
Red Hat Enterprise Linux 6

Managing Single Sign-On and Smart Cards

On Using the Enterprise Security Client

Last Updated: 2019-04-03

Red Hat Enterprise Linux 6 Managing Single Sign-On and Smart Cards

On Using the Enterprise Security Client

Aneta Šteflová Petrová
Red Hat Customer Content Services
aneta@redhat.com

Tomáš Čapek
Red Hat Customer Content Services

Ella Deon Ballard
Red Hat Customer Content Services

Legal Notice

Copyright © 2016 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide is for both users and administrators for Red Hat Enterprise Linux 6 to learn how to
manage personal certificates and keys using the Enterprise Security Client. The Enterprise Security
Client is a simple GUI which works as a front end for the Red Hat Certificate System token
management system. The Enterprise Security Client allows users of Red Hat Enterprise Linux 6 to
format and manage smart cards easily as part of a single sign-on solution.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION TO THE ENTERPRISE SECURITY CLIENT
1.1. RED HAT ENTERPRISE LINUX, SINGLE SIGN-ON, AND AUTHENTICATION
1.2. RED HAT CERTIFICATE SYSTEM AND THE ENTERPRISE SECURITY CLIENT

CHAPTER 2. USING PLUGGABLE AUTHENTICATION MODULES (PAM)
2.1. ABOUT PAM
2.2. PAM CONFIGURATION FILES
2.3. CREATING PAM MODULES
2.4. PAM AND ADMINISTRATIVE CREDENTIAL CACHING

CHAPTER 3. USING KERBEROS
3.1. ABOUT KERBEROS
3.2. INSTALLING KERBEROS
3.3. CONFIGURING A KERBEROS 5 SERVER
3.4. CONFIGURING A KERBEROS 5 CLIENT
3.5. SETTING UP A KERBEROS CLIENT FOR SMART CARDS
3.6. DOMAIN-TO-REALM MAPPING
3.7. SETTING UP CROSS REALM AUTHENTICATION

CHAPTER 4. SETTING UP ENTERPRISE SECURITY CLIENT
4.1. INSTALLING THE SMART CARD PACKAGE GROUP
4.2. LAUNCHING THE SMART CARD MANAGER UI
4.3. OVERVIEW OF ENTERPRISE SECURITY CLIENT CONFIGURATION
4.4. CONFIGURING PHONE HOME
4.5. USING SECURITY OFFICER MODE
4.6. CONFIGURING SSL CONNECTIONS WITH THE TPS
4.7. CUSTOMIZING THE SMART CARD ENROLLMENT USER INTERFACE
4.8. DISABLING LDAP AUTHENTICATION FOR TOKEN OPERATIONS

CHAPTER 5. USING SMART CARDS WITH THE ENTERPRISE SECURITY CLIENT
5.1. SUPPORTED SMART CARDS
5.2. SETTING UP USERS TO BE ENROLLED
5.3. ENROLLING A SMART CARD AUTOMATICALLY
5.4. MANAGING SMART CARDS
5.5. DIAGNOSING PROBLEMS

CHAPTER 6. CONFIGURING APPLICATIONS FOR SINGLE SIGN-ON
6.1. CONFIGURING FIREFOX TO USE KERBEROS FOR SINGLE SIGN-ON
6.2. ENABLING SMART CARD LOGIN
6.3. SETTING UP BROWSERS TO SUPPORT SSL FOR TOKENS
6.4. USING THE CERTIFICATES ON TOKENS FOR MAIL CLIENTS

APPENDIX A. REVISION HISTORY

3
3
4

6
6
6

10
11

13
13
17
17
21
23
24
24

29
29
29
30
36
39
51
54
57

59
59
59
60
63
74

80
80
81
83
85

87

Table of Contents

1

Managing Single Sign-On and Smart Cards

2

CHAPTER 1. INTRODUCTION TO THE ENTERPRISE SECURITY
CLIENT
The Enterprise Security Client is a tool for Red Hat Certificate System which simplifies managing smart
cards. End users can use security tokens (smart cards) to store user certificates used for applications
such as single sign-on access and client authentication. End users are issued the tokens containing
certificates and keys required for signing, encryption, and other cryptographic functions.

After a token is enrolled, applications such as Mozilla Firefox and Thunderbird can be configured to
recognize the token and use it for security operations, like client authentication and S/MIME mail. The
Enterprise Security Client provides the following capabilities:

Supports Global Platform-compliant smart cards.

Enrolls security tokens so they are recognized by the token management system in Red Hat
Certificate System.

Maintains the security token, such as re-enrolling a token.

Provides information about the current status of the token or tokens being managed.

Supports server-side key generation through the Certificate System subsystems so that keys
can be archived and recovered on a separate token if a token is lost.

1.1. RED HAT ENTERPRISE LINUX, SINGLE SIGN-ON, AND
AUTHENTICATION

Network users frequently have to submit multiple passwords for the various services they use, such as
email, web browsing and intranets, and servers on the network. Maintaining multiple passwords, and
constantly being prompted to enter them, is a hassle for users and administrators. Single sign-on is a
configuration which allows administrators to create a single password store so that users can log in
once, using a single password, and be authenticated to all network resources.

Red Hat Enterprise Linux 6 supports single sign-on for several resources, including logging into
workstations and unlocking screensavers, accessing encrypted web pages using Mozilla Firefox, and
sending encrypted email using Mozilla Thunderbird.

Single sign-on is both a convenience to users and another layer of security for the server and the
network. Single sign-on hinges on secure and effective authentication. Red Hat Enterprise Linux
provides two authentication mechanisms which can be used to enable single sign-on:

Kerberos-based authentication

Smart card-based authentication, using the Enterprise Security Client tied into the public-key
infrastructure implemented by Red Hat Certificate System

One of the cornerstones of establishing a secure network environment is making sure that access is
restricted to people who have the right to access the network. If access is allowed, users can
authenticate to the system, meaning they can verify their identities.

Many systems use Kerberos to establish a system of short-lived credentials, called tickets, which are
generated ad hoc at a user request. The user is required to present credentials in the form of a
username-password pair that identify the user and indicate to the system that the user can be issued a
ticket. This ticket can be referenced repeatedly by other services, like websites and email, requiring the
user to go through only a single authentication process.

CHAPTER 1. INTRODUCTION TO THE ENTERPRISE SECURITY CLIENT

3

An alternative method of verifying an identity is presenting a certificate. A certificate is an electronic
document which identifies the entity which presents it. With smart card-based authentication, these
certificates are stored on a small hardware device called a smart card or token. When a user inserts a
smart card, the smart card presents the certificates to the system and identifies the user so the user can
be authenticated.

Single sign-on using smart cards goes through three steps:

1. A user inserts a smart card into the card reader. This is detected by the pluggable authentication
modules (PAM) on Red Hat Enterprise Linux.

2. The system maps the certificate to the user entry and then compares the presented certificates
on the smart card to the certificates stored in the user entry.

3. If the certificate is successfully validated against the key distribution center (KDC), then the user
is allowed to log in.

Smart card-based authentication builds on the simple authentication layer established by Kerberos by
adding additional identification mechanisms (certificates) and physical access requirements.

1.2. RED HAT CERTIFICATE SYSTEM AND THE ENTERPRISE
SECURITY CLIENT

Red Hat Certificate System creates, manages, renews, and revokes certificates and keys. For managing
smart cards, the Certificate System has a token management system to generate keys, create certificate
requests, and receive certificates.

Two subsystems — the Token Key Service (TKS) and Token Processing System (TPS) — are used to
process token-related operations. The Enterprise Security Client is the interface which allows the smart
card and user to access the token management system.

A total of four Certificate System subsystems are involved with managing tokens, two for managing the
tokens (TKS and TPS) and two for managing the keys and certificates within the public-key infrastructure
(CA and DRM).

The Token Processing System (TPS) interacts with smart cards to help them generate and store
keys and certificates for a specific entity, such as a user or device. Smart card operations go
through the TPS and are forwarded to the appropriate subsystem for action, such as the
Certificate Authority to generate certificates or the Data Recovery Manager to archive and
recover keys.

The Token Key Service (TKS) generates, or derives, symmetric keys used for communication
between the TPS and smart card. Each set of keys generated by the TKS is unique because
they are based on the card's unique ID. The keys are formatted on the smart card and are used
to encrypt communications, or provide authentication, between the smart card and TPS.

The Certificate Authority (CA) creates and revokes user certificates stored on the smart card.

Optionally, the Data Recovery Manager (DRM) archives and recovers keys for the smart card.

Managing Single Sign-On and Smart Cards

4

Figure 1.1. How Certificate System Manages Smart Cards

As Figure 1.1, “How Certificate System Manages Smart Cards” shows, the TPS is the central hub in the
Red Hat Certificate System token management system. The token communicates with the TPS directly.
The TPS then communicates with the TKS to derive a set of unique keys that can be used for TPS-token
communication (1). When the smart card is enrolled, new private keys are created for the token; those
keys can be archived in a DRM (2), if key archival is configured. The CA then processes the certificate
request (3) and issues the certificates to store on the token. The TPS sends those certificates back to the
Enterprise Security Client (4), and they are saved to the token.

The Enterprise Security Client is the conduit through which TPS communicates with each token over a
secure HTTP channel (HTTPS), and, through the TPS, with the Certificate System.

To use the tokens, the Token Processing System must be able to recognize and communicate with
them. The tokens must first be enrolled to populate the tokens with required keys and certificates and
add the tokens to the Certificate System. The Enterprise Security Client provides the user interface for
users to format and manage smart cards.

CHAPTER 1. INTRODUCTION TO THE ENTERPRISE SECURITY CLIENT

5

CHAPTER 2. USING PLUGGABLE AUTHENTICATION
MODULES (PAM)
Pluggable authentication modules are a common framework for authentication and security. Both of Red
Hat Enterprise Linux's single sign-on methods — Kerberos and smart cards — depend on underlying
PAM configuration.

Understanding and using PAM can be very beneficial for planning and implementing a secure, efficient
single sign-on solution.

2.1. ABOUT PAM

Programs that grant users access to a system use authentication to verify each other's identity (that is, to
establish that a user is who they say they are).

Historically, each program had its own way of authenticating users. In Red Hat Enterprise Linux, many
programs are configured to use a centralized authentication mechanism called Pluggable Authentication
Modules (PAM).

PAM uses a pluggable, modular architecture, which affords the system administrator a great deal of
flexibility in setting authentication policies for the system. PAM is a useful system for developers and
administrators for several reasons:

PAM provides a common authentication scheme that can be used with a wide variety of
applications.

PAM provides significant flexibility and control over authentication for both system administrators
and application developers.

PAM provides a single, fully-documented library which allows developers to write programs
without having to create their own authentication schemes.

PAM has an extensive documentation set with much more detail about both using PAM and writing
modules to extend or integrate PAM with other applications. Almost all of the major modules and
configuration files with PAM have their own manpages. Additionally, the
/usr/share/doc/pam-version# directory contains a System Administrators' Guide, a Module Writers'
Manual, and the Application Developers' Manual, as well as a copy of the PAM standard, DCE-RFC
86.0.

The libraries for PAM are available at http://www.kernel.org/pub/linux/libs/pam/. This is the primary
distribution website for the Linux-PAM project, containing information on various PAM modules,
frequently asked questions, and additional PAM documentation.

2.2. PAM CONFIGURATION FILES

The /etc/pam.d/ directory contains the PAM configuration files for each PAM-aware application.

2.2.1. PAM Service Files

Each PAM-aware application or service has a file in the /etc/pam.d/ directory. Each file in this
directory has the same name as the service to which it controls access.

Managing Single Sign-On and Smart Cards

6

http://www.kernel.org/pub/linux/libs/pam/

The PAM-aware program is responsible for defining its service name and installing its own PAM
configuration file in the /etc/pam.d/ directory. For example, the login program defines its service
name as login and installs the /etc/pam.d/login PAM configuration file.

2.2.2. PAM Configuration File Format

Each PAM configuration file contains a group of directives that define the module and any controls or
arguments with it.

The directives all have a simple syntax that identifies the module purpose (interface) and the
configuration settings for the module.

module_interface control_flag module_name module_arguments

2.2.2.1. PAM Module Interfaces

Four types of PAM module interface are available. Each of these corresponds to a different aspect of the
authorization process:

auth — This module interface authenticates use. For example, it requests and verifies the
validity of a password. Modules with this interface can also set credentials, such as group
memberships or Kerberos tickets.

account — This module interface verifies that access is allowed. For example, it checks if a
user account has expired or if a user is allowed to log in at a particular time of day.

password — This module interface is used for changing user passwords.

session — This module interface configures and manages user sessions. Modules with this
interface can also perform additional tasks that are needed to allow access, like mounting a
user's home directory and making the user's mailbox available.

NOTE

An individual module can provide any or all module interfaces. For instance,
pam_unix.so provides all four module interfaces.

In a PAM configuration file, the module interface is the first field defined. For example:

auth required pam_unix.so

This instructs PAM to use the pam_unix.so module's auth interface.

Module interface directives can be stacked, or placed upon one another, so that multiple modules are
used together for one purpose. If a module's control flag uses the sufficient or requisite value,
then the order in which the modules are listed is important to the authentication process.

Stacking makes it easy for an administrator to require specific conditions to exist before allowing the user
to authenticate. For example, the reboot command normally uses several stacked modules, as seen in
its PAM configuration file:

[root@MyServer ~]# cat /etc/pam.d/reboot
#%PAM-1.0

CHAPTER 2. USING PLUGGABLE AUTHENTICATION MODULES (PAM)

7

auth sufficient pam_rootok.so
auth required pam_console.so
#auth include system-auth
account required pam_permit.so

The first line is a comment and is not processed.

auth sufficient pam_rootok.so — This line uses the pam_rootok.so module to check
whether the current user is root, by verifying that their UID is 0. If this test succeeds, no other
modules are consulted and the command is executed. If this test fails, the next module is
consulted.

auth required pam_console.so — This line uses the pam_console.so module to
attempt to authenticate the user. If this user is already logged in at the console,
pam_console.so checks whether there is a file in the /etc/security/console.apps/
directory with the same name as the service name (reboot). If such a file exists, authentication
succeeds and control is passed to the next module.

#auth include system-auth — This line is commented and is not processed.

account required pam_permit.so — This line uses the pam_permit.so module to allow
the root user or anyone logged in at the console to reboot the system.

2.2.2.2. PAM Control Flags

All PAM modules generate a success or failure result when called. Control flags tell PAM what do with
the result. Modules can be stacked in a particular order, and the control flags determine how important
the success or failure of a particular module is to the overall goal of authenticating the user to the service.

There are several simple flags, which use only a keyword to set the configuration:

required — The module result must be successful for authentication to continue. If the test
fails at this point, the user is not notified until the results of all module tests that reference that
interface are complete.

requisite — The module result must be successful for authentication to continue. However, if
a test fails at this point, the user is notified immediately with a message reflecting the first failed
required or requisite module test.

sufficient — The module result is ignored if it fails. However, if the result of a module
flagged sufficient is successful and no previous modules flagged required have failed,
then no other results are required and the user is authenticated to the service.

optional — The module result is ignored. A module flagged as optional only becomes
necessary for successful authentication when no other modules reference the interface.

include — Unlike the other controls, this does not relate to how the module result is handled.
This flag pulls in all lines in the configuration file which match the given parameter and appends
them as an argument to the module.

IMPORTANT

The order in which required modules are called is not critical. Only the sufficient
and requisite control flags cause order to become important.

Managing Single Sign-On and Smart Cards

8

There are many complex control flags that can be set. These are set in attribute=value pairs; a complete
list of attributes is available in the pam.d manpage.

