& RedHat

Red Hat JBoss Fuse 6.3

Fabric Guide

A system for provisioning containers deployed across a network

Last Updated: 2020-10-26

Red Hat JBoss Fuse 6.3 Fabric Guide

A system for provisioning containers deployed across a network

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2016 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Fabric enables you to install, start up, and provision remote containers across a network with
support for centralized, highly available container configuration, based on Apache Zookeeper.

CHAPTER 1. AN OVERVIEW OF FUSE FABRIC

PART I. BASIC FABRIC DEPLOYMENT

CHAPTER 2. GETTING STARTED WITH FUSE FABRIC

CHAPTER 3. CREATING A NEW FABRIC

CHAPTER 4. FABRIC CONTAINERS

CHAPTER 5. SHUTTING DOWN A FABRIC

CHAPTER 6. FABRIC PROFILES

CHAPTER 7. FABRIC8 MAVEN PLUG-IN

CHAPTER 8. ACTIVEMQ BROKERS AND CLUSTERS

PART Il. FABRIC IN PRODUCTION

Table of Contents

1.1. CONCEPTS
1.2. CONTAINERS
1.3. PROVISIONING AND CONFIGURATION

2.1. CREATE AFABRIC

2.2. DEPLOY A PROFILE

2.3. UPDATE A PROFILE

2.4.SHUTTING DOWN THE CONTAINERS

STATIC IP ADDRESS REQUIRED FOR FABRIC SERVER
MAKE QUICKSTART EXAMPLES AVAILABLE
PROCEDURE

FABRIC CREATION PROCESS

EXPANDING A FABRIC

4.. CHILD CONTAINERS

4.2. SSH CONTAINERS

4.3. FABRIC CONTAINERS ON WINDOWS

4.4. DISCONNECT CONTAINER FROM FABRIC

OVERVIEW

SHUTTING DOWN A MANAGED CONTAINER
SHUTTING DOWN A FABRIC SERVER

SHUTTING DOWN AN ENTIRE FABRIC

NOTE ON SHUTTING DOWN A COMPLETE FABRIC

6.1. INTRODUCTION TO PROFILES

6.2. WORKING WITH PROFILES

6.3. CONFIGURING THE INSIGHT-ACTIVEMQ PROFILE
6.4. PROFILE VERSIONS

6.5. ENVIRONMENT SPECIFIC VALUES IN FABRIC PROFILES.

7.1. PREPARING TO USE THE PLUG-IN

7.2.USING THE PLUG-IN TO DEPLOY A MAVEN PROJECT

7.3. CONFIGURING THE PLUG-IN
7.4. CONFIGURATION PROPERTIES

8.1. CREATING A SINGLE BROKER INSTANCE
8.2. CONNECTING TO A BROKER

8.3. TOPOLOGIES

8.4. ALTERNATIVE MASTER-SLAVE CLUSTER
8.5. BROKER CONFIGURATION

Table of Contents

............................... 20

20

21
23
25

............................... 27

27
27
27
27
28

30

31
37
38
39

............................... 41

41
41
42
45

48
50
50
56
58

Red Hat JBoss Fuse 6.3 Fabric Guide

CHAPTER 9. FABRIC ENSEMBLE AND REGISTRY ... e 69
9.1. FABRIC REGISTRY 69
9.2. ADMINISTERING A FABRIC ENSEMBLE 70
9.3. CREATE FABRIC ENVIRONMENT WITH MULTIPLE ENSEMBLE SERVERS 71
9.4. PURGING THE ZOOKEEPER SNAPSHOT AND TRANSACTION LOGS 73
9.5. ZOOKEEPER RETRY AND RETRY INTERVAL 73

CHAPTER 10. FABRIC AGENT S .o i i i e it i ittt 75
10.1. INTRODUCTION 75
10.2. THE CONFIGURATION ADMIN BRIDGE 75
10.3. THE DEPLOYMENT AGENT 76

CHAPTER 1. ALLOCATING PORTS ..o i i e e i ittt 79
1.1. PORTS USED IN A FABRIC ENVIRONMENT 79
11.2. THE PORT SERVICE 80
11.3. USING THE PORT SERVICE 83

CHAPTER 12, GAT EW AY i i i i et i it ittt iai e 86
12.1. GATEWAY ARCHITECTURE 86
12.2. RUNNING THE GATEWAY 86
12.3. CONFIGURING THE GATEWAY 87
12.4. MAP CLIENT CONNECTIONS TO BROKER INSTANCES 89
12.5. VERSIONING 91
12.6. URI TEMPLATE EXPRESSIONS 92

CHAPTER13.SECURING FABRIC CONTAINERS i e 93
DEFAULT AUTHENTICATION SYSTEM 93
MANAGING USERS 93
OBFUSCATING STORED PASSWORDS 93
ENABLING LDAP AUTHENTICATION 94

CHAPTER14. FABRIC MAVEN PROXIES ... i e i et 95
14.1. INTRODUCTION TO FABRIC MAVEN PROXIES 95
14.2. HOW A MANAGED CONTAINER RESOLVES ARTIFACTS 97
14.3. HOW A MAVEN PROXY RESOLVES ARTIFACTS 100
14.4. CONFIGURING MAVEN PROXIES DIRECTLY 102
14.5. CONFIGURING MAVEN PROXIES AND HTTP PROXIES THROUGH SETTINGS. XML 104
14.6. SECURELY ACCESSING MAVEN REPOSITORIES 107
14.7. AUTOMATED DEPLOYMENT 109
14.8. FABRIC MAVEN CONFIGURATION REFERENCE 10

CHAPTER15. OFFLINE REPOSITORIES ... o i i e et 16
15.1. OFFLINE REPOSITORY FOR A PROFILE 116
15.2. OFFLINE REPOSITORY FOR A VERSION 116
15.3. OFFLINE REPOSITORY FOR A MAVEN PROJECT 116

CHAPTER16. CONFIGURING WITH GIT ... i e e it n8
16.1. HOW GIT WORKS INSIDE FABRIC 18
16.2. USING A GIT CLUSTER 19
16.3. USING AN EXTERNAL GIT REPOSITORY 125
16.4. USING AN HTTP PROXY WITH A GIT CLUSTER 134

CHAPTER 17. PATCHING . i i i i i ittt eas 135
17.1. PATCHING A FABRIC CONTAINER WITH A ROLLUP PATCH 135
17.2. PATCHING A FABRIC CONTAINER WITH AN INCREMENTAL PATCH 141

Table of Contents

CHAPTER 18. ENABLING SSL FORJMX CONNECTORS i 145
OBTAIN OR CREATE CERTIFICATES 145
IMPORT CERTIFICATES WITH CHAIN 145
SELECT STANDARD LOCATION FOR KEYSTORE 146
CREATE BLUEPRINT CONFIGURATION FOR LOADING KEYSTORE 146
SET KEYSTORE ENVIRONMENT VARIABLES ON FUSE CONTAINERS 147
START FUSE AND CREATE FABRIC CLUSTER 147
CONFIGURE THE CLUSTER FOR JMX 148
UPGRADE FUSE CONTAINERS 148
TEST THE CONFIGURATION 149

APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXTEDITORo 150
Al EDITING AGENT PROPERTIES 150
A.2. EDITING OSGI CONFIG ADMIN PROPERTIES 153
A.3.EDITING OTHER RESOURCES 154
A.4. PROFILE ATTRIBUTES 156

APPENDIX B. FABRICURL HANDLERS i i 157
B.1. PROFILE URL HANDLER 157
B.2. ZKURL HANDLER 157
B.3. BLUEPRINT URL HANDLER 158
B.4. SPRING URL HANDLER 158
B.5. MVEL 158

APPENDIX C. PROFILE PROPERTY RESOLVERS ... o e 160
C.1.SUBSTITUTING SYSTEM PROPERTIES 160
C.2. SUBSTITUTING ENVIRONMENT VARIABLES 160
C.3. SUBSTITUTING CONTAINER ATTRIBUTES 161
C.4.SUBSTITUTING PID PROPERTIES 162
C.5.SUBSTITUTING ZOOKEEPER NODE CONTENTS 163
C.6. CHECKSUM PROPERTY RESOLVER 164
C.7.PORT PROPERTY RESOLVER 164

APPENDIX D. TECHNOLOGY-SPECIFIC DISCOVERY MECHANISMS 165
D.1. ACTIVEMQ ENDPOINT DISCOVERY 165
D.2. CAMEL ENDPOINT DISCOVERY 165
D.3. CXF ENDPOINT DISCOVERY 166
D.4. OSGI SERVICE DISCOVERY 166

Red Hat JBoss Fuse 6.3 Fabric Guide

CHAPTER 1. AN OVERVIEW OF FUSE FABRIC

CHAPTER 1. AN OVERVIEW OF FUSE FABRIC

Abstract

Fuse Fabric is a lightweight runtime environment that focuses on centralizing provisioning and
configuration spanning from small environments, limited to a few JVMs or systems, to larger production
environments which utilize an open hybrid cloud consisting of containers on both cloud services and
physical hosts. The Fuse Fabric technology layer supports the scalable deployment of JBoss Fuse
containers across a network, and it enables a variety of advanced features, such as remote installation
and provisioning of containers, phased rollout of new versions of libraries and applications, load-
balancing, and failover of deployed endpoints.

1.1. CONCEPTS

Fabric

A fabric is a collection of containers that share a fabric registry, where the fabric registry is a replicated
database that stores all information related to provisioning and managing the containers. A fabric is
intended to manage a distributed network of containers, where the containers are deployed across
multiple hosts.

A sample fabric

Figure 1.1, “Containers in a Fabric” shows an example of a distributed collection of containers that belong
to a single fabric.

Figure 1.1. Containers in a Fabric

managed R = fabric registry agent
container managed - '
anritelsar A = fabric agent
@ RDB = registry database
fabric server fabric server

managed
container

managed
container

-
B e

managed
cantainer

managed
container

Red Hat JBoss Fuse 6.3 Fabric Guide

Registry

JBoss Fuse Fabric uses Apache ZooKeeper (a highly reliable, distributed coordination service) as its
registry to store the cluster configuration and the node registration data.

ZooKeeper is designed to provide data consistency and high availability across data centers. ZooKeeper
protects against network splits using a quorum of ZooKeeper servers: for example, you might run five
ZooKeeper servers and so long as you have quorum (that is, at least three out of the five servers
available) you are reliable and are not affected by a network split.

Conceptually, the Fabric registry consists of two main parts:

e Configuration Registry—the logical configuration of your fabric, which typically contains no
physical machine information. It contains details of the applications to be deployed and their
dependencies.

® Runtime Registry—contains details of how many machines are actually running, their physical
location, and what services they are implementing.

Fabric Ensemble

A Fabric Ensemble is a collection of Fabric Servers that collectively maintain the state of the fabric
registry. The Fabric Ensemble implements a replicated database and uses a quorum-based voting
system to ensure that data in the fabric registry remains consistent across all of the fabric's containers.
To guard against network splits in a quorum-based system, it is a requirement that the number of Fabric
Servers in a Fabric Ensemble is always an odd number.

The number of Fabric Servers in a fabric is typically 1, 3, or 5. A fabric with just one Fabric Server is
suitable for experimentation only. A live production system should have at least 3 or 5 Fabric Servers,
installed on separate hosts, to provide fault tolerance.

Fabric Server

A Fabric Server has a special status in the fabric, because it is responsible for maintaining a replica of the
fabric registry. In each Fabric Server, a registry service is installed (labeled R in Figure 1.1, “Containers in a
Fabric”). The registry service (based on Apache ZooKeeper) maintains a replica of the registry database
and provides a ZooKeeper server, which ordinary agents can connect to in order to retrieve registry data.

Fabric Container (managed container)

A Fabric container (or managed container) is aware of the locations of all of the Fabric Servers, and it can
retrieve registry data from any Fabric Server in the Fabric Ensemble. A Fabric agent (labeled A in

Figure 1.1, “Containers in a Fabric”) is installed in each Fabric container. The Fabric Agent actively
monitors the fabric registry, and whenever a relevant modification is made to the registry, it immediately
updates its container to keep the container consistent with the registry settings.

Fabric Agent

Fabric defines a provisioning agent or Fabric agent, which relies on profiles. The Fabric agent runs on
each managed container and its role is to provision the container according to the profiles assigned to it.
The Fabric agent retrieves the configuration, bundles and features (as defined in the profile overlay),
calculates what needs to be installed (or uninstalled) and, finally, performs the required actions.

The Fabric agent does not just provision applications; it is also capable of provisioning Fabric and the
OSGi framework.

http://zookeeper.apache.org/
http://en.wikipedia.org/wiki/Quorum_(distributed_computing)

CHAPTER 1. AN OVERVIEW OF FUSE FABRIC

The Fabric agent retrieves any required Maven artifacts from the Maven repositories specified by its
profile, which are accessed through the Maven proxies managed by the fabric.

Git

JBoss Fuse Fabric has git as the distributed version control mechanism for all configurations allowing for
a full audit history; in addition, all changes are versioned and replicated onto each machine. By
leveraging a well known technology users can easily perform diffs, merges, and continuous integration.

Profile

A Fabric profile is an abstract unit of deployment, capable of holding all of the data required for
deploying an application into a Fabric Container. Profiles are used exclusively in the context of fabrics.

A profile consists of a collection of OSGi bundles and Karaf features to be provisioned, and a list of
configurations for the OSGi Configuration Administration service. Multiple profiles can be associated
with a given container, allowing the container to serve multiple purposes.

In theory, if you have a fabric in which each managed container runs exactly the same set of features,
with exactly the same configuration, you need only one profile. However, in most real-world use cases,
you need to provision different features across the nodes, or at least have different configurations.

For example, you might want to run different kinds of applications on different nodes: message brokers,
web applications, ESBs, transformation engines, or proxies. Each kind of application can be defined by a
profile that you manage as a single logical entity, irrespective of how many instances are deployed.
Alternatively, you might want to run the same features everywhere, but with location specific
configurations. You might deploy message brokers in different locations, or cache services in different
data centres or geographical regions.

Profiles can also use inheritance, so that parts of a configuration can be shared across multiple profiles
(which is conceptually similar to the use of trees in an LDAP repository). The aggregate of configuration
settings is computed using an overlay mechanism, which allows a profile to override values from its
parents. This approach provides power and flexibility, while avoiding the unnecessary repetition of
configuration values.

Profiles are stored in the master node's git repository, which means that they are automatically and
immediately propagated to all nodes in the fabric.

IMPORTANT

The presence of a Fabric agent in a container completely changes the deployment model,
requiring you to use profiles exclusively as the unit of deployment. Although it is still
possible to deploy an individual bundle or feature (using osgi:install or features:install,
respectively), these modifications are impermanent. As soon as you restart the container
or refresh its contents, the Fabric agent replaces the container's existing contents with
whatever is specified by the deployed profiles.

1.2. CONTAINERS

Fuse Fabric is designed to have a number of containers, each of which may be running on a different
platform. For instance, all of the following are supported:

® Java processes running directly on hardware.

® A PaaS (Platform as a Service) such as OpenShift for either a public or private cloud.

Red Hat JBoss Fuse 6.3 Fabric Guide

® OpenStack as an laaS (Infrastructure as a Service).
® Amazon Web Services, Rackspace or some other laaS to manage services.
® Docker containers for each service.

® An open hybrid cloud composing all of the above entries.

1.3. PROVISIONING AND CONFIGURATION

Overview

Each node in the cluster has a logical name and on startup the provisioning agent registers an ephemeral
node in ZooKeeper. It then looks in the configuration using its logical name for its profile of what
configuration to use and what services to provision. If there is no configuration or the logical name it
uses the default profile.

Each node watches the relevant parts of the ZooKeeper tree for changes; so that as soon as any profile
is updated the dependent nodes refresh and re-apply any provisioning or configuration changes.

Changing the configuration

You can use the Fabric command line shell to modify a profile's configuration at run time, which means
you can dynamically control configuration and provisioning.

Profiles make it possible to control a group of nodes (or all nodes) in a single operation. For example,
you could set global configuration properties that affect all nodes, or properties that affect only a group
of nodes (for example, affecting only message brokers, or affecting only web servers).

How discovery works

Each container registers details of its machine, host name and connection URLs (for example, its JMX
URL) with the ZooKeeper runtime registry. Consequently, it is relatively easy to discover a node's
location and its connection details by introspecting the fabric. For example, to perform operations on a
remote fabric container from within the fuse console, all that you need to know is the container's name.

In addition, Fabric supports a number of discovery mechanisms for discovering application endpoints
and services in the fabric—see Appendix D, Technology-specific Discovery Mechanisms for details.

PART I. BASIC FABRIC DEPLOYMENT

PART I. BASIC FABRIC DEPLOYMENT

Abstract

Get started with Fuse Fabric and learn how to perform basic administration tasks.

Red Hat JBoss Fuse 6.3 Fabric Guide

CHAPTER 2. GETTING STARTED WITH FUSE FABRIC

Abstract
This tutorial provides basic information and explains how to set up the simplest Fabric system, by

creating some containers that run on your local machine and then deploying an example profile to a child
container.

Additional information on setting up a Fabric is covered in more detail in both Chapter 3, Creating a New
Fabric and Section 4.1, “Child Containers”.

2.1. CREATE AFABRIC

Overview
Figure 2.1 shows an overview of a sample fabric that you will create. The Fabric Ensemble consists of just
one Fabric Server (making this fabric suitable only for experimental use) and two managed child

containers.

Figure 2.1. A Sample Fabric with Child Containers

fabric server

managed managed
container container

Steps to create the fabric

To create the simple fabric shown in Figure 2.1, “A Sample Fabric with Child Containers”, follow these
steps:

1. To create the first fabric container, which acts as the seed for the new fabric, enter this console
command:

10

CHAPTER 2. GETTING STARTED WITH FUSE FABRIC

JBossFuse:karaf@root> fabric:create --clean --new-user AdminUser --new-user-password
AdminPass --new-user-role Administrator --zookeeper-password ZooPass --zookeeper-data-
dir zkdata --resolver manualip --manual-ip 127.0.0.1 --wait-for-provisioning

The current container, named root by default, becomes a Fabric Server with a registry service
installed. Initially, this is the only container in the fabric. The --new-user, --new-user-password,
and --new-user-role options specify the credentials for a new Administrator user. The
Zookeeper password is used to protect sensitive data in the Fabric registry service (all of the
nodes under /fabric). The --manual-ip option specifies the loopback address, 127.0.0.1, as the
Fabric Server's IP address.

NOTE

A Fabric Server requires a static IP address. For simple trials and tests, you can
use the loopback address, 127.0.0.1, to work around this requirement. But if you
are deploying a fabric in production or if you want to create a distributed
ensemble, you must assign a static IP address to the each of the Fabric Server
hosts.

NOTE

Most of the time, you are not prompted to enter the Zookeeper password when
accessing the registry service, because it is cached in the current session. When
you join a container to a fabric , however, you must provide the fabric's Zookeeper
password.

2. Create a child container. Assuming that your root container is named root, enter this console
command:

JBossFuse:karaf@root> fabric:container-create-child root child

Creating new instance on SSH port 8102 and RMI ports 1100/44445 at:
/tmp/jboss-fuse-6.3.0.redhat-254/instance/child

The following containers have been created successfully:

Container: child.

3. Invoke the following command to monitor the status of the child container, as it is being
provisioned:

I JBossFuse:karaf@root> shell:watch container-list
After the deployment of the child has completed, you should see a listing something like this:

JBossFuse:karaf@root> shell:watch container-list
[i[d] [version] [type] [connected] [profiles] [provision status]
root* 1.0 karaf yes fabric success
fabric-ensemble-0000-1
jooss-fuse-full
child 1.0 karaf yes default success

Press the Return key to get back to the JBoss Fuse console prompt.

2.2. DEPLOY A PROFILE

1

Red Hat JBoss Fuse 6.3 Fabric Guide

Deploy a profile to the child container

Having created the child container, as described in Section 2.1, “Create a Fabric”, you can now deploy a
profile to it.

NOTE

Do not deploy profiles that have the same PID defined with different values. If you do, the
fabric uses the values of the last one deployed.

To deploy a profile to the container, follow these steps:
1. Open a terminal and cd to the $FUSE_HOME/quickstarts/beginner/camel-log directory.

2. Build the camel-log quickstart by entering this command:
I $ mvn clean install
3. Upload the camel-log quickstart profile to the fabric container by entering this command:

I $ mvn fabric8:deploy

NOTE

If this is the first time you've run this command, it prompts you to enter the
username and password to use to log into the fabric container.

4. Deploy the quickstarts-beginner-camel.log profile into the child container by entering this
console command:

I JBossFuse:karaf@root> fabric:container-change-profile child quickstarts-beginner-camel.log

5. Verify that the camel-log quickstart profile, quickstarts-beginner-camel.log, was uploaded
successfully by entering the fabric:status console command:

JBossFuse:karaf@root> fabric:status

[profile] [instances] [health]
fabric 1 100%
fabric-ensemble-0000-1 1 100%
jooss-fuse-full 1 100%

quickstarts-beginner-camel.log 1 100%

6. Verify that the quickstarts-beginner-camel.log profile deployed successfully to the child
container, issuing the fabric:container-list command:

I JBossFuse:karaf@root> fabric:container-list

until the child container's status changes to success:

[i[d] [version] [type] [connected] [profiles] [provision status]
root* 1.0 karaf yes fabric success
fabric-ensemble-0000-1

12

CHAPTER 2. GETTING STARTED WITH FUSE FABRIC

jboss-fuse-full
child 1.0 karaf yes quickstarts-beginner-camel.log success

View the sample output

When it is running, the quickstarts-beginner-camel.log profile writes a message to the container's log
every five seconds. To verify that the profile is running properly, you can look for these messages in the
child container's log, as follows:

1. Connect to the child container, by entering the following console command:
I JBossFuse:karaf@root> container-connect child

2. After logging on to the child container, view the child container's log using the log:tail
command, as follows:

I JBossFuse:karaf@root> log:tail
You should see some output like the following:

2016-06-16 11:47:51,012 | INFO | #2 - timer://foo | log-route
| 7 ?| 153 - org.apache.camel.camel-core - 2.17.1.redhat-630187
| >>> Hello from Fabric based Camel route! : child

2016-06-16 11:47:56,011 | INFO | #2 - timer://foo | log-route
| 7 ?| 153 - org.apache.camel.camel-core - 2.17.1.redhat-630187
| >>> Hello from Fabric based Camel route! : child

3. Type Ctrl-C to exit the log view and return to the child container's console prompt.

4. Type Ctrl-D to exit the child container's console, which returns you to the root container's
console.

2.3. UPDATE A PROFILE

Atomic container upgrades

Normally, when you edit a profile that is already deployed in a container, the modification takes effect
immediately. This is because the Fabric Agent in the affected container (or containers) actively monitors
the fabric registry in real time.

In practice, however, immediate propagation of profile modifications is often undesirable. In a
production system, you typically want to roll out changes incrementally: for example, initially trying out
the change on just one container to check for problems, before you make changes globally to all
containers. Moreover, sometimes several edits must be made together to reconfigure an application in a
consistent way.

Profile versioning

For quality assurance and consistency, it is typically best to modify profiles atomically, where several
modifications are applied simultaneously. To support atomic updates, fabric implements profile
versioning. Initially, the container points at version 1.0 of a profile. When you create a new profile version

13

Red Hat JBoss Fuse 6.3 Fabric Guide

(for example, version 1.1), the changes are invisible to the container until you upgrade it. After you are
finished editing the new profile, you can apply all of the modifications simultaneously by upgrading the
container to use the new version 1.1 of the profile.

Upgrade to a new profile

For example, to modify the default profile, when it is deployed and running in a container, follow the
recommended procedure:

1. Create a new version, 1.1, to hold the pending changes by entering this console command:

JBossFuse:karaf@root> fabric:version-create
Created version: 1.1 as copy of: 1.0

The new version is initialised with a copy of all of the profiles from version 1.0.

2. Use the fabric:profile-edit command to change the help text for the default profile. Enter the
following profile-edit command to edit the Summary.md resource:

I JBossFuse:karaf@root> fabric:profile-edit --resource Summary.md default 1.1

This opens the built-in text editor for editing profile resources (see Appendix A, Editing Profiles
with the Built-In Text Editor).

Remember to specify version 1.1 to the fabric:profile-edit command, so that the modifications
are applied to version 1.1 of the default profile.

When you are finished editing, type Ctrl-S to save your changes and then type Ctrl-X to quit the
text editor and get back to the console prompt.

3. Upgrade the child container to version 1.1 by entering this console command:

I JBossFuse:karaf@root> fabric:container-upgrade 1.1 child

Roll back to an old profile

You can easily roll back to the old version of the default profile, using the fabric:container-rollback
command like this:

I JBossFuse:karaf@root> fabric:container-rollback 1.0 child

2.4. SHUTTING DOWN THE CONTAINERS

Shutting down the containers

Because the child containers run in their own JVMs, they do not automatically stop when you shut down
the root container. To shut down a container and its children, first stop the child containers by using the
fabric:container-stop command. For example, to shut down the current fabric completely, enter these
console commands:

JBossFuse:karaf@root> fabric:container-stop child
JBossFuse:karaf@root> shutdown -f

14

CHAPTER 2. GETTING STARTED WITH FUSE FABRIC

After you restart the root container, you must explicitly restart its child containers by invoking the
fabric:container-start console command.

For instructions for shutting down a fabric that has more than one ensemble, see Chapter 5, Shutting
Down a Fabric.

15

Red Hat JBoss Fuse 6.3 Fabric Guide

CHAPTER 3. CREATING A NEW FABRIC

Abstract

When there are no existing fabrics to join, or you want to start a new fabric, you can create a new one
from a standalone container.

STATIC IP ADDRESS REQUIRED FOR FABRIC SERVER

The IP address and hostname associated with the Fabric Servers in the Fabric ensemble are of critical
importance to the fabric. Because these IP addresses and hostnames are used for configuration and
service discovery (through the Zookeeper registry), they must not change during the lifetime of the
fabric.

You can take either of the following approaches to specifying the IP address:

® Forsimple examples and tests (with a single Fabric Server) you can work around the static IP
requirement by using the loopback address, 127.0.0.1.

® Fordistributed tests (multiple Fabric Servers) and production deployments, you must assign a
static IP address to each of the Fabric Server hosts.

IMPORTANT

Beware of volatile IP addresses resulting from VPN connections, WiFi connections, and
even LAN connections. If a Fabric Server binds to one of these volatile IP addresses, it
will cease to function after the IP address has gone away. It is recommended that you
always use the --resolver manualip --manual-ip StaticlPAddress options to specify the
static IP address explicitly, when creating a new Fabric Server.

MAKE QUICKSTART EXAMPLES AVAILABLE

The default behavior is that profiles for quickstart examples are not available in a new fabric. To create a
fabric in which you can run the quickstart examples, edit the
$FUSE_HOME/fabric/io.fabric8.import.profiles.properties file by uncommenting the line that starts
with the following:

importProfileURLs =

If you create a fabric without doing this and you want to run the quickstart examples, follow these steps
to make them available:

1. Check that the fabric is running.

2. In the $FUSE_HOME/quickstarts directory, change to the directory in which the quickstart
example you want to run is located, for example:

cd beginner
3. In that directory, execute the following command:

mvn fabric8:deploy

16

CHAPTER 3. CREATING A NEW FABRIC

You would need to run this command in each directory that contains a quickstart example that
you want to run.

PROCEDURE

To create a new fabric:

1. (Optional) Customise the name of the root container by editing the
InstallDirletc/system.properties file and specifying a different name for this property:

I karaf.name=root

NOTE

For the first container in your fabric, this step is optional. But at some later stage,
if you want to join a root container to the fabric, you might need to customise the
container's name to prevent it from clashing with any existing root containers in
the fabric.

2. Any existing users in the InstallDir/etc/users.properties file are automatically used to initialize

the fabric's user data, when you create the fabric. You can populate the users.properties file, by

adding one or more lines of the following form:

I Username=Password[,RoleA][,RoleB]...

But there must not be any users in this file that have administrator privileges (Administrator,
SuperUser, or admin roles). If the InstallDirletc/users.properties already contains users with
administrator privileges, you should delete those users before creating the fabric.

IMPORTANT

If you leave some administrator credentials in the users.properties file, this
represents a security risk because the file could potentially be accessed by other
containers in the fabric.

' NOTE
The initialization of user data from users.properties happens only once, at the
' time the fabric is created. After the fabric has been created, any changes you

make to users.properties will have no effect on the fabric's user data.

3. If you use a VPN (virtual private network) on your local machine, it is advisable to log off VPN
before you create the fabric and to stay logged off while you are using the local container.

NOTE
' A local Fabric Server is permanently associated with a fixed IP address or
hostname. If VPN is enabled when you create the fabric, the underlying Java

runtime is liable to detect and use the VPN hostname instead of your permanent
local hostname. This can also be an issue with multi-homed machines.

4. Start up your local container.

17

Red Hat JBoss Fuse 6.3 Fabric Guide

In JBoss Fuse, start the local container as follows:

cd InstallDir/bin
Jfuse

5. Create a new fabric by entering the following command:

JBossFuse:karaf@root> fabric:create --new-user AdminUser --new-user-password
AdminPass --new-user-role Administrator --zookeeper-password ZooPass --resolver
manualip --manual-ip StaticlPAddress --wait-for-provisioning

The current container, named root by default, becomes a Fabric Server with a registry service
installed. Initially, this is the only container in the fabric. The --new-user, --new-user-password,
and --new-user-role options specify the credentials for a new Administrator user. The
Zookeeper password is used to protect sensitive data in the Fabric registry service (all of the
nodes under /fabric). The --manual-ip option specifies the Fabric Server's static IP address
StaticlPAddress (see the section called “Static IP address required for Fabric Server”).

For more details on fabric:create see section "fabric:create” in "Console Reference".

For more details about resolver policies, see section "fabric:container-resolver-list" in "Console
Reference" and section "fabric:container-resolver-set" in "Console Reference".

FABRIC CREATION PROCESS

Several things happen when a fabric is created from a standalone container:

1.

2.

The container installs the requisite OSGi bundles to become a Fabric Server.

The Fabric Server starts a registry service, which listens on TCP port 2181 (which makes fabric
configuration data available to all of the containers in the fabric).

NOTE

You can customize the value of the registry service port by specifying the --
zookeeper-server-port option.

The Fabric Server installs a new JAAS realm (based on the ZooKeeper login module), which
overrides the default JAAS realm and stores its user data in the ZooKeeper registry.

The new Fabric Ensemble consists of a single Fabric Server (the current container).

A default set of profiles is imported from InstallDir/fabric/import (can optionally be
overridden).

After the standalone container is converted into a Fabric Server, the previously installed OSGi
bundles and Karaf features are completely cleared away and replaced by the default Fabric
Server configuration. For example, some of the shell command sets that were available in the
standalone container are no longer available in the Fabric Server.

EXPANDING A FABRIC

18

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Console_Reference/ConsoleFabricCreate.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Console_Reference/ConsoleFabricContainerResolverList.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Console_Reference/ConsoleFabricContainerResolverSet.html

CHAPTER 3. CREATING A NEW FABRIC

You can expand a fabric by creating new managed containers. Fabric supports the container provider
plug-in mechanism, which makes it possible to define how to create new containers in different
contexts. Currently, Fabric makes container providers available for the following kinds of container:
® Child container, created on the local machine as a child process in its own JVM.
Instructions on creating a child container are found in Child Containers.
® SSH container, created on any remote machine for which you have ssh access.
Instructions on creating a SSH container are found in SSH Containers.
Fabric provides container creation commands that make it easy to create new containers. Using these
commands, Fabric can automatically install JBoss Fuse on a remote host (uploading whatever

dependencies are needed), start up the remote container process, and join the container to the existing
fabric, so that it becomes a fully-fledged managed container in the fabric.

19

Red Hat JBoss Fuse 6.3 Fabric Guide

CHAPTER 4. FABRIC CONTAINERS

4.1. CHILD CONTAINERS

Abstract

Child containers are the easiest kind of container to create. They are created on the same host as an
existing container and are piggybacked on the same JBoss Fuse installation.

Overview

If you want to run multiple JBoss Fuse containers on a single physical host, typically the best approach is
to create child containers. A child container is a relatively lightweight way to create a new container,
because it re-uses most of the files in a JBoss Fuse installation. It is also convenient for administration,
because the children are defined to have a parent container, so that the containers form an orderly
hierarchy.

One container or many?

In principle, a single OSGi container can host multiple applications (even applications with different
dependencies). So, why might you need to define extra child containers on the same host? One reason
for using child containers is simply to provide a degree of isolation between applications or between
components of an application. A child container runs in its own JVM process, so it is well insulated from
other containers running on the same host. Using child containers also gives your application a coarse-
grained structure that can be useful for managing the system (for example, each child container can be
independently stopped and started).

Creating a child container

To create a new child container, invoke the fabric:container-create-child command, specifying the
parent container name and the name of the new child container. For example, to create the new child
container, onlychild, with root as its parent, enter the following command:

I fabric:container-create-child root onlychild

If you want to create multiple child containers, an easy way to do this is to add an extra parameter, which
specifies the number of new children. For example, to create three new child containers, enter a
command like the following:

I fabric:container-create-child root child 3

The preceding command would create the following new child containers:

child1
child2
child3

Stopping and starting a child container

Because each child container runs as a separate process, its lifecycle is independent of the parent
container. That is, when you shut down a parent container, it does not automatically shut down the

20

CHAPTER 4. FABRIC CONTAINERS

children. To shut down a child container, you must explicitly invoke the fabric:container-stop command.
For example, to shut down the child1 container:

I fabric:container-stop child1

To restart a stopped child container, invoke the fabric:container-start command, as follows:

I fabric:container-start child1

NOTE

You can also stop a child container using the standard UNIX process management
utilities, ps and Kill.

Deleting a child container

To delete a child container (that is, permanently removing all trace of the container from the fabric,
including Fabric registry entries, and data stored in the local filesystem), invoke the fabric:container-
delete command, as follows:

I fabric:container-delete child1

NOTE
Using a wildcard, you can delete all child containers; for example, fabric:container-delete
child*.

4.2. SSH CONTAINERS

Abstract

Fabric allows you to install containers in a local network using SSH. Fabric installs the container from
scratch and configures the container to join the Fabric cluster automatically.

Overview

An SSH container is just a Fabric container that is running on a remote host on your local network, where
that host is accessible through the SSH protocol. This section describes some basic administration tasks
for these SSH containers.

Prerequisites

The requirements for creating an SSH container on a remote host are:
® | inux or UNIX operating system,
® SSHD running on the target host and:
o Avalid account credentials, or

o Configured public key authentication

21

Red Hat JBoss Fuse 6.3 Fabric Guide

® Javaisinstalled (for supported versions, see Red Hat JBoss Fuse Supported Configurations).
® Curlinstalled.
® GNU tarinstalled.

® Telnetinstalled.

Creating an SSH container

Fabric provides the fabric:container-create-ssh console command, for creating SSH containers.
Given the host, myhost (accessible from the local network) with the SSH user account, myuser, and

the password, mypassword, your could create an SSH container on myhost, using the following console
command:

fabric:container-create-ssh --host myhost --user myuser --password mypassword
myremotecontainername

If the myuser user on myhost has configured public key authentication for SSH, you can skip the
password option:

I fabric:container-create-ssh --host myhost --user myuser myremotecontainername

Where the preceding command uses the key located in ~/.ssh/id_rsa for authentication. If you need to
use a different key, you can specify the key location explicitly with the --private-key option:

fabric:container-create-ssh --host myhost --user myuser --private-key ~/.ssh/fabric_pk
myremotecontainername

The last command also supports the --pass-phrase option, in case your key requires a pass phrase.

Update SSH Credentials for Remote SSH Containers

You may need to change the credentials held in ZooKeeper for a remote SSH container. To do so, use
the following command:

I fabric:container-update-ssh-credentials [options] container

container is the name of the container for which you want to change the credentials.
The arguments are:
--user the username of the user performing the action

--password the password of the user performing the action

Creating a Fabric server using SSH

Sometimes you do not have an existing fabric and you want to create one on a remote host. The starting
point for any fabric is a Fabric server instance, which can act as a seed for the rest of the fabric. So, to
enable you to create a new fabric on a remote host, the fabric:container-create-ssh supports the --

22

https://access.redhat.com/articles/310603

CHAPTER 4. FABRIC CONTAINERS

ensemble-server option, which can be invoked to create a container which is a Fabric server. For
example, the following container-create-ssh command creates a new fabric consisting of one Fabric
server on the myhost host:

I fabric:container-create-ssh --host myhost --user myuser --ensemble-server myremotecontainername

NOTE
The --ensemble-server option has been deprecated as of version 6.3. The

recommended way to create a fabric on a remote host is to manually install JBoss Fuse
on the remote host, then create the fabric there as you normally wouuld.

References

NOTE

The commands for creating and updating SSH containers are available for containers
created as part of an existing fabric and are provisioned with the fabric profile.

For more details about the SSH container console commands, see the "Console Reference".

4.3. FABRIC CONTAINERS ON WINDOWS

Abstract

Fabric supports the deployment of containers on Windows platforms. In this case, however, it is
necessary to install the container manually on the target host.

Overview
Because Windows does not support the Secure Shell (SSH) protocol, it is not possible to install the

container software remotely on to a Windows machine. The installation must be performed manually. But
the remote deployment of applications (by assigning profiles to the container) is fully supported.

Creating a Fabric container on Windows

Perform the following steps to create a Fabric container on Windows (assuming the container is to join
an existing fabric):

1. Following the instructions in the JBoss Fuse Installation Guide, manually install the JBoss Fuse
product on the Windows target host.

2. Open a new command prompt and enter the following commands to start the container on the
target host:

cd InstallDirbin
fuse.bat

3. If the Fabric servers from the Fabric ensemble are not already running, start them now.

4. Join the container to the existing fabric, by entering the following console command:

23

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Console_Reference/
https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse/6.3/html/installation_on_apache_karaf/

Red Hat JBoss Fuse 6.3 Fabric Guide

I JBossFuse:karaf@root> fabric:join --zookeeper-password ZooPass ZooHost:ZooPort Name

Where ZooPass is the ZooKeeper password for the Fabric ensemble (specified when you create
the fabric with fabric:create); ZooHost is the hostname (or IP address) where the Fabric server
is running and ZooPortis the ZooKeeper port (defaults to 2181). If necessary, you can discover
the ZooKeeper host and port by logging into the Fabric server and entering the following
console command:

I config:proplist --pid io.fabric8.zookeeper

The Name argument (which is optional) specifies a new name for the container after it joins the
fabric. It is good practice to provide this argument, because all freshly installed containers have
the name root by default. If you do not specify a new container name when you join the fabric,
there are bound to be conflicts.

