& RedHat

Red Hat Quay 3.3

Deploy Red Hat Quay on OpenShift with Quay
Operator

Deploy Red Hat Quay on OpenShift with Quay Setup Operator

Last Updated: 2021-01-15

Red Hat Quay 3.3 Deploy Red Hat Quay on OpenShift with Quay Operator

Deploy Red Hat Quay on OpenShift with Quay Setup Operator

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Deploy Red Hat Quay on an OpenShift Cluster with the Red Hat Quay Operator

PREFACE

CHAPTER 1. OVERVIEW

CHAPTER 2. ARCHITECTURE

CHAPTER 3. PREREQUISITES FOR RED HAT QUAY ON OPENSHIFT

CHAPTER 4. DEPLOYING RED HAT QUAY

CHAPTER 5. CUSTOMIZING YOUR RED HAT QUAY CLUSTER

CHAPTER 6. CONFIGURATION DEPLOYMENT AFTER INITIAL SETUP

Table of Contents

4.1. PRODUCTION DEPLOYMENTS
4.2. INSTALL THE RED HAT QUAY OPERATOR
4.3. DEPLOY A RED HAT QUAY ECOSYSTEM

5.1. CHANGING YOUR RED HAT QUAY CREDENTIALS
5.1.1. Red Hat Quay superuser credentials
5.1.2. Red Hat Quay configuration credentials
5.2. PROVIDING PERSISTENT STORAGE USING POSTGRESQL DATABASE
5.3. SPECIFYING DATABASE CREDENTIALS
5.3.1. Using an existing PostgreSQL database instance
5.4. CHOOSING A REGISTRY STORAGE BACKEND
5.4.1. Overview of storage backends
5.4.2. Sensitive storage values
5.4.3. Storage replication
5.4.4. Regqistry storage backend types
5.4.4.1. Local Storage
5.4.4.2. Configuring persistent local storage
5.4.4.3. Amazon Web Services (S3)
5.4.4.4. Microsoft Azure storage
5.4.45. Google Cloud storage
5.4.4.6. NooBaa (RHOCS) storage
5.4.47. RADOS storage
5.4.4.8. Swift (OpenStack) storage
5.4.4.9. CloudFront (S3) storage
5.5. REPOSITORY MIRRORING
5.6. INJECTING CONFIGURATION FILES
5.7. SKIPPING AUTOMATED SETUP
5.8. METHODS FOR EXTERNAL ACCESS
5.8.1. NodePorts
5.8.2. Ingress
5.9. SPECIFYING THE RED HAT QUAY ROUTE
5.10. SPECIFYING A RED HAT QUAY CONFIGURATION ROUTE
5.11. PROVIDING SSL CERTIFICATES
5.11.1. User-provided certificates
5.12. TLS TERMINATION

6.1. SUPERUSERS

6.2. SETTING REDIS PASSWORD

6.3. ENABLING CLAIR IMAGE SCANNING
6.3.1. Clair update interval

6.4. SETTING COMMON ATTRIBUTES
6.4.1. Image pull secret

Table of Contents

..................... 28

28
28
29
30
30
30

Red Hat Quay 3.3 Deploy Red Hat Quay on OpenShift with Quay Operator

6.4.2. Image

6.4.3. Compute resources
6.4.4. Probes

6.4.5. Node Selector

6.4.6. Deployment strategy
6.4.7. Environment Variables

CHAPTER 7. CONFIGURING RED HAT QUAY (POST-DEPLOYMENT) ...ttt
7.1.USING THE CONFIG TOOL
7.2.USING THE RED HAT QUAY OPERATOR

CHAPTER 8. TROUBLESHOOTING ... i i i i et i et cee e
8.1. ERRORS DURING INITIAL SETUP

CHAPTER 9. LOCAL DEVELOPMENT . i i i e ettt cee e

CHAPTER 10. UPGRADING RED HAT QUAY .ttt ittt ettt ea ettt reenneeeeaannnneenannn,
10.1. UPGRADE PREREQUISITES
10.2. UPGRADE PROCESS SUMMARY
10.2.1. Document the existing Red Hat Quay deployment
10.2.2. Update the CR
10.2.3. Remove the existing deployment
10.2.4. Ensure only the quay pod is started
10.2.5. Uninstall the Quay Operator
10.2.6. Install the new Quay Operator
10.2.7. Recreate the deployment
10.2.8. Monitor the database schema update progress
10.2.9. Monitor the database schema update progress
10.2.10. Finalize the Red Hat Quay cluster upgrade

CHAPTER 1. STARTING TOUSE RED HAT QUAY ..o i et
ADDITIONAL RESOURCES

30
31
31
32
32
32

34
34

35
35

36

37
37
37
37
38
38
39
39
39
39
40
40
40

Table of Contents

Red Hat Quay 3.3 Deploy Red Hat Quay on OpenShift with Quay Operator

PREFACE

Red Hat Quay is an enterprise-quality container registry. Use Red Hat Quay to build and store container
images, then make them available to deploy across your enterprise.

Red Hat currently supports two approaches to deploying Red Hat Quay on OpenShift:

® Deploy Red Hat Quay on OpenShift with Quay Operator The Quay Operator provides a
simple method to deploy and manage a Red Hat Quay cluster. This is the now preferred
procedure for deploying Red Hat Quay on OpenShift and is covered in this guide.

® Deploy Red Hat Quay objects individually This procedure provides a set of yaml files that you
deploy individually to set up your Red Hat Quay cluster. This procedure is expected to
eventually be deprecated.

As of Red Hat Quay v3.3, this operator changed from the "Quay Setup Operator” to simply the "Quay
Operator." That is because the operator can now be used for more that just initially deploying Red Hat
Quay, but can also be used for on-going configuration and maintenance of a Red Hat Quay cluster.

CHAPTER 1. OVERVIEW

Features of Red Hat Quay include:

High availability

Geo-replication

Repository mirroring

Docker v2, schema 2 (multiarch) support
Continuous integration

Security scanning with Clair

Custom log rotation

Zero downtime garbage collection

24/7 support

Red Hat Quay provides support for:

Multiple authentication and access methods

Multiple storage backends

Custom certificates for Quay, Clair, and storage backends
Application registries

Different container image types

CHAPTER 1. OVERVIEW

Red Hat Quay 3.3 Deploy Red Hat Quay on OpenShift with Quay Operator

CHAPTER 2. ARCHITECTURE

Red Hat Quay is made up of several core components.
e Database: Used by Red Hat Quay as its primary metadata storage (not for image storage).
® Redis (key, value store) Stores live builder logs and the Red Hat Quay tutorial.

® Quay (container registry): Runs the quay container as a service, consisting of several
components in the pod.

e Clair: Scans container images for vulnerabilities and suggests fixes.
For supported deployments, you need to use one of the following types of storage:

® Public cloud storage: In public cloud environments, you should use the cloud provider's object
storage, such as Amazon S3 (for AWS) or Google Cloud Storage (for Google Cloud).

® Private cloud storage: In private clouds, an S3 or Swift compliant Object Store is needed, such
as Ceph RADOS, or OpenStack Swift.

' WARNING
A Do not use "Locally mounted directory” Storage Engine for any production

configurations. Mounted NFS volumes are not supported. Local storage is meant for
Red Hat Quay test-only installations.

CHAPTER 3. PREREQUISITES FOR RED HAT QUAY ON OPENSHIFT

CHAPTER 3. PREREQUISITES FOR RED HAT QUAY ON

OPENSHIFT

Here are a few things you need to know before you begin the Red Hat Quay on OpenShift deployment:

® OpenShift cluster: You need a privileged account to an OpenShift 4.2 or later cluster on which
to deploy the Red Hat Quay. That account must have the ability to create namespaces at the
cluster scope.