2.2.2.3. PAM Module Names

The module name provides PAM with the name of the pluggable module containing the specified module
interface. The directory name is omitted because the application is linked to the appropriate version of
libpam, which can locate the correct version of the module.

2.2.2.4. PAM Module Arguments

PAM uses arguments to pass information to a pluggable module during authentication for some
modules.

For example, the pam_userdb.so module uses information stored in a Berkeley DB file to authenticate
the user. Berkeley DB is an open source database system embedded in many applications. The module
takes a db argument so that Berkeley DB knows which database to use for the requested service. For
example:

auth required pam_userdb.so db=/path/to/BerkeleyDB_file

Invalid arguments are generally ignored and do not otherwise affect the success or failure of the PAM
module. Some modules, however, may fail on invalid arguments. Most modules report errors to the
/var/log/secure file.

2.2.3. Sample PAM Configuration Files

Example 2.1, “Simple PAM Configuration” is a sample PAM application configuration file:

Example 2.1. Simple PAM Configuration

#%PAM-1.0
auth required pam_securetty.so
auth required pam_unix.so nullok
auth required pam_nologin.so
account required pam_unix.so
password required pam_cracklib.so retry=3
password required pam_unix.so shadow nullok use_authtok
session required pam_unix.so

The first line is a comment, indicated by the hash mark (#) at the beginning of the line.

Lines two through four stack three modules for login authentication.

auth required pam_securetty.so — This module ensures that if the user is trying to log
in as root, the tty on which the user is logging in is listed in the /etc/securetty file, if that file
exists.

If the tty is not listed in the file, any attempt to log in as root fails with a Login incorrect
message.

CHAPTER 2. USING PLUGGABLE AUTHENTICATION MODULES (PAM)

9

auth required pam_unix.so nullok — This module prompts the user for a password and
then checks the password using the information stored in /etc/passwd and, if it exists,
/etc/shadow.

The argument nullok instructs the pam_unix.so module to allow a blank password.

auth required pam_nologin.so — This is the final authentication step. It checks whether
the /etc/nologin file exists. If it exists and the user is not root, authentication fails.

NOTE

In this example, all three auth modules are checked, even if the first auth
module fails. This prevents the user from knowing at what stage their
authentication failed. Such knowledge in the hands of an attacker could allow
them to more easily deduce how to crack the system.

account required pam_unix.so — This module performs any necessary account
verification. For example, if shadow passwords have been enabled, the account interface of the
pam_unix.so module checks to see if the account has expired or if the user has not changed
the password within the allowed grace period.

password required pam_cracklib.so retry=3 — If a password has expired, the
password component of the pam_cracklib.so module prompts for a new password. It then
tests the newly created password to see whether it can easily be determined by a dictionary-
based password cracking program.

The argument retry=3 specifies that if the test fails the first time, the user has two more
chances to create a strong password.

password required pam_unix.so shadow nullok use_authtok — This line specifies
that if the program changes the user's password, using the password interface of the
pam_unix.so module.

The argument shadow instructs the module to create shadow passwords when updating a
user's password.

The argument nullok instructs the module to allow the user to change their password from
a blank password, otherwise a null password is treated as an account lock.

The final argument on this line, use_authtok, provides a good example of the importance
of order when stacking PAM modules. This argument instructs the module not to prompt the
user for a new password. Instead, it accepts any password that was recorded by a previous
password module. In this way, all new passwords must pass the pam_cracklib.so test
for secure passwords before being accepted.

session required pam_unix.so — The final line instructs the session interface of the
pam_unix.so module to manage the session. This module logs the user name and the service
type to /var/log/secure at the beginning and end of each session. This module can be
supplemented by stacking it with other session modules for additional functionality.

2.3. CREATING PAM MODULES

New PAM modules can be created or added at any time for use by PAM-aware applications. PAM-
aware programs can immediately use the new module and any methods it defines without being

Managing Single Sign-On and Smart Cards

10

recompiled or otherwise modified. This allows developers and system administrators to mix-and-match,
as well as test, authentication methods for different programs without recompiling them.

Documentation on writing modules is included in the /usr/share/doc/pam-version# directory.

2.4. PAM AND ADMINISTRATIVE CREDENTIAL CACHING

A number of graphical administrative tools in Red Hat Enterprise Linux provide users with elevated
privileges for up to five minutes using the pam_timestamp.so module. It is important to understand
how this mechanism works, because a user who walks away from a terminal while pam_timestamp.so
is in effect leaves the machine open to manipulation by anyone with physical access to the console.

In the PAM timestamp scheme, the graphical administrative application prompts the user for the root
password when it is launched. When the user has been authenticated, the pam_timestamp.so module
creates a timestamp file. By default, this is created in the /var/run/sudo/ directory. If the timestamp
file already exists, graphical administrative programs do not prompt for a password. Instead, the
pam_timestamp.so module freshens the timestamp file, reserving an extra five minutes of
unchallenged administrative access for the user.

You can verify the actual state of the timestamp file by inspecting the file in the /var/run/sudo/user
directory. For the desktop, the relevant file is unknown:root. If it is present and its timestamp is less
than five minutes old, the credentials are valid.

The existence of the timestamp file is indicated by an authentication icon, which appears in the
notification area of the panel.

Figure 2.1. The Authentication Icon

2.4.1. Removing the Timestamp File

Before abandoning a console where a PAM timestamp is active, it is recommended that the timestamp
file be destroyed. To do this from a graphical environment, click the authentication icon on the panel. This
causes a dialog box to appear. Click the Forget Authorization button to destroy the active
timestamp file.

Figure 2.2. Dismiss Authentication Dialog

The PAM timestamp file has some important characteristics:

If logged in to the system remotely using ssh, use the /sbin/pam_timestamp_check -k
root command to destroy the timestamp file.

CHAPTER 2. USING PLUGGABLE AUTHENTICATION MODULES (PAM)

11

Run the /sbin/pam_timestamp_check -k root command from the same terminal window
where the privileged application was launched.

The logged in user who originally invoked the pam_timestamp.so module must be the user
who runs the /sbin/pam_timestamp_check -k command. Do not run this command as root.

Killing the credentials on the desktop without using the Forget Authorization action on the
icon can be done with the /sbin/pam_timestamp_chec command.

/sbin/pam_timestamp_check -k root </dev/null >/dev/null 2>/dev/null

Any other method only removes the credentials from the pty where the command was run.

Refer to the pam_timestamp_check man page for more information about destroying the timestamp
file using pam_timestamp_check.

2.4.2. Common pam_timestamp Directives

The pam_timestamp.so module accepts several directives, with two used most commonly:

timestamp_timeout — Specifies the period (in seconds) for which the timestamp file is valid.
The default value is 300 (five minutes).

timestampdir — Specifies the directory in which the timestamp file is stored. The default
value is /var/run/sudo/.

Managing Single Sign-On and Smart Cards

12

CHAPTER 3. USING KERBEROS
Maintaining system security and integrity within a network is critical, and it encompasses every user,
application, service, and server within the network infrastructure. It requires an understanding of
everything that is running on the network and the manner in which these services are used. At the core of
maintaining this security is maintaining access to these applications and services and enforcing that
access.

Kerberos provides a mechanism that allows both users and machines to identify themselves to network
and receive defined, limited access to the areas and services that the administrator configured. Kerberos
authenticates entities by verifying their identity, and Kerberos also secures this authenticating data so
that it cannot be accessed and used or tampered with by an outsider.

3.1. ABOUT KERBEROS

Kerberos is a network authentication protocol created by MIT, and uses symmetric-key cryptography[1]

to authenticate users to network services, which means passwords are never actually sent over the
network.

Consequently, when users authenticate to network services using Kerberos, unauthorized users
attempting to gather passwords by monitoring network traffic are effectively thwarted.

3.1.1. How Kerberos Works

Most conventional network services use password-based authentication schemes, where a user supplies
a password to access a given network server. However, the transmission of authentication information
for many services is unencrypted. For such a scheme to be secure, the network has to be inaccessible
to outsiders, and all computers and users on the network must be trusted and trustworthy.

With simple, password-based authentication, a network that is connected to the Internet cannot be
assumed to be secure. Any attacker who gains access to the network can use a simple packet analyzer,
or packet sniffer, to intercept usernames and passwords, compromising user accounts and, therefore, the
integrity of the entire security infrastructure.

Kerberos eliminates the transmission of unencrypted passwords across the network and removes the
potential threat of an attacker sniffing the network.

Rather than authenticating each user to each network service separately as with simple password
authentication, Kerberos uses symmetric encryption and a trusted third party (a key distribution center or
KDC) to authenticate users to a suite of network services. The computers managed by that KDC and any
secondary KDCs constitute a realm.

When a user authenticates to the KDC, the KDC sends a set of credentials (a ticket) specific to that
session back to the user's machine, and any Kerberos-aware services look for the ticket on the user's
machine rather than requiring the user to authenticate using a password.

As shown in Figure 3.1, “Kerberos Authentication, in Steps” , each user is identified to the KDC with a
unique identity, called a principal. When a user on a Kerberos-aware network logs into his workstation,
his principal is sent to the KDC as part of a request for a ticket-getting ticket (or TGT) from the
authentication server. This request can be sent by the login program so that it is transparent to the user
or can be sent manually by a user through the kinit program after the user logs in.

The KDC then checks for the principal in its database. If the principal is found, the KDC creates a TGT,
encrypts it using the user's key, and sends the TGT to that user.

CHAPTER 3. USING KERBEROS

13

Figure 3.1. Kerberos Authentication, in Steps

The login or kinit program on the client then decrypts the TGT using the user's key, which it computes
from the user's password. The user's key is used only on the client machine and is not transmitted over
the network. The ticket (or credentials) sent by the KDC are stored in a local file, the credentials cache,
which can be checked by Kerberos-aware services.

After authentication, servers can check an unencrypted list of recognized principals and their keys rather
than checking kinit; this is kept in a keytab.

The TGT is set to expire after a certain period of time (usually ten to twenty-four hours) and is stored in
the client machine's credentials cache. An expiration time is set so that a compromised TGT is of use to
an attacker for only a short period of time. After the TGT has been issued, the user does not have to re-
enter their password until the TGT expires or until they log out and log in again.

Whenever the user needs access to a network service, the client software uses the TGT to request a
new ticket for that specific service from the ticket-granting server (TGS). The service ticket is then used
to authenticate the user to that service transparently.

WARNING

The Kerberos system can be compromised if a user on the network authenticates
against a non-Kerberos aware service by transmitting a password in plain text. The
use of non-Kerberos aware services (including telnet and FTP) is highly
discouraged. Other encrypted protocols, such as SSH or SSL-secured services, is
preferred to unencrypted services, but this is still not ideal.



Managing Single Sign-On and Smart Cards

14

Kerberos relies on being able to resolve machine names and on accurate timestamps to issue and expire
tickets. Thus, Kerberos requires both adequate clock synchronization and a working domain name
service (DNS) to function correctly.

Approximate clock synchronization between the machines on the network can be set up using a
service such as ntpd, which is documented in /usr/share/doc/ntp-version-
number/html/index.html.

Both DNS entries and hosts on the network must be properly configured, which is covered in the
Kerberos documentation in /usr/share/doc/krb5-server-version-number.

3.1.2. Considerations for Deploying Kerberos

Although Kerberos removes a common and severe security threat, it is difficult to implement for a variety
of reasons:

Migrating user passwords from a standard UNIX password database, such as /etc/passwd or
/etc/shadow, to a Kerberos password database can be tedious. There is no automated
mechanism to perform this task. This is covered in question 2.23 in the online Kerberos FAQ for
the US Navy.

Kerberos assumes that each user is trusted but is using an untrusted host on an untrusted
network. Its primary goal is to prevent unencrypted passwords from being transmitted across
that network. However, if anyone other than the proper user has access to the one host that
issues tickets used for authentication — the KDC — the entire Kerberos authentication system
are at risk.

For an application to use Kerberos, its source must be modified to make the appropriate calls
into the Kerberos libraries. Applications modified in this way are considered to be Kerberos-
aware, or kerberized. For some applications, this can be quite problematic due to the size of the
application or its design. For other incompatible applications, changes must be made to the way
in which the server and client communicate. Again, this can require extensive programming.
Closed-source applications that do not have Kerberos support by default are often the most
problematic.

Kerberos is an all-or-nothing solution. If Kerberos is used on the network, any unencrypted
passwords transferred to a non-Kerberos aware service are at risk. Thus, the network gains no
benefit from the use of Kerberos. To secure a network with Kerberos, one must either use
Kerberos-aware versions of all client/server applications that transmit passwords unencrypted,
or not use that client/server application at all.

3.1.3. Additional Resources for Kerberos

Kerberos can be a complex service to implement, with a lot of flexibility in how it is deployed. Table 3.1,
“External Kerberos Documentation” and Table 3.2, “Important Kerberos Manpages” list of a few of the
most important or most useful sources for more information on using Kerberos.

Table 3.1. External Kerberos Documentation

Documentation Location

Kerberos V5 Installation Guide (in both PostScript
and HTML)

/usr/share/doc/krb5-server-version-number

CHAPTER 3. USING KERBEROS

15

http://www.cmf.nrl.navy.mil/CCS/people/kenh/kerberos-faq.html#pwconvert

Kerberos V5 System Administrator's Guide (in both
PostScript and HTML)

/usr/share/doc/krb5-server-version-number

Kerberos V5 UNIX User's Guide (in both PostScript
and HTML)

/usr/share/doc/krb5-workstation-version-number

"Kerberos: The Network Authentication Protocol"
webpage from MIT

http://web.mit.edu/kerberos/www/

The Kerberos Frequently Asked Questions (FAQ) http://www.cmf.nrl.navy.mil/CCS/people/kenh/kerbero
s-faq.html

Designing an Authentication System: a Dialogue in
Four Scenes, originally by Bill Bryant in 1988,
modified by Theodore Ts'o in 1997. This document is
a conversation between two developers who are
thinking through the creation of a Kerberos-style
authentication system. The conversational style of the
discussion makes this a good starting place for
people who are completely unfamiliar with Kerberos.

http://web.mit.edu/kerberos/www/dialogue.html

A how-to article for kerberizing a network. http://www.ornl.gov/~jar/HowToKerb.html

Documentation Location

Any of the manpage files can be opened by running man command_name.

Table 3.2. Important Kerberos Manpages

Manpage Description

Client Applications

kerberos An introduction to the Kerberos system which
describes how credentials work and provides
recommendations for obtaining and destroying
Kerberos tickets. The bottom of the man page
references a number of related man pages.

kinit Describes how to use this command to obtain and
cache a ticket-granting ticket.

kdestroy Describes how to use this command to destroy
Kerberos credentials.

klist Describes how to use this command to list cached
Kerberos credentials.

Administrative Applications

Managing Single Sign-On and Smart Cards

16

http://web.mit.edu/kerberos/www/
http://www.cmf.nrl.navy.mil/CCS/people/kenh/kerberos-faq.html
http://web.mit.edu/kerberos/www/dialogue.html
http://www.ornl.gov/~jar/HowToKerb.html

kadmin Describes how to use this command to administer the
Kerberos V5 database.

kdb5_util Describes how to use this command to create and
perform low-level administrative functions on the
Kerberos V5 database.

Server Applications

krb5kdc Describes available command line options for the
Kerberos V5 KDC.

kadmind Describes available command line options for the
Kerberos V5 administration server.

Configuration Files

krb5.conf Describes the format and options available within the
configuration file for the Kerberos V5 library.

kdc.conf Describes the format and options available within the
configuration file for the Kerberos V5 AS and KDC.

Manpage Description

3.2. INSTALLING KERBEROS

Kerberos packages may be installed by default, but make sure that the appropriate packages are
installed for the Kerberos server or client being configured.

