& RedHat

Red Hat Quay 2.9

Manage Red Hat Quay

Manage Red Hat Quay

Last Updated: 2019-08-02

Red Hat Quay 2.9 Manage Red Hat Quay

Manage Red Hat Quay

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Manage Red Hat Quay

Table of Contents

Table of Contents

[{3 N O PP 4
CHAPTER 1. USING SSL TO PROTECT CONNECTIONS TORED HAT QUAY ...ttt iiiiiiieeaeanns 5
1.1. CREATE A CA AND SIGN A CERTIFICATE 5
1.2. CONFIGURE QUAY TO USE THE NEW CERTIFICATE 5
1.2.1. Configure with the superuser GUl in Quay 5
1.2.2. Configure with the command line 6
1.2.3. Test the secure connection 7

1.3. CONFIGURING DOCKER TO TRUST A CERTIFICATE AUTHORITY 8
CHAPTER 2. ADDING TLS CERTIFICATES TO THE RED HAT QUAY CONTAINER cciiiiiieinnn. 10
2.1. ADD CUSTOM/SSL CERTIFICATES FROM THE RED HAT QUAY UI 10
2.2. ADD TLS CERTIFICATES TO RED HAT QUAY 10
2.3. ADD CERTS WHEN DEPLOYED ON KUBERNETES 1
CHAPTER 3. RED HAT QUAY SECURITY SCANNING WITH CLAIR ... ittt iieniiennnenns 12
3.1. VISIT THE MANAGEMENT PANEL 12
3.2. ENABLE SECURITY SCANNING 12
3.3. ENTER A SECURITY SCANNER 12
3.4. GENERATE AN AUTH KEY 13
3.4.1. Authentication for high-availability scanners 13
3.4.2. Authentication for single-instance scanners 14

3.5. SAVE CONFIGURATION 15
CHAPTER 4. SETTING UP CLAIRSECURITY SCANNING ...ttt ieiit et raiennneennnanns 16
4. GET POSTGRES AND CLAIR 16
4.2. CONFIGURE CLAIR 16
4.2.1. Clair configuration: High availability 17
4.2.2. Clair configuration: Single instance 18

4.3. CONFIGURING CLAIR FORTLS 20
4.3.1. Using certificates from a public CA 20
4.3.2. Configuring trust of self-signed SSL 20

4.4, USING CLAIR DATA SOURCES 20
4.5. RUN CLAIR 22
4.6. CONTINUE WITH QUAY SETUP 23
CHAPTER 5. DISTRIBUTING IMAGES WITH BITTORRENT ...ttt eiieiieieennnennneenn, 24
5.1. VISIT THE MANAGEMENT PANEL 24
5.2. ENABLE BITTORRENT DISTRIBUTION 24
5.3. ENTER AN ANNOUNCE URL 24
5.4. SAVE CONFIGURATION 24
CHAPTER 6. LDAP AUTHENTICATION SETUP FORRED HAT QUAY ... ittt eiiieeeean, 26
6.1. PREREQUISITES 26
6.2. SETUP LDAP CONFIGURATION 26
6.3. TIPS FOR LDAP CONFIGURATION: 27
6.4. COMMON ISSUES 28
CHAPTER 7. PROMETHEUS AND GRAFANA METRICS UNDERRED HAT QUAY ittt 29
7.1. EXPOSING THE PROMETHEUS ENDPOINT 29
7.1.1. Setting up Prometheus to consume metrics 29
7.1.2. DNS configuration under Kubernetes 29
7.1.3. DNS configuration for a manual cluster 29

Red Hat Quay 2.9 Manage Red Hat Quay

CHAPTER 8. GEOREPLICATION OF STORAGE INRED HAT QUAY ... i
8.1. PREREQUISITES
8.2. VISIT THE MANAGEMENT PANEL
8.3. ENABLE STORAGE REPLICATION
8.4. RUN RED HAT QUAY WITH STORAGE PREFERENCES

CHAPTER 9. RED HAT QUAY TROUBLESHOOTING i i

CHAPTER10. RED HAT QUAY UPGRADE GUIDE ... o i i i
10.1. BACKUP THE QUAY DATABASE
10.2. PROVIDE QUAY CREDENTIALS TO THE DOCKER CLIENT
10.3. PULL THE LATEST QUAY RELEASE FROM THE REPOSITORY.
10.4. FIND THE RUNNING QUAY CONTAINER ID
10.5. STOP THE EXISTING QUAY CONTAINER
10.6. START THE NEW QUAY CONTAINER
10.7. CHECK THE HEALTH OF THE UPGRADED CONTAINER
10.8. UPGRADE THE REST OF THE CONTAINERS IN THE CLUSTER.

CHAPTER 1. UPGRADING QUAY L i i i e e i ittt
1.1. SPECIAL NOTE
11.2. UPGRADING NOTE
11.3. THE UPGRADE PROCESS

CHAPTER 12.UPGRADE TO QUAY 2.0.0 ...ttt ittt tttnneeeeenanneseeeennneeeeennnnneeeennnn
12.1. DOWNLOAD QUAY LICENSE
12.2. SHUTDOWN ALL QUAY INSTANCES
12.3. RUN A SINGLE INSTANCE OF QUAY 2
12.3.1. Add your license to the Quay
12.3.2. Add license via the filesystem
12.4. UPDATE CLUSTER
12.5. VERIFY CLUSTER

CHAPTER13.SCHEMA FOR RED HAT QUAY . e e et
ADDITIONAL RESOURCES

30
30
30

31

32

33
33
33
33
33
33
33
34
34

35
35
35
35

36
36
36
36
36
37
37
37

38
48

Table of Contents

Red Hat Quay 2.9 Manage Red Hat Quay

PREFACE

Once you have deployed a Red Hat Quay registry, there are many ways you can further configure and
manage that deployment. Topics covered here include:

® Connection security with SSL and TLS certificates
® |mage security scanning with Clair

® Sharing Quay images with a BitTorrent service

® Authenticating users with LDAP

® Enabling Quay for Prometheus and Grafana metrics
® Setting up geo-replication

® Troubleshooting Quay

® Upgrading Quay

CHAPTER 1. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY

CHAPTER 1. USING SSL TO PROTECT CONNECTIONS TO RED
HAT QUAY

This document assumes you have deployed Red Hat Quay in a single-node or highly available
deployment.

To configure Quay with a self-signed certificate, you need to create a Certificate Authority (CA), then
generate the required key and certificate files. You then enter those files using the Red Hat Quay config
Ul or command line.

1.1. CREATE A CA AND SIGN A CERTIFICATE

1. Create aroot CA.

$ openssl genrsa -out rootCA.key 2048
$ openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 1024 -out rootCA.pem

2. Create an openssl.cnf file. Replacing DNS.1 and IP.1 with the hostname and IP of the Quay
server:

openssl.cnf

[req]

reg_extensions = v3_req

distinguished_name = req_distinguished_name
[req_distinguished_name]

[v3_req]

basicConstraints = CA:FALSE

keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names

[alt_names]

DNS.1 = reg.example.com

IP.1=12.345.678.9

3. Create key and certificates. The following set of shell commands invoke the openssl utility to
create a key for Quay, generate a request for an Authority to sign a new certificate, and finally
generate a certificate for Quay signed by the CA created earlier.

Make sure the CA certificate file rootCA.pem and the openssl.cnf config file are both
available.

$ openssl genrsa -out ssl.key 2048

$ openssl req -new -key ssl.key -out ssl.csr -subj "/CN=quay-enterprise" -config openssl.cnf
$ openssl x509 -req -in ssl.csr -CA rootCA.pem -CAkey rootCA .key -CAcreateserial -out
ssl.cert -days 356 -extensions v3_req -extfile openssl.cnf

1.2. CONFIGURE QUAY TO USE THE NEW CERTIFICATE

The next step can be accomplished either in the Red Hat Quay superuser panel, or from the terminal.

1.2.1. Configure with the superuser GUI in Quay

https://access.redhat.com/documentation/en-us/red_hat_quay/2.9/html-single/getting_started_with_red_hat_quay/
https://access.redhat.com/documentation/en-us/red_hat_quay/2.9/html-single/deploy_red_hat_quay_-_high_availability
https://en.wikipedia.org/wiki/Self-signed_certificate

Red Hat Quay 2.9 Manage Red Hat Quay

1. Set the Server Hostname to the appropriate value and check the Enable SSL then upload the
ssl.key and ssl.cert files:

& Server Configuration

Server reg.example.com
Hostname:
S5 Ld Enable S5L

Enabling SSL also enables HTTP Strict Transport Security.
This prevents downgrade attacks and cookie theft, but browsers will reject all future insecure
connections on this hostname.

Certificate! /conf/stack/ssl.cert Select a replacement file:

Choose File | ssl.cert

Private Jconf/stack/ssl. key Select a replacement file:
key: Choose File |ssl.key

2. Save the configuration. Red Hat Quay will automatically validate the SSL certificate:

Checking your settings

REDIS

REGISTRY STORAGE

SSL CERTIFICATE AND KEY

v Configuration Validated . Save Configuration

3. Restart the container

Container restart required!
Configuration changes have been made but the container hasn't been restarted yet.

1.2.2. Configure with the command line

By not using the web interface the configuration checking mechanism built into Red Hat Quay is
unavailable. It is suggested to use the web interface if possible.

1. Copy the ssl.key and ssl.certinto the specified config directory. In this example, the config
directory for Quay is on a host named reg.example.com in a directory named /mnt/quay/config.

NOTE

The certificate/key files must be named ssl.key and ssl.cert

CHAPTER 1. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY

$ls

ssl.cert ssl.key

$ scp ssl.* root@reg.example.com:/mnt/quay/config/
[root@reg.example.com ~]$ Is /mnt/quay/config/
config.yaml ssl.cert ssl.key

2. Modify the PREFERRED_URL_SCHEME: parameter in config.yaml from http to https

I PREFERRED_URL_SCHEME: https

3. Restart the Red Hat Quay container:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

eaf45ad4aal2d quay.io/quay/redis "/usr/bin/redis-serve" 22 hours ago Up 22 hours
0.0.0.0:6379->6379/tcp dreamy...

cbe7b0fa39d8 quay.io/coreos/quay "/sbin/my_init" 22 hours ago Up one hour
80/tcp,443/tcp,8443/tcp ferv...

705fe7311940 mysql:5.7 "/entrypoint.sh mysqgl" 23 hours ago Up 22 hours
0.0.0.0:3306->3306/tcp mysq|

$ docker restart cbe7b0fa39d8

1.2.3. Test the secure connection

Confirm the configuration by visiting the URL from a browser https://reg.example.com/

https://reg.example.com/

Red Hat Quay 2.9 Manage Red Hat Quay

Insecure Connection — Mozilla Firefox X

/% Insecure Connection X | 4

[€ | (| https://req.example.com c ||Q. Search | v B ¥+ =» =

% Your connection is not secure

The owner of reg.example.com has configured their website improperly. To
protect your information from being stolen, Firefox has not connected to this
website.

Learn more...

