
Red Hat Customer Content
Services

Red Hat Single Sign-On
7.1
Server Installation and Configuration
Guide

For Use with Red Hat Single Sign-On 7.1

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

For Use with Red Hat Single Sign-On 7.1

Legal Notice

Copyright © 2017 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
This guide consists of information to install and configure Red Hat Single Sign-On 7.1

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. GUIDE OVERVIEW
1.1. RECOMMENDED ADDITIONAL EXTERNAL DOCUMENTATION

CHAPTER 2. INSTALLATION
2.1. SYSTEM REQUIREMENTS
2.2. INSTALLING RH-SSO FROM A ZIP FILE
2.3. INSTALLING RH-SSO FROM AN RPM
2.4. DISTRIBUTION DIRECTORY STRUCTURE

CHAPTER 3. CHOOSING AN OPERATING MODE
3.1. STANDALONE MODE
3.2. STANDALONE CLUSTERED MODE
3.3. DOMAIN CLUSTERED MODE

CHAPTER 4. MANAGE SUBSYSTEM CONFIGURATION
4.1. CONFIGURE SPI PROVIDERS
4.2. START THE JBOSS EAP CLI
4.3. CLI EMBEDDED MODE
4.4. CLI GUI MODE
4.5. CLI SCRIPTING
4.6. CLI RECIPES

CHAPTER 5. PROFILES

CHAPTER 6. RELATIONAL DATABASE SETUP
6.1. RDBMS SETUP CHECKLIST
6.2. PACKAGE THE JDBC DRIVER
6.3. DECLARE AND LOAD JDBC DRIVER
6.4. MODIFY THE RED HAT SINGLE SIGN-ON DATASOURCE
6.5. DATABASE CONFIGURATION
6.6. UNICODE CONSIDERATIONS FOR DATABASES

CHAPTER 7. NETWORK SETUP
7.1. BIND ADDRESSES
7.2. SOCKET PORT BINDINGS
7.3. SETTING UP HTTPS/SSL
7.4. OUTGOING HTTP REQUESTS

CHAPTER 8. CLUSTERING
8.1. RECOMMENDED NETWORK ARCHITECTURE
8.2. CLUSTERING EXAMPLE
8.3. SETTING UP A LOAD BALANCER OR PROXY
8.4. MULTICAST NETWORK SETUP
8.5. SECURING CLUSTER COMMUNICATION
8.6. SERIALIZED CLUSTER STARTUP
8.7. BOOTING THE CLUSTER
8.8. TROUBLESHOOTING

CHAPTER 9. SERVER CACHE CONFIGURATION
9.1. EVICTION AND EXPIRATION
9.2. REPLICATION AND FAILOVER
9.3. DISABLING CACHING
9.4. CLEARING CACHES AT RUNTIME

3
3

4
4
4
4
5

7
7
9

11

20
20
21
22
22
23
23

26

27
27
27
29
30
31
32

35
35
36
37
40

43
43
43
43
48
49
49
49
50

51
51
52
53
53

Table of Contents

1

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

2

CHAPTER 1. GUIDE OVERVIEW

The purpose of this guide is to walk through the steps that need to be completed prior to booting up
the Red Hat Single Sign-On server for the first time. If you just want to test drive Red Hat Single
Sign-On, it pretty much runs out of the box with its own embedded and local-only database. For
actual deployments that are going to be run in production you’ll need to decide how you want to
manage server configuration at runtime (standalone or domain mode), configure a shared database
for Red Hat Single Sign-On storage, set up encryption and HTTPS, and finally set up Red Hat
Single Sign-On to run in a cluster. This guide walks through each and every aspect of any pre-boot
decisions and setup you must do prior to deploying the server.

One thing to particularly note is that Red Hat Single Sign-On is derived from the JBoss EAP
Application Server. Many aspects of configuring Red Hat Single Sign-On revolve around JBoss EAP
configuration elements. Often this guide will direct you to documentation outside of the manual if you
want to dive into more detail.

1.1. RECOMMENDED ADDITIONAL EXTERNAL DOCUMENTATION

Red Hat Single Sign-On is built on top of the JBoss EAP application server and it’s sub-projects like
Infinispan (for caching) and Hibernate (for persistence). This guide only covers basics for
infrastructure-level configuration. It is highly recommended that you peruse the documentation for
JBoss EAP and its sub projects. Here is the link to the documentation:

JBoss EAP Configuration Guide

CHAPTER 1. GUIDE OVERVIEW

3

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/7.0/html-single/configuration-guide/configuration-guide

CHAPTER 2. INSTALLATION

You can install Red Hat Single Sign-On by downloading a ZIP file and unzipping it, or by using an
RPM. This chapter reviews system requirements as well as the directory structure.

2.1. SYSTEM REQUIREMENTS

These are the requirements to run the Red Hat Single Sign-On authentication server:

Can run on any operating system that runs Java

Java 8 JDK

zip or gzip and tar

At least 512M of RAM

At least 1G of diskspace

A shared external database like Postgres, MySql, Oracle, etc. Red Hat Single Sign-On requires
an external shared database if you want to run in a cluster. Please see the database
configuration section of this guide for more information.

Network multicast support on your machine if you want to run in a cluster. Red Hat Single Sign-
On can be clustered without multicast, but this requires a bunch of configuration changes.
Please see the clustering section of this guide for more information.

On Linux, it is recommended to use /dev/urandom as a source of random data to prevent Red
Hat Single Sign-On hanging due to lack of available entropy, unless /dev/random usage is
mandated by your security policy. To achieve that on Oracle JDK 8 and OpenJDK 8, set the
java.security.egd system property on startup to file:/dev/urandom.

2.2. INSTALLING RH-SSO FROM A ZIP FILE

The Red Hat Single Sign-On Server is contained in one distribution file: rh-sso-7.1.0.zip.gz.

The rh-sso-7.1.0.zip.gz archive is the server-only distribution. It contains only the scripts and binaries
to run Red Hat Single Sign-On Server.

To unpack these files, run the unzip or gunzip utility.

2.3. INSTALLING RH-SSO FROM AN RPM

Note

With Red Hat Enterprise Linux 7, the term channel was replaced with the term repository.
In these instructions only the term repository is used.

You must subscribe to both the JBoss EAP 7.0 and RH-SSO 7.1 repositories before you can install
RH-SSO from an RPM.

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

4

Note

You cannot continue to receive upgrades to EAP 7.0 RPMs but stop receiving updates for
RH-SSO.

2.3.1. Subscribing to the JBoss EAP 7.0 Repository

Prerequisites

1. Ensure that your Red Hat Enterprise Linux system is registered to your account using Red
Hat Subscription Manager. For more information see the Red Hat Subscription
Management documentation.

2. If you are already subscribed to another JBoss EAP repository, you must unsubscribe from
that repository first.

Using Red Hat Subscription Manager, subscribe to the JBoss EAP 7.0 repository using the following
command. Replace <RHEL_VERSION> with either 6 or 7 depending on your Red Hat Enterprise
Linux version.

subscription-manager repos --enable=jb-eap-7.0-for-rhel-<RHEL_VERSION>-
server-rpms

2.3.2. Subscribing to the RH-SSO 7.1 Repository and Installing RH-SSO 7.1

Prerequisites

1. Ensure that your Red Hat Enterprise Linux system is registered to your account using Red
Hat Subscription Manager. For more information see the Red Hat Subscription
Management documentation.

2. Ensure that you have already subscribed to the JBoss EAP 7.0 repository. For more
information see Subscribing to the JBoss EAP 7.0 repository.

To subscribe to the RH-SSO 7.1 repository and install RH-SSO 7.1, complete the following steps:

1. Using Red Hat Subscription Manager, subscribe to the RH-SSO 7.1 repository using the
following command. Replace <RHEL_VERSION> with either 6 or 7 depending on your Red
Hat Enterprise Linux version.

subscription-manager repos --enable=rh-sso-7.1-for-rhel-<RHEL-
VERSION>-server-rpms

2. Install RH-SSO from your subscribed RH-SSO 7.1 repository using the following command:

yum groupinstall rh-sso7

Your installation is complete. The default RH-SSO_HOME path for the RPM installation is /opt/rh/rh-
sso7/root/usr/share/keycloak.

2.4. DISTRIBUTION DIRECTORY STRUCTURE

CHAPTER 2. INSTALLATION

5

https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/1/html-single/Quick_Registration_for_RHEL/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/1/html-single/Quick_Registration_for_RHEL/index.html

This chapter walks you through the directory structure of the server distribution.

distribution directory structure

Let’s examine the purpose of some of the directories:

bin/

This contains various scripts to either boot the server or perform some other management
action on the server.

domain/

This contains configuration files and working directory when running Red Hat Single Sign-
On in domain mode.

modules/

These are all the Java libraries used by the server.

standalone/

This contains configuration files and working directory when running Red Hat Single Sign-
On in standalone mode.

themes/

This directory contains all the html, style sheets, javascript files, and images used to display
any UI screen displayed by the server. Here you can modify an existing theme or create
your own. See the Server Developer Guide for more information on this.

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

6

https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.1/html-single/server-developer-guide/

CHAPTER 3. CHOOSING AN OPERATING MODE

Before deploying Red Hat Single Sign-On in a production environment you need to decide which
type of operating mode you are going to use. Will you run Red Hat Single Sign-On within a cluster?
Do you want a centralized way to manage your server configurations? Your choice of operating
mode effects how you configure databases, configure caching and even how you boot the server.

Tip

The Red Hat Single Sign-On is built on top of the JBoss EAP Application Server. This guide will
only go over the basics for deployment within a specific mode. If you want specific information on
this, a better place to go would be the JBoss EAP Configuration Guide.

3.1. STANDALONE MODE

Standalone operating mode is only useful when you want to run one, and only one Red Hat Single
Sign-On server instance. It is not usable for clustered deployments and all caches are non-
distributed and local-only. It is not recommended that you use standalone mode in production as
you will have a single point of failure. If your standalone mode server goes down, users will not be
able to log in. This mode is really only useful to test drive and play with the features of Red Hat
Single Sign-On

3.1.1. Standalone Boot Script

When running the server in standalone mode, there is a specific script you need to run to boot the
server depending on your operating system. These scripts live in the bin/ directory of the server
distribution.

Standalone Boot Scripts

CHAPTER 3. CHOOSING AN OPERATING MODE

7

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/7.0/html-single/configuration-guide/configuration-guide

To boot the server:

Linux/Unix

$.../bin/standalone.sh

Windows

> ...\bin\standalone.bat

3.1.2. Standalone Configuration

The bulk of this guide walks you through how to configure infrastructure level aspects of Red Hat
Single Sign-On. These aspects are configured in a configuration file that is specific to the
application server that Red Hat Single Sign-On is a derivative of. In the standalone operation mode,
this file lives in … /standalone/configuration/standalone.xml. This file is also used to configure non-
infrastructure level things that are specific to Red Hat Single Sign-On components.