NOTE

The container where you run the fabric:join command must be a standalone
container. It is an error to invoke fabric:join in a container that is already part of a
fabric.

After joining the fabric, the container becomes a managed Fabric container and has the fabric profile
deployed oniit.

Creating a Fabric server on Windows

If you don't have an existing fabric, you can create a new fabric on the Windows host. The starting point
for any fabric is a Fabric server instance, which can act as a seed for the rest of the fabric. Perform the
following steps to create a Fabric server on Windows:

24

1. Following the instructions in the JBoss Fuse Installation Guide, manually install the JBoss Fuse

product on the Windows target host.

. To start the container on the target host, open a new command prompt and enter the following

commands:

cd InstallDir\bin
fuse.bat

. To create a new fabric (thereby turning the current host into a Fabric server), enter the

following console command:

JBossFuse:karaf@root> fabric:create --new-user AdminUser --new-user-password
AdminPass

--new-user-role Administrator --zookeeper-password ZooPass

--resolver manualip --manual-ip StaticlPAddress --wait-for-provisioning

The current container, named root by default, becomes a Fabric Server with a registry service
installed. Initially, this is the only container in the fabric. The --new-user, --new-user-password,
and --new-user-role options specify the credentials for a new Administrator user. The
Zookeeper password is used to protect sensitive data in the Fabric registry service (all of the
nodes under /fabric). The --manual-ip option specifies the Fabric Server's static IP address
StaticlPAddress (see the section called “Static IP address required for Fabric Server”).

https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse/6.3/html/installation_on_apache_karaf/

CHAPTER 4. FABRIC CONTAINERS

Managing remote containers on Windows

Because a Fabric container on Windows is added to the fabric by joining (that is, using fabric:join), there
are certain restrictions on which commands you can use to manage it. In particular, the following
commands are not supported:

fabric:container-stop
fabric:container-start
fabric:container-delete

To stop and start a Fabric container running on Windows, you must log on to the Windows host and use
the regular Windows system commands to manage the container process (in particular, you could
potentially install the container as a Windows service and use the Windows service commands to manage
the container lifecycle).

4.4. DISCONNECT CONTAINER FROM FABRIC

Abstract

For containers that joined a Fabric using fabric:join, the only way to disconnect from the fabric is by
using the fabric:leave command.

NOTE

This command is only available from R13 and later.

Overview

If you created a container using the fabric:container-create-child command, use the fabric:delete
command as all of the details are stored within Zookeeper. However, for containers that joined a Fabric
using fabric:join, the only way to disconnect from the fabric is by using the fabric:leave command.

Use the command

If you specify the container using the fabric:leave command, the specified container leaves the fabric.
Otherwise, fabric:leave disconnects the current container from the fabric.

I fabric:leave containerName

Container containerName will be disconnected from Fabric. This operation is not reversible.
Do you want to proceed? (yes/no): yes
Container containerName will leave Fabric and restart - cleanup will be done asynchronously.

NOTE

Once you see the above validation, you can create or join a container with the name
(containerName) in the Fabric environment.

Validation

25

Red Hat JBoss Fuse 6.3 Fabric Guide

There are several reasons you may be unable to disconnect the container from the fabric. The table
below helps guide you if you encounter these scenarios.

Table 4.1. fabric:leave Validation

Console Validation Action

26

fabric:leave
Container is part of the ensemble. It can't be
disconnected from fabric.

fabric:leave xyz
Container xyz does not exist.

fabric:leave child

Container was created using Fabric. Please
use fabric:container-delete command
instead.

fabric:leave joined

Container joined has dependent containers
([child]). Can't disconnect it. Please remove
its child containers first.

In this case, you will not be able to disconnect the
container.

Check your spelling of the container to be sure you
put in the right container name.

As the container did not join the fabric using thejoin
command, use the suggested method to disconnect
the container.

Remove the child containers before attempting to
disconnect the desired container.

CHAPTER 5. SHUTTING DOWN A FABRIC

CHAPTER 5. SHUTTING DOWN A FABRIC

OVERVIEW

This chapter describes how to shut down part or all of a fabric.

SHUTTING DOWN A MANAGED CONTAINER

You can shut down a managed container from the console at any time. Invoke the fabric:container-
stop command and specify the name of the managed container, for example:

I fabric:container-stop -f ManagedContainerName

NOTE

The -f flag is required when shutting down a container that belongs to the ensemble.

The fabric:container-stop command looks up the container name in the registry and retrieves the data
it needs to shut down that container. This approach works no matter where the container is deployed:
whether locally or on a remote host.

SHUTTING DOWN A FABRIC SERVER

Occasionally, you might want to shut down a Fabric Server for maintenance reasons. It is possible to do
this without disabling the fabric, as long as more than half of the Fabric Servers in the ensemble remain
up and running. For example, suppose you have an ensemble that consists of three servers, registry1,
registry2, and registry3. You can shut down only one of these Fabric Servers at a time by using the
fabric:container-stop command, for example:

I fabric:container-stop -f registry3
After performing the necessary maintenance, you can restart the Fabric Server as follows:

I fabric:container-start registry3

SHUTTING DOWN AN ENTIRE FABRIC

In a production environment, it is rarely necessary to shut down an entire fabric. A fabric provides
redundancy by enabling you to shut down part of the fabric and restart that part without having to shut
down the whole fabric. You can even apply patches to a fabric without shutting down containers.

Red Hat recommends that you minimize the number of times you shut down a complete fabric. This is
because shutting down and restarting an entire fabric requires execution of the fabric:ensemble-
remove and fabric:ensemble-add commands. Each time you execute one of these commands, it
creates a new ensemble. This new ensemble URL is propagated to all containers in the fabric and all
containers need to reconnect to the new ensemble. There is a risk for TCP port numbers to be
reallocated, which means that your network configuration might become out-of-date because services
might start up on different ports.

However, if you must shut down an entire fabric, follow the steps below. These steps show examples that
reflect this configuration:

27

Red Hat JBoss Fuse 6.3 Fabric Guide

® Three Fabric Servers (ensemble servers): registry1, registry2, registry3.
® Four managed containers: managedi, managed2, managed3, managed4.
To shut down a complete fabric:

1. Use the client console utility to log on to one of the Fabric Servers in the ensemble. For
example, to log on to the registry1 server, enter a command in the following format:

I Jclient -u AdminUser -p AdminPass -h Registry1Host

Replace AdminUser and AdminPass with the credentials of a user with administration
privileges. Replace Registry1Hostwith name of the host where registry1 is running. It is
assumed that the registry1 server is listening for console connections on the default TCP port
(thatis, 8101)

2. Ensure that all managed containers in the fabric are running. Execution of fabric:container-list
should display true in the alive column for each container. This is required for execution of the

fabric:ensemble-remove command, which is the next step.

3. Remove all but one of the Fabric Servers from the ensemble. For example, if you logged on to
registry1, enter:

I fabric:ensemble-remove registry2 registry3

4. Shut down all managed containers in the fabric, except the container on the Fabric Server you
are logged into. In the following example, the first command shuts down managed1, managed2,
managed3 and managed4:

fabric:container-stop -f managed*
fabric:container-stop -f registry2
fabric:container-stop -f registry3

5. Shut down the last container that is still running. This is the container that is on the Fabric
Server you are logged in to. For example:

I shutdown -f

After you complete the work that required the fabric to be shut down, you restart the fabric by
recreating it. For example:

1. Use the client console utility to log in to the registry1 container host.
2. Start all containers in the fabric.

3. Add the other Fabric Servers, for example:

I fabric:ensemble-add registry2 registry3

NOTE ON SHUTTING DOWN A COMPLETE FABRIC

If you are logged on to a container that is connected to a fabric, you might be tempted to shut down the
entire fabric by stopping the containers on the Fabric Servers. For example:

28

CHAPTER 5. SHUTTING DOWN A FABRIC

fabric:container-stop -f registry1
fabric:container-stop -f registry2
fabric:container-stop -f registry3

This does not work because a fabric requires a quorum (a simple majority) of Fabric Servers to be
running in order to stop a container that is in the fabric. In this example, the third invocation of
fabric:container-stop fails and throws an error because only one Fabric Server is still running. At least
two Fabric Servers must be running to stop a container. With only one Fabric Server running, the registry
shuts down and refuses service requests because a quorum of Fabric Servers is no longer available. The
fabric:container-stop command needs the registry to be running so it can retrieve details about the
container it is trying to shut down.

The correct way to shut down a complete fabric is to follow the steps in the previous section. That is,
remove all Fabric Servers except one and then stop all containers.

29

Red Hat JBoss Fuse 6.3 Fabric Guide

CHAPTER 6. FABRIC PROFILES

Abstract

A profile is the basic unit of deployment in a fabric. This chapter describes how to create, edit, and
deploy profiles into containers. You can also create different versions of a profile, which makes it
possible to support rolling upgrades across the containers in your fabric.

6.1. INTRODUCTION TO PROFILES

Overview

A profile is a description of how to provision a logical group of containers. Each profile can have none,
one, or more parents, which allows you to have profile hierarchies. A container can be assigned one or
more profiles. Profiles are also versioned, which enables you to maintain different versions of each
profile, and then upgrade or roll back containers, by changing the version of the profiles they use.

Whatis in a profile?
A profile can contain one or more of the following resources:
® OSGibundle URLs
e Web ARchive (WAR) URLs
® Fuse Application Bundle (FAB) URLs
® OSGi Configuration Admin PIDs
® Apache Karaf feature repository URLs
® Apache Karaf features
® Maven artifact repository URLs

® Blueprint XML files or Spring XML files (for example, for defining broker configurations or
Camel routes)

® Any kind of resource that might be needed by an application (for example, Java properties file,
JSON file, XML file, YML file)

® System properties that affect the Apache Karaf container (analogous to editing
etc/config.properties)

® System properties that affect installed bundles (analogous to editing etc/system.properties)

Profile hierarchies

Frequently, multiple profiles share a lot of configuration details: such as common frameworks, libraries,
and so on. Defining these details separately for each profile would create a considerable maintenance

headache. To avoid duplication across profiles, therefore, Fabric uses a hierarchical model for profiles.
You can define a generic profile (base profile) containing the common configuration details, and then

define child profiles that inherit these generic configuration details.

30

CHAPTER 6. FABRIC PROFILES

Some basic profiles

Fabric provides a rich set of predefined profiles, which can be used as the basic building blocks for
defining your own profiles. Some of the more interesting predefined profiles are:

[default]

The default profile defines all of the basic requirements for a Fabric container. For example it
specifies the fabric-agent feature, the Fabric registry URL, and the list of Maven repositories from
which artifacts can be downloaded.

[karaf]

Inherits from the default profile and defines the Karaf feature repositories, which makes the Apache
Karaf features accessible.

[feature-camel]

Inherits from karaf, defines the Camel feature repositories, and installs some core Camel features:
such as camel-core and camel-blueprint. If you are deploying a Camel application, it is
recommended that you inherit from this profile.

[feature-cxf]

Inherits from karaf, defines the CXF feature repositories, and installs some core CXF features. If you
are deploying a CXF application, it is recommended that you inherit from this profile.

[mg-base]

Inherits from the karaf profile and installs the mq-fabric feature

[mq-default]

Inherits from the mq-base profile and provides the configuration for an A-MQ broker. Use this
profile, if you want to deploy a minimal installation of an ActiveMQ broker.

[iboss-fuse-full]

Includes all of the features and bundles required for the JBoss Fuse full container.

6.2. WORKING WITH PROFILES

Changing the profiles in a container

To change the profiles assigned to a Fabric container, invoke the fabric:container-change-profile
command as follows:

I fabric:container-change-profile mycontainer myprofile

Where the preceding command deploys the myprofile profile to the mycontainer container. All profiles
previously assigned to the container are removed. You can also deploy multiple profiles to the container,
with the following command:

I fabric:container-change-profile mycontainer myprofile myotherprofile

31

Red Hat JBoss Fuse 6.3 Fabric Guide

Adding a profile to a container

The fabric:container-add-profile command gives you a simple way to add profiles to a container,
without having to list all of the profiles that were already assigned. For example, to add the example-
camel profile to the mycontainer container:

I fabric:container-add-profile mycontainer example-camel

Listing available profiles
To see the list of available profiles, invoke the fabric:profile-list console command:
I fabric:profile-list

The command displays all available profiles, showing their parents and the number of containers each
profile is deployed into.

Inspecting profiles

To see exactly what a profile defines, enter the fabric:profile-display command. For example, to display
what is defined in the feature-camel profile, enter the following command:

I fabric:profile-display feature-camel

Which outputs something like the following to the console window:

Profile id: feature-camel
Version :1.0
Attributes:

parents: karaf

Containers:

Container settings

Repositories :
mvn:org.apache.camel.karaf/apache-camel/${version:camel}/xml/features

Features :
camel-core
camel-blueprint
fabric-camel

Configuration details

Other resources

Resource: io.fabric8.insight.metrics.json
Resource: icon.svg
Resource: Summary.md

32

CHAPTER 6. FABRIC PROFILES

The preceding output does not take into account the definitions inherited from any parent profiles,
however. To see the effective definitions for the feature-camel profile, taking into account all of its
ancestors, you must specify the --overlay switch, as follows:

I fabric:profile-display --overlay feature-camel

Resource files stored in the profile are listed under the heading Other resources. If you want to display
the contents of these resource files as well, add the --display-resources switch (or -r for short) to the
profile-display command, as follows:

I fabric:profile-display -r feature-camel

Creating a new profile

To create a new profile for an application, invoke the fabric:profile-create command, as follows:

I fabric:profile-create myprofile

To specify one ore more parents for the profile when it is being created, add the --parents option to the
command:

I fabric:profile-create --parents feature-camel myprofile

After the profile is created, you can start to modify the profile, providing details of what should be
deployed in the profile.
Adding or removing features

To edit one of the existing profiles, you can use the fabric:profile-edit command. For example, to add
the camel-jclouds feature to the feature-camel profile.

I fabric:profile-edit --feature camel-jclouds feature-camel

Now invoke the fabric:profile-display command to see what the camel profile looks like now. You
should see that the camel-jclouds feature appears in the list of features for the feature-camel profile.

Features :
camel-jclouds
camel-blueprint/2.9.0.fuse-7-061
camel-core/2.9.0.fuse-7-061
fabric-camel/99-master-SNAPSHOT

If you want to remove a feature from the profile, use the --delete option. For example, if you need to
remove the camel-jclouds feature, you could use the following command:

I fabric:profile-edit --delete --feature camel-jclouds feature-camel
Editing PID properties

An OSGi Config Admin Persistent ID (PID) consists essentially of a list of key-value pairs. You can edit
PID properties using either of the following approaches:

33

Red Hat JBoss Fuse 6.3 Fabric Guide

® FEdit the PID using the built-in text editor —the Karaf console has a built-in text editor which you
can use to edit profile resources such as PID properties. To start editing a PID using the text
editor, enter the following console command:

I fabric:profile-edit --pid PID ProfileName

For more details about the built-in text editor, see Appendix A, Editing Profiles with the Built-In
Text Editor.

® [dit the PID inline, using console commands —alternatively, you can edit PIDs directly from the
console, using the appropriate form of the fabric:profile-edit command. This approach is
particularly useful for scripting. For example, to set a specific key-value pair, Key=Value, in a
PID, enter the following console command:

I fabric:profile-edit --pid PID/Key=Value ProfileName
Editing a PID inline

To edit a PID inline, use the following variants of the fabric:profile-edit command:

® Assign a value to a PID property, as follows:
I fabric:profile-edit --pid PID/Key=Value ProfileName

® Append a value to a delimited list (that is, where the property value is a comma-separated list),
as follows:

I fabric:profile-edit --append --pid PID/Key=Listltem ProfileName
® Remove a value from a delimited list, as follows:

I fabric:profile-edit --remove --pid PID/Key=Listltem ProfileName
® Delete a specific property key, as follows:

I fabric:profile-edit --delete --pid PID/Key ProfileName
® Delete a complete PID, as follows:

I fabric:profile-edit --delete --pid PID ProfileName

Example of editing a PID inline

In the following example, we modify the io.fabric8.agent PID, changing the Maven repository list
setting. The default profile contains a section like this:

Agent Properties :
org.ops4j.pax.url.mvn.repositories=
http://repo1.maven.org/maven2@id=maven.central.repo,

34

CHAPTER 6. FABRIC PROFILES

https:/maven.repository.redhat.com/ga@id=redhat.ga.repo,
https://maven.repository.redhat.com/earlyaccess/all@id=redhat.ea.repo,
https://repository.jboss.org/nexus/content/groups/ea@id=fuseearlyaccess

The agent properties section is represented by the io.fabric8.agent PID. So, by modifying the
io.fabric8.agent PID, we effectively change the agent properties. You can modify the list of Maven
repositories in the agent properties PID as follows:

fabric:profile-edit --pid
io.fabric8.agent/org.ops4j.pax.url.mvn.repositories=http://repositorymanager.mylocalnetwork.net
default

Now when you invoke fabric:profile-display on the default profile, you should see agent properties
similar to the following:

Agent Properties :
org.ops4j.pax.url.mvn.repositories = http://repositorymanager.mylocalnetwork.net

Setting encrypted PID property values

In some cases, you might prefer to store PID property values in encrypted format instead of plain text.
For example, passwords and other sensitive data should usually be stored in encrypted form. To store a
property value in encrypted form, perform the following steps:

1. Use the fabric:encrypt-message command to encrypt the property value, as follows:
I fabric:encrypt-message PropValue

This command returns the encrypted property value, EncryptedValue.

NOTE

The default encryption algorithm used by Fabric is PBEWithMD5ANndDES.

2. You can now set the property to the encrypted value, EncryptedValue, using the following
syntax:

I my.sensitive.property = ${crypt: EncryptedValue}
For example, using the fabric:profile-edit command, you can set an encrypted value as follows:

I fabric:profile-edit --pid com.example.my.pid/my.sensitive.property=${crypt: EncryptedValue}
Profile

IMPORTANT

These encrypted values are protected by the master password, which is accessible to
anyone who can log on to a Fabric container. To keep these encrypted values safe, you
must restrict access to the containers in the fabric.

35

Red Hat JBoss Fuse 6.3 Fabric Guide

When using encrypted property values in Blueprint, the property-placeholder element must depend on
the Fabric service as shown in the following example:

<reference id="fabricService" interface="io.fabric8.api.FabricService" availability="mandatory"/>
<cm:property-placeholder id="properties" persistent-id="encrypted.properties" depends-
on="fabricService"/>

Alternative method for encrypting PID property values

The underlying encryption mechanism for PID properties is based on the Jasypt encryption toolkit.
Consequently, it is also possible to encrypt PID properties directly, using the Jasypt toolkit, as follows:

1. Download and install Jasypt, to gain access to the Jasypt encrypt and decrypt command-line
tools.

2. Use the Jasypt encrypt command-line tool to encrypt the property value, as follows:
I Jencrypt.sh input="Property value to be encrypted" password=ZooPass verbose=false

This command returns the encrypted property value, EncryptedValue.

NOTE

The default encryption algorithm used by Fabric is PBEWithMD5ANndDES. You
must ensure that the encrypt.sh utility is using the same algorithm as Fabric.

Customizing the PID property encryption mechanism

You can customize the PID property encryption mechanism, as follows:

® Customize the master password for encryption —using the following console command:

I fabric:crypt-password-set MasterPassword

You can retrieve the current master password by entering the fabric:crypt-password-get
command. The default value is the ensemble password (as returned by fabric:ensemble-
password).

® Customize the encryption algorithm —using the following console command:

I fabric:crypt-algorithm-set Algorithm

Where the encryption algorithm must be one of the algorithms supported by the underlying
Jasypt encryption toolkit. You can retrieve the current encryption algorithm by entering the
fabric:crypt-algorithm-get command. The defaultis PBEWithMD5ANndDES.

Profile editor

If you want to make extensive edits to a profile, it is not very convenient to make changes one setting at
a time. There is a more convenient approach for making extensive profile edits, and that is to use the
console's built-in profile editor, which is a simple screen-based text editor.

36

http://jasypt.org/
http://jasypt.org/download.html
http://jasypt.org/

CHAPTER 6. FABRIC PROFILES

For example, to open the agent properties resource for editing, simply invoke the fabric:profile-edit
command without any options, as follows:

I fabric:profile-edit Profile [Version]

A simple text editor opens, enabling to edit the configuration settings in the agent properties.

For full details of how to edit profiles using the built-in text editor, see Appendix A, Editing Profiles with
the Built-In Text Editor.

Editing resources with the profile editor

A practical way to edit a general profile resource (such as an XML configuration resource) is to use the
built-in text editor. For example, to start editing the broker.xml file in the mqg-amq profile, enter the
following console command:

I fabric:profile-edit --resource broker.xml mg-amq

6.3. CONFIGURING THE INSIGHT-ACTIVEMQ PROFILE

Perform the following steps to configure the insight-activemq profile:

1. Verify that insight-activemgq in the list of profiles:

JBossFuse:karaf@root> profile-list | grep activemq
insight-activemq 1 insight-core
JBossFuse:karaf@root>

2. Assign profiles to your container. For example,

container-add-profile root insight-elasticsearch.datastore insight-elasticsearch.node insight-
console insight-metrics.elasticsearch insight-logs.elasticsearch insight-activemq
wait-for-provisioning -v

3. Run the following commands to create a new broker profile and enable insight-activemgq:

profile-edit --resource broker.xml mg-amq
add this node as a child of <plugins>
<bean xmins="http://www.springframework.org/schema/beans" id="InsightActiveMQ"

class="io.fabric8.insight.activemq.InsightPlugin"></bean>

mgq-create --config broker.xml --port openwire=61617 --port mqtt=1883 --port amqp=5672 --
port stomp=31613 --port ws=31614 broker_profile01

4. Now, you can enable the plug-in per destination.

profile-edit --pid io.fabric8.insight.activemg/auditor.enabled=true mqg-
broker-default.broker_profile01
profile-edit --pid io.fabric8.insight.activemg/auditor.dest.queue:/QUEUE_NAME=true mq-

37

Red Hat JBoss Fuse 6.3 Fabric Guide

I broker-default.broker_profile01

5. Finally, assingn the profile to your container. For example,

I container-add-profile root mg-broker-default.broker_profile01

6. To generate entries, you can produce messages like following:

JBossFuse:karaf@root> activemq:producer --brokerUrl tcp:/localhost:61617 --user admin --
password admin --destination queue.//QUEUE_NAME --messageCount 5
JBossFuse:karaf@root> activemq:consumer --brokerUrl tcp:/localhost:61617 --user admin --
password admin --destination queue.//QUEUE_NAME --messageCount 5

6.4. PROFILE VERSIONS

Overview

Every profile has at least one version. When assigning a profile to a container, you actually assign both
the profile and the version. The fabric-agent, will choose the defined version and retrieve all the
information provided by the specific version of the profile.

Any change to a profile takes immediate effect. This means that any container using a profile that was
just modified will pick up the change immediately. It is recommended that you create a new version of a
profile whenever you need to make changes. You can then upgrade containers to use the new version.
This enables you to perform atomic updates, test updates on specific containers, and possibly roll back
to the previous version, if you encounter any problems.

IMPORTANT

Karaf does not handle leading and trailing zeros in version numbers. Numbers such as 1.10,
O11, 1.1 will all be interpreted as 1.1. When specifying version numbers, any numbers with
leading or trailing zeros must be enclosed in double quotes. For example, "1.10". This will
force the number to be interpreted as presented.

Creating a new version

You can create a new version using the fabric:version-create command (analogous to creating a new
branch in the underlying Git repository). The default version is 1.0. To create version 1.1, enter the
following command:

I fabric:version-create 1.1

NOTE

To note what is changing in the new version, include the --description argument and
enclose the text within double quotes; for example, fabric:version-create --description
"expanding all camel routes" 1.1.

38

CHAPTER 6. FABRIC PROFILES

After the 1.1 version is created, a new instance of every profile is created for the new version (copied
from the previous latest version, which was 1.0). Now you can display or modify the 1.1 version of each
profile. For example, enter the following command to display the details of the feature-camel profile:

I fabric:profile-display --version 1.1 feature-camel

Initially, the output is identical to the 1.0 version of the profile, because we have not yet modified the
new version of the profile. But how do you modify a specific version of a profile? All you need to do is to
invoke the fabric:profile-edit command, specifying the version right after the profile argument. For
example, to add the camel-jclouds feature to version 1.1 of the feature-camel profile, enter the
following command:

I fabric:profile-edit --feature camel-jclouds feature-camel 1.1

IMPORTANT

The changes made to version 1.1 of the profile do not (yet) affect any of your existing
containers. The changes do not take effect until you upgrade your containers to use the
1.1 version.

Rolling upgrades and rollbacks

Fabric provides commands for upgrading (incrementing the effective version) and rolling back
(decrementing the effective version) the profiles assigned to a container. For example, to upgrade the
mycontainer container to the 1.1 version, invoke the fabric:container-upgrade command as follows:

I fabric:container-upgrade 1.1 mycontainer

The preceding command makes mycontainer to use version 1.1 of all the profiles currently assigned to it.

If for any reason you want to roll back to the previous version, you can invoke the fabric:container-
rollback command, as follows:

I fabric:container-rollback 1.0 mycontainer

Itis strongly recommended that you test any profile changes on a single container, before applying the
changes to the whole cluster. Applying an upgrade to all containers can be achieved by specifying the --
all option, as follows:

I fabric:container-upgrade --all 1.1 mycontainer

6.5. ENVIRONMENT SPECIFIC VALUES IN FABRIC PROFILES.
If you run a number of Fuse systems you may want to define environment-specific configurations. To do
this you can create a profile containing properties as key-value pairs, and assign it to a container. When it

is assigned to a container, every profile in that container can refer to the information stored in it.

For example, use the following commands to set up a proxy server and define environment-specific
values for it.

1. Create a profile called local_values

39

Red Hat JBoss Fuse 6.3 Fabric Guide

40

I JBossFuse:karaf@root> profile-create local_values

. Edit the new profile to include the hostname information.

JBossFuse:karaf@root> fabric:profile-edit --pid
io.fabric8.examplesystem/url=www.example.com local_values

The contents of the io.fabric8.examplesystem PID in the local_values profile will be:

I url=www.example.com

. Add the new profile to the proxy-server container.

I JBossFuse:karaf@root> container-add-profile proxy-server local_values

. Create another new profile.

I JBossFuse:karaf@root> profile-create local_values_test

. Set the values in profile:io.fabric8.examplesystem to local_values_test.

JBossFuse:karaf@root> fabric:profile-edit --pid
'csp.test/testUrl=${profile:io.fabric8.examplesystem/url}' local_values_test

Setting value:${profile:io.fabric8.examplesystem/url} key:testUrl on pid:csp.test and
profile:local_values_test version:1.0

The content of pid:csp.test will be:

I testUrl=${profile:io.fabric8.examplesystem/url}

. Add the local_values profile to the abc container.

I JBossFuse:karaf@root> container-add-profile abc local_values

. Add the local_values_test profile to the abc container.

I JBossFuse:karaf@root> container-add-profile abc local_values_test

. Sign on to the abc container.

I JBossFuse:karaf@root> fabric:container-connect abc

. Issue the config:proplist command to show resolved environment settings.

JBossFuse:admin@abc> config:proplist --pid csp.test
fabric.zookeeper.pid = csp.test
service.pid = csp.test
testUrl = www.example.com

CHAPTER 7. FABRIC8 MAVEN PLUG-IN

CHAPTER 7. FABRIC8 MAVEN PLUG-IN

Abstract

This maven plug-in makes it easy to create or update a fabric profile from your Maven project.

7.1. PREPARING TO USE THE PLUG-IN

Edit your Maven settings

First you will need to edit your ~/.m2/settings.xml file to add the fabric server's user and password so
that the maven plugin can log in to the fabric. For example, you could add the following server element
to your settings.xml file:

<settings>
<servers>
<server>
<id>fabric8.upload.repo</id>
<username>Username</username>
<password>Password</password>
</server>

</servers>
</settings>

Where Username and Password are the credentials of a Fabric user with administrative privileges (for
example, the credentials you would use to log on to the Management Console).
Customising the repository ID

The default Fabric Maven repository ID is fabric8.upload.repo. You can specify additional server
elements in your settings.xml file for each of the fabrics you need to work with. To select the relevant
credentials, you can set the serverld property in the Fabric8 Maven plug-in configuration section (see
Section 7.4, "Configuration Properties”) or set the fabric8.serverld Maven property.

7.2. USING THE PLUG-IN TO DEPLOY A MAVEN PROJECT

Prerequisites

You must ensure the following prerequisites are satisfied before attempting to run the Fabric8 Maven
plug-in:

1. Your Maven ~/.m2/settings.xml file is configured as described in Section 7.1, “Preparing to Use
the Plug-In".

2. A JBoss Fuse container instance is running on your local machine (alternatively, if the container
instance is running on a remote host, you must configure the plug-in's jolokiaUrl property

appropriately).

Running the plug-in on any Maven project

41

Red Hat JBoss Fuse 6.3 Fabric Guide

To use the Fabric8 plug-in to deploy any maven project into a fabric profile, enter the following Maven
command:

I mvn io.fabric8:fabric8-maven-plugin:1.2.0.redhat-630187:deploy

Adding the plug-in to a Maven POM

If you add the Fabric8 plug-in to your pom.xml file as follows:

<plugins>
<plugin>
<groupld>io.fabric8</groupld>
<artifactld>fabric8-maven-plugin</artifactld>
<version>1.2.0.redhat-630xxx</version>
<configuration>
<profile>testprofile</profile>
<version>1.2</version>
</configuration>
</plugin>
</plugins>

Where the plugin/configuration/version element specifies the Fabric8 version of the target system
(which is not necessarily the same as the version of the Fabric8 Maven plug-in).

You can now use the following more concise Maven goal:

I mvn fabric8:deploy

What does the plug-in do?

When you deploy your project to a Fabric profile with this plug-in, the plug-in does the following:
e Uploads any artifacts into the fabric's maven repository,
® | azily creates the Fabric profile or version you specify,
® Adds/updates the maven project artifact into the profile configuration,

® Adds any additional parent profile, bundles or features to the profile.

Example

You can try out the plug-in with one of the JBoss Fuse quickstart examples, as follows:

cd InstallDir/quickstarts/cxf/rest
mvn io.fabric8:fabric8-maven-plugin:1.2.0.redhat-630187:deploy

You should see a new profile created on the quickstart profile page, which should have a bundle and
some features (click the Bundle tab and then the Feature tab).

7.3. CONFIGURING THE PLUG-IN

42

http://localhost:8181/hawtio/wiki/branch/1.0/view/fabric/profiles/quickstarts/cxf/rest.profile

CHAPTER 7. FABRIC8 MAVEN PLUG-IN

Specifying profile information

You can explicitly configure the name of the profile to create, by adding a configuration element to the
plug-in configuration in your pom.xml file, as follows:

<plugins>
<plugin>
<groupld>io.fabric8</groupld>
<artifactld>fabric8-maven-plugin</artifactld>
<configuration>
<profilesmy-thing</profile>
</configuration>
</plugin>
</plugins>

Multi-module Maven projects

For multi-module Maven projects, a more flexible way to configure the plug-in is to use Maven
properties. For example if you have a multi-module maven project such as this:

pom.xmi

foo/
pom.xml
a/pom.xml
b/pom.xml

bar/
pom.xml

c/pom.xml
d/pom.xml

You could define the plug-in once in the root pom.xml file, as follows:

<plugins>
<plugin>
<groupld>io.fabric8</groupld>
<artifactld>fabric8-maven-plugin</artifactld>
</plugin>
</plugins>
While in the foo/pom.xml file you need only define the fabric8.profile property, as follows:

<project>

<properties>
<fabric8.profile>my-foo</fabric8.profile>

</properties>

</project>

43

Red Hat JBoss Fuse 6.3 Fabric Guide

All of the projects within the foo folder, such as foo/a and foo/b, will deploy to the same profile (in this
case the profile, my-fo0). You can use the same approach to put all of the projects under the bar folder
into a different profile too.

At any point in your tree of maven projects you can define a maven fabric8.profile property to specify
exactly where it gets deployed; along with any other property on the plug-in (see the Property
Reference below).

Specifying features, additional bundles, repositories and parent profiles

You can specify additional configuration in the maven plug-in, as follows:

<plugins>
<plugin>
<groupld>io.fabric8</groupld>
<artifactld>fabric8-maven-plugin</artifactld>
<configuration>
<profile>my-rest</profile>
<features>fabric-cxf-registry fabric-cxf cxf war swagger</features>
<featureRepos>mvn:org.apache.cxf.karaf/apache-cxf/${version:cxf}/xml/features</featureRepos>
</configuration>
</plugin>
</plugins>

Note that the features element allows you to specify a space-separated list of features to include in the
profile.

This example specifies space-separated lists for the parent profile IDs, features, repositories and
bundles so that it is easy to reuse Maven properties for these values (for example, to add some extra
features to a child maven project while inheriting from the parent project).

Configuring with Maven properties

You can also use maven property values (or command line arguments) to specify the configuration
values by prefixing the property name with fabric8.. For example, to deploy a maven project to the
cheese profile name, enter the command:

I mvn fabric8:deploy -Dfabric8.profile=cheese

By default, the project artifacts are uploaded to the Maven repository inside the fabric. If you want to
disable this beahvior and just update the profile configuration (for example, if you are already pointing
your fabric's Maven repository to your local Maven repository), you can set fabric8.upload=false—for
example:

I mvn fabric8:deploy -Dfabric8.upload=false

Specifying profile resources

If you create the directory, sre/main/fabric8, in your Maven project and add any resource files or a
ReadMe.md file to your project, they will automatically be uploaded into the profile as well. For example,
if you run the following commands from your Maven project directory:

44

CHAPTER 7. FABRIC8 MAVEN PLUG-IN

mkdir -p src/main/fabric8
echo "## Hello World" >> src/main/fabric8/ReadMe.md
mvn fabric8:deploy

The newly deployed profile will include a ReadMe.md wiki page.
7.4. CONFIGURATION PROPERTIES

Specifying properties

Properties can be specified either as elements inside the configuration element of the plug-in in your
project's pom.xml file. For example, the profile property can be set as follows:

<plugins>
<plugin>
<groupld>io.fabric8</groupld>
<artifactld>fabric8-maven-plugin</artifactld>
<configuration>
<profile>${fabric8.profile}</profile>
</configuration>
</plugin>
</plugins>

Or you can specify the properties on the command line or as Maven build properties (where the

property names must be prefixed with fabric8.. For example, to set the profile name, you could add the
following property to your pom.xml file:

<project>

<properties>
<fabric8.profile>my-foo</fabric8.profile>

</properties>

Or you can specify properties on the command line:

I mvn fabric8:deploy -Dfabric8.profile=my-foo

Property reference

The Fabric8 Maven plug-in supports the following properties (which can be set either as elements inside
the configuration element in the pom.xml file or as Maven properties, when prefixed by fabric8.):

Parameter Description

abstractProfile Specifies whether the profile is abstract. Default is
false.

artifactBundleType Type to use for the project artifact bundle reference.

45

Red Hat JBoss Fuse 6.3 Fabric Guide

artifactBundleClassifier

baseVersion

bundles

featureRepos

features

generateSummaryFile

ignoreProject

includeArtifact

includeReadMe

jolokiaUrl

locked

mininstanceCount

parentProfiles

46

Classifier to use for the project artifact bundle
reference.

If the version does not exist, the baseVersion
provides the initial values for the newly created
version. This is like creating a branch from the
baseVersion for a new version branch in git.

Space-separated list of additional bundle URLs (of
the form mvn:groupld)artifactld/version) to add
to the newly created profile. Note you do not have to
include the current Maven project artifact; this
configuration is intended as a way to list dependent
required bundles.

Space-separated list of feature repository URLs to
add to the profile. The URL has the general form
mvn:groupld/artifactld/version/xml/features.

Space-separated list of features to add to the profile.
For example, the following setting would include both
the camel feature and the cxf feature:
<features>camel cxf</features>

Whether or not to generate a Summary.md file
from the pom.xml file's description element text
value. Default is true.

Whether or not we should ignore this maven project
in goals like fabric8:deploy orfabric8:zip. Default
is false.

Whether or not we should add the Maven
deployment unit to the Fabric profile. Default is true.

Whether or not to upload the Maven project's
ReadMe file, if no specific ReadMe file exists in the
your profile configuration directory (as set by
profileConfigDir). Default istrue.

The Jolokia URL of the JBoss Fuse Management
Console. Defaults to
http://localhost:8181/jolokia.

Specifies whether or not the profile should be locked.

The minimum number of instances of this profile
which we require to run. Defaultis 1.

Space-separated list of parent profile IDs to be
added to the newly created profile. Defaults to karaf.

CHAPTER 7. FABRIC8 MAVEN PLUG-IN

profile The name of the Fabric profile to deploy your project
to. Defaults to the groupld-artifactld of your
Maven project.

profileConfigDir The folder in your Maven project containing resource
files to be deployed into the profile, along with the
artifact configuration. Defaults to src/main/fabric8.
You should create the directory and add any
configuration files or documentation you wish to add
to your profile.

profileVersion The profile version in which to update the profile. If
not specified, it defaults to the current version of the
fabric.

replaceReadmeLinksPrefix If provided, then any links in the ReadMe.md files

will be replaced to include the given prefix.

scope The Maven scope to filter by, when resolving the
dependency tree. Possible values are: compile,
provided, runtime, test, system, import.

serverld The server ID used to lookup in ~/.m2/settings/xml
for the server element to find the username and
password to log in to the fabric. Defaults to
fabric8.upload.repo.

upload Whether or not the deploy goal should upload the
local builds to the fabric's Maven repository. You can
disable this step if you have configured your fabric's
Maven repository to reuse your local Maven
repository. Defaults to true.

useResolver Whether or not the OSGi resolver is used for bundles
or Karaf based containers to deduce the additional
bundles or features that need to be added to your
projects dependencies to be able to satisfy the OSGi
package imports. Defaults to true.

webContextPath The context path to use for Web applications, for
projects using wWar packaging.

47

Red Hat JBoss Fuse 6.3 Fabric Guide

CHAPTER 8. ACTIVEMQ BROKERS AND CLUSTERS

Abstract

Fabric provides predefined profiles for deploying a single (unclustered) broker and, in addition, you can
use the powerful fabric:mg-create command to create and deploy clusters of brokers.