Report errors like this to help Mozilla identify misconfigured sites

"Your Connection is not secure” means the CA is untrusted but confirms that SSL is functioning
properly. Check Google for how to configure your operating system and web browser to trust your new
CA.

1.3. CONFIGURING DOCKER TO TRUST A CERTIFICATE AUTHORITY

Docker requires that custom certs be installed to /etc/docker/certs.d/ under a directory with the same
name as the hostname private registry. It is also required for the cert to be called ca.crt. Here is how to
do that:

1. Copy the rootCA file.

I $ cp tmp/rootCA.pem /etc/docker/certs.d/reg.example.com/ca.crt

2. After you have copied the rootCA.pem file, docker login should authenticate successfully and
pushing to the repository should succeed.

$ sudo docker push reg.example.com/kbrwn/hello

The push refers to a repository [reg.example.com/kbrwn/hello]
5f70bf18a086: Layer already exists

€493e9cb9dac: Pushed

1770dbc4af14: Pushed

a7bb4eb71da7: Pushed

9fad7adcbd46: Pushed

2cec07a74a9f: Pushed

f342e0a3e445: Pushed

b12f995330bb: Pushed

CHAPTER 1. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY

2016366¢cdd69: Pushed

a930437ab3ab: Pushed

15eb0f73cd14: Pushed

latest: digest:
sha256:c24be6d92b0ade2bb8a8cc7c9bd044278d6abdf31534729b1660a485b1cd315¢ size:
7864

Red Hat Quay 2.9 Manage Red Hat Quay

CHAPTER 2. ADDING TLS CERTIFICATES TO THE RED HAT
QUAY CONTAINER

To add custom TLS certificates to Red Hat Quay, you can use either the command line interface or the
Red Hat Quay user interface. From the command line, you need to create a new directory named
extra_ca_certs/ beneath the Red Hat Quay config directory and copy any required site-specific TLS
certificates to this new directory.

2.1. ADD CUSTOM/SSL CERTIFICATES FROM THE RED HAT QUAY Ul
To add custom or self-signed SSL certificates to Red Hat Quay from the web Ul, do the following:

1. Navigate to the Red Hat Quay config Ul.

2. Scroll to the Custom SSL Certificates section.

3. In the Upload certificates box, select the filename of the certificate. The following figure shows
the result of uploading a file named ca.crt.

Custom SSL Certificates
This section lists any custom or self-signed SSL certificates that are installed in the Quay Enterprise container on startup after being read from the extra_ca_certs directory in the configuration volume.

Custom certificates are typically used in place of publicly signed certificates for corporate-internal services.

Please make sure that all custom names used for downstream services (such as Clair) are listed in the certificates below.

Upload certificates: Select file
Select custom certificate to add to configuration. Must be in PEM format and end extension 'crt’
cacrt @ Certificate is va

2.2. ADD TLS CERTIFICATES TO RED HAT QUAY

1. View certificate to be added to the container
$ cat storage.crt

MIIDTTCCAjWgAwIBAgIJAMVr9ngjJhzbMAOGCSqGSIb3DQEBCWUAMDOXCzAJBGNV
[..]

2. Create certs directory and copy certificate there

$ mkdir -p quay/config/extra_ca_certs

$ cp storage.crt quay/config/extra_ca_certs/
$ tree quay/config/

—— config.yaml

—— extra_ca_certs

| |— storage.crt

3. Obtain the quay container's CONTAINER ID with docker ps:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS

10

CHAPTER 2. ADDING TLS CERTIFICATES TO THE RED HAT QUAY CONTAINEFR

5a3e82c4a75f quay.io/coreos/quay:v2.9.5 "/sbin/my_init" 24 hours ago
Up 18 hours 0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp, 8443/tcp grave_keller

4. Restart the container with that ID:

I $ docker restart 5a3e82c4a75f

5. Examine the certificate copied into the container namespace:

$ docker exec -it 5a3e82c4a75f cat /etc/ssl/certs/storage.pem

MIIDTTCCAjWgAwIBAgIJAMVr9ngjJhzbMAOGCSqGSIb3DQEBCWUAMDOXCzAJBGNV

2.3. ADD CERTS WHEN DEPLOYED ON KUBERNETES

When deployed on Kubernetes, Red Hat Quay mounts in a secret as a volume to store config assets.
Unfortunately, this currently breaks the upload certificate function of the Red Hat Quay config Ul

To get around this error, a base64 encoded certificate can be added to the secret after Quay has been
deployed. Here's how:

1. Begin by base64 encoding the contents of the certificate:

$ cat ca.crt

MIIDIJCCAn6gAwWIBAgIBATANBgkghkiGOWOBAQsFADASMRcwFQYDVQQKDASMQUIu
TEICQO09SRS5TTzEeMBWGA1UEAwwWVQ2VydGimaWNhdGUgQXV0aG9yaXRSMB4XDTE2
MDEXMjA2NTkxMFoXDTM2MDEXxMjA2NTkxMFowOTEXMBUGA1UECgwOTEFCLkxJQKNP
UkUuUO08xHjAcBgNVBAMMFUNIcnRpZmljYXRIIEF1dGhveml0e TCCASIwDQYJKoZI

[..]

$ cat ca.crt | base64 -w 0

[..]
c1psWGpgeGIPQMNEWkJPMjJ5d0pDemVnR2QNCnRsbW9JAEF4YNnFSdVA3PTOKLSOtLS 1F
TkQgQOVSVEIGSUNBVEULLSOtLQo=

2. Use the kubectl tool to edit the quay-enterprise-config-secret.

I $ kubectl --namespace quay-enterprise edit secret/quay-enterprise-config-secret

3. Add an entry for the cert and paste the full base64 encoded string under the entry:

custom-cert.crt:
c1psWGpaeGIPQMNEWKJPM]J5d0pDemVnR2QNCnRsbW9JdEF4YnFSAVA3PTOKLSOILS1F
TkQgQOVSVEIGSUNBVEULLSOtLQo=

4. Finally, recycle all Red Hat Quay pods. Use kubectl delete to remove all Red Hat Quay pods.
The Red Hat Quay Deployment will automatically schedule replacement pods with the new
certificate data.

1

Red Hat Quay 2.9 Manage Red Hat Quay

CHAPTER 3. RED HAT QUAY SECURITY SCANNING WITH
CLAIR

Red Hat Quay supports scanning container images for known vulnerabilities with a scanning engine such
as Clair. This document explains how to configure Clair with Quay.

3.1. VISIT THE MANAGEMENT PANEL

Sign in to a superuser account from the Red Hat Quay login screen. For example, if the host were
reg.example.com, you would go to http://reg.example.com/superuser to view the management panel:

o b}
® 0 6 / [{dl Enterprise Registry Manac x N Core0S
b f

€ - C' [localhost/superuser/

) RO
EN Qua\l Tour Repositories Docs Tutorial Pricing Organizations o oo 5i,’;:H‘devtable 2~

Enterprise Registry Management

Showing 5 of 5 matching users Filter Users + Create User

Username E-mail address

devtable 3 EEER ischorr@devtable.com

"f:: outsideorg no2@thanks.com
#5 randomuser no4@thanks.com
reader nol@thanks.com

" unverified no5@thanks.com

©2014 Core0S,Inc. Terms Privacy ~ Security About Contact Service Status

3.2. ENABLE SECURITY SCANNING

® Click the configuration tab () and scroll down to the section entitled Security Scanner.

. Enable Security Scanning

® Check the "Enable Security Scanning" box

3.3. ENTER ASECURITY SCANNER

In the "Security Scanner Endpoint” field, enter the HTTP endpoint of a Red Hat Quay-compatible
security scanner such as Clair.

Security Scanner Endpoint: Security Scanner APl endpoint (Example: http://myhost:6060)

12

https://github.com/coreos/clair/
http://reg.example.com/superuser
clair-initial-setup

CHAPTER 3. RED HAT QUAY SECURITY SCANNING WITH CLAIF

3.4. GENERATE AN AUTH KEY

To connect Red Hat Quay securely to the scanner, click "Create Key >" to create an authentication key
between Quay and the Security Scanner.

3.4.1. Authentication for high-availability scanners

If the security scanning engine is running on multiple instances in a high-availability setup, select
"Generate shared key":

Create key for service security_scanner

Have the service provide a key

Recommended for security_scanner installations where the single instance is setup now.

) Generate shared key

Recommended for security_scanner installations where the instances are dynamically started.

Enter an optional expiration date, and click "Generate Key":

Create key for service security_scanner

Key Name: security_scanner Service Key

A friendly name for the key for later reference.

Expiration date (optional):

The date and time that the key expires. If left blank, the key will never expire.
Approval Notes (optional): B I [= E 0= D o~

Created during setup for service " security_scanner’

A

Optional notes for additional human-readable information about why the key was created.

13

Red Hat Quay 2.9 Manage Red Hat Quay

Save the key ID and download the preshared private key into the configuration directory for the
security scanning engine.

Create key for service security_scanner

The following key has been generated for service security_scanner.

Please copy the key's |D and copy/download the key's private contents and place it in the directory with the service's
configuration.

Once this dialog is closed this private key will not be accessible anywhere else!
Key ID:

4fb9063a7cac00b567ee921065ed16fed7227afdB06b4d6Tcc82de67dBeT781b1

Private Key (PEM):

