& RedHat

Red Hat Data Grid 7.3

Red Hat Data Grid Server Guide

For use with Red Hat Data Grid 7.3

Last Updated: 2022-01-26

Red Hat Data Grid 7.3 Red Hat Data Grid Server Guide

For use with Red Hat Data Grid 7.3

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes the administration and configuration of Red Hat Data Grid 7.3.

Table of Contents

Table of Contents

CHAPTER 1. ABOUT THE RED HAT DATA GRID SERVERttt ittt et e enneennn, 4
CHAPTER 2. GETTING STARTED ...ttt ittt ettt et eaee et eaaeeeesaannneeesaannnneesennnns 5
CHAPTER 3. OPERATING MODES ...ttt ittt ettt et e aneteeeeaaeeeesaannneesssennnneesennnns 6
3.1. STANDALONE MODE 6
3.2. DOMAIN MODE 6
3.2.1. Host 6
3.2.1.1. Host Controller 6

3.2.2. Domain Controller 7
3.2.3. Server Group 7
3.2.4. Server 8
CHAPTER 4. EXAMPLE CONFIGURATIONS ... ittt et eeiieeeeaennnneenannnns 9
CHAPTER 5. MAN A GEMEN T .ottt ittt et ettt et e eaeee e aaneeeesaannneeessannnneesennns 10
5.1. CLI 10
5.2. CONSOLE 10
5.3. JMX 10
5.4. EXPOSING JMX BEANS TO PROMETHEUS 1
5.5.ACCESS LOGS 1
5.5.1. Enabling Access Logs 1
5.5.2. Access Log Properties 1
CHAPTER 6. CONFIGURATION ottt ettt ettt e anaeeeeeenneeeeenannnneesennns 13
6.1. JGROUPS SUBSYSTEM CONFIGURATION 13
6.2. RED HAT DATA GRID SUBSYSTEM CONFIGURATION 15
6.2.1. Containers 15
6.2.2. Caches 16
6.2.3. Expiration 16
6.2.4. Eviction 17
6.2.5. Locking 17
6.2.6. Transactional Operations with Hot Rod 17
6.2.7. Loaders and Stores 17
6.2.8. State Transfer 18

6.3. ENDPOINT SUBSYSTEM CONFIGURATION 19
6.3.1. Hot Rod 19
6.3.2. Memcached 19
6.3.3. REST 20
6.3.4. Common Protocol Connector Settings 20
6.3.5. Starting and Stopping Red Hat Data Grid Endpoints 20
6.3.6. Protocol Interoperability 21
6.3.7. Custom Marshaller Bridges 21
6.3.7.1. Protostuff 21
6.3.7.2. Kryo 21
6.3.7.3. Server Compatibility Mode 22
6.3.7.3.1. Registering Custom Schemas/Serializers 22
CHAPTER 7. SECURITY ottt ittt ettt e ettt e e e aateeeeanneeeeseannneesesennneeesennn 23
7.1. GENERAL CONCEPTS 23
7.1.1. Authorization 23
7.1.2. Server Realms 23
7.2.HOT ROD AUTHENTICATION 24

Red Hat Data Grid 7.3 Red Hat Data Grid Server Guide

7.2.1. SASL Quality of Protection
7.2.2. SASL Policies
7.2.3. Using GSSAPI/Kerberos
7.3.HOT ROD AND REST ENCRYPTION (TLS/SSL)

CHAPTER 8. HEALTHMONITORING

8.1. ACCESSING HEALTH API USING JMX
8.2. ACCESSING HEALTH API USING CLI
8.3. ACCESSING HEALTH API USING REST

CHAPTER O. MULTI-TENANCY .. e

9.1. USING REST INTERFACE
9.2. USING HOT ROD CLIENT
9.2.1. Multi-tenant router

24
25
26
27

30
30
31

33
33
33
34

Table of Contents

Red Hat Data Grid 7.3 Red Hat Data Grid Server Guide

CHAPTER 1. ABOUT THE RED HAT DATA GRID SERVER

Red Hat Data Grid Server is a standalone server which exposes any number of caches to clients over a
variety of protocols, including HotRod, Memcached and REST. The server itself is built on top of the
robust foundation provided by WildFly, therefore delegating services such as management,
configuration, datasources, transactions, logging, security to the respective subsystems. Because Red
Hat Data Grid Server is closely tied to the latest releases of Red Hat Data Grid and JGroups, the
subsystems which control these components are different, in that they introduce new features and
change some existing ones (e.g. cross-site replication, etc). For this reason, the configuration of these
subsystems should use the Red Hat Data Grid Server-specific schema, although for most use-cases the
configuration is interchangeable. See the Configuration section for more information.

CHAPTER 2. GETTING STARTED

CHAPTER 2. GETTING STARTED

To get started using the server, download the Red Hat Data Grid Server distribution, unpack it to a local
directory and launch it using the bin/standalone.sh or bin/standalone.bat scripts depending on your
platform. This will start a single-node server using the standalone/configuration/standalone.xml
configuration file, with four endpoints, one for each of the supported protocols. These endpoints allow
access to all of the caches configured in the Red Hat Data Grid subsystem (apart from the Memcached
endpoint which, because of the protocol’s design, only allows access to a single cache).

Red Hat Data Grid 7.3 Red Hat Data Grid Server Guide

CHAPTER 3. OPERATING MODES

Red Hat Data Grid Server, like WildFly, can be booted in two different modes: standalone and domain.

3.1. STANDALONE MODE

For simple configurations, standalone mode is the easiest to start with. It allows both local and clustered
configurations, although we only really recommend it for running single nodes, since the configuration,
management and coordination of multiple nodes is up to the user’s responsibility. For example, adding a
cache to a cluster of standalone server, the user would need to configure individually to all nodes. Note
that the default standalone.xml configuration does not provide a JGroups subsystem and therefore
cannot work in clustered mode. To start standalone mode with an alternative configuration file, use the -
c command-line switch as follows:

I bin/standalone.sh -c clustered.xml

If you start the server in clustered mode on multiple hosts, they should automatically discover each other
using UDP multicast and form a cluster. If you want to start multiple nodes on a single host, start each
one by specifying a port offset using the jboss.socket.binding.port-offset property together with a
unique jboss.node.name as follows:

I bin/standalone.sh -Djboss.socket.binding.port-offset=100 -Djboss.node.name=nodeA

If, for some reason, you cannot use UDP multicast, you can use TCP discovery. Read the JGroups
Subsystem Configuration section below for details on how to configure TCP discovery.

3.2. DOMAIN MODE
Domain mode is the recommended way to run a cluster of servers, since they can all be managed
centrally from a single control point. The following diagram explains the topology of an example domain

configuration, with 4 server nodes (A1, A2, B1, B2) running on two physical hosts (A, B):

Figure 3.1. Domain-mode

-

i

HostA

3.2.1. Host

Each "Host" box in the above diagram represents a physical or virtual host. A physical host can contain
zero, one or more server instances.

3.2.1.1. Host Controller

When the domain.sh or domain.bat script is run on a host, a process known as a Host Controller is

CHAPTER 3. OPERATING MODES

launched. The Host Controller is solely concerned with server management; it does not itself handle Red
Hat Data Grid server workloads. The Host Controller is responsible for starting and stopping the
individual Red Hat Data Grid server processes that run on its host, and interacts with the Domain
Controller to help manage them.

Each Host Controller by default reads its configuration from the domain/configuration/host.xml file
located in the Red Hat Data Grid Server installation on its host's filesystem. The host.xml file contains
configuration information that is specific to the particular host. Primarily:

® the listing of the names of the actual Red Hat Data Grid Server instances that are meant to run
off of this installation.

e configuration of how the Host Controller is to contact the Domain Controller to register itself
and access the domain configuration. This may either be configuration of how to find and
contact a remote Domain Controller, or a configuration telling the Host Controller to itself act
as the Domain Controller.

e configuration of items that are specific to the local physical installation. For example, named
interface definitions declared in domain.xml (see below) can be mapped to an actual machine-
specific IP address in host.xml. Abstract path names in domain.xml can be mapped to actual
filesystem paths in host.xml.

