& RedHat

Red Hat JBoss Middleware for
OpenShift 3

Red Hat Java S2I for OpenShift

Using Red Hat Java S2I for OpenShift

Last Updated: 2020-01-18

Red Hat JBoss Middleware for OpenShift 3 Red Hat Java S2I for
OpenShift

Using Red Hat Java S2I for OpenShift

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Guide to using the Red Hat Java S2I for OpenShift

Table of Contents

Table of Contents

CHAPTER L INTRODUCTION .ottt ittt ettt et e eaee e eeanneeeesaannneesesennnneesennnns 3
1.1. WHAT IS RED HAT JAVA S2I FOR OPENSHIFT 3
CHAPTER 2. BEFORE YOU BEGIN ...ttt ettt eeeinteeeeennneeeeeeannneesesannnneesennn 4
2.1 INITIAL SETUP 4
2.2. VERSION COMPATIBILITY AND SUPPORT 4
CHAPTER 3. GET ST ARTED ..ottt ettt ettt et eaee s e eaneeeesaannneesesennnneesennnns 5
3.1. SOURCE TO IMAGE (S2I) BUILD 5
3.2. BINARY BUILDS 5
3.3. BUILD USING THE WEB CONSOLE 9
CHAPTER 4. TUT O RIALS ..ttt ettt et ettt et e e ee e eaneeeesaannneeessennnneesennns 12

4.1. EXAMPLE WORKFLOW: USING MAVEN TO BUILD AND RUN UBER JAR ON JAVA S2I FOR OPENSHIFT
IMAGE 12
4.1.1. Prepare for Deployment 12
4.1.2. Deployment 13
4.1.3. Post-Deployment 13
4.1.3.1. Creating a Route 13

4.2. EXAMPLE WORKFLOW: REMOTE DEBUGGING A JAVA APPLICATION RUNNING ON JAVA S2I FOR

OPENSHIFT IMAGE 13
4.2.1. Prepare for Deployment 14
4.2.2. Deployment 14
4.2.2.1. Enabling Remote Debugging for a New Application 14
4.2.2.2. Enabling Remote Debugging for an Existing Application 14
4.2.2.3. Connect Local Debugging Port to a Port on the Pod 14
4.2.3. Post-Deployment 15
4.3. EXAMPLE WORKFLOW: RUNNING FLAT CLASSPATH JAR ON JAVA S2I FOR OPENSHIFT 16
4.3.1. Prepare for Deployment 16
4.3.2. Deployment 16
4.3.3. Post Deployment 17
CHAPTER G, REFEREN CE ...ttt ettt ettt e et eaneeeeseannaeeeesannnneesennns 18
5.1. VERSION DETAILS 18
5.2. INFORMATION ENVIRONMENT VARIABLES 18
5.3. CONFIGURATION ENVIRONMENT VARIABLES 19
5.4. EXPOSED PORTS 24
5.5. CONFIGURING MAVEN SETTINGS 25
5.5.1. Default Maven Settings with Maven Arguments 25
5.5.2. Providing Custom Maven Settings 25

Red Hat JBoss Middleware for OpenShift 3 Red Hat Java S2I for OpenShift

CHAPTER 1. INTRODUCTION

CHAPTER 1. INTRODUCTION

1.1. WHAT IS RED HAT JAVA S2I FOR OPENSHIFT

OpenShift Container Platform provides an S2I (Source-to-Image) process to build and run applications
where one can attach an application’s source code on top of a builder image (a technology image such
as JBoss EAP). S2I process builds your application first and then layers it on top of the builder image to
create an application image. After the build is complete, the application image is pushed to the
Integrated registry inside OpenShift or to a standalone registry.

Red Hat Java S2I for OpenShift is a Source-to-Image (S2I) builder image designed for use with

OpenShift. It allows users to build and run plain Java applications (fat-jar and flat classpath) within a
containerized image on OpenShift.

NOTE

The Red Hat Java S2I for OpenShift image is only supported on OpenShift Container
Platforms 3.6 and 3.5.

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.4/html/architecture/infrastructure-components#integrated-openshift-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.4/html/installation_and_configuration/installing-a-cluster#install-config-installing-stand-alone-registry

Red Hat JBoss Middleware for OpenShift 3 Red Hat Java S2I for OpenShift

CHAPTER 2. BEFORE YOU BEGIN

2.1.INITIAL SETUP

The instructions in this guide follow on from and assume an OpenShift instance similar to that created in
the OpenShift Primer.

