& RedHat

Red Hat Ansible Automation Platform
2.4

Automation Controller Administration Guide

Administrator Guide for Automation Controller

Last Updated: 2024-06-12

Red Hat Ansible Automation Platform 2.4 Automation Controller
Administration Guide

Administrator Guide for Automation Controller

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn how to manage automation controller through custom scripts, management jobs, and more.

Table of Contents

Table of Contents
PREFACE . vttt e e e e e e e e e e e,
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ..ttt ettt e e e e e,

CHAPTER 1. AUTOMATION CONTROLLER LICENSING, UPDATES AND SUPPORTooout
1.1. TRIAL AND EVALUATION
1.2. SUBSCRIPTION TYPES
1.3. NODE COUNTING IN LICENSES
1.4. ATTACHING SUBSCRIPTIONS
1.5. COMPONENT LICENSES

CHAPTER 2. START, STOP, AND RESTART AUTOMATION CONTROLLER ...,
CHAPTER 3. CUSTOMINVENTORY SCRIPTS ... i

CHAPTER 4. INVENTORY FILEIMPORTING ...ttt ettt eiteeieeeeneenaneennneenneenns
4.1. CUSTOM DYNAMIC INVENTORY SCRIPTS
4.2. SCM INVENTORY SOURCE FIELDS
4.2.1. Supported File Syntax

CHAPTER 5. MULTI-CREDENTIAL ASSIGNMENT ..ttt it eit et eeneeraneennneeaneenns
5.1. BACKGROUND
5.2.IMPORTANT CHANGES
5.3. LAUNCH TIME CONSIDERATIONS
5.4. MULTI-VAULT CREDENTIALS
5.4.1. Prompted Vault Credentials
5.4.2. Linked credentials

CHAPTER 6. MANAGEMENT JOBS .ottt ittt it ttiee e eteneneeennnnaeeeeennnneeeennnn
6.1. REMOVING OLD ACTIVITY STREAM DATA
6.1.1. Scheduling deletion
6.1.2. Setting notifications
6.2. CLEANUP EXPIRED OAUTH2 TOKENS
6.2.1. Cleanup Expired Sessions
6.2.2. Removing Old Job History

CHAPTER 7. CLUSTERING ..ottt ettt et ee ettt et eaneeeaneeaneeeaneeeaneesaneeannesaneenn
7.1. SETUP CONSIDERATIONS
7.2. INSTALL AND CONFIGURE
7.2.1. Instances and ports used by automation controller and automation hub
7.3. STATUS AND MONITORING BY BROWSER API
7.4. INSTANCE SERVICES AND FAILURE BEHAVIOR
7.5. JOB RUNTIME BEHAVIOR
7.5.1. Job runs
7.6. DEPROVISIONING INSTANCES

CHAPTER 8. INSTANCE AND CONTAINER GROUPS ittt et e enneenneenns
8.1. INSTANCE GROUPS
8.1.1. Group policies for automationcontroller
8.1.2. Configure instance groups from the AP
8.1.3. Instance group policies
8.1.4. Notable policy considerations
8.1.5. Pinning instances manually to specific groups
8.1.6. Job runtime behavior

20
20

21
22
23
23
23

25
25
26
27
27
27
28
29
30

31
31
31
33
33
34
34
34

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

8.1.7. Control where a job runs
8.1.8. Instance group capacity limits
8.1.9. Deprovisioning instance groups

8.2. CONTAINER GROUPS
8.2.1. Creating a container group
8.2.2. Customizing the pod specification
8.2.3. Verifying container group functions
8.2.4. View container group jobs
8.2.5. Kubernetes API failure conditions
8.2.6. Container capacity limits

CHAPTER 9. MANAGING CAPACITY WITHINSTANCES
9.1. PREREQUISITES
9.2. PULLING THE SECRET
9.3. SETTING UP VIRTUAL MACHINES FOR USE IN AN AUTOMATION MESH
9.4. MANAGING INSTANCES

CHAPTER10. TOPOLOGY VIEWER ... i e e i ittt

10.1. ACCESSING THE TOPOLOGY VIEWER
CHAPTER 11. AUTOMATION CONTROLLERLOGFILES

CHAPTER 12. LOGGING AND AGGREGATIONiiiiiiiiiiinennnnnn
12.1. LOGGERS
12.1.1. Log message schema
12.1.2. Activity stream schema
12.1.3. Scan / fact / system tracking data schema
12.1.4. Job status changes
12.1.5. Automation controller logs
12.1.6. Logging Aggregator Services
12.1.6.1. Splunk
12.1.6.2. Loggly
12.1.6.3. Sumologic
12.1.6.4. Elastic stack (formerly ELK stack)
12.2. SETTING UP LOGGING
12.3. APl 4XX ERROR CONFIGURATION
12.4. TROUBLESHOOTING LOGGING
Logging Aggregation
API 4XX Errors
LDAP
SAML

CHAPTER13.METRICS e
13.1. SETTING UP PROMETHEUS

CHAPTER 14. PERFORMANCE TUNING FOR AUTOMATION CONTROLLER
14.1. CAPACITY PLANNING FOR DEPLOYING AUTOMATION CONTROLLER
14.1.1. Characteristics of your workload
14.1.2. Types of nodes in automation controller
14.1.2.1. Benefits of scaling control nodes
14.1.2.2. Benefits of scaling execution nodes
14.1.2.3. Benefits of scaling hop nodes
14.1.2.4. Ratio of control to execution capacity
14.2. EXAMPLE CAPACITY PLANNING EXERCISE
14.2.1. Example workload requirements

35
36
37
38
38
39

41
42
43
43

44
44
45
46

51
51

55

57
57
58
58
58
59
59
59
59
60

61

61
62
63
64
64
64
64
64

65
65

67
67
67
67
68
68
69
69
69
69

Table of Contents

14.3. PERFORMANCE TROUBLESHOOTING FOR AUTOMATION CONTROLLER 71
14.4. METRICS TO MONITOR AUTOMATION CONTROLLER 73
14.4.1. Metrics for monitoring automation controller application 73
14.4.2. System level monitoring 74
14.5. POSTGRESQL DATABASE CONFIGURATION AND MAINTENANCE FOR AUTOMATION CONTROLLER
74
14.6. AUTOMATION CONTROLLER TUNING 76
14.6.1. Managing live events in the automation controller Ul 76
14.6.1.1. Disabling live streaming events 76
14.6.1.2. Settings to modify rate and size of events 77
14.6.2. Settings for managing job event processing 77
14.6.3. Capacity settings for control and execution nodes 77
14.6.4. Capacity settings for instance group and container group 78
14.6.5. Settings for scheduling jobs 78
14.6.6. Internal Cluster Routing 79
14.6.7. Web server tuning 79
CHAPTER 15. SECRET HANDLING AND CONNECTION SECURITY .. ittt iiiinieennnanns 81
15.1. SECRET HANDLING 81
15.1.1. User passwords for local users 81
15.1.2. Secret handling for operational use 81
15.1.3. Secret handling for automation use 82
15.2. CONNECTION SECURITY 83
15.2.1. Internal services 83
15.2.2. External access 83
15.2.3. Managed nodes 83
CHAPTER16. SECURITY BEST PRACTICES ...\ttt ettt eeieeeaeenaneeannenaneenn, 85
16.1. UNDERSTAND THE ARCHITECTURE OF ANSIBLE AUTOMATION PLATFORM AND AUTOMATION
CONTROLLER 85
16.1.1. Granting access 85
16.1.2. Minimize administrative accounts 85
16.1.3. Minimize local system access 86
16.1.4. Remove user access to credentials 86
16.1.5. Enforce separation of duties 86
16.2. AVAILABLE RESOURCES 86
16.2.1. Audit and logging functionality 86
16.2.2. Existing security functionality 87
16.2.3. External account stores 87
16.2.4. Django password policies 87
CHAPTER 17. THE AWX-MANAGE UT I LITY ottt ittt ettt et et ei e eiteeaneeeaneeannenns 88
17.1. INVENTORY IMPORT 88
17.2. CLEANUP OF OLD DATA 88
17.3. CLUSTER MANAGEMENT 89
17.4. TOKEN AND SESSION MANAGEMENT 89
17.4.1. create_oauth2_token 89
17.4.2. revoke_oauth2_tokens 89
17.4.3. cleartokens 90
17.4.4. expire_sessions 90
17.4.5. clearsessions 90
17.5. ANALYTICS GATHERING 90
CHAPTER 18. AUTOMATION CONTROLLER CONFIGURATION ...ttt it ieiienieenneenn, 92

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

18.1. AUTHENTICATING AUTOMATION CONTROLLER 92
18.2. CONFIGURING JOBS 93
18.3. CONFIGURING SYSTEM SETTINGS 93
18.4. CONFIGURING THE USER INTERFACE 95
18.4.1. Configuring usability analytics and data collection 95
18.4.2. Custom logos and images 96
18.5. ADDITIONAL SETTINGS FOR AUTOMATION CONTROLLER 97
18.6. OBTAINING AN AUTHORIZED ANSIBLE AUTOMATION CONTROLLER SUBSCRIPTION 97
18.6.1. Troubleshooting: Keep your subscription in compliance 98
18.6.2. Viewing the host activity 98
18.6.3. Host metric utilities 99
CHAPTER 19. ISOLATION FUNCTIONALITY AND VARIABLES ...\ttt i eineennnes 100
CHAPTER 20. TOKEN-BASED AUTHENTICATION ...ttt eieeieieeenneeneennneennnens 102
20.1. MANAGING OAUTH 2 APPLICATIONS AND TOKENS 102
20.1.1. Access Rules for Applications 103
20.1.2. Access rules for tokens 104
20.2. USING OAUTH 2 TOKEN SYSTEM FOR PERSONAL ACCESS TOKENS 105
20.2.1. Token scope mask over RBAC system 105
20.3. APPLICATION FUNCTIONS 107
20.3.1. Application using authorization code grant type 107
20.3.2. Application using password grant type 108
20.4. APPLICATION TOKEN FUNCTIONS 109
20.4.1. Refresh an existing access token 110
20.4.2. Revoke an access token m
CHAPTER 21. SETTING UP SOCIAL AUTHENTICATION ..ottt it eeiiieieeeneeraneennnennn 13
21.1. GITHUB SETTINGS 13
21.1.1. GitHub Organization settings n4
21.1.2. GitHub Team settings 15
21.1.3. GitHub Enterprise settings 16
21.1.4. GitHub Enterprise Organization settings n8
21.1.5. GitHub Enterprise Team settings 19
21.2. GOOGLE OAUTH2 SETTINGS 121
21.3. ORGANIZATION MAPPING 122
21.4. TEAM MAPPING 123
CHAPTER 22. SETTING UP ENTERPRISE AUTHENTICATIONttt ieiii e eaneennnenns 125
22.1. MICROSOFT AZURE ACTIVE DIRECTORY AUTHENTICATION 125
22.2. RADIUS AUTHENTICATION 127
22.3. SAML AUTHENTICATION 127
22.3.1. Configuring transparent SAML logins 136
22.3.2. Enable logging for SAML 137
22.4. TACACS PLUS AUTHENTICATION 137
22.5. GENERIC OIDC AUTHENTICATION 138
CHAPTER 23. LDAP AUTHENTICATION ..ttt ittt ti et atteaieeeaneeeaneeenneennens 140
23.1.SETTING UP LDAP AUTHENTICATION 140
23.1.1. LDAP organization and team mapping 143
23.1.2. Enabling logging for LDAP 145
23.1.3. Preventing LDAP attributes from updating on each login 145
23.1.4. Importing a certificate authority in automation controller for LDAPS integration 146
23.1.5. Referrals 146

Table of Contents

23.1.6. Changing the default timeout for authentication 147
CHAPTER 24. USER AUTHENTICATION WITH KERBEROS ittt iiiinaeeeennnns 148
24.1. SET UP THE KERBEROS PACKAGES 148
24.2. ACTIVE DIRECTORY AND KERBEROS CREDENTIALS 149
24.3. WORKING WITH KERBEROS TICKETS 150
CHAPTER 25. SESSIONS LIMITS Lottt ittt ettt e et ettt et e eaeennneeaneeeaneennneenn 151
25.1. WORKING WITH SESSION LIMITS 151
CHAPTER 26. BACKUP AND RES T ORE ... ittt ittt tttnneeeeetnnnenaeennnnaeeeennnns 152
26.1. BACKUP AND RESTORE PLAYBOOKS 152
26.2. BACKUP AND RESTORATION CONSIDERATIONS 153
26.3. BACKUP AND RESTORE CLUSTERED ENVIRONMENTS 153
26.3.1. Restore to a different cluster 154
CHAPTER 27. USABILITY ANALYTICS AND DATA COLLECTION ... ittt iiiiiee s 155
271.SETTING UP DATA COLLECTION PARTICIPATION 155
27.2. AUTOMATION ANALYTICS 155
27.2.1. Use by organization 158
27.2.2. Job runs by organization 158
27.2.3. Organization status 159
27.3. DETAILS OF DATA COLLECTION 159
27.3.1. manifest.json 161
27.3.2. config.json 161
27.3.3. instance_info.json 162
27.3.4. counts.json 163
27.3.5. org_counts.json 164
27.3.6. cred_type_counts.json 164
27.3.7. inventory_counts.json 165
27.3.8. projects_by_scm_type.json 166
27.3.9. query_info.json 166
27.3.10. job_counts.json 166
27.3.11. job_instance_counts.json 167
27.3.12. unified_job_template_table.csv 167
27.3.13. unified_jobs_table.csv 168
27.3.14. workflow_job_template_node_table.csv 169
27.3.15. workflow_job_node_table.csv 169
27.3.16. events_table.csv 170
27.4. ANALYTICS REPORTS 171
CHAPTER 28. TROUBLESHOOTING AUTOMATION CONTROLLERttt 175
28.1. UNABLE TO CONNECT TO YOUR HOST 175
28.2. UNABLE TO LOGIN TO AUTOMATION CONTROLLER THROUGH HTTP 175
28.3. UNABLE TO RUN A PLAYBOOK 175
28.4.UNABLE TO RUN A JOB 175
28.5. PLAYBOOKS DO NOT SHOW UP IN THE JOB TEMPLATE LIST 176
28.6. PLAYBOOK STAYS IN PENDING 176
28.7. REUSING AN EXTERNAL DATABASE CAUSES INSTALLATIONS TO FAIL 176
28.8. VIEWING PRIVATE EC2 VPC INSTANCES IN THE AUTOMATION CONTROLLER INVENTORY 176
CHAPTER 29. AUTOMATION CONTROLLER TIPS AND TRICKS ...ttt tiiieee e eennns 178
29.1. THE AUTOMATION CONTROLLER CLI TOOL 178
29.2. CHANGE THE AUTOMATION CONTROLLER ADMINISTRATOR PASSWORD 178
29.3. CREATE AN AUTOMATION CONTROLLER ADMINISTRATOR FROM THE COMMAND LINE 179

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

29.4.SET UP A JUMP HOST TO USE WITH AUTOMATION CONTROLLER 179
29.5. VIEW ANSIBLE OUTPUTS FOR JSON COMMANDS WHEN USING AUTOMATION CONTROLLER 179
29.6. LOCATE AND CONFIGURE THE ANSIBLE CONFIGURATION FILE 179
29.7.VIEW A LISTING OF ALL ANSIBLE_ VARIABLES 180
29.8. THE ALLOW_JINJA_IN_EXTRA_VARS VARIABLE 180
29.9. CONFIGURING THE CONTROLLERHOST HOSTNAME FOR NOTIFICATIONS 181
29.10. LAUNCHING JOBS WITH CURL 181
291M. FILTERING INSTANCES RETURNED BY THE DYNAMIC INVENTORY SOURCES IN THE CONTROLLER
182
29.12. USE AN UNRELEASED MODULE FROM ANSIBLE SOURCE WITH AUTOMATION CONTROLLER 182
29.13. USE CALLBACK PLUGINS WITH AUTOMATION CONTROLLER 183
29.14. CONNECT TO WINDOWS WITH WINRM 183
29.15. IMPORT EXISTING INVENTORY FILES AND HOST/GROUP VARS INTO AUTOMATION CONTROLLER
184

Table of Contents

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

PREFACE

The automation controller Administration Guide describes the administration of automation controller
through custom scripts, management jobs, and more. Written for DevOps engineers and administrators,
the automation controller Administration Guide assumes a basic understanding of the systems requiring
management with automation controllers easy-to-use graphical interface.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

If you have a suggestion to improve this documentation, or find an error, please contact technical
support at https://access.redhat.com to create an issue on the Ansible Automation Platform Jira
project using the docs-product component.

https://access.redhat.com

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

CHAPTER 1. AUTOMATION CONTROLLER LICENSING,
UPDATES AND SUPPORT

Automation controller is provided as part of your annual Red Hat Ansible Automation Platform
subscription.

Ansible is an open source software project and is licensed under the GNU General Public License
version 3, as described in the Ansible Source Code

You must have valid subscriptions attached before installing Ansible Automation Platform.

For more information, see Attaching Subscriptions.

1.1. TRIAL AND EVALUATION
You require a license to run automation controller. You can start by using a free trial license.
® Trial licenses for Ansible Automation Platform are available at: http://ansible.com/license

® Supportis notincluded in a trial license or during an evaluation of the automation controller
software.

1.2. SUBSCRIPTION TYPES

Red Hat Ansible Automation Platform is provided at various levels of support and number of machines
as an annual subscription.

e Standard:

© Manage any size environment

o Enterprise 8x5 support and SLA

o Maintenance and upgrades included

o Review the SLA at Product Support Terms of Service

o Review the Red Hat Support Severity Level Definitions
® Premium:

o Manage any size environment, including mission-critical environments

o Premium 24x7 support and SLA

o Maintenance and upgrades included

o Review the SLA at Product Support Terms of Service

o Review the Red Hat Support Severity Level Definitions

All subscription levels include regular updates and releases of automation controller, Ansible, and any
other components of the Platform.

For more information, contact Ansible through the Red Hat Customer Portal or at
http://www.ansible.com/contact-us/.

10

https://github.com/ansible/ansible/blob/devel/COPYING
http://ansible.com/license
https://access.redhat.com/support/offerings/production/sla
https://access.redhat.com/support/policy/severity
https://access.redhat.com/support/offerings/production/sla
https://access.redhat.com/support/policy/severity
https://access.redhat.com/
http://www.ansible.com/contact-us/

CHAPTER 1. AUTOMATION CONTROLLER LICENSING, UPDATES AND SUPPORT

1.3. NODE COUNTING IN LICENSES

The automation controller license defines the number of Managed Nodes that can be managed as part
of a Red Hat Ansible Automation Platform subscription.

A typical license says "License Count: 500", which sets the maximum number of Managed Nodes at
500.

For more information on managed node requirements for licensing, see
https://access.redhat.com/articles/3331481.

NOTE

Ansible does not recycle node counts or reset automated hosts.

1.4. ATTACHING SUBSCRIPTIONS

You must have valid Ansible Automation Platform subscriptions attached before installing Ansible
Automation Platform.

NOTE

Attaching subscriptions is unnecessary if your Red Hat account has enabled Simple
Content Access Mode. However, you must register to Red Hat Subscription Management
(RHSM) or Red Hat Satellite before installing Ansible Automation Platform.

Procedure

1. To find the pool_id of your subscription, enter the following command:
I # subscription-manager list --available --all | grep "Ansible Automation Platform" -B 3 -A 6

The command returns the following:

Subscription Name: Red Hat Ansible Automation Platform, Premium (5000 Managed Nodes)
Provides: Red Hat Ansible Engine

Red Hat Single Sign-On

Red Hat Ansible Automation Platform

SKU: MCT3695

Contract; ********

POOI ID « kkkkkkkkkkkhkhkhkkkkkhkk

Provides Management: No
Available: 4999
Suggested: 1

2. To attach this subscription, enter the following command:
I # subscription-manager attach --pool=<pool_id>

If all nodes have attached, then the repositories are found.

3. To check whether the subscription attached successfully, enter the following command:

1

https://access.redhat.com/articles/3331481
https://access.redhat.com/articles/simple-content-access

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

I # subscription-manager list --consumed

4. Toremove this subscription, enter the following command:

I #subscription-manager remove --pool=<pool_id>

1.5. COMPONENT LICENSES

To view the license information for the components included in automation controller, refer to
/usr/share/doc/automation-controller-<version>/README.

where <versions refers to the version of automation controller you have installed.
To view a specific license, refer to /usr/share/doc/automation-controller-<versions/*.txt.

where * is the license file name to which you are referring.

12

CHAPTER 2. START, STOP, AND RESTART AUTOMATION CONTROLLER

CHAPTER 2. START, STOP, AND RESTART AUTOMATION
CONTROLLER

Automation controller ships with an administrator utility script, automation-controller-service. The
script can start, stop, and restart all automation controller services running on the current single
automation controller node. The script includes the message queue components and the database if it
is an integrated installation.

External databases must be explicitly managed by the administrator. You can find the services script in
/usr/bin/automation-controller-service, which can be invoked with the following command:

I root@localhost:~$ automation-controller-service restart

NOTE

In clustered installs, the automation-controller-service restart does not include
PostgreSQL as part of the services that are restarted. This is because it exists external to
automation controller, and PostgreSQL does not always need to be restarted. Use
systemctl restart automation-controller to restart services on clustered environments
instead.

You must also restart each cluster node for certain changes to persist as opposed to a
single node for a localhost install.

For more information on clustered environments, see the Clustering section.

You can also invoke the services script using distribution-specific service management commands.
Distribution packages often provide a similar script, sometimes as an init script, to manage services. For
more information, see your distribution-specific service management system.

IMPORTANT

When running automation controller in a container, do not use the automation-
controller-service script. Restart the pod using the container environment instead.

13

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

CHAPTER 3. CUSTOM INVENTORY SCRIPTS

NOTE
Inventory scripts have been discontinued.

For more information, see Export old inventory scripts in the Automation controller User
Guide.

If you use custom inventory scripts, migrate to sourcing these scripts from a project. For more
information, see Inventory File Importing, and Inventory sources in the Automation controller User Guide.

If you are setting up an inventory file, see Editing the Red Hat Ansible Automation Platform installer
inventory file and find examples specific to your setup.

If you are migrating to execution environments, see:
® Upgrading to execution environments.
® Creating and consuming execution environments.
® Automation mesh design patterns.

® Mesh Topology in the Ansible Automation Platform Upgrade and Migration Guide to validate
your topology.

For more information about automation mesh on a VM-based installation, see the Red Hat Ansible
Automation Platform automation mesh guide for VM-based installations.

For more information about automation mesh on an operator-based installation, see the Red Hat
Ansible Automation Platform automation mesh for operator-based installations.

If you already have a mesh topology set up and want to view node type, node health, and specific details
about each node, see Topology Viewer.

