
Red Hat Decision Manager 7.2

Getting started with decision services

Last Updated: 2020-05-26

Red Hat Decision Manager 7.2 Getting started with decision services

Red Hat Customer Content Services
brms-docs@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to create and test an example traffic violation decision service in Red
Hat Decision Manager 7.2.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. CREATING THE TRAFFIC VIOLATIONS PROJECT

CHAPTER 2. DATA OBJECTS
2.1. CREATING THE VIOLATION DATA OBJECT

2.1.1. Adding the Violation data object constraints
2.2. CREATING THE DRIVER DATA OBJECT

2.2.1. Adding the Driver data object constraints

CHAPTER 3. GUIDED RULES
3.1. CREATING THE DRIVER LICENSE SUSPENSION RULE
3.2. SETTING THE SUSPENSION RULE CONDITIONS
3.3. SETTING THE SUSPENSION RULE ACTIONS

CHAPTER 4. GUIDED DECISION TABLES
4.1. CREATING A TRAFFIC VIOLATION GUIDED DECISION TABLE

4.1.1. Inserting Violation Type columns
4.1.2. Inserting Fine Amount and Points columns
4.1.3. Inserting guided decision table rows

CHAPTER 5. TEST SCENARIOS
5.1. TESTING THE SPEED LIMIT SCENARIO
5.2. TESTING THE DRIVER LICENSE SUSPENSION SCENARIO
5.3. TESTING THE MULTIPLE VIOLATIONS SCENARIO

CHAPTER 6. EXAMPLE PROJECTS AND BUSINESS ASSETS IN DECISION CENTRAL
6.1. ACCESSING EXAMPLE PROJECTS AND BUSINESS ASSETS IN DECISION CENTRAL
6.2. EXECUTING RULES

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE
7.1. IMPORTING AND EXECUTING RED HAT DECISION MANAGER EXAMPLE DECISIONS IN AN IDE
7.2. HELLO WORLD EXAMPLE DECISIONS (BASIC RULES AND DEBUGGING)
7.3. STATE EXAMPLE DECISIONS (FORWARD CHAINING AND CONFLICT RESOLUTION)

State example using salience
State example using agenda groups
Dynamic facts in the State example

7.4. FIBONACCI EXAMPLE DECISIONS (RECURSION AND CONFLICT RESOLUTION)
7.5. PRICING EXAMPLE DECISIONS (DECISION TABLES)

Spreadsheet decision table setup
Base pricing rules
Promotional discount rules

7.6. PET STORE EXAMPLE DECISIONS (AGENDA GROUPS, GLOBAL VARIABLES, CALLBACKS, AND GUI
INTEGRATION)

Rule execution behavior in the Pet Store example
Pet Store rule file imports, global variables, and Java functions
Pet Store rules with agenda groups
Pet Store example execution

7.7. HONEST POLITICIAN EXAMPLE DECISIONS (TRUTH MAINTENANCE AND SALIENCE)
Politician and Hope classes
Rule definitions for politician honesty
Example execution and audit trail

7.8. SUDOKU EXAMPLE DECISIONS (COMPLEX PATTERN MATCHING, CALLBACKS, AND GUI

4

5

6
7
7
9

10

13
13
14
16

18
18
19
23
24

26
26
28
30

32
32
32

38
38
41

44
47
50
51
52
58
59
62
63

63
64
65
67
71
75
76
77
78

Table of Contents

1

. .

INTEGRATION)
Sudoku example execution and interaction
Sudoku example classes
Sudoku validation rules (validate.drl)
Sudoku solving rules (sudoku.drl)

7.9. CONWAY’S GAME OF LIFE EXAMPLE DECISIONS (RULEFLOW GROUPS AND GUI INTEGRATION)
Conway example execution and interaction
Conway example rules with ruleflow groups

7.10. HOUSE OF DOOM EXAMPLE DECISIONS (BACKWARD CHAINING AND RECURSION)
Recursive query and related rules
Transitive closure rule
Reactive query rule
Queries with unbound arguments in rules

APPENDIX A. VERSIONING INFORMATION

81
81

87
87
88
95
96
97
101
105
106
107
108

110

Red Hat Decision Manager 7.2 Getting started with decision services

2

Table of Contents

3

PREFACE
As a business rules developer, you can use Decision Central in Red Hat Decision Manager to design a
variety of decision services. Red Hat Decision Manager provides example projects with example
decisions directly in Decision Central as a reference and example decisions distributed as Java classes
that you can import into your integrated development environment (IDE) for external testing.

This document focuses on how to create and test a new project in Decision Central for an example
traffic violation decision service.

Prerequisites

Red Hat JBoss Enterprise Application Platform 7.2 is installed. For installation information, see
Red Hat JBoss EAP 7.2.0 Installation Guide .

Red Hat Decision Manager is installed and configured with Decision Server. For more
information, see Installing and configuring Red Hat Decision Manager on Red Hat JBoss EAP .

Red Hat Decision Manager is running and you can log in to Decision Central with the developer
role. For more information, see Planning a Red Hat Decision Manager installation .

Red Hat Decision Manager 7.2 Getting started with decision services

4

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.2/html-single/installing_and_configuring_red_hat_decision_manager_on_red_hat_jboss_eap
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.2/html-single/planning_a_red_hat_decision_manager_installation

CHAPTER 1. CREATING THE TRAFFIC VIOLATIONS PROJECT
A project is a container for assets such as data objects, guided decision tables, and guided rules.

Procedure

1. Log in to Decision Central.

2. Go to Menu → Design → Projects.
Red Hat Decision Manager provides a default space called MySpace, as shown in the following
image. You can use the default space to create and test example projects.

Figure 1.1. Default space

3. Click Add Project.

4. Enter Driver_department_traffic_violations in the Name field.

5. Click Add.

Figure 1.2. Add Project window

The Assets view of the project opens.

CHAPTER 1. CREATING THE TRAFFIC VIOLATIONS PROJECT

5

CHAPTER 2. DATA OBJECTS
Data objects are the building blocks for the rule assets that you create. Data objects are custom data
types implemented as Java objects in specified packages of your project. For example, you might create
a Person object with data fields Name, Address, and DateOfBirth to specify personal details for loan
application rules. These custom data types determine what data your assets and your decision services
are based on.

The following tables show the Violation and Driver data objects that you will create for this project.

Table 2.1. Violation data object

ID Label Type

code Code String

points Points Integer

violationDate Violation Date Date

type Type String

fineAmount Fine Amount Double

speedLimit Speed Limit Integer

actualSpeed Actual Speed Integer

Table 2.2. Driver data object

ID Label Type

name Name String

age Age Integer

state State String

city City String

violations Violations Violation
(org.jboss.example.traffic_violatio
ns.Violation)

Note: The Violations field is set
to List to hold multiple items for
the given type.

fineAmount Fine Amount Double

Red Hat Decision Manager 7.2 Getting started with decision services

6

totalPoints Total Points Integer

reason Reason String

ID Label Type

2.1. CREATING THE VIOLATION DATA OBJECT

The Violation data object contains data fields based on violation details, such as the Violation Date,
Fine Amount, and Speed Limit.

Prerequisites

You have created the Driver_department_traffic_violations project.

Procedure

1. Click Add Asset → Data Object.

2. In the Create new Data Object wizard, enter the following values:

Data Object: Violation

Package: select com.myspace.driver_department_traffic_violations

3. Click Ok.

Figure 2.1. Create new Data Object window

2.1.1. Adding the Violation data object constraints

Populate the Violation data object fields with the constraints that you will select when you define your
rules.

CHAPTER 2. DATA OBJECTS

7

Prerequisites

You have created the Violation data object.

Procedure

1. In the 'Violation'-general properties section, enter Violation in the Label field.

Figure 2.2. General properties

2. Click + add field.

3. Enter the following values:

Id: code

Label: Code

Type: String

4. Click Create and continue, then enter the following values:

Id: points

Label: Points

Type: Integer

5. Click Create and continue, then enter the following values:

Id: violationDate

Label: Violation Date

Type: Date

6. Click Create and continue, then enter the following values:

Id: type

Label: Type

Type: String

Red Hat Decision Manager 7.2 Getting started with decision services

8

7. Click Create and continue, then enter the following values:

Id: fineAmount

Label: Fine Amount

Type: Double

8. Click Create and continue, then enter the following values:

Id: speedLimit

Label: Speed Limit

Type: Integer

9. Click Create and continue, then enter the following values:

Id: actualSpeed

Label: Actual Speed

Type: Integer

10. Click Create.

11. Click Save, and then click Save to confirm your changes.

12. Click the Driver_department_traffic_violations label to return to the Assets view of the
project.

Figure 2.3. Violation data object fields

2.2. CREATING THE DRIVER DATA OBJECT

The Driver data object contains data fields based on driver details, such as the Name, Age, and Total
Points of the driver.

Prerequisites

CHAPTER 2. DATA OBJECTS

9

You have created the Driver_department_traffic_violations project.

Procedure

1. Go to Menu → Design → Projects → Driver_department_traffic_violations.

2. Click Add Asset → Data Object.

3. In the Create new Data Object wizard, enter the following values:

Data Object: Driver

Package: select com.myspace.driver_department_traffic_violations

4. Click Ok.

Figure 2.4. Create new Data Object window

2.2.1. Adding the Driver data object constraints

Populate the Driver data object fields with the constraints that you will select when you define your
rules.

Prerequisites

You have created the Driver data object.

Procedure

1. In the 'Driver'-general properties section, enter Driver in the Label field.

2. Click + add field.

3. Enter the following values:

Id: name

Label: Full Name

Red Hat Decision Manager 7.2 Getting started with decision services

10

Type: String

4. Click Create and continue, then enter the following values:

Id: age

Label: Age

Type: Integer

5. Click Create and continue, then enter the following values:

Id: state

Label: State

Type: String

6. Click Create and continue, then enter the following values:

Id: city

Label: City

Type: String

7. Click Create and continue, then enter the following values:

Id: violations

Label: Violations

Type: Violation(com.myspace.driver_department_traffic_violations.Violation)

List: Select this check box to enable the field to hold multiple items for the specified type.

8. Click Create and continue, then enter the following values:

Id: fineAmount

Label: Fine Amount

Type: Double

9. Click Create and continue, then enter the following values:

Id: totalPoints

Label: Total Points

Type: Integer

10. Click Create and continue, then enter the following values:

Id: reason

Label: Reason

Type: String

CHAPTER 2. DATA OBJECTS

11

11. Click Create.

12. Click Save, and then click Save to confirm your changes.

13. Click the Driver_department_traffic_violations label to return to the Assets view of the
project.

Figure 2.5. Driver data object fields

Red Hat Decision Manager 7.2 Getting started with decision services

12

CHAPTER 3. GUIDED RULES
Guided rules are business rules that you can create in a UI-based Guided Rules designer that leads you
through the rule creation process. The rule designer provides fields and options for acceptable input
based on the object model of the rule being edited. All data objects related to the rule must be in the
same project package as the rule. Assets in the same package are imported by default. You can use the
Data Objects tab of the rule designer to verify that all required data objects are listed or to import any
other needed data objects.

Figure 3.1. The Guided Rule designer

3.1. CREATING THE DRIVER LICENSE SUSPENSION RULE

Create the Driver license suspension rule using the guided rules designer.

Prerequisites

You have created both the Violation and Driver data objects.

Procedure

1. Click Menu → Design → Projects, then Driver_department_traffic_violations.

2. Click Add Asset → Guided Rule, then enter the following values:

Guided Rule: DriverLicenseSuspensionRule

Package: com.myspace.driver_department_traffic_violations

3. Click Ok to open the Guided Rule designer.

Figure 3.2. Create new guided rule window

CHAPTER 3. GUIDED RULES

13

Figure 3.2. Create new guided rule window

3.2. SETTING THE SUSPENSION RULE CONDITIONS

Set the Suspension rule conditions that are used to determine the driver’s violation.

Prerequisites

You have created the Driver License Suspension rule.

Procedure

1. Click () next to the WHEN label to open the Add a condition to the rule window.

2. Select Driver and click Ok.

Figure 3.3. Create new guided rule window

Red Hat Decision Manager 7.2 Getting started with decision services

14

Figure 3.3. Create new guided rule window

3. Click the There is a Driver label to open the Modify constraints for Driver window.

4. Enter driver in the Variable name field and click Set.

5. Click There is a Driver[driver] and click Expression editor.

6. Click [not bound] to open the Expression editor.

7. In the Bind the Expression to a new variable field, enter: previousPts and click Set.

8. From the Choose menu, select totalPoints.

9. Click () next to line 1 (the previousPts label) to open the Add a condition to the rule
window.

10. Select From Accumulate and click Ok.

11. Click click to add pattern above the From Accumulate label and select Number from the

CHAPTER 3. GUIDED RULES

15

11. Click click to add pattern above the From Accumulate label and select Number from the
choose fact type menu.

12. Click There is a number label to open the Modify contraints for Number window.

13. Click Expression editor and select intValue() from the [not bound]: Choose menu.

14. Click [not bound] to open the Expression editor.

15. In the Bind the Expression to a new variable field, enter: totalNewPoints and click Set.

16. Click click to add pattern and select Violation from the choose fact type menu.

17. Click All Violation with: to open the Modify contraints for Violation window and select points
from the Add a restriction on a field menu.

18. Click please choose next to the points label and select greater than.

19. Click (), and then click Literal value.

20. Click the points label to open the Add a field window.

21. Enter vPoints and click Set.

22. In the Function field, enter sum(vPoints).

23. Select greater than or equal to from the totalNewPoints → please choose menu.

24. Click (), click New formula, and enter 20-previousPts in the new field.

25. Click Save, and then click Save to confirm your changes.

Figure 3.4. Suspension Rule conditions

3.3. SETTING THE SUSPENSION RULE ACTIONS

Set the Suspension rule actions that are used to determine a driver’s penalties, including points and fine
amounts. These values are based on the Suspension rule conditions.

Prerequisites

You have set the Suspension rule conditions.

Red Hat Decision Manager 7.2 Getting started with decision services

16

Procedure

1. Click (show options…​) next to the THEN label.

Figure 3.5. show options selection

2. Click () next to the THEN label and select Change field values of driver, and click Ok.

3. Click the Set value of Driver [driver] field and select state from the Add field menu.

4. Click () next to state in the Set value of Driver [driver] section to open the Field value
window.

5. Click Literal value and enter suspend in the new field.

Figure 3.6. New field

6. Click () next to the (options) label below the Set value of Driver [driver] section.

7. From the Add an option to the rule window, select the ruleflow-group option from the
Attribute menu.

8. Enter trafficViolation in to the ruleflow-group field.

9. Click Save, and then click Save to confirm your changes.

Figure 3.7. Suspension rule actions

CHAPTER 3. GUIDED RULES

17

CHAPTER 4. GUIDED DECISION TABLES
Guided decision tables are a wizard-led alternative to uploaded decision table spreadsheets for defining
business rules in a tabular format. With guided decision tables, you are led by a UI-based wizard in
Decision Central that helps you define rule attributes, metadata, conditions, and actions based on
specified data objects in your project. After you create your guided decision tables, the rules you defined
are compiled into Drools Rule Language (DRL) rules as with all other rule assets.

All data objects related to a guided decision table must be in the same project package as the guided
decision table. Assets in the same package are imported by default. After you create the necessary data
objects and the guided decision table, you can use the Data Objects tab of the guided decision tables
designer to verify that all required data objects are listed or to import other existing data objects by
adding a New item.

4.1. CREATING A TRAFFIC VIOLATION GUIDED DECISION TABLE

Use the Guided Decision Table designer to create the traffic violation guided decision table, which
specifies the driver’s specific violation and the resulting fine and points.

Prerequisites

You have created both the Violation and Driver data objects.

Procedure

1. Click Menu → Design → Projects, then Driver_department_traffic_violations.

2. Click Add Asset → Guided Decision Table, then enter the following values:

Guided Decision Table: SpeedViolationRule

Package: com.myspace.driver_department_traffic_violations

3. Select Unique Hit from the Hit Policy menu.

4. Select Extended entry, values defined in table body in the Table format section.

5. Click Ok to open the Create new Guided Decision Table window.

Figure 4.1. Guided Decision Table window

Red Hat Decision Manager 7.2 Getting started with decision services

18

Figure 4.1. Guided Decision Table window

4.1.1. Inserting Violation Type columns

The Violation Type column contains the violation details such as the driver’s speed and if the driver was
under the influence of drugs or alcohol.

Prerequisites

You have created the traffic violation guided decision table.

Procedure

1. Click Columns → Insert Column and then select Include advanced options.

Figure 4.2. Column tab

2. Select Add an Attribute column and click Next.

Figure 4.3. Add a new column window

CHAPTER 4. GUIDED DECISION TABLES

19

Figure 4.3. Add a new column window

3. Select Ruleflow-group and click Finish.

4. Expand Attribute columns and enter trafficViolation in the Default value field.

Figure 4.4. Attribute columns window

5. Click Insert Column, select Add a Condition → Pattern → +Create a new Fact Pattern.

6. Select Violation from the Fact type menu, enter v in the Binding field, and click OK.

Figure 4.5. Create a new fact pattern window

Red Hat Decision Manager 7.2 Getting started with decision services

20

Figure 4.5. Create a new fact pattern window

7. Select Calculation type → Literal value.

Figure 4.6. Calculation type options

8. Select Field and then select type from the Field menu.

9. Select Operator and then equal to from the Operator menu.

10. Select Value options and enter Speed,Driving while intoxicated,DWI=Driving while under
the influence of drugs in the Value list (optional) field.