3.2.2. Domain Controller

One Host Controller instance is configured to act as the central management point for the entire
domain, i.e. to be the Domain Controller. The primary responsibility of the Domain Controller is to
maintain the domain’s central management policy, to ensure all Host Controllers are aware of its current
contents, and to assist the Host Controllers in ensuring any running Red Hat Data Grid server instances
are configured in accordance with this policy. This central management policy is stored by default in the
domain/configuration/domain.xml file in the Red Hat Data Grid Server installation on Domain
Controller’s host's filesystem.

A domain.xml file must be located in the domain/configuration directory of an installation that's meant
to run the Domain Controller. It does not need to be present in installations that are not meant to run a
Domain Controller; i.e. those whose Host Controller is configured to contact a remote Domain
Controller. The presence of a domain.xml file on such a server does no harm.

The domain.xml file includes, among other things, the configuration of the various "profiles" that Red
Hat Data Grid Server instances in the domain can be configured to run. A profile configuration includes
the detailed configuration of the various subsystems that comprise that profile (e.g. Cache Containers
and Caches, Endpoints, Security Realms, DataSources, etc). The domain configuration also includes the
definition of groups of sockets that those subsystems may open. The domain configuration also
includes the definition of "server groups".

3.2.3. Server Group

A server group is set of server instances that will be managed and configured as one. In a managed
domain each application server instance is a member of a server group. Even if the group only has a
single server, the server is still a member of a group. It is the responsibility of the Domain Controller and
the Host Controllers to ensure that all servers in a server group have a consistent configuration. They
should all be configured with the same profile and they should have the same deployment content
deployed. To keep things simple, ensure that all the nodes that you want to belong to an Red Hat Data
Grid cluster are configured as servers of one server group.

The domain can have multiple server groups, i.e. multiple Red Hat Data Grid clusters. Different server
groups can be configured with different profiles and deployments; for example in a domain with

Red Hat Data Grid 7.3 Red Hat Data Grid Server Guide

different Red Hat Data Grid Server clusters providing different services. Different server groups can
also run the same profile and have the same deployments.

An example server group definition is as follows:

<server-group name="main-server-group" profile="clustered">
<socket-binding-group ref="standard-sockets"/>
</server-group>

A server-group configuration includes the following required attributes:
® name — the name of the server group
® profile — the name of the profile the servers in the group should run
In addition, the following optional elements are available:
® socket-binding-group — specifies the name of the default socket binding group to use on
servers in the group. Can be overridden on a per-server basis in host.xml. If not provided in the
server-group element, it must be provided for each server in host.xml.
® deployments — the deployment content that should be deployed on the servers in the group.
® system-properties — system properties that should be set on all servers in the group
e jvm — default jvm settings for all servers in the group. The Host Controller will merge these

settings with any provided in host.xml to derive the settings to use to launch the server's JVM.
See JVM settings for further details.

3.2.4. Server

Each "Server" in the above diagram represents an actual Red Hat Data Grid Server node. The server
runs in a separate JVM process from the Host Controller. The Host Controller is responsible for
launching that process. In a managed domain the end user cannot directly launch a server process from
the command line.

The Host Controller synthesizes the server’s configuration by combining elements from the domain wide
configuration (from domain.xml) and the host-specific configuration (from host.xml).

CHAPTER 4. EXAMPLE CONFIGURATIONS

CHAPTER 4. EXAMPLE CONFIGURATIONS

The server distribution also provides a set of example configuration files in the docs/examples/configs
(mostly using standalone mode) which illustrate a variety of possible configurations and use-cases. To
use them, just copy them to the standalone/configuration directory and start the server using the
following syntax:

I bin/standalone.sh -c configuration_file_name.xml

For more information regarding the parameters supported by the startup scripts, refer to the WildFly
documentation on Command line parameters.

https://docs.jboss.org/author/display/WFLY11/Command+line+parameters

Red Hat Data Grid 7.3 Red Hat Data Grid Server Guide

CHAPTER 5. MANAGEMENT

5.1. CLI

You can use the CLI to perform management operations on a standalone node or a domain controller.

$ bin/cli.sh

[disconnected /] connect

[standalone@localhost:9990 /] cd subsystem=datagrid-infinispan
[standalone@localhost:9990 subsystem=datagrid-infinispan] cd cache-container=local
[standalone@localhost:9990 cache-container=local] cd local-cache=default
[standalone@localhost:9990 local-cache=defauli]

The CLlIis extremely powerful and supports a number of useful features to navigate the management
resource tree as well as inspecting single resources or entire subtrees. It is also possible to batch
multiple commands together so that they are applied as a single operation.

5.2. CONSOLE
You can use the web console to perform management operations on servers running in either
standalone or domain mode. The console only supports a subset of the operations provided by the CL|,
however you can perform the following actions:

e View/Edit Cache Container Configuration

® Execute Tasks across Containers

e View/Edit Cache Configurations

® Create/Destroy Cache Instances

® View Cluster/Server/Cache Statistics

® \iew eventlogs

® Start/Stop servers/clusters (domain mode only)
To access the console start your server(s) in the required mode, navigate to http:/localhost:9990 and

enter your user credentials. If you would like to contribute to the development of the console, the
source code can be found here.

NOTE

Before you can use the web console, you must first setup at least one user account via
the ./bin/add-user.sh script. Detailed instructions of this process are presented in your
browser if you attempt to access the console before creating any user accounts.

5.3. JMX
You can monitor an Red Hat Data Grid Server over JMX in two ways:

® Use JConsole or VisualVM running locally as the same user. This will use a local jymstat
connection and requires no additional setup

10

http://localhost:9990
https://github.com/infinispan/infinispan-management-console
http://www.oracle.com/technetwork/java/jvmstat-142257.html

CHAPTER 5. MANAGEMENT

® Use JMXremoting (aka JSR-160) to connect from any host. This requires connecting through
the management port (usually 9990) using a special protocol which respects the server security
configuration

To setup a client for JMX remoting, add $RHDG_HOME/bin/client/jboss-cli-client.jar to your client’s
classpath and use one of the following service URLs:

e service:jmx:remote+http:/hostname:9990 for plain connections through the management
interface

e service:jmx:remote+https:/hostname:9993 for TLS connections through the management
interface (although this requires having the appropriate keys available)

The JMX subsystem registers a service with the Remoting endpoint so that remote access to JMX can
be obtained over the exposed Remoting connector. This is switched on by default in standalone mode
and accessible over port 9990 but in domain mode it is switched off so it needs to be enabled. In domain
mode the port will be the port of the Remoting connector for the Server instance to be monitored.

<subsystem xmlns="urn:jposs:domain:jmx:1.3">
<expose-resolved-model/>
<expose-expression-model/>
<remoting-connector use-management-endpoint="false"/>
</subsystem>

5.4. EXPOSING JMX BEANS TO PROMETHEUS

® Start Red Hat Data Grid servers as follows:

I $./standalone.sh -c cloud.xml --jmx 8180:my-config.yaml

5.5.ACCESS LOGS

Hot Rod and REST endpoints can record all inbound client requests as log entries with the following
categories:

e org.infinispan.HOTROD_ACCESS_LOG logging category for the Hot Rod endpoint.

e org.infinispan.REST_ACCESS_LOG logging category for the REST endpoint.