14

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/automation_controller_user_guide/controller-inventories#ref-controller-export-old-scripts
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/automation_controller_user_guide/controller-inventories#ref-controller-inventory-sources
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/red_hat_ansible_automation_platform_installation_guide/assembly-platform-install-scenario#proc-editing-installer-inventory-file_platform-install-scenario
https://docs.ansible.com/automation-controller/4.4/html/upgrade-migration-guide/upgrade_to_ees.html#upgrade-venv
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/creating_and_consuming_execution_environments/index
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/red_hat_ansible_automation_platform_automation_mesh_guide_for_vm-based_installations/design-patterns
https://docs.ansible.com/automation-controller/4.4/html/upgrade-migration-guide/upgrade_to_ees.html#mesh-topology-ee
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/red_hat_ansible_automation_platform_automation_mesh_guide_for_vm-based_installations/index
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/red_hat_ansible_automation_platform_automation_mesh_for_operator-based_installations/index

CHAPTER 4. INVENTORY FILE IMPORTING

CHAPTER 4. INVENTORY FILE IMPORTING

Automation controller enables you to choose an inventory file from source control, rather than creating
one from scratch. This function is the same as for custom inventory scripts, except that the contents are
obtained from source control instead of editing their contents in a browser. This means that the files are
non-editable, and as inventories are updated at the source, the inventories within the projects are also
updated accordingly, including the group_vars and host_vars files or directory associated with them.
SCM types can consume both inventory files and scripts. Both inventory files and custom inventory
types use scripts.

Imported hosts have a description of imported by default. This can be overridden by setting the
_awx_description variable on a given host. For example, if importing from a sourced .ini file, you can
add the following host variables:

[main]
127.0.0.1 _awx_description="my host 1"
127.0.0.2 _awx_description="my host 2"

Similarly, group descriptions also default to imported, but can also be overridden by _awx_description.

To use old inventory scripts in source control, see Export old inventory scripts in the Automation
controller User Guide.

4.1. CUSTOM DYNAMIC INVENTORY SCRIPTS

A custom dynamic inventory script stored in version control can be imported and run. This makes it
much easier to make changes to an inventory script. Rather than having to copy and paste a script into
automation controller, it is pulled directly from source control and then executed. The script must handle
any credentials required for its task. You are responsible for installing any Python libraries required by
the script. (Custom dynamic inventory scripts have the same requirement.) This applies to both user-
defined inventory source scripts and SCM sources as they are both exposed to Ansible virtualenv
requirements related to playbooks.

You can specify environment variables when you edit the SCM inventory source. For some scripts, this is
sufficient. However, this is not a secure way to store secret information that gives access to cloud
providers or inventory.

A better way is to create a new credential type for the inventory script you are going to use. The
credential type must specify all the necessary types of inputs. Then, when you create a credential of this
type, the secrets are stored in an encrypted form. If you apply that credential to the inventory source,
the script has access to those inputs.

For more information, see Custom Credential Types in the Automation controller User Guide.

4.2. SCM INVENTORY SOURCE FIELDS

The source fields used are:
® source_project: the project to use.

n

e source_path: the relative path inside the project indicating a directory or a file. If left blank, " is
still a relative path indicating the root directory of the project.

® source_vars:if set on a "file" type inventory source then they are passed to the environment
variables when running.

15

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/automation_controller_user_guide/controller-inventories#ref-controller-export-old-scripts
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html-single/automation_controller_user_guide/index#assembly-controller-custom-credentials

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

Additionally:
® An update of the project automatically triggers an inventory update where it is used.
® Anupdate of the project is scheduled immediately after creation of the inventory source.
® Neither inventory nor project updates are blocked while a related job is running.
® |n cases where you have a large project (around 10 GB), disk space on /tmp can be an issue.

You can specify a location manually in the automation controller Ul from the Create Inventory Source
page. Refer to Adding a source for instructions on creating an inventory source.

When you update a project, refresh the listing to use the latest SCM information. If no inventory sources
use a project as an SCM inventory source, then the inventory listing might not be refreshed on update.

For inventories with SCM sources, the Job Details page for inventory updates displays a status
indicator for the project update and the name of the project.

The status indicator links to the project update job.

The project name links to the project.

Jobs > 18 - Project from Git

Qutput ®

4 Back to Jobs Details Output

Project from Git = @ Successful Plays 1 Tasks 30 Elapsed 000020 # L (]

Stdout ~ Q
M Events processing complete. Reload output
~ v A ¥
0 WARN[0000] error mounting subscriptions, skipping entry in /usr/share/containers/mounts.conf: getting host subseription data failed: failed to read subscriptions
1 ecrets": open /usr/share/rhel/secrets/rhsm/syspurpose/syspurpose.json: permission denied
2
3 PLAY [Update source tree if necessary] 10:55:31
4
5 TASK [update project using git] 10:55:31
6 ok: [localhost]
7
8 TASK [Set the git repository version] 10:55:32
9 ok: [localhost]
10

You can perform an inventory update while a related job is running.

4.2.1. Supported File Syntax

Automation controller uses the ansible-inventory module from Ansible to process inventory files, and
supports all valid inventory syntax that automation controller requires.

16

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html-single/automation_controller_user_guide/index#proc-controller-add-source

CHAPTER 5. MULTI-CREDENTIAL ASSIGNMENT

CHAPTER 5. MULTI-CREDENTIAL ASSIGNMENT

Automation controller provides support for assigning zero or more credentials to a job template.

5.1. BACKGROUND

Before automation controller v3.3, job templates had the following requirements with respect to
credentials:

® Alljob templates (and jobs) were required to have exactly one Machine/SSH or Vault credential
(or one of both).

® Alljob templates (and jobs) could have zero or more "extra" credentials.
® Extra credentials represented "Cloud" and "Network" credentials that could be used to provide
authentication to external services through environment variables, for example,
AWS_ACCESS_KEY_ID.
This model required a variety of disjoint interfaces for specifying credentials on a job template and it
lacked the ability to associate multiple Vault credentials with a playbook run, a use case supported by

Ansible core from Ansible 2.4 onwards.

This model also poses a stumbling block for certain playbook execution workflows, such as having to
attach a "dummy" Machine/SSH credential to the job template to satisfy the requirement.

5.2. IMPORTANT CHANGES

All automation controller 4.4 Job templates have a single interface for credential assignment.

From the APl endpoint:

I GET /api/v2/job_templates/N/credentials/

You can associate and disassociate credentials using POST requests, similar to the behavior in the
deprecated extra_credentials endpoint:

POST /api/v2/job_templates/N/credentials/ {'associate': true, 'id": 'X'}
POST /api/v2/job_templates/N/credentials/ {'disassociate': true, 'id": "Y'}

With this model, a job template is considered valid even when there are no credentials assigned to it.
This model also provides users the ability to assign multiple Vault credentials to a job template.

5.3. LAUNCH TIME CONSIDERATIONS

Before automation controller v3.3, job templates used a configurable attribute,
ask_credential_on_launch. This value was used at launch time to determine which missing credential
values were necessary for launch. This was a way to specify a Machine or SSH credential to satisfy the
minimum credential requirement.

Under the unified credential list model, this attribute still exists, but it no longer requires a credential.

Now when ask_credential_on_launch is true, it signifies that you can specify a list of credentials at
launch time to override those defined on the job template. For example:

17

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

I POST /api/v2/job_templates/N/launch/ {'credentials': [A, B, C]}’

If ask_credential_on_launch is false, it signifies that custom credentials provided in the POST
/api/v2/job_templates/N/launch/ are ignored.

Under this model, the only purpose for ask_credential_on_launch is to signal API clients to prompt the
user for (optional) changes at launch time.

5.4. MULTI-VAULT CREDENTIALS

Because you can assign multiple credentials to a job, you can specify multiple Vault credentials to
decrypt when your job template runs. This functionality mirrors the support for Managing vault
passwords.

Vault credentials now have an optional field, vault_id, which is similar to the --vault-id argument of
ansible-playbook.

Use the following procedure to run a playbook which makes use of multiple vault passwords:

Procedure

1. Create a Vault credential in automation controller for each vault password.

2. Specify the Vault ID as a field on the credential and input the password (which is encrypted and
stored).

3. Assign multiple vault credentials to the job template using the new credentials endpoint:

POST /api/v2/job_templates/N/credentials/

{

'associate': true,
'id": X

Alternatively, you can perform the same assignment in the automation controller Ul in the Create
Credential page:

Credentials

Create New Credential

Name * Description Organization

Multi-Vault Credential Q
Credential Type *
Vault -
Type Details
Vault Password * (J Promptonlaunch vault Identifier @
W e rd first I

Cancel

18

https://docs.ansible.com/ansible/latest/vault_guide/vault_managing_passwords.html#

CHAPTER 5. MULTI-CREDENTIAL ASSIGNMENT

In this example, the credential created specifies the secret to be used by its Vault Identifier ("first") and
password pair. When this credential is used in a Job Template, as in the following example, it only
decrypts the secret associated with the "first" Vault ID:

Templates

Create New Job Template

Name * Description Job Type * @ (] Prompt on launch

Multi-Vault job template example Run -

Inventory * @ [0 Prompton launch project * @ Execution Environment [Prompt on launch

Q. Deme Inventory Q Multi-Vault project Q

Playbook * @

multivaultyml -
-

Credentials & / [Prompt on launch
Q Vault Multi-Vault Cre.

Labels @ () Prompt on launch

Variables @ () Promptonlaunch sa

If you have a playbook that is set up the traditional way with all the secrets in one big file without
distinction, then leave the Vault Identifier field blank when setting up the Vault credential.

5.4.1. Prompted Vault Credentials

For passwords for Vault credentials that are marked with Prompt on launch, the launch endpoint of any
related Job Templates communicate necessary Vault passwords using the
passwords_needed_to_start parameter:

GET /api/v2/job_templates/N/launch/
{

'passwords_needed to_start'": [
'vault_password.X',
'vault_password.Y",

]

}

Where X and Y are primary keys of the associated Vault credentials:

POST /api/v2/job_templates/N/launch/
{

'credential_passwords': {
'vault_password.X": first-vault-password'
'vault_password.Y": 'second-vault-password'

}
}

5.4.2. Linked credentials

Instead of uploading sensitive credential information into automation controller, you can link credential
fields to external systems and use them to run your playbooks.

For more information, see Secret Management System in the Automation controller User Guide.

19

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html-single/automation_controller_user_guide/index#assembly-controller-secret-management

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

CHAPTER 6. MANAGEMENT JOBS

Management Jobs assist in the cleaning of old data from automation controller, including system
tracking information, tokens, job histories, and activity streams. You can use this if you have specific
retention policies or need to decrease the storage used by your automation controller database.

From the navigation panel, select Administration - Management Jobs.

Management jobs

Name ¥ Q 1-dofd ~

Name T Description Actions

Cleanup Activity Stream Remove activity stream history -+
Cleanup Expired OAuth 2 Tokens Cleanup expired OAuth 2 access and refresh tokens L4
Cleanup Expired Sessions Cleans out expired browser sessions -
Cleanup Job Details Remove job history L 4

1-40of ditems = 1 oflpage

The following job types are available for you to schedule and launch:
® Cleanup Activity Stream: Remove activity stream history older than a specified number of days
® Cleanup Expired OAuth 2 Tokens Remove expired OAuth 2 access tokens and refresh tokens
® Cleanup Expired Sessions: Remove expired browser sessions from the database

® Cleanup Job Details: Remove job history older than a specified number of days

6.1. REMOVING OLD ACTIVITY STREAM DATA

To remove older activity stream data, click the launch ‘f icon beside Cleanup Activity Stream.

o Launch management job

Set how many days of data should be retained.

30

Enter the number of days of data you would like to save and click Launch.

20

6.1.1. Sch

eduling deletion

CHAPTER 6. MANAGEMENT JOBS

Use the following procedure to review or set a schedule for purging data marked for deletion:

Procedure

1. For a particular cleanup job, click the Schedules tab.

Il

O Name ~

O Cleanup Activity Schedule

Schedules Notifications

< g

Back to management jobs

Name T

Related resource

Delete

Cleanup Activity Stream

Resource type

Management Job

NextRun 8/1/2023, 6:01:35 PM

1-10f1 =

Actions

© o s

1-Tof litems + 1 oflpage

Note that you can turn this scheduled management job on and off using the ON/OFF toggle
button.

2. Click the name of the job, "Cleanup Activity Schedule" in this example, to review the schedule

se

ttings.

3. Click Edit to modify them. You can also click Add to create a new schedule for this management
job.
Managementjob > Cleanup Activity Stream > Schedules > Cleanup Activity Schedule

Edit Details

Name *

Cleanup Activity Schedule

Description

Automatically Generated Schedule

Start date/time *

2023-07-25 6:01PM 0]

Local time zone * @

uTC -

Repeat frequency

Select frequency 1

Days of Data to Keep *

355

Frequency Details

Week

Run every *

1 week

Exceptions
Add exceptions
None -

Ondays *
(] Mon @ Tue (] Wed (] Thu

[J Sun

O Fri O Sat

End *

@ Never

O After number of occurrences
© On date

4. Enter the appropriate details into the following fields and click Save:

Name required
Start Daterequired

Start Time required

Local time zone the entered Start Time should be in this timezone.

Repeat frequency the appropriate options display as the update frequency is modified
including data you do not want to include by specifying exceptions.

Days of Data to Keeprequired - specify how much data you want to retain.

21

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

The Details tab displays a description of the schedule and a list of the scheduled occurrences in the
selected Local Time Zone.

NOTE

Jobs are scheduled in UTC. Repeating jobs that run at a specific time of day can move
relative to a local timezone when Daylight Saving Time shifts occur.

ol

6.1.2. Setting notifications

Use the following procedure to review or set notifications associated with a management job:

Procedure

® Fora particular cleanup job, select the Notifications tab.

Managementjob > Cleanup Activity Stream

Notifications
4 Back to management jobs Schedules Notifications.
Name ~ Q 1-20f2
Name 1 Type Options.
Activity Stream Cleanup - Slack Slack @ st (B sSuccess (PP Failure
Notify by Email Errors Email o Start o Success o Failure

1-20f 2items ~ 1 oflpage

If none exist, for more information, see Notifications in the Automation controller User Guide.

4 Back to management jobs Schedules Notifications

Name + Q

&

No Notifications Found

Please add Notifications to populate this list

The following shows an example of a notification with details specified:

22

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/automation_controller_user_guide/controller-notifications

CHAPTER 6. MANAGEMENT JOBS

Notification Templates

Create New Notification Template

Name * Description Organization *

Cleanup Activity Stream - Slack Slack notification for activity stream management jobs Q Default

Type *

Slack -

Type Details

Destination channels * & Token * Notification color @

#engineering =

339900

#eng-rel

D Customize messages...

Use custom messages to change the content of notifications sent when a job starts, succeeds, or fails. Use curly braces to access information about the job: {{ job_friendly_name }}, {{ url }},{{ job.status }}.Youmayapplya
number of pessible variables in the message. For more information, refer to the Ansible Controller Documentation.

Start message

{{ Slack notification for activity stream management jobs }} #{{ job.id }} '{{ job.name }}' {{ job.status }}: {{ url }}

6.2. CLEANUP EXPIRED OAUTH2 TOKENS

To remove expired OAuth2 tokens, click the launch ‘f icon next to Cleanup Expired OAuth2 Tokens.

You can review or set a schedule for cleaning up expired OAuth2 tokens by performing the same
procedure described for activity stream management jobs.

For more information, see Scheduling deletion.

You can also set or review notifications associated with this management job the same way as described
in setting notifications for activity stream management jobs.

For more information, see Notifications in the Automation controller User Guide.

6.2.1. Cleanup Expired Sessions

To remove expired sessions, click the launch ‘f icon beside Cleanup Expired Sessions.

You can review or set a schedule for cleaning up expired sessions by performing the same procedure
described for activity stream management jobs. For more information, see Scheduling deletion.

You can also set or review notifications associated with this management job the same way as described
in Notifications for activity stream management jobs.

For more information, see Notifications in the Automation controller User Guide.

6.2.2. Removing Old Job History

To remove job history older than a specified number of days, click the launch ‘f icon beside Cleanup
Job Details.

23

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/automation_controller_user_guide/controller-notifications
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/automation_controller_user_guide/controller-notifications

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

o Launch management job

Set how many days of data should be retained.

30

Enter the number of days of data you would like to save and click Launch.

NOTE

The initial job run for an automation controller resource, such as Projects, or Job
Templates, are excluded from Cleanup Job Details, regardless of retention value.

You can review or set a schedule for cleaning up old job history by performing the same procedure
described for activity stream management jobs.

For more information, see Scheduling deletion.
You can also set or review notifications associated with this management job in the same way as

described in Notifications for activity stream management jobs, or for more information, see
Notifications in the Automation controller User Guide.

24

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/automation_controller_user_guide/controller-notifications

CHAPTER 7. CLUSTERING

CHAPTER 7. CLUSTERING

Clustering is sharing load between hosts. Each instance must be able to act as an entry point for Ul and
APl access. This must enable the automation controller administrators to use load balancers in front of
as many instances as they want and keep good data visibility.

NOTE

Load balancing is optional, and it is entirely possible to have ingress on one or all
instances as needed.

Each instance must be able to join the automation controller cluster and expand its ability to run jobs.
This is a simple system where jobs can run anywhere rather than be directed on where to run. Also, you
can group clustered instances into different pools or queues, called Instance groups.

Ansible Automation Platform supports container-based clusters by using Kubernetes, meaning you can
install new automation controller instances on this platform without any variation or diversion in

functionality. You can create instance groups to point to a Kubernetes container. For more information,
see the Container and instance groups section.

Supported operating systems

The following operating systems are supported for establishing a clustered environment:

® Red Hat Enterprise Linux 8 or later

NOTE

Isolated instances are not supported in conjunction with running automation controller in
OpenShift.

7.1. SETUP CONSIDERATIONS

Learn about the initial setup of clusters. To upgrade an existing cluster, see Upgrade Planning in the
Ansible Automation Platform Upgrade and Migration Guide .

Note the following important considerations in the new clustering environment:

® PostgreSQL is a standalone instance and is not clustered. Automation controller does not
manage replica configuration or database failover (if the user configures standby replicas).

® When you start a cluster, the database node must be a standalone server, and PostgreSQL must
not be installed on one of the automation controller nodes.

® PgBouncer is not recommended for connection pooling with automation controller. Automation
controller relies on pg_notify for sending messages across various components, and therefore,
PgBouncer cannot readily be used in transaction pooling mode.

® The maximum supported instances in a cluster is 20.

e Allinstances must be reachable from all other instances and they must be able to reach the

database. It is also important for the hosts to have a stable address or hostname (depending on
how the automation controller host is configured).

25

https://docs.ansible.com/automation-controller/4.4/html/upgrade-migration-guide/upgrade_considerations.html#upgrade-planning

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

® Allinstances must be geographically collocated, with reliable low-latency connections between
instances.

® To upgrade to a clustered environment, your primary instance must be part of the default group
in the inventory and it needs to be the first host listed in the default group.

® Manual projects must be manually synced to all instances by the customer, and updated on all
instances at once.

® The inventory file for platform deployments should be saved or persisted. If new instances are
to be provisioned, the passwords and configuration options, as well as host names, must be
made available to the installer.

7.2. INSTALL AND CONFIGURE

Provisioning new instances involves updating the inventory file and re-running the setup playbook. It is
important that the inventory file contains all passwords and information used when installing the cluster
or other instances might be reconfigured. The inventory file contains a single inventory group,
automationcontroller.

NOTE

All instances are responsible for various housekeeping tasks related to task scheduling,
such as determining where jobs are supposed to be launched and processing playbook
events, as well as periodic cleanup.

[automationcontroller]
hostA

hostB

hostC
[instance_group_east]
hostB

hostC
[instance_group_west]
hostC

hostD

NOTE

If no groups are selected for a resource, then the automationcontroller group is used,
but if any other group is selected, then the automationcontroller group is not used in
any way.

The database group remains for specifying an external PostgreSQL. If the database host is provisioned
separately, this group must be empty:

[automationcontroller]
hostA

hostB

hostC

[database]

hostDB

26

CHAPTER 7. CLUSTERING

When a playbook runs on an individual controller instance in a cluster, the output of that playbook is
broadcast to all of the other nodes as part of automation controller’'s websocket-based streaming
output functionality. You must handle this data broadcast using internal addressing by specifying a
private routable address for each node in your inventory:

[automationcontroller]

hostA routable_hostname=10.1.0.2
hostB routable_hostname=10.1.0.3
hostC routable _hostname=10.1.0.4
routable _hostname

For more information about routable_hostname, see General variables in the Red Hat Ansible
Automation Platform Installation Guide.

IMPORTANT

Previous versions of automation controller used the variable name rabbitmq_host. If you
are upgrading from a previous version of the platform, and you previously specified
rabbitmq_host in your inventory, rename rabbitmq_host to routable_hostname before
upgrading.

7.2.1. Instances and ports used by automation controller and automation hub

Ports and instances used by automation controller and also required by the on-premise automation hub
node are as follows:

® Port 80, 443 (normal automation controller and automation hub ports)
® Port 22 (ssh - ingress only required)

® Port 5432 (database instance - if the database is installed on an external instance, it must be
opened to automation controller instances)

7.3. STATUS AND MONITORING BY BROWSER API

Automation controller reports as much status as it can using the browser API at /api/v2/ping to validate
the health of the cluster. This includes the following:

® The instance servicing the HTTP request
® The timestamps of the last heartbeat of all other instances in the cluster
® |nstance Groups and Instance membership in those groups

View more details about Instances and Instance Groups, including running jobs and membership
information at /api/v2/instances/ and /api/v2/instance_groups/.

7.4. INSTANCE SERVICES AND FAILURE BEHAVIOR

Each automation controller instance is made up of the following different services working
collaboratively:

HTTP services

This includes the automation controller application itself as well as external web services.

27

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/red_hat_ansible_automation_platform_installation_guide/appendix-inventory-files-vars#ref-genera-inventory-variables

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

Callback receiver

Receives job events from running Ansible jobs.
Dispatcher

The worker queue that processes and runs all jobs.
Redis

This key value store is used as a queue for event data propagated from ansible-playbook to the
application.

Rsyslog
The log processing service used to deliver logs to various external logging services.
Automation controller is configured so that if any of these services or their components fail, then all

services are restarted. If these fail often in a short span of time, then the entire instance is placed offline
in an automated fashion to allow remediation without causing unexpected behavior.

For backing up and restoring a clustered environment, see the Backup and restore clustered
environments section.

7.5. JOB RUNTIME BEHAVIOR

The way jobs are run and reported to a normal user of automation controller does not change. On the
system side, note the following differences:

® When ajob is submitted from the APl interface it is pushed into the dispatcher queue. Each
automation controller instance connects to and receives jobs from that queue using a
scheduling algorithm. Any instance in the cluster is just as likely to receive the work and execute
the task. If an instance fails while executing jobs, then the work is marked as permanently failed.