BEGIN RSA PRIVATE KEY—=—===
MIIEowIBAAKCAQEAUPK2LQ@DX1SwgRVERMNLIMwW7wWExZEHDTLOPISEP1G1GX Wt
/yh0inTmdQp/cF9eYqgl3@/SNHWEmMGA7UOGECHY LDgBoc /2 TzA] XM47CUMGSwyY1s
dGIp9lwpVDwiqlL7X]jn/KkbuCycQiws TEPXCVbmWASTLEreD2ASK/Ju3QgJQRnol
Vidth+4@vmbArEUetkaCY2V4AnCBF3IT7CalndobkcbB4P1IXWRTkgNRDENRH4uThkao
TkCimuOMZelynBxBnuNE3IVF/09XvGUGMUrPwADiaKsPoHIRI7Thet2 rymSTksvRE
GCdThgvU2I/eRaaAhmOEWBT3yiZHVOBG6Xgj Q9WIDAQABADIBABESggLA/Wo+1TNg
yGMdXjsCeagWolq2RHCEI+YgPQUDirX2tz0swHgzZelxdhzvHut zmwAgNWEBtTBZt
wHmWadswsdbv,/Ek5rBldLnuMAJaWBTmwhiw+TnBEpMSwI4HWuUC11V@s52tGvn7IhTV
C5YHLXhyYeNR2zm@4LyDc1RH/7+vZ] rEdADTYISqHAMD+62YbPTZZ0uwgs0awm]y
7BRVRKEH+Vvg31X@GXGbu+ESeuR+16cMAsT+yB0ShZtvolyauTIOVLLY s zObHNNu
/MiXdbisvy3A1/br3YNZLEMFcl2nAuoymp70x0]1d10] gxRE16DAT/2cHIci2RXN
YCqiWTECOYEAWWTIICOTHTYS52w] sxyvZ/BT@3515CpI6x62eqheI0QVLErG+ZLrs
FxwiN20+U3bkTNGypKPM3 | FriVA7b9WBBORsSEXzV /k/@JAMIPKiDj ks iYMIZ5yom5SR
enfSZ8jRg8sUanktmad491QX6ZL/3skTHLBCKJACR/ fuvUhTolK4E28CgYEASVET
/91iEughDNKWgnaGLcplIFgIbwSd/KGSaydvlPNjFoTmcXfXHIcdBNRFWSc+kpLrC
82rAcC0elwl9tAFYmMPTGYcTZXMGIqABAZK+4690X rwEGXoeo T7FgTsNy rBogT20
6pRFHGCcIa0h6bDik0] 2PKPullyvv7Rg+bwod] tvkCgYAaKcoilSNkIcEjt+tABSY
vbv12s78+CV11y2sMmyx@eMy T8y /mwlUwtBHHC3 j+mQdZZpxHNs cTzDXA40Lakhmg
FYSDumH+iValyX1TU+bT1kPz1DwlLbsLEvygNBWMt4a2MTYH234+7PcEST LkgKLI1
rf310PNGC/ +eS0d05CnULWKBgHSZnTUL 12PM2H50ghAeSs 13T+MXTxWU3QZ0+7eF
c2TP@cddz/ LvsZVCGTaZVgodu70h7 /BWlelLBzgUmTckXUTeLsFh+Inyg9U7uU7hF
AGuiWP/ teVHS/aEZDj vCelsWSmcWHVM/ 2GDtAyul7+kBz 145c3bXy 1 1VNAUW3ItTC
HMMZADGBAKah9GNIGYCe+b/Qk3iM5jdneYDdLzt rOtaFhPxgbaxhv07vbmIzMNgR
AGymAZHrNJuxV5CBOND] F3a@X2PB8+415mQWZ5t0AxShIU]@BI0nihPmHX9GVmExX
g7SNBKNnmpoNIuXY2ZqjWs5kZ/VzE9qt1lavk9liStFBjomLeYero

<. Download Private Key Close

3.4.2. Authentication for single-instance scanners

14

CHAPTER 3. RED HAT QUAY SECURITY SCANNING WITH CLAIF

If the security scanning engine is being run on a single instance, select "Have the service provide a key":

Create key for service security_scanner

) Have the service provide a key

Recommended for security_scanner installations where the single instance is setup now.

Generate shared key

Recommended for security_scanner installations where the instances are dynamically started.

Start Approval Cancel

Once the following dialog is visible, run the security scanning engine:

Create key for service security_scanner

Please startthe security_scanner service now, configured for autogenerated private key. The key approval process will continue
automatically once the service connects to Quay.

Waiting for service to connect

When the security scanning engine connects, the key will be automatically approved.

3.5. SAVE CONFIGURATION
® Click "Save Configuration Changes"

® Restart the container (you will be prompted)

15

Red Hat Quay 2.9 Manage Red Hat Quay

CHAPTER 4. SETTING UP CLAIR SECURITY SCANNING

The Clair project is an open source engine that powers Red Hat Quay Security Scanner to detect
vulnerabilities in all images within Red Hat Quay, then notify developers as those issues are discovered.

Initial setup includes configuring a Postgres database, downloading the clairimage and creating the
Clair configuration.

4.1. GET POSTGRES AND CLAIR

In order to run Clair, a Postgres database is required. For production deployments, we recommend a
PostgreSQL database running on machines other than those running Red Hat Quay and ideally with
automatic replication and failover. For testing purposes, a single PostgreSQL instance can be started
locally:

1. To start Postgres locally, do the following:

docker run --name postgres -p 5432:5432 -d postgres

sleep 5

docker run --rm --link postgres:postgres postgres \
sh -c 'echo "create database clairtest” | psql -h \
"$POSTGRES_PORT_5432_TCP_ADDR" -p \
"$POSTGRES_PORT_5432_TCP_PORT" -U postgres'

The configuration string for this test database is:
I postgresql://postgres@{DOCKER HOST GOES HERE}:5432/clairtest?sslmode=disable

2. Pull the security-enabled Clair image:

I docker pull quay.io/coreos/clair-jwt:v2.0.7

3. Make a configuration directory for Clair

mkdir clair-config
cd clair-config

4.2. CONFIGURE CLAIR

Clair can run either as a single instance or in high-availability mode. It is recommended to run more than
a single instance of Clair, ideally in an auto-scaling group with automatic healing.

1. Create a config.yaml file in the config directory from one of the two Clair configuration files
shown here.

2. If you are doing a high-availability installation, go through the procedure in Authentication for
high-availability scanners to create a Key ID and Private Key (PEM).

3. Save the Private Key (PEM) to a file (such as, $HOME/config/security_scanner.pem).
4. Replace replace the value of key_id (CLAIR_SERVICE_KEY_ID) with the Key ID you generated

and the value of private_key_path with the location of the PEM file (for example,
/config/security_scanner.pem).

16

https://access.redhat.com/documentation/en-us/red_hat_quay/2.9/html-single/manage_red_hat_quay/#authentication-for-high-availability-scanners

CHAPTER 4. SETTING UP CLAIR SECURITY SCANNING

For example, those two value might now appear as:

key_id: { 4fb9063a7cac00b567ee921065ed16fed7227afd806b4d67cc82de67d8c781b1 }
private_key_path: /config/security_scanner.pem

4.2.1. Clair configuration: High availability

clair:
database:
type: pgsql
options:
A PostgreSQL Connection string pointing to the Clair Postgres database.
Documentation on the format can be found at: http://www.postgresql.org/docs/9.4/static/libpg-
connect.html
source: { POSTGRES_CONNECTION_STRING }
cachesize: 16384
api:
The port at which Clair will report its health status. For example, if Clair is running at
https://clair.mycompany.com, the health will be reported at
http://clair.mycompany.com:6061/health.
healthport: 6061

port: 6062
timeout: 900s

paginationkey can be any random set of characters. *Must be the same across all Clair
instances™.
paginationkey: "XxoPtCUzrUv4JV5dS+yQ+MdW7yLEJnRMwigVY/bpgtQ="

updater:
interval defines how often Clair will check for updates from its upstream vulnerability databases.
interval: 6h
notifier:
attempts: 3
renotifyinterval: 1h
http:
QUAY_ENDPOINT defines the endpoint at which Quay is running.
For example: https://myregistry.mycompany.com
endpoint: { QUAY_ENDPOINT }/secscan/notify
proxy: http://localhost:6063

jwtproxy:
signer_proxy:
enabled: true
listen_addr: :6063
ca_key_file: /certificates/mitm.key # Generated internally, do not change.
ca_crt_file: /certificates/mitm.crt # Generated internally, do not change.
signer:
issuer: security_scanner
expiration_time: 5m
max_skew: 1Tm
nonce_length: 32
private_key:
type: preshared
options:

17

Red Hat Quay 2.9 Manage Red Hat Quay

The ID of the service key generated for Clair. The ID is returned when setting up
the key in [Quay Setup](security-scanning.md)

key_id: { CLAIR_SERVICE_KEY_ID }

private_key_path: /config/security_scanner.pem

verifier_proxies:

- enabled: true
The port at which Clair will listen.
listen_addr: :6060

If Clair is to be served via TLS, uncomment these lines. See the "Running Clair under TLS"
section below for more information.

key_file: /config/clair.key

crt_file: /config/clair.crt

verifier:
CLAIR_ENDPOINT is the endpoint at which this Clair will be accessible. Note that the port
specified here must match the listen_addr port a few lines above this.
Example: https://myclair.mycompany.com:6060
audience: { CLAIR_ENDPOINT }

upstream: http://localhost:6062
key_server:
type: keyregistry
options:
QUAY_ENDPOINT defines the endpoint at which Quay is running.
Example: https://myregistry.mycompany.com
registry: { QUAY_ENDPOINT }/keys/

4.2.2. Clair configuration: Single instance

clair:
database:
type: pgsql
options:
A PostgreSQL Connection string pointing to the Clair Postgres database.
Documentation on the format can be found at: http://www.postgresql.org/docs/9.4/static/libpg-
connect.html
source: { POSTGRES_CONNECTION_STRING }
cachesize: 16384
api:
The port at which Clair will report its health status. For example, if Clair is running at
https://clair.mycompany.com, the health will be reported at
http://clair.mycompany.com:6061/health.
healthport: 6061

port: 6062
timeout: 900s

paginationkey can be any random set of characters. *Must be the same across all Clair
instances™.

paginationkey:

updater:
interval defines how often Clair will check for updates from its upstream vulnerability databases.

18

CHAPTER 4. SETTING UP CLAIR SECURITY SCANNING

interval: 6h
notifier:
attempts: 3
renotifyinterval: 1h
http:
QUAY_ENDPOINT defines the endpoint at which Quay is running.
For example: https://myregistry.mycompany.com
endpoint: { QUAY_ENDPOINT }/secscan/notify
proxy: http://localhost:6063

jwtproxy:
signer_proxy:
enabled: true
listen_addr: :6063
ca_key_file: /certificates/mitm.key # Generated internally, do not change.
ca_crt_file: /certificates/mitm.crt # Generated internally, do not change.
signer:
issuer: security_scanner
expiration_time: 5m
max_skew: 1Tm
nonce_length: 32
private_key:
type: autogenerated
options:
rotate_every: 12h
key_folder: /config/
key_server:
type: keyregistry
options:
QUAY_ENDPOINT defines the endpoint at which Quay is running.
For example: https://myregistry.mycompany.com
registry: { QUAY_ENDPOINT }/keys/

verifier_proxies:

- enabled: true
The port at which Clair will listen.
listen_addr: :6060

If Clair is to be served via TLS, uncomment these lines. See the "Running Clair under TLS"
section below for more information.

key_file: /config/clair.key

crt_file: /config/clair.crt

verifier:
CLAIR_ENDPOINT is the endpoint at which this Clair will be accessible. Note that the port
specified here must match the listen_addr port a few lines above this.
Example: https://myclair.mycompany.com:6060
audience: { CLAIR_ENDPOINT }

upstream: http://localhost:6062
key_server:

type: keyregistry

options:

19

Red Hat Quay 2.9 Manage Red Hat Quay

QUAY_ENDPOINT defines the endpoint at which Quay is running.
Example: https://myregistry.mycompany.com
registry: { QUAY_ENDPOINT }/keys/

4.3. CONFIGURING CLAIRFORTLS

To configure Clair to run with TLS, a few additional steps are required.

4.3.1. Using certificates from a public CA

For certificates that come from a public certificate authority, follow these steps:
1. Generate a TLS certificate and key pair for the DNS name at which Clair will be accessed
2. Place these files as clair.crt and clair.key in your Clair configuration directory
3. Uncomment the key_file and crt_file lines under verifier_proxies in your Clair config.yaml

If your certificates use a public CA, you are now ready to run Clair. If you are using your own certificate
authority, configure Clair to trust it below.