5.5.1. Enabling Access Logs

Access logs for Hot Rod and REST endpoints are disabled by default. To enable either logging category,
set the level to TRACE in the server configuration file, as in the following example:

<logger category="org.infinispan.HOTROD_ACCESS_LOG" use-parent-handlers="false">
<level name="TRACE"/>
<handlers>
<handler name="HR-ACCESS-FILE"/>
</handlers>
</Nlogger>

5.5.2. Access Log Properties

1

Red Hat Data Grid 7.3 Red Hat Data Grid Server Guide

The default format for access logs is as follows:

%X{address} %X{user} [%d{dd/MMM/yyyy:HH:mm:ss z}] "%X{method} %m %X{protocol}"
%X{status} %X{requestSize} %X{responseSize} %X{duration}%n

The preceding format creates log entries such as the following:
127.0.0.1 - [30/0Oct/2018:12:41:50 CET] "PUT /rest/default/key HTTP/1.1" 404 577 10

Logging properties use the %X{name} notation and let you modify the format of access logs. The
following are the default logging properties:

Property Description

address Either the X-Forwarded-For header or the client IP
address.

user Principal name, if using authentication.

method Method used. PUT, GET, and so on.

protocol Protocol used. HTTP/1.1, HTTP/2, HOTROD/2.9,
and so on.

status An HTTP status code for the REST endpoint. OK or

an exception for the Hot Rod endpoint.

requestSize Size, in bytes, of the request.
responseSize Size, in bytes, of the response.
duration Number of milliseconds that the server took to

handle the request.

TIP

Use the header name prefixed with h: to log headers that were included in requests; for example,
%X{h:User-Agent}.

12

CHAPTER 6. CONFIGURATION

CHAPTER 6. CONFIGURATION

Since the server is based on the WildFly codebase, refer to the WildFly documentation, apart from the
JGroups, Red Hat Data Grid and Endpoint subsytems.

6.1. JGROUPS SUBSYSTEM CONFIGURATION

The JGroups subsystem configures the network transport and is only required when clustering multiple
Red Hat Data Grid Server nodes together.

The subsystem declaration is enclosed in the following XML element:

<subsystem xmlIns="urn:infinispan:server:jgroups:9.4">
<channels default="cluster">
<channel name="cluster"/>
</channels>
<stacks default="${jboss.default.jgroups.stack:udp}">

</stacks>
</subsystem>

Within the subsystem, you need to declare the stacks that you wish to use and name them. The default-
stack attribute in the subsystem declaration must point to one of the declared stacks. You can switch
stacks from the command-line using the jboss.default.jgroups.stack property:

I bin/standalone.sh -c clustered.xml -Djboss.default.jgroups.stack=tcp

A stack declaration is composed of a transport, UDP or TCP, followed by a list of protocols. You can
tune protocols by adding properties as child elements with this format:

<property name="prop_name">prop_value</property>

Default stacks for Red Hat Data Grid are as follows:

<stack name="udp">
<transport type="UDP" socket-binding="jgroups-udp"/>
<protocol type="PING"/>
<protocol type="MERGES3"/>
<protocol type="FD_SOCK" socket-binding="jgroups-udp-fd"/>
<protocol type="FD_ALL"/>
<protocol type="VERIFY_SUSPECT"/>
<protocol type="pbcast. NAKACK2"/>
<protocol type="UNICAST3"/>
<protocol type="pbcast.STABLE"/>
<protocol type="pbcast. GMS"/>
<protocol type="UFC"/>
<protocol type="MFC"/>
<protocol type="FRAG3"/>
</stack>
<stack name="tcp">
<transport type="TCP" socket-binding="jgroups-tcp"/>
<protocol type="MPING" socket-binding="jgroups-mping"/>
<protocol type="MERGES3"/>
<protocol type="FD_SOCK" socket-binding="jgroups-tcp-fd"/>

13

Red Hat Data Grid 7.3 Red Hat Data Grid Server Guide

<protocol type="FD_ALL"/>
<protocol type="VERIFY_SUSPECT"/>
<protocol type="pbcast. NAKACK2">
<property name="use_mcast_xmit">false</property>

</protocol>
<protocol type="UNICAST3"/>
<protocol type="pbcast.STABLE"/>
<protocol type="pbcast. GMS"/>
<protocol type="MFC"/>
<protocol type="FRAG3"/>

</stack>

NOTE
For some properties, Red Hat Data Grid uses values other than the JGroups defaults to
tune performance. You should examine the following files to review the JGroups
configuration for Red Hat Data Grid:
® Remote Client/Server Mode:
o jgroups-defaults.xml
o infinispan-jgroups.xml
® | ibrary Mode:
o default-jgroups-tcp.xml
o default-jgroups-udp.xml

These JGroups files are available in the Red Hat Data Grid source distribution from the
Red Hat customer portal.

See JGroups Protocol documentation for more information about available properties
and default values.

The default TCP stack uses the MPING protocol for discovery, which uses UDP multicast. If you need to
use a different protocol, look at the JGroups Discovery Protocols . The following example stack
configures the TCPPING discovery protocol with two initial hosts:

14

<stack name="tcp">
<transport type="TCP" socket-binding="jgroups-tcp"/>
<protocol type="TCPPING">
<property name="initial_hosts">HostA[7800],HostB[7800]</property>
</protocol>
<protocol type="MERGES3"/>
<protocol type="FD_SOCK" socket-binding="jgroups-tcp-fd"/>
<protocol type="FD_ALL"/>
<protocol type="VERIFY_SUSPECT"/>
<protocol type="pbcast. NAKACK2">
<property name="use_mcast_xmit">false</property>
</protocol>
<protocol type="UNICAST3"/>
<protocol type="pbcast.STABLE"/>
<protocol type="pbcast. GMS"/>
<protocol type="UFC"/>

http://www.jgroups.org/manual/html/protlist.html
http://www.jgroups.org/manual/html/protlist.html#DiscoveryProtocols

CHAPTER 6. CONFIGURATION

<protocol type="MFC"/>
<protocol type="FRAG3"/>
</stack>

The default configurations come with a variety of pre-configured stacks for different enviroments. For
example, the tcpgossip stack uses Gossip discovery:

<protocol type="TCPGOSSIP">
<property name="initial_hosts">${jgroups.gossip.initial_hosts:}</property>
</protocol>

Use the s3 stack when running in Amazon AWS:

<protocol type="org.jgroups.aws.s3.NATIVE_S3_PING" module="org.jgroups.aws.s3:
{infinispanslot}">

<property name="region_name">${jgroups.s3.region:}</property>

<property name="bucket_name">${jgroups.s3.bucket_name:}</property>

<property name="bucket_prefix">${jgroups.s3.bucket_prefix:}</property>
</protocol>

Similarly, when using Google’s Cloud Platform, use the google stack:

<protocol type="GOOGLE_PING">

<property name="location">${jgroups.google.bucket:}</property>

<property name="access_key">${jgroups.google.access_key:}</property>

<property name="secret_access_key">${jgroups.google.secret_access_key:}</property>
</protocol>

Use the dns-ping stack to run Red Hat Data Grid on Kubernetes environments such as OKD or
OpenShift:

<protocol type="dns.DNS_PING">
<property name="dns_query">${jgroups.dns_ping.dns_query}</property>
</protocol>

The value of the dns_query property is the DNS query that returns the cluster members. See DNS for
Services and Pods for information about Kubernetes DNS naming.

6.2. RED HAT DATA GRID SUBSYSTEM CONFIGURATION
The Red Hat Data Grid subsystem configures the cache containers and caches.

The subsystem declaration is enclosed in the following XML element:

<subsystem xmins="urn:infinispan:server:core:9.4" default-cache-container="clustered">

</subsystem>

6.2.1. Containers

The Red Hat Data Grid subsystem can declare multiple containers. A container is declared as follows:

15

https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/

Red Hat Data Grid 7.3 Red Hat Data Grid Server Guide

<cache-container name="clustered" default-cache="default">
</cache-container>

Note that in server mode is the lack of an implicit default cache, but the ability to specify a named cache
as the default.