® Storage: AWS cloud storage is used as an example in the following procedure. As an alternative,
you can create Ceph cloud storage using steps from the Set up Ceph section of the high
availability Red Hat Quay deployment guide. The following is a list of other supported cloud
storage:

o

Amazon S3 (see S3 IAM Bucket Policy for details on configuring an S3 bucket policy for Red
Hat Quay)

Azure Blob Storage

Google Cloud Storage

Ceph Object Gateway (RADOS)
OpenStack Swift

CloudFront + S3

OpenShift Container Storage (NooBaa S3 Storage). (See Configuring Red Hat OpenShift
Container Storage for Red Hat Quay)

® Services: The OpenShift cluster must have enough capacity to run the following containerized
services:

o

Database: We recommend you use an enterprise-quality database for production use of
Red Hat Quay. PostgreSQL is used as an example in this document. Other options include:

B Crunchy Data PostgreSQL Operator: Although not supported directly by Red Hat, the
CrunchDB Operator is available from Crunchy Data for use with Red Hat Quay. If you
take this route, you should have a support contract with Crunchy Data and work directly
with them for usage guidance or issues relating to the operator and their database.

® |f your organization already has a high-availability (HA) database, you can use that
database with Red Hat Quay. See the Red Hat Quay Support Policy for details on

support for third-party databases and other components.

Key-value database: Redis is used to serve live builder logs and Red Hat Quay tutorial
content to your Red Hat Quay configuration.

Red Hat Quay: The quay container provides the features to manage the Red Hat Quay
registry.

Clair: The clair-jwt container provides Clair scanning services for the registry.

https://access.redhat.com/documentation/en-us/red_hat_quay/3.3/html-single/deploy_red_hat_quay_-_high_availability/#set_up_ceph
https://access.redhat.com/solutions/3680151
https://access.redhat.com/articles/4356091
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://www.crunchydata.com/
https://access.redhat.com/support/policy/updates/rhquay/policies

Red Hat Quay 3.3 Deploy Red Hat Quay on OpenShift with Quay Operator

CHAPTER 4. DEPLOYING RED HAT QUAY

This procedure:

® |nstalls the Red Hat Quay Operator on OpenShift from the OperatorHub

® Deploys a Red Hat Quay cluster on OpenShift with the Quay Operator
You have the option of changing dozens of settings before deploying the Red Hat Quay Operator. The
Operator automates the entire start-up process, by-passing the Red Hat Quay config tool. You can
choose to skip the Operator’s automated configuration and use the config tool directly.
As of Red Hat Quay 3.3, the Quay Setup Operator is now simply called the Quay Operator. Features
have been added to this operator to allow it to be used to maintain and update your Red Hat Quay

cluster after deployment. Updates can be done directly through the Operator or using the Red Hat
Quay Config Tool.

Prerequisites

® An OpenShift 4.2 (or later) cluster

® Cluster-scope admin privilege to the OpenShift cluster

4.1. PRODUCTION DEPLOYMENTS

For a non-production deployment, you can take the defaults and get a Red Hat Quay cluster up and

running quickly. For a production deployment, you should go through all the configuration options

described later in this document. Of those, however, you should certainly consider at least the following:
® Superuser password: Change the default superuser password.

® Config tool password: Change the Red Hat Quay Config Tool password from the default.

® Quayimage: If available, replace the quay image associated with the current Operator with a
later quay image.

® Replica count: Based on your expected demand, increase the replica count to set how many
instances of the quay container will run.

® Memory request: Choose how much memory to assign to the quay container, based on
expected demand.

® CPU request Select the amount of CPU you want assigned, based on expected demand.

® Quay database: Consider using an existing PostgreSQL database that is outside of the
OpenShift cluster and one that has commercial support.

® Storage backend: Choose a reliable and supported storage backend. Local storage and NFS
storage are not supported for production deployments!

e Certificates: Supply your own certificates to communicate with Red Hat Quay, as well as to
access other services, such as storage and LDAP services.

4.2. INSTALL THE RED HAT QUAY OPERATOR

CHAPTER 4. DEPLOYING RED HAT QUAY

1. From the OpenShift console, create a new namespace in which to run Red Hat Quay. For
example, select Projects — Create Project. Then type the name (quay-enterprise is used in this
example), and optionally a Display Name and Description. Then click Create.

2. Select Operators = OperatorHub, then select the Red Hat Quay Operator. If there is more than
one, be sure to use the Red Hat certified Operator and not the community version.

3. Select Install. The Operator Subscription page appears.

4. Choose the following then select Subscribe:

® |nstallation Mode: Select a specific namespace to install to (quay-enterprise, by default)
® Update Channel: Choose the update channel (only one may be available)
® Approval Strategy: Choose to approve automatic or manual updates

5. Select Subscribe.

4.3. DEPLOY A RED HAT QUAY ECOSYSTEM

1. See the Accessing Red Hat Quay article for information on getting credentials needed to obtain
the Quay and Clair containers from Quay.io. Then put those credentials in a file. In this example,
we create a config.json in the local directory.

2. Change to the project (namespace) you chose for deploying Red Hat Quay:
I $ oc project quay-enterprise
3. Create a secret that includes your credentials, as follows:

$ oc create secret generic redhat-pull-secret \
--from-file=".dockerconfigjson=config.json" --type='kubernetes.io/dockerconfigjson’

4. Create a custom resource file (in this example, named quayecosystem_cr.yaml) or copy one
from the quay-operator examples page. This example uses default settings:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
imagePullSecretName: redhat-pull-secret

5. Go through the Customizing your Red Hat Quay cluster section to choose configuration
settings you want to change.

6. Deploy the Quay ecosystem from your custom resource file as follows:
I $ oc create -f quayecosystem_cr.yaml

Deploying the custom resource automatically creates and configures the Red Hat Quay cluster,
which includes the Red Hat Quay, PostgreSQL, and Redis services.

https://access.redhat.com/solutions/3533201
https://github.com/redhat-cop/quay-operator/tree/master/deploy/examples

Red Hat Quay 3.3 Deploy Red Hat Quay on OpenShift with Quay Operator

7. To check the status of your Red Hat Quay cluster, log in to your OpenShift web console, select
Projects, then select the quay-enterprise project to see the following:

RedHat]
Openshift Container Platform # O ©

kube:admin =

2 Administrat .
minsteter @D quay-enterprise © acve pctions =

Home

Dashboard ~ Overview YAML Workloads Role Bindings
Dashboards

Projects

Search Details View all Status Activity View events
Explore Ongoing
Name @ Active
i quay-enterprise There are no angoing activities
Requester
Recent Events Pause

system:admin

Labels 09.44 @ Stopping container.. >
Ne project message 0943 @) @ Readiness prob... >
0943 (@ Started containerq.. >
Inventory 09.43 @ Created container..
Utilization THour = L
09.43 @) Successfully pulled .. >
4 Deployments N
Py Resource Usage 940 943 946 949 0942 @@ Pullingimage "quay.. *
4 Pods o0 09.42 @B Createdpod- exa.. >
600m
0PVCs cPU 45.87m 400m 0942 @ Scaledup replicas.. >
200m
4 Services pen 09.42 @) Successfully assign.. %
Memor 292 GiB . 0941 (@ Started containerq.. »
0941 @ Successfully pulled .. %
1 Config Map

0941 (@ Created container.. »

Filesystem 999 MiB ey)
5, < 5MiB
22 Secrets =M 09.40 @ Pullingimage "quay.. %

If Red Hat Quay is running, here is how to get started using your Red Hat Quay configuration:

® Get the route to your new Red Hat Quay cluster as follows:

$ oc get route example-quayecosystem-quay
NAME HOST/PORT
PATH SERVICES PORT TERMINATION WILDCARD

example-quayecosystem-quay example-quayecosystem-quay-example.com
example-quayecosystem-quay 8443 passthrough/Redirect None

® Using the route, log in with the Superuser credentials (Username: quay and Password:
password or change credentials as described in the next section).