4.3.2. Configuring trust of self-signed SSL

Similar to the process for setting up Docker to trust your self-signed certificates, Clair must also be
configured to trust your certificates. Using the same CA certificate bundle used to configure Docker,
complete the following steps:

1. Rename the same CA certificate bundle used to set up Quay Registry to ca.crt

2. Make sure the ca.crt file is mounted inside the Clair container under /usr/local/share/ca-
certificates/ as in the example below:

NOTE
Add --loglevel=debug to the docker run command line for the clair container to

enable debug level logging.

docker run --restart=always -p 6060:6060 -p 6061:6061 \
-v /path/to/clair/config/directory:/config -v \
/path/to/quay/cert/ca.crt:/usr/local/share/ca-certificates/ca.crt \
quay.io/coreos/clair-jwt:v2.0.7

Now Clair will be able to trust the source of your TLS certificates and use them to secure
communication between Clair and Quay.

4.4. USING CLAIR DATA SOURCES
Before scanning container images, Clair tries to figure out the operating system on which the container
was built. It does this by looking for specific filenames inside that image (see Table 1). Once Clair knows

the operating system, it uses specific security databases to check for vulnerabilities (see Table 2).

Table 4.1. Container files that identify its operating system

20

https://access.redhat.com/documentation/en-us/red_hat_quay/2.9/html-single/manage_red_hat_quay/#configuring-docker-to-trust-a-certificate-authority

CHAPTER 4. SETTING UP CLAIR SECURITY SCANNING

Operating system Files identifying OS type

Redhat/CentOS/Oracle

Alpine

Debian/Ubuntu:

Ubuntu

The data sources that Clair uses to scan containers are shown in Table 2.

NOTE

etc/oracle-release
etc/centos-release
etc/redhat-release

etc/system-release

etc/alpine-release

etc/os-release
usr/lib/os-release

etc/apt/sources.list

etc/Isb-release

You must be sure that Clair has access to all listed data sources by whitelisting access to
each data source’s location. You might need to add a wild-card character (*) at the end
of some URLS that may not be fully complete because they are dynamically built by code.

Table 4.2. Clair data sources and data collected

Data source

Debian Security
Bug Tracker

Ubuntu CVE
Tracker

Red Hat Security
Data

Data collected

Debian 6, 7, 8,
unstable
namespaces

Ubuntu 12.04,
12.10,13.04, 14.04,
14.10,15.04, 15.10,
16.04 namespaces

Cent0S5, 6,7
namespace

Whitelist links

https://security-
tracker.debian.org
/tracker/data/json

https://security-
tracker.debian.org
/tracker

https://git.launchp
ad.net/ubuntu-
cve-tracker

http://people.ubu
ntu.com/~ubuntu-
security/cve/%s

https://www.redha
t.com/security/dat
a/oval/

Format

dpkg

dpkg

ropm

License

Debian

GPLv2

CVRF

21

https://security-tracker.debian.org/tracker
https://security-tracker.debian.org/tracker/data/json
https://security-tracker.debian.org/tracker
https://en.wikipedia.org/wiki/Dpkg
https://www.debian.org/license
https://launchpad.net/ubuntu-cve-tracker
https://git.launchpad.net/ubuntu-cve-tracker
http://people.ubuntu.com/~ubuntu-security/cve/%s
https://en.wikipedia.org/wiki/Dpkg
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.redhat.com/security/data/metrics
https://www.redhat.com/security/data/oval/
http://www.rpm.org/
http://www.icasi.org/cvrf-licensing/

Red Hat Quay 2.9 Manage Red Hat Quay

Data source Data collected Whitelist links Format License
Oracle Linux Oracle Linux 5, 6, https://linux.oracle rpm CVRF
Security Data 7 namespaces .com/oval/
Alpine SecDB Alpine 3.3,3.4,35 https://github.com apk MIT
namespaces /alpinelinux/alpine
-secdb

https://cve.mitre.o

rg/cgi-
bin/cvename.cgi?

name=
NIST NVD Generic https://nvd.nist.go N/A Public domain
vulnerability v/feeds/xml/cve/2
metadata .0/nvdcve-2.0-
%s.xml.gz

https://nvd.nist.go
v/feeds/xml/cve/2
.0/nvdcve-2.0-
%s.meta

4.5. RUN CLAIR

Execute the following command to run Clair:

docker run --restart=always -p 6060:6060 -p \
6061:6061 -v \
/path/to/clair/config/directory:/config \
quay.io/coreos/clair-jwt:v2.0.7

Output similar to the following will be seen on success:

22

2016-05-04 20:01:05,658 CRIT Supervisor running as root (no user in config file)
2016-05-04 20:01:05,662 INFO supervisord started with pid 1

2016-05-04 20:01:06,664 INFO spawned: 'jwtproxy' with pid 8

2016-05-04 20:01:06,666 INFO spawned: 'clair' with pid 9

2016-05-04 20:01:06,669 INFO spawned: 'generate_mitm_ca' with pid 10
time="2016-05-04T20:01:06Z" level=info msg="No claims verifiers specified, upstream should be
configured to verify authorization"

time="2016-05-04T20:01:06Z" level=info msg="Starting reverse proxy (Listening on :6060")"
2016-05-04 20:01:06.715037 | | pgsql: running database migrations
time="2016-05-04T20:01:06Z" level=error msg="Failed to create forward proxy: open
/certificates/mitm.crt: no such file or directory”

goose: no migrations to run. current version: 20151222113213

2016-05-04 20:01:06.730291 | | pgsql: database migration ran successfully

2016-05-04 20:01:06.730657 | | notifier: notifier service is disabled

2016-05-04 20:01:06.731110 | | api: starting main APl on port 6062.

2016-05-04 20:01:06.736558 | | api: starting health API on port 6061.

2016-05-04 20:01:06.736649 | | updater: updater service is disabled.

https://linux.oracle.com/security/
https://linux.oracle.com/oval/
http://www.rpm.org/
http://www.icasi.org/cvrf-licensing/
http://git.alpinelinux.org/cgit/alpine-secdb/
https://github.com/alpinelinux/alpine-secdb
https://cve.mitre.org/cgi-bin/cvename.cgi?name=
http://git.alpinelinux.org/cgit/apk-tools/
https://gist.github.com/jzelinskie/6da1e2da728424d88518be2adbd76979
https://nvd.nist.gov/
https://nvd.nist.gov/feeds/xml/cve/2.0/nvdcve-2.0-%s.xml.gz
https://nvd.nist.gov/feeds/xml/cve/2.0/nvdcve-2.0-%s.meta
https://nvd.nist.gov/faq

CHAPTER 4. SETTING UP CLAIR SECURITY SCANNING

2016-05-04 20:01:06,740 INFO exited: jwtproxy (exit status 0; not expected)

2016-05-04 20:01:08,004 INFO spawned: 'jwtproxy' with pid 1278

2016-05-04 20:01:08,004 INFO success: clair entered RUNNING state, process has stayed up for >
than 1 seconds (startsecs)

2016-05-04 20:01:08,004 INFO success: generate_mitm_ca entered RUNNING state, process has
stayed up for > than 1 seconds (startsecs)

time="2016-05-04T20:01:08Z" level=info msg="No claims verifiers specified, upstream should be
configured to verify authorization"

time="2016-05-04T20:01:08Z" level=info msg="Starting reverse proxy (Listening on :6060")"
time="2016-05-04T20:01:08Z" level=info msg="Starting forward proxy (Listening on :6063")"
2016-05-04 20:01:08,541 INFO exited: generate_mitm_ca (exit status 0; expected)

2016-05-04 20:01:09,543 INFO success: jwtproxy entered RUNNING state, process has stayed up for
> than 1 seconds (startsecs)

To verify Clair is running, execute the following command:

I curl -X GET -I http://path/to/clair/here:6061/health

If a 200 OK code is returned, Clair is running:

HTTP/1.1 200 OK

Server: clair

Date: Wed, 04 May 2016 20:02:16 GMT
Content-Length: 0

Content-Type: text/plain; charset=utf-8

4.6. CONTINUE WITH QUAY SETUP

Once Clair setup is complete, continue with Red Hat Quay Security Scanning with Clair .

23

https://access.redhat.com/documentation/en-us/red_hat_quay/2.9/html-single/manage_red_hat_quay/#quay-security-scanner

Red Hat Quay 2.9 Manage Red Hat Quay

CHAPTER 5. DISTRIBUTING IMAGES WITH BITTORRENT

Red Hat Quay supports BitTorrent-based distribution of its images to clients via the quayctl tool.
BitTorrent-based distribution allows for machines to share image data amongst themselves, resulting in
faster downloads and shorter production launch times.

5.1. VISIT THE MANAGEMENT PANEL

Sign in to a superuser account from the Red Hat Quay login screen. For example, if the host were
reg.example.com, you would go to http://reg.example.com/superuser to view the management panel:

© O O /& Enterprise Registry Manac x |\ Core0S 1
€« C | [} localhost/superuser/ =
o aox
=0 Qua\l Tour Repositories Docs Tutorial Pricing Organizations o oo £ 3%, devtable @) ~

Enterprise Registry Management

Showing 5 of 5 matching users Filter Users + Create User

Username E-mail address

g devtable m m jschorr@devtable.com

:;: outsideorg no2@thanks.com
randomuser no4@thanks.com

a.J. reader nol@thanks.com

unverified no5@thanks.com

©2014 Core0S,Inc. Terms Privacy ~ Security About Contact Service Status

5.2. ENABLE BITTORRENT DISTRIBUTION

® Click the configuration tab and scroll down to the section entitled BitTorrent-based download.

Enable BitTorrent downloads

® Check the "Enable BitTorrent downloads" box

5.3. ENTER AN ANNOUNCE URL

In the "Announce URL" field, enter the HTTP endpoint of a JWT-capable BitTorrent tracker’s announce
URL. This will typically be a URL ending in /announce.

5.4. SAVE CONFIGURATION

24

https://github.com/coreos/quayctl
http://reg.example.com/superuser

CHAPTER 5. DISTRIBUTING IMAGES WITH BITTORRENT

® (lick "Save Configuration Changes"

® Restart the container (you will be prompted)

25

Red Hat Quay 2.9 Manage Red Hat Quay

CHAPTER 6. LDAP AUTHENTICATION SETUP FOR RED HAT
QUAY

The Lightweight Directory Access Protocol (LDAP) is an open, vendor-neutral, industry standard
application protocol for accessing and maintaining distributed directory information services over an
Internet Protocol (IP) network. Red Hat Quay supports using LDAP as an identity provider.

6.1. PREREQUISITES

The Quay LDAP setup workflow requires that the user configuring the LDAP Setup already exist in the
LDAP directory. Before attempting the setup, make sure that you are logged in as a superuser that
matches user crendentials in LDAP. In order to do so, Navigate to the superuser panel (ex:
http(s)://quay.enterprise/superuser) and click on the “Create User” button to create a new User. Make
sure to create a user that matches the username/email syntax in LDAP.

