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Abstract

This guide introduces the OpenStack cloud components and provides design guidelines and
architecture examples to help you design your own OpenStack cloud.
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PREFACE
Red Hat OpenStack Platform provides the foundation to build a private or public Infrastructure-as-a-
Service (IaaS) cloud on top of Red Hat Enterprise Linux. It offers a highly scalable, fault-tolerant
platform for the development of cloud-enabled workloads.

Red Hat OpenStack Platform is packaged so that available physical hardware can be turned into a
private, public, or hybrid cloud platform that includes:

Fully distributed object storage

Persistent block-level storage

Virtual machine provisioning engine and image storage

Authentication and authorization mechanisms

Integrated networking

Web browser-based interface accessible to users and administrators

NOTE

For reference information about the components mentioned in this guide, see
Chapter 5, Deployment Information.

For the complete Red Hat OpenStack Platform documentation suite, see Red
Hat OpenStack Platform Documentation Suite.

PREFACE
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CHAPTER 1. COMPONENTS
The Red Hat OpenStack Platform IaaS cloud is implemented as a collection of interacting services that
control compute, storage, and networking resources. The cloud can be managed with a web-based
dashboard or command-line clients, which allow administrators to control, provision, and automate
OpenStack resources. OpenStack also has an extensive API, which is also available to all cloud users.

The following diagram provides a high-level overview of the OpenStack core services and their
relationship with each other.

The following table describes each component shown in the diagram and provides links for the
component documentation section.

Table 1.1. Core services

 Service Code Description Location

Dashboard horizon Web browser-based dashboard
that you use to manage
OpenStack services.

Section 1.5.1,
“OpenStack
Dashboard
(horizon)”

Identity keystone Centralized service for
authentication and authorization
of OpenStack services and for
managing users, projects, and
roles.

Section 1.4.1,
“OpenStack Identity
(keystone)”

Red Hat OpenStack Platform 11 Architecture Guide
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OpenStack
Networking

neutron Provides connectivity between
the interfaces of OpenStack
services.

Section 1.1.1,
“OpenStack
Networking
(neutron)”

Block Storage cinder Manages persistent block storage
volumes for virtual machines.

Section 1.2.1,
“OpenStack Block
Storage (cinder)”

Compute nova Manages and provisions virtual
machines running on hypervisor
nodes.

Section 1.3.1,
“OpenStack
Compute (nova)”

Image glance Registry service that you use to
store resources such as virtual
machine images and volume
snapshots.

Section 1.3.3,
“OpenStack Image
(glance)”

Object
Storage

swift Allows users to store and retrieve
files and arbitrary data.

Section 1.2.2,
“OpenStack Object
Storage (swift)”

Telemetry ceilometer Provides measurements of cloud
resources.

Section 1.5.2,
“OpenStack
Telemetry
(ceilometer)”

Orchestration heat Template-based orchestration
engine that supports automatic
creation of resource stacks.

Section 1.3.4,
“OpenStack
Orchestration
(heat)”

 Service Code Description Location

Each OpenStack service contains a functional group of Linux services and other components. For
example, the glance-api and glance-registry Linux services, together with a MariaDB database,
implement the Image service. For information about third-party components included in OpenStack
services, see Section 1.6.1, “Third-party Components” .

Additional services are:

Section 1.3.2, “OpenStack Bare Metal Provisioning (ironic)”  - Enables users to provision physical
machines (bare metal) with a variety of hardware vendors.

Section 1.3.5, “OpenStack Data Processing (sahara)” - Enables users to provision and manage
Hadoop clusters on OpenStack.

1.1. NETWORKING

CHAPTER 1. COMPONENTS
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1.1.1. OpenStack Networking (neutron)

OpenStack Networking handles creation and management of a virtual networking infrastructure in the
OpenStack cloud. Infrastructure elements include networks, subnets, and routers. You can also deploy
advanced services such as firewalls or virtual private networks (VPN).

OpenStack Networking provides cloud administrators with flexibility to decide which individual services
to run on which physical systems. All service daemons can be run on a single physical host for evaluation
purposes. Alternatively, each service can have a unique physical host or replicated across multiple hosts
to provide redundancy.

Because OpenStack Networking is software-defined, it can react in real-time to changing network
needs, such as creation and assignment of new IP addresses.

OpenStack Networking advantages include:

Users can create networks, control traffic, and connect servers and devices to one or more
networks.

Flexible networking models can adapt to the network volume and tenancy.

IP addresses can be dedicated or floating, where floating IPs can be used for dynamic traffic
rerouting.

If using VLAN networking, you can use a maximum of 4094 VLANs (4094 networks), where
4094 = 2^12 (minus 2 unusable) network addresses, which is imposed by the 12-bit header
limitation.

If using VXLAN tunnel-based networks, the VNI (Virtual Network Identifier) can use a 24-bit
header, which will essentially allow around 16 million unique addresses/networks.

Table 1.2. OpenStack Networking components

Component Description

Network agent Service that runs on each OpenStack node to perform local networking
configuration for the node virtual machines and for networking services such as
Open vSwitch.

neutron-dhcp-agent Agent that provides DHCP services to tenant networks.

neutron-ml2 Plug-in that manages network drivers and provides routing and switching services
for networking services such as Open vSwitch or Ryu networks.

neutron-server Python daemon that manages user requests and exposes the Networking API.
The default server configuration uses a plug-in with a specific set of networking
mechanisms to implement the Networking API.

Certain plug-ins, such as the openvswitch and linuxbridge plug-ins, use native
Linux networking mechanisms, while other plug-ins interface with external devices
or SDN controllers.

neutron Command-line client to access the API.

The placement of OpenStack Networking services and agents depends on the network requirements.

Red Hat OpenStack Platform 11 Architecture Guide
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The placement of OpenStack Networking services and agents depends on the network requirements.
The following diagram shows an example of a common deployment model without a controller. This
model utilizes a dedicated OpenStack Networking node and tenant networks.

The example shows the following Networking service configuration:

Two Compute nodes run the Open vSwitch (ovs-agent), and one OpenStack Networking node
performs the following network functions:

L3 routing

DHCP

NAT including services such as FWaaS and LBaaS

The compute nodes have two physical network cards each. One card handles tenant traffic, and
the other card manages connectivity.

The OpenStack Networking node has a third network card dedicated to provider traffic.

1.2. STORAGE

Section 1.2.1, “OpenStack Block Storage (cinder)”

CHAPTER 1. COMPONENTS
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Section 1.2.2, “OpenStack Object Storage (swift)”

1.2.1. OpenStack Block Storage (cinder)

OpenStack Block Storage provides persistent block storage management for virtual hard drives. Block
Storage enables the user to create and delete block devices, and to manage attachment of block
devices to servers.

The actual attachment and detachment of devices is handled through integration with the Compute
service. You can use regions and zones to handle distributed block storage hosts.

You can use Block Storage in performance-sensitive scenarios, such as database storage or expandable
file systems. You can also use it as a server with access to raw block-level storage. Additionally, you can
take volume snapshots to restore data or to create new block storage volumes. Snapshots are
dependent on driver support.

OpenStack Block Storage advantages include:

Creating, listing and deleting volumes and snapshots.

Attaching and detaching volumes to running virtual machines.

Although the main Block Storage services, such as volume, scheduler, API, can be co-located in a
production environment, it is more common to deploy multiple instances of the volume service along
one or more instances of the API and scheduler services to manage them.

Table 1.3. Block Storage components

Component Description

openstack-cinder-api Responds to requests and places them in the message queue. When a
request is received, the API service verifies that identity requirements are
met and translates the request into a message that includes the required
block storage action. The message is then sent to the message broker for
processing by the other Block Storage services.

openstack-cinder-backup Backs up a Block Storage volume to an external storage repository. By
default, OpenStack uses the Object Storage service to store the backup.
You can also use Ceph or NFS back ends as storage repositories for
backups.

openstack-cinder-scheduler Assigns tasks to the queue and determines the provisioning volume server.
The scheduler service reads requests from the message queue and
determines on which block storage host to perform the requested action.
The scheduler then communicates with the openstack-cinder-volume
service on the selected host to process the request.

openstack-cinder-volume Designates storage for virtual machines. The volume service manages the
interaction with the block-storage devices. When requests arrive from the
scheduler, the volume service can create, modify, or remove volumes. The
volume service includes several drivers to interact with the block-storage
devices, such as NFS, Red Hat Storage, or Dell EqualLogic.

cinder Command-line client to access the Block Storage API.

The following diagram shows the relationship between the Block Storage API, the scheduler, the volume

Red Hat OpenStack Platform 11 Architecture Guide

10



The following diagram shows the relationship between the Block Storage API, the scheduler, the volume
services, and other OpenStack components.

1.2.2. OpenStack Object Storage (swift)

Object Storage provides an HTTP-accessible storage system for large amounts of data, including static
entities such as videos, images, email messages, files, or VM images. Objects are stored as binaries on
the underlying file system along with metadata stored in the extended attributes of each file.

The Object Storage distributed architecture supports horizontal scaling as well as failover redundancy
with software-based data replication. Because the service supports asynchronous and eventual
consistency replication, you can use it in a multiple data-center deployment.

OpenStack Object Storage advantages include:

Storage replicas maintain the state of objects in case of outage. A minimum of three replicas is
recommended.

Storage zones host replicas. Zones ensure that each replica of a given object can be stored
separately. A zone might represent an individual disk drive, an array, a server, a server rack, or
even an entire data center.

Storage regions can group zones by location. Regions can include servers or server farms that
are usually located in the same geographical area. Regions have a separate API endpoint for
each Object Storage service installation, which allows for a discrete separation of services.

Object Storage uses ring .gz files, which serve as database and configuration files. These files contain
details of all the storage devices and mappings of stored entities to the physical location of each file.
Therefore, you can use ring files to determine the location of specific data. Each object, account, and

CHAPTER 1. COMPONENTS
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container server has a unique ring file.

The Object Storage service relies on other OpenStack services and components to perform actions. For
example, the Identity Service (keystone), the rsync daemon, and a load balancer are all required.

Table 1.4. Object Storage components

Component Description

openstack-swift-account Handles listings of containers with the account database.

openstack-swift-container Handles listings of objects that are included in a specific container with the
container database.

openstack-swift-object Stores, retrieves, and deletes objects.

openstack-swift-proxy Exposes the public API, provides authentication, and routes requests. Objects
are streamed through the proxy server to the user without spooling.

swift Command-line client to access the Object Storage API.

Table 1.5. Object Storage housekeeping components

Housekeepi
ng

Components Description

Auditing
openstack-swift-account-auditor

openstack-swift-container-auditor

openstack-swift-object-auditor

Verifies the integrity of Object Storage
accounts, containers, and objects, and helps
to protect against data corruption.

Replication
openstack-swift-account-replicator

openstack-swift-container-
replicator

openstack-swift-object-replicator

Ensures consistent and available replication
throughout the Object Storage cluster,
including garbage collection.

Updating
openstack-swift-account-updater

openstack-swift-container-updater

openstack-swift-object-updater

Identifies and retries failed updates.

The following diagram shows the main interfaces that the Object Storage uses to interact with other
OpenStack services, databases, and brokers.

Red Hat OpenStack Platform 11 Architecture Guide
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1.3. VIRTUAL MACHINES, IMAGES, AND TEMPLATES

Section 1.3.1, “OpenStack Compute (nova)”

Section 1.3.2, “OpenStack Bare Metal Provisioning (ironic)”

Section 1.3.3, “OpenStack Image (glance)”

Section 1.3.4, “OpenStack Orchestration (heat)”

Section 1.3.5, “OpenStack Data Processing (sahara)”

1.3.1. OpenStack Compute (nova)

OpenStack Compute serves as the core of the OpenStack cloud by providing virtual machines on
demand. Compute schedules virtual machines to run on a set of nodes by defining drivers that interact
with underlying virtualization mechanisms, and by exposing the functionality to the other OpenStack
components.

Compute supports the libvirt driver libvirtd that uses KVM as the hypervisor. The hypervisor creates
virtual machines and enables live migration from node to node. To provision bare metal machines, you
can also use Section 1.3.2, “OpenStack Bare Metal Provisioning (ironic)” .

Compute interacts with the Identity service to authenticate instance and database access, with the
Image service to access images and launch instances, and with the dashboard service to provide user
and administrative interface.

CHAPTER 1. COMPONENTS
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You can restrict access to images by project and by user, and specify project and user quota, such as
the number of instances that can be created by a single user.

