‘® redhat.

Red Hat JBoss Data Virtualization 6.3

Red Hat JBoss Data Virtualization for
OpenShift

Learn how to use Red Hat JBoss Data Virtualization with OpenShift.

Last Updated: 2018-04-25

Red Hat JBoss Data Virtualization 6.3 Red Hat JBoss Data Virtualization
for OpenShift

Learn how to use Red Hat JBoss Data Virtualization with OpenShift.

Documentation Team

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution—Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Table of Contents

CHAPTER 1. 6.3 IMAGE DEPRECATED ¢ttt ittt it n i nannnannnns

CHAPTER 2. RED HAT JBOSS DATA VIRTUALIZATION FOR OPENSHIFT

CHAPTER 3. BEFORE YOU BEGIN it et e it i e n e nasnaenananns

3.1. COMPARISON: JDV FOR OPENSHIFT IMAGE AND RED HAT JDV
3.2. VERSION COMPATIBILITY AND SUPPORT
3.3. INITIAL SETUP

CHAPTER 4. GET STARTEDttt ittt e et era e e e a e aaannnnnns

4.1. USING THE JDV FOR OPENSHIFT IMAGE STREAMS AND APPLICATION TEMPLATES
4.2. PREPARING JDV PROJECT ARTIFACTS
4.2.1. S2| Artifacts
4.2.1.1. Virtual Databases (VDB)
4.2.1.2. Modules, Drivers, Translators, and Generic Deployments
4.2.2. Runtime Artifacts
4.2.2.1. Datasources
4.2.2.2. Resource Adapters
4.3. PREPARING AND DEPLOYING THE JDV FOR OPENSHIFT APPLICATION TEMPLATES
4.3.1. Configuring Keystores
4.3.2. Generating the Keystore Secret
4.3.3. Generating the Artifact Secrets
4.3.4. Creating the Service Account
4.3.5. Configuring Red Hat Single-Sign On Authentication
4.3.6. Using the OpenShift Web Console
4.4. USING JBOSS DATAGRID FOR OPENSHIFT WITH JDV FOR OPENSHIFT
4.4.1. Using the JDG for OpenShift Application Templates
4.4.2. JDG for OpenShift Authentication Environment Variables
4.4 3. JDG for OpenShift Resource Adapter Properties
4.4 4. Protocol Buffers

CHAPTER 5. TUTORIALS ... ittt et e s e e e s e a e e a s naaaennnnnns

Table of Contents

5.1. EXAMPLE WORKFLOW: DEPLOYING A JDV PROJECT USING THE JDV FOR OPENSHIFT IMAGE 20

5.1.1. Preparing Red Hat JBoss Data Virtualization for OpenShift Deployment
5.1.2. Deployment
5.1.3. Defining Alternate Data Sources

5.2. EXAMPLE WORKFLOW: DEPLOYING THE JDG FOR OPENSHIFT AS A MATERIALIZATION TARGET

QUICKSTART
5.2.1. Preparing the Project to Deploy JDG for OpenShift
5.2.2. Deploying JDG for OpenShift
5.2.3. Configure JDV for OpenShift to use JDG for OpenShift as a Materialization Target

CHAPTER 6. REFERENCE ittt et e et a et e e a e aan e n e

6.1. GLOSSARY
6.2. ARTIFACT REPOSITORY MIRRORS

22
22
22
23

24
24

Red Hat JBoss Data Virtualization 6.3 Red Hat JBoss Data Virtualization for OpenShift

CHAPTER 1. 6.3 IMAGE DEPRECATED

CHAPTER 1. 6.3 IMAGE DEPRECATED

WARNING

The jboss-datavirt-6/datavirt63-openshift image detailed in this guide

is deprecated. See the Red Hat Container Catalog for the latest JDV for OpenShift
images and accompanying documentation.

https://access.redhat.com/containers/

Red Hat JBoss Data Virtualization 6.3 Red Hat JBoss Data Virtualization for OpenShift

CHAPTER 2. RED HAT JBOSS DATA VIRTUALIZATION FOR
OPENSHIFT

Red Hat JBoss Data Virtualization(JDV) is a lean, virtual data integration solution that unlocks trapped
data and delivers it as easily consumable, unified, and actionable information. Red Hat JBoss Data
Virtualization makes data spread across physically diverse systems — such as multiple databases, XML
files, and Hadoop systems — appear as a set of tables in a local database.

Red Hat offers three JDV for OpenShift application templates:

Application Template Description

datavirt63-basic Application template for JBoss Data Virtualization 6.3
services built using S2I.

datavirt63-secure Includes ability to configure certificates for serving
secure content.

datavirt63-extensions-support Includes support for installing extensions (e.g. third-
party DB drivers) and the ability to configure
certificates for serving secure content.

' WARNING
A These application templates are deprecated. See the Red Hat Container Catalog for

the latest JDV for OpenShift images, templates and documentation.

https://access.redhat.com/containers/

CHAPTER 3. BEFORE YOU BEGIN

CHAPTER 3. BEFORE YOU BEGIN

3.1. COMPARISON: JDV FOR OPENSHIFT IMAGE AND RED HAT JDV

JDV for OpenShift image is based on Red Hat JBoss Data Virtualization 6.3. There are some differences
in functionality between the JDV for OpenShift image and Red Hat JBoss Data Virtualization:

e Cached results are automatically replicated to all members of the JDV for OpenShift cluster.
In addition, the JDV for OpenShift image is built on the Red Hat JBoss Enterprise Application Platform
(EAP) for OpenShift image. As a result, the same differences exist for the JDV for OpenShift image. For

more information on the EAP for OpenShift differences, see the Comparison: EAP and EAP for
OpenShift Image section in the Red Hat JBoss Enterprise Application Platform for OpenShift Guide.

3.2. VERSION COMPATIBILITY AND SUPPORT

See the xPaaS part of the OpenShift and Atomic Platform Tested Integrations page for details about
OpenShift image version compatibility.