Standalone Config File

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

8

3.2. STANDALONE CLUSTERED MODE

Standalone clustered operation mode is for when you want to run Red Hat Single Sign-On within a
cluster. This mode requires that you have a copy of the Red Hat Single Sign-On distribution on each
machine you want to run a server instance. This mode can be very easy to deploy initially, but can
become quite cumbersome. To make a configuration change you’ll have to modify each distribution
on each machine. For a large cluster this can become time consuming and error prone.

3.2.1. Standalone Clustered Configuration

The distribution has a mostly pre-configured app server configuration file for running within a cluster.

Warning

Any changes you make to this file while the server is running will not take effect and
may even be overwritten by the server. Instead use the the command line scripting or
the web console of JBoss EAP. See the JBoss EAP Configuration Guide for more
information.

CHAPTER 3. CHOOSING AN OPERATING MODE

9

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/7.0/html-single/configuration-guide/configuration-guide

It has all the specific infrastructure settings for networking, databases, caches, and discovery. This
file resides in … /standalone/configuration/standalone-ha.xml. There’s a few things missing from this
configuration. You can’t run Red Hat Single Sign-On in a cluster without a configuring a shared
database connection. You also need to deploy some type of load balancer in front of the cluster. The
clustering and database sections of this guide walk you though these things.

Standalone HA Config

3.2.2. Standalone Clustered Boot Script

You use the same boot scripts to start Red Hat Single Sign-On as you do in standalone mode. The
difference is that you pass in an additional flag to point to the HA config file.

Warning

Any changes you make to this file while the server is running will not take effect and
may even be overwritten by the server. Instead use the the command line scripting or
the web console of JBoss EAP. See the JBoss EAP Configuration Guide for more
information.

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

10

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/7.0/html-single/configuration-guide/configuration-guide

Standalone Clustered Boot Scripts

To boot the server:

Linux/Unix

$.../bin/standalone.sh --server-config=standalone-ha.xml

Windows

> ...\bin\standalone.bat --server-config=standalone-ha.xml

3.3. DOMAIN CLUSTERED MODE

Domain mode is a way to centrally manage and publish the configuration for your servers.

Running a cluster in standard mode can quickly become aggravating as the cluster grows in size.
Every time you need to make a configuration change, you have perform it on each node in the
cluster. Domain mode solves this problem by providing a central place to store and publish
configuration. It can be quite complex to set up, but it is worth it in the end. This capability is built
into the JBoss EAP Application Server which Red Hat Single Sign-On derives from.

CHAPTER 3. CHOOSING AN OPERATING MODE

11

Note

The guide will go over the very basics of domain mode. Detailed steps on how to set up
domain mode in a cluster should be obtained from the JBoss EAP Configuration Guide.

Here are some of the basic concepts of running in domain mode.

domain controller

The domain controller is a process that is responsible for storing, managing, and publishing
the general configuration for each node in the cluster. This process is the central point from
which nodes in a cluster obtain their configuration.

host controller

The host controller is responsible for managing server instances on a specific machine. You
configure it to run one or more server instances. The domain controller can also interact
with the host controllers on each machine to manage the cluster. To reduce the number of
running process, a domain controller also acts as a host controller on the machine it runs
on.

domain profile

A domain profile is a named set of configuration that can be used by a server to boot from.
A domain controller can define multiple domain profiles that are consumed by different
servers.

server group

A server group is a collection of servers. They are managed and configured as one. You
can assign a domain profile to a server group and every service in that group will use that
domain profile as their configuration.

In domain mode, a domain controller is started on a master node. The configuration for the cluster
resides in the domain controller. Next a host controller is started on each machine in the cluster.
Each host controller deployment configuration specifies how many Red Hat Single Sign-On server
instances will be started on that machine. When the host controller boots up, it starts as many Red
Hat Single Sign-On server instances as it was configured to do. These server instances pull their
configuration from the domain controller.

3.3.1. Domain Configuration

Various other chapters in this guide walk you through configuring various aspects like databases,
HTTP network connections, caches, and other infrastructure related things. While standalone mode
uses the standalone.xml file to configure these things, domain mode uses the …
/domain/configuration/domain.xml configuration file. This is where the domain profile and server
group for the Red Hat Single Sign-On server are defined.

domain.xml

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

12

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/7.0/html-single/configuration-guide/configuration-guide

Let’s look at some aspects of this domain.xml file. The auth-server-standalone and auth-
server-clustered profile XML blocks are where you are going to make the bulk of your
configuration decisions. You’ll be configuring things here like network connections, caches, and
database connections.

auth-server profile

The auth-server-standalone profile is a non-clustered setup. The auth-server-clustered
profile is the clustered setup.

If you scroll down further, you’ll see various socket-binding-groups defined.

Warning

Any changes you make to this file while the domain controller is running will not take
effect and may even be overwritten by the server. Instead use the the command line
scripting or the web console of JBoss EAP. See the JBoss EAP Configuration Guide for
more information.

 <profiles>
 <profile name="auth-server-standalone">
 ...
 </profile>
 <profile name="auth-server-clustered">
 ...
 </profile>

CHAPTER 3. CHOOSING AN OPERATING MODE

13

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/7.0/html-single/configuration-guide/configuration-guide

socket-binding-groups

This config defines the default port mappings for various connectors that are opened with each Red
Hat Single Sign-On server instance. Any value that contains ${…} is a value that can be overriden
on the command line with the -D switch, i.e.

$ domain.sh -Djboss.http.port=80

The definition of the server group for Red Hat Single Sign-On resides in the server-groups XML
block. It specifies the domain profile that is used (default) and also some default boot arguments
for the Java VM when the host controller boots an instance. It also binds a socket-binding-
group to the server group.

server group

3.3.2. Host Controller Configuration

Red Hat Single Sign-On comes with two host controller configuration files that reside in the …

 <socket-binding-groups>
 <socket-binding-group name="standard-sockets" default-
interface="public">
 ...
 </socket-binding-group>
 <socket-binding-group name="ha-sockets" default-
interface="public">
 ...
 </socket-binding-group>
 <!-- load-balancer-sockets should be removed in production
systems and replaced with a better softare or hardare based one -->
 <socket-binding-group name="load-balancer-sockets" default-
interface="public">
 ...
 </socket-binding-group>
 </socket-binding-groups>

 <server-groups>
 <!-- load-balancer-group should be removed in production systems
and replaced with a better softare or hardare based one -->
 <server-group name="load-balancer-group" profile="load-balancer">
 <jvm name="default">
 <heap size="64m" max-size="512m"/>
 </jvm>
 <socket-binding-group ref="load-balancer-sockets"/>
 </server-group>
 <server-group name="auth-server-group" profile="auth-server-
clustered">
 <jvm name="default">
 <heap size="64m" max-size="512m"/>
 </jvm>
 <socket-binding-group ref="ha-sockets"/>
 </server-group>
 </server-groups>

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

14

/domain/configuration/ directory: host-master.xml and host-slave.xml. host-master.xml is configured
to boot up a domain controller, a load balancer, and one Red Hat Single Sign-On server instance.
host-slave.xml is configured to talk to the domain controller and boot up one Red Hat Single Sign-On
server instance.

Note

The load balancer is not a required service. It exists so that you can easily test drive
clustering on your development machine. While usable in production, you have the option
of replacing it if you have a different hardware or software based load balancer you want
to use.

Host Controller Config

To disable the load balancer server instance, edit host-master.xml and comment out or remove the
"load-balancer" entry.

Another interesting thing to note about this file is the declaration of the authentication server
instance. It has a port-offset setting. Any network port defined in the domain.xml socket-
binding-group or the server group will have the value of port-offset added to it. For this
example domain setup we do this so that ports opened by the load balancer server don’t conflict
with the authentication server instance that is started.

 <servers>
 <!-- remove or comment out next line -->
 <server name="load-balancer" group="loadbalancer-group"/>
 ...
 </servers>

CHAPTER 3. CHOOSING AN OPERATING MODE

15

3.3.3. Server Instance Working Directories

Each Red Hat Single Sign-On server instance defined in your host files creates a working directory
under … /domain/servers/{SERVER NAME}. Additional configuration can be put there, and any
temporary, log, or data files the server instance needs or creates go there too. The structure of
these per server directories ends up looking like any other JBoss EAP booted server.

Working Directories

3.3.4. Domain Boot Script

When running the server in domain mode, there is a specific script you need to run to boot the
server depending on your operating system. These scripts live in the bin/ directory of the server
distribution.

Domain Boot Script

 <servers>
 ...
 <server name="server-one" group="auth-server-group" auto-
start="true">
 <socket-bindings port-offset="150"/>
 </server>
 </servers>

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

16

To boot the server:

Linux/Unix

$.../bin/domain.sh --host-config=host-master.xml

Windows

> ...\bin\domain.bat --host-config=host-slave.xml

When running the boot script you will need pass in the host controlling configuration file you are
going to use via the --host-config switch.

3.3.5. Clustered Domain Example

You can test drive clustering using the out-of-the-box domain.xml configuration. This example
domain is meant to run on one machine and boots up:

a domain controller

an HTTP load balancer

2 Red Hat Single Sign-On server instances

CHAPTER 3. CHOOSING AN OPERATING MODE

17

To simulate running a cluster on two machines, you’ll run the domain.sh script twice to start two
separate host controllers. The first will be the master host controller which will start a domain
controller, an HTTP load balancer, and one Red Hat Single Sign-On authentication server instance.
The second will be a slave host controller that only starts up an authentication server instance.

3.3.5.1. Setup Slave Connection to Domain Controller

Before you can boot things up though, you have to configure the slave host controller so that it can
talk securely to the domain controller. If you do not do this, then the slave host will not be able to
obtain the centralized configuration from the domain controller. To set up a secure connection, you
have to create a server admin user and a secret that will be shared between the master and the
slave. You do this by running the …/bin/add-user.sh script.

When you run the script select Management User and answer yes when it asks you if the new
user is going to be used for one AS process to connect to another. This will generate a secret that
you’ll need to cut and paste into the … /domain/configuration/host-slave.xml file.