When you deploy a Red Hat OpenStack Platform cloud, you can break down the cloud according to
different categories:

Regions

Each service cataloged in the Identity service is identified by the service region, which typically
represents a geographical location, and the service endpoint. In a cloud with multiple compute nodes,
regions enable discrete separation of services.
You can also use regions to share infrastructure between Compute installations while maintaining a
high degree of failure tolerance.

Host Aggregates and Availability Zones

A single Compute deployment can be partitioned into logical groups. You can create multiple groups
of hosts that share common resources such as storage and network, or groups that share a special
property such as trusted computing hardware.
To administrators, the group is presented as a Host Aggregate with assigned compute nodes and
associated metadata. The Host Aggregate metadata is commonly used to provide information for
openstack-nova-scheduler actions, such as limiting specific flavors or images to a subset of hosts.

To users, the group is presented as an Availability Zone. The user cannot view the group metadata or
see the list of hosts in the zone.

The benefits of aggregates, or zones, include:

Load balancing and instance distribution.

Physical isolation and redundancy between zones, implemented with a separate power
supply or network equipment.

Labeling for groups of servers that have common attributes.

Separation of different classes of hardware.

Table 1.6. Compute components

Component Description

openstack-nova-api Handles requests and provides access to the Compute services, such as booting
an instance.

openstack-nova-cert Provides the certificate manager.

openstack-nova-
compute

Runs on each node to create and terminate virtual instances. The compute
service interacts with the hypervisor to launch new instances, and ensures that the
instance state is maintained in the Compute database.

openstack-nova-
conductor

Provides database-access support for compute nodes to reduce security risks.

Red Hat OpenStack Platform 11 Architecture Guide
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openstack-nova-
consoleauth

Handles console authentication.

openstack-nova-
novncproxy

Provides a VNC proxy for browsers to enable VNC consoles to access virtual
machines.

openstack-nova-
scheduler

Dispatches requests for new virtual machines to the correct node based on
configured weights and filters.

nova Command-line client to access the Compute API.

Component Description

The following diagram shows the relationship between the Compute services and other OpenStack
components.

1.3.2. OpenStack Bare Metal Provisioning (ironic)

OpenStack Bare Metal Provisioning enables the user to provision physical, or bare metal machines, for a

CHAPTER 1. COMPONENTS
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variety of hardware vendors with hardware-specific drivers. Bare Metal Provisioning integrates with the
Compute service to provision the bare metal machines in the same way that virtual machines are
provisioned, and provides a solution for the bare-metal-to-trusted-tenant use case.

OpenStack Baremetal Provisioning advantages include:

Hadoop clusters can be deployed on bare metal machines.

Hyperscale and high-performance computing (HPC) clusters can be deployed.

Database hosting for applications that are sensitive to virtual machines can be used.

Bare Metal Provisioning uses the Compute service for scheduling and quota management, and uses the
Identity service for authentication. Instance images must be configured to support Bare Metal
Provisioning instead of KVM.

The following diagram shows how Ironic and the other OpenStack services interact when a physical
server is being provisioned:

Table 1.7. Bare Metal Provisioning components

Component Description

openstack-ironic-api Handles requests and provides access to Compute resources on the bare metal
node.

openstack-ironic-
conductor

Interacts directly with hardware and ironic databases, and handles requested and
periodic actions. You can create multiple conductors to interact with different
hardware drivers.

Red Hat OpenStack Platform 11 Architecture Guide
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ironic Command-line client to access the Bare Metal Provisioning API.

Component Description

The Ironic API is illustrated in following diagram:

1.3.3. OpenStack Image (glance)

OpenStack Image acts as a registry for virtual disk images. Users can add new images or take a snapshot
of an existing server for immediate storage. You can use the snapshots for backup or as templates for
new servers.

Registered images can be stored in the Object Storage service or in other locations, such as simple file
systems or external Web servers.

The following image disk formats are supported:

aki/ami/ari (Amazon kernel, ramdisk, or machine image)

iso (archive format for optical discs, such as CDs)

qcow2 (Qemu/KVM, supports Copy on Write)

raw (unstructured format)

vhd (Hyper-V, common for virtual machine monitors from vendors such as VMware, Xen,
Microsoft, and VirtualBox)

vdi (Qemu/VirtualBox)

CHAPTER 1. COMPONENTS
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vmdk (VMware)

Container formats can also be registered by the Image service. The container format determines the
type and detail level of the virtual machine metadata to store in the image.

The following container formats are supported:

bare (no metadata)

ova (OVA tar archive)

ovf (OVF format)

aki/ami/ari (Amazon kernel, ramdisk, or machine image)

Table 1.8. Image components

Component Description

openstack-glance-api Interacts with storage back ends to handle requests for image retrieval and
storage. The API uses openstack-glance-registry to retrieve image
information. You must not access the registry service directly.

openstack-glance-registry Manages all metadata for each image.

glance Command-line client to access the Image API.

The following diagram shows the main interfaces that the Image service uses to register and retrieve
images from the Image database.

Red Hat OpenStack Platform 11 Architecture Guide
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1.3.4. OpenStack Orchestration (heat)

OpenStack Orchestration provides templates to create and manage cloud resources such as storage,
networking, instances, or applications. Templates are used to create stacks, which are collections of
resources.

For example, you can create templates for instances, floating IPs, volumes, security groups, or users.
Orchestration offers access to all OpenStack core services with a single modular template, as well as
capabilities such as auto-scaling and basic high availability.

OpenStack Orchestration advantages include:

A single template provides access to all underlying service APIs.

Templates are modular and resource-oriented.

Templates can be recursively defined and reusable, such as nested stacks. The cloud
infrastructure can then be defined and reused in a modular way.

Resource implementation is pluggable, which allows for custom resources.

Resources can be auto-scaled, and therefore added or removed from the cluster based on
usage.

Basic high availability functionality is available.

Table 1.9. Orchestration components

Component Description

openstack-heat-api OpenStack-native REST API that processes API requests by sending the
requests to the openstack-heat-engine service over RPC.

openstack-heat-api-cfn Optional AWS-Query API compatible with AWS CloudFormation that
processes API requests by sending the requests to the openstack-heat-
engine service over RPC.

openstack-heat-engine Orchestrates template launch and generates events for the API consumer.

openstack-heat-cfntools Package of helper scripts such as cfn-hup, which handle updates to
metadata and execute custom hooks.

heat Command-line tool that communicates with the Orchestration API to
execute AWS CloudFormation APIs.

The following diagram shows the main interfaces that the Orchestration service uses to create a new
stack of two new instances and a local network.
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1.3.5. OpenStack Data Processing (sahara)

OpenStack Data Processing enables the provisioning and management of Hadoop clusters on
OpenStack. Hadoop stores and analyze large amounts of unstructured and structured data in clusters.

Hadoop clusters are groups of servers that can act as storage servers running the Hadoop Distributed
File System (HDFS), compute servers running Hadoop’s MapReduce (MR) framework, or both.

The servers in a Hadoop cluster need to reside in the same network, but they do not need to share
memory or disks. Therefore, you can add or remove servers and clusters without affecting compatibility
of the existing servers.

The Hadoop compute and storage servers are co-located, which enables high-speed analysis of stored
data. All tasks are divided across the servers and utilizes the local server resources.

OpenStack Data Processing advantages include:

Identity service can authenticate users and provide user security in the Hadoop cluster.

Compute service can provision cluster instances.

Image service can store cluster instances, where each instance contains an operating system

Red Hat OpenStack Platform 11 Architecture Guide
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Image service can store cluster instances, where each instance contains an operating system
and HDFS.

Object Storage service can be used to store data that Hadoop jobs process.

Templates can be used to create and configure clusters. Users can change configuration
parameters by creating custom templates or overriding parameters during cluster creation.
Nodes are grouped together using a Node Group template, and cluster templates combine
Node Groups.

Jobs can be used to execute tasks on Hadoop clusters. Job binaries store executable code, and
data sources store input or output locations and any necessary credentials.

Data Processing supports the Cloudera (CDH) plug-in as well as vendor-specific management tools,
such as Apache Ambari. You can use the OpenStack dashboard or the command-line tool to provision
and manage clusters.

Table 1.10. Sahara components

Component Description

openstack-sahara-all Legacy package that handles API and engine services.

openstack-sahara-api Handles API requests and provides access to the Data Processing services.

openstack-sahara-
engine

Provisioning engine that handles cluster requests and data delivery.

sahara Command-line client to access the Data Processing API.

The following diagram shows the main interfaces that the Data Processing service uses to provision and
manage a Hadoop cluster.
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1.4. IDENTITY MANAGEMENT

1.4.1. OpenStack Identity (keystone)

OpenStack Identity provides user authentication and authorization to all OpenStack components.
Identity supports multiple authentication mechanisms, including user name and password credentials,
token-based systems, and AWS-style log-ins.

By default, the Identity service uses a MariaDB back end for token, catalog, policy, and identity
information. This back end is recommended for development environments or to authenticate smaller
user sets. You can also use multiple identity back ends concurrently, such as LDAP and SQL. You can
also use memcache or Redis for token persistence.

Identity supports Federation with SAML. Federated Identity establishes trust between Identity
Providers (IdP) and the services that Identity provides to the end user.

NOTE

Federated Identity and concurrent multiple back ends require Identity API v3 and Apache
HTTPD deployment instead of Eventlet deployment.

OpenStack Identity advantages include:
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User account management, including associated information such as a name and password. In
addition to custom users, a user must be defined for each cataloged service. For example, the
glance user must be defined for the Image service.

Tenant, or project, management. Tenants can be the user group, project, or organization.

Role management. Roles determine the user permissions. For example, a role might
differentiate between permissions for a sales rep and permissions for a manager.

Domain management. Domains determine the administrative boundaries of Identity service
entities, and support multi-tenancy, where a domain represents a grouping of users, groups, and
tenants. A domain can have more than one tenant, and if you use multiple concurrent Identity
providers, each provider has one domain.

Table 1.11. Identity components

Component Description

openstack-keystone Provides Identity services, together with the administrative and public APIs.
Both Identity API v2 and API v3 are supported.

keystone Command-line client to access the Identity API.

The following diagram shows the basic authentication flow that Identity uses to authenticate users with
other OpenStack components.
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1.5. USER INTERFACES

Section 1.5.1, “OpenStack Dashboard (horizon)”

Section 1.5.2, “OpenStack Telemetry (ceilometer)”

1.5.1. OpenStack Dashboard (horizon)

OpenStack Dashboard provides a graphical user interface for users and administrators to perform
operations such as creating and launching instances, managing networking, and setting access control.

The Dashboard service provides the Project, Admin, and Settings default dashboards. The modular
design enables the dashboard to interface with other products such as billing, monitoring, and additional
management tools.

The following image shows an example of the Compute panel in the Admin dashboard.

The role of the user that logs in to the dashboard determines which dashboards and panels are available.

Table 1.12. Dashboard components

Component Description

openstack-dashboard Django Web application that provides access to the dashboard
from any Web browser.
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Apache HTTP server (httpd service) Hosts the application.

Component Description

The following diagram shows an overview of the dashboard architecture.

The example shows the following interaction:

The OpenStack Identity service authenticates and authorizes users

The session back end provides database services

The httpd service hosts the Web application and all other OpenStack services for API calls

1.5.2. OpenStack Telemetry (ceilometer)

OpenStack Telemetry provides user-level usage data for OpenStack-based clouds. The data can be
used for customer billing, system monitoring, or alerts. Telemetry can collect data from notifications
sent by existing OpenStack components such as Compute usage events, or by polling OpenStack
infrastructure resources such as libvirt.

Telemetry includes a storage daemon that communicates with authenticated agents through a trusted
messaging system to collect and aggregate data. Additionally, the service uses a plug-in system that

CHAPTER 1. COMPONENTS

25



you can use to add new monitors. You can deploy the API Server, central agent, data store service, and
collector agent on different hosts.

The service uses a MongoDB database to store collected data. Only the collector agents and the API
server have access to the database.

The alarms and notifications are newly handled and controlled by the aodh service.

Table 1.13. Telemetry components

Component Description

openstack-aodh-api Provides access to the alarm information stored in the data store.

openstack-aodh-alarm-
evaluator

Determines when alarms fire due to the associated statistic trend crossing a
threshold over a sliding time window.

openstack-aodh-alarm-
notifier

Executes actions when alarms are triggered.

openstack-aodh-alarm-
listener

Emits an alarm when a pre-defined event pattern occurs.

openstack-ceilometer-api Runs on one or more central management servers to provide access to data
in the database.

openstack-ceilometer-central Runs on a central management server to poll for utilization statistics about
resources independent from instances or Compute nodes. The agent
cannot be horizontally scaled, so you can run only a single instance of this
service at a time.

openstack-ceilometer-
collector

Runs on one or more central management servers to monitor the message
queues. Each collector processes and translates notification messages to
Telemetry messages, and sends the messages back to the message bus
with the relevant topic.