To install packages for a Kerberos server:

yum install krb5-server krb5-libs krb5-auth-dialog

To install packages for a Kerberos client:

yum install krb5-workstation krb5-libs krb5-auth-dialog

If the Red Hat Enterprise Linux system will use Kerberos as part of single sign-on with smart cards, then
also install the required PKI/OpenSSL package:

yum install krb5-pkinit-openssl

3.3. CONFIGURING A KERBEROS 5 SERVER

When setting up Kerberos, install the master KDC first and then install any necessary secondary servers
after the master is set up.

3.3.1. Configuring the Master KDC Server

CHAPTER 3. USING KERBEROS

17

1. Ensure that time synchronization and DNS are functioning correctly on all client and server
machines before configuring Kerberos.

Pay particular attention to time synchronization between the Kerberos server and its clients. If
the time difference between the server and client is greater than the configured limit (five
minutes by default), Kerberos clients cannot authenticate to the server. This time
synchronization is necessary to prevent an attacker from using an old Kerberos ticket to
masquerade as a valid user.

The NTP documentation is located at /usr/share/doc/ntp-version-
number/html/index.html and online at http://www.ntp.org.

2. Install the krb5-libs, krb5-server, and krb5-workstation packages on the dedicated
machine which runs the KDC. This machine needs to be very secure — if possible, it should not
run any services other than the KDC.

3. Edit the /etc/krb5.conf and /var/kerberos/krb5kdc/kdc.conf configuration files to
reflect the realm name and domain-to-realm mappings. A simple realm can be constructed by
replacing instances of EXAMPLE.COM and example.com with the correct domain name —
being certain to keep uppercase and lowercase names in the correct format — and by changing
the KDC from kerberos.example.com to the name of the Kerberos server. By convention, all
realm names are uppercase and all DNS hostnames and domain names are lowercase. The
man pages of these configuration files have full details about the file formats.

4. Create the database using the kdb5_util utility.

/usr/sbin/kdb5_util create -s

The create command creates the database that stores keys for the Kerberos realm. The -s
argument creates a stash file in which the master server key is stored. If no stash file is present
from which to read the key, the Kerberos server (krb5kdc) prompts the user for the master
server password (which can be used to regenerate the key) every time it starts.

5. Edit the /var/kerberos/krb5kdc/kadm5.acl file. This file is used by kadmind to
determine which principals have administrative access to the Kerberos database and their level
of access. Most organizations can be accommodated by a single line:

*/admin@EXAMPLE.COM *

Most users are represented in the database by a single principal (with a NULL, or empty,
instance, such as joe@EXAMPLE.COM). In this configuration, users with a second principal with
an instance of admin (for example, joe/admin@EXAMPLE.COM) are able to exert full
administrative control over the realm's Kerberos database.

After kadmind has been started on the server, any user can access its services by running
kadmin on any of the clients or servers in the realm. However, only users listed in the
kadm5.acl file can modify the database in any way, except for changing their own passwords.

Managing Single Sign-On and Smart Cards

18

http://www.ntp.org

NOTE

The kadmin utility communicates with the kadmind server over the network, and
uses Kerberos to handle authentication. Consequently, the first principal must
already exist before connecting to the server over the network to administer it.
Create the first principal with the kadmin.local command, which is specifically
designed to be used on the same host as the KDC and does not use Kerberos for
authentication.

6. Create the first principal using kadmin.local at the KDC terminal:

/usr/sbin/kadmin.local -q "addprinc username/admin"

7. Start Kerberos using the following commands:

/sbin/service krb5kdc start
/sbin/service kadmin start

8. Add principals for the users using the addprinc command within kadmin. kadmin and
kadmin.local are command line interfaces to the KDC. As such, many commands — such as
addprinc — are available after launching the kadmin program. Refer to the kadmin man page
for more information.

9. Verify that the KDC is issuing tickets. First, run kinit to obtain a ticket and store it in a
credential cache file. Next, use klist to view the list of credentials in the cache and use
kdestroy to destroy the cache and the credentials it contains.

NOTE

By default, kinit attempts to authenticate using the same system login
username (not the Kerberos server). If that username does not correspond to a
principal in the Kerberos database, kinit issues an error message. If that
happens, supply kinit with the name of the correct principal as an argument on
the command line:

kinit principal

3.3.2. Setting up Secondary KDCs

When there are multiple KDCs for a given realm, one KDC (the master KDC) keeps a writable copy of
the realm database and runs kadmind. The master KDC is also the realm's admin server. Additional
secondary KDCs keep read-only copies of the database and run kpropd.

The master-slave propagation procedure entails the master KDC dumping its database to a temporary
dump file and then transmitting that file to each of its slaves, which then overwrite their previously-
received read-only copies of the database with the contents of the dump file.

To set up a secondary KDC:

1. Copy the master KDC's krb5.conf and kdc.conf files to the secondary KDC.

2. Start kadmin.local from a root shell on the master KDC.

CHAPTER 3. USING KERBEROS

19

1. Use the kadmin.local add_principal command to create a new entry for the master
KDC's host service.

2. Use the kadmin.local ktadd command to set a random key for the service and store the
random key in the master's default keytab file.

NOTE

This key is used by the kprop command to authenticate to the secondary
servers. You will only need to do this once, regardless of how many
secondary KDC servers you install.

3. Start kadmin from a root shell on the secondary KDC.

1. Use the kadmin add_principal command to create a new entry for the secondary
KDC's host service.

2. Use the kadmin ktadd command to set a random key for the service and store the random
key in the secondary KDC server's default keytab file. This key is used by the kpropd
service when authenticating clients.

kadmin.local -r EXAMPLE.COM
 Authenticating as principal root/admin@EXAMPLE.COM with
password.
kadmin: add_principal -randkey host/masterkdc.example.com
Principal "host/host/masterkdc.example.com@EXAMPLE.COM" created.
kadmin: ktadd host/masterkdc.example.com
Entry for principal host/masterkdc.example.com with kvno 3,
encryption type Triple DES cbc mode with HMAC/sha1 added to
keytab WRFILE:/etc/krb5.keytab.
Entry for principal host/masterkdc.example.com with kvno 3,
encryption type ArcFour with HMAC/md5 added to keytab
WRFILE:/etc/krb5.keytab.
Entry for principal host/masterkdc.example.com with kvno 3,
encryption type DES with HMAC/sha1 added to keytab
WRFILE:/etc/krb5.keytab.
Entry for principal host/masterkdc.example.com with kvno 3,
encryption type DES cbc mode with RSA-MD5 added to keytab
WRFILE:/etc/krb5.keytab.
kadmin: quit

kadmin -p jsmith/admin@EXAMPLE.COM -r EXAMPLE.COM
Authenticating as principal jsmith/admin@EXAMPLE.COM with
password.
Password for jsmith/admin@EXAMPLE.COM:
kadmin: add_principal -randkey host/slavekdc.example.com
Principal "host/slavekdc.example.com@EXAMPLE.COM" created.
kadmin: ktadd host/slavekdc.example.com@EXAMPLE.COM
Entry for principal host/slavekdc.example.com with kvno 3,
encryption type Triple DES cbc mode with HMAC/sha1 added to
keytab WRFILE:/etc/krb5.keytab.
Entry for principal host/slavekdc.example.com with kvno 3,
encryption type ArcFour with HMAC/md5 added to keytab
WRFILE:/etc/krb5.keytab.

Managing Single Sign-On and Smart Cards

20

4. With its service key, the secondary KDC could authenticate any client which would connect to it.
Obviously, not all potential clients should be allowed to provide the kprop service with a new
realm database. To restrict access, the kprop service on the secondary KDC will only accept
updates from clients whose principal names are listed in
/var/kerberos/krb5kdc/kpropd.acl.

Add the master KDC's host service's name to that file.

5. Once the secondary KDC has obtained a copy of the database, it will also need the master key
which was used to encrypt it. If the KDC database's master key is stored in a stash file on the
master KDC (typically named /var/kerberos/krb5kdc/.k5.REALM), either copy it to the
secondary KDC using any available secure method, or create a dummy database and identical
stash file on the secondary KDC by running kdb5_util create -s and supplying the same
password. The dummy database will be overwritten by the first successful database propagation.

6. Ensure that the secondary KDC's firewall allows the master KDC to contact it using TCP on port
754 (krb5_prop), and start the kprop service.

7. Double-check that the kadmin service is disabled.

8. Perform a manual database propagation test by dumping the realm database on the master
KDC to the default data file which the kprop command will read
(/var/kerberos/krb5kdc/slave_datatrans).

9. Use the kprop command to transmit its contents to the secondary KDC.

10. Using kinit, verify that the client system is able to correctly obtain the initial credentials from
the KDC. The /etc/krb5.conf for the client should list only the secondary KDC in its list of
KDCs.

11. Create a script which dumps the realm database and runs the kprop command to transmit the
database to each secondary KDC in turn, and configure the cron service to run the script
periodically.

3.4. CONFIGURING A KERBEROS 5 CLIENT

All that is required to set up a Kerberos 5 client is to install the client packages and provide each client
with a valid krb5.conf configuration file. While ssh and slogin are the preferred methods of remotely

Entry for principal host/slavekdc.example.com with kvno 3,
encryption type DES with HMAC/sha1 added to keytab
WRFILE:/etc/krb5.keytab.
Entry for principal host/slavekdc.example.com with kvno 3,
encryption type DES cbc mode with RSA-MD5 added to keytab
WRFILE:/etc/krb5.keytab.
kadmin: quit

echo host/masterkdc.example.com@EXAMPLE.COM >
/var/kerberos/krb5kdc/kpropd.acl

/usr/sbin/kdb5_util dump /var/kerberos/krb5kdc/slave_datatrans

kprop slavekdc.example.com

CHAPTER 3. USING KERBEROS

21

logging in to client systems, Kerberized versions of rsh and rlogin are still available, with additional
configuration changes.

1. Be sure that time synchronization is in place between the Kerberos client and the KDC and that
DNS is working properly on the Kerberos client.

2. Install the krb5-libs and krb5-workstation packages on all of the client machines.

3. Supply a valid /etc/krb5.conf file for each client (usually this can be the same krb5.conf
file used by the KDC).

4. To use kerberized rsh and rlogin services, install the rsh package.

5. Before a workstation can use Kerberos to authenticate users who connect using ssh, rsh, or
rlogin, it must have its own host principal in the Kerberos database. The sshd, kshd, and
klogind server programs all need access to the keys for the host service's principal.

1. Using kadmin, add a host principal for the workstation on the KDC. The instance in this
case is the hostname of the workstation. Use the -randkey option for the kadmin's
addprinc command to create the principal and assign it a random key:

addprinc -randkey host/server.example.com

2. The keys can be extracted for the workstation by running kadmin on the workstation itself
and using the ktadd command.

ktadd -k /etc/krb5.keytab host/server.example.com

6. To use other kerberized network services, install the krb5-server package and start the services.
The kerberized services are listed in Table 3.3, “Common Kerberized Services”.

Table 3.3. Common Kerberized Services

Service Name Usage Information

ssh OpenSSH uses GSS-API to authenticate users to
servers if the client's and server's configuration both
have GSSAPIAuthentication enabled. If the
client also has GSSAPIDelegateCredentials
enabled, the user's credentials are made available on
the remote system.

rsh and rlogin Enable klogin, eklogin, and kshell.

Telnet Enable krb5-telnet.

FTP Create and extract a key for the principal with a root
of ftp. Be certain to set the instance to the fully
qualified hostname of the FTP server, then enable
gssftp.

Managing Single Sign-On and Smart Cards

22

IMAP The cyrus-imap package uses Kerberos 5 if it
also has the cyrus-sasl-gssapi package
installed. The cyrus-sasl-gssapi package
contains the Cyrus SASL plugins which support GSS-
API authentication. Cyrus IMAP functions properly
with Kerberos as long as the cyrus user is able to
find the proper key in /etc/krb5.keytab, and
the root for the principal is set to imap (created with
kadmin).

An alternative to cyrus-imap can be found in the
dovecot package, which is also included in Red
Hat Enterprise Linux. This package contains an IMAP
server but does not, to date, support GSS-API and
Kerberos.

CVS gserver uses a principal with a root of cvs and is
otherwise identical to the CVS pserver.

Service Name Usage Information

3.5. SETTING UP A KERBEROS CLIENT FOR SMART CARDS

Smart cards can be used with Kerberos, but it requires additional configuration to recognize the X.509
(SSL) user certificates on the smart cards:

1. Install the required PKI/OpenSSL package, along with the other client packages:

[root@server ~]# yum install krb5-pkinit-openssl
[root@server ~]# yum install krb5-workstation krb5-libs krb5-auth-
dialog

2. Edit the /etc/krb5.conf configuration file to add a parameter for the public key infrastructure
(PKI) to the [realms] section of the configuration. The pkinit_anchors parameter sets the
location of the CA certificate bundle file.

[realms]
 EXAMPLE.COM = {
 kdc = kdc.example.com.:88
 admin_server = kdc.example.com
 default_domain = example.com
 ...
 pkinit_anchors = FILE:/usr/local/example.com.crt
 }

3. Add the PKI module information to the PAM configuration for both smart card authentication
(/etc/pam.d/smartcard-auth) and system authentication (/etc/pam.d/system-auth).
The line to be added to both files is as follows:

auth optional pam_krb5.so use_first_pass
no_subsequent_prompt
preauth_options=X509_user_identity=PKCS11:/usr/lib64/pkcs11/libcoolk
eypk11.so

CHAPTER 3. USING KERBEROS

23

3.6. DOMAIN-TO-REALM MAPPING

When a client attempts to access a service running on a particular server, it knows the name of the
service (host) and the name of the server (foo.example.com), but because more than one realm can be
deployed on your network, it must guess at the name of the realm in which the service resides.

By default, the name of the realm is taken to be the DNS domain name of the server in all capital letters.

In some configurations, this will be sufficient, but in others, the realm name which is derived will be the
name of a non-existent realm. In these cases, the mapping from the server's DNS domain name to the
name of its realm must be specified in the domain_realm section of the client system's krb5.conf. For
example:

[domain_realm]
.example.com = EXAMPLE.COM
example.com = EXAMPLE.COM

The configuration specifies two mappings. The first mapping specifies that any system in the
example.com DNS domain belongs to the EXAMPLE.COM realm. The second specifies that a system
with the exact name example.com is also in the realm. The distinction between a domain and a specific
host is marked by the presence or lack of an initial period character. The mapping can also be stored
directly in DNS.

3.7. SETTING UP CROSS REALM AUTHENTICATION

Allowing clients (typically users) of one realm to use Kerberos to authenticate to services (typically
server processes running on a particular server system) which belong to another realm requires cross-
realm authentication.

3.7.1. Setting up Basic Trust Relationships

For the simplest case, for a client of realm A.EXAMPLE.COM to access a service in the B.EXAMPLE.COM
realm, both realms must share a key for a principal named
krbtgt/B.EXAMPLE.COM@A.EXAMPLE.COM, and both keys must have the same key version number
associated with them.

To accomplish this, select a very strong password or passphrase, and create an entry for the principal in
both realms using kadmin.

foo.example.org → EXAMPLE.ORG
foo.example.com → EXAMPLE.COM
foo.hq.example.com → HQ.EXAMPLE.COM

kadmin -r A.EXAMPLE.COM
kadmin: add_principal krbtgt/B.EXAMPLE.COM@A.EXAMPLE.COM
Enter password for principal "krbtgt/B.EXAMPLE.COM@A.EXAMPLE.COM":
Re-enter password for principal "krbtgt/B.EXAMPLE.COM@A.EXAMPLE.COM":
Principal "krbtgt/B.EXAMPLE.COM@A.EXAMPLE.COM" created.
quit

kadmin -r B.EXAMPLE.COM
kadmin: add_principal krbtgt/B.EXAMPLE.COM@A.EXAMPLE.COM
Enter password for principal "krbtgt/B.EXAMPLE.COM@A.EXAMPLE.COM":

Managing Single Sign-On and Smart Cards

24

Use the get_principal command to verify that both entries have matching key version numbers
(kvno values) and encryption types.