2.2. VERSION COMPATIBILITY AND SUPPORT

See the xPaaS part of the OpenShift and Atomic Platform Tested Integrations page for details about
OpenShift image version compatibility.

https://access.redhat.com/documentation/en/red-hat-jboss-middleware-for-openshift/3/paged/openshift-primer/
https://access.redhat.com/articles/2176281

CHAPTER 3. GET STARTED

CHAPTER 3. GET STARTED

This section describes some of the ways you can use the Java S2| for OpenShift image to run your
custom java applications on OpenShift.

3.1. SOURCE TO IMAGE (S2I) BUILD
To run and configure the Java S2I for OpenShift image, use the OpenShift S2I process.
The S2I process for the Java S2I for OpenShift image works as follows:

1. Loginto the OpenShift instance by running the following command and providing credentials.
I $ oc login

2. Create a new project.
I $ oc new-project <project-name>

3. Create a new application using the Java S2I for OpenShift image. <source-location> can be the
URL of a git repository or a path to a local folder.

I $ oc new-app redhat-openjdk18-openshift~<source-location>
4. Get the service name.
I $ oc get service

5. Expose the service as a route to be able to use it from the browser. <service-name> is the value
of NAME field from previous command output.

I $ oc expose svc/<service-names --port=8080

6. Get the route.

I $ oc get route

7. Access the application in your browser using the URL (value of HOST/PORT field from previous
command output).

3.2. BINARY BUILDS
To deploy existing applications on OpenShift, you can use the binary source capability.
Prerequisite:

A. Get the JAR application archive or build the application locally.
The example below uses the undertow-servlet quickstart.

® Clone the source code.

I $ git clone https://github.com/jboss-openshift/openshift-quickstarts.git

https://docs.openshift.com/container-platform/latest/dev_guide/builds/build_inputs.html#binary-source
https://github.com/jboss-openshift/openshift-quickstarts/tree/master/undertow-servlet
https://github.com/jboss-openshift/openshift-quickstarts.git

Red Hat JBoss Middleware for OpenShift 3 Red Hat Java S2I for OpenShift

® Configure the Red Hat JBoss Middleware Maven repository .

® Build the application.

I $ cd openshift-quickstarts/undertow-servlet/

$ mvn clean package
[INFO] Scanning for projects...

[INFQO]
[INFQO]
[INFQO] Building Undertow Servlet Example 1.0.0.Final
[INFQO]

[INFO]
[INFO] BUILD SUCCESS
[INFO]
[INFO] Total time: 1.986 s

[INFQO] Finished at: 2017-06-27T16:43:07+02:00
[INFO] Final Memory: 19M/281M

[INFO]

B. Prepare the directory structure on the local file system.
Application archives in the deployments/ subdirectory of the main binary build directory are
copied directly to the standard deployments folder of the image being built on OpenShift. For
the application to deploy, the directory hierarchy containing the web application data must be
correctly structured.

Create main directory for the binary build on the local file system and deployments/
subdirectory within it. Copy the previously built JAR archive to the deployments/ subdirectory:

undertow-servlet]$ Is
dependency-reduced-pom.xml pom.xml README src target

I $ mkdir -p ocp/deployments

I $ cp target/undertow-servlet.jar ocp/deployments/

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/development_guide/#use_the_maven_repository
https://access.redhat.com/maven-repository

CHAPTER 3. GET STARTED

NOTE

Location of the standard deployments directory depends on the underlying base
image, that was used to deploy the application. See the following table:

Table 3.1. Standard Location of the Deployments Directory

Name of the Underlying Base Image(s) Standard Location of the Deployments

Directory

EAP for OpenShift 6.4 and 7.0 $JBOSS_HOME/standalone/deployme
nts

Java S2I for OpenShift /deployments

JWS for OpenShift $JWS_HOME/webapps

Perform the following steps to run application consisting of binary input on OpenShift:

1. Loginto the OpenShift instance by running the following command and providing credentials.
I $ oc login

2. Create a new project.
I $ oc new-project jdk-bin-demo

3. (Optional) Identify the image stream for the particular image.

$ oc get is -n openshift | grep *redhat-openjdk | cut -f1 -d "'
redhat-openjdki8-openshift

4. Create new binary build, specifying image stream and application name.

$ oc new-build --binary=true \

--name=jdk-us-app \

--image-stream=redhat-openjdk18-openshift

--> Found image c1f5b31 (2 months old) in image stream "openshift/redhat-openjdki8-
openshift" under tag "latest" for "redhat-openjdk18-openshift"

Java Applications
Platformfor -building and running plain Java applications (fat-jar and flat classpath)
Tags: builder, java
* A source build using binary input will be created
* The resulting image will be pushed to image stream "jdk-us-app:latest"

* A binary build was created, use 'start-build --from-dir' to trigger a new build

--> Creating resources with label build=jdk-us-app ...

