& RedHat

Red Hat OpenStack Platform 16.0

Monitoring Tools Configuration Guide

A guide to OpenStack logging and monitoring tools

Last Updated: 2020-09-30

Red Hat OpenStack Platform 16.0 Monitoring Tools Configuration Guide

A guide to OpenStack logging and monitoring tools

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides information on configuring logging and monitoring for a Red Hat OpenStack
Platform environment.

Table of Contents

Table of Contents
CHAPTER 1. INTRODUCTION .« v vttt et e e e e e e e e e e e e e e e 3
CHAPTER 2. MONITORING ARCHITECTURE .\ttt ettt e e e e e e e e e e e e e, 4
2.1. CENTRALIZED LOGGING 4
2.2. AVAILABILITY MONITORING 4
CHAPTER 3. INSTALLING THE CLIENT=SIDE TOOLS . v\ttt e e e e e e e e e 8
3.1. SETTING CENTRALIZED LOGGING CLIENT PARAMETERS 8
3.2. SETTING MONITORING CLIENT PARAMETERS 8
3.3. YAML FILES 10
CHAPTER 4. MONITOR THE OPENSTACK PLATFORM ...ttt e e, 1
CHAPTER 5. VALIDATE THE SENSU CLIENT INSTALLATION ..t vvt ettt e e e e e 12
CHAPTER 6. REVIEW THE STATE OF ANODE .+« v vttt e e e e e e e e e 13
CHAPTER 7. REVIEW THE STATE OF AN OPENSTACK SERVICE ...t 14

Red Hat OpenStack Platform 16.0 Monitoring Tools Configuration Guide

CHAPTER 1. INTRODUCTION

CHAPTER 1. INTRODUCTION

Monitoring tools are an optional suite of tools designed to help operators maintain an OpenStack
environment. The tools perform the following functions:

e Centralized logging: Allows you gather logs from all components in the OpenStack environment
in one central location. You can identify problems across all nodes and services, and optionally,
export the log data to Red Hat for assistance in diagnosing problems.

® Availability monitoring: Allows you to monitor all components in the OpenStack environment
and determine if any components are currently experiencing outages or are otherwise not
functional. You can also configure the system to alert you when problems are identified.

Red Hat OpenStack Platform 16.0 Monitoring Tools Configuration Guide

CHAPTER 2. MONITORING ARCHITECTURE

Monitoring tools use a client-server model with the client deployed onto the Red Hat OpenStack
Platform overcloud nodes. The Rsyslog service provides client-side centralized logging (CL) and
collectd with enabled sensubility plugin provides client-side availability monitoring (AM).

2.1. CENTRALIZED LOGGING
In your Red Hat OpenStack Platform environment, collect the logs from all services in one central
location to simplify debugging and administration. These logs come from the operating system, such as
syslog and audit log files, infrastructure components such as RabbitMQ and MariaDB, and OpenStack
services such as Identity, Compute, and others.
The centralized logging toolchain consists of the following components:

® | og Collection Agent (Rsyslog)

® Data Store (Elasticsearch)

® API/Presentation Layer (Kibana)

NOTE
Red Hat OpenStack Platform director does not deploy the server-side components for

centralized logging. Red Hat does not support the server-side components, including the
Elasticsearch database and Kibana.

2.2. AVAILABILITY MONITORING

With availability monitoring, you have one central place to monitor the high-level functionality of all
components across your entire OpenStack environment.

The availability monitoring toolchain consists of several components:
® Monitoring Agent (collectd with enabled sensubility plugin)
® Monitoring Relay/Proxy (RabbitMQ)
® Monitoring Controller/Server (Sensu server)

® API/Presentation Layer (Uchiwa)

NOTE
Red Hat OpenStack Platform director does not deploy the server-side components for
availability monitoring. Red Hat does not support the server-side components, including

Uchiwa, Sensu Server, the Sensu API plus RabbitMQ, and a Redis instance running on a
monitoring node.

The availability monitoring components and their interactions are laid out in the following diagrams:

' NOTE
Items shown in blue denote Red Hat-supported components.

CHAPTER 2. MONITORING ARCHITECTURE
Figure 2.1. Availability monitoring architecture at a high level
e I

Monitoring Relay /
Proxy

Monitoring Agent

sends / recieves
checks

N

Monitoring Agent
sends
P notification I:l
I:l N Monitoring Controller /

Notification Server

N

stores data Monitoring Agent

Data store

reads data from

APl / Presentation

views / interacts
with system

OpenStack Operator

Red Hat OpenStack Platform 16.0 Monitoring Tools Configuration Guide

Figure 2.2. Single-node deployment for Red Hat OpenStack Platform

Monitor node Controller node Controller node
rabbitmq G collectd collectd
v
sensu-server
¢ Compute node Storage node
redis — collectd collectd
T reads data from
sensu-api
? Compute node Storage node
uchiwa — collectd collectd
views data
Compute node
o collectd