If you need to declare clustered caches (distributed, replicated, invalidation), you also need to specify

the <transport/> element which references an existing JGroups transport. This is not needed if you only
intend to have local caches only.

I <transport executor="infinispan-transport" lock-timeout="60000" stack="udp" cluster="my-cluster-
name"/>

6.2.2. Caches

Now you can declare your caches. Please be aware that only the caches declared in the configuration will
be available to the endpoints and that attempting to access an undefined cache is an illegal operation.
Contrast this with the default Red Hat Data Grid library behaviour where obtaining an undefined cache
will implicitly create one using the default settings. The following are example declarations for all four
available types of caches:

<local-cache name="default" start="EAGER">

<-/I.(.)cal-cache>

<replicated-cache name="replcache" mode="SYNC" remote-timeout="30000" start="EAGER">
<-/.r.eplicated-cache>

<invalidation-cache name="invcache" mode="SYNC" remote-timeout="30000" start="EAGER">
<}i.r.1validation-cache>

<distributed-cache name="distcache" mode="SYNC" segments="20" owners="2" remote-
timeout="30000" start="EAGER">

</distributed-cache>

6.2.3. Expiration

To define a default expiration for entries in a cache, add the <expiration/> element as follows:
I <expiration lifespan="2000" max-idle="1000"/>

The possible attributes for the expiration element are:

® Jifespan maximum lifespan of a cache entry, after which the entry is expired cluster-wide, in
milliseconds. -1 means the entries never expire.

® max-idle maximum idle time a cache entry will be maintained in the cache, in milliseconds. If the
idle time is exceeded, the entry will be expired cluster-wide. -1 means the entries never expire.

16

CHAPTER 6. CONFIGURATION

® nterval interval (in milliseconds) between subsequent runs to purge expired entries from
memory and any cache stores. If you wish to disable the periodic eviction process altogether, set
interval to -1.

6.2.4. Eviction

To define an eviction strategy for a cache, add the <memory> element to your <*-cache />.

For more information about configuring the eviction strategy, see Eviction and Data Container in the
Red Hat Data Grid User Guide.

6.2.5. Locking

To define the locking configuration for a cache, add the <locking/> element as follows:

<locking isolation="REPEATABLE_READ" acquire-timeout="30000" concurrency-level="1000"
striping="false"/>

The possible attributes for the locking element are:

® jsolation sets the cache locking isolation level. Can be NONE, READ_UNCOMMITTED,
READ_COMMITTED, REPEATABLE_READ, SERIALIZABLE. Defaults to REPEATABLE_READ

® striping if true, a pool of shared locks is maintained for all entries that need to be locked.
Otherwise, a lock is created per entry in the cache. Lock striping helps control memory footprint
but may reduce concurrency in the system.

® acquire-timeout maximum time to attempt a particular lock acquisition.

® concurrency-level concurrency level for lock containers. Adjust this value according to the
number of concurrent threads interacting with Red Hat Data Grid.

® concurrent-updates for non-transactional caches only: if set to true(default value) the cache
keeps data consistent in the case of concurrent updates. For clustered caches this comes at the
cost of an additional RPC, so if you don't expect your application to write data concurrently,
disabling this flag increases performance.

6.2.6. Transactional Operations with Hot Rod

Hot Rod clients can take advantage of transactional capabilities when performing cache operations. No
other protocols that Red Hat Data Grid supports offer transactional capabilities.

6.2.7. Loaders and Stores

Loaders and stores can be defined in server mode in almost the same way as in embedded mode.

However, in server mode it is no longer necessary to define the <persistences...</persistence> tag.
Instead, a store’s attributes are now defined on the store type element. For example, to configure the
H2 database with a distributed cache in domain mode we define the "default” cache as follows in our
domain.xml configuration:

<subsystem xmlns="urn:infinispan:server:core:9.4">
<cache-container name="clustered" default-cache="default" statistics="true">
<transport lock-timeout="60000"/>
<global-state/>

17

https://access.redhat.com/documentation/en-us/red_hat_data_grid/7.3/html-single/red_hat_data_grid_user_guide/#eviction_anchor

Red Hat Data Grid 7.3 Red Hat Data Grid Server Guide

<distributed-cache name="default">
<string-keyed-jdbc-store datasource="java:jboss/datasources/ExampleDS" fetch-state="true"
shared="true">
<string-keyed-table prefix="ISPN">
<id-column name="id" type="VARCHAR"/>
<data-column name="datum" type="BINARY"/>
<timestamp-column name="version" type="BIGINT"/>
</string-keyed-table>
<write-behind modification-queue-size="20"/>
</string-keyed-jdbc-store>
</distributed-cache>
</cache-container>
</subsystem>

Another important thing to note in this example, is that we use the "ExampleDS" datasource which is
defined in the datasources subsystem in our domain.xml configuration as follows:

<subsystem xmins="urn:jboss:domain:datasources:4.0">
<datasources>
<datasource jndi-name="java:jboss/datasources/ExampleDS" pool-name="ExampleDS"
enabled="true" use-java-context="true">
<connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-
1;DB_CLOSE_ON_EXIT=FALSE</connection-url>
<driver>h2</driver>
<security>
<user-name>sa</user-name>
<password>sa</password>
</security>
</datasource>
</datasources>
</subsystem>

NOTE
For additional examples of store configurations, please view the configuration templates

in the default "domain.xml" file provided with in the server distribution at
./domain/configuration/domain.xml.

6.2.8. State Transfer

To define the state transfer configuration for a distributed or replicated cache, add the <state-
transfer/> element as follows:

I <state-transfer enabled="true" timeout="240000" chunk-size="512" await-initial-transfer="true" />

The possible attributes for the state-transfer element are:

® enabled if true, this will cause the cache to ask neighboring caches for state when it starts up, so
the cache starts 'warm’, although it will impact startup time. Defaults to true.

® timeout the maximum amount of time (ms) to wait for state from neighboring caches, before
throwing an exception and aborting startup. Defaults to 240000 (4 minutes).

® chunk-size the number of cache entries to batch in each transfer. Defaults to 512.

18

CHAPTER 6. CONFIGURATION

® await-initial-transferif true, this will cause the cache to wait for initial state transfer to complete
before responding to requests. Defaults to true.

6.3. ENDPOINT SUBSYSTEM CONFIGURATION

The endpoint subsystem exposes a whole container (or in the case of Memcached, a single cache) over a
specific connector protocol. You can define as many connector as you need, provided they bind on
different interfaces/ports.

The subsystem declaration is enclosed in the following XML element:

<subsystem xmIns="urn:infinispan:server:endpoint:9.4">

</subsystem>

6.3.1. Hot Rod

The following connector declaration enables a HotRod server using the hotrod socket binding (declared
within a <socket-binding-group /> element) and exposing the caches declared in the /local container,
using defaults for all other settings.

I <hotrod-connector socket-binding="hotrod" cache-container="local" />

The connector will create a supporting topology cache with default settings. If you wish to tune these
settings add the <topology-state-transfer /> child element to the connector as follows:

<hotrod-connector socket-binding="hotrod" cache-container="local">
<topology-state-transfer lazy-retrieval="false" lock-timeout="1000" replication-timeout="5000" />
</hotrod-connector>

The Hot Rod connector can be further tuned with additional settings such as concurrency and buffering.
See the protocol connector settings paragraph for additional details

Furthermore the HotRod connector can be secured using SSL. First you need to declare an SSL server
identity within a security realm in the management section of the configuration file. The SSL server
identity should specify the path to a keystore and its secret. Refer to the AS documentation on this.
Next add the <security /> element to the HotRod connector as follows:

<hotrod-connector socket-binding="hotrod" cache-container="local">
<security ssl="true" security-realm="ApplicationRealm" require-ssl-client-auth="false" />
</hotrod-connector>

6.3.2. Memcached

The following connector declaration enables a Memcached server using the memcached socket binding
(declared within a <socket-binding-group /> element) and exposing the memcachedCache cache
declared in the local container, using defaults for all other settings. Because of limitations in the
Memcached protocol, only one cache can be exposed by a connector. If you wish to expose more than
one cache, declare additional memcached-connectors on different socket-bindings.