3.3. INITIAL SETUP

The Tutorials in this guide follow on from and assume an OpenShift instance similar to that created in the
OpenShift Primer.

https://access.redhat.com/documentation/en/red-hat-xpaas/version-0/red-hat-xpaas-eap-image/#comparison_eap_and_xpaas_eap_image
https://access.redhat.com/articles/2176281
https://access.redhat.com/documentation/en/red-hat-application-services/0/openshift-primer

Red Hat JBoss Data Virtualization 6.3 Red Hat JBoss Data Virtualization for OpenShift

CHAPTER 4. GET STARTED

4.1. USING THE JDV FOR OPENSHIFT IMAGE STREAMS AND
APPLICATION TEMPLATES

Red Hat JBoss Middleware for OpenShift images are pulled on demand from the Red Hat Registry:
registry.access.redhat.com

4.2. PREPARING JDV PROJECT ARTIFACTS

The EAP for OpenShift image, on which the JDV for OpenShift image is built, extends database support
in OpenShift using various artifacts. These artifacts are included in the built image through different
mechanisms:

- S2| artifacts that are injected into the image during the S2I process, and

- Runtime artifacts from environment files provided through the OpenShift Secret mechanism.

S21 ARTIFACT EXTENSION IMAGES s21 ARTIFACT
Virtual Database Definitions Extensions
Client Client
Image 1 Image 2
. Custom
Client
i Extensi
521 Build Inject Image N \mage. Push S21 Build
G G
(from datavirt63-openshift) (from rhel7/rhel)

Push

Deploy Mount
CONTAINER IMAGE — CONTAINER < RUNTlME ARTlFAC.T
OpenShift Secret Mechanism

4.2.1. S2I Artifacts

The S2I artifacts include the virtual databases files, modules, drivers, translators, and additional generic
deployments that provide the necessary configuration infrastructure required for the JDV for OpenShift
deployment. This configuration is built into the image during the S2I process so that only the datasources
and associated resource adapters need to be added at runtime.

Refer to the Artifact Repository Mirrors section for additional guidance on how to instruct the S2I process
to utilize the custom Maven artifacts repository mirror.

4.2.1.1. Virtual Databases (VDB)

VDBs contain aggregated data from multiple disparate datasources. This allows applications to access
and query the data as though it is in a single database, using a single uniform API.

Deployment
*.vdb and *-vdb.xml files can be included in a Git repository, or in the source for a Binary-type build.

The JDV for OpenShift image uses the file deployment method for deploying virtual databases. Create

http://registry.access.redhat.com
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html/developer_guide/builds#binary-source

CHAPTER 4. GET STARTED

an empty marker file in the same directory and with the same name as the VDB with the additional
extension .dodeploy. For example, if the VDB file is database.vdb, the marker file must be called
database.vdb.dodeploy.

For more information on the file deployment method, see the Deploy a VDB via File Deployment section
in the Red Hat JBoss Data Virtualization Administration and Configuration Guide.

4.2.1.2. Modules, Drivers, Translators, and Generic Deployments

There are three options for including these S2| artifacts in the JDV for OpenShift image:

1. Include the artifact in the application source deployment directory. The artifact is downloaded
during the build and injected into the image. This is similar to deploying an application on the
EAP for OpenShift image.

2. Include the CUSTOM_INSTALL_DIRECTORIES environment variable, a list of comma-
separated list of directories used for installation and configuration of artifacts for the image
during the S2I process. There are two methods for including this information in the S2I:
2a) An install.sh script in the nominated installation directory. The install script will be executed
during the S2I process and will operate with impunity.

Install.sh script example:

#!/bin/bash

injected_dir=%$1

source /usr/local/s2i/install-common.sh

install_deployments ${injected_dir}/injected-deployments.war
install_modules ${injected_dir}/modules

configure_drivers ${injected_dir}/drivers.env

source /usr/local/s2i/install-teiid-common.sh
configure_translators ${injected_dir}/translators.env

The install.sh script is responsible for customizing the base JDV for OpenShift image using
APlIs provided by the install-common.sh, which is contained in the underlying base EAP for
OpenShift image, and install-teiid-common.sh, which is contained in the base JDV for
OpenShift image. It allows for the greatest amount of flexibility for configuring the JDV for
OpenShift image. These shell scripts contain functions that are used by the install.sh script to
install and configure the modules, drivers, translators, and generic deployments.

Shell script Functions contained within script

install-common.sh configure_translators

install-teiid-common.sh install_modules
configure_drivers
install_deployments

Modules

A module is a logical grouping of classes used for class loading and dependency management.
Modules are defined in the EAP_HOME/modules/ directory of the application server. Each
module exists as a subdirectory, for example EAP_HOME/modules/org/apache/. Each module

https://access.redhat.com/documentation/en/red-hat-jboss-data-virtualization/6.3/single/administration-and-configuration-guide/#Deploy_a_VDB_via_File_Deployment1

Red Hat JBoss Data Virtualization 6.3 Red Hat JBoss Data Virtualization for OpenShift

directory then contains a slot subdirectory, which defaults to main and contains the module.xml
configuration file and any required JAR files.

module.xml example:

<?xml version="1.0" encoding="UTF-8"7?>
<module xmlns="urn:jboss:module:1.0" name="org.apache.derby">
<resources>
<resource-root path="derby-10.12.1.1.jar"/>
<resource-root path="derbyclient-10.12.1.1.jar"/>
</resources>
<dependencies>
<module name="javax.api"/>
<module name="javax.transaction.api"/>
</dependencies>
</module>

Drivers and translators are installed as modules. The install_modules function in the install.sh
copies the respective JAR files to the modules directory in EAP, along with the module.xml.
The configure_drivers and configure_translators functions of the install.sh add additional
information to the $JBOSS_HOME/standalone/configuration/standalone-openshift.xml
configuration file.

Drivers

Drivers are installed as modules. The install_modules function in the install.sh copies the
respective JAR files to the modules directory in EAP. The driver is then configured in the
install.sh by the configure_drivers function, the configuration properties for which are defined
in a runtime artifact environment file.

drivers.env example:

#DRIVER

DRIVERS=DERBY

DERBY_DRIVER_NAME=derby

DERBY_DRIVER_MODULE=org.apache.derby
DERBY_DRIVER_CLASS=0rg.apache.derby.jdbc.EmbeddedDriver
DERBY_XA_DATASOURCE_CLASS=org.apache.derby. jdbc.EmbeddedXADataSource

Translators

Translators are installed as modules. The install_modules function in the install.sh copies the
JAR files for the translator. The translator is then configured in the install.sh by the
configure_translators function, the configuration properties for which are in a runtime artifact
environment file.

franslators.env example:

#TRANSLATOR
TRANSLATORS=TESTTRANSLATOR

TESTTRANSLATOR_NAME=test
TESTTRANSLATOR_MODULE=0rg.jboss.teiid.translator.test

Generic Deployments

CHAPTER 4. GET STARTED

Deployable archive files, such as JARs, WARs, RARs, or EARs, can be deployed from an
injected image using the install_deployments function supplied by the API in the install-
common.sh contained in the EAP for OpenShift image.