At this point you can begin using the Red Hat Quay cluster. To further configure the cluster, you can
either:

® Use the Config Tool to manually change settings for your Red Hat Quay cluster. (The Config
tool continues to run, with the route to it available by typing oc get route example-
quayecosystem-quay-config.)

® Modify Red Hat Quay via the Operator, as described in the following sections.

Additional resources

® For more details on the Red Hat Quay Operator, see the upstream quay-operator project.

10

https://github.com/redhat-cop/quay-operator/

CHAPTER 5. CUSTOMIZING YOUR RED HAT QUAY CLUSTER

CHAPTER 5. CUSTOMIZING YOUR RED HAT QUAY CLUSTER

Although you can run a default Red Hat Quay setup by simply creating a secret and the
QuayEcosystem custom resource, the following sections describe how you can modify the default
setup.

5.1. CHANGING YOUR RED HAT QUAY CREDENTIALS

The Red Hat Quay Operator sets up default administrative credentials. Review the default superuser
and configuration credentials and change as needed.

5.1.1. Red Hat Quay superuser credentials

The Red Hat Quay superuser credentials let you manage the users, projects and other components of
your Red Hat Quay deployment. Here's how superuser credentials are set by default:

® Username: quay
® Password: password
® Email: quay@redhat.com

To change the superuser credentials, create a new secret:

$ oc create secret generic <secret_name> \
--from-literal=superuser-username=<username> \
--from-literal=superuser-password=<password> \
--from-literal=superuser-email=<email>

The superuser password must be at least 8 characters.

NOTE
It is recommended that you also set the superusers field of the quay property in the

QuayEcosystem object so as to ensure consistency between the the various properties.
See the Superusers section below.

5.1.2. Red Hat Quay configuration credentials

A dedicated Red Hat Quay deployment runs to manage Red Hat Quay configuration settings. Using the
route to that configuration, you log in with the following credentials:

® Username: quayconfig
® Password: quay

You cannot change the username, but you can change the password as follows:

$ oc create secret generic quay-config-app \
--from-literal=config-app-password=<password>

1

Red Hat Quay 3.3 Deploy Red Hat Quay on OpenShift with Quay Operator

5.2. PROVIDING PERSISTENT STORAGE USING POSTGRESQL
DATABASE

The PostgreSQL relational database is used by default as the persistent store for Red Hat Quay.
PostgreSQL can either be deployed by the Operator within the namespace or leverage an existing
instance. The determination of whether to provision an instance or not within the current namespace
depends on whether the server property within the QuayEcosystem is defined.

The following options are a portion of the available options to configure the PostgreSQL database:

Property Description

image Location of the database image

volumeSize Size of the volume in Kubernetes capacity units
NOTE

It is important to note that persistent storage for the database will only be provisioned if
the volumeSize property is specified when provisioned by the operator.

Define the values as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:

name: example-quayecosystem
spec:

quay:

database:
volumeSize: 10Gi

5.3.SPECIFYING DATABASE CREDENTIALS

The credentials for accessing the server can be specified through a Secret or when being provisioned by
the operator, leverage the following default values:

® Username: quay

® Password: quay

® Root Password: quayAdmin
® Database Name: quay

To define alternate values, create a secret as shown below:

oc create secret generic <secret_name> \
--from-literal=database-username=<username> \
--from-literal=database-password=<password> \
--from-literal=database-root-password=<root-password> \
--from-literal=database-name=<database-name>

12

CHAPTER 5. CUSTOMIZING YOUR RED HAT QUAY CLUSTER

Reference the name of the secret in the QuayEcosystem custom resource as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:

name: example-quayecosystem
spec:

quay:

database:
credentialsSecretName: <secret_name>

5.3.1. Using an existing PostgreSQL database instance

Instead of having the operator deploy an instance of PostgreSQL in the project, an existing instance can
be leveraged by specifying the location in the server field along with the credentials for access as
described in the previous section. The following is an example of how to specify connecting to a remote
PostgreSQL instance:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
database:
credentialsSecretName: <secret_name>
server: postgresql.databases.example.com

5.4. CHOOSING A REGISTRY STORAGE BACKEND

Red Hat Quay supports multiple backends for the purpose of image storage and consist of a variety of
local and cloud storage options. The following sections provide an overview how to configure the Red
Hat Quay Operator to make use of these backends.

5.4.1. Overview of storage backends

Storage for Red Hat Quay can be configured using the registryBackend field within the quay property
in the QuayEcosystem resource which contain an array of backends. The ability to define multiple
backends enables replication and high availability of images.

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:

name: example-quayecosystem
spec:

quay:

registryBackends:
- name: backend1
s3:

The definition of a registryBackend is an optional field, and if omitted, LocalStorage will be configured
(ephemeral, through the use of a PersistentVolume, can be enabled if desired).

13

Red Hat Quay 3.3 Deploy Red Hat Quay on OpenShift with Quay Operator

5.4.2. Sensitive storage values

In many cases, access to storage requires the use of sensitive values. Each backend that requires such
configuration can be included in a Secret and defined within the credentialsSecretName property of
the backend.

Instead of declaring the registry backend properties within the specific backend, the values can be
added to a secret as shown below:

oc create secret generic s3-credentials \
--from-literal=accessKey=<accessKey> \
--from-literal=secretKey=<secretKey>

With the values now present in the secret, the properties explicitly declared in the backend can be
removed.

Specific details on the types of properties supported for each backend are found in the registry backend
details below.

5.4.3. Storage replication

Support is available to replicate the registry storage to multiple backends. To activate storage
replication, set the enableStorageReplication property to the value of true. Individual registry
backends can also be configured to be replicated by default by setting the replicateByDefault property
to the value of true. A full configuration demonstrating the replication options available is shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
enableStorageReplication: true
registryBackends:

- name: azure-ussouthcentral
credentialsSecretName: azure-ussouthcentral-registry
replicateByDefault: true
azure:

containerName: quay

- name: azure-seasia
credentialsSecretName: azure-seasia-registry
replicateByDefault: true
azure:

containerName: quay

NOTE

Support for replicated storage is not available for the local registry backend and will result
in an error during the verification phase.

5.4.4. Registry storage backend types

One or more of the following registry storage backends can be defined to specify the underlying storage
for the Red Hat Quay registry:

14

CHAPTER 5. CUSTOMIZING YOUR RED HAT QUAY CLUSTER

5.4.4.1. Local Storage

The following is an example for configuring the registry to make use of local storage (note that local
storage is not supported for production deployments):

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:

name: example-quayecosystem
spec:

quay:

registryBackends:
- name: local
local:
storagePath: /opt/quayregistry

The following is a comprehensive list of properties for the local registry backend:

Property Description Credential Secret Required
Supported
storagePath Storage Directory No No

5.4.4.2. Configuring persistent local storage

By default, Red Hat Quay uses an ephemeral volume for local storage. In order to avoid data loss,
persistent storage is required. To enable the use of a PersistentVolume to store images, specify the
registryStorage parameter underneath the quay property.

The following example will cause a PersistentVolumeClaim to be created within the project requesting
storage of 10Gi and an access mode of ReadWriteOnce. The default value is ReadWriteMany.