Add App Server Admin

$ add-user.sh
 What type of user do you wish to add?
 a) Management User (mgmt-users.properties)
 b) Application User (application-users.properties)
 (a): a
 Enter the details of the new user to add.
 Using realm 'ManagementRealm' as discovered from the existing property
files.
 Username : admin
 Password recommendations are listed below. To modify these
restrictions edit the add-user.properties configuration file.
 - The password should not be one of the following restricted values
{root, admin, administrator}
 - The password should contain at least 8 characters, 1 alphabetic
character(s), 1 digit(s), 1 non-alphanumeric symbol(s)
 - The password should be different from the username
 Password :
 Re-enter Password :
 What groups do you want this user to belong to? (Please enter a comma
separated list, or leave blank for none)[]:
 About to add user 'admin' for realm 'ManagementRealm'
 Is this correct yes/no? yes
 Added user 'admin' to file '/.../standalone/configuration/mgmt-
users.properties'
 Added user 'admin' to file '/.../domain/configuration/mgmt-
users.properties'
 Added user 'admin' with groups to file
'/.../standalone/configuration/mgmt-groups.properties'
 Added user 'admin' with groups to file
'/.../domain/configuration/mgmt-groups.properties'
 Is this new user going to be used for one AS process to connect to
another AS process?
 e.g. for a slave host controller connecting to the master or for a

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

18

Remoting connection for server to server EJB calls.
 yes/no? yes
 To represent the user add the following to the server-identities
definition <secret value="bWdtdDEyMyE=" />

Note

The add-user.sh does not add user to Red Hat Single Sign-On server but to the
underlying JBoss Enterprise Application Platform. The credentials used and generated in
the above script are only for example purpose. Please use the ones generated on your
system.

Now cut and paste the secret value into the … /domain/configuration/host-slave.xml file as follows:

3.3.5.2. Run the Boot Scripts

Since we’re simulating a two node cluster on one development machine, you’ll run the boot script
twice:

Boot up master

Boot up slave

To try it out, open your browser and go to http://localhost:8080/auth

 <management>
 <security-realms>
 <security-realm name="ManagementRealm">
 <server-identities>
 <secret value="bWdtdDEyMyE="/>
 </server-identities>

$ domain.sh --host-config=host-master.xml

$ domain.sh --host-config=host-slave.xml

CHAPTER 3. CHOOSING AN OPERATING MODE

19

http://localhost:8080/auth

CHAPTER 4. MANAGE SUBSYSTEM CONFIGURATION

Low-level configuration of Red Hat Single Sign-On is done by editing the standalone.xml,
standalone-ha.xml, or domain.xml file in your distribution. The location of this file depends on
your operating mode.

While there are endless settings you can configure here, this section will focus on configuration of
the keycloak-server subsystem. No matter which configuration file you are using, configuration of the
keycloak-server subsystem is the same.

The keycloak-server subsystem is typically declared toward the end of the file like this:

Note that anything changed in this subsystem will not take effect until the server is rebooted.

4.1. CONFIGURE SPI PROVIDERS

The specifics of each configuration setting is discussed elsewhere in context with that setting.
However, it is useful to understand the format used to declare settings on SPI providers.

Red Hat Single Sign-On is a highly modular system that allows great flexibility. There are more than
50 service provider interfaces (SPIs), and you are allowed to swap out implementations of each SPI.
An implementation of an SPI is known as a provider.

All elements in an SPI declaration are optional, but a full SPI declaration looks like this:

Here we have two providers defined for the SPI myspi. The default-provider is listed as
myprovider. However it is up to the SPI to decide how it will treat this setting. Some SPIs allow
more than one provider and some do not. So default-provider can help the SPI to choose.

Also notice that each provider defines its own set of configuration properties. The fact that both
providers above have a property called foo is just a coincidence.

The type of each property value is interpreted by the provider. However, there is one exception.
Consider the jpa provider for the eventStore API:

<subsystem xmlns="urn:jboss:domain:keycloak-server:1.1">
 <web-context>auth</web-context>
 ...
</subsystem>

<spi name="myspi">
 <default-provider>myprovider</default-provider>
 <provider name="myprovider" enabled="true">
 <properties>
 <property name="foo" value="bar"/>
 </properties>
 </provider>
 <provider name="mysecondprovider" enabled="true">
 <properties>
 <property name="foo" value="foo"/>
 </properties>
 </provider>
</spi>

<spi name="eventsStore">

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

20

We see that the value begins and ends with square brackets. That means that the value will be
passed to the provider as a list. In this example, the system will pass the provider a list with two
element values EVENT1 and EVENT2. To add more values to the list, just separate each list
element with a comma. Unfortunately, you do need to escape the quotes surrounding each list
element with ".

4.2. START THE JBOSS EAP CLI

Besides editing the configuration by hand, you also have the option of changing the configuration by
issuing commands via the jboss-cli tool. CLI allows you to configure servers locally or remotely. And
it is especially useful when combined with scripting.

To start the JBoss EAP CLI, you need to run jboss-cli.

Linux/Unix

$.../bin/jboss-cli.sh

Windows

> ...\bin\jboss-cli.bat

This will bring you to a prompt like this:

Prompt

[disconnected /]

If you wish to execute commands on a running server, you will first execute the connect command.

connect

[disconnected /] connect
connect
[standalone@localhost:9990 /]

You may be thinking to yourself, "I didn’t enter in any username or password!". If you run jboss-
cli on the same machine as your running standalone server or domain controller and your account
has appropriate file permissions, you do not have to setup or enter in a admin username and
password. See the JBoss EAP Configuration Guide for more details on how to make things more
secure if you are uncomfortable with that setup.

 <provider name="jpa" enabled="true">
 <properties>
 <property name="exclude-events" value="["EVENT1",

"EVENT2"]"/>
 </properties>
 </provider>
</spi>

CHAPTER 4. MANAGE SUBSYSTEM CONFIGURATION

21

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/7.0/html-single/configuration-guide/configuration-guide

4.3. CLI EMBEDDED MODE

If you do happen to be on the same machine as your standalone server and you want to issue
commands while the server is not active, you can embed the server into CLI and make changes in a
special mode that disallows incoming requests. To do this, first execute the embed command with
the config file you wish to change.

embed

[disconnected /] embed-server --server-config=standalone.xml
[standalone@embedded /]

4.4. CLI GUI MODE

The CLI can also run in GUI mode. GUI mode launches a Swing application that allows you to
graphically view and edit the entire management model of a running server. GUI mode is especially
useful when you need help formatting your CLI commands and learning about the options available.
The GUI can also retrieve server logs from a local or remote server.

Start in GUI mode

$.../bin/jboss-cli.sh --gui

Note: to connect to a remote server, you pass the --connect option as well. Use the --help option
for more details.

After launching GUI mode, you will probably want to scroll down to find the node,
subsystem=keycloak-server. If you right-click on the node and click Explore
subsystem=keycloak-server, you will get a new tab that shows only the keycloak-server
subsystem.

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

22

4.5. CLI SCRIPTING

The CLI has extensive scripting capabilities. A script is just a text file with CLI commands in it.
Consider a simple script that turns off theme and template caching.

turn-off-caching.cli

/subsystem=keycloak-server/theme=defaults/:write-
attribute(name=cacheThemes,value=false)
/subsystem=keycloak-server/theme=defaults/:write-
attribute(name=cacheTemplates,value=false)

To execute the script, I can follow the Scripts menu in CLI GUI, or execute the script from the
command line as follows:

$.../bin/jboss-cli.sh --file=turn-off-caching.cli

4.6. CLI RECIPES

Here are some configuration tasks and how to perform them with CLI commands. Note that in all but
the first example, we use the wildcard path ** to mean you should substitute or the path to the
keycloak-server subsystem.

For standalone, this just means:

** = /subsystem=keycloak-server

CHAPTER 4. MANAGE SUBSYSTEM CONFIGURATION

23

For domain mode, this would mean something like:

** = /profile=auth-server-clustered/subsystem=keycloak-server

4.6.1. Change the web context of the server

/subsystem=keycloak-server/:write-attribute(name=web-
context,value=myContext)

4.6.2. Set the global default theme

**/theme=defaults/:write-attribute(name=default,value=myTheme)

4.6.3. Add a new SPI and a provider

**/spi=mySPI/:add
**/spi=mySPI/provider=myProvider/:add(enabled=true)

4.6.4. Disable a provider

**/spi=mySPI/provider=myProvider/:write-
attribute(name=enabled,value=false)

4.6.5. Change the default provider for an SPI

**/spi=mySPI/:write-attribute(name=default-provider,value=myProvider)

4.6.6. Configure the dblock SPI

**/spi=dblock/:add(default-provider=jpa)
**/spi=dblock/provider=jpa/:add(properties={lockWaitTimeout =>
"900"},enabled=true)

4.6.7. Add or change a single property value for a provider

**/spi=dblock/provider=jpa/:map-
put(name=properties,key=lockWaitTimeout,value=3)

4.6.8. Remove a single property from a provider

**/spi=dblock/provider=jpa/:map-
remove(name=properties,key=lockRecheckTime)

4.6.9. Set values on a provider property of type List

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

24

**/spi=eventsStore/provider=jpa/:map-put(name=properties,key=exclude-
events,value=[EVENT1,EVENT2])

CHAPTER 4. MANAGE SUBSYSTEM CONFIGURATION

25

CHAPTER 5. PROFILES

Red Hat Single Sign-On has two profiles, product and preview. The product profile is enabled by
default, which disables some tech preview features. To enable the features you can either switch to
the preview profile or enable individual features.

To enable the preview profile start the server with:

bin/standalone.sh|bat -Dkeycloak.profile=preview

You can set this permanently by creating the file
standalone/configuration/profile.properties (or domain/servers/server-
one/configuration/profile.properties for server-one in domain mode). Add the
following to the file:

profile=preview

The features that can be enabled and disabled are:

Authorization - authorization services

Impersonation - ability for admins to impersonate users

Script - write custom authenticators using JavaScript

The product profile disables authorization and script.

To disable a specific feature start the server with:

bin/standalone.sh|bat -Dkeycloak.profile.feature.<feature
name>=disabled

For example to disable Impersonation use -
Dkeycloak.profile.feature.impersonation=disabled.

You can set this permanently in the profile.properties file by adding:

feature.impersonation=disabled

To enable a specific feature without enabling the full preview profile you can start the server with:

bin/standalone.sh|bat -Dkeycloak.profile.feature.<feature
name>=enabled`

For example to enable Authorization Services use -
Dkeycloak.profile.feature.authorization=enabled.

You can set this permanently in the profile.properties file by adding:

feature.authorization=enabled

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

26

CHAPTER 6. RELATIONAL DATABASE SETUP

Red Hat Single Sign-On comes with its own embedded Java-based relational database called H2.
This is the default database that Red Hat Single Sign-On will use to persist data and really only
exists so that you can run the authentication server out of the box. We highly recommend that you
replace it with a more production ready external database. The H2 database is not very viable in
high concurrency situations and should not be used in a cluster either. The purpose of this chapter is
to show you how to connect Red Hat Single Sign-On to a more mature database.

Red Hat Single Sign-On uses two layered technologies to persist its relational data. The bottom
layered technology is JDBC. JDBC is a Java API that is used to connect to a RDBMS. There are
different JDBC drivers per database type that are provided by your database vendor. This chapter
discusses how to configure Red Hat Single Sign-On to use one of these vendor-specific drivers.