11. Select Additional info, enter Violation Type in the Header (description) field, and click Finish.

Figure 4.7. Violation Type header

CHAPTER 4. GUIDED DECISION TABLES

21

Figure 4.7. Violation Type header

12. Click Insert Column, select Add a Condition → Pattern, and select Violation[v] from the
Pattern menu.

13. Select Calculation type → Predicate → Field and enter actualSpeed-speedLimit > $param.

14. Select Value options, then select Additional info and enter Speed Limit (MPH) > in the
Header (description) field.

15. Click Finish.

Figure 4.8. Speed Limit (MPH) > header

16. Click Insert Column, select Add a Condition → Pattern, and select Violation[v] from the
Pattern menu.

17. Select Calculation type → Predicate.

18. Select Field and enter actualSpeed-speedLimit < $param in the Field field.

Red Hat Decision Manager 7.2 Getting started with decision services

22

19. Select Operator, select Value options, then select Additional info.

20. Enter Speed Limit (MPH) < in the Header (description) field and click Finish.

Figure 4.9. Condition columns

4.1.2. Inserting Fine Amount and Points columns

The Fine Amount and Points columns contain the fines and points based on the corresponding
Violation Type field values.

Prerequisites

You have inserted the Violation Type column in to the traffic violation guided decision table.

Procedure

1. Click Insert Column, select Set the value of a field → Pattern, and select Violation[v] from
the Pattern menu.

2. Select Field and then fineAmount from the Field menu.

3. Select Value options, and then select Additional info, and enter Fine Amount in the Header
(description) field.

CHAPTER 4. GUIDED DECISION TABLES

23

4. Select the Update engine with changes option and click Finish.

Figure 4.10. Fine Amount header

5. Click Insert Column, select Set the value of a field → Pattern, and select Violation[v] from
the Pattern menu.

6. Select Field and then points from the Field menu.

7. Select Value options, then select Additional info and enter Points in the Header
(description) field.

8. Select the Update engine with changes option and click Finish.

Figure 4.11. Action columns

4.1.3. Inserting guided decision table rows

After you have created your columns in the guided decision table, you can add rows and define rules
using the decision table designer.

Prerequisites

You have created the Violation Type, Fine Amount, and Points columns in the traffic violation guided
decision table.

Red Hat Decision Manager 7.2 Getting started with decision services

24

Procedure

1. Click the Model tab to view the SpeedViolationRule table.

2. Click Insert → Append row. Repeat this step to add a total of five table rows.

Figure 4.12. Append row menu location

3. Fill out the table as shown in the following example:

Figure 4.13. Populated data fields

4. Click Save, and then click Save to confirm your changes.

CHAPTER 4. GUIDED DECISION TABLES

25

CHAPTER 5. TEST SCENARIOS
Test Scenarios in Red Hat Decision Manager enable you to validate the functionality of rules, models,
and events before deploying them into production. A test scenario uses data for conditions that
resemble an instance of your fact or project model. This data is matched against a specific set of rules
and if the expected results match the actual results, the test is successful. If the expected results do not
match the actual results, then the test fails.

After you run all test scenarios, the status of the scenarios is reported in a Reporting panel.

Test scenarios can be executed one at a time or as a group. The group execution contains all the
scenarios from one package. Test scenarios are independent, so that one scenario cannot affect or
modify the other.

5.1. TESTING THE SPEED LIMIT SCENARIO

Test the speed limit scenario using the data that you specified when you created the traffic violation
guided decision table.

Prerequisites

You have created the Driver_department_traffic_violations project.

You have created the Violation and Driver data objects.

You have created the SpeedViolationRule guided decision table.

Procedure

1. Click Menu → Design → Projects, then Driver_department_traffic_violations.

2. Click Add Asset → Test Scenario.

3. In the Create new Test Scenario window, enter the following values:

a. Test Scenario: Speed limit 10-20.

b. Package: select com.myspace.driver_department_traffic_violations.

4. Click Ok.

5. Click +GIVEN to open the New input window.

6. Select Violation from the Insert a new fact menu.

7. Enter violation in the Fact name field and click Add.

8. Click Add a field located under Insert 'Violation'[violation] to open the Choose a field to add
window.

9. Select speedLimit from the Choose a field to add menu and click OK.

10. Click (), and then click Literal value.

11. Enter 40 in the speedLimit field.

Red Hat Decision Manager 7.2 Getting started with decision services

26

12. Click Insert 'Violation'[violation].

13. Select type from the Choose a field to add menu in the Choose a field to add window, and
click OK.

14. Click (), and then click Literal value.

15. Enter Speed in the type field.

16. Click Insert 'Violation'[violation].

17. Select actualSpeed from the Choose a field to add menu, and click OK.

18. Click (), and then click Literal value.

19. Enter 55 in the actualSpeed field.

20. Click +Expect to open the New expectation window.

21. Expand the Rule menu, select Row 1 SpeedViolationRule, and click OK.

22. Click +GIVEN to open the New input window, enter trafficViolation in the Activate rule flow
group field, and click Add.

23. Click +Expect to open the New expectation window and click Add next to Fact value:
violation.

24. Click Violation 'violation' has values: to open the Choose a field to add window.

25. Select fineAmount from the Choose a field to add menu and click OK.

26. Enter 100.0 in the fineAmount: equals field.

27. Click Violation 'violation' has values: to open the Choose a field to add window.

28. Select points from the Choose a field to add menu and click OK.

29. Enter 1 in the points: equals field.

30. Click Save, and then click Save to confirm your changes.

31. Click Run scenario.

Figure 5.1. Speed test results screen

CHAPTER 5. TEST SCENARIOS

27

Figure 5.1. Speed test results screen

If the values and conditions set in the test scenario meet the requirements as specified in the speed
violation guided decision table, the Reporting section at the bottom of the window displays a Success
message.

5.2. TESTING THE DRIVER LICENSE SUSPENSION SCENARIO

Test the driver license suspension scenario using the data that you specified when you set the Driver
License Suspension rules and actions.

Prerequisites

You have created the Driver_department_traffic_violations project.

You have created the Violation and Driver data objects.

You have set the Driver License Suspension rules and actions.

Procedure

1. Click Menu → Design → Projects, then Driver_department_traffic_violations.

2. Click Add Asset → Test Scenario.

3. In the Create new Test Scenario window wizard, enter the following values:

a. Test Scenario: Suspend due to total points.

b. Package: select com.myspace.driver_department_traffic_violations.

4. Click Ok.

Red Hat Decision Manager 7.2 Getting started with decision services

28

5. Click +GIVEN to open the New input window.

6. Select Driver from the Insert a new fact menu.

7. Enter driver in the Fact name field and click Add.

8. Click Add a field located under 'Driver'[driver] to open the Choose a field to add window.

9. Select totalPoints from the Choose a field to add menu and click OK.

10. Click () next to totalPoints, click Literal value, then enter 10 in the totalPoints field.

11. Click +GIVEN to open the New input window.

12. Select Violation from the Insert a new fact menu.

13. Enter violation in the Fact name field and click Add.

14. Click Add a field located under Insert 'Violation'[violation] to open the Choose a field to add
window.

15. Select points from the Choose a field to add menu and click OK.

16. Click (), and then click Literal value next to Literal value.

17. Enter 10 in the points field.

18. Click +Expect to open the New expectation window.

19. Expand the Rule menu, select DriverLicenseSuspensionRule, and click OK.

20. Click +GIVEN to open the New input window, enter trafficViolation in the Activate rule flow
group field, and click Add.

21. Click +Expect to open the New expectation window and click Add next to Fact value: driver.

22. Click Driver 'driver' has values: to open the Choose a field to add window.

23. Select state from the Choose a field to add menu and click OK.

24. Enter suspend in the state: equals field.

25. Click Save, and then click Save to confirm your changes.

26. Click Run scenario.

Result

The rule is fired and the driver’s license is suspended because the total number of points is >=
20.

Figure 5.2. Suspension test results screen

CHAPTER 5. TEST SCENARIOS

29

Figure 5.2. Suspension test results screen

If the values and conditions set in the test scenario meet the requirements that you specified when you
set the Driver License Suspension rules and actions, the Reporting section at the bottom of the window
displays a Success message.

5.3. TESTING THE MULTIPLE VIOLATIONS SCENARIO

Copy the Suspend due to total points asset and modify it to create the driver license suspension
scenario for drivers with multiple violations using the data that you specified when you set the Driver
License Suspension rules and actions.

Prerequisites

You have created the Driver_department_traffic_violations project.

You have created the Violation and Driver data objects.

You have set the driver license suspension rules and actions.

Procedure

1. Click Menu → Design → Projects, then Driver_department_traffic_violations.

2. Click Suspend due to total points → Copy, enter Suspend due to multiple violations in the
New Asset Name field, and click Make a Copy.

3. Click Space → MySpace → Driver_department_traffic_violations, and then select the
Suspend due to multiple violations Asset.

4. Click +GIVEN to open the New input window.

Red Hat Decision Manager 7.2 Getting started with decision services

30

5. Select Violation from the Insert a new fact menu.

6. Enter violation2 in the Fact name field and click Add.

7. Click () next to points, click Literal value, then enter 5 in the points → violation2 field.

8. In the totalPoints field, change the value from 10 to 5.

9. Click Save, and then click Save to confirm your changes.

10. Click Run scenario.

Figure 5.3. Suspension test results screen

If the values and conditions set in the test scenario meet the requirements that you specified when you
set the Driver License Suspension rules and actions, the Reporting section at the bottom of the window
displays a Success message.

CHAPTER 5. TEST SCENARIOS

31

CHAPTER 6. EXAMPLE PROJECTS AND BUSINESS ASSETS IN
DECISION CENTRAL

Decision Central contains example projects with example business assets that you can use as a
reference for the rules or other assets that you create in your own Red Hat Decision Manager projects.
Each sample project is designed differently to demonstrate decision management or business
optimization assets and logic in Red Hat Decision Manager.

The following example projects are available in Decision Central:

Mortgages: (Decision management) Example loan approval process using decision assets.
Determines loan eligibility based on applicant data and qualifications.

Employee_Rostering: (Business optimization) Example employee rostering optimization using
decision and solver assets. Assigns employees to shifts based on skills.

OptaCloud: (Business optimization) Example resource allocation optimization using decision
and solver assets. Assigns processes to computers with limited resources.

6.1. ACCESSING EXAMPLE PROJECTS AND BUSINESS ASSETS IN
DECISION CENTRAL

You can use the example projects in Decision Central to explore example business assets as a reference
for the rules or other assets that you create in your own Red Hat Decision Manager projects.

Prerequisites

Decision Central is installed and running. For installation options, see Planning a Red Hat
Decision Manager installation.

Procedure

1. In Decision Central, go to Menu → Design → Projects and click Try Samples.
If a project already exists, click the three vertical dots in the upper-right corner of the Projects
page and click Try Samples.

2. Review the descriptions for each sample project to determine which project you want to
explore. Each sample project is designed differently to demonstrate decision management or
business optimization assets and logic in Red Hat Decision Manager.

3. Select one or more sample projects and click Ok to add the projects to your space.

4. In the Projects page of your space, select one of the new example projects to view the example
assets for that project.

5. Select each example asset to explore how the project is designed to achieve the specified goal
or workflow.

6. In the upper-right corner of the project Assets page, click Build to build the sample project or
Deploy to build the project and then deploy it to Decision Server.
To review project deployment details (if applicable), go to Menu → Deploy → Execution
Servers.

6.2. EXECUTING RULES

Red Hat Decision Manager 7.2 Getting started with decision services

32

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.2/html-single/planning_a_red_hat_decision_manager_installation

After you identify example rules or create your own rules in Decision Central, you can build and deploy
the associated project and execute rules locally or on Decision Server to test the rules.

Prerequisites

Decision Central and Decision Server are installed and running. For installation options, see
Planning a Red Hat Decision Manager installation .

Procedure

1. In Decision Central, go to Menu → Design → Projects and click the project name.

2. In the upper-right corner of the project Assets page, click Deploy to build the project and
deploy it to Decision Server. If the build fails, address any problems described in the Alerts panel
at the bottom of the screen.
For more information about deploying projects, see Packaging and deploying a Red Hat Decision
Manager project.

3. Create a Maven or Java project outside of Decision Central, if not created already, that you can
use for executing rules locally or that you can use as a client application for executing rules on
Decision Server. The project must contain a pom.xml file and any other required components
for executing the project resources.
For example test projects, see "Other methods for creating and executing DRL rules" .

4. Open the pom.xml file of your test project or client application and add the following
dependencies, if not added already:

kie-ci: Enables your client application to load Decision Central project data locally using
ReleaseId

kie-server-client: Enables your client application to interact remotely with assets on
Decision Server

slf4j: (Optional) Enables your client application to use Simple Logging Facade for Java
(SLF4J) to return debug logging information after you interact with Decision Server

Example dependencies for Red Hat Decision Manager 7.2 in a client application pom.xml file:

<!-- For local execution -->
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-ci</artifactId>
 <version>7.14.0.Final-redhat-00002</version>
</dependency>

<!-- For remote execution on Decision Server -->
<dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-client</artifactId>
 <version>7.14.0.Final-redhat-00002</version>
</dependency>

<!-- For debug logging (optional) -->
<dependency>
 <groupId>org.slf4j</groupId>

CHAPTER 6. EXAMPLE PROJECTS AND BUSINESS ASSETS IN DECISION CENTRAL

33

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.2/html-single/planning_a_red_hat_decision_manager_installation
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.2/html-single/packaging_and_deploying_a_red_hat_decision_manager_project
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.2/html-single/designing_a_decision_service_using_drl_rules#drl-rules-other-con

For available versions of these artifacts, search the group ID and artifact ID in the Nexus
Repository Manager online.

NOTE

Instead of specifying a Red Hat Decision Manager <version> for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between Red Hat Decision Manager and the Maven library version?.

5. Ensure that the dependencies for artifacts containing model classes are defined in the client
application pom.xml file exactly as they appear in the pom.xml file of the deployed project. If
dependencies for model classes differ between the client application and your projects,
execution errors can occur.
To access the project pom.xml file in Decision Central, select any existing asset in the project
and then in the Project Explorer menu on the left side of the screen, click the Customize View
gear icon and select Repository View → pom.xml.

For example, the following Person class dependency appears in both the client and deployed
project pom.xml files:

6. If you added the slf4j dependency to the client application pom.xml file for debug logging,
create a simplelogger.properties file on the relevant classpath (for example, in
src/main/resources/META-INF in Maven) with the following content:

7. In your client application, create a .java main class containing the necessary imports and a

 <artifactId>slf4j-simple</artifactId>
 <version>1.7.25</version>
</dependency>

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.2.0.GA-redhat-00002</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

<dependency>
 <groupId>com.sample</groupId>
 <artifactId>Person</artifactId>
 <version>1.0.0</version>
</dependency>

org.slf4j.simpleLogger.defaultLogLevel=debug

Red Hat Decision Manager 7.2 Getting started with decision services

34

https://repository.jboss.org/nexus/index.html#welcome
https://access.redhat.com/solutions/3363991

7. In your client application, create a .java main class containing the necessary imports and a
main() method to load the KIE base, insert facts, and execute the rules.
For example, a Person object in a project contains getter and setter methods to set and
retrieve the first name, last name, hourly rate, and the wage of a person. The following Wage
rule in a project calculates the wage and hourly rate values and displays a message based on the
result:

To test this rule locally outside of Decision Server (if desired), configure the .java class to
import KIE services, a KIE container, and a KIE session, and then use the main() method to fire
all rules against a defined fact model:

Executing rules locally

package com.sample;

import com.sample.Person;

dialect "java"

rule "Wage"
 when
 Person(hourlyRate * wage > 100)
 Person(name : firstName, surname : lastName)
 then
 System.out.println("Hello" + " " + name + " " + surname + "!");
 System.out.println("You are rich!");
end

import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

public class RulesTest {

 public static final void main(String[] args) {
 try {
 // Identify the project in the local repository:
 ReleaseId rid = new ReleaseId();
 rid.setGroupId("com.myspace");
 rid.setArtifactId("MyProject");
 rid.setVersion("1.0.0");

 // Load the KIE base:
 KieServices ks = KieServices.Factory.get();
 KieContainer kContainer = ks.newKieContainer(rid);
 KieSession kSession = kContainer.newKieSession();

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 // Insert the person into the session:
 kSession.insert(p);

CHAPTER 6. EXAMPLE PROJECTS AND BUSINESS ASSETS IN DECISION CENTRAL

35

To test this rule on Decision Server, configure the .java class with the imports and rule
execution information similarly to the local example, and additionally specify KIE services
configuration and KIE services client details:

Executing rules on Decision Server

 // Fire all rules:
 kSession.fireAllRules();
 kSession.dispose();
 }

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

package com.sample;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

import org.kie.api.command.BatchExecutionCommand;
import org.kie.api.command.Command;
import org.kie.api.KieServices;
import org.kie.api.runtime.ExecutionResults;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;
import org.kie.server.api.marshalling.MarshallingFormat;
import org.kie.server.api.model.ServiceResponse;
import org.kie.server.client.KieServicesClient;
import org.kie.server.client.KieServicesConfiguration;
import org.kie.server.client.KieServicesFactory;
import org.kie.server.client.RuleServicesClient;

import com.sample.Person;

public class RulesTest {

 private static final String containerName = "testProject";
 private static final String sessionName = "myStatelessSession";

 public static final void main(String[] args) {
 try {
 // Define KIE services configuration and client:
 Set<Class<?>> allClasses = new HashSet<Class<?>>();
 allClasses.add(Person.class);
 String serverUrl = "http://$HOST:$PORT/kie-server/services/rest/server";
 String username = "$USERNAME";
 String password = "$PASSWORD";
 KieServicesConfiguration config =
 KieServicesFactory.newRestConfiguration(serverUrl,
 username,

Red Hat Decision Manager 7.2 Getting started with decision services

36

8. Run the configured .java class from your project directory. You can run the file in your
development platform (such as Red Hat JBoss Developer Studio) or in the command line.
Example Maven execution (within project directory):

mvn clean install exec:java -Dexec.mainClass="com.sample.app.RulesTest"

Example Java execution (within project directory)

javac -classpath "./$DEPENDENCIES/*:." RulesTest.java
java -classpath "./$DEPENDENCIES/*:." RulesTest

9. Review the rule execution status in the command line and in the server log. If any rules do not
execute as expected, review the configured rules in the project and the main class configuration
to validate the data provided.

 password);
 config.setMarshallingFormat(MarshallingFormat.JAXB);
 config.addExtraClasses(allClasses);
 KieServicesClient kieServicesClient =
 KieServicesFactory.newKieServicesClient(config);

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 // Insert Person into the session:
 KieCommands kieCommands = KieServices.Factory.get().getCommands();
 List<Command> commandList = new ArrayList<Command>();
 commandList.add(kieCommands.newInsert(p, "personReturnId"));

 // Fire all rules:
 commandList.add(kieCommands.newFireAllRules("numberOfFiredRules"));
 BatchExecutionCommand batch = kieCommands.newBatchExecution(commandList,
sessionName);

 // Use rule services client to send request:
 RuleServicesClient ruleClient =
kieServicesClient.getServicesClient(RuleServicesClient.class);
 ServiceResponse<ExecutionResults> executeResponse =
ruleClient.executeCommandsWithResults(containerName, batch);
 System.out.println("number of fired rules:" +
executeResponse.getResult().getValue("numberOfFiredRules"));
 }

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

CHAPTER 6. EXAMPLE PROJECTS AND BUSINESS ASSETS IN DECISION CENTRAL

37

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION
MANAGER FOR AN IDE

Red Hat Decision Manager provides example decisions distributed as Java classes that you can import
into your integrated development environment (IDE). You can use these examples to better understand
Red Hat Decision Manager decision engine capabilities or use them as a reference for the decisions that
you define in your own Red Hat Decision Manager projects.

