also only works with
clients using the Red Hat Single Sign-On OIDC client adapter.

13.1.2. Application Drilldown

On the Sessions page, you can also drill down to each client. This will bring you to the Sessions tab of
that client. Clicking on the Show Sessions button there allows you to see which users are logged into
that application.

Application Sessions

Red Hat Single Sign-On 7.4 Server Administration Guide

192

13.1.3. User Drilldown

If you go to the Sessions tab of an individual user, you can also view the session information.

User Sessions

13.2. REVOCATION POLICIES

If your system is compromised you will want a way to revoke all sessions and access tokens that have
been handed out. You can do this by going to the Revocation tab of the Sessions screen.

Revocation

CHAPTER 13. USER SESSION MANAGEMENT

193

You can only set a time-based revocation policy. The console allows you to specify a time and date
where any session or token issued before that time and date is invalid. The Set to now will set the policy
to the current time and date. The Push button will push this revocation policy to any registered OIDC
client that has the Red Hat Single Sign-On OIDC client adapter installed.

13.3. SESSION AND TOKEN TIMEOUTS

Red Hat Single Sign-On gives you fine grain control of session, cookie, and token timeouts. This is all
done on the Tokens tab in the Realm Settings left menu item.

Tokens Tab

Red Hat Single Sign-On 7.4 Server Administration Guide

194

Let’s walk through each of the items on this page.

Configuration Description

Default Signature Algorithm The default algorithm that is used to assign tokens
for this realm.

Revoke Refresh Token For OIDC clients that are doing the refresh token
flow, this flag, if on, will revoke that refresh token and
issue another token with the request that the client
has to use. The result is that each refresh token is
used only once.

SSO Session Idle Also pertains to OIDC clients. If the user is not active
for longer than this timeout, the user session will be
invalidated. The idle timeout is reset by a client
requesting authentication or by a refresh token
request. There is a small window of time that is
always added to the idle timeout before the session
invalidation takes effect. See the note below.

SSO Session Max Maximum time before a user session is expired and
invalidated. This option controls the maximum time
that a user session can remain active, regardless of
user activity.

CHAPTER 13. USER SESSION MANAGEMENT

195

SSO Session Idle Remember Me Same as the standard SSO Session Idle configuration
but specific to logins with Remember Me enabled. It
allows for the specification of longer session idle
timeouts when Remember Me is selected during the
login process. It is an optional configuration and if not
set to a value greater than 0 it uses the same idle
timeout as set in the SSO Session Idle configuration.

SSO Session Max Remember Me Same as the standard SSO Session Max but specific
to logins with Remember Me enabled. It allows for
the specification of longer lived sessions when
Remember Me is selected during the login process. It
is an optional configuration and if not set to a value
greater than 0 it uses the same session lifespan as set
in the SSO Session Max configuration.

Offline Session Idle For offline access, this is the time the session is
allowed to remain idle before the offline token is
revoked. There is a small window of time that is
always added to the idle timeout before the session
invalidation takes effect. See the note below.

Offline Session Max Limited For offline access, if this flag is on, Offline Session
Max is enabled to control the maximum time the
offline token can remain active, regardless of user
activity.

Offline Session Max For offline access, this is the maximum time before
the corresponding offline token is revoked. This
option controls the maximum time the offline token
can remain active, regardless of user activity.

Access Token Lifespan When an OIDC access token is created, this value
affects the expiration.

Access Token Lifespan For Implicit Flow With the Implicit Flow no refresh token is provided.
For this reason there’s a separate timeout for access
tokens created with the Implicit Flow.

Client login timeout This is the maximum time that a client has to finish
the Authorization Code Flow in OIDC.

Login timeout Total time a login must take. If authentication takes
longer than this time then the user will have to start
the authentication process over.

Login action timeout Maximum time a user can spend on any one page in
the authentication process.

Configuration Description

Red Hat Single Sign-On 7.4 Server Administration Guide

196

User-Initiated Action Lifespan Maximum time before an action permit sent by a user
(e.g. forgot password e-mail) is expired. This value is
recommended to be short because it is expected
that the user would react to self-created action
quickly.

Default Admin-Initiated Action Lifespan Maximum time before an action permit sent to a user
by an admin is expired. This value is recommended to
be long to allow admins send e-mails for users that
are currently offline. The default timeout can be
overridden right before issuing the token.

Override User-Initiated Action Lifespan Permits the possibility of having independent
timeouts per operation (for example, e-mail
verification, forgot password, user actions and
Identity Provider E-mail Verification). This field is
optional. If nothing is specified, it defaults to the
value configured at User-Initiated Action Lifespan.

Configuration Description

NOTE

For idle timeouts, there is a small window of time (2 minutes) during which the session is
kept unexpired. For example, when you have timeout set to 30 minutes, it will be actually
32 minutes before the session is expired. This is needed for some corner-case scenarios
in cluster and cross-datacenter environments, in cases where the token was refreshed on
one cluster node for a very short time before the expiration and the other cluster nodes
would in the meantime incorrectly consider the session as expired, because they had not
yet received the message about successful refresh from the node which did the refresh.

13.4. OFFLINE ACCESS

Offline access is a feature described in OpenID Connect specification . The idea is that during login,
your client application will request an Offline token instead of a classic Refresh token. The application
can save this offline token in a database or on disk and can use it later even if user is logged out. This is
useful if your application needs to do some "offline" actions on behalf of user even when the user is not
online. An example is a periodic backup of some data every night.

Your application is responsible for persisting the offline token in some storage (usually a database) and
then using it to retrieve new access token from Red Hat Single Sign-On server.

The difference between a classic Refresh token and an Offline token is, that an offline token will never
expire by default and is not subject of the SSO Session Idle timeout and SSO Session Max lifespan.
The offline token is valid even after a user logout or server restart. However by default you do need to
use the offline token for a refresh token action at least once per 30 days (this value, Offline Session
Idle timeout, can be changed in the administration console in the Tokens tab under Realm Settings).
Moreover, if you enable the option Offline Session Max Limited, then the offline token expires after
60 days regardless of using the offline token for a refresh token action (this value, Offline Session Max,
can also be changed in the administration console in the Tokens tab under Realm Settings). Also if you
enable the option Revoke refresh tokens, then each offline token can be used just once. So after
refresh, you always need to store the new offline token from refresh response into your DB instead of
the previous one.

CHAPTER 13. USER SESSION MANAGEMENT

197

https://openid.net/specs/openid-connect-core-1_0.html#OfflineAccess

Users can view and revoke offline tokens that have been granted by them in the User Account Service.
The admin user can revoke offline tokens for individual users in admin console in the Consents tab of a
particular user. The admin can also view all the offline tokens issued in the Offline Access tab of each
client. Offline tokens can also be revoked by setting a revocation policy.

To be able to issue an offline token, users need to have the role mapping for the realm-level role
offline_access. Clients also need to have that role in their scope. Finally, the client needs to have an
offline_access client scope added as an Optional client scope to it, which is done by default.

The client can request an offline token by adding the parameter scope=offline_access when sending
authorization request to Red Hat Single Sign-On. The Red Hat Single Sign-On OIDC client adapter
automatically adds this parameter when you use it to access secured URL of your application (i.e.
http://localhost:8080/customer-portal/secured?scope=offline_access). The Direct Access Grant and
Service Accounts also support offline tokens if you include scope=offline_access in the body of the
authentication request.

13.5. TRANSIENT SESSIONS

Red Hat Single Sign-On has the concept of transient sessions. When transient sessions are used, no real
user session is created after successful authentication. Only a temporary transient session is created for
the scope of the current request that successfully authenticated the user. This transient session allows
Red Hat Single Sign-On to run protocol mappers after the authentication.

When transient sessions are used, the client application has no way to refresh or introspect the token or
check if a specific session is valid. In some situations, these actions are not needed, so you can avoid the
additional overhead for persistence of user sessions. This would improve performance and save memory
and network communication (in case of cluster and cross-datacenter environments).

Red Hat Single Sign-On 7.4 Server Administration Guide

198

CHAPTER 14. USER STORAGE FEDERATION
Many companies have existing user databases that hold information about users and their passwords or
other credentials. In many cases, it is just not possible to migrate off of those existing stores to a pure
Red Hat Single Sign-On deployment. Red Hat Single Sign-On can federate existing external user
databases. By default, we support LDAP and Active Directory, but you can also code your own extension
for any custom user database using our User Storage SPI.

The way it works is that when a user logs in, Red Hat Single Sign-On will look into its own internal user
store to find the user. If it cannot find it there, it will iterate over every User Storage provider you have
configured for the realm until it finds a match. Data from the external store is mapped into a common
user model that is consumed by the Red Hat Single Sign-On runtime. This common user model can then
be mapped to OIDC token claims and SAML assertion attributes.

External user databases rarely have every piece of data needed to support all the features that Red Hat
Single Sign-On has. Therefore, the User Storage Provider can opt to store some things locally in the Red
Hat Single Sign-On user store. Some providers even import the user locally and sync periodically with
the external store. This approach depends on the capabilities of the provider and how it is configured.
For example, your external user store may not support OTP. Depending on the provider, this OTP can be
handled and stored by Red Hat Single Sign-On.

14.1. ADDING A PROVIDER

To add a storage provider go to the User Federation left menu item in the Admin Console.

User Federation

On the center, there is an Add Provider list box. Choose the provider type you want to add and you will
be brought to the configuration page of that provider.

14.2. DEALING WITH PROVIDER FAILURES

If a User Storage Provider fails (for example, your LDAP server is down), you may have trouble logging in
and may not be able to view users in the admin console. Red Hat Single Sign-On does not catch failures
when using a Storage Provider to lookup a user. It will abort the invocation. So, if you have a Storage
Provider with a higher priority that fails during user lookup, the login or user query will fail entirely with an
exception and abort. It will not fail over to the next configured provider.

The local Red Hat Single Sign-On user database is always searched first to resolve users before any
LDAP or custom User Storage Provider. You may want to consider creating an admin account that is
stored in the local Red Hat Single Sign-On user database just in case any problems come up in

CHAPTER 14. USER STORAGE FEDERATION

199

connecting to your LDAP and custom back ends.

Each LDAP and custom User Storage Provider has an enable switch on its admin console page.
Disabling the User Storage Provider will skip the provider when doing user queries so that you can view
and login with users that might be stored in a different provider with lower priority. If your provider is
using an import strategy and you disable it, imported users are still available for lookup, but only in read
only mode. You will not be able to modify these users until you re-enable the provider.

The reason why Red Hat Single Sign-On does not fail over if a Storage Provider lookup fails is that user
databases often have duplicate usernames or duplicate emails between them. This can cause security
issues and unforeseen problems as the user may be loaded from one external store when the admin is
expecting the user to be loaded from another.

14.3. LDAP AND ACTIVE DIRECTORY

Red Hat Single Sign-On comes with a built-in LDAP/AD provider. It is possible to federate multiple
different LDAP servers in the same Red Hat Single Sign-On realm. You can map LDAP user attributes
into the Red Hat Single Sign-On common user model. By default, it maps username, email, first name,
and last name, but you are free to configure additional mappings. The LDAP provider also supports
password validation via LDAP/AD protocols and different storage, edit, and synchronization modes.

To configure a federated LDAP store go to the Admin Console. Click on the User Federation left menu
option. When you get to this page there is an Add Provider select box. You should see ldap within this
list. Selecting ldap will bring you to the LDAP configuration page.

14.3.1. Storage Mode

By default, Red Hat Single Sign-On will import users from LDAP into the local Red Hat Single Sign-On
user database. This copy of the user is either synchronized on demand, or through a periodic
background task. The single exception to this is the synchronization of passwords. Passwords are never
imported. Their validation is always delegated to the LDAP server. The benefits of this approach is that
all Red Hat Single Sign-On features will work as any extra per-user data that is needed can be stored
locally. The downside of this approach is that each time that a specific user is queried for the first time, a
corresponding Red Hat Single Sign-On database insert is performed. The import may also have to be
synchronized with your LDAP server. However, import synchronization is not necessary in the case that
the LDAP mappers are configured to always read particular attributes from the LDAP rather than from
the database.

Alternatively, you can choose not to import users into the Red Hat Single Sign-On user database. In this
case, the common user model that the Red Hat Single Sign-On runtime uses is backed only by the
LDAP server. This means that if LDAP doesn’t support a piece of data that a Red Hat Single Sign-On
feature needs that feature will not work. The benefit to this approach is that you do not have the
overhead of importing and synchronizing a copy of the LDAP user into the Red Hat Single Sign-On user
database.

This storage mode is controled by the Import Users switch. Set to On to import users.

NOTE

Red Hat Single Sign-On 7.4 Server Administration Guide

200

NOTE

If user import is disabled, you cannot save user profile attributes into the Red Hat Single
Sign-On database. Also you cannot save metadata except for user profile metadata that
are mapped to the LDAP. The single exception to this are user profile metadata, which
are mapped to the LDAP. This possibly includes role mappings, group mappings and
other metadata based on the configuration of your LDAP mappers. When the attempt is
made to change some of the non-LDAP mapped user data, the update of the user will
not be possible. For example you will not be able to disable the LDAP mapped user unless
the enabled flag of the user is mapped to some LDAP attribute (which is usually not the
case).

14.3.2. Edit Mode

Users, through the User Account Service, and admins through the Admin Console have the ability to
modify user metadata. Depending on your setup you may or may not have LDAP update privileges. The
Edit Mode configuration option defines the edit policy you have with your LDAP store.

READONLY

Username, email, first name, last name, and other mapped attributes will be unchangeable. Red Hat
Single Sign-On will show an error anytime anybody tries to update these fields. Also, password
updates will not be supported.

WRITABLE

Username, email, first name, last name, and other mapped attributes and passwords can all be
updated and will be synchronized automatically with your LDAP store.

UNSYNCED

Any changes to username, email, first name, last name, and passwords will be stored in Red Hat
Single Sign-On local storage. It is up to you to figure out how to synchronize back to LDAP. This
allows Red Hat Single Sign-On deployments to support updates of user metadata on a read-only
LDAP server. This option only applies when you are importing users from LDAP into the local Red Hat
Single Sign-On user database.

NOTE

When the LDAP provider is created, the set of initial LDAP mappers is created. The
mappers are configured on a "best-effort" basis based on the chosen combination of the
Vendor, Edit Mode, and Import Users switches. For example in case of UNSYNCED edit
mode, the mappers are pre-configured in a way that a particular user attribute is
preferably read from the database instead of from the LDAP. However when you later
change the edit mode, the mappers configuration will not be changed as it is not easily
possible to detect if they were manually changed in the meantime. This means that it is
recommended NOT to update the Edit Mode switch, but rather always decide on Edit
Mode when creating the LDAP provider. This applies for Import Users switch as well.

14.3.3. Other config options

Console Display Name

Name used when this provider is referenced in the admin console

Priority

The priority of this provider when looking up users or adding a user.

Sync Registrations

Does your LDAP support adding new users? Click this switch if you want new users created by Red

CHAPTER 14. USER STORAGE FEDERATION

201

Does your LDAP support adding new users? Click this switch if you want new users created by Red
Hat Single Sign-On in the admin console or the registration page to be added to LDAP.

Allow Kerberos authentication

Enable Kerberos/SPNEGO authentication in realm with users data provisioned from LDAP. More
info in Kerberos section.

Other options

The rest of the configuration options should be self explanatory. You can hover the mouse pointer
over the tooltips in the Admin Console to see some more details about them.

14.3.4. Connect to LDAP over SSL

When you configure a secured connection URL to your LDAP store (for
example,`ldaps://myhost.com:636'), Red Hat Single Sign-On will use SSL for communication with the
LDAP server. The important thing is to properly configure a truststore on the Red Hat Single Sign-On
server side, otherwise Red Hat Single Sign-On can’t trust the SSL connection to LDAP.

The global truststore for the Red Hat Single Sign-On can be configured with the Truststore SPI. Please
check out the Server Installation and Configuration Guide for more details. If you do not figure the
truststore SPI, the truststore will fall back on the default mechanism provided by Java (either the file
provided by system property javax.net.ssl.trustStore or the cacerts file from the JDK if the system
property is not set).

There is a configuration property Use Truststore SPI in the LDAP federation provider configuration,
where you can choose whether the Truststore SPI is used. By default, the value is Only for ldaps, which
is fine for most deployments. The Truststore SPI will only be used if the connection URL to LDAP starts
with ldaps.

14.3.5. Sync of LDAP users to Red Hat Single Sign-On

If you enable the Import Users option, the LDAP Provider will automatically take care of synchronization
(import) of needed LDAP users into the Red Hat Single Sign-On local database. As users log in, the
LDAP provider will import the LDAP user into the Red Hat Single Sign-On database and then
authenticate against the LDAP password. This is the only time users will be imported. If you go to the
Users left menu item in the Admin Console and click the View all users button, you will only see those
LDAP users that have been authenticated at least once by Red Hat Single Sign-On. It is implemented
this way so that this operation does not trigger an import of the entire LDAP user database.

If you want to sync all LDAP users into the Red Hat Single Sign-On database, you may configure and
enable the Sync Settings on the LDAP provider configuration page. Two types of synchronization exist:

Periodic Full sync

This type will synchronize all LDAP users into the Red Hat Single Sign-On database. Those LDAP
users, which already exist in Red Hat Single Sign-On and were changed in LDAP directly will be
updated in the Red Hat Single Sign-On database. For example, the user Mary Kelly was changed in
LDAP to Mary Smith.

Periodic Changed users sync

When syncing occurs, only those users that were created or updated after the last sync will be
updated and/or imported.

The best way to handle syncing is to click the Synchronize all users button when you first create the
LDAP provider, then set up a periodic sync of changed users.

14.3.6. LDAP Mappers

Red Hat Single Sign-On 7.4 Server Administration Guide

202

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_installation_and_configuration_guide/

LDAP mappers are listeners, which are triggered by the LDAP Provider at various points and provide
another extension point to LDAP integration. They are triggered when a user logs in via LDAP and needs
to be imported, during Red Hat Single Sign-On initiated registration, or when a user is queried from the
Admin Console. When you create an LDAP Federation provider, Red Hat Single Sign-On will
automatically provide set of built-in mappers for this provider. You are free to change this set and
create a new mapper or update/delete existing ones.