Red Hat JBoss Middleware for OpenShift 3 Red Hat Java S2I for OpenShift

imagestream "jdk-us-app" created
buildconfig "jdk-us-app" created
--> Success

5. Start the binary build. Instruct oc executable to use main directory of the binary build we
created in previous step as the directory containing binary input for the OpenShift build.

$ oc start-build jdk-us-app --from-dir=./ocp --follow
Uploading directory "ocp" as binary input for the build ...
build "jdk-us-app-1" started

Receiving source from STDIN as archive ...

Starting S2I Java Build

S2I source build with plain binaries detected

Copying binaries from /tmp/src/deployments to /deployments ...
... done

Pushing image 172.30.197.203:5000/jdk-bin-demo/jdk-us-app:latest ...
Pushed 0/6 layers, 2% complete

Pushed 1/6 layers, 24% complete

Pushed 2/6 layers, 36% complete

Pushed 3/6 layers, 54% complete

Pushed 4/6 layers, 71% complete

Pushed 5/6 layers, 95% complete

Pushed 6/6 layers, 100% complete

Push successful

6. Create a new OpenShift application based on the build.

$ oc new-app jdk-us-app
--> Found image 66f4e0b (About a minute old) in image stream "jdk-bin-demo/jdk-us-app"
under tag "latest" for "jdk-us-app"

jdk-bin-demo/jdk-us-app-1:c1dbfb7a

Platform for building and running plain Java applications (fat-jar and flat classpath)
Tags: builder, java

* This image will be deployed in deployment config "jdk-us-app"
* Ports 8080/tcp, 8443/tcp, 8778/tcp will be load balanced by service "jdk-us-app"
* Other containers can access this service through the hostname "jdk-us-app"

--> Creating resources ...
deploymentconfig "jdk-us-app" created
service "jdk-us-app" created

--> Success
Run 'oc status' to view your app.

7. Expose the service as route.

$ oc get svc -0 name
service/jdk-us-app

CHAPTER 3. GET STARTED

$ oc expose svc/jdk-us-app
route "jdk-us-app" exposed

8. Access the application.
Access the application in your browser using the URL http://jdk-us-app-jdk-bin-
demo.openshift.example.com/.

3.3. BUILD USING THE WEB CONSOLE

Configure and deploy your java application using an application template from the OpenShift web
console.

1. Log in to the OpenShift web console.

RED HAT
OPENSHIFT

Container Platicom

OPENSHIFT CONTAINER PLATFORM

welcome to the Openshift Container Platform

2. Click on New Project, enter the details for Name, Display Name and Description fields, and
then click Create.

OPENSHIFT CONTAINER PLATFORM

Jenkins Image

Red Hat JBoss Middleware for OpenShift 3 Red Hat Java S2I for OpenShift

3. Click on the Filter by name or descriptiontext field and type jdk to list matching templates.
Click Select on the openjdk18-web-basic-s2i template.

OPENSHIFT CONTAIMER PLATFO

Add 1o Project

wse Catalog Deploy Image Import YAML / JSON

Chaase from web framessorks, databases, and other components to add content 10 YOUur project.

Languages

Technologles

4. Leave the default values, scroll to the bottom of the page and click Create. Then click Continue
to Overview.

OPENSHIFT CONTAINER PLATI

epenjdkl§-web-basic-s2i

openjdk18-web-basic-s2i
Application template for Java applications built using 521

Mamespace: java-s2i-example
versian: 1.0.0

Mages
@ openzhiftiredhat-openjdk1E-openshift: 0

@ openjpdk-appilatest

Parameters

* Application Nama

openjdk-app

Custom http Route Hostname

* Git Repository URL

hirtosv/eithub.comfiboss-openshififopenshifi-auickstars

5. Wait for the build to finish. Once the application pod is running, access the application in your
browser by clicking on the listed link (route).

10

&=

= Image: [av

= Ports EOROTCR | 84427

CHAPTER 3. GET STARTED

1

Red Hat JBoss Middleware for OpenShift 3 Red Hat Java S2I for OpenShift

CHAPTER 4. TUTORIALS

4.1. EXAMPLE WORKFLOW: USING MAVEN TO BUILD AND RUN UBER
JAR ON JAVA S2I FOR OPENSHIFT IMAGE

This tutorial focuses on building and running Maven applications on OpenShift using the Java S2I for
OpenShift image.