I <memcached-connector socket-binding="memcached" cache-container="local"/>

19

https://docs.jboss.org/author/display/WFLY11/Security Realms

Red Hat Data Grid 7.3 Red Hat Data Grid Server Guide

6.3.3. REST

<rest-connector socket-binding="rest" cache-container="local" security-domain="other" auth-
method="BASIC"/>

6.3.4. Common Protocol Connector Settings

The HotRod and Memcached protocol connectors support a number of tuning attributes in their
declaration:

® worker-threads Sets the number of worker threads. Defaults to 160.

® dle-timeout Specifies the maximum time in seconds that connections from client will be kept
open without activity. Defaults to -1 (connections will never timeout)

® tcp-nodelay Affects TCP NODELAY on the TCP stack. Defaults to enabled.
® send-buffer-size Sets the size of the send buffer.

® receive-buffer-size Sets the size of the receive buffer.

6.3.5. Starting and Stopping Red Hat Data Grid Endpoints

Use the Command-Line Interface (CLI) to start and stop Red Hat Data Grid endpoint connectors.
Commands to start and stop endpoint connectors:

® Apply to individual endpoints. To stop or start all endpoint connectors, you must run the
command on each endpoint connector.

® Take effect on single nodes only (not cluster-wide).

Procedure

1. Start the CLI and connect to Red Hat Data Grid.

2. List the endpoint connectors in the datagrid-infinispan-endpoint subsystem, as follows:

[standalone@localhost:9990 /] Is subsystem=datagrid-infinispan-endpoint
hotrod-connector = memcached-connector rest-connector router-connector

3. Navigate to the endpoint connector you want to start or stop, for example:

[standalone@localhost:9990 /] cd subsystem=datagrid-infinispan-endpoint

[standalone@localhost:9990 subsystem=datagrid-infinispan-endpoint] cd rest-
connector=rest-connector

4. Use the :stop-connector and :start-connector commands as appropriate.

[standalone@localhost:9990 rest-connector=rest-connector] :stop-connector
{"outcome" => "success"}

20

CHAPTER 6. CONFIGURATION

[standalone@localhost:9990 rest-connector=rest-connector] :start-connector
{"outcome" => "success"}

6.3.6. Protocol Interoperability

Clients exchange data with Red Hat Data Grid through endpoints such as REST or Hot Rod.

Each endpoint uses a different protocol so that clients can read and write data in a suitable format.
Because Red Hat Data Grid can interoperate with multiple clients at the same time, it must convert data
between client formats and the storage formats.

For more information, see the Protocol Interoperability topic in the User Guide.

6.3.7. Custom Marshaller Bridges

Red Hat Data Grid provides two marshalling bridges for marshalling client/server requests using the
Kryo and Protostuff libraries. To utilise either of these marshallers, you simply place the dependency of
the marshaller you require in your client pom. Custom schemas for object marshalling must then be
registered with the selected library using the library’s api on the client or by implementing a
RegistryService for the given marshaller bridge. Examples of how to achieve this for both libraries are
presented below:

6.3.7.1. Protostuff

Add the protostuff marshaller dependency to your pom:

<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-marshaller-protostuff</artifactld>
<version>${version.infinispan}</version>
</dependency>

Replace ${version.infinispan} with the appropriate version of Red Hat Data Grid.

To register custom Protostuff schemas in your own code, you must register the custom schema with
Protostuff before any marshalling begins. This can be achieved by simply calling:

I RuntimeSchema.register(ExampleObject.class, new ExampleObjectSchemay));

Or, you can implement a service provider for the SchemaRegistryService.java interface, placing all
Schema registrations in the register() method. Implementations of this interface are loaded via Java’s
ServiceLoader api, therefore the full path of the implementing class(es) should be provided in a META-
INF/services/org/infinispan/marshaller/protostuff/SchemaRegistryService file within your
deployment jar.

6.3.7.2. Kryo

Add the kryo marshaller dependency to your pom:

<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-marshaller-kryo</artifactld>
<version>${version.infinispan}</version>
</dependency>

21

Red Hat Data Grid 7.3 Red Hat Data Grid Server Guide

Replace ${version.infinispan} with the appropriate version of Red Hat Data Grid.

To register custom Kryo serializer in your own code, you must register the custom serializer with Kryo
before any marshalling begins. This can be achieved by implementing a service provider for the
SerializerRegistryService.java interface, placing all serializer registrations in the register(Kryo)
method; where serializers should be registered with the supplied Kryo object using the Kryo api. e.g.
kryo.register(ExampleObject.class, new ExampleObjectSerializer()). Implementations of this
interface are loaded via Java’s ServiceLoader api, therefore the full path of the implementing class(es)
should be provided in a META-
INF/services/org/infinispan/marshaller/kryo/SerializerRegistryService file within your deployment
jar.

6.3.7.3. Server Compatibility Mode

When using the Protostuff/Kryo bridges in compatibility mode, it is necessary for the class files of all
custom objects to be placed on the classpath of the server. To achieve this, you should follow the steps
outlined in the Protocol Interoperability section, to place a jar containing all of their custom classes on
the server’s classpath.

When utilising a custom marshaller in compatibility mode, it is also necessary for the marshaller and it’s
runtime dependencies to be on the server’s classpath. To aid with this step we have created a "bundle”
jar for each of the bridge implementations which includes all of the runtime class files required by the
bridge and underlying library. Therefore, it is only necessary to include this single jar on the server’s
classpath.

Bundle jar downloads:
® Kryo Bundle

® Protostuff Bundle

marshaller bundle in modules/system/layers/base/org/infinispan/main/modules.xml,
then you must also register your custom classes here.

: NOTE
. Jar files containing custom classes must be placed in the same module/directory as the
custom marshaller bundle so that the marshaller can load them. i.e. if you register the
6.3.7.3.1. Registering Custom Schemas/Serializers

Custom serializers/schemas for the Kryo/Protostuff marshallers must be registered via their respective
service interfaces in compatibility mode. To achieve this, it is necessary for a JAR that contains the
service provider to be registered in the same directory or module as the marshaller bundle and custom
classes.

NOTE
; It is not necessary for the service provider implementation to be provided in the same
JAR as the user’s custom classes. However, the JAR that contains the provider must be
[N

in the same directory/module as the marshaller and custom class JAR files.

22

http://central.maven.org/maven2/org/infinispan/infinispan-marshaller-kryo-bundle/9.4.0/infinispan-marshaller-kryo-bundle-9.4.0.jar
http://central.maven.org/maven2/org/infinispan/infinispan-marshaller-protostuff-bundle/9.4.0/infinispan-marshaller-protostuff-bundle-9.4.0.jar

CHAPTER 7. SECURITY

CHAPTER 7. SECURITY

7.1. GENERAL CONCEPTS

7.1.1. Authorization

Just like embedded mode, the server supports cache authorization using the same configuration, e.g.:

<cache-container default-cache="secured" name="secured">
<security>
<authorization>
<identity-role-mapper/>
<role name="admin" permissions="ALL" />
<role name="reader" permissions="READ" />
<role name="writer" permissions="WRITE" />
<role name="supervisor" permissions="READ WRITE EXEC"/>
</authorization>
</security>
<local-cache name="secured">
<security>
<authorization roles="admin reader writer supervisor" />
</security>
</local-cache>
</cache-container>

7.1.2. Server Realms

Red Hat Data Grid Server security is built around the features provided by the underlying server realm
and security domains. Security Realms are used by the server to provide authentication and
authorization information for both the management and application interfaces.