IMPORTANT

A common, but incorrect, situation is for administrators to try to use the add_principal
command's -randkey option to assign a random key instead of a password, dump the
new entry from the database of the first realm, and import it into the second. This will not
work unless the master keys for the realm databases are identical, as the keys contained
in a database dump are themselves encrypted using the master key.

Clients in the A.EXAMPLE.COM realm are now able to authenticate to services in the B.EXAMPLE.COM
realm. Put another way, the B.EXAMPLE.COM realm now trusts the A.EXAMPLE.COM realm.

This brings us to an important point: cross-realm trust is unidirectional by default. The KDC for the
B.EXAMPLE.COM realm can trust clients from the A.EXAMPLE.COM to authenticate to services in the
B.EXAMPLE.COM realm. However, this trust is not automatically reciprocated so that the
B.EXAMPLE.COM realm are trusted to authenticate to services in the A.EXAMPLE.COM realm. To
establish trust in the other direction, both realms would need to share keys for the
krbtgt/A.EXAMPLE.COM@B.EXAMPLE.COM service — an entry with a reverse mapping from the
previous example.

3.7.2. Setting up Complex Trust Relationships

If direct trust relationships were the only method for providing trust between realms, networks which
contain multiple realms would be very difficult to set up. Luckily, cross-realm trust is transitive. If clients
from A.EXAMPLE.COM can authenticate to services in B.EXAMPLE.COM, and clients from
B.EXAMPLE.COM can authenticate to services in C.EXAMPLE.COM, then clients in A.EXAMPLE.COM can
also authenticate to services in C.EXAMPLE.COM, even if C.EXAMPLE.COM does not directly trust
A.EXAMPLE.COM. This means that, on a network with multiple realms which all need to trust each other,
making good choices about which trust relationships to set up can greatly reduce the amount of effort
required.

The client's system must be configured so that it can properly deduce the realm to which a particular
service belongs, and it must be able to determine how to obtain credentials for services in that realm.

Taking first things first, the principal name for a service provided from a specific server system in a given
realm typically looks like this:

service is typically either the name of the protocol in use (other common values include LDAP, IMAP,
CVS, and HTTP) or host. server.example.com is the fully-qualified domain name of the system which
runs the service. EXAMPLE.COM is the name of the realm.

To deduce the realm to which the service belongs, clients will most often consult DNS or the
domain_realm section of /etc/krb5.conf to map either a hostname (server.example.com) or a DNS
domain name (.example.com) to the name of a realm (EXAMPLE.COM).

Re-enter password for principal "krbtgt/B.EXAMPLE.COM@A.EXAMPLE.COM":
Principal "krbtgt/B.EXAMPLE.COM@A.EXAMPLE.COM" created.
quit

service/server.example.com@EXAMPLE.COM

CHAPTER 3. USING KERBEROS

25

After determining the realm to which a service belongs, a client then has to determine the set of realms
which it needs to contact, and in which order it must contact them, to obtain credentials for use in
authenticating to the service.

This can be done in one of two ways. The simplest is to use a shared hierarchy to name realms. The
second uses explicit configuration in the krb5.conf file.

3.7.2.1. Configuring a Shared Hierarchy of Names

The default method, which requires no explicit configuration, is to give the realms names within a shared
hierarchy. For an example, assume realms named A.EXAMPLE.COM, B.EXAMPLE.COM, and
EXAMPLE.COM. When a client in the A.EXAMPLE.COM realm attempts to authenticate to a service in
B.EXAMPLE.COM, it will, by default, first attempt to get credentials for the EXAMPLE.COM realm, and then
to use those credentials to obtain credentials for use in the B.EXAMPLE.COM realm.

The client in this scenario treats the realm name as one might treat a DNS name. It repeatedly strips off
the components of its own realm's name to generate the names of realms which are "above" it in the
hierarchy until it reaches a point which is also "above" the service's realm. At that point it begins
prepending components of the service's realm name until it reaches the service's realm. Each realm
which is involved in the process is another "hop".

For example, using credentials in A.EXAMPLE.COM, authenticating to a service in B.EXAMPLE.COM has
three hops: A.EXAMPLE.COM → EXAMPLE.COM → B.EXAMPLE.COM .

A.EXAMPLE.COM and EXAMPLE.COM share a key for
krbtgt/EXAMPLE.COM@A.EXAMPLE.COM

EXAMPLE.COM and B.EXAMPLE.COM share a key for
krbtgt/B.EXAMPLE.COM@EXAMPLE.COM

Another example, using credentials in SITE1.SALES.EXAMPLE.COM, authenticating to a service in
EVERYWHERE.EXAMPLE.COM can have several series of hops:

SITE1.SALES.EXAMPLE.COM and SALES.EXAMPLE.COM share a key for
krbtgt/SALES.EXAMPLE.COM@SITE1.SALES.EXAMPLE.COM

SALES.EXAMPLE.COM and EXAMPLE.COM share a key for
krbtgt/EXAMPLE.COM@SALES.EXAMPLE.COM

EXAMPLE.COM and EVERYWHERE.EXAMPLE.COM share a key for
krbtgt/EVERYWHERE.EXAMPLE.COM@EXAMPLE.COM

There can even be hops between realm names whose names share no common suffix, such as
DEVEL.EXAMPLE.COM and PROD.EXAMPLE.ORG.

SITE1.SALES.EXAMPLE.COM →
SALES.EXAMPLE.COM →
EXAMPLE.COM →
EVERYWHERE.EXAMPLE.COM

DEVEL.EXAMPLE.COM →
EXAMPLE.COM →
COM →

Managing Single Sign-On and Smart Cards

26

DEVEL.EXAMPLE.COM and EXAMPLE.COM share a key for
krbtgt/EXAMPLE.COM@DEVEL.EXAMPLE.COM

EXAMPLE.COM and COM share a key for krbtgt/COM@EXAMPLE.COM

COM and ORG share a key for krbtgt/ORG@COM

ORG and EXAMPLE.ORG share a key for krbtgt/EXAMPLE.ORG@ORG

EXAMPLE.ORG and PROD.EXAMPLE.ORG share a key for
krbtgt/PROD.EXAMPLE.ORG@EXAMPLE.ORG

3.7.2.2. Configuring Paths in krb5.conf

The more complicated, but also more flexible, method involves configuring the capaths section of
/etc/krb5.conf, so that clients which have credentials for one realm will be able to look up which
realm is next in the chain which will eventually lead to the being able to authenticate to servers.

The format of the capaths section is relatively straightforward: each entry in the section is named after
a realm in which a client might exist. Inside of that subsection, the set of intermediate realms from which
the client must obtain credentials is listed as values of the key which corresponds to the realm in which a
service might reside. If there are no intermediate realms, the value "." is used.

For example:

Clients in the A.EXAMPLE.COM realm can obtain cross-realm credentials for B.EXAMPLE.COM directly
from the A.EXAMPLE.COM KDC.

If those clients wish to contact a service in the C.EXAMPLE.COM realm, they will first need to obtain
necessary credentials from the B.EXAMPLE.COM realm (this requires that
krbtgt/B.EXAMPLE.COM@A.EXAMPLE.COM exist), and then use those credentials to obtain
credentials for use in the C.EXAMPLE.COM realm (using krbtgt/C.EXAMPLE.COM@B.EXAMPLE.COM).

If those clients wish to contact a service in the D.EXAMPLE.COM realm, they will first need to obtain
necessary credentials from the B.EXAMPLE.COM realm, and then credentials from the C.EXAMPLE.COM
realm, before finally obtaining credentials for use with the D.EXAMPLE.COM realm.

ORG →
EXAMPLE.ORG →
PROD.EXAMPLE.ORG

[capaths]
A.EXAMPLE.COM = {
B.EXAMPLE.COM = .
C.EXAMPLE.COM = B.EXAMPLE.COM
D.EXAMPLE.COM = B.EXAMPLE.COM
D.EXAMPLE.COM = C.EXAMPLE.COM
}

CHAPTER 3. USING KERBEROS

27

NOTE

Without a capath entry indicating otherwise, Kerberos assumes that cross-realm trust
relationships form a hierarchy.

Clients in the A.EXAMPLE.COM realm can obtain cross-realm credentials from
B.EXAMPLE.COM realm directly. Without the "." indicating this, the client would instead
attempt to use a hierarchical path, in this case:

[1] A system where both the client and the server share a common key that is used to encrypt and decrypt network
communication.

A.EXAMPLE.COM → EXAMPLE.COM → B.EXAMPLE.COM

Managing Single Sign-On and Smart Cards

28

CHAPTER 4. SETTING UP ENTERPRISE SECURITY CLIENT
The following sections contain basic instructions on using the Enterprise Security Client for token
enrollment, formatting, and password reset operations.

4.1. INSTALLING THE SMART CARD PACKAGE GROUP

Packages used to manage smart cards, such as esc, should already be installed on the Red Hat
Enterprise Linux system. If the packages are not installed or need to be updated, all of the smart card-
related packages can be pulled in by installing the Smart card support package group. For
example:

yum groupinstall "Smart card support"

4.2. LAUNCHING THE SMART CARD MANAGER UI

There are two aspects to launching the Enterprise Security Client UI. The Enterprise Security Client
process must be started and it runs silently, waiting to detect any inserted smart card or token. The
Smart Card Manager UI for the Enterprise Security Client opens automatically when smart cards are
inserted or can be opened manually.

Initiate the Enterprise Security Client daemon (escd) from the command line:

esc

This daemon listens silently for smart cards and opens the GUI as soon as a smart card is inserted.

To open the Smart Card Manager GUI manually, click Applications, System Tools, and then Smart
Card Manager.

CHAPTER 4. SETTING UP ENTERPRISE SECURITY CLIENT

29

Figure 4.1. Selecting the Smart Card Manager Item in the Menu

4.3. OVERVIEW OF ENTERPRISE SECURITY CLIENT CONFIGURATION

The Enterprise Security Client is an intermediary frontend that provides connections between users (and
their tokens), the Token Processing System, and certificate authority. The Enterprise Security Client
provides two slightly different interfaces:

A local interface, based on XUL and JavaScript

A web-hosted interface which can be used for remote access, based on CGIs, HTML, and
JavaScript

The primary Enterprise Security Client user interface, which is accessed from the local server,
incorporates Mozilla XULRunner technology. XULRunner is a runtime package which hosts standalone
applications based on XUL, an XML markup language with a rich feature set for user interfaces and
offers several advantages over HTML for applications:

A wide UI widget set and greater control over the presentation.

Local markup to the client machine, so it has a greater privilege level than HTML.

JavaScript as the scripting language for convenient program logic scripting and the ability to
leverage XPCOM technology.

Managing Single Sign-On and Smart Cards

30

All of the files for the web-hosted interface can be customized and edited to change the behavior or
appearance of the Enterprise Security Client, within reason.

The Enterprise Security Client, in conjunction with the Token Processing System, supports different user
profiles so that different types of users have different token enrollment paths. Both the Enterprise
Security Client and TPS also support different token profiles, so that the certificate settings can be
custom-defined for different types of tokens. Both of these configurations are set in the TPS, and are
described in the Certificate System Administrator's Guide.

4.3.1. Enterprise Security Client File Locations

This reference shows the different directories and file locations for the different client machines.

On Red Hat Enterprise Linux 32-bit, the Enterprise Security Client is installed by its binary RPM to the
default location, /usr/lib/esc-1.1.0/esc. On Red Hat Enterprise Linux 64-bit systems, the
installation directory is /usr/lib64/esc-1.1.0/esc.

NOTE

The Enterprise Security Client uses some specific XUL configuration files, but, overall, the
Enterprise Security Client uses the system XULRunner packages on Red Hat Enterprise
Linux.

Table 4.1. Enterprise Security Client File and Directory Locations

File or Directory Purpose

application.ini XULRunner application configuration file.

components/ XPCOM components.

chrome/ Directory for Chrome components and additional
application files for Enterprise Security Client XUL
and JavaScript.

defaults/ Enterprise Security Client default preferences.

esc The script which launches the Enterprise Security
Client.

4.3.2. About the Preferences Configuration Files

The Enterprise Security Client is configured similarly to Mozilla applications, using preferences files. The
primary configuration file is esc-prefs.js, which is installed with Enterprise Security Client. The
second one is prefs.js in the Mozilla profiles directory, which is created when the Enterprise Security
Client is first launched.

The Enterprise Security Client uses the Mozilla configuration preferences for each of the supported
platforms. The default configuration file on Red Hat Enterprise Linux 32-bit is in /usr/lib/esc-
1.1.0/defaults/preferences/esc-prefs.js. On Red Hat Enterprise Linux 64-bit, this is in
/usr/lib64/esc-1.1.0/defaults/preferences/esc-prefs.js.

CHAPTER 4. SETTING UP ENTERPRISE SECURITY CLIENT

31

The esc-prefs.js file specifies the default configuration to use when the Enterprise Security Client is
first launched. This includes parameters to connect to the TPS subsystem, set the password prompt, and
configure Phone Home information. Each setting is prefaced by the word pref, then the parameter and
value are enclosed in parentheses. For example:

pref(parameter, value);

The esc-prefs.js file parameters are listed in Table 4.2, “esc-prefs.js Parameters”. The default esc-
prefs.js file is shown in Example 4.1, “Default esc-prefs.js File”.

Table 4.2. esc-prefs.js Parameters

Parameter Description Notes and Defaults

toolkit.defaultChromeURI Defines the URL for the
Enterprise Security Client to use
to contact the XUL Chrome page.

("toolkit.defaultChromeURI",
"chrome://esc/content/settings.xul"
)

esc.tps.message.timeout Sets a timeout period, in seconds,
for connecting to the TPS.

("esc.tps.message.timeout","90");

esc.disable.password.prompt Enables the password prompt,
which means that a password is
required to read the certificate
information off the smart card.
The password prompt is disabled
by default, so anyone can use the
Enterprise Security Client.
However, in security contexts, like
when a company uses security
officers to manage token
operations, then enable the
password prompt to restrict
access to the Enterprise Security
Client.

("esc.disable.password.prompt","y
es");

esc.global.phone.home.url Sets the URL to use to contact
the TPS server.

Normally, the Phone Home
information is set on the token
already through its applet. If a
token does not have Phone Home
information, meaning it has no
way to contact the TPS server,
then the Enterprise Security Client
checks for a global default Phone
Home URL.

This setting is only checked if it is
explicitly set. This setting also
applies to every token formatted
through the client, so setting this
parameter forces all tokens to
point to the same TPS. Only use
this parameter if that specific
behavior is desired.

("esc.global.phone.home.url",
"http://server.example.com:7888/c
gi-bin/home/index.cgi");

Managing Single Sign-On and Smart Cards

32

esc.global.alt.nss.db Points to a directory that contains
a common security database that
is used by all Enterprise Security
Client users on the server.

Phone Home URL.

This setting is only checked if it is
explicitly set. If this is not set, then
each user accesses only each
individual profile security
database, rather than a shared
database.

prefs("esc.global.alt.nss.db",
"C:/Documents and Settings/All
Users/shared-db");

Parameter Description Notes and Defaults

Example 4.1. Default esc-prefs.js File

The comments in this file are not included in the example.