Telemetry messages are written to the data store without modification. You
can choose where to run these agents, because all intra-agent
communication is based on AMQP or REST calls to the ceilometer-api
service, similar to the ceilometer-alarm-evaluator service.

openstack-ceilometer-
compute

Runs on each Compute node to poll for resource utilization statistics. Each
nova-compute node must have a ceilometer-compute agent deployed and
running.

openstack-ceilometer-
notification

Pushes metrics to the collector service from various OpenStack services.

ceilometer Command-line client to access the Telemetry API.

The following diagram shows the interfaces used by the Telemetry service.
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1.6. THIRD-PARTY COMPONENTS

1.6.1. Third-party Components

Some Red Hat OpenStack Platform components use third-party databases, services, and tools.

1.6.1.1. Databases

MariaDB is the default database that is shipped with Red Hat Enterprise Linux. MariaDB enables
Red Hat to fully support open source community-developed software. Each OpenStack
component except Telemetry requires a running MariaDB service. Therefore, you need to
deploy MariaDB before you deploy a full OpenStack cloud service or before you install any
standalone OpenStack component.

The Telemetry service uses a MongoDB database to store collected usage data from collector
agents. Only the collector agents and the API server have access to the database.
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1.6.1.2. Messaging

RabbitMQ is a robust open-source messaging system based on the AMQP standard. RabbitMQ is a
high-performance message broker used in many enterprise systems with widespread commercial
support. In Red Hat OpenStack Platform, RabbitMQ is the default and recommended message broker.

RabbitMQ manages OpenStack transactions including queuing, distribution, security, management,
clustering, and federation. It also serves a key role in high availability and clustering scenarios.

1.6.1.3. External Caching

External applications for caching, such as memcached or Redis, offer persistence and shared storage
and speed up dynamic web applications by reducing the database load. External caching is used by
various OpenStack components, for example:

The Object Storage service uses memcached to cache authenticated clients, instead of
requiring each client to re-authorize each interaction.

By default, the dashboard uses memcached for session storage.

The Identity service uses Redis or memcached for token persistence.
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CHAPTER 2. NETWORKING IN-DEPTH

2.1. HOW BASIC NETWORKING WORKS

Networking consists of moving information from one computer to another. At the most basic level, this is
performed by running a cable between two machines, each with a network interface card (NIC) installed.
If you ever studied the OSI networking model, this is layer 1.

When you want to involve more than two computers in the conversation, you need to scale out this
configuration by adding a device called a switch. Switches are dedicated devices with multiple Ethernet
ports to which you connect additional machines. This configuration is called a Local Area Network (LAN).

Switches move up the OSI model to layer 2 and apply more intelligence than the lower layer 1. Each NIC
has a unique MAC address that is assigned to the hardware, and this number allows machines that are
plugged in to the same switch find each other.

The switch maintains a list of which MAC addresses are plugged into which ports, so that when one
computer attempts to send data to another computer, the switch knows where each NIC is located and
adjusts the circuitry to direct the network traffic to the correct destination.

2.1.1. Connecting multiple LANs

If you use two LANs on two separate switches, you can connect them to share information with each
other in the following ways:

Trunk cable

You can connect the two switches directly with a physical cable, called a trunk cable. In this
configuration, you plug each end of the trunk cable into a port on each switch, and then define these
ports as trunk ports. Now the two switches act as one big logical switch, and the connected
computers can successfully find each other. This option is not very scalable, and overhead becomes
an issue the more switches you link directly.

Router

You can use a device called a router to plug in cables from each switch. As a result, the router is
aware of the networks that are configured on both switches. Each switch that you plug into the
router becomes an interface and is assigned an IP address, known as the default gateway for that
network. The "default" in default gateway means that this is the destination where traffic will be sent
if it is clear that the destination computer is not on the same LAN as the source of the data transfer.
After you set this default gateway on each of your computers, they do not need to be aware of all of
the other computers on the other networks to send traffic to them. The traffic is just sent to the
default gateway and the router handles it from there. Since the router is aware of which networks
reside on which interface, it can send the packets on to their intended destinations. Routing works at
layer 3 of the OSI model, and utilizes familiar concepts like IP addresses and subnets.

NOTE

This concept is how the Internet itself works. Many separate networks run by different
organizations are all inter-connected using switches and routers. Keep following the
correct default gateways and your traffic will eventually get to where it needs to go.

2.1.2. VLANs

Virtual Local Area Networks (VLANs) allow you to segment network traffic for computers that run on
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the same switch. You can logically divide your switch by configuring the ports to be members of different
networks. This configuration turns the ports into mini-LANs that allow you to separate traffic for
security purposes.

For example, if your switch has 24 ports, you can define ports 1-6 to belong to VLAN200, and ports 7-18
belong to VLAN201. Computers that are plugged into VLAN200 are completely separate from
computers on VLAN201, and they can no longer communicate directly. All traffic between the two
VLANs must now pass through the router as if they were two separate physical switches. You can also
enhance the security with firewalls to determine which VLANs can communicate with each other.

2.1.3. Firewalls

Firewalls operate at the same OSI layer as IP routing. They are often located in the same network
segments as the routers, where they govern the traffic between all the networks. Firewalls use a
predefined set of rules that prescribe which traffic can or cannot enter a network. These rules can be
very granular. For example, you can define a rule where servers on VLAN 200 can only communicate
with computers on VLAN201, and only on a Thursday afternoon, and only if the traffic is Web (HTTP)
and moves in one direction.

To help enforce these rules, some firewalls also perform Stateful Packet Inspection (SPI), where they
examine the contents of packets to ensure that they are what they claim to be. Hackers are known to
exfiltrate data by sending traffic that masquerades as something else, and SPI is one method that can
help mitigate that threat.

2.1.4. Bridges

Network bridges are switches that operate at the same level 2 of the OSI model, but their only function
is to connect separate networks together, similar to routers.

2.2. NETWORKING IN OPENSTACK

All of the basic networking concepts in an OpenStack cloud, except that they are defined by services
and configuration. This is known as Software-Defined Networking (SDN). Virtual switches (Open
vSwitch) and routers (l3-agent) allow your instances to communicate with each other, and allow them to
communicate externally using the physical network. The Open vSwitch bridge allocates virtual ports to
instances and spans across to the physical network to allow incoming and outgoing traffic.

2.3. ADVANCED OPENSTACK NETWORKING CONCEPTS

2.3.1. Layer 3 High Availability

OpenStack Networking hosts virtual routers on a centralized Network node, which is a physical server
that is dedicated to the function of hosting the virtual networking components. These virtual routers
direct traffic to and from virtual machines, and are vital to the continued connectivity of your
environment. Since physical servers might experience outages due to many reasons, your virtual
machines might be vulnerable to outages when the Network node becomes unavailable.

OpenStack Networking uses Layer 3 High Availability to help mitigate this vulnerability, implementing
the industry standard VRRP to protect virtual routers and floating IP addresses. With Layer 3 High
Availability, the virtual routers of the tenant are randomly distributed across multiple physical Network
nodes, with one router designated as the active router, and the other routers on standby, ready to take
over if the Network node that hosts the active router experiences an outage.

NOTE
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NOTE

"Layer 3" refers to the section of the OSI model where this feature functions, and means
that it can protect routing and IP addressing.

For more information, see the "Layer 3 High Availability" section in the Networking Guide.

2.3.2. Load Balancing-as-a-Service (LBaaS)

Load Balancing-as-a-Service (LBaaS) enables OpenStack Networking to distribute incoming network
requests equally between designated instances. This distribution ensures the workload is shared among
instances and helps to use system resources more effectively. Incoming requests are distributed using
one of the following load balancing methods:

Round robin

Rotates requests evenly between multiple instances.

Source IP

Requests from a unique source IP address are always directed to the same instance.

Least connections

Allocates requests to the instance with the lowest number of active connections.

For more information, see the "Configuring Load Balancing-as-a-Service" section in the Networking
Guide.

2.3.3. IPv6

OpenStack Networking supports IPv6 addresses in tenant networks, so you can dynamically assign IPv6
addresses to virtual machines. OpenStack Networking can also integrate with SLAAC on your physical
routers, so that virtual machines can receive IPv6 addresses from your existing DHCP infrastructure.

For more information, see the "IPv6" section in the Networking Guide.
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CHAPTER 3. DESIGN
Section 3.1, “Planning Models”

Section 3.2, “Compute Resources”

Section 3.3, “Storage Resources”

Section 3.4, “Network Resources”

Section 3.5, “Performance”

Section 3.6, “Maintenance and Support”

Section 3.7, “Availability”

Section 3.8, “Security”

Section 3.9, “Additional Software”

Section 3.10, “Planning Tool”

This section describes technical and operational considerations to take when you design your Red Hat
OpenStack Platform deployment.

NOTE

All architecture examples in this guide assume that you deploy OpenStack Platform on
Red Hat Enterprise Linux 7.3 with the KVM hypervisor.

3.1. PLANNING MODELS

When you design a Red Hat OpenStack Platform deployment, the duration of the project can affect the
configuration and resource allocation of the deployment. Each planning model might aim to achieve
different goals, and therefore requires different considerations.

3.1.1. Short-term model (3 months)

To perform short-term capacity planning and forecasting, consider capturing a record of the following
metrics:

Total vCPU number

Total vRAM allocation

I/O mean latency

Network traffic

Compute load

Storage allocation

The vCPU, vRAM, and latency metrics are the most accessible for capacity planning. With these details,
you can apply a standard second-order regression and receive a usable capacity estimate covering the
following three months. Use this estimate to determine whether you need to deploy additional hardware.
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3.1.2. Middle-term model (6 months)

This model requires review iterations and you must estimate deviations from the forecasting trends and
the actual usage. You can analyze this information with standard statistical tools or with specialized
analysis models such as Nash-Sutcliffe. Trends can also be calculated using second-order regression.

NOTE

In deployments with multiple instance flavors, you can correlate vRAM and vCPU usage
more easily if you treat the vCPU and vRAM metrics as a single metric.

3.1.3. Long-term model (1 year)

Total resource usage can vary during one year, and deviations normally occur from the original long-
term capacity estimate. Therefore, second-order regression might be an insufficient measure for
capacity forecasting, especially in cases where usage is cyclical.

When planning for a long-term deployment, a capacity-planning model based on data that spans over a
year must fit at least the first derivative. Depending on the usage pattern, frequency analysis might also
be required.

3.2. COMPUTE RESOURCES

Compute resources are the core of the OpenStack cloud. Therefore, it is recommended to consider
physical and virtual resource allocation, distribution, failover, and additional devices, when you design
your Red Hat OpenStack Platform deployment.

3.2.1. General considerations

Number of processors, memory, and storage in each hypervisor

The number of processor cores and threads directly affects the number of worker threads that can
run on a Compute node. Therefore, you must determine the design based on the service and based
on a balanced infrastructure for all services.
Depending on the workload profile, additional Compute resource pools can be added to the cloud
later. In some cases, the demand on certain instance flavors might not justify individual hardware
design, with preference instead given to commoditized systems.

In either case, initiate the design by allocating hardware resources that can service common
instances requests. If you want to add additional hardware designs to the overall architecture, this
can be done at a later time.

Processor type

Processor selection is an extremely important consideration in hardware design, especially when
comparing the features and performance characteristics of different processors.
Processors can include features specifically for virtualized compute hosts, such as hardware-assisted
virtualization and memory paging, or EPT shadowing technology. These features can have a
significant impact on the performance of your cloud VMs.

Resource nodes

You must take into account Compute requirements of non-hypervisor resource nodes in the cloud.
Resource nodes include the controller node and nodes that run Object Storage, Block Storage, and
Networking services.
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Resource pools

Use a Compute design that allocates multiple pools of resources to be provided on-demand. This
design maximizes application resource usage in the cloud. Each resource pool should service specific
flavors of instances or groups of flavors.
Designing multiple resource pools helps to ensure that whenever instances are scheduled to
Compute hypervisors, each set of node resources is allocated to maximize usage of available
hardware. This is commonly referred to as bin packing.

Using a consistent hardware design across nodes in a resource pool also helps to support bin packing.
Hardware nodes selected for a Compute resource pool should share a common processor, memory,
and storage layout. Choosing a common hardware design helps easier deployment, support and
node lifecycle maintenance.