8.1. CREATING A SINGLE BROKER INSTANCE

MQ profiles

The following profiles are important for creating broker instances:

mq-base

An abstract profile, which defines some important properties and resources for the broker, but
should never be used directly to instantiate a broker.

mg-default

A basic single broker, which inherits most of its properties from the mqg-base profile.

To examine the properties defined in these profiles, you can invoke the fabric:profile-display
command, as follows:

JBossFuse:karaf@root> fabric:profile-display mg-default

JBossFuse:karaf@root> fabric:profile-display mg-base

Creating a new broker instance

A Fuse MQ broker is a Karaf container instance running a message broker profile. The profile defines the
broker dependencies (through features) and the configuration for the broker. The simplest approach to
creating a new broker is to use the provided mq-default profile.

For example, to create a new mq-default broker instance called broker1, enter the following console
command:

JBossFuse:karaf@root> fabric:container-create-child --profile mg-default root broker1
Creating new instance on SSH port 8102 and RMI ports 1100/44445 at:
/Users/jdoe/Downloads/jboss-fuse-6.3.0-254/instances/broker1
The following containers have been created successfully:
Container: broker1.

This command creates a new container called broker1 with a broker of the same name running on it.

fabric:mqg-create command

The fabric:mg-create command provides a shortcut to creating a broker, but with more flexibility,
because it also creates a new profile. To create a new broker instance called brokerx using fabric:mq-
create, enter the following console command:

48

CHAPTER 8. ACTIVEMQ BROKERS AND CLUSTERS

JBossFuse:karaf@root> fabric:mg-create --create-container broker --replicas 1 brokerx
MQ profile mqg-broker-default.brokerx ready

Just like the basic fabric:container-create-child command, fabric:mgq-create creates a container
called broker1 and runs a broker instance on it. There are some differences, however:

® The new broker1 container is implicitly created as a child of the current container,

® The new broker has its own profile, mq-broker-default.brokerx, which is based on the mq-base
profile template,

® |tis possible to edit the mg-broker-default.brokerx profile, to customize the configuration of
this new broker.

® The --replicas option lets you specify the number of master/slave broker replicas (for more
details, see Section 8.3.2, "Master-Slave Cluster”). In this example, we specify one replica (the
default is two).

NOTE

The new profile gets the name mq-broker-Group.BrokerName by default. If you want
the profile to have the same name as the broker (which was the default in JBoss Fuse
version 6.0), you can specify the profile name explicitly using the --profile option.

IMPORTANT

The new broker is created with SSL enabled by default. The initial certificates and
passwords created by default are not secure, however, and must be replaced by custom
certificates and passwords. See the section called “Customizing the SSL keystore.jks and
truststore.jks file” for details of how to do this.

Starting a broker on an existing container

The fabric:mg-create command can be used to deploy brokers on existing containers. Consider the
following example, which creates a new Fuse MQ broker in two steps:

JBossFuse:karaf@root> fabric:container-create-child root broker1
Creating new instance on SSH port 8102 and RMI ports 1100/44445 at:
/Users/jdoe/Downloads/jboss-fuse-6.3.0-254/instances/broker1
The following containers have been created successfully:
broker1.

JBossFuse:karaf@root> fabric:mg-create --assign-container broker1 brokerx
MQ profile mg-broker-default.brokerx ready

The preceding example firstly creates a default child container, and then creates and deploys the new
mq-broker-default.brokerx profile to the container, by invoking fabric:mq-create with the --assign-
container option. Of course, instead of deploying to a local child container (as in this example), we could
assign the broker to an SSH container.

Broker groups

49

Red Hat JBoss Fuse 6.3 Fabric Guide

Brokers created using the fabric:mgq-create command are always registered with a specific broker
group. If you do not specify the group name explicitly at the time you create the broker, the broker gets
registered with the default group by default.

If you like, you can specify the group name explicitly using the --group option of the fabric:mgq-create
command. For example, to create a new broker that registers with the west-coast group, enter the
following console command:

JBossFuse:karaf@root> fabric:mg-create --create-container broker --replicas 1 --group west-coast
brokery
MQ profile mg-broker-west-coast.brokery ready

If the west-coast group does not exist prior to running this command, it is automatically created by
Fabric. Broker groups are important for defining clusters of brokers, providing the underlying
mechanism for creating load-balancing clusters and master-slave clusters. For details, see Section 8.3,
“Topologies”.

8.2. CONNECTING TO A BROKER

Overview

This section describes how to connect a client to a broker. In order to connect to a JBoss MQ broker, you
need to know its group name. Every MQ broker is associated with a group when it is created: if none is
specified explicitly, it automatically gets associated with the default group.

Client URL
To connect to an MQ broker, the client must specify a discovery URL, in the following format:
I discovery:(fabric: GroupName)

For example, to connect to a broker associated with the default group, the client would use the
following URL:

I discovery:(fabric:default)

The connection factory then looks for available brokers in the group and connects the client to one of
them.

8.3. TOPOLOGIES

8.3.1. Load-Balancing Cluster

Overview

Fabric exploits the concept of broker groups to implement cluster functionality. To set up a load-
balancing cluster, all of the brokers in the cluster should register with the same group name, but using
unique broker names.

For example, Figure 8.1, “Load-Balancing Cluster” shows a load-balancing cluster with the group name,

loadbal, and with three brokers registered in the group: brokerx, brokery, and brokerz. This topology is
most useful in a scenario where producer is generating a heavy load but does not care if all the messages

50

CHAPTER 8. ACTIVEMQ BROKERS AND CLUSTERS

are delivered to the consumer. In this scenario non persistent messages are used. This topology does
not have shared storage. For scenarios where better guarantees regarding delivery of messages is
required it is best to combine networks and master slave as defined in subsequent sections.

Figure 8.1. Load-Balancing Cluster

Group:loadbal -
Broker Name URL J

brokerx ®
brokery /
brokerz / q

/\L hd

Create brokers in a load-balancing cluster

The basic rules for creating a load-balancing cluster of brokers are as follows:
® Choose a group name for the load-balancing cluster.
® FEach broker in the cluster registers with the chosen group.
® FEach broker must be identified by a unique broker name.
® Normally, each broker is deployed in a separate container.

For example, consider the cluster shown in Figure 8.1, “Load-Balancing Cluster”. The group name is
loadbal and the cluster consists of three broker instances with broker names: brokerx, brokery, and
brokerz.

To create this cluster, perform the following steps:

1. First of all create some containers:

JBossFuse:karaf@root> container-create-child root broker 3

Creating new instance on SSH port 8102 and RMI ports 1100/44445 at:
/Users/jdoe/Downloads/jboss-fuse-6.3.0.redhat-254/instances/broker2

Creating new instance on SSH port 8104 and RMI ports 1102/44447 at:
/Users/jdoe/Downloads/jboss-fuse-6.3.0.redhat-254/instances/broker3

Creating new instance on SSH port 8103 and RMI ports 1101/44446 at:
/Users/jdoe/Downloads/jboss-fuse-6.3.0.redhat-254/instances/broker1

The following containers have been created successfully:

Container: broker2.

Container: broker3.

Container: broker1.

2. Wait until the containers are successfully provisioned. You can conveniently monitor them using
the watch command, as follows:

I JBossFuse:karaf@root> watch container-list

51

Red Hat JBoss Fuse 6.3 Fabric Guide

3. You can then assign broker profiles to each ot the containers, using the fabric:mqg-create
command, as follows:

JBossFuse:karaf@root> mqg-create --group loadbal --assign-container broker1 brokerx
MQ profile mq-broker-loadbal.brokerx ready

JBossFuse:karaf@root> mqg-create --group loadbal --assign-container broker2 brokery
MQ profile mq-broker-loadbal.brokery ready

JBossFuse:karaf@root> mqg-create --group loadbal --assign-container broker3 brokerz
MQ profile mq-broker-loadbal.brokerz ready

4. You can use the fabric:profile-list command to see the new profiles created for these brokers:

JBossFuse:karaf@root> profile-list --hidden

[id] [# containers] [parents]

mgq-broker-loadbal.brokerx 1 mq-base
mgq-broker-loadbal.brokery 1 mq-base
mgq-broker-loadbal.brokerz 1 mq-base

mgq-client-loadbal

5. You can use the fabric:cluster-list command to view the cluster configuration for this load
balancing cluster:

JBossFuse:karaf@root> cluster-list
[cluster] [masters] [slaves] [services]

amg/loadbal

brokerx broker1 - tcp://MyLocalHost.61616 mqtt://MyLocalHost.61424
amgqp://MyLocalHost.61426 stomp://MyLocalHost.61428

brokery broker2 - tcp://MyLocalHost.61437 mqtt://MyLocalHost.61439
amqgp://MyLocalHost.61441 stomp://MyLocalHost.61443

brokerz broker3 - tcp://MyLocalHost.61453 mqtt://MyLocalHost.61455

amgqp://MyLocalHost.61457 stomp://MyLocalHost.61459

Configure clients of a load-balancing cluster

To connect a client to a load-balancing cluster, use a URL of the form, discovery:(fabric:GroupName),
which automatically load balances the client across the available brokers in the cluster. For example, to
connect a client to the loadbal cluster, you would use a URL like the following:

I discovery:(fabric:loadbal)

For convenience, the mg-create command automatically generates a profile named mq-
client-GroupName, which provides an ActiveMQConnectionFactory instance in the registry. If you
deploy this profile together with a Camel route that uses JMS endpoints, the Camel route will
automatically find and use the ActiveMQConnectionFactory instance to connect to the broker cluster.

8.3.2. Master-Slave Cluster

Overview

52

CHAPTER 8. ACTIVEMQ BROKERS AND CLUSTERS

In the master-slave pattern, multiple peer brokers provide the same service and all compete to be the
master. Only one master can exist at a given time, while the rest remain on standby as slaves. If the
master stops, the remaining brokers (slaves) compete to become the new master. If the broker
containers are deployed across different machines or data centres, the result is a highly available broker.

For example, Figure 8.2, “Master-Slave Cluster” shows a master-slave cluster with the group name,
masterslave, and three brokers that compete with each other to register as the broker, hq-broker. A
broker becomes the master by acquiring a lock (where the lock implementation is provided by the
underlying ZooKeeper registry). The other two brokers that fail to acquire the lock remain as slaves (but
they continue trying to acquire the lock, at regular time intervals).

Figure 8.2. Master-Slave Cluster

Group: masterslave

-]
Broker Name URL J
hg-broker t Q
N\

Create brokers in a master-slave cluster
The basic rules for creating a master-slave cluster of brokers are as follows:
® Choose a group name for the master-slave cluster.
® FEach broker in the cluster registers with the chosen group.
® Each broker must be identified by the same virtual broker name.
® Normally, each broker is deployed in a separate container.
For example, consider the cluster shown in Figure 8.2, “Master-Slave Cluster”. The group name is

masterslave and the cluster consists of three broker instances, each with the same broker name: hqg-
broker. You can create this cluster by entering a single fabric:mqg-create command, as follows:

JBossFuse:karaf@root> mqg-create --create-container broker --replicas 3 --group masterslave hg-
broker

Alternatively, if you have already created three containers, broker1, broker2 and broker3 (possibly
running on separate machines), you can deploy a cluster of three brokers to the containers by entering
the following command:

JBossFuse:karaf@root> mqg-create --assign-container broker1,broker2,broker3 --group masterslave
hqg-broker

The first broker that starts becomes the master, while the others are slaves. When you stop the master,
one of the slaves will take over and clients will reconnect. If brokers are persistent, you need to ensure
that they all use the same store—for details of how to configure this, see the section called “Configuring
persistent data”.

53

Red Hat JBoss Fuse 6.3 Fabric Guide

Configure clients of a master-slave cluster

To connect a client to a master-slave cluster, use a URL of the form, discovery:(fabric:GroupName),
which automatically connects the client to the current master server. For example, to connect a client to
the masterslave cluster, you would use a URL like the following:

I discovery:(fabric:masterslave)

You can use the automatically generated client profile, mg-client-masterslave, to create sample clients
(by referencing the corresponding ActiveMQConnectionFactory instance in the registry).

Locking mechanism

One benefit of this kind of master-slave architecture is that it does not depend on shared storage for
locking, so it can be used even with non-persistent brokers. The broker group uses ZooKeeper to
manage a shared distributed lock that controls ownership of the master status.

Re-using containers for multiple clusters

Fabric supports re-using the same containers for multiple master-slave clusters, which is a convenient
way to economize on hardware resources. For example, given the three containers, broker1, broker2,
and broker3, already running the hg-broker cluster, it is possible to reuse the same containers for
another highly available broker cluster, web-broker. You can assign the web-broker profile to the
existing containers with the following command:

I mgq-create --assign-container broker1,broker2,broker3 web-broker

This command assigns the new web-broker profile to the same containers already running hq-broker.
Fabric automatically prevents two masters from running on the same container, so the master for hg-
broker will run on a different container from the master for web-broker. This arrangement makes
optimal use of the available resources.

Configuring persistent data

When you run a master-slave configuration with persistent brokers, it is important to specify where your
store is located, because you need to be able to access it from multiple hosts. To support this scenario,
the fabric:mg-create command enables you to specify the location of the data directory, as follows:

I mgq-create --assign-container broker1 --data /var/activemqg/hg-broker hg-broker

The preceding command creates the hqg-broker virtual broker, which uses the /var/activemq/hqg-broker
directory for the data (and store) location. You can then mount some shared storage to this path and
share the storage amongst the brokers in the master-slave cluster.

8.3.3. Broker Networks

Overview

It is possible to combine broker clusters with broker networks, giving you a hybrid broker network that
combines the benefits of broker clusters (for example, high availability) with the benefits of broker
networks (managing the flow of messages between different geographical sites).

Broker networks

54

CHAPTER 8. ACTIVEMQ BROKERS AND CLUSTERS

A broker network in JBoss Fuse is a form of federation where brokers are linked together using network
connectors. This can be used as a way of forwarding messages between different geographical locations.
Messages can be forwarded either statically (where specified categories of messages are always
forwarded to a specific broker), or dynamically (where messages are forwarded only in response to a
client that connects to a broker and subscribes to particular queues or topics).

Creating network connectors

In the context of Fabric, network connectors can be created by passing the --network option to the
fabric:mg-create command.

Example broker network

Consider the scenario shown in Figure 8.3, “Broker Network with Master-Slave Clusters”.

Figure 8.3. Broker Network with Master-Slave Clusters

us-west1 Y
- e
~ .
~ Pid
~ rd
'~
. ~
. \\
Master K

. network «

4 ‘ [
us-west2 Rt -
The figure shows two master-slave clusters:

® The first cluster has the group name, us-west, and provides high-availability with a master-slave
cluster of two brokers, us-west1 and us-west2.

® The second cluster has the group name, us-east, and provides high-availability with a master-
slave cluster of two brokers, us-east1 and us-east2.

Network connectors link the master brokers between each of the geographical locations (there are, in
fact, two network connectors in this topology: from west to east and from east to west).

To create the pair of master-slave brokers for the us-east group (consisting of the two containers us-
east1 and us-east2), you would log on to a root container running in the US East location and enter a
command like the following:

mgq-create --group us-east --network us-west --networks-username User --networks-password Pass -
-create-container us-east us-east

Where the --network option specifies the name of the broker group you want to connect to, and the
Userand Pass are the credentials required to log on to the us-west broker cluster. By default, the
fabric:mg-create command creates a master/slave pair of brokers.

And to create the pair of master-slave brokers for the us-west group (consisting of the two containers

us-west1 and us-west2), you would log on to a root container running in the US West location and
enter a command like the following:

55

Red Hat JBoss Fuse 6.3 Fabric Guide

mgq-create --group us-west --network us-east --networks-username User --networks-password Pass -
-create-container us-west us-west

Where Userand Pass are the credentials required to log on to the us-east broker cluster.

NOTE

In a real scenario, you would probably first create the containers on separate machines
and then assign brokers to the containers, using the --assign-container option in place of
--create-container.

Connecting to the example broker network

At the US East location, any clients that need to connect to the broker network should use the following
client URL:

I discovery:(fabric:us-east)

And at the US West location, any clients that need to connect to the broker network should use the
following client URL:

I discovery:(fabric:us-west)

Any messages that need to be propagated between locations, from US East to US West (or from US
West to US East), are transmitted over the broker network through one of the network connectors.

8.4. ALTERNATIVE MASTER-SLAVE CLUSTER

Why use an alternative master-slave cluster?

The standard master-slave cluster in Fabric uses Apache Zookeeper to manage the locking mechanism:
in order to be promoted to master, a broker connects to a Fabric server and attempts to acquire the
lock on a particular entry in the Zookeeper registry. If the master broker /oses connectivity to the Fabric
ensemble, it automatically becomes dormant (and ceases to accept incoming messages). A potentially
undesirable side effect of this behaviour is that when you perform maintenance on the Fabric ensemble
(for example, by shutting down one of the Fabric servers), you will find that the broker cluster shuts
down as well.

In some deployment scenarios, therefore, you might get better up times and more reliable broker
performance by disabling the Zookeeper locking mechanism (which Fabric employs by default) and
using an alternative locking mechanism instead.

Alternative locking mechanism

The Apache ActiveMQ persistence layer supports alternative locking mechanisms which can be used to
enable a master-slave broker cluster. In order to use an alternative locking mechanism, you need to
make at least the following basic configuration changes:

1. Disable the default Zookeeper locking mechanism (which can be done by setting
standalone=true in the broker's io.fabric8.mq.fabric.server-BrokerName PID).

2. Enable the shared file system master/slave locking mechanism in the KahaDB persistence layer
(see).

56

CHAPTER 8. ACTIVEMQ BROKERS AND CLUSTERS

NOTE

In fact, the KahaDB locking mechanism is usually enabled by default. This does not cause
any problems with Fabric, because it operates at a completely different level from the
Zookeeper locking mechanism. The Zookeeper coordination and locking works at the
broker level to coordinate the broker start. The KahaDB lock coordinates the persistence
adapter start.

standalone property

The standalone property belongs to the io.fabric8.mq.fabric.server-BrokerName PID and is normally
used for a non-Fabric broker deployment (for example, it is set to true in the
etc/io.fabric8.mq.fabric.server-broker.cfg file). By setting this property to true, you instruct the broker
to stop using the discovery and coordination services provided by Fabric (but it is still possible to deploy
the broker in a Fabric container). One consequence of this is that the broker stops using the Zookeeper
locking mechanism. But this setting has other side effects as well.

Side effects of setting standalone=true

Setting the property, standalone=true, on a broker deployed in Fabric has the following effects:

® Fabric no longer coordinates the locks for the brokers (hence, the broker's persistence adapter
needs to be configured as shared file system master/slave instead).

® The broker no longer uses the ZookeeperLoginModule for authentication and falls back to
using the PropertiesLoginModule instead. This requires users to be stored in the
etc/users.properties file or added to the PropertiesLoginModule JAAS Realm in the
container where the broker is running for the brokers to continue to accept connections

® Fabric discovery of brokers no longer works (which affects client configuration).

Configuring brokers in the cluster

Brokers in the cluster must be configured as follows:

1. Set the property, standalone=true, in each broker's io.fabric8.mq.fabric.server-BrokerName
PID. For example, given a broker with the broker name, brokerx, which is configured by the
profile, mg-broker-default.brokerx, you could set the standalone property to true using the
following console command:

profile-edit --pid io.fabric8.mq.fabric.server-brokerx/standalone=true mq-broker-
default.brokerx

2. To customize the broker's configuration settings further, you need to create a unique copy of
the broker configuration file in the broker's own profile (instead of inheriting the broker
configuration file from the base profile, mg-base). If you have not already done so, follow the
instructions in the section called “Customizing the broker configuration file” to create a custom
broker configuration file for each of the broker's in the cluster.

3. Configure each broker's KahaDB persistence adapter to use the shared file system locking

mechanism. For this you must customize each broker configuration file, adding or modifying (as
appropriate) the following XML snippet:

I <broker ... >

57

Red Hat JBoss Fuse 6.3 Fabric Guide

<persistenceAdapter>
<kahaDB directory="/sharedFileSystem/sharedBrokerData" lockKeepAlivePeriod="2000">
<locker>
<shared-file-locker lockAcquireSleeplnterval="10000" />
</locker>
</kahaDB>
</persistenceAdapter>

</broker>

You can edit this profile resource either though the Fuse Management Console, through the Git
configuration approach (see Section 8.5, “Broker Configuration”), or using the fabric:profile-
edit command.

NOTE

For more details about configuring brokers, see Section 8.5, “Broker Configuration”.

Configuring authentication data

When you set standalone=true on a broker, it can no longer use the default ZookeeperLoginModule
authentication mechanism and falls back on the PropertiesLoginModule. This implies that you must
populate authentication data in the etc/users.properties file on each of the hosts where a broker is
running. Each line of this file takes an entry in the following format:

I Username=Password,Role1,Role2,...

Where each entry consists of Username and Password credentials and a list of one or more roles,
Role1, Role2,....

IMPORTANT

Using such a decentralized approach to authentication in a distributed system such as
Fabric is potentially problematic. For example, if you move a broker from one host to
another, the authentication data would not automatically become available on the new
host. You should, therefore, carefully consider the impact this might have on your
administrative procedures.

Configuring a client

Clients of the alternative master-slave cluster cannot use Fabric discovery to connect to the cluster.
This makes the client configuration slightly less flexible, because you cannot abstract away the broker
locations. In this scenario, it is necessary to list the host locations explicitly in the client connection URL.

For example, to connect to a shared file system master-slave cluster that consists of three brokers, you
could use a connection URL like the following:

I failover:(tcp://broker1:61616,tcp://broker2:61616,tcp://broker3:61616)

8.5. BROKER CONFIGURATION

Overview

58

CHAPTER 8. ACTIVEMQ BROKERS AND CLUSTERS

The examples presented so far have demonstrated how to create brokers with default configuration
settings. In practice, you will usually need to customize the broker configurations and this can be done
by editing the properties of the corresponding Fabric profiles.

Setting OSGi Config Admin properties

Many of the broker configuration settings can be altered by editing OSGi Config Admin properties
(which are organized into collections identified by a persistent ID or PID). For example, consider the
broker1 profile created by entering the following fabric:mq-create command:

I fabric:mq-create --create-container broker --replicas 1 --network us-west brokerx

The preceding command creates the new profile, mg-broker-default.brokerx, and assigns this profile to
the newly created broker1 container.

NOTE

The new profile gets the name mq-broker-Group.BrokerName by default. If you want
the profile to have the same name as the broker (which was the default in JBoss Fuse
version 6.0), you can specify the profile name explicitly using the --profile option.

You can inspect the details of the mq-broker-default.brokerx profile using the fabric:profile-display
command, as follows:

JBossFuse:karaf@root> profile-display mq-broker-default.brokerx
Profile id: mqg-broker-default.brokerx
Version :1.0
Attributes:
parents: mqg-base
Containers:

Container settings

Configuration details

PID: io.fabric8.mq.fabric.server-brokerx
connectors openwire mqtt amgp stomp
data ${runtime.data}brokerx
standby.pool default
keystore.file profile:keystore.jks
kind MasterSlave
keystore.password mca”e.Xg
broker-name brokerx
ssl true
truststore.password mca’e.Xg
keystore.cn localhost
keystore.url profile:keystore.jks
truststore.file profile:truststore.jks
config profile:ssl-broker.xml
group default
network us-west

59

Red Hat JBoss Fuse 6.3 Fabric Guide

Other resources

Resource: truststore.jks
Resource: keystore.jks

Associated with the io.fabric8.mq.fabric.server-brokerx PID are a variety of property settings, such as
network and group. You can now modify the existing properties or add more properties to this PID to
customize the broker configuration.

Modifying basic configuration properties

You can modify the basic configuration properties associated with the io.fabric8.mgq.fabric.server-
brokerx PID by invoking the fabric:profile-edit command, with the appropriate syntax for modifying
PID properties.

For example, to change the value of the network property to us-east, enter the following console
command:

I profile-edit --pid io.fabric8.mq.fabric.server-brokerx/network=us-east mqg-broker-default.brokerx

Customizing the SSL keystore.jks and truststore.jks file

When using a broker with SSL security, it is necessary to replace the default keystore files with your own
custom versions. The following JKS resources are stored in the mqg-broker-default.brokerx profile when
SSL is enabled (which is the default case):

keystore.jks

A Java keystore file containing this broker's own X.509 certificate. The broker uses this certificate to
identify itself to other brokers in the network. The password for this file is stored in the
io.fabric8.mq_.fabric.server-brokerx/keystore.password property.

truststore.jks

A Java truststore file containing one or more Certificate Authority (CA) certificates or other
certificates, which are used to verify the certificates presented by other brokers during the SSL
handshake. The password for this file is stored in the io.fabric8.mq.fabric.server-
brokerx/truststore.password property.

For replacing entire resource files in a profile, the easiest approach to take is to make a git clone of the
profile data from the Fabric ensemble server (which also acts as a git server) and then use git to update
the profile data. For more details about how to use git in Fabric, see Chapter 16, Configuring with Git.

For example, to customize the SSL settings for the mq-broker-default.brokerx profile, perform the
following steps:

1. If you have not done so already, clone the git repository that stores all of the profile data in your
Fabric. Enter a command like the following:

git clone -b 1.0 http://Username:Password@localhost:8181/git/fabric
cd fabric

Where Username and Password are the credentials of a Fabric user with Administrator role
and we assume that you are currently working with profiles in version 1.0 (which corresponds to
the git branch named 1.0).

60

CHAPTER 8. ACTIVEMQ BROKERS AND CLUSTERS

NOTE

In this example, it is assumed that the fabric is set up to use the git cluster
architecture (which is the default) and also that the Fabric server running on
localhost is currently the masterinstance of the git cluster.

2. The keystore.jks file and the truststore.jks file can be found at the following locations in the
git repository:

fabric/profiles/mqg/broker/default.brokerx.profile/keystore.jks
fabric/profiles/ma/broker/default.brokerx.profile/truststore.jks

Copy your custom versions of the keystore.jks file and truststore.jks file to these locations,
over-writing the default versions of these files.

3. You also need to modify the corresponding passwords for the keystore and truststore. To
modify the passwords, edit the following file in a text editor:

I fabric/profiles/mqg/broker/default.brokerx.profile/io.fabric8.mq.fabric.server-brokerx.properties

Modify the keystore.password and truststore.password settings in this file, to specify the
correct password values for your custom JKS files.

4. When you are finished modifying the profile configuration, commit and push the changes back
to the Fabric server using git, as follows:

git commit -a -m "Put a description of your changes here!"
git push

5. For these SSL configuration changes to take effect, a restart of the affected broker (or
brokers) is required. For example, assuming that the modified profile is deployed on the broker
container, you would restart the broker container as follows:

fabric:container-stop broker
fabric:container-start broker

Customizing the broker configuration file

Another important aspect of broker configuration is the ActiveMQ broker configuration file, which is
specified as a Spring XML file. There are two alternative versions of the broker configuration file: ssl-
broker.xml, for an SSL-enabled broker; and broker.xml, for a non-SSL-enabled broker.

If you want to customize the broker configuration, it is recommended that you create a copy of the
broker configuration file in your broker's own profile (instead of inheriting the broker configuration from
the mq-base parent profile). The easiest way to make this kind of change is to use a git repository of
profile data that has been cloned from a Fabric ensemble server.

For example, to customize the broker configuration for the mq-broker-default.brokerx profile, perform
the following steps:

1. Itis assumed that you have already cloned the git repository of profile data from the Fabric

ensemble server (see the section called “Customizing the SSL keystore.jks and truststore.jks
file"). Make sure that you have checked out the branch corresponding to the profile version that

61

Red Hat JBoss Fuse 6.3 Fabric Guide

you want to edit (which is assumed to be 1.0 here). It is also a good idea to do a git pull to ensure
that your local git repository is up-to-date. In your git repository, enter the following git
commands:

git checkout 1.0
git pull

. The default broker configuration files are stored at the following location in the git repository:

fabric/profiles/mqg/base.profile/ssl-broker.xml
fabric/profiles/mqg/base.profile/broker.xml

Depending on whether your broker is configured with SSL or not, you should copy either the
ssl-broker.xml file or the broker.xml file into your broker's profile. For example, assuming that
your broker uses the mq-broker-default.brokerx profile and is configured to use SSL, you
would copy the broker configuration as follows:

cp fabric/profiles/mqg/base.profile/ssl-broker.xml
fabric/profiles/mqg/broker/default.brokerx.profile/

. You can now edit the copy of the broker configuration file, customizing the broker's Spring XML

configuration as required.

. When you are finished modifying the broker configuration, commit and push the changes back

to the Fabric server using git, as follows:

git commit -a -m "Put a description of your changes here!"
git push

. For the configuration changes to take effect, a restart of the affected broker (or brokers) is

required. For example, assuming that the modified profile is deployed on the broker container,
you would restart the broker container as follows:

fabric:container-stop broker
fabric:container-start broker

Additional broker configuration templates in mg-base

If you like, you can add extra broker configurations to the mq-base profile, which can then be used as
templates for creating new brokers with the fabric:mq-create command. Additional template
configurations must be added to the following location in the git repository:

I fabric/profiles/mqg/base.profile/

You can then reference one of the templates by supplying the --config option to the fabric:mgq-create
command.

For example, given that a new broker configuration, mybrokertemplate.xml, has just been installed:

I fabric/profiles/mqg/base.profile/mybrokertemplate.xml

62

CHAPTER 8. ACTIVEMQ BROKERS AND CLUSTERS

You could use this custom mybrokertemplate.xml configuration template by invoking the fabric:mgq-
create command with the --config option, as follows:

I fabric:mq-create --config mybrokertemplate.xml brokerx

The --config option assumes that the configuration file is stored in the current version of the maq-base
profile, so you need to specify only the file name (that is, the full ZooKeeper path is not required).

Setting network connector properties

You can specify additional configuration for network connectors, where the property names have the
form network.NetworkPropName. For example, to add the setting,
network.bridgeTempDestinations=false, to the PID for brokerx (which has the profile name, mqg-
broker-default.brokerx), enter the following console command:

profile-edit --pid io.fabric8.mq.fabric.server-brokerx/network.bridgeTempDestinations=false mg-
broker-default.brokerx

The deployed broker dynamically detects the change to this property and updates the network
connector on the fly.

Network connector properties by reflection

Fabric uses reflection to set network connector properties. That is, any PID property of the form
network.OptionName can be used to set the corresponding OptionName property on the
org.apache.activemq.network.NetworkBridgeConfiguration class. In particular, this implies you can
set any of the following network.OptionName properties:

Property Default Description

name bridge Name of the network - for more
than one network connector
between the same two brokers,
use different names

userName None Username for logging on to the
remote broker port, if
authentication is enabled.

assword None Password for logging on to the
gging
remote broker port, if
authentication is enabled.

dynamicOnly false If true, only activate a networked
durable subscription when a
corresponding durable
subscription reactivates, by
default they are activated on
start-up.

63

Red Hat JBoss Fuse 6.3 Fabric Guide

Property

dispatchAsync

decreaseNetworkConsumerP
riority

consumerPriorityBase

networkTTL

messageTTL

consumerTTL

conduitSubscriptions

duplex

64

Default

true

false

true

false

Description

Determines how the network
bridge sends messages to the
local broker. If true, the network
bridge sends messages
asynchronously.

If true, starting at priority=5,
decrease the priority for
dispatching to a network Queue
consumer the further away it is (in
network hops) from the producer.
If false, all network consumers
use same default priority (that s,
0) as local consumers.

Sets the starting priority for
consumers. This base value will be
decremented by the length of the
broker path when
decreaseNetworkConsumer
Priority is set.

The number of brokers in the
network that messages and
subscriptions can pass through
(sets both messageTTL and
consumerTTL)

The number of brokers in the
network that messages can pass
through.

The number of brokers in the
network that subscriptions can
pass through (keep tolin a
mesh).

Multiple consumers subscribing to
the same destination are treated
as one consumer by the network.

Iftrue, a network connection is
used both to produce and to
consume messages. This is useful
for hub and spoke scenarios, when
the hub is behind a firewall, and so
on.

CHAPTER 8. ACTIVEMQ BROKERS AND CLUSTERS

Property Default Description

prefetchSize 1000 Sets the prefetch size on the
network connector's consumer. It
must be greater than 0, because
network consumers do not poll for

messages
suppressDuplicateQueueSub false If true, duplicate subscriptions in
scriptions the network that arise from

network intermediaries are
suppressed. For example,
consider brokers A, B, and C,
networked using multicast
discovery. A consumer on A gives
rise to a networked consumer on
B and C. In addition, C networks
to B (based on the network
consumer from A) and B
networks to C. When true, the
network bridges between C and B
(being duplicates of their existing
network subscriptions to A) will
be suppressed. Reducing the
routing choices in this way
provides determinism when
producers or consumers migrate
across the network as the
potential for dead routes (stuck
messages) are eliminated. The
networkTTL value needs to
match or exceed the broker count
to require this intervention.

suppressDuplicateTopicSub true If true, duplicate network topic
scriptions subscriptions (in a cyclic network)
are suppressed.

65

Red Hat JBoss Fuse 6.3 Fabric Guide

66

Property

bridgeTempDestinations

alwaysSyncSend

staticBridge

useCompression

Default

true

false

false

false

Description

Whether to broadcast advisory
messages for temporary
destinations created in the
network of brokers. Temporary
destinations are typically created
for request-reply messages.
Broadcasting the information
about temp destinations is turned
on by default, so that consumers
of a request-reply message can
be connected to another broker in
the network and still send back
the reply on the temporary
destination specified in the
JMSReplyTo header. In an
application scenario where most
or all of the messages use the
request-reply pattern, this
generates additional traffic on the
broker network, because every
message typically sets a unique
JMSReplyTo address (which
causes a new temp destination to
be created and broadcasted with
an advisory message in the
network of brokers).

If you disable this feature, this
network traffic can be reduced,
but in this case the producers and
consumers of a request-reply
message need to be connected
to the same broker. Remote
consumers (that is, connected
through another broker in your
network) will not be able to send
the reply message, but instead will
raise a temp destination does
not exist exception.

If true, non-persistent messages
are sent to the remote broker
using request/reply semantics
instead of oneway message
semantics. This setting affects
both persistent and non-
persistent messages the same
way.

If true, the broker does not
respond dynamically to new
consumers. It uses only
staticallylncludedDestination
S to create demand subscriptions.

Compresses the message body
when sending it over the network.

Property

advisoryForFailedForward

useBrokerNamesAsldSeed

gcDestinationViews

gcSweepTime

checkDuplicateMessagesOn
Duplex

Default

false

true

true

60000

false

CHAPTER 8. ACTIVEMQ BROKERS AND CLUSTERS

Description

If true, send an advisory message
when the broker fails to forward
the message to the temporary
destination across the bridge.

Add the broker name as a prefix
to connections and consumers
created by the network bridge. It
helps with visibility.

If true, remove any MBeans for
destinations that have not been
used for a while.

The period of inactivity in
milliseconds, after which we
remove MBeans.

If true, check for duplicates on
the duplex connection.

67

Red Hat JBoss Fuse 6.3 Fabric Guide

PART Il. FABRIC IN PRODUCTION

Abstract

Deepen your understanding and understand the principles of running Fabric in a production
environment.

68

CHAPTER 9. FABRIC ENSEMBLE AND REGISTRY

CHAPTER 9. FABRIC ENSEMBLE AND REGISTRY

Abstract

The Fabric ensemble and registry is a critical part of the Fabric infrastructure. In a production
environment, it is particularly important to understand the correct approach to creating and maintaining
a Fabric ensemble.

9.1. FABRIC REGISTRY

Overview

Fuse Fabric uses Apache ZooKeeper (a highly reliable distributed coordination service) as its registry for
storing cluster configuration and node registration.

ZooKeeper is designed with consistency and high availability in mind, while protecting against network
splits, using the concept of a server quorum. For example, you might run five ZooKeeper servers and, so
long as you have a quorum (three or more servers available), the ZooKeeper cluster is reliable and not in
a network split.

Registry structure

The structure of the registry is a tree-like structure, similar to a filesystem. Each node of the tree (a
znode) can hold data and can have children.

For example, the following shows an outline of the registry structure:

fabric

+----registry (runtime registry)

| +----containers
| |
|
|

+----root

+----configs (configuration registry)

+----versions

|
+---1.0

|

|

| |

| +----profiles
| |
|

|

+----default

+----containers

Parts of the registry

Conceptually, the Fabric registry consists of two main parts:

69

http://zookeeper.apache.org/

Red Hat JBoss Fuse 6.3 Fabric Guide

® Configuration Registry —the logical configuration of your fabric, which typically contains no

physical machine information. It contains details of the applications to be deployed and their
dependencies.

® Runtime Registry—contains details of how many machines are actually running, their physical

location, and what services they are implementing.

Making the registry highly available

With a single container hosting the registry, high availability is not supported. In order to have a highly
available Fabric registry, you need to replicate the registry on multiple containers (on different physical
hosts). The common term used to describe a group of servers that replicate the Fabric registry is an
ensemble.

9.2. ADMINISTERING A FABRIC ENSEMBLE

Recommendations for an ensemble in production

To assure high availability of the Fabric registry in a production environment, it is recommended that you
observe the following guidelines for a Fabric ensemble:

Deploy a minimum of five Fabric servers in production (if one server is taken down for
maintenance, one other server can fail, and the Fabric registry will still be available).

Fabric servers should be deployed on separate host machines.

Each Fabric server should only have a Fabric registry agent deployed inside it. No other profiles
should be deployed init.

The size of the ensemble should be fixed at the outset, and not changed later (if you
subsequently add or remove containers from the ensemble, the ZooKeeper IP ports would be
re-assigned).

Expanding the ensemble

Once you have an initial ensemble, consisting of one Fabric server, you can expand the ensemble by
invoking the fabric:ensemble-add command. To expand the ensemble, perform the following steps:

1.

70

Create some new managed containers in the current fabric, which you can then add to the
ensemble. Use the default profile for these new containers. For a production environment, it is
recommended that you create at least four new managed containers (must be an even number),
each running on their own host.

While logged on to a container in the fabric, use the fabric:ensemble-add command to add the
managed containers to the ensemble. For example, given the four managed containers,
container1, container2, container3, and container4, you would enter the following command:

I > fabric:ensemble-add containeri container2 container3 container4

NOTE

You must specify an even number of containers to the fabric:ensemble-add
command.

CHAPTER 9. FABRIC ENSEMBLE AND REGISTRY

3. To check that the ensemble has been successfully created, invoke the fabric:container-list
command.

IMPORTANT

Do not attempt to expand (or shrink) a Fabric ensemble in a production environment.
When you add containers to (or remove containers from) an ensemble, the ZooKeeper IP
ports are all re-assigned, which typically causes the containers in the fabric to lose
connectivity with the ensemble.

