
Red Hat Integration 2020-Q2

Data Virtualization Tutorial

TECHNOLOGY PREVIEW - Data Virtualization Tutorial

Last Updated: 2020-07-11

Red Hat Integration 2020-Q2 Data Virtualization Tutorial

TECHNOLOGY PREVIEW - Data Virtualization Tutorial

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Combine data from multiple sources so that applications can connect to a single, virtual data model

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW OF THE DATA VIRTUALIZATION TUTORIAL

CHAPTER 2. GETTING STARTED WITH DATA VIRTUALIZATION

CHAPTER 3. INTRODUCTION TO DATA VIRTUALIZATION

CHAPTER 4. SETTING UP THE ENVIRONMENT
4.1. CLONING THE TUTORIAL RESOURCES
4.2. CREATING THE SOURCE DATABASE

CHAPTER 5. ADDING THE DATA VIRTUALIZATION OPERATOR TO THE PROJECT
5.1. CREATING A DOCKER-REGISTRY PULL SECRET
5.2. INSTALLING THE DATA VIRTUALIZATION OPERATOR IN YOUR PROJECT
5.3. LINKING THE PULL SECRET TO THE DATA VIRTUALIZATION OPERATOR SERVICE ACCOUNT

CHAPTER 6. BUILDING THE VIRTUAL DATABASE
6.1. VIRTUAL DATABASE CUSTOM RESOURCES

6.1.1. Data source configuration
6.1.2. DDL for defining the virtual database

6.1.2.1. Virtual database creation
6.1.2.2. Translator definition
6.1.2.3. External data source definitions
6.1.2.4. Schema creation
6.1.2.5. Metadata import
6.1.2.6. Virtual schema definition

6.2. COMPLETED VIRTUAL DATABASE CUSTOM RESOURCE FILE

CHAPTER 7. DEPLOYING THE VIRTUAL DATABASE

CHAPTER 8. CONNECTING CLIENTS TO THE VIRTUAL DATABASE
8.1. CONNECTING AN INTERNAL JDBC CLIENT

8.1.1. Installing SQLLine
8.1.2. Connecting SQLLine to the Portfolio virtual database

8.2. CONNECTING TO THE VIRTUAL DATABASE FROM AN EXTERNAL JDBC CLIENT
8.2.1. Configuring an OpenShift load balancer service to enable external JDBC clients to access the virtual
database
8.2.2. Enabling external JDBC client access through port forwarding
8.2.3. Installing the SQuirreL JDBC client
8.2.4. Configuring SQuirreL to connect to the Portfolio virtual database
8.2.5. Querying the Portfolio virtual database from the SQuirreL SQL client

8.3. SAMPLE QUERIES
8.4. ACCESS THE VIRTUAL DATABASE THROUGH THE ODATA API

3

4

6

7
7
7

10
10
11

12

14
14
14
15
16
16
16
17
17
17
19

21

22
22
22
23
24

24
25
26
27
28
28
29

Table of Contents

1

Red Hat Integration 2020-Q2 Data Virtualization Tutorial

2

CHAPTER 1. OVERVIEW OF THE DATA VIRTUALIZATION
TUTORIAL

This tutorial demonstrates how to use Red Hat Integration data virtualization to create a customer
portfolio virtual database. The virtual database that you create integrates data from the following two
sources:

A postgreSQL accounts database

Stores customer account information, and data about the stock holdings for each customer.

A web-based REST service

Provides live stock market price data.

By integrating data from these two sources, the Portfolio database calculates the value of individual
customer portfolios based on current stock prices. After we deploy the virtual database, we’ll submit
queries to it to demonstrate how data from both of sources is combined.

Figure 1.1. Architecture of the Portfolio virtual database in this tutorial

CHAPTER 1. OVERVIEW OF THE DATA VIRTUALIZATION TUTORIAL

3

CHAPTER 2. GETTING STARTED WITH DATA VIRTUALIZATION
In this tutorial we demonstrate how to create and use a "Portfolio" virtual database by completing the
following tasks:

1. Setting up our environment.

2. Adding a Data Virtualization Operator to OpenShift.

3. Creating a postgreSQL accounts database with a simple sample database to serve as our data
source.

4. Creating a custom resource (CR) that defines a Portfolio virtual database. The CR specifies how
to integrate data from our postgreSQL database and a REST service.

5. Running the Operator to deploy the virtual database.

6. Demonstrating how JDBC and OData clients can access and query the virtual database.

NOTE

ODBC access is also available, but information about how to enable ODBC
access is beyond the scope of this tutorial.

Time

30 minutes to 1 hour

Skill

Beginner

IMPORTANT

Data virtualization is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview/.

Prerequisites

Before you can use data virtualization to create a virtual database, you must have:

Access to an OpenShift 4.4 cluster with cluster-admin privileges. This can be an enterprise
deployment of OpenShift (OpenShift Container Platform, OpenShift Dedicated, or OpenShift
Online), or a local installation that uses Red Hat Code Ready Containers (CRC). For more
information about CRC, see the article on Red Hat Developer .

A version of the OpenShift CLI (oc) binary that matches the version of the OpenShift server.

Working knowledge of SQL.

Working knowledge of Openshift and the OpenShift Operator model.

Red Hat Integration 2020-Q2 Data Virtualization Tutorial

4

https://access.redhat.com/support/offerings/techpreview/
https://developers.redhat.com/products/codeready-containers

Working knowledge of git and GitHub.

CHAPTER 2. GETTING STARTED WITH DATA VIRTUALIZATION

5

CHAPTER 3. INTRODUCTION TO DATA VIRTUALIZATION
A virtual database enables you to aggregate data from one or more external data sources and apply a
custom schema to the data. By applying a customized logical schema to the aggregated source data,
you can curate the data in a way that makes it easy for your applications to consume. The virtual view
exposes just the data that you want from each data source, down to the level of specific tables, columns
or procedures. Query processing logic in the virtual database enables users to access and join data in
different formats from across data sources.

The virtual database provides an abstraction layer that shields client applications from the details of the
physical data sources. Data consumers don’t have figure out how to connect to the host sources. They
also don’t have to worry about how a view combines data from various sources, or how to configure
translators to normalize data into a usable format.