User Attribute Mapper

This allows you to specify which LDAP attribute is mapped to which attribute of Red Hat Single Sign-
On user. So, for example, you can configure that LDAP attribute mail to the attribute email in the
Red Hat Single Sign-On database. For this mapper implementation, there is always a one-to-one
mapping (one LDAP attribute is mapped to one Red Hat Single Sign-On attribute)

FullName Mapper

This allows you to specify that the full name of the user, which is saved in some LDAP attribute
(usually cn) will be mapped to firstName and lastname attributes in the Red Hat Single Sign-On
database. Having cn to contain full name of user is a common case for some LDAP deployments.

Hardcoded Attribute Mapper

This mapper adds a hardcoded attribute value to each Red Hat Single Sign-On user linked with
LDAP. This mapper can also force the values for the enabled or emailVerified user properties.

Role Mapper

This allows you to configure role mappings from LDAP into Red Hat Single Sign-On role mappings.
One Role mapper can be used to map LDAP roles (usually groups from a particular branch of LDAP
tree) into roles corresponding to either realm roles or client roles of a specified client. It’s not a
problem to configure more Role mappers for the same LDAP provider. So for example you can
specify that role mappings from groups under ou=main,dc=example,dc=org will be mapped to
realm role mappings and role mappings from groups under ou=finance,dc=example,dc=org will be
mapped to client role mappings of client finance.

Hardcoded Role Mapper

This mapper will grant a specified Red Hat Single Sign-On role to each Red Hat Single Sign-On user
from the LDAP provider.

Group Mapper

This allows you to map LDAP groups from a particular branch of an LDAP tree into groups in Red Hat
Single Sign-On. It will also propagate user-group mappings from LDAP into user-group mappings in
Red Hat Single Sign-On.

MSAD User Account Mapper

This mapper is specific to Microsoft Active Directory (MSAD). It’s able to tightly integrate the MSAD
user account state into the Red Hat Single Sign-On account state (account enabled, password is
expired, and so on). It is using the userAccountControl and pwdLastSet LDAP attributes, which are
both specific to MSAD and are not LDAP standard. For example if pwdLastSet is 0, the Red Hat
Single Sign-On user is required to update their password and there will be an UPDATE_PASSWORD
required action added to the user. If userAccountControl is 514 (disabled account) the Red Hat
Single Sign-On user is disabled as well.

Certificate Mapper

This mapper is specific for mapping X.509 certificates. It will generally be used in conjunction with
X.509 authentication and Full certificate in PEM format as an identity source. It behaves the same
way as the User Attribute Mapper, but allows Red Hat Single Sign-On to filter for an LDAP attribute
which stores a certificate in either PEM or DER format. It is generally advised to enable Always Read
Value From LDAP with this mapper.

By default, there are User Attribute mappers that map basic Red Hat Single Sign-On user attributes like
username, firstname, lastname, and email to corresponding LDAP attributes. You are free to extend

CHAPTER 14. USER STORAGE FEDERATION

203

these and provide additional attribute mappings. Admin console provides tooltips, which should help
with configuring the corresponding mappers.

14.3.7. Password Hashing

When the password of user is updated from Red Hat Single Sign-On and sent to LDAP, it is always sent
in plain-text. This is different from updating the password to built-in Red Hat Single Sign-On database,
when the hashing and salting is applied to the password before it is sent to DB. In the case of LDAP, the
Red Hat Single Sign-On relies on the LDAP server to provide hashing and salting of passwords.

LDAP servers such as Microsoft Active Directory, RHDS or FreeIPA provide this by default. Others such
as OpenLDAP or ApacheDS may store the passwords in plain-text by default unless you use the
LDAPv3 Password Modify Extended Operation as per RFC3062. The LDAPv3 Password Modify
Extended Operation must be enabled explicitly in the LDAP configuration page. See the documentation
of your LDAP server for more details.

WARNING

Always verify that user passwords are properly hashed and not stored as plaintext
by inspecting a changed directory entry using ldapsearch and base64 decode the
userPassword attribute value.

14.4. SSSD AND FREEIPA IDENTITY MANAGEMENT INTEGRATION

Red Hat Single Sign-On also comes with a built-in SSSD (System Security Services Daemon) plugin.
SSSD is part of the latest Fedora or Red Hat Enterprise Linux and provides access to multiple identity
and authentication providers. It provides benefits such as failover and offline support. To see
configuration options and for more information see the Red Hat Enterprise Linux Identity Management
documentation.

SSSD also integrates with the FreeIPA identity management (IdM) server, providing authentication and
access control. For Red Hat Single Sign-On, we benefit from this integration authenticating against PAM
services and retrieving user data from SSSD. For more information about using Red Hat Identity
Management in Linux environments, see the Red Hat Enterprise Linux Identity Management
documentation.



Red Hat Single Sign-On 7.4 Server Administration Guide

204

https://fedoraproject.org/wiki/Features/SSSD
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/sssd
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/linux_domain_identity_authentication_and_policy_guide/index

Most of the communication between Red Hat Single Sign-On and SSSD occurs through read-only D-
Bus interfaces. For this reason, the only way to provision and update users is to use the FreeIPA/IdM
administration interface. By default, like the LDAP federation provider, it is set up only to import
username, email, first name, and last name.

NOTE

Groups and roles are automatically registered, but not synchronized, so any changes
made by the Red Hat Single Sign-On administrator directly in Red Hat Single Sign-On are
not synchronized with SSSD.

Information on how to configure the FreeIPA/IdM server follows.

14.4.1. FreeIPA/IdM Server

For the sake of simplicity, a FreeIPA Docker image already available is used. To set up a server, see the
FreeIPA documentation.

Running a FreeIPA server with Docker requires this command:

docker run --name freeipa-server-container -it \
-h server.freeipa.local -e PASSWORD=YOUR_PASSWORD \
-v /sys/fs/cgroup:/sys/fs/cgroup:ro \
-v /var/lib/ipa-data:/data:Z freeipa/freeipa-server

The parameter -h with server.freeipa.local represents the FreeIPA/IdM server hostname. Be sure to
change YOUR_PASSWORD to a password of your choosing.

After the container starts, change /etc/hosts to:

x.x.x.x server.freeipa.local

If you do not make this change, you must set up a DNS server.

You must enroll your Linux machine in the IPA domain so that the SSSD federation provider is started

CHAPTER 14. USER STORAGE FEDERATION

205

https://hub.docker.com/r/freeipa/freeipa-server/
https://www.freeipa.org/page/Quick_Start_Guide

You must enroll your Linux machine in the IPA domain so that the SSSD federation provider is started
and running on Red Hat Single Sign-On:

ipa-client-install --mkhomedir -p admin -w password

To ensure that everything is working as expected, on the client machine, run:

kinit admin

You should be prompted for the password. After that, you can add users to the IPA server using this
command:

$ ipa user-add john --first=John --last=Smith --email=john@smith.com --phone=042424242 --
street="Testing street" \ --city="Testing city" --state="Testing State" --postalcode=0000000000 --
password

To force setting the user’s password, use kinit. Given the user john, you would enter this command:

kinit john

To restore normal IPA operation, you would enter these commands:

kdestroy -A
kinit admin

14.4.2. SSSD and D-Bus

As mentioned previously, the federation provider obtains the data from SSSD using D-BUS and
authentication occurs using PAM.

First, you have to install the sssd-dbus RPM, which allows information from SSSD to be transmitted over
the system bus.

$ sudo yum install sssd-dbus

You must run this provisioning script:

$.../bin/federation-sssd-setup.sh

This script makes the necessary changes to /etc/sssd/sssd.conf:

[domain/your-hostname.local]
...
ldap_user_extra_attrs = mail:mail, sn:sn, givenname:givenname,
telephoneNumber:telephoneNumber
...
[sssd]
services = nss, sudo, pam, ssh, ifp
...
[ifp]
allowed_uids = root, yourOSUsername
user_attributes = +mail, +telephoneNumber, +givenname, +sn

Red Hat Single Sign-On 7.4 Server Administration Guide

206

Also, a keycloak file is included under /etc/pam.d/:

auth required pam_sss.so
account required pam_sss.so

Ensure everything is working as expected by running dbus-send:

sudo dbus-send --print-reply --system --dest=org.freedesktop.sssd.infopipe
/org/freedesktop/sssd/infopipe org.freedesktop.sssd.infopipe.GetUserGroups string:john

You should be able to see the user’s group. If this command returns a timeout or an error, it means that
the federation provider running on Red Hat Single Sign-On will also be unable to retrieve anything.

Most of the time this occurs because the machine was not enrolled in the FreeIPA IdM server or you do
not have permission to access the SSSD service.

If you do not have permission, ensure that the user running the Red Hat Single Sign-On server is
included in the /etc/sssd/sssd.conf file in the following section:

[ifp]
allowed_uids = root, your_username

14.4.3. Enabling the SSSD Federation Provider

Red Hat Single Sign-On uses DBus-Java to communicate at a low level with D-Bus, which depends on
the Unix Sockets Library.

Before enabling the SSSD Federation provider, you must install the RPM for this library:

$ sudo yum install rh-sso7-libunix-dbus-java

For authentication with PAM Red Hat Single Sign-On uses JNA. Be sure you have this package installed:

$ sudo yum install jna

Use sssctl user-checks command to validate your setup:

$ sudo sssctl user-checks admin -s keycloak

14.5. CONFIGURING A FEDERATED SSSD STORE

After the installation, you need to configure a federated SSSD store.

To configure a federated SSSD store, complete the following steps:

1. Navigate to the Administration Console.

2. From the left menu, select User Federation.

3. From the Add Provider dropdown list, select sssd. The sssd configuration page opens.

4. Click Save.

CHAPTER 14. USER STORAGE FEDERATION

207

http://www.matthew.ath.cx/projects/java/

Now you can authenticate against Red Hat Single Sign-On using FreeIPA/IdM credentials.

14.6. CUSTOM PROVIDERS

Red Hat Single Sign-On does have an SPI for User Storage Federation that you can use to write your
own custom providers. You can find documentation for this in our Server Developer Guide.

Red Hat Single Sign-On 7.4 Server Administration Guide

208

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_developer_guide/

CHAPTER 15. AUDITING AND EVENTS
Red Hat Single Sign-On provides a rich set of auditing capabilities. Every single login action can be
recorded and stored in the database and reviewed in the Admin Console. All admin actions can also be
recorded and reviewed. There is also a Listener SPI with which plugins can listen for these events and
perform some action. Built-in listeners include a simple log file and the ability to send an email if an
event occurs.

15.1. LOGIN EVENTS

Login events occur for things like when a user logs in successfully, when somebody enters in a bad
password, or when a user account is updated. Every single event that happens to a user can be recorded
and viewed. By default, no events are stored or viewed in the Admin Console. Only error events are
logged to the console and the server’s log file. To start persisting you’ll need to enable storage. Go to
the Events left menu item and select the Config tab.

Event Configuration

To start storing events you’ll need to turn the Save Events switch to on under the Login Events
Settings.

Save Events

CHAPTER 15. AUDITING AND EVENTS

209

The Saved Types field allows you to specify which event types you want to store in the event store. The
Clear events button allows you to delete all the events in the database. The Expiration field allows you
to specify how long you want to keep events stored. Once you’ve enabled storage of login events and
decided on your settings, don’t forget to click the Save button on the bottom of this page.

To view events, go to the Login Events tab.

Login Events

Red Hat Single Sign-On 7.4 Server Administration Guide

210

As you can see, there’s a lot of information stored and, if you are storing every event, there are a lot of
events stored for each login action. The Filter button on this page allows you to filter which events you
are actually interested in.

Login Event Filter

In this screenshot, we’re filtering only Login events. Clicking the Update button runs the filter.

15.1.1. Event Types

Login events:

Login - A user has logged in.

Register - A user has registered.

Logout - A user has logged out.

Code to Token - An application/client has exchanged a code for a token.

CHAPTER 15. AUDITING AND EVENTS

211

Refresh Token - An application/client has refreshed a token.

Account events:

Social Link - An account has been linked to a social provider.

Remove Social Link - A social provider has been removed from an account.

Update Email - The email address for an account has changed.

Update Profile - The profile for an account has changed.

Send Password Reset - A password reset email has been sent.

Update Password - The password for an account has changed.

Update TOTP - The TOTP settings for an account have changed.

Remove TOTP - TOTP has been removed from an account.

Send Verify Email - An email verification email has been sent.

Verify Email - The email address for an account has been verified.

For all events there is a corresponding error event.

15.1.2. Event Listener

Event listeners listen for events and perform an action based on that event. There are two built-in
listeners that come with Red Hat Single Sign-On: Logging Event Listener and Email Event Listener.

The Logging Event Listener writes to a log file whenever an error event occurs and is enabled by default.
Here’s an example log message:

11:36:09,965 WARN [org.keycloak.events] (default task-51) type=LOGIN_ERROR, realmId=master,
 clientId=myapp,
 userId=19aeb848-96fc-44f6-b0a3-59a17570d374, ipAddress=127.0.0.1,
 error=invalid_user_credentials, auth_method=openid-connect, auth_type=code,
 redirect_uri=http://localhost:8180/myapp,
 code_id=b669da14-cdbb-41d0-b055-0810a0334607, username=admin

This logging is very useful if you want to use a tool like Fail2Ban to detect if there is a hacker bot
somewhere that is trying to guess user passwords. You can parse the log file for LOGIN_ERROR and
pull out the IP Address. Then feed this information into Fail2Ban so that it can help prevent attacks.

The Logging Event Listener logs events to the org.keycloak.events logger category. By default debug
log events are not included in server logs.

To include debug log events in server logs, edit the standalone.xml file and change the log level used
by the Logging Event listener. Alternately, you can configure the log level for org.keycloak.events.

For example, to change the log level add the following:

<subsystem xmlns="urn:jboss:domain:logging:...">
 ...
 <logger category="org.keycloak.events">

Red Hat Single Sign-On 7.4 Server Administration Guide

212

To change the log level used by the Logging Event listener, add the following:

Valid values for the log levels are debug, info, warn, error, and fatal.

The Email Event Listener sends an email to the user’s account when an event occurs.

Currently, the Email Event Listener supports the following events:

Login Error

Update Password

Update TOTP

Remove TOTP

To enable the Email Listener go to the Config tab and click on the Event Listeners field. This will show
a drop down list box where you can select email.

You can exclude one or more events by editing the standalone.xml, standalone-ha.xml, or
domain.xml that comes with your distribution and adding for example:

You can also set up a maximum length of the Event detail stored in the database by editing
standalone.xml, standalone-ha.xml, or domain.xml. This setting can be useful in case some field (e.g.
redirect_uri) is very long. Here is an example of defining the maximum length.:

 <level name="DEBUG"/>
 </logger>
</subsystem>

<subsystem xmlns="urn:jboss:domain:keycloak-server:...">
 ...
 <spi name="eventsListener">
 <provider name="jboss-logging" enabled="true">
 <properties>
 <property name="success-level" value="info"/>
 <property name="error-level" value="error"/>
 </properties>
 </provider>
 </spi>
</subsystem>

<spi name="eventsListener">
 <provider name="email" enabled="true">
 <properties>
 <property name="exclude-events" value="
["UPDATE_TOTP","REMOVE_TOTP"]"/>
 </properties>
 </provider>
</spi>

<spi name="eventsStore">
 <provider name="jpa" enabled="true">
 <properties>
 <property name="max-detail-length" value="1000"/>

CHAPTER 15. AUDITING AND EVENTS

213

See the Server Installation and Configuration Guide for more details on where the standalone.xml,
standalone-ha.xml, or domain.xml file lives.

15.2. ADMIN EVENTS

Any action an admin performs within the admin console can be recorded for auditing purposes. The
Admin Console performs administrative functions by invoking on the Red Hat Single Sign-On REST
interface. Red Hat Single Sign-On audits these REST invocations. The resulting events can then be
viewed in the Admin Console.

To enable auditing of Admin actions, go to the Events left menu item and select the Config tab.

Event Configuration

In the Admin Events Settings section, turn on the Save Events switch.

Admin Event Configuration

 </properties>
 </provider>
</spi>

Red Hat Single Sign-On 7.4 Server Administration Guide

214

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_installation_and_configuration_guide/

The Include Representation switch will include any JSON document that is sent through the admin
REST API. This allows you to view exactly what an admin has done, but can lead to a lot of information
stored in the database. The Clear admin events button allows you to wipe out the current information
stored.

To view the admin events go to the Admin Events tab.

Admin Events

If the Details column has a Representation box, you can click on that to view the JSON that was sent
with that operation.

Admin Representation

CHAPTER 15. AUDITING AND EVENTS

215

You can also filter for the events you are interested in by clicking the Filter button.

Admin Event Filter

Red Hat Single Sign-On 7.4 Server Administration Guide

216

CHAPTER 16. EXPORT AND IMPORT
Red Hat Single Sign-On has the ability to export and import the entire database. This can be especially
useful if you want to migrate your whole Red Hat Single Sign-On database from one environment to
another or migrate to a different database (for example from MySQL to Oracle). Export and import is
triggered at server boot time and its parameters are passed in via Java system properties. It is important
to note that because import and export happens at server startup, no other actions should be taken on
the server or the database while this happens.

You can export/import your database either to:

Directory on local filesystem

Single JSON file on your filesystem

When importing using the directory strategy, note that the files need to follow the naming convention
specified below. If you are importing files which were previously exported, the files already follow this
convention.

<REALM_NAME>-realm.json, such as "acme-roadrunner-affairs-realm.json" for the realm named
"acme-roadrunner-affairs"

<REALM_NAME>-users-<INDEX>.json, such as "acme-roadrunner-affairs-users-0.json" for the
first users file of the realm named "acme-roadrunner-affairs"

If you export to a directory, you can also specify the number of users that will be stored in each JSON
file.

NOTE

If you have bigger amount of users in your database (500 or more), it’s highly
recommended to export into directory rather than to single file. Exporting into single file
may lead to the very big file. Also the directory provider is using separate transaction for
each "page" (file with users), which leads to much better performance. Default count of
users per file (and transaction) is 50, which showed us best performance, but you have
possibility to override (See below). Exporting to single file is using one transaction per
whole export and one per whole import, which results in bad performance with large
amount of users.

To export into unencrypted directory you can use:

bin/standalone.sh -Dkeycloak.migration.action=export
-Dkeycloak.migration.provider=dir -Dkeycloak.migration.dir=<DIR TO EXPORT TO>

To export into single JSON file you can use:

bin/standalone.sh -Dkeycloak.migration.action=export
-Dkeycloak.migration.provider=singleFile -Dkeycloak.migration.file=<FILE TO EXPORT TO>

And similarly for import just use -Dkeycloak.migration.action=import instead of export . Here’s an
example of importing:

CHAPTER 16. EXPORT AND IMPORT

217

bin/standalone.sh -Dkeycloak.migration.action=import
-Dkeycloak.migration.provider=singleFile -Dkeycloak.migration.file=<FILE TO IMPORT>
-Dkeycloak.migration.strategy=OVERWRITE_EXISTING

Other available options are:

-Dkeycloak.migration.realmName

This property is used if you want to export just one specified realm instead of all. If not specified, then
all realms will be exported.