28

CHAPTER 7. CLUSTERING

fapilv2/ping

| A

		I I		
HTTP		HTTP		HTTP
Service		Service		Service
			I	
! Task		Task	I Task	
Workers		Workers	I Workers	
		I [

'y A

| | : | | I |
| y | | y | | |
: Redis : : Redis : : Redis :
| | | | | |
| — _ L — — — =— - | e —— _

= PostgresSQL =

® Project updates run successfully on any instance that could potentially run a job. Projects
synchronize themselves to the correct version on the instance immediately before running the
job. If the required revision is already locally checked out and Galaxy or Collections updates are
not required, then a sync cannot be performed.

® When the synchronization happens, it is recorded in the database as a project update with a
launch_type = sync and job_type = run. Project syncs do not change the status or version of
the project; instead, they update the source tree only on the instance where they run.

® |f updates are required from Galaxy or Collections, a sync is performed that downloads the
required roles, consuming more space in your /tmp file. In cases where you have a large project
(around 10 GB), disk space on /tmp can be an issue.

7.5.1. Job runs

By default, when a job is submitted to the automation controller queue, it can be picked up by any of the
workers. However, you can control where a particular job runs, such as restricting the instances from
which a job runs on.

29

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

To support taking an instance offline temporarily, there is a property enabled defined on each instance.
When this property is disabled, no jobs are assigned to that instance. Existing jobs finish, but no new
work is assigned.

Troubleshooting

When you issue a cancel request on a running automation controller job, automation controller issues a
SIGINT to the ansible-playbook process. While this causes Ansible to stop dispatching new tasks and
exit, in many cases, module tasks that were already dispatched to remote hosts will run to completion.
This behavior is similar to pressing Ctrl-c during a command-line Ansible run.

With respect to software dependencies, if a running job is canceled, the job is removed but the
dependencies remain.

7.6. DEPROVISIONING INSTANCES
Re-running the setup playbook does not automatically deprovision instances since clusters do not
currently distinguish between an instance that was taken offline intentionally or due to failure. Instead,

shut down all services on the automation controller instance and then run the deprovisioning tool from
any other instance.

Procedure

1. Shut down the instance or stop the service with the command: automation-controller-service
stop.

2. Run the following deprovision command from another instance to remove it from the
automation controller cluster:

I $ awx-manage deprovision_instance --hostname=<name used in inventory file>

Example
I awx-manage deprovision_instance --hostname=hostB

Deprovisioning instance groups in automation controller does not automatically deprovision or remove
instance groups. For more information, see the Deprovisioning instance groups section.

30

CHAPTER 8. INSTANCE AND CONTAINER GROUPS

CHAPTER 8. INSTANCE AND CONTAINER GROUPS

Automation controller enables you to execute jobs through Ansible playbooks run directly on a member
of the cluster or in a namespace of an OpenShift cluster with the necessary service account provisioned.
This is called a container group. You can execute jobs in a container group only as-needed per playbook.
For more information, see Container groups.

For execution environments, see Execution environments in the Automation controller User Guide.

8.1. INSTANCE GROUPS

Instances can be grouped into one or more instance groups. Instance groups can be assigned to one or
more of the following listed resources:

® Organizations
® |nventories
® Job templates
When a job associated with one of the resources executes, it is assigned to the instance group
associated with the resource. During the execution process, instance groups associated with job
templates are checked before those associated with inventories. Instance groups associated with
inventories are checked before those associated with organizations. Therefore, instance group
assignments for the three resources form the hierarchy:
Job Template > Inventory > Organization
Consider the following when working with instance groups:
® You can define other groups and group instances in those groups. These groups must be
prefixed with instance_group_. Instances are required to be in the automationcontroller or
execution_nodes group alongside other instance_group_ groups. In a clustered setup, at
least one instance must be present in the automationcontroller group, which appears as
controlplane in the APl instance groups. For more information and example scenarios, see

Group policies for automationcontroller.

® You cannot modify the controlplane instance group, and attempting to do so resultsin a
permission denied error for any user.
Therefore, the Disassociate option is not available in the Instances tab of controlplane.

e Adefault APl instance group is automatically created with all nodes capable of running jobs.
This is like any other instance group but if a specific instance group is not associated with a
specific resource, then the job execution always falls back to the default instance group. The
default instance group always exists, and you cannot delete or rename it.

® Do not create a group named instance_group_default.

® Do not name any instance the same as a group name.

8.1.1. Group policies for automationcontroller
Use the following criteria when defining nodes:

® Nodes in the automationcontroller group can define node_type hostvar to be hybrid (default)
or control.

31

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html-single/automation_controller_user_guide/index#assembly-controller-execution-environments

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

e Nodes in the execution_nodes group can define node_type hostvar to be execution (default)
or hop.

You can define custom groups in the inventory file by naming groups with instance_group_* where *
becomes the name of the group in the API. You can also create custom instance groups in the API after
the install has finished.

The current behavior expects a member of an instance_group_* to be part of automationcontroller or
execution_nodes group.

Example

[automationcontroller]
126-addr.tatu.home ansible_host=192.168.111.126 node_type=control

[automationcontroller:vars]
peers=execution_nodes

[execution_nodes]

[instance_group_test]
110-addr.tatu.home ansible_host=192.168.111.110 receptor_listener_port=8928

After you run the installer, the following error appears:

TASK [ansible.automation_platform_installer.check_config_static : Validate mesh topology] ***
fatal: [126-addr.tatu.home -> localhost]: FAILED! => {"msg": "The host '110-addr.tatu.home' is not
present in either [automationcontroller] or [execution_nodes]"}

To fix this, move the box 110-addr.tatu.home to an execution_node group:

[automationcontroller]
126-addr.tatu.home ansible_host=192.168.111.126 node_type=control

[automationcontroller:vars]
peers=execution_nodes

[execution_nodes]
110-addr.tatu.home ansible_host=192.168.111.110 receptor_listener_port=8928

[instance_group_test]
110-addr.tatu.home

This results in:

32

TASK [ansible.automation_platform_installer.check_config_static : Validate mesh topology] ***

ok: [126-addr.tatu.home -> localhost] => {"changed": false, "mesh": {"110-addr.tatu.home™:
{"node_type": "execution", "peers": [], "receptor_control_filename": "receptor.sock",
"receptor_control_service_name": "control", "receptor_listener": true, "receptor_listener_port": 8928,
"receptor_listener_protocol": "tcp", "receptor_log_level": "info"}, "126-addr.tatu.home": {"node_type":
"control", "peers": ["110-addr.tatu.home"], "receptor_control_filename": "receptor.sock",
"receptor_control_service_name": "control", "receptor_listener": false, "receptor_listener_port":
27199, "receptor_listener_protocol": "tcp", "receptor_log_level": "info"}}}

CHAPTER 8. INSTANCE AND CONTAINER GROUPS

After you upgrade from automation controller 4.0 or earlier, the legacy instance_group_ member likely
has the awx code installed. This places that node in the automationcontroller group.
8.1.2. Configure instance groups from the API

You can create instance groups by POSTing to /api/v2/instance_groups as a system administrator.

Once created, you can associate instances with an instance group using:

I HTTP POST /api/v2/instance_groups/x/instances/ {'id": y}'

An instance that is added to an instance group automatically reconfigures itself to listen on the group’s
work queue. For more information, see the following section Instance group policies.

8.1.3. Instance group policies

You can configure automation controller instances to automatically join instance groups when they
come online by defining a policy. These policies are evaluated for every new instance that comes online.

Instance group policies are controlled by the following three optional fields on an Instance Group:

e policy_instance_percentage: This is a number between O - 100. It guarantees that this
percentage of active automation controller instances are added to this instance group. As new
instances come online, if the number of instances in this group relative to the total number of
instances is less than the given percentage, then new ones are added until the percentage
condition is satisfied.

e policy_instance_minimum: This policy attempts to keep at least this many instances in the
instance group. If the number of available instances is lower than this minimum, then all
instances are placed in this instance group.

e policy_instance_list: This is a fixed list of instance names to always include in this instance
group.

The Instance Groups list view from the automation controller user interface (Ul) provides a summary of
the capacity levels for each instance group according to instance group policies:

Instance Groups 9

O Name =~ Q Delete 1-40f4 v

Name Type Running Jobs Total Jobs Instances Capacity Actions

O Can't contain myself Container group o] o] o] rd

O controlplane Instance group 1 15 1 Used capacity 2% ra
]

O default Instance group o] o] 2 Unavailable &

8] test-instance-group Instance group o] Q 2 Unavailable rd

1-4of 4items = 1 of 1page

Additional resources

33

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

For more information, see the Managing Instance Groups section of the Automation controller User
Guide.

8.1.4. Notable policy considerations

Take the following policy considerations into account:

e Both policy_instance_percentage and policy_instance_minimum set minimum allocations.
The rule that results in more instances assigned to the group takes effect. For example, if you
have a policy_instance_percentage of 50% and a policy_instance_minimum of 2 and you
start 6 instances, 3 of them are assigned to the instance group. If you reduce the number of
total instances in the cluster to 2, then both of them are assigned to the instance group to
satisfy policy_instance_minimum. This enables you to set a lower limit on the amount of
available resources.

® Policies do not actively prevent instances from being associated with multiple instance groups,
but this can be achieved by making the percentages add up to 100. If you have 4 instance
groups, assign each a percentage value of 25 and the instances are distributed among them
without any overlap.

8.1.5. Pinning instances manually to specific groups

If you have a special instance which needs to be exclusively assigned to a specific instance group but do
not want it to automatically join other groups by "percentage” or "minimum"” policies:

Procedure

1. Add the instance to one or more instance groups' policy_instance_list.
2. Update the instance’s managed_by policy property to be False.

This prevents the instance from being automatically added to other groups based on percentage and
minimum policy. It only belongs to the groups you have manually assigned it to:

HTTP PATCH /api/v2/instance_groups/N/
{

"policy_instance_list": ["special-instance"]

}
HTTP PATCH /api/v2/instances/X/

{

"managed_by_policy": False

}

8.1.6. Job runtime behavior

When you run a job associated with an instance group, note the following behaviors:

e |f you divide a cluster into separate instance groups, then the behavior is similar to the cluster as
a whole. If you assign two instances to a group then either one is as likely to receive a job as any
other in the same group.

® As automation controller instances are brought online, it effectively expands the work capacity

of the system. If you place those instances into instance groups, then they also expand that
group’s capacity. If an instance is performing work and it is a member of multiple groups, then

34

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html-single/automation_controller_user_guide/index#controller-instance-groups

CHAPTER 8. INSTANCE AND CONTAINER GROUPS

capacity is reduced from all groups for which it is a member. De-provisioning an instance
removes capacity from the cluster wherever that instance was assigned. For more information,
see the Deprovisioning instance groups section for more detail.

NOTE

Not all instances are required to be provisioned with an equal capacity.

8.1.7. Control where a job runs

If you associate instance groups with a job template, inventory, or organization, a job run from that job
template is not eligible for the default behavior. This means that if all of the instances inside of the
instance groups associated with these three resources are out of capacity, the job remains in the
pending state until capacity becomes available.

The order of preference in determining which instance group to submit the job to is as follows:
1. Job template
2. Inventory
3. Organization (by way of project)

If you associate instance groups with the job template, and all of these are at capacity, then the job is
submitted to instance groups specified on the inventory, and then the organization. Jobs must execute
in those groups in preferential order as resources are available.

You can still associate the global default group with a resource, like any of the custom instance groups
defined in the playbook. You can use this to specify a preferred instance group on the job template or
inventory, but still enable the job to be submitted to any instance if those are out of capacity.

Examples

e |f you associate group_a with a job template and also associate the default group with its
inventory, you enable the default group to be used as a fallback in case group_a gets out of
capacity.

® |n addition, it is possible to not associate an instance group with one resource but designate
another resource as the fallback. For example, not associating an instance group with a job
template and having it fall back to the inventory or the organization’s instance group.

This presents the following two examples:

1. Associating instance groups with an inventory (omitting assigning the job template to an
instance group) ensures that any playbook run against a specific inventory runs only on the
group associated with it. This is useful in the situation where only those instances have a direct
link to the managed nodes.

2. An administrator can assign instance groups to organizations. This enables the administrator to
segment out the entire infrastructure and guarantee that each organization has capacity to run
jobs without interfering with any other organization’s ability to run jobs.

An administrator can assign multiple groups to each organization, similar to the following
scenario:

® There are three instance groups: A, B, and C. There are two organizations: Orgland Org2.

35

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

® The administrator assigns group A to Orgl, group B to Org2 and then assigns group C to
both Orgland Org2 as an overflow for any extra capacity that may be needed.

® The organization administrators are then free to assign inventory or job templates to
whichever group they want, or let them inherit the default order from the organization.

templates udahd

Arranging resources this way offers you flexibility. You can also create instance groups with only one
instance, enabling you to direct work towards a very specific Host in the automation controller cluster.

8.1.8. Instance group capacity limits

There is external business logic that can drive the need to limit the concurrency of jobs sent to an
instance group, or the maximum number of forks to be consumed.

For traditional instances and instance groups, you might want to enable two organizations to run jobs on
the same underlying instances, but limit each organization’s total number of concurrent jobs. This can be
achieved by creating an instance group for each organization and assigning the value for
max_concurrent_jobs.

For automation controller groups, automation controller is generally not aware of the resource limits of
the OpenShift cluster. You can set limits on the number of pods on a namespace, or only resources
available to schedule a certain number of pods at a time if no auto-scaling is in place. In this case, you
can adjust the value for max_concurrent_jobs.

Another parameter available is max_forks. This provides additional flexibility for capping the capacity
consumed on an instance group or container group. You can use this if jobs with a wide variety of
inventory sizes and "forks" values are being run. This enables you to limit an organization to run up to 10
jobs concurrently, but consume no more than 50 forks at a time:

36

CHAPTER 8. INSTANCE AND CONTAINER GROUPS

max_concurrent_jobs: 10
max_forks: 50

If 10 jobs that use 5 forks each are run, an eleventh job waits until one of these finishes to run on that
group (or be scheduled on a different group with capacity).

If 2 jobs are running with 20 forks each, then a third job with a task_impact of 11 or more waits until one
of these finishes to run on that group (or be scheduled on a different group with capacity).

For container groups, using the max_forks value is useful given that all jobs are submitted using the
same pod_spec with the same resource requests, irrespective of the "forks" value of the job. The
default pod_spec sets requests and not limits, so the pods can "burst" above their requested value
without being throttled or reaped. By setting the max_forks value, you can help prevent a scenario
where too many jobs with large forks values get scheduled concurrently and cause the OpenShift nodes
to be oversubscribed with multiple pods using more resources than their requested value.

To set the maximum values for the concurrent jobs and forks in an instance group, see Creating an
instance group in the Automation controller User Guide.
8.1.9. Deprovisioning instance groups

Re-running the setup playbook does not deprovision instances since clusters do not currently distinguish
between an instance that you took offline intentionally or due to failure. Instead, shut down all services
on the automation controller instance and then run the deprovisioning tool from any other instance.

Procedure
1. Shut down the instance or stop the service with the following command:

I automation-controller-service stop

2. Run the following deprovision command from another instance to remove it from the controller
cluster registry:

I awx-manage deprovision_instance --hostname=<name used in inventory file>

Example
I awx-manage deprovision_instance --hostname=hostB

Deprovisioning instance groups in automation controller does not automatically deprovision or remove
instance groups, even though re-provisioning often causes these to be unused. They can still show up in
API| endpoints and stats monitoring. You can remove these groups with the following command:

I awx-manage unregister_queue --queuename=<name>

Removing an instance’s membership from an instance group in the inventory file and re-running the
setup playbook does not ensure that the instance is not added back to a group. To be sure that an
instance is not added back to a group, remove it through the APl and also remove it in your inventory
file. You can also stop defining instance groups in the inventory file. You can manage instance group
topology through the automation controller Ul. For more information about managing instance groups
in the Ul, see Managing Instance Groups in the Automation controller User Guide.

37

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html-single/automation_controller_user_guide/index#controller-create-instance-group
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html-single/automation_controller_user_guide/index#controller-instance-groups

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

NOTE

If you have isolated instance groups created in older versions of automation controller
(3.8.x and earlier) and want to migrate them to execution nodes to make them
compatible for use with the automation mesh architecture, see Migrate isolated
instances to execution nodes in the Ansible Automation Platform Upgrade and Migration
Guide.

8.2. CONTAINER GROUPS

Ansible Automation Platform supports container groups, which enable you to execute jobs in
automation controller regardless of whether automation controller is installed as a standalone, in a
virtual environment, or in a container. Container groups act as a pool of resources within a virtual
environment. You can create instance groups to point to an OpenShift container, which are job
environments that are provisioned on-demand as a pod that exists only for the duration of the playbook
run. This is known as the ephemeral execution model and ensures a clean environment for every job run.

In some cases, you might want to set container groups to be "always-on", which you can configure
through the creation of an instance.

NOTE

Container groups upgraded from versions prior to automation controller 4.0 revert back
to default and remove the old pod definition, clearing out all custom pod definitions in
the migration.

Container groups are different from execution environments in that execution environments are
container images and do not use a virtual environment. For more information, see Execution
environments in the Automation controller User Guide.

8.2.1. Creating a container group
A ContainerGroup is a type of InstanceGroup that has an associated credential that enables you to
connect to an OpenShift cluster.

Prerequisites

® A namespace that you can launch into. Every cluster has a "default” namespace, but you can use
a specific namespace.

® A service account that has the roles that enable it to launch and manage pods in this
namespace.

e |f you are using execution environments in a private registry, and have a container registry
credential associated with them in automation controller, the service account also needs the
roles to get, create, and delete secrets in the namespace. If you do not want to give these roles
to the service account, you can pre-create the ImagePullSecrets and specify them on the pod
spec for the ContainerGroup. In this case, the execution environment must not have a
container registry credential associated, or automation controller attempts to create the secret
for you in the namespace.

® A token associated with that service account. An OpenShift or Kubernetes Bearer Token.

® A CA certificate associated with the cluster.

38

https://docs.ansible.com/automation-controller/4.4/html/upgrade-migration-guide/upgrade_to_ees.html#migrate-iso-to-exe
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html-single/automation_controller_user_guide/index#assembly-controller-execution-environments

CHAPTER 8. INSTANCE AND CONTAINER GROUPS

The following procedure explains how to create a service account in an OpenShift cluster or Kubernetes,
to be used to run jobs in a container group through automation controller. After the service account is
created, its credentials are provided to automation controller in the form of an OpenShift or Kubernetes
API| Bearer Token credential.

Procedure

1.

To create a service account, download and use the sample service account, containergroup sa
and modify it as needed to obtain the credentials.

. Apply the configuration from containergroup-sa.ymil:

I oc apply -f containergroup-sa.yml

Get the secret name associated with the service account:

export SA_SECRET=$(oc get sa containergroup-service-account -0 json | jq
".secrets[0].name’" | tr -d ™)

Get the token from the secret:

oc get secret $(echo ${SA_SECRET}) -o json | jq '.data.token' | xargs | base64 --decode >
containergroup-sa.token

Get the CA certificate:

oc get secret $SA_SECRET -o json | jq '.data["ca.crt"]' | xargs | base64 --decode >
containergroup-ca.crt

Use the contents of containergroup-sa.token and containergroup-ca.crt to provide the
information for the OpenShift or Kubernetes API Bearer Token required for the container

group.

To create a container group:

Procedure

1.

Use the automation controller Ul to create an OpenShift or Kubernetes API Bearer Token
credential to use with your container group. For more information, see Creating a credential in
the Automation controller User Guide.

From the navigation panel select Administration = Instance Groups.

Click Add and select Create Container Group.

Enter a name for your new container group and select the credential previously created to
associate it to the container group.

8.2.2. Customizing the pod specification

Ansible Automation Platform provides a simple default pod specification, however, you can provide a
custom YAML or JSON document that overrides the default pod specification. This field uses any
custom fields such as ImagePullSecrets, that can be "serialized" as valid pod JSON or YAML. A full list
of options can be found in the Pods and Services section of the OpenShift documentation.

39

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html-single/automation_controller_user_guide/index#ref-controller-credential-openShift
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html-single/automation_controller_user_guide/index#ref-controller-credential-openShift
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html-single/automation_controller_user_guide/index#controller-getting-started-create-credential
https://docs.openshift.com/online/pro/architecture/core_concepts/pods_and_services.html

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

Procedure

1. To customize the pod specification, specify the namespace in the Pod Spec Override field by
using the toggle to enable and expand the Pod Spec Override field.

Name * Credential ® Options.
test-container-group Q Customize pod specification
Gusampodspec © .

1 apiVersion: vl

2 kind: Pod

3 - metadata:

4 namespace: default

5- spec:

6 serviceAccountName: default

2. Click Save.

You can provide additional customizations, if needed. Click Expand to view the entire customization
window:

| zemaioic
Custom pod spec x
Custom pod spec @

1 apiVersion: vl
2 kind: Pod

3~ metadata:

4 namespace: default

5+ spec:

6 serviceAccountName: default

7 automountServiceAccountToken: false

8- containers:

9- - image: >-

10 brew.registry.redhat.io/rh-osbs/ansible-automation-platform-21-ee-supported-rhel8: latest
11 name: worker

12~ args:

13 - ansible-runner

14 - worker

15 - '=—private-data-dir=/runner’

16~ resources:

17 - requests:

NOTE

The image when a job launches is determined by which execution environment is
associated with the job. If you associate a container registry credential with the execution
environment, then automation controller attempts to make an ImagePullSecret to pull
the image. If you prefer not to give the service account permission to manage secrets,
you must pre-create the ImagePullSecret and specify it on the pod specification, and
omit any credential from the execution environment used.

For more information, see the Allowing Pods to Reference Images from Other Secured
Registries section of the Red Hat Container Registry Authentication article.

Once you have created the container group successfully, the Details tab of the newly created container
group remains, which enables you to review and edit your container group information. This is the same

3
menu that is opened if you click the @ icon from the Instance Group link. You can also edit Instances
and review Jobs associated with this instance group.

40

https://access.redhat.com/RegistryAuthentication#allowing-pods-to-reference-images-from-other-secured-registries-8

CHAPTER 8. INSTANCE AND CONTAINER GROUPS

Instance Groups > test-container-group

Jobs
4 Back to instance groups Details Jobs
H O Name ~ Q Delete Cancel jobs
Name Status Type Start Time
>] 17 — Demo Job Template @ Error Playbook Run 3/18/2022,12:46:54 PM

Container groups and instance groups are labeled accordingly.

8.2.3. Verifying container group functions

To verify the deployment and termination of your container:

Procedure

Finish Time 1

3/18/2022, 12:46:54 PM

1-Toflitems ~

Actions

1. Create a mock inventory and associate the container group to it by populating the name of the
container group in the Instance Group field. For more information, see Add a new inventory in

the Automation controller User Guide.