The following example decision sets are some of the examples available in Red Hat Decision Manager:

Hello World example: Demonstrates basic rule execution and use of debug output

State example: Demonstrates forward chaining and conflict resolution through rule salience and
agenda groups

Fibonacci example: Demonstrates recursion and conflict resolution through rule salience

Banking example: Demonstrates pattern matching, basic sorting, and calculation

Pet Store example: Demonstrates rule agenda groups, global variables, callbacks, and GUI
integration

Sudoku example: Demonstrates complex pattern matching, problem solving, callbacks, and GUI
integration

House of Doom example: Demonstrates backward chaining and recursion

NOTE

For optimization examples provided with Red Hat Business Optimizer, see Getting
started with Red Hat Business Optimizer.

7.1. IMPORTING AND EXECUTING RED HAT DECISION MANAGER
EXAMPLE DECISIONS IN AN IDE

You can import Red Hat Decision Manager example decisions into your integrated development
environment (IDE) and execute them to explore how the rules and code function. You can use these
examples to better understand Red Hat Decision Manager decision engine capabilities or use them as a
reference for the decisions that you define in your own Red Hat Decision Manager projects.

Prerequisites

Java 8 or later is installed.

Maven 3.5.x or later is installed.

An IDE is installed, such as Red Hat JBoss Developer Studio.

Procedure

1. Download and unzip the Red Hat Decision Manager 7.2.0 Source Distribution from the Red
Hat Customer Portal to a temporary directory, such as /rhdm-7.2.0-sources.

2. Open your IDE and select File → Import → Maven → Existing Maven Projects, or the

Red Hat Decision Manager 7.2 Getting started with decision services

38

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.2/html-single/getting_started_with_red_hat_business_optimizer#examples-con
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

2. Open your IDE and select File → Import → Maven → Existing Maven Projects, or the
equivalent option for importing a Maven project.

3. Click Browse, navigate to ~/rhdm-7.2.0-sources/src/drools-$VERSION/drools-examples (or,
for the Conway’s Game of Life example, ~/rhdm-7.2.0-sources/src/droolsjbpm-integration-
$VERSION/droolsjbpm-integration-examples), and import the project.

4. Navigate to the example package that you want to run and find the Java class with the main
method.

5. Right-click the Java class and select Run As → Java Application to run the example.
To run all examples through a basic user interface, run the DroolsExamplesApp.java class (or,
for Conway’s Game of Life, the DroolsJbpmIntegrationExamplesApp.java class) in the
org.drools.examples main class.

Figure 7.1. Interface for all examples in drools-examples (DroolsExamplesApp.java)

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

39

Figure 7.1. Interface for all examples in drools-examples (DroolsExamplesApp.java)

Figure 7.2. Interface for all examples in droolsjbpm-integration-examples

Red Hat Decision Manager 7.2 Getting started with decision services

40

1

2

3

Figure 7.2. Interface for all examples in droolsjbpm-integration-examples
(DroolsJbpmIntegrationExamplesApp.java)

7.2. HELLO WORLD EXAMPLE DECISIONS (BASIC RULES AND
DEBUGGING)

The Hello World example decision set demonstrates how to insert objects into the Red Hat Decision
Manager decision engine working memory, how to match the objects using rules, and how to configure
logging to trace the internal activity of the engine.

The following is an overview of the Hello World example:

Name: helloworld

Main class: org.drools.examples.helloworld.HelloWorldExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.helloworld.HelloWorld.drl (in src/main/resources)

Objective: Demonstrates basic rule execution and use of debug output

In the Hello World example, a KIE session is generated to enable rule execution. All rules require a KIE
session for execution.

KIE session for rule execution

Obtains the KieServices factory. This is the main interface that applications use to interact with
the engine.

Creates a KieContainer from the project class path. This detects a /META-INF/kmodule.xml file
from which it configures and instantiates a KieContainer with a KieModule.

Creates a KieSession based on the "HelloWorldKS" KIE session configuration defined in the
/META-INF/kmodule.xml file.

KieServices ks = KieServices.Factory.get(); 1
KieContainer kc = ks.getKieClasspathContainer(); 2
KieSession ksession = kc.newKieSession("HelloWorldKS"); 3

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

41

NOTE

For more information about Red Hat Decision Manager project packaging, see Packaging
and deploying a Red Hat Decision Manager project.

Red Hat Decision Manager has an event model that exposes internal engine activity. Two default debug
listeners, DebugAgendaEventListener and DebugWorkingMemoryEventListener, print debug event
information to the System.err output. The KieRuntimeLogger provides execution auditing, the result
of which you can view in a graphical viewer.

Debug listeners and audit loggers

The logger is a specialized implementation built on the Agenda and RuleRuntime listeners. When the
engine has finished executing, logger.close() is called.

The example creates a single Message object with the message "Hello World", inserts the status
HELLO into the KieSession, executes rules with fireAllRules().

Data insertion and execution

Rule execution uses a data model to pass data as inputs and outputs to the KieSession. The data
model in this example has two fields: the message, which is a String, and the status, which can be
HELLO or GOODBYE.

Data model class

// Set up listeners.
ksession.addEventListener(new DebugAgendaEventListener());
ksession.addEventListener(new DebugRuleRuntimeEventListener());

// Set up a file-based audit logger.
KieRuntimeLogger logger = KieServices.get().getLoggers().newFileLogger(ksession,
"./target/helloworld");

// Set up a ThreadedFileLogger so that the audit view reflects events while debugging.
KieRuntimeLogger logger = ks.getLoggers().newThreadedFileLogger(ksession, "./target/helloworld",
1000);

// Insert facts into the KIE session.
final Message message = new Message();
message.setMessage("Hello World");
message.setStatus(Message.HELLO);
ksession.insert(message);

// Fire the rules.
ksession.fireAllRules();

public static class Message {
 public static final int HELLO = 0;
 public static final int GOODBYE = 1;

 private String message;

Red Hat Decision Manager 7.2 Getting started with decision services

42

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.2/html-single/packaging_and_deploying_a_red_hat_decision_manager_project

The two rules are located in the file
src/main/resources/org/drools/examples/helloworld/HelloWorld.drl.

The when condition of the "Hello World" rule states that the rule is activated for each Message object
inserted into the KIE session that has the status Message.HELLO. Additionally, two variable bindings
are created: the variable message is bound to the message attribute and the variable m is bound to
the matched Message object itself.

The then action of the rule is written using the MVEL expression language, as declared by the rule
dialect attribute. After printing the content of the bound variable message to System.out, the rule
changes the values of the message and status attributes of the Message object bound to m. The rule
uses the MVEL modify statement to apply a block of assignments in one statement and to notify the
engine of the changes at the end of the block.

"Hello World" rule

rule "Hello World"
 dialect "mvel"
 when
 m : Message(status == Message.HELLO, message : message)
 then
 System.out.println(message);
 modify (m) { message = "Goodbye cruel world",
 status = Message.GOODBYE };
end

The "Good Bye" rule, which specifies the java dialect, is similar to the "Hello World" rule except that it
matches Message objects that have the status Message.GOODBYE.

"Good Bye" rule

rule "Good Bye"
 dialect "java"
 when
 Message(status == Message.GOODBYE, message : message)
 then
 System.out.println(message);
end

To execute the example, run the org.drools.examples.helloworld.HelloWorldExample class as a Java
application in your IDE. The rule writes to System.out, the debug listener writes to System.err, and the
audit logger creates a log file in target/helloworld.log.

System.out output in the IDE console

Hello World
Goodbye cruel world

System.err output in the IDE console

 private int status;
 ...
}

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

43

==>[ActivationCreated(0): rule=Hello World;
 tuple=[fid:1:1:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]]
[ObjectInserted: handle=
[fid:1:1:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96];
 object=org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]
[BeforeActivationFired: rule=Hello World;
 tuple=[fid:1:1:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]]
==>[ActivationCreated(4): rule=Good Bye;
 tuple=[fid:1:2:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]]
[ObjectUpdated: handle=
[fid:1:2:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96];
 old_object=org.drools.examples.helloworld.HelloWorldExample$Message@17cec96;
 new_object=org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]
[AfterActivationFired(0): rule=Hello World]
[BeforeActivationFired: rule=Good Bye;
 tuple=[fid:1:2:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]]
[AfterActivationFired(4): rule=Good Bye]

To better understand the execution flow of this example, you can load the audit log file from
target/helloworld.log into your IDE debug view or Audit View, if available (for example, in Window →
Show View in some IDEs).

In this example, the Audit view shows that the object is inserted, which creates an activation for the
"Hello World" rule. The activation is then executed, which updates the Message object and causes the
"Good Bye" rule to activate. Finally, the "Good Bye" rule is executed. When you select an event in the
Audit View, the origin event, which is the "Activation created" event in this example, is highlighted in
green.

Figure 7.3. Hello World example Audit View

7.3. STATE EXAMPLE DECISIONS (FORWARD CHAINING AND
CONFLICT RESOLUTION)

The State example decision set demonstrates how the decision engine uses forward chaining and any
changes to facts in the working memory to resolve execution conflicts for rules in a sequence. The
example focuses on resolving conflicts through salience values or through agenda groups that you can
define in rules.

The following is an overview of the State example:

Name: state

Main classes: org.drools.examples.state.StateExampleUsingSalience,
org.drools.examples.state.StateExampleUsingAgendaGroup (in src/main/java)

Red Hat Decision Manager 7.2 Getting started with decision services

44

Module: drools-examples

Type: Java application

Rule files: org.drools.examples.state.*.drl (in src/main/resources)

Objective: Demonstrates forward chaining and conflict resolution through rule salience and
agenda groups

A forward-chaining rule system is a data-driven system that starts with a fact in the working memory of
the decision engine and reacts to changes to that fact. When objects are inserted into working memory,
any rule conditions that become true as a result of the change are scheduled for execution by the
agenda.

In contrast, a backward-chaining rule system is a goal-driven system that starts with a conclusion that
the decision engine attempts to satisfy, often using recursion. If the system cannot reach the conclusion
or goal, it searches for subgoals, which are conclusions that complete part of the current goal. The
system continues this process until either the initial conclusion is satisfied or all subgoals are satisfied.

The decision engine in Red Hat Decision Manager uses both forward and backward chaining to evaluate
rules.

The following diagram illustrates how the decision engine evaluates rules using forward chaining overall
with a backward-chaining segment in the logic flow:

Figure 7.4. Rule evaluation logic using forward and backward chaining

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

45

Figure 7.4. Rule evaluation logic using forward and backward chaining

In the State example, each State class has fields for its name and its current state (see the class
org.drools.examples.state.State). The following states are the two possible states for each object:

NOTRUN

FINISHED

State class

public class State {

Red Hat Decision Manager 7.2 Getting started with decision services

46

The State example contains two versions of the same example to resolve rule execution conflicts:

A StateExampleUsingSalience version that resolves conflicts by using rule salience

A StateExampleUsingAgendaGroups version that resolves conflicts by using rule agenda
groups

Both versions of the state example involve four State objects: A, B, C, and D. Initially, their states are set
to NOTRUN, which is the default value for the constructor that the example uses.

State example using salience
The StateExampleUsingSalience version of the State example uses salience values in rules to resolve
rule execution conflicts. Rules with a higher salience value are given higher priority when ordered in the
activation queue.

The example inserts each State instance into the KIE session and then calls fireAllRules().

Salience State example execution

To execute the example, run the org.drools.examples.state.StateExampleUsingSalience class as a
Java application in your IDE.

After the execution, the following output appears in the IDE console window:

Salience State example output in the IDE console

A finished
B finished

 public static final int NOTRUN = 0;
 public static final int FINISHED = 1;

 private final PropertyChangeSupport changes =
 new PropertyChangeSupport(this);

 private String name;
 private int state;

 ... setters and getters go here...
}

final State a = new State("A");
final State b = new State("B");
final State c = new State("C");
final State d = new State("D");

ksession.insert(a);
ksession.insert(b);
ksession.insert(c);
ksession.insert(d);

ksession.fireAllRules();

// Dispose KIE session if stateful (not required if stateless).
ksession.dispose();

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

47

C finished
D finished

Four rules are present.

First, the "Bootstrap" rule fires, setting A to state FINISHED, which then causes B to change its state
to FINISHED. Objects C and D are both dependent on B, causing a conflict that is resolved by the
salience values.

To better understand the execution flow of this example, you can load the audit log file from
target/state.log into your IDE debug view or Audit View, if available (for example, in Window → Show
View in some IDEs).

In this example, the Audit View shows that the assertion of the object A in the state NOTRUN activates
the "Bootstrap" rule, while the assertions of the other objects have no immediate effect.

Figure 7.5. Salience State example Audit View

Rule "Bootstrap" in salience State example

rule "Bootstrap"
 when
 a : State(name == "A", state == State.NOTRUN)
 then
 System.out.println(a.getName() + " finished");
 a.setState(State.FINISHED);
end

The execution of the "Bootstrap" rule changes the state of A to FINISHED, which activates rule "A to
B".

Rule "A to B" in salience State example

Red Hat Decision Manager 7.2 Getting started with decision services

48

rule "A to B"
 when
 State(name == "A", state == State.FINISHED)
 b : State(name == "B", state == State.NOTRUN)
 then
 System.out.println(b.getName() + " finished");
 b.setState(State.FINISHED);
end

The execution of rule "A to B" changes the state of B to FINISHED, which activates both rules "B to C"
and "B to D", placing their activations onto the engine agenda.

Rules "B to C" and "B to D" in salience State example

rule "B to C"
 salience 10
 when
 State(name == "B", state == State.FINISHED)
 c : State(name == "C", state == State.NOTRUN)
 then
 System.out.println(c.getName() + " finished");
 c.setState(State.FINISHED);
end

rule "B to D"
 when
 State(name == "B", state == State.FINISHED)
 d : State(name == "D", state == State.NOTRUN)
 then
 System.out.println(d.getName() + " finished");
 d.setState(State.FINISHED);
end

From this point on, both rules may fire and, therefore, the rules are in conflict. The conflict resolution
strategy enables the engine agenda to decide which rule to fire. Rule "B to C" has the higher salience
value (10 versus the default salience value of 0), so it fires first, modifying object C to state FINISHED.

The Audit View in your IDE shows the modification of the State object in the rule "A to B", which results
in two activations being in conflict.

You can also use the Agenda View in your IDE to investigate the state of the engine agenda. In this
example, the Agenda View shows the breakpoint in the rule "A to B" and the state of the agenda with
the two conflicting rules. Rule "B to D" fires last, modifying object D to state FINISHED.

Figure 7.6. Salience State example Agenda View

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

49

Figure 7.6. Salience State example Agenda View

State example using agenda groups
The StateExampleUsingAgendaGroups version of the State example uses agenda groups in rules to
resolve rule execution conflicts. Agenda groups enable you to partition the engine agenda to provide
more execution control over groups of rules. By default, all rules are in the agenda group MAIN. You can
use the agenda-group attribute to specify a different agenda group for the rule.

Red Hat Decision Manager 7.2 Getting started with decision services

50

Initially, a working memory has its focus on the agenda group MAIN. Rules in an agenda group only fire
when the group receives the focus. You can set the focus either by using the method setFocus() or the
rule attribute auto-focus. The auto-focus attribute enables the rule to be given a focus automatically
for its agenda group when the rule is matched and activated.

In this example, the auto-focus attribute enables rule "B to C" to fire before "B to D".

Rule "B to C" in agenda group State example

rule "B to C"
 agenda-group "B to C"
 auto-focus true
 when
 State(name == "B", state == State.FINISHED)
 c : State(name == "C", state == State.NOTRUN)
 then
 System.out.println(c.getName() + " finished");
 c.setState(State.FINISHED);
 kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("B to D").setFocus();
end

The rule "B to C" calls setFocus() on the agenda group "B to D", enabling its active rules to fire, which
then enables the rule "B to D" to fire.

Rule "B to D" in agenda group State example

rule "B to D"
 agenda-group "B to D"
 when
 State(name == "B", state == State.FINISHED)
 d : State(name == "D", state == State.NOTRUN)
 then
 System.out.println(d.getName() + " finished");
 d.setState(State.FINISHED);
end

To execute the example, run the org.drools.examples.state.StateExampleUsingAgendaGroups class
as a Java application in your IDE.

After the execution, the following output appears in the IDE console window (same as the salience
version of the State example):

Agenda group State example output in the IDE console

A finished
B finished
C finished
D finished

Dynamic facts in the State example
Another notable concept in this State example is the use of dynamic facts, based on objects that
implement a PropertyChangeListener object. In order for the engine to see and react to changes of
fact properties, the application must notify the engine that changes occurred. You can configure this

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

51

communication explicitly in the rules by using the modify statement, or implicitly by specifying that the
facts implement the PropertyChangeSupport interface as defined by the JavaBeans specification.