-Dkeycloak.migration.usersExportStrategy

This property is used to specify where users are exported. Possible values are:

DIFFERENT_FILES - Users will be exported into different files according to the maximum
number of users per file. This is default value.

SKIP - Exporting of users will be skipped completely.

REALM_FILE - All users will be exported to same file with the realm settings. (The result will
be a file like "foo-realm.json" with both realm data and users.)

SAME_FILE - All users will be exported to same file but different from the realm file. (The
result will be a file like "foo-realm.json" with realm data and "foo-users.json" with users.)

-Dkeycloak.migration.usersPerFile

This property is used to specify the number of users per file (and also per DB transaction). It’s 50 by
default. It’s used only if usersExportStrategy is DIFFERENT_FILES

-Dkeycloak.migration.strategy

This property is used during import. It can be used to specify how to proceed if a realm with same
name already exists in the database where you are going to import data. Possible values are:

IGNORE_EXISTING - Ignore importing if a realm of this name already exists.

OVERWRITE_EXISTING - Remove existing realm and import it again with new data from the
JSON file. If you want to fully migrate one environment to another and ensure that the new
environment will contain the same data as the old one, you can specify this.

When importing realm files that weren’t exported before, the option keycloak.import can be used. If
more than one realm file needs to be imported, a comma separated list of file names can be specified.
This is more appropriate than the cases before, as this will happen only after the master realm has been
initialized. Examples:

-Dkeycloak.import=/tmp/realm1.json

-Dkeycloak.import=/tmp/realm1.json,/tmp/realm2.json

16.1. ADMIN CONSOLE EXPORT/IMPORT

Import of most resources can be performed from the admin console as well as export of most resources.
Export of users is not supported.

NOTE

Red Hat Single Sign-On 7.4 Server Administration Guide

218

NOTE

Attributes containing secrets or private information will be masked in export file. Export
files obtained via Admin Console are thus not appropriate for backups or data transfer
between servers. Only boot-time exports are appropriate for that.

The files created during a "startup" export can also be used to import from the admin UI. This way, you
can export from one realm and import to another realm. Or, you can export from one server and import
to another.

NOTE

The admin console export/import allows just one realm per file.

WARNING

The admin console import allows you to "overwrite" resources if you choose. Use
this feature with caution, especially on a production system. Export .json files from
Admin Console Export operation are generally not appropriate for data import since
they contain invalid values for secrets.

WARNING

The admin console export allows you to export clients, groups, and roles. If there is a
great number of any of these assets in your realm, the operation may take some
time to complete. During that time server may not be responsive to user requests.
Use this feature with caution, especially on a production system.





CHAPTER 16. EXPORT AND IMPORT

219

CHAPTER 17. USING A VAULT TO OBTAIN SECRETS
Several fields in the administration support obtaining the value of a secret from an external vault.

To obtain a secret from a vault instead of entering it directly, enter the following specially crafted string
into the appropriate field: ${vault.key} where you replace the key with the name of the secret as
recognized by the vault.

In order to prevent secrets from leaking across realms, implementations may combine the realm name
with the key obtained from the vault expression. This means that the key won’t directly map to an entry
in the vault, but rather be used to create the final entry name according to the algorithm used to
combine it with the realm name.

Currently, the secret can be obtained from the vault in the following fields:

SMTP password

In realm SMTP settings

LDAP bind credential

In LDAP settings of LDAP-based user federation.

OIDC identity provider secret

In Client Secret inside identity provider OpenID Connect Config

To use a vault, a vault provider must be registered within Red Hat Single Sign-On. It is possible to either
use a built-in provider described below or implement your own provider. See the Server Developer
Guide for more information.

NOTE

There is at most one vault provider active per Red Hat Single Sign-On instance at any
given time, and the vault provider in each instance within the cluster has to be configured
consistently.

17.1. KUBERNETES / OPENSHIFT FILES PLAINTEXT VAULT PROVIDER

Red Hat Single Sign-On supports vault implementation for Kubernetes secrets. These secrets can be
mounted as data volumes, and they appear as a directory with a flat file structure, where each secret is
represented by a file whose name is the secret name, and contents of that file is the secret value.

The files within this directory have to be named as secret name prefixed by realm name and an
underscore. All underscores within the secret name or the realm name have to be doubled in the file
name. For example, for a field within a realm called sso_realm, a reference to a secret with name secret-
name would be written as ${vault.secret-name}, and the file name looked up would be
sso__realm_secret-name (note the underscore doubled in realm name).

To use this type of secret store, you have to declare the files-plaintext vault provider in standalone.xml,
and set its parameter for the directory that contains the mounted volume. The following example shows
the files-plaintext provider with the directory where vault files are searched for set to
standalone/configuration/vault relative to Red Hat Single Sign-On base directory:

<spi name="vault">
 <default-provider>files-plaintext</default-provider>
 <provider name="files-plaintext" enabled="true">
 <properties>

Red Hat Single Sign-On 7.4 Server Administration Guide

220

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_developer_guide/
https://kubernetes.io/docs/concepts/configuration/secret/

Here is the equivalent configuration using CLI commands:

17.2. ELYTRON CREDENTIAL STORE VAULT PROVIDER

Red Hat Single Sign-On also provides support for reading secrets stored in an Elytron credential store.
The elytron-cs-keystore vault provider is capable of retrieving secrets from the keystore-based
implementation of the credential store, which is also the default implementation provided by Elytron.

This credential store is backed by a keystore (JCEKS is the default format, but it is possible to use other
formats such as PKCS12) and users can create and manage the store contents using either the elytron
subsystem in WildFly/JBoss EAP, or using the elytron-tool.sh script.

To use this provider, you have to declare the elytron-cs-keystore in the keycloak-server subsystem
and set the location and master secret of the keystore that was created by Elytron. An example of the
minimal configuration for the provider follows:

If the underlying keystore has a format other than JCEKS, this format has to be informed using the
keyStoreType:

For the secret, the elytron-cs-keystore provider supports both clear-text values (as shown above) and
also values that were masked using the elytron-tool.sh script:

 <property name="dir" value="${jboss.home.dir}/standalone/configuration/vault/" />
 </properties>
 </provider>
</spi>

/subsystem=keycloak-server/spi=vault/:add
/subsystem=keycloak-server/spi=vault/provider=files-plaintext/:add(enabled=true,properties={dir =>
"${jboss.home.dir}/standalone/configuration/vault"})

<spi name="vault">
 <default-provider>elytron-cs-keystore</default-provider>
 <provider name="elytron-cs-keystore" enabled="true">
 <properties>
 <property name="location" value="${jboss.home.dir}/standalone/configuration/vault/credential-
store.jceks" />
 <property name="secret" value="secretpw1!"/>
 </properties>
 </provider>
</spi>

<spi name="vault">
 <default-provider>elytron-cs-keystore</default-provider>
 <provider name="elytron-cs-keystore" enabled="true">
 <properties>
 <property name="location" value="${jboss.home.dir}/standalone/configuration/vault/credential-
store.p12" />
 <property name="secret" value="secretpw1!"/>
 <property name="keyStoreType" value="PKCS12"/>
 </properties>
 </provider>
</spi>

CHAPTER 17. USING A VAULT TO OBTAIN SECRETS

221

For more detailed information on how to create/manage elytron credential stores, as well as how to
mask keystore secrets, please refer to the Elytron documentation.

NOTE

The elytron-cs-keystore vault provider has been implemented as a WildFly extension and
as such is only available if the Red Hat Single Sign-On server runs on WildFly/JBoss EAP.

17.3. KEY RESOLVERS

All built-in providers support the configuration of one or more key resolvers. A key resolver essentially
implements the algorithm or strategy for combining the realm name with the key (as obtained from the
${vault.key} expression} into the final entry name that will be used to retrieve the secret from the vault.
The keyResolvers property is used to configure the resolvers that are to be used by the provider. The
value is a comma-separated list of resolver names. An example of configuration for the files-plaintext
provider follows:

The resolvers are executed in the same order that they are declared in the configuration. For each
resolver, the final entry name produced by the resolver that combines the realm with the vault key is
used to search for the secret in the vault. If a secret is found, it is immediately returned. If not, the next
resolver is used and this continues until a non-empty secret is found or all resolvers have been tried, in
which case an empty secret is returned. In the example above, first the REALM_UNDERSCORE_KEY
resolver is used. If an entry is found in the vault with the name it produces, it is returned. If not, then the
KEY_ONLY resolver is used. Again, if an entry is found in the vault with the name it produces, it is
returned. If not, an empty secret is returned since there are no more resolvers to be used.

A list of the currently available resolvers follows:

KEY_ONLY: the realm name is ignored and the key from the vault expression is used as is.

REALM_UNDERSCORE_KEY: the realm and key are combined using an underscore _
character. Occurrences of underscore in either the realm or key are escaped by another
underscore character. So if the realm is called master_realm and the key is smtp_key, the
combined key will be master__realm_smtp__key.

REALM_FILESEPARATOR_KEY: the realm and key are combined using the platform file
separator character. This is useful in situations where the keys are grouped by realm using a
directory structure.

<spi name="vault">
 ...
 <property name="secret" value="MASK-3u2HNQaMogJJ8VP7J6gRIl;12345678;321"/>
 ...
</spi>

<spi name="vault">
 <default-provider>files-plaintext</default-provider>
 <provider name="files-plaintext" enabled="true">
 <properties>
 <property name="dir" value="${jboss.home.dir}/standalone/configuration/vault/" />
 <property name="keyResolvers" value="REALM_UNDERSCORE_KEY, KEY_ONLY"/>
 </properties>
 </provider>
</spi>

Red Hat Single Sign-On 7.4 Server Administration Guide

222

If no resolver is configured for the built-in providers, the REALM_UNDERSCORE_KEY is selected by
default.

17.4. SAMPLE CONFIGURATION

The following is an example of configuring a vault and credential store. The procedure involves two
parts:

Creating the credential store and a vault, where the credential store and vault passwords are in
plain text.

Updating the credential store and vault to have the password use a mask provided by elytron-
tool.sh.

In this example, the test target used is an LDAP instance with BIND DN credential: secret12. The
target is mapped using user federation in the realm ldaptest.

17.4.1. Configuring the credential store and vault without a mask

You create the credential store and a vault where the credential store and vault passwords are in plain
text.

Prerequisites

A running LDAP instance has BIND DN credential: secret12.

The alias uses the format <realm-name>_< key-value> when using the default key resolver. In this
case, the instance is running in the realm ldaptest and ldaptest_ldap_secret is the alias that
corresponds to the value ldap_secret in that realm.

NOTE

The resolver replaces underscore characters with double underscore characters in the
realm and key names. For example, for the key ldaptest_ldap_secret, the final key will be
ldaptest_ldap__secret.

Procedure

1. Create the Elytron credential store.

2. Add an alias to the credential store.

Notice how the resolver causes the key ldaptest_ldap__secret to use double underscores.

3. List the aliases from the credential store to inspect the contents of the keystore that is
produced by Elytron.

[standalone@localhost:9990 /] /subsystem=elytron/credential-store=test-
store:add(create=true, location=/home/test/test-store.p12, credential-reference={clear-
text=testpwd1!},implementation-properties={keyStoreType=PKCS12})

/subsystem=elytron/credential-store=test-store:add-alias(alias=ldaptest_ldap__secret,secret-
value=secret12)

CHAPTER 17. USING A VAULT TO OBTAIN SECRETS

223

4. Configure the vault SPI in Red Hat Single Sign-On.

At this point, the vault and credentials store passwords are not masked.

5. In the LDAP provider, replace binDN credential with ${vault.ldap_secret}.

6. Test your LDAP connection.

LDAP Vault

17.4.2. Masking the password in the credential store and vault

You can now update the credential store and vault to have passwords that use a mask provided by
elytron-tool.sh.

1. Create a masked password using values for the salt and the iteration parameters:

keytool -list -keystore /home/test/test-store.p12 -storetype PKCS12 -storepass testpwd1!
Keystore type: PKCS12
Keystore provider: SUN

Your keystore contains 1 entries

ldaptest_ldap__secret/passwordcredential/clear/, Oct 12, 2020, SecretKeyEntry,

/subsystem=keycloak-server/spi=vault:add(default-provider=elytron-cs-keystore)

/subsystem=keycloak-server/spi=vault/provider=elytron-cs-keystore:add(enabled=true,
properties={location=>/home/test/test-store.p12, secret=>testpwd1!,
keyStoreType=>PKCS12})

 <spi name="vault">
 <default-provider>elytron-cs-keystore</default-provider>
 <provider name="elytron-cs-keystore" enabled="true">
 <properties>
 <property name="location" value="/home/test/test-store.p12"/>
 <property name="secret" value="testpwd1!"/>
 <property name="keyStoreType" value="PKCS12"/>
 </properties>
 </provider>
 </spi>

 <credential-stores>
 <credential-store name="test-store" location="/home/test/test-store.p12"
create="true">
 <implementation-properties>
 <property name="keyStoreType" value="PKCS12"/>
 </implementation-properties>
 <credential-reference clear-text="testpwd1!"/>
 </credential-store>
 </credential-stores>

Red Hat Single Sign-On 7.4 Server Administration Guide

224

For example:

2. Update the Elytron credential store configuration to use the masked password.

3. Update the Red Hat Single Sign-On vault configuration to use the masked password.

The vault and credential store are now masked:

4. You can now test the connection to the LDAP using ${vault.ldap_secret}.

Additional resources

For more information about the Elytron tool, see Using Credential Stores with Elytron Client .

$ EAP_HOME/bin/elytron-tool.sh mask --salt SALT --iteration ITERATION_COUNT --secret
PASSWORD

elytron-tool.sh mask --salt 12345678 --iteration 123 --secret testpwd1!
MASK-3BUbFEyWu0lRAu8.fCqyUk;12345678;123

/subsystem=elytron/credential-store=cs-store:write-attribute(name=credential-
reference.clear-text,value="MASK-3BUbFEyWu0lRAu8.fCqyUk;12345678;123")

/subsystem=keycloak-server/spi=vault/provider=elytron-cs-keystore:remove()
/subsystem=keycloak-server/spi=vault/provider=elytron-cs-keystore:add(enabled=true,
properties={location=>/home/test/test-store.p12, secret=>”MASK-
3BUbFEyWu0lRAu8.fCqyUk;12345678;123”, keyStoreType=>PKCS12})

 <spi name="vault">
 <default-provider>elytron-cs-keystore</default-provider>
 <provider name="elytron-cs-keystore" enabled="true">
 <properties>
 <property name="location" value="/home/test/test-store.p12"/>
 <property name="secret" value="MASK-
3BUbFEyWu0lRAu8.fCqyUk;12345678;123"/>
 <property name="keyStoreType" value="PKCS12"/>
 </properties>
 </provider>
 </spi>

 <credential-stores>
 <credential-store name="test-store" location="/home/test/test-store.p12"
create="true">
 <implementation-properties>
 <property name="keyStoreType" value="PKCS12"/>
 </implementation-properties>
 <credential-reference clear-text="MASK-
3BUbFEyWu0lRAu8.fCqyUk;12345678;123"/>
 </credential-store>
 </credential-stores>

CHAPTER 17. USING A VAULT TO OBTAIN SECRETS

225

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html/how_to_configure_server_security/securely_storing_credentials#cred_store_elytron_client

CHAPTER 18. USER ACCOUNT SERVICE
Red Hat Single Sign-On has a built-in User Account Service which every user has access to. This service
allows users to manage their account, change their credentials, update their profile, and view their login
sessions. The URL to this service is <server-root>/auth/realms/{realm-name}/account.

Account Service

The initial page is the user’s profile, which is the Account left menu item. This is where they specify basic
data about themselves. This screen can be extended to allow the user to manage additional attributes.
See the Server Developer Guide for more details.

The Password left menu item allows the user to change their password.

Password Update

The Authenticator menu item allows the user to set up OTP if they desire. This will only show up if OTP
is a valid authentication mechanism for your realm. Users are given directions to install FreeOTP or
Google Authenticator on their mobile device to be their OTP generator. The QR code you see in the
screen shot can be scanned into the FreeOTP or Google Authenticator mobile application for nice and
easy setup.

OTP Authenticator

Red Hat Single Sign-On 7.4 Server Administration Guide

226

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_developer_guide/
https://freeotp.github.io/
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2

The Federated Identity menu item allows the user to link their account with an identity broker (this is
usually used to link social provider accounts together). This will show the list of external identity
providers you have configured for your realm.

Federated Identity

The Sessions menu item allows the user to view and manage which devices are logged in and from
where. They can perform logout of these sessions from this screen too.

Sessions

CHAPTER 18. USER ACCOUNT SERVICE

227

The Applications menu item shows users which applications they have access to.

Applications

18.1. THEMEABLE

Like all UIs in Red Hat Single Sign-On, the User Account Service is completely themeable and
internationalizable. See the Server Developer Guide for more details.

Red Hat Single Sign-On 7.4 Server Administration Guide

228

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/server_developer_guide/

CHAPTER 19. THREAT MODEL MITIGATION
This chapter discusses possible security vulnerabilities any authentication server could have and how
Red Hat Single Sign-On mitigates those vulnerabilities. A good list of potential vulnerabilities and what
security implementations should do to mitigate them can be found in the OAuth 2.0 Threat Model
document put out by the IETF. Many of those vulnerabilities are discussed here.

19.1. HOST

Red Hat Single Sign-On uses the public hostname for a number of things. For example, in the token
issuer fields and URLs sent in password reset emails.

By default, the hostname is based on the request headers and there is no check to make sure this
hostname is valid.

If you are not using a load balancer or proxy in front of Red Hat Single Sign-On that prevents invalid
host headers, you must explicitly configure what hostnames should be accepted.

The Hostname SPI provides a way to configure the hostname for a request. The out of the box provider
allows setting a fixed URL for frontend requests, while allowing backend requests to be based on the
request URI. It is also possible to develop your own provider in the case the built-in provider does not
provide the functionality needed.

19.2. ADMIN ENDPOINTS AND CONSOLE

The Red Hat Single Sign-On administrative REST API and the web console are exposed by default on
the same port as non-admin usage. If access to the admin console is not needed externally, we
recommend not exposing the admin endpoints on the Internet.

