‘® redhat.

Red Hat JBoss A-MQ 6.1

Tuning Guide

Optimize Red Hat JBoss A-MQ for your environment

Last Updated: 2017-10-13

Red Hat JBoss A-MQ 6.1 Tuning Guide

Optimize Red Hat JBoss A-MQ for your environment

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2014 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

.In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is areqgistered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes many of the tricks that can be used to fine tune a broker instance.

Table of Contents

Table of Contents

CHAPTER 1. INTRODUCTION TO PERFORMANCE TUNING ...ttt iiiiiiiiiiieiiieeinneennnens 3
LIMITING FACTORS 3
NON-PERSISTENT AND PERSISTENT BROKERS 3
BROKER NETWORKS 3

CHAPTER 2. GENERAL TUNING TECHNIQUESttt ittt ieiieeieeeianecnnnees 4

2.1.SYSTEM ENVIRONMENT 4
2.2.CO-LOCATING THE BROKER 4
2.3. OPTIMIZING THE PROTOCOLS 6
2.4. MESSAGE ENCODING 8
2.5. THREADING OPTIMIZATIONS 8
2.6. VERTICAL SCALING 9
2.7.HORIZONTAL SCALING 9

2.8.INTEGRATION WITH SPRING AND CAMEL "
2.9. OPTIMIZING MEMORY USAGE IN THE BROKER 12
CHAPTER 3. CONSUMER PERFORMANCE ...t ittt iiiiitiieeaineeanneeennneannns 14
3.1. ACKNOWLEDGMENT MODES 14
3.2. REDUCING CONTEXT SWITCHING 15
3.3. PREFETCH LIMIT 18
CHAPTER 4. PRODUCER PERFORMANCE ...ttt ittt iiiiitiiteeanneeennseannneannns 20
4.1. ASYNC SENDS 20
4.2. FLOW CONTROL 20
CHAPTER 5. MANAGING SLOW CONSUMERS ... ittt ittt iiiiiiiiiieiieeeineeennneennns 26
OVERVIEW 26
LIMITING MESSAGE RETENTION 26
ABORTING SLOW CONSUMERS 27
CHAPTER 6. PERSISTENT MESSAGINGottt ittt iiiiiiiieetineeetaeeennneannns 30
6.1. SERIALIZING TO DISK 30
6.2. KAHADB OPTIMIZATION 33
6.3. VMCURSOR ON DESTINATION 35
6.4. JMS TRANSACTIONS 36

Red Hat JBoss A-MQ 6.1 Tuning Guide

CHAPTER 1. INTRODUCTION TO PERFORMANCE TUNING

CHAPTER1.INTRODUCTION TO PERFORMANCE TUNING

LIMITING FACTORS

Before considering how to improve performance, you need to consider what the limiting factors are.
The main obstacles to a fast messaging system are, as follows:

e The speed at which messages are written to and read from disk (persistent brokers only).
e The speed at which messages can be marshalled and sent over the network.
e Context switching, due to multi-threading.

Ultimately, the tuning suggestions in this guide tackle the preceding limits in various ways.

NON-PERSISTENT AND PERSISTENT BROKERS

The range of options for tuning non-persistent brokers are slightly different from the options for
tuning persistent brokers. Most of the tuning techniques described in this chapter can be applied either
to non-persistent or persistent brokers (with the exception of flow control, which is only relevant to
non-persistent brokers).

Techniques specific to persistent brokers are discussed in Chapter 6, Persistent Messaging.

BROKER NETWORKS

One of the major techniques for coping with large scale messaging systems is to establish a broker
network, with brokers deployed on multiple hosts. This topic is discussed briefly in Section 2.7,
“Horizontal Scaling”, but for a comprehensive discussion and explanation of how to set up a broker
network, please consult Using Networks of Brokers.

Red Hat JBoss A-MQ 6.1 Tuning Guide

CHAPTER 2. GENERAL TUNING TECHNIQUES

Abstract

This chapter outlines the tuning techniques that can be used to optimize the performance of either a
non-persistent broker or a persistent broker.

2.1.SYSTEM ENVIRONMENT

Overview

Before discussing how to tune the performance of a Red Hat JBoss A-MQ application, it is worth
recalling that performance is also affected by the system environment.

Disk speed

For persistent brokers, disk speed is a significant factor affecting performance. For example, whereas
the typical seek time for an ordinary desktop drive is 9ms, the seek time of a high-end server disk
could be as little as 3ms. You should also ensure that disks do not become excessively fragmented.

Network performance

For both persistent and non-persistent brokers, the network speed can be a limiting factor. Evidently,
there are limits to what can be achieved through JBoss A-MQ tuning, if the underlying network is very
slow. One strategy that you can try is to enable compression of [arge messages (see the section called
“Enabling compression”). In this case, it is also important to avoid delays caused by latency; for this
reason, it might be a good idea to enable more asynchronous behavior.

Hardware specification

Relevant aspects of the underlying hardware include the speed and number of CPUs, and the memory
available to the broker. In particular, increasing the available memory can bring several performance
advantages.

For example, if the broker's entire B-tree message index can fit into memory, this significantly reduces
the amount of reading and writing to disk that is required. Also, if some consumers are slow, causing
messages to back up in the broker, it can be an advantage to have a large amount of memory available
to buffer the pending messages.

Memory available to the JVM

To increase the amount of memory available to a JVM instance, use the -Xmx option. For example, to
increase JVM memory to 2048 MB, add -Xmx2048M (or equivalently, -Xmx2G) as a JVM option.

2.2. CO-LOCATING THE BROKER

Overview

An obvious way to improve network performance is to eliminate one of the hops in the messaging
application. With a standalone broker, at least two hops are required to route a message from producer
to consumer: the producer-to-broker hop and the broker-to-consumer hop. On the other hand, by

CHAPTER 2. GENERAL TUNING TECHNIQUES

embedding the broker (either in the producer or in the consumer), it is possible to eliminate one of the
hops, thereby halving the load on the network.

Figure 2.1, “Broker Co-located with Producer” shows an example of a data feed that acts as a message
producer, sending a high volume of messages through the broker. In this case, it makes perfect sense
for the broker to be co-located with the data feed, so that messages can be sent directly to the
consumers, without the need for an intermediate hop. The simplest way to create an embedded broker
is to exploit Red Hat JBoss A-MQ's vim: // transport.

Figure 2.1. Broker Co-located with Producer

MessageProducer
co-located with embedded
broker

Consumer optimized to
receive messages as fast
as possible

tep:Mocalhost:B1616

broker has a tcp transport
connector

The vm:// transport

You can connect to avm: // endpoint from a producer or a consumer in just the same way as you
connecttoa tcp:// endpoint (or any other protocol supported by Red Hat JBoss A-MQ). But the
effect of connecting to a vm: // endpoint is quite different from conectingtoa tcp:// endpoint:
whereas a tcp:// endpoint initiates a connection to a remote broker instance, the vm:// endpoint
actually creates a local, embedded broker instance The embedded broker runs inside the same JVM as
the client and messages are sent to the broker through an internal channel, bypassing the network.