2b) If the CUSTOM_INSTALL_DIRECTORIES environment variable has been declared but no
install.sh scripts are found in the custom installation directories, the following artifact directories
will be copied to their respective destinations in the built image:

- modules/* copied to $JBOSS_HOME/modules/system/layers/openshift

- configuration/* copied to $JBOSS_HOME/standalone/configuration

- deployments/* copied to $JBOSS_HOME/standalone/deployments

This is a basic configuration approach compared to the install.sh alternative, and requires the
artifacts to be structured appropriately.

4.2.2. Runtime Artifacts

4.2.2.1. Datasources

There are three types of datasources:

1. Default internal datasources. These are PostgreSQL, MySQL, and MongoDB. These datasources are
available on OpenShift by default through the Red Hat Registry and do not require additional environment
files to be configured. Set the DB_SERVICE_PREFIX_MAPPING to the name of the OpenShift service
for the database to be discovered and used as a datasource. 2. Other internal datasources. These are
datasources not available by default through the Red Hat Registry but run on OpenShift. Configuration of
these datasources is provided by environment files added to OpenShift Secrets. 3. External datasources
that are not run on OpenShift. Configuration of external datasources is provided by environment files
added to OpenShift Secrets.

Datasource environment file example:

derby datasource

ACCOUNTS_DERBY_DATABASE=accounts
ACCOUNTS_DERBY_JNDI=java:/accounts-ds
ACCOUNTS_DERBY_DRIVER=derby
ACCOUNTS_DERBY_USERNAME=derby
ACCOUNTS_DERBY_PASSWORD=derby
ACCOUNTS_DERBY_TX_ISOLATION=TRANSACTION_READ_UNCOMMITTED
ACCOUNTS_DERBY_JTA=true

Connection info for xa datasource
ACCOUNTS_DERBY_XA_CONNECTION_PROPERTY_DatabaseName=/home/jboss/source/data
/databases/derby/accounts

_HOST and _PORT are required, but not used
ACCOUNTS_DERBY_SERVICE_HOST=dummy
ACCOUNTS_DERBY_SERVICE_PORT=1527

The DATASOURCES property is a comma-separated list of datasource property prefixes. These
prefixes are then appended to all properties for that datasource. Multiple datasources can then be
included in a single environment file. Alternatively, each datasource can be provided in separate
environment files.

Datasources contain two types of properties: connection pool-specific properties and data driver-specific
properties. Data-driver specific properties use the generic XA_CONNECTION_PROPERTY, as the
driver itself is configured as a driver S2I artifact. The suffix of the driver property is specific to the

https://access.redhat.com/documentation/en-us/red_hat_jboss_middleware_for_openshift/3/html-single/red_hat_jboss_enterprise_application_platform_for_openshift/#datasources

Red Hat JBoss Data Virtualization 6.3 Red Hat JBoss Data Virtualization for OpenShift

particular driver for the datasource.
In the above example, ACCOUNTS is the datasource prefix, XA_CONNECTION_PROPERTY is the
generic driver property, and DatabaseName is the property specific to the driver.

The datasources environment files are added to the OpenShift Secret for the project. These environment
files are then called within the JDV template using the ENV_FILES environment property, the value of
which is a comma-separated list of fully qualified environment files.

For example:

“Name”: “ENV_FILES”,
“Value”: “/etc/jdv-extensions/datasourcesl.env, /etc/jdv-
extensions/datasources2.env”

}

4.2.2.2. Resource Adapters

Configuration of resource adapters is provided by environment files added to OpenShift Secrets.

Resource adapter environment file example:

#RESOURCE_ADAPTER
RESOURCE_ADAPTERS=QSFILE

QSFILE_ID=fileQS

QSFILE_MODULE_SLOT=main
QSFILE_MODULE_ID=org.jboss.teiid.resource-adapter.file
QSFILE_CONNECTION_CLASS=0rg.teiid.resource.adapter.file.FileManagedConnect
ionFactory

QSFILE_CONNECTION_JNDI=java:/marketdata-file
QSFILE_PROPERTY_ParentDirectory=/home/jboss/source/injected/injected-
files/data

QSFILE_PROPERTY_AllowParentPaths=true

The RESOURCE_ADAPTERS property is a comma-separated list of resource adapter property prefixes.
These prefixes are then appended to all properties for that resource adapter. Multiple resource adapter
can then be included in a single environment file. Alternatively, each resource adapter can be provided in
separate environment files.

The resource adapter environment files are added to the OpenShift Secret for the project namespace.
These environment files are then called within the JDV template using the ENV_FILES environment
property, the value of which is a comma-separated list of fully qualified environment files.

For example:

“Name”: “ENV_FILES”,
“Value”: "“/etc/jdv-extensions/resourceadapteril.env, /etc/jdv-
extensions/resourceadapter2.env”

}

10

CHAPTER 4. GET STARTED

4.3. PREPARING AND DEPLOYING THE JDV FOR OPENSHIFT
APPLICATION TEMPLATES

4.3.1. Configuring Keystores

The JDV for OpenShift image requires two keystores:

- An SSL keystore to provide private and public keys for https traffic encryption.

- A JGroups keystore to provide private and public keys for network traffic encryption between nodes in
the cluster.

These keystores are expected by the JDV for OpenShift image, even if the application uses only http on

a single-node OpenShift instance. Self-signed certificates do not provide secure communication and are
intended for internal testing purposes.

' WARNING
A For production environments Red Hat recommends that you use your own SSL

certificate purchased from a verified Certificate Authority (CA) for SSL-encrypted
connections (HTTPS).

See the JBoss Enterprise Application Platform Security Guide for more information on how to create a
keystore with self-signed or purchased SSL certificates.

4.3.2. Generating the Keystore Secret

OpenShift uses objects called Secrets to hold sensitive information, such as passwords or keystores.
See the Secrets chapter in the OpenShift documentation for more information.

The JDV for OpenShift image requires a secret that holds the two keystores described earlier. This
provides the necessary authorization to applications in the project.

Use the SSL and JGroups keystore files to create a secret for the project:
I $ oc secret new <jdv-secret-name> <ssl.jks> <jgroups.jceks>

After the secret has been generated, it can be associated with a service account.