When the Enterprise Security Client is launched, it creates a separate, unique profile directory for each
user on the system. These profiles are stored in
~/.redhat/esc/alphanumeric_string.default/prefs.js in Red Hat Enterprise Linux 6.

#pref("toolkit.defaultChromeURI", "chrome://esc/content/settings.xul");
pref("signed.applets.codebase_principal_support",true); for internal use
only

pref("capability.principal.codebase.p0.granted", "UniversalXPConnect");
for internal use only
pref("capability.principal.codebase.p0.id", "file://"); for internal use
only

pref("esc.tps.message.timeout","90");

#Do we populate CAPI certs on windows?
pref("esc.windows.do.capi","yes");

#Sample Security Officer Enrollment UI
#pref("esc.security.url","http://test.host.com:7888/cgi-
bin/so/enroll.cgi");

#Sample Security Officer Workstation UI
#pref("esc.security.url","https://dhcp-170.sjc.redhat.com:7889/cgi-
bin/sow/welcome.cgi");

#Hide the format button or not.
pref("esc.hide.format","no");

#Use this if you absolutely want a global phone home url for all tokens
#Not recommended!
#pref("esc.global.phone.home.url","http:/test.host.com:7888/cgi-
bin/home/index.cgi");

CHAPTER 4. SETTING UP ENTERPRISE SECURITY CLIENT

33

NOTE

When the Enterprise Security Client requires any changes to a user's configuration
values, the updated values are written to the user's profile area, not to the default
JavaScript file.

Table 4.3, “prefs.js Parameters” lists the most relevant parameters for the prefs.js file. Editing this file
is tricky. The prefs.js file is generated and edited dynamically by the Enterprise Security Client, and
manual changes to this file are overwritten when the Enterprise Security Client exits.

Table 4.3. prefs.js Parameters

Parameter Description Notes and Defaults

esc.tps.url Sets a URL for the Enterprise
Security Client to use to connect
to the TPS. This is not set by
default.

esc.key.token_ID.tps.url Sets the hostname and port to
use to contact a TPS.

If this Phone Home information
was not burned into the card at
the factory, it can be manually
added to the card by adding the
TPS URL, an enrollment page
URL, the issuer's name, and
Phone Home URL.

("esc.key.token_ID.tps.url" =
"http://server.example.com:7888/n
k_service");

esc.key.token_ID.tps.enrollment-
ui.url

Gives the URL to contact the
enrollment page for enroll
certificates on the token.

If this Phone Home information
was not burned into the card at
the factory, it can be manually
added to the card by adding the
TPS URL, an enrollment page
URL, the issuer's name, and
Phone Home URL.

("esc.key.token_ID.tps.enrollment-
ui.url" =
"http://server.example.com:7888/c
gi_bin/esc.cgi?");

esc.key.token_ID.issuer.name Gives the name of the
organization enrolling the token.

("esc.key.token_ID.issuer.name"
= "Example Corp");

esc.key.token_ID.phone.home.url Gives the URL to use to contact
the Phone Home functionality for
the TPS.

The global Phone Home
parameter sets a default to use
with any token enrollment, if the
token does not specify the Phone
Home information. By setting this
parameter to a specific token ID
number, the specified Phone
Home parameter applies only to
that token.

("esc.key.token_ID.phone.home.u
rl" =
"http://server.example.com:7888/c
gi-bin/home/index.cgi?");

Managing Single Sign-On and Smart Cards

34

esc.security.url Points to the URL to use for
security officer mode.

If this is pointed to the security
officer enrollment form, then the
Enterprise Security Client opens
the forms to enroll security officer
tokens. If this is pointed to the
security officer workstation URL,
then it opens the workstation to
enroll regular users with security
officer approval.

("esc.security.url","https://server.e
xample.com:7888/cgi-
bin/so/enroll.cgi");

Parameter Description Notes and Defaults

4.3.3. About the XUL and JavaScript Files in the Enterprise Security Client

Smart Card Manager stores the XUL markup and JavaScript functionality in /usr/lib[64]/esc-
1.1.0/chrome/content/esc/.

The primary Enterprise Security Client XUL files are listed in Table 4.4, “Main XUL Files”.

Table 4.4. Main XUL Files

Filename Purpose

settings.xul Contains the code for the Settings page.

esc.xul Contains the code for the Enrollment page.

config.xul Contains the code for the configuration UI.

The primary Smart Card Manager JavaScript files are listed in the following table.

Table 4.5. Main JavaScript Files

Filename Purpose

ESC.js Contains most of the Smart Card Manager
JavaScript functionality.

TRAY.js Contains the tray icon functionality.

AdvancedInfo.js Contains the code for the Diagnostics feature.

GenericAuth.js Contains the code for the authentication prompt. This
prompt is configurable from the TPS server, which
requires dynamic processing by the Smart Card
Manager.

CHAPTER 4. SETTING UP ENTERPRISE SECURITY CLIENT

35

4.4. CONFIGURING PHONE HOME

The Phone Home feature in the Enterprise Security Client associates information within each smart card
with information that points to distinct TPS servers and Smart Card Manager UI pages. Whenever the
Enterprise Security Client accesses a new smart card, it can connect to the TPS instance and retrieve
the Phone Home information.

Phone Home retrieves and then caches this information; because the information is cached locally, the
TPS subsystem does not have to be contacted each time a formatted smart card is inserted.

The information can be different for every key or token, which means that different TPS servers and
enrollment URLs can be configured for different corporate or customer groups. Phone Home makes it
possible to configure different TPS servers for different issuers or company units, without having to
configure the Enterprise Security Client manually to locate the correct server and URL.

NOTE

In order for the TPS subsystem to utilize the Phone Home feature, Phone Home must be
enabled in the TPS configuration file, as follows:

op.format.userKey.issuerinfo.enable=true
op.format.userKey.issuerinfo.value=http://server.example.com

4.4.1. About Phone Home Profiles

The Enterprise Security Client is based on Mozilla XULRunner. Consequently, each user has a profile
similar to the user profiles used by Mozilla Firefox and Thunderbird. The Enterprise Security Client
accesses the configuration preferences file. When the Enterprise Security Client caches information for
each token, the information is stored in the user's configuration file. The next time the Enterprise Security
Client is launched, it retrieves the information from the configuration file instead of contacting the server
again.

When a smart card is inserted and Phone Home is launched, the Enterprise Security Client first checks
the token for the Phone Home information. If no information is on the token, then the client checks the
esc-prefs.js file for the esc.global.phone.home.url parameter.

If no Phone Home information is stored on the token and there is no global Phone Home parameter, the
user is prompted for the Phone Home URL when a smart card is inserted, as shown in Figure 4.2,
“Prompt for Phone Home Information”. The other information is supplied and stored when the token is
formatted. In this case, the company supplies the specific Phone Home URL for the user. After the user
submits the URL, the format process adds the rest of the information to the Phone Home profile. The
format process is not any different for the user.

Managing Single Sign-On and Smart Cards

36

Figure 4.2. Prompt for Phone Home Information

4.4.2. Setting Global Phone Home Information

Phone Home is triggered automatically when a security token is inserted into a machine. The system
immediately attempts to read the Phone Home URL from the token and to contact the TPS server. For
new tokens or for previously formatted tokens, the Phone Home information may not be available to the
card.

The Enterprise Security Client configuration file, esc-prefs.js, has a parameter which allows a global
Phone Home URL default to be set. This parameter is esc.global.phone.home.url and is not in the
file by default.

To define the global Phone Home URL:

1. Remove any existing Enterprise Security Client user profile directory. Profile directories are
created automatically when a smart card is inserted. By default, the profile directory is
~/.redhat/esc.

2. Open the esc-prefs.js file.

On Red Hat Enterprise Linux 6, the profile directory is /usr/lib/esc-
1.1.0/defaults/preferences. On 64-bit systems, this is /usr/lib64/esc-
1.1.0/defaults/preferences.

3. Add the global Phone Home parameter line to the esc-prefs.js file. For example:

pref("esc.global.phone.home.url","http://server.example.com:7888/cgi
-bin/home/index.cgi");

CHAPTER 4. SETTING UP ENTERPRISE SECURITY CLIENT

37

The URL can reference a machine name, a fully-qualified domain name, or an IPv4 or IPv6
address, depending on the DNS and network configuration.

4.4.3. Adding Phone Home Information to a Token Manually

The Phone Home information can be manually put on a token in one of two ways:

The preferred method is that the information is burned onto the token at the factory. When the
tokens are ordered from the manufacturer, the company supplies detailed information on how
the tokens should be configured when shipped.

If tokens are blank, the company IT department can supply the information when formatting
small groups of tokens.

The following information is used by the Phone Home feature for each smart card in the
~/.redhat/esc/alphanumeric_string.default/prefs.js file:

The TPS server and port. For example:

"esc.key.token_ID.tps.url" =
"http://server.example.com:7888/nk_service"

The TPS enrollment interface URL. For example:

"esc.key.token_ID.tps.enrollment-ui.url" =
"http://server.example.com:7888/cgi_bin/esc.cgi?"

The issuing company name or ID. For example:

"esc.key.token_ID.issuer.name" = "Example Corp"

The Phone Home URL. For example:

"esc.key.token_ID.phone.home.url" =
"http://server.example.com:7888/cgi-bin/home/index.cgi?"

Optionally, a default browser URL to access when an enrolled smart card is inserted.

"esc.key.token_ID.EnrolledTokenBrowserURL" =
"http://www.test.example.com"

More of the parameters used by the prefs.js file are listed in Table 4.3, “prefs.js Parameters”.

NOTE

The URLs for these parameters can reference a machine name, a fully-qualified domain
name, or an IPv4 or IPv6 address, depending on the DNS and network configuration.

4.4.4. Configuring the TPS to Use Phone Home

The Phone Home feature and the different type of information used by it only work when the TPS has
been properly configured to use Phone Home. If the TPS is not configured for Phone Home, then this

Managing Single Sign-On and Smart Cards

38

feature is ignored. Phone Home is configured in the index.cgi in the /var/lib/pki-tps/cgi-
bin/home directory; this prints the Phone Home information to XML.

Example 4.2, “TPS Phone Home Configuration File” shows an example XML file used by the TPS
subsystem to configure the Phone Home feature.

Example 4.2. TPS Phone Home Configuration File

<ServiceInfo><IssuerName>Example Corp</IssuerName>
 <Services>
 <Operation>http://server.example.com:7888/nk_service ## TPS
server URL
 </Operation>
 <UI>http://server.example.com:7888/cgi_bin/esc.cgi ##
Optional
Enrollment UI
 </UI>
 <EnrolledTokenBrowserURL>http://www.test.url.com ## Optional
enrolled token url
 </EnrolledTokenBrowserURL>
 </Services>
</ServiceInfo>

The TPS configuration URI is the URL of the TPS server which returns the rest of the Phone Home
information to the Enterprise Security Client. An example of this URL is
http://server.example.com:7888/cgi-bin/home/index.cgi; the URL can reference the
machine name, fully-qualified domain name, or an IPv4 or IPv6 address, as appropriate. When the TPS
configuration URI is accessed, the TPS server is prompted to return all of the Phone Home information to
the Enterprise Security Client.

To test the URL of the Smart Card server, enter the address in the TPS Config URI field, and click
Test URL.

If the server is successfully contacted, a message box indicates success. If the test connection fails, an
error dialog appears.

4.5. USING SECURITY OFFICER MODE

The Enterprise Security Client, together with the TPS subsystem, supports a special security officer
mode of operation. This mode allows a supervisory individual, a security officer, the ability to oversee the
face to face enrollment of regular users in a given organization.

Security officer mode provides the ability to enroll individuals under the supervision of a security officer, a
designated user-type who can manage other user's smart cards in face-to-face and very secure
operations. Security officer mode overlaps with some regular user operations, with additional security
features:

The ability to search for an individual within an organization.

An interface that displays a photo and other pertinent information about an individual.

The ability to enroll approved individuals.

Formatting or resetting a user's card.

CHAPTER 4. SETTING UP ENTERPRISE SECURITY CLIENT

39

Formatting or resetting a security officer's card.

Enrolling a temporary card for a user that has misplaced their primary card.

Storing TPS server information on a card. This Phone Home information is used by the
Enterprise Security Client to contact a given TPS server installation.

Working in the security officer mode falls into two distinct areas:

Creating and managing security officers.

Managing regular users by security officers.

When security officer mode is enabled, the Enterprise Security Client uses an external user interface
provided by the server. This interface takes control of smart card operations in place of the local XUL
code that the Enterprise Security Client normally uses.

The external interface maintains control until security officer mode is disabled.

NOTE

It is a good idea to run security officer clients over SSL, so make sure that the TPS is
configured to run in SSL, and then point the Enterprise Security Client to the TPS's SSL
agent port.

4.5.1. Enabling Security Officer Mode

There are two areas where the security officer mode must be configured, both in the TPS and in the
Enterprise Security Client's esc-prefs.js file.

In the TPS:

1. Add the security officer user entry to the TPS database as a member of the TUS Officers group.
This group is created by default in the TPS LDAP database and is the expected location for all
security officer user entries.

NOTE

It can be simpler to add and copy user entries in the LDAP database using the
Red Hat Directory Server Console. Using the Directory Server Console is
described in the Red Hat Directory Server Administrators Guide in section 3.1.2,
"Creating Directory Entries."

There are two subtrees associated with the TPS, each associated with a different database.
(Commonly, both databases can be on the same server, but that is not required.)

The first suffix, within the authentication database, is for external users; the TPS checks their
user credentials against the directory to authenticate any user attempting to enroll a smart
card. This has a distinguished name (DN) like dc=server,dc=example,dc=com.

The other database is used for internal TPS instance entries, including TPS agents,
administrators, and security officers. This subtree is within the internal database for the TPS,
which includes the token database. This subtree has a DN based on the TPS server, like
dc=server.example.com-pki-tps. The TUS Officers group entry is under the
dc=server.example.com-pki-tps suffix.

Managing Single Sign-On and Smart Cards

40

http://docs.redhat.com/docs/en-US/Red_Hat_Directory_Server/8.2/html/Administration_Guide/Creating_Directory_Entries.html#Managing_Entries_from_the_Directory_Console-Creating_Directory_Entries

The LDAP directory and the suffix are defined in the token profile in the TPS CS.cfg file in the
authId and baseDN parameters for the security officer's auth instance. For example:

auth.instance.1.authId=ldap2
auth.instance.1.baseDN=dc=sec officers,dc=server.example.com-pki-tps

Any security officer entry has to be a child entry of the TUS Officers group entry. This means that
the group entry is the main entry, and the user entry is directly beneath it in the directory tree.

The TUS Officers group entry is cn=TUS
Officers,ou=Groups,dc=server.example.com-pki-tps.

For example, to add the security officer entry using ldapmodify:

/usr/lib/mozldap/ldapmodify -a -D "cn=Directory Manager" -w secret -
p 389 -h server.example.com

dn: uid=jsmith,cn=TUS Officers,ou=Groups,dc=server.example.com-pki-
tps
objectclass: inetorgperson
objectclass: organizationalPerson
objectclass: person
objectclass: top
sn: smith
uid: jsmith
cn: John Smith
mail: jsmith@example.com
userPassword: secret

Press the Enter key twice to send the entry, or use Ctrl+D.

Then, configure the Enterprise Security Client.

1. First, trust the CA certificate chain.

NOTE

This step is only required if the certificate is not yet trusted in the Enterprise
Security Client database.

If you want to point the Enterprise Security Client to a database which already
contains the required certificates, use the esc.global.alt.nss.db in the
esc-prefs.js file to point to another database.