Create new inventory

Name * Description

Container Group Test Inventory

Organization *

Q Default

Instance Groups

Q, testcontainer-group X

Variables ® R

N —

Save Cancel

2. Create the localhost host in the inventory with variables:

I {'ansible_host": '127.0.0.1', 'ansible_connection': 'local'}

Name * Description

localhost

Variables [[Z0M

7 [—
2 |{'ansible_host': '127.0.8.1', 'ansible_connection': 'Local'}l

3. Launch an ad hoc job against the localhost using the ping or setup module. Even though the
Machine Credential field is required, it does not matter which one is selected for this test:

41

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html-single/automation_controller_user_guide/index#proc-controller-adding-new-inventory

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

Inventories > Container Group Test Inventory

Hosts

4 Back to Inventories Details Access Groups Hosts Sources Jobs

Name v Q I Run Command] i Delete
Name T
localhost

Run command

o Details Module * @

1-1of litems +

1-10f1 =

© o

1 of 1 page

2 Execution Environment ’ ping

3 Credential
Arguments &

4 Preview

Verbosity * &

O (Normal)

Limit &

localhost

Forks

o]

Show changes (3 [J Enable privilege escalation &
Off

Extra variables (3 w

Next Back Cancel

Actions

rd

You can see in the Jobs details view that the container was reached successfully using one of the ad

hoc jobs.

If you have an OpenShift Ul, you can see pods appear and disappear as they deploy and terminate.
Alternatively, you can use the CLI to perform a get pod operation on your namespace to watch these

same events occurring in real-time.

8.2.4. View container group jobs

When you run a job associated with a container group, you can see the details of that job in the Details
view along with its associated container group and the execution environment that spun up.

Jobs » 1028 - JobTemplate - PatienceKitchen@

Details
4 Back to Jobs Details Output
Job ID 1028 Status © Successful Started 3/22/2022,10:12:11 AM
Finished 3/22/2022,10:12:54 AM Job Template JobTemplate - PatienceKitchen@ Job Type Playbook Run
Launched By admin Inventory Inventory - LegAddition€ Project Project - KindWin€
Project Status @ Successfu Revision 98b8dc2d4d6671ddceab73a5d3958e94fcdbad1d Playbook pingyml
Verbosity 0 (Normal) Execution Environment AWX EE (latest) Container Group ContainerGroup - rsfrtt4xqa
Job Slice on Created 3/22/2022,10:12:10 AM by admin Last Modified 3/22/2022,10:12:10 AM

variables [vav. [EESN)

42

CHAPTER 8. INSTANCE AND CONTAINER GROUPS

8.2.5. Kubernetes API failure conditions

When running a container group and the Kubernetes API responds that the resource quota has been
exceeded, automation controller keeps the job in pending state. Other failures result in the traceback of
the Error Details field showing the failure reason, similar to the following example:

Error creating pod: pods is forbidden: User "system: serviceaccount: aap:example" cannot create
resource "pods" in APl group "" in the namespace "aap"

8.2.6. Container capacity limits

Capacity limits and quotas for containers are defined by objects in the Kubernetes API:

® To set limits on all pods within a given namespace, use the LimitRange object. For more
information see the Quotas and Limit Ranges section of the OpenShift documentation.

® To set limits directly on the pod definition launched by automation controller, see Customizing
the pod specification and the Compute Resources section of the OpenShift documentation.

NOTE

Container groups do not use the capacity algorithm that normal nodes use. You need to
set the number of forks at the job template level. If you configure forks in automation
controller, that setting is passed along to the container.

43

https://docs.openshift.com/online/pro/dev_guide/compute_resources.html#overview
https://docs.openshift.com/online/pro/dev_guide/compute_resources.html#dev-compute-resources

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

CHAPTER 9. MANAGING CAPACITY WITH INSTANCES

Scaling your automation mesh is available on OpenShift deployments of Red Hat Ansible Automation
Platform and is possible through adding or removing nodes from your cluster dynamically, using the
Instances resource of the automation controller Ul, without running the installation script.

Instances serve as nodes in your mesh topology. Automation mesh enables you to extend the footprint
of your automation. The location where you launch a job can be different from the location where the
ansible-playbook runs.

To manage instances from the automation controller Ul, you must have System Administrator or System
Auditor permissions.

In general, the more processor cores (CPU) and memory (RAM) a node has, the more jobs that can be
scheduled to run on that node at once.

For more information, see Automation controller capacity determination and job impact.

9.1. PREREQUISITES

The automation mesh is dependent on hop and execution nodes running on Red Hat Enterprise Linux
(RHEL). Your Red Hat Ansible Automation Platform subscription grants you ten Red Hat Enterprise
Linux licenses that can be used for running components of Ansible Automation Platform.

For additional information about Red Hat Enterprise Linux subscriptions, see Registering the system
and managing subscriptions in the Red Hat Enterprise Linux documentation.

The following steps prepare the RHEL instances for deployment of the automation mesh.

1. Yourequire a Red Hat Enterprise Linux operating system. Each node in the mesh requires a
static IP address, or a resolvable DNS hostname that automation controller can access.

2. Ensure that you have the minimum requirements for the RHEL virtual machine before
proceeding. For more information, see the Red Hat Ansible Automation Platform system
requirements.

3. Deploy the RHEL instances within the remote networks where communication is required. For
information about creating virtual machines, see Creating Virtual Machines in the Red Hat
Enterprise Linux documentation. Remember to scale the capacity of your virtual machines
sufficiently so that your proposed tasks can run on them.

® RHEL ISOs can be obtained from access.redhat.com.

® RHEL cloud images can be built using Image Builder from console.redhat.com.

9.2. PULLING THE SECRET
If you are using the default execution environment (provided with automation controller) to run on
remote execution nodes, you must add a pull secret in the automation controller that contains the

credential for pulling the execution environment image.

To do this, create a pull secret on the automation controller namespace and configure the
ee_pull_credentials_secret parameter in the Operator as follows:

Procedure

44

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/automation_controller_user_guide/controller-jobs#controller-capacity-determination
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/assembly_registering-the-system-and-managing-subscriptions_configuring-basic-system-settings
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/red_hat_ansible_automation_platform_planning_guide/platform-system-requirements
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_virtualization/assembly_creating-virtual-machines_configuring-and-managing-virtualization

CHAPTER 9. MANAGING CAPACITY WITH INSTANCES

1. Create a secret:

oc create secret generic ee-pull-secret \
--from-literal=username=<username> \
--from-literal=password=<password> \
--from-literal=url=registry.redhat.io

oc edit automationcontrollers <instance name>

2. Add ee_pull_credentials_secret ee-pull-secret to the specification:
I spec.ee_pull_credentials_secret=ee-pull-secret

To manage instances from the automation controller Ul, you must have System Administrator or
System Auditor permissions.

9.3. SETTING UP VIRTUAL MACHINES FOR USE IN AN AUTOMATION
MESH

Procedure

1. SSH into each of the RHEL instances and perform the following steps. Depending on your
network access and controls, SSH proxies or other access models might be required.
Use the following command:

I ssh [username]@[host_ip_address]

For example, for an Ansible Automation Platform instance running on Amazon Web Services.
I ssh ec2-user@10.0.0.6

2. Create or copy an SSH key that can be used to connect from the hop node to the execution
node in later steps. This can be a temporary key used just for the automation mesh
configuration, or a long-lived key. The SSH user and key are used in later steps.

3. Enable your RHEL subscription with baseos and appstream repositories. Ansible Automation
Platform RPM repositories are only available through subscription-manager, not the Red Hat

Update Infrastructure (RHUI). If you attempt to use any other Linux footprint, including RHEL
with RHUI, this causes errors.

I sudo subscription-manager register --auto-attach

If Simple Content Access is enabled for your account, use:

I sudo subscription-manager register

For more information about Simple Content Access, see Getting started with simple content
access.

4. Enable Ansible Automation Platform subscriptions and the proper Red Hat Ansible Automation
Platform channel:

45

https://docs.redhat.com/en/documentation/subscription_central/1-latest/html/getting_started_with_simple_content_access/index

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

subscription-manager repos --enable ansible-automation-platform-2.4-for-rhel-8-x86_64-
rpms for RHEL 8

subscription-manager repos --enable ansible-automation-platform-2.4-for-rhel-9-x86_64-
rpms for RHEL 9

5. Ensure the packages are up to date:

I sudo dnf upgrade -y

6. Install the ansible-core packages:

I sudo dnf install -y ansible-core

9.4. MANAGING INSTANCES

To expand job capacity, create a standalone execution node that can be added to run alongside a
deployment of automation controller. These execution nodes are not part of the automation controller
Kubernetes cluster. The control nodes run in the cluster connect and submit work to the execution
nodes through Receptor. These execution nodes are registered in automation controller as type
execution instances, meaning they are only used to run jobs, not dispatch work or handle web requests
as control nodes do.

Hop nodescan be added to sit between the control plane of automation controller and standalone
execution nodes. These hop nodes are not part of the Kubernetes cluster and are registered in
automation controller as an instance of type hop, meaning they only handle inbound and outbound
traffic for otherwise unreachable nodes in different or more strict networks.

The following procedure demonstrates how to set the node type for the hosts.

Procedure

1. From the navigation panel, select Administration — Instances.

2. On the Instances list page, click Add. The Create new Instance window opens.

Instances

Create new Instance

Host Name * Description Instance State @

installed

Listener Port ® Instance Type * Options

Enable Instance @
Managed by Policy ®
Peers from control nodes ®

Execution v

An instance requires the following attributes:

® Host Name: (required) Enter a fully qualified domain name (public DNS) or IP address for
your instance. This field is equivalent to hosthame for installer-based deployments.

46

CHAPTER 9. MANAGING CAPACITY WITH INSTANCES

NOTE

If the instance uses private DNS that cannot be resolved from the control
cluster, DNS lookup routing fails, and the generated SSL certificates is
invalid. Use the IP address instead.

e Optional: Description: Enter a description for the instance.

® |nstance State: This field is auto-populated, indicating that it is being installed, and cannot
be modified.

e Listener Port: This port is used for the receptor to listen on for incoming connections. You
can set the port to one that is appropriate for your configuration. This field is equivalent to
listener_port in the API. The default value is 27199, though you can set your own port value.

® [nstance Type: Only execution and hop nodes can be created. Operator based
deployments do not support Control or Hybrid nodes.
Options:

o Enable Instance: Check this box to make it available for jobs to run on an execution
node.

o Check the Managed by Policy box to enable policy to dictate how the instance is
assigned.

o Check the Peers from control nodesbox to enable control nodes to peer to this
instance automatically. For nodes connected to automation controller, check the Peers
from Control nodes box to create a direct communication link between that node and
automation controller. For all other nodes:

® |f you are not adding a hop node, make sure Peers from Control is checked.
® |f you are adding a hop node, make sure Peers from Controlis not checked.

B For execution nodes that communicate with hop nodes, do not check this box.

o To peer an execution node with a hop node, click the Q icon next to the Peers field.
The Select Peers window is displayed.

Peer the execution node to the hop node.

3. Click Save.
Instances > awx-mesh-ingress-1
. ko)
Details
4 Back to Instances Details Listener Addresses Peers
Host Name awx-mesh-ingress-1 Status @ Ready Node Type hop
Listener Port 27199 Install Bundle Peers from control nodes On

4. To view a graphical representation of your updated topology, see Topology viewer.

47

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

NOTE

Execute the following steps from any computer that has SSH access to the newly
created instance.

3

5. Click the ;& icon next to Install Bundle to download the tar file that includes this new instance
and the files necessary to install the created node into the automation mesh.

Instances > New instance

Details

4 Back to Instances Details Peers

Host Name New instance Status © Installed
Policy Type Auto Running Jobs o]
Install Bundle Capacity Adjustment O forks
CPUD @RAM 0

o]

Run health check o Enabled

The install bundle contains TLS certificates and keys, a certificate authority, and a proper
Receptor configuration file.

receptor-ca.crt
work-public-key.pem
receptor.key
install_receptor.yml
inventory.yml
group_vars/all.yml
requirements.ymi

6. Extract the downloaded tar.gz Install Bundle from the location where you downloaded it. To
ensure that these files are in the correct location on the remote machine, the install bundle
includes the install_receptor.yml playbook. The playbook requires the Receptor collection. Run
the following command to download the collection:

I ansible-galaxy collection install -r requirements.yml

7. Before running the ansible-playbook command, edit the following fields in the inventory.yml
file:

all:
hosts:
remote-execution:
ansible_host: 10.0.0.6
ansible_user: <username> # user provided
ansible_ssh_private_key_file: ~/.ssh/<id_rsa>

® Ensure ansible_host is set to the IP address or DNS of the node.

® Set ansible_user to the username running the installation.

48

1.

12.

13.

CHAPTER 9. MANAGING CAPACITY WITH INSTANCES

® Set ansible_ssh_private_key file to contain the filename of the private key used to
connect to the instance.

® The content of the inventory.yml file serves as a template and contains variables for roles
that are applied during the installation and configuration of a receptor node in a mesh
topology. You can modify some of the other fields, or replace the file in its entirety for

advanced scenarios. For more information, see Role Variables.

For a node that uses a private DNS, add the following line to inventory.ymi:
I ansible_ssh_common_args: <your ssh ProxyCommand setting>

This instructs the install-receptor.yml playbook to use the proxy command to connect through
the local DNS node to the private node.

When the attributes are configured, click Save. The Details page of the created instance opens.

. Save the file to continue.

The system that is going to run the install bundle to setup the remote node and run ansible-
playbook requires the ansible.receptor collection to be installed:

I ansible-galaxy collection install ansible.receptor
or

I ansible-galaxy install -r requirements.yml|

® |nstalling the receptor collection dependency from the requirements.yml file consistently
retrieves the receptor version specified there. Additionally, it retrieves any other collection
dependencies that might be needed in the future.

® |nstall the receptor collection on all nodes where your playbook will run, otherwise an error
occurs.

If receptor_listener_port is defined, the machine also requires an available open port on which
to establish inbound TCP connections, for example, 27199. Run the following command to open
port 27199 for receptor communication:

I sudo firewall-cmd --permanent --zone=public --add-port=27199/tcp
Run the following playbook on the machine where you want to update your automation mesh:
I ansible-playbook -i inventory.yml install_receptor.yml

After this playbook runs, your automation mesh is configured.

49

https://github.com/ansible/receptor-collection/blob/main/README.md

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

Instances D
> 0 Name + Q Add Remove Run health check 1-30f3 ~
Name t @ Status Node Type Capacity Adjustment Used Capacity Actions
O awx-mesh-ingress-1 @ Ready hop
156
> O awx-task-65d6d96987-mgn9j @ Ready control CPU forks RAM Used capacity 0% o Enabled
6 —giS6
o
7 forks
> O ec2-35-87-18-213.us-west- @ Ready execution CPU4 —_@RAM7 Usedcapacity ~ 0% o Enabled
2.compute.amazonaws.com o
1-3of 3items ~ 1 of 1 page

To remove an instance from the mesh, see Removing instances.

50

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/red_hat_ansible_automation_platform_automation_mesh_for_operator-based_installations/assembly-automation-mesh-operator-aap#ref-removing-instances

CHAPTER 10. TOPOLOGY VIEWER

CHAPTER10. TOPOLOGY VIEWER

The topology viewer enables you to view node type, node health, and specific details about each node if
you already have a mesh topology deployed.

To access the topology viewer from the automation controller Ul, you must have System Administrator
or System Auditor permissions.

For more information about automation mesh on a VM-based installation, see the Red Hat Ansible
Automation Platform automation mesh guide for VM-based installations.

For more information about automation mesh on an operator-based installation, see the Red Hat
Ansible Automation Platform automation mesh for operator-based installations.

10.1. ACCESSING THE TOPOLOGY VIEWER

Use the following procedure to access the topology viewer from the automation controller Ul.

Procedure

1. From the navigation panel, select Administration - Topology View. The Topology View opens
and displays a graphical representation of how each receptor node links together.

Topology View @ a x I @ Legend

Legend Details

Node types Click on a node icon to display the details.
C | Control node

Ex Execution node

Hy Hybrid node

h Hop node C

Node state types v awx-68f586fb6f-...
@ Ready K
© installed

@ Deprovisioning

johns-host.j
oo

C ' Enabled

Ex

C ' Disabled

Link state types

== Established
= = Adding

= = Removing

2. To adjust the zoom levels, or manipulate the graphic views, use the control icons: zoom-in (Q

), zoom-out (Q), expand (&), and reset (L1) on the toolbar.

You can also click and drag to pan around; and scroll using your mouse or trackpad to zoom. The
fit-to-screen feature automatically scales the graphic to fit on the screen and repositions it in
the center. It is particularly useful when you want to see a large mesh in its entirety.

51

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/red_hat_ansible_automation_platform_automation_mesh_guide_for_vm-based_installations/index
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/red_hat_ansible_automation_platform_automation_mesh_for_operator-based_installations/index

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

52

Topology View @ a x I @ Legend

Legend Details

Node types Click on a node icon to display the details.
C | Control node
Ex Execution node
Hy Hybrid node

h | Hop node

Node state types
@ ready

© installed

© Provisioning
@ Deprovisioning
Qe

C Enabled

C' Disabled

Link state types
=== Established
= = Adding

= = Removing

To reset the view to its default view, click the Reset zoom (La) icon.

Refer to the Legend to identify the type of nodes that are represented.
For VM-based installations, see Control and execution planes

For operator-based installations, see Control and execution planes

for more information on each type of node.

NOTE

If the Legend is not present, use the toggle on the top bar to enable it.

The Legend shows the node status <node_statuses> by color, which is indicative of the health
of the node. An Error status in the Legend includes the Unavailable state (as displayed in the
Instances list view) plus any future error conditions encountered in later versions of automation
controller.

The following link statuses are also shown in the Legend:

® Established: This is a link state that indicates a peer connection between nodes that are
either ready, unavailable, or disabled.

® Adding: This is a link state indicating a peer connection between nodes that were selected
to be added to the mesh topology.

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/red_hat_ansible_automation_platform_automation_mesh_guide_for_vm-based_installations/assembly-planning-mesh#con-automation-mesh-node-types
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/red_hat_ansible_automation_platform_automation_mesh_for_operator-based_installations/assembly-planning-mesh#con-automation-mesh-node-types

CHAPTER 10. TOPOLOGY VIEWER

® Removing: This is a link state indicating a peer connection between nodes that were

selected to be removed from the topology.

4. Hover over a node and the connectors highlight to show its immediate connected nodes
(peers) or click on a node to retrieve details about it, such as its hostname, node type, and

status.
+ awx-681586fb6f-...
Ex
Ex

Details

C awx-68f586fbef-jm22k

Instance status
@ Ready

Instance type

control

IP address

10.128.2133

Instance groups
controlplane

Forks

157 forks
CPUe .RAM 157
0
Capacity
Used capacity 0%

5. Click on the link for instance hostname from the details displayed to be redirected to its Details
page that provides more information about that node, most notably for information about an
Error status, as in the following example.

Ex

Ex

1 four

Ex

C

v awx-679756967b-...
! samh'shnode

Ex

Details

Ex sarah's node

Instance status

@ Unavailable
Click here to

view details
or run a health

check on the
I instance

Instance type

execution

Download bundle

Instance groups

Forks

O forks
CPUO .RAM 0

0

53

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

Instances > sarah's node

. D

Details

4 Back to Instances Details Peers

Host Name sarah’s node Status @ Unavailable Node Type execution

Policy Type Auto Running Jobs O Total Jobs [¢]

LastHealth Check 9/14/2022, 112:44 PM Install Bundle E Capacity Adjustment 0 forks

CPUQ o @RAMO
o
Used Capacity Used capacity 100%
Errors
Instance sarah's node is not in the receptor mesh

Run health check o Enabled

You can use the Details page to remove the instance, run a health check on the instance on an
as-needed basis, or unassign jobs from the instance. By default, jobs can be assigned to each
node. However, you can disable it to exclude the node from having any jobs running on it.

For more information on creating new nodes and scaling the mesh, see Managing Capacity with
Instances.

54

CHAPTER 11. AUTOMATION CONTROLLER LOGFILES

CHAPTER 1. AUTOMATION CONTROLLER LOGFILES

Automation controller logfiles can be accessed from two centralized locations:

/var/log/tower/

/var/log/supervisor/

In the /var/log/tower/ directory, you can view logfiles captured by:

tower.log: Captures the log messages such as runtime errors that occur when the job is
executed.

callback_receiver.log: Captures callback receiver logs that handles callback events when
running ansible jobs.

dispatcher.log: Captures log messages for the automation controller dispatcher worker service.

job_lifecycle.log: Captures details of the job run, whether it is blocked, and what condition is
blocking it.

management_playbooks.log: Captures the logs of management playbook runs, and isolated
job runs such as copying the metadata.

rsyslog.err: Captures rsyslog errors authenticating with external logging services when sending
logs to them.

task_system.log: Captures the logs of tasks that automation controller is running in the
background, such as adding cluster instances and logs related to information gathering or
processing for analytics.

tower_rbac_migrations.log: Captures the logs for rbac database migration or upgrade.

tower_system_tracking_migrations.log: Captures the logs of the controller system tracking
migration or upgrade.

wsbroadcast.log: Captures the logs of websocket connections in the controller nodes.

In the /var/log/supervisor/ directory, you can view logfiles captured by:

awx-callback-receiver.log: Captures the log of callback receiver that handles callback events
when running ansible jobs, managed by supervisord.

awx-daphne.log: Captures the logs of Websocket communication of WebUI.

awx-dispatcher.log: Captures the logs that occur when dispatching a task to an automation
controller instance, such as when running a job.

awx-rsyslog.log: Captures the logs for the rsyslog service.
awx-uwsgi.log: Captures the logs related to uWSGI, which is an application server.

awx-wsbroadcast.log: Captures the logs of the websocket service that is used by automation
controller.

failure-event-handler.stderr.log: Captures the standard errors for /usr/bin/failure-event-
handler supervisord’s subprocess.

55

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

e supervisord.log: Captures the logs related to supervisord itself.
® wsrelay.log: Captures the communication logs within the websocket relay server.
® ws_heartbeat.log: Captures the periodic checks on the health of services running on the host.

® rsyslog_configurer.log: Captures rsyslog configuration activity associated with authenticating
with external logging services.

The /var/log/supervisor/ directory includes stdout files for all services as well.

You can expect the following log paths to be generated by services used by automation controller (and
Ansible Automation Platform):

e /var/log/nginx/
e /var/lib/pgsql/data/pg_log/

e /var/log/redis/

Troubleshooting

Error logs can be found in the following locations:
® Automation controller server errors are logged in /var/log/tower.
® Supervisors logs can be found in /var/log/supervisor/.
® Nginx web server errors are logged in the httpd error log.
e Configure other automation controller logging needs in /etc/tower/conf.d/.

Explore client-side issues using the JavaScript console built into most browsers and report any errors to
Ansible through the Red Hat Customer portal at: https://access.redhat.com/.

56

https://access.redhat.com/

CHAPTER12. LOGGING AND AGGREGATION

CHAPTER 12. LOGGING AND AGGREGATION

Logging provides the capability to send detailed logs to third-party external log aggregation services.
Services connected to this data feed serve as a means of gaining insight into automation controller use
or technical trends. The data can be used to analyze events in the infrastructure, monitor for anomalies,
and correlate events in one service with events in another.

The types of data that are most useful to automation controller are job fact data, job events or job runs,
activity stream data, and log messages. The data is sent in JSON format over a HTTP connection using
minimal service-specific adjustments engineered in a custom handler or through an imported library.