Data and access where you want it

Data virtualization acts as a logical data warehouse, one that relies on metadata to make data available
to client applications. Unlike data marts or physical data warehouses, data virtualization never moves or
copies data from its original source. All data remains hosted in the original external data sources, and is
retrieved directly, in real time from the source systems. So there’s no additional storage costs, and no
overhead related to copying data. Because data is not duplicated or mirrored, there is never a concern
about data currency or a need to reconcile conflicting snapshots.

The virtual database provides the single point of access to all of the configured data sources.
Applications connect over standard protocols to communicate with the virtual database, and interact
with it as though it were any relational database. You can use standard SQL to retrieve and manipulate
data in the data sources, even when a data source does not offer native SQL support. SQL queries that
you run against a virtual view span the data sources in the view so that all of the data is available to your
applications.

Apply consistent, secure data access policies

Typically, data access policies can vary across multiple data sources. Users who want to fetch data from
across those sources might require specific permissions to access each one, greatly complicating efforts
to formulate queries that span the data set.

By virtualizing multiple sources into a single service, you simplify access management. A virtual database
restricts access to your critical primary data sources to a single trusted service. Only the virtual database
makes a direct connection to your configured data sources, reducing unwanted access to sensitive
information. At the same time, through the data that you expose through virtual views, users obtain
"pass-through" access to the information that they need to do their jobs.

For more information about data virtualization, see Using Data Virtualization and the Data Virtualization
Reference.

Red Hat Integration 2020-Q2 Data Virtualization Tutorial

6

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/using_data_virtualization/index
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index

CHAPTER 4. SETTING UP THE ENVIRONMENT
Before we can install the Data Virtualization Operator and create a virtual database, we must set up our
environment. In this section we’ll complete the following tasks:

Download or clone resources from the Teiid OpenShift examples GitHub repository. This
tutorial requires local copies of some resources that are available in the examples repository.

Create the postgreSQL database that will serve as one of the data sources for our virtual
database.

4.1. CLONING THE TUTORIAL RESOURCES

To complete the steps in this tutorial we’ll need local copies of some resources that are available in the
Teiid OpenShift examples GitHub repository. Teiid is the open source community project that serves as
the basis for data virtualization.

We could complete the tutorial by creating all of the necessary files from scratch. But we’ll simplify our
lives by downloading or cloning existing resources from the repository.

So let’s grab the files that we need.

Procedure

1. From a terminal window, change to the directory where you want to save the repository content.

2. Type the following command to clone the repository:

The next step is to create the postgreSQL database that will function as the source database for our
virtual database.

4.2. CREATING THE SOURCE DATABASE

After you install the Operator and it is running, you can create the postgreSQL database and populate it
with sample data.

1. From a terminal window, change to the 01-base-example folder of the Teiid repository that you
cloned, for example /home/username/git/teiid-openshift-examples/examples/01-base-
example

2. Type the following command to create a sample postgreSQL database from the template in the
01-base-example folder.

A database with the name accounts is created.

3. Type the following command to retrieve the list of pods from OpenShift:

$ git clone https://github.com/teiid/teiid-openshift-examples.git

oc new-app -f postgresql-ephemeral-template.json \
 -p DATABASE_SERVICE_NAME=accounts \
 -p POSTGRESQL_USER=user \
 -p POSTGRESQL_PASSWORD=changeit \
 -p POSTGRESQL_DATABASE=accounts

CHAPTER 4. SETTING UP THE ENVIRONMENT

7

oc get pods | grep accounts

The command returns the status of the database deployment process and of the created
accounts database, for example:

accounts-1-deploy 0/1 Completed 0 10m
accounts-1-fcd92 1/1 Running 0 10m

You can also click Workloads > Pods from the OpenShift console to check the status of the
accounts database pod.

4. Using the name that OpenShift assigns to the accounts postgreSQL database, type the
following command to copy contents of the local folder, including the schema file accounts-
schema.sql, to the remote pod directory:

oc rsync . __accounts-x-xxxxx__:/tmp

For example,

oc rsync . accounts-1-fcd92:/tmp

NOTE

The command might return the following error:

rsync: failed to set permissions on "/tmp/.": Operation not permitted (1)
rsync error: some files/attrs were not transferred (see previous errors) (code
23) at main.c(1179) [sender=3.1.2]
error: exit status 23

You can ignore the error and continue with the next step.

5. From a terminal window, establish a remote shell connection to the postgreSQL database and
then use psql to populate the database with the tables of sample data. Type the following
command:

oc rsh accounts-x-xxxxx psql -U user -d accounts -f /tmp/accounts-schema.sql

The command returns the following output:

psql:/tmp/accounts-schema.sql:1: NOTICE: table "customer" does not exist, skipping
DROP TABLE
psql:/tmp/accounts-schema.sql:2: NOTICE: table "account" does not exist, skipping
DROP TABLE
psql:/tmp/accounts-schema.sql:3: NOTICE: table "product" does not exist, skipping
DROP TABLE
psql:/tmp/accounts-schema.sql:4: NOTICE: table "holdings" does not exist, skipping
DROP TABLE
CREATE TABLE
CREATE TABLE
CREATE TABLE
CREATE TABLE
INSERT 0 1

Red Hat Integration 2020-Q2 Data Virtualization Tutorial

8

 .
 .
 .
INSERT 0 1

Your accounts postgreSQL database is now populated with sample data and is ready for you to
configure it as a data source.

The next step is to add the Data Virtualization Operator to our project.

CHAPTER 4. SETTING UP THE ENVIRONMENT

9

CHAPTER 5. ADDING THE DATA VIRTUALIZATION OPERATOR
TO THE PROJECT

Virtual databases are built and deployed by an OpenShift Operator. Before we can proceed, we must
add the Data Virtualization Operator to our OpenShift project.

In this section we’ll complete the following tasks:

Add our credentials to a pull secret so that we can access certified container images from Red
Hat.

Install the Data Virtualization Operator.

Link the pull secret the Operator service account.

Prerequisites

You cloned or downloaded local copies of the resources in the tutorial repository as described
in Section 4.1, “Cloning the tutorial resources”.

You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

Additional resources

For more information about Operators, see the OpenShift documentation.

5.1. CREATING A DOCKER-REGISTRY PULL SECRET

The Data Virtualization Operator that we’ll use to create our virtual database is available in the
OpenShift OperatorHub. Before we can access software in the OperatorHub, we must first create a pull
secret of type docker-registry in our OpenShift project. Adding our credentials to the secret enables us
to retrieve the latest Data Virtualization Operator image from Red Hat.