Over-commit ratios

OpenStack enables users to over-commit CPU and RAM on Compute nodes, which helps to increase
the number of instances that run in the cloud. However, over-committing can reduce the
performance of the instances.
The over-commit ratio is the ratio of available virtual resources compared to the available physical
resources.

The default CPU allocation ratio of 16:1 means that the scheduler allocates up to 16 virtual
cores for every physical core. For example, if a physical node has 12 cores, the scheduler can
allocate up to 192 virtual cores. With typical flavor definitions of 4 virtual cores per instance,
this ratio can provide 48 instances on the physical node.

The default RAM allocation ratio of 1.5:1 means that the scheduler allocates instances to a
physical node if the total amount of RAM associated with the instances is less than 1.5 times
the amount of RAM available on the physical node.

Tuning the over-commit ratios for CPU and memory during the design phase is important because it
has a direct impact on the hardware layout of your Compute nodes. When designing a hardware node
as a Compute resource pool to service instances, consider the number of processor cores available
on the node, as well as the required disk and memory to service instances running at full capacity.

For example, an m1.small instance uses 1 vCPU, 20 GB of ephemeral storage, and 2,048 MB of RAM.
For a server with 2 CPUs of 10 cores each, with hyperthreading turned on:

The default CPU overcommit ratio of 16:1 allows for 640 (2 × 10 × 2 × 16) total m1.small
instances.

The default memory over-commit ratio of 1.5:1 means that the server needs at least 853 GB
(640 × 2,048 MB / 1.5) of RAM.

When sizing nodes for memory, it is also important to consider the additional memory required to
service operating system and service needs.

3.2.2. Flavors

Each created instance is given a flavor, or resource template, which determines the instance size and
capacity. Flavors can also specify secondary ephemeral storage, swap disk, metadata to restrict usage,
or special project access. Default flavors do not have these additional attributes defined. Instance
flavors allow to measure capacity forecasting, because common use cases are predictably sized and not
sized ad-hoc.

To facilitate packing virtual machines to physical hosts, the default selection of flavors provides a
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To facilitate packing virtual machines to physical hosts, the default selection of flavors provides a
second largest flavor half the size of the largest flavor in every dimension. The flavor has half the vCPUs,
half the vRAM, and half the ephemeral disk space. Each subsequent largest flavor is half the size of the
previous flavor.

The following diagram shows a visual representation of flavor assignments in a general-purpose
computing design and for a CPU-optimized, packed server:

The default flavors are recommended for typical configurations of commodity server hardware. To
maximize utilization, you might need to customize the flavors or to create new flavors to align instance
sizes to available hardware.

If possible, limit your flavors to one vCPU for each flavor. It is important to note that Type 1 hypervisors
can schedule CPU time more easily to VMs that are configured with one vCPU. For example, a
hypervisor that schedules CPU time to a VM that is configured with 4 vCPUs must wait until four
physical cores are available, even if the task to perform requires only one vCPU.

Workload characteristics can also influence hardware choices and flavor configuration, especially where
the tasks present different ratios of CPU, RAM, or HDD requirements. For information about flavors, see
Managing Flavors in the Instances and Images Guide .

3.2.3. vCPU-to-physical CPU core ratio

The default allocation ratio in Red Hat OpenStack Platform is 16 vCPUs per physical, or hyperthreaded,
core.

The following table lists the maximum number of VMs that can be suitably run on a physical host based
on the total available memory, including 4GB reserved for the system:

Total RAM VMs Total vCPU

64GB 14 56
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96GB 20 80

128GB 29 116

Total RAM VMs Total vCPU

For example, planning an initial greenfields standup of 60 instances requires 3+1 compute nodes.
Usually, memory bottlenecks are more common than CPU bottlenecks. However, the allocation ratio can
be lowered to 8 vCPUs per physical core if needed.

3.2.4. Memory overhead

The KVM hypervisor requires a small amount of VM memory overhead, including non-shareable memory.
Shareable memory for QEMU/KVM systems can be rounded to 200 MB for each hypervisor.

vRAM Physical memory usage (average)

256 310

512 610

1024 1080

2048 2120

4096 4180

Typically, you can estimate hypervisor overhead of 100mb per VM.

3.2.5. Over-subscription

Memory is a limiting factor for hypervisor deployment. The number of VMs that you can run on each
physical host is limited by the amount of memory that the host can access. For example, deploying a
quad-core CPU with 256GB of RAM and more than 200 1GB instances leads to poor performance.
Therefore, you must carefully determine the optimal ratio of CPU cores and memory to distribute across
the instances.

3.2.6. Density

Instance density

In a compute-focused architecture, instance density is lower, which means that CPU and RAM over-
subscription ratios are also lower. You might require more hosts to support the anticipated scale if
instance density is lower, especially if the design uses dual-socket hardware designs.

Host density

You can address the higher host count of dual-socket designs by using a quad-socket platform. This
platform decreases host density, which then increases the rack count. This configuration can affect
the network requirements, the number of power connections, and might also impact the cooling
requirements.
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Power and cooling density

Reducing power and cooling density is an important consideration for data centers with older
infrastructure. For example, the power and cooling density requirements for 2U, 3U, or even 4U
server designs, might be lower than for blade, sled, or 1U server designs due to lower host density.

3.2.7. Compute hardware

Blade servers

Most blade servers can support dual-socket, multi-core CPUs. To avoid exceeding the CPU limit,
select full-width  or full-height blades. These blade types can also decrease server density. For
example, high-density blade servers, such as HP BladeSystem or Dell PowerEdge M1000e, support
up to 16 servers in only ten rack units. Half-height blades are twice as dense as full-height blades,
which results in only eight servers per ten rack units.

1U servers

1U rack-mounted servers that occupy only a single rack unit might offer higher server density than a
blade server solution. You can use 40 units of 1U servers in one rack to provide space for the top of
rack (ToR) switches. In comparison, you can only use 32 full-width blade servers in one rack.
However, 1U servers from major vendors have only dual-socket, multi-core CPU configurations. To
support a higher CPU configuration in a 1U rack-mount form factor, purchase systems from original
design manufacturers (ODMs) or second-tier manufacturers.

2U servers

2U rack-mounted servers provide quad-socket, multi-core CPU support, but with a corresponding
decrease in server density. 2U rack-mounted servers offer half of the density that 1U rack-mounted
servers offer.

Larger servers

Larger rack-mounted servers, such as 4U servers, often provide higher CPU capacity and typically
support four or even eight CPU sockets. These servers have greater expandability, but have much
lower server density and are often more expensive.

Sled servers

Sled servers are rack-mounted servers that support multiple independent servers in a single 2U or 3U
enclosure. These servers deliver higher density than typical 1U or 2U rack-mounted servers.
For example, many sled servers offer four independent dual-socket nodes in 2U for a total of eight
CPU sockets. However, the dual-socket limitation on individual nodes might not be sufficient to
offset the additional cost and configuration complexity.

3.2.8. Additional devices

You might consider the following additional devices for Compute nodes:

Graphics processing units (GPUs) for high-performance computing jobs.

Hardware-based random number generators to avoid entropy starvation for cryptographic
routines. A random number generator device can be added to an instance using with the
instance image properties. /dev/random is the default entropy source.

SSDs for ephemeral storage to maximize read/write time for database management systems.

Host aggregates work by grouping together hosts that share similar characteristics, such as
hardware similarities. The addition of specialized hardware to a cloud deployment might add to
the cost of each node, so consider whether the additional customization is needed for all
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Compute nodes, or just a subset.

3.3. STORAGE RESOURCES

When you design your cloud, the storage solution you choose impacts critical aspects of the
deployment, such as performance, capacity, availability, and interoperability.

Consider the following factors when you choose your storage solution:

3.3.1. General Considerations

Applications

Applications should be aware of underlying storage sub-systems to use cloud storage solutions
effectively. If natively-available replication is not available, operations personnel must be able to
configure the application to provide replication service.
An application that can detect underlying storage systems can function in a wide variety of
infrastructures and still have the same basic behavior regardless of the differences in the underlying
infrastructure.

I/O

Benchmarks for input-output performance provide a baseline for expected performance levels. The
benchmark results data can help to model behavior under different loads, and help you to design a
suitable architecture.
Smaller, scripted benchmarks during the lifecycle of the architecture can help to record the system
health at different times. The data from the scripted benchmarks can assist to scope and gain a
deeper understanding of the organization needs.

Interoperability

Ensure that any hardware or storage management platform that you select is interoperable with
OpenStack components, such as the KVM hypervisor, which affects whether you can use it for short-
term instance storage.

Security

Data security design can focus on different aspects based on SLAs, legal requirements, industry
regulations, and required certifications for systems or personnel. Consider compliance with HIPPA,
ISO9000, or SOX based on the type of data. For certain organizations, access control levels should
also be considered.

3.3.2. OpenStack Object Storage (swift)

Availability

Design your object storage resource pools to provide the level of availability that you need for your
object data. Consider rack-level and zone-level designs to accommodate the number of necessary
replicas. The defult number of replicas is three. Each replica of data should exist in a separate
availability zone with independent power, cooling, and network resources that service the specific
zone.
The OpenStack Object Storage service places a specific number of data replicas as objects on
resource nodes. These replicas are distributed across the cluster based on a consistent hash ring,
which exists on all nodes in the cluster. In addition, a pool of Object Storage proxy servers that
provide access to data stored on the object nodes should service each availability zone.

Design the Object Storage system with a sufficient number of zones to provide the minimum
required successful responses for the number of replicas. For example, if you configure three replicas
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in the Swift cluster, the recommended number of zones to configure inside the Object Storage
cluster is five.

Although you can deploy a solution with fewer zones, some data may not be available and API
requests to some objects stored in the cluster might fail. Therefore, ensure you account for the
number of zones in the Object Storage cluster.

Object proxies in each region should leverage local read and write affinity so that local storage
resources facilitate access to objects wherever possible. You should deploy upstream load balancing
to ensure that proxy services are distributed across multiple zones. In some cases, you might need
third-party solutions to assist with the geographical distribution of services.

A zone within an Object Storage cluster is a logical division, and can be comprised of a single disk, a
node, a collection of nodes, multiple racks, or multiple DCs. You must allow the Object Storage
cluster to scale while providing an available and redundant storage system. You might need to
configure storage policies with different requirements for replicas, retention, and other factors that
could affect the design of storage in a specific zone.

Node storage

When designing hardware resources for OpenStack Object Storage, the primary goal is to maximize
the amount of storage in each resource node while also ensuring that the cost per terabyte is kept to
a minimum. This often involves utilizing servers that can hold a large number of spinning disks. You
might use 2U server form factors with attached storage or with an external chassis that holds a larger
number of drives.
The consistency and partition tolerance characteristics of OpenStack Object Storage ensure that
data stays current and survives hardware faults without requiring specialized data-replication
devices.

Performance

Object storage nodes should be designed so that the number of requests does not hinder the
performance of the cluster. The object storage service is a chatty protocol. Therefore, using multiple
processors with higher core counts ensures that the IO requests do not inundate the server.

Weighting and cost

OpenStack Object Storage provides the ability to mix and match drives with weighting inside the
swift ring. When designing your swift storage cluster, you can use most cost-effective storage
solution.
Many server chassis can hold 60 or more drives in 4U of rack space. Therefore, you can maximize the
amount of storage for each rack unit at the best cost per terabyte. However, it is not recommended
to use RAID controllers in an object storage node.

Scaling

When you design your storage solution, you must determine the maximum partition power required
by the Object Storage service, which then determines the maximum number of partitions that you
can create. Object Storage distributes data across the entire storage cluster, but each partition
cannot span more than one disk. Therefore, the maximum number of partitions cannot exceed the
number of disks.

For example, a system with an initial single disk and a partition power of three can hold eight (23)
partitions. Adding a second disk means that each disk can hold four partitions. The one-disk-per-
partition limit means that this system cannot have more than eight disks and limits its scalability.
However, a system with an initial single disk and a partition power of 10 can have up to 1024 (210)
partitions.

Whenever you increase the system back-end storage capacity, the partition maps redistribute data
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Whenever you increase the system back-end storage capacity, the partition maps redistribute data
across the storage nodes. In some cases, this replication consists of extremely large data sets. In
those cases, you should use back-end replication links that do not conflict with tenant access to data.

If more tenants begin to access data in the cluster and the data sets grow, you must add front-end
bandwidth to service data access requests. Adding front-end bandwidth to an Object Storage cluster
requires designing Object Storage proxies that tenants can use to gain access to the data, along with
the high availability solutions that enable scaling of the proxy layer.