The version of rsyslog that is installed by automation controller does not include the following rsyslog
modules:

® rsyslog-udpspoof.x86_64
® rsyslog-libdbi.x86_64

After installing automation controller, you must only use the automation controller provided rsyslog
package for any logging outside of automation controller that might have previously been done with the
RHEL provided rsyslog package.

If you already use rsyslog for logging system logs on the automation controller instances, you can
continue to use rsyslog to handle logs from outside of automation controller by running a separate
rsyslog process (using the same version of rsyslog that automation controller uses), and pointing it to a
separate /etc/rsyslog.conf file.

Use the /api/v2/settings/logging/ endpoint to configure how the automation controller rsyslog
process handles messages that have not yet been sent in the event that your external logger goes
offline:

e LOG_AGGREGATOR_MAX_ DISK_USAGE_GB: Specifies the amount of data to store (in
gigabytes) during an outage of the external log aggregator (defaults to 1). Equivalent to the
rsyslogd queue.maxdiskspace setting.

e LOG_AGGREGATOR_MAX_DISK_USAGE_PATH: Specifies the location to store logs that
should be retried after an outage of the external log aggregator (defaults to /var/lib/awx).
Equivalent to the rsyslogd queue.spoolDirectory setting.

For example, if Splunk goes offline, rsyslogd stores a queue on the disk until Splunk comes back

online. By default, it stores up to 1GB of events (while Splunk is offline) but you can increase that to
more than 1GB if necessary, or change the path where you save the queue.

12.1. LOGGERS
The following are special loggers (except for awx, which constitutes generic server logs) that provide
large amounts of information in a predictable structured or semi-structured format, using the same
structure as if obtaining the data from the API:

e job_events: Provides data returned from the Ansible callback module.

e activity_stream: Displays the record of changes to the objects within the application.

e system_tracking: Provides fact data gathered by Ansible setup module, thatis, gather_facts:
true when job templates are run with Enable Fact Cacheselected.

57

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

® awx: Provides generic server logs, which include logs that would normally be written to a file. It
contains the standard metadata that all logs have, except it only has the message from the log
statement.
These loggers only use the log-level of INFO, except for the awx logger, which can be any given level.
Additionally, the standard automation controller logs are deliverable through this same mechanism. It
should be apparent how to enable or disable each of these five sources of data without manipulating a
complex dictionary in your local settings file, and how to adjust the log-level consumed from the
standard automation controller logs.

From the navigation panel, select Settings. Then select Logging settings from the list of System
options to configure the logging components in automation controller.

12.1.1. Log message schema

Common schema for all loggers:

e cluster_host_id: Unique identifier of the host within the automation controller cluster.

e Jevel: Standard python log level, roughly reflecting the significance of the event. All of the data
loggers as a part of 'level’ use INFO level, but the other automation controller logs use different
levels as appropriate.

e Jogger_name: Name of the logger we use in the settings, for example, "activity_stream".

o @timestamp: Time of log.

® path: File path in code where the log was generated.

12.1.2. Activity stream schema

This uses the fields common to all loggers listed in Log message schema.
It has the following additional fields:
® actor: Username of the user who took the action documented in the log.
e changes: JSON summary of what fields changed, and their old or new values.

e operation: The basic category of the changes logged in the activity stream, for instance,
"associate".

e object1: Information about the primary object being operated on, consistent with what is shown
in the activity stream.

e object2: If applicable, the second object involved in the action.
This logger reflects the data being saved into job events, except when they would otherwise conflict with
expected standard fields from the logger, in which case the fields are nested. Notably, the field host on
the job_event model is given as event_host. There is also a sub-dictionary field, event_data within the

payload, which contains different fields depending on the specifics of the Ansible event.

This logger also includes the common fields in Log message schema.

12.1.3. Scan / fact / system tracking data schema

58

CHAPTER12. LOGGING AND AGGREGATION

These contain detailed dictionary-type fields that are either services, packages, or files.

® services: For services scans, this field is included and has keys based on the name of the
service.

NOTE

non

Periods are not allowed by elastic search in names, and are replaced with "_" by
the log formatter.

e package: Included for log messages from package scans.
e files: Included for log messages from file scans.

® host: Name of the host the scan applies to.

® inventory_id: The inventory id the host is inside of.

This logger also includes the common fields in Log message schema.

12.1.4. Job status changes

This is a lower-volume source of information about changes in job states compared to job events, and
captures changes to types of unified jobs other than job template based jobs.

This logger also includes the common fields in Log message schema and fields present on the job
model.

12.1.5. Automation controller logs

This logger also includes the common fields in Log message schema.

In addition, this contains a msg field with the log message. Errors contain a separate traceback field.
From the navigation panel, select Settings. Then select Logging settings from the list of System
options and use the ENABLE EXTERNAL LOGGING option to enable or disable the logging
components.

12.1.6. Logging Aggregator Services

The logging aggregator service works with the following monitoring and data analysis systems:
® Splunk
® Loggly
® Sumologic

® FElastic Stack (formerly ELK stack)

12.1.6.1. Splunk

Automation controller's Splunk logging integration uses the Splunk HTTP Collector. When configuring a
SPLUNK logging aggregator, add the full URL to the HTTP Event Collector host, as in the following
example:

59

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

https://<yourcontrollerfqdn>/api/v2/settings/logging

{
"LOG_AGGREGATOR_HOST": "https://<yoursplunk>:8088/services/collector/event”,
"LOG_AGGREGATOR_PORT": null,
"LOG_AGGREGATOR_TYPE": "splunk",
"LOG_AGGREGATOR_USERNAME": ",
"LOG_AGGREGATOR_PASSWORD": "$encrypted$",
"LOG_AGGREGATOR_LOGGERS": |
"awx",
"activity_stream",
"job_events",
"system_tracking"
1,
"LOG_AGGREGATOR_INDIVIDUAL_FACTS": false,
"LOG_AGGREGATOR_ENABLED": true,
"LOG_AGGREGATOR_CONTROLLER_UUID": "

NOTE

The Splunk HTTP Event Collector listens on port 8088 by default, so you must provide
the full HEC event URL (with the port number) for LOG_AGGREGATOR_HOST for
incoming requests to be processed successfully.

Typical values are shown in the following example:

Settings > Logging

" . kol
Edit Details
Enable External Logging Revert Logging Aggregator Revert Logging Aggregator Port & Revert
Off http:///%SPLUNK_IP%/services/collector/event
Logging Aggregator Type @& Revert Logging Aggregator Username () Revert Logging Aggregator Password,/ Token () Revert
splunk - R
Log System Tracking Facts Individually &) Revert Leogging Aggregater Protocol (3 Revert Logging Aggregator Level Thresheld () Revert
Off HTTPS/HTTP - INFO -
TCP Connection Timeout * @ Revert E: i HTTPS certifi ificati Revert
; © o
Sending Data to Log Form & Revert
-1
awx,
"activity_stream",
"job_events",
"system_tracking"
J
Log Fermat For API 4XX Errors & Revert

status {status_code} received by user {user_name} attempting to access {url_path} from {remote_addr}

Revert all to default Cancel

For more information on configuring the HTTP Event Collector, see the Splunk documentation.

12.1.6.2. Loggly

For more information on sending logs through Loggly’s HTTP endpoint, see the Loggly documentation.

Loggly uses the URL convention shown in the Logging Aggregator field in the following example:

60

https://docs.splunk.com/Documentation/Splunk/latest/Data/UsetheHTTPEventCollector
https://documentation.solarwinds.com/en/success_center/loggly/content/admin/http-endpoint.htm?cshid=loggly_http-endpoint

CHAPTER12. LOGGING AND AGGREGATION

Logging Aggregator (%) Revert

http://logs-01.loggly.com/inputs/5b9ad697-81f9-4249-3e76-

12.1.6.3. Sumologic

In Sumologic, create a search criteria containing the JSON files that provide the parameters used to
collect the data you need.

+ Sumologic' Library Search Metrics Dashboards Manage Help

Unnamed Search =

v Last 15 Minutes @ m

| json field=_raw "message" as message2 R
| json field=_raw "actor" as actor se Hecelpt Time
| json field=_raw "object1" as objectl

2°58:21 FM AT Done gathering results AF) TIME: 00:00:01 L 2 N: 1BS8BAE45SADTE172D 31321 FM
Messages
actor @] .
Display Fields c
® Time
@ actor admin 2 100.00%

a message2

« object]
. Message Ly &' I a t lu
1 T20:07
Hidden Fields objectl
hest
a Collector logger_name: "awx.analyti activit
+ Size path: * v in/middleware.py”,
5 message: "Activity St date entry f]
: Source operation: "update"
:» Source Category changes: "{\"name\" "AlanCoding exampleszzzsafasdfqoqt\"
« Source Host AlanCoding exampleszzzsaf ifgoqt:z 1}",
level
a Source Name @version:
object2
actor admin"
type
}
Haost: 207.67.11.130 Http Input teq Http Input
admin Activity setting Rav
Stream {
update cluster_host_id

entry relationship: "",

for tags: [1,

setting @timestamp 201¢ 1-30T20:07:3 T S—
objectl "setting”,

12.1.6.4. Elastic stack (formerly ELK stack)

If you are setting up your own version of the elastic stack, the only change you require is to add the
following lines to the logstash logstash.conf file:

filter {
json {

61

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

}
}

source => "message”

NOTE

Backward-incompatible changes were introduced with Elastic 5.0.0, and different
configurations might be required depending on what version you are using.

12.2. SETTING UP LOGGING

Use the following procedure to set up logging to any of the aggregator types.

Procedure

1. From the navigation panel, select Settings.
2. Select Logging settings from the list of System options.

3. On the Logging settings screen, click Edit.

4. Set the following configurable options:

62

Enable External Logging Click the toggle button to ON if you want to send logs to an
external log aggregator.

Logging Aggregator: Enter the hostname or IP address that you want to send logs to.

Logging Aggregator Port: Specify the port for the aggregator if it requires one.

NOTE

When the connection type is HTTPS, you can enter the hostname as a URL
with a port number, after which, you are not required to enter the port again.
However, TCP and UDP connections are determined by the hostname and
port number combination, rather than URL. Therefore, in the case of a TCP
or UDP connection, supply the port in the specified field. If a URL is entered
in the Logging Aggregator field instead, its hostname portion is extracted as
the hostname.

® Logging Aggregator Type: Click to select the aggregator service from the list:
Logging Aggregator Type (3 Revert

J

rt

logstash
splunk
loggly
sumologic
other

® | ogging Aggregator Username: Enter the username of the logging aggregator if required.

CHAPTER12. LOGGING AND AGGREGATION

® | ogging Aggregator Password/Token: Enter the password of the logging aggregator if
required.

® |LogSystem Tracking Facts Individually: Click the tooltip @ icon for additional
information, such as whether or not you want to turn it on, or leave it off by default.

® Logging Aggregator Protocol: Click to select a connection type (protocol) to
communicate with the log aggregator. Subsequent options vary depending on the selected
protocol.

® Logging Aggregator Level Threshold: Select the level of severity you want the log handler
to report.

® TCP Connection Timeout Specify the connection timeout in seconds. This option is only
applicable to HTTPS and TCP log aggregator protocols.

® Enable/disable HTTPS certificate verification: Certificate verification is enabled by
default for the HTTPS log protocol. Set the toggle to OFF if you do not want the log
handler to verify the HTTPS certificate sent by the external log aggregator before
establishing a connection.

® | oggers to Send Data to the Log Aggregator FormAll four types of data are pre-

populated by default. Click the tooltip @ icon next to the field for additional information on
each data type. Delete the data types you do not want.

® | ogFormat For APl 4XX Errors Configure a specific error message. For more information,
see APl 4XX Error Configuration.

5. Review your entries for your chosen logging aggregation. The following example is set up for

Settings > Logging
" . D
Edit Details
Enable External Logging () Revert Logging Aggregator * (O Revert Logging Aggregator Port Revert
@ on 17216185132 80
Logging Aggregator Type * @ Revert Logging Aggregator Username (3 Revert Logging Aggregator Password/Token & Revert
splunk - -
Log System Tracking Facts Individually ® Revert Logging Aggregator Protocol @ Revert Logging Aggregator Level Threshold @ Revert
Off HTTPS/HTTP - INFO -
TCP Connection Timeout * (%) Revert Enable/disable HTTPS certificate verification (3 Revert
. © -

Loggers Sending Data to Log Aggregator Form () Revert
L
Mawx",
“activity_stream",
"job_events",
"'system_tracking"

1

Log Format For API 4XX Errors @ Revert

status {status_code} received by user {user_name} attempting to access {url_path} from {remote_addr}

6. Click Save or Cancel to abandon the changes.

12.3. AP1 4XX ERROR CONFIGURATION

When the APl encounters an issue with a request, it typically returns an HTTP error code in the 400
range along with an error. When this happens, an error message is generated in the log that follows the
following pattern:

63

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

' status {status_code} received by user {user_name} attempting to access {url_path} from
{remote_addr} '

These messages can be configured as required. Use the following procedure to modify the default API
4XX errors log message format.

Procedure
1. From the navigation panel, select Settings then select Logging settings.
2. On the Logging settings page, click Edit.
3. Modify the field Log Format For API 4XX Errors

ltems surrounded by {} are substituted when the log error is generated. The following variables can be
used:

® status_code: The HTTP status code the APl is returning.

® user_name: The name of the user that was authenticated when making the APl request.
® url_path: The path portion of the URL being called (the APl endpoint).

® remote_addr: The remote address received by automation controller.

® error: The error message returned by the API or, if no error is specified, the HTTP status as text.

12.4. TROUBLESHOOTING LOGGING

Logging Aggregation

If you have sent a message with the test button to your configured logging service through http or https,
but did not receive the message, check the /var/log/tower/rsyslog.err log file. This is where errors are
stored if they occurred when authenticating rsyslog with an http or https external logging service. Note
that if there are no errors, this file does not exist.

APl 4XX Errors
You can include the APl error message for 4XX errors by modifying the log format for those messages.
Refer to the API 4XX Error Configuration.

LDAP
You can enable logging messages for the LDAP adapter. For more information, see API 4XX Error
Configuration.

SAML
You can enable logging messages for the SAML adapter the same way you can enable logging for
LDAP. Refer to the Enabling logging for LDAP section for more detail.

64

CHAPTER 13. METRICS

CHAPTER 13. METRICS

A metrics endpoint, /api/v2/metrics/ is available in the API that produces instantaneous metrics about
automation controller, which can be consumed by system monitoring software such as the open source
project Prometheus.

The types of data shown at the metrics/ endpoint are Content-type: text/plain and application/json.

This endpoint contains useful information, such as counts of how many active user sessions there are, or
how many jobs are actively running on each automation controller node.

You can configure Prometheus to scrape these metrics from automation controller by hitting the
automation controller metrics endpoint and storing this data in a time-series database.

Clients can later use Prometheus in conjunction with other software such as Grafana or Metricbeat to
visualize that data and set up alerts.

13.1. SETTING UP PROMETHEUS
To set up and use Prometheus, you must install Prometheus on a virtual machine or container.

For more information, see the First steps with Prometheus documentation.

Procedure

1. In the Prometheus configuration file (typically prometheus.yml), specify a <token_value>, a
valid username and password for an automation controller user that you have created, and a
<controller_host>.

NOTE

Alternatively, you can provide an OAuth2 token (which can be generated at
/api/v2/users/N/personal_tokens/). By default, the configuration assumes a user
with username=admin and password=password.

Using an OAuth2 Token, created at the /api/v2/tokens endpoint to authenticate Prometheus
with automation controller, the following example provides a valid scrape configuration if the
URL for your automation controller's metrics endpoint is https://controller_host:443/metrics.

scrape_configs

- job_name: 'controller’

tls_config:

insecure_skip_verify: True
metrics_path: /api/v2/metrics
scrape_interval: 5s
scheme: https
bearer_token: <token_value>
basic_auth:
username: admin
password: password
static_configs:

- targets:

- <controller_host>

65

https://prometheus.io/docs/introduction/first_steps/
https://controller_host:443/metrics

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

For help configuring other aspects of Prometheus, such as alerts and service discovery
configurations, see the Prometheus configuration documentation.

If Prometheus is already running, you must restart it to apply the configuration changes by
making a POST to the reload endpoint, or by killing the Prometheus process or service.

2. Use a browser to navigate to your graph in the Prometheus Ul at
http://<your_prometheus>:9090/graph and test out some queries. For example, you can query
the current number of active automation controller user sessions by executing:
awx_sessions_total{type="user"}.

. ”, " Load time: 12ms
awx_sessions_total{type="user"} Resoltion: 15

Total time series: 1
Execute - insert metric at cursor - %
Graph Console

= | 5m @ + « Until » Res. 0O stacked

=

Refer to the metrics endpoint in the automation controller API for your instance (api/v2/metrics) for
more ways to query.

66

https://prometheus.io/docs/prometheus/latest/configuration/configuration/
http://:9090/graph

CHAPTER 14. PERFORMANCE TUNING FOR AUTOMATION CONTROLLER

CHAPTER 14. PERFORMANCE TUNING FOR AUTOMATION
CONTROLLER

Tune your automation controller to optimize performance and scalability. When planning your workload,
ensure that you identify your performance and scaling needs, adjust for any limitations, and monitor your
deployment.

Automation controller is a distributed system with multiple components that you can tune, including the
following:

® Task system in charge of scheduling jobs

e Control Plane in charge of controlling jobs and processing output

® Execution plane where jobs run

e Web server in charge of serving the API

® Websocket system that serve and broadcast websocket connections and data

® Database used by multiple components

14.1. CAPACITY PLANNING FOR DEPLOYING AUTOMATION
CONTROLLER

Capacity planning for automation controller is planning the scale and characteristics of your deployment
so that it has the capacity to run the planned workload. Capacity planning includes the following phases:

1. Characterizing your workload
2. Reviewing the capabilities of different node types

3. Planning the deployment based on the requirements of your workload

14.1.1. Characteristics of your workload

Before planning your deployment, establish the workload that you want to support. Consider the
following factors to characterize an automation controller workload:

® Managed hosts
® Tasks per hour per host
® Maximum number of concurrent jobs that you want to support

® Maximum number of forks set on jobs. Forks determine the number of hosts that a job acts on
concurrently.

® Maximum API requests per second

® Node size that you prefer to deploy (CPU/Memory/Disk)

14.1.2. Types of nodes in automation controller

You can configure four types of nodes in an automation controller deployment:

67

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

® Control nodes
® Hybrid nodes
® [Execution nodes

® Hop nodes

14.1.2.1. Benefits of scaling control nodes

Control and hybrid nodes provide control capacity. They provide the ability to start jobs and process
their output into the database. Every job is assigned a control node. In the default configuration, each
job requires one capacity unit to control. For example, a control node with 100 capacity units can control
a maximum of 100 jobs.

Vertically scaling a control node by deploying a larger virtual machine with more resources increases the
following capabilities of the control plane:

® The number of jobs that a control node can perform control tasks for, which requires both more
CPU and memory.

® The number of job events a control node can process concurrently.

Scaling CPU and memory in the same proportion is recommended, for example, 1 CPU: 4 GB RAM. Even
when memory consumption is high, increasing the CPU of an instance can often relieve pressure. The
majority of the memory that control nodes consume is from unprocessed events that are stored in a
memory-based queue.

NOTE

Vertically scaling a control node does not automatically increase the number of workers
that handle web requests.

An alternative to vertically scaling is horizontally scaling by deploying more control nodes. This allows
spreading control tasks across more nodes as well as allowing web traffic to be spread over more nodes,
given that you provision a load balancer to spread requests across nodes. Horizontally scaling by
deploying more control nodes in many ways can be preferable as it additionally provides for more
redundancy and workload isolation in the event that a control node goes down or experiences higher
than normal load.

14.1.2.2. Benefits of scaling execution nodes

Execution and hybrid nodes provide execution capacity. The capacity consumed by a job is equal to the
number of forks set on the job template or the number of hosts in the inventory, whichever is less, plus
one additional capacity unit to account for the main ansible process. For example, a job template with
the default forks value of 5 acting on an inventory with 50 hosts consumes 6 capacity units from the
execution node it is assigned to.

Vertically scaling an execution node by deploying a larger virtual machine with more resources provides
more forks for job execution. This increases the number of concurrent jobs that an instance can run.

In general, scaling CPU alongside memory in the same proportion is recommended. Like control and

hybrid nodes, there is a capacity adjustment on each execution node that you can use to align actual use
with the estimation of capacity consumption that the automation controller makes. By default, all nodes

68

CHAPTER 14. PERFORMANCE TUNING FOR AUTOMATION CONTROLLER

are set to the top of that range. If actual monitoring data reveals the node to be over-used, decreasing
the capacity adjustment can help bring this in line with actual usage.

An alternative to vertically scaling execution nodes is horizontally scaling the execution plane by
deploying more virtual machines to be execution nodes. Because horizontally scaling can provide
additional isolation of workloads, you can assign different instances to different instance groups. You
can then assign these instance groups to organizations, inventories, or job templates. For example, you
can configure an instance group that can only be used for running jobs against a certain Inventory. In this
scenario, by horizontally scaling the execution plane, you can ensure that lower-priority jobs do not block
higher-priority jobs

14.1.2.3. Benefits of scaling hop nodes

Because hop nodes use very low memory and CPU, vertically scaling these nodes does not impact
capacity. Monitor the network bandwidth of any hop node that serves as the sole connection between
many execution nodes and the control plane. If bandwidth use is saturated, consider changing the
network.

Horizontally scaling by adding more hop nodes could provide redundancy in the event that one hop

node goes down, which can allow traffic to continue to flow between the control plane and the execution
nodes.

14.1.2.4. Ratio of control to execution capacity

Assuming default configuration, the maximum recommended ratio of control capacity to execution
capacity is 1:5 in traditional VM deployments. This ensures that there is enough control capacity to run
jobs on all the execution capacity available and process the output. Any less control capacity in relation
to the execution capacity, and it would not be able to launch enough jobs to use the execution capacity.
There are cases in which you might want to modify this ratio closer to 1:1. For example, in cases where a

job produces a high level of job events, reducing the amount of execution capacity in relation to the
control capacity helps relieve pressure on the control nodes to process that output.

14.2. EXAMPLE CAPACITY PLANNING EXERCISE
After you have determined the workload capacity that you want to support, you must plan your
deployment based on the requirements of the workload. To help you with your deployment, review the
following planning exercise.
For this example, the cluster must support the following capacity:

® 300 managed hosts

® 1,000 tasks per hour per host or 16 tasks per minute per host

® 10 concurrent jobs

® Forkssetto5 on playbooks. This is the default.

® Average eventsizeis 1 Mb

The virtual machines have 4 CPU and 16 GB RAM, and disks that have 3000 IOPs.

14.2.1. Example workload requirements

69

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

For this example capacity planning exercise, use the following workload requirements:
Execution capacity

® To run the 10 concurrent jobs requires at least 60 units of execution capacity.

o You calculate this by using the following equation: (10 jobs * 5 forks) + (10 jobs * 1 base task
impact of a job) = 60 execution capacity

Control capacity
® To control 10 concurrent jobs requires at least 10 units of control capacity.