For example, an Apache Camel client can create a simple, embedded broker instance by connecting to
a URL of the following form:

I vm://brokerName

Where brokerName uniquely identifies the embedded broker instance. This URL creates a simple
broker instance with a default configuration. If you want to define the broker configuration precisely,
however, the most convenient approach is to specify a broker configuration file, by setting the
brokerConfig option. For example, to create a myBroker instance that takes its configuration from
the activemq.xml configuration file, define the following VM endpoint:

I vm://myBroker?brokerConfig=xbean:activemq.xml
For more details, see the Connection Reference.

A simple optimization

By default, the embedded broker operates in asynchronous mode, so that calls to a send method

Red Hat JBoss A-MQ 6.1 Tuning Guide

return immediately (in other words, messages are dispatched to consumers in a separate thread). If
you turn off asynchronous mode, however, you can reduce the amount of context switching. For
example, you can disable asynchronous mode on a VM endpoint as follows:

I vm://brokerName?async=false

NOTE

If both the broker option, optimizedDispatch, and the consumer option,
dispatchAsync, are also configured to disable asynchronous behavior, the calling
thread can actually dispatch directly to consumers.

2.3. OPTIMIZING THE PROTOCOLS

Overview

Protocol optimizations can be made in different protocol layers, as follows:
o the section called “TCP transport”.
e the section called “OpenWire protocol”.

o the section called “Enabling compression”.

TCP transport

In general, it is usually possible to improve the performance of the TCP layer by increasing buffer sizes,
as follows:

e Socket buffer size-the default TCP socket buffer size is 64 KB. While this is adequate for the
speed of networks in use at the time TCP was originally designed, this buffer size is sub-
optimal for modern high-speed networks. The following rule of thumb can be used to estimate
the optimal TCP socket buffer size:

Buffer Size = Bandwidth x Round-Trip-Time
Where the Round-Trip-Time is the time between initially sending a TCP packet and receiving an

acknowledgement of that packet (ping time). Typically, it is a good idea to try doubling the
socket buffer size to 128 KB. For example:

I tcp://hostA:61617?socketBufferSize=131072

For more details, see the Wikipedia article on Network Improvement.

e I/0 buffer size-the |/0 buffer is used to buffer the data flowing between the TCP layer and the
protocol that is layered above it (such as OpenWire). The default |/O buffer size is 8 KB and
you could try doubling this size to achieve better performance. For example:

I tcp://hostA:61617?ioBufferSize=16384

OpenWire protocol

http://en.wikipedia.org/wiki/Network_Improvement

CHAPTER 2. GENERAL TUNING TECHNIQUES

The OpenWire protocol exposes several options that can affect performance, as shown in Table 2.1,
“OpenWire Parameters Affecting Performance”.

Table 2.1. OpenWire Parameters Affecting Performance

Parameter Default Description

cacheEnabled true Specifies whether to cache
commonly repeated values, in
order to optimize marshaling.

cacheSize 1024 The number of values to cache.
Increase this value to improve
performance of marshaling.

tcpNoDelayEnabled false When true, disable the Nagles
algorithm. The Nagles algorithm
was devised to avoid sending tiny
TCP packets containing only one
or two bytes of data; for example,
when TCP is used with the Telnet
protocol. If you disable the Nagles
algorithm, packets can be sent
more promptly, but there is a risk
that the number of very small
packets will increase.

tightEncodingEnabled true When true, implement a more
compact encoding of basic data
types. This results in smaller
messages and better network
performance, but comes at a cost
of more calculation and demands
made on CPU time. A trade off is
therefore required: you need to
determine whether the network
or the CPU is the main factor that
limits performance.

To set any of these options on an Apache Camel URI, you must add the wireFormat . prefix. For
example, to double the size of the OpenWire cache, you can specify the cache size on a URI as follows:

I tcp://hostA:61617?wireFormat.cacheSize=2048

Enabling compression

If your application sends large messages and you know that your network is slow, it might be
worthwhile to enable compression on your connections. When compression is enabled, the body of
each JMS message (but not the headers) is compressed before it is sent across the wire. This results in
smaller messages and better network performance. On the other hand, it has the disadvantage of
being CPU intensive.

http://en.wikipedia.org/wiki/Nagles_algorithm

Red Hat JBoss A-MQ 6.1 Tuning Guide

To enable compression, enable the useCompression option on the ActiveMQConnectionFactory
class. For example, to initialize a JMS connection with compression enabled in a Java client, insert the
following code:

// Java

// Create the connection.
ActiveMQConnectionFactory connectionFactory = new
ActiveMQConnectionFactory(user, password, url);
connectionFactory.setUseCompression(true);

Connection connection = connectionFactory.createConnection();
connection.start();

Alternatively, you can enable compression by setting the jms.useCompression option on a producer
URI-for example:

I tcp://hostA:61617?jms.useCompression=true

2.4. MESSAGE ENCODING

Message body type

JMS defines five message body types:
e StreamMessage
e MapMessage
e TextMessage
e ObjectMessage
e BytesMessage

Of these message types, BytesMessage (a stream of uninterpreted bytes) is the fastest, while
ObjectMessage (serialization of a Java object) is the slowest.
Encoding recommendation

For best performance, therefore, it is recommended that you use BytesMessage whenever possible.
We suggest that you use Google's Protobuf, which has excellent performance characteristics.

2.5. THREADING OPTIMIZATIONS

Optimized dispatch

On the broker, you can reduce the number of required threads by setting the optimizedDispatch
option to true on all queue destinations. When this option is enabled, the broker no longer uses a
dedicated thread to dispatch messages to each destination.

For example, to enable the optimizedDispatch option on all queue destinations, insert the following
policy entry into the broker configuration:

http://code.google.com/p/protobuf/

CHAPTER 2. GENERAL TUNING TECHNIQUES

<broker ... >
<destinationPolicy>
<policyMap>
<policyEntries>
<policyEntry queue=">" optimizedDispatch="true” />
</policyEntries>
</policyMap>
</destinationPolicy>
</broker>
Where the value of the queue attribute, >, is a wildcard that matches all queue names.

2.6. VERTICAL SCALING

Definition

Vertical scaling refers to the capacity of a single broker to support large numbers of connections from
consumers and producers.

Tricks to optimize vertical scaling

You can exploit the following tricks to optimize vertical scaling in Red Hat JBoss A-MQ:

o NIO transport on the broker-to reduce the number of threads required, use the NIO transport
(instead of the TCP transport) when defining transport connectors in the broker. Do not use the
NIO transport in clients, it is only meant to be used in the broker.

o Allocate more memory to broker-to increase the amount of memory available to the broker,
pass the -Xmx option to the JVM.

® Reduce initial thread stack size-to allocate a smaller initial stack size for threads, pass the -Xss
option to the JVM.

2.7.HORIZONTAL SCALING

Overview

Horizontal scaling refers to the strategy of increasing capacity by adding multiple brokers to your
messaging network. Figure 2.2, “Scaling with Multiple Brokers” illustrates how a broker network can
be used to support a large number of consumers.

Red Hat JBoss A-MQ 6.1 Tuning Guide

Figure 2.2. Scaling with Multiple Brokers

Consumer
Consumer
r

.I

You can improve the scalability of your messaging system by adding multiple brokers to the system,
thus escaping the inherent resource limits of a broker deployed on a single machine. Brokers can be
combined into a network by adding network connectorsbetween the brokers, which enables you to
define broker networks with an arbitrary topology.