1. Open the CA's end-entities page.

https://server.example.com:9444/ca/ee/ca/

2. Click the Retrieval tab, and download the CA certificate chain.

3. Open the Enterprise Security Client.

esc

CHAPTER 4. SETTING UP ENTERPRISE SECURITY CLIENT

41

4. Click the View Certificates button.

5. Click the Authorities tab.

6. Click the Import button, and import the CA certificate chain.

7. Set the trust settings for the CA certificate chain.

2. Then, format and enroll the security officer's token. This token is used to access the security
officer Smart Card Manager UI.

1. Insert a blank token.

2. When the prompt for the Phone Home information opens, enter the security officer URL.

/var/lib/pki-tps/cgi-bin/so/index.cgi

3. Click the Format button to format the security officer's token.

4. Close the interface and stop the Enterprise Security Client.

5. Add two parameters in the esc-prefs.js file. The first,
esc.disable.password.prompt, sets security officer mode. The second,
esc.security.url, points to the security officer enrollment page. Just the presence of the
esc.security.url parameter instructs the Enterprise Security Client to open in security
officer mode next time it opens.

pref("esc.disable.password.prompt","no");
pref("esc.security.url","https://server.example.com:7888/cgi-
bin/so/enroll.cgi");

6. Start the Enterprise Security Client again, and open the UI.

esc

7. The Enterprise Security Client is configured to connect to the security officer enrollment form
in order to enroll the new security officer's token. Enroll the token as described in
Section 4.5.2, “Enrolling a New Security Officer”.

8. Close the interface and stop the Enterprise Security Client.

9. Edit the esc-prefs.js file again, and this time change the esc.security.url
parameter to point to the security officer workstation page.

pref("esc.security.url","https://server.example.com:7889/cgi-
bin/sow/welcome.cgi");

10. Restart the Enterprise Security Client again. The UI now points to the security officer
workstation to allow security officers to enroll tokens for regular users.

To disable security officer mode, close the Smart Card Manager GUI, stop the escd process, and
comment out the esc.security.url and esc.disable.password.prompt lines in the esc-
prefs.js file. When the esc process is restarted, it starts in normal mode.

Managing Single Sign-On and Smart Cards

42

4.5.2. Enrolling a New Security Officer

Security officers are set up using a separate, unique interface rather than the one for regular enrollments
or the one used for security officer-managed enrollments.

1. Make sure the esc process is running.

esc

With security officer mode enabled in the esc-pref.js file (Section 4.5.1, “Enabling Security
Officer Mode”), the security officer enrollment page opens.

2. In the Security Officer Enrollment window, enter the LDAP user name and password of
the new security officer and a password that will be used with the security officer's smart card.

CHAPTER 4. SETTING UP ENTERPRISE SECURITY CLIENT

43

NOTE

If the password is stored using the SSHA hash, then any exclamation point (!) and
dollar sign ($) characters in the password must be properly escaped for a user to
bind successfully to the Enterprise Security Client on Windows XP and Vista
systems.

For the dollar sign ($) character, escape the dollar sign when the password is
created:

\$

Then, enter only the dollar sign ($) character when logging into the Enterprise
Security Client.

For the exclamation point (!) character, escape the character when the
password is created and when the password is entered to log into the
Enterprise Security Client.

\!

3. Click Enroll My Smartcard.

This produces a smart card which contains the certificates needed by the security officer to access the
Enterprise Security Client security officer, so that regular users can be enrolled and managed within the
system.

4.5.3. Using Security Officers to Manage Users

The security officer Station page manages regular users through operations such as enrolling new or
temporary cards, formatting cards, and setting the Phone Home URL.

4.5.3.1. Enrolling a New User

There is one significant difference between enrolling a user's smart card in security officer mode and the
process in Section 5.3, “Enrolling a Smart Card Automatically” and Section 5.4.6, “Enrolling Smart
Cards”. All processes require logging into an LDAP database to verify the user's identity, but the security
officer mode has an extra step to compare some credentials presented by the user against some
information in the database (such as a photograph).

1. Make sure the esc process is running. If necessary, start the process.

esc

Also, make sure that security officer mode is enabled, as described in Section 4.5.1, “Enabling
Security Officer Mode”.

2. Then open the Smart Card Manager UI.

Managing Single Sign-On and Smart Cards

44

NOTE

Ensure that there is a valid and enrolled security officer card plugged into the
computer. A security officer's credentials are required to access the following
pages.

3. Click Continue to display the security officer Station page. The client prompts for the password
for the security officer's card (which is required for SSL client authentication) or to select the
security officer's signing certificate from the drop-down menu.

4. Click the Enroll New Card link to display the Security Officer Select User page.

CHAPTER 4. SETTING UP ENTERPRISE SECURITY CLIENT

45

5. Enter the LDAP name of the user who is to receive a new smart card.

6. Click Continue. If the user exists, the Security Officer Confirm User page opens.

7. Compare the information returned in the Smart Card Manager UI to the person or credentials
that are present.

8. If all the details are correct, click Continue to display the Security Officer Enroll User
page. This page prompts the officer to insert a new smart card into the computer.

9. If the smart card is properly recognized, enter the new password for this card and click Start
Enrollment.

A successful enrollment produces a smart card that a user can use to access the secured network and
services for which the smart card was made.

4.5.3.2. Performing Other Security Officer Tasks

All of the other operations that can be performed for regular users by a security officer — issuing
temporary tokens, re-enrolling tokens, or setting a Phone Home URL — are performed as described in
Chapter 4, Setting up Enterprise Security Client, after opening the security officer UI.

Managing Single Sign-On and Smart Cards

46

1. Make sure the esc process is running. If necessary, start the process.

esc

Also, make sure that security officer mode is enabled, as described in Section 4.5.1, “Enabling
Security Officer Mode”.

2. Then open the Smart Card Manager UI.

NOTE

Ensure that there is a valid and enrolled security officer card plugged into the
computer. A security officer's credentials are required to access the following
pages.

3. Click Continue to display the security officer Station page. If prompted, enter the password for
the security officer's card. This is required for SSL client authentication.

4. Select the operation from the menu (enrolling a temporary token, formatting the card, or setting
the Phone Home URL).

CHAPTER 4. SETTING UP ENTERPRISE SECURITY CLIENT

47

5. Continue the operation as described in Chapter 4, Setting up Enterprise Security Client.

4.5.3.3. Formatting an Existing Security Officer Smart Card

IMPORTANT

Reformatting a token is a destructive operation to the security officer's token and should
only be done if absolutely needed.

1. Make sure that security officer mode is enabled, as described in Section 4.5.1, “Enabling
Security Officer Mode”.

2. Open the Smart Card Manager UI.

NOTE

Ensure that there is a valid and enrolled security officer card plugged into the
computer. A security officer's credentials are required to access the following
pages.

Managing Single Sign-On and Smart Cards

48

3. Click Continue to display the security officer Station page. If prompted, enter the password for
the security officer's card. This is required for SSL client authentication.

4. Select the operation from the menu (enrolling a temporary token, formatting the card, or setting
the Phone Home URL).

CHAPTER 4. SETTING UP ENTERPRISE SECURITY CLIENT

49

5. Click Format SO Card. Because the security officer card is already inserted, the following
screen displays:

Managing Single Sign-On and Smart Cards

50

6. Click Format to begin the operation.

When the card is successfully formatted, the security officer's card values are reset. Another security
officer's card must be used to enter security officer mode and perform any further operations.

4.6. CONFIGURING SSL CONNECTIONS WITH THE TPS

By default, the TPS communicates with the Enterprise Security Client over standard HTTP. It is also
possible, and in many situations desirable, to secure the TPS-client communications by using HTTP over
SSL (HTTPS).

The Enterprise Security Client has to have the CA certificate for the CA which issued the TPS's
certificates in order to trust the TPS connection. From there, the Enterprise Security Client can be
configured to connect to the TPS's SSL certificate.

1. Download the CA certificate used by the TPS.

1. Open the CA's end user pages in a web browser.

https://server.example.com:9444/ca/ee/ca/

CHAPTER 4. SETTING UP ENTERPRISE SECURITY CLIENT

51

2. Click the Retrieval tab at the top.

3. In the left menu, click the Import CA Certificate Chain link.

4. Choose the radio button to download the chain as a file, and remember the location and
name of the downloaded file.

2. Open the Enterprise Security Client.

3. Import the CA certificate.

1. Click the View Certificates button.

Managing Single Sign-On and Smart Cards

52

2. Click the Authorities tab.

3. Click Import.

4. Browse to the CA certificate chain file, and select it.

5. When prompted, confirm that you want to trust the CA.

CHAPTER 4. SETTING UP ENTERPRISE SECURITY CLIENT

53

4. The Enterprise Security Client needs to be configured to communicate with the TPS over SSL;
this is done by setting the Phone Home URL, which is the default URL the Enterprise Security
Client uses to connect to the TPS.

5. Insert a new, blank token into the machine.

Blank tokens are unformatted, so they do not have an existing Phone Home URL, and the URL
must be set manually. Formatted tokens (tokens can be formatted by the manufacturer or by
your IT department) already have the URL set, and thus do not prompt to set the Phone Home
URL.

6. Fill in the new TPS URL with the SSL port information. For example:

https://server.example.com:7890/cgi-bin/home/index.cgi

7. Click the Test button to send a message to the TPS.

If the request is successful, the client opens a dialog box saying that the Phone Home URL was
successfully obtained.

4.7. CUSTOMIZING THE SMART CARD ENROLLMENT USER
INTERFACE

The TPS subsystem displays a generically-formatted smart card enrollment screen which is opened
automatically when an uninitialized smart card is inserted. This is actually comprised of three pages,
depending on the mode in which the client is running:

/var/lib/pki-tps/cgi-bin/home/Enroll.html for regular enrollments

/var/lib/pki-tps/cgi-bin/so/Enroll.html for security officer enrollments

/var/lib/pki-tps/cgi-bin/sow/Enroll.html for security officer workstation
enrollments (users enrolled through the security officer UI)

NOTE

The security officer workstation directory contains other HTML files for other
token operations, such as formats and PIN resets.

There can be even more enrollment pages if there are custom user profiles.

These enrollment pages are basic HTML and JavaScript, which allows them to be easily customized for
both their appearance and functionality. The resources, such as images and JavaScript files, referenced
by the enrollment file are located in the corresponding docroot/ directory, such as /var/lib/pki-
tps/docroot/esc/sow for the security officer enrollment file in /var/lib/pki-tps/cgi-bin/sow.

There are several ways that the smart card enrollment pages can be customized. The first, and simplest,
is changing the text on the page. The page title, section headings, field names, and descriptions can all
be changed by editing the HTML file, as shown in the extracts in Example 4.3, “Changing Page Text”.

Example 4.3. Changing Page Text

<!-- Change the title if desired -->
<title>Enrollment</title>

Managing Single Sign-On and Smart Cards

54

...
<p class="headerText">Smartcard Enrollment</p>
...
<!-- Insert customized descriptive text here. -->
<p class="bodyText">You have plugged in your smart card!
 After answering a few easy questions, you will be able to use
your smart card.
</p>
<p class="bodyText">
 Now we would like you to identify yourself.
</p>
...
<table>
 <tr>
 <td><p >LDAP User ID: </p></td>
 <td> </td>
 <td><input type="text" id="snametf" value=""></td>
 </tr>
</table>

The styles of the page can be changed through two files: the style.css CSS style sheet and the logo
image, logo.png.

Example 4.4. Changing Page Styles

<link rel=stylesheet href="/esc/home/style.css" type="text/css">
...

<table width="100%" class="logobar">
 <tr>
 <td>

 </td>
 <td>
 <p class="headerText">Smartcard Enrollment</p>
 </td>
 </tr>
</table>

The style.css file is a standard CSS file, so all of the tags and classes can be defined as follows:

body {
background-color: grey;
 font-family: arial;
 font-size: 7p
}

More information on CSS is available at http://www.w3.org/Style/CSS/learning.

The last way to customize the Enroll.html files is through the JavaScript file which sets the page
functionality. This file controls features like the progress meter, as well as processing the inputs which
are used to authenticate the user to the user directory.

CHAPTER 4. SETTING UP ENTERPRISE SECURITY CLIENT

55

http://www.w3.org/Style/CSS/learning

Example 4.5. Changing Page Script

<progressmeter id="progress-id" hidden="true" align = "center"/>
...
<table>
 <tr>
 <td><p >LDAP User ID: </p></td>
 <td> </td>
 <td><input type="text" id="snametf" value=""></td>
 </tr>
</table>

WARNING

Be very cautious about changing the util.js file. If this file is improperly edited, it
can break the Enterprise Security Client UI and prevent tokens from being enrolled.

The complete /var/lib/pki-tps/cgi-bin/home/Enroll.html file is in Example 4.6, “Complete
Enroll.html File”.

Example 4.6. Complete Enroll.html File

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link rel=stylesheet href="/esc/home/style.css" type="text/css">

<title>Enrollment</title>
</head>
<script type="text/JavaScript" src="/esc/home/util.js">
</script>
<body onload="InitializeBindingTable();" onunload=cleanup()>

<progressmeter id="progress-id" hidden="true" align = "center"/>
<table width="100%" class="logobar">
 <tr>
 <td>

 </td>
 <td>
 <p class="headerText">Smartcard Enrollment</p>p
 </td>
 </tr>
</table>
 <table id="BindingTable" width="200px"align="center">
 <tr id="HeaderRow">
 </tr>
 </table>



Managing Single Sign-On and Smart Cards

56

 <p class="bodyText">You have plugged in your smart card! After
answering a few easy questions, you will be able to use your smart card.
 </p>p
 <p class="bodyText">
 Now we would like you to identify yourself.
 </p>p
 <table>
 <tr>
 <td><p >LDAP User ID: </p>p</td>
 <td> </td>
 <td><input type="text" id="snametf" value=""></td>
 <td> </td>
 <td><p>LDAP Password: </p>p</td>
 <td> </td>
 <td><input type="password" id="snamepwd" value=""></td>
 </tr>

 </table>

 <p class="bodyText"> Before you can use your smart card, you will
need a password to protect it.</p>p
 <table>
 <tr>
 <td><p >Password:</p>p</td>
 <td><input type="password" id="pintf" name="pintf" value="">
</td>

 <td><p >Re-Enter Password:</p>p</td>
 <td><input type="password" id="reenterpintf"
name="reenterpintf" value=""></td>
 </table>

 <table width="100%">
 <tr>
 <td align="right">
 <input type="button" id="enrollbtn" name="enrollbtn"
value="Enroll My Smartcard" onClick="DoEnrollCOOLKey();">
 </td>
 </tr>
 </table>
</body></html>

4.8. DISABLING LDAP AUTHENTICATION FOR TOKEN OPERATIONS

By default, each user who requests a token operation is authenticated against an LDAP directory. If the
user has an entry, then the operation is allowed; if the user does not have an entry, then the operation is
rejected.

For testing or for certain types of users, then it can be simpler or preferable to disable LDAP
authentication. This is not configured in the Enterprise Security Client configuration, but in the Token
Processing System configuration, and must be done by a TPS administrator.

1. Stop the TPS subsystem.

CHAPTER 4. SETTING UP ENTERPRISE SECURITY CLIENT

57

service pki-tps stop

2. Open the TPS configuration file.

vim /var/lib/pki-tps/conf/CS.cfg

3. Set the authentication parameters to false.

op.operation_type.token_type.loginRequest.enable=false
op.operation_type.token_type.auth.enable=false

The operation_type is the token operation for which LDAP authentication is being disabled, such
as enroll, format, or pinreset. Disabling authentication for one operation type does not
disable it for any other operation types.

The token_type is the token profile. There are default profiles for regular users, security officers,
and the users enrolled by security officers. There can also be custom token types for other kinds
of users or certificates.