This example demonstrates how to use the PropertyChangeSupport interface to avoid the need for
explicit modify statements in the rules. To make use of this interface, ensure that your facts implement
PropertyChangeSupport in the same way that the class org.drools.example.State implements it, and
then use the following code in the DRL rule file to configure the engine to listen for property changes on
those facts:

Declaring a dynamic fact

declare type State
 @propertyChangeSupport
end

When you use PropertyChangeListener objects, each setter must implement additional code for the
notification. For example, the following setter for state is in the class org.drools.examples:

Setter example with PropertyChangeSupport

7.4. FIBONACCI EXAMPLE DECISIONS (RECURSION AND CONFLICT
RESOLUTION)

The Fibonacci example decision set demonstrates how the decision engine uses recursion to resolve
execution conflicts for rules in a sequence. The example focuses on resolving conflicts through salience
values that you can define in rules.

The following is an overview of the Fibonacci example:

Name: fibonacci

Main class: org.drools.examples.fibonacci.FibonacciExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.fibonacci.Fibonacci.drl (in src/main/resources)

Objective: Demonstrates recursion and conflict resolution through rule salience

The Fibonacci Numbers form a sequence starting with 0 and 1. The next Fibonacci number is obtained by
adding the two preceding Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,
1597, 2584, 4181, 6765, 10946, and so on.

The Fibonacci example uses the single fact class Fibonacci with the following two fields:

public void setState(final int newState) {
 int oldState = this.state;
 this.state = newState;
 this.changes.firePropertyChange("state",
 oldState,
 newState);
}

Red Hat Decision Manager 7.2 Getting started with decision services

52

sequence

value

The sequence field indicates the position of the object in the Fibonacci number sequence. The value
field shows the value of that Fibonacci object for that sequence position, where -1 indicates a value that
still needs to be computed.

Fibonacci class

To execute the example, run the org.drools.examples.fibonacci.FibonacciExample class as a Java
application in your IDE.

After the execution, the following output appears in the IDE console window:

Fibonacci example output in the IDE console

recurse for 50
recurse for 49
recurse for 48
recurse for 47
...
recurse for 5
recurse for 4
recurse for 3
recurse for 2
1 == 1
2 == 1
3 == 2
4 == 3
5 == 5
6 == 8
...
47 == 2971215073
48 == 4807526976
49 == 7778742049
50 == 12586269025

To achieve this behavior in Java, the example inserts a single Fibonacci object with a sequence field of
50. The example then uses a recursive rule to insert the other 49 Fibonacci objects.

Instead of implementing the PropertyChangeSupport interface to use dynamic facts, this example
uses the MVEL dialect modify keyword to enable a block setter action and notify the engine of changes.

public static class Fibonacci {
 private int sequence;
 private long value;

 public Fibonacci(final int sequence) {
 this.sequence = sequence;
 this.value = -1;
 }

 ... setters and getters go here...
}

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

53

Fibonacci example execution

This example uses the following three rules:

"Recurse"

"Bootstrap"

"Calculate"

The rule "Recurse" matches each asserted Fibonacci object with a value of -1, creating and asserting a
new Fibonacci object with a sequence of one less than the currently matched object. Each time a
Fibonacci object is added while the one with a sequence field equal to 1 does not exist, the rule re-
matches and fires again. The not conditional element is used to stop the rule matching once you have all
50 Fibonacci objects in memory. The rule also has a salience value because you need to have all 50
Fibonacci objects asserted before you execute the "Bootstrap" rule.

Rule "Recurse"

rule "Recurse"
 salience 10
 when
 f : Fibonacci (value == -1)
 not (Fibonacci (sequence == 1))
 then
 insert(new Fibonacci(f.sequence - 1));
 System.out.println("recurse for " + f.sequence);
end

To better understand the execution flow of this example, you can load the audit log file from
target/fibonacci.log into your IDE debug view or Audit View, if available (for example, in Window →
Show View in some IDEs).

In this example, the Audit View shows the original assertion of the Fibonacci object with a sequence
field of 50, done from Java code. From there on, the Audit View shows the continual recursion of the
rule, where each asserted Fibonacci object causes the "Recurse" rule to become activated and to fire
again.

Figure 7.7. Rule "Recurse" in Audit View

ksession.insert(new Fibonacci(50));
ksession.fireAllRules();

Red Hat Decision Manager 7.2 Getting started with decision services

54

Figure 7.7. Rule "Recurse" in Audit View

When a Fibonacci object with a sequence field of 2 is asserted, the "Bootstrap" rule is matched and
activated along with the "Recurse" rule. Notice the multiple restrictions on field sequence that test for
equality with 1 or 2:

Rule "Bootstrap"

rule "Bootstrap"
 when
 f : Fibonacci(sequence == 1 || == 2, value == -1) // multi-restriction
 then
 modify (f){ value = 1 };
 System.out.println(f.sequence + " == " + f.value);
end

You can also use the Agenda View in your IDE to investigate the state of the engine agenda. The
"Bootstrap" rule does not fire yet because the "Recurse" rule has a higher salience value.

Figure 7.8. Rules "Recurse" and "Bootstrap" in Agenda View 1

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

55

Figure 7.8. Rules "Recurse" and "Bootstrap" in Agenda View 1

When a Fibonacci object with a sequence of 1 is asserted, the "Bootstrap" rule is matched again,
causing two activations for this rule. The "Recurse" rule does not match and activate because the not
conditional element stops the rule matching as soon as a Fibonacci object with a sequence of 1 exists.

Figure 7.9. Rules "Recurse" and "Bootstrap" in Agenda View 2

The "Bootstrap" rule sets the objects with a sequence of 1 and 2 to a value of 1. Now that you have

Red Hat Decision Manager 7.2 Getting started with decision services

56

The "Bootstrap" rule sets the objects with a sequence of 1 and 2 to a value of 1. Now that you have
two Fibonacci objects with values not equal to -1, the "Calculate" rule is able to match.

At this point in the example, nearly 50 Fibonacci objects exist in the working memory. You need to
select a suitable triple to calculate each of their values in turn. If you use three Fibonacci patterns in a
rule without field constraints to confine the possible cross products, the result would be 50x49x48
possible combinations, leading to about 125,000 possible rule firings, most of them incorrect.

The "Calculate" rule uses field constraints to evaluate the three Fibonacci patterns in the correct order.
This technique is called cross-product matching.

The first pattern finds any Fibonacci object with a value != -1 and binds both the pattern and the field.
The second Fibonacci object does the same thing, but adds an additional field constraint to ensure that
its sequence is greater by one than the Fibonacci object bound to f1. When this rule fires for the first
time, you know that only sequences 1 and 2 have values of 1, and the two constraints ensure that f1
references sequence 1 and that f2 references sequence 2.

The final pattern finds the Fibonacci object with a value equal to -1 and with a sequence one greater
than f2.

At this point in the example, three Fibonacci objects are correctly selected from the available cross
products, and you can calculate the value for the third Fibonacci object that is bound to f3.

Rule "Calculate"

rule "Calculate"
 when
 // Bind f1 and s1.
 f1 : Fibonacci(s1 : sequence, value != -1)
 // Bind f2 and v2, refer to bound variable s1.
 f2 : Fibonacci(sequence == (s1 + 1), v2 : value != -1)
 // Bind f3 and s3, alternative reference of f2.sequence.
 f3 : Fibonacci(s3 : sequence == (f2.sequence + 1), value == -1)
 then
 // Note the various referencing techniques.
 modify (f3) { value = f1.value + v2 };
 System.out.println(s3 + " == " + f3.value);
end

The modify statement updates the value of the Fibonacci object bound to f3. This means that you now
have another new Fibonacci object with a value not equal to -1, which allows the "Calculate" rule to re-
match and calculate the next Fibonacci number.

The debug view or Audit View of your IDE shows how the firing of the last "Bootstrap" rule modifies
the Fibonacci object, enabling the "Calculate" rule to match, which then modifies another Fibonacci
object that enables the "Calculate" rule to match again. This process continues until the value is set for
all Fibonacci objects.

Figure 7.10. Rules in Audit View

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

57

Figure 7.10. Rules in Audit View

7.5. PRICING EXAMPLE DECISIONS (DECISION TABLES)

The Pricing example decision set demonstrates how to use a spreadsheet decision table for calculating
the retail cost of an insurance policy in tabular format instead of directly in a DRL file.

The following is an overview of the Pricing example:

Name: decisiontable

Main class: org.drools.examples.decisiontable.PricingRuleDTExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.decisiontable.ExamplePolicyPricing.xls (in
src/main/resources)

Objective: Demonstrates use of spreadsheet decision tables to define rules

Decision tables are XLS or XLSX spreadsheets that you can use to define business rules in a tabular
format and that you can include in your Red Hat Decision Manager project or upload in Decision Central.
Each row in the spreadsheet is a rule, and each column is a condition, an action, or another rule attribute.
After you create and upload your decision tables into your Red Hat Decision Manager project, the rules
you defined are compiled into Drools Rule Language (DRL) rules as with all other rule assets.

The purpose of the Pricing example is to provide a set of business rules to calculate the base price and a

Red Hat Decision Manager 7.2 Getting started with decision services

58

discount for a car driver applying for a specific type of insurance policy. The driver’s age and history and
the policy type all contribute to calculate the basic premium, and additional rules calculate potential
discounts for which the driver might be eligible.

To execute the example, run the org.drools.examples.decisiontable.PricingRuleDTExample class as
a Java application in your IDE.

After the execution, the following output appears in the IDE console window:

Cheapest possible
BASE PRICE IS: 120
DISCOUNT IS: 20

The code to execute the example follows the typical execution pattern: the rules are loaded, the facts
are inserted, and a stateless KIE session is created. The difference in this example is that the rules are
defined in an ExamplePolicyPricing.xls file instead of a DRL file or other source. The spreadsheet file
is loaded into the decision engine using templates and DRL rules.

Spreadsheet decision table setup
The ExamplePolicyPricing.xls spreadsheet contains two decision tables in the first tab:

Base pricing rules

Promotional discount rules

As the example spreadsheet demonstrates, you can use only the first tab of a spreadsheet to create
decision tables, but multiple tables can be within a single tab. Decision tables do not necessarily follow
top-down logic, but are more of a means to capture data resulting in rules. The evaluation of the rules is
not necessarily in the given order, because all of the normal mechanics of the decision engine still apply.
This is why you can have multiple decision tables in the same tab of a spreadsheet.

The decision tables are executed through the corresponding rule template files BasePricing.drt and
PromotionalPricing.drt. These template files reference the decision tables through their template
parameter and directly reference the various headers for the conditions and actions in the decision
tables.

BasePricing.drt rule template file

template header
age[]
profile
priorClaims
policyType
base
reason

package org.drools.examples.decisiontable;

template "Pricing bracket"
age
policyType
base

rule "Pricing bracket_@{row.rowNumber}"
 when
 Driver(age >= @{age0}, age <= @{age1}

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

59

 , priorClaims == "@{priorClaims}"
 , locationRiskProfile == "@{profile}"
)
 policy: Policy(type == "@{policyType}")
 then
 policy.setBasePrice(@{base});
 System.out.println("@{reason}");
end
end template

PromotionalPricing.drt rule template file

template header
age[]
priorClaims
policyType
discount

package org.drools.examples.decisiontable;

template "discounts"
age
priorClaims
policyType
discount

rule "Discounts_@{row.rowNumber}"
 when
 Driver(age >= @{age0}, age <= @{age1}, priorClaims == "@{priorClaims}")
 policy: Policy(type == "@{policyType}")
 then
 policy.applyDiscount(@{discount});
end
end template

The rules are executed through the kmodule.xml reference of the KIE Session
DTableWithTemplateKB, which specifically mentions the ExamplePolicyPricing.xls spreadsheet and
is required for successful execution of the rules. This execution method enables you to execute the rules
as a standalone unit (as in this example) or to include the rules in a packaged knowledge JAR (KJAR)
file, so that the spreadsheet is packaged along with the rules for execution.

The following section of the kmodule.xml file is required for the execution of the rules and spreadsheet
to work successfully:

 <kbase name="DecisionTableKB" packages="org.drools.examples.decisiontable">
 <ksession name="DecisionTableKS" type="stateless"/>
 </kbase>

 <kbase name="DTableWithTemplateKB" packages="org.drools.examples.decisiontable-template">
 <ruleTemplate dtable="org/drools/examples/decisiontable-
template/ExamplePolicyPricingTemplateData.xls"
 template="org/drools/examples/decisiontable-template/BasePricing.drt"
 row="3" col="3"/>
 <ruleTemplate dtable="org/drools/examples/decisiontable-
template/ExamplePolicyPricingTemplateData.xls"

Red Hat Decision Manager 7.2 Getting started with decision services

60

As an alternative to executing the decision tables using rule template files, you can use the
DecisionTableConfiguration object and specify an input spreadsheet as the input type, such as
DecisionTableInputType.xls:

The Pricing example uses two fact types:

Driver

Policy.

The example sets the default values for both facts in their respective Java classes Driver.java and
Policy.java. The Driver is 30 years old, has had no prior claims, and currently has a risk profile of LOW.
The Policy that the driver is applying for is COMPREHENSIVE.

In any decision table, each row is considered a different rule and each column is a condition or an action.
Each row is evaluated in a decision table unless the agenda is cleared upon execution.

Decision table spreadsheets require two key areas that define rule data:

A RuleSet area

A RuleTable area

The RuleSet area of the spreadsheet defines elements that you want to apply globally to all rules in the
same package (not only the spreadsheet), such as a rule set name or universal rule attributes. The
RuleTable area defines the actual rules (rows) and the conditions, actions, and other rule attributes
(columns) that constitute that rule table within the specified rule set. A decision table spreadsheet can
contain multiple RuleTable areas, but only one RuleSet area.

Figure 7.11. Decision table configuration

 template="org/drools/examples/decisiontable-template/PromotionalPricing.drt"
 row="18" col="3"/>
 <ksession name="DTableWithTemplateKS"/>
 </kbase>

DecisionTableConfiguration dtableconfiguration =
 KnowledgeBuilderFactory.newDecisionTableConfiguration();
 dtableconfiguration.setInputType(DecisionTableInputType.XLS);

 KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

 Resource xlsRes = ResourceFactory.newClassPathResource("ExamplePolicyPricing.xls",
 getClass());
 kbuilder.add(xlsRes,
 ResourceType.DTABLE,
 dtableconfiguration);

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

61

The RuleTable area also defines the objects to which the rule attributes apply, in this case Driver and
Policy, followed by constraints on the objects. For example, the Driver object constraint that defines
the Age Bracket column is age >= $1, age <= $2, where the comma-separated range is defined in the
table column values, such as 18,24.

Base pricing rules
The Base pricing rules decision table in the Pricing example evaluates the age, risk profile, number of
claims, and policy type of the driver and produces the base price of the policy based on these
conditions.

Figure 7.12. Base price calculation

The Driver attributes are defined in the following table columns:

Age Bracket: The age bracket has a definition for the condition age >=$1, age <=$2, which
defines the condition boundaries for the driver’s age. This condition column highlights the use of
$1 and $2, which is comma delimited in the spreadsheet. You can write these values as 18,24 or
18, 24 and both formats work in the execution of the business rules.

Location risk profile: The risk profile is a string that the example program passes always as
LOW but can be changed to reflect MED or HIGH.

Number of prior claims: The number of claims is defined as an integer that the condition
column must exactly equal to trigger the action. The value is not a range, only exact matches.

The Policy of the decision table is used in both the conditions and the actions of the rule and has
attributes defined in the following table columns:

Policy type applying for: The policy type is a condition that is passed as a string that defines
the type of coverage: COMPREHENSIVE, FIRE_THEFT, or THIRD_PARTY.

Red Hat Decision Manager 7.2 Getting started with decision services

62

Base $ AUD: The basePrice is defined as an ACTION that sets the price through the constraint
policy.setBasePrice($param); based on the spreadsheet cells corresponding to this value.
When you execute the corresponding DRL rule for this decision table, the then portion of the
rule executes this action statement on the true conditions matching the facts and sets the base
price to the corresponding value.

Record Reason: When the rule successfully executes, this action generates an output message
to the System.out console reflecting which rule fired. This is later captured in the application
and printed.

The example also uses the first column on the left to categorize rules. This column is for annotation only
and has no affect on rule execution.

Promotional discount rules
The Promotional discount rules decision table in the Pricing example evaluates the age, number of
prior claims, and policy type of the driver to generate a potential discount on the price of the insurance
policy.

Figure 7.13. Discount calculation

This decision table contains the conditions for the discount for which the driver might be eligible. Similar
to the base price calculation, this table evaluates the Age, Number of prior claims of the driver, and
the Policy type applying for to determine a Discount % rate to be applied. For example, if the driver is
30 years old, has no prior claims, and is applying for a COMPREHENSIVE policy, the driver is given a
discount of 20 percent.

7.6. PET STORE EXAMPLE DECISIONS (AGENDA GROUPS, GLOBAL
VARIABLES, CALLBACKS, AND GUI INTEGRATION)

The Pet Store example decision set demonstrates how to use agenda groups and global variables in
rules and how to integrate Red Hat Decision Manager rules with a graphical user interface (GUI), in this
case a Swing-based desktop application. The example also demonstrates how to use callbacks to
interact with a running decision engine to update the GUI based on changes in the working memory at
run time.

The following is an overview of the Pet Store example:

Name: petstore

Main class: org.drools.examples.petstore.PetStoreExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.petstore.PetStore.drl (in src/main/resources)

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

63

Objective: Demonstrates rule agenda groups, global variables, callbacks, and GUI integration

In the Pet Store example, the sample PetStoreExample.java class defines the following principal
classes (in addition to several classes to handle Swing events):

Petstore contains the main() method.

PetStoreUI is responsible for creating and displaying the Swing-based GUI. This class contains
several smaller classes, mainly for responding to various GUI events, such as user mouse clicks.

TableModel holds the table data. This class is essentially a JavaBean that extends the Swing
class AbstractTableModel.