4.3.3. Generating the Artifact Secrets

Files for runtime artifacts are passed to the JDV for OpenShift image using the OpenShift secret
mechanism. This includes the environment files for the data sources and resource adapters, as well as
any additional data files. These files need to be present locally so as to create secrets for them.

$ oc secrets new <datavirt-app-config> <datasource.env>
<resourceadapter.env> <additional/data/files/>

The Red Hat JBoss Data Virtualization for OpenShift application template uses datavirt-app-config as a
default value for the CONFIGURATION_NAME environment variable. This value is also used to

11

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.1/html-single/Security_Guide/index.html#Generate_a_SSL_Encryption_Key_and_Certificate
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.2/developer-guide/#dev-guide-secrets

Red Hat JBoss Data Virtualization 6.3 Red Hat JBoss Data Virtualization for OpenShift

configure a storage volume for the project. If a different secret name is used, the value of the
CONFIGURATION_NAME environment variable must be updated.

If the project does not require any runtime artifacts, the secret must still be present in the OpenShift
project or the deployment will fail. An empty secret can be generated and supplied:

$ touch <empty.env>
$ oc secrets new <datavirt-app-config> <empty.env>

4.3.4. Creating the Service Account

Service accounts are API objects that exist within each project and allow users to associate certain
secrets and roles with applications in a project namespace. This provides the application with the
necessary authorization to run with all required privileges.

The service account that you create must be configured with the correct permissions to view pods in
Kubernetes. This is required in order for clustering with the JDV for OpenShift image to work. You can
view the top of the log files to see whether the correct service account permissions have been
configured.

The JDV for OpenShift templates have a default SERVICE_ACCOUNT_NAME variable of datavirt-
service-account. If a different service account name is used, this variable must be configured with the
appropriate service account name.

1. Create a service account to be used for the JDV deployment:

I $ oc create serviceaccount <service-account-name>

2. Add the view role to the service account. This enables the service account to view all the
resources in the application namespace in OpenShift, which is necessary for managing the
cluster.

$ oc policy add-role-to-user view system:serviceaccount:<project-
name>:<service-account-name> -n <project-name>

3. Add the secrets created for the project to the service account:

$ oc secret link <service-account-name> <jdv-secret-name> <jdv-
datasource-secret> <jdv-resourceadapter-secret> <jdv-datafiles-
secret>

4.3.5. Configuring Red Hat Single-Sign On Authentication

JDV for OpenShift can be configured to use Red Hat Single-Sign On (SSO) for authentication. The
datavirt63-secure-s2i application template includes SSO environment variables for automatic SSO
client registration.

See the Automatic and Manual SSO Client Registration Methods for more information on automatic SSO
client registration.

Once configured, the SSO user and the SSO realm token can be used to authenticate the specified
endpoints in the JDV for OpenShift project.

12

https://access.redhat.com/documentation/en-us/red_hat_jboss_middleware_for_openshift/3/html-single/red_hat_jboss_sso_for_openshift/#Auto-Man-Client-Reg
https://access.redhat.com/documentation/en-us/red_hat_jboss_middleware_for_openshift/3/html-single/red_hat_jboss_sso_for_openshift/#automatic_sso_client_registration

CHAPTER 4. GET STARTED

4.3.6. Using the OpenShift Web Console

Log in to the OpenShift web console:
1. Click Add to project to list all of the default image streams and templates.

2. Use the Filter by keyword search bar to limit the list to those that match datavirt. You may
need to click See all to show the desired application template.

3. Select an application template and configure the deployment parameters as required.

4. Click Create to deploy the application template.

4.4. USING JBOSS DATAGRID FOR OPENSHIFT WITH JDV FOR
OPENSHIFT

The JBoss Datagrid for OpenShift image can be configured so that it integrates with a JDV for OpenShift
deployment. There are two use cases for this integration:

e Using JDG as a datasource for JDV.

e Using JDG as an external materialization target for JDV and one or more databases. When
deployed as a materialization target, JDG for OpenShift uses in-memory caching to store
common queries to other remote databases, increasing performance. For more information on
external materialization, see the External Materialization and Red Hat JBoss Data Grid chapter
in the Red Hat JBoss Data Virtualization Caching Guide.

In both of these use cases, both the JDG for OpenShift and JDV for OpenShift deployments need to be
configured. This includes:

e Specifying the cache names in the JDG for OpenShift application template.

o Specifying the cache names to be used for the JDG for OpenShift deployment with the
appropriate environment variable.

e Including JDG-specific properties in a resource adapter environment file.
e |[f protocol buffers are specified in a resource adapter, the relevant .proto files need to be
included in the project. If protocol buffers are not specified, JDV for OpenShift will use standard
Java serialization mechanism to interact with JDG for OpenShift.
The JDV for OpenShift templates automatically include the client dependencies necessary for

communicating with the JDG for Openshift image during the s2i build process. These modules are
mounted on the JDV for OpenShift at:

I ${CONTEXT_DIR}/extensions/datagrid65

13

https://access.redhat.com/documentation/en/red-hat-jboss-data-virtualization/6.3/paged/development-guide-volume-5-caching-guide/35-external-materialization-and-red-hat-jboss-data-grid

Red Hat JBoss Data Virtualization 6.3 Red Hat JBoss Data Virtualization for OpenShift

IMPORTANT

Red Hat JBoss Data Grid, and the JDG for OpenShift image, support multiple protocols;
however, when deployed with JDV for OpenShift, only the Hot Rod protocol is supported
for JDG for OpenShift.

The Hot Rod protocol is not encrypted.

For more information on the Hot Rod protocol, see the Remote Querying chapter of the
Red Hat JBoss DataGrid Infinispan Query Guide.

4.4.1. Using the JDG for OpenShift Application Templates

Whether using JDG for OpenShift as a datasource or materialization target, the cache names need to be
specified in the application template so that they can be used with JDV for OpenShift. The environment
variable to specify these cache names is different depending on whether JDG for OpenShift is to be used
as a datasource or a materialization:

Using JDG for OpenShift as a datasource:

CACHE_NAMES

Comma-separated list of the cache names to be used for the JDG for OpenShift datasource.
CACHE_TYPE_DEFAULT

Must be set with value replicated. Alternate cache methods are not supported.

Using JDG for OpenShift as a materialization target:

DATAVIRT_CACHE_NAMES

Comma-separated list of the cache names to be used for the JDG for OpenShift materialization
target. When the image is built, three caches will be created per cache name provided: {cachename},
{cachename}_staging, and {cachename}_alias. These three caches enable JBoss Data Grid to
simultaneously maintain and refresh materialization caches.