OpenStack Operator

CHAPTER 2. MONITORING ARCHITECTURE

Figure 2.3. HA deployment for Red Hat OpenStack Platform

OpenStack Operator
views data sends check data to
Monitor node Monitor node Controller node Controller node
floating ip floating ip collectd collectd
pacemaker
—— haproxy haproxy —
| | Compute node Storage node
+ + — collectd collectd
. clustered .
rabbitmq rabbitmq
l |
sensu-server sensu-server Compute node Storage node
¢ ¢ — collectd collectd
. replication .
redis redis 4
sensu-api sensu-api — Compute node
T T L collectd
7 uchiwa uchiwa <

Red Hat OpenStack Platform 16.0 Monitoring Tools Configuration Guide

CHAPTER 3. INSTALLING THE CLIENT-SIDE TOOLS

Before you deploy the overcloud, you need to determine the configuration settings to apply to each
client. Copy the example environment files from the heat template collection and modify the files to suit
your environment.

3.1. SETTING CENTRALIZED LOGGING CLIENT PARAMETERS

For more information, see Enabling centralized logging during deployment.

3.2.SETTING MONITORING CLIENT PARAMETERS

The monitoring solution collects system information periodically and provides a mechanism to store and
monitor the values in a variety of ways using a data collecting agent. Red Hat supports collectd as a
collection agent. Collectd-sensubility is an extention of collectd and communicates with Sensu server
side through RabbitMQ. You can use Service Telemetry Framework (STF) to store the data, and in turn,
monitor systems, find performance bottlenecks, and predict future system load. For more information,
see the Service Telemetry Framework guide.

To configure collectd and collectd-sensubility, complete the following steps:

1. Create config.yaml in your home directory, for example, /home/templates/custom, and
configure the MetricsQdrConnectors parameter to point to STF server side:

MetricsQdrConnectors:
- host: gdr-normal-sa-telemetry.apps.remote.tld
port: 443
role: inter-router
sslProfile: ssIProfile
verifyHostname: false
MetricsQdrSSLProfiles:
- name: sslProfile

2. In the config.yaml file, list the plug-ins you want under CollectdExtraPlugins. You can also
provide parameters in the ExtraConfig section. By default, collectd comes with the cpu, df,
disk, hugepages, interface, load, memory, processes, tcpconns, unixsock, and uptime plug-
ins. You can add additional plug-ins using the CollectdExtraPlugins parameter. You can also
provide additional configuration information for the CollectdExtraPlugins using the
ExtraConfig option as shown. For example, to enable the virt plug-in, and configure the
connection string and the hostname format, use the following syntax:

parameter_defaults:
CollectdExtraPlugins:
- disk
- df
- virt

ExtraConfig:
collectd::plugin::virt::connection: "gemu:///system"
collectd::plugin::virt::hostname_format: "hostname uuid"

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/logging_monitoring_and_troubleshooting_guide/logging#enabling_centralized_logging_during_deployment
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/service_telemetry_framework/index

CHAPTER 3. INSTALLING THE CLIENT-SIDE TOOLS

NOTE

Do not remove the unixsock plug-in. Removal results in the permanent marking
of the collectd container as unhealthy.

ol

3. To enable collectd-sensubility, add the following environment configuration to the config.yaml
file:

parameter_defaults:
CollectdEnableSensubility: true

Use this if there is restricted access for your checks by using the sudo command.

The rule will be created in /etc/sudoers.d for sensubility to enable it calling restricted
commands via sensubility executor.

CollectdSensubilityExecSudoRule: "collectd ALL = NOPASSWD: <some command or ALL
for all commands>"

Connection URL to Sensu server side for reporting check results.
CollectdSensubilityConnection: "amqp://sensu:sensu@<sensu server side |IP>:5672//sensu”

Interval in seconds for sending keepalive messages to Sensu server side.
CollectdSensubilityKeepalivelnterval: 20

Path to temporary directory where the check scripts are created.
CollectdSensubility TmpDir: /var/tmp/collectd-sensubility-checks

Path to shell used for executing check scripts.
CollectdSensubilityShellPath: /usr/bin/sh

To improve check execution rate use this parameter and value to change the number of
goroutines spawned for executing check scripts.
CollectdSensubilityWorkerCount: 2

JSON-formatted definition of standalone checks to be scheduled on client side. If you
need to schedule checks
on overcloud nodes instead of Sensu server, use this parameter. Configuration is
compatible with Sensu check definition.
For more information, see https.//docs.sensu.io/sensu-core/1.7/reference/checks/#check-
definition-specification
There are some configuration options which sensubility ignores such as: extension,
publish, cron, stdin, hooks.
CollectdSensubilityChecks:
example:
command: "ping -c1 -W1 8.8.8.8"
interval: 30

The following parameters are used to modify standard, standalone checks for monitoring
container health on overcloud nodes.

Do not modify these parameters.

CollectdEnableContainerHealthCheck: true

CollectdContainerHealthCheckCommand: <snip>

CollectdContainerHealthCheckinterval: 10

The Sensu server side event handler to use for events created by the container health
check.