For example:

op.enroll.userKey.loginRequest.enable=false
op.enroll.userKey.pinReset.enable=false

4. Restart the TPS subsystem.

service pki-tps start

Editing the TPS configuration is covered in the Certificate System Administrator's Guide.

Managing Single Sign-On and Smart Cards

58

CHAPTER 5. USING SMART CARDS WITH THE ENTERPRISE
SECURITY CLIENT
When a smart card is enrolled, it means that user-specific keys and certificates are generated and
placed on the card. In Red Hat Enterprise Linux, the interface that works between the user and the
system which issues certificates is the Enterprise Security Client. The Enterprise Security Client
recognizes when a smart card is inserted (or removed) and signals the appropriate subsystem in Red
Hat Certificate System. That subsystem then generates the certificate materials and sends them to the
Enterprise Security Client, which writes them to the token. That is the enrollment process.

The following sections contain basic instructions on using the Enterprise Security Client for token
enrollment, formatting, and password reset operations.

5.1. SUPPORTED SMART CARDS

The Enterprise Security Client supports smart cards which are JavaCard 2.1 or higher and Global
Platform 2.01-compliant and was tested using the following cards:

Safenet 330J Java smart cards

Gemalto 64K V2 tokens, both as a smart card and GemPCKey USB form factor key

Gemalto GCx4 72K and TOPDLGX4 144K common access cards (CAC)

Oberthur ID One V5.2 common access cards (CAC)

Personal identity verification (PIV) cards, compliant with FIPS 201

NOTE

Enterprise Security Client does not provision PIV or CAC cards, but it will read them and
display information.

Smart card testing was conducted using two card readers:

SCM SCR331 CCID

OMNIKEY 3121

The only card manager applet supported with Enterprise Security Client is the CoolKey applet.

5.2. SETTING UP USERS TO BE ENROLLED

When the Token Processing System is installed, one of its configuration settings is the LDAP directory
which contains the users who are allowed to enroll a token. Only users who are stored within this
authentication directory are allowed to enroll, format, or have a token. Before attempting to enroll a token
or smart card, make sure that the person requesting the operation has an entry in the LDAP directory.

The TPS is configured to look at a specific base DN in the LDAP directory. This is configured in the
TPS's CS.cfg:

 auth.instance.0.baseDN=dc=example,dc=com
 auth.instance.0.hostport=server.example.com:389

CHAPTER 5. USING SMART CARDS WITH THE ENTERPRISE SECURITY CLIENT

59

For a user to be allowed to enroll a token, the user must be somewhere below the base DN.

If the user does not already have an entry, then the administrator must add the user to the specified
LDAP directory in the specified base DN before any tokens can be enrolled for the user.

 /usr/bin/ldapmodify -a -D "cn=Directory Manager" -w secret -p 389 -h
server.example.com

 dn: uid=jsmith,ou=People, dc=example,dc=com
 objectclass: person
 objectclass: inetorgperson
 objectclass: top
 uid: jsmith
 cn: John Smith
 email: jsmith@example.com
 userPassword: secret

5.3. ENROLLING A SMART CARD AUTOMATICALLY

Because the Enterprise Security Client is configured using the Phone Home feature, enrolling a smart
card is extremely easy. Because the information needed to contact the backend TPS server is provided
with each smart card, the user is guided quickly and easily through the procedure.

To enroll an uninitialized smart card:

NOTE

This procedure assumes that the smart card is uninitialized and the appropriate Phone
Home information has been configured.

1. Ensure that the Enterprise Security Client is running.

2. Insert an uninitialized smart card, pre-formatted with the Phone Home information for the TPS
and the enrollment interface URL for the user's organization.

The smart card can be added either by placing a USB form factor smart card into a free USB
slot, or by inserting a standard, full-sized smart card into a smart card reader.

When the system recognizes the smart card, it displays a message indicating it has detected an
uninitialized smart card.

Managing Single Sign-On and Smart Cards

60

3. Click Enroll My Smart Card Now to display the smart card enrollment form.

NOTE

If you remove the card at this point, a message displays stating that the smart
card can no longer be detected. Reinsert the card to continue with the enrollment
process.

The enrollment files are accessed remotely; they reside on the TPS instance. If the network
connection is bad or broken, then an error may come up saying Check the Network Connection
and Try Again. It is also possible that the enrollment window appears to open but the enrollment
process does not proceed. The enrollment pages can be cached if the Enterprise Security Client
previously connect to them successfully, so the enrollment UI opens even if the network is
offline. Try restarting Enterprise Security Client and check the network connection.

4. Because the Smart Card Manager now knows where the enrollment UI is located (it is included
in the Phone Home information), the enrollment form is displayed for the user to enter the
required information.

CHAPTER 5. USING SMART CARDS WITH THE ENTERPRISE SECURITY CLIENT

61

This illustration shows the default enrollment UI included with the TPS server. This UI is a
standard HTML form, which you can customize to suit your own deployment requirements. This
could include adding a company logo or adding and changing field text.

See Section 4.7, “Customizing the Smart Card Enrollment User Interface” for information on
customizing the UI.

5. The sample enrollment UI requires the following information for the TPS server to process the
smart card enrollment operation:

LDAP User ID. This is the LDAP user ID of the user enrolling the smart card; this can also be
a screen name or employee or customer ID number.

LDAP Password. This is the password corresponding to the user ID entered; this can be a
simple password or a customer number.

Managing Single Sign-On and Smart Cards

62

NOTE

The LDAP user ID and password are related to the Directory Server user. The
TPS server is usually associated with a Directory Server, which stores user
information and through which the TPS authenticates users.

Passwords must conform to the password policy configured in the Directory
Server.

Password and Re-Enter Password. These fields set and confirm the smart card's password,
used to protect the card information.

6. After you have entered all required information, click Enroll My Smart Card to submit the
information and enroll the card.

7. When the enrollment process is complete, a message page opens which shows that the card
was successfully enrolled and can offer custom instructions on using the newly-enrolled smart
card.

5.4. MANAGING SMART CARDS

You can use the Manage Smart Cards page to perform many of the operations that can be applied to
one of the cryptographic keys stored on the token.

You can use this page to format the token, set and reset the card's password, and to display card
information. Two other operations, enrolling tokens and viewing the diagnostic logs, are also accessed
through the Manage Smart Cards page. These operations are addressed in other sections.

CHAPTER 5. USING SMART CARDS WITH THE ENTERPRISE SECURITY CLIENT

63

Figure 5.1. Manage Smart Cards Page

5.4.1. Formatting the Smart Card

When you format a smart card, it is reset to the uninitialized state. This removes all previously generated
user key pairs and erases the password set on the smart card during enrollment.

The TPS server can be configured to load newer versions of the applet and symmetric keys onto the
card. The TPS supports the CoolKey applet which is shipped with Red Hat Enterprise Linux 6.

To format a smart card:

1. Insert a supported smart card into the computer. Ensure that the card is listed in the Active
Smart Cards table.

2. In the Smart Card Functions section of the Manage Smart Cards screen, click Format.

3. If the TPS has been configured for user authentication, enter the user credentials in the
authentication dialog, and click Submit.

Managing Single Sign-On and Smart Cards

64

4. During the formatting process, the status of the card changes to BUSY and a progress bar is
displayed. A success message is displayed when the formatting process is complete. Click OK to
close the message box.

5. When the formatting process is complete, the Active Smart Cards table shows the card
status as UNINITIALIZED.

5.4.2. Resetting a Smart Card Password

1. Insert a supported smart card into the computer. Ensure that the card is listed in the Active
Smart Cards table.

2. In the Smart Card Functions section of the Manage Smart Cards screen, click Reset
Password to display the Password dialog.

3. Enter a new smart card password in the Enter new password field.

4. Confirm the new smart card password in the Re-Enter password field, and then click OK.

CHAPTER 5. USING SMART CARDS WITH THE ENTERPRISE SECURITY CLIENT

65

5. If the TPS has been configured for user authentication, enter the user credentials in the
authentication dialog, and click Submit.

6. Wait for the password to finish being reset.

5.4.3. Viewing Certificates

The Smart Card Manager can display basic information about a selected smart card, including stored
keys and certificates. To view certificate information:

Managing Single Sign-On and Smart Cards

66

1. Insert a supported smart card into the computer. Ensure that the card is listed in the Active
Smart Cards table.

2. Select the card from the list, and click View Certificates.

This displays basic information about the certificates stored on the card, including the serial
number, certificate nickname, and validity dates.

3. To view more detailed information about a certificate, select the certificate from the list and click
View.

CHAPTER 5. USING SMART CARDS WITH THE ENTERPRISE SECURITY CLIENT

67

5.4.4. Importing CA Certificates

The XULRunner Gecko engine implements stringent controls over which SSL-based URLs can be visited
by client like a browser or the Enterprise Security Client. If the Enterprise Security Client (through the
XULRunner framework) does not trust a URL, the URL can not be visited.

One way to trust an SSL-based URL is to import and trust the CA certificate chain of the CA which issued
the certificates for the site. (The other is to create a trust security exception for the site, as in
Section 5.4.5, “Adding Exceptions for Servers”.)

Any CA which issues certificates for smart cards must be trusted by the Enterprise Security Client
application, which means that its CA certificate must be imported into the Enterprise Security Client.

1. Open the CA's end user pages in a web browser.

https://server.example.com:9444/ca/ee/ca/

2. Click the Retrieval tab at the top.

3. In the left menu, click the Import CA Certificate Chain link.

4. Choose the radio button to download the chain as a file, and remember the location and name of
the downloaded file.

5. Open the Smart Card Manager GUI.

Managing Single Sign-On and Smart Cards

68

6. Click the View Certificates button.

7. Click the Authorities tab.

CHAPTER 5. USING SMART CARDS WITH THE ENTERPRISE SECURITY CLIENT

69

8. Click Import.

9. Browse to the CA certificate chain file, and select it.

10. When prompted, confirm that you want to trust the CA.

5.4.5. Adding Exceptions for Servers

The XULRunner Gecko engine implements stringent controls over which SSL-based URLs can be visited
by client like a browser or the Enterprise Security Client. If the Enterprise Security Client (through the
XULRunner framework) does not trust a URL, the URL can not be visited.

One way to trust an SSL-based URL is to create a trust security exception for the site, which imports the
certificate for the site and forces the Enterprise Security Client to recognize it. (The other option is to
import the CA certificate chain for the site and automatically trust it, as in Section 5.4.4, “Importing CA
Certificates”.)

The smart card can be used to access services or websites over SSL that require special security
exceptions; these exceptions can be configured through the Enterprise Security Client, similar to
configuring exceptions for websites in a browser like Mozilla Firefox.

1. Open the Smart Card Manager UI.

Managing Single Sign-On and Smart Cards

70

2. Click the View Certificates button.

3. Click the Servers tab.

CHAPTER 5. USING SMART CARDS WITH THE ENTERPRISE SECURITY CLIENT

71

4. Click Add Exception.

5. Enter the URL, including any port numbers, for the site or service which the smart card will be
used to access. Then click the Get Certificates button to download the server certificate for
the site.

6. Click Confirm Security Exception to add the site to the list of allowed sites.

5.4.6. Enrolling Smart Cards

Managing Single Sign-On and Smart Cards

72

Most smart cards will be automatically enrolled using the automated enrollment procedure, described in
Section 5.3, “Enrolling a Smart Card Automatically”. You can also use the Manage Smart Cards
facility to manually enroll a smart card.

If you enroll a token with the user key pairs, then the token can be used for certificate-based operations
such as SSL client authentication and S/MIME.

NOTE

The TPS server can be configured to generate the user key pairs on the server and then
archived in the DRM subsystem for recovery if the token is lost.

To enroll a smart card manually:

1. Insert a supported, unenrolled smart card into the computer. Ensure that the card is listed in the
Active Smart Cards table.

2. Click Enroll to display the Password dialog.

3. Enter a new key password in the Enter a password field.

Confirm the new password in the Re-Enter a password field.

4. Click OK to begin the enrollment.

5. If the TPS has been configured for user authentication, enter the user credentials in the
authentication dialog, and click Submit.

6. If the TPS has been configured to archive keys to the DRM, the enrollment process will begin
generating and archiving keys.

When the enrollment is complete, the status of the smart card is displayed as ENROLLED.

CHAPTER 5. USING SMART CARDS WITH THE ENTERPRISE SECURITY CLIENT

73

5.5. DIAGNOSING PROBLEMS

The Enterprise Security Client includes basic diagnostic tools and a simple interface to log errors and
common events, such as inserting and removing a smart card or changing the card's password. The
diagnostic tools can identify and notify users about problems with the Enterprise Security Client, smart
cards, and TPS connections.

To open the Diagnostics Information window:

1. Open the Smart Card Manager UI.

2. Select the smart card to check from the list.

3. Click the Diagnostics button.

Managing Single Sign-On and Smart Cards

74

4. This opens the Diagnostic Information window for the selected smart card.

CHAPTER 5. USING SMART CARDS WITH THE ENTERPRISE SECURITY CLIENT

75

The Diagnostics Information screen displays the following information:

The Enterprise Security Client version number (listed as the Smart Card Manager version).

The version information for the XULRunner framework upon which the client is running.

The number of cards detected by the Enterprise Security Client.

For each card detected, the following information is displayed:

The version of the applet running on the smart card.

The alpha-numeric ID of the smart card.

The card's status, which can be any of the three things:

NO_APPLET No key was detected.

UNINITIALIZED. The key was detected, but no certificates have been enrolled.

Managing Single Sign-On and Smart Cards

76

ENROLLED. The detected card has been enrolled with certificate and card information.

The card's Phone Home URL. This is the URL from which all Phone Home information is
obtained.

The card issuer name, such as Example Corp.

The card's answer-to-reset (ATR) string. This is a unique value that can be used to identify
different classes of smart cards. For example:

3BEC00FF8131FE45A0000000563333304A330600A1

The TPS Phone Home URL.

The TPS server URL. This is retrieved through Phone Home.

The TPS enrollment form URL. This is retrieved through Phone Home.

Detailed information about each certificate contained on the card.

A running log of the most recent Enterprise Security Client errors and common events.

The Enterprise Security Client records two types of diagnostic information. It records errors that are
returned by the smart card, and it records events that have occurred through the Enterprise Security
Client. It also returns basic information about the smart card configuration.

5.5.1. Errors

The Enterprise Security Client does not recognize a card.

Problems occur during a smart card operation, such as a certificate enrollment, password reset,
or format operation.

The Enterprise Security Client loses the connection to the smart card. This can happen when
problems occur communicating with the PCSC daemon.

The connection between the Enterprise Security Client and TPS is lost.

Smart cards can report certain error codes to the TPS; these are recorded in the TPS's tps-debug.log
or tps-error.log files, depending on the cause for the message.

Table 5.1. Smart Card Error Codes

Return Code Description

General Error Codes

6400 No specific diagnosis

6700 Wrong length in Lc

6982 Security status not satisfied

CHAPTER 5. USING SMART CARDS WITH THE ENTERPRISE SECURITY CLIENT

77

6985 Conditions of use not satisfied

6a86 Incorrect P1 P2

6d00 Invalid instruction

6e00 Invalid class

Install Load Errors

6581 Memory Failure

6a80 Incorrect parameters in data field

6a84 Not enough memory space

6a88 Referenced data not found

Delete Errors

6200 Application has been logically deleted

6581 Memory failure

6985 Referenced data cannot be deleted

6a88 Referenced data not found

6a82 Application not found

6a80 Incorrect values in command data

Get Data Errors

6a88 Referenced data not found

Get Status Errors

6310 More data available

6a88 Referenced data not found

6a80 Incorrect values in command data

Load Errors

Return Code Description

Managing Single Sign-On and Smart Cards

78

6581 Memory failure

6a84 Not enough memory space

6a86 Incorrect P1/P2

6985 Conditions of use not satisfied

Return Code Description

5.5.2. Events

Simple events such as card insertions and removals, successfully completed operations, card
operations that result in an error, and similar events.