You should design a front-end load balancing layer that tenants and consumers use to gain access
to data stored within the cluster. This load balancing layer can be distributed across zones, regions or
even across geographic boundaries.

In some cases, you must add bandwidth and capacity to the network resources that service requests
between proxy servers and storage nodes. Therefore, the network architecture that provides access
to storage nodes and proxy servers should be scalable.

3.3.3. OpenStack Block Storage (cinder)

Availability and Redundancy

The input-output per second (IOPS) demand of your application determines whether you should use
a RAID controller and which RAID level is required. For redundancy, you should use a redundant RAID
configuration, such as RAID 5 or RAID 6. Some specialized features, such as automated replication of
block storage volumes, might require third-party plug-ins or enterprise block storage solutions to
handle the higher demand.
In environments with extreme demand on Block Storage, you should use multiple storage pools.
Each device pool should have a similar hardware design and disk configuration across all hardware
nodes in that pool. This design provides applications with access to a wide variety of Block Storage
pools with various redundancy, availability, and performance characteristics.

The network architecture should also take into account the amount of East-West bandwidth required
for instances to use available storage resources. The selected network devices should support jumbo
frames to transfer large blocks of data. In some cases, you might need to create an additional
dedicated back end storage network to provide connectivity between instances and Block Storage
resources to reduce load on network resources.

When you deploy multiple storage pools, you must consider the impact on the Block Storage
scheduler, which provisions storage across resource nodes. Ensure that applications can schedule
volumes in multiple regions with specific network, power, and cooling infrastructure. This design
allows tenants to build fault-tolerant applications distributed across multiple availability zones.

In addition to the Block Storage resource nodes, it is important to design for high availability and
redundancy of APIs and related services that are responsible for provisioning and providing access to
the storage nodes. You should design a layer of hardware or software load balancers to achieve high
availability of the REST API services to provide uninterrupted service.

In some cases, you might need to deploy an additional load balancing layer to provide access to
back-end database services that are responsible for servicing and storing the state of Block Storage
volumes. You should design a highly-available database solution to store the Block Storage
databases, such as MariaDB and Galera.

Attached storage

The Block Storage service can take advantage of enterprise storage solutions using a plug-in driver
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The Block Storage service can take advantage of enterprise storage solutions using a plug-in driver
developed by the hardware vendor. A large number of enterprise plug-ins ship out-of-the-box with
OpenStack Block Storage, and others are available through third-party channels.
General-purpose clouds typically use directly-attached storage in the majority of Block Storage
nodes. Therefore, you might need to provide additional levels of service to tenants. These levels
might only be provided by enterprise storage solutions.

Performance

If higher performance is needed, you can use high-performance RAID volumes. For extreme
performance, you can use high-speed solid-state drive (SSD) disks.

Pools

Block Storage pools should allow tenants to choose appropriate storage solutions for their
applications. By creating multiple storage pools of different types and configuring an advanced
storage scheduler for the Block Storage service, you can provide tenants a large catalog of storage
services with a variety of performance levels and redundancy options.

Scaling

You can upgrade Block Storage pools to add storage capacity without interruption to the overall
Block Storage service. Add nodes to the pool by installing and configuring the appropriate hardware
and software. You can then configure the new nodes to report to the proper storage pool with the
message bus.
Because Block Storage nodes report the node availability to the scheduler service, when a new node
is online and available, tenants can use the new storage resources immediately.

In some cases, the demand on Block Storage from instances might exhaust the available network
bandwidth. Therefore, you should design the network infrastructure to service Block Storage
resources to allow you to add capacity and bandwidth seamlessly.

This often involves dynamic routing protocols or advanced networking solutions to add capacity to
downstream devices. The front-end and back-end storage network designs should include the ability
to quickly and easily add capacity and bandwidth.

3.3.4. Storage Hardware

Capacity

Node hardware should support enough storage for the cloud services, and should ensure that
capacity can be added after deployment. Hardware nodes should support a large number of
inexpensive disks with no reliance on RAID controller cards.
Hardware nodes should also be capable of supporting high-speed storage solutions and RAID
controller cards to provide hardware-based storage performance and redundancy. Selecting
hardware RAID controllers that automatically repair damaged arrays assists with the replacement
and repair of degraded or destroyed storage devices.

Connectivity

If you use non-Ethernet storage protocols in the storage solution, ensure that the hardware can
handle these protocols. If you select a centralized storage array, ensure that the hypervisor can
connect to that storage array for image storage.

Cost

Storage can be a significant portion of the overall system cost. If you need vendor support, a
commercial storage solution is recommended but incurs a bigger expense. If you need to minimize
initial financial investment, you can design a system based on commodity hardware. However, the
initial saving might lead to increased running support costs and higher incompatibility risks.
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Directly-Attached Storage

Directly-attached storage (DAS) impacts the server hardware choice and affects host density,
instance density, power density, OS-hypervisor, and management tools.

Scalability

Scalability is a major consideration in any OpenStack cloud. It can sometimes be difficult to predict
the final intended size of the implementation; consider expanding the initial deployment in order to
accommodate growth and user demand.

Expandability

Expandability is a major architecture factor for storage solutions. A storage solution that expands to
50 PB is considered more expandable than a solution that only expands to 10 PB. This metric is
different from scalability, which is a measure of the solution’s performance as its workload increases.
For example, the storage architecture for a development platform cloud might not require the same
expandability and scalability as a commercial product cloud.

Fault tolerance

Object Storage resource nodes do not require hardware fault tolerance or RAID controllers. You do
not need to plan for fault tolerance in the Object Storage hardware, because the Object Storage
service provides replication between zones by default.
Block Storage nodes, Compute nodes, and cloud controllers should have fault tolerance built-in at
the hardware level with hardware RAID controllers and varying levels of RAID configuration. The level
of RAID should be consistent with the performance and availability requirements of the cloud.

Location

The geographical location of instance and image storage might impact your architecture design.

Performance

Disks that run Object Storage services do not need to be fast-performing disks. You can therefore
maximize the cost efficiency per terabyte for storage. However, disks that run Block Storage
services should use performance-boosting features that might require SSDs or flash storage to
provide high-performance Block Storage pools.
The storage performance of short-term disks that you use for instances should also be considered. If
Compute pools need high utilization of short-term storage, or requires very high performance, you
should deploy similar hardware solutions the solutions you deploy for Block Storage.

Server type

Scaled-out storage architecture that includes DAS affects the server hardware selection. This
architecture can also affect host density, instance density, power density, OS-hypervisor,
management tools, and so on.

3.3.5. Ceph Storage

If you consider Ceph for your external storage, the Ceph cluster back-end must be sized to handle the
expected number of concurrent VMs with reasonable latency. An acceptable service level can maintain
99% of I/O operations in under 20ms for write operations and in under 10ms for read operations.

You can isolate I/O spikes from other VMs by configuring the maximum bandwidth for each Rados Block
Device (RBD) or by setting a minimum guaranteed commitment.

3.4. NETWORK RESOURCES

Network availability is critical to the hypervisors in your cloud deployment. For example, if the
hypervisors support only a few virtual machines (VMs) for each node and your applications do not
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require high-speed networking, then you can use one or two 1GB ethernet links. However, if your
applications require high-speed networking or your hypervisors support many VMs for each node, one or
two 10GB ethernet links are recommended.

A typical cloud deployment uses more peer-to-peer communication than a traditional core network
topology normally requires. Although VMs are provisioned randomly across the cluster, these VMs need
to communicate with each other as if they are on the same network. This requirement might slow down
the network and cause packet loss on traditional core network topologies, due to oversubscribed links
between the edges and the core of the network.

3.4.1. Segregate Your Services

OpenStack clouds traditionally have multiple network segments. Each segment provides access to
resources in the cloud to operators and tenants. The network services also require network
communication paths separated from the other networks. Segregating services to separate networks
helps to secure sensitive data and protects against unauthorized access to services.

The minimum recommended segragation involves the following network segments:

A public network segment used by tenants and operators to access the cloud REST APIs.
Normally, only the controller nodes and swift proxies in the cloud are required to connect to this
network segment. In some cases, this network segment might also be serviced by hardware load
balancers and other network devices.

An administrative network segment used by cloud administrators to manage hardware resources
and by configuration management tools to deploy software and services to new hardware. In
some cases, this network segment might also be used for internal services, including the
message bus and database services that need to communicate with each other.
Due to the security requirements for this network segment, it is recommended to secure this
network from unauthorized access. This network segment usually needs to communicate with
every hardware node in the cloud.

An application network segment used by applications and consumers to provide access to the
physical network and by users to access applications running in the cloud. This network needs to
be segregated from the public network segment and should not communicate directly with the
hardware resources in the cloud.
This network segment can be used for communication by Compute resource nodes and network
gateway services that transfer application data to the physical network outside of the cloud.

3.4.2. General Considerations

Security

Ensure that you segregate your network services and that traffic flows to the correct destinations
without crossing through unnecessary locations.
Consider the following example factors:

Firewalls

Overlay interconnects for joining separated tenant networks

Routing through or avoiding specific networks

The way that networks attach to hypervisors can expose security vulnerabilities. To mitigate against
exploiting hypervisor breakouts, separate networks from other systems and schedule instances for
the network to dedicated Compute nodes. This separation prevents attackers from gaining access to
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the networks from a compromised instance.

Capacity planning

Cloud networks require capacity and growth management. Capacity planning can include the
purchase of network circuits and hardware with lead times that are measurable in months or years.

Complexity

An complex network design can be difficult to maintain and troubleshoot. Although device-level
configuration can ease maintenance concerns and automated tools can handle overlay networks,
avoid or document non-traditional interconnects between functions and specialized hardware to
prevent outages.

Configuration errors

Configuring incorrect IP addresses, VLANs, or routers can cause outages in areas of the network or
even in the entire cloud infrastructure. Automate network configurations to minimize the operator
error that can disrupt the network availability.

Non-standard features

Configuring the cloud network to take advantage of vendor-specific features might create additional
risks.
For example, you might use multi-link aggregation (MLAG) to provide redundancy at the aggregator
switch level of the network. MLAG is not a standard aggregation format and each vendor implements
a proprietary flavor of the feature. MLAG architectures are not interoperable across switch vendors,
which leads to vendor lock-in and can cause delays or problems when you upgrade network
components.

Single Point of Failure

If your network has a Single Point Of Failure (SPOF) due to only one upstream link or only one power
supply, you might experience a network outage in the event of failure.

Tuning

Configure cloud networks to minimize link loss, packet loss, packet storms, broadcast storms, and
loops.

3.4.3. Networking Hardware

There is no single best-practice architecture for networking hardware to support an OpenStack cloud
that you can apply to all implementations. Key considerations for the selection of networking hardware
include:

Availability

To ensure uninterrupted cloud node access, the network architecture should identify any single
points of failure and provide adequate redundancy or fault-tolerance:

Network redundancy can be achieved by adding redundant power supplies or paired
switches.

For the network infrastructure, networking protocols such as LACP, VRRP or similar can be
used to achieve a highly available network connection.

To ensure that the OpenStack APIs and any other services in the cloud are highly available,
you should design a load-balancing solution within the network architecture.

Connectivity

All nodes within an OpenStack cloud require network connectivity. In some cases, nodes require
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All nodes within an OpenStack cloud require network connectivity. In some cases, nodes require
access to multiple network segments. The design must include sufficient network capacity and
bandwidth to ensure that all north-south and east-west traffic in the cloud have sufficient resources.

Ports

Any design requires networking hardware that has the required ports:

Ensure you have the physical space required to provide the ports. A higher port density is
preferred, as it leaves more rack space for Compute or storage components. Adequate port
availability also prevents fault domains and assists with power density. Higher density
switches are more expensive and should also be considered, as it is important to not to over-
design the network if it is not required.

The networking hardware must support the proposed network speed. For example: 1 GbE, 10
GbE, or 40 GbE (or even 100 GbE).

Power

Ensure that the physical data center provides the necessary power for the selected network
hardware. For example, spine switches in a leaf-and-spine fabric or end of row (EoR) switches might
not provide sufficient power.

Scalability

The network design should include a scalable physical and logical network design. Network hardware
should offer the types of interfaces and speeds that are required by the hardware nodes.

3.5. PERFORMANCE

The performance of an OpenStack deployment depends on multiple factors that are related to the
infrastructure and controller services. User requirements can be divided to general network
performance, Compute resource performance, and storage systems performance.

Ensure that you retain a historical performance baseline of your systems, even when these systems
perform consistently with no slow-downs. Available baseline information is a useful reference when you
encounter performance issues and require data for comparison purposes.