This can be achieved either directly in Red Hat Single Sign-On or with a proxy such as Apache or nginx.

For the proxy option please follow the documentation for the proxy. You need to control access to any
requests to /auth/admin.

To achieve this directly in Red Hat Single Sign-On there are a few options. This document covers two
options, IP restriction and separate ports.

Once the admin console is no longer accessible on the frontend URL of Keycloak, you need to configure
a fixed admin URL in the default hostname provider.

19.2.1. IP Restriction

It is possible to restrict access to /auth/admin to only specific IP addresses.

The following example restricts access to /auth/admin to IP addresses in the range 10.0.0.1 to
10.0.0.255.

<subsystem xmlns="urn:jboss:domain:undertow:10.0">
 ...
 <server name="default-server">
 ...
 <host name="default-host" alias="localhost">
 ...
 <filter-ref name="ipAccess"/>
 </host>

CHAPTER 19. THREAT MODEL MITIGATION

229

https://tools.ietf.org/html/rfc6819

Equivalent configuration using CLI commands:

NOTE

For IP restriction if you are using a proxy it is important to configure it correctly to make
sure Red Hat Single Sign-On receives the client IP address and not the proxy IP address

19.2.2. Port Restriction

It is possible to expose /auth/admin to a different port that is not exposed on the Internet.

The following example exposes /auth/admin on port 8444 while not permitting access with the default
port 8443.

 </server>
 <filters>
 <expression-filter name="ipAccess" expression="path-prefix('/auth/admin') -> ip-access-
control(acl={'10.0.0.0/24 allow'})"/>
 </filters>
 ...
</subsystem>

/subsystem=undertow/configuration=filter/expression-filter=ipAccess:add(,expression="path-
prefix[/auth/admin] -> ip-access-control(acl={'10.0.0.0/24 allow'})")
/subsystem=undertow/server=default-server/host=default-host/filter-ref=ipAccess:add()

<subsystem xmlns="urn:jboss:domain:undertow:10.0">
 ...
 <server name="default-server">
 ...
 <https-listener name="https" socket-binding="https" security-realm="ApplicationRealm" enable-
http2="true"/>
 <https-listener name="https-admin" socket-binding="https-admin" security-
realm="ApplicationRealm" enable-http2="true"/>
 <host name="default-host" alias="localhost">
 ...
 <filter-ref name="portAccess"/>
 </host>
 </server>
 <filters>
 <expression-filter name="portAccess" expression="path-prefix('/auth/admin') and not equals(%p,
8444) -> response-code(403)"/>
 </filters>
 ...
</subsystem>

...

<socket-binding-group name="standard-sockets" default-interface="public" port-
offset="${jboss.socket.binding.port-offset:0}">
 ...
 <socket-binding name="https" port="${jboss.https.port:8443}"/>

Red Hat Single Sign-On 7.4 Server Administration Guide

230

Equivalent configuration using CLI commands:

19.3. PASSWORD GUESS: BRUTE FORCE ATTACKS

A brute force attack happens when an attacker is trying to guess a user’s password. Red Hat Single Sign-
On has some limited brute force detection capabilities. If turned on, a user account will be temporarily
disabled if a threshold of login failures is reached. To enable this feature go to the Realm Settings left
menu item, click on the Security Defenses tab, then additional go to the Brute Force Detection sub-
tab.

NOTE

Brute Force Detection is disabled by default. Enabling this feature is highly
recommended to protect against this type of attack.

Brute Force Detection

There are 2 different configurations for brute force detection; permanent lockout and temporary
lockout. Permanent lockout will disable a user’s account after an attack is detected; the account will be
disabled until an administrator renables it. Temporary lockout will disable a user’s account for a time

 <socket-binding name="https-admin" port="${jboss.https.port:8444}"/>
 ...
</socket-binding-group>

/socket-binding-group=standard-sockets/socket-binding=https-admin/:add(port=8444)

/subsystem=undertow/server=default-server/https-listener=https-admin:add(socket-binding=https-
admin, security-realm=ApplicationRealm, enable-http2=true)

/subsystem=undertow/configuration=filter/expression-filter=portAccess:add(,expression="path-
prefix('/auth/admin') and not equals(%p, 8444) -> response-code(403)")
/subsystem=undertow/server=default-server/host=default-host/filter-ref=portAccess:add()

CHAPTER 19. THREAT MODEL MITIGATION

231

period after an attack is detected; the time period for which the account is disabled increases the longer
the attack continues.

Common Parameters

Max Login Failures

Maximum number of login failures permitted. Default value is 30.

Quick Login Check Milli Seconds

Minimum time required between login attempts. Default is 1000.

Minimum Quick Login Wait

Minimum amount of time the user will be temporarily disabled if logins attempts are quicker than
Quick Login Check Milli Seconds . Default is 1 minute.

Temporary Lockout Parameters

Wait Increment

Amount of time added to the time a user is temporarily disabled after each time Max Login Failures
is reached. Default is 1 minute.

Max Wait

The maximum amount of time for which a user will be temporarily disabled. Default is 15 minutes.

Failure Reset Time

Time after which the failure count will be reset; timer runs from the last failed login. Default is 12
hours.

Permanent Lockout Algorithm

1. On successful login

a. Reset count

2. On failed login

a. Increment count

b. If count greater than Max Login Failures

i. Permanently disable user

c. Else if time between this failure and the last failure is less than Quick Login Check Milli
Seconds

i. Temporarily disable user for Minimum Quick Login Wait

When a user is disabled they can not login until an administrator enables the user; enabling an account
resets count.

Temporary Lockout Algorithm

1. On successful login

a. Reset count

2. On failed login

a. If time between this failure and the last failure is greater than Failure Reset Time

Red Hat Single Sign-On 7.4 Server Administration Guide

232

i. Reset count

b. Increment count

c. Calculate wait using Wait Increment * (count / Max Login Failures). The division is an
integer division so will always be rounded down to a whole number

d. If wait equals 0 and time between this failure and the last failure is less than Quick Login
Check Milli Seconds then set wait to Minimum Quick Login Wait instead

i. Temporarily disable the user for the smaller of wait and Max Wait seconds

Login failures when a user is temporarily disabled do not increment count.

The downside of Red Hat Single Sign-On brute force detection is that the server becomes vulnerable to
denial of service attacks. An attacker can simply try to guess passwords for any accounts it knows and
these account will be disabled. Eventually we will expand this functionality to take client IP address into
account when deciding whether to block a user.

A better option might be a tool like Fail2Ban. You can point this service at the Red Hat Single Sign-On
server’s log file. Red Hat Single Sign-On logs every login failure and client IP address that had the
failure. Fail2Ban can be used to modify firewalls after it detects an attack to block connections from
specific IP addresses.

19.3.1. Password Policies

Another thing you should do to prevent password guess is to have a complex enough password policy to
ensure that users pick hard to guess passwords. See the Password Policies chapter for more details.

The best way to prevent password guessing though is to set up the server to use a one-time-password
(OTP).

19.4. CLICKJACKING

With clickjacking, a malicious site loads the target site in a transparent iFrame overlaid on top of a set of
dummy buttons that are carefully constructed to be placed directly under important buttons on the
target site. When a user clicks a visible button, they are actually clicking a button (such as a "login"
button) on the hidden page. An attacker can steal a user’s authentication credentials and access their
resources.

By default, every response by Red Hat Single Sign-On sets some specific browser headers that can
prevent this from happening. Specifically, it sets X-FRAME_OPTIONS and Content-Security-Policy.
You should take a look at the definition of both of these headers as there is a lot of fine-grain browser
access you can control. In the admin console you can specify the values these headers will have. Go to
the Realm Settings left menu item and click the Security Defenses tab and make sure you are on the
Headers sub-tab.

CHAPTER 19. THREAT MODEL MITIGATION

233

http://www.fail2ban.org/wiki/index.php/Main_Page
https://tools.ietf.org/html/rfc7034
http://www.w3.org/TR/CSP/

By default, Red Hat Single Sign-On only sets up a same-origin policy for iframes.

19.5. SSL/HTTPS REQUIREMENT

If you do not use SSL/HTTPS for all communication between the Red Hat Single Sign-On auth server
and the clients it secures, you will be very vulnerable to man in the middle attacks. OAuth 2.0/OpenID
Connect uses access tokens for security. Without SSL/HTTPS, attackers can sniff your network and
obtain an access token. Once they have an access token they can do any operation that the token has
been given permission for.

Red Hat Single Sign-On has three modes for SSL/HTTPS. SSL can be hard to set up, so out of the box,
Red Hat Single Sign-On allows non-HTTPS communication over private IP addresses like localhost,
192.168.x.x, and other private IP addresses. In production, you should make sure SSL is enabled and
required across the board.

On the adapter/client side, Red Hat Single Sign-On allows you to turn off the SSL trust manager. The
trust manager ensures identity the client is talking to. It checks the DNS domain name against the
server’s certificate. In production you should make sure that each of your client adapters is configured to
use a truststore. Otherwise you are vulnerable to DNS man in the middle attacks.

19.6. CSRF ATTACKS

Cross-site request forgery (CSRF) is a web-based attack whereby HTTP requests are transmitted from
a user that the web site trusts or has authenticated with(e.g. via HTTP redirects or HTML forms). Any
site that uses cookie based authentication is vulnerable to these types of attacks. These attacks are
mitigated by matching a state cookie against a posted form or query parameter.

The OAuth 2.0 login specification requires that a state cookie be used and matched against a
transmitted state parameter. Red Hat Single Sign-On fully implements this part of the specification so
all logins are protected.

The Red Hat Single Sign-On Admin Console is a pure JavaScript/HTML5 application that makes REST
calls to the backend Red Hat Single Sign-On admin REST API. These calls all require bearer token
authentication and are made via JavaScript Ajax calls. CSRF does not apply here. The admin REST API
can also be configured to validate the CORS origins as well.

Red Hat Single Sign-On 7.4 Server Administration Guide

234

The only part of Red Hat Single Sign-On that really falls into CSRF is the user account management
pages. To mitigate this Red Hat Single Sign-On sets a state cookie and also embeds the value of this
state cookie within hidden form fields or query parameters in action links. This query or form parameter
is checked against the state cookie to verify that the call was made by the user.

19.7. UNSPECIFIC REDIRECT URIS

For the Authorization Code Flow, if you register redirect URIs that are too general, then it would be
possible for a rogue client to impersonate a different client that has a broader scope of access. This
could happen for instance if two clients live under the same domain. So, it’s a good idea to make your
registered redirect URIs as specific as feasible.

19.8. COMPROMISED ACCESS AND REFRESH TOKENS

There are a few things you can do to mitigate access tokens and refresh tokens from being stolen. The
most important thing is to enforce SSL/HTTPS communication between Red Hat Single Sign-On and
its clients and applications. It might seem obvious, but since Red Hat Single Sign-On does not have SSL
enabled by default, an administrator might not realize that it is necessary.

Another thing you can do to mitigate leaked access tokens is to shorten their lifespans. You can specify
this within the timeouts page. Short lifespans (minutes) for access tokens for clients and applications to
refresh their access tokens after a short amount of time. If an admin detects a leak, they can logout all
user sessions to invalidate these refresh tokens or set up a revocation policy. Making sure refresh
tokens always stay private to the client and are never transmitted ever is very important as well.

You can also mitigate against leaked access tokens and refresh tokens by issuing these tokens as
holder-of-key tokens. See OAuth 2.0 Mutual TLS Client Certificate Bound Access Token to learn how.

If an access token or refresh token is compromised, the first thing you should do is go to the admin
console and push a not-before revocation policy to all applications. This will enforce that any tokens
issued prior to that date are now invalid. Pushing new not-before policy will also ensure that application
will be forced to download new public keys from Red Hat Single Sign-On, hence it is also useful for the
case, when you think that realm signing key was compromised. More info in the keys chapter.

You can also disable specific applications, clients, and users if you feel that any one of those entities is
completely compromised.

19.9. COMPROMISED AUTHORIZATION CODE

For the OIDC Auth Code Flow , it would be very hard for an attacker to compromise Red Hat Single
Sign-On authorization codes. Red Hat Single Sign-On generates a cryptographically strong random
value for its authorization codes so it would be very hard to guess an access token. An authorization
code can only be used once to obtain an access token. In the admin console you can specify how long an
authorization code is valid for on the timeouts page. This value should be really short, as short as a few
seconds and just long enough for the client to make the request to obtain a token from the code.

You can also mitigate against leaked autorization codes by applying PKCE to clients. See Proof Key for
Code Exchange (PKCE) to learn how.

19.10. OPEN REDIRECTORS

An attacker could use the end-user authorization endpoint and the redirect URI parameter to abuse the
authorization server as an open redirector. An open redirector is an endpoint using a parameter to
automatically redirect a user agent to the location specified by the parameter value without any

CHAPTER 19. THREAT MODEL MITIGATION

235

validation. An attacker could utilize a user’s trust in an authorization server to launch a phishing attack.

Red Hat Single Sign-On requires that all registered applications and clients register at least one
redirection URI pattern. Any time a client asks Red Hat Single Sign-On to perform a redirect (on login or
logout for example), Red Hat Single Sign-On will check the redirect URI vs. the list of valid registered
URI patterns. It is important that clients and applications register as specific a URI pattern as possible to
mitigate open redirector attacks.

19.11. PASSWORD DATABASE COMPROMISED

Red Hat Single Sign-On does not store passwords in raw text. It stores a hash of them using the PBKDF2
algorithm. It actually uses a default of 20,000 hashing iterations! This is the security community’s
recommended number of iterations. This can be a rather large performance hit on your system as
PBKDF2, by design, gobbles up a significant amount of CPU. It is up to you to decide how serious you
want to be to protect your password database.

19.12. LIMITING SCOPE

By default, each new client application has an unlimited role scope mappings. This means that every
access token that is created for that client will contain all the permissions the user has. If the client gets
compromised and the access token is leaked, then each system that the user has permission to access
is now also compromised. It is highly suggested that you limit the roles an access token is assigned by
using the Scope menu for each client. Or alternatively, you can set role scope mappings at the Client
Scope level and assign Client Scopes to your client by using the Client Scope menu.

19.13. LIMIT TOKEN AUDIENCE

In environments where the level of trust among services is low, it is a good practice to limit the audiences
on the token. The motivation behind this is described in the OAuth2 Threat Model document and more
details are in the Audience Support section.

19.14. SQL INJECTION ATTACKS

At this point in time, there is no knowledge of any SQL injection vulnerabilities in Red Hat Single Sign-
On.

Red Hat Single Sign-On 7.4 Server Administration Guide

236

https://tools.ietf.org/html/rfc6819#section-5.1.5.5

CHAPTER 20. THE ADMIN CLI
In previous chapters, we described how to use the Red Hat Single Sign-On Admin Console to perform
administrative tasks. You can also perform those tasks from the command-line interface (CLI) by using
the Admin CLI command-line tool.

20.1. INSTALLING THE ADMIN CLI

The Admin CLI is packaged inside Red Hat Single Sign-On Server distribution. You can find execution
scripts inside the bin directory.

The Linux script is called kcadm.sh, and the script for Windows is called kcadm.bat.

You can add the Red Hat Single Sign-On server directory to your PATH to use the client from any
location on your file system.

For example, on:

Linux:

$ export PATH=$PATH:$KEYCLOAK_HOME/bin
$ kcadm.sh

Windows:

c:\> set PATH=%PATH%;%KEYCLOAK_HOME%\bin
c:\> kcadm

We assume the KEYCLOAK_HOME environment (env) variable is set to the path where you extracted
the Red Hat Single Sign-On Server distribution.

NOTE

To avoid repetition, the rest of this document only gives Windows examples in places
where the difference in the CLI is more than just in the kcadm command name.

20.2. USING THE ADMIN CLI

The Admin CLI works by making HTTP requests to Admin REST endpoints. Access to them is protected
and requires authentication.

NOTE

Consult the Admin REST API documentation for details about JSON attributes for
specific endpoints.

1. Start an authenticated session by providing credentials, that is, logging in. You are ready to
perform create, read, update, and delete (CRUD) operations.
For example, on

Linux:

$ kcadm.sh config credentials --server http://localhost:8080/auth --realm demo --user

CHAPTER 20. THE ADMIN CLI

237

admin --client admin
$ kcadm.sh create realms -s realm=demorealm -s enabled=true -o
$ CID=$(kcadm.sh create clients -r demorealm -s clientId=my_client -s 'redirectUris=
["http://localhost:8980/myapp/*"]' -i)
$ kcadm.sh get clients/$CID/installation/providers/keycloak-oidc-keycloak-json

Windows:

c:\> kcadm config credentials --server http://localhost:8080/auth --realm demo --user
admin --client admin
c:\> kcadm create realms -s realm=demorealm -s enabled=true -o
c:\> kcadm create clients -r demorealm -s clientId=my_client -s "redirectUris=
[\"http://localhost:8980/myapp/*\"]" -i > clientid.txt
c:\> set /p CID=<clientid.txt
c:\> kcadm get clients/%CID%/installation/providers/keycloak-oidc-keycloak-json

2. In a production environment, you must access Red Hat Single Sign-On with https: to avoid
exposing tokens to network sniffers. If a server’s certificate is not issued by one of the trusted
certificate authorities (CAs) that are included in Java’s default certificate truststore, prepare a
truststore.jks file and instruct the Admin CLI to use it.
For example, on:

Linux:

$ kcadm.sh config truststore --trustpass $PASSWORD ~/.keycloak/truststore.jks

Windows:

c:\> kcadm config truststore --trustpass %PASSWORD%
%HOMEPATH%\.keycloak\truststore.jks

20.3. AUTHENTICATING

When you log in with the Admin CLI, you specify a server endpoint URL and a realm, and then you
specify a user name. Another option is to specify only a clientId, which results in using a special "service
account". When you log in using a user name, you must use a password for the specified user. When you
log in using a clientId, you only need the client secret, not the user password. You could also use Signed
JWT instead of the client secret.

Make sure the account used for the session has the proper permissions to invoke Admin REST API
operations. For example, the realm-admin role of the realm-management client allows the user to
administer the realm within which the user is defined.

There are two primary mechanisms for authentication. One mechanism uses kcadm config credentials
to start an authenticated session.

$ kcadm.sh config credentials --server http://localhost:8080/auth --realm master --user admin --
password admin

This approach maintains an authenticated session between the kcadm command invocations by saving
the obtained access token and the associated refresh token. It may also maintain other secrets in a
private configuration file. See next chapter for more information on the configuration file.

The second approach only authenticates each command invocation for the duration of that invocation.