Changing an ensemble password

Each ensemble has a password. When you create an ensemble you can specify the --zookeeper-
password option to define the ensemble password. If you do not then Zookeeper creates an ensemble
password for you. You might want to change the ensemble password when a test ensemble becomes a
production ensemble. To display the current ensemble password, execute the following command:

I > fabric:ensemble-password

To change the ensemble password, execute the fabric:ensemble-password command and specify the
new password. For example, to change the password to tiger, enter the following command:

I > fabric:ensemble-password tiger

Zookeeper responds with a message to wait while it updates the password on each node. A node must
be running for it to be updated with the new password. Zookeeper also instructs you to enter the
following command when the prompt reappears. This command saves the updated password:

I > fabric:ensemble-password --commit

Taking a Fabric server down for maintenance

If you need to perform any maintenance on the host where a Fabric server is running, you can do this
while maintaining availability of the Fabric registry, so long as a quorum (more than half) of the Fabric
servers are still running. To stop a Fabric server, simply invoke the fabric:container-stop command,
specifying the name of the Fabric server.

In general, it is recommended to have at least five Fabric servers in the ensemble. Three is not an
adequate number. For example, with three servers in the ensemble consider what happens when you
take a Fabric server down for maintenance. The two remaining Fabric servers form a quorum, but there is
now no tolerance for failure. If one of the remaining Fabric servers fails, the whole fabric fails. In order to
maintain high availability during maintenance, it is therefore essential to have at least five Fabric servers
in the ensemble.

9.3. CREATE FABRIC ENVIRONMENT WITH MULTIPLE ENSEMBLE
SERVERS

Setup Host A

To setup the fabric environment with multiple ensemble servers, follow these steps:

1. Log on to the first ensemble server, HostA(0.0.0.1).

71

Red Hat JBoss Fuse 6.3 Fabric Guide

2. Extract the jboss-fuse-karaf-6.3.0.redhat-262.zip and modify the file etc/users.properties.

3. Change the environment settings in the file bin/setenv.

export EXTRA_JAVA_OPTS="-Djava.rmi.server.hostname=0.0.0.1 -
Daether.updateCheckManager.sessionState=bypass”

4. Change the environment settings in the file etc/system.properties.
I karaf.name = fabricserver1

5. Start fuse ./fuse.

6. Create a fabric.

JBossFuse:karaf@root> fabric:create --clean --new-user AdminUser --new-user-password
AdminPass --new-user-role Administrator --zookeeper-password ZooPass --zookeeper-data-
dir zkdata --resolver manualip --manual-ip 127.0.0.1 --wait-for-provisioning

7. Verify the zookeeper url.

JBossFuse:karaf@root> config:proplist --pid io.fabric8.zookeeper fabric.zookeeper.pid =
io.fabric8.zookeeper service.pid = io.fabric8.zookeeper zookeeper.password =
ZKENC=YWRtaW4=zookeeper.url = sample.demo:218

Setup HostB

Start the other ensemble server, Host 2.
1. Log on to HostB(0.0.0.2).
2. Extract jboss-fuse-karaf-6.3.0.redhat-262.zip and modify the file etc/users.properties.

3. Modify the environment variables in the file jbin/setenv.

export EXTRA_JAVA_OPTS="-Djava.rmi.server.hostname=0.0.0.2 -
Daether.updateCheckManager.sessionState=bypass”

4. Start fuse ./fuse.

5. Join fabric.

fabric:join --zookeeper-password admin --resolver manualip --manual-ip 0.0.0.2
sample.demo:2181 fabricserver2

Setup HostC

Start the other ensemble server, Host 3.
1. Log on to HostC(0.0.0.3).

2. Extract jboss-fuse-karaf-6.3.0.redhat-262.zip and modify the file etc/users.properties.

72

CHAPTER 9. FABRIC ENSEMBLE AND REGISTRY

3. Modify the environment variables in the file jbin/setenv.

export EXTRA_JAVA_OPTS="-Djava.rmi.server.hostname=0.0.0.3 -
Daether.updateCheckManager.sessionState=bypass”

4. Start fuse ./fuse.

5. Join fabric.

fabric:join --zookeeper-password admin --resolver manualip --manual-ip 0.0.0.3
sample.demo:2181 fabricserver2

Run the Fabric ensemble.

To run the ensemble, use the following command:

1. Logon to HostA, and add ensemble, fabric:ensemble-add fabricserver2 fabricserver3.

9.4. PURGING THE ZOOKEEPER SNAPSHOT AND TRANSACTION
LOGS

Overview

The ZooKeeper Data Directory contains snapshot and transactional log files which are persistent copy of
the znodes stored by an ensemble. Any changes to znodes are appended to transaction log and when
the log file size increases, a snapshot of the current state of znodes is written to the filesystem.
ZooKeeper tracks a fuzzy state of its own data tree within the snapshot files. This data tree is constantly
evolving.

To clean up and purge the snapshot and transaction logs from ZooKeeper, you can invoke the
ZooKeeper autopurge functionality using the --zookeeper-purge-interval and --zookeeper-snap-
retain-count parameters on the fabric:create command.

fabric:create Parameters for Zookeeper autopurge

Table 9.1. Zookeeper autopurge Parameters

Parameter Description

--zookeeper-purge-interval Set the interval in hours between triggers of the
autopurge task. Must be set to a positive integer (1
and above). The defaultis O.

--zookeeper-snap-retain-count Define the number of recent Snapshots and
corresponding transaction logs in the dataDir and
dataLogDir to retain on autopurge. The minimum
number is 3.

9.5.Z00KEEPER RETRY AND RETRY INTERVAL

73

Red Hat JBoss Fuse 6.3 Fabric Guide

Overview

This section covers two Zookeeper client concepts, Retry and Retry interval and their properties. When
an ensemble server is running, all containers that are part of fabric environment need to connect to this
ensemble. The configadmin PID configuration for this process is io.fabric8.zookeeper and it is
configured by the default fabric profile.

NOTE

The etc/io.fabric8.zookeeper.cfg file must be removed.

Properties for configuring the retry interval

The zookeeper.url and zookeeper.password properties are configured by default. The other
properties that can be configured in io.fabric8.zookeeper PID are:

Table 9.2. Zookeeper properties

Property Name Description Default Value
zookeeper.retry.max Number of trials to establish the 3
connection.
zookeeper.retry.interval Number of milliseconds to sleep 500
between the connection
attempts.
zookeeper.connection.time.o Timeout while establishing the 15000
ut or connection.
zookeeper.connection.timeo
ut
zookeeper.session.timeout Once connection is established 60000

and the server session is created
on server side. Client sends the
session timeout and server checks
the timeout.

To edit the properties, modify the default profile as:

profile-edit --pid io.fabric8.zookeeper/<propertyName>=<propertyValue> default [version]

74

CHAPTER10. FABRIC AGENTS

CHAPTER10. FABRIC AGENTS

Abstract

The Fabric agent, which is responsible for provisioning on each container instance, is a key component of
the Fabric infrastructure. When it comes to troubleshooting the behavior of a Fabric container, it is
valuable to have an understanding of what the Fabric agent does and how it works.

10.1. INTRODUCTION

Fabric agent

The Fabric agent is the part of Fabric that is responsible for applying profiles to containers. The agent
can run in any container and its role is to retrieve profile information from the registry and apply them to
the container.
To be specific, the Fabric agent performs the following actions:

1. Retrieves the profiles and versions assigned to the container on which it is running.

2. Reconfigures the container.

3. Calculates what needs to be installed, removed or updated on the container.

4. Performs the requisite install, remove, and update actions.

Agent modules

In reality, the Fabric agent is composed of the following two modules:

[fabric-configadmin]

The Fabric configuration admin bridge. Translates the registry information into configuration
information.

[fabric-agent]

The deployment agent. Reads the translated configuration and provisions the container accordingly.

Often, the term, agent, refers just to the deployment agent ([fabric-agent] module), but here we discuss
both of the agent modules and describe the role of each in some detail.

10.2. THE CONFIGURATION ADMIN BRIDGE

Overview

The configuration admin bridge is responsible for bridging between the ZooKeeper registry and the
OSGi Configuration Admin service. After the bridge connects to the ZooKeeper registry, it discovers
what version is assigned to the container, retrieves the appropriate versions of the profiles assigned to
the container, translates the profiles into configuration data, and applies the profile data to the
container.

75

Red Hat JBoss Fuse 6.3 Fabric Guide

Information in a profile
Profiles can contain two distinct kinds of information:
® Configuration information—which includes:
o System configuration
o OSGi configuration
® Provisioning information—which includes lists of:
o Bundles

o Karaf features

Actions performed

The configuration admin bridge reads all of the relevant profiles and creates an OSGi configuration to
represent them. The provisioning and system information are then stored under the io.fabric8.agent
PID (in the context of the OSGi Configuration Admin service, a PID is a named collection of property
settings).

If an assigned profile belongs to a hierarchy (profile inheritance) or if multiple profiles are assigned to
the container, the configuration admin bridge takes this into account, resolving any overlapping
configuration settings to produce an overlay view of the profiles. There is only one io.fabric8.agent PID,
even when there are multiple assigned profiles.

The output from the configuration admin bridge is just a set of key-value pairs stored under the
io.fabric8.agent PID.

Configuration updates
The configuration admin bridge watches the Fabric registry for changes, so that any updates to the

container's assigned profiles are tracked and immediately applied to the local container's OSGi
configuration.

10.3. THE DEPLOYMENT AGENT

Actions performed

The deployment agent listens for local configuration changes on the io.fabric8.agent PID. Any change
in that configuration will trigger the deployment agent.

When the deployment agent is triggered, it performs the following actions:

1. The deployment agent reads the whole io.fabric8.agent PID and calculates what bundles are to
be installed in the container.

2. If the profiles assigned to the container specify any Karaf features, the deployment agent
translates them into a list of bundles, so that the agent obtains a complete list of bundles to

install.

3. The deployment agent compares the list of bundles to install with the list of bundles currently
installed, in order to identify:

76

CHAPTER10. FABRIC AGENTS

® Bundles to uninstall,
® Bundles to install,
® Bundles to update.
4. The deployment agent then performs the bundle uninstalling, installing, and updating in the
container.
Downloading artifacts
The deployment agent is capable of downloading artifacts from two different types of maven repository:
® Registered Fabric Maven proxies
e Configured Maven repositories (any Maven repository configured in the profile overlay).

Priority is always given to the Fabric Maven proxies. If more than one Maven proxy is registered in the
fabric, the proxies are used in order, from the oldest to the newest.

If the target artifact is not found in the Maven proxies, the configured Maven repositories are used
instead. The list of repositories is determined by the org.ops4j.pax.url.mvn.repositories property of
the io.fabric8.agent PID.

To change the list of repositories for a specific profile, you can simply change the
org.opséj.pax.url.mvn.repositories property using the fabric:profile-edit command:

fabric:profile-edit --pid
io.fabric8.agent/org.ops4j.pax.url.mvn.repositories=http://repositorymanager.mylocalnetwork.net
default

It is recommended that you specify this configuration in one profile only, and have the rest of profiles
inherit from it. The default profile, which is the ancestor of all of the standard profiles, is the ideal place
for this.

Container restarts

In most cases, when a container is provisioned by the provisioning agent, the container is kept alive and
no restart is needed. A restart becomes necessary, however, whenever the following changes are made:

® Changes to the OSGi framework;
® Changes to the OSGi framework configuration.

The normal case is where the container stays alive during provisioning, because it is rarely necessary to
make changes to the underlying OSGi framework. If a container does need to restart, the restart is
performed automatically by the deployment agent and, after the restart, the container reconnects to
the cluster without any manual intervention.

Monitoring the provisioning status

Throughout the whole process of deploying and provisioning, the deployment agent stores the
provisioning status in the runtime registry, so that it is available to the whole cluster. The user can check
the provisioning status at any time using the fabric:container-list command.

77

Red Hat JBoss Fuse 6.3 Fabric Guide

JBossFuse:karaf@root> fabric:container-list

[id] [version] [alive] [profiles] [provision status]

root* 1.0 true fabric, fabric-ensemble-0000-1 success

mq1 1.0 true mq success

mqg2 1.0 true mq downloading

billing-broker 1.0 true billing success
admin-console 1.0 true web, admin-console success

To monitor the provisioning status in real time, you can pass the fabric:container-list command as an
argument to the shell:watch command, as follows:

I shell:watch fabric:container-list

Resolution and startup ordering

To figure out what bundles need to be installed and what bundles need to be removed, the Fabric agent
uses the OSGi Bundle Repository (OBR) resolver. The OBR resolver makes sure that all requirements
are met (usually package requirements, but potentially also service requirements). To discover a
bundle's requirements, the OBR reads the following bundle headers:

Import-Package

For each package listed here, the OBR resolver searches for a bundle that declares the package in a
corresponding Export-Package header.

Import-Service

For each service listed here, the OBR resolver searches for a bundle that declares the service in a
corresponding Export-Service header.

If you are using Blueprint configuration files, it is especially important to be aware of the need to add an
Export-Service header to bundles that implement services. Blueprint configuration files with mandatory
references to services will automatically be packaged with the Import-Service bundle header (assuming
that you use the maven-bundle-plugin). If the bundle that exports the service does not explicitly
specify an Export-Service header, resolution will fail. To fix this error, either the exporter bundle must
add an Export-Service declaration, or the importer bundle must remove the Import-Service directive.

If resolution is successful, the Fabric agent will start the bundles. Even though you should try to avoid
having requirements in the startup order of your bundles, the Fabric agent will attempt to start the
bundles based on their expressed requirements and capabilities. This will not solve all issues, especially in
cases where asynchronous service registration is involved. The best way to deal with this kind of issues is
to use OSGi services.

78

CHAPTER 11. ALLOCATING PORTS

CHAPTER 1. ALLOCATING PORTS

Abstract

In a fabric environment, Fuse uses TCP/IP ports for communication between containers. If you need to
implement a firewall, you must consider these ports and how to handle communication between Fuse
containers. You can use the port service to take care of allocating ports for your services, where the port
service allocates ports in such a way as to avoid port clashes.

11.1. PORTS USED IN A FABRIC ENVIRONMENT

In a Fabric environment, Fuse uses a number of TCP/IP ports for inter-container communication, as
listed in the following table.

You can change these ports in configuration files or fabric profiles.
The minimum set of ports needed for a working fabric is the HTTP port (8181) and Zookeeper server

port (2181). However, with only these ports open you cannot configure ensemble operation, which relies
on a full set of Zookeeper ports, nor can you use any kind of JMX administration.

TCP-IP Ports used in a Fabric environment

Port Default Value Purpose

Standard SSH 22 To provision containers by using
container-create-ssh

Karaf SSH 8101 For attaching remote
administration clients

Zookeeper server 2181 For reading the configuration
repository
ZooKeeper peer 2888 For synchronizing the

configuration repository

ZooKeeper election 3888 For coordinating ZooKeeper
ensemble roles

RMlI server 1099 For JMX administration
operations over RMI

RMl registry 44444 For JMX administration
operations over RMI

Standard HTTP 8181 Used by the web-based
administration console; the
default for web services endpoints

79

Red Hat JBoss Fuse 6.3 Fabric Guide

Standard HTTPS 8443 Encrypted; used by the web-
based administration console; the
default for web services endpoints

Elasticsearch ports

If you enable the Elasticsearch feature on the Fabric node, the Fabric environment uses two ports that
are set by properties that belong to the io.fabric8.elasticsearch-insight PID. These PID properties are
set to corresponding Fabric environment variable values:

I http.port = FABRIC8_ES_HTTP_PORT

I Transport.tcp.port = FABRIC8_ES_TCP_PORT

To change the ports that Elasticsearch uses, you can customize these port settings for your Fabric
profile. For example, if your profile name is myprofile, you can run the following command to change the
HTTP port that Elasticsearch uses from the default value to port 1234:

I fabric:profile-edit --pid io.fabric8.elasticsearch-insight/http.port=1234 myprofile

For more information on Fabric profiles, see Section 6.2, “Working with Profiles”.

Managing ports when using a firewall

While Red Hat does not recommend placing firewall restrictions between container hosts in a fabric,
sometimes it is unavoidable. To ensure that the fabric works correctly when you configure a firewall,
address the following concerns:

® Fuse expects to have access to public Maven repositories using HTTP, in order to satisfy
dependencies when applications are deployed. While there may be a need to block incoming
connections to Fuse services, blocking outbound connections could be highly problematic,
because Fuse will not be able to connect to the repositories it needs. If there is no alternative to
blocking outbound connections, then you must either configure an HTTP proxy with Internet
access or you must replicate all the artifacts required from the public repositories in a local
shared file system.

® You might notice sockets in the LISTENING state other that are not listed in the "TCP-IP Ports
used in a Fabric environment table. These sockets are used by services exposed by the JVM for
debugging and diagnostic purposes. They typically have machine-generated port numbers. in
production set-ups, you do not need to expose these ports in the firewall.

® |f you're using a clustered JMS broker setup, then you should make provision for the routing of
traffic between brokers, as well as between the brokers and their clients.

® The ZooKeeper ports can change at runtime,for example, when a ZooKeeper ensemble is
resized. If you are implementing a firewall, you should make provision for this port change. For
example, rather than opening port 2181 for ZooKeeper, you should open a range of ports starting
with 2181, if the ensemble is likely to be re-sized before settling on a final configuration.

1.2. THE PORT SERVICE
What is the port service?

80

CHAPTER 11. ALLOCATING PORTS

The port service is designed to address the problem of clashing IP port values, which frequently arises in
a production environment. The following kinds of problem commonly arise:

® Ports clashing with third-party services —a server machine in a production environment often has
multiple services deployed on it, with a wide range of IP ports in use. In this environment, there is
a relatively large risk that a Fabric container could clash with existing IP ports.

® Ports clashing with other Fabric containers —when multiple Fabric containers are deployed on the
same host, it is necessary to configure their standard services with different IP ports. Setting
the IP ports manually would be a considerable nuisance (and error prone).

® Ports clashing within a container —a port clash can also occur within a single container, if multiple
services are competing for the same ports (for example, multiple routes binding to the same
ports). Because Fabric containers are highly dynamic, we need to be able to prevent port
clashes in this case, and ports must be allocated and de-allocated as services come and go.

The port service addresses this problem by taking over the process of allocating ports. A service that

uses the port service can specify a range of ports that it is willing to use, and the port service takes care
of allocating a port that does not clash with any of the existing services.

Benefits of the port service
The port service offers the following benefits at run time:
® Avoiding port clashes for standard container services

® Avoiding port clashes for custom services

Avoiding port clashes for standard container services

When you start up multiple containers on the same host, the port service ensures that the containers
automatically choose different IP ports for their standard services, thus avoiding port clashes between
containers. You get this benefit for free: the standard container services are already configured to use
the port service.

Avoiding port clashes for custom services

You can also use the port service for your own applications, enabling your custom services to avoid port
clashes. This requires you to configure your custom services, as appropriate, to use the port service.

Using the port service in your own applications

To use the port service in your own application, proceed as follows:

1. Use the OSGi Config Admin service to define a key, whose value is a port range. Use the
following syntax to define a key:

I KeyID = ${port:MinValue,MaxValue}

The preceding syntax defines the key, KeyID, where MinValue specifies the minimum value of
the IP port, and MaxValue specifies the maximum value of the IP port. You can create this key
using the standard Karaf commands for editing persistent IDs (PIDs) and their keys (using the
fabric:profile-edit command with the --pid option in a Fabric container).

81

Red Hat JBoss Fuse 6.3 Fabric Guide

For example, if you are logged into a Fabric container, you can see that the default profile
defines the key, org.osgi.service.http.port, which specifies the container's Jetty port, as
follows:

FuseFabric:karaf@root> fabric:profile-display default

PID: org.opsé4j.pax.web
org.ops4j.pax.web.config.checksum ${checksum:profile:jetty.xml}
org.ops4j.pax.web.config.url profile:jetty.xml
javax.servlet.context.tempdir ${karaf.data}/pax-web-jsp
org.osgi.service.http.port ${port:8181,8282}

2. Inyour application's XML configuration (either Spring XML or Blueprint XML), replace the literal
port value in the service's address by a property placeholder—for example,
${org.osgi.service.http.port}—which substitutes the value of the key defined in step 1.

For a complete example of how to configure the property placeholder, see Section 11.3, “Using
the Port Service”.

How the port service allocates a port

Given a service with a port range (for example, ${port:9090,9190}) running on a specific target host,
when you start up the service for the first time, the port service allocates a port as follows:

1. Determines which ports in the range are already in use on the target host (whether local or
remote), by actually trying to bind to the ports.

2. Checks the registered ports in the ZooKeeper registry for all of the containers deployed on the
target host (even if the containers are currently not running).

3. Allocates the first free port, within the specified range, that does not clash with any of the ports
discovered in steps 1and 2.

How allocated ports are stored

Allocated ports are stored permanently in the ZooKeeper registry, under the following registry node:
I /fabric/registry/ports/

Each key value, KeylID, is filed under its corresponding persistent ID, PID, and container name,
ContainerName, as follows:

I /fabric/registry/ports/containers/ContainerName/ PID/ KeylD

For example, given the child container, Child1, the key for the child container's Jetty port would be
stored in the following ZooKeeper node:

I /fabric/registry/ports/containers/Child1/org.ops4j.pax.web/org.osgi.service.http.port

Keys used by the standard container services

Some of keys used by standard container services are as follows:

82

CHAPTER 11. ALLOCATING PORTS

/fabric/registry/ports/containers/ContainerName/org.apache.karaf.shell/sshPort
/fabric/registry/ports/containers/ContainerName/org.ops4j.pax.web/org.osgi.service.http.port
/fabric/registry/ports/containers/ContainerName/org.apache.karaf.management/rmiServerPort
/fabric/registry/ports/containers/ContainerName/org.apache.karaf.management/rmiRegistryPort

Behavior upon stopping and restarting a container

When you stop a container, the ports used by that container are stored in the ZooKeeper registry and
continue to be reserved for that container by the port service. Subsequently, when you restart the
container, Fabric reads the port values stored in ZooKeeper and restarts the container's services using
the stored values. This behavior has the following consequences:

® The ports used by the container's services remain constant (after the initial allocation has
occurred). You can advertise the ports to clients and be confident that the ports will remain
valid over the long term.

e |f, while the container is stopped, another service binds to one of the container's ports, there is a
port clash when the container restarts, and the affected service fails to start (but at least we can
guarantee that Fabric will not cause such a clash, because Fabric deliberately avoids re-using
allocated container ports).

Deallocating ports

When you destroy a container (by invoking the fabric:container-delete command), Fabric deallocates
all of the ports assigned to that container, so that they become available for use again by services in
other containers. In other words, when the ContainerName container is deleted, all of the key entries
under /fabric/registry/ports/containers/ContainerName are deleted from the ZooKeeper registry.

11.3. USING THE PORT SERVICE

Overview

This section explains how to use the port service in you own applications, taking the example-camel-cxf
profile as an example. There are two basic steps to configuring the port service in your application:

® At development time —using the property placeholder service, replace a service's fixed port
number by a key.

® At deployment time —using the OSGi Config Admin service, specify the key value as a port
range. For example, you can specify the key value as a PID property setting in a Fabric profile.

It is possible to configure the property placeholder in Blueprint XML, or in Java (using the relevant OSGi
API).

NOTE

The property placeholder syntax in Spring XML is deprecated (it belongs to the
deprecated Spring-DM component).

Demonstration code

This example is based on the example-camel-cxf profile. The source code for the example is taken
from the fabric-camel-cxf example on Github, which is available from the following URL:

83

https://github.com/fabric8io/fabric8

Red Hat JBoss Fuse 6.3 Fabric Guide
I https://github.com/fabric8io/fabric8/tree/1.x/fabric/fabric-examples/fabric-camel-cxf

Property placeholder in XML configuration

The following Spring XML configuration shows the definition of an endpoint for the greeter Web service
(taken from the file, sre/main/resources/OSGI-INF/blueprint/cxf.xml, in the fabric-camel-cxf
demonstration):

<blueprint xmlns="http://www.osgi.org/xmIns/blueprint/v1.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlins:cxf="http://camel.apache.org/schema/blueprint/cxf"
xmins:cm="http://aries.apache.org/blueprint/xmins/blueprint-cm/v1.1.0"
xsi:schemal.ocation="
http://www.osgi.org/xmlns/blueprint/v1.0.0
https://www.osgi.org/xmins/blueprint/v1.0.0/blueprint.xsd
http://camel.apache.org/schema/blueprint/cxf
http://camel.apache.org/schema/blueprint/cxf/camel-cxf.xsd">

<cm:property-placeholder id="placeholder"
persistent-id="io.fabric8.examples.camel.cxf"
update-strategy="reload">
<cm:default-properties>
<cm:property name="greeterPort" value="9090"/>
</cm:default-properties>
</cm:property-placeholder>

<cxf:iexfEndpoint id="greeterEndpoint"
address="http://localhost:${greeterPort}/greeter"
serviceClass="io.fabric8.examples.camelcxf.Greeter">
<cxf:features>
<bean class="io.fabric8.cxf.endpoint.ManagedApiFeature"/>
</cxf:features>
</cxf:exfEndpoint>

</blueprint>

The CXF endpoint (which binds to a Camel route) is defined by the exf:cxfEndpoint element. In the
address attribute, the port number is specified by substituting the greeterPort key, ${greeterPort}. The
property placeholder mechanism is configured by the cm:property-placeholder element, which
specifies that the greeterPort property belongs to the io.fabric8.examples.camel.cxf PID. The
property placeholder mechanism is integrated with the OSGi Config Admin service, which allows you to
override the port number at deployment time.

Specifying a port range using OSGi Config Admin

At deployment time, you can override the default port number of the greeter Web service. In this
particular example, where the deployment is described by the example-camel-cxf profile, the port
number is integrated with the port service and specified as a port range.

Because the port range is defined at deployment time, it is not specified in the example source code, but
is instead specified in the example-camel-cxf Fabric profile. You can see the configured port range by
entering the following console command:

I JBossFuse:karaf@root> fabric:profile-display example-camel-cxf

84

CHAPTER 11. ALLOCATING PORTS

In the output of this command, you should see the following configuration setting for the
io.fabric8.examples.camel.cxf persistent ID:

Configuration details

PID: io.fabric8.examples.camel.cxf
greeterPort ${port:9090,9190}

The preceding output shows that the greeterPort key is set to ${port:9090,9190}.

Modifying the port range

If you want to modify the port range configured in the example-camel-cxf profile, you can do so using
the fabric:profile-edit console command. For example, to change the value of greeterPort to the
range, ${port:7070,7170}, you would enter the following console command:

JBossFuse:karaf@root> fabric:profile-edit
--pid io.fabric8.examples.camel.cxf/greeterPort=\$\{port:7070,7170\}
example-camel-cxf

Where the $ sign and the curly braces, { }, must be escaped by the backslash character, \, as shown.
Alternatively, if you prefer to edit the port range using the built-in text editor, you can enter the
following console command instead:

I JBossFuse:karaf@root> fabric:profile-edit --pid io.fabric8.examples.camel.cxf example-camel-cxf

85

Red Hat JBoss Fuse 6.3 Fabric Guide

CHAPTER 12. GATEWAY

Abstract

The Fabric Gateway provides a TCP and HTTP gateway for discovery, load balancing and failover of
services running in a fabric. The Fabric Gateway enables you to use standard HTTP URLs to access Web
applications or Web services running in a fabric. In JBoss Fuse, messaging clients can discover and
connect to brokers over any supported messaging protocol (OpenWire, STOMP, MQTT, AMQP or
WebSockets), letting the gateway handle the connection management to the real services running
inside the fabric.

12.1. GATEWAY ARCHITECTURE

How the gateway works

The gateway monitors and detects any changes in the ZooKeeper registry for all Web applications, Web
services, servlets and message brokers. For all of the registered services, the gateway applies mapping
rules to figure out how to expose those services through TCP or HTTP.

The ZooKeeper registry is automatically populated by Fabric when you deploy Web archives (WARs) or
CXF based Web services.

Fabric 8 MQ Gateway

The MQ gateway binds to a single IP port and can accept connections from OpenWire, MQTT, STOMP,
AMQP or HTTP clients. When it receives an HTTP connection, it will pass that connection to the HTTP
Gateway. For the other protocols, it uses the host the client was trying to connect to to look up a broker
fabric group by the same name.

12.2. RUNNING THE GATEWAY

Deploy a gateway profile

To run the gateway, simply deploy one (or more) of the predefined profiles to a Fabric container. The
following gateway profiles are provided:

gateway-mq

Profile for a messaging gateway (for accessing Apache ActiveMQ brokers in the fabric).

gateway-http
Profile for a HTTP gateway (for Web applications or Web services).

Deployment Strategies

There are two main deployment strategies for a gateway:
® Run the gateway on each machine that needs to discover services and communicate with it

through localhost. In this case, you do not need to hard code any host names in your messaging
or Web clients and the connection to the gateway on localhost is nice and fast.

86

CHAPTER 12. GATEWAY

® Run the gateway on one or more known hosts using DNS or VIP load balancing (mapping host
names to machines). In this case, you can use a fixed host name for all your services.

12.3. CONFIGURING THE GATEWAY

Configuring with the Management Console

To configure the gateway using the Management Console Ul, navigate to the Profiles page then click
on the Configuration tab, then select either the Fabric8 HTTP Gateway or the Fabric8 MQ Gateway
to configure its settings.

Deploying the CXF REST quickstart

To try out the examples described in this section, you must first build and deploy the CXF REST
quickstart example, which is provided in the InstallDir/quickstarts/cxf/rest directory of your JBoss Fuse
installation.

Build and deploy the CXF REST quickstart as follows:

1. Start your local JBoss Fuse console (which should be a Fabric server):

cd InstallDir/bin
Jfuse

2. Build the quickstart project and install it in your local Maven repository, by entering the following
commands:

cd InstallDir/quickstarts/cxf/rest
mvn clean install

3. Install the quickstarts-cxf-rest profile into your fabric, by entering the following command:

I mvn fabric8:deploy

NOTE

By default, the fabric8-maven-plugin connects to the local Fabric server running
on the same host. You might also need to set up credentials in your
~/.m2/settings.xml file in order to connect to the local Fabric server. For details,
see Section 7.1, "Preparing to Use the Plug-In".

4. Use the Fuse Management Console (http://localhost:8181/hawtio) to deploy the quickstarts-
cxf-rest profile to one of the containers in your fabric.
HTTP mapping rules

When using the HTTP gateway, it is a common requirement to map different versions of Web
applications or Web services to different URI paths on the gateway. You can perform very flexible
mappings using URI templates.

The default behavior is to expose all Web applications and Web services at the context path they are
running in the target server. For example, if you deploy the quickstarts-cxf-rest profile, that uses a URI

87

http://localhost:8181/hawtio
https://en.wikipedia.org/wiki/URL_Template

Red Hat JBoss Fuse 6.3 Fabric Guide

like /cxf/crm/customerservice/customers/123 on whatever host and port it is deployed on. Hence, by
default, it is visible on the gateway at http://localhost:9000/cxf/crm/customerservice/customers/123.
For this example, the URI template is:

I {contextPath}/

Which means take the context path (in the above case, /exf/crm) and append /, giving /exf/crm/. Any
request within that path is then passed to an instance of the CXF crm service.

Selecting part of the ZooKeeper registry

The mapping rules for the MQ gateway and the HTTP gateway are tied to particular regions of the
ZooKeeper registry. If you specify a ZooKeeper path for a mapping rule, any services registered under
that path become associated with that rule.

For example, in the case of messaging, you could associate a messaging gateway with all message
brokers worldwide. Alternatively, you could provide continent-specific, country-specific or region-
specific gateways, just by specifying different ZooKeeper paths for each gateway configuration. For
regional messaging clusters, use different ZooKeeper folders for geographically distinct broker clusters.

With HTTP then REST APls, SOAP Web Services, servlets and web applications all live in different parts
of the ZooKeeper registry. From the Management Console Ul, you can browse the contents of the
registry in the Runtime | Registry section of the console (in the Fabric view).

Here are the common ZooKeeper paths:

ZooKeeper Path Description

/fabric/registry/clusters/apis/rest REST based web services

/fabric/registry/clusters/apis/ws SOAP based web services

[/fabric/registry/clusters/serviets Servlets (registered usually individually via the OSGI
APIs)

/fabric/registry/clusters/webapps Web Applications (i.e. WARs)

Segregating URI paths
You might want to segregate servlets, Web services, or Web applications into different URI spaces.

For example, if you want all Web services to be available under /api/ and Web applications to be available
under /app/, update the URI templates as follows:

For the Web services mapping rule:

ZooKeeperPath: /fabric/registry/clusters/apis
URI template: /api{contextPath}/

For the Web applications mapping rule:

88

http://localhost:9000/cxf/crm/customerservice/customers/123

CHAPTER 12. GATEWAY

ZooKeeperPath: /fabric/registry/clusters/webapps
URI template: /app{contextPath}/

If you want to split RESTful APIs and SOAP web services into different URI paths, replace the preceding

mapping rule with the following rules:

ZooKeeperPath: /fabric/registry/clusters/apis/rest
URI template: /rest{contextPath}/

ZooKeeperPath: /fabric/registry/clusters/apis/ws
URI template: /ws{contextPath}/

Configuring HTTP Gateway Timeouts

The Fabric Http gateway enables you to configure HTTP timeouts for the call, to the proxy service.
However, the configuration stands for the complete gateway instance and the PIDs:

io.fabric8.gateway.http/connectionTimeout- this set the timeout for connecting to the service, default
is 60 seconds.

io.fabric8.gateway.http/requestTimeout- this set the idle timeout waiting for the response, the default
is -1 which means no timeout.

NOTE

In both the cases, if the time out occurs, the calling client throws an HTTP 504 response.

e

12.4. MAP CLIENT CONNECTIONS TO BROKER INSTANCES

Map Client Connections to Broker Instances

The MQ Gateway includes a configuration PID, io.fabric8.gateway.detecting. It sets the following
properties:

configures the protocol detecting gateway
port=61616

httpEnabled=true

openWireEnabled=true

stompEnabled=true

mgqttEnabled=true

amqgpEnabled=true

ss|lEnabled=false

defaultVirtualHost=default
zooKeeperPath=/fabric/registry/clusters/amq

loadBalancerType=roundrobin
stickyLoadBalancerCacheSize=10000

The defaultVirtualHost setting is used to specify the broker group name to be used by default for all
clients. For example, if you have a Fabric broker group called us-east, with one or more broker instances
running under this group (created using mq-create -group us-east). You can configure
defaultVirtualHost to be us-east using the setting defaultVirtualHost=us-east.

89

Red Hat JBoss Fuse 6.3 Fabric Guide

How to Connect to a Specific Broker on the MQ Gateway

You can map to a broker group other than the default specified in defaultVirtualHost.

For example, if you had a broker group called us-west, set up in the same way as us-east above, you can
map directly to it by configuring the MQ Gateway in the following way:

1. Set up the Fabric broker group us-west using mq-create -group us-west

2. Add the Fabric broker group name us-west as a virtual hostname for the machine that runs your
MQ Gateway. This will require proper DNS configuration so that this virtual hostname can be
resolved by any client.

3. When your broker clients contact the MQ Gateway, use the hostname us-west in the broker url.
For example,

I tcp://us-west:61616

The Gateway will map the request it receives via the virtual hostname us-west to one of your broker
instances in the broker group us-west.

An alternative approach to that shown above is to define multiple instances of MQ Gateway. Configure
each instance to a different default broker group in defaultVirtualHost and have broker clients
explicitly connect to the instance of MQ Gateway that will bridge clients to the specific broker group.

For OpenWire only, you can use the following parameter to specify which broker group you want to be
connected to:

I ?wireFormat.host=groupname

If this command parameter is not specified, then the request is directed to the value in
defaultVirtualHost.

MQ Gateway Client Connections for For Openwire and STOMP

An MQ Gateway can have its services exposed over multiple host names. When it receives a connection
request, it uses the host the client was trying to connect to to look up a broker fabric group by the same
name. The client is then connected to one of the brokers in the group that supports the protocol the
client is connecting with. If the host the client is trying to connect to cannot be determined or does not
match any of the fabric broker groups, then the client will be connected to a broker group that matches
the defaultVirtualHost configuration.

AMQP and MQTT connections do not pass the hostname information so they always connect to the
broker group that matches the defaultVirtualHost configuration.

Using MQ Gateway with SSL/HTTPS

The HTTP gateway does not directly support SSL/HTTPS, but the MQ Gateway does. If MQ Gateway is
deployed alongside the HTTP Gateway, it will re-direct the decrypted http traffic to the HTTP Gateway.

Configuration changes need to be made to accommodate SSL/HTTPS. Edit
io.fabric8.gateway.detecting to change the following properties:

ss|lEnabled=true
trustStoreURL must be configured along with trustStorePassword

90

CHAPTER 12. GATEWAY

keyStoreURL must be configured along with keyStorePassword
keyAlias
keyPassword

You can also optionally configure the following properties:

ssl|Protocol,
ssIStoreType,
sslAlgorithm,
enabledCipherSuites,
disabledCypherSuites

Change the Listening Port on MQ Gateway

To change the listening port on MQ Gateway, edit io.fabric8.gateway.detecting using the following
command:

profile-edit --pid io.fabric8.gateway.detecting/port=61619 gateway-mq or
gateway_mq profile -> configurations -> Detecting Gateway -> Bind Port on

12.5. VERSIONING

Explicit URIs

You might want to expose all available versions of each Web service and Web application at a different
URI. For example, consider the case where you change your URI template to the following:

I /version/{version}{contextPath}/

If you have 1.0 and 1.1 versions of a profile that packages Web services or Web applications, you can
now access the different versions using version-specific URIs. For example, if you are running version
1.0 and version 1.1 implementations of the quickstarts-cxf-rest profile, you can access either one
through the following URIs:

® \ersion 1.0 through
http://localhost:9000/version/1.0/cxf/crm/customerservice/customers/123

® Version 1.1through http://localhost:9000/version/1.1/cxf/crm/customerservice/customers/123

Both versions are available to the gateway, provided you include the version information in the URI.

Rolling upgrades

Another approach to dealing with versions of Web services and Web applications is to expose only a
single version at a time of each Web service or Web application in a single gateway. This is the default
configuration.

For example, if you deploy a 1.0 version of the gateway-http profile and run a few services, you will see
all 1.0 versions of them. If you run some 1.1 versions of these services, the gateway will not see them. If
you now do a rolling upgrade of your gateway to version 1.1, it will switch to showing only the 1.1

versions of the services.