CheckoutCallback enables the GUI to interact with the rules.

Ordershow keeps the items that you want to buy.

Purchase stores details of the order and the products that you are buying.

Product is a JavaBean containing details of the product available for purchase and its price.

Much of the Java code in this example is either plain JavaBean or Swing based. For more information
about Swing components, see the Java tutorial on Creating a GUI with JFC/Swing .

Rule execution behavior in the Pet Store example
Unlike other example decision sets where the facts are asserted and fired immediately, the Pet Store
example does not execute the rules until more facts are gathered based on user interaction. The
example executes rules through a PetStoreUI object, created by a constructor, that accepts the Vector
object stock for collecting the products. The example then uses an instance of the CheckoutCallback
class containing the rule base that was previously loaded.

Pet Store KIE container and fact execution setup

The Java code that fires the rules is in the CheckoutCallBack.checkout() method. This method is
triggered when the user clicks Checkout in the UI.

Rule execution from CheckoutCallBack.checkout()

// KieServices is the factory for all KIE services.
KieServices ks = KieServices.Factory.get();

// Create a KIE container on the class path.
KieContainer kc = ks.getKieClasspathContainer();

// Create the stock.
Vector<Product> stock = new Vector<Product>();
stock.add(new Product("Gold Fish", 5));
stock.add(new Product("Fish Tank", 25));
stock.add(new Product("Fish Food", 2));

// A callback is responsible for populating the working memory and for firing all rules.
PetStoreUI ui = new PetStoreUI(stock,
 new CheckoutCallback(kc));
ui.createAndShowGUI();

public String checkout(JFrame frame, List<Product> items) {

Red Hat Decision Manager 7.2 Getting started with decision services

64

https://docs.oracle.com/javase/tutorial/uiswing/

The example code passes two elements into the CheckoutCallBack.checkout() method. One element
is the handle for the JFrame Swing component surrounding the output text frame, found at the bottom
of the GUI. The second element is a list of order items, which comes from the TableModel that stores
the information from the Table area at the upper-right section of the GUI.

The for loop transforms the list of order items coming from the GUI into the Order JavaBean, also
contained in the file PetStoreExample.java.

In this case, the rule is firing in a stateless KIE session because all of the data is stored in Swing
components and is not executed until the user clicks Checkout in the UI. Each time the user clicks
Checkout, the content of the list is moved from the Swing TableModel into the KIE session working
memory and is then executed with the ksession.fireAllRules() method.

Within this code, there are nine calls to KieSession. The first of these creates a new KieSession from
the KieContainer (the example passed in this KieContainer from the CheckoutCallBack class in the
main() method). The next two calls pass in the two objects that hold the global variables in the rules: the
Swing text area and the Swing frame used for writing messages. More inserts put information on
products into the KieSession, as well as the order list. The final call is the standard fireAllRules().

Pet Store rule file imports, global variables, and Java functions
The PetStore.drl file contains the standard package and import statements to make various Java
classes available to the rules. The rule file also includes global variables to be used within the rules,
defined as frame and textArea. The global variables hold references to the Swing components JFrame
and JTextArea components that were previously passed on by the Java code that called the

 Order order = new Order();

 // Iterate through list and add to cart.
 for (Product p: items) {
 order.addItem(new Purchase(order, p));
 }

 // Add the JFrame to the ApplicationData to allow for user interaction.

 // From the KIE container, a KIE session is created based on
 // its definition and configuration in the META-INF/kmodule.xml file.
 KieSession ksession = kcontainer.newKieSession("PetStoreKS");

 ksession.setGlobal("frame", frame);
 ksession.setGlobal("textArea", this.output);

 ksession.insert(new Product("Gold Fish", 5));
 ksession.insert(new Product("Fish Tank", 25));
 ksession.insert(new Product("Fish Food", 2));

 ksession.insert(new Product("Fish Food Sample", 0));

 ksession.insert(order);

 // Execute rules.
 ksession.fireAllRules();

 // Return the state of the cart
 return order.toString();
}

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

65

setGlobal() method. Unlike standard variables in rules, which expire as soon as the rule has fired, global
variables retain their value for the lifetime of the KIE session. This means the contents of these global
variables are available for evaluation on all subsequent rules.

PetStore.drl package, imports, and global variables

The PetStore.drl file also contains two functions that the rules in the file use:

PetStore.drl Java functions

package org.drools.examples;

import org.kie.api.runtime.KieRuntime;
import org.drools.examples.petstore.PetStoreExample.Order;
import org.drools.examples.petstore.PetStoreExample.Purchase;
import org.drools.examples.petstore.PetStoreExample.Product;
import java.util.ArrayList;
import javax.swing.JOptionPane;

import javax.swing.JFrame;

global JFrame frame
global javax.swing.JTextArea textArea

function void doCheckout(JFrame frame, KieRuntime krt) {
 Object[] options = {"Yes",
 "No"};

 int n = JOptionPane.showOptionDialog(frame,
 "Would you like to checkout?",
 "",
 JOptionPane.YES_NO_OPTION,
 JOptionPane.QUESTION_MESSAGE,
 null,
 options,
 options[0]);

 if (n == 0) {
 krt.getAgenda().getAgendaGroup("checkout").setFocus();
 }
}

function boolean requireTank(JFrame frame, KieRuntime krt, Order order, Product fishTank, int total)
{
 Object[] options = {"Yes",
 "No"};

 int n = JOptionPane.showOptionDialog(frame,
 "Would you like to buy a tank for your " + total + " fish?",
 "Purchase Suggestion",
 JOptionPane.YES_NO_OPTION,
 JOptionPane.QUESTION_MESSAGE,
 null,
 options,
 options[0]);

Red Hat Decision Manager 7.2 Getting started with decision services

66

The two functions perform the following actions:

doCheckout() displays a dialog that asks the user if she or he wants to check out. If the user
does, the focus is set to the checkout agenda group, enabling rules in that group to
(potentially) fire.

requireTank() displays a dialog that asks the user if she or he wants to buy a fish tank. If the user
does, a new fish tank Product is added to the order list in the working memory.

NOTE

For this example, all rules and functions are within the same rule file for efficiency. In a
production environment, you typically separate the rules and functions in different files or
build a static Java method and import the files using the import function, such as import
function my.package.name.hello.

Pet Store rules with agenda groups
Most of the rules in the Pet Store example use agenda groups to control rule execution. Agenda groups
allow you to partition the engine agenda to provide more execution control over groups of rules. By
default, all rules are in the agenda group MAIN. You can use the agenda-group attribute to specify a
different agenda group for the rule.

Initially, a working memory has its focus on the agenda group MAIN. Rules in an agenda group only fire
when the group receives the focus. You can set the focus either by using the method setFocus() or the
rule attribute auto-focus. The auto-focus attribute enables the rule to be given a focus automatically
for its agenda group when the rule is matched and activated.

The Pet Store example uses the following agenda groups for rules:

"init"

"evaluate"

"show items"

"checkout"

For example, the sample rule "Explode Cart" uses the "init" agenda group to ensure that it has the
option to fire and insert shopping cart items into the KIE session working memory:

Rule "Explode Cart"

 System.out.print("SUGGESTION: Would you like to buy a tank for your "
 + total + " fish? - ");

 if (n == 0) {
 Purchase purchase = new Purchase(order, fishTank);
 krt.insert(purchase);
 order.addItem(purchase);
 System.out.println("Yes");
 } else {
 System.out.println("No");
 }
 return true;
}

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

67

// Insert each item in the shopping cart into the working memory.
rule "Explode Cart"
 agenda-group "init"
 auto-focus true
 salience 10
 dialect "java"
 when
 $order : Order(grossTotal == -1)
 $item : Purchase() from $order.items
 then
 insert($item);
 kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("show items").setFocus();
 kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("evaluate").setFocus();
end

This rule matches against all orders that do not yet have their grossTotal calculated. The execution
loops for each purchase item in that order.

The rule uses the following features related to its agenda group:

agenda-group "init" defines the name of the agenda group. In this case, only one rule is in the
group. However, neither the Java code nor a rule consequence sets the focus to this group, and
therefore it relies on the auto-focus attribute for its chance to fire.

auto-focus true ensures that this rule, while being the only rule in the agenda group, gets a
chance to fire when fireAllRules() is called from the Java code.

kcontext… ​.setFocus() sets the focus to the "show items" and "evaluate" agenda groups,
enabling their rules to fire. In practice, you loop through all items in the order, insert them into
memory, and then fire the other rules after each insertion.

The "show items" agenda group contains only one rule, "Show Items". For each purchase in the order
currently in the KIE session working memory, the rule logs details to the text area at the bottom of the
GUI, based on the textArea variable defined in the rule file.

Rule "Show Items"

rule "Show Items"
 agenda-group "show items"
 dialect "mvel"
 when
 $order : Order()
 $p : Purchase(order == $order)
 then
 textArea.append($p.product + "\n");
end

The "evaluate" agenda group also gains focus from the "Explode Cart" rule. This agenda group
contains two rules, "Free Fish Food Sample" and "Suggest Tank", which are executed in that order.

Rule "Free Fish Food Sample"

// Free fish food sample when users buy a goldfish if they did not already buy
// fish food and do not already have a fish food sample.
rule "Free Fish Food Sample"

Red Hat Decision Manager 7.2 Getting started with decision services

68

1

2

3

4

1

2

 agenda-group "evaluate" 1
 dialect "mvel"
 when
 $order : Order()
 not ($p : Product(name == "Fish Food") && Purchase(product == $p)) 2
 not ($p : Product(name == "Fish Food Sample") && Purchase(product == $p)) 3
 exists ($p : Product(name == "Gold Fish") && Purchase(product == $p)) 4
 $fishFoodSample : Product(name == "Fish Food Sample");
 then
 System.out.println("Adding free Fish Food Sample to cart");
 purchase = new Purchase($order, $fishFoodSample);
 insert(purchase);
 $order.addItem(purchase);
end

The rule "Free Fish Food Sample" fires only if all of the following conditions are true:

The agenda group "evaluate" is being evaluated in the rules execution.

User does not already have fish food.

User does not already have a free fish food sample.

User has a goldfish in the order.

If the order facts meet all of these requirements, then a new product is created (Fish Food Sample) and
is added to the order in working memory.

Rule "Suggest Tank"

// Suggest a fish tank if users buy more than five goldfish and
// do not already have a tank.
rule "Suggest Tank"
 agenda-group "evaluate"
 dialect "java"
 when
 $order : Order()
 not ($p : Product(name == "Fish Tank") && Purchase(product == $p)) 1
 ArrayList($total : size > 5) from collect(Purchase(product.name == "Gold Fish")) 2
 $fishTank : Product(name == "Fish Tank")
 then
 requireTank(frame, kcontext.getKieRuntime(), $order, $fishTank, $total);
end

The rule "Suggest Tank" fires only if the following conditions are true:

User does not have a fish tank in the order.

User has more than five fish in the order.

When the rule fires, it calls the requireTank() function defined in the rule file. This function displays a
dialog that asks the user if she or he wants to buy a fish tank. If the user does, a new fish tank Product is
added to the order list in the working memory. When the rule calls the requireTank() function, the rule

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

69

passes the frame global variable so that the function has a handle for the Swing GUI.

The "do checkout" rule in the Pet Store example has no agenda group and no when conditions, so the
rule is always executed and considered part of the default MAIN agenda group.

Rule "do checkout"

rule "do checkout"
 dialect "java"
 when
 then
 doCheckout(frame, kcontext.getKieRuntime());
end

When the rule fires, it calls the doCheckout() function defined in the rule file. This function displays a
dialog that asks the user if she or he wants to check out. If the user does, the focus is set to the
checkout agenda group, enabling rules in that group to (potentially) fire. When the rule calls the
doCheckout() function, the rule passes the frame global variable so that the function has a handle for
the Swing GUI.

NOTE

This example also demonstrates a troubleshooting technique if results are not executing
as you expect: You can remove the conditions from the when statement of a rule and
test the action in the then statement to verify that the action is performed correctly.

The "checkout" agenda group contains three rules for processing the order checkout and applying any
discounts: "Gross Total", "Apply 5% Discount", and "Apply 10% Discount".

Rules "Gross Total", "Apply 5% Discount", and "Apply 10% Discount"

rule "Gross Total"
 agenda-group "checkout"
 dialect "mvel"
 when
 $order : Order(grossTotal == -1)
 Number(total : doubleValue) from accumulate(Purchase($price : product.price),
 sum($price))
 then
 modify($order) { grossTotal = total }
 textArea.append("\ngross total=" + total + "\n");
end

rule "Apply 5% Discount"
 agenda-group "checkout"
 dialect "mvel"
 when
 $order : Order(grossTotal >= 10 && < 20)
 then
 $order.discountedTotal = $order.grossTotal * 0.95;
 textArea.append("discountedTotal total=" + $order.discountedTotal + "\n");
end

rule "Apply 10% Discount"
 agenda-group "checkout"

Red Hat Decision Manager 7.2 Getting started with decision services

70

 dialect "mvel"
 when
 $order : Order(grossTotal >= 20)
 then
 $order.discountedTotal = $order.grossTotal * 0.90;
 textArea.append("discountedTotal total=" + $order.discountedTotal + "\n");
end

If the user has not already calculated the gross total, the Gross Total accumulates the product prices
into a total, puts this total into the KIE session, and displays it through the Swing JTextArea using the
textArea global variable.

If the gross total is between 10 and 20 (currency units), the "Apply 5% Discount" rule calculates the
discounted total, adds it to the KIE session, and displays it in the text area.

If the gross total is not less than 20, the "Apply 10% Discount" rule calculates the discounted total,
adds it to the KIE session, and displays it in the text area.

Pet Store example execution
Similar to other Red Hat Decision Manager decision examples, you execute the Pet Store example by
running the org.drools.examples.petstore.PetStoreExample class as a Java application in your IDE.

When you execute the Pet Store example, the Pet Store Demo GUI window appears. This window
displays a list of available products (upper left), an empty list of selected products (upper right),
Checkout and Reset buttons (middle), and an empty system messages area (bottom).

Figure 7.14. Pet Store example GUI after launch

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

71

Figure 7.14. Pet Store example GUI after launch

The following events occurred in this example to establish this execution behavior:

1. The main() method has run and loaded the rule base but has not yet fired the rules. So far, this is
the only code in connection with rules that has been run.

2. A new PetStoreUI object has been created and given a handle for the rule base, for later use.

3. Various Swing components have performed their functions, and the initial UI screen is displayed
and waits for user input.

You can click on various products from the list to explore the UI setup:

Red Hat Decision Manager 7.2 Getting started with decision services

72

Figure 7.15. Explore the Pet Store example GUI

No rules code has been fired yet. The UI uses Swing code to detect user mouse clicks and add selected
products to the TableModel object for display in the upper-right corner of the UI. This example
illustrates the Model-View-Controller design pattern.

When you click Checkout, the rules are then fired in the following way:

1. Method CheckOutCallBack.checkout() is called (eventually) by the Swing class waiting for the
click on Checkout. This inserts the data from the TableModel object (upper-right corner of the
UI) into the KIE session working memory. The method then fires the rules.

2. The "Explode Cart" rule is the first to fire, with the auto-focus attribute set to true. The rule

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

73

2. The "Explode Cart" rule is the first to fire, with the auto-focus attribute set to true. The rule
loops through all of the products in the cart, ensures that the products are in the working
memory, and then gives the "show Items" and "evaluate" agenda groups the option to fire.
The rules in these groups add the contents of the cart to the text area (bottom of the UI),
evaluate if you are eligible for free fish food, and determine whether to ask if you want to buy a
fish tank.

Figure 7.16. Fish tank qualification

3. The "do checkout" rule is the next to fire because no other agenda group currently has focus
and because it is part of the default MAIN agenda group. This rule always calls the
doCheckout() function, which asks you if you want to check out.

4. The doCheckout() function sets the focus to the "checkout" agenda group, giving the rules in
that group the option to fire.

5. The rules in the "checkout" agenda group display the contents of the cart and apply the
appropriate discount.

6. Swing then waits for user input to either select more products (and cause the rules to fire again)
or to close the UI.

Figure 7.17. Pet Store example GUI after all rules have fired

Red Hat Decision Manager 7.2 Getting started with decision services

74

Figure 7.17. Pet Store example GUI after all rules have fired

You can add more System.out calls to demonstrate this flow of events in your IDE console:

System.out output in the IDE console

Adding free Fish Food Sample to cart
SUGGESTION: Would you like to buy a tank for your 6 fish? - Yes

7.7. HONEST POLITICIAN EXAMPLE DECISIONS (TRUTH
MAINTENANCE AND SALIENCE)

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

75

The Honest Politician example decision set demonstrates the concept of truth maintenance with logical
insertions and the use of salience in rules.

The following is an overview of the Honest Politician example:

Name: honestpolitician

Main class: org.drools.examples.honestpolitician.HonestPoliticianExample (in
src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.honestpolitician.HonestPolitician.drl (in
src/main/resources)

Objective: Demonstrates the concept of truth maintenance based on the logical insertion of
facts and the use of salience in rules

The basic premise of the Honest Politician example is that an object can only exist while a statement is
true. A rule consequence can logically insert an object with the insertLogical() method. This means the
object remains in the KIE session working memory as long as the rule that logically inserted it remains
true. When the rule is no longer true, the object is automatically retracted.

In this example, rule execution causes a group of politicians to change from being honest to being
dishonest as a result of a corrupt corporation. As each politician is evaluated, they start out with their
honesty attribute being set to true, but a rule fires that makes the politicians no longer honest. As they
switch their state from being honest to dishonest, they are then removed from the working memory. The
rule salience notifies the engine how to prioritize any rules that have a salience defined for them,
otherwise utilizing the default salience value of 0. Rules with a higher salience value are given higher
priority when ordered in the activation queue.

Politician and Hope classes
The sample class Politician in the example is configured for an honest politician. The Politician class is
made up of a String item name and a Boolean item honest:

Politician class

The Hope class determines if a Hope object exists. This class has no meaningful members, but is present
in the working memory as long as society has hope.