Broker networks

When brokers are linked together as a network, routes from producers to consumers are created
dynamically, as clients connect to and disconnect from the network. That is, with the appropriate
topology, a consumer can connect to any broker in the network and the network automatically routes
messages from producers attached at any other point in the network.

For a detailed discussion of how to set up broker networks, see "Using Networks of Brokers".

Static scales better than dynamic

Red Hat JBoss A-MQ offers two alternative strategies for routing messages through a broker network:
static propagation and dynamic propagation.

Although dynamic propagation is more flexible, it necessitates sending advisory messages throughout
the broker network, which the brokers then use to figure out the optimal route in a dynamic way. As
you scale up the network, there is a danger that the advisory messages could swamp the traffic in the
broker network.

Static propagation requires you to specify routes explicitly, by telling the broker where to forward
messages for specific queues and topics (you can use pattern matching). In this case, you can

10

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.1/html/Using_Networks_of_Brokers/

CHAPTER 2. GENERAL TUNING TECHNIQUES

configure the brokers to disable advisory messages altogether, which eliminates the scalability
problems associated with advisory messages.

Asynchronous network connection establishment

By default, a broker establishes connections to its peers in the network using a single thread. If the
broker connects to a large number of peers, however, the single-threaded approach can result in a very
slow broker start-up time. For example, if one or more of the peers responds slowly, the initiating
broker has to wait until that slow connection is established before proceeding to establish the
remaining connections.

In this case, you can accelerate the broker start-up by enabling asynchronous network connection
establishment. This feature employs a thread pool to establish network connections in parallel. Set the
networkConnectorStartAsync attribute on the broker element to true, as follows:

<beans ...>
<broker ... networkConnectorStartAsync="true">...</broker>
</beans>

Client-side traffic partitioning

An alternative horizontal scaling strateqgy is to deploy multiple brokers, but to leave them isolated from
one another, so that there is no broker network. In this case, you can leave it up to the clients to decide
which broker to send messages to or receive messages from. This requires messages to be partitioned
into different categories (for example, based on the destination name), so that specific message
categories are sent to a particular broker.

The advantages of this approach are:
e You can use all the tuning techniques for vertical scaling.

e You can achieve better horizontal scalability than a network of brokers (because there is less
broker crosstalk).

The disadvantage of this approach is that your clients are slightly more complex, because they must
implement the partitioning of messages into different categories and the selection of the appropriate
broker.

2.8.INTEGRATION WITH SPRING AND CAMEL

Overview

Spring supports a useful abstraction, InsTemplate, which allows you to hide some of the lower level
JMS details when sending messages and so on. One thing to bear in mind about JmsTemplate,
however, is that it creates a new connection, session, and producer for every message it sends, which is
very inefficient. It is implemented like this in order to work inside an EJB container, which typically
provides a special JMS connection factory that supports connection pooling.

If you are not using an ESB container to manage your JMS connections, we recommend that you use
the pooling JMS connection provider, org.apache.activemq.pool.PooledConnectionFactory,
from the activemq-pool artifact, which pools JMS resources to work efficiently with Spring's
JmsTemplate or with EJBs.

1

Red Hat JBoss A-MQ 6.1 Tuning Guide

Creating a pooled connection factory

The PooledConnectionFactory is implemented as a wrapper class that is meant to be chained with
another connection factory instance. For example, you could use a PooledConnectionFactory
instance to wrap a plain Red Hat JBoss A-MQ connection factory, or to wrap an
ActiveMQSslConnectionFactory, and so on.

Example

For example, to instantiate a pooled connection factory, jmsFactory, that works efficiently with the
Spring JmsTemplate instance, myJmsTemplate, define the following bean instances in your Spring
configuration file:

<!-- A pooling-based JMS provider -->
<bean id="jmsFactory"
class="org.apache.activemq.pool.PooledConnectionFactory" destroy-
method="stop">
<property name="connectionFactory">
<bean class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL">
<value>tcp://localhost:61616</value>
</property>
</bean>
</property>
</bean>

<!-- Spring JMS Template -->
<bean id="myJmsTemplate"
class="org.springframework.jms.core.JmsTemplate">
<property name="connectionFactory">
<ref local="jmsFactory"/>
</property>
</bean>

In the preceding example, the pooled connection factory is chained with a plain
ActiveMQConnectionFactory instance that opens connections to the tcp://localhost:61616

broker endpoint.
2.9. OPTIMIZING MEMORY USAGE IN THE BROKER

Optimize message paging

By setting the page size attributes on the policyEntry element, you can tune the message paging to
match the amount of memory available in the broker. For example, if there is very large queue and lots
of destination memory, increasing the maxBrowsePage attribute would allow more of those messages
to be visible when browsing a queue.

Destination policies to control paging

The following destination policies control message paging (the number of messages that are pulled
into memory from the message store, each time the memory is emptied):

maxPageSize

12

CHAPTER 2. GENERAL TUNING TECHNIQUES

The maximum number of messages paged into memory for sending to a destination.

maxBrowsePageSize

The maximum number of messages paged into memory for browsing a queue (see).

NOTE
5 The number of messages paged in for browsing cannot exceed the destination's
memoryLimit setting.
maxExpirePageSize

The maximum number of messages paged into memory to check for expired messages.

13

Red Hat JBoss A-MQ 6.1 Tuning Guide

CHAPTER 3. CONSUMER PERFORMANCE

3.1. ACKNOWLEDGMENT MODES

Overview

The choice of acknowledgement modein a consumer has a large impact on performance, because each
acknowledgment message incurs the overhead of a message send over the network. The key to
improving performance in this area is to send acknowledgments in batches, rather than acknowledging
each message individually.

Supported acknowledgment modes

Red Hat JBoss A-MQ supports the following acknowledgment modes:

Session.AUTO_ACKNOWLEDGE

(Default) In this mode, the JMS session automatically acknowledges messages as soon as they are
received. In particular, the JMS session acknowledges messages before dispatching them to the
application layer. For example, if the consumer application calls MessageConsumer .receive(),
the message has already been acknowledged before the call returns.

Session.CLIENT_ACKNOWLEDGE

In this mode, the client application code explicitly calls the Message .acknowledge () method to
acknowledge the message. In Apache Camel, this acknowledges not just the message on which it is
invoked, but also any other messages in the consumer that have already been completely
processed.

Session.DUPS_OK_ACKNOWLEDGE

In this mode, the JMS session automatically acknowledges messages, but does so in a lazy manner.
If JMS fails while this mode is used, some messages that were completely processed could remain
unacknowledged. When JMS is restarted, these messages will be re-sent (duplicate messages).

This is one of the fastest acknowledgment modes, but the consumer must be able to cope with
possible duplicate messages (for example, by detecting and discarding duplicates).

Session.SESSION_TRANSACTED

When using transactions, the session implicitly works in SESSION_TRANSACTED mode. The
response to the transaction commit is then equivalent to message acknowledgment.

When JMS transactions are used to group multiple messages, transaction mode is very efficient.
But avoid using a transaction to send a single message, because this incurs the extra overhead of
committing or rolling back the transaction.