The top layered technology for persistence is Hibernate JPA. This is a object to relational mapping
API that maps Java Objects to relational data. Most deployments of Red Hat Single Sign-On will
never have to touch the configuration aspects of Hibernate, but we will discuss how that is done if
you run into that rare circumstance.

Note

Datasource configuration is covered much more thoroughly in the datasource
configuration chapter in the JBoss EAP Configuration Guide.

6.1. RDBMS SETUP CHECKLIST

These are the steps you will need to perform to get an RDBMS configured for Red Hat Single Sign-
On.

1. Locate and download a JDBC driver for your database

2. Package the driver JAR into a module and install this module into the server

3. Declare the JDBC driver in the configuration profile of the server

4. Modify the datasource configuration to use your database’s JDBC driver

5. Modify the datasource configuration to define the connection parameters to your database

This chapter will use PostgresSQL for all its examples. Other databases follow the same steps for
installation.

6.2. PACKAGE THE JDBC DRIVER

Find and download the JDBC driver JAR for your RDBMS. Before you can use this driver, you must
package it up into a module and install it into the server. Modules define JARs that are loaded into
the Red Hat Single Sign-On classpath and the dependencies those JARs have on other modules.
They are pretty simple to set up.

Within the … /modules/ directory of your Red Hat Single Sign-On distribution, you need to create a
directory structure to hold your module definition. The convention is use the Java package name of
the JDBC driver for the name of the directory structure. For PostgreSQL, create the directory
org/postgresql/main. Copy your database driver JAR into this directory and create an empty

CHAPTER 6. RELATIONAL DATABASE SETUP

27

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/7.0/html-single/configuration-guide/#datasource_management

module.xml file within it too.

Module Directory

After you have done this, open up the module.xml file and create the following XML:

Module XML

<?xml version="1.0" ?>
<module xmlns="urn:jboss:module:1.3" name="org.postgresql">

 <resources>
 <resource-root path="postgresql-9.4.1212.jar"/>
 </resources>

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

28

The module name should match the directory structure of your module. So, org/postgresql maps to
org.postgresql. The resource-root path attribute should specify the JAR filename of the
driver. The rest are just the normal dependencies that any JDBC driver JAR would have.

6.3. DECLARE AND LOAD JDBC DRIVER

The next thing you have to do is declare your newly packaged JDBC driver into your deployment
profile so that it loads and becomes available when the server boots up. Where you perform this
action depends on your operating mode. If you’re deploying in standard mode, edit …
/standalone/configuration/standalone.xml. If you’re deploying in standard clustering mode, edit …
/standalone/configuration/standalone-ha.xml. If you’re deploying in domain mode, edit …
/domain/configuration/domain.xml. In domain mode, you’ll need to make sure you edit the profile you
are using: either auth-server-standalone or auth-server-clustered

Within the profile, search for the drivers XML block within the datasources subsystem. You
should see a pre-defined driver declared for the H2 JDBC driver. This is where you’ll declare the
JDBC driver for your external database.

JDBC Drivers

Within the drivers XML block you’ll need to declare an additional JDBC driver. It needs to have a
name which you can choose to be anything you want. You specify the module attribute which points
to the module package you created earlier for the driver JAR. Finally you have to specify the
driver’s Java class. Here’s an example of installing PostgreSQL driver that lives in the module
example defined earlier in this chapter.

Declare Your JDBC Drivers

 <dependencies>
 <module name="javax.api"/>
 <module name="javax.transaction.api"/>
 </dependencies>
</module>

 <subsystem xmlns="urn:jboss:domain:datasources:4.0">
 <datasources>
 ...
 <drivers>
 <driver name="h2" module="com.h2database.h2">
 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-
datasource-class>
 </driver>
 </drivers>
 </datasources>
 </subsystem>

 <subsystem xmlns="urn:jboss:domain:datasources:4.0">
 <datasources>
 ...
 <drivers>
 <driver name="postgresql" module="org.postgresql">
 <xa-datasource-class>org.postgresql.xa.PGXADataSource</xa-
datasource-class>

CHAPTER 6. RELATIONAL DATABASE SETUP

29

6.4. MODIFY THE RED HAT SINGLE SIGN-ON DATASOURCE

After declaring your JDBC driver, you have to modify the existing datasource configuration that Red
Hat Single Sign-On uses to connect it to your new external database. You’ll do this within the same
configuration file and XML block that you registered your JDBC driver in. Here’s an example that
sets up the connection to your new database:

Declare Your JDBC Drivers

Search for the datasource definition for KeycloakDS. You’ll first need to modify the
connection-url. The documentation for your vendor’s JDBC implementation should specify the
format for this connection URL value.

Next define the driver you will use. This is the logical name of the JDBC driver you declared in the
previous section of this chapter.

It is expensive to open a new connection to a database every time you want to perform a
transaction. To compensate, the datasource implementation maintains a pool of open connections.
The max-pool-size specifies the maximum number of connections it will pool. You may want to
change the value of this depending on the load of your system.

Finally, with PostgreSQL at least, you need to define the database username and password that is
needed to connect to the database. You may be worried that this is in clear text in the example.
There are methods to obfuscate this, but this is beyond the scope of this guide.

 </driver>
 <driver name="h2" module="com.h2database.h2">
 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-
datasource-class>
 </driver>
 </drivers>
 </datasources>
 </subsystem>

 <subsystem xmlns="urn:jboss:domain:datasources:4.0">
 <datasources>
 ...
 <datasource jndi-name="java:jboss/datasources/KeycloakDS" pool-
name="KeycloakDS" enabled="true" use-java-context="true">
 <connection-
url>jdbc:postgresql://localhost/keycloak</connection-url>
 <driver>postgresql</driver>
 <pool>
 <max-pool-size>20</max-pool-size>
 </pool>
 <security>
 <user-name>William</user-name>
 <password>password</password>
 </security>
 </datasource>
 ...
 </datasources>
 </subsystem>

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

30

Note

For more information about datasource features, see the datasource configuration chapter
in the JBoss EAP Configuration Guide.

6.5. DATABASE CONFIGURATION

The configuration for this component is found in the standalone.xml, standalone-ha.xml, or
domain.xml file in your distribution. The location of this file depends on your operating mode.

Database Config

Possible configuration options are:

dataSource

JNDI name of the dataSource

jta

boolean property to specify if datasource is JTA capable

driverDialect

Value of database dialect. In most cases you don’t need to specify this property as dialect
will be autodetected by Hibernate.

initializeEmpty

Initialize database if empty. If set to false the database has to be manually initialized. If you
want to manually initialize the database set migrationStrategy to manual which will create a
file with SQL commands to initialize the database. Defaults to true.

migrationStrategy

<subsystem xmlns="urn:jboss:domain:keycloak-server:1.1">
 ...
 <spi name="connectionsJpa">
 <provider name="default" enabled="true">
 <properties>
 <property name="dataSource"
value="java:jboss/datasources/KeycloakDS"/>
 <property name="initializeEmpty" value="false"/>
 <property name="migrationStrategy" value="manual"/>
 <property name="migrationExport"
value="${jboss.home.dir}/keycloak-database-update.sql"/>
 </properties>
 </provider>
 </spi>
 ...
</subsystem>

CHAPTER 6. RELATIONAL DATABASE SETUP

31

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/7.0/html-single/configuration-guide/#datasource_management

Strategy to use to migrate database. Valid values are update, manual and validate.
Update will automatically migrate the database schema. Manual will export the required
changes to a file with SQL commands that you can manually execute on the database.
Validate will simply check if the database is up-to-date.

migrationExport

Path for where to write manual database initialization/migration file.

showSql

Specify whether Hibernate should show all SQL commands in the console (false by
default). This is very verbose!

formatSql

Specify whether Hibernate should format SQL commands (true by default)

globalStatsInterval

Will log global statistics from Hibernate about executed DB queries and other things.
Statistics are always reported to server log at specified interval (in seconds) and are cleared
after each report.

schema

Specify the database schema to use

Note

These configuration switches and more are described in the JBoss EAP Development
Guide.

6.6. UNICODE CONSIDERATIONS FOR DATABASES

Database schema in Red Hat Single Sign-On only accounts for Unicode strings in the following
special fields:

Realms: display name, HTML display name

Federation Providers: display name

Users: username, given name, last name, attribute names and values

Groups: name, attribute names and values

Roles: name

Descriptions of objects

Otherwise, characters are limited to those contained in database encoding which is often 8-bit.
However, for some database systems, it is possible to enable UTF-8 encoding of Unicode
characters and use full Unicode character set in all text fields. Often, this is counterbalanced by
shorter maximum length of the strings than in case of 8-bit encodings.

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

32

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/7.0/html-single/development-guide/#hibernate

Some of the databases require special settings to database and/or JDBC driver to be able to handle
Unicode characters. Please find the settings for your database below. Note that if a database is
listed here, it can still work properly provided it handles UTF-8 encoding properly both on the level
of database and JDBC driver.

Technically, the key criterion for Unicode support for all fields is whether the database allows setting
of Unicode character set for VARCHAR and CHAR fields. If yes, there is a high chance that Unicode
will be plausible, usually at the expense of field length. If it only supports Unicode in NVARCHAR and
NCHAR fields, Unicode support for all text fields is unlikely as Keycloak schema uses VARCHAR and
CHAR fields extensively.

6.6.1. Oracle Database

Unicode characters are properly handled provided the database was created with Unicode support
in VARCHAR and CHAR fields (e.g. by using AL32UTF8 character set as the database character set).
No special settings is needed for JDBC driver.

If the database character set is not Unicode, then to use Unicode characters in the special fields, the
JDBC driver needs to be configured with the connection property oracle.jdbc.defaultNChar
set to true. It might be wise, though not strictly necessary, to also set the
oracle.jdbc.convertNcharLiterals connection property to true. These properties can be
set either as system properties or as connection properties. Please note that setting
oracle.jdbc.defaultNChar may have negative impact on performance. For details, please
refer to Oracle JDBC driver configuration documentation.

6.6.2. Microsoft SQL Server Database

Unicode characters are properly handled only for the special fields. No special settings of JDBC
driver or database is necessary.

6.6.3. IBM DB2 Database

Unicode characters are properly handled for all fields, length reduction applies to non-special fields.
No special settings of JDBC driver or database is necessary.

6.6.4. MySQL Database

Unicode characters are properly handled provided the database was created with Unicode support
in VARCHAR and CHAR fields in the CREATE DATABASE command (e.g. by using utf8 character set
as the default database character set in MySQL 5.5. Please note that utf8mb4 character set does

not work due to different storage requirements to utf8 character set [1]). Note that in this case,
length restriction to non-special fields does not apply because columns are created to accomodate
given amount of characters, not bytes. If the database default character set does not allow storing
Unicode, only the special fields allow storing Unicode values.