Hope class

public class Politician {
 private String name;
 private boolean honest;
 ...
}

public class Hope {

 public Hope() {

 }
 }

Red Hat Decision Manager 7.2 Getting started with decision services

76

Rule definitions for politician honesty
In the Honest Politician example, when at least one honest politician exists in the working memory, the
"We have an honest Politician" rule logically inserts a new Hope object. As soon as all politicians
become dishonest, the Hope object is automatically retracted. This rule has a salience attribute with a
value of 10 to ensure that it fires before any other rule, because at that stage the "Hope is Dead" rule
is true.

Rule "We have an honest politician"

rule "We have an honest Politician"
 salience 10
 when
 exists(Politician(honest == true))
 then
 insertLogical(new Hope());
end

As soon as a Hope object exists, the "Hope Lives" rule matches and fires. This rule also has a salience
value of 10 so that it takes priority over the "Corrupt the Honest" rule.

Rule "Hope Lives"

rule "Hope Lives"
 salience 10
 when
 exists(Hope())
 then
 System.out.println("Hurrah!!! Democracy Lives");
end

Initially, four honest politicians exist so this rule has four activations, all in conflict. Each rule fires in turn,
corrupting each politician so that they are no longer honest. When all four politicians have been
corrupted, no politicians have the property honest == true. The rule "We have an honest Politician" is
no longer true and the object it logically inserted (due to the last execution of new Hope()) is
automatically retracted.

Rule "Corrupt the Honest"

rule "Corrupt the Honest"
 when
 politician : Politician(honest == true)
 exists(Hope())
 then
 System.out.println("I'm an evil corporation and I have corrupted " + politician.getName());
 modify (politician) { honest = false };
end

With the Hope object automatically retracted through the truth maintenance system, the conditional
element not applied to Hope is no longer true so that the "Hope is Dead" rule matches and fires.

Rule "Hope is Dead"

rule "Hope is Dead"
 when

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

77

 not(Hope())
 then
 System.out.println("We are all Doomed!!! Democracy is Dead");
end

Example execution and audit trail
In the HonestPoliticianExample.java class, the four politicians with the honest state set to true are
inserted for evaluation against the defined business rules:

HonestPoliticianExample.java class execution

To execute the example, run the org.drools.examples.honestpolitician.HonestPoliticianExample
class as a Java application in your IDE.

After the execution, the following output appears in the IDE console window:

Execution output in the IDE console

Hurrah!!! Democracy Lives
I'm an evil corporation and I have corrupted President of Umpa Lumpa
I'm an evil corporation and I have corrupted Prime Minster of Cheeseland
I'm an evil corporation and I have corrupted Tsar of Pringapopaloo
I'm an evil corporation and I have corrupted Omnipotence Om
We are all Doomed!!! Democracy is Dead

The output shows that, while there is at least one honest politician, democracy lives. However, as each
politician is corrupted by some corporation, all politicians become dishonest, and democracy is dead.

To better understand the execution flow of this example, you can modify the
HonestPoliticianExample.java class to include a RuleRuntime listener and an audit logger to view
execution details:

HonestPoliticianExample.java class with an audit logger

public static void execute(KieContainer kc) {
 KieSession ksession = kc.newKieSession("HonestPoliticianKS");

 final Politician p1 = new Politician("President of Umpa Lumpa", true);
 final Politician p2 = new Politician("Prime Minster of Cheeseland", true);
 final Politician p3 = new Politician("Tsar of Pringapopaloo", true);
 final Politician p4 = new Politician("Omnipotence Om", true);

 ksession.insert(p1);
 ksession.insert(p2);
 ksession.insert(p3);
 ksession.insert(p4);

 ksession.fireAllRules();

 ksession.dispose();
 }

package org.drools.examples.honestpolitician;

import org.kie.api.KieServices;

Red Hat Decision Manager 7.2 Getting started with decision services

78

1

2

3

4

Adds to your imports the packages that handle the DebugAgendaEventListener and
DebugRuleRuntimeEventListener

Creates a KieServices Factory and a ks element to produce the logs because this audit log is not
available at the KieContainer level

Modifies the execute method to use both KieServices and KieContainer

Modifies the execute method to pass in KieServices in addition to the KieContainer

import org.kie.api.event.rule.DebugAgendaEventListener; 1
import org.kie.api.event.rule.DebugRuleRuntimeEventListener;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

public class HonestPoliticianExample {

 /**
 * @param args
 */
 public static void main(final String[] args) {
 KieServices ks = KieServices.Factory.get(); 2
 //ks = KieServices.Factory.get();
 KieContainer kc = KieServices.Factory.get().getKieClasspathContainer();
 System.out.println(kc.verify().getMessages().toString());
 //execute(kc);
 execute(ks, kc); 3
 }

 public static void execute(KieServices ks, KieContainer kc) { 4
 KieSession ksession = kc.newKieSession("HonestPoliticianKS");

 final Politician p1 = new Politician("President of Umpa Lumpa", true);
 final Politician p2 = new Politician("Prime Minster of Cheeseland", true);
 final Politician p3 = new Politician("Tsar of Pringapopaloo", true);
 final Politician p4 = new Politician("Omnipotence Om", true);

 ksession.insert(p1);
 ksession.insert(p2);
 ksession.insert(p3);
 ksession.insert(p4);

 // The application can also setup listeners 5
 ksession.addEventListener(new DebugAgendaEventListener());
 ksession.addEventListener(new DebugRuleRuntimeEventListener());

 // Set up a file-based audit logger.
 ks.getLoggers().newFileLogger(ksession, "./target/honestpolitician"); 6

 ksession.fireAllRules();

 ksession.dispose();
 }

}

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

79

5

6

Creates the listeners

Builds the log that can be passed into the debug view or Audit View or your IDE after executing of
the rules

When you run the Honest Politician with this modified logging capability, you can load the audit log file
from target/honestpolitician.log into your IDE debug view or Audit View, if available (for example, in
Window → Show View in some IDEs).

In this example, the Audit View shows the flow of executions, insertions, and retractions as defined in
the example classes and rules:

Figure 7.18. Honest Politician example Audit View

When the first politician is inserted, two activations occur. The rule "We have an honest Politician" is
activated only one time for the first inserted politician because it uses an exists conditional element,
which matches when at least one politician is inserted. The rule "Hope is Dead" is also activated at this
stage because the Hope object is not yet inserted. The rule "We have an honest Politician" fires first
because it has a higher salience value than the rule "Hope is Dead", and inserts the Hope object
(highlighted in green). The insertion of the Hope object activates the rule "Hope Lives" and
deactivates the rule "Hope is Dead". The insertion also activates the rule "Corrupt the Honest" for
each inserted honest politician. The rule "Hope Lives" is executed and prints "Hurrah!!! Democracy
Lives".

Next, for each politician, the rule "Corrupt the Honest" fires, printing "I’m an evil corporation and I
have corrupted X", where X is the name of the politician, and modifies the politician honesty value to
false. When the last honest politician is corrupted, Hope is automatically retracted by the truth
maintenance system (highlighted in blue). The green highlighted area shows the origin of the currently
selected blue highlighted area. After the Hope fact is retracted, the rule "Hope is dead" fires, printing
"We are all Doomed!!! Democracy is Dead".

Red Hat Decision Manager 7.2 Getting started with decision services

80

7.8. SUDOKU EXAMPLE DECISIONS (COMPLEX PATTERN MATCHING,
CALLBACKS, AND GUI INTEGRATION)

The Sudoku example decision set, based on the popular number puzzle Sudoku, demonstrates how to
use rules in Red Hat Decision Manager to find a solution in a large potential solution space based on
various constraints. This example also shows how to integrate Red Hat Decision Manager rules into a
graphical user interface (GUI), in this case a Swing-based desktop application, and how to use callbacks
to interact with a running decision engine to update the GUI based on changes in the working memory
at run time.

The following is an overview of the Sudoku example:

Name: sudoku

Main class: org.drools.examples.sudoku.SudokuExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule files: org.drools.examples.sudoku.*.drl (in src/main/resources)

Objective: Demonstrates complex pattern matching, problem solving, callbacks, and GUI
integration

Sudoku is a logic-based number placement puzzle. The objective is to fill a 9x9 grid so that each
column, each row, and each of the nine 3x3 zones contains the digits from 1 to 9 only one time. The
puzzle setter provides a partially completed grid and the puzzle solver’s task is to complete the grid with
these constraints.

The general strategy to solve the problem is to ensure that when you insert a new number, it must be
unique in its particular 3x3 zone, row, and column. This Sudoku example decision set uses Red Hat
Decision Manager rules to solve Sudoku puzzles from a range of difficulty levels, and to attempt to
resolve flawed puzzles that contain invalid entries.

Sudoku example execution and interaction
Similar to other Red Hat Decision Manager decision examples, you execute the Sudoku example by
running the org.drools.examples.sudoku.SudokuExample class as a Java application in your IDE.

When you execute the Sudoku example, the Drools Sudoku Example GUI window appears. This
window contains an empty grid, but the program comes with various grids stored internally that you can
load and solve.

Click File → Samples → Simple to load one of the examples. Notice that all buttons are disabled until a
grid is loaded.

Figure 7.19. Sudoku example GUI after launch

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

81

Figure 7.19. Sudoku example GUI after launch

When you load the Simple example, the grid is filled according to the puzzle’s initial state.

Figure 7.20. Sudoku example GUI after loading Simple sample

Red Hat Decision Manager 7.2 Getting started with decision services

82

Figure 7.20. Sudoku example GUI after loading Simple sample

Choose from the following options:

Click Solve to fire the rules defined in the Sudoku example that fill out the remaining values and
that make the buttons inactive again.

Figure 7.21. Simple sample solved

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

83

Figure 7.21. Simple sample solved

Click Step to see the next digit found by the rule set. The console window in your IDE displays
detailed information about the rules that are executing to solve the step.

Step execution output in the IDE console

single 8 at [0,1]
column elimination due to [1,2]: remove 9 from [4,2]
hidden single 9 at [1,2]
row elimination due to [2,8]: remove 7 from [2,4]
remove 6 from [3,8] due to naked pair at [3,2] and [3,7]
hidden pair in row at [4,6] and [4,4]

Click Dump to see the state of the grid, with cells showing either the established value or the
remaining possibilities.

Dump execution output in the IDE console

 Col: 0 Col: 1 Col: 2 Col: 3 Col: 4 Col: 5 Col: 6 Col: 7 Col: 8
Row 0: 123456789 --- 5 --- --- 6 --- --- 8 --- 123456789 --- 1 --- --- 9 --- --- 4 ---
123456789
Row 1: --- 9 --- 123456789 123456789 --- 6 --- 123456789 --- 5 --- 123456789
123456789 --- 3 ---
Row 2: --- 7 --- 123456789 123456789 --- 4 --- --- 9 --- --- 3 --- 123456789 123456789
--- 8 ---

Red Hat Decision Manager 7.2 Getting started with decision services

84

Row 3: --- 8 --- --- 9 --- --- 7 --- 123456789 --- 4 --- 123456789 --- 6 --- --- 3 --- --- 5 ---
Row 4: 123456789 123456789 --- 3 --- --- 9 --- 123456789 --- 6 --- --- 8 --- 123456789
123456789
Row 5: --- 4 --- --- 6 --- --- 5 --- 123456789 --- 8 --- 123456789 --- 2 --- --- 9 --- --- 1 ---
Row 6: --- 5 --- 123456789 123456789 --- 2 --- --- 6 --- --- 9 --- 123456789 123456789
--- 7 ---
Row 7: --- 6 --- 123456789 123456789 --- 5 --- 123456789 --- 4 --- 123456789
123456789 --- 9 ---
Row 8: 123456789 --- 4 --- --- 9 --- --- 7 --- 123456789 --- 8 --- --- 3 --- --- 5 ---
123456789

The Sudoku example includes a deliberately broken sample file that the rules defined in the example can
resolve.

Click File → Samples → !DELIBERATELY BROKEN! to load the broken sample. The grid starts with
some issues, for example, the value 5 appears two times in the first row, which is not allowed.

Figure 7.22. Broken Sudoku example initial state

Click Solve to apply the solving rules to this invalid grid. The associated solving rules in the Sudoku
example detect the issues in the sample and attempts to solve the puzzle as far as possible. This
process does not complete and leaves some cells empty.

The solving rule activity is displayed in the IDE console window:

Detected issues in the broken sample

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

85

cell [0,8]: 5 has a duplicate in row 0
cell [0,0]: 5 has a duplicate in row 0
cell [6,0]: 8 has a duplicate in col 0
cell [4,0]: 8 has a duplicate in col 0
Validation complete.

Figure 7.23. Broken sample solution attempt

The sample Sudoku files labeled Hard are more complex and the solving rules might not be able to solve
them. The unsuccessful solution attempt is displayed in the IDE console window:

Hard sample unresolved

Validation complete.
...
Sorry - can't solve this grid.

The rules that work to solve the broken sample implement standard solving techniques based on the
sets of values that are still candidates for a cell. For example, if a set contains a single value, then this is
the value for the cell. For a single occurrence of a value in one of the groups of nine cells, the rules insert
a fact of type Setting with the solution value for some specific cell. This fact causes the elimination of
this value from all other cells in any of the groups the cell belongs to and the value is retracted.

Other rules in the example reduce the permissible values for some cells. The rules "naked pair",
"hidden pair in row", "hidden pair in column", and "hidden pair in square" eliminate possibilities but
do not establish solutions. The rules "X-wings in rows", "`X-wings in columns"`, "intersection removal

Red Hat Decision Manager 7.2 Getting started with decision services

86

row", and "intersection removal column" perform more sophisticated eliminations.

Sudoku example classes
The package org.drools.examples.sudoku.swing contains the following core set of classes that
implement a framework for Sudoku puzzles:

The SudokuGridModel class defines an interface that is implemented to store a Sudoku puzzle
as a 9x9 grid of Cell objects.

The SudokuGridView class is a Swing component that can visualize any implementation of the
SudokuGridModel class.

The SudokuGridEvent and SudokuGridListener classes communicate state changes between
the model and the view. Events are fired when a cell value is resolved or changed.

The SudokuGridSamples class provides partially filled Sudoku puzzles for demonstration
purposes.

NOTE

This package does not have any dependencies on Red Hat Decision Manager libraries.

The package org.drools.examples.sudoku contains the following core set of classes that implement
the elementary Cell object and its various aggregations:

The CellFile class, with subtypes CellRow, CellCol, and CellSqr, all of which are subtypes of the
CellGroup class.

The Cell and CellGroup subclasses of SetOfNine, which provides a property free with the type
Set<Integer>. For a Cell class, the set represents the individual candidate set. For a CellGroup
class, the set is the union of all candidate sets of its cells (the set of digits that still need to be
allocated).
In the Sudoku example are 81 Cell and 27 CellGroup objects and a linkage provided by the Cell
properties cellRow, cellCol, and cellSqr, and by the CellGroup property cells (a list of Cell
objects). With these components, you can write rules that detect the specific situations that
permit the allocation of a value to a cell or the elimination of a value from some candidate set.

The Setting class is used to trigger the operations that accompany the allocation of a value. The
presence of a Setting fact is used in all rules that detect a new situation in order to avoid
reactions to inconsistent intermediary states.

The Stepping class is used in a low priority rule to execute an emergency halt when a "Step"
does not terminate regularly. This behavior indicates that the program cannot solve the puzzle.

The main class org.drools.examples.sudoku.SudokuExample implements a Java application
combining all of these components.

Sudoku validation rules (validate.drl)
The validate.drl file in the Sudoku example contains validation rules that detect duplicate numbers in
cell groups. They are combined in a "validate" agenda group that enables the rules to be explicitly
activated after a user loads the puzzle.

The when conditions of the three rules "duplicate in cell … ​" all function in the following ways:

The first condition in the rule locates a cell with an allocated value.

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

87

The second condition in the rule pulls in any of the three cell groups to which the cell belongs.

The final condition finds a cell (other than the first one) with the same value as the first cell and
in the same row, column, or square, depending on the rule.

Rules "duplicate in cell …​"

rule "duplicate in cell row"
 when
 $c: Cell($v: value != null)
 $cr: CellRow(cells contains $c)
 exists Cell(this != $c, value == $v, cellRow == $cr)
 then
 System.out.println("cell " + $c.toString() + " has a duplicate in row " + $cr.getNumber());
end

rule "duplicate in cell col"
 when
 $c: Cell($v: value != null)
 $cc: CellCol(cells contains $c)
 exists Cell(this != $c, value == $v, cellCol == $cc)
 then
 System.out.println("cell " + $c.toString() + " has a duplicate in col " + $cc.getNumber());
end

rule "duplicate in cell sqr"
 when
 $c: Cell($v: value != null)
 $cs: CellSqr(cells contains $c)
 exists Cell(this != $c, value == $v, cellSqr == $cs)
 then
 System.out.println("cell " + $c.toString() + " has duplicate in its square of nine.");
end

The rule "terminate group" is the last to fire. This rule prints a message and stops the sequence.

Rule "terminate group"

rule "terminate group"
 salience -100
 when
 then
 System.out.println("Validation complete.");
 drools.halt();
end

Sudoku solving rules (sudoku.drl)
The sudoku.drl file in the Sudoku example contains three types of rules: one group handles the
allocation of a number to a cell, another group detects feasible allocations, and the third group
eliminates values from candidate sets.

The rules "set a value", "eliminate a value from Cell", and "retract setting" depend on the presence
of a Setting object. The first rule handles the assignment to the cell and the operations for removing the
value from the free sets of the three groups of the cell. This group also reduces a counter that, when
zero, returns control to the Java application that has called fireUntilHalt().

Red Hat Decision Manager 7.2 Getting started with decision services

88

The purpose of the rule "eliminate a value from Cell" is to reduce the candidate lists of all cells that are
related to the newly assigned cell. Finally, when all eliminations have been made, the rule "retract
setting" retracts the triggering Setting fact.