Procedure

1. Use the OpenShift CLI to sign into your OpenShift environment with administrator privileges.
For example, from a terminal window, type the following OpenShift CLI command:

2. Create the project where you want to add your data virtualization.
For example, to create a project with the name dv-tutorial, type the following command:

3. Create a docker-registry secret to enable you to retrieve secured container images from Red
Hat.

NOTE

Instead of using your Red Hat account username and password to create the
secret, you use a registry service account to create an authentication token.

oc login -u system:admin https://openshift.cluster-xyz.example.com:6443

oc new-project dv-tutorial

Red Hat Integration 2020-Q2 Data Virtualization Tutorial

10

https://docs.openshift.com/container-platform/4.4/operators/olm-what-operators-are.html

Type the following command:

For example,

NOTE

You must create a docker-registry secret in every project namespace where the
image streams reside and which use registry.redhat.io.

We’re now ready to install the Data Virtualization Operator.

5.2. INSTALLING THE DATA VIRTUALIZATION OPERATOR IN YOUR
PROJECT

The Data Virtualization Operator automates tasks related to deploying a virtual database. We’ll install
the Data Virtualization Operator into the OpenShift project that we set up for the tutorial. After it’s
installed, the Operators is available only in this project namespace, so we won’t be able to use it from
other projects in the cluster.

If we want to create virtual databases in other projects, we’ll have to install the Operator in each one of
them. For more information about Operators, see the OpenShift documentation.

We’ll install the Operator from the OpenShift console.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

You created a registry pull secret as described in Section 5.1, “Creating a docker-registry pull
secret”.

Procedure

1. Sign in to the OpenShift console.

2. Click Operators > OperatorHub to open the OperatorHub.

3. From the Projects drop-down menu, click the name of the project where you added the
docker-registry secret, for example dv-tutorial.

IMPORTANT

oc create secret docker-registry dv-pull-secret
 --docker-server=registry.redhat.io \
 --docker-username=_CUSTOMER_PORTAL_USERNAME_ \
 --docker-password=_CUSTOMER_PORTAL_PASSWORD_ \
 --docker-email=_EMAIL_ADDRESS_

oc create secret docker-registry dv-pull-secret --docker-server=registry.redhat.io --docker-
username=yourname@example.com --docker-password='xxxxxxxxxx' --docker-
email=yourname@example.com

CHAPTER 5. ADDING THE DATA VIRTUALIZATION OPERATOR TO THE PROJECT

11

https://docs.openshift.com/container-platform/4.4/operators/olm-what-operators-are.html

IMPORTANT

You must install the Operator in the project where you previously created the
secret.

4. Locate the Operator with the name Red Hat Integration - Data Virtualization

TIP

In the Filter by keyword field, type dv to show the available Data Virtualization Operators.

5. Click Red Hat Integration - Data Virtualization.
Should there be multiple versions of the Operator, read the Operator description to decide
which version is best for your environment.

6. Click Install to open the Create Operator Subscription page.

7. Click Subscribe to install the Operator. The Installed Operators page shows the status of the
installation.

8. After the status of the Operator installation changes to Succeeded, you are ready to link the
pull secret to the Operator service account.

5.3. LINKING THE PULL SECRET TO THE DATA VIRTUALIZATION
OPERATOR SERVICE ACCOUNT

Before we can create a virtual database, we must link the pull secret that we created earlier to the
Operator service account.

Prerequisites

You created a pull secret as described in Section 5.1, “Creating a docker-registry pull secret” .

You installed the Data Virtualization Operator as described in Section 5.2, “Installing the Data
Virtualization Operator in your project”.

Procedure

1. Sign in to the OpenShift console.

2. Click Workloads > Pods to check the status of the Operator pod.

3. When the status of the pod reports that it is Running, open a terminal window, and type the
following command:

Be sure that the name of the Operator (dv-operator in the preceding command) matches the
name of the Operator that you installed.

The command does not return any output, unless it fails. If the command fails, verify that you
added the Operator to the same project where you created the secret, for example, dv-tutorial.

oc secrets link dv-operator dv-pull-secret --for=pull

Red Hat Integration 2020-Q2 Data Virtualization Tutorial

12

We are now ready to create a virtual database instance.

CHAPTER 5. ADDING THE DATA VIRTUALIZATION OPERATOR TO THE PROJECT

13

CHAPTER 6. BUILDING THE VIRTUAL DATABASE
We now have a working postgreSQL database with some sample data in it. The next step is to define a
virtual database that can read and write from the postgreSQL data source. We’ll also configure the
REST data source that we mentioned earlier, an online live stock quote service.

The design of a virtual database is defined in a custom resource (CR) file. The CR is written as a YAML
file, which contains a section of embedded DDL. After the CR YAML file is ready, you provide it as input
to the Data Virtualization Operator, and the Operator deploys a virtual database based on the
specification.

This tutorial uses a sample CR file, portfolio.yaml, that is available from the Teiid OpenShift examples
repository that you cloned earlier. If you want to get started right away, you can use the sample file as-is,
and run the Operator. Just skip to Chapter 7, Deploying the virtual database to try it out.

Afterwards you can return here to review the next few sections to learn about how the CR is
constructed.

6.1. VIRTUAL DATABASE CUSTOM RESOURCES

To specify the provisioning instructions for a virtual database, you create a custom resource (CR) file
that describes how to build the virtual database. The CR is a YAML file that defines the following
elements of the virtual database:

The configuration of the data sources.

The SQL DDL specifies the structure of the database schema.

6.1.1. Data source configuration

For this tutorial the CR defines the following data sources:

accountdb

Represents the postgreSQL database that you created earlier.

quotesvc

Represents a REST API for retrieving stock quotes from the online quote service at
https://finnhub.io/api/v1/

NOTE

You must use lowercase letters to specify data source names.

The following CR excerpt specifies the data sources for the virtual database:

apiVersion: teiid.io/v1alpha1
kind: VirtualDatabase
metadata:
 name: portfolio 1
spec:
 replicas: 1
 datasources:
 - name: accountdb 2
 type: postgresql

Red Hat Integration 2020-Q2 Data Virtualization Tutorial

14

https://finnhub.io/api/v1/

1

2

3

Defines the resource name for the virtual database when it is deployed to OpenShift.

Represents the postgreSQL database and assigns to it the name accountdb.

Represents a REST connection to the online stock quote service at https://finnhub.io/api/v1/, and
assigns to it the name quotesvc.