Once the user is created, click on the Settings icon next to the user and choose “Make superuser”
option. For ease of troubleshooting, set the User password to the LDAP password.

L

() Make Superuser

B4 Change E-mail Address

@, Change Password

¥ Delete User
O Disable User

¥ Take Ownership

You will be prompted to restart the container once the new user is created. Restart the Quay container
and log in to the superuser panel as the user that was just created.

6.2. SETUP LDAP CONFIGURATION

Navigate to the superuser panel and navigate to settings section. Locate the Authentication section and
select "LDAP" from the drop-down menu.

& Authentication

Authenticatien for the registry can be handled by either the registry itself, LDAP or external JWT endpoint.
Additional external authentication providers (such as GitHub) can be used on top of this choice.

Itis highly recommended to require encrypted client passwords. External passwords used in the Docker client will be stored in plaintext! Enable this requirement now.

Authentication: | LDAP s |

Enter LDAP configuration fields as required.

26

CHAPTER 6. LDAP AUTHENTICATION SETUP FOR RED HAT QUAY

|LDaP v

LDAP URI:

Idap://172.17.8.101/

de=example,dc=org

User Relative DN: ou=NYC

Secondary User Relative

DNs:

® oUSSFO Remove

Administrator DN: cn=quayenterprise,ou=svc,0u=NYC,dc=example,dc=org

Administrator DN

Password:

Note: This will be stored in plaintext inside the config.yaml, so setting up a dedicated account or using a password hash is highly recommended.

quayenterprise

UID Attribute: uid

Mail Attribute: mail

6.3. TIPS FOR LDAP CONFIGURATION:

LDAP URI must be in Idap:// or Idaps:// syntax. Typing a URI with Idaps:// prefix will surface the
option to provide custom SSL certificate for TLS setup

User Relative DN is relative to BaseDN (ex: ou=NYC not ou=NYC,dc=example,dc=org)

Logged in Username must exist in User Relative DN

You can enter multiple “Secondary User Relative DNs" if there are multiple Organizational Units
where User objects are located at. (ex: ou=Users,ou=NYC and ou=Users,ou=SFO). Simply type
in the Organizational Units and click on Add button to add multiple RDNs

sAMAccountName is the UID attribute for against Microsoft Active Directory setups

Quay searches "User Relative DN" with subtree scope. For example, if your Organization has
Organizational Units NYC and SFO under the Users OU (ou=SFO,ou=Users and

ou=NYC,ou=Users), Quay can authenticate users from both the NYC and SFO Organizational
Units if the User Relative DN is set to Users (ou=Users)

Once the configuration is completed, click on “Save Configuration Changes” button to validate the
configuration.

27

Red Hat Quay 2.9 Manage Red Hat Quay

Checking your settings

Repis

REeGISTRY STORAGE

LDAP AUTHENTICATION

+ Configuration Validated £ Save Configuration

You will be prompted to login with LDAP credentials.

6.4. COMMON ISSUES
Invalid credentials
Administrator DN or Administrator DN Password values are incorrect

Verification of superuser %USERNAME% failed: Username not found The user either does not exist in
the remote authentication system OR LDAP auth is misconfigured.

Quay can connect to the LDAP server via Username/Password specified in the Administrator DN fields
however cannot find the current logged in user with the UID Attribute or Mail Attribute fields in the User
Relative DN Path. Either current logged in user does not exist in User Relative DN Path, or Administrator
DN user do not have rights to search/read this LDAP path.

28

CHAPTER 7. PROMETHEUS AND GRAFANA METRICS UNDER RED HAT QUAY

CHAPTER 7. PROMETHEUS AND GRAFANA METRICS UNDER
RED HAT QUAY

Red Hat Quay exports a Prometheus- and Grafana-compatible endpoint on each instance to allow for
easy monitoring and alerting.

7.1. EXPOSING THE PROMETHEUS ENDPOINT

The Prometheus- and Grafana-compatible endpoint on the Red Hat Quay instance can be found at
port 9092. See Monitoring Quay with Prometheus and Grafana for details on configuring Prometheus
and Grafana to monitor Quay repository counts.

7.1.1. Setting up Prometheus to consume metrics

Prometheus needs a way to access all Red Hat Quay instances running in a cluster. In the typical setup,
this is done by listing all the Red Hat Quay instances in a single named DNS entry, which is then given to
Prometheus.

7.1.2. DNS configuration under Kubernetes

A simple Kubernetes service can be configured to provide the DNS entry for Prometheus. Details on
running Prometheus under Kubernetes can be found at Prometheus and Kubernetes and Monitoring
Kubernetes with Prometheus.

7.1.3. DNS configuration for a manual cluster

SkyDNS is a simple solution for managing this DNS record when not using Kubernetes. SkyDNS can run
on an etcd cluster. Entries for each Red Hat Quay instance in the cluster can be added and removed in
the etcd store. SkyDNS will regularly read them from there and update the list of Quay instances in the
DNS record accordingly.

29

https://prometheus.io/
https://access.redhat.com/solutions/3750281
http://kubernetes.io/docs/user-guide/services/
https://coreos.com/blog/prometheus-and-kubernetes-up-and-running.html
https://coreos.com/blog/monitoring-kubernetes-with-prometheus.html
https://github.com/skynetservices/skydns
https://github.com/coreos/etcd

Red Hat Quay 2.9 Manage Red Hat Quay

CHAPTER 8. GEOREPLICATION OF STORAGE IN RED HAT
QUAY

Georeplication allows for a single globally-distributed Red Hat Quay to serve container images from
localized storage.

When georeplication is configured, container image pushes will be written to the preferred storage
engine for that Red Hat Quay instance. After the initial push, image data will be replicated in the
background to other storage engines. The list of replication locations is configurable. An image pull will
always use the closest available storage engine, to maximize pull performance.

8.1. PREREQUISITES

Georeplication requires that there be a high availability storage engine (53, GCS, RADOS, Swift) in each
geographic region. Further, each region must be able to access every storage engine due to replication
requirements.

NOTE

Local disk storage is not compatible with georeplication at this time.

8.2. VISIT THE MANAGEMENT PANEL

Sign in to a superuser account from the Red Hat Quay login screen. For example, if the host were
reg.example.com, you would go to http://reg.example.com/superuser to view the management panel:

© O O /(i Enterprise Registry Manag x | Core0S '
€ - C [] localhost/superuser/ =
i - 5 e S Ao X
|[,A,|| Qua\l Tour Repositories Docs Tutorial Pricing Organizations _t’ 5ﬁ‘;,,t;devtable D -

Enterprise Registry Management

Showing 5 of 5 matching users Filter Users + Create User

Username E-mail address

T devtable I EIEED) ischorr@devtable.com

:f: outsideorg no2@thanks.com
B randomuser no4@thanks.com
reader nol@thanks.com

#° unverified no5@thanks.com

©2014 Core0S,Inc. Terms Privacy ~ Security About Contact Service Status

8.3. ENABLE STORAGE REPLICATION

30

http://reg.example.com/superuser

CHAPTER 8. GEOREPLICATION OF STORAGE IN RED HAT QUAY

1. Click the configuration tab and scroll down to the section entitled Registry Storage.
2. Click Enable Storage Replication.

3. Add each of the storage engines to which data will be replicated. All storage engines to be used
must be listed.

4. If complete replication of all images to all storage engines is required, under each storage
engine configuration click Replicate to storage engine by default. This will ensure that all
images are replicated to that storage engine. To instead enable per-namespace replication,
please contact support.

5. Click Save to validate.
6. After adding storage and enabling “Replicate to storage engine by default” for Georeplications,

you need to sync existing image data across all storage. To do this, you need to oc exec (or
docker/kubectl exec) into the container and run:

I $ venv/bin/python -m util.backfillreplication

This is a one time operation to sync content after adding new storage.

8.4. RUN RED HAT QUAY WITH STORAGE PREFERENCES

1. Copy the config.yaml to all machines running Red Hat Quay

2. For each machine in each region, add a QUAY_DISTRIBUTED STORAGE_PREFERENCE
environment variable with the preferred storage engine for the region in which the machine is
running.

For example, for a machine running in Europe with the config directory on the host available
from /mnt/quay/config:

docker run -d -p 443:443 -p 80:80 -v /mnt/quay/config:/conf/stack \
-e QUAY_DISTRIBUTED_STORAGE_PREFERENCE=europestorage \
quay.io/coreos/quay:versiontag

NOTE

The value of the environment variable specified must match the name of a
Location ID as defined in the config panel.

3. Restart all Quay containers

31

Red Hat Quay 2.9 Manage Red Hat Quay

CHAPTER 9. RED HAT QUAY TROUBLESHOOTING

Common failure modes and best practices for recovery.

32

I'm receiving HTTP Status Code 429

I'm authorized but I'm still getting 403s

Base image pull in Dockerfile fails with 403

Cannot add a build trigger

Build logs are not loading

I'm receiving "Cannot locate specified Dockerfile" * Could not reach any registry endpoint
Cannot access private repositories using EC2 Container Service
Docker is returning ani/o timeout

Docker login is failing with an odd error

Pulls are failing with an odd error

| just pushed but the timestamp is wrong

Pulling Private Quay.io images with Marathon/Mesos fails

http://docs.quay.io/issues/429.html
http://docs.quay.io/issues/auth-failure.html
http://docs.quay.io/issues/base-pull-issue.html
http://docs.quay.io/issues/cannot-add-trigger.html
http://docs.quay.io/issues/cannot-load-build-logs.html
http://docs.quay.io/issues/cannot-locate-dockerfile.html
http://docs.quay.io/issues/could-not-reach-any-registry-endpoint.html
http://docs.quay.io/issues/ecs-auth-failure.html
http://docs.quay.io/issues/iotimeout.html
http://docs.quay.io/issues/odd-login-failure.html
http://docs.quay.io/issues/odd-pull-failure.html
http://docs.quay.io/issues/push-timestamp-wrong.html
http://docs.quay.io/issues/quay-mesos.html

CHAPTER 10. RED HAT QUAY UPGRADE GU

CHAPTER 10. RED HAT QUAY UPGRADE GUIDE

This document describes how to upgrade one or more Quay containers.

10.1. BACKUP THE QUAY DATABASE

The database is the "source of truth" for Quay, and some version upgrades will trigger a schema update
and data migration. Such versions are clearly documented in the Red Hat Quay Release Notes.

Backup the database before upgrading Quay. Once the backup completes, use the procedure in this
document to stop the running Quay container, start the new container, and check the health of the
upgraded Quay service.

10.2. PROVIDE QUAY CREDENTIALS TO THE DOCKER CLIENT

I # docker login quay.io

10.3. PULL THE LATEST QUAY RELEASE FROM THE REPOSITORY.

Check the list of Red Hat Quay releases for the latest version.

I # docker pull quay.io/coreos/registry:RELEASE_VERSION

Replace RELEASE VERSION with the desired version of Quay.

10.4. FIND THE RUNNING QUAY CONTAINER ID
I # docker ps -a

The Quay image will be labeled quay.io/coreos/registry.