Red Hat Single Sign-On 7.4 Server Administration Guide

238

This approach increases the load on the server and the time spent with roundtrips obtaining tokens. The
benefit of this approach is not needing to save any tokens between invocations, which means nothing is
saved to disk. This mode is used when the --no-config argument is specified.

For example, when performing an operation, we specify all the information required for authentication.

$ kcadm.sh get realms --no-config --server http://localhost:8080/auth --realm master --user admin --
password admin

Run the kcadm.sh help command for more information on using the Admin CLI.

Run the kcadm.sh config credentials --help command for more information about starting an
authenticated session.

20.4. WORKING WITH ALTERNATIVE CONFIGURATIONS

By default, the Admin CLI automatically maintains a configuration file called kcadm.config located
under the user’s home directory. In Linux-based systems, the full path name is
$HOME/.keycloak/kcadm.config. On Windows, the full path name is
%HOMEPATH%\.keycloak\kcadm.config. You can use the --config option to point to a different file or
location so you can maintain multiple authenticated sessions in parallel.

NOTE

It is best to perform operations tied to a single configuration file from a single thread.

Make sure you do not make the configuration file visible to other users on the system. It contains access
tokens and secrets that should be kept private. By default, the ~/.keycloak directory and its content are
created automatically with proper access limits. If the directory already exists, its permissions are not
updated.

If your unique circumstances require you to avoid storing secrets inside a configuration file, you can do
so. It will be less convenient and you will have to make more token requests. To not store secrets, use
the --no-config option with all your commands and specify all the authentication information needed by
the config credentials command with each kcadm invocation.

20.5. BASIC OPERATIONS AND RESOURCE URIS

The Admin CLI allows you to generically perform CRUD operations against Admin REST API endpoints
with additional commands that simplify performing certain tasks.

The main usage pattern is listed below, where the create, get, update, and delete commands are
mapped to the HTTP verbs POST, GET, PUT, and DELETE, respectively.

$ kcadm.sh create ENDPOINT [ARGUMENTS]
$ kcadm.sh get ENDPOINT [ARGUMENTS]
$ kcadm.sh update ENDPOINT [ARGUMENTS]
$ kcadm.sh delete ENDPOINT [ARGUMENTS]

ENDPOINT is a target resource URI and can either be absolute (starting with http: or https:) or relative,
used to compose an absolute URL of the following format:

SERVER_URI/admin/realms/REALM/ENDPOINT

CHAPTER 20. THE ADMIN CLI

239

For example, if you authenticate against the server http://localhost:8080/auth and realm is master,
then using users as ENDPOINT results in the resource URL
http://localhost:8080/auth/admin/realms/master/users.

If you set ENDPOINT to clients, the effective resource URI would be
http://localhost:8080/auth/admin/realms/master/clients.

There is a realms endpoint that is treated slightly differently because it is the container for realms. It
resolves to:

SERVER_URI/admin/realms

There is also a serverinfo endpoint, which is treated the same way because it is independent of realms.

When you authenticate as a user with realm-admin powers, you might need to perform commands on
multiple realms. In that case, specify the -r option to tell explicitly which realm the command should be
executed against. Instead of using REALM as specified via the --realm option of kcadm.sh config
credentials, the TARGET_REALM is used.

SERVER_URI/admin/realms/TARGET_REALM/ENDPOINT

For example,

$ kcadm.sh config credentials --server http://localhost:8080/auth --realm master --user admin --
password admin
$ kcadm.sh create users -s username=testuser -s enabled=true -r demorealm

In this example, you start a session authenticated as the admin user in the master realm. You then
perform a POST call against the resource URL
http://localhost:8080/auth/admin/realms/demorealm/users.

The create and update commands send a JSON body to the server by default. You can use -f
FILENAME to read a premade document from a file. When you can use -f - option, the message body is
read from standard input. You can also specify individual attributes and their values as seen in the
previous create users example. They are composed into a JSON body and sent to the server.

There are several ways to update a resource using the update command. You can first determine the
current state of a resource and save it to a file, and then edit that file and send it to the server for
updating.

For example:

$ kcadm.sh get realms/demorealm > demorealm.json
$ vi demorealm.json
$ kcadm.sh update realms/demorealm -f demorealm.json

This method updates the resource on the server with all the attributes in the sent JSON document.

Another option is to perform an on-the-fly update using the -s, --set options to set new values.

For example:

$ kcadm.sh update realms/demorealm -s enabled=false

That method only updates the enabled attribute to false.

Red Hat Single Sign-On 7.4 Server Administration Guide

240

http://localhost:8080/auth
http://localhost:8080/auth/admin/realms/master/users
http://localhost:8080/auth/admin/realms/master/clients
http://localhost:8080/auth/admin/realms/demorealm/users

By default, the update command first performs a get and then merges the new attribute values with
existing values. This is the preferred behavior. In some cases, the endpoint may support the PUT
command but not the GET command. You can use the -n option to perform a "no-merge" update, which
performs a PUT command without first running a GET command.

20.6. REALM OPERATIONS

Creating a new realm
Use the create command on the realms endpoint to create a new enabled realm, and set the attributes
to realm and enabled.

$ kcadm.sh create realms -s realm=demorealm -s enabled=true

A realm is not enabled by default. By enabling it, you can use a realm immediately for authentication.

A description for a new object can also be in a JSON format.

$ kcadm.sh create realms -f demorealm.json

You can send a JSON document with realm attributes directly from a file or piped to a standard input.

For example, on:

Linux:

$ kcadm.sh create realms -f - << EOF
{ "realm": "demorealm", "enabled": true }
EOF

Windows:

c:\> echo { "realm": "demorealm", "enabled": true } | kcadm create realms -f -

Listing existing realms
The following command returns a list of all realms.

$ kcadm.sh get realms

NOTE

A list of realms is additionally filtered on the server to return only realms a user can see.

Returning the entire realm description often provides too much information. Most users are interested
only in a subset of attributes, such as realm name and whether the realm is enabled. You can specify
which attributes to return by using the --fields option.

$ kcadm.sh get realms --fields realm,enabled

You can also display the result as comma separated values.

$ kcadm.sh get realms --fields realm --format csv --noquotes

CHAPTER 20. THE ADMIN CLI

241

Getting a specific realm
You append a realm name to a collection URI to get an individual realm.

$ kcadm.sh get realms/master

Updating a realm

1. Use the -s option to set new values for the attributes when you want to change only some of the
realm’s attributes.
For example:

$ kcadm.sh update realms/demorealm -s enabled=false

2. If you want to set all writable attributes with new values, run a get command, edit the current
values in the JSON file, and resubmit.
For example:

$ kcadm.sh get realms/demorealm > demorealm.json
$ vi demorealm.json
$ kcadm.sh update realms/demorealm -f demorealm.json

Deleting a realm
Run the following command to delete a realm.

$ kcadm.sh delete realms/demorealm

Turning on all login page options for the realm
Set the attributes controlling specific capabilities to true.

For example:

$ kcadm.sh update realms/demorealm -s registrationAllowed=true -s
registrationEmailAsUsername=true -s rememberMe=true -s verifyEmail=true -s
resetPasswordAllowed=true -s editUsernameAllowed=true

Listing the realm keys
Use the get operation on the keys endpoint of the target realm.

$ kcadm.sh get keys -r demorealm

Generating new realm keys

1. Get the ID of the target realm before adding a new RSA-generated key pair.
For example:

$ kcadm.sh get realms/demorealm --fields id --format csv --noquotes

2. Add a new key provider with a higher priority than the existing providers as revealed by
kcadm.sh get keys -r demorealm.
For example, on:

Linux:

Red Hat Single Sign-On 7.4 Server Administration Guide

242

$ kcadm.sh create components -r demorealm -s name=rsa-generated -s providerId=rsa-
generated -s providerType=org.keycloak.keys.KeyProvider -s parentId=959844c1-d149-
41d7-8359-6aa527fca0b0 -s 'config.priority=["101"]' -s 'config.enabled=["true"]' -s
'config.active=["true"]' -s 'config.keySize=["2048"]'

Windows:

c:\> kcadm create components -r demorealm -s name=rsa-generated -s providerId=rsa-
generated -s providerType=org.keycloak.keys.KeyProvider -s parentId=959844c1-d149-
41d7-8359-6aa527fca0b0 -s "config.priority=[\"101\"]" -s "config.enabled=[\"true\"]" -s
"config.active=[\"true\"]" -s "config.keySize=[\"2048\"]"

3. Set the parentId attribute to the value of the target realm’s ID.
The newly added key should now become the active key as revealed by kcadm.sh get keys -r
demorealm.

Adding new realm keys from a Java Key Store file

1. Add a new key provider to add a new key pair already prepared as a JKS file on the server.
For example, on:

Linux:

$ kcadm.sh create components -r demorealm -s name=java-keystore -s providerId=java-
keystore -s providerType=org.keycloak.keys.KeyProvider -s parentId=959844c1-d149-
41d7-8359-6aa527fca0b0 -s 'config.priority=["101"]' -s 'config.enabled=["true"]' -s
'config.active=["true"]' -s 'config.keystore=["/opt/keycloak/keystore.jks"]' -s
'config.keystorePassword=["secret"]' -s 'config.keyPassword=["secret"]' -s 'config.alias=
["localhost"]'

Windows:

c:\> kcadm create components -r demorealm -s name=java-keystore -s providerId=java-
keystore -s providerType=org.keycloak.keys.KeyProvider -s parentId=959844c1-d149-
41d7-8359-6aa527fca0b0 -s "config.priority=[\"101\"]" -s "config.enabled=[\"true\"]" -s
"config.active=[\"true\"]" -s "config.keystore=[\"/opt/keycloak/keystore.jks\"]" -s
"config.keystorePassword=[\"secret\"]" -s "config.keyPassword=[\"secret\"]" -s
"config.alias=[\"localhost\"]"

2. Make sure to change the attribute values for keystore, keystorePassword, keyPassword, and
alias to match your specific keystore.

3. Set the parentId attribute to the value of the target realm’s ID.

Making the key passive or disabling the key

1. Identify the key you want to make passive

$ kcadm.sh get keys -r demorealm

2. Use the key’s providerId attribute to construct an endpoint URI, such as
components/PROVIDER_ID.

3. Perform an update.
For example, on:

CHAPTER 20. THE ADMIN CLI

243

Linux:

$ kcadm.sh update components/PROVIDER_ID -r demorealm -s 'config.active=["false"]'

Windows:

c:\> kcadm update components/PROVIDER_ID -r demorealm -s "config.active=[\"false\"]"

You can update other key attributes.

4. Set a new enabled value to disable the key, for example, config.enabled=["false"].

5. Set a new priority value to change the key’s priority, for example, config.priority=["110"].

Deleting an old key

1. Make sure the key you are deleting has been passive and disabled to prevent any existing
tokens held by applications and users from abruptly failing to work.

2. Identify the key you want to make passive.

$ kcadm.sh get keys -r demorealm

3. Use the providerId of that key to perform a delete.

$ kcadm.sh delete components/PROVIDER_ID -r demorealm

Configuring event logging for a realm
Use the update command on the events/config endpoint.

The eventsListeners attribute contains a list of EventListenerProviderFactory IDs that specify all event
listeners receiving events. Separately, there are attributes that control a built-in event storage, which
allows querying past events via the Admin REST API. There is separate control over logging of service
calls (eventsEnabled) and auditing events triggered during Admin Console or Admin REST API
(adminEventsEnabled). You may want to set up expiry of old events so that your database does not fill
up; eventsExpiration is set to time-to-live expressed in seconds.

Here is an example of setting up a built-in event listener that receives all the events and logs them
through jboss-logging. (Using a logger called org.keycloak.events, error events are logged as WARN,
and others are logged as DEBUG.)

For example, on:

Linux:

$ kcadm.sh update events/config -r demorealm -s 'eventsListeners=["jboss-logging"]'

Windows:

c:\> kcadm update events/config -r demorealm -s "eventsListeners=[\"jboss-logging\"]"

Here is an example of turning on storage of all available ERROR events—not including auditing events—
for 2 days so they can be retrieved via Admin REST.

Red Hat Single Sign-On 7.4 Server Administration Guide

244

For example, on:

Linux:

$ kcadm.sh update events/config -r demorealm -s eventsEnabled=true -s 'enabledEventTypes=
["LOGIN_ERROR","REGISTER_ERROR","LOGOUT_ERROR","CODE_TO_TOKEN_ERROR","CLIE
NT_LOGIN_ERROR","FEDERATED_IDENTITY_LINK_ERROR","REMOVE_FEDERATED_IDENTIT
Y_ERROR","UPDATE_EMAIL_ERROR","UPDATE_PROFILE_ERROR","UPDATE_PASSWORD_ER
ROR","UPDATE_TOTP_ERROR","VERIFY_EMAIL_ERROR","REMOVE_TOTP_ERROR","SEND_V
ERIFY_EMAIL_ERROR","SEND_RESET_PASSWORD_ERROR","SEND_IDENTITY_PROVIDER_LI
NK_ERROR","RESET_PASSWORD_ERROR","IDENTITY_PROVIDER_FIRST_LOGIN_ERROR","I
DENTITY_PROVIDER_POST_LOGIN_ERROR","CUSTOM_REQUIRED_ACTION_ERROR","EXEC
UTE_ACTIONS_ERROR","CLIENT_REGISTER_ERROR","CLIENT_UPDATE_ERROR","CLIENT_D
ELETE_ERROR"]' -s eventsExpiration=172800

Windows:

c:\> kcadm update events/config -r demorealm -s eventsEnabled=true -s "enabledEventTypes=
[\"LOGIN_ERROR\",\"REGISTER_ERROR\",\"LOGOUT_ERROR\",\"CODE_TO_TOKEN_ERROR\",\
"CLIENT_LOGIN_ERROR\",\"FEDERATED_IDENTITY_LINK_ERROR\",\"REMOVE_FEDERATED_I
DENTITY_ERROR\",\"UPDATE_EMAIL_ERROR\",\"UPDATE_PROFILE_ERROR\",\"UPDATE_PASS
WORD_ERROR\",\"UPDATE_TOTP_ERROR\",\"VERIFY_EMAIL_ERROR\",\"REMOVE_TOTP_ERR
OR\",\"SEND_VERIFY_EMAIL_ERROR\",\"SEND_RESET_PASSWORD_ERROR\",\"SEND_IDENTIT
Y_PROVIDER_LINK_ERROR\",\"RESET_PASSWORD_ERROR\",\"IDENTITY_PROVIDER_FIRST_
LOGIN_ERROR\",\"IDENTITY_PROVIDER_POST_LOGIN_ERROR\",\"CUSTOM_REQUIRED_ACTI
ON_ERROR\",\"EXECUTE_ACTIONS_ERROR\",\"CLIENT_REGISTER_ERROR\",\"CLIENT_UPDA
TE_ERROR\",\"CLIENT_DELETE_ERROR\"]" -s eventsExpiration=172800

Here is an example of how to reset stored event types to all available event types; setting to empty list
is the same as enumerating all.

$ kcadm.sh update events/config -r demorealm -s enabledEventTypes=[]

Here is an example of how to enable storage of auditing events.

$ kcadm.sh update events/config -r demorealm -s adminEventsEnabled=true -s
adminEventsDetailsEnabled=true

Here is an example of how to get the last 100 events; they are ordered from newest to oldest.

$ kcadm.sh get events --offset 0 --limit 100

Here is an example of how to delete all saved events.

$ kcadm delete events

Flushing the caches

1. Use the create command and one of the following endpoints: clear-realm-cache, clear-user-
cache, or clear-keys-cache.

2. Set realm to the same value as the target realm.
For example:

CHAPTER 20. THE ADMIN CLI

245

$ kcadm.sh create clear-realm-cache -r demorealm -s realm=demorealm
$ kcadm.sh create clear-user-cache -r demorealm -s realm=demorealm
$ kcadm.sh create clear-keys-cache -r demorealm -s realm=demorealm

Importing a realm from exported .json file

1. Use the create command on the partialImport endpoint.

2. Set ifResourceExists to one of FAIL, SKIP, OVERWRITE.

3. Use -f to submit the exported realm .json file
For example:

$ kcadm.sh create partialImport -r demorealm2 -s ifResourceExists=FAIL -o -f
demorealm.json

If realm does not yet exist, you first have to create it.

For example:

$ kcadm.sh create realms -s realm=demorealm2 -s enabled=true

20.7. ROLE OPERATIONS

Creating a realm role
Use the roles endpoint to create a realm role.

$ kcadm.sh create roles -r demorealm -s name=user -s 'description=Regular user with limited set of
permissions'

Creating a client role

1. Identify the client first and then use the get command to list available clients when creating a
client role.

$ kcadm.sh get clients -r demorealm --fields id,clientId

2. Create a new role by using the clientId attribute to construct an endpoint URI, such as
clients/ID/roles.
For example:

$ kcadm.sh create clients/a95b6af3-0bdc-4878-ae2e-6d61a4eca9a0/roles -r demorealm -s
name=editor -s 'description=Editor can edit, and publish any article'

Listing realm roles
Use the get command on the roles endpoint to list existing realm roles.

$ kcadm.sh get roles -r demorealm

You can also use the get-roles command.

$ kcadm.sh get-roles -r demorealm

Red Hat Single Sign-On 7.4 Server Administration Guide

246

Listing client roles
There is a dedicated get-roles command to simplify listing realm and client roles. It is an extension of the
get command and behaves the same with additional semantics for listing roles.

Use the get-roles command, passing it either the clientId attribute (via the --cclientid option) or id (via
the --cid option) to identify the client to list client roles.

For example:

$ kcadm.sh get-roles -r demorealm --cclientid realm-management

Getting a specific realm role
Use the get command and the role name to construct an endpoint URI for a specific realm role:
roles/ROLE_NAME, where user is the name of the existing role.

For example:

$ kcadm.sh get roles/user -r demorealm

You can also use the special get-roles command, passing it a role name (via the --rolename option) or
ID (via the --roleid option).

For example:

$ kcadm.sh get-roles -r demorealm --rolename user

Getting a specific client role
Use a dedicated get-roles command, passing it either the clientId attribute (via the --cclientid option)
or ID (via the --cid option) to identify the client, and passing it either the role name (via the --rolename
option) or ID (via the --roleid) to identify a specific client role.

For example:

$ kcadm.sh get-roles -r demorealm --cclientid realm-management --rolename manage-clients

Updating a realm role
Use the update command with the same endpoint URI that you used to get a specific realm role.

For example:

$ kcadm.sh update roles/user -r demorealm -s 'description=Role representing a regular user'

Updating a client role
Use the update command with the same endpoint URI that you used to get a specific client role.