4.1.1. Prepare for Deployment
1. Login to the OpenShift instance by running following command and providing credentials.
I $ oc login
2. Create a new project.
I $ oc new-project js2i-demo
3. Create a service account to be used for this deployment.

I $ oc create serviceaccount js2i-service-account

4. Add the view role to the service account. This enables the service account to view all the
resources in the js2i-demo namespace, which is necessary for managing the cluster.

I $ oc policy add-role-to-user view system:serviceaccount:js2i-demo:js2i-service-account

5. Generate a self-signed certificate keystore. This example uses ‘keytool’, a package included with
the Java Development Kit, to generate dummy credentials for use with the keystore:

I $ keytool -genkey -keyalg RSA -alias selfsigned -keystore keystore.jks -validity 360 -keysize
2048

NOTE

OpenShift does not permit login authentication from self-signed certificates. For
demonstration purposes, this example uses ‘openss|’ to generate a CA certificate
to sign the SSL keystore and create a truststore. This truststore is also included
in the creation of the secret, and specified in the SSO template.

' WARNING
A For production environments, its recommended that you use your own SSL

certificate purchased from a verified Certificate Authority (CA) for SSL-
encrypted connections (HTTPS).

12

CHAPTER 4. TUTORIALS

6. Use the generated keystore file to create the secret.

I $ oc secrets new js2i-app-secret keystore.jks

7. Add the secret to the service account created earlier.

I $ oc secrets link js2i-service-account js2i-app-secret

4.1.2. Deployment

1. Create a new application using the Java S2I for OpenShift image and Java source code.

$ oc new-app redhat-openjdk18-openshift~https://github.com/jboss-openshift/openshift-
quickstarts.git --context-dir=undertow-servlet

2. View the Maven build logs for the example repository by running the following command:

I $ oc logs -f bc/openshift-quickstarts

4.1.3. Post-Deployment

4.1.3.1. Creating a Route

After deployment is finished create a route for the application so that clients outside of OpenShift can
connect using SSL.

1. Create aroute.

I $ oc create route edge --service=openshift-quickstarts
2. Getroute.

I $ oc get route

3. Access the application in your browser using the URL (value of HOST/PORT field from previous
command output).

4. Optionally, you can also scale up the application instance by running the following command:

I $ oc scale dc js2i-demo --replicas=3

4.2. EXAMPLE WORKFLOW: REMOTE DEBUGGING A JAVA
APPLICATION RUNNING ON JAVA S21 FOR OPENSHIFT IMAGE

This tutorial describes remote debugging of a Java application deployed on OpenShift using the Java
S2I for OpenShift image. The capability can be enabled by setting the value of the environment
variables JAVA_DEBUG to true and JAVA_DEBUG_PORT to 9009, respectively.

13

Red Hat JBoss Middleware for OpenShift 3 Red Hat Java S2I for OpenShift

NOTE

If the JAVA_DEBUG variable is set to true and no value is provided for the
JAVA_DEBUG_PORT variable, JAVA_DEBUG_PORT is set to 5005 by default.

4.2.1. Prepare for Deployment
1. Login to the OpenShift instance by running following command and providing credentials.
I $ oc login
2. Create a new project:

I $ oc new-project js2i-remote-debug-demo

4.2.2. Deployment

4.2.2.1. Enabling Remote Debugging for a New Application

1. Create a new application using the Java S2| for OpenShift image and example Java source
code. Ensure that JAVA_DEBUG and JAVA_DEBUG_PORT environment variables are set
properly when creating the application.

$ oc new-app redhat-openjdk18-openshift~https://github.com/jboss-openshift/openshift-
quickstarts.git \

--context-dir=undertow-servlet \

-e JAVA DEBUG=true \

-e JAVA_DEBUG_PORT=9009

Proceed to Connect local debugging port to a port on the pod .
4.2.2.2. Enabling Remote Debugging for an Existing Application
1. Switch to the appropriate OpenShift project.
I $ oc project js2i-remote-debug-demo
2. Retrieve the name of the deployment config.

$ oc get dc -0 name
deploymentconfig/openshift-quickstarts

3. Edit the deployment config with the proper setting of JAVA_DEBUG and
JAVA_DEBUG_PORT variables.

I $ oc env dc/openshift-quickstarts -e JAVA_DEBUG=true -e JAVA_DEBUG_PORT=9009

Proceed to Connect local debugging port to a port on the pod .

4.2.2.3. Connect Local Debugging Port to a Port on the Pod

1. Get the name of the pod running the application.

14

CHAPTER 4. TUTORIALS

$ oc get pods

NAME READY STATUS RESTARTS AGE
openshift-quickstarts-1-1tuymm 1/1 Running 0 3m
openshift-quickstarts-1-build 0/1 Completed 0 6m

2. Use the OpenShift / Kubernetes port forwarding feature to listen on a local port and forward to
a port on the OpenShift pod.