NOTE

The stock quote service that serves as a data source in this tutorial is intended to help
demonstrate how virtual databases can integrate data from REST services. The service is
not a component of Red Hat Integration data virtualization and is not affiliated with Red
Hat in any way.

To use the stock quote service, visit the web site to request a free API key. After you
obtain your key, add its value to the portfolio.yaml to the CR file that you obtain from
the Teiid OpenShift Examples repository. Add your API key in place of the
STOCK_QUOTE_API_KEY variable in the file.

6.1.2. DDL for defining the virtual database

We embed SQL DDL in our CR to define the structure of the virtual database. For example, the DDL
specifies the following properties:

The translators to use for standardizing the format of the source data.

The source schema to use for representing data elements in the data sources.

The metadata (tables, procedures, and so forth) that we want to import from the data source.

The virtual schema to use to map elements in the data sources to elements in the virtual
database.

The next few sections provide more detail about how and where to define these properties in the DDL.
After reviewing the individual sections of the file we’ll look at how they are assembled in the final CR.

After the DDL is complete, we insert it into a section of the CR, as shown in the following example:

 properties:
 - name: username
 value: user
 - name: password
 value: changeit
 - name: jdbc-url
 value: jdbc:postgresql://accounts/accounts
 - name: quotesvc 3
 type: rest
 properties:
 - name: endpoint
 value: https://finnhub.io/api/v1/

spec:
 build:
 source:

CHAPTER 6. BUILDING THE VIRTUAL DATABASE

15

https://finnhub.io/api/v1/

6.1.2.1. Virtual database creation

The CREATE DATABASE and USE DATABASE statements specify the name of the virtual database
and indicate that subsequent SQL operations in the DDL apply to this database.

The DDL in our CR uses the following statements to indicate that we’ll create and use a database called
Portfolio for our virtual database.

In this case, the CREATE DATABASE statement assigns a database name (Portfolio) that matches the
name portfolio that we assigned to the metadata:name property in the CR:

While it is not required that the two names match, using the same name makes it easier to understand
that the two entities are related.

The annotation in the CREATE DATABASE statement assigns a metadata description to the database.
The metadata is purely descriptive and it could be used as a label in a user interface. It is not directly
used during the virtual database build or deployment process.

6.1.2.2. Translator definition

A virtual database uses adapters, known as translators or data wrappers, to convert the data that it
receives from different types of external data sources into a standard format. Data virtualization uses a
wide range of data wrappers. The DDL for our virtual database uses the following SQL statements to
define data wrappers for the postgreSQL and REST data sources that we’re using in this tutorial:

CREATE FOREIGN DATA WRAPPER rest;
CREATE FOREIGN DATA WRAPPER postgresql;

6.1.2.3. External data source definitions

Our virtual database connects to external two data sources to retrieve data. In the preceding sections,
we defined the translators and the connection properties for these data sources. Now we’ll add the DDL
to define two SERVER elements to represent the connections to the data sources. The names that we
assign to the SERVER objects tie them to the datasource properties that we specified earlier.

The SQL in this section also defines a FOREIGN DATA WRAPPER (FDW) for each connection. We add
these foreign data wrappers to enable the virtual database to manage the data that is stored on these
external servers. By defining these FDWs for the virtual database we enable it to query the postgreSQL
and REST data sources as if they were local tables.

CREATE SERVER "accountdb" FOREIGN DATA WRAPPER postgresql;
CREATE SERVER "quotesvc" FOREIGN DATA WRAPPER rest;

 ddl: |
 PLACEHOLDER_FOR_VIRTUAL_DATABASE_DDL

CREATE DATABASE Portfolio OPTIONS (ANNOTATION 'The Portfolio VDB');
USE DATABASE Portfolio;

 apiVersion: teiid.io/v1alpha1
 kind: VirtualDatabase
 metadata:
 name: portfolio

Red Hat Integration 2020-Q2 Data Virtualization Tutorial

16

6.1.2.4. Schema creation

A virtual database is a collection of multiple schemas. These schemas can be physical, representing a
foreign data source such as our postgreSQL database, or they can be virtual as with the schema that
provides in the data virtualization layer.

Physical schema such as the marketdata and accounts schema that we define here, represent data
elements in the external data sources. The physical schema definitions in the preceding DDL excerpt
refer to the SERVER objects that we defined for those external data sources in Section 6.1.2.3,
“External data source definitions”. The final statement in the preceding excerpt establishes a virtual
schema for our Portfolio virtual database.

6.1.2.5. Metadata import

In Section 6.1.2.3, “External data source definitions” we defined the foreign schema and associated them
with their corresponding SERVER objects. However, we have not provided the data virtualization
service with the information that it needs to work with the schema in the foreign data sources. To
provide that information, we add the following statements to our DDL:

In the preceding DDL excerpt we import metadata from our data sources into the schema that we
created in Section 6.1.2.4, “Schema creation” .

The metadata from the quotesvc data source server is imported into the marketdata foreign
schema.

The metadata from the accountdb data source server is imported into the accounts foreign
schema.

NOTE

You can specify the full metadata for tables, procedures, and so forth. However, for the
purposes of this tutorial, we will dynamically import that information.

6.1.2.6. Virtual schema definition

The final section of the DDL defines the data abstraction layer of the virtual database. Here we define a
schema that uses the elements of the metadata that we defined in the preceding PHYSICAL schema.
This virtual schema is where the heavy lifting occurs. It defines the logic for combining information from
our source tables.

You can define any number of virtual schema layers, but for simplicity, in this example we create a single
layer.

CREATE SCHEMA marketdata SERVER "quotesvc";
CREATE SCHEMA accounts SERVER "accountdb";

CREATE VIRTUAL SCHEMA Portfolio;

SET SCHEMA marketdata;
IMPORT FROM SERVER "quotesvc" INTO marketdata;

SET SCHEMA accounts;
IMPORT FROM SERVER "accountdb" INTO accounts OPTIONS (
 "importer.useFullSchemaName" 'false',
 "importer.tableTypes" 'TABLE,VIEW');

CHAPTER 6. BUILDING THE VIRTUAL DATABASE

17

In this final portion of the DDL, we create the following virtual views:

StockPrice

This view retrieves stock prices from the quotessvc, our REST service that provides real-time stock
quotes.

AccountValues

This view uses the value obtained from the StockPrice view to calculate the portfolio values of the
customers listed in the Accounts postgreSQL database.