In addition to Section 1.5.2, “OpenStack Telemetry (ceilometer)”, external software can also be used to
track performance. The Operational Tools repository for Red Hat OpenStack Platform includes the
following tools:

collectd

Graphite-web

InfluxDB

Grafana

3.5.1. Network Performance

The network requirements help to determine performance capabilities. For example, smaller
deployments might employ 1 Gigabit Ethernet (GbE) networking, and larger installations that serve
multiple departments or many users should use 10 GbE networking.

The performance of running instances might be limited by these network speeds. You can design
OpenStack environments that run a mix of networking capabilities. By utilizing the different interface
speeds, the users of the OpenStack environment can choose networks that fit their purposes.
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For example, web application instances can run on a public network with OpenStack Networking with 1
GbE capability, and the back end database can use an OpenStack Networking network with 10 GbE
capability to replicate its data. In some cases, the design can incorporate link aggregation to increase
throughput.

Network performance can be boosted by implementing hardware load balancers that provide front-end
services to the cloud APIs. The hardware load balancers can also perform SSL termination if necessary.
When implementing SSL offloading, it is important to verify the SSL offloading capabilities of the
selected devices.

3.5.2. Compute Nodes Performance

Hardware specifications used in compute nodes including CPU, memory, and disk type, directly affect
the performance of the instances. Tunable parameters in the OpenStack services can also directly affect
performance.

For example, the default over-commit ratio for OpenStack Compute is 16:1 for CPU and 1.5 for memory.
These high ratios can lead to an increase in "noisy-neighbor" activity. You must carefully size your
Compute environment to avoid this scenario and ensure that you monitor your environment when usage
increases.

3.5.3. Block Storage Hosts Performance

Block Storage can use enterprise back end systems such as NetApp or EMC, scale-out storage such as
Ceph, or utilize the capabilities of directly-attached storage in the Block Storage nodes.

Block Storage can be deployed to enable traffic to traverse the host network, which could affect, and be
adversely affected by, the front-side API traffic performance. Therefore, consider using a dedicated
data storage network with dedicated interfaces on the controller and Compute hosts.

3.5.4. Object Storage Hosts Performance

Users typically access Object Storage through the proxy services, which run behind hardware load
balancers. By default, highly resilient storage system replicate stored data, which can affect the overall
system performance. In this case, 10 GbE or higher networking capacity is recommended across the
storage network architecture.

3.5.5. Controller Nodes

Controller nodes provide management services to the end-user and provide services internally for the
cloud operation. It is important to carefully design the hardware that is used to run the controller
infrastructure.

The controllers run message-queuing services for system messaging between the services.
Performance issues in messaging can lead to delays in operational functions such as spinning up and
deleting instances, provisioning new storage volumes, and managing network resources. These delays
can also adversely affect the ability of the application to react to some conditions, especially when using
auto-scaling features.

You also need to ensure that controller nodes can handle the workload of multiple concurrent users.
Ensure that the APIs and Horizon services are load-tested to improve service reliability for your
customers.

It is important to consider the OpenStack Identity Service (keystone), which provides authentication and
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It is important to consider the OpenStack Identity Service (keystone), which provides authentication and
authorization for all services, internally to OpenStack and to end-users. This service can lead to a
degradation of overall performance if it is not sized appropriately.

Metrics that are critically important to monitor include:

Image disk utilization

Response time to the Compute API

3.6. MAINTENANCE AND SUPPORT

To support and maintain an installation, OpenStack cloud management requires the operations staff to
understand the architecture design. The skill level and role separation between the operations and
engineering staff depends on the size and purpose of the installation.

Large cloud service providers, or telecom providers, are more likely to be managed by specially-
trained, dedicated operations organization.

Smaller implementations are more likely to rely on support staff that need to take on combined
engineering, design and operations functions.

If you incorporate features that reduce the operations overhead in the design, you might be able to
automate some operational functions.

Your design is also directly affected by terms of Service Level Agreements (SLAs). SLAs define levels of
service availability and usually include penalties if you do not meet contractual obligations. SLA terms
that affect the design include:

API availability guarantees that imply multiple infrastructure services and highly available load
balancers.

Network uptime guarantees that affect switch design and might require redundant switching
and power.

Network security policy requirements that imply network segregation or additional security
mechanisms.

3.6.1. Backups

Your design might be affected by your backup and restore strategy, data valuation or hierarchical
storage management, retention strategy, data placement, and workflow automation.

3.6.2. Downtime

An effective cloud architecture should support the following:

Planned downtime (maintenance)

Unplanned downtime (system faults)

For example, if a compute host fails, instances might be restored from a snapshot or by re-spawning an
instance. However, for high availability you might need to deploy additional support services such as
shared storage or design reliable migration paths.
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3.7. AVAILABILITY

OpenStack can provide a highly-available deployment when you use at least two servers. The servers
can run all services from the RabbitMQ message queuing service and the MariaDB database service.

When you scale services in the cloud, back end services also need to scale. Monitoring and reporting
server utilization and response times, as well as load testing your systems, can help determine scaling
decisions.

To avoid a single point of failure, OpenStack services should be deployed across multiple
servers. API availability can be achieved by placing these services behind highly-available load
balancers with multiple OpenStack servers as members.

Ensure that your deployment has adequate backup capabilities. For example, in a deployment
with two infrastructure controller nodes using high availability, if you lose one controller you can
still run the cloud services from the other.

OpenStack infrastructure is integral to provide services and should always be available,
especially when operating with SLAs. Consider the number of switches, routes and redundancies
of power that are necessary for the core infrastructure, as well as the associated bonding of
networks to provide diverse routes to a highly available switch infrastructure.

If you do not configure your Compute hosts for live-migration and a Compute host fails, the
Compute instance and any data stored on that instance might be lost. To do ensure the uptime
of your Compute hosts, you can use shared file systems on enterprise storage or OpenStack
Block storage.

External software can be used to check service availability or threshold limits and to set appropriate
alarms. The Operational Tools repository for Red Hat OpenStack Platform includes:

Sensu

Uchiwa dashboard

NOTE

For a reference architecture that uses high availability in OpenStack, see: Deploying
Highly Available Red Hat OpenStack Platform 6 with Ceph Storage

3.8. SECURITY

A security domain includes users, applications, servers, or networks that share common trust
requirements and expectations in a single system. Security domains typically use the same
authentication and authorization requirements and users.

Typical security domain categories are Public, Guest, Management, and Data. The domains can be
mapped to an OpenStack deployment individually or combined. For example, some deployment
topologies combine guest and data domains in one physical network, and in other cases the networks
are physically separated. Each case requires the cloud operator to be aware of the relevant security
concerns.

Security domains should be mapped to your specific OpenStack deployment topology. The domains
and the domain trust requirements depend on whether the cloud instance is public, private, or hybrid.

Public domain

Entirely untrusted area of the cloud infrastructure. A public domain can refer to the Internet as a
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Entirely untrusted area of the cloud infrastructure. A public domain can refer to the Internet as a
whole or networks over which you have no authority. This domain should always be considered
untrusted.

Guest domain

Typically used for Compute instance-to-instance traffic and handles Compute data generated by
instances on the cloud, but not by services that support the operation of the cloud, such as API calls.
Public cloud providers and private cloud providers that do not have strict controls on instance usage
or that allow unrestricted Internet access to instances, should consider this domain untrusted. Private
cloud providers might consider this network internal and therefore trusted only with controls that
assert trust in instances and all cloud tenants.

Management domain

The domain where services interact with each other. This domain is sometimes known as the control
plane. Networks in this domain transfer confidential data, such as configuration parameters, user
names, and passwords. In most deployments, this domain is considered trusted.

Data domain

The domain where storage services transfer data. Most data that crosses this domain has high
integrity and confidentiality requirements and, depending on the type of deployment, might also
have strong availability requirements. The trust level of this network is dependent on other
deployment decisions.

When you deploy OpenStack in an enterprise as a private cloud, the deployment is usually behind a
firewall and inside the trusted network with existing systems. Users of the cloud are typically employees
that are bound by the security requirements that the company defines. This deployment implies that
most of the security domains can be trusted.

However, when you deploy OpenStack in a public facing role, no assumptions can be made regarding the
trust level of the domains, and the attack vectors significantly increase. For example, the API endpoints
and the underlying software become vulnerable to bad actors that want to gain unauthorized access or
prevent access to services. These attacks might lead to loss data, functionality, and reputation. These
services must be protected using auditing and appropriate filtering.

You must exercise caution also when you manage users of the system for both public and private
clouds. The Identity service can use external identity back ends such as LDAP, which can ease user
management inside OpenStack. Because user authentication requests include sensitive information
such as user names, passwords, and authentication tokens, you should place the API services behind
hardware that performs SSL termination.

3.9. ADDITIONAL SOFTWARE

A typical OpenStack deployment includes OpenStack-specific components and Section 1.6.1, “Third-
party Components”. Supplemental software can include software for clustering, logging, monitoring,
and alerting. The deployment design must therefore account for additional resource consumption, such
as CPU, RAM, storage, and network bandwidth.

When you design your cloud, consider the following factors:

Databases and messaging

The underlying message queue provider might affect the required number of controller services, as
well as the technology to provide highly resilient database functionality. For example, if you use
MariaDB with Galera, the replication of services relies on quorum. Therefore, the underlying
database should consist of at least three nodes to account for the recovery of a failed Galera node.

When you increase the number of nodes to support a software feature, consider both rack space and
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When you increase the number of nodes to support a software feature, consider both rack space and
switch port density.

External caching

Memcached is a distributed memory object caching system, and Redis is a key-value store. Both
systems can be deployed in the cloud to reduce load on the Identity service. For example, the
memcached service caches tokens, and uses a distributed caching system to help reduce some
bottlenecks from the underlying authentication system.
Using memcached or Redis does not affect the overall design of your architecture, because these
services are typically deployed to the infrastructure nodes that provide the OpenStack services.

Load balancing

Although many general-purpose deployments use hardware load balancers to provide highly
available API access and SSL termination, software solutions such as HAProxy can also be
considered. You must ensure that software-defined load balancing implementations are also highly
available.
You can configure software-defined high availability with solutions such as Keepalived or Pacemaker
with Corosync. Pacemaker and Corosync can provide active-active or active-passive highly available
configuration based on the specific service in the OpenStack environment.

These applications might affect the design because they require a deployment with at least two
nodes, where one of the controller nodes can run services in standby mode.

Logging and monitoring

Logs should be stored in a centralized location to make analytics easier. Log data analytics engines
can also provide automation and issue notification with mechanisms to alert and fix common issues.
You can use external logging or monitoring software in addition to the basic OpenStack logs, as long
as the tools support existing software and hardware in your architectural design. The Operational
Tools repository for Red Hat OpenStack Platform includes the following tools:

Fluentd

ElasticSearch

Kibana

3.10. PLANNING TOOL

The Cloud Resource Calculator tool can help you calculate capacity requirements.

To use the tool, enter your hardware details into the spreadsheet. The tool then shows a calculated
estimate of the number of instances available to you, including flavor variations.

IMPORTANT

This tool is provided only for your convenience. It is not officially supported by Red Hat.
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CHAPTER 4. ARCHITECTURE EXAMPLES
This chapter contains references to architecture examples of Red Hat OpenStack Platform
deployments.

NOTE

All architecture examples in this guide assume that you deploy OpenStack Platform on
Red Hat Enterprise Linux 7.3 with the KVM hypervisor.

4.1. OVERVIEW

Typically, deployments are based on performance or functionality. Deployments can also be based on
deployed infrastructure.

Table 4.1. Deployments based on functionality or performance

Example Description

Section 4.2, “General-
Purpose Architecture”

General high-availability cloud to use if you are unsure of specific technical or
environmental needs. This architecture type is flexible, does not emphasize any
single OpenStack component, and is not restricted to specific environments.

Section 4.3.2, “Data
Analytics Architecture”

Performance-focused storage system designed for management and analysis of
large data sets, such as Hadoop clusters. In this architecture type, OpenStack
integrates with Hadoop to manage the Hadoop cluster with Ceph as the storage
back-end.

Section 4.3.3, “High-
Performance Database
Architecture”

High-performance storage system that assumes increased database IO
requirements and utilizes a solid-state drive (SSD) to process data. You can use
this architecture type for existing storage environments.

Section 4.4.2, “Cloud
Storage and Backup
Architecture”

Cloud-based file storage and sharing service, commonly used in OpenStack
deployments. This architecture type uses a cloud backup application, where
incoming data to the cloud traffic is higher than the outgoing data.