$ oc port-forward openshift-quickstarts-1-1uymm 5005:9009
Forwarding from 127.0.0.1:5005 -> 9009
Forwarding from [::1]:5005 -> 9009

NOTE

In the preceding example, 5005 is the port number on the local system, while 9009 is the
remote port number of the OpenShift pod running the Java S2I for OpenShift image.
Therefore, future debugging connections made to local port 5005 are forwarded to port
9009 of the OpenShift pod, running the Java Virtual Machine (JVM).

4.2.3. Post-Deployment

1. Attach the debugger on the local system to the remote JVM running on the Java S2I for
OpenShift image using the following command:

$ jdb -attach 5005

Set uncaught java.lang.Throwable

Set deferred uncaught java.lang.Throwable
Initializing jdb ...

>

NOTE

Once the local debugger to the remote OpenShift pod debugging connection is
initiated, an entry similar to Handling connection for 5005 is shown in the
console where the previous oc port-forward command was issued.

2. Debug the application.

$ jdb -attach 5005
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable

Initializing jdb ...
> threads
Group system:
(java.lang.ref.Reference$ReferenceHandler)0x79e Reference Handler cond. waiting
(java.lang.ref.Finalizer$FinalizerThread)0x79f Finalizer cond. waiting
(java.lang.Thread)0x7a0 Signal Dispatcher running
Group main:
(java.util. TimerThread)0x7a2 server-timer cond. waiting
(org.jolokia.jvmagent.CleanupThread)0x7a3 Jolokia Agent Cleanup Thread cond.
waiting
(org.xnio.nio.WorkerThread)0x7a4 XNIO-1 I/O-1 running

15

Red Hat JBoss Middleware for OpenShift 3 Red Hat Java S2I for OpenShift

org.xnio.nio.WorkerThread)0x7a5

org.xnio.nio.WorkerThread)0x7a6

org.xnio.nio.WorkerThread)0x7a7

java.lang.Thread)0x7a8

Group jolokia:
(java.lang.Thread)Ox7aa

>

A~ o~~~

NOTE

XNIO-1 1/0-2 running

XNIO-1 I/0-3 running

XNIO-1 Accept running
DestroydavaVM running
Thread-3 running

For more information on connecting the IDE debugger of the Red Hat JBoss
Developer Studio to the OpenShift pod running the Java S2I for OpenShift
image, refer to Configuring and Connecting the IDE Debugger.

4.3. EXAMPLE WORKFLOW: RUNNING FLAT CLASSPATH JAR ON

JAVA S2| FOR OPENSHIFT

This tutorial describes the process of running flat classpath java applications on Java S2I for OpenShift.

4.3.1. Prepare for Deployment

1. Login to the OpenShift instance by running following command and providing credentials.

I $ oc login

2. Create a new project.

I $ oc new-project js2i-flatclasspath-demo

4.3.2. Deployment

1. Create a new application using the Java S2I for OpenShift image and Java source code.

$ oc new-app redhat-openjdk18-openshift~https://github.com/jboss-openshift/openshift-
quickstarts.git --context-dir=undertow-servlet

2. Retrieve the name of the build config.

$ oc get bc -0 name
buildconfig/openshift-quickstarts

3. Edit the build config by specifying values for the JAVA_MAIN_CLASS, MAVEN_ARGS,
ARTIFACT_COPY_ARGS, JAVA LIB_DIR, JAVA_APP_JAR, and JAVA_APP_DIR

environment variables.

$ oc env bc/openshift-quickstarts \

-e JAVA_MAIN_CLASS=org.openshift.quickstarts.undertow.servlet.ServletServer \
-e MAVEN_ARGS="package -P flat-classpath-jar -Dcom.redhat.xpaas.repo.redhatga” \
-e ARTIFACT_COPY_ARGS="-r lib *.jar" \

-e JAVA_LIB_DIR=lib\

-e JAVA_APP_JAR=undertow-servlet.jar \

-e JAVA_APP_DIR=/deployments

16

https://access.redhat.com/documentation/en/red-hat-jboss-developer-studio/10.2/single/getting-started-with-container-and-cloud-based-development/#idedebugger

CHAPTER 4. TUTORIALS

4. Rebuild the application using the updated build config.

I $ oc start-build openshift-quickstarts --follow

NOTE

The --follow tag retrieves the build logs and shows them in the console.