At the side of JDBC driver settings, it is necessary to add a connection property
characterEncoding=UTF-8 to the JDBC connection settings.

6.6.5. PostgreSQL Database

Unicode is supported when the database character set is UTF8. In that case, Unicode characters
can be used in any field, there is no reduction of field length for non-special fields. No special
settings of JDBC driver is necessary.

CHAPTER 6. RELATIONAL DATABASE SETUP

33

[1] Tracked as https://issues.jboss.org/browse/KEYCLOAK-3873

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

34

https://issues.jboss.org/browse/KEYCLOAK-3873

CHAPTER 7. NETWORK SETUP

Red Hat Single Sign-On can run out of the box with some networking limitations. For one, all
network endpoints bind to localhost so the auth server is really only usable on one local machine.
For HTTP based connections, it does not use default ports like 80 and 443. HTTPS/SSL is not
configured out of the box and without it, Red Hat Single Sign-On has many security vulnerabilities.
Finally, Red Hat Single Sign-On may often need to make secure SSL and HTTPS connections to
external servers and thus need a trust store set up so that endpoints can be validated correctly. This
chapter discusses all of these things.

7.1. BIND ADDRESSES

By default Red Hat Single Sign-On binds to the localhost loopback address 127.0.0.1. That’s not
a very useful default if you want the authentication server available on your network. Generally, what
we recommend is that you deploy a reverse proxy or load balancer on a public network and route
traffic to individual Red Hat Single Sign-On server instances on a private network. In either case
though, you still need to set up your network interfaces to bind to something other than localhost.

Setting the bind address is quite easy and can be done on the command line with either the
standalone.sh or domain.sh boot scripts discussed in the Choosing an Operating Mode chapter.

$ standalone.sh -b 192.168.0.5

The -b switch sets the IP bind address for any public interfaces.

Alternatively, if you don’t want to set the bind address at the command line, you can edit the profile
configuration of your deployment. Open up the profile configuration file (standalone.xml or
domain.xml depending on your operating mode) and look for the interfaces XML block.

The public interface corresponds to subsystems creating sockets that are available publicly. An
example of one of these subsystems is the web layer which serves up the authentication endpoints
of Red Hat Single Sign-On. The management interface corresponds to sockets opened up by the
management layer of the JBoss EAP. Specifically the sockets which allow you to use the jboss-
cli.sh command line interface and the JBoss EAP web console.

In looking at the public interface you see that it has a special string
${jboss.bind.address:127.0.0.1}. This string denotes a value 127.0.0.1 that can be
overriden on the command line by setting a Java system property, i.e.:

$ domain.sh -Djboss.bind.address=192.168.0.5

The -b is just a shorthand notation for this command. So, you can either change the bind address
value directly in the profile config, or change it on the command line when you boot up.

 <interfaces>
 <interface name="management">
 <inet-address
value="${jboss.bind.address.management:127.0.0.1}"/>
 </interface>
 <interface name="public">
 <inet-address value="${jboss.bind.address:127.0.0.1}"/>
 </interface>
 </interfaces>

CHAPTER 7. NETWORK SETUP

35

Note

There are many more options available when setting up interface definitions. For more
information, see the network interface in the JBoss EAP Configuration Guide.

7.2. SOCKET PORT BINDINGS

The ports opened for each socket have a pre-defined default that can be overriden at the command
line or within configuration. To illustrate this configuration, let’s pretend you are running in
standalone mode and open up the … /standalone/configuration/standalone.xml. Search for socket-
binding-group.

socket-bindings define socket connections that will be opened by the server. These bindings
specify the interface (bind address) they use as well as what port number they will open. The
ones you will be most interested in are:

http

Defines the port used for Red Hat Single Sign-On HTTP connections

https

Defines the port used for Red Hat Single Sign-On HTTPS connections

ajp

This socket binding defines the port used for the AJP protocol. This protocol is used by
Apache HTTPD server in conjunction mod-cluster when you are using Apache HTTPD
as a load balancer.

management-http

Defines the HTTP connection used by JBoss EAP CLI and web console.

When running in domain mode setting the socket configurations is a bit trickier as the example
domain.xml file has multiple socket-binding-groups defined. If you scroll down to the server-
group definitions you can see what socket-binding-group is used for each server-group.

 <socket-binding-group name="standard-sockets" default-
interface="public" port-offset="${jboss.socket.binding.port-offset:0}">
 <socket-binding name="management-http" interface="management"
port="${jboss.management.http.port:9990}"/>
 <socket-binding name="management-https" interface="management"
port="${jboss.management.https.port:9993}"/>
 <socket-binding name="ajp" port="${jboss.ajp.port:8009}"/>
 <socket-binding name="http" port="${jboss.http.port:8080}"/>
 <socket-binding name="https" port="${jboss.https.port:8443}"/>
 <socket-binding name="txn-recovery-environment" port="4712"/>
 <socket-binding name="txn-status-manager" port="4713"/>
 <outbound-socket-binding name="mail-smtp">
 <remote-destination host="localhost" port="25"/>
 </outbound-socket-binding>
 </socket-binding-group>

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

36

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/7.0/html-single/configuration-guide/#network_and_port_configuration

domain socket bindings

Note

There are many more options available when setting up socket-binding-group
definitions. For more information, see the socket binding group in the JBoss EAP
Configuration Guide.

7.3. SETTING UP HTTPS/SSL

This default behavior is defined by the SSL/HTTPS mode of each Red Hat Single Sign-On realm.
This is discussed in more detail in the Server Administration Guide, but let’s give some context and
a brief overview of these modes.

external requests

Red Hat Single Sign-On can run out of the box without SSL so long as you stick to private
IP addresses like localhost, 127.0.0.1, 10.0.x.x, 192.168.x.x, and
172..16.x.x. If you don’t have SSL/HTTPS configured on the server or you try to access
Red Hat Single Sign-On over HTTP from a non-private IP adress you will get an error.

none

Red Hat Single Sign-On does not require SSL. This should really only be used in
development when you are playing around with things.

all requests

Red Hat Single Sign-On requires SSL for all IP addresses.

The SSL mode for each realm can be configured in the Red Hat Single Sign-On admin console.

7.3.1. Enabling SSL/HTTPS for the Red Hat Single Sign-On Server

 <server-groups>
 <server-group name="load-balancer-group" profile="load-balancer">
 ...
 <socket-binding-group ref="load-balancer-sockets"/>
 </server-group>
 <server-group name="auth-server-group" profile="auth-server-
clustered">
 ...
 <socket-binding-group ref="ha-sockets"/>
 </server-group>
 </server-groups>

Warning

Red Hat Single Sign-On is not set up by default to handle SSL/HTTPS. It is highly
recommended that you either enable SSL on the Red Hat Single Sign-On server itself
or on a reverse proxy in front of the Red Hat Single Sign-On server.

CHAPTER 7. NETWORK SETUP

37

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/7.0/html-single/configuration-guide/#network_and_port_configuration
https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.1/html-single/server-administration-guide/

If you are not using a reverse proxy or load balancer to handle HTTPS traffic for you, you’ll need to
enable HTTPS for the Red Hat Single Sign-On server. This involves

1. Obtaining or generating a keystore that contains the private key and certificate for
SSL/HTTP traffic

2. Configuring the Red Hat Single Sign-On server to use this keypair and certificate.

7.3.1.1. Creating the Certificate and Java Keystore

In order to allow HTTPS connections, you need to obtain a self signed or third-party signed
certificate and import it into a Java keystore before you can enable HTTPS in the web container you
are deploying the Red Hat Single Sign-On Server to.

7.3.1.1.1. Self Signed Certificate

In development, you will probably not have a third party signed certificate available to test a Red Hat
Single Sign-On deployment so you’ll need to generate a self-signed one using the keytool utility
that comes with the Java JDK.

$ keytool -genkey -alias localhost -keyalg RSA -keystore keycloak.jks -
validity 10950
 Enter keystore password: secret
 Re-enter new password: secret
 What is your first and last name?
 [Unknown]: localhost
 What is the name of your organizational unit?
 [Unknown]: Keycloak
 What is the name of your organization?
 [Unknown]: Red Hat
 What is the name of your City or Locality?
 [Unknown]: Westford
 What is the name of your State or Province?
 [Unknown]: MA
 What is the two-letter country code for this unit?
 [Unknown]: US
 Is CN=localhost, OU=Keycloak, O=Test, L=Westford, ST=MA, C=US
correct?
 [no]: yes

You should answer What is your first and last name ? question with the DNS name of
the machine you’re installing the server on. For testing purposes, localhost should be used. After
executing this command, the keycloak.jks file will be generated in the same directory as you
executed the keytool command in.

If you want a third-party signed certificate, but don’t have one, you can obtain one for free at
cacert.org. You’ll have to do a little set up first before doing this though.

The first thing to do is generate a Certificate Request:

$ keytool -certreq -alias yourdomain -keystore keycloak.jks >
keycloak.careq

Where yourdomain is a DNS name for which this certificate is generated for. Keytool generates
the request:

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

38

http://cacert.org

-----BEGIN NEW CERTIFICATE REQUEST-----
MIIC2jCCAcICAQAwZTELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAk1BMREwDwYDVQQHEwhXZXN
0Zm9y
ZDEQMA4GA1UEChMHUmVkIEhhdDEQMA4GA1UECxMHUmVkIEhhdDESMBAGA1UEAxMJbG9jYWx
ob3N0
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAr7kck2TaavlEOGbcpi9c0rncY4H
hdzmY
Ax2nZfq1eZEaIPqI5aTxwQZzzLDK9qbeAd8Ji79HzSqnRDxNYaZu7mAYhFKHgixsolE3o5Y
fzbw1
29RvyeUVe+WZxv5oo9wolVVpdSINIMEL2LaFhtX/c1dqiqYVpfnvFshZQaIg2nL8juzZcBj
j4as
H98gIS7khql/dkZKsw9NLvyxgJvp7PaXurX29fNf3ihG+oFrL22oFyV54BWWxXCKU/GPn61
EGZGw
Ft2qSIGLdctpMD1aJR2bcnlhEjZKDksjQZoQ5YMXaAGkcYkG6QkgrocDE2YXDbi7GIdf9Me
gVJ35
2DQMpwIDAQABoDAwLgYJKoZIhvcNAQkOMSEwHzAdBgNVHQ4EFgQUQwlZJBA+fjiDdiVzaO9
vrE/i
n2swDQYJKoZIhvcNAQELBQADggEBAC5FRvMkhal3q86tHPBYWBuTtmcSjs4qUm6V6f63frh
veWHf
PzRrI1xH272XUIeBk0gtzWo0nNZnf0mMCtUBbHhhDcG82xolikfqibZijoQZCiGiedVjHJF
tniDQ
9bMDUOXEMQ7gHZg5q6mJfNG9MbMpQaUVEEFvfGEQQxbiFK7hRWU8S23/d80e8nExgQxdJWJ
6vd0X
MzzFK6j4Dj55bJVuM7GFmfdNC52pNOD5vYe47Aqh8oajHX9XTycVtPXl45rrWAH33ftbrS8
SrZ2S
vqIFQeuLL3BaHwpl3t7j2lMWcK1p80laAxEASib/fAwrRHpLHBXRcq6uALUOZl4Alt8=
-----END NEW CERTIFICATE REQUEST-----

Send this ca request to your CA. The CA will issue you a signed certificate and send it to you.
Before you import your new cert, you must obtain and import the root certificate of the CA. You can
download the cert from CA (ie.: root.crt) and import as follows:

$ keytool -import -keystore keycloak.jks -file root.crt -alias root

Last step is to import your new CA generated certificate to your keystore:

$ keytool -import -alias yourdomain -keystore keycloak.jks -file your-
certificate.cer

7.3.1.2. Configure Red Hat Single Sign-On to Use the Keystore

Now that you have a Java keystore with the appropriate certificates, you need to configure your Red
Hat Single Sign-On installation to use it. First step is to move the keystore file to the configuration/
directory of your deployment and to edit the standalone.xml, standalone-ha.xml or domain.xml file to
use the keystore and enable HTTPS. (See operating mode).