CustomerHolding

This view shows the value of individual customer accounts based on their stock holdings.

SET SCHEMA Portfolio;

 CREATE VIEW StockPrice (
 symbol string PRIMARY KEY,
 price double,
 CONSTRAINT ACS ACCESSPATTERN (symbol)
) AS
 SELECT p.symbol, y.price
 FROM accounts.PRODUCT as p, TABLE(call invokeHttp(action=>'GET',
endpoint=>QUERYSTRING('quote', p.symbol as "symbol", `STOCK_QUOTE_API_KEY` as "token"),
headers=>jsonObject('application/json' as "Content-Type"))) as x,
 JSONTABLE(JSONPARSE(x.result,true), '$' COLUMNS price double path '@.c') as y

 CREATE VIEW AccountValues (
 LastName string PRIMARY KEY,
 FirstName string,
 StockValue double
) AS
 SELECT c.lastname as LastName, c.firstname as FirstName, sum((h.shares_count*sp.price))
as StockValue
 FROM Customer c JOIN Account a on c.SSN=a.SSN
 JOIN Holdings h on a.account_id = h.account_id
 JOIN product p on h.product_id=p.id
 JOIN StockPrice sp on sp.symbol = p.symbol
 WHERE a.type='Active'
 GROUP BY c.lastname, c.firstname;

 CREATE VIEW CustomerHoldings (
 LastName string PRIMARY KEY,
 FirstName string,
 symbol string,
 ShareCount integer,
 StockValue double,
 CONSTRAINT ACS ACCESSPATTERN (LastName)
) AS
 SELECT c.lastname as LastName, c.firstname as FirstName, p.symbol as symbol,
h.shares_count as ShareCount, (h.shares_count*sp.price) as StockValue
 FROM Customer c JOIN Account a on c.SSN=a.SSN
 JOIN Holdings h on a.account_id = h.account_id
 JOIN product p on h.product_id=p.id
 JOIN StockPrice sp on sp.symbol = p.symbol
 WHERE a.type='Active';

Red Hat Integration 2020-Q2 Data Virtualization Tutorial

18

That completes our tour of the virtual database CR. See Section 6.2, “Completed virtual database
custom resource file” to review the CR in its entirety.

6.2. COMPLETED VIRTUAL DATABASE CUSTOM RESOURCE FILE

Bringing together the individual sections of the custom resource file that we reviewed in the preceding
sections, we can now review the complete portfolio.yaml CR file:

portfolio.yaml

apiVersion: teiid.io/v1alpha1
kind: VirtualDatabase
metadata:
 name: portfolio
spec:
 replicas: 1
 datasources:
 - name: accountdb
 type: postgresql
 properties:
 - name: username
 value: user
 - name: password
 value: password
 - name: jdbc-url
 value: jdbc:postgresql://accounts/accounts
 - name: quotesvc
 type: rest
 properties:
 - name: endpoint
 value: https://finnhub.io/api/v1/
 build:
 source:
 ddl: |
 CREATE DATABASE Portfolio OPTIONS (ANNOTATION 'The Portfolio VDB');
 USE DATABASE Portfolio;

 -- translators
 CREATE FOREIGN DATA WRAPPER rest;
 CREATE FOREIGN DATA WRAPPER postgresql;

 -- Servers
 CREATE SERVER "accountdb" FOREIGN DATA WRAPPER postgresql;
 CREATE SERVER "quotesvc" FOREIGN DATA WRAPPER rest;

 -- Schemas
 CREATE SCHEMA marketdata SERVER "quotesvc";
 CREATE SCHEMA accounts SERVER "accountdb";

 CREATE VIRTUAL SCHEMA Portfolio;

 -- Schema:marketdata
 SET SCHEMA marketdata;

 IMPORT FROM SERVER "quotesvc" INTO marketdata;

CHAPTER 6. BUILDING THE VIRTUAL DATABASE

19

We can now provide the CR to the Data Virtualization Operator to build and deploy the virtual database.

 -- Schema:accounts
 SET SCHEMA accounts;

 IMPORT FROM SERVER "accountdb" INTO accounts OPTIONS (
 "importer.useFullSchemaName" 'false',
 "importer.tableTypes" 'TABLE,VIEW');

 -- Schema:Portfolio
 SET SCHEMA Portfolio;

 CREATE VIEW StockPrice (
 symbol string,
 price double,
 CONSTRAINT ACS ACCESSPATTERN (symbol)
) AS
 SELECT p.symbol, y.price
 FROM accounts.PRODUCT as p, TABLE(call invokeHttp(action=>'GET',
endpoint=>QUERYSTRING('quote', p.symbol as "symbol", `STOCK_QUOTE_API_KEY` as "token"),
headers=>jsonObject('application/json' as "Content-Type"))) as x,
 JSONTABLE(JSONPARSE(x.result,true), '$' COLUMNS price double path '@.c') as y

 CREATE VIEW AccountValues (
 LastName string PRIMARY KEY,
 FirstName string,
 StockValue double
) AS
 SELECT c.lastname as LastName, c.firstname as FirstName, sum((h.shares_count*sp.price))
as StockValue
 FROM Customer c JOIN Account a on c.SSN=a.SSN
 JOIN Holdings h on a.account_id = h.account_id
 JOIN product p on h.product_id=p.id
 JOIN StockPrice sp on sp.symbol = p.symbol
 WHERE a.type='Active'
 GROUP BY c.lastname, c.firstname;

Red Hat Integration 2020-Q2 Data Virtualization Tutorial

20

CHAPTER 7. DEPLOYING THE VIRTUAL DATABASE
After you assemble your CR, the next step is to feed it to the Data Virtualization Operator to build and
deploy the virtual database.

Prerequisites

Before you can use deploy the virtual database, you must have:

Set up your environment as described in Chapter 4, Setting up the environment .

Procedure

1. Open a terminal window to the 01-base-example directory in your local Teiid-Openshift-
Examples respository, which contains the porfolio.yaml files.

2. If you have not yet done so, open the file in a text editor and add the API key for the stock
quote service in the Schema:Portfolio section. For more information, see the example in
Section 6.1.2.6, “Virtual schema definition”

3. Type the following command:

The command returns the following response:

At this stage, the virtual database is created, but it’s not yet running.

The initial deployment can take five or more minutes. The first time that you use the Operator
to deploy a virtual database in a project, the Operator must build a base image, which takes
extra time. Subsequent deployments take less time, because the base image that you create is
reused.