Errors are reported from the TPS to the Enterprise Security Client.

The NSS crypto library is initialized.

Other low-level smart card events are detected.

CHAPTER 5. USING SMART CARDS WITH THE ENTERPRISE SECURITY CLIENT

79

CHAPTER 6. CONFIGURING APPLICATIONS FOR SINGLE
SIGN-ON
After a smart card is enrolled, the smart card can be used for SSL client authentication and S/MIME
email applications. The PKCS #11 module used by these applications, by default, is located in
/usr/lib/libcoolkeypk11.so.

6.1. CONFIGURING FIREFOX TO USE KERBEROS FOR SINGLE SIGN-
ON

Firefox can use Kerberos for single sign-on to intranet sites and other protected websites. For Firefox to
use Kerberos, it first has to be configured to send Kerberos credentials to the appropriate KDC.

1. In the address bar of Firefox, type about:config to display the list of current configuration
options.

2. In the Filter field, type negotiate to restrict the list of options.

3. Double-click the network.negotiate-auth.trusted-uris entry.

4. Enter the name of the domain against which to authenticate.

5. Next, configure the network.negotiate-auth.delegation-uris entry, using the same
domain as for network.negotiate-auth.trusted-uris.

NOTE

Even after Firefox is configured to pass Kerberos credentials, it still requires a valid
Kerberos ticket to use. To generate a Kerberos ticket, use the kinit command and
supply the user password for the user on the KDC.

[jsmith@host ~] $ kinit
Password for jsmith@EXAMPLE.COM:

Managing Single Sign-On and Smart Cards

80

If Kerberos authentication is not working, turn on verbose logging for the authentication process.

1. Close all instances of Firefox.

2. In a command prompt, export values for the NSPR_LOG_* variables:

export NSPR_LOG_MODULES=negotiateauth:5
export NSPR_LOG_FILE=/tmp/moz.log

3. Restart Firefox from that shell, and visit the website where Kerberos authentication is failing.

4. Check the /tmp/moz.log file for error messages with nsNegotiateAuth in the message.

There are several common errors that occur with Kerberos authentication.

The first error says that no credentials have been found.

-1208550944[90039d0]: entering nsNegotiateAuth::GetNextToken()
-1208550944[90039d0]: gss_init_sec_context() failed: Miscellaneous
failure
No credentials cache found

This means that there are no Kerberos tickets (meaning that they expired or were not
generated). To fix this, run kinit to generate the Kerberos ticket and then open the website
again.

The second potential error is if the browser is unable to contact the KDC, with the message
Server not found in Kerberos database.

-1208994096[8d683d8]: entering nsAuthGSSAPI::GetNextToken()
-1208994096[8d683d8]: gss_init_sec_context() failed: Miscellaneous
failure
Server not found in Kerberos database

This is usually a Kerberos configuration problem. The correct entries must be in the
[domain_realm] section of the /etc/krb5.conf file to identify the domain. For example:

.example.com = EXAMPLE.COM
example.com = EXAMPLE.COM

If there are no errors in the log, then the problem could be that an HTTP proxy server is stripping
off the HTTP headers required for Kerberos authentication. Try to connect to the site using
HTTPS, which allows the request to pass through unmodified.

6.2. ENABLING SMART CARD LOGIN

Smart card login for Red Hat Enterprise Linux servers and workstations is not enabled by default and
must be enabled in the system settings.

CHAPTER 6. CONFIGURING APPLICATIONS FOR SINGLE SIGN-ON

81

NOTE

Using single sign-on when logging into Red Hat Enterprise Linux requires these
packages:

nss-tools

esc

pam_pkcs11

coolkey

ccid

gdm

authconfig

authconfig-gtk

krb5-libs

krb5-workstation

krb5-auth-dialog

krb5-pkinit-openssl

1. Log into the system as root.

2. Download the root CA certificates for the network in base 64 format, and install them on the
server. The certificates are installed in the appropriate system database using the certutil
command. For example:

certutil -A -d /etc/pki/nssdb -n "root CA cert" -t "CT,C,C" -i
/tmp/ca_cert.crt

3. In the top menu, select the System menu, select Administration, and then click
Authentication.

4. Open the Advanced Options tab.

5. Click the Enable Smart Card Support checkbox.

6. When the button is active, click Configure smart card

There are two behaviors that can be configured for smart cards:

The Require smart card for login checkbox requires smart cards and essentially
disables Kerberos password authentication for logging into the system. Do not select this
until after you have successfully logged in using a smart card.

The Card removal action menu sets the response that the system takes if the smart
card is removed during an active session. Ignore means that the system continues
functioning as normal if the smart card is removed, while Lock immediately locks the

Managing Single Sign-On and Smart Cards

82

screen.

7. By default, the mechanisms to check whether a certificate has been revoked (Online Certificate
Status Protocol, or OCSP, responses) are disabled. To validate whether a certificate has been
revoked before its expiration period, enable OCSP checking by adding the ocsp_on option to
the cert_policy directive.

1. Open the pam_pkcs11.conf file.

vim /etc/pam_pkcs11/pam_pkcs11.conf

2. Change every cert_policy line so that it contains the ocsp_on option.

cert_policy = ca, ocsp_on, signature;

NOTE

Because of the way the file is parsed, there must be a space between
cert_policy and the equals sign. Otherwise, parsing the parameter fails.

8. If the smart card has not yet been enrolled (set up with personal certificates and keys), enroll the
smart card, as described in Section 5.3, “Enrolling a Smart Card Automatically”.

9. If the smart card is a CAC card, the PAM modules used for smart card login must be configured
to recognize the specific CAC card.

1. As root, create a file called /etc/pam_pkcs11/cn_map.

2. Add the following entry to the cn_map file:

MY.CAC_CN.123454 -> login

MY.CAC_CN.123454 is the common name on the CAC card and login is the Red Hat
Enterprise Linux login ID.

NOTE

When a smart card is inserted, the pklogin_finder tool (in debug mode) first maps the
login ID to the certificates on the card and then attempts to output information about the
validity of certificates.

pklogin_finder debug

This is useful for diagnosing any problems with using the smart card to log into the
system.

6.3. SETTING UP BROWSERS TO SUPPORT SSL FOR TOKENS

1. In Mozilla Firefox, open the Edit menu, choose Preferences, and then click Advanced.

2. Open the Encryption tab.

CHAPTER 6. CONFIGURING APPLICATIONS FOR SINGLE SIGN-ON

83

3. Add a PKCS #11 driver.

1. Click Security Devices to open the Device Manager window, and then click the Load
button.

2. Enter a module name, such as token key pk11 driver.

3. Click Browse, find the Enterprise Security Client PKCS #11 driver, and click OK. The PKCS
#11 module used by these applications, by default, is located in
/usr/lib/libcoolkeypk11.so.

4. If the CA is not yet trusted, download and import the CA certificate.

1. Open the SSL End Entity page on the CA. For example:

https://server.example.com:9444/ca/ee/ca/

2. Click the Retrieval tab, and then click Import CA Certificate Chain.

3. Click Download the CA certificate chain in binary form and then click
Submit.

4. Choose a suitable directory to save the certificate chain, and then click OK.

5. Click Edit > Preferences, and select the Advanced tab.

6. Click the View Certificates button.

7. Click Authorities, and import the CA certificate.

5. Set the certificate trust relationships.

Managing Single Sign-On and Smart Cards

84

1. Click Edit > Preferences, and select the Advanced tab.

2. Click the View Certificates button.

3. Click Edit, and set the trust for websites.

The certificates can be used for SSL.

6.4. USING THE CERTIFICATES ON TOKENS FOR MAIL CLIENTS

1. In Mozilla Thunderbird, open the Edit menu, choose Preferences, and then click Advanced.

2. Open the Certificate tab.

3. Add a PKCS #11 driver.

1. Click Security Devices to open the Device Manager window.

2. Click the Load button.

3. Enter the module name, such as token keypk11 driver.

4. Click Browse, find the Enterprise Security Client PKCS #11 driver, and click OK. The PKCS
#11 module used by these applications, by default, is located in
/usr/lib/libcoolkeypk11.so.

4. If the CA is not yet trusted, download and import the CA certificate.

1. Open the SSL End Entity page on the CA. For example:

https://server.example.com:9444/ca/ee/ca/

2. Click the Retrieval tab, and then click Import CA Certificate Chain.

3. Click Download the CA certificate chain in binary form and then click
Submit.

4. Choose a suitable directory to save the certificate chain, and then click OK.

5. In Mozilla Thunderbird, open the Edit menu, choose Preferences, and then click Advanced.

6. Open the Certificate tab, and click the View Certificates button.

7. Click the Authorities tab, and import the CA certificate.

5. Set up the certificate trust relationships.

1. In Mozilla Thunderbird, open the Edit menu, choose Preferences, and then click Advanced.

2. Open the Certificate tab, and click the View Certificates button.

3. In the Authorities tab, select the CA, and click the Edit button.

4. Set the trust settings for identifying websites and mail users.

CHAPTER 6. CONFIGURING APPLICATIONS FOR SINGLE SIGN-ON

85

5. In the Digital Signing section of the Security panel, click Select to choose a
certificate to use for signing messages.

6. In the Encryption of the Security panel, click Select to choose the certificate to encrypt
and decrypt messages.

Managing Single Sign-On and Smart Cards

86

APPENDIX A. REVISION HISTORY
Note that revision numbers relate to the edition of this manual, not to version numbers of Red Hat
Enterprise Linux.

Revision 6.7-4 Wed Mar 8 2017 Aneta Šteflová Petrová
Version for 6.9 GA publication.

Revision 6.7-3 Wed May 4 2016 Marc Muehlfeld
Preparing document for 6.8 GA publication.

Revision 6.7-2 Thu Jan 7 2016 Aneta Petrová
Rebuilt with an updated brand.

Revision 6.7-1 Tue Jan 5 2016 Aneta Petrová
Fixed rendering of PAM configuration examples.

Revision 6.7-0 Tue Jul 14 2015 Tomáš Čapek
Version for 6.7 GA release.

Revision 6.6-1 Fri Dec 19 2014 Tomáš Čapek
Rebuilt to update the sort order on the splash page.

Revision 6.6-0 Fri Oct 10 2014 Tomáš Čapek
Version for 6.6 GA release.

Revision 6.4-0 March 28, 2013 Ella Deon Lackey
Fixed formatting for publican upgrade.

Revision 6.2-4 December 5, 2011 Ella Deon Lackey
Release for 6.2. GA. Added PIV and CAC card to supported smart cards list.

Revision 6.1-0 Thu May 5, 2011 Ella Deon Lackey
Fixed bugs, other updates.

Revision 6.0-0 Thu Oct 22 2009 Ella Deon Lackey
Initial draft for Red Hat Enterprise Linux 6.

APPENDIX A. REVISION HISTORY

87

	Table of Contents
	CHAPTER 1. INTRODUCTION TO THE ENTERPRISE SECURITY CLIENT
	1.1. RED HAT ENTERPRISE LINUX, SINGLE SIGN-ON, AND AUTHENTICATION
	1.2. RED HAT CERTIFICATE SYSTEM AND THE ENTERPRISE SECURITY CLIENT

	CHAPTER 2. USING PLUGGABLE AUTHENTICATION MODULES (PAM)
	2.1. ABOUT PAM
	2.2. PAM CONFIGURATION FILES
	2.2.1. PAM Service Files
	2.2.2. PAM Configuration File Format
	2.2.2.1. PAM Module Interfaces
	2.2.2.2. PAM Control Flags
	2.2.2.3. PAM Module Names
	2.2.2.4. PAM Module Arguments

	2.2.3. Sample PAM Configuration Files

	2.3. CREATING PAM MODULES
	2.4. PAM AND ADMINISTRATIVE CREDENTIAL CACHING
	2.4.1. Removing the Timestamp File
	2.4.2. Common pam_timestamp Directives

	CHAPTER 3. USING KERBEROS
	3.1. ABOUT KERBEROS
	3.1.1. How Kerberos Works
	3.1.2. Considerations for Deploying Kerberos
	3.1.3. Additional Resources for Kerberos

	3.2. INSTALLING KERBEROS
	3.3. CONFIGURING A KERBEROS 5 SERVER
	3.3.1. Configuring the Master KDC Server
	3.3.2. Setting up Secondary KDCs

	3.4. CONFIGURING A KERBEROS 5 CLIENT
	3.5. SETTING UP A KERBEROS CLIENT FOR SMART CARDS
	3.6. DOMAIN-TO-REALM MAPPING
	3.7. SETTING UP CROSS REALM AUTHENTICATION
	3.7.1. Setting up Basic Trust Relationships
	3.7.2. Setting up Complex Trust Relationships
	3.7.2.1. Configuring a Shared Hierarchy of Names
	3.7.2.2. Configuring Paths in krb5.conf

	CHAPTER 4. SETTING UP ENTERPRISE SECURITY CLIENT
	4.1. INSTALLING THE SMART CARD PACKAGE GROUP
	4.2. LAUNCHING THE SMART CARD MANAGER UI
	4.3. OVERVIEW OF ENTERPRISE SECURITY CLIENT CONFIGURATION
	4.3.1. Enterprise Security Client File Locations
	4.3.2. About the Preferences Configuration Files
	4.3.3. About the XUL and JavaScript Files in the Enterprise Security Client

	4.4. CONFIGURING PHONE HOME
	4.4.1. About Phone Home Profiles
	4.4.2. Setting Global Phone Home Information
	4.4.3. Adding Phone Home Information to a Token Manually
	4.4.4. Configuring the TPS to Use Phone Home

	4.5. USING SECURITY OFFICER MODE
	4.5.1. Enabling Security Officer Mode
	4.5.2. Enrolling a New Security Officer
	4.5.3. Using Security Officers to Manage Users
	4.5.3.1. Enrolling a New User
	4.5.3.2. Performing Other Security Officer Tasks
	4.5.3.3. Formatting an Existing Security Officer Smart Card

	4.6. CONFIGURING SSL CONNECTIONS WITH THE TPS
	4.7. CUSTOMIZING THE SMART CARD ENROLLMENT USER INTERFACE
	4.8. DISABLING LDAP AUTHENTICATION FOR TOKEN OPERATIONS

	CHAPTER 5. USING SMART CARDS WITH THE ENTERPRISE SECURITY CLIENT
	5.1. SUPPORTED SMART CARDS
	5.2. SETTING UP USERS TO BE ENROLLED
	5.3. ENROLLING A SMART CARD AUTOMATICALLY
	5.4. MANAGING SMART CARDS
	5.4.1. Formatting the Smart Card
	5.4.2. Resetting a Smart Card Password
	5.4.3. Viewing Certificates
	5.4.4. Importing CA Certificates
	5.4.5. Adding Exceptions for Servers
	5.4.6. Enrolling Smart Cards

	5.5. DIAGNOSING PROBLEMS
	5.5.1. Errors
	5.5.2. Events

	CHAPTER 6. CONFIGURING APPLICATIONS FOR SINGLE SIGN-ON
	6.1. CONFIGURING FIREFOX TO USE KERBEROS FOR SINGLE SIGN-ON
	6.2. ENABLING SMART CARD LOGIN
	6.3. SETTING UP BROWSERS TO SUPPORT SSL FOR TOKENS
	6.4. USING THE CERTIFICATES ON TOKENS FOR MAIL CLIENTS

	APPENDIX A. REVISION HISTORY