4.4.2. JDG for OpenShift Authentication Environment Variables

To use JDG for OpenShift as an authenticated datasource, additional environment variables must be
provided in the JDG for OpenShift application template. These environment variables provide
authentication details for the Hot Rod protocol, which will be provided to JDV for OpenShift in the
resource adapter, and authorization details for the caches in the JDG for OpenShift deployment.

For more information on these environment variables, see the Red Hat JBoss Data Grid for OpenShift
Guide.

JDG for OpenShift Authentication Environment Variables

Environment Variable Description Example value

USERNAME Username for the JDG user jdg-user
PASSWORD Password for the JDG user JBoss.123
HOTROD_AUTHENTICATION Enable Hot Rod authentication true

14

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Data_Grid/6.5/html/Infinispan_Query_Guide/chap-Remote_Querying.html
https://access.redhat.com/documentation/en-us/red_hat_jboss_middleware_for_openshift/3/html/red_hat_jboss_data_grid_for_openshift/reference#jdg-datasource-environment-variables-list

CHAPTER 4. GET STARTED

Environment Variable Description Example value
CONTAINER_SECURITY_ROLE Role mapper for the Hot Rod identity-role-mapper
_MAPPER protocol

CONTAINER_SECURITY_ROLE Security roles and permissions admin=ALL

S attributed to the role mapper

JDG for OpenShift Cache Authorization Environment Variables

Resource Adapter Property Description Example value

<cache- Enables authorization checks for true
name>_CACHE_SECURITY_AU this cache
THORIZATION_ENABLED

<cache- Sets the valid roles required to admin
name>_CACHE_SECURITY_AU access this cache
THORIZATION_ROLES

4.4.3. JDG for OpenShift Resource Adapter Properties

To use JDG for OpenShift with JDV for OpenShift, properties specific to JDG are required within a
resource adapter. As with all resource adapters, these can be included as a separate resource adapter
environment file or along with other resource adapters in a larger environment file and supplied to the
build as an OpenShift secret.

The properties in the table below are in addition to the standard properties required by JDV for
OpenShift to configure a resource adapter:

JDG_ID

JDG_MODULE_SLOT

JDG_MODULE_ID

JDG_CONNECTION_CLASS

JDG_CONNECTION_JNDI

Additional Properties for the JDG Resource Adapter

Resource Adapter Property Description Required

CacheTypeMap Cache Type True
Map(cacheName:className[;pkF
ieldName[:cacheKeyJavaTypel]])

ProtobufDefinitionFile Class Path to the Google Protobuf True if using protocol buffers
Definition file that's packaged in a
jar

15

Red Hat JBoss Data Virtualization 6.3 Red Hat JBoss Data Virtualization for OpenShift

Resource Adapter Property Description Required

MessageMarshallers Class names for the message True if using protocol buffers
marshallers, (marshaller,
[marshaller,..]), that are to be
registered for serialization

MessageDescriptor Protobuf message descriptor
class name for the root object in
cache

Module Module defining the protobuf

classes (module_slot,
[module_id,..])

RemoteServerList Server List (host:port[;host:port...])
to connect to

HotRodClientPropertiesFile HotRod Client properties file for
configuring connection to remote
cache

CacheJdndiName JNDI Name to find

CacheContainer

ChildClasses Child pojo classes, with
annotations, that are accessible
from the root class
[className[;className];])

Additional Resource Adapter for using JDG for OpenShift as a Datasource

Resource Adapter Property Description Required
AuthUserName Authentication username for the True if using JDG as an
JDG user authenticated datasource
AuthPassword Authentication password for the True if using JDG as an
JDG user authenticated datasource
AuthApplicationRealm Authorized application realm for True if using JDG as an
the JDG user authenticated datasource
AuthServerName Name of the JDG server True if using JDG as an

authenticated datasource

AuthSASLMechanism Encryption type used for True if using JDG as an
authentication authenticated datasource

16

CHAPTER 4. GET STARTED

Resource Adapter Property Description Required

AdminUserName Username for the JDG admin user True if using JDG as an
authenticated datasource

AdminPassword Password for the JDG user True if using JDG as an
authenticated datasource

The following is an example of a JDV for OpenShift resource adapter for integrating with JDG for
OpenShift. This example is taken from the quickstart used in Example Workflow: Deploying the JDG for
OpenShift as a Materialization Target Quickstart Tutorials:

Resource Adapter for Using JDG for OpenShift as Materialization Cache Example

RESOURCE_ADAPTERS=MAT_CACHE

MAT_CACHE_ID=infinispanRemQSDSL

MAT_CACHE_MODULE_SLOT=main
MAT_CACHE_MODULE_ID=org.jboss.teiid.resource-adapter.infinispan.dsl
MAT_CACHE_CONNECTION_CLASS=org.teiid.resource.adapter.infinispan.dsl.Infin
ispanManagedConnectionFactory
MAT_CACHE_CONNECTION_JNDI=java:/infinispanRemoteDSL

MAT_CACHE_PROPERTY_CacheTypeMap="addressbook:org.jboss.as.quickstarts.data
grid.hotrod.query.domain.Person;id"
MAT_CACHE_PROPERTY_ProtobufDefinitionFile=/quickstart/addressbook.proto
MAT_CACHE_PROPERTY_MessageDescriptor=quickstart.Person
MAT_CACHE_PROPERTY_Module=com.client.quickstart.addressbook.pojos
MAT_CACHE_PROPERTY_MessageMarshallers=org. jboss.as.quickstarts.datagrid.ho
trod.query.domain.Person:org.jboss.as.quickstarts.datagrid.hotrod.query.ma
rshallers.PersonMarshaller,org.jboss.as.quickstarts.datagrid.hotrod.query.
domain.PhoneNumber:org.jboss.as.quickstarts.datagrid.hotrod.query.marshall
ers.PhoneNumberMarshaller,org.jboss.as.quickstarts.datagrid.hotrod.query.d
omain.PhoneType:org.jboss.as.quickstarts.datagrid.hotrod.query.marshallers
.PhoneTypeMarshaller
MAT_CACHE_PROPERTY_RemoteServerList=${DATAGRID_APP_HOTROD_SERVICE_HOST}:${
DATAGRID_APP_HOTROD_SERVICE_PORT}

Additionally, the following are required when using JDG to materialize
views

MAT_CACHE_PROPERTY_StagingCacheName=addressbook_staging
MAT_CACHE_PROPERTY_AliasCacheName=addressbook_alias

In the above example, a line break separates the standard JDV for OpenShift resource adapter
configuration from the additional properties required for JDG for OpenShift, which carry a PROPERTY
suffix appended to the MAT_CACHE resource adapter prefix.