ActiveMQSession.INDIVIDUAL_ACKNOWLEDGE

This non-standard mode is similar to CLIENT_ACKNOWLEDGE, except that it acknowledges only the
message on which it is invoked. It does not flush acknowledgments for any other completed
messages.

optimizeAcknowledge option

14

CHAPTER 3. CONSUMER PERFORMANCE

The optimizeAcknowledge option is exposed on the ActiveMQConnectionFactory class and
must be used in conjunction with the Session.AUTO_ACKNOWLEDGE mode. When set to true, the

consumer acknowledges receipt of messages in batches, where the batch size is set to 65% of the
prefetch limit. Alternatively, if message consumption is slow, the batch acknowledgment will be sent
after 300ms. Default is false.

You can set this option on a consumer URI, as follows:

I tcp://hostA:61617?jms.optimizeAcknowledge=true

NOTE

The optimizeAcknowledge option is only supported by the JMS client API.

Choosing the acknowledgment mode

In general, you can achieve the best performance either using JMS transactions, and grouping several
messages into a single transaction, or by selecting the DUPS_OK_ACKNOWLEDGE mode, which requires
you to implement duplicate detection code in your consumer.

A typical strategy for implementing duplicate detection is to insert a unique message ID in a JMS
header on the producer side and then to store the received IDs on the consumer side. If you are using
Red Hat JBoss A-MQ in combination with Apache Camel, you can easily use the Idempotent Consumer
pattern to implement duplicate detection.

3.2. REDUCING CONTEXT SWITCHING

Overview

Through the consumer configuration options, there are two different ways in which you can optimize
the threading model:

o the section called “Optimize message dispatching on the broker side” .

o the section called “Optimize message reception on the consumer side” .

Optimize message dispatching on the broker side

On the broker side, the broker normally dispatches messages to consumers asynchronously, which
usually gives the best performance (that is, it enables the broker to cope better with slow consumers).
If you are sure that your consumers are always fast, however, you could achieve better performance
by disabling asynchronous dispatch on the broker (thereby avoiding the cost of unnecessary context
switching).

Broker-side asynchronous dispatching can be enabled or disabled at the granularity of individual
consumers. Hence, you can disable asynchronous dispatching for your fast consumers, but leave it
enabled for your (possibly) slow consumers.

To disable broker-side asynchronous dispatching, set the consumer .dispatchAsync option to
false on the transport URI used by the consumer. For example, to disable asynchronous dispatch to
the TEST.QUEUE queue, use the following URI on the consumer side:

I TEST.QUEUE?consumer .dispatchAsync=false

15

http://camel.apache.org/idempotent-consumer.html

Red Hat JBoss A-MQ 6.1 Tuning Guide

It is also possible to disable asynchronous dispatch by setting the dispatchAsync property to false
on the ActiveMQ connection factory—for example:

// Java
I ((ActiveMQConnectionFactory)connectionFactory).setDispatchAsync(false);

Optimize message reception on the consumer side

On the consumer side, there are two layers of threads responsible for receiving incoming messages:
the Session threads and the MessageConsumer threads. In the special case where only one session
is associated with a connection, the two layers are redundant and it is possible to optimize the
threading model by eliminating the thread associated with the session layer. This section explains how
to enable this consumer threading optimization.

Default consumer threading model

Figure 3.1, “Default Consumer Threading Model” gives an overview of the default threading model on a
consumer. The first thread layer is responsible for pulling messages directly from the transport layer,
marshalling each message, and inserting the message into a queue inside a javax.jms.Session
instance. The second thread layer consists of a pool of threads, where each thread is associated with a
javax.jms.MessageConsumer instance. Each thread in this layer picks the relevant messages out of
the session queue, inserting each message into a queue inside the javax. jms .MessageConsumer
instance.

Figure 3.1. Default Consumer Threading Model

Messages pulled off the

transport and passed to a Session internal queue -
session messages are passed from
here to interested Messages
e MessageConsumers are dispatched to a
T

Messagelistener or gueued

_ <E7”“"<j <) [‘/\M(]. ﬂn be received()

\)

-
]
e

e I

Message acknowledge
passed back 1o the broker
when message delivered

(BB

MessageConsumer
internal quaue used
when a consumer
doesn't have a
message listener

Optimized consumer threading model

16

CHAPTER 3. CONSUMER PERFORMANCE

Figure 3.2, “Optimized Consumer Threading Model” gives an overview of the optimized consumer
threading model. This threading model can be enabled, only if there is no more than one session
associated with the connection. In this case, it is possible to optimize away the session threading layer
and the MessageConsumer threads can then pull messages directly from the transport layer.

Figure 3.2. Optimized Consumer Threading Model

Messages pulled off the
transport and passed to
session

Messages
T T A are dispatched to a

| =

. Messagelistener or gueued

- 1o be received()
L] i m

Message acknowledge
passed back 1o the broker
when message delivered

MessageConsumer
internal quaue used
when a consumer
doesn't have a
message listener

Prerequisites

This threading optimization only works, if the following prerequisites are satisfied:

1. There must only be one JMS session on the connection. If there is more than one session, a
separate thread is always used for each session, irrespective of the value of the
alwaysSessionAsync flag.

2. One of the following acknowledgment modes must be selected:
e Session.DUPS_OK_ACKNOWLEDGE

e Session.AUTO_ACKNOWLEDGE

alwaysSessionAsync option

To enable the consumer threading optimization, set the alwaysSessionAsync option to false on
the ActiveMQConnectionFactory (defaultis true).

NOTE

The optimizeAcknowledge option is only supported by the JMS client API.

17

Red Hat JBoss A-MQ 6.1 Tuning Guide

Example

The following example shows how to initialize a JMS connection and session on a consumer that
exploits the threading optimization by switching off the alwaysSessionAsync flag:

// Java

// Create the connection.

ActiveMQConnectionFactory connectionFactory = new
ActiveMQConnectionFactory(user, password, url);
connectionFactory.setAlwaysSessionAsync(false);

Connection connection = connectionFactory.createConnection();
connection.start();

// Create the one-and-only session on this connection.
Session session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE) ;

3.3. PREFETCH LIMIT

Overview

If a consumer is slow to acknowledge messages, it can happen that the broker sends it another
message before the previous message is acknowledged. If the consumer continues to be slow,
moreover, the number of unacknowledged messages can grow continuously larger. The broker does
not continue to send messages indefinitely in these circumstances. When the number of
unacknowledged messages reaches a set limit—the prefetch limit—the server ceases sending new
messages to the consumer. No more messages will be sent until the consumer starts sending back
some acknowledgments.

Prefetch limits

Different prefetch limits can be set for each consumer type:

Queue consumer
Default prefetch limit is 1000.

If you are using a collection of consumers to distibute the workload (many consumers processing
messages from the same queue), you typically want this limit to be small. If one consumer is
allowed to accumulate a large number of unacknowledged messages, it could starve the other
consumers of messages. Also, if the consumer fails, there would be a large number of messages
unavailable for processing until the failed consumer is restored.

Queue browser
Default prefetch limit is 500.

Topic consumer
Default prefetch limit is 32766.

The default limit of 32766 is the largest value of a short and is the maximum possible value of the
prefetch limit.

18

CHAPTER 3. CONSUMER PERFORMANCE

Durable topic subscriber
Default prefetch limit is 100.

You can typically improve the efficientcy of a consumer by increasing this prefetch limit.