For example:

$ kcadm.sh update clients/a95b6af3-0bdc-4878-ae2e-6d61a4eca9a0/roles/editor -r demorealm -s
'description=User that can edit, and publish articles'

Deleting a realm role
Use the delete command with the same endpoint URI that you used to get a specific realm role.

For example:

CHAPTER 20. THE ADMIN CLI

247

$ kcadm.sh delete roles/user -r demorealm

Deleting a client role
Use the delete command with the same endpoint URI that you used to get a specific client role.

For example:

$ kcadm.sh delete clients/a95b6af3-0bdc-4878-ae2e-6d61a4eca9a0/roles/editor -r demorealm

Listing assigned, available, and effective realm roles for a composite role
Use a dedicated get-roles command to list assigned, available, and effective realm roles for a composite
role.

1. To list assigned realm roles for the composite role, you can specify the target composite role by
either name (via the --rname option) or ID (via the --rid option).
For example:

$ kcadm.sh get-roles -r demorealm --rname testrole

2. Use the additional --effective option to list effective realm roles.
For example:

$ kcadm.sh get-roles -r demorealm --rname testrole --effective

3. Use the --available option to list realm roles that can still be added to the composite role.
For example:

$ kcadm.sh get-roles -r demorealm --rname testrole --available

Listing assigned, available, and effective client roles for a composite role
Use a dedicated get-roles command to list assigned, available, and effective client roles for a composite
role.

1. To list assigned client roles for the composite role, you can specify the target composite role by
either name (via the --rname option) or ID (via the --rid option) and client by either the clientId
attribute (via the --cclientid option) or ID (via the --cid option).
For example:

$ kcadm.sh get-roles -r demorealm --rname testrole --cclientid realm-management

2. Use the additional --effective option to list effective realm roles.
For example:

$ kcadm.sh get-roles -r demorealm --rname testrole --cclientid realm-management --effective

3. Use the --available option to list realm roles that can still be added to the target composite role.
For example:

$ kcadm.sh get-roles -r demorealm --rname testrole --cclientid realm-management --
available

Red Hat Single Sign-On 7.4 Server Administration Guide

248

Adding realm roles to a composite role
There is a dedicated add-roles command that can be used for adding realm roles and client roles.

The following example adds the user role to the composite role testrole.

$ kcadm.sh add-roles --rname testrole --rolename user -r demorealm

Removing realm roles from a composite role
There is a dedicated remove-roles command that can be used to remove realm roles and client roles.

The following example removes the user role from the target composite role testrole.

$ kcadm.sh remove-roles --rname testrole --rolename user -r demorealm

Adding client roles to a realm role
Use a dedicated add-roles command that can be used for adding realm roles and client roles.

The following example adds the roles defined on the client realm-management - create-client role and
the view-users role to the testrole composite role.

$ kcadm.sh add-roles -r demorealm --rname testrole --cclientid realm-management --rolename
create-client --rolename view-users

Adding client roles to a client role

1. Determine the ID of the composite client role by using the get-roles command.
For example:

$ kcadm.sh get-roles -r demorealm --cclientid test-client --rolename operations

2. Assume that there is a client with a clientId attribute of test-client, a client role called support,
and another client role called operations, which becomes a composite role, that has an ID of
"fc400897-ef6a-4e8c-872b-1581b7fa8a71".

3. Use the following example to add another role to the composite role.

$ kcadm.sh add-roles -r demorealm --cclientid test-client --rid fc400897-ef6a-4e8c-872b-
1581b7fa8a71 --rolename support

4. List the roles of a composite role by using the get-roles --all command.
For example:

$ kcadm.sh get-roles --rid fc400897-ef6a-4e8c-872b-1581b7fa8a71 --all

Removing client roles from a composite role
Use a dedicated remove-roles command to remove client roles from a composite role.

Use the following example to remove two roles defined on the client realm-management - create-
client role and the view-users role from the testrole composite role.

$ kcadm.sh remove-roles -r demorealm --rname testrole --cclientid realm-management --rolename
create-client --rolename view-users

CHAPTER 20. THE ADMIN CLI

249

Adding client roles to a group
Use a dedicated add-roles command that can be used for adding realm roles and client roles.

The following example adds the roles defined on the client realm-management - create-client role and
the view-users role to the Group group (via the --gname option). The group can alternatively be
specified by ID (via the --gid option).

See Group operations for more operations that can be performed to groups.

$ kcadm.sh add-roles -r demorealm --gname Group --cclientid realm-management --rolename
create-client --rolename view-users

Removing client roles from a group
Use a dedicated remove-roles command to remove client roles from a group.

Use the following example to remove two roles defined on the client realm management - create-
client role and the view-users role from the Group group.

See Group operations for more operations that can be performed to groups.

$ kcadm.sh remove-roles -r demorealm --gname Group --cclientid realm-management --rolename
create-client --rolename view-users

20.8. CLIENT OPERATIONS

Creating a client

1. Run the create command on a clients endpoint to create a new client.
For example:

$ kcadm.sh create clients -r demorealm -s clientId=myapp -s enabled=true

2. Specify a secret if you want to set a secret for adapters to authenticate.
For example:

$ kcadm.sh create clients -r demorealm -s clientId=myapp -s enabled=true -s
clientAuthenticatorType=client-secret -s secret=d0b8122f-8dfb-46b7-b68a-f5cc4e25d000

Listing clients
Use the get command on the clients endpoint to list clients.

For example:

$ kcadm.sh get clients -r demorealm --fields id,clientId

This example filters the output to list only the id and clientId attributes.

Getting a specific client
Use a client’s ID to construct an endpoint URI that targets a specific client, such as clients/ID.

For example:

$ kcadm.sh get clients/c7b8547f-e748-4333-95d0-410b76b3f4a3 -r demorealm

Red Hat Single Sign-On 7.4 Server Administration Guide

250

Getting the current secret for a specific client
Use a client’s ID to construct an endpoint URI, such as clients/ID/client-secret.

For example:

$ kcadm.sh get clients/$CID/client-secret

Getting an adapter configuration file (keycloak.json) for a specific client
Use a client’s ID to construct an endpoint URI that targets a specific client, such as
clients/ID/installation/providers/keycloak-oidc-keycloak-json.

For example:

$ kcadm.sh get clients/c7b8547f-e748-4333-95d0-410b76b3f4a3/installation/providers/keycloak-oidc-
keycloak-json -r demorealm

Getting a WildFly subsystem adapter configuration for a specific client
Use a client’s ID to construct an endpoint URI that targets a specific client, such as
clients/ID/installation/providers/keycloak-oidc-jboss-subsystem.

For example:

$ kcadm.sh get clients/c7b8547f-e748-4333-95d0-410b76b3f4a3/installation/providers/keycloak-oidc-
jboss-subsystem -r demorealm

Getting a Docker-v2 example configuration for a specific client
Use a client’s ID to construct an endpoint URI that targets a specific client, such as
clients/ID/installation/providers/docker-v2-compose-yaml.

Note that response will be in .zip format.

For example:

$ kcadm.sh get http://localhost:8080/auth/admin/realms/demorealm/clients/8f271c35-44e3-446f-
8953-b0893810ebe7/installation/providers/docker-v2-compose-yaml -r demorealm > keycloak-
docker-compose-yaml.zip

Updating a client
Use the update command with the same endpoint URI that you used to get a specific client.

For example, on:

Linux:

$ kcadm.sh update clients/c7b8547f-e748-4333-95d0-410b76b3f4a3 -r demorealm -s enabled=false -
s publicClient=true -s 'redirectUris=["http://localhost:8080/myapp/*"]' -s
baseUrl=http://localhost:8080/myapp -s adminUrl=http://localhost:8080/myapp

Windows:

c:\> kcadm update clients/c7b8547f-e748-4333-95d0-410b76b3f4a3 -r demorealm -s enabled=false -
s publicClient=true -s "redirectUris=[\"http://localhost:8080/myapp/*\"]" -s
baseUrl=http://localhost:8080/myapp -s adminUrl=http://localhost:8080/myapp

CHAPTER 20. THE ADMIN CLI

251

Deleting a client
Use the delete command with the same endpoint URI that you used to get a specific client.

For example:

$ kcadm.sh delete clients/c7b8547f-e748-4333-95d0-410b76b3f4a3 -r demorealm

Adding or removing roles for client’s service account
Service account for the client is just a special kind of user account with username service-account-
CLIENT_ID. You can perform user operations on this account as if it was a regular user.

20.9. USER OPERATIONS

Creating a user
Run the create command on the users endpoint to create a new user.

For example:

$ kcadm.sh create users -r demorealm -s username=testuser -s enabled=true

Listing users
Use the users endpoint to list users. The target user will have to change the password the next time
they log in.

For example:

$ kcadm.sh get users -r demorealm --offset 0 --limit 1000

You can filter users by username, firstName, lastName, or email.

For example:

$ kcadm.sh get users -r demorealm -q email=google.com
$ kcadm.sh get users -r demorealm -q username=testuser

NOTE

Filtering does not use exact matching. For example, the above example would match the
value of the username attribute against the *testuser* pattern.

You can also filter across multiple attributes by specifying multiple -q options, which return only users
that match the condition for all the attributes.

Getting a specific user
Use a user’s ID to compose an endpoint URI, such as users/USER_ID.

For example:

$ kcadm.sh get users/0ba7a3fd-6fd8-48cd-a60b-2e8fd82d56e2 -r demorealm

Updating a user
Use the update command with the same endpoint URI that you used to get a specific user.

Red Hat Single Sign-On 7.4 Server Administration Guide

252

For example, on:

Linux:

$ kcadm.sh update users/0ba7a3fd-6fd8-48cd-a60b-2e8fd82d56e2 -r demorealm -s
'requiredActions=
["VERIFY_EMAIL","UPDATE_PROFILE","CONFIGURE_TOTP","UPDATE_PASSWORD"]'

Windows:

c:\> kcadm update users/0ba7a3fd-6fd8-48cd-a60b-2e8fd82d56e2 -r demorealm -s "requiredActions=
[\"VERIFY_EMAIL\",\"UPDATE_PROFILE\",\"CONFIGURE_TOTP\",\"UPDATE_PASSWORD\"]"

Deleting a user
Use the delete command with the same endpoint URI that you used to get a specific user.

For example:

$ kcadm.sh delete users/0ba7a3fd-6fd8-48cd-a60b-2e8fd82d56e2 -r demorealm

Resetting a user’s password
Use the dedicated set-password command to reset a user’s password.

For example:

$ kcadm.sh set-password -r demorealm --username testuser --new-password NEWPASSWORD --
temporary

That command sets a temporary password for the user. The target user will have to change the
password the next time they log in.

You can use --userid if you want to specify the user by using the id attribute.

You can achieve the same result using the update command on an endpoint constructed from the one
you used to get a specific user, such as users/USER_ID/reset-password.

For example:

$ kcadm.sh update users/0ba7a3fd-6fd8-48cd-a60b-2e8fd82d56e2/reset-password -r demorealm -s
type=password -s value=NEWPASSWORD -s temporary=true -n

The last parameter (-n) ensures that only the PUT command is performed without a prior GET
command. It is necessary in this instance because the reset-password endpoint does not support GET.

Listing assigned, available, and effective realm roles for a user
You can use a dedicated get-roles command to list assigned, available, and effective realm roles for a
user.

1. Specify the target user by either user name or ID to list assigned realm roles for the user.
For example:

$ kcadm.sh get-roles -r demorealm --uusername testuser

2. Use the additional --effective option to list effective realm roles.

CHAPTER 20. THE ADMIN CLI

253

For example:

$ kcadm.sh get-roles -r demorealm --uusername testuser --effective

3. Use the --available option to list realm roles that can still be added to the user.
For example:

$ kcadm.sh get-roles -r demorealm --uusername testuser --available

Listing assigned, available, and effective client roles for a user
Use a dedicated get-roles command to list assigned, available, and effective client roles for a user.

1. Specify the target user by either a user name (via the --uusername option) or an ID (via the --
uid option) and client by either a clientId attribute (via the --cclientid option) or an ID (via the --
cid option) to list assigned client roles for the user.
For example:

$ kcadm.sh get-roles -r demorealm --uusername testuser --cclientid realm-management

2. Use the additional --effective option to list effective realm roles.
For example:

$ kcadm.sh get-roles -r demorealm --uusername testuser --cclientid realm-management --
effective

3. Use the --available option to list realm roles that can still be added to the user.
For example:

$ kcadm.sh get-roles -r demorealm --uusername testuser --cclientid realm-management --
available

Adding realm roles to a user
Use a dedicated add-roles command to add realm roles to a user.

Use the following example to add the user role to user testuser.

$ kcadm.sh add-roles --uusername testuser --rolename user -r demorealm

Removing realm roles from a user
Use a dedicated remove-roles command to remove realm roles from a user.

Use the following example to remove the user role from the user testuser.

$ kcadm.sh remove-roles --uusername testuser --rolename user -r demorealm

Adding client roles to a user
Use a dedicated add-roles command to add client roles to a user.

Use the following example to add two roles defined on the client realm management - create-client
role and the view-users role to the user testuser.

Red Hat Single Sign-On 7.4 Server Administration Guide

254

$ kcadm.sh add-roles -r demorealm --uusername testuser --cclientid realm-management --rolename
create-client --rolename view-users

Removing client roles from a user
Use a dedicated remove-roles command to remove client roles from a user.

Use the following example to remove two roles defined on the realm management client.

$ kcadm.sh remove-roles -r demorealm --uusername testuser --cclientid realm-management --
rolename create-client --rolename view-users

Listing a user’s sessions

1. Identify the user’s ID, and then use it to compose an endpoint URI, such as users/ID/sessions.

2. Use the get command to retrieve a list of the user’s sessions.
For example:

$kcadm get users/6da5ab89-3397-4205-afaa-e201ff638f9e/sessions

Logging out a user from a specific session

1. Determine the session’s ID as described above.

2. Use the session’s ID to compose an endpoint URI, such as sessions/ID.

3. Use the delete command to invalidate the session.
For example:

$ kcadm.sh delete sessions/d0eaa7cc-8c5d-489d-811a-69d3c4ec84d1

Logging out a user from all sessions
You need a user’s ID to construct an endpoint URI, such as users/ID/logout.

Use the create command to perform POST on that endpoint URI.

For example:

$ kcadm.sh create users/6da5ab89-3397-4205-afaa-e201ff638f9e/logout -r demorealm -s
realm=demorealm -s user=6da5ab89-3397-4205-afaa-e201ff638f9e

20.10. GROUP OPERATIONS

Creating a group
Use the create command on the groups endpoint to create a new group.

For example:

$ kcadm.sh create groups -r demorealm -s name=Group

Listing groups
Use the get command on the groups endpoint to list groups.

CHAPTER 20. THE ADMIN CLI

255

For example:

$ kcadm.sh get groups -r demorealm

Getting a specific group
Use the group’s ID to construct an endpoint URI, such as groups/GROUP_ID.

For example:

$ kcadm.sh get groups/51204821-0580-46db-8f2d-27106c6b5ded -r demorealm

Updating a group
Use the update command with the same endpoint URI that you used to get a specific group.

For example:

$ kcadm.sh update groups/51204821-0580-46db-8f2d-27106c6b5ded -s 'attributes.email=
["group@example.com"]' -r demorealm

Deleting a group
Use the delete command with the same endpoint URI that you used to get a specific group.

For example:

$ kcadm.sh delete groups/51204821-0580-46db-8f2d-27106c6b5ded -r demorealm

Creating a subgroup
Find the ID of the parent group by listing groups, and then use that ID to construct an endpoint URI,
such as groups/GROUP_ID/children.

For example:

$ kcadm.sh create groups/51204821-0580-46db-8f2d-27106c6b5ded/children -r demorealm -s
name=SubGroup

Moving a group under another group

1. Find the ID of an existing parent group and of an existing child group.

2. Use the parent group’s ID to construct an endpoint URI, such as
groups/PARENT_GROUP_ID/children.

3. Run the create command on this endpoint and pass the child group’s ID as a JSON body.

For example:

$ kcadm.sh create groups/51204821-0580-46db-8f2d-27106c6b5ded/children -r demorealm -s
id=08d410c6-d585-4059-bb07-54dcb92c5094

Get groups for a specific user
Use a user’s ID to determine a user’s membership in groups to compose an endpoint URI, such as
users/USER_ID/groups.

For example:

Red Hat Single Sign-On 7.4 Server Administration Guide

256

$ kcadm.sh get users/b544f379-5fc4-49e5-8a8d-5cfb71f46f53/groups -r demorealm

Adding a user to a group
Use the update command with an endpoint URI composed from user’s ID and a group’s ID, such as
users/USER_ID/groups/GROUP_ID, to add a user to a group.

For example:

$ kcadm.sh update users/b544f379-5fc4-49e5-8a8d-5cfb71f46f53/groups/ce01117a-7426-4670-
a29a-5c118056fe20 -r demorealm -s realm=demorealm -s userId=b544f379-5fc4-49e5-8a8d-
5cfb71f46f53 -s groupId=ce01117a-7426-4670-a29a-5c118056fe20 -n

Removing a user from a group
Use the delete command on the same endpoint URI as used for adding a user to a group, such as
users/USER_ID/groups/GROUP_ID, to remove a user from a group.

For example:

$ kcadm.sh delete users/b544f379-5fc4-49e5-8a8d-5cfb71f46f53/groups/ce01117a-7426-4670-a29a-
5c118056fe20 -r demorealm

Listing assigned, available, and effective realm roles for a group
Use a dedicated get-roles command to list assigned, available, and effective realm roles for a group.

1. Specify the target group by name (via the --gname option), path (via the [command] --gpath
option), or ID (via the --gid option) to list assigned realm roles for the group.
For example:

$ kcadm.sh get-roles -r demorealm --gname Group

2. Use the additional --effective option to list effective realm roles.
For example:

$ kcadm.sh get-roles -r demorealm --gname Group --effective

3. Use the --available option to list realm roles that can still be added to the group.
For example:

$ kcadm.sh get-roles -r demorealm --gname Group --available

Listing assigned, available, and effective client roles for a group
Use a dedicated get-roles command to list assigned, available, and effective client roles for a group.