10.5. STOP THE EXISTING QUAY CONTAINER

I # docker stop QE_CONTAINER_ID

10.6. START THE NEW QUAY CONTAINER

docker run --restart=always -p 443:443 -p 80:80 --privileged=true \
-v /mnt/quay/config:/conf/stack \
-v /mnt/quay/storage:/datastorage \
-d quay.io/coreos/registry:RELEASE_VERSION

Replace /local/path/to/config/directory and /local/path/to/storage/directory with the absolute paths
to those directories on the host. Replace RELEASE_VERSION with the desired Quay version.

Rarely, but occasionally, the new Quay version may perform a database schema upgrade and migration.
Versions requiring such database migrations will take potentially much longer to start the first time.
These versions are clearly documented in the Red Hat Quay Release Notes, which should be consulted
before each Quay upgrade.

IDE

33

https://access.redhat.com/documentation/en-us/red_hat_quay/2.9/html-single/red_hat_quay_release_notes/
https://access.redhat.com/documentation/en-us/red_hat_quay/2.9/html-single/red_hat_quay_release_notes/
https://access.redhat.com/documentation/en-us/red_hat_quay/2.9/html-single/red_hat_quay_release_notes//

Red Hat Quay 2.9 Manage Red Hat Quay

10.7. CHECK THE HEALTH OF THE UPGRADED CONTAINER

Visit the /health/endtoend endpoint on the registry hostname and verify that the code is 200 and
is_testing is false.

10.8. UPGRADE THE REST OF THE CONTAINERS IN THE CLUSTER.

If the upgraded container is healthy, repeat this process for all remaining Quay containers.

34

CHAPTER 11. UPGRADING QUAY

CHAPTER 1. UPGRADING QUAY

The full list of Quay versions can be found on the Red Hat Quay Release Notes page.

11.1. SPECIAL NOTE

i

n.2.U

-

n3.T
1
2

3.

NOTE

If you are upgrading from a version of Quay older than 2.0.0, you must upgrade to Quay
2.0.0 first. Please follow the Upgrade to Quay 2.0.0 instructions to upgrade to Quay
2.0.0, and then follow the instructions below to upgrade from 2.0.0 to the latest version
you'd like.

PGRADING NOTE

NOTE

We highly recommend performing upgrades during a scheduled maintenance window, as
it will require taking the existing cluster down temporarily. We are working to remove this
restriction in a future release.

HE UPGRADE PROCESS

Visit the Red Hat Quay Release Notes page and note the latest version of Quay.

Shutdown the Quay cluster: Remove all containers from service.

On a single node, run the newer version of Quay.

Quay will perform any necessary database migrations before bringing itself back into service.
Watch the logs of the running container to determine when the upgrade has completed:

I # docker logs -f {containerld}

Update all other nodes to refer to the new tag and bring them back into service.

35

https://access.redhat.com/documentation/en-us/red_hat_quay/2.9/html-single/red_hat_quay_release_notes/
https://access.redhat.com/documentation/en-us/red_hat_quay/2.9/html-single/manage_red_hat_quay/#upgrade-to-quay-2.0.0
https://access.redhat.com/documentation/en-us/red_hat_quay/2.9/html-single/red_hat_quay_release_notes/

Red Hat Quay 2.9 Manage Red Hat Quay

CHAPTER 12. UPGRADE TO QUAY 2.0.0

All Quay instances being upgraded from versions < 2.0.0 must upgrade to Quay 2.0.0 first before
continuing to upgrade. This upgrade has an extra step, documented here.

We highly recommend performing this upgrade during a scheduled maintenance window, as it will
require taking the existing cluster down temporarily.

12.1. DOWNLOAD QUAY LICENSE

To begin, download your Quay License from your Tectonic Account. Please download or copy this
license in Raw Format as a file named license:

12.2. SHUTDOWN ALL QUAY INSTANCES

Shutdown all running instances of Quay, across all clusters.

12.3. RUN A SINGLE INSTANCE OF QUAY 2

Run a single instance of Quay 2.0.0 by replacing quay.io/coreos/registry:{currentVersion} with
quay.io/coreos/quay:v2.0.0 in your run command, startup script, config or systemd unit.

12.3.1. Add your license to the Quay

Quay setup as a container or under Kubernetes

® Visit the management panel:

© O O/ fiEnterprise Registry Manac x | Core0s | "

‘ € C localhost/superuser/ =
fi itori i ici izati 4 7o devtabl

(11| Quav Tour Repositories Docs Tutorial Pricing Organizations L, (5 deviable @) ~

Enterprise Registry Management

Showing 5 of 5 matching users Filter Users + Create User

Username E-mail address

 devtable) EEZEZ} ischorr@devtable.com

'E: outsideorg no2@thanks.com

randomuser no4@thanks.com

";! reader nol@thanks.com
s

. unverified no5@thanks.com

©2014Core0S, Inc. Terms Privacy Security About Contact Service Status

Sign in to a super user account from the Red Hat Quay login screen. For example, if the host were
reg.example.com, you would go to http://reg.example.com/superuser to view the management panel:

36

https://account.tectonic.com
http://reg.example.com/superuser

CHAPTER 12. UPGRADE TO QUAY 2.0.0

® Click the configuration tab
® |n the section entitled License, paste in the contents of the license downloaded above
® Click Save Configuration Changes

® Restart the container (you will be prompted)

12.3.2. Add license via the filesystem

Ensure the Red Hat Quay instance has been shutdown and add the raw format license in license file to
the directory mapped to conf/stack, next to the existing config.yaml.

Example:

The conf/stack directory is mapped to quay2/config in docker run command used to bring up Quay:

docker run --restart=always -p 443:443 -p 80:80 --privileged=true -v /quay2/config:/conf/stack -v
/quay2/storage:/datastorage -d quay.io/coreos/quay:v2.0.0

The license file resides in the quay2/config directory:

$ Is quay2/config/
config.yaml license

$ cat quay2/license

eyJhbGciOidSUzI1NiJ9.eyJzY2hlbWFWZXJzaW9uljoidjliLCJ2ZXJzaW9uljoiMSIsImNyZWF0aW9uRGF!
ZSI6ljIwMTYtMTAtMjZUMTceMjM6MjdaliwiZXhwaXJ

[..]

12.4. UPDATE CLUSTER

Update all remaining Quay instances to refer to the new image (quay.io/coreos/quay:v2.0.0).

12.5. VERIFY CLUSTER
Verify that your cluster and its license are valid by performing a push or pull. If you receive an HTTP 402,
please make sure your license is properly installed and valid by checking in the management panel (see

above for instructions).

If you encounter unusual problems, please contact support.

37

Red Hat Quay 2.9 Manage Red Hat Quay

CHAPTER 13. SCHEMA FOR RED HAT QUAY

NOTE

All fields are optional unless otherwise marked.

® AUTHENTICATION_TYPE [string] required: The authentication engine to use for credential
authentication.

o enum: Database, LDAP, JWT, Keystone, OIDC.
o Example: Database
® BUILDLOGS_REDIS [object] required: Connection information for Redis for build logs caching.
o HOST [string] required: The hostname at which Redis is accessible.
® Example: my.redis.cluster
o PASSWORD [string]: The password to connect to the Redis instance.
® Example: mypassword
o PORT [number]: The port at which Redis is accessible.
® Example: 1234
® DB_URI[string] required: The URI at which to access the database, including any credentials.
o Reference: https://www.postgresql.org/docs/9.3/static/libpg-connect.htmI#AEN39495
o Example: mysql+pymysql://username:password@dns.of.database/quay

e DEFAULT_TAG_EXPIRATION [string] required: The default, configurable tag expiration time
for time machine. Defaults to 2w.

o Pattern: A[0-9]+(w|m|d|h|s)$

e DISTRIBUTED_STORAGE_CONFIG [object] required: Configuration for storage engine(s) to
use in Quay. Each key is a unique ID for a storage engine, with the value being a tuple of the type
and configuration for that engine.

o Example: {"local_storage": ["LocalStorage", {"'storage_path": "some/path/"}]}

e DISTRIBUTED_STORAGE_PREFERENCE [array] required: The preferred storage engine(s)
(by ID in DISTRIBUTED_STORAGE_CONFIG) to use. A preferred engine means it is first
checked for pulling and images are pushed to it.

o Min Items: None
® Example: [u’'s3_us_east’, u’s3_us_west']
B array item [string]

o preferred_url_scheme [string] required: The URL scheme to use when hitting Quay. If Quay
is behind SSL at all, this must be https.

B enum: http, https

38

https://www.postgresql.org/docs/9.3/static/libpq-connect.html#AEN39495

CHAPTER 13. SCHEMA FOR RED HAT QUAY

® Example: https

SERVER_HOSTNAME [string] required: The URL at which Quay is accessible, without the
scheme.

o Example: quay.io

TAG_EXPIRATION_OPTIONS [array] required: The options that users can select for expiration
of tags in their namespace (if enabled).

o Min Items: None
o array item [string]
o Pattern: A[0-9]+(w|m|d|h|s)$

USER_EVENTS_REDIS [object] required: Connection information for Redis for user event
handling.

o HOST [string] required: The hostname at which Redis is accessible.

® Example: my.redis.cluster

o PASSWORD [string]: The password to connect to the Redis instance.

® Example: mypassword

o PORT [number]: The port at which Redis is accessible.

® Example: 1234

ACTION_LOG_ARCHIVE_LOCATION [string]: If action log archiving is enabled, the storage
engine in which to place the archived data.

o Example: s3_us_east

ACTION_LOG_ARCHIVE_PATH' [string]: If action log archiving is enabled, the path in storage
in which to place the archived data.

o Example: archives/actionlogs

APP_SPECIFIC_TOKEN_EXPIRATION [string, null]: The expiration for external app tokens.
Defaults to None.

o Pattern: A[0-9]+(w|m|d|h|s)$

ALLOW_PULLS_WITHOUT_STRICT_LOGGING [boolean]: If true, pulls in which the pull audit
log entry cannot be written will still succeed. Useful if the database can fallback into a read-only
state and it is desired for pulls to continue during that time. Defaults to False.

o Example: True

AVATAR_KIND [string]: The types of avatars to display, either generated inline (local) or
Gravatar (gravatar)

o enum: local, gravatar

BITBUCKET_TRIGGER_CONFIG ['object’, 'null']: Configuration for using BitBucket for build
triggers.

39

Red Hat Quay 2.9 Manage Red Hat Quay

o consumer_key [string] required: The registered consumer key(client ID) for this Quay
instance.