In the above example:

o PROPERTY_CacheTypeMap carries the cache name (addressbook), the class name
(Person), and the field name (id) relative to the protocol buffer.

o PROPERTY_ProtobufDefinitionFile provides the relative filepath to the addressbook.proto
protocol buffer file.

17

Red Hat JBoss Data Virtualization 6.3 Red Hat JBoss Data Virtualization for OpenShift

o PROPERTY_MessageMarshallers provides two marshallers: Person and PhoneType.

o PROPERTY_StagingCacheName and PROPERTY_AliasCacheName provide the staging and
alias cache names respectively, which are necessary to maintain and refresh the addressbook
materialization cache.

The following is an example of a JDV for OpenShift resource adapter for using JDG for OpenShift as a
datasource.

Resource Adapter for Using JDG for OpenShift as an Authenticated Datasource Example

RESOURCE_ADAPTERS=JDG

JDG_ID=infinispanRemQSDSL

JDG_MODULE_SLOT=main
JDG_MODULE_ID=0rg.jboss.teiid.resource-adapter.infinispan.dsl
JDG_CONNECTION_CLASS=org.teiid.resource.adapter.infinispan.dsl.InfinispanM
anagedConnectionFactory

JDG_CONNECTION_JNDI=java:/infinispanRemoteDSL

JDG_PROPERTY_CacheTypeMap="addressbook:com.redhat.xpaas.datagrid.hotrod.qu
ery.domain.Person;id"
JDG_PROPERTY_ProtobufDefinitionFile=/xpaas/addressbook.proto
JDG_PROPERTY_MessageDescriptor=xpaas.Person
JDG_PROPERTY_Module=com.client.xpaas.person.pojos
JDG_PROPERTY_MessageMarshallers=com.redhat.xpaas.datagrid.hotrod.query.dom
ain.Person:com.redhat.xpaas.datagrid.hotrod.query.marshallers.PersonMarsha
ller

JDG_PROPERTY_RemoteServerList=${DATAGRID_APP_HOTROD_SERVICE_HOST}: ${DATAGR
ID_APP_HOTROD_SERVICE_PORT}

JDG_PROPERTY_AuthUserName=jdg-user
JDG_PROPERTY_AuthPassword=JBoss.123
JDG_PROPERTY_AuthApplicationRealm=ApplicationRealm
JDG_PROPERTY_AuthServerName=jdg-server
JDG_PROPERTY_AuthSASLMechanism=DIGEST-MD5
JDG_PROPERTY_AdminUserName=jdg-user
JDG_PROPERTY_AdminPassword=JBoss.123

In the above example, line breaks separate the standard JDV for OpenShift resource adapter
configuration, the additional properties required for JDG for Openshift, and the authentication properties
for the JDG datasource. The PROPERTY_AuthUserName and PROPERTY_AdminUserName and
associated passwords correspond to the values provided to the JDG for OpenShift application template
in JDG for OpenShift Authentication Environment Variables section.

4.4.4. Protocol Buffers

Protocol buffers provide a mechanism for serializing structured data. Protocol buffers are supported in
Hot Rod as an alternative to standard Java serialization mechanism.

For more information on Protocol Buffers, see link:https://developers.google.com/protocol-
buffers/docs/overview

The following is an example of a .proto file taken from the dynamicvdb-datafederation quickstart used
in Example Workflow: Deploying the JDG for OpenShift as a Materialization Target Quickstart.

Example addressbook.proto file:

18

CHAPTER 4. GET STARTED

package quickstart;

/* @Indexed */
message Person {

/* @IndexedField */
required string name = 1;
/* @IndexedField(index=true, store=false) */
required int32 id = 2;
optional string email = 3;
enum PhoneType {
MOBILE = 0;
HOME = 1;
WORK = 2;
}

/* @Indexed */
message PhoneNumber {
/* @IndexedField */
required string number = 1;
/* @IndexedField(index=false, store=false) */
optional PhoneType type = 2 [default = HOME];
}
/* @IndexedField(index=true, store=false) */
repeated PhoneNumber phone = 4;

The above addressbook.proto example contains the object Person, which is made up of three primitive
fields - name, id, and email - and an embedded object PhoneNUmber, which itself contains two
primitive fields - number and PhoneType - and a repeatable field named phone.

19

Red Hat JBoss Data Virtualization 6.3 Red Hat JBoss Data Virtualization for OpenShift

CHAPTER 5. TUTORIALS

These tutorials build on from the environment created in the OpenShift Primer and from the information in
the previous chapter.

For a different end-to-end demonstration for deploying JDV for OpenShift, see the four-part Red Hat
JBoss Data Virtualization on OpenShift article series on the Red Hat Developer Program Blog:

e Part 1: Getting started
e Part2: Service enable your data
e Part 3: Data federation

e Part4: Bringing data from outside to inside the PaaS

5.1. EXAMPLE WORKFLOW: DEPLOYING A JDV PROJECT USING THE
JDV FOR OPENSHIFT IMAGE

This Example Worfklow downloads and deploys the dynamicvdb-datafederation quickstart available in
the jboss-openshift GitHub. This quickstart federates data from a relational data source (H2, Derby,
MySQL, or PostgreSQL) and an EXCEL file. H2 and Derby data sources are embedded in the JDV for
OpenShift pod; MySQL and PostgreSQL data sources deploy in separate pods. The default quickstart
deploys a H2 data source.

After deployment, this example will demonstrate how to use the @QS-DB-TYPE environment variable to
define an alternate data source. This variable is only applicable to the quickstart and is not valid for other
deployments.

5.1.1. Preparing Red Hat JBoss Data Virtualization for OpenShift Deployment

1. Create a new project:

I $ oc new-project jdv-app-demo

2. Create a service account to be used for the Red Hat JBoss Data Virtualization for OpenShift
deployment:

I $ oc create serviceaccount datavirt-service-account

3. Add the view role to the service account. This enables the service account to view all the
resources in the jdv-app-demo namespace, which is necessary for managing the cluster.