Optimizing prefetch limits

Typically, it is a good idea to optimize queue consumers and durable topic subscribers as follows:

o Queue consumers—if you have just a single consumer attached to a queue, you can leave the
prefetch limit at a fairly large value. But if you are using a group of consumers to distribute the
workload, it is usually better to restrict the prefetch limit to a very small number—for example,
Oorl.

e Durable topic subscribers-the efficiency of topic subscribers is generally improved by
increasing the prefetch limit. Try increasing the limit to 1000.

19

Red Hat JBoss A-MQ 6.1 Tuning Guide

CHAPTER 4. PRODUCER PERFORMANCE

4.1. ASYNC SENDS

Overview

ActiveMQ supports sending messages to a broker in either synchronous or asynchronous mode. The
selected mode has a large impact on the latency of the send call: synchronous mode increases latency
and can lead to a reduction in the producer's throughput; asynchronous mode generally improves
throughput, but it also affects reliability.

Red Hat JBoss A-MQ sends messages in asynchronous mode by default in several cases. It is only in
those cases where the JMS specification requires the use of synchronous mode that the producer
defaults to synchronous sending. In particular, JMS requires synchronous sends when persistent
messages are being sent outside of a transaction.

If you are not using transactions and are sending persistent messages, each send is synchronous and
blocks until the broker has sent an acknowledgement back to the producer to confirm that the
message is safely persisted to disk. This acknowledgment guarantees that the message will not be lost,
but it also has a large latency cost.

Many high performance applications are designed to tolerate a small amount of message loss in failure
scenarios. If your application is designed in this fashion, you can enable the use of async sends to
increase throughput, even when using persistent messages.

Configuring on a transport URI

To enable async sends at the granularity level of a single producer, set the jms.useAsyncSend option
to true on the transport URI that you use to connect to the broker. For example:

I tcp://locahost:61616?jms.useAsyncSend=true

Configuring on a connection factory

To enable async sends at the granularity level of a connection factory, set the useAsyncSend
property to true directly on the ActiveMQConnectionFactory instance. For example:

// Java
I ((ActiveMQConnectionFactory)connectionFactory).setUseAsyncSend(true);

Configuring on a connection

To enable async sends at the granularity level of a JMS connection, set the useAsyncSend property to
truedirectly on the ActiveMQConnection instance. For example:

// Java
((ActiveMQConnection)connection).setUseAsyncSend(true);

4.2. FLOW CONTROL

20

CHAPTER 4. PRODUCER PERFORMANCE

Overview

Memory limits, when configured, prevent the broker from running out of resources. The default
behavior, when a limit is reached, is to block the sending thread in the broker, which blocks the
destination and the connection.

Producer flow control is a mechanism that pushes the blocking behavior onto the client, so that the
producer thread blocks if the broker has no space. With producer flow control, the producer has a send
window that is dependent on broker memory. When the send window is full, it blocks on the client.

Flow control enabled

Figure 4.1, “Broker with Flow Control Enabled” gives an overview of what happens to a messaging
application when flow control is enabled.

Figure 4.1. Broker with Flow Control Enabled

Broker will only dispatch
maore messages when the
consumer has space

Consumer sends an
~._ ack whenits consumed

Messages awaiting o]
dispatch to a consumer H
Consumer

Producer waits until notified
by the broker it has more
space

If a consumer is very slow at acknowledging messages (or stops acknowledging messages altogether),
the broker continues to dispatch messages to the consumer until it reaches the prefetch limit, after
which the messages start to back up on the broker. Assuming the producer continues to produce lots
of messages and the consumer continues to be very slow, the broker will start to run short of memory
resources as it holds on to pending messages for the consumer.

When the consumed memory resources start to approach their limit (as defined either by the per-
destination memory limit or the per-broker memory limit), the flow control mechanism activates
automatically in order to protect the broker resources. The broker sends a message to the producer
asking it either to slow down or to stop sending messages to the broker. This protects the broker from
running out of memory (and other) resources.

NOTE

There are some differences in behavior between a persistent broker and a non-
persistent broker. If a broker is persistent, pending messages are stored to disk, but flow
control can still be triggered if the amount of memory used by a cursor approaches its
limit (see Section 6.3, “vmCursor on Destination” for more details about cursors).

21

Red Hat JBoss A-MQ 6.1 Tuning Guide

Flow control disabled

While it is generally a good idea to enable flow control in a broker, there are some scenarios for which it
is unsuitable. Consider the scenario where a producer dispatches messages that are consumed by
multiple consumers (for example, consuming from a topic), but one of the consumers could fail without
the broker becoming aware of it right away. This scenario is shown in Figure 4.2, “Broker with Flow
Control Disabled”.

Figure 4.2. Broker with Flow Control Disabled

Fast consumers get
messages straight away

Fast

m Consumer

Temp file store

Producer not impeded by
lirnits being reached on the

broker Slow consumer gets

messages dispatched from Slow
termporary disk when it can Consumer
consume them

Because the slow consumer remains blocked for a very long time (possibly indefinitely), after flow
control kicks in, the producer also ceases producing messages for a very long time (possibly
indefinitely). This is an undesirable outcome, because there are other active consumers interested in
the messages coming from the producer and they are now being unfairly deprived of those messages.

In this case, it is better to turn off flow control in the broker, so that the producer can continue sending
messages to the other interested consumers. The broker now resorts to an alternative strategy to
avoid running out of memory: the broker writes any pending messages for the slow consumer to a
temporary file. Ultimately, this scenario is resolved in one of two ways: either the slow consumer
revives again and consumes all of the messages from the temporary file; or the broker determines that
the slow consumer has died and the temporary file can be discarded.

Discarding messages

By default, when flow control is disabled and the relevant memory limit is reached, the slow
consumer's messages are backed up in a temporary file. An alternative strategy for coping with the
excess messages, however, is simply to discard the slow consumer's messages when they exceed a
certain limit (where the oldest messages are discarded first). This strategy avoids the overhead of
writing to a temporary file.

For example, if the slow consumer is receiving a feed of real-time stock quotes, it might be acceptable
to discard older, undelivered stock quotes, because the information becomes stale.

22

CHAPTER 4. PRODUCER PERFORMANCE

To enable discarding of messages, define a pending message limit strategyin the broker configuration.
For example, to specify that the backlog of messages stored in the broker (not including the
prefetched messages) cannot exceed 10 for any topics that match the PRICES. > pattern (that is, topic
names prefixed by PRICES.), configure the broker as follows:

<beans ... >
<broker ...>
<!-- lets define the dispatch policy -->
<destinationPolicy>
<policyMap>
<policyEntries>
<policyEntry topic="PRICES.>">

<!-- lets force old messages to be discarded for slow
consumers -->
<pendingMessagelLimitStrategy>
<constantPendingMessagelLimitStrategy limit="10"/>
</pendingMessagelLimitStrategy>

</policyEntry>

</policyEntries>
</policyMap>
</destinationPolicy>
</broker>
</beans>

For more details about how to configure pending message limit strategies, see
http://activemg.apache.org/slow-consumer-handling.html.

How to turn off flow control

Flow control can be turned off by setting a destination policy in the broker's configuration. In
particular, flow control can be enabled or disabled on individual destinations or groups of destinations
(using wildcards). To disable flow control, set the producerFlowControl attribute to false ona
policyEntry element.