Alternatively, you can specify the exact profile version to use, on the mapping configuration screen.

o1

http://localhost:9000/version/1.0/cxf/crm/customerservice/customers/123
http://localhost:9000/version/1.1/cxf/crm/customerservice/customers/123

Red Hat JBoss Fuse 6.3 Fabric Guide

Another approach you can use with Web applications is to specify the maven coordinates and maven

version of a web application in the ZooKeeper path.

12.6. URI TEMPLATE EXPRESSIONS

Variables

The following table shows the variables you can use in a URI template expression:

Expression

{bundleName}

{bundleVersion}

{container}

{contextPath}

{servicePath}

{version}

92

Description

The name of the bundle that registers the Web
service, servlet or application. This variable is
currently not supported for Web services, but works
for Web applications and servlets in an OSGi
container.

The version of the bundle that registers the Web
service, servlet or application. This variable is
currently not supported for Web services, but works
for Web applications and servlets in an OSGi
container.

The container ID of the container where the Web
service or Web application is deployed.

The context path (the part of the URL after the host
and port) of the Web service or Web application
implementation.

The relative path within ZooKeeper that a service is
registered. This is usually is made up of, for web
services as the service name and version. For web
applications its often the maven coordinates

The profile version of the Web service or Web
application.

CHAPTER 13. SECURING FABRIC CONTAINERS

CHAPTER 13. SECURING FABRIC CONTAINERS

Abstract

By default, fabric containers uses text-based username/password authentication. Setting up a more
robust access control system involves creating and deploying a new JAAS realm to the containers in the
fabric.

DEFAULT AUTHENTICATION SYSTEM

By default, Fabric uses a simple text-based authentication system (implemented by the JAAS login
module, io.fabric8.jaas.ZookeeperLoginModule). This system allows you to define user accounts and
assign passwords and roles to the users. Out of the box, the user credentials are stored in the Fabric
registry, unencrypted.

MANAGING USERS

You can manage users in the default authentication system using the jaas:* family of console
commands. First of all you need to attach the jaas:* commands to the ZookeeperLoginModule login
module, as follows:

JBossFuse:karaf@root> jaas:realms

Index Realm Module Class
1 karaf org.apache.karaf.jaas.modules.properties.PropertiesLoginModule
2 karaf org.apache.karaf.jaas.modules.publickey.PublickeyLoginModule
3 karaf io.fabric8.jaas.ZookeeperLoginModule

JBossFuse:karaf@root> jaas:manage --index 3

Which attaches the jaas:* commands to the ZookeeperLoginModule login module. You can then add
users and roles, using the jaas:useradd and jaas:roleadd commands. Finally, when you are finished
editing the user data, you must commit the changes by entering the jaas:update command, as follows:

I JBossFuse:karaf@root> jaas:update

Alternatively, you can abort the pending changes by entering jaas:cancel.

OBFUSCATING STORED PASSWORDS

By default, the JAAS ZookeeperLoginModule stores passwords in plain text. You can provide
additional protection to passwords by storing them in an obfuscated format. This can be done by adding
the appropriate configuration properties to the io.fabric8.jaas PID and ensuring that they are applied to
all of the containers in the fabric.

For more details, see section "Using Encrypted Property Placeholders" in "Security Guide" .

9’ NOTE

Although message digest algorithms are not easy to crack, they are not invulnerable to
attack (for example, see the Wikipedia article on cryptographic hash functions). Always
use file permissions to protect files containing passwords, in addition to using password
encryption.

93

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Security_Guide/FMQSecurityEncryptProperties.html
https://en.wikipedia.org/wiki/Cryptographic_hash_function

Red Hat JBoss Fuse 6.3 Fabric Guide

ENABLING LDAP AUTHENTICATION

Fabric supports LDAP authentication (implemented by the Apache Karaf LDAPLoginModule), which
you can enable by adding the requisite configuration to the default profile.

For details of how to enable LDAP authentication in a fabric, see chapter "LDAP Authentication
Tutorial" in "Security Guide".

94

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Security_Guide/FESBLDAPTutorial.html

CHAPTER 14. FABRIC MAVEN PROXIES

CHAPTER 14. FABRIC MAVEN PROXIES

Abstract

Container hosts often have limited or no access to the Internet, which can make it difficult for Fabric
containers to download and install Maven artifacts. This problem can be mitigated using a Maven proxy,
which serves as a central cache of Maven artifacts for the Fabric containers. Managed containers try to
download from the Maven proxy, before trying to download from the Internet. This chapter explains how
the Maven proxy works and how to customize the configuration of the Maven proxy to suit your network
environment.

14.1. INTRODUCTION TO FABRIC MAVEN PROXIES

Overview

A container can be a Maven proxy if it is running the fabric profile. The fabric profile, as well as any
profile that inherits from the fabric profile, contains the fabric-maven-bundle, which enables a
container to be a Maven proxy. Containers that can be Maven proxies include:

® Fabricservers
e Containers that are joined to a cluster with fabric:join and that keep the assigned fabric profile
e Containers that are provisioned with a profile that inherits from the fabric profile

Each container that has the fabric profile registers itself in Zookeeper as a Maven proxy. When a
container is being provisioned, its fabric-agent bundle obtains the list of Maven proxies from Zookeeper
and prepends their URIs to the container's io.fabric8.agent/org.ops4j.pax.url.mvn.repositories list.
When the container needs a Maven artifact, it uses the entire list of Maven proxies. Consequently, you
should not use too many containers that run the fabric profile and are therefore Maven proxies. For
example, if there are 100 containers and one of them cannot resolve a particular artifact, it is probable
that none of the other containers can resolve it either but they could all be consulted.

If an environment includes a host that cannot access a Maven proxy, downloading Maven artifacts to
that host and using Maven artifacts on that host might not work correctly.

Maven proxy

A Maven proxy is a HTTP Web server that behaves very like a standard Maven repository, such as Maven
Central.

The purpose of the Maven proxy is to serve Maven artifacts on the local network. It has its own local
cache of Maven artifacts, which it can serve up quickly. But if necessary, the Maven proxy can also
download artifacts from remote repositories (in a proxy role). This architecture offers a number of
advantages:

® The Maven proxy builds up a large cache over time, which can be served up quickly to other
containers in the Fabric.

® |[tis not necessary for every container to download Maven artifacts from remote repositories—
the Maven proxy performs this service for the other containers.

95

Red Hat JBoss Fuse 6.3 Fabric Guide

® |nanetwork with limited Internet access, you can arrange to deploy the Maven proxy on a host
with Internet access, while the other containers in the fabric are deployed on hosts without
Internet access.
Managed container
A managed container is a regular Fabric container (not part of the Fabric ensemble), whose contents are
managed by a Fabric8 agent.
Fabric8 agent

The Fabric8 agent is responsible for ensuring that the bundles deployed in the container are consistent
with what is specified in this container's Fabric profiles. Whenever necessary, the Fabric8 agent will
contact the Maven proxy to download new Maven artifacts for deploying inside the container.

Resolving a Maven artifact

The Fabric8 agent attempts to locate a Maven artifact by searching the following locations, in order:
1. Default repositories, which are local repositories for the Fabric agent.
2. Maven proxy.
3. Remote Maven repositories.
For a more detailed outline of this process, see Section 14.2, “"How a Managed Container Resolves
Artifacts”.

Maven proxy endpoint discovery

Before the Fabric8 agent can connect to the Maven proxy, it needs to discover the list of available
Maven proxy URLs. The discovery mechanism is based on the Apache Zookeeper registry: by querying
Zookeeper, the Fabric8 agent can discover the list of available Maven proxy URLs (that is, the Fabric8
agent fetches all the children of the /fabric/registry/maven/proxy/download path in Zookeeper).

No replication

Within the Maven proxy cluster, there is no automatic replication of artifacts between different Maven
proxies in the cluster. You will notice the effects of this, when one of the Maven proxies becomes
unavailable, so that clients are obliged to contact the next Maven proxy in the list:

® Any client that does not have the complete list of Maven proxy URLs would need to be
reconfigured manually to use one of the remaining available Maven proxies.

e |f you have been automatically uploading artifacts to the Maven proxy as part of your build
process (see Section 14.7, “Automated Deployment”), you will need to reconfigure the upload
URL.

® |tis likely that the next Maven proxy has a much smaller cache of Maven artifacts than the

original one. This could result in noticeable delays, because many previously cached artifacts
have to be downloaded again.

Managing the Maven artifact data

Although Fabric does not support replication of the local Maven caches, there are some strategies you

96

CHAPTER 14. FABRIC MAVEN PROXIES

can adopt to compensate for this. The Maven proxy caches its artifacts in its local Maven repository
(normally in ${karaf.home}/data/repository). You could simply do a manual copy of the contents of the
local Maven repository from one Maven proxy host to another. Or for a more sophisticated approach,
you could try storing the local Maven repository on a networked file system.

14.2. HOW A MANAGED CONTAINER RESOLVES ARTIFACTS

Overview

Maven proxies play a critically important role in the way managed containers resolve Maven artifacts.
When a managed container fails to locate a needed artifact /ocally (that is, from one of the repositories
on the local file system, as specified in the io.fabric8.agent PID's
org.opsdj.pax.url.mvn.defaultRepositories property or org.opséj.pax.url.mvn.localRepository
property), it tries to download the needed artifact from one of the remote repositories, starting with the
Maven proxies. In other words, downloading from a Maven proxy is the primary mechanism for managed
containers to obtain new artifacts.

The process for resolving artifacts in a managed container is controlled by the Fabric8 agent, which
detects when new artifacts need to be deployed (for example, as a result of editing a Fabric profile) and
then calls into the Eclipse Aether layer to resolve the artifacts.

Fabric profiles drive bundle provisioning

In the context of Fabric, it is the Fabric profiles that drive provisioning of OSGi bundles and other
resource. Provisioning is triggered whenever you edit and save properties from a current bundle—for
example by adding a bundle.BundleName entry to the profile's agent properties. Provisioning can also
be triggered when you edit other resources (not directly associated with OSGi Config Admin) in a profile
—for example, by referencing a resource through a checksum property resolver (see Section C.6,
“Checksum property resolver”).

In some cases, you might not want provisioning to be triggered right away. A more controlled way to roll
out profile updates is to take advantage of profile versioning—see Section 6.4, “Profile Versions” for
details.

Fabric8 agent

After provisioning has been triggered in a managed container, the Fabric8 agent automatically scans the
changed profiles to check for any OSGi bundles or Karaf features that were added to (or deleted from)
the profile. If there are any new bundles referenced using the mvn URL scheme, the Fabric8 agent is
responsible for locating these new bundles through Maven. In the context of Fabric, the Fabric8 agent
effectively plays the same role that the Pax URL Aether component plays in a standalone (non-Fabric)
container.

In order to locate a Maven artifact, the Fabric8 agent parses the mvn URL, reads the relevant Maven
configuration properties, and calls directly into the Eclipse Aether layer to resolve the referenced
artifact.

Eclipse Aether layer

The Eclipse Aether layer is fundamental to Maven artifact resolution in Apache Karaf. Ultimately,
resolution of Maven artifacts for the Karaf container is always performed by the Aether layer. Note that
the Aether layer itself is stateless: the parameters required to perform resolution of a Maven artifact are
passed to the Aether layer with every invocation.

97

https://eclipse.org/aether/

Red Hat JBoss Fuse 6.3 Fabric Guide

Provisioning a managed container

Figure 14.1, “Provisioning a Managed Container” shows an outline of the process for resolving a Maven
URL at run time in a managed container.

Figure 14.1. Provisioning a Managed Container

Fabric Profile @

bundle.example=mvn:../../..
feature.myfeature=myfeature

io.fabric8.agent PID @ G

.globalUpdatePolicy= @ FabriCS Agent

.defaultRepositories=

%{user.home}/.m2/repository

| User Maven Repository |

I
I
I
|
|
|
|
: | Proxy Upload Directory
|
|
|
|
|
|
1

(:) S{karaf.home}/data/repository-agent

repositories= . | [|
-epositories- @) Discover Maven proxy —>| Local Maven Repository
|
I _— , 8181 .
etec/maven _-.:ettlng_-.‘xrnl ECIlpSe Aether @ - Fabric8 Maven
(Stateless) - Proxy

Maven settings file

Remote
Maven
Repositories

. Install
Karaf bundle
cache

Provisioning steps
The steps followed to locate the required Maven artifacts are:

1. Provisioning of a profile is triggered when the properties of a current profile are updated. In
particular, whenever new bundles or features are added to a profile, the Fabric8 agent is
responsible for resolving the new Maven artifacts (referenced through the mvn URL protocol).

2. The Fabric8 agent reads its Maven configuration from the io.fabric8.agent PID in the default
profile (and possibly also from the maven-settings.xml file, if so configured).

3. The Fabric8 agent contacts Zookeeper to discover the URLs of the Fabric8 Maven proxy
instances—see Section 14.1, “Introduction to Fabric Maven Proxies” . The Fabric8 agent then
inserts the list of Maven proxy URLs at the head of the list of remote Maven repositories.

The Fabric8 agent parses the requested mvn URL and combines this information with the
specified configuration—including the list of Maven proxy URLs—in order to invoke the Eclipse
Aether library.

4. When the Aether library is invoked, the first step is to look up the Maven default repositories to
try and find the Maven artifact. The following default repositories are configured by default:

InstallDir/system

The JBoss Fuse system directory, which contains all of the Maven artifacts bundled with the
JBoss Fuse distribution.

98

CHAPTER 14. FABRIC MAVEN PROXIES

InstallDir/data/maven/upload

If this container is an ensemble container (running a Maven proxy), this directory would
contain any artifacts explicitly uploaded to the Maven proxy. In a managed container, this
directory is normally empty.

UserHomel/.m2/repository

The user's own local Maven repository in the user's home directory, UserHome.

If the Maven artifact is found in a default repository, skip straight to step 8.

5. The Aether library now begins the process of consulting the remote repositories (as specified
by the io.fabric8.agent/org.opsdj.pax.url.mvn.repositories PID property and augmented by
the list of Maven proxy URLSs). This process works in tandem with the local Maven repository (as
specified by the io.fabric8.agent/org.ops4j.pax.url.mvn.localRepository PID property), which
acts as a cache for the remote repositories.

The Aether library searches the repositories in the following order:
® | ocal Maven repository—by default, InstallDir/data/repository-agent,

® Maven proxies—iterating over the list of Maven proxy URLs added to the
org.opsédj.pax.url.mvn.repositories argument.

' NOTE
, If you are using a HTTP proxy, you should configure the Fabric8 agent to bypass
the HTTP proxy when it accesses the Maven proxy hosts. To bypass the HTTP
proxy in this case, configure the Maven proxy hosts to be HTTP non-proxy hosts
. —see the section called “Configuring an HTTP proxy” .
6. The Aether library continues the process of consulting the remote repositories, by accessing the
remote repositories configured in the io.fabric8.agent/org.ops4j.pax.url.mvn.repositories
PID property.

NOTE
' If your local network requires you to use a HTTP proxy to access the Internet, it is
possible to configure Fabric8 to use a HTTP proxy. For example, see the section

called “"Configuring an HTTP proxy” for details.

7. If the Maven artifact is found in the Maven proxy or in a remote repository, Aether automatically
installs the artifact into the local Maven repository, InstallDir/data/repository-agent, so that
another remote lookup will not be required.

8. Finally, assuming that the Maven artifact has been successfully resolved, Karaf installs the
artifact in the Karaf bundle cache, InstallDir/data/cache, and loads the artifact (usually, an OSGi
bundle) into the container runtime. At this point, the artifact is effectively installed in the
container.

io.fabric8.agent configuration

The resolution of Maven artifacts in a managed container is configured by setting properties from the
io.fabric8.agent PID (also known as agent properties). The Maven properties are normally set in the

99

Red Hat JBoss Fuse 6.3 Fabric Guide

default profile, which ensures that the same settings are used throughout the entire fabric
(recommended).

For example, you can see how the Maven properties are set in the default profile using the
fabric:profile-display command, as follows:

JBossFuse:karaf@root> profile-display default
Agent Properties :

org.opséj.pax.url.mvn.globalUpdatePolicy = daily
org.opsdj.pax.url.mvn.defaultRepositories =
file:${runtime.home}/${karaf.default.repository}@snapshots@id=karaf-default,
file:${runtime.data}/maven/upload@snapshots@id=fabric-upload,
file:${user.nome}/.m2/repository@snapshots@id=local

org.opsdj.pax.url.mvn.globalChecksumPolicy = warn
org.opsdj.pax.url.mvn.settings = ${karaf.etc}/maven-settings.xml

org.opsdj.pax.url.mvn.localRepository = ${karaf.data}/repository-agent

org.opsédj.pax.url.mvn.repositories = http://repo1.maven.org/maven2@id=maven.central.repo,
https://maven.repository.redhat.com/ga@id=redhat.ga.repo,
https://maven.repository.redhat.com/earlyaccess/all@id=redhat.ea.repo,
https://repository.jboss.org/nexus/content/groups/ea@id=fuseearlyaccess

The properties prefixed by org.ops4j.pax.url.mvn.* are the Maven properties used by the Fabric8
agent.

IMPORTANT

The org.opséj.pax.url.mvn.” properties are notrelated to the Pax URL Aether
component. There is some potential for confusion here, because the Fabric8 agent uses
the same property names as Pax URL Aether. These properties are read by the Fabric8
agent, however, not by Pax URL Aether (and are associated with the io.fabric8.agent
PID, not the org.ops4j.pax.url.mvn PID).

14.3. HOW A MAVEN PROXY RESOLVES ARTIFACTS

Overview

A Maven proxy is essentially a Web server that is configured to behave like a standard Maven repository
server. Remember that the purpose of the Maven proxy is to serve artifacts to remote HTTP clients, not
to install artifacts locally. So, although Maven proxy configuration properties have similar names to the
managed container case, they ultimately serve quite a different purpose.

Fabric8 Maven proxy server

The Fabric8 Maven proxy server is a HTTP server, implemented as a servlet inside the container's
default Jetty container. Hence, the Maven proxy server shares the same port number, 8181, as many of
the other Karaf container services. On a given host, Host, the Maven proxy can be accessed through the
following URL:

100

CHAPTER 14. FABRIC MAVEN PROXIES

I http://Host:8181/maven/download

The Fabric8 Maven proxy server is configured by setting properties from the io.fabric8.maven PID and
these properties are normally set in the default profile (recommended).

NOTE

Some other properties are configurable through the io.fabric8.maven.proxy PID, but
these properties do not play an important role in artifact resolution.

Serving artifacts through the Maven proxy

Figure 14.2, “Maven Proxy Serving an Artifact” shows how a Maven proxy processes a HTTP download
request, by locating the requested Maven artifact and then returning it to the client.

Figure 14.2. Maven Proxy Serving an Artifact

${karaf.home}/system

| System Directory |

@ Serve artifact

S{karaf.home} /data/maven/upload

1
1
1
1
1
1
1
8181 Fabric8 Maven @ : | Proxy Upload Directory
1
1
1
1
1
1
1

>0 Prox
() Resolve y
S{user.home}/.m2/repository

| User Maven Repository |
® { } ____________________ |

io.fabric8.maven PID

. . karaf.home}/data/r ite
evoicorien | ®_| io.fabric.maven PlRarerohone) [deralrenos oy
.settings= ... Bundle ——>| Local Maven Repository |

: ®
1
etc/maven-settings.xml Eclipse Aether
, : Stateless
Maven settings file ()

\ I Remote
@ : [Maven

Repositories

Steps to serve artifacts

The steps to serve the required Maven artifacts are, as follows:

1. Resolution of a Maven artifact is triggered when a managed container sends a request to the
Maven proxy server.

2. The Maven proxy server parses the incoming HTTP request and then makes a call to the
io.fabric8.maven layer, asking it to resolve the requested Maven artifact.

3. The io.fabric8.maven layer reads its Maven configuration from the io.fabric8.maven PID in the
default profile (and possibly also from the maven-settings.xml file, if so configured).

4. When the Aether library is invoked, the first step is to look up the Maven default repositories to
try and find the Maven artifact. The following default repositories are configured by default:

InstallDir/system

101

Red Hat JBoss Fuse 6.3 Fabric Guide

The JBoss Fuse system directory, which contains all of the Maven artifacts that are bundled
with the JBoss Fuse distribution.

InstallDir/data/maven/upload
The Maven proxy's upload directory, which is used to store artifacts that have been directly

uploaded to the Maven proxy—see Section 14.7, “Automated Deployment”.

UserHomel/.m2/repository

The user's own local Maven repository in the user's home directory, UserHome.

If the Maven artifact is found locally, skip straight to step 7.

. The Aether library now begins the process of consulting the remote repositories (as specified

by the io.fabric8.maven/io.fabric8.maven.repositories PID property which references the
io.fabric8.agent/org.opsdéj.pax.url.mvn.repositories PID property). This process works in
tandem with the local Maven repository (as specified by the
io.fabric8.maven/io.fabric8.maven.localRepository PID property), which acts as a cache for
the remote repositories.

NOTE

If your local network requires you to use a HTTP proxy to access the Internet, it is
possible to configure Fabric8 to use a HTTP proxy. For example, see the section
called “"Configuring an HTTP proxy” for details.

. If the Maven artifact is found in a remote repository, Aether automatically installs the artifact

into the local Maven repository, InstallDir/data/repository, so that another remote lookup will
not be required.

. The Maven proxy server returns the successfully located Maven artifact to the client (or an error

message, if the artifact could not be found).

14.4. CONFIGURING MAVEN PROXIES DIRECTLY

Overview

The default approach to configuring the Maven proxy settings is to edit the properties from the
io.fabric8.agent PID and the io.fabric8.maven PID. Because these properties are set in a profile, they
are immediately available to all containers in a fabric.

102

NOTE

In order to use the direct configuration approach, you must at least set the
org.opsdj.pax.url.mvn.repositories property in the io.fabric8.agent PID. If this property
is not set, the Fabric8 agent falls back to reading configuration from the Maven settings
file, InstallDir/letc/maven-settings.xml file.

CHAPTER 14. FABRIC MAVEN PROXIES

NOTE

If you also need to configure a HTTP proxy, it is recommended that you take the
approach of configuring through the Maven settings file. See Section 14.5, “Configuring
Maven Proxies and HTTP Proxies through settings.xml”.

Tools for editing configuration

The examples in the following sections show how to modify Maven proxy configuration using Karaf
console commands (for example, by invoking fabric:profile-edit). It is worth recalling, however, that
there are several different tools you can use to modify the settings in a fabric:

® Karaf console—use the fabric:* family of commands (for example, fabric:profile-edit).

® fuse Management Console (Hawtio)—you can edit profile settings through the Profile tab or the
Wiki tab in the Fabric perspective of the Hawtio console, http://localhost:8181/hawtio/login.

® Git configuration—you can edit profile settings by cloning the Git profile repository. See
Chapter 16, Configuring with Git for details.
Rolling out configuration changes

The examples in the following sections show the form of command for editing the current version of the
profile, which causes the changes to take effect immediately in the current fabric. If you prefer to have a
more controlled rollout of configuration changes, however, you should use profile versioning to roll out
the changes (see Section 6.4, "Profile Versions").

For example, instead of adding a remote repository to the current version of the default profile, as
follows:

profile-edit --pid io.fabric8.agent/org.ops4j.pax.url.mvn.repositories='http://foo/bar@id=myfoo’ --
append default

You could implement a phased rollout using versions, as follows (assuming the current version is 1.0):

version-create 1.1
profile-edit --pid io.fabric8.agent/org.ops4j.pax.url.mvn.repositories='http://foo/bar@id=myfoo’ --
append default 1.1

You can now upgrade a specific container to version 1.1, using the following command:

I container-upgrade 1.1 mycontainer

Adding a remote Maven repository

To add another remote Maven repository to the list of remote repositories used by the Maven proxy,
add the relevant repository URL to the comma-separated list of repository URLs in the
org.opsdj.pax.url.mvn.repositories property of the io.fabric8.agent PID in the default profile (not
forgetting to specify the mandatory @id suffix in the repository URL).

For example, to add the http://foo/bar Maven repository to the list of remote repositories, enter the
following console command:

103

mdash

Red Hat JBoss Fuse 6.3 Fabric Guide

profile-edit --pid io.fabric8.agent/org.ops4j.pax.url.mvn.repositories='http://foo/bar@id=myfoo’ --
append default

Note the following points about this configuration approach:

® The preceding setting simultaneously updates the
io.fabric8.maven/io.fabric8.maven.repositories property (which, by default, references the
io.fabric8.agent/org.opsdj.pax.url.mvn.repositories property), which configures the Maven
proxy.

® By editing this property in the default profile (which is normally the base profile of every
profile), you ensure that this setting is propagated to all containers and to all Maven proxies in
the Fabric.

® The preceding command immediately changes the configuration of all containers at the current
version. If you prefer to implement a phased rollout of the new configuration, use profile
versions, as described in Section 6.4, “Profile Versions”.

NOTE

The @id option specifies the name of the repository and is required. You can choose an
arbitrary value for this ID.

14.5. CONFIGURING MAVEN PROXIES AND HTTP PROXIES THROUGH
SETTINGS. XML

Overview

You can optionally configure the Maven proxy using a standard Maven settings.xml file. For example,
this approach is particularly convenient in a development environment, because it makes it possible to
store your build time settings and your run time settings in one place.

The Maven settings.xml approach is not used by default. You must explicitly enable it.

Adding a remote Maven repository

A default settings.xml file is provided for you in InstallDirletc/maven-settings.xml. To add a new
remote Maven repository to the InstallDir/etc/maven-settings.xml file, open the maven-settings.xml
file in a text editor and add a new repository XML element. For example, to create an entry for the Red
Hat GA public Maven repository, add a repository element as shown:

<settings xmIns="http://maven.apache.org/SETTINGS/1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/SETTINGS/1.0.0

http://maven.apache.org/xsd/settings-1.0.0.xsd">

<!l--
If org.ops4j.pax.url.mvn.repositories property is _prepended_ with '+' sign, repositories from all
active
profiles will be _appended_ to the list of searched remote repositories
-->
<profiles>
<profile>

104

CHAPTER 14. FABRIC MAVEN PROXIES

<id>default</id>
<repositories>
<repository>
<id>redhat-ga-repository</id>
<url>https://maven.repository.redhat.com/ga</url>
</repository>
</repositories>
</profile>
</profiles>

<activeProfiles>
<activeProfile>default</activeProfile>
</activeProfiles>

</settings>

IMPORTANT

Do not forget to activate your profile, by adding an activeProfile element that references
the profile ID (in this example, the profile ID is default).

Enabling the settings.xml configuration approach

To configure Fabric to read its Maven configuration from a Maven settings.xml file, perform the
following steps:

1. Configure the Maven repositories you need in the InstallDir/etc/maven-settings.xml file (see
the section called “Adding a remote Maven repository”).

2. Copy the Maven repositories from the io.fabric8.agent/org.ops4j.pax.url.mvn.settings
property into the maven-settings.xml file (normally, you need to preserve access to these
repositories). To see the list of repositories from the
io.fabric8.agent/org.opsdj.pax.url.mvn.settings property in the default profile, enter the
following Fabric8 command:

I JBossFuse:karaf@root> profile-display default

Follow the instructions in the section called “"Adding a remote Maven repository” to add these
repositories set in io.fabric8.agent/org.ops4j.pax.url.mvn.settings to the maven-
settings.xml file (if they are not already present).

3. (Optional) If you want to combine the list of repositories appearing in the maven-settings.xml
file with the list of repositories from the io.fabric8.maven/io.fabric8.maven.repositories
property, prepend a + sign to the list of repositories in io.fabric8.maven.repositories. For
example:

io.fabric8.maven.repositories=+http://repo1.maven.org/maven2@id=maven.central.repo,https://
maven.repository.redhat.com/ga@id=redhat.ga.repo,https://maven.repository.redhat.com/early
access/all@id=redhat.ea.repo,https://repository.jooss.org/nexus/content/groupsea@id=fuseearl
yaccess

4. Delete the org.opsdj.pax.url.mvn.repositories property setting from the io.fabric8.agent PID
in the default profile, using the following console command:

105

Red Hat JBoss Fuse 6.3 Fabric Guide

I profile-edit --delete --pid io.fabric8.agent/org.ops4j.pax.url.mvn.repositories default

When the repositories setting is absent, Fabric implicitly switches to the maven-settings.xml
configuration approach.

NOTE

By default, this step simultaneously clears both the repository list used by the
Fabric8 agent and the repository list used by the Maven proxy server (because
the Maven proxy's repository list normally references the Fabric8 agent's
repository list).

Changing the default location of Maven settings.xml

Fabric is pre-configured to use the InstallDir/etc/maven-settings.xml file. That is, the following settings
are configured by default:

io.fabric8.maven/io.fabric8.maven.settings = ${karaf.etc}/maven-settings.xml
io.fabric8.agent/org.ops4j.pax.url.mvn.settings = ${karaf.etc}/maven-settings.xml
If you need to customize the location of your Maven settings.xml file, edit the value of these properties
in the default profile.

Configuring an HTTP proxy

To configure an HTTP proxy (which will be used when connecting to remote Maven repositories), open
the etc/maven-settings.xml file in a text editor and add a new proxy XML element as a child of the
proxies XML element. The definition of the proxy follows the standard Maven syntax. For example, to
create a proxy for the HTTP (insecure) protocol with host, 127.0.0.1, and port, 3128, add a proxy
element as follows:

<settings xmIns="http://maven.apache.org/SETTINGS/1.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/SETTINGS/1.0.0

http://maven.apache.org/xsd/settings-1.0.0.xsd">

<l--
This is the place to configure http proxies used by Aether.
If there's no proxy for "https" protocol, proxy for "http" will be used when accessing remote
repository
->
<proxies>
<l--
<proxy>
<id>proxy</id>
<host>127.0.0.1</host>
<port>3128</port>
<protocol>http</protocol>
<username></usernames
<password></password>
<nonProxyHosts>127.0.0.*lensemble1/ensemble2/ensemble3</nonProxyHosts>
</proxy>
-—->

106

CHAPTER 14. FABRIC MAVEN PROXIES

</proxies>
</settings>

You must remember to add the ensemble hosts (where the Maven proxy servers are running) to the list
of HTTP non-proxy hosts in the nonProxyHosts element. This ensures that the Fabric8 agents do not
attempt to connect to the Maven proxies through the HTTP proxy, but make a direct connection
instead. In the preceding example, the ensemble host names are ensemble1, ensemble2, and
ensemble3.

By default, HTTPS connections use the same proxy settings as the HTTP protocol. If you need separate
configuration for HTTPS, you can optionally add another proxy element configured with the https
protocol.

Reference

For a detailed description of the syntax of the Maven settings.xml file, see the Maven Settings

Reference. But please note that not all of the features documented there are necessarily supported by
Fabric.

14.6. SECURELY ACCESSING MAVEN REPOSITORIES

Overview

In a Fabric environment, you can implement basic authentication for secure access to Maven
repositories. To do this, you add some configuration settings to the default container profile.

Obtain encrypted Maven passwords

The default profile has the maven-settings.xml template file and the maven-settings-secure.xml
template file. You need to update these files to specify encrypted Maven passwords. Before you can do
that, you must obtain an encryption of the master Maven password and and an encryption of the
ordinary Maven password as follows:

1. Invoke the fabric:maven-password command to view Maven security settings:

JBossFuse:karaf@root> fabric:maven-password

Maven security configuration in Fabric environment defined in io.fabric8.maven and
io.fabric8.agent PID.

Security settings file: /data/servers/jboss-fuse-6.3.0.redhat-311/etc/maven-settings-
security.xml

Encrypted Maven master password:
{PMFs1x/vuOMHhjzIZpzst/d5Kpna+WqNu3P15ZcIP8g=}

2. Decrypt the master Maven password that is in the security settings:

JBossFuse:karaf@root> fabric:maven-password -d

Maven security configuration in Fabric environment defined in io.fabric8.maven and
io.fabric8.agent PID.

Security settings file: /data/servers/jboss-fuse-6.3.0.redhat-311/etc/maven-settings-
security.xml

Decrypted Maven master password: fabric:changeit

107

https://maven.apache.org/settings.html

Red Hat JBoss Fuse 6.3 Fabric Guide

3. Obtain an encryption for the master Maven password by entering it twice at the prompts:

JBossFuse:karaf@root> fabric:maven-password --encrypt-master-password
Master Maven password:

Verify master Maven password:

Encrypted master Maven password to use in security-settings.xmil:
{9490g/tbomOIYHZI4M6BstgfnY/iErAy+GKIfXiptLL/Q=}

4. Obtain an encryption for the regular Maven password:

JBossFuse:karaf@root> fabric:maven-password --encrypt-password

Looking up master Maven password in /data/servers/jpboss-fuse-6.3.0.redhat-311/etc/maven-
settings-security.xml... Done!

Maven password:

Verify Maven password:

Encrypted Maven password to use in settings.xml for server and proxy authentication:
{WCUxIVIatO4HZG2xrqtVBzidleDTTuVK10CNEA2eKEQ=}

Procedure

To securely access Maven repositories in a Fabric environment:

1.

4.

5.

108

Obtain an encrypted master Maven password and an encrypted regular Maven password, as
described in the previous section.

In the default profile, configure
io.fabric8.agent.properties/org.ops4j.pax.url.mvn.repositories as follows:

org.ops4j.pax.url.mvn.repositories= http://localhost:8081/repository/maven-
releases@id=nexus

In the default profile, edit the maven-settings.xml file to specify the encrypted regular Maven
password. For example:

<servers>
<server>
<id>nexus</id>
<username>developer</username>
<password>{WCUxIVIatO4HZG2xrqtVBziJleDTTuVK10CNEA2eKEQ}</password>
</server>

</servers>

In the default profile, edit the maven-settings-security.xml file to specify the encrypted
master Maven password. For example:

<settingsSecurity>
<master>{94gqg/tbm0IYHZI4M6BstgfnY/iErAy+GKIfXiptLL/Q=}</master>
</settingsSecurity>

Refresh the default profile so that fabric-agent uses the updated configuration:

I profile-refresh default

CHAPTER 14. FABRIC MAVEN PROXIES

6. Restart the fabric-maven bundle so that the updates are available to the Maven URI handler
and to the fabric-maven-proxy bundle:

bundle:stop io.fabric8.fabric-maven
bundle:start io.fabric8.fabric-maven

14.7. AUTOMATED DEPLOYMENT

Overview

The Maven proxy supports not just downloading artifacts, but also uploading artifacts. Hence, if you
want to make an artifact available to all of the containers in the fabric, a simple way of doing this is to
upload the artifact to the Maven proxy. For ultimate convenience in a development environment, you
can automate the deployment step by installing the Fabric8 Maven plug-in in your project POM file.

Discover the upload URL of the current master

To discover the upload URL of the current Maven proxy master instance, invoke the fabric:cluster-list
command, as follows:

JBossFuse:karaf@root> cluster-list servlets/io.fabric8.fabric-maven-proxy
[cluster] [masters] [slaves] [services] i
1.2.0.redhat-621084/maven/download

root root - http://127.0.0.1:8181/maven/download
1.2.0.redhat-621084/maven/upload

root root - http://127.0.0.1:8181/maven/upload

In this example, the upload URL of the current master is http://127.0.0.1:8181/maven/upload.

Manually deploy a Maven project

You can build a Maven project and upload the resulting artifact directly to the Maven proxy server, by
invoking mvn deploy with the altDeploymentRepository command-line option. The value of
altDeploymentRepository is specified in the following format:

I ID::Layout::RepositoryURL

Where the format segments can be explained as follows:

ID

Can be used to pick up the relevant credentials from the settings.xml file (from the matching
settings/servers/server/id element). Otherwise, the credentials must be specified in the repository
URL. If necessary, you can simply specify a dummy value for the ID.

Layout
Can be either default (for Maven3 or Maven2) or legacy (for Mavenl, which is not compatible with

JBoss Fuse).

RepositoryURL

109

Red Hat JBoss Fuse 6.3 Fabric Guide

The Maven proxy upload URL. For example,
http://User. Password@localhost:8181/maven/upload/.

For example, to deploy a Maven project to a Maven proxy server running on the localhost (127.0.0.1),
authenticating with the admin/admin credentials, enter a command like the following:

mvn deploy -
DaltDeploymentRepository=releaseRepository::default::http://admin:admin@127.0.0.1:8181/maven/uplc
ad/

Automatically deploy a Maven project

When working in a build environment, the most convenient way to interact with the Maven proxy server
is to configure the Fabric8 Maven plug-in. The Fabric8 Maven plug-in can automatically deploy your
project to the local Maven proxy and, in addition, has the capability to create or update a Fabric profile
for your application. For more details, see Chapter 7, Fabric8 Maven Plug-In.

14.8. FABRIC MAVEN CONFIGURATION REFERENCE

Overview

This section provides a configuration reference for the Maven proxy configuration settings, which
includes properties from the io.fabric8.agent PID, the io.fabric8.maven PID, and the
io.fabric8.maven.proxy PID.

Repository URL syntax

You can specify a repository location using a URL with a file:, http:, or https: scheme, optionally
appending one or more of the following suffixes:

@snapshots

Allow snapshot versions to be read from the repository.

@noreleases

Do not allow release versions to be read from the repository.

@id=RepoName
(Required) Specifies the repository name. This setting is required by the Aether handler.

@multi
Marks the path as a parent directory of multiple repository directories. At run time the parent
directory is scanned for subdirectories and each subdirectory is used as a remote repository.
@update=UpdatePolicy
Specifies the Maven updatePolicy, overriding the value of

org.opséj.pax.url.mvn.globalUpdatePolicy.

@releasesUpdate=UpdatePolicy

110

CHAPTER 14. FABRIC MAVEN PROXIES

Specifies the Maven updatePolicy specifically for release artifacts (overriding the value of
@update).

@snapshotsUpdate=UpdatePolicy

Specifies the Maven updatePolicy specifically for snapshot artifacts (overriding the value of
@update).

@checksum=ChecksumPolicy

Specifies the Maven checksumPolicy, which specifies how to react if a downloaded Maven artifact
has a missing or incorrect checksum. The policy value can be: ignore, fail, or warn.

@releasesChecksum=ChecksumPolicy

Specifies the Maven checksumPolicy specifically for release artifacts (overriding the value of
@checksum).

@snapshotsChecksum=ChecksumPolicy

Specifies the Maven checksumPolicy specifically for snapshot artifacts (overriding the value of
@checksum).