$ oc policy add-role-to-user view system:serviceaccount:jdv-app-
demo:datavirt-service-account

4. The Red Hat JBoss Data Virtualization for OpenShift template requires an SSL keystore and a
JGroups keystore.
These keystores are expected even if the application will not use https.
This example uses ‘keytool’, a package included with the Java Development Kit, to generate
self-signed certificates for these keystores. The following commands will prompt for passwords.

a. Generate a secure key for the SSL keystore:

20

https://access.redhat.com/documentation/en-us/red_hat_jboss_middleware_for_openshift/3/html/openshift_primer/
https://developers.redhat.com/blog/2016/12/06/red-hat-jboss-data-virtualization-on-openshift-part-1-getting-started/
https://developers.redhat.com/blog
https://developers.redhat.com/blog/2016/12/06/red-hat-jboss-data-virtualization-on-openshift-part-1-getting-started/
https://developers.redhat.com/blog/2016/12/07/red-hat-jboss-data-virtualization-on-openshift-part-2-service-enable-your-data/
https://developers.redhat.com/blog/2016/12/14/red-hat-jboss-data-virtualization-on-openshift-part-3-data-federation/
https://developers.redhat.com/blog/2017/01/26/red-hat-jboss-data-virtualization-on-openshift-part-4-bringing-data-from-outside-to-inside-the-paas

CHAPTER 5. TUTORIALS

$ keytool -genkeypair -alias https -storetype JKS -keystore
keystore. jks

b. Generate a secure key for the JGroups keystore:

$ keytool -genseckey -alias jgroups -storetype JCEKS -keystore
jgroups.jceks

5. Use the SSL and JGroup keystore files to create the keystore secret for the project:

I $ oc secret new datavirt-app-secret keystore.jks jgroups.jceks

6. Create a secret with the datasources.env file, an environment file containing the data sources
and necessary resource adapters. This file needs to be stored locally. Either clone the jboss-
openshift/openshift-quickstarts repository from GitHub, or download the environment file
from:
https://github.com/jboss-openshift/openshift-quickstarts/blob/master/datavirt/dynamicvdb-
datafederation/datasources.env

I $ oc secrets new datavirt-app-config datasources.env

7. Link the keystore and environment secrets to the service account created earlier:

$ oc secrets link datavirt-service-account datavirt-app-secret
datavirt-app-config

5.1.2. Deployment

Use the OpenShift web console to configure a JDV for OpenShift application template with the quickstart
details.

1. Log in to the OpenShift web console and select the jdv-app-demo project space.
2. Click Add to Projectto list all of the default image streams and templates.

3. Use the Filter by keyword search bar to limit the list to those that match datavirt and select
datavirt63-secure-s2i.

4. Specify the following:
SOURCE_REPOSITORY_URL.: https://github.com/jboss-openshift/openshift-quickstarts
SOURCE_REPOSITORY_REF: master
CONTEXT_DIR: datavirt/dynamicvdb-datafederation/app

5. Click Deploy.

5.1.3. Defining Alternate Data Sources

The dynamicvdb-datafederation quickstart uses the QS_DB_TYPE environment variable to determine
the data source to use. This value is set to h2 by default. After the quickstart has been deployed, this
variable can be added to the deployment configuration and modified so that an alternate data source is
used.

For example, to modify the deployment configuration so that the deployment uses a MySQL data source:

21

https://github.com/jboss-openshift/openshift-quickstarts/blob/master/datavirt/dynamicvdb-datafederation/datasources.env
https://github.com/jboss-openshift/openshift-quickstarts

Red Hat JBoss Data Virtualization 6.3 Red Hat JBoss Data Virtualization for OpenShift

I $ oc env dc/datavirt-app QS_DB_TYPE=mysql5

The dynamicvdb-datafederation quickstart has been prepared with H2, Derby, MySQL, and
PostgreSQL data sources.

5.2. EXAMPLE WORKFLOW: DEPLOYING THE JDG FOR OPENSHIFT
AS A MATERIALIZATION TARGET QUICKSTART

This Example Worfklow continues from Example Workflow: Deploying a JDV Project Using the JDV for
OpenShift Image, and presumes that the dynamicvdb-datafederation quickstart has been successfully

deployed. In this example, a JDG for OpenShift instance will be prepared and deployed so that JDV for
OpenShift can use it as a materialization target.

5.2.1. Preparing the Project to Deploy JDG for OpenShift

1. Ensure you are in the jdv-app-demo project:

I $ oc project jdv-app-demo

2. Create a service account for JDG for OpenShift:

I $ oc create serviceaccount datagrid-service-account

3. Add the view role to the service account. This enables the service account to view all the
resources in the jdv-app-demo namespace, which is necessary for managing the cluster.

$ oc policy add-role-to-user view system:serviceaccount:jdv-app-
demo:datagrid-service-account

4. Use the JGroup keystore file (created in Example Workflow: Deploying a JDV Project Using the
JDV for OpenShift Image to create the keystore secret for the project:

I $ oc secret new datagrid-app-secret jgroups.jceks

5. Link the keystore secret to the service account created earlier:

I $ oc secrets link datagrid-service-account datagrid-app-secret

5.2.2. Deploying JDG for OpenShift

A JDG for OpenShift instance needs to be deployed, with necessary caches specified, so that JDV for
OpenShift can use it as a materialization target for the databases. Any of the JDG for OpenShift
templates can be used, however non-persistent templates are recommended to gain clustering and high
availability benefits. This example uses the datagrid65-https template to take advantage of SSL.

1. Log in to the OpenShift web console and select the jdv-app-demo project space.

2. Click Add to Projectto list all of the default image streams and templates.

3. Use the Filter by keyword search bar to limit the list to those that match datagrid. You may
need to click See all to show the desired application template.

22

CHAPTER 5. TUTORIALS

4. Select the datagrid65-https template.

a. Inthe DATAVIRT_CACHE_NAMES environment variable field, enteraddressbook. This
configures the three caches required (addressbook, addressbook_staging, and
addressbook_alias) for addressbook to be used as a materialization cache for the

database.

b. Ensure the CACHE_TYPE_DEFAULT environment variable is set to replicated.

5. Click Deploy

5.2.3. Configure JDV for OpenShift to use JDG for OpenShift as a Materialization
Target

After the JDG for OpenShift instance is running, modify the JDV for OpenShift deployment so that it uses
JDG as a materialization target. Add the DATAGRID_MATERIALIZATION environment variable to the
build configuration:

I $ oc env bc/datavirt-app DATAGRID_MATERIALIZATION=true

23

Red Hat JBoss Data Virtualization 6.3 Red Hat JBoss Data Virtualization for OpenShift

CHAPTER 6. REFERENCE

6.1. GLOSSARY

DATA SOURCE

Repository for data. Query languages enable users to retrieve and manipulate data stored in these
repositories.