1. Specify the target group by either name (via the --gname option) or ID (via the --gid option),
and client by either the clientId attribute (via the [command] --cclientid option) or ID (via the --
id option) to list assigned client roles for the user.
For example:

$ kcadm.sh get-roles -r demorealm --gname Group --cclientid realm-management

2. Use the additional --effective option to list effective realm roles.
For example:

CHAPTER 20. THE ADMIN CLI

257

$ kcadm.sh get-roles -r demorealm --gname Group --cclientid realm-management --effective

3. Use the --available option to list realm roles that can still be added to the group.
For example:

$ kcadm.sh get-roles -r demorealm --gname Group --cclientid realm-management --available

20.11. IDENTITY PROVIDER OPERATIONS

Listing available identity providers
Use the serverinfo endpoint to list available identity providers.

For example:

$ kcadm.sh get serverinfo -r demorealm --fields 'identityProviders(*)'

NOTE

The serverinfo endpoint is handled similarly to the realms endpoint in that it is not
resolved relative to a target realm because it exists outside any specific realm.

Listing configured identity providers
Use the identity-provider/instances endpoint.

For example:

$ kcadm.sh get identity-provider/instances -r demorealm --fields alias,providerId,enabled

Getting a specific configured identity provider
Use the alias attribute of the identity provider to construct an endpoint URI, such as identity-
provider/instances/ALIAS, to get a specific identity provider.

For example:

$ kcadm.sh get identity-provider/instances/facebook -r demorealm

Removing a specific configured identity provider
Use the delete command with the same endpoint URI that you used to get a specific configured identity
provider to remove a specific configured identity provider.

For example:

$ kcadm.sh delete identity-provider/instances/facebook -r demorealm

Configuring a Keycloak OpenID Connect identity provider

1. Use keycloak-oidc as the providerId when creating a new identity provider instance.

2. Provide the config attributes: authorizationUrl, tokenUrl, clientId, and clientSecret.
For example:

Red Hat Single Sign-On 7.4 Server Administration Guide

258

$ kcadm.sh create identity-provider/instances -r demorealm -s alias=keycloak-oidc -s
providerId=keycloak-oidc -s enabled=true -s 'config.useJwksUrl="true"' -s
config.authorizationUrl=http://localhost:8180/auth/realms/demorealm/protocol/openid-
connect/auth -s
config.tokenUrl=http://localhost:8180/auth/realms/demorealm/protocol/openid-connect/token -
s config.clientId=demo-oidc-provider -s config.clientSecret=secret

Configuring an OpenID Connect identity provider
Configure the generic OpenID Connect provider the same way you configure the Keycloak OpenID
Connect provider, except that you set the providerId attribute value to oidc.

Configuring a SAML 2 identity provider

1. Use saml as the providerId.

2. Provide the config attributes: singleSignOnServiceUrl, nameIDPolicyFormat, and
signatureAlgorithm.

For example:

$ kcadm.sh create identity-provider/instances -r demorealm -s alias=saml -s providerId=saml -s
enabled=true -s 'config.useJwksUrl="true"' -s
config.singleSignOnServiceUrl=http://localhost:8180/auth/realms/saml-broker-realm/protocol/saml -s
config.nameIDPolicyFormat=urn:oasis:names:tc:SAML:2.0:nameid-format:persistent -s
config.signatureAlgorithm=RSA_SHA256

Configuring a Facebook identity provider

1. Use facebook as the providerId.

2. Provide the config attributes: clientId and clientSecret. You can find these attributes in the
Facebook Developers application configuration page for your application.
For example:

$ kcadm.sh create identity-provider/instances -r demorealm -s alias=facebook -s
providerId=facebook -s enabled=true -s 'config.useJwksUrl="true"' -s
config.clientId=FACEBOOK_CLIENT_ID -s
config.clientSecret=FACEBOOK_CLIENT_SECRET

Configuring a Google identity provider

1. Use google as the providerId.

2. Provide the config attributes: clientId and clientSecret. You can find these attributes in the
Google Developers application configuration page for your application.
For example:

$ kcadm.sh create identity-provider/instances -r demorealm -s alias=google -s
providerId=google -s enabled=true -s 'config.useJwksUrl="true"' -s
config.clientId=GOOGLE_CLIENT_ID -s config.clientSecret=GOOGLE_CLIENT_SECRET

Configuring a Twitter identity provider

1. Use twitter as the providerId.

CHAPTER 20. THE ADMIN CLI

259

2. Provide the config attributes clientId and clientSecret. You can find these attributes in the
Twitter Application Management application configuration page for your application.
For example:

$ kcadm.sh create identity-provider/instances -r demorealm -s alias=google -s
providerId=google -s enabled=true -s 'config.useJwksUrl="true"' -s
config.clientId=TWITTER_API_KEY -s config.clientSecret=TWITTER_API_SECRET

Configuring a GitHub identity provider

1. Use github as the providerId.

2. Provide the config attributes clientId and clientSecret. You can find these attributes in the
GitHub Developer Application Settings page for your application.
For example:

$ kcadm.sh create identity-provider/instances -r demorealm -s alias=github -s
providerId=github -s enabled=true -s 'config.useJwksUrl="true"' -s
config.clientId=GITHUB_CLIENT_ID -s config.clientSecret=GITHUB_CLIENT_SECRET

Configuring a LinkedIn identity provider

1. Use linkedin as the providerId.

2. Provide the config attributes clientId and clientSecret. You can find these attributes in the
LinkedIn Developer Console application page for your application.
For example:

$ kcadm.sh create identity-provider/instances -r demorealm -s alias=linkedin -s
providerId=linkedin -s enabled=true -s 'config.useJwksUrl="true"' -s
config.clientId=LINKEDIN_CLIENT_ID -s config.clientSecret=LINKEDIN_CLIENT_SECRET

Configuring a Microsoft Live identity provider

1. Use microsoft as the providerId.

2. Provide the config attributes clientId and clientSecret. You can find these attributes in the
Microsoft Application Registration Portal page for your application.
For example:

$ kcadm.sh create identity-provider/instances -r demorealm -s alias=microsoft -s
providerId=microsoft -s enabled=true -s 'config.useJwksUrl="true"' -s
config.clientId=MICROSOFT_APP_ID -s config.clientSecret=MICROSOFT_PASSWORD

Configuring a Stack Overflow identity provider

1. Use stackoverflow command as the providerId.

2. Provide the config attributes clientId, clientSecret, and key. You can find these attributes in
the Stack Apps OAuth page for your application.
For example:

$ kcadm.sh create identity-provider/instances -r demorealm -s alias=stackoverflow -s
providerId=stackoverflow -s enabled=true -s 'config.useJwksUrl="true"' -s

Red Hat Single Sign-On 7.4 Server Administration Guide

260

config.clientId=STACKAPPS_CLIENT_ID -s
config.clientSecret=STACKAPPS_CLIENT_SECRET -s config.key=STACKAPPS_KEY

20.12. STORAGE PROVIDER OPERATIONS

Configuring a Kerberos storage provider

1. Use the create command against the components endpoint.

2. Specify realm id as a value of the parentId attribute.

3. Specify kerberos as the value of the providerId attribute, and
org.keycloak.storage.UserStorageProvider as the value of the providerType attribute.

4. For example:

$ kcadm.sh create components -r demorealm -s parentId=demorealmId -s id=demokerberos
-s name=demokerberos -s providerId=kerberos -s
providerType=org.keycloak.storage.UserStorageProvider -s 'config.priority=["0"]' -s
'config.debug=["false"]' -s 'config.allowPasswordAuthentication=["true"]' -s 'config.editMode=
["UNSYNCED"]' -s 'config.updateProfileFirstLogin=["true"]' -s
'config.allowKerberosAuthentication=["true"]' -s 'config.kerberosRealm=["KEYCLOAK.ORG"]'
-s 'config.keyTab=["http.keytab"]' -s 'config.serverPrincipal=
["HTTP/localhost@KEYCLOAK.ORG"]' -s 'config.cachePolicy=["DEFAULT"]'

Configuring an LDAP user storage provider

1. Use the create command against the components endpoint.

2. Specify ldap as a value of the providerId attribute, and
org.keycloak.storage.UserStorageProvider as the value of the providerType attribute.

3. Provide the realm ID as the value of the parentId attribute.

4. Use the following example to create a Kerberos-integrated LDAP provider.

$ kcadm.sh create components -r demorealm -s name=kerberos-ldap-provider -s
providerId=ldap -s providerType=org.keycloak.storage.UserStorageProvider -s
parentId=3d9c572b-8f33-483f-98a6-8bb421667867 -s 'config.priority=["1"]' -s
'config.fullSyncPeriod=["-1"]' -s 'config.changedSyncPeriod=["-1"]' -s 'config.cachePolicy=
["DEFAULT"]' -s config.evictionDay=[] -s config.evictionHour=[] -s config.evictionMinute=[] -s
config.maxLifespan=[] -s 'config.batchSizeForSync=["1000"]' -s 'config.editMode=
["WRITABLE"]' -s 'config.syncRegistrations=["false"]' -s 'config.vendor=["other"]' -s
'config.usernameLDAPAttribute=["uid"]' -s 'config.rdnLDAPAttribute=["uid"]' -s
'config.uuidLDAPAttribute=["entryUUID"]' -s 'config.userObjectClasses=["inetOrgPerson,
organizationalPerson"]' -s 'config.connectionUrl=["ldap://localhost:10389"]' -s
'config.usersDn=["ou=People,dc=keycloak,dc=org"]' -s 'config.authType=["simple"]' -s
'config.bindDn=["uid=admin,ou=system"]' -s 'config.bindCredential=["secret"]' -s
'config.searchScope=["1"]' -s 'config.useTruststoreSpi=["ldapsOnly"]' -s
'config.connectionPooling=["true"]' -s 'config.pagination=["true"]' -s
'config.allowKerberosAuthentication=["true"]' -s 'config.serverPrincipal=
["HTTP/localhost@KEYCLOAK.ORG"]' -s 'config.keyTab=["http.keytab"]' -s
'config.kerberosRealm=["KEYCLOAK.ORG"]' -s 'config.debug=["true"]' -s
'config.useKerberosForPasswordAuthentication=["true"]'

CHAPTER 20. THE ADMIN CLI

261

Removing a user storage provider instance

1. Use the storage provider instance’s id attribute to compose an endpoint URI, such as
components/ID.

2. Run the delete command against this endpoint.
For example:

$ kcadm.sh delete components/3d9c572b-8f33-483f-98a6-8bb421667867 -r demorealm

Triggering synchronization of all users for a specific user storage provider

1. Use the storage provider’s id attribute to compose an endpoint URI, such as user-
storage/ID_OF_USER_STORAGE_INSTANCE/sync.

2. Add the action=triggerFullSync query parameter and run the create command.
For example:

$ kcadm.sh create user-storage/b7c63d02-b62a-4fc1-977c-947d6a09e1ea/sync?
action=triggerFullSync

Triggering synchronization of changed users for a specific user storage provider

1. Use the storage provider’s id attribute to compose an endpoint URI, such as user-
storage/ID_OF_USER_STORAGE_INSTANCE/sync.

2. Add the action=triggerChangedUsersSync query parameter and run the create command.
For example:

$ kcadm.sh create user-storage/b7c63d02-b62a-4fc1-977c-947d6a09e1ea/sync?
action=triggerChangedUsersSync

Test LDAP user storage connectivity

1. Run the get command on the testLDAPConnection endpoint.

2. Provide query parameters bindCredential, bindDn, connectionUrl, and useTruststoreSpi, and
then set the action query parameter to testConnection.
For example:

$ kcadm.sh create testLDAPConnection -s action=testConnection -s bindCredential=secret -s
bindDn=uid=admin,ou=system -s connectionUrl=ldap://localhost:10389 -s
useTruststoreSpi=ldapsOnly

Test LDAP user storage authentication

1. Run the get command on the testLDAPConnection endpoint.

2. Provide the query parameters bindCredential, bindDn, connectionUrl, and useTruststoreSpi,
and then set the action query parameter to testAuthentication.
For example:

Red Hat Single Sign-On 7.4 Server Administration Guide

262

$ kcadm.sh create testLDAPConnection -s action=testAuthentication -s
bindCredential=secret -s bindDn=uid=admin,ou=system -s
connectionUrl=ldap://localhost:10389 -s useTruststoreSpi=ldapsOnly

20.13. ADDING MAPPERS

Adding a hardcoded role LDAP mapper

1. Run the create command on the components endpoint.

2. Set the providerType attribute to
org.keycloak.storage.ldap.mappers.LDAPStorageMapper.

3. Set the parentId attribute to the ID of the LDAP provider instance.

4. Set the providerId attribute to hardcoded-ldap-role-mapper. Make sure to provide a value of
role configuration parameter.
For example:

$ kcadm.sh create components -r demorealm -s name=hardcoded-ldap-role-mapper -s
providerId=hardcoded-ldap-role-mapper -s
providerType=org.keycloak.storage.ldap.mappers.LDAPStorageMapper -s
parentId=b7c63d02-b62a-4fc1-977c-947d6a09e1ea -s 'config.role=["realm-
management.create-client"]'

Adding an MS Active Directory mapper

1. Run the create command on the components endpoint.

2. Set the providerType attribute to
org.keycloak.storage.ldap.mappers.LDAPStorageMapper.

3. Set the parentId attribute to the ID of the LDAP provider instance.

4. Set the providerId attribute to msad-user-account-control-mapper.
For example:

$ kcadm.sh create components -r demorealm -s name=msad-user-account-control-mapper -
s providerId=msad-user-account-control-mapper -s
providerType=org.keycloak.storage.ldap.mappers.LDAPStorageMapper -s
parentId=b7c63d02-b62a-4fc1-977c-947d6a09e1ea

Adding a user attribute LDAP mapper

1. Run the create command on the components endpoint.

2. Set the providerType attribute to
org.keycloak.storage.ldap.mappers.LDAPStorageMapper.

3. Set the parentId attribute to the ID of the LDAP provider instance.

4. Set the providerId attribute to user-attribute-ldap-mapper.
For example:

CHAPTER 20. THE ADMIN CLI

263

$ kcadm.sh create components -r demorealm -s name=user-attribute-ldap-mapper -s
providerId=user-attribute-ldap-mapper -s
providerType=org.keycloak.storage.ldap.mappers.LDAPStorageMapper -s
parentId=b7c63d02-b62a-4fc1-977c-947d6a09e1ea -s 'config."user.model.attribute"=
["email"]' -s 'config."ldap.attribute"=["mail"]' -s 'config."read.only"=["false"]' -s
'config."always.read.value.from.ldap"=["false"]' -s 'config."is.mandatory.in.ldap"=["false"]'

Adding a group LDAP mapper

1. Run the create command on the components endpoint.

2. Set the providerType attribute to
org.keycloak.storage.ldap.mappers.LDAPStorageMapper.

3. Set the parentId attribute to the ID of the LDAP provider instance.

4. Set the providerId attribute to group-ldap-mapper.
For example:

$ kcadm.sh create components -r demorealm -s name=group-ldap-mapper -s
providerId=group-ldap-mapper -s
providerType=org.keycloak.storage.ldap.mappers.LDAPStorageMapper -s
parentId=b7c63d02-b62a-4fc1-977c-947d6a09e1ea -s 'config."groups.dn"=[]' -s
'config."group.name.ldap.attribute"=["cn"]' -s 'config."group.object.classes"=
["groupOfNames"]' -s 'config."preserve.group.inheritance"=["true"]' -s
'config."membership.ldap.attribute"=["member"]' -s 'config."membership.attribute.type"=
["DN"]' -s 'config."groups.ldap.filter"=[]' -s 'config.mode=["LDAP_ONLY"]' -s
'config."user.roles.retrieve.strategy"=["LOAD_GROUPS_BY_MEMBER_ATTRIBUTE"]' -s
'config."mapped.group.attributes"=["admins-group"]' -s
'config."drop.non.existing.groups.during.sync"=["false"]' -s 'config.roles=["admins"]' -s
'config.groups=["admins-group"]' -s 'config.group=[]' -s 'config.preserve=["true"]' -s
'config.membership=["member"]'

Adding a full name LDAP mapper

1. Run the create command on the components endpoint.

2. Set the providerType attribute to
org.keycloak.storage.ldap.mappers.LDAPStorageMapper.

3. Set the parentId attribute to the ID of the LDAP provider instance.

4. Set the providerId attribute to full-name-ldap-mapper.
For example:

$ kcadm.sh create components -r demorealm -s name=full-name-ldap-mapper -s
providerId=full-name-ldap-mapper -s
providerType=org.keycloak.storage.ldap.mappers.LDAPStorageMapper -s
parentId=b7c63d02-b62a-4fc1-977c-947d6a09e1ea -s 'config."ldap.full.name.attribute"=
["cn"]' -s 'config."read.only"=["false"]' -s 'config."write.only"=["true"]'

20.14. AUTHENTICATION OPERATIONS

Setting a password policy

Red Hat Single Sign-On 7.4 Server Administration Guide

264

1. Set the realm’s passwordPolicy attribute to an enumeration expression that includes the
specific policy provider ID and optional configuration.

2. Use the following example to set a password policy to default values. The default values include:

27,500 hashing iterations

at least one special character

at least one uppercase character

at least one digit character

not be equal to a user’s username

be at least eight characters long

$ kcadm.sh update realms/demorealm -s 'passwordPolicy="hashIterations and
specialChars and upperCase and digits and notUsername and length"'

3. If you want to use values different from defaults, pass the configuration in brackets.

4. Use the following example to set a password policy to:

25,000 hash iterations

at least two special characters

at least two uppercase characters

at least two lowercase characters

at least two digits

be at least nine characters long

not be equal to a user’s username

not repeat for at least four changes back

$ kcadm.sh update realms/demorealm -s 'passwordPolicy="hashIterations(25000) and
specialChars(2) and upperCase(2) and lowerCase(2) and digits(2) and length(9) and
notUsername and passwordHistory(4)"'

Getting the current password policy
Get the current realm configuration and filter everything but the passwordPolicy attribute.

Use the following example to display passwordPolicy for demorealm.

$ kcadm.sh get realms/demorealm --fields passwordPolicy

Listing authentication flows
Run the get command on the authentication/flows endpoint.

For example:

CHAPTER 20. THE ADMIN CLI

265

$ kcadm.sh get authentication/flows -r demorealm

Getting a specific authentication flow
Run the get command on the authentication/flows/FLOW_ID endpoint.

For example:

$ kcadm.sh get authentication/flows/febfd772-e1a1-42fb-b8ae-00c0566fafb8 -r demorealm

Listing executions for a flow
Run the get command on the authentication/flows/FLOW_ALIAS/executions endpoint.