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
imagePullSecretName: redhat-pull-secret
registryStorage:
persistentVolumeAccessModes:
- ReadWriteOnce
persistentVolumeSize: 10Gi

A Storage Class can also be provided using the persistentVolumeStorageClassName property.

5.4.4.3. Amazon Web Services (S3)

The following is an example for configuring the registry to make use of S3 storage on Amazon Web
Services.

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem

15

Red Hat Quay 3.3 Deploy Red Hat Quay on OpenShift with Quay Operator

metadata:
name: example-quayecosystem
spec:
quay:
registryBackends:
- name: s3
s3:
accessKey: <accessKey>
bucketName: <bucketName>
secretKey: <secretKey
host: <host>

The following is a comprehensive list of properties for the 3 registry backend:

Property Description Credential Secret Required
Supported
storagePath Storage Directory No No
bucketName S3 Bucket No Yes
accessKey AWS Access Key Yes Yes
secretKey AWS Secret Key Yes Yes
host S3 Host No No
port S3 Port No No

5.4.4.4. Microsoft Azure storage

The following is an example for configuring the registry to make use of Blob storage on the Microsoft
Azure platform.

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
registryBackends:
- name: azure
azure:
containerName: <containerName>
accountName: <accountName>
accountKey: <accountKey>

The following is a comprehensive list of properties for the azure registry backend:

Property Description Credential Secret Required
Suppazureorted

16

storagePath

containerName

accountName

accountKey

sas_token

Storage Directory

Azure Storage
Container

Azure Account Name

Azure Account Key

Azure SAS Token

5.4.4.5. Google Cloud storage

CHAPTER 5. CUSTOMIZING YOUR RED HAT QUAY CLUSTER

No

No

No

No

No

No

Yes

Yes

Yes

No

The following is an example for configuring the registry to make use of Blob storage on the Google

Cloud Platform.

apiVersion: redhatcop.redhat.io/vialphalazure

kind: QuayEcosystem
metadata:

name: example-quayecosystem

spec:

quay:
registryBackends:

- name: googleCloud

googleCloud:

accessKey: <accessKey>
secretKey: <secretKey>
bucketName: <bucketName>

The following is a comprehensive list of properties for the googlecloud registry backend:

Property

storagePath

accessKey

secretKey

bucketName

Description

Storage Directory

Cloud Access Key

Cloud Secret Key

GCS Bucket

5.4.4.6. NooBaa (RHOCS) storage

Credential Secret
Supported

No

Yes

Yes

No

Required

No

Yes

Yes

Yes

The following is an example for configuring the registry to make use of NooBaa (Red Hat OpenShift
Container Storage) storage.

apiVersion: redhatcop.redhat.io/vialphat

kind: QuayEcosystem

17

Red Hat Quay 3.3 Deploy Red Hat Quay on OpenShift with Quay Operator

metadata:
name: example-quayecosystem
spec:
quay:
registryBackends:
- name: rhocs
rhocs:
hostname: <hostname>
secure: <secure>
accessKey: <accessKey>
secretKey: <secretKey>
bucketName: <bucketName>

The following is a comprehensive list of properties for the rhocs registry backend:

Property Description Credential Secret
Supported
storagePath Storage Directory No
hostname NooBaa Server No
Hostname
port Custom Port No
secure Is Secure No
secretKey Secret Key Yes
bucketName Bucket Name No

5.4.4.7. RADOS storage

Required

No

Yes

No

No

Yes

Yes

The following is an example for configuring the registry to make use of RADOS storage.

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
registryBackends:
- hame: rados
rados:
hostname: <hostname>
secure: <is_secure>
accessKey: <accessKey>
secretKey: <secretKey>
bucketName: <bucketName>

The following is a comprehensive list of properties for the rados registry backend:

18

Property

storagePath

hostname

port

secure

accessKey

secretKey

bucketName

CHAPTER 5. CUSTOMIZING YOUR RED HAT QUAY CLUSTER

Description

Storage Directory

Rados Server Hostname

Custom Port

Is Secure

Access Key

Secret Key

Bucket Name

5.4.4.8. Swift (OpenStack) storage

Credential Secret
Supported

No

No

No

No

Yes

Yes

No

Required

No

Yes

No

No

Yes

Yes

Yes

The following is an example for configuring the registry to make use of Swift storage.

apiVersion: redhatcop.redhat.io/vialphat

kind: QuayEcosystem

metadata:

name: example-quayecosystem

spec:
quay:

registryBackends:
- name: swift

swift:

authVersion: <authVersion>
authURL: <authURL>
container: <container>

user: <user>

password: <password>
caCertPath: <caCertPath>

osOptions:
object_storage url: <object_storage_url>

user_domain_name: <user_domain_name>
project_id: <project_id>

The following is a comprehensive list of properties for the swift registry backend:

Property

storagePath

authVersion

Description

Storage Directory

Swift Auth Version

Credential Secret

Supported

No

No

Required

No

Yes

19

Red Hat Quay 3.3 Deploy Red Hat Quay on OpenShift with Quay Operator

authURL Swift Auth URL No Yes
container Swift Container Name No Yes
user Username Yes Yes
password Key/Password Yes Yes
caCertPath CA Cert Filename No No

tempURLKey Temp URL Key No No

osOptions OS Options Yes Yes

5.4.4.9. CloudFront (S3) storage

The following is an example for configuring the registry to make use of S3 storage on Amazon Web
Services.

NOTE

CloudFront configuration cannot currently be configured using the CR, due to a known
issue. You can, however, manage it through the Red Hat Quay Config Tool.

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
registryBackends:
- name: s3
s3:
accessKey: <accessKey>
bucketName: <bucketName>
secretKey: <secretKey>
host: <host>
distributionDomain: <distributionDomain>
key_ID: <key_ID>
privateKeyFilename: <privateKeyFilename>

The following is a comprehensive list of properties for the cloudfrontS3 registry backend:

Property Description Credential Secret Required
Supported

storagePath Storage Directory No No

bucketName S3 Bucket No Yes

20

CHAPTER 5. CUSTOMIZING YOUR RED HAT QUAY CLUSTER

accessKey AWS Access Key Yes Yes
secretKey AWS Secret Key Yes Yes
host S3 Host No No
port S3 Port No No
distributionDomain CloudFront Distribution No Yes

Domain Name
keylD CloudFront Key ID No Yes

privateKeyFilename CloudFront Private Key No Yes

5.5. REPOSITORY MIRRORING

Red Hat Quay provides the capability to create container image repositories that exactly match the
content of external registries. This functionality can be enabled by setting the enableRepoMirroring:
true as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:

quay:
enableRepoMirroring: true

The following additional options are also available:
® repoMirrorTLSVerify - Require HTTPS and verify certificates of Quay registry during mirror
® repoMirrorServerHostname - URL for use by the skopeo copy command
® repoMirrorEnvVars - Environment variables to be applied to the repository mirror container

® repoMirrorResources - Compute resources to be applied to the repository mirror container

5.6. INJECTING CONFIGURATION FILES

Files related to the configuration of Red Hat Quay and Clair can be provided to be injected at runtime.
Common examples include certificates, private keys and configuration files. The Quay Operator
supports the injection of these assets within the configFiles property in the quay or clair property of the
QuayEcosystem object where one or more assets can be specified.

Two types of configuration files can be specified by the type property:

e config: Configuration files

21

Red Hat Quay 3.3 Deploy Red Hat Quay on OpenShift with Quay Operator

e extraCaCert: Certificates to be trusted by the quay container

The following table illustrates the location for which configFiles are injected:

Component Type Injection Location

Quay config Mounted within the /conf/stack
directory in Quay components

Quay extraCaCert Added to the quay-enterprise-
config-secret which is
automatically processed as an
additional CA certificate

Clair config Added to the /clair/config
directory
Clair extraCaCert Added to the /etc/pki/ca-

trust/source/anchors directory

Configuration files are stored as values within Secrets. The following describes several of the ways that
this feature can be leveraged.