4.3.3. Post Deployment
1. Get the service name.
I $ oc get service
2. Expose the service as a route to be able to use it from the browser.
I $ oc expose svc/openshift-quickstarts --port=8080
3. Get the route.

I $ oc get route

4. Access the application in your browser using the URL (value of HOST/PORT field from previous
command output).

17

Red Hat JBoss Middleware for OpenShift 3 Red Hat Java S2I for OpenShift

CHAPTER 5. REFERENCE

5.1. VERSION DETAILS

The table below lists versions of technologies used in this image.

Table 5.1. Technologies used and their version

Technology Version

OpenJdDK 8
Jolokia 13.5
Maven 3.3.9-2.8

5.2. INFORMATION ENVIRONMENT VARIABLES

The following information environment variables are designed to convey information about the image
and should not be modified by the user:

Table 5.2. Information Environment Variables

Variable Name Description Example Value
HOME - /home/jboss
JAVA_DATA_DIR - /deployments/data
JAVA_HOME - /usr/lib/jvm/java-1.8.0
JAVA_VENDOR - openjdk
JAVA_VERSION - 18.0
JBOSS_IMAGE_NAME Image name, same as Name label redhat-openjdk-18/openjdki8-
openshift

JBOSS_IMAGE_RELEASE Image release, same as Release 2

label.
JBOSS_IMAGE_VERSION Image version, same as Version 1.0

label.
JOLOKIA_VERSION - 135
MAVEN_VERSION - 3.3.9-2.8.el7

18

Variable Name

PATH

Description

CHAPTER 5. REFERENCE

Example Value

$PATH:"/usr/local/s2i"

5.3. CONFIGURATION ENVIRONMENT VARIABLES

Configuration environment variables are designed to conveniently adjust the image without requiring a

rebuild, and should be set by the user as desired.

Table 5.3. Configuration Environment Variables

Variable Name

Description

Example Value

AB_JOLOKIA_AUTH_OPENSHIF
T

AB_JOLOKIA_CONFIG

AB_JOLOKIA_DISCOVERY_ENA
BLED

AB_JOLOKIA_HOST

Switch on client authentication
for OpenShift TLS
communication. The value of this
parameter can be a relative
distinguished name which must
be contained in a presented client
certificate. Enabling this
parameter will automatically
switch Jolokia into https
communication mode. The
default CA certis set to
/var/run/secrets/kubernetes.i
o/serviceaccount/ca.crt

If set uses this file (including path)
as Jolokia JVM agent properties
(as described in Jolokia’s
reference manual). If not set, the
/opt/jolokia/etc/jolokia.properti
es file will be created using the
settings as defined in this
document, otherwise the rest of
the settings in this document are
ignored.

Enable Jolokia discovery. Defaults
to false.

Host address to bind to, the
default address is 0.0.0.0.

true

/opt/jolokia/custom.properties

true

127.0.0.1

http://www.jolokia.org/reference/html/agents.html#agents-jvm

Red Hat JBoss Middleware for OpenShift 3 Red Hat Java S2I for OpenShift

Variable Name Description Example Value

AB_JOLOKIA_HTTPS Switch on secure communication true
with https. By default self-signed
server certificates are generated
if no serverCert configuration is
given in AB_JOLOKIA_OPTS.
NOTE: If the values is set to an
empty string, https is turned off If
the value is set to a non empty
string, https is turned on.

AB_JOLOKIA_OFF If set disables activation of Jolokia true
(i.e. echos an empty value). By
default, Jolokia is enabled. NOTE:
If the values is set to an empty
string, https is turned off. If the
value is set to a non empty string,
https is turned on.

AB_JOLOKIA_OPTS Additional options to be backlog=20
appended to the agent
configuration. They should be
given in the format "key=value,
key=value, ... "

AB_JOLOKIA_PASSWORD Password for basic authentication. mypassword
By default authentication is
switched off.

AB_JOLOKIA_PASSWORD_RAN If set, a random value is true
DOM generated for
AB_JOLOKIA_PASSWORD, and
itis saved in the
/opt/jolokia/etc/jolokia.pw file.

AB_JOLOKIA_PORT Port to use (Default: 8778) 5432

AB_JOLOKIA_USER User for basic authentication. myusername
Defaults to 'jolokia’

20

Variable Name

ARTIFACT_COPY_ARGS

ARTIFACT_DIR

CONTAINER_CORE_LIMIT

CONTAINER_MAX_MEMORY

GC_ADAPTIVE_SIZE_POLICY_W
EIGHT

GC_MAX_HEAP_FREE_RATIO

GC_MAX_METASPACE_SIZE

GC_MIN_HEAP_FREE_RATIO

GC_TIME_RATIO

HTTP_PROXY

Description

Arguments to use when copying
artifacts from the output
directory to the application
directory. Useful to specify which
artifacts will be part of the image.
It defaults to -r hawt-app/ when
a hawt-app directory is found on
the build directory, otherwise jar
files only will be included (.jar).