For example:

$ kcadm.sh get authentication/flows/Copy%20of%20browser/executions -r demorealm

Adding configuration to an execution

1. Get execution for a flow, and take note of its ID

2. Run the create command on the authentication/executions/{executionId}/config endpoint.

For example:

$ kcadm create "authentication/executions/a3147129-c402-4760-86d9-3f2345e401c7/config" -r
examplerealm -b '{"config":{"x509-cert-auth.mapping-source-selection":"Match SubjectDN using
regular expression","x509-cert-auth.regular-expression":"(.*?)(?:$)","x509-cert-auth.mapper-
selection":"Custom Attribute Mapper","x509-cert-auth.mapper-selection.user-attribute-
name":"usercertificate","x509-cert-auth.crl-checking-enabled":"","x509-cert-auth.crldp-checking-
enabled":false,"x509-cert-auth.crl-relative-path":"crl.pem","x509-cert-auth.ocsp-checking-
enabled":"","x509-cert-auth.ocsp-responder-uri":"","x509-cert-auth.keyusage":"","x509-cert-
auth.extendedkeyusage":"","x509-cert-auth.confirmation-page-
disallowed":""},"alias":"my_otp_config"}'

Getting configuration for an execution

1. Get execution for a flow, and get its authenticationConfig attribute, containing the config ID.

2. Run the get command on the authentication/config/ID endpoint.

For example:

$ kcadm get "authentication/config/dd91611a-d25c-421a-87e2-227c18421833" -r examplerealm

Updating configuration for an execution

1. Get execution for a flow, and get its authenticationConfig attribute, containing the config ID.

2. Run the update command on the authentication/config/ID endpoint.

For example:

$ kcadm update "authentication/config/dd91611a-d25c-421a-87e2-227c18421833" -r examplerealm -
b '{"id":"dd91611a-d25c-421a-87e2-227c18421833","alias":"my_otp_config","config":{"x509-cert-
auth.extendedkeyusage":"","x509-cert-auth.mapper-selection.user-attribute-

Red Hat Single Sign-On 7.4 Server Administration Guide

266

name":"usercertificate","x509-cert-auth.ocsp-responder-uri":"","x509-cert-auth.regular-expression":"
(.*?)(?:$)","x509-cert-auth.crl-checking-enabled":"true","x509-cert-auth.confirmation-page-
disallowed":"","x509-cert-auth.keyusage":"","x509-cert-auth.mapper-selection":"Custom Attribute
Mapper","x509-cert-auth.crl-relative-path":"crl.pem","x509-cert-auth.crldp-checking-
enabled":"false","x509-cert-auth.mapping-source-selection":"Match SubjectDN using regular
expression","x509-cert-auth.ocsp-checking-enabled":""}}'

Deleting configuration for an execution

1. Get execution for a flow, and get its authenticationConfig attribute, containing the config ID.

2. Run the delete command on the authentication/config/ID endpoint.

For example:

$ kcadm delete "authentication/config/dd91611a-d25c-421a-87e2-227c18421833" -r examplerealm

CHAPTER 20. THE ADMIN CLI

267

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. OVERVIEW
	1.1. FEATURES
	1.2. HOW DOES SECURITY WORK?
	1.3. CORE CONCEPTS AND TERMS

	CHAPTER 2. SERVER INITIALIZATION
	CHAPTER 3. ADMIN CONSOLE
	3.1. THE MASTER REALM
	3.2. CREATE A NEW REALM
	3.3. SSL MODE
	3.4. CLEARING SERVER CACHES
	3.5. EMAIL SETTINGS
	3.6. THEMES AND INTERNATIONALIZATION
	3.6.1. Internationalization
	3.6.1.1. User Locale selection

	CHAPTER 4. USER MANAGEMENT
	4.1. SEARCHING FOR USERS
	4.2. CREATING NEW USERS
	4.3. DELETING USERS
	4.4. USER ATTRIBUTES
	4.5. USER CREDENTIALS
	4.5.1. Creating a Password for the User
	4.5.2. Creating other credentials
	4.5.2.1. Creating an OTP

	4.6. REQUIRED ACTIONS
	4.6.1. Default Required Actions
	4.6.2. Terms and Conditions

	4.7. IMPERSONATION
	4.8. USER REGISTRATION
	4.8.1. reCAPTCHA Support

	4.9. PERSONAL DATA COLLECTED BY RED HAT SINGLE SIGN-ON

	CHAPTER 5. LOGIN PAGE SETTINGS
	5.1. FORGOT PASSWORD
	5.2. REMEMBER ME

	CHAPTER 6. AUTHENTICATION
	6.1. PASSWORD POLICIES
	6.1.1. Password Policy Types

	6.2. OTP POLICIES
	6.2.1. TOTP vs. HOTP
	6.2.2. TOTP Configuration Options
	6.2.3. HOTP Configuration Options

	6.3. AUTHENTICATION FLOWS
	6.3.1. Built-in flows
	6.3.1.1. Execution requirements

	6.3.2. Creating flows
	6.3.3. Creating a password-less browser login flow

	6.4. KERBEROS
	6.4.1. Setup of Kerberos server
	6.4.2. Setup and configuration of Red Hat Single Sign-On server
	6.4.2.1. Enable SPNEGO Processing
	6.4.2.2. Configure Kerberos User Storage Federation Provider

	6.4.3. Setup and configuration of client machines
	6.4.4. Credential Delegation
	6.4.5. Cross-realm trust
	6.4.6. Troubleshooting

	6.5. X.509 CLIENT CERTIFICATE USER AUTHENTICATION
	6.5.1. Features
	6.5.2. Enable X.509 Client Certificate User Authentication
	6.5.3. Adding X.509 Client Certificate Authentication to a Browser Flow
	6.5.4. Adding X.509 Client Certificate Authentication to a Direct Grant Flow
	6.5.5. Client certificate lookup
	6.5.5.1. HAProxy certificate lookup provider
	6.5.5.2. Apache certificate lookup provider
	6.5.5.3. Nginx certificate lookup provider
	6.5.5.4. Other reverse proxy implementations

	6.5.6. Troubleshooting

	6.6. W3C WEB AUTHENTICATION (WEBAUTHN)
	6.6.1. Setup
	6.6.1.1. Enable Webauthn Authenticator Registration
	6.6.1.2. Adding WebAuthn Authentication to a Browser Flow

	6.6.2. Authenticate with WebAuthn Authenticator
	6.6.3. Managing WebAuthn as an administrator
	6.6.3.1. Managing Credentials
	6.6.3.2. Managing Policy

	6.6.4. Attestation Statement Verification
	6.6.5. Managing WebAuthn credentials as a user
	6.6.5.1. Register WebAuthn Authenticator

	6.6.6. Passwordless WebAuthn together with Two-Factor
	6.6.6.1. Setup

	CHAPTER 7. SSO PROTOCOLS
	7.1. OPENID CONNECT
	7.1.1. OIDC Auth Flows
	7.1.1.1. Authorization Code Flow
	7.1.1.2. Implicit Flow
	7.1.1.3. Resource Owner Password Credentials Grant (Direct Access Grants)
	7.1.1.4. Client Credentials Grant

	7.1.2. Red Hat Single Sign-On Server OIDC URI Endpoints

	7.2. SAML
	7.2.1. SAML Bindings
	7.2.1.1. Redirect Binding
	7.2.1.2. POST Binding
	7.2.1.3. ECP

	7.2.2. Red Hat Single Sign-On Server SAML URI Endpoints

	7.3. OPENID CONNECT VS. SAML
	7.4. DOCKER REGISTRY V2 AUTHENTICATION
	7.4.1. Docker Auth Flow
	7.4.2. Red Hat Single Sign-On Docker Registry v2 Authentication Server URI Endpoints

	CHAPTER 8. MANAGING CLIENTS
	8.1. OIDC CLIENTS
	8.1.1. Advanced Settings
	8.1.2. Confidential Client Credentials
	8.1.3. Service Accounts
	8.1.4. Audience Support
	8.1.4.1. Setup
	8.1.4.2. Automatically add audience
	8.1.4.3. Hardcoded audience

	8.2. SAML CLIENTS
	8.2.1. IDP Initiated Login
	8.2.2. SAML Entity Descriptors

	8.3. CLIENT LINKS
	8.4. OIDC TOKEN AND SAML ASSERTION MAPPINGS
	8.4.1. Priority order
	8.4.2. OIDC User Session Note Mappers
	8.4.3. Script Mapper

	8.5. GENERATING CLIENT ADAPTER CONFIG
	8.6. CLIENT SCOPES
	8.6.1. Protocol
	8.6.2. Consent related settings
	8.6.3. Link Client Scope with the Client
	8.6.3.1. Example

	8.6.4. Evaluating Client Scopes
	8.6.4.1. Generating Example Tokens

	8.6.5. Client Scopes Permissions
	8.6.6. Realm Default Client Scopes
	8.6.7. Scopes explained

	CHAPTER 9. ROLES
	9.1. REALM ROLES
	9.2. CLIENT ROLES
	9.3. COMPOSITE ROLES
	9.4. USER ROLE MAPPINGS
	9.4.1. Default Roles

	9.5. ROLE SCOPE MAPPINGS

	CHAPTER 10. GROUPS
	10.1. GROUPS VS. ROLES
	10.2. DEFAULT GROUPS

	CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND PERMISSIONS
	11.1. MASTER REALM ACCESS CONTROL
	11.1.1. Global Roles
	11.1.2. Realm Specific Roles

	11.2. DEDICATED REALM ADMIN CONSOLES
	11.3. FINE GRAIN ADMIN PERMISSIONS
	11.3.1. Managing One Specific Client
	11.3.1.1. Permission Setup
	11.3.1.2. Testing It Out.

	11.3.2. Restrict User Role Mapping
	11.3.2.1. Testing It Out.
	11.3.2.2. Per Client map-roles Shortcut

	11.3.3. Full List of Permissions
	11.3.3.1. Role
	11.3.3.2. Client
	11.3.3.3. Users
	11.3.3.4. Group

	11.4. REALM KEYS
	11.4.1. Rotating keys
	11.4.2. Adding a generated keypair
	11.4.3. Adding an existing keypair and certificate
	11.4.4. Loading keys from a Java Keystore
	11.4.5. Making keys passive
	11.4.6. Disabling keys
	11.4.7. Compromised keys

	CHAPTER 12. IDENTITY BROKERING
	12.1. BROKERING OVERVIEW
	12.2. DEFAULT IDENTITY PROVIDER
	12.3. GENERAL CONFIGURATION
	12.4. SOCIAL IDENTITY PROVIDERS
	12.4.1. Bitbucket
	12.4.2. Facebook
	12.4.3. GitHub
	12.4.4. GitLab
	12.4.5. Google
	12.4.6. LinkedIn
	12.4.7. Microsoft
	12.4.8. OpenShift 3
	12.4.9. OpenShift 4
	12.4.10. PayPal
	12.4.11. Stack Overflow
	12.4.12. Twitter
	12.4.13. Instagram

	12.5. OPENID CONNECT V1.0 IDENTITY PROVIDERS
	12.6. SAML V2.0 IDENTITY PROVIDERS
	12.6.1. SP Descriptor

	12.7. CLIENT-SUGGESTED IDENTITY PROVIDER
	12.8. MAPPING CLAIMS AND ASSERTIONS
	12.9. AVAILABLE USER SESSION DATA
	12.10. FIRST LOGIN FLOW
	12.10.1. Default First Login Flow
	12.10.2. Automatically Link Existing First Login Flow
	12.10.3. Disabling Automatic User Creation

	12.11. RETRIEVING EXTERNAL IDP TOKENS
	12.12. IDENTITY BROKER LOGOUT

	CHAPTER 13. USER SESSION MANAGEMENT
	13.1. ADMINISTERING SESSIONS
	13.1.1. Limitations of the Logout all Operation
	13.1.2. Application Drilldown
	13.1.3. User Drilldown

	13.2. REVOCATION POLICIES
	13.3. SESSION AND TOKEN TIMEOUTS
	13.4. OFFLINE ACCESS
	13.5. TRANSIENT SESSIONS

	CHAPTER 14. USER STORAGE FEDERATION
	14.1. ADDING A PROVIDER
	14.2. DEALING WITH PROVIDER FAILURES
	14.3. LDAP AND ACTIVE DIRECTORY
	14.3.1. Storage Mode
	14.3.2. Edit Mode
	14.3.3. Other config options
	14.3.4. Connect to LDAP over SSL
	14.3.5. Sync of LDAP users to Red Hat Single Sign-On
	14.3.6. LDAP Mappers
	14.3.7. Password Hashing

	14.4. SSSD AND FREEIPA IDENTITY MANAGEMENT INTEGRATION
	14.4.1. FreeIPA/IdM Server
	14.4.2. SSSD and D-Bus
	14.4.3. Enabling the SSSD Federation Provider

	14.5. CONFIGURING A FEDERATED SSSD STORE
	14.6. CUSTOM PROVIDERS

	CHAPTER 15. AUDITING AND EVENTS
	15.1. LOGIN EVENTS
	15.1.1. Event Types
	15.1.2. Event Listener

	15.2. ADMIN EVENTS

	CHAPTER 16. EXPORT AND IMPORT
	16.1. ADMIN CONSOLE EXPORT/IMPORT

	CHAPTER 17. USING A VAULT TO OBTAIN SECRETS
	17.1. KUBERNETES / OPENSHIFT FILES PLAINTEXT VAULT PROVIDER
	17.2. ELYTRON CREDENTIAL STORE VAULT PROVIDER
	17.3. KEY RESOLVERS
	17.4. SAMPLE CONFIGURATION
	17.4.1. Configuring the credential store and vault without a mask
	17.4.2. Masking the password in the credential store and vault

	CHAPTER 18. USER ACCOUNT SERVICE
	18.1. THEMEABLE

	CHAPTER 19. THREAT MODEL MITIGATION
	19.1. HOST
	19.2. ADMIN ENDPOINTS AND CONSOLE
	19.2.1. IP Restriction
	19.2.2. Port Restriction

	19.3. PASSWORD GUESS: BRUTE FORCE ATTACKS
	19.3.1. Password Policies

	19.4. CLICKJACKING
	19.5. SSL/HTTPS REQUIREMENT
	19.6. CSRF ATTACKS
	19.7. UNSPECIFIC REDIRECT URIS
	19.8. COMPROMISED ACCESS AND REFRESH TOKENS
	19.9. COMPROMISED AUTHORIZATION CODE
	19.10. OPEN REDIRECTORS
	19.11. PASSWORD DATABASE COMPROMISED
	19.12. LIMITING SCOPE
	19.13. LIMIT TOKEN AUDIENCE
	19.14. SQL INJECTION ATTACKS

	CHAPTER 20. THE ADMIN CLI
	20.1. INSTALLING THE ADMIN CLI
	20.2. USING THE ADMIN CLI
	20.3. AUTHENTICATING
	20.4. WORKING WITH ALTERNATIVE CONFIGURATIONS
	20.5. BASIC OPERATIONS AND RESOURCE URIS
	20.6. REALM OPERATIONS
	Creating a new realm
	Listing existing realms
	Getting a specific realm
	Updating a realm
	Deleting a realm
	Turning on all login page options for the realm
	Listing the realm keys
	Generating new realm keys
	Adding new realm keys from a Java Key Store file
	Making the key passive or disabling the key
	Deleting an old key
	Configuring event logging for a realm
	Flushing the caches
	Importing a realm from exported .json file

	20.7. ROLE OPERATIONS
	Creating a realm role
	Creating a client role
	Listing realm roles
	Listing client roles
	Getting a specific realm role
	Getting a specific client role
	Updating a realm role
	Updating a client role
	Deleting a realm role
	Deleting a client role
	Listing assigned, available, and effective realm roles for a composite role
	Listing assigned, available, and effective client roles for a composite role
	Adding realm roles to a composite role
	Removing realm roles from a composite role
	Adding client roles to a realm role
	Adding client roles to a client role
	Removing client roles from a composite role
	Adding client roles to a group
	Removing client roles from a group

	20.8. CLIENT OPERATIONS
	Creating a client
	Listing clients
	Getting a specific client
	Getting the current secret for a specific client
	Getting an adapter configuration file (keycloak.json) for a specific client
	Getting a WildFly subsystem adapter configuration for a specific client
	Getting a Docker-v2 example configuration for a specific client
	Updating a client
	Deleting a client
	Adding or removing roles for client’s service account

	20.9. USER OPERATIONS
	Creating a user
	Listing users
	Getting a specific user
	Updating a user
	Deleting a user
	Resetting a user’s password
	Listing assigned, available, and effective realm roles for a user
	Listing assigned, available, and effective client roles for a user
	Adding realm roles to a user
	Removing realm roles from a user
	Adding client roles to a user
	Removing client roles from a user
	Listing a user’s sessions
	Logging out a user from a specific session
	Logging out a user from all sessions

	20.10. GROUP OPERATIONS
	Creating a group
	Listing groups
	Getting a specific group
	Updating a group
	Deleting a group
	Creating a subgroup
	Moving a group under another group
	Get groups for a specific user
	Adding a user to a group
	Removing a user from a group
	Listing assigned, available, and effective realm roles for a group
	Listing assigned, available, and effective client roles for a group

	20.11. IDENTITY PROVIDER OPERATIONS
	Listing available identity providers
	Listing configured identity providers
	Getting a specific configured identity provider
	Removing a specific configured identity provider
	Configuring a Keycloak OpenID Connect identity provider
	Configuring an OpenID Connect identity provider
	Configuring a SAML 2 identity provider
	Configuring a Facebook identity provider
	Configuring a Google identity provider
	Configuring a Twitter identity provider
	Configuring a GitHub identity provider
	Configuring a LinkedIn identity provider
	Configuring a Microsoft Live identity provider
	Configuring a Stack Overflow identity provider

	20.12. STORAGE PROVIDER OPERATIONS
	Configuring a Kerberos storage provider
	Configuring an LDAP user storage provider
	Removing a user storage provider instance
	Triggering synchronization of all users for a specific user storage provider
	Triggering synchronization of changed users for a specific user storage provider
	Test LDAP user storage connectivity
	Test LDAP user storage authentication

	20.13. ADDING MAPPERS
	Adding a hardcoded role LDAP mapper
	Adding an MS Active Directory mapper
	Adding a user attribute LDAP mapper
	Adding a group LDAP mapper
	Adding a full name LDAP mapper

	20.14. AUTHENTICATION OPERATIONS
	Setting a password policy
	Getting the current password policy
	Listing authentication flows
	Getting a specific authentication flow
	Listing executions for a flow
	Adding configuration to an execution
	Getting configuration for an execution
	Updating configuration for an execution
	Deleting configuration for an execution