For example, to configure a broker to disable flow control for all topic destinations starting with F0O.,
insert a policy entry like the following into the broker's configuration:

<broker ... >
<destinationPolicy>
<policyMap>
<policyEntries>
<policyEntry topic="F00.>" producerFlowControl="false"/>
</policyEntries>
</policyMap>
</destinationPolicy>
</broker>

Defining the memory limits

23

http://activemq.apache.org/slow-consumer-handling.html

Red Hat JBoss A-MQ 6.1 Tuning Guide

When flow control is enabled, the point at which flow control activates depends on the defined memory
limits, which can be specified at either of the following levels of granularity:

® Per-broker—to set global memory limits on a broker, define a systemUsage element as a child
of the broker element, as follows:

<broker>

<systemUsage>
<systemUsage>
<memoryUsage>
<memoryUsage limit="64 mb" />
</memoryUsage>
<storeUsage>
<storeUsage 1limit="100 gb" />
</storeUsage>
<tempUsage>
<tempUsage limit="10 gb" />
</tempUsage>
</systemUsage>
</systemUsage>

</broker>
Where the preceding sample specifies three distinct memory limits, as follows:
o memoryUsage—specifies the maximum amount of memory allocated to the broker.

o storeUsage—for persistent messages, specifies the maximum disk storage for the
messages.

NOTE

In certain scenarios, the actual disk storage used by JBoss A-MQ can
exceed the specified limit. For this reason, it is recommended that you set
storeUsage to about 70% of the intended maximum disk storage.

o tempUsage—for temporary messages, specifies the maximum amount of memory.
The values shown in the preceding example are the defaults.

e Per-destination—to set a memory limit on a destination, set the memoryLimit attribute on the
policyEntry element. The value of memoryLimit can be a string, suchas 10 MBor 512 KB.
For example, to limit the amount of memory on the FOO . BAR queue to 10 MB, define a policy
entry like the following:

I <policyEntry queue="F00.BAR" memoryLimit="10 MB"/>

Making a producer aware of flow control

When a producer is subject to flow control, the default behavior is for the send () operation to block,
until enough memory is freed up in the broker for the producer to resume sending messages. If you
want the producer to be made aware of the fact that the send() operation is blocked due to flow
control, you can enable either of the following attributes on the systemUsage element:

24

CHAPTER 4. PRODUCER PERFORMANCE

sendFailIfNoSpace

If true, the broker immediately returns an error when flow control is preventing producer send()
operations; otherwise, revert to default behavior.

sendFailIfNoSpaceAfterTimeout

Specifies a timeout in units of milliseconds. When flow control is preventing producer send ()
operations, the broker returns an error, after the specified timeout has elapsed.

The following example shows how to configure the broker to return an error to the producer
immediately, whenever flow control is blocking the producer send () operations:

<broker>

<systemUsage>
<systemUsage sendFailIfNoSpace="true'">
<memoryUsage>
<memoryUsage limit="64 mb" />
</memoryUsage>

</systemUsage>
</systemUsage>

</broker>

25

Red Hat JBoss A-MQ 6.1 Tuning Guide

CHAPTER 5. MANAGING SLOW CONSUMERS

OVERVIEW

Slow consumers are consumers whose dispatch buffer is reqularly too full; the broker cannot dispatch
messages to them because they have reached the prefect limit. This can bog down message processing
in a number of ways and it can mask problems with a client. One of the major ways it can bog down a
broker is by increasing its memory foot print by forcing the broker to hold a large number of messages
in memory.

JBoss A-MQ provides two ways of limiting the impact of slow consumers:
e limiting the number of messages retained for a consumer
When using non-durable topics, you can specify the number of messages that a destination will
hold for a consumer. Once the limit is reached, older messages are discarded when new
messages arrive.
e aborting slow consumers
JBoss A-MQ determines slowness by monitoring how often a consumer's dispatch buffer is

full. You can specify that consistently slow consumers be aborted by closing its connection to
the broker.

LIMITING MESSAGE RETENTION

IMPORTANT

This strategy only works for topics. For queues, the way to manage the number of
pending messages is through the message expiry setting.

Topics typically retain a copy of all unacknowledged messages for each of the consumers subscribed
to it. For non-durable topics, the messages are stored in the broker's volatile memory, so if messages
begin to pile up the broker's memory footprint begins to balloon.

To address this issue you can set the pending message limit strategy
(pendingMessageLimitStrategy) on a topic to control the number of messages that are held for
slow consumers. When set, the topic will retain the specified number of messages in addition to the
consumer's prefetch limit.

IMPORTANT

The default setting for the strategy is -1, which means that the topic will retain all of the
unconsumed messages for a consumer.

There are two ways to configure the pending message limit strateqgy:
e specifying a constant number of messages over the prefetch limit
The constantPendingMessageLimitStrategy implementation allows you to specify

constant number of messages to retain as shown in Example 5.1, “Constant Pending Message
Limiter”.

26

CHAPTER 5. MANAGING SLOW CONSUMERS

Example 5.1. Constant Pending Message Limiter

<broker ... >
<destinationPolicy>
<policyMap>
<policyEntries>
<policyEntry topic=">" >
<pendingMessagelLimitStrategy>
<constantPendingMessagelLimitStrategy limit="50"/>
</pendingMessagelLimitStrategy>
</policyEntry>
</policyEntries>
</policyMap>
</destinationPolicy>

</broker>

e specifying a multiplier that is applied to the prefetch limit

The prefetchRatePendingMessageLimitStrategy implementation allows you to specify
a multiplier that is applied to the prefect limit. Example 5.2, “Prefectch Limit Based Pending
Message Limiter” shown configuration that retains twice the prefect limit. So if the prefect
limit is 3, the destination will retain 6 pending messages for each consumer.

Example 5.2. Prefectch Limit Based Pending Message Limiter
<policyEntries>
<policyEntry topic=">" >
<prefetchRatePendingMessagelLimitStrategy
multiplier="2"/>
</pendingMessagelLimitStrategy>
</policyEntry>
</policyEntries>
</policyMap>
</destinationPolicy>

<broker ... >

<destinationPolicy>

<policyMap>

<pendingMessagelLimitStrategy>
</broker>

ABORTING SLOW CONSUMERS

Another strategy for managing slow consumers is to have the broker detect slow consumers and

automatically abort consumers that are consistently slow. When a slow consumer is aborted, its

connection to the broker is closed.

The broker marks a consumer slow when the broker has messages to dispatch to the consumer, but

the consumer's prefect buffer is full. As the consumer acknowledges consumption of messages from
the prefect buffer and the broker can once again start dispatching messages to the consumer, the

27

Red Hat JBoss A-MQ 6.1 Tuning Guide

broker will stop considering the consumer slow. If the consumer's prefect buffer fills up again, the
broker will again mark the consumer as slow.

The abort slow consumers strategy allows the broker to abort consumers when one of two conditions
is met:

e aconsumer is considered slow for specified amount of time
e aconsumer is considered slow a specified number of times

The abort slow consumer strategy is activated by adding the configuration shown in Example 5.3,
“Aborting Slow Consumers” to a destination's configuration.

Example 5.3. Aborting Slow Consumers
<broker ... >
<destinationPolicy>
<policyMap>
<policyEntries>
<slowConsumerStrategy>

<policyEntry topic=">" >
<abortSlowConsumerStrategy />
</slowConsumerStrategy>
</policyEntry>
</policyEntries>
</policyMap>
</destinationPolicy>

</broker>

The abortSlowConsumerStrategy element activates the abort slow consumer strategy with default
settings. Consumers that are considered slow for more than 30 seconds are aborted. You can modify
when slow consumers are aborted using the attributes described in Table 5.1, “Settings for Abort Slow
Consumer Strategy”.