Section 4.4.3, “Large-
Scale Web-Application
Architecture”

Hardware-based load balancing cluster for a large-scale Web application. This
architecture type provides SSL-offload functionality and connects to tenant
networks to reduce address consumption and scale the Web application
horizontally.

4.2. GENERAL-PURPOSE ARCHITECTURE

You can deploy a general high availability cloud if you are unsure of specific technical or environmental
needs. This flexible architecture type does not emphasize any single OpenStack component, and it is not
restricted to particular environments.

This architecture type covers 80% of potential use cases, including:

Simple database

Web application runtime environment
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Shared application development environment

Test environment

Environment requiring scale-out additions instead of than scale-up additions

This architecture type is not recommended for cloud domains that require increased security.

NOTE

For installation and deployment documentation, see Chapter 5, Deployment Information.

4.2.1. Example Use Case

An online classified advertising company wants to run web applications that include Apache Tomcat,
Nginx and MariaDB in a private cloud. To meet policy requirements, the cloud infrastructure will run
inside the company data center.

The company has predictable load requirements, but requires scaling to cope with nightly increases in
demand. The current environment does not have the flexibility to align with the company goal of running
an open-source API environment.

The current environment consists of the following components:

Between 120 and 140 installations of Nginx and Tomcat, each with 2 vCPUs and 4 GB of RAM

A three-node MariaDB and Galera cluster, each with 4 vCPUs and 8 GB RAM. Pacemaker is
used to manage the Galera nodes.

The company runs hardware load balancers and multiple web applications that serve the websites.
Environment orchestration uses combinations of scripts and Puppet. The website generates large
amounts of log data every day that need to be archived.

4.2.2. About the Design

The architecture for this example includes three controller nodes and at least eight Compute nodes. It
uses OpenStack Object Storage for static objects and OpenStack Block Storage for all other storage
needs.

To ensure that the OpenStack infrastructure components are highly available, nodes use the
Pacemaker add-on for Red Hat Enterprise Linux together with HAProxy.
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The architecture includes the following components:

Firewall, switches, and hardware load balancers for the public-facing network connections.

OpenStack controller service that run Image, Identity, and Networking, combined with the
support services MariaDB and RabbitMQ. These services are configured for high availability on
at least three controller nodes.

Cloud nodes are configured for high availability with the Pacemaker add-on for Red Hat
Enterprise Linux.

Compute nodes use OpenStack Block Storage for instances that need persistent storage.

OpenStack Object Storage to serve static objects, such as images.

4.2.3. Architecture Components

Component Description

Block Storage Persistant storage for instances.

Compute controller services Compute management and scheduling services that run on the controller.

Dashboard Web console for OpenStack management.
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Identity Basic authentication and authorization for users and tenants.

Image Stores images to be used for booting instances and managing snapshots.

MariaDB Database for all OpenStack components. MariaDB server instances store data
on shared enterprise storage, such as NetApp or Solidfire. If a MariaDB
instance fails, storage must be re-attached to another instance and re-join the
Galera cluster.

Networking Controls hardware load balancers with plug-ins and the Networking API. If you
increase OpenStack Object Storage, you must consider network bandwidth
requirements. It is recommended to run OpenStack Object Storage on
network connections with 10 GbE or higher.

Object Storage Processes and archives logs from the web application servers. You can also
use Object Storage to move static web content from OpenStack Object
Storage containers or to back up images that are managed by OpenStack
Image.

Telemetry Monitoring and reporting for other OpenStack services.

Component Description

4.2.4. Compute Node Requirements

The Compute service is installed on each of the Compute nodes.

This general-purpose architecture can run up to 140 web instances, and the small number of MariaDB
instances requires 292 vCPUs and 584 GB RAM. On a typical 1U server with dual-socket hex-core Intel
CPUs with Hyperthreading, and assuming 2:1 CPU over-commit ratio, this architecture requires eight
Compute nodes.

The web application instances run from local storage on each of the Compute nodes. The web
application instances are stateless, so in case one of the instances fails, the application can continue to
run.

4.2.5. Storage Requirements

For storage, use a scaled-out solution with directly-attached storage in the servers. For example, you
can populate storage in the Compute hosts in a way that is similar to a grid-computing solution, or in
dedicated hosts that provide block storage exclusively.

If you deploy storage in the Compute hosts, ensure that the hardware can handle the storage and
compute services.

4.3. STORAGE-FOCUSED ARCHITECTURES

Section 4.3.1, “Storage-Focused Architecture Types”

Section 4.3.2, “Data Analytics Architecture”

Section 4.3.3, “High-Performance Database Architecture”
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Section 4.3.4, “Storage-Focused Architecture Considerations”

4.3.1. Storage-Focused Architecture Types

The cloud storage model stores data in logical pools on physical storage devices. This architecture is
often referred to as an integrated storage cloud.

Cloud storage commonly refers to a hosted object storage service. However, the term can also include
other types of data storage that are available as a service. OpenStack offers both Block Storage
(cinder) and Object Storage (swift). Cloud storage typically runs on a virtual infrastructure and
resembles broader cloud computing in interface accessibility, elasticity, scalability, multi-tenancy, and
metered resources.

You can use cloud storage services on-premise or off-premises. Cloud storage is highly fault tolerant
with redundancy and data distribution, is highly durable with versioned copies, and can perform
consistent data replication.

Example cloud storage applications include:

Active archive, backups and hierarchical storage management

General content storage and synchronization such as a private DropBox service

Data analytics with parallel file systems

Unstructured data store for services such as social media back-end storage

Persistent block storage

Operating system and application image store

Media streaming

Databases

Content distribution

Cloud storage peering

For more information about OpenStack storage services, see Section 1.2.2, “OpenStack Object Storage
(swift)” and Section 1.2.1, “OpenStack Block Storage (cinder)” .

4.3.2. Data Analytics Architecture

Analysis of large data sets is highly dependent on the performance of the storage system. Parallel file
systems can provide high-performance data processing and are recommended for large scale
performance-focused systems.

NOTE

For installation and deployment documentation, see Chapter 5, Deployment Information.

4.3.2.1. About the Design

OpenStack Data Processing (sahara) integrates with Hadoop to manage the Hadoop cluster inside the
cloud. The following diagram shows an OpenStack store with a high-performance requirement.
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The hardware requirements and configuration are similar to the high-performance architecture
described in Section 4.3.3, “High-Performance Database Architecture”. In this example, the architecture
uses the Ceph Swift-compatible REST interface that connects to a caching pool and enables
acceleration of the available pool.

4.3.2.2. Architecture Components

Component Description

Compute Compute management and scheduling services run on the controller. The Compute service
also runs on each compute node.

Dashboard Web console for OpenStack management.

Identity Basic authentication and authorization functionality.

Image Stores images to be used for booting instances and managing snapshots. This service runs
on the controller and offers a small set of images.

Networking Networking services. For more information about OpenStack Networking, see Chapter 2,
Networking In-Depth.

Telemetry Monitoring and reporting for other OpenStack services. Use this service to monitor
instance usage and adjust project quotas.

Object Storage Stores data with the Hadoop back-end.

Block Storage Stores volumes with the Hadoop back-end.
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Orchestration Manages templates for instances and block storage volume. Use this service to launch
additional instances for storage-intensive processing, with Telemetry for auto-scaling.

Component Description

4.3.2.3. Cloud Requirements

Requirement Description

Performance To boost performance, you can choose specialty solutions to cache disk activity.

Security You must protect data both in transit and at rest.

Storage
proximity

In order to provide high performance or large amounts of storage space, you might need
to attach the storage to each hypervisor or serve it from a central storage device.

4.3.2.4. Design Considerations

In addition to basic design considerations described in Chapter 3, Design, you should also follow the
considerations described in Section 4.3.4, “Storage-Focused Architecture Considerations”.

4.3.3. High-Performance Database Architecture

Database architectures benefit from high performance storage back-ends. Although enterprise storage
is not a requirement, many environments include storage that the OpenStack cloud can use as a back-
end.

You can create a storage pool to provide block devices with OpenStack Block Storage for instances and
object interfaces. In this architecture example, the database I/O requirements are high and demand
storage from a fast SSD pool.

4.3.3.1. About the Design

The storage system uses a LUN backed with a set of SSDs in a traditional storage array, and uses
OpenStack Block Storage integration or a storage platform such as Ceph.

This system can provide additional performance capabilities. In the database example, a portion of the
SSD pool can act as a block device to the database server. In the high performance analytics example,
the inline SSD cache layer accelerates the REST interface.
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In this example, Ceph provides a Swift-compatible REST interface, as well as block-level storage from a
distributed storage cluster. It is highly flexible and enables reduced cost of operations with features such
as self-healing and auto-balancing. Erasure coded pools are recommended to maximize the amount of
usable space.

NOTE

Erasure coded pools require special considerations, such as higher computational
requirements and limitations on which operations are allowed on an object. Erasure coded
pools do not support partial writes.

4.3.3.2. Architecture Components

Component Description

Compute Compute management and scheduling services run on the controller. The Compute service
also runs on each compute node.

Dashboard Web console for OpenStack management.

Identity Basic authentication and authorization functionality.

Image Stores images to be used for booting instances and managing snapshots. This service runs
on the controller and offers a small set of images.
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Networking Networking services. For more information about OpenStack Networking, see Chapter 2,
Networking In-Depth.

Telemetry Monitoring and reporting for other OpenStack services. Use this service to monitor
instance usage and adjust project quotas.

Monitoring Use the Telemetry service to perform metering for the purposes of adjusting project
quotas.

Object Storage Stores data with the Ceph back-end.

Block Storage Stores volumes with the Ceph back-end.

Orchestration Manages templates for instances and block storage volume. Use this service to launch
additional instances for storage-intensive processing, with Telemetry for auto-scaling.

Component Description

4.3.3.3. Hardware Requirements

You can use an SSD cache layer to link block devices directly to hypervisors or to instances. The REST
interface can also use the SSD cache systems as an inline cache.

Component Requirement Network

10 GbE
horizontally
scalable
spine-leaf
back-end
storage and
front-end
network

Storage hardware * 5 storage
servers for
caching
layer 24x1
TB SSD

* 10 storage
servers with
12x4 TB
disks for
each server,
which
equals 480
TB total
space with
approximat
ely 160 TB
of usable
space after
3 replicas

4.3.3.4. Design Considerations

In addition to basic design considerations described in Chapter 3, Design, you should also follow the
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In addition to basic design considerations described in Chapter 3, Design, you should also follow the
considerations described in Section 4.3.4, “Storage-Focused Architecture Considerations”.

4.3.4. Storage-Focused Architecture Considerations

In addition to basic design considerations described in Chapter 3, Design and to storage node design
described in Section 3.3, “Storage Resources”, the following items should be considered for a storage-
intensive architecture.

Connectivity

Ensure the connectivity matches the storage solution requirements. If you select a centralized
storage array, determine how to connect the hypervisors to the array. Connectivity can affect
latency and performance. Confirm that the network characteristics minimize latency to boost the
overall performance of the design.

Density

Instance density. In a storage-focused architecture, instance density and CPU/RAM over-
subscription are lower. You need more hosts to support the anticipated scale, especially if
the design uses dual-socket hardware designs.

Host density. You can address the higher host count with a quad-socket platform. This
platform decreases host density and increases rack count. This configuration affects the
number of power connections and also impacts network and cooling requirements.

Power and cooling. The power and cooling density requirements might be lower with 2U, 3U,
or 4U servers than with blade, sled, or 1U server designs. This configuration is recommended
for data centers with older infrastructure.

Flexibility

Organizations need to have the flexibility to choose between off-premise and on-premise cloud
storage options. For example, continuity of operations, disaster recovery, security, and records
retention laws, regulations, and policies can impact the cost-effectiveness of the storage provider.

Latency

Solid-state drives (SSDs) can minimize latency for instance storage and reduce CPU delays that
storage latency might cause. Evaluate the gains from using RAID controller cards in compute hosts
to improve the performance of the underlying disk sub-system.

Monitors and alerts

Monitoring and alerting services are critical in cloud environments with high demands on storage
resources. These services provide a real-time view into the health and performance of the storage
systems. An integrated management console, or other dashboards that visualize SNMP data, helps
to discover and resolve issues with the storage cluster.
A storage-focused cloud design should include:

Monitoring of physical hardware and environmental resources, such as temperature and
humidity.

Monitoring of storage resources, such as available storage, memory, and CPU.

Monitoring of advanced storage performance data to ensure that storage systems are
performing as expected.

Monitoring of network resources for service disruptions which affect access to storage.

Centralized log collection and log-analytics capabilities.
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Ticketing system, or integration with a ticketing system, to track issues.