4. Run the following command to check the build status:

The build process runs through several phases. When you check the status, you might see any of
the following responses:

phase: Ready For S2I

phase: Building Base Builder Image

phase: Building Service Image

phase: Deploying

phase: Running

While you’re waiting, if you skipped the section that describes how to create the virtual database CR,
now is a good time to go back and review it. When you run the preceding command again, if the build
status reports that the phase is Running, you’re ready to move on to the next step.

oc create -f portfolio.yaml

virtualdatabase.teiid.io/portfolio created

oc get vdb portfolio -o yaml | grep phase

CHAPTER 7. DEPLOYING THE VIRTUAL DATABASE

21

CHAPTER 8. CONNECTING CLIENTS TO THE VIRTUAL
DATABASE

After you deploy the virtual database, you can make it available to clients. You can provide access
through the following interfaces:

JDBC. You can separately enable access from internal and external JDBC clients.

OData/REST API.

NOTE

ODBC access is also available, but a description of how to enable ODBC access is beyond
the scope of the present tutorial.

JDBC access

By default, after you deploy a virtual database, internal services, that is, services in the same OpenShift
cluster, can access the database via JDBC. No further configuration needed. Remote clients are a
different story, but we’ll get to them in a minute.

JDBC clients within the cluster

Clients in the same OpenShift cluster as the virtual database automatically have access to it over
JDBC. We’ll install a simple command-line SQL client to the cluster to demonstrate how easy it is.

External JDBC clients

Clients outside of the OpenShift cluster don’t automatically have access to the virtual database
server. To enable access, you must either set up an OpenShift load balancer service, or configure
port forwarding. We’ll use the SQuirreL SQL client to connect to the service from outside the cluster.

OData access

After you create the virtual database service, an OData route is generated automatically. You can
provide the OData route to HTTP/REST clients, which can then submit OData queries to the virtual
database. We’ll submit some simple queries from a standard browser to demonstrate.

8.1. CONNECTING AN INTERNAL JDBC CLIENT

To test internal JDBC access, you can use the SQLLine tool. The SQLLine tool is a command line utility
that can serve as a simple SQL client for connecting to relational databases and running SQL
commands. You can install the SQLLine tool on your OpenShift cluster and use it to access the virtual
database.

NOTE

SQLLine is not part of Red Hat Integration. References in this tutorial to using SQLLine
are provided as a convenience to customers who want to test connectivity to a virtual
database from an internal JDBC client.

8.1.1. Installing SQLLine

To install SQLLine to your OpenShift cluster, open a terminal window and run the following command:

oc run -it --restart=Never --attach --rm --image quay.io/teiid/sqlline:latest sqlline

Red Hat Integration 2020-Q2 Data Virtualization Tutorial

22

The command installs the SQLLine client image to the OpenShift cluster, and opens a SQL command
line:

You are now ready to connect the SQLLine tool to the virtual database.

8.1.2. Connecting SQLLine to the Portfolio virtual database

After you install SQLLine, you can run standard SQL queries from the SQLLine command prompt.
SQLLine also provides control commands for interacting with the database and managing the behavior
of the tool. The following table lists some common SQLLine commands.

Table 8.1. SQLLine commands

Command name Description Command format

dbinfo Retrieves information about the
database.

!dbinfo

tables Lists all of the tables in the
database.

!tables

help Displays information about
SQLLine commands.

!help

quit Exits SQLLine. !quit

For a complete list of SQLLine commands, see the SQLLine Manual .

Procedure

1. From the sqlline prompt, type the following command to connect to the Portfolio database
that you created earlier.

2. When prompted type a user name and password to log in:

The credentials that you supply at this point are only dummy values. You can type any value.

The command responds with the following output:

You are now connected to the virtual database service. You can submit SQL queries at prompt.

sqlline>

!connect jdbc:teiid:portfolio@mm://portfolio:31000;

Enter username for jdbc:teiid:portfolio@mm://portfolio:31000;: ANY_USER_NAME
Enter password for jdbc:teiid:portfolio@mm://portfolio:31000;: ANY_PASSWORD

Transaction isolation level TRANSACTION_REPEATABLE_READ is not supported. Default
(TRANSACTION_READ_COMMITTED) will be used instead.
0: jdbc:teiid:portfolio@mm://portfolio:31000>

CHAPTER 8. CONNECTING CLIENTS TO THE VIRTUAL DATABASE

23

https://julianhyde.github.io/sqlline/manual.html#sect_command_help

For information about some sample queries that you can try, see Sample queries.

3. Type !quit to end the SQLLine session.
The SQLLine pod is deleted.

You must re-run the installation command to run SQLLine again.

8.2. CONNECTING TO THE VIRTUAL DATABASE FROM AN EXTERNAL
JDBC CLIENT

By default, JDBC clients have access to a virtual database only if they share the same OpenShift cluster.

To provide access to external clients, you must create an OpenShift LoadBalancer service.
LoadBalancer services open an external port to allow access to clients outside the cluster.

8.2.1. Configuring an OpenShift load balancer service to enable external JDBC
clients to access the virtual database

To configure a load balancer for the virtual database, you define an attribute in the custom resource.
When you run the Data Virtualization Operator to build and deploy the virtual database, the Operator
creates the load balancer service automatically.

When the Operator deploys the virtual database, it automatically exposes the JDBC route to the virtual
database service. Although OpenShift typically requires you to create a route to the service that you
want to expose, you do not have to create routes for virtual database services that you deploy with the
Data Virtualization Operator.

Prerequisites

You have access to an OpenShift cluster that permits you to add a LoadBalancer Ingress
Service.

You have a custom resource (CR) to which you can add the attribute to enable the load
balancer service.

NOTE

Some environments prohibit configuring an external load balancer. If your OpenShift
cluster does not permit you to add a load balancer, you can enable access for external
clients by enabling port forwarding. For more information, see Section 8.2.2, “Enabling
external JDBC client access through port forwarding”.

Procedure

1. Add a load balancer service for the virtual database by setting the value of spec.expose in your
virtual database CR to LoadBalancer.
To provide flexibility in exposing other resources in the future, precede the value with a hyphen
(-) to indicate that it is an element in an array, as in the following example:

apiVersion: teiid.io/v1alpha1
kind: VirtualDatabase
metadata:
 name: portfolio
spec:

Red Hat Integration 2020-Q2 Data Virtualization Tutorial

24

2. After you deploy the virtual database, you can run the following command from a terminal
window to identify the exposed host and port:

The command returns network information for the service, including the cluster IP address,
external host name, and port number and type. For example:

Additional resources

For information about deploying the virtual database, see Chapter 7, Deploying the virtual
database.