Table 5.1. Settings for Abort Slow Consumer Strategy

Attribute Default Description

maxSlowCount -1 Specifies the number of times a
consumer can be considered slow
before it is aborted. -1 specifies
that a consumer can be
considered slow an infinite
number of times.

maxSlowDuration 30000 Specifies the maximum amount of
time, in milliseconds, that a
consumer can be continuously
slow before it is aborted.

28

CHAPTER 5. MANAGING SLOW CONSUMERS

Attribute Default Description

checkPeriod 30000 Specifies, in milliseconds, the time
between checks for slow
consumers.

abortConnection false Specifies whether the broker

forces the consumer connection
to close. The default value
specifies that the broker will send
a message to the consumer
requesting it to close its
connection. true specifies that
the broker will automatically
close the consumer's connection.

For example, Example 5.4, “Aborting Repeatedly Slow Consumers” shows configuration for aborting
consumers that have been marked as slow 30 times.

Example 5.4. Aborting Repeatedly Slow Consumers

I <abortSlowConsumerStrategy maxSlowCount="30" />

29

Red Hat JBoss A-MQ 6.1 Tuning Guide

CHAPTER 6. PERSISTENT MESSAGING

Abstract

This chapter outlines the tuning techniques that can be used to optimize the performance of a
persistent broker. Hence, the tuning techniques in this chapter are focused mainly on the interaction
between the broker and its message store.

6.1. SERIALIZING TO DISK

KahaDB message store

KahaDB is the recommended message store to use with Red Hat JBoss A-MQ in order to achieve
maximum performance. The KahaDB supports several options that you can customize to obtain
optimum performance.

Synchronous dispatch through a persistent broker

Figure 6.1, “Synchronous Dispatch through a Persistent Broker” gives an overview of the sequence of
steps for a message dispatched synchronously through a persistent broker.

Figure 6.1. Synchronous Dispatch through a Persistent Broker

2
1

After receiving a message from a producer, the broker dispatches the messages to the consumers, as
follows:

Send will block till it gets a

receipt

30

CHAPTER 6. PERSISTENT MESSAGING

1. The broker pushes the message into the message store. Assuming that the
enableJournalDiskSyncs optionis true, the message store also writes the message to
disk, before the broker proceeds.

2. The broker now sends the message to all of the interested consumers (but does not wait for
consumer acknowledgments). For topics, the broker dispatches the message immediately, while
for queues, the broker adds the message to a destination cursor.

3. The broker then sends a receipt back to the producer. The receipt can thus be sent back before
the consumers have finished acknowledging messages (in the case of topic messages,
consumer acknowledgments are usually not required anyway).

Concurrent store and dispatch

To speed up the performance of the broker, you can enable the concurrent store and dispatch
optimization, which allows storing the message and sending to the consumer to proceed concurrently.

NOTE

Concurrent store and dispatch is enabled, by default, for queues.

Figure 6.1, “Synchronous Dispatch through a Persistent Broker” gives an overview of message dispatch
when the concurrent store and dispatch optimization is enabled.

Figure 6.2. Concurrent Store and Dispatch

Send will block il it get

receipt

31

Red Hat JBoss A-MQ 6.1 Tuning Guide

After receiving a message from a producer, the broker dispatches the messages to the consumers, as
follows:

1. The broker pushes the message onto the message store and, concurrently, sends the message
to all of the interested consumers. After sending the message to the consumers, the broker
then sends a receipt back to the producer, without waiting for consumer acknowledgments or
for the message store to synchronize to disk.

2. As soon as the broker receives acknowledgments from all the consumers, the broker removes
the message from the message store. Because consumers typically acknowledge messages
faster than a message store can write them to disk, this often means that write to disk is
optimized away entirely. That is, the message is removed from the message store before it is
ever physically written to disk.

One drawback of concurrent store and dispatch is that it does reduce reliability.

Configuring concurrent store and dispatch

The concurrent store and dispatch feature can be enabled separately for queues and topics, by setting
the concurrentStoreAndDispatchQueues flag and the concurrentStoreAndDispatchTopics
flag. By default, it is enabled for queues, but disabled for topics. To enable concurrent store and
dispatch for both queues and topics, configure the kahaDB element in the broker configuration as
follows:

<broker brokerName="broker" persistent="true" useShutdownHook="false">

<persistenceAdapter>
<kahaDB directory="activemqg-data"

journalMaxFileLength="32mb"
concurrentStoreAndDispatchQueues="true"
concurrentStoreAndDispatchTopics="true"
/>

</persistenceAdapter>

</broker>

Reducing memory footprint of pending messages

After a queue message is written to persistent storage, a copy of the message remains in memory,
pending dispatch to a consumer. If the relevant consumer is very slow, however, this can lead to a
build-up of messages in the broker and, in some cases, can lead to an out-of-memory error. If you
observe this problem in your broker, you can enable an option to reduce the memory footprint of the
pending messages; but you should note that this option is not compatible with concurrent store and
dispatch.

To reduce the memory footprint of pending queue messages, define a destination policy for the
relevant queues, enabling the reduceMemoryFootprint option, as follows:

<broker ... >

<destinationPolicy>
<policyMap>
<policyEntries>
<policyEntry queue=">" reduceMemoryFootprint="true" />
</policyEntries>
</policyMap>

32

CHAPTER 6. PERSISTENT MESSAGING

</destinationPolicy>
</broker>

When the reduceMemoryFootprint option is enabled, a message's marshalled content is cleared
immediately after the message is written to persistent storage. This results in approximately a 50%
reduction in the amount of memory occupied by the pending messages.

6.2. KAHADB OPTIMIZATION

Overview

The Red Hat JBoss A-MQ message store has undergone a process of evolution. Currently, the KahaDB
message store is the default (and recommended) message store, while the AMQ message store and the
(original) kaha message store represent earlier generations of message store technology.

KahaDB architecture

The KahaDB architecture—as shown in Figure 6.3, “KahaDB Architecture”—is designed to facilitate
high-speed message storage and retrieval. The bulk of the data is stored in rolling journal files (data
logs), where all broker events are continuously appended. In particular, pending messages are also
stored in the data logs.

Figure 6.3. KahaDB Architecture

1 1 baa
[IFREE AP TAE BT RTARTAFIR LA IR |

BTree Indexes §
N N

[TTTTT] Data Logs

Redo Log

33

Red Hat JBoss A-MQ 6.1 Tuning Guide

In order to facilitate rapid retrieval of messages from the data logs, a B-tree index is created, which
contains pointers to the locations of all the messages embedded in the data log files. The complete B-
tree index is stored on disk and part or all of the B-tree index is held in a cache in memory. Evidently,
the B-tree index can work more efficiently, if the complete index fits into the cache.

Sample configuration

The following example shows how to configure a broker to use the KahaDB message store, by adding a
persistenceAdapter element containing a kahaDB child element:

<broker brokerName="broker" persistent="true" useShutdownHook="false">

<persistenceAdapter>
<kahaDB directory="activemqg-data" journalMaxFilelLength="32mb"/>
</persistenceAdapter>

</broker>

The directory property specifies the directory where the KahaDB files are stored and the
journalMaxFileLength specifies the maximum size of a data log file.