For example:

I https://repo.example.org/maven/repository@id=example.repo

io.fabric8.agent PID

The io.fabric8.agent PID configures the Fabric8 agent. The io.fabric8.agent PID supports the
following properties relating specifically to Maven configuration:

org.opsdj.pax.url.mvn.connection.bufferSize

Configure buffer size for HTTP connections (output and input buffers), defaults to 8192 bytes.

org.opsédj.pax.url.mvn.connection.retryCount

Number of connection retries after failure is detected in HTTP client. Default is 3.

org.opsédj.pax.url.mvn.defaultRepositories

Specifies a list of default (local) Maven repositories that are checked before looking up the remote
repositories. Specified as a comma-separated list of file: repository URLs, where each repository
URL has the syntax defined in the section called "Repository URL syntax”.

org.opsédj.pax.url.mvn.globalChecksumPolicy
Specifies the Maven checksumPolicy. The default profile sets this property to warn.

org.opséj.pax.url.mvn.globalUpdatePolicy

Specifies the Maven updatePolicy, which determines how often Aether attempts to update local
Maven artifacts from remote repositories. Can take the following values:

e always—always resolve the latest SNAPSHOT from remote Maven repositories.

® never—never check for newer remote SNAPSHOTS.

m

Red Hat JBoss Fuse 6.3 Fabric Guide

e daily—check on the first run of the day (local time).
® interval:Mins—check every Mins minutes.

The default profile sets this property to daily. If not set, defaultis daily.

org.opsdj.pax.url.mvn.localRepository

Specifies the local Maven repository, which is used to cache artifacts downloaded from remote
repositories (as specified in org.ops4j.pax.url.mvn.repositories).

The default profile sets this property to ${karaf.data}/repository-agent.

org.opsédj.pax.url.mvn.repositories

Specifies a list of remote Maven repositories that can be searched for Maven artifacts. This property
can be used in any of the following ways:

® Use this property and disable settings.xml
Normally, the org.ops4j.pax.url.mvn.repositories property is set as a comma-separated list
of repository URLs, where the \ character can be used for line continuation. In this case, any

Maven settings.xml file is ignored (that is, the org.ops4j.pax.url.mvn.settings property
setting is ignored). For example, this property is set as follows in the default profile:

org.ops4j.pax.url.mvn.repositories =

http://repo1.maven.org/maven2@id=maven.central.repo,
https://maven.repository.redhat.com/ga@id=redhat.ga.repo,
https://maven.repository.redhat.com/earlyaccess/all@id=redhat.ea.repo,
https://repository.jboss.org/nexus/content/groups/ea@id=fuseearlyaccess

® Use settings.xml and disable this property
If you want to use a Maven settings.xml file to configure the list of remote repositories
instead of this property, you must remove the org.opsdj.pax.url.mvn.repositories property

settings from the profile. For example, assuming that this property is set in the default
profile, you can delete it with the following command:

I profile-edit --delete --pid io.fabric8.agent/org.ops4j.pax.url.mvn.repositories default

org.opsédj.pax.url.mvn.settings

Specifies a path on the file system to override the default location of the Maven settings.xml file.
The Fabric8 agent resolves the location of the Maven settings.xml file in the following order:

1. The location specified by org.ops4j.pax.url.mvn.settings.
2. ${user.home}/.m2/settings.xml
3. ${maven.home}/conf/settings.xml

4. M2_HOME]/conf/settings.xml

12

CHAPTER 14. FABRIC MAVEN PROXIES

NOTE

All settings.xml files are ignored, if the org.ops4j.pax.url.mvn.repositories property
is set.

org.opsdj.pax.url.mvn.socket.connectionTimeout

Timeout in milliseconds when establishing a HTTP connection during artifact resolution.

org.opsdj.pax.url.mvn.socket.keepAlive
SO_KEEPALIVE option for sockets. Defaults to false.

org.opsdj.pax.url.mvn.socket.linger
SO_LINGER option for sockets. Defaults to -1.

org.opsdj.pax.url.mvn.socket.readTimeout

Timeout in milliseconds when reading data after connecting to a remote repository.

org.opsédj.pax.url.mvn.socket.reuseAddress
SO_REUSEADDR option for sockets. Defaults to false.

org.opsdj.pax.url.mvn.socket.tcpNoDelay
TCP_NODELAY option for sockets. Defaults to true.

org.opsédj.pax.url.mvn.timeout

Default value for connection and read timeouts, when socket.readTimeout and
socket.connectionTimeout are not specified.

io.fabric8.maven PID

The io.fabric8.maven PID configures the io.fabric8.maven bundle (which is used by the Maven proxy
server) and supports the following properties:
io.fabric8.maven.connection.bufferSize

Configure buffer size for HTTP connections (output and input buffers), defaults to 8192 bytes.

io.fabric8.maven.connection.retryCount

Number of connection retries after failure is detected in HTTP client. Default is 3.

io.fabric8.maven.defaultRepositories

Specifies a list of default (local) Maven repositories that are checked before looking up the remote
repositories. Specified as a comma-separated list of file: repository URLs, where each repository
URL has the syntax defined in the section called "Repository URL syntax”.

The default profile sets this property to reference the org.opsdéj.pax.url.mvn.defaultRepositories
property from the io.fabric8.agent PID.

io.fabric8.maven.globalChecksumPolicy

Specifies the Maven checksumPolicy. The default profile sets this property to warn.

13

Red Hat JBoss Fuse 6.3 Fabric Guide

io.fabric8.maven.globalUpdatePolicy

Specifies the Maven updatePolicy, which determines how often Aether attempts to update local
Maven artifacts from remote repositories.

The default profile sets this property to daily. If not set, defaultis daily.

io.fabric8.maven.localRepository

Specifies the local Maven repository, which is used to cache artifacts downloaded from remote
repositories (as specified in io.fabric8.maven.repositories).

The default profile sets this property to ${karaf.data}/repository.

io.fabric8.maven.proxies

(Obsolete) This option does not work any more. In older Fabric8 releases it was used to configure a
HTTP proxy port.

io.fabric8.maven.repositories

Specifies a list of remote Maven repositories that can be searched for Maven artifacts. This setting
normally references the contents of the io.fabric8.agent/org.ops4j.pax.url.mvn.repositories
property.

If you decide to use a Maven settings.xml file to configure the Fabric8 agent (see Section 14.5,
“Configuring Maven Proxies and HTTP Proxies through settings.xml”), you can combine the remote
repositories specified in this setting and the remote repositories configured in a settings.xml file
using a special syntax for the list of repository URLSs. In this case, you prefix a single + character to the
comma-separated list of repository URLs, where the repository URLs are listed on a single line (the \
line continuation character is not supported in this syntax). For example:

io.fabric8.maven.repositories=+http://repo1.maven.org/maven2@id=maven.central.repo,https://mave
n.repository.redhat.com/ga@id=redhat.ga.repo,https://maven.repository.redhat.com/earlyaccess/all
@id=redhat.ea.repo,https://repository.jboss.org/nexus/content/groupsea@id=fuseearlyaccess

io.fabric8.maven.settings

Specifies a path on the file system to override the default location of the Maven settings.xml file.

The default profile sets this property to ${karaf.etc}/maven-settings.xml.

io.fabric8.maven.useFallbackRepositories

This option is deprecated and should always be set to false.

The default profile sets this property to false.

io.fabric8.maven.socket.connectionTimeout

Timeout in milliseconds when establishing a HTTP connection during artifact resolution.

io.fabric8.maven.socket.keepAlive
SO_KEEPALIVE option for sockets. Defaults to false.

io.fabric8.maven.socket.linger
SO_LINGER option for sockets. Defaults to -1.

14

CHAPTER 14. FABRIC MAVEN PROXIES

io.fabric8.maven.socket.readTimeout

Timeout in milliseconds when reading data after connecting to a remote repository.

io.fabric8.maven.socket.reuseAddress
SO_REUSEADDR option for sockets. Defaults to false.

io.fabric8.maven.socket.tcpNoDelay
TCP_NODELAY option for sockets. Defaults to true.

io.fabric8.maven.timeout

Default value for connection and read timeouts, when socket.readTimeout and
socket.connectionTimeout are not specified.

io.fabric8.maven.proxy PID

The io.fabric8.maven.proxy PID configures the Fabric8 Maven proxy server and supports the following
properties:

appendSystemRepos

The fabric profile sets this property to false.

role

Specifies a comma-separated list of security roles that are allowed to access the Maven proxy
server. For details of role-based access control, see section "Role-Based Access Control" in
"Security Guide".

The default profile sets this property to the following list:

I admin,manager,viewer,Monitor,Operator,Maintainer,Deployer,Auditor,Administrator,SuperUser

updatePolicy
Specifies the Maven updatePolicy.

The fabric profile sets this property to always.

uploadRepository

Specifies the location of the directory used to store artifacts uploaded to the Maven proxy server.

The fabric profile sets this property to ${runtime.data}/maven/upload.

115

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Security_Guide/RBAC.html

Red Hat JBoss Fuse 6.3 Fabric Guide

CHAPTER 15. OFFLINE REPOSITORIES

Abstract

Its quite common a common requirement to need offline repositories: either as a local cache of remote
Maven repositories, or in cases where production machines do not have access to the Internet.

15.1. OFFLINE REPOSITORY FOR A PROFILE

Download into a specified directory

To download all the bundles and features of a given profile, ProfileName, enter the following console
command:

I fabric:profile-download-artifacts --profile ProfileName /tmp/myrepo

This command downloads all the bundles and features for the default version of the given profile into
the /tmp/myrepo directory.

Download into the system folder

If you omit the path, the fabric:profile-download command installs the files to the system folder inside
the current Fuse container (thereby populating the local maven repository for the container). For
example:

I fabric:profile-download-artifacts --profile ProfileName

15.2. OFFLINE REPOSITORY FOR A VERSION

Download the current version

To download all the bundles and features for all the profiles in the default version, enter the following
console command:

I fabric:profile-download-artifacts /tmp/myrepo
Download a specific version
You can specify the version to download using the --version option, as follows:

I fabric:profile-download-artifacts --version 1.0 /tmp/myrepo

If you omit the path the fabric:profile-download command installs the files into the system folder
inside the current Fuse container (thereby populating the local maven repository for the container).

15.3. OFFLINE REPOSITORY FOR A MAVEN PROJECT

Download repository for Maven project

16

CHAPTER 15. OFFLINE REPOSITORIES

If you have a Maven project and you need to create an offline repository for building this project and its
runtime dependencies, you can use the maven dependency plugin.

For example, from the top-level directory of a Maven project (such that the current directory has a
pom.xml file), you should be able to run the following Maven command:

mvn org.apache.maven.plugins:maven-dependency-plugin:2.8:go-offline -
Dmaven.repo.local=/tmp/cheese

Which downloads all the Maven dependencies and plug-ins required to build the project to the
/tmp/cheese directory.

17

http://maven.apache.org/plugins/maven-dependency-plugin/go-offline-mojo.html

Red Hat JBoss Fuse 6.3 Fabric Guide

CHAPTER 16. CONFIGURING WITH GIT

Abstract

Fabric implicitly uses Git to store much of its configuration data (in particular, for storing versioned
profile data). Normally, this aspect of Fabric is completely transparent, and there is no need to be
concerned with the Git functionality inside Fabric. But if you want to, you have the option of tapping
directly into the Git layer inside Fabric, in order to manage Fabric configurations.

16.1. HOW GIT WORKS INSIDE FABRIC

Cluster architecture

When Fabric is configured as a Git cluster, the Git configuration layer works as follows:

Each Fabric server has its own clone of the Git configuration.

One Fabric server is elected to be the masterinstance, and serves as the master remote
repository for the other Fabric servers.

All configuration changes made in the other Fabric servers (the slave instances) are pushed to
the master instance.

When changes occur in the master, the slaves automatically pull the new configuration from the
master.

If the master instance is stopped, another container is elected to be the master (failover).
An administrator can access the Git configuration layer by cloning a local Git repository from the

master instance. By pushing updates from this local repository, the administrator can change the
configuration of the fabric.

External Git repository architecture

When Fabric is configured with an external Git repository, the Git configuration layer works as follows:

18

The external Git repository is created in an external Git server (for example, using a service such
as GitLab or Gerrit).

When the Fabric is created, it automatically populates the external Git repository with the
default configuration (which is initialized by reading the InstallDir/fabric/import directory).

Each Fabric server maintains a synchronized state with the external Git repository.
All configuration changes made in the Fabric servers are pushed to the external Git repository.

When changes occur in the external Git repository, the Fabric servers automatically pull the new
configuration from the external Git repository.

An administrator can access the Git configuration layer by cloning a local Git repository from the
external Git repository. By pushing updates from this local repository to the external Git
repository, the administrator can change the configuration of the fabric.

https://git-scm.com/

CHAPTER 16. CONFIGURING WITH GIT

What is stored in the Git repositories?

The Git repositories in Fabric are used to store Fabric profile configuration data. A Fabric profile consists
of the resources, configuration data, and meta-data required to deploy an application into a Fabric
container.

Git branches

The branches of the Git repository correspond directly to profile versions in Fabric. For example, if you
enter the following console command:

JBossFuse:karaf@root> fabric:version-create
Created version: 1.1 as copy of: 1.0

You will discover that the underlying Git repository now has a new branch called 1.1. In fact, most of the
Fabric version commands are approximately equivalent to a corresponding git command, as shown in
the following table:

Fabric Version Command Analogous Git Command

fabric:version-create NewBranch git branch NewBranch
fabric:version-list git branch
fabric:version-set-default Branch git checkout Branch
fabric:version-delete Branch git branch -d Branch

Configuring through the console commands

When you make any changes to profiles using the console commands, these changes are implicitly
committed to the underlying Git repository. Hence, some of the console commands are equivalent to
Git operations. For example, if you create a new profile by invoking fabric:profile-create, new files are
added to the Git repository, and the changes are committed. Similarly, when you edit a profile using the
fabric:profile-edit command, these changes are added and committed to the underlying Git repository.

Prerequisites

Fabric itself does not require any git binaries to be installed on your system, because it is implemented
using the JGit library. You will need to install Git binaries on your local system, however, if you want to
configure Fabric directly through Git, using a clone of the Git repository.

Configuring directly through Git
There are two alternative ways of setting up a fabric to use Git configuration, as follows:
® Section 16.2, “Using a Git Cluster”

® Section 16.3, “"Using an External Git Repository”

16.2. USING A GIT CLUSTER

19

https://eclipse.org/jgit/

Red Hat JBoss Fuse 6.3 Fabric Guide

Overview

Figure 16.1, “Git Cluster Architecture” shows an overview of the Fabric architecture when the fabric is
configured to use a Git cluster.

Figure 16.1. Git Cluster Architecture

Slave Slave

*, i
, !
i £
hY &
. Master ,
. Fa
B181 /
% £
',-—[::b- &
B
far
o Git
Git
Local git repository
Clone the Git repository

When a fabric is configured with a Git cluster, the current master behaves as a Git server. This means
that you can clone the Git repository directly from the Fabric server that is the master.

Clone the Git repository using a command like the following:

I $ git clone -b 1.0 http://Hostname: Port/git/fabric

Where Hostname and Port are the hostname and IP port of the master Fabric server. Note the following
points:

120

CHAPTER 16. CONFIGURING WITH GIT

® The port number, Port is usually 8181, by default. But if you deploy multiple Fabric containers
on the same host, their HTTP ports are automatically incremented, 8182, 8183, (or whichever is
the next available port number at the time the container is created).

® The -b option is used to check out the 1.0 Git branch, which corresponds to version 1.0 of the
Fabric profile data. There is also a master branch, but it is normally not used by the Fabric
servers.

® You can also see a sample clone command in the Fuse Management Console, if you navigate to
the Container: page for the relevant container, click on the URLSs tag, and go to the Git: field.
Note, however, that if you try to clone from a slave instance, you will get an error (the Fuse
Management Console currently does not indicate whether the container is a slave or a master).

IMPORTANT

Do not attempt to clone your repository directly from the InstallDir/data/git/local/fabric
directory (which holds the container's local Git repository). This approach does not work.
When you push and pull to the container's HTTP port, it automatically triggers
synchronization events within the Git cluster. These necessary synchronizations would be
bypassed, if you cloned from a directory.

Authentication

The Git server exposed by the Fabric is deployed into the container's Jetty container and shares the
same security configuration as other default HTTP services. In particular, the HTTP port is configured to
request credentials through the HTTP BASIC authentication protocol, and these credentials are then
authenticated in the container using the standard JAAS authentication infrastructure. In practice, this
means you can use any of the JAAS credentials configured in the fabric to log on to the Git server.

You can use one of the following alternatives to specify the credentials for Git:

® [et Git prompt you for credentials —this is the default, if you use a Git URL of the form,
http://Hostname: Port/git/fabric.

® [mbed credentials in the Git URL —you can embed the credentials directly in the Git URL, using
the following syntax:

I http://User.Pass@ Hostname: Port/git/fabric

Basic tasks with Git

You can now use standard Git commands to perform basic configuration tasks in Fabric:
® Push to the Fabric Git server —you can use your local Git repository to edit profile configurations
and push the changes up to the fabric. For example, to edit the Camel route in the quickstarts-
beginner-camel.log.wiki profile:

1. Make sure that you are working in the correct branch (initially, this should be branch 1.0):

$ cd LocalGitRepo
$ git checkout 1.0

2. Edit the following Blueprint XML file in your local Git repository, to alter the Camel route:

121

Red Hat JBoss Fuse 6.3 Fabric Guide

I LocalGitRepol/fabric/profiles/quickstarts/beginner/camel.log.wiki.profile/camel-log.xml

3. Add and commit the changes locally, using Git commands:

I $ gitadd -u

$ git commit -m "Changed the route in camel.log.wiki"

4. Push the changes to the fabric:

I $ git push
This updates the configuration in all of the Fabric servers in the Git cluster. If any of the
containers in your fabric have deployed the quickstarts-beginner-camel.log.wiki profile,
they willimmediately be updated with the changes.
® Pull from the Fabric Git server —if you change the profile configuration using commands in the
Karaf console, you can synchronize those changes with your local Git repository by doing a git
pull. For example, to edit the Camel route in the quickstarts-beginner-camel.log.wiki profile
from the Karaf console:

1. In the Karaf console, you can edit the Camel route from the quickstarts-beginner-
camel.log.wiki profile by entering the following console command:

I fabric:profile-edit --resource camel-log.xml quickstarts-beginner-camel.log.wiki

2. You can now synchronize your local Git repository to these changes. Open a command
prompt, and enter the following commands:

$ cd LocalGitRepo
$ git checkout 1.0

3. Pull the changes from the fabric:

I $ git pull

What happens after a failover?

So far, we have been assuming that the master instance remains unchanged, so that the master
instance is synonymous with the origin upstream repository. But what happens if there is a failover? For
example, if the Fabric server that is the master instance is stopped and restarted. If your ensemble
consists of only one Fabric server, this makes no difference, because there is no other server to fail over
to. But if there are three (or five) servers in your ensemble, one of the other Fabric servers will
automatically be elected as the new master.

The consequence for your local Git repository is that the origin repository is no longer the master
instance. Hence, if you try to do a git push or a git pull after failover, you will get the following error:

$ git pull
fatal: repository 'http://Hostname:8181/git/fabric/' not found

Adding multiple upstream repositories

122

CHAPTER 16. CONFIGURING WITH GIT

Currently, there is no mechanism in Git for failing over automatically to an alternative Git server. But
what you can do in Git is to add multiple upstream repositories. It then becomes possible to push to and
pull from alternative Git repositories, as long as you name them explicitly in the command line.

For example, consider the case where there are two additional Fabric servers in a Git cluster (making
three in total). You can add the two additional servers as upstream repositories, using the following Git
commands:

$ git remote add ensemble2 Ensemble2GitURL
$ git remote add ensemble3 Ensemble3GitURL

You can then push to either of these repositories explicitly, using a command of the form:

I $ git push UpstreamName BranchName

For example, to push to branch 1.0 of the ensemble2 Git server:

I $ git push ensemble2 1.0

Only one of the repositories, origin, ensemble2, ensemble3, is accessible at one time, however
(whichever is the master).

Git cluster tutorial

The following tutorial explains how to create a fabric, which demonstrates a master-slave cluster of Git
repositories:

1. (Optional) Prepare the container for a cold start. Delete the following directories:

InstallDir/data
InstallDir/instances

IMPORTANT
Performing a cold start completely wipes the current state of the root container,

including all of the deployed bundles, and features, and most of the stored data.
Do not perform this operation on a production system.

2. Start up the container, by entering the following command:
I /bin/fuse
3. Create a new fabric. At the container prompt, enter the following console command:

fabric:create --new-user admin --new-user-password AdminPass --new-user-role
Administrator \

--zookeeper-password ZooPass --global-resolver manualip \

--resolver manualip --manual-ip 127.0.0.1 --wait-for-provisioning

You need to substitute your own values for AdminPass and ZooPass. This sample command
uses the --manual-ip option to assign the loopback address, 127.0.0.1, to the root container. If
your host has a static IP address and hostname assigned to it, however, it would be better to use

123

Red Hat JBoss Fuse 6.3 Fabric Guide

124

the assigned hostname here instead.

You need to wait a minute or two for this command to complete.

. Create two new child containers in the fabric, by entering the following console command:

I fabric:container-create-child --profile fabric root ensemble 2

This command returns quickly, with the following message:

The following containers have been created successfully:
Container: ensemble.
Container: ensemble2.

But it takes a couple of more minutes for the new child containers to be completely provisioned.
Check the status of the child containers, by entering the following command:

I fabric:container-list

Wait until the child containers have a [provision status] of success before proceeding.

. Add the two child containers to the Fabric ensemble, so that the Fabric ensemble consists of

three containers in all: root, ensemble, and ensemble2. Enter the following console command:

I fabric:ensemble-add ensemble ensemble2

Wait until the ensemble containers have been successfully provisioned before proceeding.

. Clone the Git repository. The three containers in the Fabric ensemble now constitute a Git

cluster. Initially, the root container is the masterinstance of the cluster, so you should attempt
to clone the Git repository from the HTTP port exposed by the root container.

Open a new command prompt and, at a convenient location in the file system, enter the
following command:

I git clone -b 1.0 http://127.0.0.1:8181/git/fabric

This command clones the Fabric Git repository and checks out the 1.0 branch. You should now
be able to see the profile configuration files under the fabric/profiles subdirectory.

If the root container is not the current master, you can expect to see an error message like the
following when you attempt to clone:

Cloning into 'fabric'...
fatal: repository 'http://127.0.0.1:8181/git/fabric/' not found

. In the next few steps, we explore the failover behaviour of the Git cluster. First of all, we stop the

root container (the current Git master), in order to force a failover. In the root container
console, enter the shutdown command, as follows:

JBossFuse:karaf@root> shutdown
Confirm: shutdown instance root (yes/no): yes

CHAPTER 16. CONFIGURING WITH GIT

8. Now restart the root container, by entering the following command:
I /bin/fuse

9. Return to the command prompt where you cloned the Git repository and try to do a git pull, as
follows:

cd fabric
git pull

You will get an error like the following:

$ git pull
fatal: repository 'http://127.0.0.1:8181/git/fabric/' not found

Because the root container (listening on IP port 8181) is no longer the master.

NOTE

In this example, because all of the ensemble containers are running on the same
host, the ensemble containers are distinguished by having different IP port
numbers (8181, 8182, and 8183). If you created the other ensemble containers on
separate hosts, however, they would all have the same port number (8181), but
different host names.

10. One of the other Fabric servers (ensemble or ensemble2) is now the master. To gain access to
the master, try adding both of the alternative Git URLs as upstream repositories. From a
directory in the cloned Git repository, enter the following commands:

$ git remote add ensemble http://127.0.0.1:8182/git/fabric
$ git remote add ensemble2 http://127.0.0.1:8183/git/fabric

1. You can now try pulling from one of the other Fabric servers. You can either pull from the
ensemble container (pulling branch 1.0), as follows:

I $ git pull ensemble 1.0
Or from the ensemble2 container (pulling branch 1.0), as follows:
I $ git pull ensemble2 1.0

Only one of these alternatives can succeed (pulling from the master). Pulling from the slave
instance returns an error.

12. After you have identified the current master, you can proceed to push and pull using the long
form of the git commands (for example, git pull RemoteName BranchName).

16.3. USING AN EXTERNAL GIT REPOSITORY

Overview

125

Red Hat JBoss Fuse 6.3 Fabric Guide

Figure 16.2, “External Git Repository Architecture” shows an overview of the Fabric architecture when
the fabric is configured to use an external Git repository.

Figure 16.2. External Git Repository Architecture

External Git Repository
Git
push
>
pull AR
r *

Fabric ’ A Fabric
server / A server

Git 4

— e = e = o = = = e = = SR

s]
! AY
Local git v N
repository / \
Git Git
Fabric
server
B181
Git

External git repository architecture

When you configure a fabric with an external Git repository (which must be done at fabric creation
time), the external Git repository becomes the primary Git repository for all of the containers in the
Fabric. All of the Fabric servers in the ensemble maintain their own copy of the Git repository (under
their respective data/ directories), but this local copy is kept up-to-date by regularly polling the external
Git repository for updates. If a change is detected in the external Git repository, every Fabric server will
do a git pull to update it's local copy of the Git repository.

Itis also possible for an administrator to clone a local copy of the external Git repository. Using standard
git commands, the administrator can now edit the configuration files in the local copy and push the

changes to the external Git repository. As soon as those changes are received by the external Git
repository, the Fabric servers will detect that an update has occurred and pull the latest configuration.

Preparing an external Git repository

126

CHAPTER 16. CONFIGURING WITH GIT

When setting up this type of Fabric architecture, the first step is to prepare an external Git repository.
When setting up this repository, you should pay attention to the following points:

® The Git repository must be initialized. For example, if you were creating a new Git repository on
your local file system, you would initialize it using the command git init. If you are using a Git
server to host your repository (for example, Gerrit, GitLab, or GitHub), the Git repository is
usually initialized automatically, after you create it.

® You must ensure that all of your Fabric servers are able to access the external Git repository.
For example, if your Git server uses a HTTP based protocol to access the repository, you are
generally required to have username/password credentials for the HTTP BASIC authentication
protocol.

Authentication

In this architecture, authentication is handled by the external Git repository (and the Git server that
hosts it). The most common cases are:

e HTTP URL—in this case, the Git server is likely to use HTTP with TLS (HTTPS), to verify the
server identity, and HTTP BASIC authentication, to verify the client identity. When creating the
fabric (with the fabric:create command), you need to specify the following additional options in
this case:

o --external-git-url ExternalGitHtipUrl
o --external-git-user ExternalGitUser
o --external-git-password ExternalGitPass
® fijle URL—in this case, no authentication is required. You can specify the Git URL either in the
form /path/to/repo (recommended) or file:///path/to/repo (slower). If the Fabric servers are
deployed on separate hosts, you must make sure that they all have access to the specified
directory (for example, through a Network File Server). When creating the fabric (with the

fabric:create command), you need to specify the following additional options in this case:

o --external-git-url ExternalGitFileUr!

Creating a fabric with an external Git repository

Typically, to create a fabric with an external Git repository, you would enter a console command like the
following:

fabric:create --new-user admin --new-user-password AdminPass --new-user-role Administrator \
--zookeeper-password ZooPass --global-resolver manualip \
--resolver manualip --manual-ip StaticlPAddress --wait-for-provisioning \
--external-git-url ExternalGitHttpUrl\
--external-git-user ExternalGitUser --external-git-password ExternalGitPass

Note the following points:

® A new user is created with username, admin, password, AdminPass, and role, Administrator.
You can use these JAAS credentials to log on to any of the containers in the fabric.

® The Zookeeper password is set to ZooPass (the only time you are prompted to enter the
Zookeeper password is when joining a container to the fabric).

127

Red Hat JBoss Fuse 6.3 Fabric Guide

® The resolver policy for the root container is set to manualip (using the --resolver option) and
the global resolver policy (which becomes the default resolver policy for containers created in
this fabric) is also set to manualip. This enables you to specify the root container's IP address,
StaticlPAddress, explicitly. It is essential that you assign a static IP address to the Fabric server
host (for demonstrations and tests on a single machine, you can use the loopback address,
127.0.0.1).

e The Git URL, ExternalGitHttpUrl, is specified through the --external-git-url option.

® Assuming that you use a HTTP Git URL with BASIC authentication enabled, you will also need to
specify credentials, using the --external-git-user and --external-git-password options.
What happens if the external Git repository fails?

Because the external Git repository is the primary Git repository, which is used to synchronize
configuration data with the other Fabric servers, it is technically a single point of failure. The effect of a
failure of the external Git repository is not as serious as you might think, however. It does not lead to a
failure of the Fabric servers. In case of an external Git repository failure (or a loss of connectivity) the
Fabric servers continue to operate with the configuration data they have already cached in their local
copies of the Git repository. As soon as the external Git repository comes back on line, they will re-
synchronize their configuration data.

Synchronizing Git Repository

Each container maintains local copy of Git repository (a clone in git terminology) that is synchronized
with single remote Git repository (git remote) (either entirely external, or one managed by one of Fabric
containers itself - one is chosen from list of available Git repositories running in master-slaves
configuration). All containers synchronize their local copies with central in two ways:

® by doing periodical git pull operation (in case of external git repository)

e after triggering event sent via Zookeeper registry - typically after invocation of fabric:profile-
edit command or after an update to a profile via hawtio application

In ideal state, all containers maintain local copies that are identical to remote (reference) version. But in
some scenarios, the synchronization state may not be correct, for example, networking operation failure.
Red Hat Fuse introduces two new diagnostic commands that help in such situations:

e fabric:git-summary

e fabric:git-synchronize

fabric:git-summary

fabric:git-summary command retrieves status of git repository and its branches or versions. The
command asks all (or selected) containers to send an information about the state of each version
tracked in their local Git repository.The syntax is as follows:

I fabric:git-summary [options] [container]

where, container refers to the container names.

The Options for fabric:git-summary command are as follows:

128

CHAPTER 16. CONFIGURING WITH GIT

Option Description

-a, --all Send command to all containers

-t, --timeout Timeout used when waiting for response(s). (defaults
to 5000)

--help Display the help message for the command

fabric:git-summary examples

Following example shows output of fabric:git-summary --all

JBossFuse:karaf@root> fabric:git-summary --all
Git master is: root
Scheduled git-summary command to 3 containers. Awaiting response(s).
=== Summary for master Git repository (container: root) ===
Git master URL: <current container>
[version] [SHA1] [timestamp] [message]

1.0 f1fd4e9ae0e6e0374ce70646a536ededb817910c 2017-07-11 19:28:29 Update
configurations for profile: fabric

master 65aefd723bac7b6ed8c8f41fa788e2fe419e1026 2017-07-11 19:28:29 Create profile:
fabric-ensemble-0000-1

=== Summary for local Git repository (container: child1) ===
Git master URL: http://example.com:8181/qgit/fabric/

[version] [SHA1] [timestamp] [message]

1.0 f1fd4e9ae0e6e0374ce70646a536ededb817910c 2017-07-11 19:28:29 Update
configurations for profile: fabric

master 65aefd723bac7b6ed8c8f41fa788e2fe419e1026 2017-07-11 19:28:29 Create profile:
fabric-ensemble-0000-1

=== Summary for local Git repository (container: child2) ===
Git master URL: http://example.com:8181/qgit/fabric/

[version] [SHA1] [timestamp] [message]

1.0 f1fd4e9ae0e6e0374ce70646a536ededb817910c 2017-07-11 19:28:29 Update
configurations for profile: fabric

master 65aefd723bac7b6ed8c8f41fa788e2fe419e1026 2017-07-11 19:28:29 Create profile:
fabric-ensemble-0000-1

=== Summary for local Git repository (container: root) ===
Git master URL: http://example.com:8181/qgit/fabric/

[version] [SHA1] [timestamp] [message]

129

Red Hat JBoss Fuse 6.3 Fabric Guide

1.0 f1fd4e9ae0e6e0374ce70646a536ededb817910c 2017-07-11 19:28:29 Update
configurations for profile: fabric

master 65aefd723bac7b6ed8c8f41fa788e2fe419e1026 2017-07-11 19:28:29 Create profile:
fabric-ensemble-0000-1

Firstly, this command prints information about current master Git repository (root in this case). It also
prints the configured git master URL for each container. For git master summary, it prints Git master
URL: <current containers. For each container it prints Git master URL:
http://example.com:8181/git/fabric/. This allows you to verify that all containers are configured
correctly with git master server.

Next it shows that the command is sent (technically - via Zookeeper registry) to 3 containers
asynchronously. There is at most one summary for master Git repository (zero if master Git repository
can't be found) showing table with all found versions and recent Git commits (SHA1, timestamp and
message to make identification of change easier). Finally, there is a list of all containers' local Git
repository status (including local repository of container which is at the same time Git master).

In ideal situation, all containers should show the same state of all versions. Following example shows
output of fabric:git-summary command if there is one container with desynchronized local repository:

JBossFuse:karaf@root> fabric:git-summary child1

The list of container names: [child1]

Git master is: root

Scheduled git-summary command to 1 containers. Awaiting response(s).
Containers that require synchronization: [child1]

Please use "fabric:git-synchronize" command

=== Summary for master Git repository (container: root) ===

[version] [SHA1] [timestamp] [message]

1.0 f1fd4e9ae0e6e0374ce70646a536ededb817910c 2017-07-11 19:28:29 Update
configurations for profile: fabric

master 65aefd723bac7b6ed8c8f41fa788e2fe419e1026 2017-07-11 19:28:29 Create profile:
fabric-ensemble-0000-1

=== Summary for local Git repository (container: child1) ===
[version] [SHA1] [timestamp] [message]

1.0 9343f17dc9e642e456da366¢c6a005ca202d12485 2017-07-11 19:44:54 Externally made
commit

master 65aefd723bac7b6ed8c8f41fa788e2fe419e1026 2017-07-11 19:28:29 Create profile:
fabric-ensemble-0000-1

Summary for childl container shows different commit for version 1.0. Here, we can use fabric:git-
synchronize command which is explained in the next section.

130

CHAPTER 16. CONFIGURING WITH GIT

fabric:git-synchronize

fabric:git-synchronize command schedules synchronization of local git repositories for selected or all
containers. This is needed when output of fabric:git-summary command shows that something is not

right with git repositories. Using this command we can order selected or all containers to fetch current

state of git branches (fabric versions) from central git repository and synchronize local git repositories.
The syntax is as follows:

I fabric:git-synchronize [options] [container]

where, container refers to the container names.

The Options for fabric:git-synchronize command are as follows:

Option Description

-r, --random-delay Delay synchronization attempt by random number of
seconds. By default each container will delay
synchronization by 0-15 seconds to protect against
too many pull operations (defaults to 15).

-a, --all Send command to all containers

-t, --timeout Timeout used when waiting for response(s) (defaults
to 5000)

-p, --allow-push Whether containers are allowed to push local Git

repository state to central Git repository. This option
is used when local git repository of container has
newer changes than in central git repository. By
default, these changes will be removed and local git
repository will be synchronized to what is currently
available in central repository (this is normal situation,
because git repository should be altered only using
commands like fabric:profile-edit). If some local
repository was changed manually, this option may be
used to synchronize from local to central git
repository

--help Display the help message for the command

Example of fabric:git-synchronize

Following example shows output of fabric:git-synchronize:
JBossFuse:karaf@root> fabric:git-synchronize child1
The list of container names: [child1]

Scheduled git-synchronize command to 1 containers

Since it's assumed that execution of git repository synchronization may take some time, this command
doesn't produce more output.

131

Red Hat JBoss Fuse 6.3 Fabric Guide

io.fabric8.datastore PID Configuration

In order to configure git repository functionality in fabric environment, io.fabric8.datastore PID
configuration from default profile may be used. It uses following options:

gitRemotePollinterval: This options is used to configure polling interval in case of external git
repository (in milliseconds).

gitRemoteUrl, gitRemoteUser and gitRemotePassword: These options are used to configure
external (not managed by fabric) git repository to store profile data.

gitTimeout: This option is used during remote git operations (fetch, pull, push). The timeout is in
seconds.

gitAllowRemoteUpdate: This option is analogous to fabric:git-synchronize --allow-push. By
default, in all versions of fabric, local changes were tried to be pushed to central git repository if
it was possible (local changes were newer than central ones and git merge operation was
successful). By default this option is true, but it can be changed as well. For normal operations
this should be true.

gitRandomFetchDelay: This option is analogous to fabric:git-synchronize --random-delay.
Value of O means containers will fetch remote changes immediately after fabric:profile-edit.
When there are tens and hundreds of containers, setting this option may prevent DoS-like
behavior observed on central git repository server (which by default is one of Fuse fabric
containers).

External Git repository tutorial

The following tutorial explains how to create a fabric, which synchronizes its configuration with an
external Git repository:

132

1.

3.

4.

Create a new (empty) Git repository, which you can use as the external Git repository. Typically,
you would create the Git repository in a hosting service, such as GitLab, Gerrit, or GitHub. Make
a note of the new repository's HTTP URL, ExternalGitHttpUrl, and make sure that it is possible
to access the external Git repository from the hosts where you will be deploying your Fabric
servers.

(Optional) Prepare the container for a cold start. Delete the following directories:

InstallDir/data
InstallDir/instances

IMPORTANT

Performing a cold start completely wipes the current state of the root container,
including all of the deployed bundles, and features, and most of the stored data.
Do not perform this operation on a production system.

Start up the container, by entering the following command:
I /bin/fuse

Create a new fabric. At the container prompt, enter the following console command:

CHAPTER 16. CONFIGURING WITH GIT

fabric:create --new-user admin --new-user-password AdminPass --new-user-role
Administrator \
--zookeeper-password ZooPass --global-resolver manualip \
--resolver manualip --manual-ip 127.0.0.1 --wait-for-provisioning \
--external-git-url ExternalGitHtipUrl\
--external-git-user ExternalGitUser --external-git-password ExternalGitPass

You need to substitute your own values for AdminPass and ZooPass. The ExternalGitHttpUrl
is the HTTP URL of the external Git repository you created earlier and the ExternalGitUser
value and the ExternalGitPass value are the username/password credentials required to
access the external Git repository (using HTTP BASIC authentication).

This sample command uses the -=-manual-ip option to assign the loopback address, 127.0.0.1, to
the root container. If your host has a static IP address and hostname assigned to it, however, it
would be better to use the assigned hostname here instead.

You need to wait a minute or two for this command to complete.

5. After your fabric has been created, navigate to the contents of the external Git repository in
your browser (assuming that your Git server supports this functionality). The external repository
should now be populated with the default configuration of your fabric, with two branches
available: master and 1.0. The 1.0 branch is the branch that is initially used by your fabric.