For more information about configuring an OpenShift load balancer service, see the OpenShift
documentation.

8.2.2. Enabling external JDBC client access through port forwarding

In environments where you do not have permission to configure an external load balancer, you can use
the workaround of enabling port forwarding. Port forwarding maps the OpenShift cluster address and
port to a local port on your computer.

NOTE

Port forwarding enables you to test external JDBC clients from a single local computer in
the absence of a load balancer. Port forwarding cannot provide stable long-term access
in a production environment.

1. From a terminal window, type the following command to obtain the name of the portfolio pod:

The command returns the list of available pods. For example:

2. Using the name of the virtual database pod, type the following command to forward the cluster

 replicas: 1
 expose:
 - LoadBalancer
....

oc get svc portfolio-external

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
portfolio-external LoadBalancer 172.30.22.226 ad42f5d8b303045-487804948.example.com
3306:30357/TCP 15m

oc get pods

NAME READY STATUS RESTARTS AGE
accounts-1-deploy 0/1 Completed 0 21h
accounts-1-q5z6m 1/1 Running 0 21h
portfolio-1-build 0/1 Completed 0 21h
portfolio-6bbf99fb8d-hgh9d 1/1 Running 0 21h
teiid-operator-598874685b-c8m9q 1/1 Running 0 21h
virtualdatabase-builder-1-build 0/1 Completed 0 21h

CHAPTER 8. CONNECTING CLIENTS TO THE VIRTUAL DATABASE

25

https://docs.openshift.com/container-platform/4.4/networking/configuring_ingress_cluster_traffic/configuring-ingress-cluster-traffic-load-balancer.html

2. Using the name of the virtual database pod, type the following command to forward the cluster
port to your local computer:

For example:

The command returns the following response:

You can now access the pod from applications running on your computer. Install and run the
SQuirreL SQL client to test it out.

Additional resources

For more information about port forwarding on OpenShift, see https:docs.openshift.com/container-
platform/4.4/nodes/containers/nodes-containers-port-forwarding.html[the OpenShift
documentation].

8.2.3. Installing the SQuirreL JDBC client

To test JDBC access to the virtual database from an external client, we need to install a local JDBC
client. In this tutorial we’ll use SQuirreL, a free open source Java SQL client, but you can use any JDBC
client. SQuirreL provides tools to view the structure of the virtual database, browse its views, and run
SQL commands.

NOTE

SQuirreL is not part of Red Hat Integration. References in this tutorial to using SQuirreL
are provided as a convenience to customers who want to test connectivity to a virtual
database from an external JDBC client.

Because SQuirreL is installed outside the cluster, it does not have access to the portfolio database by
default.

Prerequisites

You have completed the following tasks:

Enabled access to the virtual database from an external JDBC client.

For testing purposes, this tutorial uses an unsecured connection on port 31000, the default unsecured
port.

IMPORTANT

For production deployments, always use a secure port that encrypts network traffic.

Procedure

1. Download the SQuirreL installation JAR from the following page: http://squirrel-

 oc port-forward <dv-pod-name> 31000:31000

oc port-forward portfolio-6bbf99fb8d-hgh9d 31000:31000

Forwarding from 127.0.0.1:31000 -> 31000
Forwarding from [::1]:31000 -> 31000

Red Hat Integration 2020-Q2 Data Virtualization Tutorial

26

1. Download the SQuirreL installation JAR from the following page: http://squirrel-
sql.sourceforge.net/#installation.

2. To install SQuirreL, open a terminal window to the directory that contains the downloaded file,
and type the following command:

java -jar squirrel-sql-<version>-install.jar

3. Follow the prompts in the installation wizard to complete the installation process.

8.2.4. Configuring SQuirreL to connect to the Portfolio virtual database

After you install the SQuirreL client, download the Teiid JDBC driver and configure the client to access
the virtual database.

Procedure

1. If you enabled external client access by adding a load balancer to the OpenShift cluster, retrieve
the connection information for the virtual database by running the following command,
otherwise skip to Step 2.

oc get service portfolio

The command returns the cluster IP address, and the available ports, for example:

2. Download the Teiid Java driver from the following page: http://teiid.io/teiid_wildfly/downloads/
For more information about using a JDBC driver to connect external Java programs to virtual
databases on OpenShift, see https://github.com/teiid/teiid-openshift-
examples/blob/master/jdbc.adoc.

3. Open SquirreL, and add the Teiid driver.

a. From the menu, click Drivers > New Driver.

b. In the Add Driver dialog box, type Teiid in Name field.

c. In the Example URL field, type:

jdbc:teiid:<vdb-name>@mms://<host>:<port>

NOTE

Port 31000 is a non-secure port. If you connect to the virtual database on
port 31000, type mm instead of mms in the Example URL field.

d. In the Website URL field, type:

`http://teiid.org`

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
portfolio ClusterIP 172.30.25.27 <none>
8080/TCP,8778/TCP,9779/TCP,31000/TCP,35432/TCP,31443/TCP,35443/TCP 8m23s

CHAPTER 8. CONNECTING CLIENTS TO THE VIRTUAL DATABASE

27

http://squirrel-sql.sourceforge.net/#installation
http://teiid.io/teiid_wildfly/downloads/
https://github.com/teiid/teiid-openshift-examples/blob/master/jdbc.adoc

e. Click Extra Class Path and then click Add.

f. Navigate to the directory where you downloaded the Teiid driver, click the driver JAR file,
and then click Open.

g. Click List Drivers. The Class Name field displays org.teiid.jdbc.TeiidDriver.

h. Click OK.

4. Add an Alias for the connection.

a. Click the Aliases tab, and from the menu click Aliases > New Alias.

b. In the Name field, type portfolio.

c. In the Driver field, select Teiid

d. In the URL field, type jdbc:teiid:portfolio.1@mm://IPADDRESS:PORT_NUMBER in place
of the example URL.
For example, if you used port forwarding to provide external access, type the following
localhost URL:

jdbc:teiid:portfolio.1@mm://127.0.0.1:31000

e. In the User Name field, type any value.