The first step is to create a secret containing these files. The following command illustrates how a
private key can be added:

I $ oc create secret generic quayconfigfile --from-file=<path_to_file>

With the secret created, the secret containing the configuration file can be referenced in the
QuayEcosystem object as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:

name: example-quayecosystem
spec:

quay:

configFiles:
- secretName: quayconfigfile

By default, the config type is assumed. If the contents of the secret contains certificates that should be
added as a trusted certificate, specify the type as extraCaCert as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:

name: example-quayecosystem
spec:

quay:

configFiles:
- secretName: quayconfigfile
type: extraCaCert

22

CHAPTER 5. CUSTOMIZING YOUR RED HAT QUAY CLUSTER

Individual keys within a secret can be referenced to fine tune the resources that are added to the
configuration using the files property as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
configFiles:
- secretName: quayconfigfile
files:
- key: myprivatekey.pem
filename: cloudfront.pem
- key: myExtraCaCert.crt
type: extraCaCert

The example above assumes that two files have been added to a secret called quayconfigfile. The file
myprivatekey.pem that was added to the secret will be mounted in the quay pod at the path
/conf/stack/cloudfront.pem since it is a config file type and specifies a custom filename that should be
projected into the pod. The myExtraCaCert.crt file will be added to the Quay pod within at the path
/conf/stack/extra_certs/myExtraCert.crt

NOTE

The type property within files property overrides the value in the configFiles property.

5.7. SKIPPING AUTOMATED SETUP

The operator by default is configured to complete the automated setup process for Red Hat Quay. This
can be bypassed by setting the skipSetup field to true as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
skipSetup: true

5.8. METHODS FOR EXTERNAL ACCESS

Support is available to access Quay through a number of OpenShift and Kubernetes mechanisms for
ingress. When running on OpenShift, a Route is used while a LoadBalancer Service and Ingress is used.

All of the properties for defining the configuration for external access can be managed within the
externalAccess property. The type of external access can be specified by setting the type property
within externalAccess using one of the available options in the table below:

External Access Type Description Notes

23

https://docs.openshift.com/container-platform/4.4/networking/routes/route-configuration.html
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/ingress/

Red Hat Quay 3.3 Deploy Red Hat Quay on OpenShift with Quay Operator

Route OpenShift Route Can only be specified when
running in OpenShift

LoadBalancer LoadBalancer Service

NodePort NodePort Service A dns based hostname or IP
address must be specified using
the hosthame property of the
quay resource

Ingress Ingress Kubernetes native solution for

external access

An example of how to specify the type is shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:

name: example-quayecosystem
spec:

quay:

externalAccess:
type: LoadBalancer

5.8.1. NodePorts

By default, NodePort type Services are allocated a randomly assigned network port between 30000-
32767. To support a predictive allocation of resources, the NodePort services for Quay and Quay
Config can be define using the nodePort as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
externalAccess:
type: NodePort
nodePort: 30100
hostname: quay.example.com

The hostname field must be specified to refer to the location (DNS or IP) for which the Quay server will
be available. The port number allocated to tke service will be added automatically as necessary.

5.8.2. Ingress

Ingress makes use of a similar concept as an OpenShift route, but requires a separate deployment of an
ingress controller that manages external traffic. There are a variety of ingress controllers that can be
used and implementation specific properties are typically defined through the use of annotations on the
ingress resource.

24

https://docs.openshift.com/container-platform/latest/networking/routes/route-configuration.html
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
https://kubernetes.io/docs/concepts/services-networking/ingress/

CHAPTER 5. CUSTOMIZING YOUR RED HAT QUAY CLUSTER

The following is an example of how to define an Ingress type of External Access using annotations
specific for an Nginx controller:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
externalAccess:
type: Ingress
annotations:
nginx.ingress.kubernetes.io/ssl-passthrough: "true"
nginx.ingress.kubernetes.io/backend-protocol: "HTTPS"
hostname: quay.example.com

Annotations can also be applied for the Config ingress by using the configAnnotations property

The hostname field must be specified to refer to the location for which the Quay server will be
available.

5.9.SPECIFYING THE RED HAT QUAY ROUTE

Red Hat Quay makes use of an OpenShift route to enable ingress. The hostname for this route is
automatically generated as per the configuration of the OpenShift cluster. Alternatively, the hostname
for this route can be explicitly specified using the hostname property under the externalAccess field as
shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:

name: example-quayecosystem
spec:

quay:

externalAccess:
hostname: example-quayecosystem-quay-quay-enterprise.apps.openshift.example.com

5.10. SPECIFYING A RED HAT QUAY CONFIGURATION ROUTE

During the development process, you may want to test the provisioning and setup of your Red Hat Quay
server. By default, the operator will use the internal service to communicate with the configuration pod.
However, when running external to the cluster, you will need to specify the hostname location that the
setup process can use.

Specify the configHostname as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:

25

Red Hat Quay 3.3 Deploy Red Hat Quay on OpenShift with Quay Operator

externalAccess:
configHostname: example-quayecosystem-quay-config-quay-
enterprise.apps.openshift.example.com

5.11. PROVIDING SSL CERTIFICATES

Red Hat Quay, as a secure registry, makes use of SSL certificates to secure communication between the
various components within the ecosystem. Transport to the Quay user interface and container registry
is secured via SSL certificates. These certificates are generated at startup with the OpenShift route
being configured with a TLS termination type of Passthrough.

5.11.1. User-provided certificates

SSL certificates can be provided and used instead of having the operator generate certificates.
Certificates can be provided in a secret which is then referenced in the QuayEcosystem custom
resource.

Create a secret containing the certificate and private key:

oc create secret tls custom-quay-ssl \
--key=<ssl|_private_key> --cert<ssl|_certificate>

The secret containing the certificates are referenced using the secretName underneath a property
called tls as defined within the externalAccess property as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
externalAccess:
tls:
secretName: custom-quay-ssl
termination: passthrough

5.12. TLS TERMINATION

Red Hat Quay can be configured to protect connections using SSL certificates. By default, SSL
communication is terminated within Red Hat Quay. There are several different ways that SSL
termination can be configured including omitting the use of certificates altogether. TLS termination is
determined by the termination property as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:

name: example-quayecosystem
spec:

quay:

externalAccess:
tls:
termination: passthrough

26

The example above is the default configuration applied to Red Hat Quay. Alternate options are available

as described in the table below:

TLS Termination Type

passthrough

edge

none

CHAPTER 5. CUSTOMIZING YOUR RED HAT QUAY CLUSTER

Description

SSL communication is terminated
at Quay

SSL communication is terminated
prior to reaching Quay. Traffic
reaching quay is not encrypted
(HTTP)

All communication is unencrypted

Notes

Default configuration

27

Red Hat Quay 3.3 Deploy Red Hat Quay on OpenShift with Quay Operator

CHAPTER 6. CONFIGURATION DEPLOYMENT AFTERINITIAL
SETUP

By default, the Red Hat Quay Config Tool pod is left running even after the initial setup process. To
configure the Config Tool pod to be removed after setup, the keepConfigDeployment property within
the Red Hat Quay object can can be set as false as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
keepConfigDeployment: false

6.1. SUPERUSERS

Superusers in Quay have elevated rights and the ability to administer the server. By default, a superuser
with the username quay will be created. Additional superusers may be desired in order to aid in
managing the server. The full list of superusers can be specifed in the superusers field of the quay
object as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
superusers:
- jim
- joe

If multiple superusers are specified, during the initial setup of Red Hat Quay, the first user specified will
be configured unless specified within a secret as described earlier. After the initial setup, passwords are
managed within Red Hat Quay itself and not using either the default value or the value provided in the
secret.