Security Realm configuration

<server xmins="urn:jboss:domain:2.1">
<management>

<security-realm name="ApplicationRealm">
<authentication>
<properties path="application-users.properties" relative-to="jboss.server.config.dir"/>
</authentication>
<authorization>
<properties path="application-roles.properties" relative-to="jboss.server.config.dir"/>
</authorization>
</security-realm>

</management>

</server>

Red Hat Data Grid Server comes with an add-user.sh script (add-user.bat for Windows) to ease the
process of adding new user/role mappings to the above property files. An example invocation for adding
a user to the ApplicationRealm with an initial set of roles:

23

Red Hat Data Grid 7.3 Red Hat Data Grid Server Guide

./bin/add-user.sh -a -u myuser -p "qwer1234!" -ro supervisor,reader,writer

It is also possible to authenticate/authorize against alternative sources, such as LDAP, JAAS, etc. Refer
to the WildFly security realms guide on how to configure the Security Realms. Bear in mind that the
choice of authentication mechanism you select for the protocols limits the type of authentication
sources, since the credentials must be in a format supported by the algorithm itself (e.g. pre-digested
passwords for the digest algorithm)

7.2. HOT ROD AUTHENTICATION

The Hot Rod protocol supports authentication by leveraging the SASL mechanisms. The supported
SASL mechanisms (usually shortened as mechs) are:

® PLAIN - This is the most insecure mech, since credentials are sent over the wire in plain-text
format, however it is the simplest to get to work. In combination with encryption (i.e. TLS) it can
be used safely

® DIGEST-MD5 - This mech hashes the credentials before sending them over the wire, so it is
more secure than PLAIN

® GSSAPI - This mech uses Kerberos tickets, and therefore requires the presence of a properly
configured Kerberos Domain Controller (such as Microsoft Active Directory)

e EXTERNAL - This mech obtains credentials from the underlying transport (i.e. from a X.509
client certificate) and therefore requires encryption using client-certificates to be enabled.

The following configuration enables authentication against ApplicationRealm, using the DIGEST-MD5
SASL mechanism and only enables the auth QoP (see SASL Quality of Protection):

Hot Rod connector configuration

<hotrod-connector socket-binding="hotrod" cache-container="default">
<authentication security-realm="ApplicationRealm">
<sasl server-name="myhotrodserver" mechanisms="DIGEST-MD5" qop="auth" />
</authentication>
</hotrod-connector>

Notice the server-name attribute: it is the name that the server declares to incoming clients and
therefore the client configuration must match. It is particularly important when using GSSAPI as it is
equivalent to the Kerberos service name. You can specify multiple mechanisms and they will be
attempted in order.

7.2.1. SASL Quality of Protection

While the main purpose of SASL is to provide authentication, some mechanisms also support integrity
and privacy protection, also known as Quality of Protection (or qop). During authentication negotiation,
ciphers are exchanged between client and server, and they can be used to add checksums and
encryption to all subsequent traffic. You can tune the required level of qop as follows:

QOP Description

auth Authentication only

24

https://docs.jboss.org/author/display/WFLY11/Security Realms

CHAPTER 7. SECURITY

QOP Description

auth-int Authentication with integrity protection

auth-conf Authentication with integrity and privacy protection
7.2.2. SASL Policies

You can further refine the way a mechanism is chosen by tuning the SASL policies. This will effectively
include / exclude mechanisms based on whether they match the desired policies.

Policy Description

forward-secrecy Specifies that the selected SASL mechanism must
support forward secrecy between sessions. This
means that breaking into one session will not
automatically provide information for breaking into
future sessions.

pass-credentials Specifies that the selected SASL mechanism must
require client credentials.

no-plain-text Specifies that the selected SASL mechanism must
not be susceptible to simple plain passive attacks.

no-active Specifies that the selected SASL mechanism must
not be susceptible to active (non-dictionary) attacks.
The mechanism might require mutual authentication
as a way to prevent active attacks.

no-dictionary Specifies that the selected SASL mechanism must
not be susceptible to passive dictionary attacks.

no-anonymous Specifies that the selected SASL mechanism must
not accept anonymous logins.

Each policy’s value is either "true” or "false". If a policy is absent, then the chosen mechanism need not
have that characteristic (equivalent to setting the policy to "false"). One notable exception is the no-
anonymous policy which, if absent, defaults to true, thus preventing anonymous connections.

NOTE

It is possible to have mixed anonymous and authenticated connections to the endpoint,
delegating actual access logic to cache authorization configuration. To do so, set the no-
anonymous policy to false and turn on cache authorization.

The following configuration selects all available mechanisms, but effectively only enables GSSAPI, since
it is the only one that respects all chosen policies:

Red Hat Data Grid 7.3 Red Hat Data Grid Server Guide

Hot Rod connector policies

<hotrod-connector socket-binding="hotrod" cache-container="default">
<authentication security-realm="ApplicationRealm">
<sasl server-name="myhotrodserver" mechanisms="PLAIN DIGEST-MD5 GSSAPI EXTERNAL"
qop="auth">
<policy>
<no-active value="true" />
<no-anonymous value="true" />
<no-plain-text value="true" />
</policy<>
</sasl>
</authentication>
</hotrod-connector>

7.2.3. Using GSSAPI/Kerberos

If you want to use GSSAPI/Kerberos, setup and configuration differs. First we need to define a Kerberos
login module using the security domain subsystem:

Security domain configuration

<system-properties>
<property name="java.security.krb5.conf" value="/tmp/infinispan/krb5.conf"/>
<property name="java.security.krb5.debug" value="true"/>
<property name="jboss.security.disable.secdomain.option" value="true"/>
</system-properties>

<security-domain name="infinispan-server" cache-type="default">
<authentication>
<login-module code="Kerberos" flag="required">
<module-option name="debug" value="true"/>
<module-option name="storeKey" value="true"/>
<module-option name="refreshKrb5Config" value="true"/>
<module-option name="useKeyTab" value="true"/>
<module-option name="doNotPrompt" value="true"/>
<module-option name="keyTab" value="/tmp/infinispan/infinispan.keytab"/>
<module-option name="principal" value="HOTROD/localhost@INFINISPAN.ORG"/>
</login-module>
</authentication>
</security-domain>

Next we need to modify the Hot Rod connector

Hot Rod connector configuration

<hotrod-connector socket-binding="hotrod" cache-container="default">
<authentication security-realm="ApplicationRealm">
<sasl server-name="infinispan-server" server-context-name="infinispan-server"
mechanisms="GSSAPI" qop="auth" />
</authentication>
</hotrod-connector>

26

CHAPTER 7. SECURITY

7.3. HOT ROD AND REST ENCRYPTION (TLS/SSL)

Both Hot Rod and REST protocols support encryption using SSL/TLS with optional TLS/SNI support
(Server Name Indication). To set this up you need to create a keystore using the keytool application
which is part of the JDK to store your server certificate. Then add a <server-identities> element to your
security realm:

Security Realm configuration for SSL

<security-realm name="ApplicationRealm">
<server-identities>
<ssl>
<keystore path="keystore_server.jks" relative-to="jboss.server.config.dir" keystore-
password="secret" />
</ssl>
</server-identities>
</security-realm>

NOTE

When using SNI support there might be multiple Security Realms configured.