In the standalone or domain configuration file, search for the security-realms element and add:

<security-realm name="UndertowRealm">
 <server-identities>
 <ssl>
 <keystore path="keycloak.jks" relative-

CHAPTER 7. NETWORK SETUP

39

Find the element server name="default-server" (it’s a child element of subsystem
xmlns="urn:jboss:domain:undertow:3.1") and add:

7.4. OUTGOING HTTP REQUESTS

The Red Hat Single Sign-On server often needs to make non-browser HTTP requests to the
applications and services it secures. The auth server manages these outgoing connections by
maintaining an HTTP client connection pool. There are some things you’ll need to configure in
standalone.xml, standalone-ha.xml, or domain.xml. The location of this file depends on
your operating mode.

HTTP client Config example

Possible configuration options are:

establish-connection-timeout-millis

Timeout for establishing a socket connection.

socket-timeout-millis

If an outgoing request does not receive data for this amount of time, timeout the connection.

connection-pool-size

How many connections can be in the pool (128 by default).

max-pooled-per-route

How many connections can be pooled per host (64 by default).

connection-ttl-millis

Maximum connection time to live in milliseconds. Not set by default.

to="jboss.server.config.dir" keystore-password="secret" />
 </ssl>
 </server-identities>
</security-realm>

<subsystem xmlns="urn:jboss:domain:undertow:3.1">
 <buffer-cache name="default"/>
 <server name="default-server">
 <https-listener name="https" socket-binding="https" security-
realm="UndertowRealm"/>
 ...
</subsystem>

<spi name="connectionsHttpClient">
 <provider name="default" enabled="true">
 <properties>
 <property name="connection-pool-size" value="256"/>
 </properties>
 </provider>
</spi>

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

40

max-connection-idle-time-millis

Maximum time the connection might stay idle in the connection pool (900 seconds by
default). Will start background cleaner thread of Apache HTTP client. Set to -1 to disable
this checking and the background thread.

disable-cookies

true by default. When set to true, this will disable any cookie caching.

client-keystore

This is the file path to a Java keystore file. This keystore contains client certificate for two-
way SSL.

client-keystore-password

Password for the client keystore. This is REQUIRED if client-keystore is set.

client-key-password

Password for the client’s key. This is REQUIRED if client-keystore is set.

7.4.1. Outgoing HTTPS Request Truststore

When Red Hat Single Sign-On invokes on remote HTTPS endpoints, it has to validate the remote
server’s certificate in order to ensure it is connecting to a trusted server. This is necessary in order
to prevent man-in-the-middle attacks. The certificates of these remote server’s or the CA that signed
these certificates must be put in a truststore. This truststore is managed by the Red Hat Single
Sign-On server.

The truststore is used when connecting securely to identity brokers, LDAP identity providers, when
sending emails, and for backchannel communication with client applications.

You can use keytool to create a new truststore file or add trusted host certificates to an existing one:

$ keytool -import -alias HOSTDOMAIN -keystore truststore.jks -file
host-certificate.cer

The truststore is configured within the standalone.xml, standalone-ha.xml, or domain.xml
file in your distribution. The location of this file depends on your operating mode. You can add your
truststore configuration by using the following template:

Warning

By default, a truststore provider is not configured, and any https connections fall back to
standard java truststore configuration as described in Java’s JSSE Reference Guide. If
there is no trust establised, then these outgoing HTTPS requests will fail.

<spi name="truststore">
 <provider name="file" enabled="true">
 <properties>
 <property name="file" value="path to your .jks file
containing public certificates"/>
 <property name="password" value="password"/>

CHAPTER 7. NETWORK SETUP

41

https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html

Possible configuration options for this setting are:

file

The path to a Java keystore file. HTTPS requests need a way to verify the host of the server
they are talking to. This is what the trustore does. The keystore contains one or more
trusted host certificates or certificate authorities. This truststore file should only contain
public certificates of your secured hosts. This is REQUIRED if disabled is not true.

password

Password for the truststore. This is REQUIRED if disabled is not true.

hostname-verification-policy

WILDCARD by default. For HTTPS requests, this verifies the hostname of the server’s
certificate. ANY means that the hostname is not verified. WILDCARD Allows wildcards in
subdomain names i.e. *.foo.com. STRICT CN must match hostname exactly.

disabled

If true (default value), truststore configuration will be ignored, and certificate checking will fall
back to JSSE configuration as described. If set to false, you must configure file, and
password for the truststore.

 <property name="hostname-verification-policy"
value="WILDCARD"/>
 <property name="disabled" value="false"/>
 </properties>
 </provider>
</spi>

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

42

CHAPTER 8. CLUSTERING

This section covers configuring Red Hat Single Sign-On to run in a cluster. There’s a number of
things you have to do when setting up a cluster, specifically:

Pick an operation mode

Configure a shared external database

Set up a load balancer

Supplying a private network that supports IP multicast

Picking an operation mode and configuring a shared database have been discussed earlier in this
guide. In this chapter we’ll discuss setting up a load balancer and supplying a private network. We’ll
also discuss some issues that you need to be aware of when booting up a host in the cluster.

Note

It is possible to cluster Red Hat Single Sign-On without IP Multicast, but this topic is
beyond the scope of this guide. For more information, see JGroups chapter of the JBoss
EAP Configuration Guide.

8.1. RECOMMENDED NETWORK ARCHITECTURE

The recommended network architecture for deploying Red Hat Single Sign-On is to set up an
HTTP/HTTPS load balancer on a public IP address that routes requests to Red Hat Single Sign-On
servers sitting on a private network. This isolates all clustering connections and provides a nice
means of protecting the servers.

Note

By default, there is nothing to prevent unauthorized nodes from joining the cluster and
broadcasting multicast messages. This is why cluster nodes should be in a private
network, with a firewall protecting them from outside attacks.

8.2. CLUSTERING EXAMPLE

Red Hat Single Sign-On does come with an out of the box clustering demo that leverages domain
mode. Review the Clustered Domain Example chapter for more details.

8.3. SETTING UP A LOAD BALANCER OR PROXY

This section discusses a number of things you need to configure before you can put a reverse proxy
or load balancer in front of your clustered Red Hat Single Sign-On deployment. It also covers
configuring the built in load balancer that was Clustered Domain Example.

8.3.1. Identifying Client IP Addresses

CHAPTER 8. CLUSTERING

43

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/7.0/html-single/configuration-guide/#cluster_communication_jgroups

A few features in Red Hat Single Sign-On rely on the fact that the remote address of the HTTP client
connecting to the authentication server is the real IP address of the client machine. Examples
include:

Event logs - a failed login attempt would be logged with the wrong source IP address

SSL required - if the SSL required is set to external (the default) it should require SSL for all
external requests

Authentication flows - a custom authentication flow that uses the IP address to for example show
OTP only for external requests

Dynamic Client Registration

This can be problematic when you have a reverse proxy or loadbalancer in front of your Red Hat
Single Sign-On authentication server. The usual setup is that you have a frontend proxy sitting on a
public network that load balances and forwards requests to backend Red Hat Single Sign-On server
instances located in a private network. There is some extra configuration you have to do in this
scenario so that the actual client IP address is forwarded to and processed by the Red Hat Single
Sign-On server instances. Specifically:

Configure your reverse proxy or loadbalancer to properly set X-Forwarded-For and X-
Forwarded-Proto HTTP headers.

Configure your reverse proxy or loadbalancer to preserve the original 'Host' HTTP header.

Configure the authentication server to read the client’s IP address from X-Forwarded-For
header.

Configuring your proxy to generate the X-Forwarded-For and X-Forwarded-Proto HTTP
headers and preserving the original Host HTTP header is beyond the scope of this guide. Take
extra precautions to ensure that the X-Forwared-For header is set by your proxy. If your proxy
isn’t configured correctly, then rogue clients can set this header themselves and trick Red Hat Single
Sign-On into thinking the client is connecting from a different IP address than it actually is. This
becomes really important if you are doing any black or white listing of IP addresses.

Beyond the proxy itself, there are a few things you need to configure on the Red Hat Single Sign-On
side of things. If your proxy is forwarding requests via the HTTP protocol, then you need to configure
Red Hat Single Sign-On to pull the client’s IP address from the X-Forwarded-For header rather
than from the network packet. To do this, open up the profile configuration file (standalone.xml,
standalone-ha.xml, or domain.xml depending on your operating mode) and look for the
urn:jboss:domain:undertow:3.1 XML block.

X-Forwarded-For HTTP Config

<subsystem xmlns="urn:jboss:domain:undertow:3.1">
 <buffer-cache name="default"/>
 <server name="default-server">
 <ajp-listener name="ajp" socket-binding="ajp"/>
 <http-listener name="default" socket-binding="http" redirect-
socket="https"
 proxy-address-forwarding="true"/>
 ...
 </server>
 ...
</subsystem>

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

44

Add the proxy-address-forwarding attribute to the http-listener element. Set the value to
true.

If your proxy is using the AJP protocol instead of HTTP to forward requests (i.e. Apache HTTPD +
mod-cluster), then you have to configure things a little differently. Instead of modifying the http-
listener, you need to add a filter to pull this information from the AJP packets.

X-Forwarded-For AJP Config

8.3.2. Enable HTTPS/SSL with a Reverse Proxy

Assuming that your reverse proxy doesn’t use port 8443 for SSL you also need to configure what
port HTTPS traffic is redirected to.