6.2. SETTING REDIS PASSWORD

By default, the operator-managed Redis instance is deployed without a password. A password can be
specified by creating a secret containing the password in the key password. The following command
can be used to create the secret:

$ oc create secret generic <secret_name> \
--from-literal=password=<password>

The secret can then be specified within the redis section using the credentialsSecretName as shown
below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:

28

CHAPTER 6. CONFIGURATION DEPLOYMENT AFTER INITIAL SETUP

name: example-quayecosystem
spec:
redis:
credentialsSecretName: <secret_name>

6.3. ENABLING CLAIR IMAGE SCANNING

Clair is a vulnerability assessment tool for application containers. Support is available to automatically
provision and configure both Clair and its integration with Red Hat Quay. A property called clair can be
specified in the QuayEcosystem object along with enabled: true within this field in order to deploy
Clair. An example is shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:

name: example-quayecosystem
spec:

quay: {}

clair:

enabled: true

The Red Hat Quay Operator sets the Clair database connection string with the parameter
sslmode=disable if no parameters are specified in the QuayEcosystem custom resource. In case you
have SSL enabled Postgres database, or want to add other parameters, provide key: value pairs as
strings (for example, connect_timeout: '10") under connectionParameters object.

For example:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay: {}
clair:
enabled: true
database:
connectionParameters:
sslmode: require
connect_timeout: '10'

Supported connection string parameters:
® sslmode - Whether or not to use SSL (default is disable, this is not the default for libpq)

® connect_timeout - Maximum wait for connection, in seconds. Zero or not specified means wait
indefinitely.

® sslcert - Cert file location. The file must contain PEM encoded data.
e sslkey - Key file location. The file must contain PEM encoded data.
® sslrootcert - The location of the root certificate file. The file must contain PEM encoded data.

Valid values for ssimode are:

29

https://github.com/quay/clair

Red Hat Quay 3.3 Deploy Red Hat Quay on OpenShift with Quay Operator

® disable - No SSL
® require - Always SSL (skip verification)

e verify-ca - Always SSL (verify that the certificate presented by the server was signed by a
trusted CA)

e verify-full - Always SSL (verify that the certification presented by the server was signed by a
trusted CA and the server host name matches the one in the certificate)
6.3.1. Clair update interval

Clair routinely queries CVE databases in order to build its own internal database. By default, this value is
set at 500m. You can modify the time interval between checks by setting the updatelnterval property
as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay: {}
clair:
enabled: true
updatelnterval: "60m"

The above configuration would have Clair update every 60 minutes.

6.4.SETTING COMMON ATTRIBUTES

Each of the following components expose a set of similar properties that can be specified in order to
customize the runtime execution:

® Red Hat Quay

® Red Hat Quay Configuration
® Red Hat Quay PostgreSQL
® Redis

e Clair

® Clair PostgreSQL

6.4.1. Image pull secret

As referenced in prior sections, an Image Pull Secret can specify the name of the secret containing
credentials to an image from a protected registry using the property imagePullSecret.

6.4.2. Image

There may be a desire to make use of an alternate image or source location for each of the components
in the Quay ecosystem. The most common use case is to make use of an image registry that contains all
of the needed images instead of being sourced from the public internet. Each component has a property

30

CHAPTER 6. CONFIGURATION DEPLOYMENT AFTER INITIAL SETUP

called image where the location of the related image can be referenced from.

The following is an example of how a customized image location can be specified:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
image: myregistry.example.com/quay/quay:v99.1.0

6.4.3. Compute resources

Compute Resources such as memory and CPU can be specified in the same form as any other value in a
PodTemplate. CPU and Memory values for requests and limits can be specified under a property
called resources.

NOTE

In the case of the QuayConfiguration deployment, configResources is the property
which should be referenced underneath the quay property.

The following is an example of how compute resources can be specified:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
resources:
requests:
memory: 512Mi

6.4.4. Probes

Readiness and Liveness Probes can be specified in the same form as any other valueina PodTemplate.

The following is how a readinessProbe and livenessProbe can be specified:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
livenessProbe:
initialDelaySeconds: 120
httpGet:
path: /health/instance
port: 8443
scheme: HTTPS

31

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

Red Hat Quay 3.3 Deploy Red Hat Quay on OpenShift with Quay Operator

readinessProbe:
initialDelaySeconds: 10
httpGet:
path: /health/instance
port: 8443
scheme: HTTPS

NOTE

If a value for either property is not specified, an opinionated default value is applied.

6.4.5. Node Selector

Components of the QuayEcosystem may need to be deployed to only a subset of available nodes in a
Kubernetes cluster. This functionality can be set on each of the resources using the nodeSelector
property as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:

name: example-quayecosystem
spec:

quay:

nodeSelector:
node-role.kubernetes.io/infra: true

6.4.6. Deployment strategy

Each of the core components consist of Kubernetes Deployments. This resource supports the method
in which new versions are released. This operator supports making use of the RollingUpdate and
Recreate strategies. Either value can be defined by using the deploymentStrategy property on the
desired resource as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
deploymentStrategy: RollingUpdate

NOTE

The absence of a defined value will make use of the RollingUpdate strategy.

6.4.7. Environment Variables

In addition to environment variables that are automatically configured by the operator, users can define
their own set of environment variables in order to customize the managed resources. Each core
component includes a property called envVars where environment variables can be defined. An example
is shown below:

32

CHAPTER 6. CONFIGURATION DEPLOYMENT AFTER INITIAL SETUP

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:

name: example-quayecosystem
spec:

quay:

envVars:
- name: FOO
value: bar

NOTE

Environment variables for the Quay configuration pod can be managed by specifying the
configEnvVars property on the quay resource.

' WARNING
A User defined environment variables are given precedence over those managed by

the operator. Undesirable results may occur if conflicting keys are used.

33

Red Hat Quay 3.3 Deploy Red Hat Quay on OpenShift with Quay Operator

CHAPTER 7. CONFIGURING RED HAT QUAY (POST-
DEPLOYMENT)

After the Quay Operator deploys Red Hat Quay, by default the Config Tool continues to run. Going
forward, you can use the Config Tool or the Red Hat Quay Operator itself to update and maintain your
Red Hat Quay deployment.

7.1. USING THE CONFIG TOOL

The Red Hat Quay Config Tool provides a web Ul for enabling or modifying many of the settings in your
Red Hat Quay cluster. To use the Config Tool:

1. Get the route to the Config Tool by typing:

$ oc get route
NAME HOST/PORT PATH SERVICES PORT TERMINATION
WILDCARD

example-quayecosystem-quay-config.example.com ...

2. Add https:// to the HOST/PORT entry for the Config Tool and enter it into your web browser.

3. When prompted, log in using the Config Tool user name and password (quayconfig and quay,
by default).

4. Select Modify configuration for this cluster.

At this point you can change the configuration as you choose. When you are done, select Save
Configuration Changes. Here are a few things you should know about using the Config Tool:

® Most changes you make will be checked for accuracy. For example, if you change the location of
a service, the Config Tool will check that it can reach that service before saving the
configuration. If the connection fails, you have the chance to modify the setting before saving.

e After checking for accuracy, you now have the choice of continuing to edit or completing your
changes.

e After you make changes and they are accepted, those changes are deployed to all Red Hat
Quay instances in the cluster. There is no need to stop and restart those pods manually.