® To calculate the number of events per hour that you need to support 300 managed hosts and
1,000 tasks per hour per host, use the following equation:

o 1000 tasks * 300 managed hosts per hour = 300,000 events per hour at minimum.

o You must run the job to see exactly how many events it produces, because this is
dependent on the specific task and verbosity. For example, a debug task printing “Hello
World” produces 6 job events with the verbosity of 1on one host. With a verbosity of 3, it
produces 34 job events on one host. Therefore, you must estimate that the task produces
at least 6 events. This would produce closer to 3,000,000 events per hour, or
approximately 833 events per second.

Determining quantity of execution and control nodes needed

To determine how many execution and control nodes you need, reference the experimental results in
the following table that shows the observed event processing rate of a single control node with 5
execution nodes of equal size (API Capacity column). The default “forks” setting of job templates is 5,
so using this default, the maximum number of jobs a control node can dispatch to execution nodes
makes 5 execution nodes of equal CPU/RAM use 100% of their capacity, arriving to the previously
mentioned 1:5 ratio of control to execution capacity.

APl capacity Default Default Mean Mean Mean
executio control event events event
n capacity processi processi processi

capacity ng rate ng rate ng rate
at 100% at 50% at 40%
capacity capacity capacity
usage usage usage

4 CPU at 2.5Ghz, 16 GB approximatel n/a 137 jobs 1100 per 1400 per 1630 per
RAM control node, a y 10 requests second second second
maximum of 3000 IOPs per second

disk

4 CPU at 2.5Ghz, 16 GB n/a 137 n/a n/a n/a n/a

RAM execution node, a
maximum of 3000 IOPs
disk

70

CHAPTER 14. PERFORMANCE TUNING FOR AUTOMATION CONTROLLER

APl capacity Default Default Mean Mean Mean
executio control event events event
n capacity processi processi processi

capacity ng rate ng rate ng rate
at 100% at 50% at 40%
capacity capacity capacity
usage usage usage

4 CPU at 2.5Ghz, 16 GB n/a n/a n/a n/a n/a n/a
RAM database node, a

maximum of 3000 IOPs

disk

Because controlling jobs competes with job event processing on the control node, over-provisioning
control capacity can reduce processing times. When processing times are high, you can experience a
delay between when the job runs and when you can view the output in the APl or Ul.

For this example, for a workload on 300 managed hosts, executing 1000 tasks per hour per host, 10
concurrent jobs with forks set to 5 on playbooks, and an average event size 1 Mb, use the following
procedure:

® Deploy 1execution node, 1control node, 1 database node of 4 CPU at 2.5Ghz, 16 GB RAM, and
disks that have approximately 3000 |OPs.

e Keep the default fork setting of 5 on job templates.

® Use the capacity adjustment feature in the instance view of the Ul on the control node to
reduce the capacity down to 16, the lowest value, to reserve more of the control node’s capacity
for processing events.

Additional Resources

® For more information on workloads with high levels of APl interaction, see Scaling Automation
Controller for API Driven Workloads.

e For more information on managing capacity with instances, see Managing Capacity With
Instances.

® For more information on operator-based deployments, see Red Hat Ansible Automation
Platform Performance Considerations for Operator Based Installations.

14.3. PERFORMANCE TROUBLESHOOTING FOR AUTOMATION
CONTROLLER

Users experience many request timeouts (504 or 503 errors), or in general high API latency. In the
UI, clients face slow login and long wait times for pages to load. What system is the likely culprit?

e |f these issues occur only on login, and you use external authentication, the problem is likely with
the integration of your external authentication provider. See Setting up enterprise
authentication or seek Red Hat Support.

® For otherissues with timeouts or high API latency, see Web server tuning.

Long wait times for job output to load.

71

https://www.ansible.com/blog/scaling-automation-controller-for-api-driven-workloads
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/red_hat_ansible_automation_platform_performance_considerations_for_operator_based_installations/index

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

® Job output streams from the execution node where the ansible-playbook is actually run to the

associated control node. Then the callback receiver serializes this data and writes it to the
database. Relevant settings to observe and tune can be found in Settings for managing job
event processing and PostgreSQL database configuration and maintenance for automation
controller.

In general, to resolve this symptom it is important to observe the CPU and memory use of the
control nodes. If CPU or memory use is very high, you can either horizontally scale the control
plane by deploying more virtual machines to be control nodes naturally spreads out work more,
or to modify the number of jobs a control node will manage at a time. For more information, see
Capacity settings for control and execution nodes for more information.

What can | do to increase the number of jobs that automation controller can run concurrently?

® Factors that cause jobs to remain in “pending” state are:

o Waiting for “dependencies” to finish this includes project updates and inventory updates
when “update on launch” behavior is enabled.

o The "“allow_simultaneous” setting of the job template if multiple jobs of the same job
template are in “pending” status, check the "allow_simultaneous” setting of the job template
("Concurrent Jobs” checkbox in the Ul). If this is not enabled, only one job from a job
template can run at a time.

o The “forks” value of your job template the default value is 5. The amount of capacity
required to run the job is roughly the forks value (some small overhead is accounted for). If
the forks value is set to a very large number, this will limit what nodes will be able to run it.

o Lack of either control or execution capacity. see “awx_instance_remaining_capacity”
metric from the application metrics available on /api/v2/metrics. See Metrics for monitoring
automation controller application for more information about how to monitor metrics. See
Capacity planning for deploying automation controller forinformation on how to plan your
deployment to handle the number of jobs you are interested in.

Jobs run more slowly on automation controller than on a local machine.

Some additional overhead is expected, because automation controller might be dispatching
your job to a separate node. In this case, automation controller is starting a container and
running ansible-playbook there, serializing all output and writing it to a database.

Project update on launch and inventory update on launch behavior can cause additional delays
at job start time.

Size of projects can impact how long it takes to start the job, as the project is updated on the
control node and transferred to the execution node. Internal cluster routing can impact network
performance. For more information, see Internal cluster routing.

Container pull settings can impact job start time. The execution environment is a container that
is used to run jobs within it. Container pull settings can be set to “Always”, “Never” or “If not
present”. If the container is always pulled, this can cause delays.

Ensure that all cluster nodes, including execution, control, and the database, have been
deployed in instances with storage rated to the minimum required IOPS, because the manner in
which automation controller runs ansible and caches event data implicates significant disk I/O.
For more information, see Red Hat Ansible Automation Platform system requirements .

Database storage does not stop growing.

72

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/red_hat_ansible_automation_platform_planning_guide/platform-system-requirements#red_hat_ansible_automation_platform_system_requirements

CHAPTER 14. PERFORMANCE TUNING FOR AUTOMATION CONTROLLER

® Automation controller has a management job titled “Cleanup Job Details”. By default, it is set to
keep 120 days of data and to run once a week. To reduce the amount of data in the database,
you can shorten the retention time. For more information, see Removing Old Activity Stream
Data.

® Running the cleanup job deletes the data in the database. However, the database must at some
point perform its vacuuming operation which reclaims storage. See PostgreSQL database

configuration and maintenance for automation controller for more information about database
vacuuming.

14.4. METRICS TO MONITOR AUTOMATION CONTROLLER
Monitor your automation controller hosts at the system and application levels.
System level monitoring includes the following information:

® Diskl/O

® RAMuse

® CPUuse

® Network traffic

Application level metrics provide data that the application knows about the system. This data includes
the following information:

® How many jobs are running in a given instance
e Capacity information about instances in the cluster
® How many inventories are present
® How many hosts are in those inventories
Using system and application metrics can help you identify what was happening in the application when a

service degradation occurred. Information about automation controller’s performance over time helps
when diagnosing problems or doing capacity planning for future growth.

14.4.1. Metrics for monitoring automation controller application

For application level monitoring, automation controller provides Prometheus-style metrics on an API
endpoint /api/v2/metrics. Use these metrics to monitor aggregate data about job status and subsystem
performance, such as for job output processing or job scheduling.

The metrics endpoint includes descriptions of each metric. Metrics of particular interest for performance
include:

e awx_status_total

o Current total of jobs in each status. Helps correlate other events to activity in system.
o Can monitor upticks in errored or failed jobs.
® awx_instance_remaining_capacity

o Amount of capacity remaining for running additional jobs.

73

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

e callback_receiver_event_processing_avg_seconds

o colloquially called “job events lag”.

o Running average of the lag time between when a task occurred in ansible and when the user
is able to see it. This indicates how far behind the callback receiver is in processing events.
When this number is very high, users can consider scaling up the control plane or using the
capacity adjustment feature to reduce the number of jobs a control node controls.

e callback_receiver_events_insert_db

o Counter of events that have been inserted by a node. Can be used to calculate the job
event insertion rate over a given time period.

e callback_receiver_events_queue_size redis

o Indicator of how far behind callback receiver is in processing events. If too high, Redis can
cause the control node to run out of memory (OOM).

14.4.2. System level monitoring

Monitoring the CPU and memory use of your cluster hosts is important because capacity management
for instances does not introspect into the actual resource usage of hosts. The resource impact of
automation jobs depends on what the playbooks are doing. For example, many cloud or networking
modules do most of the processing on the execution node, which runs the Ansible Playbook. The impact
on the automation controller is very different than if you were running a native module like “yum” where
the work is performed on the target hosts where the execution node spends much of the time during
this task waiting on results.

If CPU or memory usage is very high, consider lowering the capacity adjustment (available on the
instance detail page) on affected instances in the automation controller. This limits how many jobs are
run on or controlled by this instance.

Monitor the disk I/O and use of your system. The manner in which an automation controller node runs
Ansible and caches output on the file system, and eventually saves it in the database, creates high levels
of disk reads and writes. Identifying poor disk performance early can help prevent poor user experience
and system degradation.

Additional resources

® For more information about configuring monitoring, see Metrics.
e Additional insights into automation usage are available when you enable data collection for

automation analytics. For more information, see Automation analytics and Red Hat Insights for
Red Hat Ansible Automation Platform.

14.5. POSTGRESQL DATABASE CONFIGURATION AND MAINTENANCE
FOR AUTOMATION CONTROLLER

To improve the performance of automation controller, you can configure the following configuration
parameters in the database:

Maintenance

The VACUUM and ANALYZE tasks are important maintenance activities that can impact performance.
In normal PostgreSQL operation, tuples that are deleted or obsoleted by an update are not physically

74

https://www.ansible.com/products/insights-for-ansible

CHAPTER 14. PERFORMANCE TUNING FOR AUTOMATION CONTROLLER

removed from their table; they remain present untila VACUUM is done. Therefore it's necessary to do
VACUUM periodically, especially on frequently-updated tables. ANALYZE collects statistics about the
contents of tables in the database, and stores the results in the pg_statistic system catalog.
Subsequently, the query planner uses these statistics to help determine the most efficient execution
plans for queries. The autovacuuming PostgreSQL configuration parameter automates the execution of
VACUUM and ANALYZE commands. Setting autovacuuming to true is a good practice. However,
autovacuuming will not occur if there is never any idle time on the database. If it is observed that
autovacuuming is not sufficiently cleaning up space on the database disk, then scheduling specific
vacuum tasks during specific maintenance windows can be a solution.

Configuration parameters

To improve the performance of the PostgreSQL server, configure the following Grand Unified
Configuration (GUC) parameters that manage database memory. You can find these parameters inside
the $PDATA directory in the postgresql.conf file, which manages the configurations of the database
server.

e shared_buffers: determines how much memory is dedicated to the server for caching data. The
default value for this parameter is 128 MB. When you modify this value, you must set it between
15% and 25% of the machine’s total RAM.

NOTE

You must restart the database server after changing the value for shared_buffers.

e work_mem: provides the amount of memory to be used by internal sort operations and hash
tables before disk-swapping. Sort operations are used for order by, distinct, and merge join
operations. Hash tables are used in hash joins and hash-based aggregation. The default value
for this parameter is 4 MB. Setting the correct value of the work_mem parameter improves the
speed of a search by reducing disk-swapping.

o Use the following formula to calculate the optimal value of the work_mem parameter for
the database server:

I Total RAM * 0.25 / max_connections

NOTE

Setting a large work_mem can cause the PostgreSQL server to go out of memory
(OOM) if there are too many open connections to the database.

-

® max_connections: specifies the maximum number of concurrent connections to the database
server.

e maintenance_work_mem: provides the maximum amount of memory to be used by
maintenance operations, such as vacuum, create index, and alter table add foreign key

operations. The default value for this parameter is 64 MB. Use the following equation to
calculate a value for this parameter:

I Total RAM * 0.05

75

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

NOTE

Set maintenance_work_mem higher than work_mem to improve performance for
vacuuming.

Additional resources

For more information on autovacuuming settings, see Automatic Vacuuming.

14.6. AUTOMATION CONTROLLER TUNING

You can configure many automation controller settings by using the automation controller Ul, API, and
file based settings including:

® Live eventsin the automation controller Ul

® Job event processing

® Control and execution node capacity

® [nstance group and container group capacity
® Task management (job scheduling)

® Internal cluster routing

® Web server tuning

14.6.1. Managing live events in the automation controller Ul

Events are sent to any node where there is a Ul client subscribed to a job. This task is expensive, and
becomes more expensive as the number of events that the cluster is producing increases and the
number of control nodes increases, because all events are broadcast to all nodes regardless of how
many clients are subscribed to particular jobs.
To reduce the overhead of displaying live events in the Ul, administrators can choose to either:

® Disable live streaming events.

® Reduce the number of events shown per second or before truncating or hiding events in the Ul.
When you disable live streaming of events, they are only loaded on hard refresh to a job’s output detail

page. When you reduce the number of events shown per second, this limits the overhead of showing live
events, but still provides live updates in the Ul without a hard refresh.

14.6.1.1. Disabling live streaming events

Procedure

1. Disable live streaming events by using one of the following methods:

a. Inthe API, set UI_LIVE_UPDATES_ENABLED to False.

b. Navigate to your automation controller. Open the Miscellaneous System Settings window.
Set the Enable Activity Stream toggle to Off.

76

https://www.postgresql.org/docs/13/runtime-config-autovacuum.html

CHAPTER 14. PERFORMANCE TUNING FOR AUTOMATION CONTROLLER

14.6.1.2. Settings to modify rate and size of events

If you cannot disable live streaming of events because of their size, reduce the number of events that
are displayed in the Ul. You can use the following settings to manage how many events are displayed:

Settings available for editing in the Ul or API

e EVENT_STDOUT_MAX_BYTES_DISPLAY: Maximum amount of stdout to display (as
measured in bytes). This truncates the size displayed in the Ul.

e MAX_WEBSOCKET_EVENT_RATE: Number of events to send to clients per second.
Settings available by using file based settings

e MAX Ul_JOB_EVENTS: Number of events to display. This setting hides the rest of the events
in the list.

e MAX_EVENT_RES_DATA: The maximum size of the ansible callback event’s "res" data
structure. The "res" is the full "result” of the module. When the maximum size of ansible callback
events is reached, then the remaining output will be truncated. Default value is 700000 bytes.

e |LOCAL_STDOUT_EXPIRE_TIME: The amount of time before a stdout file is expired and
removed locally.

Additional resources

For more information on file based settings, see Additional settings for automation controller.

14.6.2. Settings for managing job event processing

The callback receiver processes all the output of jobs and writes this output as job events to the
automation controller database. The callback receiver has a pool of workers that processes events in
batches. The number of workers automatically increases with the number of CPU available on an
instance.

Administrators can override the number of callback receiver workers with the setting
JOB_EVENT_WORKERS. Do not set more than 1worker per CPU, and there must be at least 1 worker.
Greater values have more workers available to clear the Redis queue as events stream to the
automation controller, but can compete with other processes such as the web server for CPU seconds,
uses more database connections (1 per worker), and can reduce the batch size of events each worker
commits.

Each worker builds up a buffer of events to write in a batch. The default amount of time to wait before
writing a batch is 1second. This is controlled by the JOB_EVENT_BUFFER_SECONDS setting.
Increasing the amount of time the worker waits between batches can result in larger batch sizes.

14.6.3. Capacity settings for control and execution nodes

The following settings impact capacity calculations on the cluster. Set them to the same value on all
control nodes by using the following file-based settings.

e AWX CONTROL_NODE_TASK_IMPACT: Sets the impact of controlling jobs. You can use it
when your control plane exceeds desired CPU or memory usage to control the number of jobs
that your control plane can run at the same time.

77

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

e SYSTEM_TASK_FORKS_CPU and SYSTEM_TASK_FORKS_MEM: Influence how many
resources are estimated to be consumed by each fork of Ansible. By default, 1 fork of Ansible is
estimated to use 0.25 of a CPU and 100 Mb of memory.

Additional resources

For information about file-based settings, see Additional settings for automation controller.

14.6.4. Capacity settings for instance group and container group

Use the max_concurrent_jobs and max_forks settings available on instance groups to limit how many
jobs and forks can be consumed across an instance group or container group.

® To calculate the max_concurrent_jobs you need on a container group consider the pod_spec
setting for that container group. In the pod_spec, you can see the resource requests and limits
for the automation job pod. Use the following equation to calculate the maximum concurrent
jobs that you need:

((number of worker nodes in kubernetes cluster) * (CPU available on each worker)) / (CPU request on
pod_spec) = maximum number of concurrent jobs

® For example, if your pod_spec indicates that a pod will request 250 mcpu Kubernetes cluster
has 1 worker node with 2 CPU, the maximum number of jobs that you need to start with is 8.

© You can also consider the memory consumption of the forks in the jobs. Calculate the
appropriate setting of max_forks with the following equation:

((number of worker nodes in kubernetes cluster) * (memory available on each worker)) / (memory
request on pod_spec) = maximum number of forks

® Forexample, given a single worker node with 8 Gb of Memory, we determine that the max
forks we want to run is 81. This way, either 39 jobs with 1fork can run (task impact is always forks
+1), or 2 jobs with forks set to 39 can run.

o You might have other business requirements that motivate using max_forks or
max_concurrent_jobs to limit the number of jobs launched in a container group.
14.6.5. Settings for scheduling jobs

The task manager periodically collects tasks that need to be scheduled and determines what instances
have capacity and are eligible for running them. The task manager has the following workflow:

1. Find and assign the control and execution instances.
2. Update the job’s status to waiting.

3. Message the control node through pg_notify for the dispatcher to pick up the task and start
running it.

If the scheduling task is not completed within TASK_MANAGER_TIMEOUT seconds (default 300
seconds), the task is terminated early. Timeout issues generally arise when there are thousands of
pending jobs.

One way the task manager limits how much work it can do in a single run is the START_TASK_LIMIT
setting. This limits how many jobs it can start in a single run. The default is 100 jobs. If more jobs are

78

CHAPTER 14. PERFORMANCE TUNING FOR AUTOMATION CONTROLLER

pending, a new scheduler task is scheduled to run immediately after. Users who are willing to have
potentially longer latency between when a job is launched and when it starts, to have greater overall
throughput, can consider increasing the START_TASK_LIMIT. To see how long individual runs of the
task manager take, use the Prometheus metric task_manager__schedule_seconds, available in
/api/v2/metrics.

Jobs elected to begin running by the task manager do not do so until the task manager process exits
and commits its changes. The TASK_MANAGER_TIMEOUT setting determines how long a single run of
the task manager will run for before committing its changes. When the task manager reaches its
timeout, it attempts to commit any progress it made. The task is not actually forced to exit until after a
grace period (determined by TASK_MANAGER_TIMEOUT_GRACE_PERIOD) has passed.

14.6.6. Internal Cluster Routing

Automation controller cluster hosts communicate across the network within the cluster. In the inventory
file for the traditional VM installer, you can indicate multiple routes to the cluster nodes that are used in
different ways:

Example:

[automationcontroller]
controller1 ansible_user=ec2-user ansible_host=10.10.12.11 node_type=hybrid
routable_hostname=somehost.somecompany.org

e controller1 is the inventory hostname for the automation controller host. The inventory
hostname is what is shown as the instance hostname in the application. This can be useful when
preparing for disaster recovery scenarios where you want to use the backup/restore method to
restore the cluster to a new set of hosts that have different IP addresses. In this case you can
have entries in /etc/hosts that map these inventory hostnames to IP addresses, and you can use
internal IP addresses to mitigate any DNS issues when it comes to resolving public DNS names.

e ansible_host=10.10.12.11 indicates how the installer reaches the host, which in this case is an
internal IP address. This is not used outside of the installer.

e routable_hostname=somehost.somecompany.org indicates the hostname that is resolvable
for the peers that connect to this node on the receptor mesh. Since it may cross multiple

networks, we are using a hostname that will map to an IP address resolvable for the receptor
peers.

14.6.7. Web server tuning

Control and Hybrid nodes each serve the Ul and API of automation controller. WSGl traffic is served by
the uwsgi web server on a local socket. ASGI traffic is served by Daphne. NGINX listens on port 443 and
proxies traffic as needed.

To scale automation controller's web service, follow these best practices:

® Deploy multiple control nodes and use a load balancer to spread web requests over multiple
servers.

® Set max connections per automation controller to 100.
To optimize automation controller’s web service on the client side, follow these guidelines:

® Direct user to use dynamic inventory sources instead of individually creating inventory hosts by
using the API.

79

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

e Use webhook notifications instead of polling for job status.
® Use the bulk APIs for host creation and job launching to batch requests.
® Use token authentication. For automation clients that must make many requests very quickly,

using tokens is a best practice, because depending on the type of user, there may be additional
overhead when using basic authentication.

Additional resources

® For more information on workloads with high levels of APl interaction, see Scaling Automation
Controller for API Driven Workloads.

® For more information on bulk API, see Bulk API in Automation Controller .

® For more information on how to generate and use tokens, see Token-Based Authentication.

80

https://www.ansible.com/blog/scaling-automation-controller-for-api-driven-workloads
https://www.ansible.com/blog/bulk-api-in-automation-controller
https://docs.ansible.com/automation-controller/latest/html/administration/oauth2_token_auth.html#ag-oauth2-token-auth

CHAPTER 15. SECRET HANDLING AND CONNECTION SECURITY

CHAPTER 15. SECRET HANDLING AND CONNECTION
SECURITY

Automation controller handles secrets and connections securely.

15.1. SECRET HANDLING
Automation controller manages three sets of secrets:
® User passwords for local automation controller users.

® Secrets for automation controller operational use, such as database password or message bus
password.

® Secrets for automation use, such as SSH keys, cloud credentials, or external password vault
credentials.

NOTE

You must have 'local’ user access for the following users:
® postgres
® awx
® redis

® receptor

® nginx

15.1.1. User passwords for local users

Automation controller hashes local automation controller user passwords with the PBKDF2 algorithm
using a SHA256 hash. Users who authenticate by external account mechanisms, such as LDAP, SAML,
and OAuth, do not have any password or secret stored.