Add the redirect-socket attribute to the http-listener element. The value should be
proxy-https which points to a socket binding you also need to define.

Then add a new socket-binding element to the socket-binding-group element:

<subsystem xmlns="urn:jboss:domain:undertow:3.1">
 <buffer-cache name="default"/>
 <server name="default-server">
 <ajp-listener name="ajp" socket-binding="ajp"/>
 <http-listener name="default" socket-binding="http" redirect-
socket="https"/>
 <host name="default-host" alias="localhost">
 ...
 <filter-ref name="proxy-peer"/>
 </host>
 </server>
 ...
 <filters>
 ...
 <filter name="proxy-peer"
 class-
name="io.undertow.server.handlers.ProxyPeerAddressHandler"
 module="io.undertow.core" />
 </filters>
 </subsystem>

<subsystem xmlns="urn:jboss:domain:undertow:3.1">
 ...
 <http-listener name="default" socket-binding="http"
 proxy-address-forwarding="true" redirect-socket="proxy-https"/>
 ...
</subsystem>

<socket-binding-group name="standard-sockets" default-interface="public"
 port-offset="${jboss.socket.binding.port-offset:0}">
 ...
 <socket-binding name="proxy-https" port="443"/>
 ...
</socket-binding-group>

CHAPTER 8. CLUSTERING

45

8.3.3. Verify Configuration

You can verify the reverse proxy or load balancer configuration by opening the path
/auth/realms/master/.well-known/openid-configuration through the reverse proxy.
For example if the reverse proxy address is https://acme.com/ then open the URL
https://acme.com/auth/realms/master/.well-known/openid-configuration. This
will show a JSON document listing a number of endpoints for Red Hat Single Sign-On. Make sure
the endpoints starts with the address (scheme, domain and port) of your reverse proxy or load
balancer. By doing this you make sure that Red Hat Single Sign-On is using the correct endpoint.

You should also verify that Red Hat Single Sign-On sees the correct source IP address for requests.
Do check this you can try to login to the admin console with an invalid username and/or password.
This should show a warning in the server log something like this:

08:14:21,287 WARN XNIO-1 task-45 [org.keycloak.events]
type=LOGIN_ERROR, realmId=master, clientId=security-admin-console,
userId=8f20d7ba-4974-4811-a695-242c8fbd1bf8, ipAddress=X.X.X.X,
error=invalid_user_credentials, auth_method=openid-connect,
auth_type=code,
redirect_uri=http://localhost:8080/auth/admin/master/console/?
redirect_fragment=%2Frealms%2Fmaster%2Fevents-settings,
code_id=a3d48b67-a439-4546-b992-e93311d6493e, username=admin

Check that the value of ipAddress is the IP address of the machine you tried to login with and not
the IP address of the reverse proxy or load balancer.

8.3.4. Using the Built-In Load Balancer

This section covers configuring the built in load balancer that is discussed in the Clustered Domain
Example.

The Clustered Domain Example is only designed to run on one machine. To bring up a slave on
another host, you’ll need to

1. Edit the domain.xml file to point to your new host slave

2. Copy the server distribution. You don’t need the domain.xml, host.xml, or host-master.xml
files. Nor do you need the standalone/ directory.

3. Edit the host-slave.xml file to change the bind addresses used or override them on the
command line

8.3.4.1. Register a New Host With Load Balancer

Let’s look first at registering the new host slave with the load balancer configuration in domain.xml.
Open this file and go to the undertow configuration in the load-balancer profile. Add a new host
definition called remote-host3 within the reverse-proxy XML block.

domain.xml reverse-proxy config

<subsystem xmlns="urn:jboss:domain:undertow:3.1">
 ...
 <handlers>
 <reverse-proxy name="lb-handler">

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

46

https://acme.com/
https://acme.com/auth/realms/master/.well-known/openid-configuration

The output-socket-binding is a logical name pointing to a socket-binding configured later
in the domain.xml file. the instance-id attribute must also be unique to the new host as this value
is used by a cookie to enable sticky sessions when load balancing.

Next go down to the load-balancer-sockets socket-binding-group and add the
outbound-socket-binding for remote-host3. This new binding needs to point to the host and
port of the new host.

domain.xml outbound-socket-binding

8.3.4.2. Master Bind Addresses

Next thing you’ll have to do is to change the public and management bind addresses for the
master host. Either edit the domain.xml file as discussed in the Bind Addresses chapter or specify
these bind addresses on the command line as follows:

$ domain.sh --host-config=host-master.xml -
Djboss.bind.address=192.168.0.2 -
Djboss.bind.address.management=192.168.0.2

8.3.4.3. Host Slave Bind Addresses

Next you’ll have to change the public, management, and domain controller bind addresses
(jboss.domain.master-address). Either edit the host-slave.xml file or specify them on the
command line as follows:

 <host name="host1" outbound-socket-binding="remote-host1"
scheme="ajp" path="/" instance-id="myroute1"/>
 <host name="host2" outbound-socket-binding="remote-host2"
scheme="ajp" path="/" instance-id="myroute2"/>
 <host name="remote-host3" outbound-socket-binding="remote-host3"
scheme="ajp" path="/" instance-id="myroute3"/>
 </reverse-proxy>
 </handlers>
 ...
</subsystem>

<socket-binding-group name="load-balancer-sockets" default-
interface="public">
 ...
 <outbound-socket-binding name="remote-host1">
 <remote-destination host="localhost" port="8159"/>
 </outbound-socket-binding>
 <outbound-socket-binding name="remote-host2">
 <remote-destination host="localhost" port="8259"/>
 </outbound-socket-binding>
 <outbound-socket-binding name="remote-host3">
 <remote-destination host="192.168.0.5" port="8259"/>
 </outbound-socket-binding>
</socket-binding-group>

CHAPTER 8. CLUSTERING

47

$ domain.sh --host-config=host-slave.xml
 -Djboss.bind.address=192.168.0.5
 -Djboss.bind.address.management=192.168.0.5
 -Djboss.domain.master.address=192.168.0.2

The values of jboss.bind.address and jboss.bind.addres.management pertain to the
host slave’s IP address. The value of jboss.domain.master.address need to be the IP address
of the domain controller which is the management address of the master host.

8.3.5. Configuring Other Load Balancers

See the load balancing section in the JBoss EAP Configuration Guide for information how to use
other software-based load balancers.

8.4. MULTICAST NETWORK SETUP

Out of the box clustering support has a need to for IP Multicast. Multicast is a network broadcast
protocol. This protocol is used at boot time to discover and join the cluster. It is also used to
broadcast messages for the replication and invalidation distributed caches used by Red Hat Single
Sign-On.

The clustering subsystem for Red Hat Single Sign-On runs on the JGroups stack. Out of the box,
the bind addresses for clustering are bound to a private network interface with a default IP address
of 127.0.0.1. You’ll have to edit your the standalone-ha.xml or domain.xml sections discussed in the
Bind Address chapter.

private network config

 <interfaces>
 ...
 <interface name="private">
 <inet-address
value="${jboss.bind.address.private:127.0.0.1}"/>
 </interface>
 </interfaces>
 <socket-binding-group name="standard-sockets" default-
interface="public" port-offset="${jboss.socket.binding.port-offset:0}">
 ...
 <socket-binding name="jgroups-mping" interface="private" port="0"
multicast-address="${jboss.default.multicast.address:230.0.0.4}"
multicast-port="45700"/>
 <socket-binding name="jgroups-tcp" interface="private"
port="7600"/>
 <socket-binding name="jgroups-tcp-fd" interface="private"
port="57600"/>
 <socket-binding name="jgroups-udp" interface="private"
port="55200" multicast-
address="${jboss.default.multicast.address:230.0.0.4}" multicast-
port="45688"/>
 <socket-binding name="jgroups-udp-fd" interface="private"
port="54200"/>

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

48

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/7.0/html-single/configuration-guide/#configuring_high_availability

Things you’ll want to configure are the jboss.bind.address.private and
jboss.default.multicast.address as well as the ports of the services on the clustering
stack.

Note

It is possible to cluster Red Hat Single Sign-On without IP Multicast, but this topic is
beyond the scope of this guide. For more information, see JGroups in the JBoss EAP
Configuration Guide.

8.5. SECURING CLUSTER COMMUNICATION

When cluster nodes are isolated on a private network it requires access to the private network to be
able to join a cluster or to view communication in the cluster. In addition you can also enable
authentication and encryption for cluster communication. As long as your private network is secure it
is not necessary to enable authentication and encryption. Red Hat Single Sign-On does not send
very sensitive information on the cluster in either case.

If you want to enable authentication and encryption for clustering communication see Securing a
Cluster in the JBoss EAP Configuration Guide.

8.6. SERIALIZED CLUSTER STARTUP

Red Hat Single Sign-On cluster nodes are allowed to boot concurrenty. When Red Hat Single Sign-
On server instance boots up it may do some database migration, importing, or first time
initializations. A DB lock is used to prevent start actions from conflicting with one another when
cluster nodes boot up concurrently.

By default, the maximum timeout for this lock is 900 seconds. If a node is waiting on this lock for
more than the timeout it will fail to boot. Typically you won’t need to increase/decrease the default
value, but just in case it’s possible to configure it in standalone.xml, standalone-ha.xml, or
domain.xml file in your distribution. The location of this file depends on your operating mode.

8.7. BOOTING THE CLUSTER

Booting Red Hat Single Sign-On in a cluster depends on your operating mode

Standalone Mode

 <socket-binding name="modcluster" port="0" multicast-
address="224.0.1.105" multicast-port="23364"/>
 ...
 </socket-binding-group>

<spi name="dblock">
 <provider name="jpa" enabled="true">
 <properties>
 <property name="lockWaitTimeout" value="900"/>
 </properties>
 </provider>
</spi>

CHAPTER 8. CLUSTERING

49

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/7.0/html-single/configuration-guide/#cluster_communication_jgroups
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html/configuration_guide/configuring_high_availability#securing_cluster

$ bin/standalone.sh --server-config=standalone-ha.xml

Domain Mode

$ bin/domain.sh --host-config=host-master.xml
$ bin/domain.sh --host-config=host-slave.xml

8.8. TROUBLESHOOTING

Note that when you run cluster, you should see message similar to this in the log of both cluster
nodes:

INFO [org.infinispan.remoting.transport.jgroups.JGroupsTransport]
(Incoming-10,shared=udp)
ISPN000094: Received new cluster view: [node1/keycloak|1] (2)
[node1/keycloak, node2/keycloak]

If you see just one node mentioned, it’s possible that your cluster hosts are not joined together.