® Example: 0e8dbe15c4c7630b6780

o CONSUMER_SECRET [string] required: The registered consumer secret(client secret) for
this Quay instance

® Example: e4a58ddd3d7408b7aecl09e85564a0d153d3e846

e BITTORRENT_ANNOUNCE_URL [string]: The URL of the announce endpoint on the bittorrent
tracker.

o Pattern: Ahttp(s)?://(.)+$
o Example: https://localhost:6881/announce

e BITTORRENT_PIECE_SIZE [number]: The bittorent piece size to use. If not specified, defaults
to 512 * 1024.

o Example: 524288

e BROWSER_API_CALLS_XHR_ONLY [boolean]: If enabled, only API calls marked as being
made by an XHR will be allowed from browsers. Defaults to True.

o Example: False

® CONTACT_INFO [array]: If specified, contact information to display on the contact page. If only
a single piece of contact information is specified, the contact footer will link directly.

o Minltems: 1

o Unique Items: True
B array item O[string]: Adds a link to send an e-mail
®m Pattern: Amailto:(.)+$
® Example: mailto:support@quay.io
o array item 1[string]: Adds a link to visit an IRC chat room
m Pattern: Airc://()+$
m Example: irc://chat.freenode.net:6665/quay

o array item 2[string]: Adds a link to call a phone number

m Pattern: Mtel:(.)+$
® Example: tel:+1-888-930-3475

o array item 3 [string]: Adds a link to a defined URL
®m Pattern: Ahttp(s)?://(.)+$

® Example: https://twitter.com/quayio

40

https://localhost:6881/announce
irc://chat.freenode.net:6665/quay
https://twitter.com/quayio

CHAPTER 13. SCHEMA FOR RED HAT QUAY
BLACKLIST_V2_SPEC [string]: The Docker CLI versions to which Quay will respond that V2 is
unsupported. Defaults to <1.6.0.

o Reference:
http://pythonhosted.org/semantic_version/reference.html#semantic_version.Spec

o Example: <1.8.0

DB_CONNECTION_ARGS [object]: If specified, connection arguments for the database such
as timeouts and SSL.

o threadlocals[boolean] required: Whether to use thread-local connections. Should
ALWAYS be true

o autorollback[boolean] required: Whether to use auto-rollback connections. Should
ALWAYS be true

o ssl[object]: SSL connection configuration

B ca [string] required: Absolute container path to the CA certificate to use for SSL
connections.

m Example: conf/stack/ssl-ca-cert.pem

DEFAULT_NAMESPACE_MAXIMUM_BUILD_COUNT [number, null]: If not None, the default
maximum number of builds that can be queued in a namespace.

o Example: 20

DIRECT_OAUTH_CLIENTID_WHITELIST [array]: A list of client IDs of Quay-managed
applications that are allowed to perform direct OAuth approval without user approval.

© Min Items: None

o Unique Items: True

o Reference: https://coreos.com/quay-enterprise/docs/latest/direct-oauth.html
® array item [string]

DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS [array]: The list of storage engine(s) (by
ID in DISTRIBUTED_STORAGE_CONFIG) whose images should be fully replicated, by default,
to all other storage engines.

o Min Items: None
o Example: s3_us_east, s3_us_west
B array item [string]

EXTERNAL_TLS_TERMINATION [boolean]: If TLS is supported, but terminated at a layer
before Quay, must be true.

o Example: True

ENABLE_HEALTH_DEBUG_SECRET [string, null]: If specified, a secret that can be given to
health endpoints to see full debug info when not authenticated as a superuser.

o Example: somesecrethere

41

http://pythonhosted.org/semantic_version/reference.html#semantic_version.Spec
https://coreos.com/quay-enterprise/docs/latest/direct-oauth.html

Red Hat Quay 2.9 Manage Red Hat Quay

42

EXPIRED_APP_SPECIFIC_TOKEN_GC [string, null]: Duration of time expired external app
tokens will remain before being garbage collected. Defaults to 1d.

o pattern: A[0-9]+(w|m|d|h|s)$

FEATURE_ACI_CONVERSION [boolean]: Whether to enable conversion to ACls. Defaults to
False.

o Example: False

FEATURE_ACTION_LOG_ROTATION [boolean]: Whether or not to rotate old action logs to
storage. Defaults to False.

o Example: False
FEATURE_ADVERTISE_V2 [boolean]: Whether the v2/ endpoint is visible. Defaults to True.

o Example: True

FEATURE_ANONYMOUS_ACCESS [boolean]: Whether to allow anonymous users to browse
and pull public repositories. Defaults to True.

o Example: True

FEATURE_APP_REGISTRY [boolean]: Whether to enable support for App repositories.
Defaults to False.

o Example: False

FEATURE_APP_SPECIFIC_TOKENS [boolean]: If enabled, users can create tokens for use by
the Docker CLI. Defaults to True.

o Example: False

FEATURE_BITBUCKET_BUILD [boolean]: Whether to support Bitbucket build triggers.
Defaults to False.

o Example: False

FEATURE_BITTORRENT [boolean]: Whether to allow using Bittorrent-based pulls. Defaults to
False.

o Reference: https://access.redhat.com/documentation/en-us/red_hat_quay/2.9/html-
single/manage_red_hat_quay/#bittorrent-based-distribution

o Example: False
FEATURE_BUILD_SUPPORT [boolean]: Whether to support Dockerfile build. Defaults to True.
o Example: True

FEATURE_CHANGE_TAG_EXPIRARTION [boolean]: Whether users and organizations are
allowed to change the tag expiration for tags in their namespace. Defaults to True.

o Example: False

FEATURE_DIRECT_LOGIN [boolean]: Whether users can directly login to the Ul. Defaults to
True.

o Example: True

https://access.redhat.com/documentation/en-us/red_hat_quay/2.9/html-single/manage_red_hat_quay/#bittorrent-based-distribution

CHAPTER 13. SCHEMA FOR RED HAT QUAY
FEATURE_GITHUB_BUILD [boolean]: Whether to support GitHub build triggers. Defaults to
False.
o Example: False
FEATURE_GITHUB_LOGIN [boolean]: Whether GitHub login is supported. Defaults to False.

o Example: False

FEATURE_GITLAB_BUILD[boolean]: Whether to support GitLab build triggers. Defaults to
False.

o Example: False
FEATURE_GOOGLE_LOGIN [boolean]: Whether Google login is supported. Defaults to False.

o Example: False

FEATURE_INVITE_ONLY_USER_CREATION [boolean]: Whether users being created must be
invited by another user. Defaults to False.

o Example: False

FEATURE_LIBRARY_SUPPORT [boolean]: Whether to allow for "namespace-less” repositories
when pulling and pushing from Docker. Defaults to True.

o Example: True
FEATURE_MAILING [boolean]: Whether emails are enabled. Defaults to True.

o Example: True

FEATURE_NONSUPERUSER_TEAM_SYNCING_SETUP [boolean]: If enabled, non-superusers
can setup syncing on teams to backing LDAP or Keystone. Defaults To False.

o Example: True

FEATURE_PARTIAL_USER_AUTOCOMPLETE [boolean]: If set to true, autocompletion will
apply to partial usernames. Defaults to True.

o Example: True

FEATURE_PERMANENT_SESSIONS [boolean]: Whether sessions are permanent. Defaults to
True.

o Example: True

FEATURE_PROXY_STORAGE [boolean]: Whether to proxy all direct download URLs in storage
via the registry nginx. Defaults to False.

o Example: False

FEATURE_PUBLIC_CATALOG [boolean]: If set to true, the _catalog endpoint returns public
repositories. Otherwise, only private repositories can be returned. Defaults to False.

o Example: False

FEATURE_READER_BUILD_LOGS [boolean]: If set to true, build logs may be read by those
with read access to the repo, rather than only write access or admin access. Defaults to False.

43

Red Hat Quay 2.9 Manage Red Hat Quay

44

o Example: False

FEATURE_RECAPTCHA [boolean]: Whether Recaptcha is necessary for user login and
recovery. Defaults to False.

o Example: False
o Reference: https:;//www.google.com/recaptcha/intro/

FEATURE_REQUIRE_ENCRYPTED_BASIC_AUTH [boolean]: Whether non-encrypted
passwords (as opposed to encrypted tokens) can be used for basic auth. Defaults to False.

o Example: False

FEATURE_REQUIRE_TEAM_INVITE [boolean]: Whether to require invitations when adding a
user to a team. Defaults to True.

o Example: True

FEATURE_SECURITY_NOTIFICATIONS [boolean]: If the security scanner is enabled, whether
to turn on/off security notifications. Defaults to False.

o Example: False

FEATURE_SECURITY_SCANNER [boolean]: Whether to turn on/off the security scanner.
Defaults to False.

o Reference: https://access.redhat.com/documentation/en-us/red_hat_quay/2.9/html-
single/manage_red_hat_quay/#clair-initial-setup

o Example: False

FEATURE_STORAGE_REPLICATION [boolean]: Whether to automatically replicate between
storage engines. Defaults to False.

o Example: False
FEATURE_SUPER_USERS [boolean]: Whether super users are supported. Defaults to True.

o Example: True

FEATURE_TEAM_SYNCING [boolean]: Whether to allow for team membership to be synced
from a backing group in the authentication engine (LDAP or Keystone).

o Example: True

FEATURE_USER_CREATION [boolean] :Whether users can be created (by non-super users).
Defaults to True.

o Example: True

FEATURE_USER_LOG_ACCESS [boolean]: If set to true, users will have access to audit logs
for their namespace. Defaults to False.

o Example: True

FEATURE_USER_METADATA [boolean]: Whether to collect and support user metadata.
Defaults to False.

https://www.google.com/recaptcha/intro/
https://access.redhat.com/documentation/en-us/red_hat_quay/2.9/html-single/manage_red_hat_quay/#clair-initial-setup

(o}

CHAPTER 13. SCHEMA FOR RED HAT QUAY

Example: False

FEATURE_USER_RENAME [boolean]: If set to true, users can rename their own namespace.
Defaults to False.

(o}

Example: True

GITHUB_LOGIN_CONFIG [object, 'null']: Configuration for using GitHub (Enterprise) as an
external login provider.

(o}

(o}

Reference: https://coreos.com/quay-enterprise/docs/latest/github-auth.html

allowed_organizations [array]: The names of the GitHub (Enterprise) organizations
whitelisted to work with the ORG_RESTRICT option.

B Min Items: None
B Unique Items: True
® array item [string]

API_ENDPOINT [string]: The endpoint of the GitHub (Enterprise) API to use. Must be
overridden for github.com.

® Example: https://api.github.com/

CLIENT_ID [string] required: The registered client ID for this Quay instance; cannot be
shared with GITHUB_TRIGGER_CONFIG.

m Reference: https://coreos.com/quay-enterprise/docs/latest/github-app.html
® Example: 0e8dbe15c4c7630b6780

CLIENT_SECRET [string] required: The registered client secret for this Quay instance.

m Reference: https://coreos.com/quay-enterprise/docs/latest/github-app.html
® Example: e4a58ddd3d7408b7aec109e85564a0d153d3e846

GITHUB_ENDPOINT [string] required: The endpoint of the GitHub (Enterprise) being hit.

® Example: https:/github.com/

ORG_RESTRICT [boolean]: If true, only users within the organization whitelist can login
using this provider.

Example: True

GITHUB_TRIGGER_CONFIG [object, null]: Configuration for using GitHub (Enterprise) for
build triggers.

(o}

(o}

Reference: https://coreos.com/quay-enterprise/docs/latest/github-build.html

API_ENDPOINT [string]: The endpoint of the GitHub (Enterprise) API to use. Must be
overridden for github.com.