7.2. USING THE RED HAT QUAY OPERATOR

Updating your Red Hat Quay cluster using the Red Hat Quay Operator offers a way to deploy changes
without having to click through a web Ul. Here are some things you should know about changing settings
through the Operator:

® The same level of error checking is not performed when you change settings directly through
the Red Hat Quay Operator. If, for example, you provide the wrong address to a service, the
connection to that service will probably just fail and you would have to track down the problem
through OpenShift.

® Once you make a change, those changes will not automatically be applied to your Red Hat Quay

instances. To have the changes take effect, you will have to restart the Red Hat Quay pods
manually.

34

CHAPTER 8. TROUBLESHOOTING

CHAPTER 8. TROUBLESHOOTING

To resolve issues running, configuring and utilizing the operator, the following steps may be utilized:

8.1. ERRORS DURING INITIAL SETUP

The QuayEcosystem custom resource will attempt to provide the progress of the status of the
deployment and configuration of Red Hat Quay. Additional information related to any errors in the setup
process can be found by viewing the log messages of the config pod as shown below:

I $ oc logs $(oc get pods -I=quay-enterprise-component=config -o name)

From the OpenShift console, you can follow the Pods and Deployments that are created for your Red
Hat Quay cluster.

35

Red Hat Quay 3.3 Deploy Red Hat Quay on OpenShift with Quay Operator

CHAPTER 9. LOCAL DEVELOPMENT

Execute the following steps to develop the functionality locally. It is recommended that development be
done using a cluster with cluster-admin permissions.

Clone the repository, then resolve all dependencies using go mod:

$ export GO111MODULE=0n
$ go mod vendor

Using the operator-sdk, run the operator locally:

I $ operator-sdk up local --namespace=quay-enterprise

36

https://github.com/operator-framework/operator-sdk

CHAPTER 10. UPGRADING RED HAT QUAY

CHAPTER 10. UPGRADING RED HAT QUAY

The Red Hat Quay Operator v3.3.4 has many changes from v1.0.2. The most notable which affects the
upgrade process is the backwards-incompatible change to the CRD. Ultimately, the CR (Custom
Resource) used to deploy Red Hat Quay using the operator may have to be modified accordingly.

10.1. UPGRADE PREREQUISITES
Ensure that your deployment is using a supported persistence layer and

database. A production Red Hat Quay deployment run by the Operator should not be relying on the
Postgres instance or a OpenShift volume that has been created by the Operator.

If you are using a Postgres instance or OpenShift volume that was created by the Operator, the upgrade
path is not supported as the removal of the old Operator will cascade the deletion of your database and
volume. It may be possible to manually migrate your data to supported storage mechanisms but this is
not within the scope of the typical, or supported, upgrade path.

Please read through the entire guide before following any steps, as this upgrade path is potentially
destructive and there is no guaranteed roll-back mechanism.

10.2. UPGRADE PROCESS SUMMARY

Here are the basic steps for upgrading the Red Hat Quay cluster you originally deployed from the v1.0.2
Quay Setup Operator to the v3.3.4 Quay Operator:

1. Document all configuration related to your current deployment.
2. Copy your CR and modify any configuration values as needed.
3. Remove your current deployment using oc delete -f deployment.yami

4. Ensure that only one quay pod will be started, as this Pod will perform any database migrations
needed before scaling up the entire cluster.

5. Uninstall the old Quay Operator (v1.0.2 or older)

6. Install the latest Quay Operator (v3.3.4)

7. Create your CR by issuing the command oc create -f new_deployment.yaml
8. Watch the logs of your quay Pod until all migrations have finished.

9. At this point, it is safe to scale up your Red Hat Quay cluster if desired.

10.2.1. Document the existing Red Hat Quay deployment

For the purpose of ensuring a smooth upgrade, it is important to ensure you have all available
configuration details before deleting your existing deployment. In the case that you must work with Red
Hat Support, this information will aid them with the details needed to bring your cluster back to its
original state. At minimum, the following information should be gathered:

1. The Custom Resource used to create your current Red Hat Quay deployment.

37

Red Hat Quay 3.3 Deploy Red Hat Quay on OpenShift with Quay Operator

2. The output of running oc get QuayEcosystem -o yaml > quayecosystem.yaml in your
Project or Namespace.

3. The hostnames currently used to access Quay, Clair, Quay’'s Config App, Postgres, Redis, and
Clair's Postgres instance. This can be achieved by executing: oc get routes -o yaml >
old_routes.yaml or (if you are using a loadbalancer) oc get service

4. Any authentication details required to connect to your Postgres instance(s) for Quay and Clair
pods.

5. Any authentication details required to connect to your data persistence provider such as AWS
S3.

6. Backup your Red Hat Quay configuration secret which contains the config.yaml along with any
certificates needed. This can be accomplished by using the following command:

I $ oc get secret quay-enterprise-config-secret -o yaml > config-secret.yami

10.2.2. Update the CR

Ensure a backup is created of your original Custom Resource (CR) before making any changes.

If your deployment does not specify any specific network-related configuration values, this step may not
be necessary. Please refer to the documentation to ensure that the configuration options in your current
CR are still accurate for the Quay Operator v3.3.4.

In the case that you have specified options related to the management of networking, such as using a
LoadBalancer or specifying a custom hostname, please reference the latest documentation to update
them with the schema changes included in Quay Operator v3.3.4.

If you have overridden the image used for Quay or Clair, please keep in mind that Quay Operator v3.3.4
specifically supports Quay v3.3.4 and Clair v3.3.4. It is advisable to remove those image overrides to use
the latest, supported releases of Quay and Clair in your deployment. Any other images may not be
supported.

10.2.3. Remove the existing deployment

' WARNING
A This step will remove your entire Red Hat Quay deployment. Use caution and ensure

you understand all steps required to recreate your cluster before removing your
existing deployment.

The Quay Operator v3.3.4 is now distributed using the official Red Hat channels. Previously, Quay
Operator v1.0.2 (and below) were provided using "Community" channels. Additionally, Red Hat Quay
v3.3.4 offers no automatic upgrade path which requires your Red Hat Quay deployment and the Quay
Operator to be completely removed and replaced.

Fortunately, the important data is stored in your Postgres database and your storage backend, so it is
advisable to ensure you have proper backups for both.

38

CHAPTER 10. UPGRADING RED HAT QUAY

Once you are ready, remove your existing deployment by issuing the following command:

I $ oc delete -f deployment.yaml

All Quay and Clair pods will be removed as well as the Redis pod. At this point, your Red Hat Quay cluster
will be completely down and inaccessible. It is suggested to inform your users of a maintenance window
as they will not be able to access their images during this time.

10.2.4. Ensure only the quay pod is started

When Red Hat Quay pods start, they will look at the database to determine whether all required
database schema changes are applied. If the schema changes are not applied, which is more than likely
going to be the case when upgrading from Red Hat Quay v3.2 to v3.3.4, then the Quay pod will
automatically begin running all migrations. If multiple Red Hat Quay instances are running
simultaneously, they may all attempt to update or modify the database at the same time which may
result in unexpected issues.

To ensure that the migrations are run correctly, do not specify more than a single Quay replica to be

started. Note that the default quantity of Quay pod replicasis 1, so unless you changed it, there is no
work to be done here.

10.2.5. Uninstall the Quay Operator

Verify that all Red Hat Quay-related deployments and pods no longer exist within your namespace.
Ensure that no other Red Hat Quay deployments depend upon the installed Quay Operator v1.0.2 (or
earlier). Type oc get pod and oc get deployment to make sure they are gone.

Using OpenShift, navigate to the Operators > Installed Operators page. The Ul will present you with
the option to delete the operator.