Itis also possible to generate development certificates on server startup. In order to do this, just specify
generate-self-signed-certificate-host in the keystore element as shown below:

Generating Keystore automatically

<security-realm name="ApplicationRealm">
<server-identities>
<ssl>
<keystore path="keystore_server.jks" relative-to="jboss.server.config.dir" keystore-
password="secret" generate-self-signed-certificate-host="localhost"/>
</ssl>
</server-identities>
</security-realm>

NOTE

There are three basic principles that you should remember when using automatically
generated keystores:

® They shouldn’t be used on a production environment

® They are generated when necessary (e.g. while obtaining the first connection
from the client)

® They contain also certificates so they might be used in a Hot Rod client directly

Next modify the <hotrod-connector> and/or <rest-connector> elements in the endpoint subsystem to
require encryption. Optionally add SNI configuration:

Hot Rod connector SSL configuration

27

https://en.wikipedia.org/wiki/Server_Name_Indication

Red Hat Data Grid 7.3 Red Hat Data Grid Server Guide

<hotrod-connector socket-binding="hotrod" cache-container="local">
<encryption security-realm="ApplicationRealm" require-ssl-client-auth="false">
<sni host-name="domain1" security-realm="Domain1ApplicationRealm" />
<sni host-name="domain2" security-realm="Domain2ApplicationRealm" />
</encryption>
</hotrod-connector>
<rest-connector socket-binding="rest" cache-container="local">
<encryption security-realm="ApplicationRealm" require-ssl-client-auth="false">
<sni host-name="domain1" security-realm="Domain1ApplicationRealm" />
<sni host-name="domain2" security-realm="Domain2ApplicationRealm" />
</encryption>
</rest-connector>

NOTE

To configure the client In order to connect to the server using the Hot Rod protocol, the
client needs a trust store containing the public key of the server(s) you are going to
connect to, unless the key was signed by a Certification Authority (CA) trusted by the
JRE.

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
clientBuilder
.addServer()
.host("127.0.0.1")
.port(11222)
.security()
.ssl()
.enabled(true)
.sniHostName("domaini")
trustStoreFileName("truststore_client.jks")
trustStorePassword("secret".toCharArray());
remoteCacheManager = new RemoteCacheManager(clientBuilder.build());

Additionally, you might also want to enable client certificate authentication (and optionally also allow the
use of the EXTERNAL SASL mech to authenticate and authorize clients). To enable this you will need
the security realm on the server to be able to trust incoming client certificates by adding a trust store:

<security-realm name="ApplicationRealm">
<authentication>
<truststore path="truststore_server.jks" relative-to="jboss.server.config.dir" keystore-
password="secret"/>
</authentication>
<server-identities>
<ssl>
<keystore path="keystore_server.jks" relative-to="jboss.server.config.dir" keystore-
password="secret" />
</ssl>
</server-identities>
</security-realm>

And then tell the connector to require a client certificate:

28

CHAPTER 7. SECURITY

<hotrod-connector socket-binding="hotrod" cache-container="local">
<encryption security-realm="ApplicationRealm" require-ssl-client-auth="true" />
</hotrod-connector>

The client, at this point, will also need to specify a keyStore which contains its certificate on top of the
trustStore which trusts the server certificate.

section to learn how.

29

Red Hat Data Grid 7.3 Red Hat Data Grid Server Guide

CHAPTER 8. HEALTH MONITORING

Red Hat Data Grid server has special endpoints for monitoring cluster health. The APl is exposed via:
® Programmatically (using embeddedCacheManager.getHealth())
e JMX
e CLI

® REST (using WildFly HTTP Management API)

8.1. ACCESSING HEALTH API USING JMX

At first you need to connect to the Red Hat Data Grid Server using JMX (use JConsole or other tool for
this). Next, navigate to object name jboss.datagrid-
infinispan:type=CacheManager,name="clustered”,component=CacheContainerHealth.

8.2. ACCESSING HEALTH API USING CLI
You can access the Health API from the Command Line Interface (CLI), as in the following examples:

Standalone

$ bin/cli.sh -¢ "/subsystem=datagrid-infinispan/cache-container=clustered/health=HEALTH:read-
resource(include-runtime=true)"

Domain Mode

$ bin/cli.sh -¢ "/host=master/server=${servername}/subsystem=datagrid-infinispan/cache-
container=clustered/health=HEALTH:read-resource(include-runtime=true)"

Where ${servername} is the name of the Red Hat Data Grid server instance.

The following is a sample result for the CLI invocation:

{

"outcome" => "success",
"result" => {
"cache-health" => "HEALTHY",
"cluster-health" => ["test"],
"cluster-name" => "clustered",
"free-memory" => 99958L,
"log-tail" => [
"<time_stamp> INFO [org.infinispan.server.endpoint] (MSC service thread 1-5)
DGENDPT10001: HotRodServer listening on 127.0.0.1:11222",
"<time_stamp> INFO [org.infinispan.server.endpoint] (MSC service thread 1-1)
DGENDPT10001: MemcachedServer listening on 127.0.0.1:11211",
"<time_stamp> INFO [org.jboss.as.clustering.infinispan] (MSC service thread 1-6)
DGISPNO0001: Started ___ protobuf_metadata cache from clustered container”,
"<time_stamp> INFO [org.jboss.as.clustering.infinispan] (MSC service thread 1-6)
DGISPNO0001: Started ___ script_cache cache from clustered container",
"<time_stamp> INFO [org.jboss.as.clustering.infinispan] (MSC service thread 1-5)

30

https://docs.jboss.org/author/display/WFLY10/The+HTTP+management+API

CHAPTER 8. HEALTH MONITORING

DGISPNO0001: Started ___hotRodTopologyCache cache from clustered container”,
"<time_stamp> INFO [org.infinispan.rest.NettyRestServer] (MSC service thread 1-6)
ISPN012003: REST server starting, listening on 127.0.0.1:8080",
"<time_stamp> INFO [org.infinispan.server.endpoint] (MSC service thread 1-6)
DGENDPT10002: REST mapped to /rest",
"<time_stamp> INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0060: Http
management interface listening on http://127.0.0.1:9990/management”,
"<time_stamp> INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0051: Admin console
listening on http://127.0.0.1:9990",
"<time_stamp> INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0025: Red Hat Data
Grid Server <build_version> (WildFly Core <build_version>) started in 8681ms - Started 196 of 237
services (121 services are lazy, passive or on-demand)”
1,
"number-of-cpus" => 8,
"number-of-nodes” => 1,
"total-memory" => 235520L

8.3. ACCESSING HEALTH API USING REST

The REST interface lets you access the same set of resources as the CLI. However, the HTTP
Management API requires authentication so you must first add credentials with the add-user.sh script.

After you set up credentials, access the Health APl via REST as in the following examples:

Standalone

curl --digest -L -D - "http://localhost:9990/management/subsystem/datagrid-infinispan/cache-
container/clustered/health/HEALTH?operation=resource&include-runtime=true&json.pretty=1" --
header "Content-Type: application/json" -u username:password

Domain Mode

curl --digest -L -D -
"http://localhost:9990/management/host/master/server/${servername}/subsystem/datagrid-
infinispan/cache-container/clustered/health/HEALTH?operation=resource&include-
runtime=true&json.pretty=1" --header "Content-Type: application/json" -u username:password

Where ${servername} is the name of the Red Hat Data Grid server instance.