® Example: https://api.github.com/

45

https://coreos.com/quay-enterprise/docs/latest/github-auth.html
https://api.github.com/
https://coreos.com/quay-enterprise/docs/latest/github-app.html
https://coreos.com/quay-enterprise/docs/latest/github-app.html
https://github.com/
https://coreos.com/quay-enterprise/docs/latest/github-build.html
https://api.github.com/

Red Hat Quay 2.9 Manage Red Hat Quay

o CLIENT_ID [string] required: The registered client ID for this Quay instance; cannot be
shared with GITHUB_LOGIN_CONFIG.

m Reference: https://coreos.com/quay-enterprise/docs/latest/github-app.html

® Example: 0e8dbe15c4c7630b6780

o CLIENT_SECRET [string] required: The registered client secret for this Quay instance.

m Reference: https://coreos.com/quay-enterprise/docs/latest/github-app.html
® Example: e4a58ddd3d7408b7aec109e85564a0d153d3e846

o GITHUB_ENDPOINT [string] required: The endpoint of the GitHub (Enterprise) being hit.
m Example: https://github.com/

e GITLAB_TRIGGER_CONFIG [object]: Configuration for using Gitlab (Enterprise) for external
authentication.

o CLIENT_ID [string] required: The registered client ID for this Quay instance.
® Example: 0e8dbe15c4c7630b6780
o CLIENT_SECRET [string] required: The registered client secret for this Quay instance.
® Example: e4a58ddd3d7408b7aec109e85564a0d153d3e846
m gitlab_endpoint [string] required: The endpoint at which Gitlab(Enterprise) is running.

o Example: hitps:/gitlab.com

® GOOGLE_LOGIN_CONFIG [object, null]: Configuration for using Google for external
authentication

o CLIENT_ID [string] required: The registered client ID for this Quay instance.
® Example: 0e8dbe15c4c7630b6780
o CLIENT_SECRET [string] required: The registered client secret for this Quay instance.
® Example: e4a58ddd3d7408b7aecl09e85564a0d153d3e846
e HEALTH_CHECKER [string]: The configured health check.
o Example: 'RDSAwareHealthCheck’', {'access_key': 'foo’, 'secret_key': 'bar'})

® LOG_ARCHIVE_LOCATION [string]:If builds are enabled, the storage engine in which to place
the archived build logs.

o Example: s3_us_east

® | OG_ARCHIVE_PATH [string]: If builds are enabled, the path in storage in which to place the
archived build logs.

o Example: archives/buildlogs

e MAIL_DEFAULT_SENDER [string, null]: If specified, the e-mail address used as the from when
Quay sends e-mails. If none, defaults to support@quay.io.

o Fxamnle' sunnort@mveo.com

46

https://coreos.com/quay-enterprise/docs/latest/github-app.html
https://coreos.com/quay-enterprise/docs/latest/github-app.html
https://github.com/
https://gitlab.com

CHAPTER 13. SCHEMA FOR RED HAT QUAY

et T NI g - =

MAIL_PASSWORD [string, nhull]: The SMTP password to use when sending e-mails.
o Example: mypassword
MAIL_PORT [number]: The SMTP port to use. If not specified, defaults to 587.

o Example: 588

MAIL_SERVER [string]: The SMTP server to use for sending e-mails. Only required if
FEATURE_MAILING is set to true.

o Example: smtp.somedomain.com

MAIL_USERNAME [string, 'null']: The SMTP username to use when sending e-mails.

o Example: myuser

MAIL_USE_TLS [boolean]: If specified, whether to use TLS for sending e-mails.

o Example: True

MAXIMUM_LAYER_SIZE [string]: Maximum allowed size of an image layer. Defaults to 20G.
o Pattern: A[0-9]+(G|M)$

o Example: 100G

PUBLIC_NAMESPACES [array]: If a namespace is defined in the public namespace list, then it
will appear on all user’s repository list pages, regardless of whether that user is a member of the
namespace. Typically, this is used by an enterprise customer in configuring a set of "well-known"
namespaces.

o Min Items: None

o Unique Items: True

® array item [string]

PROMETHEUS_NAMESPACE [string]: The prefix applied to all exposed Prometheus metrics.
Defaults to quay.

o Example: myregistry

RECAPTCHA_SITE_KEY [string]: If recaptcha is enabled, the site key for the Recaptcha
service.

RECAPTCHA_SECRET_KEY [string]: 'If recaptcha is enabled, the secret key for the Recaptcha
service.

REGISTRY_TITLE [string]: If specified, the long-form title for the registry. Defaults to Quay
Enterprise.

o Example: Corp Container Service

REGISTRY_TITLE_SHORT [string]: If specified, the short-form title for the registry. Defaults to
Quay Enterprise.

o Example: CCS

47

Red Hat Quay 2.9 Manage Red Hat Quay

SECURITY_SCANNER_ENDPOINT [string]: The endpoint for the security scanner.
o Pattern: Ahttp(s)?://(.)+$
o Example: http://192.168.99.101:6060

SECURITY_SCANNER_INDEXING_INTERVAL [number]: The number of seconds between
indexing intervals in the security scanner. Defaults to 30.

o Example: 30

SESSION_COOKIE_SECURE [boolean]: Whether the secure property should be set on session
cookies. Defaults to False. Recommended to be True for all installations using SSL.

o Example: True
o Reference: https://en.wikipedia.org/wiki/Secure_cookies
SUPER_USERS [array]: Quay usernames of those users to be granted superuser privileges.
o Min Items: None
o Unique Items: True
B array item [string]

TEAM_RESYNC_STALE_TIME [string]: If team syncing is enabled for a team, how often to
check its membership and resync if necessary (Default: 30m).

o Pattern: A[0-9]+(w|m|d|h|s)$

o Example: 2h

USERFILES_LOCATION [string]: ID of the storage engine in which to place user-uploaded files.
o Example: s3_us_east

USERFILES_PATH [string]: Path under storage in which to place user-uploaded files.

o Example: userfiles

USER_RECOVERY_TOKEN_LIFETIME [string]: The length of time a token for recovering a
user accounts is valid. Defaults to 30m.

o Example: 10m
o Pattern: A[0-9]+(w|m|d|h|s)$
V2_PAGINATION_SIZE [number]: The number of results returned per page in V2 registry APIs.

o Example: 100

ADDITIONAL RESOURCES

48

http://192.168.99.101:6060
https://en.wikipedia.org/wiki/Secure_cookies

	Table of Contents
	PREFACE
	CHAPTER 1. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY
	1.1. CREATE A CA AND SIGN A CERTIFICATE
	1.2. CONFIGURE QUAY TO USE THE NEW CERTIFICATE
	1.2.1. Configure with the superuser GUI in Quay
	1.2.2. Configure with the command line
	1.2.3. Test the secure connection

	1.3. CONFIGURING DOCKER TO TRUST A CERTIFICATE AUTHORITY

	CHAPTER 2. ADDING TLS CERTIFICATES TO THE RED HAT QUAY CONTAINER
	2.1. ADD CUSTOM/SSL CERTIFICATES FROM THE RED HAT QUAY UI
	2.2. ADD TLS CERTIFICATES TO RED HAT QUAY
	2.3. ADD CERTS WHEN DEPLOYED ON KUBERNETES

	CHAPTER 3. RED HAT QUAY SECURITY SCANNING WITH CLAIR
	3.1. VISIT THE MANAGEMENT PANEL
	3.2. ENABLE SECURITY SCANNING
	3.3. ENTER A SECURITY SCANNER
	3.4. GENERATE AN AUTH KEY
	3.4.1. Authentication for high-availability scanners
	3.4.2. Authentication for single-instance scanners

	3.5. SAVE CONFIGURATION

	CHAPTER 4. SETTING UP CLAIR SECURITY SCANNING
	4.1. GET POSTGRES AND CLAIR
	4.2. CONFIGURE CLAIR
	4.2.1. Clair configuration: High availability
	4.2.2. Clair configuration: Single instance

	4.3. CONFIGURING CLAIR FOR TLS
	4.3.1. Using certificates from a public CA
	4.3.2. Configuring trust of self-signed SSL

	4.4. USING CLAIR DATA SOURCES
	4.5. RUN CLAIR
	4.6. CONTINUE WITH QUAY SETUP

	CHAPTER 5. DISTRIBUTING IMAGES WITH BITTORRENT
	5.1. VISIT THE MANAGEMENT PANEL
	5.2. ENABLE BITTORRENT DISTRIBUTION
	5.3. ENTER AN ANNOUNCE URL
	5.4. SAVE CONFIGURATION

	CHAPTER 6. LDAP AUTHENTICATION SETUP FOR RED HAT QUAY
	6.1. PREREQUISITES
	6.2. SETUP LDAP CONFIGURATION
	6.3. TIPS FOR LDAP CONFIGURATION:
	6.4. COMMON ISSUES

	CHAPTER 7. PROMETHEUS AND GRAFANA METRICS UNDER RED HAT QUAY
	7.1. EXPOSING THE PROMETHEUS ENDPOINT
	7.1.1. Setting up Prometheus to consume metrics
	7.1.2. DNS configuration under Kubernetes
	7.1.3. DNS configuration for a manual cluster

	CHAPTER 8. GEOREPLICATION OF STORAGE IN RED HAT QUAY
	8.1. PREREQUISITES
	8.2. VISIT THE MANAGEMENT PANEL
	8.3. ENABLE STORAGE REPLICATION
	8.4. RUN RED HAT QUAY WITH STORAGE PREFERENCES

	CHAPTER 9. RED HAT QUAY TROUBLESHOOTING
	CHAPTER 10. RED HAT QUAY UPGRADE GUIDE
	10.1. BACKUP THE QUAY DATABASE
	10.2. PROVIDE QUAY CREDENTIALS TO THE DOCKER CLIENT
	10.3. PULL THE LATEST QUAY RELEASE FROM THE REPOSITORY.
	10.4. FIND THE RUNNING QUAY CONTAINER ID
	10.5. STOP THE EXISTING QUAY CONTAINER
	10.6. START THE NEW QUAY CONTAINER
	10.7. CHECK THE HEALTH OF THE UPGRADED CONTAINER
	10.8. UPGRADE THE REST OF THE CONTAINERS IN THE CLUSTER.

	CHAPTER 11. UPGRADING QUAY
	11.1. SPECIAL NOTE
	11.2. UPGRADING NOTE
	11.3. THE UPGRADE PROCESS

	CHAPTER 12. UPGRADE TO QUAY 2.0.0
	12.1. DOWNLOAD QUAY LICENSE
	12.2. SHUTDOWN ALL QUAY INSTANCES
	12.3. RUN A SINGLE INSTANCE OF QUAY 2
	12.3.1. Add your license to the Quay
	12.3.2. Add license via the filesystem

	12.4. UPDATE CLUSTER
	12.5. VERIFY CLUSTER

	CHAPTER 13. SCHEMA FOR RED HAT QUAY
	ADDITIONAL RESOURCES