Rules "set a value", "eliminate a value from a Cell", and "retract setting"

// A Setting object is inserted to define the value of a Cell.
// Rule for updating the cell and all cell groups that contain it
rule "set a value"
 when
 // A Setting with row and column number, and a value
 $s: Setting($rn: rowNo, $cn: colNo, $v: value)

 // A matching Cell, with no value set
 $c: Cell(rowNo == $rn, colNo == $cn, value == null,
 $cr: cellRow, $cc: cellCol, $cs: cellSqr)

 // Count down
 $ctr: Counter($count: count)
 then
 // Modify the Cell by setting its value.
 modify($c){ setValue($v) }
 // System.out.println("set cell " + $c.toString());
 modify($cr){ blockValue($v) }
 modify($cc){ blockValue($v) }
 modify($cs){ blockValue($v) }
 modify($ctr){ setCount($count - 1) }
end

// Rule for removing a value from all cells that are siblings
// in one of the three cell groups
rule "eliminate a value from Cell"
 when
 // A Setting with row and column number, and a value
 $s: Setting($rn: rowNo, $cn: colNo, $v: value)

 // The matching Cell, with the value already set
 Cell(rowNo == $rn, colNo == $cn, value == $v, $exCells: exCells)

 // For all Cells that are associated with the updated cell
 $c: Cell(free contains $v) from $exCells
 then
 // System.out.println("clear " + $v + " from cell " + $c.posAsString());
 // Modify a related Cell by blocking the assigned value.
 modify($c){ blockValue($v) }
end

// Rule for eliminating the Setting fact
rule "retract setting"
 when
 // A Setting with row and column number, and a value
 $s: Setting($rn: rowNo, $cn: colNo, $v: value)

 // The matching Cell, with the value already set
 $c: Cell(rowNo == $rn, colNo == $cn, value == $v)

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

89

 // This is the negation of the last pattern in the previous rule.
 // Now the Setting fact can be safely retracted.
 not($x: Cell(free contains $v)
 and
 Cell(this == $c, exCells contains $x))
 then
 // System.out.println("done setting cell " + $c.toString());
 // Discard the Setter fact.
 delete($s);
 // Sudoku.sudoku.consistencyCheck();
end

Two solving rules detect a situation where an allocation of a number to a cell is possible. The rule
"single" fires for a Cell with a candidate set containing a single number. The rule "hidden single" fires
when no cell exists with a single candidate, but when a cell exists containing a candidate, this candidate is
absent from all other cells in one of the three groups to which the cell belongs. Both rules create and
insert a Setting fact.

Rules "single" and "hidden single"

// Detect a set of candidate values with cardinality 1 for some Cell.
// This is the value to be set.
rule "single"
 when
 // Currently no setting underway
 not Setting()

 // One element in the "free" set
 $c: Cell($rn: rowNo, $cn: colNo, freeCount == 1)
 then
 Integer i = $c.getFreeValue();
 if (explain) System.out.println("single " + i + " at " + $c.posAsString());
 // Insert another Setter fact.
 insert(new Setting($rn, $cn, i));
end

// Detect a set of candidate values with a value that is the only one
// in one of its groups. This is the value to be set.
rule "hidden single"
 when
 // Currently no setting underway
 not Setting()
 not Cell(freeCount == 1)

 // Some integer
 $i: Integer()

 // The "free" set contains this number
 $c: Cell($rn: rowNo, $cn: colNo, freeCount > 1, free contains $i)

 // A cell group contains this cell $c.
 $cg: CellGroup(cells contains $c)
 // No other cell from that group contains $i.
 not (Cell(this != $c, free contains $i) from $cg.getCells())
 then
 if (explain) System.out.println("hidden single " + $i + " at " + $c.posAsString());

Red Hat Decision Manager 7.2 Getting started with decision services

90

 // Insert another Setter fact.
 insert(new Setting($rn, $cn, $i));
end

Rules from the largest group, either individually or in groups of two or three, implement various solving
techniques used for solving Sudoku puzzles manually.

The rule "naked pair" detects identical candidate sets of size 2 in two cells of a group. These two values
may be removed from all other candidate sets of that group.

Rule "naked pair"

// A "naked pair" is two cells in some cell group with their sets of
// permissible values being equal with cardinality 2. These two values
// can be removed from all other candidate lists in the group.
rule "naked pair"
 when
 // Currently no setting underway
 not Setting()
 not Cell(freeCount == 1)

 // One cell with two candidates
 $c1: Cell(freeCount == 2, $f1: free, $r1: cellRow, $rn1: rowNo, $cn1: colNo, $b1: cellSqr)

 // The containing cell group
 $cg: CellGroup(freeCount > 2, cells contains $c1)

 // Another cell with two candidates, not the one we already have
 $c2: Cell(this != $c1, free == $f1 /*** , rowNo >= $rn1, colNo >= $cn1 ***/) from $cg.cells

 // Get one of the "naked pair".
 Integer($v: intValue) from $c1.getFree()

 // Get some other cell with a candidate equal to one from the pair.
 $c3: Cell(this != $c1 && != $c2, freeCount > 1, free contains $v) from $cg.cells
 then
 if (explain) System.out.println("remove " + $v + " from " + $c3.posAsString() + " due to naked pair
at " + $c1.posAsString() + " and " + $c2.posAsString());
 // Remove the value.
 modify($c3){ blockValue($v) }
end

The three rules "hidden pair in … ​" functions similarly to the rule "naked pair". These rules detect a
subset of two numbers in exactly two cells of a group, with neither value occurring in any of the other
cells of the group. This means that all other candidates can be eliminated from the two cells harboring
the hidden pair.

Rules "hidden pair in …​"

// If two cells within the same cell group contain candidate sets with more than
// two values, with two values being in both of them but in none of the other
// cells, then we have a "hidden pair". We can remove all other candidates from
// these two cells.
rule "hidden pair in row"
 when

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

91

 // Currently no setting underway
 not Setting()
 not Cell(freeCount == 1)

 // Establish a pair of Integer facts.
 $i1: Integer()
 $i2: Integer(this > $i1)

 // Look for a Cell with these two among its candidates. (The upper bound on
 // the number of candidates avoids a lot of useless work during startup.)
 $c1: Cell($rn1: rowNo, $cn1: colNo, freeCount > 2 && < 9, free contains $i1 && contains $i2,
$cellRow: cellRow)

 // Get another one from the same row, with the same pair among its candidates.
 $c2: Cell(this != $c1, cellRow == $cellRow, freeCount > 2, free contains $i1 && contains $i2)

 // Ascertain that no other cell in the group has one of these two values.
 not(Cell(this != $c1 && != $c2, free contains $i1 || contains $i2) from $cellRow.getCells())
 then
 if(explain) System.out.println("hidden pair in row at " + $c1.posAsString() + " and " +
$c2.posAsString());
 // Set the candidate lists of these two Cells to the "hidden pair".
 modify($c1){ blockExcept($i1, $i2) }
 modify($c2){ blockExcept($i1, $i2) }
end

rule "hidden pair in column"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i1: Integer()
 $i2: Integer(this > $i1)
 $c1: Cell($rn1: rowNo, $cn1: colNo, freeCount > 2 && < 9, free contains $i1 && contains $i2,
$cellCol: cellCol)
 $c2: Cell(this != $c1, cellCol == $cellCol, freeCount > 2, free contains $i1 && contains $i2)
 not(Cell(this != $c1 && != $c2, free contains $i1 || contains $i2) from $cellCol.getCells())
 then
 if (explain) System.out.println("hidden pair in column at " + $c1.posAsString() + " and " +
$c2.posAsString());
 modify($c1){ blockExcept($i1, $i2) }
 modify($c2){ blockExcept($i1, $i2) }
end

rule "hidden pair in square"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i1: Integer()
 $i2: Integer(this > $i1)
 $c1: Cell($rn1: rowNo, $cn1: colNo, freeCount > 2 && < 9, free contains $i1 && contains $i2,
 $cellSqr: cellSqr)
 $c2: Cell(this != $c1, cellSqr == $cellSqr, freeCount > 2, free contains $i1 && contains $i2)
 not(Cell(this != $c1 && != $c2, free contains $i1 || contains $i2) from $cellSqr.getCells())
 then

Red Hat Decision Manager 7.2 Getting started with decision services

92

 if (explain) System.out.println("hidden pair in square " + $c1.posAsString() + " and " +
$c2.posAsString());
 modify($c1){ blockExcept($i1, $i2) }
 modify($c2){ blockExcept($i1, $i2) }
end

Two rules deal with "X-wings" in rows and columns. When only two possible cells for a value exist in each
of two different rows (or columns) and these candidates lie also in the same columns (or rows), then all
other candidates for this value in the columns (or rows) can be eliminated. When you follow the pattern
sequence in one of these rules, notice how the conditions that are conveniently expressed by words such
as same or only result in patterns with suitable constraints or that are prefixed with not.

Rules "X-wings in …​"

rule "X-wings in rows"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i: Integer()
 $ca1: Cell(freeCount > 1, free contains $i,
 $ra: cellRow, $rano: rowNo, $c1: cellCol, $c1no: colNo)
 $cb1: Cell(freeCount > 1, free contains $i,
 $rb: cellRow, $rbno: rowNo > $rano, cellCol == $c1)
 not(Cell(this != $ca1 && != $cb1, free contains $i) from $c1.getCells())

 $ca2: Cell(freeCount > 1, free contains $i,
 cellRow == $ra, $c2: cellCol, $c2no: colNo > $c1no)
 $cb2: Cell(freeCount > 1, free contains $i,
 cellRow == $rb, cellCol == $c2)
 not(Cell(this != $ca2 && != $cb2, free contains $i) from $c2.getCells())

 $cx: Cell(rowNo == $rano || == $rbno, colNo != $c1no && != $c2no,
 freeCount > 1, free contains $i)
 then
 if (explain) {
 System.out.println("X-wing with " + $i + " in rows " +
 $ca1.posAsString() + " - " + $cb1.posAsString() +
 $ca2.posAsString() + " - " + $cb2.posAsString() + ", remove from " + $cx.posAsString());
 }
 modify($cx){ blockValue($i) }
end

rule "X-wings in columns"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i: Integer()
 $ca1: Cell(freeCount > 1, free contains $i,
 $c1: cellCol, $c1no: colNo, $ra: cellRow, $rano: rowNo)
 $ca2: Cell(freeCount > 1, free contains $i,
 $c2: cellCol, $c2no: colNo > $c1no, cellRow == $ra)
 not(Cell(this != $ca1 && != $ca2, free contains $i) from $ra.getCells())

 $cb1: Cell(freeCount > 1, free contains $i,

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

93

 cellCol == $c1, $rb: cellRow, $rbno: rowNo > $rano)
 $cb2: Cell(freeCount > 1, free contains $i,
 cellCol == $c2, cellRow == $rb)
 not(Cell(this != $cb1 && != $cb2, free contains $i) from $rb.getCells())

 $cx: Cell(colNo == $c1no || == $c2no, rowNo != $rano && != $rbno,
 freeCount > 1, free contains $i)
 then
 if (explain) {
 System.out.println("X-wing with " + $i + " in columns " +
 $ca1.posAsString() + " - " + $ca2.posAsString() +
 $cb1.posAsString() + " - " + $cb2.posAsString() + ", remove from " + $cx.posAsString());
 }
 modify($cx){ blockValue($i) }
end

The two rules "intersection removal … ​" are based on the restricted occurrence of some number within
one square, either in a single row or in a single column. This means that this number must be in one of
those two or three cells of the row or column and can be removed from the candidate sets of all other
cells of the group. The pattern establishes the restricted occurrence and then fires for each cell outside
of the square and within the same cell file.

Rules "intersection removal …​"

rule "intersection removal column"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i: Integer()
 // Occurs in a Cell
 $c: Cell(free contains $i, $cs: cellSqr, $cc: cellCol)
 // Does not occur in another cell of the same square and a different column
 not Cell(this != $c, free contains $i, cellSqr == $cs, cellCol != $cc)

 // A cell exists in the same column and another square containing this value.
 $cx: Cell(freeCount > 1, free contains $i, cellCol == $cc, cellSqr != $cs)
 then
 // Remove the value from that other cell.
 if (explain) {
 System.out.println("column elimination due to " + $c.posAsString() +
 ": remove " + $i + " from " + $cx.posAsString());
 }
 modify($cx){ blockValue($i) }
end

rule "intersection removal row"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i: Integer()
 // Occurs in a Cell
 $c: Cell(free contains $i, $cs: cellSqr, $cr: cellRow)
 // Does not occur in another cell of the same square and a different row.
 not Cell(this != $c, free contains $i, cellSqr == $cs, cellRow != $cr)

Red Hat Decision Manager 7.2 Getting started with decision services

94

 // A cell exists in the same row and another square containing this value.
 $cx: Cell(freeCount > 1, free contains $i, cellRow == $cr, cellSqr != $cs)
 then
 // Remove the value from that other cell.
 if (explain) {
 System.out.println("row elimination due to " + $c.posAsString() +
 ": remove " + $i + " from " + $cx.posAsString());
 }
 modify($cx){ blockValue($i) }
end

These rules are sufficient for many but not all Sudoku puzzles. To solve very difficult grids, the rule set
requires more complex rules. (Ultimately, some puzzles can be solved only by trial and error.)

7.9. CONWAY’S GAME OF LIFE EXAMPLE DECISIONS (RULEFLOW
GROUPS AND GUI INTEGRATION)

The Conway’s Game of Life example decision set, based on the famous cellular automaton by John
Conway, demonstrates how to use ruleflow groups in rules to control rule execution. The example also
demonstrates how to integrate Red Hat Decision Manager rules with a graphical user interface (GUI), in
this case a Swing-based implementation of Conway’s Game of Life.

The following is an overview of the Conway’s Game of Life (Conway) example:

Name: conway

Main classes: org.drools.examples.conway.ConwayRuleFlowGroupRun,
org.drools.examples.conway.ConwayAgendaGroupRun (in src/main/java)

Module: droolsjbpm-integration-examples

Type: Java application

Rule files: org.drools.examples.conway.*.drl (in src/main/resources)

Objective: Demonstrates ruleflow groups and GUI integration

NOTE

The Conway’s Game of Life example is separate from most of the other example decision
sets in Red Hat Decision Manager and is located in ~/rhdm-7.2.0-
sources/src/droolsjbpm-integration-$VERSION/droolsjbpm-integration-examples of
the Red Hat Decision Manager 7.2.0 Source Distribution from the Red Hat Customer
Portal.

In Conway’s Game of Life, a user interacts with the game by creating an initial configuration or an
advanced pattern with defined properties and then observing how the initial state evolves. The
objective of the game is to show the development of a population, generation by generation. Each
generation results from the preceding one, based on the simultaneous evaluation of all cells.

The following basic rules govern what the next generation looks like:

If a live cell has fewer than two live neighbors, it dies of loneliness.

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

95

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

If a live cell has more than three live neighbors, it dies from overcrowding.

If a dead cell has exactly three live neighbors, it comes to life.

Any cell that does not meet any of those criteria is left as is for the next generation.

The Conway’s Game of Life example uses Red Hat Decision Manager rules with ruleflow-group
attributes to define the pattern implemented in the game. The example also contains a version of the
decision set that achieves the same behavior using agenda groups. Agenda groups enable you to
partition the engine agenda to provide execution control over groups of rules. By default, all rules are in
the agenda group MAIN. You can use the agenda-group attribute to specify a different agenda group
for the rule.

This overview does not explore the version of the Conway example using agenda groups. For more
information about agenda groups, see the Red Hat Decision Manager example decision sets that
specifically address agenda groups.

Conway example execution and interaction
Similar to other Red Hat Decision Manager decision examples, you execute the Conway ruleflow
example by running the org.drools.examples.conway.ConwayRuleFlowGroupRun class as a Java
application in your IDE.

When you execute the Conway example, the Conway’s Game of Life GUI window appears. This window
contains an empty grid, or "arena" where the life simulation takes place. Initially the grid is empty
because no live cells are in the system yet.

Figure 7.24. Conway example GUI after launch

Select a predefined pattern from the Pattern drop-down menu and click Next Generation to click
through each population generation. Each cell is either alive or dead, where live cells contain a green ball.
As the population evolves from the initial pattern, cells live or die relative to neighboring cells, according
to the rules of the game.

Figure 7.25. Generation evolution in Conway example

Red Hat Decision Manager 7.2 Getting started with decision services

96

Figure 7.25. Generation evolution in Conway example

Neighbors include not only cells to the left, right, top, and bottom but also cells that are connected
diagonally, so that each cell has a total of eight neighbors. Exceptions are the corner cells, which have
only three neighbors, and the cells along the four borders, with five neighbors each.

You can manually intervene to create or kill cells by clicking the cell.

To run through an evolution automatically from the initial pattern, click Start.

Conway example rules with ruleflow groups
The rules in the ConwayRuleFlowGroupRun example use ruleflow groups to control rule execution. A
ruleflow group is a group of rules associated by the ruleflow-group rule attribute. These rules can only
fire when the group is activated. The group itself can only become active when the elaboration of the
ruleflow diagram reaches the node representing the group.

The Conway example uses the following ruleflow groups for rules:

"register neighbor"

"evaluate"

"calculate"

"reset calculate"

"birth"

"kill"

"kill all"

All of the Cell objects are inserted into the KIE session and the "register … ​" rules in the ruleflow group
"register neighbor" are allowed to execute by the ruleflow process. This group of four rules creates
Neighbor relations between some cell and its northeastern, northern, northwestern, and western
neighbors.

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

97

This relation is bidirectional and handles the other four directions. Border cells do not require any special
treatment. These cells are not paired with neighboring cells where there is not any.

By the time all activations have fired for these rules, all cells are related to all their neighboring cells.