Usually it’s best practice to have your cluster nodes on private network without firewall for
communication among them. Firewall could be enabled just on public access point to your network
instead. If for some reason you still need to have firewall enabled on cluster nodes, you will need to
open some ports. Default values are UDP port 55200 and multicast port 45688 with multicast
address 230.0.0.4. Note that you may need more ports opened if you want to enable additional
features like diagnostics for your JGroups stack. Red Hat Single Sign-On delegates most of the
clustering work to Infinispan/JGroups. For more information, see JGroups in the JBoss EAP
Configuration Guide.

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

50

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/7.0/html-single/configuration-guide/#cluster_communication_jgroups

CHAPTER 9. SERVER CACHE CONFIGURATION

Red Hat Single Sign-On has two types of caches. One type of cache sits in front of the database to
decrease load on the DB and to increase overall response times by keeping data in memory. Realm,
client, role, and user metadata is kept in this type of cache. This cache is a local cache. Local
caches do not use replication even if you are in the cluster with more Red Hat Single Sign-On
servers. Instead, they only keep copies locally and if the entry is updated an invalidation message is
sent to the rest of the cluster and the entry is evicted. There is separate replicated cache work,
which task is to send the invalidation messages to the whole cluster about what entries should be
evicted from local caches. This greatly reduces network traffic, makes things efficient, and avoids
transmitting sensitive metadata over the wire.

The second type of cache handles managing user sessions, offline tokens, and keeping track of
login failures so that the server can detect password phishing and other attacks. The data held in
these caches is temporary, in memory only, but is possibly replicated across the cluster.

This chapter discusses some configuration options for these caches for both clustered a non-
clustered deployments.

Note

More advanced configuration of these caches can be found in the Infinispan section of the
JBoss EAP Configuration Guide.

9.1. EVICTION AND EXPIRATION

There are multiple different caches configured for Red Hat Single Sign-On. There is a realm cache
that holds information about secured applications, general security data, and configuration options.
There is also a user cache that contains user metadata. Both caches default to a maximum of 10000
entries and use a least recently used eviction strategy. Each of them is also tied to an object
revisions cache that controls eviction in a clustered setup. This cache is created implicitely and has
twice the configured size. There are also separate caches for user sessions, offline tokens, and login
failures. These caches are unbounded in size as well.

The eviction policy and max entries for these caches can be configured in the standalone.xml,
standalone-ha.xml, or domain.xml depending on your operating mode.

non-clustered

<subsystem xmlns="urn:jboss:domain:infinispan:4.0">
 <cache-container name="keycloak" jndi-name="infinispan/Keycloak">
 <local-cache name="realms">
 <eviction max-entries="10000" strategy="LRU"/>
 </local-cache>
 <local-cache name="users">
 <eviction max-entries="10000" strategy="LRU"/>
 </local-cache>
 <local-cache name="sessions"/>
 <local-cache name="offlineSessions"/>
 <local-cache name="loginFailures"/>
 <local-cache name="work"/>
 <local-cache name="authorization">
 <eviction strategy="LRU" max-entries="100"/>

CHAPTER 9. SERVER CACHE CONFIGURATION

51

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/7.0/html-single/configuration-guide/#infinispan

clustered

To limit or expand the number of allowed entries simply add or edit the eviction element or the
expiration element of particular cache configuration.

9.2. REPLICATION AND FAILOVER

The sessions, offlineSessions and loginFailures caches are the only caches that may
perform replication. Entries are not replicated to every single node, but instead one or more nodes is
chosen as an owner of that data. If a node is not the owner of a specific cache entry it queries the
cluster to obtain it. What this means for failover is that if all the nodes that own a piece of data go
down, that data is lost forever. By default, Red Hat Single Sign-On only specifies one owner for data.
So if that one node goes down that data is lost. This usually means that users will be logged out and
will have to login again.

You can change the number of nodes that replicate a piece of data by change the owners attribute
in the distributed-cache declaration.

owners

 </local-cache>
 <local-cache name="keys">
 <eviction strategy="LRU" max-entries="1000"/>
 <expiration max-idle="3600000"/>
 </local-cache>
 </cache-container>

<subsystem xmlns="urn:jboss:domain:infinispan:4.0">
 <cache-container name="keycloak" jndi-name="infinispan/Keycloak">
 <transport lock-timeout="60000"/>
 <local-cache name="realms">
 <eviction max-entries="10000" strategy="LRU"/>
 </local-cache>
 <local-cache name="users">
 <eviction max-entries="10000" strategy="LRU"/>
 </local-cache>
 <distributed-cache name="sessions" mode="SYNC" owners="1"/>
 <distributed-cache name="offlineSessions" mode="SYNC"
owners="1"/>
 <distributed-cache name="loginFailures" mode="SYNC" owners="1"/>
 <distributed-cache name="authorization" mode="SYNC" owners="1"/>
 <replicated-cache name="work" mode="SYNC"/>
 <local-cache name="keys">
 <eviction max-entries="1000" strategy="LRU"/>
 <expiration max-idle="3600000"/>
 </local-cache>
 </cache-container>

<subsystem xmlns="urn:jboss:domain:infinispan:4.0">
 <cache-container name="keycloak" jndi-name="infinispan/Keycloak">
 <distributed-cache name="sessions" mode="SYNC" owners="2"/>
...

Red Hat Single Sign-On 7.1 Server Installation and Configuration Guide

52

Here we’ve changed it so at least two nodes will replicate one specific user login session.

Tip

The number of owners recommended is really dependent on your deployment. If you do not care
if users are logged out when a node goes down, then one owner is good enough and you will
avoid replication.

9.3. DISABLING CACHING

To disable the realm or user cache, you must edit the standalone.xml, standalone-ha.xml,
or domain.xml file in your distribution. The location of this file depends on your operating mode.
Here’s what the config looks like initially.

To disable the cache set the enabled attribute to false for the cache you want to disable. You must
reboot your server for this change to take effect.

9.4. CLEARING CACHES AT RUNTIME

To clear the realm or user cache, go to the Red Hat Single Sign-On admin console Realm
Settings→Cache Config page. On this page you can clear the realm cache, the user cache or cache
of external public keys. This will clear the caches for all realms and not only the selected realm.

 <spi name="userCache">
 <provider name="default" enabled="true"/>
 </spi>

 <spi name="realmCache">
 <provider name="default" enabled="true"/>
 </spi>

CHAPTER 9. SERVER CACHE CONFIGURATION

53

	Table of Contents
	CHAPTER 1. GUIDE OVERVIEW
	1.1. RECOMMENDED ADDITIONAL EXTERNAL DOCUMENTATION

	CHAPTER 2. INSTALLATION
	2.1. SYSTEM REQUIREMENTS
	2.2. INSTALLING RH-SSO FROM A ZIP FILE
	2.3. INSTALLING RH-SSO FROM AN RPM
	2.3.1. Subscribing to the JBoss EAP 7.0 Repository
	2.3.2. Subscribing to the RH-SSO 7.1 Repository and Installing RH-SSO 7.1

	2.4. DISTRIBUTION DIRECTORY STRUCTURE

	CHAPTER 3. CHOOSING AN OPERATING MODE
	3.1. STANDALONE MODE
	3.1.1. Standalone Boot Script
	3.1.2. Standalone Configuration

	3.2. STANDALONE CLUSTERED MODE
	3.2.1. Standalone Clustered Configuration
	3.2.2. Standalone Clustered Boot Script

	3.3. DOMAIN CLUSTERED MODE
	3.3.1. Domain Configuration
	3.3.2. Host Controller Configuration
	3.3.3. Server Instance Working Directories
	3.3.4. Domain Boot Script
	3.3.5. Clustered Domain Example
	3.3.5.1. Setup Slave Connection to Domain Controller
	3.3.5.2. Run the Boot Scripts

	CHAPTER 4. MANAGE SUBSYSTEM CONFIGURATION
	4.1. CONFIGURE SPI PROVIDERS
	4.2. START THE JBOSS EAP CLI
	4.3. CLI EMBEDDED MODE
	4.4. CLI GUI MODE
	4.5. CLI SCRIPTING
	4.6. CLI RECIPES
	4.6.1. Change the web context of the server
	4.6.2. Set the global default theme
	4.6.3. Add a new SPI and a provider
	4.6.4. Disable a provider
	4.6.5. Change the default provider for an SPI
	4.6.6. Configure the dblock SPI
	4.6.7. Add or change a single property value for a provider
	4.6.8. Remove a single property from a provider
	4.6.9. Set values on a provider property of type List

	CHAPTER 5. PROFILES
	CHAPTER 6. RELATIONAL DATABASE SETUP
	6.1. RDBMS SETUP CHECKLIST
	6.2. PACKAGE THE JDBC DRIVER
	6.3. DECLARE AND LOAD JDBC DRIVER
	6.4. MODIFY THE RED HAT SINGLE SIGN-ON DATASOURCE
	6.5. DATABASE CONFIGURATION
	6.6. UNICODE CONSIDERATIONS FOR DATABASES
	6.6.1. Oracle Database
	6.6.2. Microsoft SQL Server Database
	6.6.3. IBM DB2 Database
	6.6.4. MySQL Database
	6.6.5. PostgreSQL Database

	CHAPTER 7. NETWORK SETUP
	7.1. BIND ADDRESSES
	7.2. SOCKET PORT BINDINGS
	7.3. SETTING UP HTTPS/SSL
	7.3.1. Enabling SSL/HTTPS for the Red Hat Single Sign-On Server
	7.3.1.1. Creating the Certificate and Java Keystore
	7.3.1.2. Configure Red Hat Single Sign-On to Use the Keystore

	7.4. OUTGOING HTTP REQUESTS
	7.4.1. Outgoing HTTPS Request Truststore

	CHAPTER 8. CLUSTERING
	8.1. RECOMMENDED NETWORK ARCHITECTURE
	8.2. CLUSTERING EXAMPLE
	8.3. SETTING UP A LOAD BALANCER OR PROXY
	8.3.1. Identifying Client IP Addresses
	8.3.2. Enable HTTPS/SSL with a Reverse Proxy
	8.3.3. Verify Configuration
	8.3.4. Using the Built-In Load Balancer
	8.3.4.1. Register a New Host With Load Balancer
	8.3.4.2. Master Bind Addresses
	8.3.4.3. Host Slave Bind Addresses

	8.3.5. Configuring Other Load Balancers

	8.4. MULTICAST NETWORK SETUP
	8.5. SECURING CLUSTER COMMUNICATION
	8.6. SERIALIZED CLUSTER STARTUP
	8.7. BOOTING THE CLUSTER
	8.8. TROUBLESHOOTING

	CHAPTER 9. SERVER CACHE CONFIGURATION
	9.1. EVICTION AND EXPIRATION
	9.2. REPLICATION AND FAILOVER
	9.3. DISABLING CACHING
	9.4. CLEARING CACHES AT RUNTIME