Alerting and notification of responsible teams or automated systems that can resolve
problems with storage as they arise.

Network Operations Center (NOC) staffed and always available to resolve issues.

Scaling

A storage-focused OpenStack architecture should focus on scaling up instead of scaling out. You
should determine whether a smaller number of larger hosts or a larger number of smaller hosts based
on factors such as cost, power, cooling, physical rack and floor space, support-warranty, and
manageability.

4.4. NETWORK-FOCUSED ARCHITECTURES

Section 4.4.1, “Network-Focused Architecture Types”

Section 4.4.2, “Cloud Storage and Backup Architecture”

Section 4.4.3, “Large-Scale Web-Application Architecture”

Section 4.4.4, “Network-Focused Architecture Considerations”

4.4.1. Network-Focused Architecture Types

All OpenStack deployments depend on network communication to function properly because of their
service-based nature. However, in some cases the network configuration is more critical and requires
additional design considerations.

The following table describes common network-focused architectures. These architectures depend on a
reliable network infrastructure and on services that satisfy user and application requirements.

Architecture Description

Big data Clouds used for the management and collection of big data create significant demand on
network resources. Big data often uses partial replicas of the data to maintain integrity
over large distributed clouds. Big data applications that require a large amount of network
resources include Hadoop, Cassandra, NuoDB, Riak, or other NoSQL and distributed
databases.

Content
delivery
network (CDN)

CDNs can be used to stream video, view photographs, host web conferences, or access
any distributed cloud-based data repository by a large number of end-users. Network
configuration affects latency, bandwidth, and distribution of instances. Other factors that
affect content deliver and performance include network throughput of back-end systems,
resource locations, WAN architecture, and cache methodology.

High availability
(HA)

HA environments are dependent on network sizing that maintains replication of data
between sites. If one site becomes unavailable, additional sites can serve the increased load
until the original site returns to service. It is important to size network capacity to handle
the additional loads.
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High
performance
computing
(HPC)

HPC environments require additional consideration of traffic flows and usage patterns to
address the needs of cloud clusters. HPC has high east-west traffic patterns for distributed
computing within the network, but can also have substantial north-south traffic in and out
of the network, depending on the application.

High-speed or
high-volume
transactional
systems

These application types are sensitive to network jitter and latency. Example environments
include financial systems, credit card transaction applications, and trading systems. These
architectures must balance a high volume of east-west traffic with north-south traffic to
maximize data delivery efficiency. Many of these systems must access large, high-
performance database back-ends.

Network
management
functions

Environments that support delivery of back-end network services such as DNS, NTP, or
SNMP. You can use these services for internal network management.

Network
service
offerings

Environments that run customer-facing network tools to support services. Examples
include VPNs, MPLS private networks, and GRE tunnels.

Virtual desktop
infrastructure
(VDI)

VDI systems are sensitive to network congestion, latency, and jitter. VDI requires upstream
and downstream traffic, and cannot rely on caching to deliver the application to the end-
user.

Voice over IP
(VoIP)

VoIP systems are sensitive to network congestion, latency, and jitter. VoIP system have
symmetrical traffic patterns and require network quality of service (QoS) for best
performance. In addition, you can implement active queue management to deliver voice
and multimedia content. Users are sensitive to latency and jitter fluctuations and can
detect them at very low levels.

Video or web
conference

Conferencing systems are sensitive to network congestion, latency, and jitter. Video
conferencing systems have symmetrical traffic pattern, but if the network is not hosted on
an MPLS private network, the system cannot use network quality of service (QoS) to
improve performance. Similar to VoIP, users of these system notice network performance
problems even at low levels.

Web portals or
services

Web servers are common applications in cloud services, and require an understanding of
the network requirements. The network must scale out to meet user demand and to deliver
web pages with minimum latency. Depending on the details of the portal architecture, you
should consider the internal east-west and north-south network bandwidth when you plan
the architecture.

Architecture Description

4.4.2. Cloud Storage and Backup Architecture

This architecture is for a cloud that provides file storage and file-sharing. You might consider this a
storage-focused use case, but the network-side requirements make it a network-focused use case.

NOTE

For installation and deployment documentation, see Chapter 5, Deployment Information.
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4.4.2.1. About the Design

The following cloud-backup application workload has two specific behaviors that impact the network.

Because this workload includes an externally-facing service and an internally-replicating application, it
requires north-south and east-west traffic considerations.

North-south traffic

North-south traffic consists of data that moves in and out of the cloud. When a user uploads and
stores content, that content moves southbound into the OpenStack environment. When users
download content, that content moves northbound out of the OpenStack environment.
Because this service operates primarily as a backup service, most of the traffic moves southbound
into the environment. In this situation, you should configure a network to be asymmetrically
downstream, because the traffic that enters the OpenStack environment is greater than the traffic
that leaves the environment.

East-west traffic

East-west traffic consists of data that moves inside the environment. This traffic is likely to be fully
symmetric, because replication originates from any node and might target multiple nodes
algorithmically. However, this traffic might interfere with north-south traffic.

4.4.2.2. Architecture Components

Component Description

Compute Compute management and scheduling services run on the controller. The Compute service
also runs on each compute node.

Dashboard Web console for OpenStack management.

Identity Basic authentication and authorization functionality.
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Image Stores images to be used for booting instances and managing snapshots. This service runs
on the controller and offers a small set of images.

Networking Networking services. For more information about OpenStack Networking, see Chapter 2,
Networking In-Depth.

Object Storage Stores backup content.

Telemetry Monitoring and reporting for other OpenStack services.

Component Description

4.4.2.3. Design Considerations

In addition to basic design considerations described in Chapter 3, Design, you should also follow the
considerations described in Section 4.4.4, “Network-Focused Architecture Considerations”.

4.4.3. Large-Scale Web-Application Architecture

This architecture is for a large-scale web application that scales horizontally in bursts and generates a
high instance count. The application requires an SSL connection to secure data and must not lose
connection to individual servers.

NOTE

For installation and deployment documentation, see Chapter 5, Deployment Information.

4.4.3.1. About the Design

The following diagram shows an example design for this workload.
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This design includes the following components and workflows:

Hardware load balancer provides SSL offload functionality and connects to tenant networks to
reduce address consumption.

The load balancer links to the routing architecture while it services the virtual IP (VIP) for the
application.

The router and the load balancer use the GRE tunnel ID of the application tenant network, and
an IP address that is located in the tenant subnet but outside of the address pool. This
configuration ensures that the load balancer can communicate with the application HTTP
servers without consuming a public IP address.

4.4.3.2. Architecture Components

A web service architecture can consist of many options and optional components. Therefore, this
architecture can be used in multiple OpenStack designs. However, some key components must be
deployed to handle most web-scale workloads.

Component Description

Compute Compute management and scheduling services run on the controller. The Compute service
also runs on each compute node.

Dashboard Web console for OpenStack management.

Identity Basic authentication and authorization functionality.
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Image Stores images to be used for booting instances and managing snapshots. This service runs
on the controller and offers a small set of images.

Networking Networking services. A split network configuration is compatible with databases that reside
on private tenant networks, because the databases do not emit a large quantity of
broadcast traffic and might need to interconnect to other databases for content.

Orchestration Manages instance templates to use when scaling out and during traffic bursts.

Telemetry Monitoring and reporting for other OpenStack services. Use this service to monitor
instance usage and invoke instance templates from the Orchestration service.

Object Storage Stores backup content.

Component Description

4.4.3.3. Design Considerations

In addition to basic design considerations described in Chapter 3, Design, you should also follow the
considerations described in Section 4.4.4, “Network-Focused Architecture Considerations”.

4.4.4. Network-Focused Architecture Considerations

In addition to basic design considerations described in Chapter 3, Design and to network node design
described in Chapter 2, Networking In-Depth, the following items should be considered for a network-
intensive architecture.

External dependencies

Consider using the following external network components:

Hardware load balancers to distribute workloads or off-load certain functions

External devices to implement dynamic routing

Although OpenStack Networking provides a tunneling feature, it is restricted to networking-
managed regions. To extend a tunnel beyond the OpenStack regions to another region or to an
external system, implement the tunnel outside OpenStack or use a tunnel-management system to
map the tunnel or the overlay to an external tunnel.

Maximum transmission unit (MTU)

Some workloads require a larger MTU due to the transfer of large blocks of data. When providing
network service for applications such as video streaming or storage replication, configure the
OpenStack hardware nodes and the supporting network equipment for jumbo frames wherever
possible. This configuration maximizes available bandwidth usage.
Configure jumbo frames across the entire path that the packets traverse. If one network component
cannot handle jumbo frames, the entire path reverts to the default MTU.

NAT usage

If you need floating IPs instead of fixed public IPs, you must use NAT. For example, use a DHCP relay
mapped to the DHCP server IP. In this case, it is easier to automate the infrastructure to apply the
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target IP to a new instance, instead of reconfiguring legacy or external systems for each new
instance.
The NAT for floating IPs that is managed by OpenStack Networking resides in the hypervisor.
However, other versions of NAT might be running elsewhere. If there is a shortage of IPv4 addresses,
you can use the following methods to mitigate the shortage outside of OpenStack:

Run a load balancer in OpenStack as an instance or externally as a service. The OpenStack
Load-Balancer-as-a-Service (LBaaS) can manage load balancing software such as HAproxy
internally. This service manages the Virtual IP (VIP) addresses while a dual-homed
connection from the HAproxy instance connects the public network with the tenant private
network that hosts all content servers.

Use a load balancer to serve the VIP and also connect to the tenant overlay network with
external methods or private addresses.

In some cases it may be desirable to use only IPv6 addresses on instances and operate either an
instance or an external service to provide a NAT-based transition technology such as NAT64 and
DNS64. This configuration provides a globally-routable IPv6 address, while consuming IPv4
addresses only as necessary.

Quality of Service (QoS)

QoS impacts network-intensive workloads because it provides instant service to packets with high
priority because of poor network performance. In applications such as Voice over IP (VoIP),
differentiated service code points are usually required for continued operation.
You can also use QoS for mixed workloads to prevent low-priority, high-bandwidth applications such
as backup services, video conferencing, or file sharing, from blocking bandwidth that is needed for
the continued operation of other workloads.

You can tag file-storage traffic as lower class traffic, such as best effort or scavenger, to allow
higher-priority traffic to move through the network. In cases where regions in a cloud are
geographically distributed, you might also use WAN optimization to reduce latency or packet loss.

Workloads

The routing and switching architecture should accommodate workdloads that require network-level
redundancy. The configuration depends on your selected network hardware, on the selected
hardware performance, and on your networking model. Examples include Link Aggregation (LAG)
and Hot Standby Router Protocol (HSRP).
The workload also impacta the effectiveness of overlay networks. If application network connections
are small, short lived, or bursty, running a dynamic overlay can generate as much bandwidth as the
packets the network carries. Overlay can also induce enough latency to cause issues with the
hypervisor, which causes performance degradation on packet-per-second and connection-per-
second rates.

By default, overlays include a secondary full-mesh option that depends on the workload. For
example, most web services applications do not have major issues with a full-mesh overlay network,
and some network monitoring tools or storage replication workloads have performance issues with
throughput or excessive broadcast traffic.
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CHAPTER 5. DEPLOYMENT INFORMATION
The following table includes deployment references for components mentioned in this guide.

Additional manuals for Red Hat OpenStack Platform can be found here: Red Hat OpenStack Platform
Documentation Suite.

Component Reference

Red Hat Enterprise Linux Red Hat OpenStack Platform is supported on Red Hat Enterprise Linux 7.3.
For information on installing Red Hat Enterprise Linux, see the corresponding
installation guide at: Red Hat Enterprise Linux Documentation Suite.

OpenStack To install OpenStack components and their dependencies, use the Red Hat
OpenStack Platform director. The director uses a basic OpenStack
undercloud, which is then used to provision and manage the OpenStack nodes
in the final overcloud.

Be aware that you will need one extra host machine for the installation of the
undercloud, in addition to the environment necessary for the deployed
overcloud. For detailed instructions, see Red Hat OpenStack Platform
Director Installation and Usage.

High Availability For the configuration of additional high availability components (for example,
HAProxy), see Deploying Highly Available Red Hat OpenStack Platform 6 with
Ceph Storage.

For information about configuring live migration, see Managing Instances and
Images.

LBasS To use Load Balancing-as-a-Service, see Configuring Load Balancing-as-a-
Service in the Networking Guide.

Pacemaker Pacemaker is integrated into Red Hat Enterprise Linux as an add-on. To set
up Red Hat Enterprise Linux for high availability, see the High Availability Add-
on Overview.
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