15.1.2. Secret handling for operational use

The operational secrets found in automation controller are as follows:

e /etc/tower/SECRET_KEY: A secret key used for encrypting automation secrets in the database.
If the SECRET_KEY changes or is unknown, you cannot access encrypted fields in the
database.

e /etc/tower/tower.{cert,key}: An SSL certificate and key for the automation controller web
service. A self-signed certificate or key is installed by default; you can provide a locally

appropriate certificate and key.

® A database password in /etc/tower/conf.d/postgres.py and a message bus password in
/etc/tower/conf.d/channels.py.

81

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

These secrets are stored unencrypted on the automation controller server, because they are all needed
to be read by the automation controller service at startup in an automated fashion. All secrets are
protected by UNIX permissions, and restricted to root and the automation controller awx service user.

If you need to hide these secrets, the files that these secrets are read from are interpreted by Python.
You can adjust these files to retrieve these secrets by some other mechanism anytime a service restarts.
This is a customer provided modification that might need to be reapplied after every upgrade. Red Hat
Support and Red Hat Consulting have examples of such modifications.

NOTE

If the secrets system is down, automation controller cannot get the information and can
fail in a way that is recoverable once the service is restored. Using some redundancy on
that system is highly recommended.

If you believe the SECRET_KEY that automation controller generated for you has been compromised
and needs to be regenerated, you can run a tool from the installer that behaves much like the
automation controller backup and restore tool.

IMPORTANT

Ensure that you backup your automation controller database before you generate a new
secret key.

To generate a new secret key:
1. Follow the procedure described in the Backing up and Restoring section.

2. Use the inventory from your install (the same inventory with which you run backups and
restores), and run the following command:

I setup.sh -k.

A backup copy of the previous key is saved in /etc/tower/.

15.1.3. Secret handling for automation use

Automation controller stores a variety of secrets in the database that are either used for automation or
are a result of automation.

These secrets include the following:

® All secret fields of all credential types, including passwords, secret keys, authentication tokens,
and secret cloud credentials.

® Secret tokens and passwords for external services defined automation controller settings.
® "password" type survey field entries.

To encrypt secret fields, automation controller uses AES in CBC mode with a 256-bit key for encryption,
PKCS7 padding, and HMAC using SHA256 for authentication.

The encryption or decryption process derives the AES-256 bit encryption key from the SECRET_KEY,

the field name of the model field and the database assigned auto-incremented record ID. Therefore, if
any attribute used in the key generation process changes, the automation controller fails to correctly

82

CHAPTER 15. SECRET HANDLING AND CONNECTION SECURITY

decrypt the secret.

Automation controller is designed so that:
® The SECRET_KEY is never readable in playbooks that automation controller launches.
® These secrets are never readable by automation controller users.
® No secret field values are ever made available by the automation controller REST API.

If a secret value is used in a playbook, it is recommended that you use no_log on the task so that it is not
accidentally logged.

15.2. CONNECTION SECURITY

Automation controller allows for connections to internal services, external access, and managed nodes.

NOTE

You must have 'local’ user access for the following users:
® postgres
® awx
® redis

® receptor

® nginx

15.2.1. Internal services

Automation controller connects to the following services as part of internal operation:

PostgreSQL database

The connection to the PostgreSQL database is done by password authentication over TCP, either
through localhost or remotely (external database). This connection can use PostgreSQL's built in
support for SSL/TLS, as natively configured by the installer support. SSL/TLS protocols are
configured by the default OpenSSL configuration.

A Redis key or value store

The connection to Redis is over a local UNIX socket, restricted to the awx service user.

15.2.2. External access

Automation controller is accessed via standard HTTP/HTTPS on standard ports, provided by Nginx. A
self-signed certificate or key is installed by default; you can provide a locally appropriate certificate and
key. SSL/TLS algorithm support is configured in the /ete/nginx/nginx.conf configuration file. An
"intermediate” profile is used by default, that you can configure. You must reapply changes after each
update.

15.2.3. Managed nodes

Automation controller connects to managed machines and services as part of automation. All

83

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

connections to managed machines are done by standard secure mechanisms, such as SSH, WinRM, or
SSL/TLS. Each of these inherits configuration from the system configuration for the feature in
question, such as the system OpenSSL configuration.

84

CHAPTER 16. SECURITY BEST PRACTICES

CHAPTER16. SECURITY BEST PRACTICES

You can deploy automation controller to automate typical environments securely. However, managing
certain operating system environments, automation, and automation platforms, can require additional
best practices to ensure security.

To secure Red Hat Enterprise Linux start with the following release-appropriate security guide:
® For Red Hat Enterprise Linux 8, see Security hardening.

® For Red Hat Enterprise Linux 9, see Security hardening.

16.1. UNDERSTAND THE ARCHITECTURE OF ANSIBLE AUTOMATION
PLATFORM AND AUTOMATION CONTROLLER

Ansible Automation Platform and automation controller comprise a general-purpose, declarative
automation platform. That means that once an Ansible playbook is launched (by automation controller,
or directly on the command line), the playbook, inventory, and credentials provided to Ansible are
considered to be the source of truth. If you want policies around external verification of specific playbook
content, job definition, or inventory contents, you must complete these processes before the
automation is launched, either by the automation controller web Ul, or the automation controller API.

The use of source control, branching, and mandatory code review is best practice for Ansible
automation. There are tools that can help create process flow around using source control in this
manner.

At a higher level, tools exist that enable creation of approvals and policy-based actions around arbitrary
workflows, including automation. These tools can then use Ansible through the automation controller’s

API to perform automation.

You must use a secure default administrator password at the time of automation controller installation.
For more information, see Change the automation controller Administrator Password.

Automation controller exposes services on certain well-known ports, such as port 80 for HTTP traffic

and port 443 for HTTPS traffic. Do not expose automation controller on the open internet, which
reduces the threat surface of your installation.

16.1.1. Granting access

Granting access to certain parts of the system exposes security risks. Apply the following practices to
help secure access:

® Minimize administrative accounts
® Minimize local system access
® Remove access to credentials from users

® Enforce separation of duties

16.1.2. Minimize administrative accounts

Minimizing the access to system administrative accounts is crucial for maintaining a secure system. A
system administrator or root user can access, edit, and disrupt any system application. Limit the number
of people or accounts with root access, where possible. Do not give out sudo to root or awx (the

85

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/security_hardening/index
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/security_hardening

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

automation controller user) to untrusted users. Note that when restricting administrative access
through mechanisms like sudo, restricting to a certain set of commands can still give a wide range of
access. Any command that enables execution of a shell or arbitrary shell commands, or any command
that can change files on the system, is equal to full root access.

With automation controller, any automation controller "system administrator” or "superuser" account
can edit, change, and update an inventory or automation definition in automation controller. Restrict this
to the minimum set of users possible for low-level automation controller configuration and disaster
recovery only.

16.1.3. Minimize local system access

When you use automation controller with best practices, it does not require local user access except for
administrative purposes. Non-administrator users do not have access to the automation controller
system.

16.1.4. Remove user access to credentials

If an automation controller credential is only stored in the controller, you can further secure it. You can
configure services such as OpenSSH to only permit credentials on connections from specific addresses.
Credentials used by automation can be different from credentials used by system administrators for
disaster-recovery or other ad hoc management, allowing for easier auditing.

16.1.5. Enforce separation of duties

Different pieces of automation might require access to a system at different levels. For example, you
can have low-level system automation that applies patches and performs security baseline checking,
while a higher-level piece of automation deploys applications. By using different keys or credentials for
each piece of automation, the effect of any one key vulnerability is minimized, while also enabling
baseline auditing.

16.2. AVAILABLE RESOURCES

Several resources exist in automation controller and elsewhere to ensure a secure platform. Consider
using the following functionalities:

® Audit and logging functionality
® Existing security functionality
® External account stores

® Django password policies

16.2.1. Audit and logging functionality

For any administrative access, it is important to audit and watch for actions. For the system overall, you
can do this through the built in audit support and the built-in logging support.

For automation controller, you can do this through the built-in Activity Stream support that logs all
changes within automation controller, as well as through the automation logs.

Best practices dictate collecting logging and auditing centrally rather than reviewing it on the local

system. You must configure automation controller to use standard IDs or logging and auditing (Splunk)
in your environment. automation controller includes built-in logging integrations such as Elastic Stack,

86

CHAPTER 16. SECURITY BEST PRACTICES

Splunk, Sumologic, and Loggly.

Additional resources

For more information, see Logging and Aggregation.

16.2.2. Existing security functionality

Do not disable SELinux or automation controller’s existing multi-tenant containment. Use automation
controller’s role-based access control (RBAC) to delegate the minimum level of privileges required to
run automation. Use teams in automation controller to assign permissions to groups of users rather than
to users individually.

Additional resources

For more information, see Role-Based Access Controls in the Automation controller User Guide.

16.2.3. External account stores

Maintaining a full set of users in automation controller can be a time-consuming task in a large
organization. Automation controller supports connecting to external account sources by LDAP, SAML
2.0, and certain OAuth providers. Using this eliminates a source of error when working with permissions.

16.2.4. Django password policies

Automation controller administrators can use Django to set password policies at creation time through
AUTH_PASSWORD_VALIDATORS to validate automation controller user passwords. In the
custom.py file located at /etc/tower/conf.d of your automation controller instance, add the following
code block example:

AUTH_PASSWORD_VALIDATORS = [

{
'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator’,
},
{
'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
'OPTIONS": {
'min_length'": 9,
}
},
{
'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
},
{

'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',

Additional resources

® For more information, see Password validation in Django in addition to the preceding example.

® Ensure that you restart your automation controller instance for the change to take effect. For
more information, see Start, stop, and restart automation controller.

87

https://docs.ansible.com/automation-controller/4.4/html/userguide/security.html#rbac-ug
https://docs.djangoproject.com/en/3.2/topics/auth/passwords/#module-django.contrib.auth.password_validation

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

CHAPTER17. THE AWX-MANAGE UTILITY

Use the awx-manage utility to access detailed internal information of automation controller. Commands
for awx-manage must run as the awx user only.

17.1. INVENTORY IMPORT

awx-manage is a mechanism by which an automation controller administrator can import inventory
directly into automation controller, for those who cannot use Custom Inventory Scripts.

To use awx-manage properly, you must first create an inventory in automation controller to use as the
destination for the import.

For help with awx-manage, run the following command:

I awx-manage inventory_import [--help]

The inventory_import command synchronizes an automation controller inventory object with a text-
based inventory file, dynamic inventory script, or a directory of one or more, as supported by core
Ansible.

When running this command, specify either an --inventory-id or --inventory-name, and the path to the
Ansible inventory source (--source).

I awx-manage inventory_import --source=/ansible/inventory/ --inventory-id=1

By default, inventory data already stored in automation controller blends with data from the external
source.

To use only the external data, specify --overwrite.

To specify that any existing hosts get variable data exclusively from the --source, specify --
overwrite_vars.

The default behavior adds any new variables from the external source, overwriting keys that already
exist, but preserving any variables that were not sourced from the external data source.

I awx-manage inventory_import --source=/ansible/inventory/ --inventory-id=1 --overwrite

NOTE

Edits and additions to Inventory host variables persist beyond an inventory
synchronization as long as --overwrite_vars is not set.

17.2. CLEANUP OF OLD DATA

awx-manage has a variety of commands used to clean old data from automation controller. Automation
controller administrators can use the automation controller Management Jobsinterface for access or
use the command line.

I awx-manage cleanup_jobs [--help]

This permanently deletes the job details and job output for jobs older than a specified number of days.

88

CHAPTER 17. THE AWX-MANAGE UTILITY

I awx-manage cleanup_activitystream [--help]

This permanently deletes any Activity stream data older than a specific number of days.

17.3. CLUSTER MANAGEMENT

For more information on the awx-manage provision_instance and awx-manage
deprovision_instance commands, see Clustering.

NOTE

Do not run other awx-manage commands unless instructed by Ansible Support.

17.4. TOKEN AND SESSION MANAGEMENT
Automation controller supports the following commands for OAuth2 token management:
® create_oauth2_token

o revoke_ oauth2_tokens

cleartokens

® expire_sessions

clearsessions

17.4.1. create_oauth2_token

Use the following command to create OAuth2 tokens (specify the username for example_user):
$ awx-manage create_oauth2_token --user example_user
New OAuth2 token for example_user: j89ia80079te61AZ97L7E8bMgXCON2

Ensure that you provide a valid user when creating tokens. Otherwise, an error message that you
attempted to issue the command without specifying a user, or supplied a username that does not exist,
is displayed.

17.4.2. revoke_oauth2_tokens

Use this command to revoke OAuth2 tokens, both application tokens and personal access tokens (PAT).
It revokes all application tokens (but not their associated refresh tokens), and revokes all personal
access tokens. However, you can also specify a user for whom to revoke all tokens.

To revoke all existing OAuth2 tokens use the following command:

I $ awx-manage revoke_oauth2_tokens

To revoke all OAuth2 tokens and their refresh tokens use the following command:

I $ awx-manage revoke_oauth2_tokens --revoke_refresh

89

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/automation_controller_user_guide/assembly-controller-user-interface#proc-controller-activity-stream

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

To revoke all OAuth2 tokens for the user with id=example_user (specify the username for
example_user):

I $ awx-manage revoke_oauth2_tokens --user example_user

To revoke all OAuth2 tokens and refresh token for the user with id=example_user:

I $ awx-manage revoke_oauth2_tokens --user example_user --revoke_refresh

17.4.3. cleartokens
Use this command to clear tokens which have already been revoked.

For more information, see cleartokens in Django’s Oauth Toolkit documentation.

17.4.4. expire_sessions
Use this command to terminate all sessions or all sessions for a specific user.
Consider using this command when a user changes role in an organization, is removed from assorted

groups in LDAP/AD, or the administrator wants to ensure the user can no longer execute jobs due to
membership in these groups.

I $ awx-manage expire_sessions

This command terminates all sessions by default. The users associated with those sessions are logged
out. To only expire the sessions of a specific user, you can pass their username using the --user flag
(replace example_user with the username in the following example):

I $ awx-manage expire_sessions --user example_user

17.4.5. clearsessions
Use this command to delete all sessions that have expired.
For more information, see Clearing the session store in Django’s Oauth Toolkit documentation.

For more information on OAuth2 token management in the Ul, see the Applications section of the
Automation controller User Guide.

17.5. ANALYTICS GATHERING

Use this command to gather analytics on-demand outside of the predefined window (the default is 4
hours):

I $ awx-manage gather_analytics --ship

For customers with disconnected environments who want to collect usage information about unique
hosts automated across a time period, use this command:

I awx-manage host_metric --since YYYY-MM-DD --until YYYY-MM-DD --json

90

https://django-oauth-toolkit.readthedocs.io/en/latest/management_commands.html
https://docs.djangoproject.com/en/4.2/topics/http/sessions/#clearing-the-session-store
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/automation_controller_user_guide/assembly-controller-applications

CHAPTER 17. THE AWX-MANAGE UTILITY

The parameters --since and --until specify date ranges and are optional, but one of them has to be
present.

The --json flag specifies the output format and is optional.

o1

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

CHAPTER 18. AUTOMATION CONTROLLER CONFIGURATION

You can configure automation controller settings within the Settings screen in the following tabs:

Settings D
Authentication System
Enable simplified login for your AWX applications Define system-level features and functions
Azure AD settings Miscellaneous System settings
GitHub settings Activity Stream settings
Google QAuth 2 settings Logging settings
LDAP settings
RADIUS settings User Interface

Set preferences for data collection, logos, and logins

SAML settings
User Interface settings

TACACS+ settings

Subscription
Jobs View and edit your subscription information

Update settings pertaining to Jobs within AWX
Subscription settings

Jobs settings

Each tab contains fields with a Reset option, enabling you to revert any value entered back to the
default value. Reset All enables you to revert all the values to their factory default values.

Save applies the changes you make, but it does not exit the edit dialog. To return to the Settings page,
from the navigation panel select Settings or use the breadcrumbs at the top of the current view.

18.1. AUTHENTICATING AUTOMATION CONTROLLER
Through the automation controller Ul, you can set up a simplified login through various authentication

types, such as GitHub, Google, LDAP, RADIUS, and SAML. Once you create and register your developer
application with the appropriate service, you can set up authorizations for them.

Procedure

1. From the navigation panel, select Settings.

2. Select from the following Authentication options:

® Azure AD settings

® Github settings

® Google OAuth2 settings
® | DAP Authentication

® RADIUS settings

® SAML settings

o Transparent SAML Logins
o Enabling Logging for SAML

® TACACSH+ settings

92

CHAPTER 18. AUTOMATION CONTROLLER CONFIGURATION

® Generic OIDC settings
Ensure that you include all the required information.

3. Click Save to apply the settings or Cancel to abandon the changes.

18.2. CONFIGURING JOBS
The Jobs tab enables you to configure the types of modules that can be used by the automation

controller's Ad Hoc Commands feature, set limits on the number of jobs that can be scheduled, define
their output size, and other details pertaining to working with jobs in automation controller.

Procedure

1. From the navigation panel, select Settings.

2. Select Jobs settingsin the Jobs option. Set the configurable options from the fields provided.

Click the tooltip @ icon next to the field that you need additional information about.
For more information about configuring Galaxy settings, see the Ansible Galaxy Support section
of the Automation controller User Guide.

NOTE

The values for all timeouts are in seconds.

3. Click Save to apply the settings and Cancel to abandon the changes.

18.3. CONFIGURING SYSTEM SETTINGS
The System tab enables you to complete the following actions:
e Define the base URL for the automation controller host
e Configure alerts
® Enable activity capturing
® Control visibility of users
® Enable certain automation controller features and functionality through a license file

e Configure logging aggregation options

Procedure

1. From the navigation panel, select Settings.

2. Choose from the following System options:

® Miscellaneous System settings: Enable activity streams, specify the default execution
environment, define the base URL for the automation controller host, enable automation
controller administration alerts, set user visibility, define analytics, specify usernames and
passwords, and configure proxies.

93

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html-single/automation_controller_user_guide/index#ref-projects-galaxy-support

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

94

® Miscellaneous Authentication settings: Configure options associated with authentication
methods (built-in or SSO), sessions (timeout, number of sessions logged in, tokens), and
social authentication mapping.

® | ogging settings: Configure logging options based on the type you choose:

Logging Aggregator Type (3 Revert
e
logstash

splunk
loggly
sumologic
other

rt

For more information about each of the logging aggregation types, see the Logging and
Aggregation section.

3. Set the configurable options from the fields provided. Click the tooltip @ icon next to the field
that you need additional information about.
The following is an example of the Miscellaneous System settings:

Settings > Miscellaneous System

Edit Details

Enable Activity Stream (3 Revert Enable Activity Stream for Inventory Sync (3 Revert Global default execution environment (3 Revert

© o Q@ or a

Base URL of the service * (3 Revert All Users Visible to Organization Admins (&) Revert Organization Admins Can Manage Users and Teams (5} Revert

https:/ = @ o @ o

Gather data for Automation Analytics 3 Revert Red Hat customer username (3) Revert Red Hat customer password (3} Revert

@ o w

Red Hat or Satellite username (3) Revert Red Hat or Satellite password (3) Revert Automation Analytics Gather Interval * (3) Revert

3 14400

Enable Preview of New User Interface (&) Revert
Q@ or
Last gathered entries from the data collection service of Automation Analytics Revert

1

Remote Host Headers * (3} Revert

1-
2 "REMOTE_ADDR",
3 "REMOTE_HOST"
a1

Proxy IP Allowed List * (3 Revert

10

Revert all to default Cancel

CHAPTER 18. AUTOMATION CONTROLLER CONFIGURATION

NOTE
The Allow External Users to Create Oauth2 Tokenssetting is disabled by
default. This ensures external users cannot create their own tokens. If you enable

then disable it, any tokens created by external users in the meantime still exist,
and are not automatically revoked.

4. Click Save to apply the settings and Cancel to abandon the changes.

18.4. CONFIGURING THE USER INTERFACE

The User Interface tab enables you to set automation controller analytics settings, and configure
custom logos and login messages.

Procedure

1. From the navigation panel, select Settings.
2. Select User Interface settings from the User Interface option.

3. Click Edit to configure your preferences.

18.4.1. Configuring usability analytics and data collection

Usability data collection is included with automation controller to collect data to understand how users
interact with it, to enhance future releases, and to streamline your user experience.

Only users installing a trial of Red Hat Ansible Automation Platform or a fresh installation of automation
controller are opted-in for this data collection.

Automation controller collects user data automatically to help improve the product. You can opt out or

control the way automation controller collects data by setting your participation level in the User
Interface settings.

Procedure

1. From the navigation panel, select Settings.
2. Select User Interface settings from the User Interface options.
3. Click Edit.

4. Select the desired level of data collection from the User Analytics Tracking Statelist:

o Off: Prevents any data collection.
® Anonymous: Enables data collection without your specific user data.
® Detailed: Enables data collection including your specific user data.

5. Click Save to apply the settings or Cancel to abandon the changes.

Additional resources

For more information, see the Red Hat Privacy Statement.

95

https://www.redhat.com/en/about/privacy-policy

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

18.4.2. Custom logos and images

Automation controller supports the use of a custom logo. You can add a custom logo by uploading an
image and supplying a custom login message from the User Interface settings. To access these
settings, select Settings from the navigation panel.

Settings > User Interface 9
0
Edit Details
User Analytics Tracking State * (® Revert Custom Login Info ® Revert
Detailed -
-
Custom Logo 3 Revert
Drag a file here or browse to upload Browse... Clear
+]

Revert all to default Cancel

For the best results, use a .png file with a transparent background. GIF, PNG, and JPEG formats are
supported.

You can add specific information (such as a legal notice or a disclaimer) to a text box in the login modal
by adding it to the Custom Login Info text field.

Example

You upload a specific logo and add the following text:

Settings » User Interface o
0
Edit Details
User Analytics Tracking State * (3 Undo Custom Login Info () Revert
Off - Don't upset the Angry Spud!

Custom Logo & Revert

angry-spud.png Browse... Clear

Revert all to default Cancel

The Ansible Automation Platform login dialog resembles the following:

96

CHAPTER 18. AUTOMATION CONTROLLER CONFIGURATION

Welcome to Ansible Automation .
L o)
Platform! e)
"

-

Please log in

/

Username *

Don't upset the Angry Spud!

Password *

Select Revert to use the standard automation controller logo.

18.5. ADDITIONAL SETTINGS FOR AUTOMATION CONTROLLER

There are additional advanced settings that can affect automation controller behavior that are not
available in the automation controller Ul.

For traditional virtual machine based deployments, these settings can be provided to automation
controller by creating a file in /etc/tower/conf.d/custom.py. When settings are provided to automation
controller through file-based settings, the settings file must be present on all control plane nodes. These
include all of the hybrid or control type nodes in the automationcontroller group in the installer
inventory.

For these settings to be effective, restart the service with automation-controller-service restart on
each node with the settings file. If the settings provided in this file are also visible in the automation
controller Ul, then they are marked as "Read only" in the Ul

18.6. OBTAINING AN AUTHORIZED ANSIBLE AUTOMATION
CONTROLLER SUBSCRIPTION

If you already have a subscription to a Red Hat product, you can acquire an automation controller
subscription through that subscription. If you do not have a subscription to Red Hat Ansible Automation
Platform and Red Hat Satellite, you can request a trial subscription.