MODULE

A module is a logical grouping of classes used for class loading and dependency management.
Modules are defined in the EAP_HOME/modules/ directory of the application server. Each module
exists as a subdirectory, for example EAP_HOME/modules/org/apache/. Each module directory
then contains a slot subdirectory, which defaults to main and contains the module.xml configuration
file and any required JAR files.

See the Red Hat JBoss Enterprise Application Platform Configuration Guide for more information on
modules and module structure.

RESOURCE ADAPTERS

Deployable Java EE component that provides communication between a Java EE application and an
Enterprise Information System (EIS) using the Java Connector Architecture (JCA) specification. A
resource adapter is often provided by EIS vendors to allow easy integration of their products with
Java EE applications.

An EIS can be any other software system within an organization. Examples include: Enterprise
Resource Planning (ERP) systems, db systems, email servers, and proprietary messaging systems.

A resource adapter is packaged in a RAR (Resource Adapter Archive) file which can be deployed to
JBoss EAP. A RAR file may also be included in an EAR (Enterprise Archive) deployment.

TRANSLATOR

Provides an abstraction layer between the query engine and the physical data source. This layer
converts query commands into source specific commands and executes them using a resource
adapter. The translator also converts the result data that comes from the physical source into the form
that the query engine requires

VIRTUAL DATABASE (VDB)

A VDB is a container for components that integrate data from multiple disparate data sources,
allowing applications to access and query the data as though it is a single database, using a single
uniform API.

A VDB is composed of various data models and configuration information that describes which, and
how, data sources are to be integrated. In particular, 'source models' are used to represent the
structure and characteristics of the incorporated physical data sources, and 'view models' represent
the structure and characteristics of the integrated data that is exposed to applications.

6.2. ARTIFACT REPOSITORY MIRRORS

A repository in Maven holds build artifacts and dependencies of various types (all the project jars, library
jar, plugins or any other project specific artifacts). It also specifies locations from where to download
artifacts from, while performing the S2I build. Besides using central repositories, it is a common practice
for organizations to deploy a local custom repository (mirror).

Benefits of using a mirror are:

24

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/version-7.0/configuration-guide/#modules

CHAPTER 6. REFERENCE

e Availability of a synchronized mirror, which is geographically closer and faster.
e Ability to have greater control over the repository content.

e Possibility to share artifacts across different teams (developers, Cl), without the need to rely on
public servers and repositories.

e |mproved build times.
Often, a repository manager can serve as local cache to a mirror. Assuming that the repository manager
is already deployed and reachable externally at http://10.0.0.1:8080/repository/internal/, the S21 build

can then use this manager by supplying the MAVEN_MIRROR_URL environment variable to the build
configuration of the application as follows:

1. Identify the name of the build configuration to apply MAVEN_MIRROR_URL variable against:

oc get bc -o name
buildconfig/jdv

2. Update build configuration of jdv with a MAVEN_MIRROR_URL environment variable

oc env bc/jdv
MAVEN_MIRROR_URL="http://10.0.0.1:8080/repository/internal/"
buildconfig "jdv" updated

3. Verify the setting
oc env bc/jdv --list

buildconfigs jdv
MAVEN_MIRROR_URL=http://10.0.0.1:8080/repository/internal/

4. Schedule new build of the application

NOTE

During application build, you will notice that Maven dependencies are pulled from the
repository manager, instead of the default public repositories. Also, after the build is
finished, you will see that the mirror is filled with all the dependencies that were retrieved
and used during the build.

25

	Table of Contents
	CHAPTER 1. 6.3 IMAGE DEPRECATED
	CHAPTER 2. RED HAT JBOSS DATA VIRTUALIZATION FOR OPENSHIFT
	CHAPTER 3. BEFORE YOU BEGIN
	3.1. COMPARISON: JDV FOR OPENSHIFT IMAGE AND RED HAT JDV
	3.2. VERSION COMPATIBILITY AND SUPPORT
	3.3. INITIAL SETUP

	CHAPTER 4. GET STARTED
	4.1. USING THE JDV FOR OPENSHIFT IMAGE STREAMS AND APPLICATION TEMPLATES
	4.2. PREPARING JDV PROJECT ARTIFACTS
	4.2.1. S2I Artifacts
	4.2.1.1. Virtual Databases (VDB)
	4.2.1.2. Modules, Drivers, Translators, and Generic Deployments

	4.2.2. Runtime Artifacts
	4.2.2.1. Datasources
	4.2.2.2. Resource Adapters

	4.3. PREPARING AND DEPLOYING THE JDV FOR OPENSHIFT APPLICATION TEMPLATES
	4.3.1. Configuring Keystores
	4.3.2. Generating the Keystore Secret
	4.3.3. Generating the Artifact Secrets
	4.3.4. Creating the Service Account
	4.3.5. Configuring Red Hat Single-Sign On Authentication
	4.3.6. Using the OpenShift Web Console

	4.4. USING JBOSS DATAGRID FOR OPENSHIFT WITH JDV FOR OPENSHIFT
	4.4.1. Using the JDG for OpenShift Application Templates
	4.4.2. JDG for OpenShift Authentication Environment Variables
	4.4.3. JDG for OpenShift Resource Adapter Properties
	4.4.4. Protocol Buffers

	CHAPTER 5. TUTORIALS
	5.1. EXAMPLE WORKFLOW: DEPLOYING A JDV PROJECT USING THE JDV FOR OPENSHIFT IMAGE
	5.1.1. Preparing Red Hat JBoss Data Virtualization for OpenShift Deployment
	5.1.2. Deployment
	5.1.3. Defining Alternate Data Sources

	5.2. EXAMPLE WORKFLOW: DEPLOYING THE JDG FOR OPENSHIFT AS A MATERIALIZATION TARGET QUICKSTART
	5.2.1. Preparing the Project to Deploy JDG for OpenShift
	5.2.2. Deploying JDG for OpenShift
	5.2.3. Configure JDV for OpenShift to use JDG for OpenShift as a Materialization Target

	CHAPTER 6. REFERENCE
	6.1. GLOSSARY
	6.2. ARTIFACT REPOSITORY MIRRORS