10.2.6. Install the new Quay Operator

Previously, the Quay Operator (v1.0.2 and prior) were provided using the "community” Operator Hub
catalog. In the latest release, the Quay Operator is released through official Red Hat channels.

In the OpenShift console, navigate to Operators > OperatorHub and then simply search for Quay.

Ensure you are choosing the correct Quay Operator v3.3.4 in the event that you encounter multiple,
similar results. Simply click install and choose the correct namespace/project to install the operator.

10.2.7. Recreate the deployment

At this point, the following assumptions are made based upon the previous steps documented in this
upgrade process:

1. Your CRis updated to reflect any differences in the latest operator’s schema (CRD).
2. Quay Operator v3.3.4 is installed into your project/namespace
3. Any secrets necessary to deploy Red Hat Quay exist

4. Your CR defines either 1 Quay Pod replica or does not specify any quantity of Quay replicas
which defaults to 1.

Once you are ready, simply create your QuayEcosystem by executing the command:

39

Red Hat Quay 3.3 Deploy Red Hat Quay on OpenShift with Quay Operator

I $ oc create -f new_deployment.yaml

At this point, the Quay Operator will begin to deploy Redis, the Quay Config Application, and finally your
(single) Quay Pod.

10.2.8. Monitor the database schema update progress

Assuming that you are upgrading from Quay v3.2 to Quay v3.3, it will be necessary for Quay to perform
schema updates to your database. These can be viewed in your Quay pod’s logs.

Do not proceed with any additional steps until you are sure that the database migrations are complete.

10.2.9. Monitor the database schema update progress

Assuming that you are upgrading from Red Hat Quay v3.2 to Red Hat Quay v3.3, it will be necessary for
Quay to perform schema updates to your database. These can be viewed in your Quay pod's logs.

Do not proceed with any additional steps until you are sure that the database migrations are complete.

NOTE

These migrations should occur early in the pod’s logs so it may be easy to overlook them.

10.2.10. Finalize the Red Hat Quay cluster upgrade

Now that the latest release of Red Hat Quay, and optionally Clair, have been deployed to your Openshift
cluster, it is time to verify your configuration and scale as needed.

You can compare the results of the current configuration with the previous configuration referencing
the documentation gathered in the first step of this

process. It is recommended to pay close attention to your hostname(s) and glance at all logs to look for
any issues that may not have been obvious or caught by the Quay Operator.

Itis also recommended to perform a quick "smoke test" on your environment to ensure that the major
functionality is working as expected. One example test may include performing pushes and pulls from
the registry on existing, and new, images. Another example may be accessing the Red Hat Quay Ul as a
registered user and

ensuring that the expected TLS certificate is used. If you rely on the Quay Operator to generate a self-
signed TLS certificate then keep in mind that a new certificate may have been created by this process.

If multiple replicas are needed to scale your Red Hat Quay registry, it is now safe to change the replica
count to your desired quantity. For example, to scale out the quay pod, your might run oc edit
quayecosystem demo-quayecosystem, then change replicas: 1 to replicas: 2, or other desired
number.

Finally, it would be highly recommended to ensure you store your configuration

and any relevant OpenShift secrets in a safe, preferably encrypted, backup.

40

CHAPTER 11. STARTING TO USE RED HAT QUAY

CHAPTER 1. STARTING TO USE RED HAT QUAY

With Red Hat Quay now running, you can:
® Select Tutorial from the Quay home page to try the 15-minute tutorial. In the tutorial, you learn
to log into Quay, start a container, create images, push repositories, view repositories, and

change repository permissions with Quay.

e Refer to the Use Red Hat Quay for information on working with Red Hat Quay repositories.

ADDITIONAL RESOURCES

41

https://access.redhat.com/documentation/en-us/red_hat_quay/3.3/html-single/use_red_hat_quay/

	Table of Contents
	PREFACE
	CHAPTER 1. OVERVIEW
	CHAPTER 2. ARCHITECTURE
	CHAPTER 3. PREREQUISITES FOR RED HAT QUAY ON OPENSHIFT
	CHAPTER 4. DEPLOYING RED HAT QUAY
	4.1. PRODUCTION DEPLOYMENTS
	4.2. INSTALL THE RED HAT QUAY OPERATOR
	4.3. DEPLOY A RED HAT QUAY ECOSYSTEM

	CHAPTER 5. CUSTOMIZING YOUR RED HAT QUAY CLUSTER
	5.1. CHANGING YOUR RED HAT QUAY CREDENTIALS
	5.1.1. Red Hat Quay superuser credentials
	5.1.2. Red Hat Quay configuration credentials

	5.2. PROVIDING PERSISTENT STORAGE USING POSTGRESQL DATABASE
	5.3. SPECIFYING DATABASE CREDENTIALS
	5.3.1. Using an existing PostgreSQL database instance

	5.4. CHOOSING A REGISTRY STORAGE BACKEND
	5.4.1. Overview of storage backends
	5.4.2. Sensitive storage values
	5.4.3. Storage replication
	5.4.4. Registry storage backend types
	5.4.4.1. Local Storage
	5.4.4.2. Configuring persistent local storage
	5.4.4.3. Amazon Web Services (S3)
	5.4.4.4. Microsoft Azure storage
	5.4.4.5. Google Cloud storage
	5.4.4.6. NooBaa (RHOCS) storage
	5.4.4.7. RADOS storage
	5.4.4.8. Swift (OpenStack) storage
	5.4.4.9. CloudFront (S3) storage

	5.5. REPOSITORY MIRRORING
	5.6. INJECTING CONFIGURATION FILES
	5.7. SKIPPING AUTOMATED SETUP
	5.8. METHODS FOR EXTERNAL ACCESS
	5.8.1. NodePorts
	5.8.2. Ingress

	5.9. SPECIFYING THE RED HAT QUAY ROUTE
	5.10. SPECIFYING A RED HAT QUAY CONFIGURATION ROUTE
	5.11. PROVIDING SSL CERTIFICATES
	5.11.1. User-provided certificates

	5.12. TLS TERMINATION

	CHAPTER 6. CONFIGURATION DEPLOYMENT AFTER INITIAL SETUP
	6.1. SUPERUSERS
	6.2. SETTING REDIS PASSWORD
	6.3. ENABLING CLAIR IMAGE SCANNING
	6.3.1. Clair update interval

	6.4. SETTING COMMON ATTRIBUTES
	6.4.1. Image pull secret
	6.4.2. Image
	6.4.3. Compute resources
	6.4.4. Probes
	6.4.5. Node Selector
	6.4.6. Deployment strategy
	6.4.7. Environment Variables

	CHAPTER 7. CONFIGURING RED HAT QUAY (POST-DEPLOYMENT)
	7.1. USING THE CONFIG TOOL
	7.2. USING THE RED HAT QUAY OPERATOR

	CHAPTER 8. TROUBLESHOOTING
	8.1. ERRORS DURING INITIAL SETUP

	CHAPTER 9. LOCAL DEVELOPMENT
	CHAPTER 10. UPGRADING RED HAT QUAY
	10.1. UPGRADE PREREQUISITES
	10.2. UPGRADE PROCESS SUMMARY
	10.2.1. Document the existing Red Hat Quay deployment
	10.2.2. Update the CR
	10.2.3. Remove the existing deployment
	10.2.4. Ensure only the quay pod is started
	10.2.5. Uninstall the Quay Operator
	10.2.6. Install the new Quay Operator
	10.2.7. Recreate the deployment
	10.2.8. Monitor the database schema update progress
	10.2.9. Monitor the database schema update progress
	10.2.10. Finalize the Red Hat Quay cluster upgrade

	CHAPTER 11. STARTING TO USE RED HAT QUAY
	ADDITIONAL RESOURCES