Path to target/ where the jar files
are created for multi-module
builds. These are added to
MAVEN_ARGS

A calculated core limit as
described in CFS Bandwidth
Control

Memory limit given to the
container. This value must be in
bytes.

The weighting given to the
current Garbage Collection (GC)
time versus previous GC times.

Maximum percentage of heap
free after GC to avoid shrinking.

The maximum metaspace size.

Minimum percentage of heap free
after GC to avoid expansion.

Specifies the ratio of the time
spent outside the garbage
collection (for example, the time
spent for application execution)
to the time spent in the garbage
collection.

The location of the http proxy, this
will be used for both Maven builds
and Java runtime

CHAPTER 5. REFERENCE

Example Value

-r hawt-app/*

/plugins

536870912 (which results into -
Xmx256 (default ratio is 50%))

920

40

100

20

127.0.0.1:8080

21

https://www.kernel.org/doc/Documentation/scheduler/sched-bwc.txt

Red Hat JBoss Middleware for OpenShift 3 Red Hat Java S2I for OpenShift

Variable Name

http_proxy

HTTPS_PROXY

https_proxy

JAVA_APP_DIR

JAVA_APP_JAR

JAVA_APP_NAME

JAVA_ARGS

JAVA_CLASSPATH

22

Description

The location of the http proxy, this
takes precedence over
HTTP_PROXY and will be used
for both Maven builds and Java
runtime

The location of the https proxy,
this takes precedence over
http_proxy and HTTP_PROXY
and will be used for both Maven
builds and Java runtime

The location of the https proxy,
this takes precedence over
http_proxy, HTTP_PROXY, and
HTTPS_PROXY and will be used
for both Maven builds and Java
runtime

The directory where the
application resides. All paths in
your application are relative to
this directory.

A jar file with an appropriate
manifest so that it can be started
with Java -jar if no
JAVA_MAIN_CLASS is set. In all
cases this jar file is added to the
classpath, too.

Name to use for the process

Arguments passed to the Java
application

The classpath to use. If
JAVA_LIB_DIR is set, the startup
script checks for a file
JAVA_LIB_DIR/classpath. If itis
not set, the startup script checks
for a file
JAVA_APP_DIR/classpath and
use its content as classpath. If this
file doesn't exists all jars in the
application directory are added
(classes:JAVA_APP_DIR/*).

Example Value

http;//127.0.0.1:8080

myuser@127.0.0.1:8080

myuser:mypass@127.0.0.1:8080

myapplication/

Configuration dependent.’

demo-app

hello_world

Configuration dependent.’

Variable Name

JAVA_DEBUG

JAVA_DEBUG_PORT

JAVA_DIAGNOSTICS

JAVA_LIB_DIR

JAVA_MAIN_CLASS

JAVA_MAX_MEM_RATIO

JAVA_OPTIONS

Description

If set remote debugging will be
switched on

Port used for remote debugging.
Default: 5005

Set this to get some diagnostics
information to standard out when
things are happening

Directory holding the Java jar files
as well an optional classpath file
which holds the classpath. Either
as a single-line classpath (colon
separated) or with jar files listed
line-by-line. If not set
JAVA_LIB_DIR is the same as
JAVA_APP_DIR.

A main class to use as argument
for Java. When this environment
variable is given, all jar files in
JAVA_APP_DIR are added to the
classpath as well as
JAVA_LIB_DIR.

It is used when no -Xmx option is
given in JAVA_OPTIONS. This is
used to calculate a default
maximal Heap Memory based on
a containers restriction. If used in
a Docker container without any
memory constraints for the
container then this option has no
effect. If there is a memory
constraint then -XmX is set to a
ratio of the container available
memory as set here. The default
is 50 which means 50% of the
available memory is used as an
upper boundary. You can skip this
mechanism by setting this value
to O in which case no -Xmx
option is added.