The following is a sample result for the REST invocation:

HTTP/1.1 200 OK
Connection: keep-alive
Authentication-Info:
nextnonce="AuZzFxz7uC4NMTQ3MDgyNTU1NTQ3OCfIUBHXVpPHPBdzGUy7Qts=",qop="auth",rspa
uth="b518c3170e627bd732055c382ce5d970",cnonce="NGViIOWMONDY50GJmN;jYOMjcyOWE4NDky
ZDU3YzNhYjY=",nc=00000001
Content-Type: application/json; charset=utf-8
Content-Length: 1927

Date: <time_stamp>

Red Hat Data Grid 7.3 Red Hat Data Grid Server Guide

"cache-health" : "HEALTHY",
"cluster-health" : ["test", "HEALTHY"],
"cluster-name" : "clustered",
"free-memory" : 96778,

"log-tail" : [

"<time_stamp> INFO [org.infinispan.server.endpoint] (MSC service thread 1-5)
DGENDPT10001: HotRodServer listening on 127.0.0.1:11222",

"<time_stamp> INFO [org.infinispan.server.endpoint] (MSC service thread 1-1)
DGENDPT10001: MemcachedServer listening on 127.0.0.1:11211",

"<time_stamp> INFO [org.jboss.as.clustering.infinispan] (MSC service thread 1-6)
DGISPNO0001: Started ___ protobuf_metadata cache from clustered container”,

"<time_stamp> INFO [org.jboss.as.clustering.infinispan] (MSC service thread 1-6)
DGISPNO0001: Started ___script_cache cache from clustered container",

"<time_stamp> INFO [org.jboss.as.clustering.infinispan] (MSC service thread 1-5)
DGISPNO0001: Started ___hotRodTopologyCache cache from clustered container”,

"<time_stamp> INFO [org.infinispan.rest.NettyRestServer] (MSC service thread 1-6)
ISPN012003: REST server starting, listening on 127.0.0.1:8080",

"<time_stamp> INFO [org.infinispan.server.endpoint] (MSC service thread 1-6)
DGENDPT10002: REST mapped to /rest",

"<time_stamp> INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0060: Hitp
management interface listening on http://127.0.0.1:9990/management”,

"<time_stamp> INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0051: Admin console
listening on http://127.0.0.1:9990",

"<time_stamp> INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0025: Red Hat Data
Grid Server <build_version> (WildFly Core <build_version>) started in 8681ms - Started 196 of 237
services (121 services are lazy, passive or on-demand)"

1,

"number-of-cpus" : 8,

"number-of-nodes” : 1,

"total-memory" : 235520
1%

Note that the result from the REST APl is exactly the same as the one obtained by CLI.

32

CHAPTER 9. MULTI-TENANCY

CHAPTER 9. MULTI-TENANCY

Multi-tenancy allows accessing multiple containers as shown below:

Infinispan

Client 1
HotRod 1 ‘
TCP

Router

TCP
Hotrod 2 ‘
Client 1

Currently there are two supported protocols for accessing the data - using Hot Rod client and using
REST interface.

9.1. USING REST INTERFACE

Multi-tenancy router uses URL prefixes to separate containers using the following template:
https://<server_ip>:<server_port>/rest/<rest_connector_names/<cache_names/<keys. All HTTP
operations remain exactly the same as using standard rest-connector.

The REST connector by default support both HTTP/1.1and HTTP/2 protocols. The switching from
HTTP/1.1to HTTP/2 procedure involves either using TLS/ALPN negotiation or HTTP/1.1 upgrade
procedure. The former requires proper encryption to be enabled. The latter is always enabled.

9.2. USING HOT ROD CLIENT

Multi-tenant routing for binary protocols requires using a standard, transport layer mechanism such as
SSL/TLS Server Name Indication. The server needs to be configured to support encryption and
additional SNI routing needs to be added to the router-connector.

In order to connect to a secured Hot Rod server, the client needs to use configuration similar to this:

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
clientBuilder
.addServer()
.host("127.0.0.1")
.port(hotrodServer.getPort())
.security()
.ssl()
.enabled(ssIClient)
.sniHostName("hotrod-1") // SNI Host Name

33

https://en.wikipedia.org/wiki/Server_Name_Indication

Red Hat Data Grid 7.3 Red Hat Data Grid Server Guide

trustStoreFileName("truststore.jks")
trustStorePassword("secret".toCharArray());
remoteCacheManager = new RemoteCacheManager(clientBuilder.build());

9.2.1. Multi-tenant router

The Multi-tenant router endpoint works as a facade for one or more REST/Hot Rod connectors. Its main
purpose is to forward client requests into proper container.

In order to properly configure the routing, socket-binding attributes of other connectors must be
disabled and additional attribute name must be used as shown below:

<rest-connector name="rest-1" cache-container="local"/>
<rest-connector name="rest-2" cache-container="local"/>
<hotrod-connector name="hotrod-1" cache-container="local" />
<hotrod-connector name="hotrod-2" cache-container="local" />

The next step is to add a new router-connector endpoint and configure how other containers will be
accessed. Note that Hot Rod connectors require using TLS/SNI and REST connectors require using
prefix in the URL:

<router-connector hotrod-socket-binding="hotrod" rest-socket-binding="rest" keep-alive="true" tcp-
nodelay="false" receive-buffer-size="1024" send-buffer-size="1024">
<hotrod name="hotrod-1" >
<sni host-name="hotrod-1" security-realm="SSLRealm1"/>
</hotrod>
<hotrod name="hotrod-2" >
<sni host-name="hotrod-2" security-realm="SSLRealm2"/>
</hotrod>
<rest name="rest-1">
<prefix path="rest-1" />
</rest>
<rest name="rest-2">
<prefix path="rest-2" />
</rest>
</router-connector>

With the following configuration, Hot Rod clients will access hotrod-1 connector when using SNI Host
Name "hotrod-1". REST clients will need to use the following URL to access "rest-1" connector -
https://<server_ip>:<server_port>/rest/rest-1.

34

	Table of Contents
	CHAPTER 1. ABOUT THE RED HAT DATA GRID SERVER
	CHAPTER 2. GETTING STARTED
	CHAPTER 3. OPERATING MODES
	3.1. STANDALONE MODE
	3.2. DOMAIN MODE
	3.2.1. Host
	3.2.1.1. Host Controller

	3.2.2. Domain Controller
	3.2.3. Server Group
	3.2.4. Server

	CHAPTER 4. EXAMPLE CONFIGURATIONS
	CHAPTER 5. MANAGEMENT
	5.1. CLI
	5.2. CONSOLE
	5.3. JMX
	5.4. EXPOSING JMX BEANS TO PROMETHEUS
	5.5. ACCESS LOGS
	5.5.1. Enabling Access Logs
	5.5.2. Access Log Properties

	CHAPTER 6. CONFIGURATION
	6.1. JGROUPS SUBSYSTEM CONFIGURATION
	6.2. RED HAT DATA GRID SUBSYSTEM CONFIGURATION
	6.2.1. Containers
	6.2.2. Caches
	6.2.3. Expiration
	6.2.4. Eviction
	6.2.5. Locking
	6.2.6. Transactional Operations with Hot Rod
	6.2.7. Loaders and Stores
	6.2.8. State Transfer

	6.3. ENDPOINT SUBSYSTEM CONFIGURATION
	6.3.1. Hot Rod
	6.3.2. Memcached
	6.3.3. REST
	6.3.4. Common Protocol Connector Settings
	6.3.5. Starting and Stopping Red Hat Data Grid Endpoints
	6.3.6. Protocol Interoperability
	6.3.7. Custom Marshaller Bridges
	6.3.7.1. Protostuff
	6.3.7.2. Kryo
	6.3.7.3. Server Compatibility Mode

	CHAPTER 7. SECURITY
	7.1. GENERAL CONCEPTS
	7.1.1. Authorization
	7.1.2. Server Realms

	7.2. HOT ROD AUTHENTICATION
	7.2.1. SASL Quality of Protection
	7.2.2. SASL Policies
	7.2.3. Using GSSAPI/Kerberos

	7.3. HOT ROD AND REST ENCRYPTION (TLS/SSL)

	CHAPTER 8. HEALTH MONITORING
	8.1. ACCESSING HEALTH API USING JMX
	8.2. ACCESSING HEALTH API USING CLI
	8.3. ACCESSING HEALTH API USING REST

	CHAPTER 9. MULTI-TENANCY
	9.1. USING REST INTERFACE
	9.2. USING HOT ROD CLIENT
	9.2.1. Multi-tenant router