Rules "register …​"

rule "register north east"
 ruleflow-group "register neighbor"
 when
 $cell: Cell($row : row, $col : col)
 $northEast : Cell(row == ($row - 1), col == ($col + 1))
 then
 insert(new Neighbor($cell, $northEast));
 insert(new Neighbor($northEast, $cell));
end

rule "register north"
 ruleflow-group "register neighbor"
 when
 $cell: Cell($row : row, $col : col)
 $north : Cell(row == ($row - 1), col == $col)
 then
 insert(new Neighbor($cell, $north));
 insert(new Neighbor($north, $cell));
end

rule "register north west"
 ruleflow-group "register neighbor"
 when
 $cell: Cell($row : row, $col : col)
 $northWest : Cell(row == ($row - 1), col == ($col - 1))
 then
 insert(new Neighbor($cell, $northWest));
 insert(new Neighbor($northWest, $cell));
end

rule "register west"
 ruleflow-group "register neighbor"
 when
 $cell: Cell($row : row, $col : col)
 $west : Cell(row == $row, col == ($col - 1))
 then
 insert(new Neighbor($cell, $west));
 insert(new Neighbor($west, $cell));
end

After all the cells are inserted, some Java code applies the pattern to the grid, setting certain cells to
Live. Then, when the user clicks Start or Next Generation, the example executes the Generation
ruleflow. This ruleflow manages all changes of cells in each generation cycle.

Figure 7.26. Generation ruleflow

Red Hat Decision Manager 7.2 Getting started with decision services

98

Figure 7.26. Generation ruleflow

The ruleflow process enters the "evaluate" ruleflow group and any active rules in the group can fire.
The rules "Kill the … ​" and "Give Birth" in this group apply the game rules to birth or kill cells. The
example uses the phase attribute to drive the reasoning of the Cell object by specific groups of rules.
Typically, the phase is tied to a ruleflow group in the ruleflow process definition.

Notice that the example does not change the state of any Cell objects at this point because it must
complete the full evaluation before those changes can be applied. The example sets the cell to a phase
that is either Phase.KILL or Phase.BIRTH, which is used later to control actions applied to the Cell
object.

Rules "Kill the …​" and "Give Birth"

rule "Kill The Lonely"
 ruleflow-group "evaluate"
 no-loop
 when
 // A live cell has fewer than 2 live neighbors.
 theCell: Cell(liveNeighbors < 2, cellState == CellState.LIVE,
 phase == Phase.EVALUATE)
 then
 modify(theCell){
 setPhase(Phase.KILL);
 }
end

rule "Kill The Overcrowded"
 ruleflow-group "evaluate"
 no-loop
 when
 // A live cell has more than 3 live neighbors.
 theCell: Cell(liveNeighbors > 3, cellState == CellState.LIVE,
 phase == Phase.EVALUATE)
 then

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

99

 modify(theCell){
 setPhase(Phase.KILL);
 }
end

rule "Give Birth"
 ruleflow-group "evaluate"
 no-loop
 when
 // A dead cell has 3 live neighbors.
 theCell: Cell(liveNeighbors == 3, cellState == CellState.DEAD,
 phase == Phase.EVALUATE)
 then
 modify(theCell){
 theCell.setPhase(Phase.BIRTH);
 }
end

After all Cell objects in the grid have been evaluated, the example uses the "reset calculate" rule to
clear any activations in the "calculate" ruleflow group. The example then enters a split in the ruleflow
that enables the rules "kill" and "birth" to fire, if the ruleflow group is activated. These rules apply the
state change.

Rules "reset calculate", "kill", and "birth"

rule "reset calculate"
 ruleflow-group "reset calculate"
 when
 then
 WorkingMemory wm = drools.getWorkingMemory();
 wm.clearRuleFlowGroup("calculate");
end

rule "kill"
 ruleflow-group "kill"
 no-loop
 when
 theCell: Cell(phase == Phase.KILL)
 then
 modify(theCell){
 setCellState(CellState.DEAD),
 setPhase(Phase.DONE);
 }
end

rule "birth"
 ruleflow-group "birth"
 no-loop
 when
 theCell: Cell(phase == Phase.BIRTH)
 then
 modify(theCell){
 setCellState(CellState.LIVE),
 setPhase(Phase.DONE);
 }
end

Red Hat Decision Manager 7.2 Getting started with decision services

100

At this stage, several Cell objects have been modified with the state changed to either LIVE or DEAD.
When a cell becomes live or dead, the example uses the Neighbor relation in the rules "Calculate … ​" to
iterate over all surrounding cells, increasing or decreasing the liveNeighbor count. Any cell that has its
count changed is also set to to the EVALUATE phase to make sure it is included in the reasoning during
the evaluation stage of the ruleflow process.

After the live count has been determined and set for all cells, the ruleflow process ends. If the user
initially clicked Start, the engine restarts the ruleflow at that point. If the user initially clicked Next
Generation, the user can request another generation.

Rules "Calculate …​"

rule "Calculate Live"
 ruleflow-group "calculate"
 lock-on-active
 when
 theCell: Cell(cellState == CellState.LIVE)
 Neighbor(cell == theCell, $neighbor : neighbor)
 then
 modify($neighbor){
 setLiveNeighbors($neighbor.getLiveNeighbors() + 1),
 setPhase(Phase.EVALUATE);
 }
end

rule "Calculate Dead"
 ruleflow-group "calculate"
 lock-on-active
 when
 theCell: Cell(cellState == CellState.DEAD)
 Neighbor(cell == theCell, $neighbor : neighbor)
 then
 modify($neighbor){
 setLiveNeighbors($neighbor.getLiveNeighbors() - 1),
 setPhase(Phase.EVALUATE);
 }
end

7.10. HOUSE OF DOOM EXAMPLE DECISIONS (BACKWARD CHAINING
AND RECURSION)

The House of Doom example decision set demonstrates how the decision engine uses backward
chaining and recursion to reach defined goals or subgoals in a hierarchical system.

The following is an overview of the House of Doom example:

Name: backwardchaining

Main class: org.drools.examples.backwardchaining.HouseOfDoomMain (in src/main/java)

Module: drools-examples

Type: Java application

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

101

Rule file: org.drools.examples.backwardchaining.BC-Example.drl (in src/main/resources)

Objective: Demonstrates backward chaining and recursion

A backward-chaining rule system is a goal-driven system that starts with a conclusion that the decision
engine attempts to satisfy, often using recursion. If the system cannot reach the conclusion or goal, it
searches for subgoals, which are conclusions that complete part of the current goal. The system
continues this process until either the initial conclusion is satisfied or all subgoals are satisfied.

In contrast, a forward-chaining rule system is a data-driven system that starts with a fact in the working
memory of the decision engine and reacts to changes to that fact. When objects are inserted into
working memory, any rule conditions that become true as a result of the change are scheduled for
execution by the agenda.

The decision engine in Red Hat Decision Manager uses both forward and backward chaining to evaluate
rules.

The following diagram illustrates how the decision engine evaluates rules using forward chaining overall
with a backward-chaining segment in the logic flow:

Figure 7.27. Rule evaluation logic using forward and backward chaining

Red Hat Decision Manager 7.2 Getting started with decision services

102

Figure 7.27. Rule evaluation logic using forward and backward chaining

The House of Doom example uses rules with various types of queries to find the location of rooms and
items within the house. The sample class Location.java contains the item and location elements used
in the example. The sample class HouseOfDoomMain.java inserts the items or rooms in their respective
locations in the house and executes the rules.

Items and locations in HouseOfDoomMain.java class

ksession.insert(new Location("Office", "House"));
ksession.insert(new Location("Kitchen", "House"));

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

103

The example rules rely on backward chaining and recursion to determine the location of all items and
rooms in the house structure.

The following diagram illustrates the structure of the House of Doom and the items and rooms within it:

Figure 7.28. House of Doom structure

To execute the example, run the org.drools.examples.backwardchaining.HouseOfDoomMain class
as a Java application in your IDE.

After the execution, the following output appears in the IDE console window:

Execution output in the IDE console

go1
Office is in the House

go2
Drawer is in the House

go3

Key is in the Office

go4
Chair is in the Office
Desk is in the Office
Key is in the Office
Computer is in the Office
Drawer is in the Office

go5
Chair is in Office
Desk is in Office

ksession.insert(new Location("Knife", "Kitchen"));
ksession.insert(new Location("Cheese", "Kitchen"));
ksession.insert(new Location("Desk", "Office"));
ksession.insert(new Location("Chair", "Office"));
ksession.insert(new Location("Computer", "Desk"));
ksession.insert(new Location("Drawer", "Desk"));

Red Hat Decision Manager 7.2 Getting started with decision services

104

Drawer is in Desk
Key is in Drawer
Kitchen is in House
Cheese is in Kitchen
Knife is in Kitchen
Computer is in Desk
Office is in House
Key is in Office
Drawer is in House
Computer is in House
Key is in House
Desk is in House
Chair is in House
Knife is in House
Cheese is in House
Computer is in Office
Drawer is in Office
Key is in Desk

All rules in the example have fired to detect the location of all items in the house and to print the
location of each in the output.

Recursive query and related rules
A recursive query repeatedly searches through the hierarchy of a data structure for relationships
between elements.

In the House of Doom example, the BC-Example.drl file contains an isContainedIn query that most of
the rules in the example use to recursively evaluate the house data structure for data inserted into the
decision engine:

Recursive query in BC-Example.drl

query isContainedIn(String x, String y)
 Location(x, y;)
 or
 (Location(z, y;) and isContainedIn(x, z;))
end

The rule "go" prints every string inserted into the system to determine how items are implemented, and
the rule "go1" calls the query isContainedIn:

Rules "go" and "go1"

rule "go" salience 10
 when
 $s : String()
 then
 System.out.println($s);
end

rule "go1"
 when
 String(this == "go1")
 isContainedIn("Office", "House";)

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

105

 then
 System.out.println("Office is in the House");
end

The example inserts the "go1" string into the engine and activates the "go1" rule to detect that item
Office is in the location House:

Insert string and fire rules

ksession.insert("go1");
ksession.fireAllRules();

Rule "go1" output in the IDE console

go1
Office is in the House

Transitive closure rule
Transitive closure is a relationship between an element contained in a parent element that is multiple
levels higher in a hierarchical structure.

The rule "go2" identifies the transitive closure relationship of the Drawer and the House: The Drawer is
in the Desk in the Office in the House.

rule "go2"
 when
 String(this == "go2")
 isContainedIn("Drawer", "House";)
 then
 System.out.println("Drawer is in the House");
end

The example inserts the "go2" string into the engine and activates the "go2" rule to detect that item
Drawer is ultimately within the location House:

Insert string and fire rules

ksession.insert("go2");
ksession.fireAllRules();

Rule "go2" output in the IDE console

go2
Drawer is in the House

The engine determines this outcome based on the following logic:

1. The query recursively searches through several levels in the house to detect the transitive
closure between Drawer and House.

2. Instead of using Location(x, y;), the query uses the value of (z, y;) because Drawer is not
directly in House.

Red Hat Decision Manager 7.2 Getting started with decision services

106

3. The z argument is currently unbound, which means it has no value and returns everything that is
in the argument.

4. The y argument is currently bound to House, so z returns Office and Kitchen.

5. The query gathers information from the Office and checks recursively if the Drawer is in the
Office. The query line isContainedIn(x, z;) is called for these parameters.

6. No instance of Drawer exists directly in Office, so no match is found.

7. With z unbound, the query returns data within the Office and determines that z == Desk.

isContainedIn(x==drawer, z==desk)

8. The isContainedIn query recursively searches three times, and on the third time, the query
detects an instance of Drawer in Desk.

Location(x==drawer, y==desk)

9. After this match on the first location, the query recursively searches back up the structure to
determine that the Drawer is in the Desk, the Desk is in the Office, and the Office is in the
House. Therefore, the Drawer is in the House and the rule is satisfied.

Reactive query rule
A reactive query searches through the hierarchy of a data structure for relationships between elements
and is dynamically updated when elements in the structure are modified.

The rule "go3" functions as a reactive query that detects if a new item Key ever becomes present in the
Office by transitive closure: A Key in the Drawer in the Office.

Rule "go3"

rule "go3"
 when
 String(this == "go3")
 isContainedIn("Key", "Office";)
 then
 System.out.println("Key is in the Office");
end

The example inserts the "go3" string into the engine and activates the "go3" rule. Initially, this rule is not
satisfied because no item Key exists in the house structure, so the rule produces no output.

Insert string and fire rules

ksession.insert("go3");
ksession.fireAllRules();

Rule "go3" output in the IDE console (unsatisfied)

go3

The example then inserts a new item Key in the location Drawer, which is in Office. This change satisfies
the transitive closure in the "go3" rule and the output is populated accordingly.

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

107

Insert new item location and fire rules

ksession.insert(new Location("Key", "Drawer"));
ksession.fireAllRules();

Rule "go3" output in the IDE console (satisfied)

Key is in the Office

This change also adds another level in the structure that the query includes in subsequent recursive
searches.

Queries with unbound arguments in rules
A query with one or more unbound arguments returns all undefined (unbound) items within a defined
(bound) argument of the query. If all arguments in a query are unbound, then the query returns all items
within the scope of the query.

The rule "go4" uses an unbound argument thing to search for all items within the bound argument
Office, instead of using a bound argument to search for a specific item in the Office:

Rule "go4"

rule "go4"
 when
 String(this == "go4")
 isContainedIn(thing, "Office";)
 then
 System.out.println(thing + "is in the Office");
end

The example inserts the "go4" string into the engine and activates the "go4" rule to return all items in
the Office:

Insert string and fire rules

ksession.insert("go4");
ksession.fireAllRules();

Rule "go4" output in the IDE console

go4
Chair is in the Office
Desk is in the Office
Key is in the Office
Computer is in the Office
Drawer is in the Office

The rule "go5" uses both unbound arguments thing and location to search for all items and their
locations in the entire House data structure:

Rule "go5"

rule "go5"

Red Hat Decision Manager 7.2 Getting started with decision services

108

 when
 String(this == "go5")
 isContainedIn(thing, location;)
 then
 System.out.println(thing + " is in " + location);
end

The example inserts the "go5" string into the engine and activates the "go5" rule to return all items and
their locations in the House data structure:

Insert string and fire rules

ksession.insert("go5");
ksession.fireAllRules();

Rule "go5" output in the IDE console

go5
Chair is in Office
Desk is in Office
Drawer is in Desk
Key is in Drawer
Kitchen is in House
Cheese is in Kitchen
Knife is in Kitchen
Computer is in Desk
Office is in House
Key is in Office
Drawer is in House
Computer is in House
Key is in House
Desk is in House
Chair is in House
Knife is in House
Cheese is in House
Computer is in Office
Drawer is in Office
Key is in Desk

CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

109

APPENDIX A. VERSIONING INFORMATION
Documentation last updated on Friday, May 22, 2020.

Red Hat Decision Manager 7.2 Getting started with decision services

110

	Table of Contents
	PREFACE
	CHAPTER 1. CREATING THE TRAFFIC VIOLATIONS PROJECT
	CHAPTER 2. DATA OBJECTS
	2.1. CREATING THE VIOLATION DATA OBJECT
	2.1.1. Adding the Violation data object constraints

	2.2. CREATING THE DRIVER DATA OBJECT
	2.2.1. Adding the Driver data object constraints

	CHAPTER 3. GUIDED RULES
	3.1. CREATING THE DRIVER LICENSE SUSPENSION RULE
	3.2. SETTING THE SUSPENSION RULE CONDITIONS
	3.3. SETTING THE SUSPENSION RULE ACTIONS

	CHAPTER 4. GUIDED DECISION TABLES
	4.1. CREATING A TRAFFIC VIOLATION GUIDED DECISION TABLE
	4.1.1. Inserting Violation Type columns
	4.1.2. Inserting Fine Amount and Points columns
	4.1.3. Inserting guided decision table rows

	CHAPTER 5. TEST SCENARIOS
	5.1. TESTING THE SPEED LIMIT SCENARIO
	5.2. TESTING THE DRIVER LICENSE SUSPENSION SCENARIO
	5.3. TESTING THE MULTIPLE VIOLATIONS SCENARIO

	CHAPTER 6. EXAMPLE PROJECTS AND BUSINESS ASSETS IN DECISION CENTRAL
	6.1. ACCESSING EXAMPLE PROJECTS AND BUSINESS ASSETS IN DECISION CENTRAL
	6.2. EXECUTING RULES

	CHAPTER 7. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE
	7.1. IMPORTING AND EXECUTING RED HAT DECISION MANAGER EXAMPLE DECISIONS IN AN IDE
	7.2. HELLO WORLD EXAMPLE DECISIONS (BASIC RULES AND DEBUGGING)
	7.3. STATE EXAMPLE DECISIONS (FORWARD CHAINING AND CONFLICT RESOLUTION)
	State example using salience
	State example using agenda groups
	Dynamic facts in the State example

	7.4. FIBONACCI EXAMPLE DECISIONS (RECURSION AND CONFLICT RESOLUTION)
	7.5. PRICING EXAMPLE DECISIONS (DECISION TABLES)
	Spreadsheet decision table setup
	Base pricing rules
	Promotional discount rules

	7.6. PET STORE EXAMPLE DECISIONS (AGENDA GROUPS, GLOBAL VARIABLES, CALLBACKS, AND GUI INTEGRATION)
	Rule execution behavior in the Pet Store example
	Pet Store rule file imports, global variables, and Java functions
	Pet Store rules with agenda groups
	Pet Store example execution

	7.7. HONEST POLITICIAN EXAMPLE DECISIONS (TRUTH MAINTENANCE AND SALIENCE)
	Politician and Hope classes
	Rule definitions for politician honesty
	Example execution and audit trail

	7.8. SUDOKU EXAMPLE DECISIONS (COMPLEX PATTERN MATCHING, CALLBACKS, AND GUI INTEGRATION)
	Sudoku example execution and interaction
	Sudoku example classes
	Sudoku validation rules (validate.drl)
	Sudoku solving rules (sudoku.drl)

	7.9. CONWAY’S GAME OF LIFE EXAMPLE DECISIONS (RULEFLOW GROUPS AND GUI INTEGRATION)
	Conway example execution and interaction
	Conway example rules with ruleflow groups

	7.10. HOUSE OF DOOM EXAMPLE DECISIONS (BACKWARD CHAINING AND RECURSION)
	Recursive query and related rules
	Transitive closure rule
	Reactive query rule
	Queries with unbound arguments in rules

	APPENDIX A. VERSIONING INFORMATION