6. Create alocal clone of the external Git repository, which you can then use to push or pull profile
configurations. Open a new command prompt and, in a convenient location on the file system,
enter the following command:

I git clone -b 1.0 ExternalGitHtipUrl

This git command will prompt you to enter the username and password credentials for the
external Git repository.

This command clones the Fabric Git repository and checks out the 1.0 branch. You should now
be able to see the profile configuration files under the fabric/profiles subdirectory.

7. You can now use regular git commands to configure your Fabric profiles. Simply edit the files in
your local Git repository, add the changes, commit, and then push the changes to the external
Git repository (working in the 1.0 branch). Shortly after the changes are pushed to the external
Git repository, the containers in your Fabric ensemble (the Fabric servers) will poll the
repository, pull the changes, and redeploy any changed profiles..

Choose the git cluster member to be the git master

When you create a fabric cluster, a list of containers run the fabric-git-server bundle, which is part of the
fabric-git-server feature. However, only the first node has services and url data in the cluster member
registration as child3 in the example below:

JBossFuse:karaf@root> zk:get /fabric/registry/clusters/git’00000000139
{"id":"fabric-repo","container":"child3","uuid":"84be3c4e-0529-4402-98e7-319a5b1de6fa","services":
["${zk:child3/http}/git/fabric/"],"url":"${zk:child3/http}/git/fabric/"}

JBossFuse:karaf@root> zk:get /fabric/registry/clusters/git/00000000140
{"id":"fabric-repo","container":"child2","uuid":"b38a2f49-ac06-49e8-bdaf-
ee16e9e0867a","services":null,"url":null}

JBossFuse:karaf@root> zk:get /fabric/registry/clusters/git’00000000141
{"id":"fabric-repo","container":"child1","uuid":"15e604fe-5c49-4fb5-abb4-

133

Red Hat JBoss Fuse 6.3 Fabric Guide

2496¢7aeaa79","services":null,"url":null}

JBossFuse:karaf@root> zk:get /fabric/registry/clusters/git/00000000142
{"id":"fabric-repo","container":"root","uuid":"4bc24f5b-21bb-4d7b-b358-
f9ea93f9ee26","services":null,"url":null}

1. Change the container to be the git master by using the fabric:git-master command:

NOTE

This command is only available from R13 and later.

fabric:git-master root
Changing Git master to new cluster member: root

2. Check the logs to confirm that the container you specified is the new git master.

2019-04-03 15:31:37,969 | ... | Container became git master. Registering git servlet.
2019-04-03 15:31:37,969 | ... | Cloning master root repo into /data/servers/jboss-fuse-
6.3.0.redhat-388/data/qgit/servlet/fabric

2019-04-03 15:31:40,274 | ... | Cloning master root repository finished

2019-04-03 15:31:40,274 | ... | Registering /git servlet in http service

2019-04-03 15:31:40,482 | ... | Registering git JMX endpoint

2019-04-03 15:31:40,484 | ... | Updating state for ZK Group for path
/fabric/registry/clusters/git/00000000142: {"id":"fabric-
repo","container":"root","uuid":"4bc24f5b-21bb-4d7b-b358-f9ea93f9ee26","services":
["${zk:root/http}/git/fabric/"],"url":"${zk:root/http}/git/fabric/"}

2019-04-03 15:31:40,491 | ... | Remote url change from: http://everfree.forest:8184/git/fabric/
to: http://everfree.forest:8181/qgit/fabric/

16.4. USING AN HTTP PROXY WITH A GIT CLUSTER

Using fabric's built-in Git cluster, all nodes communicate directly with each other over HTTP. If you need
to secure this communication, you can configure an HTTP proxy by configuring the GitProxyService.

1. Start up JBoss Fuse, and create a fabric. For details, see the section called “Steps to create the
fabric”.

2. At the JBossFuse:karaf@root> command line, type:

profile-edit --pid io.fabric8.git.proxy/proxyHost=serverName default
profile-edit --pid io.fabric8.git.proxy/proxyPort=portNumber default

These commands specify the hostname and port to use, and the default profile is updated with
the new configuration.

For example:

profile-edit --pid io.fabric8.git.proxy/proxyHost=10.8.50.60 default
profile-edit --pid io.fabric8.git.proxy/proxyPort=3128 default

All changes made to the fabric configuration will now be redirected to the Git HTTP proxy on
host 10.8.50.60's port 3128.

134

CHAPTER 17. PATCHING

CHAPTER 17. PATCHING

17.1. PATCHING A FABRIC CONTAINER WITH A ROLLUP PATCH

Abstract

Follow the procedures described in this section to patch a Fabric container with a rollup patch.

Overview

A rollup patch updates bundle JARs, other Maven artifacts, libraries, and static files in a Fabric. The
following aspects of the fabric are affected:

e Distribution of patched artifacts
® Profiles

e Configuration of the underlying container

Root container

Throughout this section, we refer to a root container, which is just a container chosen from the Fabric
ensemble. Throughout the patching procedure, you invoke the patch:* commands from the console of
the root container. If you are planning to distribute patch artifacts through the Maven proxy, it is
convenient to choose the root container to be the ensemble container that is currently the master of
the Maven proxy cluster (see Chapter 14, Fabric Maven Proxies). This would ensure that patch artifacts
can immediately be downloaded by other containers in the cluster.

Distribution of patch artifacts

When patching an entire fabric of containers, you need to consider how the patch artifacts are
distributed to the containers in the fabric. You can adopt one of the following approaches:

® Through the Maven proxy (default approach)—when you add a rollup patch to your root
container (using the patch:add command), the patch artifacts are installed into the root
container's system/ directory, whose directory structure is laid out like a Maven repository. The
root container can then serve up these patch artifacts to remote containers by behaving as a
Maven proxy, enabling remote containers to download the required Maven artifacts (this
process is managed by the Fabric agent running on each Fabric container). Alternatively, if you
have installed the rollup patch to a container that is not hosting the Maven proxy, you can
ensure that the patch artifacts are uploaded to the Maven proxy by invoking the patch:fabric-
install command with the --upload option.

There is a limitation to the Maven proxy approach, however, if the Fabric ensemble consists of
multiple containers. In this case, it can happen that the Maven proxy fails over to a different
ensemble container (not the original root container). This can result in the patch artifacts
suddenly becoming unavailable to other containers in the fabric. If this occurs during the
patching procedure, it will cause problems.

135

Red Hat JBoss Fuse 6.3 Fabric Guide

NOTE

Containers that are added to an ensemble do not automatically deploy the
Maven proxy. To enable the Maven proxy, make sure that the fabric profile is
deployed in the container.

For more details, see Chapter 14, Fabric Maven Proxies.

® Through a local repository (recommended approach)—to overcome the limitations of the Maven

proxy approach, we recommend that you make the patch artifacts available directly to all of the
containers in the Fabric by setting up a local repository on the file system. Assuming that you
have a networked file system, all containers will be able to access the patch artifacts directly.

For example, you might set up a local repository of patch artifacts, as follows:

1.

Profiles

Given a rollup patch file, extract the contents of the system/ directory from the rollup
patch file into the repositories/ subdirectory of a local Maven repository (which could be
~/.m2/repositories or any other location).

Configure the Fabric agent and the Maven proxy to pick up artifacts from the local
repository by editing the current version of the default profile, as follows:

profile-edit --append --pid
io.fabric8.agent/org.ops4j.pax.url.mvn.defaultRepositories="file:/// PathToRepository"
default

Replace PathToRepository by the actual location of the local repository on your file
system.

NOTE

Make sure that you make the edits to the default profile for all relevant
profile versions. If some of your containers are using a non-default profile
version, repeat the profile-edit commands while specifying the profile
version explicitly as the last parameter.

The rollup patching process updates all of the standard profiles, so that they reference the patched
dependencies. Any custom profiles that you created yourself remain unaffected by these updates.

However, in cases where you have already made some changes directly to the standard profiles (such as

default, fabric, karaf, and so on), the patching mechanism attempts to merge your changes with the
changes introduced by the patch.

IMPORTANT

In the case where you have modified standard profiles, it is recommended that you verify

your custom changes are preserved after patching. This is particularly important with
respect to any changes made to the location of Maven repositories (which are usually
configured in the default profile).

Configuration of the underlying container

If required, the rollup patching mechanism is capable of patching the underlying container (that is, files

136

CHAPTER 17. PATCHING

located under ete/, lib/, and so on). When a Fabric container is upgraded to a patched version (for
example, using the fabric:container-upgrade command), the container's Fabric agent checks whether
the underlying container must be patched. If yes, the Fabric agent triggers the patching mechanism to
update the underlying container. Moreover, if certain critical files are updated (for example,
lib/karaf.jar), the container status changes to requires full restart after the container is upgraded. This
status indicates that a full manual restart is required (an automatic restart is not possible in this case).

io.fabric.version in the default profile

The io.fabric.version resource in the default profile plays a key role in the patching mechanism. This
resource defines the version and build of JBoss Fuse and of all of its main components. When upgrading
(or rolling back) a Fabric container to a new version, the Fabric agent checks the version and build of
JBoss Fuse as defined in the io.fabric.version resource. If the JBoss Fuse version changes between the
original profile version and the upgraded profile version, the Fabric agent knows that an upgrade of the
underlying container is required when upgrading to this profile version.

Patching the patch mechanism

(Recommended, if applicable) If there is no patch management package corresponding to the rollup
patch you are about to install, then you can skip this procedure and install the rollup patch directly.

From time to time, important changes and improvements are made to the patch mechanism. In order to
pick up these improvements, we recommend that you patch the patch mechanism to a higher level
before upgrading JBoss Fuse with a rollup patch. If you were to upgrade straight to the latest rollup
patch version of JBoss Fuse, the improved patch mechanism would become available after you
completed the upgrade. But at that stage, it would be too late to benefit from the improvements in the
patch mechanism.

To circumvent this bootstrap problem, the improved patch mechanism is made available as a separate
download, so that you can patch the patch mechanism itself, before you upgrade to the new patch level.
To patch the patch mechanism, proceed as follows:

1. Download the appropriate patch management package. From the JBoss Fuse 6.3.0 Software
Downloads page, select a package named Red Hat JBoss Fuse 6.3.0 Rollup N on Karaf
Update Installer, where N is the number of the particular rollup patch you are about to install.

IMPORTANT

The rollup number, N, of the downloaded patch management package must
match the rollup number of the rollup patch you are about to install. For some
rollup patches, there is no corresponding patch management package, in which
case you can skip directly to the instructions for installing the rollup patch.

2. Extract the contents of the patch management package, patch-management-for-fuse-
630-TargetVersion.zip, on top of the root container (that is, on top of the Fabric container that
will be used to perform the remainder of the patching tasks). Use an archive utility to extract the
contents on top of the root container installation, merging the contents of the archive system/
and patches/ directories with the container system/ and patches/ subdirectories.

NOTE

It does not matter whether the root container is running when you extract these
files.

137

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=jboss.fuse&downloadType=patches&version=6.3.0

Red Hat JBoss Fuse 6.3 Fabric Guide

3.

4.

5.

Start the root container, if it is not already running.

Create a new version, using the fabric:version-create command (where we assume that the
current profile version is 1.0):

JBossFuse:karaf@root> fabric:version-create --parent 1.0 1.0.1
Created version: 1.0.1 as copy of: 1.0

IMPORTANT

Version names are important! The tooling sorts version names based on the
numeric version string, according to major.minor numbering, to determine the
version on which to base a new one. You can safely add a text description to a
version name as long as you append it to the end of the generated default name
like this: 1.3 [.description]. If you abandon the default naming convention and
use a textual name instead (for example, Patch051312), the next version you
create will be based, not on the last version (Patch051312), but on the highest-
numbered version determined by dot syntax.

Update the patch property in the io.fabric8.version PID in the version 1.0.1 of the default
profile, by entering the following Karaf console command:

I profile-edit --pid io.fabric8.version/patch=1.2.0.redhat-630xxx default 1.0.1

Where you must replace 1.2.0.redhat-630xxx with the actual build version of the patch
commands you are installing (for example, the build version xxx can be taken from the last three
digits of the TargetVersion in the downloaded patch management package file name).

Upgrade the root container to use the new patching mechanism, as follows:
I container-upgrade 1.0.1 root

Likewise, for all other containers in your fabric that need to be patched (SSH, child, and so on),
provision them with the new patching mechanism by upgrading them to profile version 1.0.1. For
example:

I container-upgrade 1.0.1 container1 container2 container3

After completing the container-upgrade, if patch commands are unavailable or if the console
issues a prompt that a container restart is necessary, then restart the upgraded containers to
complete the upgrade process.

Applying a rollup patch

To apply a rollup patch to a Fabric container:

1.

138

Before applying the rollup patch to your fabric, you must patch the patch mechanism, as
described in the section called “Patching the patch mechanism” .

For every top-level container (that is, any container that is not a child container), perform these
steps, one container at a time:

CHAPTER 17. PATCHING

1. In the corresponding Karaf installation, remove the
lib/endorsed/org.apache.karaf.exception-2.4.0.redhat-630xxx.jar file (where the build
number, xxx, depends on the build being patched).

2. Restart the container.

3. Add the patch to the root container's environment using the patch:add command. For example,
to add the patch.zip patch file:

JBossFuse:karaf@root> patch:add file://patch.zip
[name] [installed] [description]
PatchlD false Description

IMPORTANT

If you have decided to use a local repository to distribute the patch artifacts
(recommended), set up the local repository now—see the section called
“Distribution of patch artifacts”.

4. Create a new version, using the fabric:version-create command:

JBossFuse:karaf@root> fabric:version-create 1.1
Created version: 1.1 as copy of: 1.0.1

IMPORTANT

Version names are important! The tooling sorts version names based on the
numeric version string, according to major.minor numbering, to determine the
version on which to base a new one. You can safely add a text description to a
version name as long as you append it to the end of the generated default name
like this: 1.3[.description]. If you abandon the default naming convention and use
a textual name instead (for example, PatchO51312), the next version you create
will be based, not on the last version (Patch051312), but on the highest-
numbered version determined by dot syntax.

5. Apply the patch to the new version, using the patch:fabric-install command. Note that in order
to run this command you must provide the credentials, Username and Password, of a user with
Administrator privileges. For example, to apply the PatchlD patch to version 1.1:

patch:fabric-install --username Username --password Password --upload --version 1.1
PatchlD

: NOTE

When you invoke the patch:fabric-install command with the --upload option,
Fabric looks up the ZooKeeper registry to discover the URL of the currently
active Maven proxy, and uploads all of the patch artifacts to this URL. Using this
approach it is possible to make the patch artifacts available through the Maven
proxy, even if the container you are currently logged into is not hosting the
Maven proxy.

139

Red Hat JBoss Fuse 6.3 Fabric Guide

140

6. Delete the old bundle overrides created by the old hot fix patch by modifying the parent profiles

of the profile default and removing the old hot fix patch profile as being a parent of the default
profile. For example,

JBossFuse:karaf@root> fabric:profile-display --version 1.X default

Attributes:

parents: acls patch-jboss-fuse-6.2.1.redhat-186-12-r7hf10
JBossFuse:karaf@root> fabric:profile-change-parents --version 1.X default acls

NOTE

The parent patch-jboss-fuse-6.2.1.redhat-186-12-r7hf10 is only visible if a hot
fix patch was installed previously. The name of the parent patch is different
based on the hot fix patch.

The above commands shows that default profile has two parents:

® acls - standard and must be present.

® patch-jboss-fuse-6.2.1.redhat-186-12-r7hf10 - a profile that represents hotfix patch.

. Synchronize the patch information across the fabric, to ensure that the profile changes in

version 1.1 are propagated to all containers in the fabric (particularly remote SSH containers).
Enter the following console command:

I patch:fabric-synchronize

. Upgrade each existing container in the fabric using the fabric:container-upgrade command

(but leaving the root container, where you installed the patch, until last). For example, to
upgrade a container named remote, enter the following command:

JBossFuse:karaf@root> fabric:container-upgrade 1.1 remote
Upgraded container remote from version 1.0.1 to 1.1

At this point, not only does the Fabric agent download and install the patched bundles into the
specified container, but the agent also applies the patch to the underlying container (updating
any static files in the container, if necessary). If necessary, the agent will then restart the target
container automatically or set the container status to requires full restart (if an automatic
restart is not possible), so that any changes made to the static files are applied to the running
container.

IMPORTANT

It is recommended that you upgrade only one or two containers to the patched
profile version, to ensure that the patch does not introduce any new issues.

. If the current status of the upgraded container is requires full restart, you must now use one of

the standard mechanisms to stop and restart the container manually. In some cases, it will be
possible to do this using Fabric commands from the console of the root container.

For example, you could stop the remote container as follows:

I fabric:container-stop remote

CHAPTER 17. PATCHING

And restart the remote container as follows:
I fabric:container-start remote

10. Upgrade the root container last (that is, the container that you originally installed the patch on):
I fabric:container-upgrade 1.1 root

1. (Windows only) If the root container status has changed to requires full restart and it is running
on a Windows operating system, you must first shut down all of the root container's child
containers (if any) before manually restarting the root container.

For example, if the root container has three child containers, child1, child2, and child3, you
would first shut them down, as follows:

I fabric:container-stop child1 child2 child3

You can then shut down the root container with the shutdown command:

I shutdown

Rolling back a rollup patch

To roll back a rollup patch on a Fabric container, use the fabric:container-rollback command. For
example, assuming that 1.0 is an unpatched profile version, you can roll the remote container back to
the unpatched version 1.0 as follows:

I fabric:container-rollback 1.0 remote

At this point, not only does the Fabric agent roll back the installed profiles to an earlier version, but the
agent also rolls back the patch on the underlying container (restoring any static files to the state they
were in before the patch was applied, if necessary). If necessary, the agent will then restart the target
container automatically or set the container status to requires full restart (if an automatic restart is not
possible), so that any changes made to the static files are applied to the running container.

17.2. PATCHING A FABRIC CONTAINER WITH AN INCREMENTAL
PATCH

Abstract

Follow the procedures described in this section to patch a Fabric container with an incremental patch.

Overview

An incremental patch makes updates only to the bundle JARs in a Fabric. The following aspects of the
fabric are affected:

e Distribution of patched artifacts through Maven proxy

® Profiles

141

Red Hat JBoss Fuse 6.3 Fabric Guide

Distribution of patched artifacts through Maven proxy

When you install the incremental patch on your local container, the patch artifacts are installed into the
local system/ directory, whose directory structure is laid out like a Maven repository. The local container
distributes these patch artifacts to remote containers by behaving as a Maven proxy, enabling remote
containers to upload bundle JARs as needed (this process is managed by the Fabric agent running on
each Fabric container). For more details, see Chapter 14, Fabric Maven Proxies.

Profiles

The incremental patching process defines bundle overrides, so that profiles switch to use the patched
dependencies (bundle JARs). This mechanism works as follows:

1. The patch mechanism creates a new profile, patch-PatchProfilelD, which defines bundle
overrides for all of the patched bundles.

2. The new patch profile, patch-PatchProfilelD, is inserted as the parent of the default profile (at
the base of the entire profile tree).

3. All of the profiles that inherit from default now use the bundle versions defined by the overrides
in patch-PatchProfilelD. The contents of the existing profiles themselves are not modified in
any way.

Is it necessary to patch the underlying container?

Usually, when patching a fabric with an incremental patch, it is not necessary to patch the underlying
container as well. Fabric has its own mechanisms for distributing patch artifacts (for example, using a git
repository for the profile data, and Apache Maven for the OSGi bundles), which are independent of the
underlying container installation.

In exceptional cases, however, it might be necessary to patch the underlying container (for example, if
there was an issue with the fabric:create command). Always read the patch README file to find out
whether there are any special steps required to install a particular patch. In these cases, however, it is
more likely that the patch would be distributed in the form of a rollup patch, which has the capability to
patch the underlying container automatically—see Section 17.1, “Patching a Fabric Container with a
Rollup Patch”.

Applying an incremental patch

To apply an incremental patch to a Fabric container:
1. Before you proceed to install the incremental patch, make sure to read the text of the README
file that comes with the patch, as there might be additional manual steps required to install a

particular incremental patch.

2. Create a new version, using the fabric:version-create command:

JBossFuse:karaf@root> fabric:version-create 1.1
Created version: 1.1 as copy of: 1.0

142

CHAPTER 17. PATCHING

IMPORTANT

Version names are important! The tooling sorts version names based on the
numeric version string, according to major.minor numbering, to determine the
version on which to base a new one. You can safely add a text description to a
version name as long as you append it to the end of the generated default name
like this: 1.3 <.description > .If you abandon the default naming convention and
use a textual name instead (for example, Patch051312), the next version you
create will be based, not on the last version (Patch051312), but on the highest-
numbered version determined by dot syntax.

3. Apply the patch to the new version, using the fabric:patch-apply command. For example, to
apply the activemq.zip patch file to version 1.1:

I JBossFuse:karaf@root> fabric:patch-apply --version 1.1 file:///patches/activemq.zip

4. Upgrade a container using the fabric:container-upgrade command, specifying which container
you want to upgrade. For example, to upgrade the child1 container, enter the following
command:

JBossFuse:karaf@root> fabric:container-upgrade 1.1 child1
Upgraded container child1 from version 1.0 to 1.1

IMPORTANT

It is recommended that you upgrade only one or two containers to the patched
profile version, to ensure that the patch does not introduce any new issues.
Upgrade the root container (the one that you applied the patch to, using the
fabric:patch-apply command) last.

5. You can check that the new patch profile has been created using the fabric:profile-list
command, as follows:

BossFuse:karaf@root> fabric:profile-list --version 1.1 | grep patch
default 0 patch-activemg-patch
patch-activemqg-patch

Where we presume that the patch was applied to profile version 1.1.

AN NOTE

If you want to avoid specifying the profile version (with --version) every time you
¢ >4 invoke a profile command, you can change the default profile version using the
5{;‘:}{ ' fabric:version-set-default Version command.

You can also check whether specific JARs are included in the patch, for example:

JBossFuse:karaf@root> list | grep -i activemq

[131] [Active][Created][11 50] activemqg-osgi (5.9.0.redhat-61037X)
[139] [Active][Created][11 50] activemqg-karaf (5.9.0.redhat-61037X)
[207] [Active][11][60] activemg-camel (5.9.0.redhat-61037X)

143

Red Hat JBoss Fuse 6.3 Fabric Guide

Rolling back an incremental patch

To roll back an incremental patch on a Fabric container, use the fabric:container-rollback command.
For example, assuming that 1.0 is an unpatched profile version, you can roll the child1 container back to
the unpatched version 1.0 as follows:

I fabric:container-rollback 1.0 child1

144

CHAPTER 18. ENABLING SSL FOR JMX CONNECTORS

CHAPTER 18. ENABLING SSL FOR JMX CONNECTORS

Abstract
Under Fabric, to enable SSL for JMX connectors:

1. Obtain or create a certificate for each server host that will be used in the fabric cluster.

2. Import the certificates with chain into a Java keystore (JKS).

3. Select a standard location for keystore and related artifacts.

4. Create a blueprint configuration for loading the keystore.

5. Set keystore environment variables on Fuse containers.

6. Start Fuse and create Fabric cluster.

7. Configure the cluster for JMX.

8. Upgrade Fuse containers.

9. Test the configuration.
The procedure described here assumes that you can use the same filenames and the same file locations
on all hosts in the fabric cluster. If your configuration does not allow this, you can use environment
variables to customize the configuration on individual hosts. The recommendation is to work through

the steps described here and then see Fabric Profiles for information about flexibly configuriing
particular hosts.

OBTAIN OR CREATE CERTIFICATES
Obtain or create a certificate for each server host to be used in the fabric cluster.

The process of enabling SSL for JMX connectors is easier if the certificates are signed by a certificate
authority (CA). Steps for creating a certificate authority are outside the scope of this documentation. An
example of the process for creating a root and intermediate certificate authority and signing server
certificates is in the JBoss Fuse Security Guide appendix.

IMPORT CERTIFICATES WITH CHAIN
Import the certificates with chain into a Java keystore (JKS). This is a generic procedure documented
elsewhere. While this step overlaps with the process for creating certificates, the details are here

because you must customize some of the final steps for creating the certificates for this example.

If you have PEM-encoded (Privacy Enhanced Mail) certificates then you must include the chain with the
root CA, intermediate CA and server certificate in the chain. To do this, follow these steps:

1. Concatenate the PEM-encoded certificates into a single chain, for example:

$ cat intermediate/certs/serverx.example.com.cert.pem intermediate/certs/ca-chain.cert.pem
> intermediate/certs/serverx.example.com.cert.export.pem

2. Convert the chain file into a PKCSI12 keystore, for example:

145

profiles.xml
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Security_Guide/CreateCerts.html

Red Hat JBoss Fuse 6.3 Fabric Guide

$ openssl pkcs12 -export -inkey intermediate/private/serverx.example.com.key.pem -in
intermediate/certs/serverx.example.com.cert.export.pem -out serverx.chain.pkcs12

3. Import the keystore and CA certificates into a Java keystore, for example:

$ keytool -importkeystore -trustcacerts -srckeystore serverx.chain.pkcs12 -srcstoretype
PKCS12 -destkeystore server-chain.jks

$ keytool -import -file intermediate/certs/intermediate.cert.pem -alias intermediate -
trustcacerts -keystore server-chain.jks -storepass changepass

$ keytool -import -file certs/ca.cert.pem -alias root -trustcacerts -keystore server-chain.jks -
storepass changepass

4. Ensure that the alias for the server key/certificate is the same for each keystore. This avoids
needing a separate configuration for each host, for example:

keytool -changealias -alias "1" -destalias "server" -keypass changepass -keystore server-
chain.jks -storepass changepass

In the previous example, 1 is the default alias of the server key originally imported into the
keystore.

The result of these steps includes:

® Akeystore for each host in the cluster.

® FEach keystore has the same final filename. After you create and move them, you can rename all
of them as something like server-chain.jks.

® FEach keystore contains the server key/certificate for the host on which it is deployed.

® FEach keystore uses the same alias for the server certificate, for example, server or jboss. This
makes the configuration portable across hosts.

® The CA certificates are also in the keystore and are marked as trusted so the keystore can also
function as a trust store.

You might be able to configure keystores with other types of certificates, such as self-signed

certificates or a single certificate with multiple server names. Doing this is outside the scope of this
documentation.

SELECT STANDARD LOCATION FOR KEYSTORE

Select a standardized location for the keystore file and related artifacts. For example, on each server,
/opt/fuse/keystore could contain the keystore file for that server.

CREATE BLUEPRINT CONFIGURATION FOR LOADING KEYSTORE
Create a blueprint configuration for loading the keystore.

You use the blueprint configuration later when you assign it to a profile. On each server, the blueprint
configuration file should have the same name and contents. For example, the /opt/fuse/keystore
directory might contain the jmx.keystore.xml file with this content:

I <blueprint xmlns="http://www.osgi.org/xmlins/blueprint/v1.0.0"

146

CHAPTER 18. ENABLING SSL FOR JMX CONNECTORS

xmlns:jaas="http://karaf.apache.org/xmins/jaas/v1.0.0"
default-activation="lazy">

<jaas:keystore name="server_keystore"
rank="1"
path="file:///opt/fuse/keystore/server-chain.jks"
keystorePassword="changepass"
keyPasswords="server=changepass" />
</blueprint>

SET KEYSTORE ENVIRONMENT VARIABLES ON FUSE CONTAINERS

Set environment variables on each Fuse container to specify that the keystore file is the trust store for
the container. For example, you can use the EXTRA_JAVA_OPTS parameter in
$KARAF_HOME/bin/setenv:

export EXTRA_JAVA_OPTS="-Djavax.net.ssl.trustStore=/opt/fuse/keystore/server-chain.jks -
Djavax.net.ssl.trustStorePassword=changepass"

This ensures that the JMX client trusts the certificates passed by other hosts because of the trusted
CAs.

START FUSE AND CREATE FABRIC CLUSTER

Start your Fuse instance and create a Fabric cluster, for example:

> fabric:create --wait-for-provisioning --zookeeper-password admin --global-resolver manualip --
resolver manualip --manual-ip node11.redhat.com --bind-address node11.redhat.com

> container-create-ssh --resolver manualip --manual-ip node12.redhat.com --bind-address
node12.redhat.com --zookeeper-password admin --user rlee --private-key /home/rlee/.ssh/id_rsa --
host node12.redhat.com --profile fabric --profile jboss-fuse-full --jvm-opts '-
Djavax.net.ssl.trustStore=/opt/fuse/keystore/server-chain.jks -
Djavax.net.ssl.trustStorePassword=changepass' --path /opt/fuse/containers node12

> container-create-ssh --resolver manualip --manual-ip node13.redhat.com --bind-address
node13.redhat.com --zookeeper-password admin --user rlee --private-key /home/rlee/.ssh/id_rsa --
host node13.redhat.com --profile fabric --profile jboss-fuse-full --jvm-opts '-
Djavax.net.ssl.trustStore=/opt/fuse/keystore/server-chain.jks -
Djavax.net.ssl.trustStorePassword=changepass' --path /opt/fuse/containers node13

> fabric:ensemble-add node12 node13

If you already have a working ensemble then you must add the JVM parameters in the setenv or
setenv.bat scripts for each ensemble container and then restart each container one by one. For
example, the setenv script in the bin directory of the node13 container should be something like this:

export JAVA_OPTS="-Djavax.net.ssl.trustStore=/opt/fuse/keystore/server-chain.jks -
Djavax.net.ssl.trustStorePassword=changepass -XX:+UnlockDiagnosticVMOptions -
XX:+UnsyncloadClass"

If you have existing child containers then you need to update their JVM properties to include the trust
store and the trust store password. You can do this by using the Hawtio console or by editing the
instance.properties file in the parent container instances directory, for example:

I item.1.name = apps11

147

Red Hat JBoss Fuse 6.3 Fabric Guide

item.1.root = false

item.1.loc = /opt/fuse/jboss-fuse-6.3.0.redhat-xxx/instances/apps11

item.1.pid = 13219

item.1.opts = -server -Dcom.sun.management.jmxremote -
Dorg.jboss.gravia.repository.storage.dir=data/repository -
Dzookeeper.url=\"node11.redhat.com:2182,node12.redhat.com:2182,node13.redhat.com:2182\" -
Dzookeeper.password.encode=\"true\" -Dzookeeper.password=\"admin\" -Xmx768m -
XX:MaxPermSize=256m -Djavax.net.ssl.trustStore=/opt/fuse/keystore/server-chain.jks -
Djavax.net.ssl.trustStorePassword=changepass -XX:+UnlockDiagnosticVMOptions -
XX:+UnsyncloadClass -Dbind.address=node11.redhat.com -Dlocal.resolver=manualip -
Dmanualip=node11.redhat.com -Dio.fabric8.datastore.gitRemotePollinterval=60000 -
Dio.fabric8.datastore.importDir=fabric -
Dio.fabric8.datastore.felix.fileinstall.filename=file:/opt/fuse/jboss-fuse-6.3.0.redhat-
xxx/etc/io.fabric8.datastore.cfg -Dio.fabric8.datastore.service.pid=io.fabric8.datastore -
Dio.fabric8.datastore.component.name=io.fabric8.datastore

CONFIGURE THE CLUSTER FOR JMX

The previous steps put the required infrastructure in place. This includes certificates and blueprint
configurations in common locations and updated JVM arguments to scripts. To configure the cluster for
JMX over SSL/TLS:

1. Create a new version for the changes. This lets you roll back or roll forward as needed. For
example:

I > fabric:version-create 1.1

2. Modify the profile. You might want to use the default profile for configuration because it is the
parent of all other profiles. It is also possible to add a special profile for SSL configuration and
add the following properties to that. Using a special SSL profile means that you must assign the
profile to each container in the cluster. The following example edits the default profile:

> profile-edit --bundle 'blueprint:file:///opt/fuse/keystore/jmx.keystore.xml;start-level=29'
default 1.1

> profile-edit --pid org.apache.karaf.management/secured=true default 1.1

> profile-edit --pid org.apache.karaf.management/secureProtocol=TLSv1 default 1.1

> profile-edit --pid org.apache.karaf.management/keyAlias=server default 1.1

> profile-edit --pid org.apache.karaf.management/keyStore=server_keystore default 1.1

> profile-edit --pid org.apache.karaf.management/trustStore=server_keystore default 1.1

> profile-edit --pid org.apache.karaf.management/keyStoreAvailability Timeout=60000 default
1.1

> profile-edit --pid org.apache.karaf.management/fabric.config.merge=true default 1.1

To ensure availability of the certificate when the JMX connector is initialized, the profile specifies start-
level for the keystore blueprint configuration. To ensure correct operation on child containers, the
fabric.config.merge property is enabled. To make the profile portable, the profile uses the generic key
alias of server.

UPGRADE FUSE CONTAINERS

To apply the SSL JMX configuration, upgrade each container in turn. The recommendation is to wait
between container upgrades to avoid breaking Zookeeper quorum. For example:

148

CHAPTER 18. ENABLING SSL FOR JMX CONNECTORS

> container-upgrade 1.1 node11
> container-upgrade 1.1 node12
> container-upgrade 1.1 node13

TEST THE CONFIGURATION

Test the configuration by starting jconsole with a trust store that contains the CA certificates used to
sign the server keys or with a trust store that contains all self-signed server keys, for example:

jconsole -J-Djavax.net.ssl.trustStore=client1-chain.jks -J-Djavax.net.ssl.trustStore Type=JKS -J-
Djavax.net.ssl.trustStorePassword=changepass

You should be able to negotiate an SSL connection by specifying the JMX address for the container and
supplying the username and password of an administrator (admin/admin). You should not receive a
warning that prompts you to indicate whether you want to try an unencrypted connection. For example:

I service:jmx:rmi://node11.redhat.com:44444/jndi/rmi://node11.redhat.com:1099/karaf-node11

To add new containers to the cluster, specify the version. Once provisioned, the new containers should
be enabled for JMX over SSL. For example, the following command creates an SSH container:

container-create-ssh --resolver manualip --manual-ip node1.redhat.com --bind-address
node1.redhat.com --zookeeper-password admin --user rlee --private-key /home/rlee/.ssh/id_rsa --
host node1.redhat.com --profile fabric --profile jboss-fuse-full --jvm-opts '-
Djavax.net.ssl.trustStore=/opt/fuse/keystore/server-chain.jks -
Djavax.net.ssl.trustStorePassword=changepass' --path /opt/fuse/containers --version 1.1 node1

The following command creates a child container:

container-create-child --resolver manualip --manual-ip node11.redhat.com --version 1.1 --bind-
address node11.redhat.com --zookeeper-password admin --jmx-user rlee --jmx-password admin --
jvm-opts '-Djavax.net.ssl.trustStore=/opt/fuse/keystore/server-chain.jks -
Djavax.net.ssl.trustStorePassword=changepass' node11 appsi1

The recommendation is to specify the resolver and the bind address and use fully-qualified names.
While doing this might not be required, experience shows that it lets you avoid issues with JMX and, in
particular, Zookeeper.

149

Red Hat JBoss Fuse 6.3 Fabric Guide

APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXT
EDITOR

Abstract

When you have a lot of changes and additions to make to a profile's configuration, it is usually more
convenient to do this interactively, using the built-in text editor for profiles. The editor can be accessed
by entering the profile-edit command with no arguments except for the profile's name (and optionally,
version); or adding the --pid option for editing OSGi PID properties; or adding the --resource option for
editing general resources.

A.1l. EDITING AGENT PROPERTIES

Overview

This section explains how to use the built-in text editor to modify a profile's agent properties, which are
mainly used to define what bundles and features are deployed by the profile.

Open the agent properties resource

To start editing a profile's agent properties using the built-in text editor, enter the following console
command:

I JBossFuse:karaf@root> profile-edit Profile [Version]

Where Profile is the name of the profile to edit and you can optionally specify the profile version,
Version, as well. The text editor opens in the console window, showing the current profile name and
version in the top-left corner of the Window. The bottom row of the editor screen summarizes the
available editing commands and you can use the arrow keys to move about the screen.

Specifying feature repository locations
To specify the location of a feature repository, add a line in the following format:
I repository./D=URL

Where IDis an arbitrary unique identifier and URL gives the location of a single feature repository (only
one repository URL can be specified on a line).

Specifying deployed features

To specify a feature to deploy (which must be available from one of the specified feature repositories),
add a line in the following format:

I feature./D=FeatureName

Where IDis an arbitrary unique identifier and FeatureName is the name of a feature.

Specifying deployed bundles

150

APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXT EDITOFR

To specify a bundle to deploy, add a line in the following format:
I bundle./D=URL
Where IDis an arbitrary unique identifier and URL specifies the bundle's location.

NOTE

A bundle entry can be used in combination with a blueprint: (or spring:) URL handler to
deploy a Blueprint XML resource (or a Spring XML resource) as an OSGi bundle.

Specifying bundle overrides

To specify a bundle override, add a line in the following format:
I override./ID=URL
Where IDis an arbitrary unique identifier and URL specifies the bundle's location.

NOTE

A bundle override is used to override a bundle installed by a feature, replacing it with a
different version of the bundle. For example, this functionality is used by the patching
system to install a patched bundle in a container.

Specifying etc/config.properties properties

To specify Java system properties that affect the Apache Karaf container (analogous to editing
etc/config.properties in a standalone container), add a line in the following format:

I config.Property=Value

Specifying etc/system.properties properties

To specify Java system properties that affect the bundles deployed in the container (analogous to
editing etc/system.properties in a standalone container), add a line in the following format:

I system.Property=Value

If the system property, Property, is already set at the JVM level (for example, through the --jvm-opts
option to the fabric:container-create command), the preceding fabric:profile-edit command will not
override the JVM level setting. To override a JVM level setting, set the system property as follows:

I system.karaf.override. Property=Value

Specifying libraries to add to Java runtime lib/

To specify a Java library to deploy (equivalent to adding a library to the lib/ directory of the underlying
Java runtime), add a line in the following format:

I lib./ID=URL

151

Red Hat JBoss Fuse 6.3 Fabric Guide
Where IDis an arbitrary unique identifier and URL specifies the library's location.

Specifying libraries to add to Java runtime lib/ext/

To specify a Java extension library to deploy (equivalent to adding a library to the lib/ext/ directory of
the underlying Java runtime), add a line in the following format:

I ext.ID=URL

Where IDis an arbitrary unique identifier and URL specifies the extension library's location.

Specifying libraries to add to Java runtime lib/endorsed/

To specify a Java endorsed library to deploy (equivalent to adding a library to the lib/endorsed/
directory of the underlying Java runtime), add a line in the following format:

I endorsed./D=URL

Where IDis an arbitrary unique identifier and URL specifies the endorsed library's location.