NOTE

The user name, and the password that you provide in the next step, are
dummy values. Although you must supply a user name and password to
create the alias, the values that you provide are not used in authenticating
with the virtual database.

f. In the Password field, type any value.

g. To test your connection, click Test, and then click Connect.

h. Click OK to confirm that the test was successful, and then click OK again to save the alias.

8.2.5. Querying the Portfolio virtual database from the SQuirreL SQL client

Procedure

1. From the Aliases tab, right-click the alias that you created, and then click Connect to connect
to the virtual database.

2. After the connection is established, click the SQL tab.

3. Type a SQL query and and press Ctrl+Enter to see the results.

For information about some sample queries that you can try, see Sample queries.

8.3. SAMPLE QUERIES

You can query the virtual database from internal or external JDBC clients. Here are a few sample queries

Red Hat Integration 2020-Q2 Data Virtualization Tutorial

28

You can query the virtual database from internal or external JDBC clients. Here are a few sample queries
that you can use to test how the clients interacts with the virtual database.

Example: Retrieve IBM stock price

Retrieve the full account value for customer with last name 'Dragon'

8.4. ACCESS THE VIRTUAL DATABASE THROUGH THE ODATA API

You can use the data virtualization OData API to query the virtual database service. You append your
OData query to the HTTP route to the service. You retrieve the HTTP route by querying the OpenShift
server.

1. Query the OpenShift server for the route that is created for the service. For example:

 oc get route

The server returns the HTTP route to the server. For example:

2. To test OData access from a browser, type the host string in the address bar, and append an
OData query URL.

Example: OData query requesting data in JSON format

https://portfolio-dv-tutorial.apps.cluster-
xyz.example.com/odata/portfolio/AccountValues('Dragon')?$format=json

Replace the host value in the preceding URI with the HTTP route to your service. The server
returns a result similar to the following:

Example: OData query requesting data in XML format

https://portfolio-dv-tutorial.apps.cluster-xyz.example.com/odata/portfolio/StockPrice('IBM')?
$format=xml

SELECT * FROM STOCKPRICE WHERE symbol = 'IBM';

SELECT * FROM AccountValues WHERE LastName = 'Dragon';

NAME HOST/PORT PATH SERVICES PORT TERMINATION
WILDCARD
portfolio portfolio-dv-tutorial.apps.cluster-xyz.example.com portfolio 8080 edge
None

{
 "@odata.context":"https://HOST/odata/portfolio/$metadata#AccountValues/$entity",
 "LastName":"Dragon",
 "FirstName":"Bonnie",
 "StockValue":30299.04
}

CHAPTER 8. CONNECTING CLIENTS TO THE VIRTUAL DATABASE

29

The server returns a result similar to the following:

<a:entry xmlns:a="http://www.w3.org/2005/Atom" xmlns:m="http://docs.oasis-
open.org/odata/ns/metadata" xmlns:d="http://docs.oasis-open.org/odata/ns/data"
m:context="https://portfolio-dv-tutorial.apps.cluster-
xyz.example.com:443/odata/portfolio/$metadata#StockPrice/$entity">
<a:id>
 https://portfolio-dv-tutorial.apps.cluster-
xyz.example.com:443/odata/portfolio/StockPrice('IBM')
</a:id>
<a:title/>
<a:summary/>
<a:updated>2020-05-27T01:40:35Z</a:updated>
<a:author>
 <a:name/>
</a:author>
<a:link rel="edit" href="https://portfolio-dv-tutorial.apps.cluster-
xyz.example.com:443/odata/portfolio/StockPrice('IBM')"/>
<a:category scheme="http://docs.oasis-open.org/odata/ns/scheme"
term="\#Portfolio.1.Portfolio.StockPrice"/>
 <a:content type="application/xml">
 <m:properties>
 <d:symbol>IBM</d:symbol>
 <d:price m:type="Double">121.76</d:price>
 </m:properties>
 </a:content>
</a:entry>

Red Hat Integration 2020-Q2 Data Virtualization Tutorial

30

	Table of Contents
	CHAPTER 1. OVERVIEW OF THE DATA VIRTUALIZATION TUTORIAL
	CHAPTER 2. GETTING STARTED WITH DATA VIRTUALIZATION
	CHAPTER 3. INTRODUCTION TO DATA VIRTUALIZATION
	CHAPTER 4. SETTING UP THE ENVIRONMENT
	4.1. CLONING THE TUTORIAL RESOURCES
	4.2. CREATING THE SOURCE DATABASE

	CHAPTER 5. ADDING THE DATA VIRTUALIZATION OPERATOR TO THE PROJECT
	5.1. CREATING A DOCKER-REGISTRY PULL SECRET
	5.2. INSTALLING THE DATA VIRTUALIZATION OPERATOR IN YOUR PROJECT
	5.3. LINKING THE PULL SECRET TO THE DATA VIRTUALIZATION OPERATOR SERVICE ACCOUNT

	CHAPTER 6. BUILDING THE VIRTUAL DATABASE
	6.1. VIRTUAL DATABASE CUSTOM RESOURCES
	6.1.1. Data source configuration
	6.1.2. DDL for defining the virtual database
	6.1.2.1. Virtual database creation
	6.1.2.2. Translator definition
	6.1.2.3. External data source definitions
	6.1.2.4. Schema creation
	6.1.2.5. Metadata import
	6.1.2.6. Virtual schema definition

	6.2. COMPLETED VIRTUAL DATABASE CUSTOM RESOURCE FILE

	CHAPTER 7. DEPLOYING THE VIRTUAL DATABASE
	CHAPTER 8. CONNECTING CLIENTS TO THE VIRTUAL DATABASE
	8.1. CONNECTING AN INTERNAL JDBC CLIENT
	8.1.1. Installing SQLLine
	8.1.2. Connecting SQLLine to the Portfolio virtual database

	8.2. CONNECTING TO THE VIRTUAL DATABASE FROM AN EXTERNAL JDBC CLIENT
	8.2.1. Configuring an OpenShift load balancer service to enable external JDBC clients to access the virtual database
	8.2.2. Enabling external JDBC client access through port forwarding
	8.2.3. Installing the SQuirreL JDBC client
	8.2.4. Configuring SQuirreL to connect to the Portfolio virtual database
	8.2.5. Querying the Portfolio virtual database from the SQuirreL SQL client

	8.3. SAMPLE QUERIES
	8.4. ACCESS THE VIRTUAL DATABASE THROUGH THE ODATA API