CollectdContainerHealthCheckHandlers:

Red Hat OpenStack Platform 16.0 Monitoring Tools Configuration Guide

- handle-container-health-check
CollectdContainerHealthCheckOccurrences: 3
CollectdContainerHealthCheckRefresh: 90

4. Deploy the overcloud. Include config.yaml, collectd-write-qdr.yaml, and one of the qdr-*.yaml
files in your overcloud deploy command. For example:

$ openstack overcloud deploy

-e /home/templates/custom/config.yaml

-e tripleo-heat-templates/environments/metrics/collectd-write-qdr.yaml

-e tripleo-heat-templates/environments/metrics/qdr-form-controller-mesh.yaml

5. Optional: To enable overcloud RabbitMQ monitoring, include the collectd-read-rabbitmq.yaml
file in your overcloud deploy command. For more information about the YAML files, see
Section 3.3, “YAML files”.

3.3. YAML FILES

When you configure collectd, you can include the following YAML files in your overcloud deploy
command:

e collectd-read-rabbitmgq.yaml: Enables python-collect-rabbitmq and configures it to monitor
overcloud RabbitMQ instance.

e collectd-write-qdr.yaml: Enables collectd to send telemetry and notification data through
QPID dispatch routers.

e qdr-edge-only.yaml: Enables deployment of QPID dispatch routers. Each overcloud node will
have one local qdrouterd service running and operating in edge mode, for example, sending
received data straight to defined MetricsQdrConnectors.

e qdr-form-controller-mesh.yaml: Enables deployment of QPID dispatch routers (QDR). Each
overcloud node will have one local qdrouterd service running and forming a mesh topology. For
example, QDRs running on controllers operate in interior router mode, with connections to
defined MetricsQdrConnectors, and QDRs running on other node types connect in edge mode
to the interior routers running on the controllers.

10

CHAPTER 4. MONITOR THE OPENSTACK PLATFORM

CHAPTER 4. MONITOR THE OPENSTACK PLATFORM

See the Sensu documentation for further details about the Sensu stack infrastructure:
https://docs.sensu.io/sensu-core/1.7/overview/architecture/

Red Hat supplies a set of check scripts in the osops-tools-monitoring-oschecks package. The majority
of the check scripts only check the API connection to the OpenStack component. However, certain
scripts also perform additional OpenStack resource tests for OpenStack Compute (nova), OpenStack
Block Storage (cinder), OpenStack Image (glance), and OpenStack Networking (neutron). For example,
the OpenStack Identity (keystone) API check returns the following result when keystone is running:

I OK: Got a token, Keystone API is working.

1

https://docs.sensu.io/sensu-core/1.7/overview/architecture/

Red Hat OpenStack Platform 16.0 Monitoring Tools Configuration Guide

CHAPTERS. VALIDATE THE SENSU CLIENT INSTALLATION
1. Check the status of the sensu-client on each overcloud node:
I # podman ps | grep sensu-client

2. Review the error log for any issues: /var/log/containers/sensu/sensu-client.log

3. Verify that each overcloud node has the /var/lib/config-data/puppet-
generated/sensu/etc/sensu/conf.d/rabbitmq.json file that sets the IP address of the

monitoring server.

12

CHAPTER 6. REVIEW THE STATE OF A NODE

CHAPTER 6. REVIEW THE STATE OF ANODE

If you have a deployment of the Uchiwa dashboard, you can use it with the Sensu server to review the
state of your nodes:

1. Login to the Uchiwa dashboard and click the Data Center tab to confirm that the Data Center is
operational.

I http://<SERVER_IP_ADDRESS>/uchiwa

2. Check that all overcloud nodes are in a Connected state.

3. At asuitable time, reboot one of the overcloud nodes and review the rebooted node’s status in
the Uchiwa dashboard. After the reboot completes, verify that the node successfully re-
connects to the Sensu server and starts executing checks.

13

Red Hat OpenStack Platform 16.0 Monitoring Tools Configuration Guide

CHAPTER 7. REVIEW THE STATE OF AN OPENSTACK
SERVICE

This example tests the monitoring of the openstack-ceilometer-central service.

1. Confirm that the openstack-ceilometer-central service is running:
I docker ps -a | grep ceilometer

2. Connect to the Uchiwa dashboard and confirm that a successful ceilometer check is present
and running as defined in the ceilometer JSON file.

14

	Table of Contents
	CHAPTER 1. INTRODUCTION
	CHAPTER 2. MONITORING ARCHITECTURE
	2.1. CENTRALIZED LOGGING
	2.2. AVAILABILITY MONITORING

	CHAPTER 3. INSTALLING THE CLIENT-SIDE TOOLS
	3.1. SETTING CENTRALIZED LOGGING CLIENT PARAMETERS
	3.2. SETTING MONITORING CLIENT PARAMETERS
	3.3. YAML FILES

	CHAPTER 4. MONITOR THE OPENSTACK PLATFORM
	CHAPTER 5. VALIDATE THE SENSU CLIENT INSTALLATION
	CHAPTER 6. REVIEW THE STATE OF A NODE
	CHAPTER 7. REVIEW THE STATE OF AN OPENSTACK SERVICE