JVM options passed to the Java
command

CHAPTER 5. REFERENCE

Example Value

true

9009

true

Configuration dependent.’

com.example.MyMainClass

40

-verbose:class

23

Red Hat JBoss Middleware for OpenShift 3 Red Hat Java S2I for OpenShift

Variable Name Description Example Value

MAVEN_ARGS Arguments to use when calling -e -Popenshift -DskipTests -
Maven, replacing the default value ~ Dcom.redhat.xpaas.repo.redhatg
-e -Popenshift -DskipTests - a package

Dcom.redhat.xpaas.repo.red
hatga -Dfabric8.skip=true
package. Also read Default
Maven settings with Maven

Arguments
MAVEN_ARGS_APPEND Additional Maven arguments -X -am -pl
MAVEN_CLEAR_REPO If set then the Maven repositoryis true

removed after the artifact is built.
This is useful for keeping the
created application image small,
but prevents incremental builds.
The default is false

MAVEN_MIRROR_URL The base URL of a mirror used for http;//10.0.0.1:8080/repository/
retrieving artifacts internal/

NO_PROXY A comma-separated lists of foo.example.com,bar.example.co
hosts, IP addresses or domains m

that can be accessed directly, this
will be used for both Maven builds
and Java runtime

no_proxy A comma-separated lists of *.example.com
hosts, IP addresses or domains
that can be accessed directly, this
takes precedence over
NO_PROXY and will be used for
both Maven builds and Java
runtime

' Varies depending on the configuration, therefore no generic example is provided.

NOTE

Other environment variables not listed above that can influence the product can be
found in JBOSS documentation.

5.4. EXPOSED PORTS

Port Number Description

8080 HTTP

24

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/

CHAPTER 5. REFERENCE

Port Number Description

8443 HTTPS

8778 Jolokia Monitoring

5.5. CONFIGURING MAVEN SETTINGS

5.5.1. Default Maven Settings with Maven Arguments

The default value of MAVEN_ARGS environment variable contains the -
Dcom.redhat.xpaas.repo.redhatga property. This property activates a profile with the
https;//maven.repository.redhat.com/ga/ repository within the default jboss-settings.xml file, which
resides in the Java S2I for OpenShift image.

When specifying a custom value for the MAVEN_ARGS environment variable, if a custom
source_dir/configuration/settings.xml file is not specified, the default jboss-settings.xmlin the
image is used.

To specify which Maven repository will be used within the default jboss-settings.xml, there are two
properties:

1. The -Dcom.redhat.xpaas.repo.redhatga property, to use the
https:;//maven.repository.redhat.com/ga/ repository.

2. The -Dcom.redhat.xpaas.repo.jbossorg property to use the
https://repository.jboss.org/nexus/content/groups/public/ repository.

5.5.2. Providing Custom Maven Settings

To specify a custom settings.xml file along with Maven arguments, create the
source_dir/configuration directory and place the settings.xml file inside.

Sample path should be similar to: source_dir/configuration/settings.xml.

25

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. WHAT IS RED HAT JAVA S2I FOR OPENSHIFT

	CHAPTER 2. BEFORE YOU BEGIN
	2.1. INITIAL SETUP
	2.2. VERSION COMPATIBILITY AND SUPPORT

	CHAPTER 3. GET STARTED
	3.1. SOURCE TO IMAGE (S2I) BUILD
	3.2. BINARY BUILDS
	3.3. BUILD USING THE WEB CONSOLE

	CHAPTER 4. TUTORIALS
	4.1. EXAMPLE WORKFLOW: USING MAVEN TO BUILD AND RUN UBER JAR ON JAVA S2I FOR OPENSHIFT IMAGE
	4.1.1. Prepare for Deployment
	4.1.2. Deployment
	4.1.3. Post-Deployment
	4.1.3.1. Creating a Route

	4.2. EXAMPLE WORKFLOW: REMOTE DEBUGGING A JAVA APPLICATION RUNNING ON JAVA S2I FOR OPENSHIFT IMAGE
	4.2.1. Prepare for Deployment
	4.2.2. Deployment
	4.2.2.1. Enabling Remote Debugging for a New Application
	4.2.2.2. Enabling Remote Debugging for an Existing Application
	4.2.2.3. Connect Local Debugging Port to a Port on the Pod

	4.2.3. Post-Deployment

	4.3. EXAMPLE WORKFLOW: RUNNING FLAT CLASSPATH JAR ON JAVA S2I FOR OPENSHIFT
	4.3.1. Prepare for Deployment
	4.3.2. Deployment
	4.3.3. Post Deployment

	CHAPTER 5. REFERENCE
	5.1. VERSION DETAILS
	5.2. INFORMATION ENVIRONMENT VARIABLES
	5.3. CONFIGURATION ENVIRONMENT VARIABLES
	5.4. EXPOSED PORTS
	5.5. CONFIGURING MAVEN SETTINGS
	5.5.1. Default Maven Settings with Maven Arguments
	5.5.2. Providing Custom Maven Settings