Example

To open the mg-client profile's agent properties for editing, enter the following console command:

I JBossFuse:karaf@root> profile-edit mqg-client

The text editor starts up, and you should see the following screen in the console window:

Profile:mg-client 1.0 L:1 C:

#

Copyright (C) Red Hat, Inc.

http://redhat.com

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

#

repository.activemg=mvn:org.apache.activemqg/activemg-karaf/${version:activemq}/xml/features
repository.karaf-standard=mvn\:org.apache.karaf.assemblies.features/standard/${version:karaf}/

xml/features

AX Quit "SSave "ZUndo "R Redo "G GoTo "FFind "N Next "P Previous

Type AX to quit the text editor and get back to the console prompt.

152

APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXT EDITOFR

A.2. EDITING OSGI CONFIG ADMIN PROPERTIES

Overview

This section explains how to use the built-in text editor to edit the property settings associated with a
specific persistent ID.

Persistent ID

In the context of the OSGi Config Admin service, a persistent ID (PID) refers to and identifies a set of
related properties. In particular, when defining PID property settings in a profile, the properties
associated with the PID persistent ID are defined in the PID.properties resource.

Open the Config Admin properties resource

To start editing the properties associated with the PID persistent ID, enter the following console
command:

I JBossFuse:karaf@root> profile-edit --pid PID Profile [Version]

NOTE

Itis also possible to edit PID properties by specifying --resource PID.properties in the
profile-edit command, instead of using the --pid PID option.

Specifying OSGi config admin properties

The text editor opens, showing the contents of the specified profile's PID.properties resource (which is
actually stored in the ZooKeeper registry). To edit the properties, add, modify, or delete lines of the
following form:

I Property=Value

Example

To edit the properties for the io.fabric8.hadoop PID in the hadoop-base profile, enter the following
console command:

I JBossFuse:karaf@root> profile-edit --resource io.fabric8.hadoop.properties hadoop-base 1.0

The text editor starts up, and you should see the following screen in the console window:

Profile:hadoop-base 1.0 L:1 C:1
#

Copyright (C) Red Hat, Inc.

http://redhat.com

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

153

Red Hat JBoss Fuse 6.3 Fabric Guide

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

limitations under the License.

#

fs.default.name=hdfs\://localhost\:9000
dfs.replication=1
mapred.job.tracker=localhost\:9001
dfs.name.dir=${karaf.data}/hadoop/dfs/name
dfs.http.address=0.0.0.0\:9002
dfs.data.dir=${karaf.data}/hadoop/dfs/data
dfs.name.edits.dir=${karaf.data}/hadoop/dfs/name

AX Quit "SSave "ZUndo "R Redo "G GoTo "FFind "N Next "P Previous

You might notice that colon characters are escaped in this example (as in\:). Strictly speaking, it is only
necessary to escape a colon if it appears as part of a property name (left hand side of the equals sign),
but the profile-edit command automatically escapes all colons when it writes to a resource. When
manually editing resources using the text editor, however, you do not need to escape colons in URLs
appearing on the right hand side of the equals sign.

Type AX to quit the text editor and get back to the console prompt.

A.3. EDITING OTHER RESOURCES

Overview

In addition to agent properties and PID properties, the built-in text editor makes it possible for you edit
any resource associated with a profile. This is particularly useful, if you need to store additional
configuration files in a profile. The extra configuration files can be stored as profile resources (which are
stored in a Fabric server's built-in Git repository) and then can be accessed by your applications at run
time.

Creating and editing an arbitrary resource
You can create and edit arbitrary profile resources using the following command syntax:

I JBossFuse:karaf@root> profile-edit --resource Resource Profile [Version]

Where Resourceis the name of the profile resource you want to edit. If Resource does not already
exist, it will be created.

broker.xml example

For example, the mg-base profile has the broker.xml resource, which stores the contents of an Apache
ActiveMQ broker configuration file. To edit the broker.xml resource, enter the following console
command:

I JBossFuse:karaf@root> profile-edit --resource broker.xml mqg-base 1.0

154

APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXT EDITOFR

The text editor starts up, and you should see the following screen in the console window:

Profile:mg-base 1.0 L:1 C:1
<l--

Copyright (C) FuseSource, Inc.

http://fusesource.com

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<beans
xmins="http://www.springframework.org/schema/beans"
xmlns:amqg="http://activemq.apache.org/schema/core"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://activemq.apache.org/schema/core http://activemq.apache.org/schema/core/activemqg-
core.xsd">

<!-- Allows us to use system properties and fabric as variables in this configuration file -->
<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
<property name="properties">
<bean class="io.fabric8.mq.fabric.ConfigurationProperties"/>
</property>

AX Quit "SSave "ZUndo "R Redo "G GoTo "FFind "N Next *P Previous

Any changes you make to this file will take effect whenever the broker restarts.

Type AX to quit the text editor and get back to the console prompt.

Referencing a profile resource

In order to use an arbitrary profile resource, you must be able to reference it. You can use the profile
URL to access resources stored under the current profile or parent profile. It has the following format:
profile:ResourceName A key characteristic of the profile URL is that the location of a resource can
change dynamically at run time, as follows:

® The profile URL handler first tries to find the named resource, ResourceName, in the current
version of the current profile (where the current version is a property of the container in which
the profile is running).

® |f the specified resource is not found under the current profile, the profile URL tries to find the
resource in the current version of the parent profile.

For example, the default profile provides the jetty.xml resource and this resource is accessed by setting
the

155

Red Hat JBoss Fuse 6.3 Fabric Guide
I org.opsé4j.pax.web.config.url=${profile:jetty.xml}

A.4. PROFILE ATTRIBUTES

Overview

In addition to the resources described in the other sections, a profile also has certain attributes that
affect its behavior. You cannot edit profile attributes directly using the text editor.

For completeness, this section describes what the profile attributes are and what console commands
you can use to modify them.
parents attribute

The parents attribute is a list of one or more parent profiles. This attribute can be set using the profile-
change-parents console command. For example, to assign the parent profiles camel and exf to the
my-camel-cxf-profile profile, you would enter the following console command:

I JBossFuse:karaf@root> profile-change-parents --version 1.0 my-camel-cxf-profile camel cxf

abstract attribute

When a profile's abstract attribute is set to true, the profile cannot be directly deployed to a container.
This is useful for profiles that are only intended to be the parents of other profiles—for example, mg-
base. You can set the abstract attribute from the Management Console.

locked attribute

A locked profile cannot be changed or edited until it is unlocked. You can lock or unlock a profile from
the Management Console.

hidden attribute

The hidden attribute is a flag that is typically set on profiles that Fabric creates automatically (for
example, to customize the setup of a registry server). By default, hidden profiles are not shown when you
run the profile-list command, but you can see them when you add the --hidden flag, as follows:

JBossFuse:karaf@root> profile-list --hidden

fabric 1 karaf
fabric-ensemble-0000 0

fabric-ensemble-0000-1 1 fabric-ensemble-0000
fme 0 default

156

APPENDIX B. FABRIC URL HANDLERS

APPENDIX B. FABRIC URL HANDLERS

Abstract

The Fabric runtime provides a variety of URL handlers, which can be used in application code deployed
in a Fabric-enabled container. These URLs are intended to be used in profile configuration files to locate
configuration resources.

B.1. PROFILE URL HANDLER

The profile URL is used to access resources stored under the current profile (or parent profile). It has the
following format:

I profile:ResourceName

A key characteristic of the profile URL is that the location of a resource can change dynamically at run
time, as follows:

1. The profile URL handler first tries to find the named resource, ResourceName, in the current
version of the current profile (where the current version is a property of the container in which
the profile is running).

2. If the specified resource is not found in the current profile, the profile URL tries to find the
resource in the current version of the parent profile.

This behavior implies that whenever you change the version assigned to a container (for example, by
invoking the fabric:container-upgrade or fabric:container-rollback console commands), the
referenced resources are also, automatically, upgraded or rolled back.

PROFILE URL HANDLER SERVICE REFERENCE FOR BUNDLES

You need to define a profile URL handler service reference for a bundle to avoid the race
condition. If the service reference is not defined the bundle attempts to use the profile
protocol before it is actually available for usage. An example to define the service
reference in the blueprint.xml file is as follows:

<reference id="resolverRef"
interface="org.osgi.service.url. URLStreamHandlerService" filter="
(url.handler.protocol=profile)" availability="mandatory"/> .

B.2. ZKURL HANDLER

You can reference the contents of a ZooKeeper node using the zk URL. The URL can be specified either
as an absolute node:

I zk:/PathToNode

Or you can reference configuration properties from a specific container using the following syntax:

I zk:ContainerName/ Property

157

Red Hat JBoss Fuse 6.3 Fabric Guide

The preceding syntax is effectively a short cut to the following URL reference:

I zk:/fabric/registry/containers/config/ ContainerName/ Property

B.3. BLUEPRINT URL HANDLER
The Blueprint URL handler enables you to deploy a Blueprint XML resource directly as an OSGi bundle,
without needing to create any of the usual OSGi bundle packaging in advance. The blueprint: scheme

can be prefixed to any of the usual location URL handlers (for example, file:, http:, profile:, zk:).

To use the Blueprint URL handler, create a bundle entry in the agent properties (equivalent to the
io.fabric8.agent PID) in the following format:

I bundle./D=blueprint: LocationScheme:LocationOfBlueprint XML

For example, to activate the camel.xml resource (Blueprint file) from the current profile, you would add
the following bundle entry:

I bundle.camel-fabric=blueprint:profile:camel.xml

NOTE

The Blueprint URL handler has an important side effect. If the referenced Blueprint
resource is changed at run time, the Blueprint URL handler detects this change and
automatically reloads the resource. This means, for example, that if you edit a deployed
Camel route in a Blueprint resource, the route automatically gets updated in real time.

B.4. SPRING URL HANDLER

The Spring URL handler enables you to deploy a Spring XML resource directly as an OSGi bundle,
without needing to create any of the usual OSGi bundle packaging in advance. The spring: scheme can
be prefixed to any of the usual location URL handlers (for example, file:, http:, profile:, zk:).

To use the Spring URL handler, create a bundle entry in the agent properties (equivalent to the
io.fabric8.agent PID) in the following format:

I bundle./D=spring:LocationScheme:LocationOfBlueprint XML

For example, to load the Spring resource, camel-spring.xml, from the current profile, you could add the
following entry to the profile's agent properties:

I bundle.spring-resource=spring:profile:camel-spring.xml

NOTE

If the referenced Spring resource is changed at run time, the Spring URL handler detects
this change and automatically reloads the resource.

B.5. MVEL

158

APPENDIX B. FABRIC URL HANDLERS

The mvel:URL handler allows you to render templates based on the effective profile or runtime
properties. You can access the profile object by using the profile variable and runtime properties by
using the runtime variable.

For example, the mvel:profile:jetty.xmlfile refers to the template file called jetty.xml either in the
current profile or in a parent profile directory. For more information about the mvel language, see the
MVEL Language Guide

For the Profile URL handler, you can start up blueprints or spring XML files as a bundle by using the URL

with the blueprint or spring URL handlers. bundle.foo = blueprint:mvel:profile:foo.xml bundle.bar =
spring:mvel:profile:bar.xml

159

https://github.com/imona/tutorial/wiki/MVEL-Guide

Red Hat JBoss Fuse 6.3 Fabric Guide

APPENDIX C. PROFILE PROPERTY RESOLVERS

Abstract

When defining properties for a profile, you can use a variable substitution mechanism, which has the
general syntax ${ResourceReference}. This variable substitution mechanism can be used in any profile
resource, including the agent properties, PID properties, and other resources—for example, the mqg-
base profile's broker.xml resource references the ${broker.name} and ${data} variables.

C.1. SUBSTITUTING SYSTEM PROPERTIES

Syntax

System properties can be substituted in a profile resource, using the following syntax:

I ${PropName}

Where PropName can be the name of any Java system property. In particular, Java system properties
can be defined in the following locations:

e The etc/system.properties file, relative to the container's home directory.
® System property settings in the profile's agent properties.
Some of the more useful system properties defined in the etc/system.properties file are, as follows:

Table C.1. System Properties

System Property Description

${karaf.home} The directory where Red Hat JBoss Fuse is installed.

${karaf.data} Location of the current container's data directory,
which is usually ${karaf.home}/data for a main
container or
${karaf.home}/instances/InstanceName/data
for a child container.

${karaf.name} The name of the current container.

C.2.SUBSTITUTING ENVIRONMENT VARIABLES

Syntax

You can substitute the value of a system environment variable using the environment property resolver,
which has the following syntax:

I ${env: VarName}

160

APPENDIX C. PROFILE PROPERTY RESOLVERS

C.3. SUBSTITUTING CONTAINER ATTRIBUTES

Syntax

You can substitute the value of a container attribute using the container attribute property resolver,

which has the following syntax:

I ${container:Attribute}

You can substitute any of the following container attributes:

Table C.2. Container Attributes

Attribute Description

${container:resolver}

${container:ip}

${container:localip}

${container:localhostname}

${container:publicip}

${container:publichostname}

${container:manualip}

${container:bindaddress}

${container:sshurl}

${container:jmxurl}

The effective resolver policy for the current
container. Possible values are: localip,
localhostname, publicip, publichostname,
manualip.

The effective IP address used by the current
container, which has been selected by applying the
resolver policy. This is the form of host address that
is advertised to other containers and applications.

The numerical IP address of the current container,
which is suitable for accessing the container on a
LAN.

The host name of the current container, which is
suitable for accessing the container on a LAN.

The numerical IP address of the current container,
which is suitable for accessing the container from a
WAN (on the Internet).

The host name of the current container, which is
suitable for accessing the container from a WAN (on
the Internet).

An IP address that is specified manually, by setting
the value of the relevant node in the ZooKeeper
registry.

The URL of the SSH service, which can be used to
log on to the container console.

The URL of the JMX service, which can be used to
monitor the container.

161

Red Hat JBoss Fuse 6.3 Fabric Guide

Attribute Description

${container:jolokiaurl} The URL of the Jolokia service, which is used by the
Fuse Management Console to access the container.

${container:httpurl} The base URL of the container's default Jetty HTTP
server.

${container:domains} List of JMX domains registered by the container.

${container:processid} Returns the process ID of the container process (on

Linux-like and UNIX-like operating systems).

${container:openshift} A boolean flag that returnstrue, if the container is
running on OpenShift; otherwise, false.

${container:blueprintstatus} The aggregate status of all the deployed Blueprint
contexts. If all of the deployed contexts are ok, the
status is OK; if one or more deployed contexts have
failed, the status is failed.

${container:springstatus} The aggregate status of all the deployed Spring
contexts. If all of the deployed contexts are ok, the
status is OK; if one or more deployed contexts have
failed, the status is failed.

${container:provisionstatus} Returns the container provision status.

${container:provisionexception} If the container provisioning has failed, this variable
returns the provisioning exception.

${container:provisionlist} The list of provisioned artefacts in the container.

${container:geolocation} The geographic location of the container (which is
obtained by making a Web request to a public
service that gives the GPS coordinates of the
container host).

C.4.SUBSTITUTING PID PROPERTIES

Syntax

The profile property resolver is used to access PID properties from the current profile (or parent profile).
It has the following format:

I ${profile: PID/ Property}

162

APPENDIX C. PROFILE PROPERTY RESOLVERS

NOTE

This should not be confused with the syntax of a profile URL, which is used to access
general resource files (not PID properties) and which is not resolved immediately (in
contrast to the profile property resolver, which substitutes the corresponding property
value as soon as the configuration file is read).

Example using a profile property resolver

For example, the fabric profile's io.fabric8.maven.properties PID resource includes the following
property setting:

I remoteRepositories=${profile:io.fabric8.agent/org.ops4j.pax.url.mvn.repositories}

So that the remoteRepositories property is set to the value of the org.opséj.pax.url.mvn.repositories
agent property (io.fabric8.agent is the PID for the agent properties).

C.5.SUBSTITUTING ZOOKEEPER NODE CONTENTS

Syntax

You can substitute the contents of a ZooKeeper node using the zk property resolver. The property
resolver can be specified either as an absolute node:

I ${zk:/PathToNode}

Or you can reference configuration properties from a specific container using the following syntax:
I ${zk:ContainerName/ Property}

The preceding syntax is effectively a short cut to the following property resolver:

I ${zk:/fabric/registry/containers/config/ ContainerName/ Property}

Recursive variable substitution

Itis also possible to use a variable within a variable (recursive substitution). For example, the dosgi
profile's io.fabric8.dosgi.properties resource defines the following property:

I exportedAddress=${zk:${karaf.name}/ip}

How to reference the current version of a resource

A potential problem arises with ZooKeeper property resolver if you need to reference a ZooKeeper node
that has a version number embedded in it. For example, suppose you want to reference the my-profile
profile's my-resource resource, which can be done using the following ZooKeeper URL:

I ${zk:/fabric/configs/versions/1.0/profiles/my-profile/my-resource}

Notice that the profile version number, 1.0, is embedded in this path. But if you decide to upgrade this
profile to version 1.1, this means you must manually edit all occurrences of this ZooKeeper URL,

163

Red Hat JBoss Fuse 6.3 Fabric Guide

changing the version number to 1.1 in order to reference the upgraded resource. To avoid this extra
work, and to ensure that the resolver always references the current version of the resource, you can use
the following trick which exploits recursive variable substitution:

I ${zk:/fabric/configs/versions/${zk:/fabric/configs/containers/${karaf.name}}/profiles/my-profile/my-
resource}

This works because the /fabric/configs/containers/${karaf.name} ZooKeeper node contains the
current profile version deployed in the container.

C.6. CHECKSUM PROPERTY RESOLVER

Syntax

The checksum property resolver can be used, if you want a resource to reload automatically at run time,
whenever it is updated. The checksum: scheme can be prefixed to any of the usual location URL
handlers (for example, file:, http:, profile:, zk:).

For example, the default profile defines the following checksum property in the org.ops4j.pax.web PID:

I org.ops4j.pax.web.config.checksum=${checksum:profile\:jetty.xml}

C.7. PORT PROPERTY RESOLVER

Syntax

The port property resolver is used to access the port service, which can automatically allocate an IP port
within a specified range. It has the following syntax:

I ${port:Min,Max}

Where Min and Max specify the minimum and maximum values of the allocated IP port.

164

APPENDIX D. TECHNOLOGY-SPECIFIC DISCOVERY MECHANISMS

APPENDIX D. TECHNOLOGY-SPECIFIC DISCOVERY
MECHANISMS

Abstract

In addition to the core provisioning, configuration, and management features described above, Fabric
also provides a number of technology specific extensions.

D.1. ACTIVEMQ ENDPOINT DISCOVERY

If you were to deploy ActiveMQ brokers into a collection of standalone containers, you would have to
provide an explicit list of broker locations to any messaging clients. In the case of a cloud deployment,
where servers are frequently shut down and restarted in different locations, this type of configuration is
very difficult to maintain.

Deploying the ActiveMQ brokers on a fabric, however, is much easier to manage, because you can
exploit the Fabric discovery mechanism, which enables location transparency. When they start up, the
brokers register themselves with the Fabric registry. Clients can then consult the Fabric registry to
discover brokers. Moreover, because the discovery mechanism automatically detects when brokers fail
and when new brokers start, there is also support for real-time discovery and load balancing.

For example, in the context of a Fabric deployment, it is typically sufficient to configure clients with a
discovery URL like the following:

I discovery:(fabric:us-east)

Where us-east represents a cluster of brokers deployed in the us-east cloud.

D.2. CAMEL ENDPOINT DISCOVERY

When deploying Camel endpoints in a cloud, it is often useful to enable location transparency for some
Camel endpoints. In a dynamic cloud environment, where server machines are frequently shut down and
restarted in a different location, you might want to have the capability to reconnect routes across
different hosts. This kind of location transparency and reconnection functionality is supported by two
special URI prefixes, which integrate Camel endpoints with the Fabric discovery mechanism:

fabric:

The fabric: prefix provides location transparency and load-balancing functionality for Camel
endpoints. A consumer endpoint (acting like a server port), defines its endpoint URI using the
following syntax:

I fabric: ClusterID:EndpointURI

So that the Camel endpoint URI, EndpointURI, is stored in the Fabric registry under the cluster ID,
ClusterID. Producer endpoints (acting like clients) can then access the Camel endpoint by specifying
just the ClusterlD, as follows:

I fabric:ClusterID

165

Red Hat JBoss Fuse 6.3 Fabric Guide

Fabric then resolves the cluster ID to the registered endpoint URI. If multiple endpoint URIs are
registered under the same cluster ID, Fabric randomly selects one of the available URIs, thus
providing load-balancing functionality.

master:

The master: prefix provides failover functionality for Camel endpoints. Two or more consumer
endpoints (server ports) must register their URIs with the Fabric registry, using the following syntax:

I master: ClusterID:EndpointURI

Producer endpoints (acting like clients) can then access the failover cluster by defining a URI with
the following syntax:

I master: ClusterID

Initially, Fabric chooses one of the consumer endpoints to be the master instance and always
resolves the client URIs to this master location. If the master fails, however, Fabric will fail over to one
of the other registered endpoint URIs and start resolving to that endpoint instead.

For more details, see chapter "Master Component"” in "Apache Camel Component Reference" .

D.3. CXF ENDPOINT DISCOVERY

For connections between Web service clients and Web services within the cloud, you have the option of
supporting location transparency and load balancing through the Fabric discovery mechanism. This
mechanism is not supported for connections coming into the cloud, however, so that you cannot
advertise a Web service externally using this discovery mechanism.

To enable Fabric discovery on the server side, you must install the requisite Fabric load balancer feature
into the CXF bus object. When this feature is installed, all Web services created in this bus will
automatically be registered in the Fabric registry.

On the client side, you must install the fabric load balancer feature directly in the client proxy instance.
The Web service client will then look up the server's location in the Fabric registry, ignoring the address
configured in the client endpoint (you can use a dummy value for the URL).

For more details, see chapter "Enabling High Availability in Fuse Fabric" in "Apache CXF Development
Guide".

D.4. OSGI SERVICE DISCOVERY

The OSGi registry typically stores references to local services. However, it is also relatively easy to
configure Fabric to store remote OSGi services in the Fabric registry, so that you can realize invisible
remoting of OSGi services, with support for dynamic discovery, load balancing and fail over. Fabric
follows the OSGi Remote Services specification: any service exported to the OSGi registry with the
service.exported.interfaces property (having a value of * or an explicit list of interfaces to export) is
automatically exported to the Fabric registry and becomes accessible to other remote containers in the
same fabric.

For example, to expose an OSGi service in the fabric using Blueprint XML, define the OSGi service as
follows:

I <blueprint xmlns="http://www.osgi.org/xmins/blueprint/v1.0.0">

166

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Apache_Camel_Component_Reference/Master.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Apache_CXF_Development_Guide/FabricHA.html

APPENDIX D. TECHNOLOGY-SPECIFIC DISCOVERY MECHANISMS

<bean id="theBean" class="foo.bar.Example" />
<service ref="theBean" auto-export="interfaces">
<service-properties>
<entry key="service.exported.interfaces" value="*"/>
</service-properties>
</service>
</blueprint>

To import an OSGi service from the fabric, simply reference the OSGi service in the usual way (for
example, using Blueprint XML or through the OSGi Java API).

167

	Table of Contents
	CHAPTER 1. AN OVERVIEW OF FUSE FABRIC
	1.1. CONCEPTS
	Fabric
	A sample fabric
	Registry
	Fabric Ensemble
	Fabric Server
	Fabric Container (managed container)
	Fabric Agent
	Git
	Profile

	1.2. CONTAINERS
	1.3. PROVISIONING AND CONFIGURATION
	Overview
	Changing the configuration
	How discovery works

	PART I. BASIC FABRIC DEPLOYMENT
	CHAPTER 2. GETTING STARTED WITH FUSE FABRIC
	2.1. CREATE A FABRIC
	Overview
	Steps to create the fabric

	2.2. DEPLOY A PROFILE
	Deploy a profile to the child container
	View the sample output

	2.3. UPDATE A PROFILE
	Atomic container upgrades
	Profile versioning
	Upgrade to a new profile
	Roll back to an old profile

	2.4. SHUTTING DOWN THE CONTAINERS
	Shutting down the containers

	CHAPTER 3. CREATING A NEW FABRIC
	STATIC IP ADDRESS REQUIRED FOR FABRIC SERVER
	MAKE QUICKSTART EXAMPLES AVAILABLE
	PROCEDURE
	FABRIC CREATION PROCESS
	EXPANDING A FABRIC

	CHAPTER 4. FABRIC CONTAINERS
	4.1. CHILD CONTAINERS
	Overview
	One container or many?
	Creating a child container
	Stopping and starting a child container
	Deleting a child container

	4.2. SSH CONTAINERS
	Overview
	Prerequisites
	Creating an SSH container
	Update SSH Credentials for Remote SSH Containers
	Creating a Fabric server using SSH
	References

	4.3. FABRIC CONTAINERS ON WINDOWS
	Overview
	Creating a Fabric container on Windows
	Creating a Fabric server on Windows
	Managing remote containers on Windows

	4.4. DISCONNECT CONTAINER FROM FABRIC
	Overview
	Use the command
	Validation

	CHAPTER 5. SHUTTING DOWN A FABRIC
	OVERVIEW
	SHUTTING DOWN A MANAGED CONTAINER
	SHUTTING DOWN A FABRIC SERVER
	SHUTTING DOWN AN ENTIRE FABRIC
	NOTE ON SHUTTING DOWN A COMPLETE FABRIC

	CHAPTER 6. FABRIC PROFILES
	6.1. INTRODUCTION TO PROFILES
	Overview
	What is in a profile?
	Profile hierarchies
	Some basic profiles

	6.2. WORKING WITH PROFILES
	Changing the profiles in a container
	Adding a profile to a container
	Listing available profiles
	Inspecting profiles
	Creating a new profile
	Adding or removing features
	Editing PID properties
	Editing a PID inline
	Example of editing a PID inline
	Setting encrypted PID property values
	Alternative method for encrypting PID property values
	Customizing the PID property encryption mechanism
	Profile editor
	Editing resources with the profile editor

	6.3. CONFIGURING THE INSIGHT-ACTIVEMQ PROFILE
	6.4. PROFILE VERSIONS
	Overview
	Creating a new version
	Rolling upgrades and rollbacks

	6.5. ENVIRONMENT SPECIFIC VALUES IN FABRIC PROFILES.

	CHAPTER 7. FABRIC8 MAVEN PLUG-IN
	7.1. PREPARING TO USE THE PLUG-IN
	Edit your Maven settings
	Customising the repository ID

	7.2. USING THE PLUG-IN TO DEPLOY A MAVEN PROJECT
	Prerequisites
	Running the plug-in on any Maven project
	Adding the plug-in to a Maven POM
	What does the plug-in do?
	Example

	7.3. CONFIGURING THE PLUG-IN
	Specifying profile information
	Multi-module Maven projects
	Specifying features, additional bundles, repositories and parent profiles
	Configuring with Maven properties
	Specifying profile resources

	7.4. CONFIGURATION PROPERTIES
	Specifying properties
	Property reference

	CHAPTER 8. ACTIVEMQ BROKERS AND CLUSTERS
	8.1. CREATING A SINGLE BROKER INSTANCE
	MQ profiles
	Creating a new broker instance
	fabric:mq-create command
	Starting a broker on an existing container
	Broker groups

	8.2. CONNECTING TO A BROKER
	Overview
	Client URL

	8.3. TOPOLOGIES
	8.3.1. Load-Balancing Cluster
	Overview
	Create brokers in a load-balancing cluster
	Configure clients of a load-balancing cluster

	8.3.2. Master-Slave Cluster
	Overview
	Create brokers in a master-slave cluster
	Configure clients of a master-slave cluster
	Locking mechanism
	Re-using containers for multiple clusters
	Configuring persistent data

	8.3.3. Broker Networks
	Overview
	Broker networks
	Creating network connectors
	Example broker network
	Connecting to the example broker network

	8.4. ALTERNATIVE MASTER-SLAVE CLUSTER
	Why use an alternative master-slave cluster?
	Alternative locking mechanism
	standalone property
	Side effects of setting standalone=true
	Configuring brokers in the cluster
	Configuring authentication data
	Configuring a client

	8.5. BROKER CONFIGURATION
	Overview
	Setting OSGi Config Admin properties
	Modifying basic configuration properties
	Customizing the SSL keystore.jks and truststore.jks file
	Customizing the broker configuration file
	Additional broker configuration templates in mq-base
	Setting network connector properties
	Network connector properties by reflection

	PART II. FABRIC IN PRODUCTION
	CHAPTER 9. FABRIC ENSEMBLE AND REGISTRY
	9.1. FABRIC REGISTRY
	Overview
	Registry structure
	Parts of the registry
	Making the registry highly available

	9.2. ADMINISTERING A FABRIC ENSEMBLE
	Recommendations for an ensemble in production
	Expanding the ensemble
	Changing an ensemble password
	Taking a Fabric server down for maintenance

	9.3. CREATE FABRIC ENVIRONMENT WITH MULTIPLE ENSEMBLE SERVERS
	Set up Host A
	Set up Host B
	Set up Host C
	Run the Fabric ensemble.

	9.4. PURGING THE ZOOKEEPER SNAPSHOT AND TRANSACTION LOGS
	Overview
	fabric:create Parameters for Zookeeper autopurge

	9.5. ZOOKEEPER RETRY AND RETRY INTERVAL
	Overview
	Properties for configuring the retry interval

	CHAPTER 10. FABRIC AGENTS
	10.1. INTRODUCTION
	Fabric agent
	Agent modules

	10.2. THE CONFIGURATION ADMIN BRIDGE
	Overview
	Information in a profile
	Actions performed
	Configuration updates

	10.3. THE DEPLOYMENT AGENT
	Actions performed
	Downloading artifacts
	Container restarts
	Monitoring the provisioning status
	Resolution and startup ordering

	CHAPTER 11. ALLOCATING PORTS
	11.1. PORTS USED IN A FABRIC ENVIRONMENT
	TCP-IP Ports used in a Fabric environment
	Elasticsearch ports
	Managing ports when using a firewall

	11.2. THE PORT SERVICE
	What is the port service?
	Benefits of the port service
	Avoiding port clashes for standard container services
	Avoiding port clashes for custom services
	Using the port service in your own applications
	How the port service allocates a port
	How allocated ports are stored
	Keys used by the standard container services
	Behavior upon stopping and restarting a container
	Deallocating ports

	11.3. USING THE PORT SERVICE
	Overview
	Demonstration code
	Property placeholder in XML configuration
	Specifying a port range using OSGi Config Admin
	Modifying the port range

	CHAPTER 12. GATEWAY
	12.1. GATEWAY ARCHITECTURE
	How the gateway works
	Fabric 8 MQ Gateway

	12.2. RUNNING THE GATEWAY
	Deploy a gateway profile
	Deployment Strategies

	12.3. CONFIGURING THE GATEWAY
	Configuring with the Management Console
	Deploying the CXF REST quickstart
	HTTP mapping rules
	Selecting part of the ZooKeeper registry
	Segregating URI paths
	Configuring HTTP Gateway Timeouts

	12.4. MAP CLIENT CONNECTIONS TO BROKER INSTANCES
	Map Client Connections to Broker Instances
	How to Connect to a Specific Broker on the MQ Gateway
	MQ Gateway Client Connections for For Openwire and STOMP
	Using MQ Gateway with SSL/HTTPS
	Change the Listening Port on MQ Gateway

	12.5. VERSIONING
	Explicit URIs
	Rolling upgrades

	12.6. URI TEMPLATE EXPRESSIONS
	Variables

	CHAPTER 13. SECURING FABRIC CONTAINERS
	DEFAULT AUTHENTICATION SYSTEM
	MANAGING USERS
	OBFUSCATING STORED PASSWORDS
	ENABLING LDAP AUTHENTICATION

	CHAPTER 14. FABRIC MAVEN PROXIES
	14.1. INTRODUCTION TO FABRIC MAVEN PROXIES
	Overview
	Maven proxy
	Managed container
	Fabric8 agent
	Resolving a Maven artifact
	Maven proxy endpoint discovery
	No replication
	Managing the Maven artifact data

	14.2. HOW A MANAGED CONTAINER RESOLVES ARTIFACTS
	Overview
	Fabric profiles drive bundle provisioning
	Fabric8 agent
	Eclipse Aether layer
	Provisioning a managed container
	Provisioning steps
	io.fabric8.agent configuration

	14.3. HOW A MAVEN PROXY RESOLVES ARTIFACTS
	Overview
	Fabric8 Maven proxy server
	Serving artifacts through the Maven proxy
	Steps to serve artifacts

	14.4. CONFIGURING MAVEN PROXIES DIRECTLY
	Overview
	Tools for editing configuration
	Rolling out configuration changes
	Adding a remote Maven repository

	14.5. CONFIGURING MAVEN PROXIES AND HTTP PROXIES THROUGH SETTINGS.XML
	Overview
	Adding a remote Maven repository
	Enabling the settings.xml configuration approach
	Changing the default location of Maven settings.xml
	Configuring an HTTP proxy
	Reference

	14.6. SECURELY ACCESSING MAVEN REPOSITORIES
	Overview
	Obtain encrypted Maven passwords
	Procedure

	14.7. AUTOMATED DEPLOYMENT
	Overview
	Discover the upload URL of the current master
	Manually deploy a Maven project
	Automatically deploy a Maven project

	14.8. FABRIC MAVEN CONFIGURATION REFERENCE
	Overview
	Repository URL syntax
	io.fabric8.agent PID
	io.fabric8.maven PID
	io.fabric8.maven.proxy PID

	CHAPTER 15. OFFLINE REPOSITORIES
	15.1. OFFLINE REPOSITORY FOR A PROFILE
	Download into a specified directory
	Download into the system folder

	15.2. OFFLINE REPOSITORY FOR A VERSION
	Download the current version
	Download a specific version

	15.3. OFFLINE REPOSITORY FOR A MAVEN PROJECT
	Download repository for Maven project

	CHAPTER 16. CONFIGURING WITH GIT
	16.1. HOW GIT WORKS INSIDE FABRIC
	Cluster architecture
	External Git repository architecture
	What is stored in the Git repositories?
	Git branches
	Configuring through the console commands
	Prerequisites
	Configuring directly through Git

	16.2. USING A GIT CLUSTER
	Overview
	Clone the Git repository
	Authentication
	Basic tasks with Git
	What happens after a failover?
	Adding multiple upstream repositories
	Git cluster tutorial

	16.3. USING AN EXTERNAL GIT REPOSITORY
	Overview
	External git repository architecture
	Preparing an external Git repository
	Authentication
	Creating a fabric with an external Git repository
	What happens if the external Git repository fails?
	Synchronizing Git Repository
	fabric:git-summary
	fabric:git-summary examples
	fabric:git-synchronize
	Example of fabric:git-synchronize
	io.fabric8.datastore PID Configuration
	External Git repository tutorial
	Choose the git cluster member to be the git master

	16.4. USING AN HTTP PROXY WITH A GIT CLUSTER

	CHAPTER 17. PATCHING
	17.1. PATCHING A FABRIC CONTAINER WITH A ROLLUP PATCH
	Overview
	Root container
	Distribution of patch artifacts
	Profiles
	Configuration of the underlying container
	io.fabric.version in the default profile
	Patching the patch mechanism
	Applying a rollup patch
	Rolling back a rollup patch

	17.2. PATCHING A FABRIC CONTAINER WITH AN INCREMENTAL PATCH
	Overview
	Distribution of patched artifacts through Maven proxy
	Profiles
	Is it necessary to patch the underlying container?
	Applying an incremental patch
	Rolling back an incremental patch

	CHAPTER 18. ENABLING SSL FOR JMX CONNECTORS
	OBTAIN OR CREATE CERTIFICATES
	IMPORT CERTIFICATES WITH CHAIN
	SELECT STANDARD LOCATION FOR KEYSTORE
	CREATE BLUEPRINT CONFIGURATION FOR LOADING KEYSTORE
	SET KEYSTORE ENVIRONMENT VARIABLES ON FUSE CONTAINERS
	START FUSE AND CREATE FABRIC CLUSTER
	CONFIGURE THE CLUSTER FOR JMX
	UPGRADE FUSE CONTAINERS
	TEST THE CONFIGURATION

	APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXT EDITOR
	A.1. EDITING AGENT PROPERTIES
	Overview
	Open the agent properties resource
	Specifying feature repository locations
	Specifying deployed features
	Specifying deployed bundles
	Specifying bundle overrides
	Specifying etc/config.properties properties
	Specifying etc/system.properties properties
	Specifying libraries to add to Java runtime lib/
	Specifying libraries to add to Java runtime lib/ext/
	Specifying libraries to add to Java runtime lib/endorsed/
	Example

	A.2. EDITING OSGI CONFIG ADMIN PROPERTIES
	Overview
	Persistent ID
	Open the Config Admin properties resource
	Specifying OSGi config admin properties
	Example

	A.3. EDITING OTHER RESOURCES
	Overview
	Creating and editing an arbitrary resource
	broker.xml example
	Referencing a profile resource

	A.4. PROFILE ATTRIBUTES
	Overview
	parents attribute
	abstract attribute
	locked attribute
	hidden attribute

	APPENDIX B. FABRIC URL HANDLERS
	B.1. PROFILE URL HANDLER
	B.2. ZK URL HANDLER
	B.3. BLUEPRINT URL HANDLER
	B.4. SPRING URL HANDLER
	B.5. MVEL

	APPENDIX C. PROFILE PROPERTY RESOLVERS
	C.1. SUBSTITUTING SYSTEM PROPERTIES
	Syntax

	C.2. SUBSTITUTING ENVIRONMENT VARIABLES
	Syntax

	C.3. SUBSTITUTING CONTAINER ATTRIBUTES
	Syntax

	C.4. SUBSTITUTING PID PROPERTIES
	Syntax
	Example using a profile property resolver

	C.5. SUBSTITUTING ZOOKEEPER NODE CONTENTS
	Syntax
	Recursive variable substitution
	How to reference the current version of a resource

	C.6. CHECKSUM PROPERTY RESOLVER
	Syntax

	C.7. PORT PROPERTY RESOLVER
	Syntax

	APPENDIX D. TECHNOLOGY-SPECIFIC DISCOVERY MECHANISMS
	D.1. ACTIVEMQ ENDPOINT DISCOVERY
	D.2. CAMEL ENDPOINT DISCOVERY
	D.3. CXF ENDPOINT DISCOVERY
	D.4. OSGI SERVICE DISCOVERY