Performance optimization

You can optimize the performance of the KahaDB message store by modifying the following properties
(set as attributes on the kahaDB element):

e indexCacheSize—(default 10000) specifies the size of the cache in units of pages (where one
page is 4 KB by default). Generally, the cache should be as large as possible, to avoid swapping
pages in and out of memory. Check the size of your metadata store file, db . data, to get some
idea of how big the cache needs to be.

e indexWriteBatchSize—(default 1000) defines the threshold for the number of dirty indexes
that are allowed to accumulate, before KahaDB writes the cache to the store. If you want to
maximize the speed of the broker, you could set this property to a large value, so that the
store is updated only during checkpoints. But this carries the risk of losing a large amount of
metadata, in the event of a system failure (causing the broker to restart very slowly).

e journalMaxFileLength—(default 32mb) when the throughput of a broker is very large, you
can fill up a journal file quite quickly. Because there is a cost associated with closing a full
journal file and opening a new journal file, you can get a slight performance improvement by
increasing the journal file size, so that this cost is incurred less frequently.

e enableJournalDiskSyncs—(default true) normally, the broker performs a disk sync
(ensuring that a message has been physically written to disk) before sending the
acknowledgment back to a producer. You can obtain a substantial improvement in broker
performance by disabling disk syncs (setting this property to false), but this reduces the
reliability of the broker somewhat.

34

CHAPTER 6. PERSISTENT MESSAGING

' WARNING
A If you need to satisfy the JMS durability requirement and be certain that

you do not lose any messages, do not disable journal disk syncs.

For more details about these KahaDB configuration properties, see the Configuring the KahaDB
Message Store section in the Configuring Broker Persistence guide.

6.3. VMCURSOR ON DESTINATION

Overview

In Red Hat JBoss A-MQ, a cursor is used to hold a batch of messages in memory, while those messages
are waiting to be sent to a destination. By default, the batch of messages is pulled out of the message
store and then held in the cursor (this is the store curson).

JBoss A-MQ has another cursor implementation, the VM cursor, which can be significantly faster in
some cases. With the VM cursor, incoming messages are inserted directly into the cursor, bypassing
the message store (the messages are also, concurrently, inserted into the message store). This works
well if the consumers are fast and are able to keep up with the flow of messages. On the other hand, for
slow consumers this strategy does not work so well, because the VM cursor fills up with a backlog of
messages and then it becomes necessary to invoke flow control to throttle messages from the
producer.

Configuring destinations to use the vmCursor

To configure a broker to use the vmCursor for all topics and queues, add the following lines to your
broker configuration:

<broker ... >

<destinationPolicy>
<policyMap>
<policyEntries>
<policyEntry topic=">">
<pendingSubscriberPolicy>
<vmCursor />
</pendingSubscriberPolicy>

</policyEntry>
<policyEntry queue=">">
<deadlLetterStrategy>

<individualDeadLetterStrategy queuePrefix="Test.DLQ."/>
</deadlLetterStrategy>
<pendingQueuePolicy>
<vmQueueCursor />
</pendingQueuePolicy>
</policyEntry>
</policyEntries>
</policyMap>

35

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.1/html-single/Configuring_Broker_Persistence/index.html#KahaDBConfiguration

Red Hat JBoss A-MQ 6.1 Tuning Guide

</destinationPolicy>
</broker>

Where both the topic and queue entries specify the wildcard, >, that matches all destination names.
You could also specify a more selective destination pattern, so that the VM cursor would be enabled
only for those destinations where you are sure that consumers can keep up with the message flow.

Reference

For more information about the Red Hat JBoss A-MQ cursor implementations—, and the advantages
and disadvantages of each one see.

6.4. JMS TRANSACTIONS

Improving efficiency using JMS transactions

You can improve efficiency of the broker using JMS transactions, because JMS transactions enable the
broker to process messages in batches. That is, a batch consists of all the messages a producer sends
to the broker before calling commit. Sending messages in batches improves the performance of the
persistence layer, because the message store is not required to write the batched messages to disk
until commit is called. Hence, the message store accesses the file system less frequently—that is, once
per transaction instead of once per message.

36

	Table of Contents
	CHAPTER 1. INTRODUCTION TO PERFORMANCE TUNING
	LIMITING FACTORS
	NON-PERSISTENT AND PERSISTENT BROKERS
	BROKER NETWORKS

	CHAPTER 2. GENERAL TUNING TECHNIQUES
	2.1. SYSTEM ENVIRONMENT
	Overview
	Disk speed
	Network performance
	Hardware specification
	Memory available to the JVM

	2.2. CO-LOCATING THE BROKER
	Overview
	The vm:// transport
	A simple optimization

	2.3. OPTIMIZING THE PROTOCOLS
	Overview
	TCP transport
	OpenWire protocol
	Enabling compression

	2.4. MESSAGE ENCODING
	Message body type
	Encoding recommendation

	2.5. THREADING OPTIMIZATIONS
	Optimized dispatch

	2.6. VERTICAL SCALING
	Definition
	Tricks to optimize vertical scaling

	2.7. HORIZONTAL SCALING
	Overview
	Broker networks
	Static scales better than dynamic
	Asynchronous network connection establishment
	Client-side traffic partitioning

	2.8. INTEGRATION WITH SPRING AND CAMEL
	Overview
	Creating a pooled connection factory
	Example

	2.9. OPTIMIZING MEMORY USAGE IN THE BROKER
	Optimize message paging
	Destination policies to control paging

	CHAPTER 3. CONSUMER PERFORMANCE
	3.1. ACKNOWLEDGMENT MODES
	Overview
	Supported acknowledgment modes
	optimizeAcknowledge option
	Choosing the acknowledgment mode

	3.2. REDUCING CONTEXT SWITCHING
	Overview
	Optimize message dispatching on the broker side
	Optimize message reception on the consumer side
	Default consumer threading model
	Optimized consumer threading model
	Prerequisites
	alwaysSessionAsync option
	Example

	3.3. PREFETCH LIMIT
	Overview
	Prefetch limits
	Optimizing prefetch limits

	CHAPTER 4. PRODUCER PERFORMANCE
	4.1. ASYNC SENDS
	Overview
	Configuring on a transport URI
	Configuring on a connection factory
	Configuring on a connection

	4.2. FLOW CONTROL
	Overview
	Flow control enabled
	Flow control disabled
	Discarding messages
	How to turn off flow control
	Defining the memory limits
	Making a producer aware of flow control

	CHAPTER 5. MANAGING SLOW CONSUMERS
	OVERVIEW
	LIMITING MESSAGE RETENTION
	ABORTING SLOW CONSUMERS

	CHAPTER 6. PERSISTENT MESSAGING
	6.1. SERIALIZING TO DISK
	KahaDB message store
	Synchronous dispatch through a persistent broker
	Concurrent store and dispatch
	Configuring concurrent store and dispatch
	Reducing memory footprint of pending messages

	6.2. KAHADB OPTIMIZATION
	Overview
	KahaDB architecture
	Sample configuration
	Performance optimization

	6.3. VMCURSOR ON DESTINATION
	Overview
	Configuring destinations to use the vmCursor
	Reference

	6.4. JMS TRANSACTIONS
	Improving efficiency using JMS transactions