Procedure

e [f you have a Red Hat Ansible Automation Platform subscription, use your Red Hat customer
credentials when you launch the automation controller to access your subscription information.
See Importing a subscription.

e |fyou have a non-Ansible Red Hat or Satellite subscription, access automation controller with
one of these methods:

97

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html-single/automation_controller_user_guide/index#controller-importing-subscriptions

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

o Enter your username and password on the license page.
o Obtain a subscriptions manifest from the Subscription Allocations page on the Red Hat
Customer Portal. For more information, see Obtaining a subscriptions manifest in the

Automation controller User Guide.

o If you do not have a Red Hat Ansible Automation Platform subscription, go to Try Red Hat
Ansible Automation Platform and request a trial subscription.

Additional resources

To understand what is supported with your subscription, see Automation controller licensing, updates
and support. * If you have issues with your subscription, contact your Sales Account Manager or Red Hat
Customer Service at: https://access.redhat.com/support/contact/customerService/.

18.6.1. Troubleshooting: Keep your subscription in compliance

Your subscription has two possible statuses:

e Compliant: Indicates that your subscription is appropriate for the number of hosts that you have
automated within your subscription count.

® OQut of compliance: Indicates that you have exceeded the number of hosts in your subscription.

Compliance is computed as follows:

managed > manifest_limit => non-compliant
managed =< manifest_limit => compliant

Where: managed is the number of unique managed hosts without deletions, and manifest_limit is the
number of managed hosts in the subscription manifest.

Other important information displayed are:
® Hosts automated: Host count automated by the job, which consumes the license count.

® Hosts imported: Host count considering unique host names across all inventory sources. This
number does not impact hosts remaining.

® Hosts remaining: Total host count minus hosts automated.

® Hosts deleted: Hosts that were deleted, freeing the license capacity.

® Active hosts previously deleted: Number of hosts now active that were previously deleted.
For example, if you have a subscription capacity of 10 hosts:

® Starting with 9 hosts, 2 hosts were added and 3 hosts were deleted, you now have 8 hosts
(compliant).

® 3 hosts were automated again, now you have 11 hosts, which puts you over the subscription limit
of 10 (non-compliant).

e |f you delete hosts, refresh the subscription details to see the change in count and status.
18.6.2. Viewing the host activity

98

https://access.redhat.com/management/subscription_allocations
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html-single/automation_controller_user_guide/index#proc-controller-obtaining-subscriptions-manifest
https://www.redhat.com/en/technologies/management/ansible/trial
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html-single/automation_controller_user_guide/index#assembly-controller-licensing
https://access.redhat.com/support/contact/customerService/

CHAPTER 18. AUTOMATION CONTROLLER CONFIGURATION

Procedure

1. In the navigation panel, select Host Metrics to view the activity associated with hosts, such as
those that have been automated and deleted.
Each unique hostname is listed and sorted by the user’s preference.

Host Metrics

O Hostname Q Delete 1-10f1 =
Hostname 1 First automated @ Last automated @ Automation @ Deleted @

O host1 4/18/2023, 8:08:41 AM 4/18/2023, 8:08:41 AM 1 0

O host-2 4/18/2023, 8:08:41 AM 4/18/2023, 8:08:41 AM 1 0

(m] host-3 4/18/2023, 8:08:41 AM 4/18/2023, 8:08:41 AM 1 o]

0 host-4 4/18/2023, 8:08:41 AM 4/18/2023, 8:08:41 AM 1 0

(m] host-5 4/18/2023, 8:08:41 AM 4/18/2023, 8:08:41 AM 1 0

NOTE

A scheduled task automatically updates these values on a weekly basis and
deletes jobs with hosts that were last automated more than a year ago.

2. Delete unnecessary hosts directly from the Host Metrics view by selecting the desired hosts and
clicking Delete.
These are soft-deleted, meaning their records are not removed, but are not being used and
thereby not counted towards your subscription.

For more information, see Troubleshooting: Keeping your subscription in compliance in the Automation
controller User Guide.

18.6.3. Host metric utilities

Automation controller provides a way to generate a CSV output of the host metric data and host metric
summary through the Command Line Interface (CLI). You can also soft delete hosts in bulk through the
API.

For more information, see the Host metrics utilities section of the Automation controller User Guide.

99

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html-single/automation_controller_user_guide/index#controller-keep-subscription-in-compliance
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html-single/automation_controller_user_guide/index#controller-host-metric-utilities

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

CHAPTER 19. ISOLATION FUNCTIONALITY AND VARIABLES

Automation controller uses container technology to isolate jobs from each other. By default, only the
current project is exposed to the container running a job template.

You might find that you need to customize your playbook runs to expose additional directories.
To fine tune your use of job isolation, there are certain variables that can be set.
By default, automation controller uses the system'’s /tmp directory as its staging area. You can change

this in the Job Execution Pathfield on the Jobs settings page, or in the REST API at
/api/v2/settings/jobs, using:

I AWX_ISOLATION_BASE_PATH = "/opt/tmp"

If there are any additional directories to be exposed from the host to the container that playbooks run in,
you can specify those in the Paths to Expose to Isolated Jobsfield of the Jobs settings page, orin
the REST API at /api/v2/settings/jobs, using:

I AWX_ISOLATION_SHOW_PATHS = ['/list/of/", '/paths']

NOTE

If your playbooks use keys or settings defined in /var/lib/awx/.ssh you must add it to
AWX _ISOLATION_SHOW_PATHS.

These fields can be found on the Jobs Settings page.

100

CHAPTER 19. ISOLATION FUNCTIONALITY AND VARIABLES

Job execution path * (3 Revert § Maximum Scheduled Jobs * (%) Revert Default Job Timeout &) Revert
Jtmp 10]
Default Job Idle Timeout (3 Revert Default Inventory Update Timeout 3 Revert Default Project Update Timeout (3} Revert
0 0 0
Per-Host Ansible Fact Cache Timeout (3 Revert Maximum number of forks per job (2 Revert When can extra variables contain Jinja templates? 3 Revert
o] 200 Template -
Run Project Updates With Higher Verbosity (3) Revert Ignore Ansible Galaxy SSL Certificate Verification (3 Revert Enable Role Download (3) Revert
Q@ or Qa® or © o
Enable Collection(s) Download (3} Revert Follow symlinks (3 Revert Expose host paths for Container Groups (3 Revert
© > Q@ or Q@ o
Ansible Modules Allowed for Ad Hoc Jobs (3 Revert
1-[
2 ""command",
3 “shell™,
4 tyumt,
5 Yapt",
6 "apt_key",
7 "apt_repository",
8 "apt_rpm",
9 "service",
10 "'group",
il "user"
12 "mount",
13 "ping",
14 "selinux",
15 "setup",
16 "win_ping",
17 "win_service",
18 “'win_updates",
19 "win_group",
20 "'win_user"
21]
Ansible Callback Plugins & Revert
1N
Paths to expose to isolated jobs () Revert
11
2 "Jetc/pki/ca-trust:/etc/pki/ca-trust:0",
3 "/usr/share/pki:/usr/share/pki:0"
4 11
Extra Environment Variables (3 Revert

1y

101

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

CHAPTER 20. TOKEN-BASED AUTHENTICATION

OAuth 2 is used for token-based authentication. You can manage OAuth tokens and applications, a
server-side representation of API clients used to generate tokens. By including an OAuth token as part
of the HTTP authentication header, you can authenticate yourself and adjust the degree of restrictive
permissions in addition to the base RBAC permissions.

For more information on the OAuth2 specification, see The OAuth 2.0 Authorization Framework.

For more information on using the manage utility to create tokens, see Token and session management.

20.1. MANAGING OAUTH 2 APPLICATIONS AND TOKENS

Applications and tokens can be managed as a top-level resource at /api/<version>/applications and
/api/<version>/tokens. These resources can also be accessed respective to the user at
/api/<version>/users/N/<resources>. You can create applications by making a POST to either
api/<version>/applications or /api/<version>/users/N/applications.

Each OAuth 2 application represents a specific API client on the server side. For an API client to use the
APl via an application token, it must first have an application and issue an access token. Individual
applications are accessible through their primary keys in: /api/<version>/applications/<pk>/.

The following is a typical application:

102

"id": 1,

"type": "o_auth2_application”,
"url": "/api/v2/applications/2/",
"related": {

"tokens": "/api/v2/applications/2/tokens/"
b
"summary_fields": {

"organization": {

"id": 1,
"name": "Default”,
"description": ™"
b
"user_capabilities": {
"edit": true,
"delete": true
b
"tokens": {
"count": 0,
"results": []
}
b
"created": "2018-07-02T21:16:45.824400Z",

"modified": "2018-07-02T21:16:45.824514Z",

"name": "My Application”,

"description”: ",

"client_id": "Ecmc6RjjhKUOWJzDYEP8TZ35P3dvsKt0AKdIjgHV",

"client_secret™:
"7Ft7ym8MpE54yWGUNvxxg6KqGwPFsyhYn9QQfYHIgBxai74Qp1GE4zsvJduOfSFKTIWFnPzYpxqcR
sy1KacDOHHOvOAQUDJDCidByMiUIH4YQKtGFM1zE1dACYbpN44E",

"client_type": "confidential",

https://datatracker.ietf.org/doc/html/rfc6749

CHAPTER 20. TOKEN-BASED AUTHENTICATION

"redirect_uris": ",
"authorization_grant_type": "password",
"skip_authorization": false,
"organization": 1

}

Where name is the human-readable identifier of the application. The rest of the fields, like client_id
and redirect_uris, are mainly used for OAuth2 authorization, which is covered in Using OAuth 2 Token
System for Personal Access Tokens (PAT).

The values for the client_id and client_secret fields are generated during creation and are non-
editable identifiers of applications, while organization and authorization_grant_type are required upon
creation and become non-editable.

20.1.1. Access Rules for Applications

Access rules for applications are as follows:
® System administrators can view and manipulate all applications in the system.

® Organization administrators can view and manipulate all applications belonging to Organization
members.

® Other users can only view, update, and delete their own applications, but cannot create any new
applications.

Tokens, on the other hand, are resources used to authenticate incoming requests and mask the
permissions of the underlying user.

There are two ways to create a token:

e POST to the /api/v2/tokens/ endpoint and set the application and scope fields to point to the
related application and specify the token scope.

e POST to the /api/v2/applications/<pk>/tokens/ endpoint with the scope field (the parent
application is automatically linked).

Individual tokens are accessible through their primary keys at /api/<version>/tokens/<pk>/.

The following is an example of a typical token:

"id": 4,

"type": "o_auth2_access_token",

"url": "/api/v2/tokens/4/",

"related": {
"user": "/api/v2/users/1/",
"application": "/api/v2/applications/1/",
"activity_stream": "/api/v2/tokens/4/activity_stream/"

"summary_fields": {
"application": {
"id": 1,
"name": "Default application for root",
"client_id": "mcU5J5uGQcEQMgAZyr5JUnM3BgBJpgbgL9fLOVch"
b

103

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

"user": {
"id": 1,
"username": "root",
"first_name": "",
"last_ name": ™"
}
2
"created": "2018-02-23T14:39:32.618932Z",
"modified": "2018-02-23T14:39:32.643626Z",
"description”: "App Token Test",
"user": 1,

"tOken“ « Mkkkkkkkkkkrdixn

"refresh_token": "*rssssrrrn
"application™: 1,
"expires": "2018-02-24T00:39:32.618279Z",
"scope": "read"

2
For an OAuth 2 token, the only fully editable fields are scope and description. The application field is
non-editable on update, and all other fields are entirely non-editable, and are auto-populated during

creation, as follows:

e user field corresponds to the user the token is created for, and in this case, is also the user
creating the token.

® expiresis generated according to the automation controller configuration setting
OAUTH2_PROVIDER.

e token and refresh_token are auto-generated to be non-clashing random strings.
Both application tokens and personal access tokens are shown at the /api/v2/tokens/ endpoint. The

application field in the personal access tokens is always null. This is a good way to differentiate the two
types of tokens.

20.1.2. Access rules for tokens

Access rules for tokens are as follows:

® Users can create a token if they are able to view the related application and can also create a
personal token for themselves.

® System administrators are able to view and manipulate every token in the system.

® Organization administrators are able to view and manipulate all tokens belonging to
Organization members.

® System Auditors can view all tokens and applications.

® Other normal users are only able to view and manipulate their own tokens.

NOTE

Users can only view the token or refresh the token value at the time of creation.

104

CHAPTER 20. TOKEN-BASED AUTHENTICATION

20.2. USING OAUTH 2 TOKEN SYSTEM FOR PERSONAL ACCESS
TOKENS

The easiest and most common way to obtain an OAuth 2 token is to create a personal access token
(PAT) at the /api/v2/users/<userid>/personal_tokens/ endpoint, as shown in the following example:

curl -XPOST -k -H "Content-type: application/json" -d '{"description":"Personal controller CLI token",
"application":null, "scope":"write"}" https://<USERNAME>:
<PASSWORD>@<CONTROLLER_SERVER>/api/v2/users/<USER_ID>/personal_tokens/ | python -
m json.tool

You could also pipe the JSON output through jq, if installed.

The following is an example of using the PAT to access an API endpoint using curl:

curl -k -H "Authorization: Bearer <token>" -H "Content-Type: application/json" -X POST -d '{}'
https://controller/api/v2/job_templates/5/launch/

In automation controller, the OAuth 2 system is built on top of the Django Oauth Toolkit, which provides
dedicated endpoints for authorizing, revoking, and refreshing tokens.

These endpoints can be found under the /api/v2/users/<USER_ID>/personal_tokens/ endpoint, which
also provides examples on typical use of those endpoints. These special OAuth 2 endpoints only
support use of the x-www-form-urlencoded Content-type, so none of the api/o/* endpoints accept
application/json.

NOTE

You can also request tokens using the /api/o/token endpoint by specifying null for the
application type.

.

Alternatively, see Adding tokens for users through the Ul, and configuring the expiration of an access
token and its associated refresh token (if applicable).

Settings » Miscellaneous Authentication

. . D
Edit Details
Disable the built-in authentication system (3 Revert Idle Time Force Log Out * (& Revert ~ Maximum number of simultaneous logged in sessions * (& Revert
a orf 36666 A
Enable HTTP Basic Auth Revert Allow External Users to Create OAuth2 Tokens () Revert Login redirect overricde URL G Revert
© o @ o o
Access Token Expiration (3 Revert Refresh Token Expiration (3 Revert Autherization Code Expiration &) Revert
31536000000 2628000 600

Social Auth Organization Map (3 Undo

null

Social Auth Team Map () Undo

null

20.2.1. Token scope mask over RBAC system

The scope of an OAuth 2 token is a space-separated string composed of valid scope keywords, "read"
and "write". These keywords are configurable and used to specify permission level of the authenticated
API client. Read and write scopes provide a mask layer over the Role-Based Access Control (RBAC)

105

https://django-oauth-toolkit.readthedocs.io/en/latest/
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/automation_controller_user_guide/assembly-controller-applications#ref-controller-apps-add-tokens

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

permission system of automation controller. A "write" scope gives the authenticated user the full
permissions the RBAC system provides, while a "read" scope gives the authenticated user only the read
permissions the RBAC system provides. Note that "write" implies "read" as well.

For example, if you have administrative permissions to a job template, you can view, modify, launch, and
delete the job template if authenticated through session or basic authentication.

In contrast, if you are authenticated using an OAuth 2 token, and the related token scope is "read", you
can only view, but not manipulate or launch the job template, despite being an administrator.

If the token scope is "write" or "read write", you can take full advantage of the job template as its
administrator.

To acquire and use a token, first you must create an application token.

Procedure

1. Make an application with authorization_grant_type set to password.

2. HTTP POST the following to the /api/v2/applications/ endpoint (supplying your own
organization ID):

"name": "Admin Internal Application",

"description": "For use by secure services & clients. ",
"client_type": "confidential",

"redirect_uris": ",

"authorization_grant_type": "password",
"skip_authorization": false,

"organization": <organization-id>

3. Make a token and POST to the /api/v2/tokens/ endpoint, using:

{

"description”: "My Access Token",
"application": <application-id>,
"scope": "write"

}

This returns a <token-value> that you can use to authenticate with for future requests (this is
not shown again).

4. Use the token to access a resource. The following uses curl as an example:

curl -H "Authorization: Bearer <token-value>" -H "Content-Type: application/json" -X GET
https://<controller>/api/v2/users/

The -k flag might be required if you have not set up a Certificate Authority yet and are using SSL.
To revoke a token, you can use DELETE on the Details page for that token, using that token’s ID.

For example:

I curl -ku <user>:<password> -X DELETE https://<controller>/api/v2/tokens/<pk>/

106

CHAPTER 20. TOKEN-BASED AUTHENTICATION

Similarly, using a token:

I curl -H "Authorization: Bearer <token-value>" -X DELETE https://<controller>/api/v2/tokens/<pk>/ -k

20.3. APPLICATION FUNCTIONS

Several OAuth 2 utility endpoints are used for authorization, token refresh, and revoke. The /api/o/
endpoints are not meant to be used in browsers and do not support HTTP GET. The endpoints
prescribed here strictly follow RFC specifications for OAuth 2, so use that for detailed reference.

The following are examples of the typical use of these endpoints in automation controller, in particular,
when creating an application using various grant types:

20.3.1. Application using authorization code grant type

The application authorization code grant type should be used when access tokens must be issued
directly to an external application or service.

NOTE

You can only use the authorization code type to acquire an access token when using an
application. When integrating an external web application with automation controller, that
web application might need to create OAuth2 Tokens on behalf of users in that other web
application. Creating an application in automation controller with the authorization code
grant type is the preferred way to do this because:

® This allows an external application to obtain a token from automation controller
for a user, using their credentials.

e Compartmentalized tokens issued for a particular application enables those
tokens to be easily managed. For example, revoking all tokens associated with
that application without having to revoke all tokens in the system.

Example

To create an application named AuthCodeApp with the authorization-code grant type,
perform a POST to the /api/v2/applications/ endpoint:

"name": "AuthCodeApp",

"user": 1,

"client_type": "confidential",

"redirect_uris": "http://<controller>/api/v2",
"authorization_grant_type": "authorization-code",
"skip_authorization": false

.. _ Django-oauth-toolkit simple test application™: http://django-oauth-
toolkit.herokuapp.com/consumer/

The workflow that occurs when you issue a GET to the authorize endpoint from the client application
with the response_type, client_id, redirect_uris, and scope:

107

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

1. Automation controller responds with the authorization code and status to the redirect_uri
specified in the application.

2. The client application then makes a POST to the api/o/token/ endpoint on automation
controller with the code, client_id, client_secret, grant_type, and redirect_uri.

3. Automation controller responds with the access_token, token_type, refresh_token, and
expires_in.

For more information, and to test this flow, see Test Your Authorization Server in the Django OAuth
Toolkit.

You can specify the number of seconds an authorization code remains valid on the System settings
page:

Settings > Miscellaneous Authentication

. . D
Edit Details
Disable the built-in authentication system (2 Revert Idle Time Force Log Out * (3 Revert ~ Maximum number of simultaneous logged in sessions * (3 Revert
a o 36666 A
Enable HTTP Basic Auth (3 Revert Allow External Users to Create OAuth2 Tokens &) Revert Login redirect override URL & Revert
© o Q@ o o
Access Token Expiration & Revert Refresh Token Expiration & Revert | Authorization Code Expiration @ Revert
31536000000 2628000 600
Social Auth Organization Map & Undo
1 null
Social Auth Team Map & Undo

1 null

Requesting an access token after this duration fails.
The duration defaults to 600 seconds (10 minutes), based on the RFC6749 recommendation.

The best way to set up application integrations using the Authorization Code grant type is to allowlist the
origins for those cross-site requests. More generally, you must allowlist the service or application you are
integrating with automation controller, for which you want to provide access tokens.

To do this, have your Administrator add this allowlist to their local automation controller settings in
/etc/tower/conf.d/custom.py:

CORS_ORIGIN_ALLOW_ALL = True

CORS_ALLOWED_ORIGIN_REGEXES = [
r"http://django-oauth-toolkit.herokuapp.com™*",
r"http://www.example.com™"

]

Where http://django-oauth-toolkit.herokuapp.com and http://www.example.com are applications
requiring tokens with which to access automation controller.

20.3.2. Application using password grant type

The password grant type or Resource owner password-based grant type is ideal for users who have
native access to the web application and must be used when the client is the Resource owner. The
following supposes an application, "Default Application” with grant type password:

108

https://django-oauth-toolkit.readthedocs.io/en/latest/tutorial/tutorial_01.html#test-your-authorization-server
https://tools.ietf.org/html/rfc6749
http://django-oauth-toolkit.herokuapp.com
http://www.example.com

CHAPTER 20. TOKEN-BASED AUTHENTICATION

"id": 6,
"type": "application",

"name": "Default Application”,

"user": 1,

"client_id": "gwSPoasWSdNKMDtBN3Hu2WYQpPWCO9SwUEsKK22|",

"client_secret™:
"fleZpfocHYBGfm1tP92r0ylgCyfRADQt0Tos9L8a4fNsJjQQMwp9569elaUBsaVDgt2eiwOGe0bg5m5vC
SstClZmtdy359RVx2rQK5YIIWyPIrolpt2LEpVeKXWaiybo",

"client_type": "confidential",

"redirect_uris": ",

"authorization_grant_type": "password",

"skip_authorization": false

}

Logging in is not required for password grant type, so you can use curl to acquire a personal access
token through the /api/v2/tokens/ endpoint:

curl -k --user <user>:<password> -H "Content-type: application/json" \
-X POST\
--data {
"description": "Token for Nagios Monitoring app",
"application™: 1,
"scope": "write"
A
https://<controller>/api/v2/tokens/

NOTE

The special OAuth 2 endpoints only support using the x-www-form-urlencoded
Content-type, so as a result, none of the api/o/* endpoints accept application/json.

-

Upon success, a response displays in JSON format containing the access token, refresh token, and other
information:

HTTP/1.1 200 OK

Server: nginx/1.12.2

Date: Tue, 05 Dec 2017 16:48:09 GMT
Content-Type: application/json
Content-Length: 163

Connection: keep-alive
Content-Language: en

Vary: Accept-Language, Cookie
Pragma: no-cache

Cache-Control: no-store
Strict-Transport-Security: max-age=15768000

{"access_token": "9epHOgqHhNXUcgYK8QanOmUQPSgX92g", "token_type": "Bearer", "expires_in":
315360000000, "refresh_token": "J]MRX6QvzOTf046KHee3TUS5mMT3nyXsz", "scope": "read"}

20.4. APPLICATION TOKEN FUNCTIONS

109

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

The refresh and revoke functions associated with tokens, for tokens at the /api/o/ endpoints can
currently only be carried out with application tokens.

20.4.1. Refresh an existing access token

The following example shows an existing access token with a refresh token provided:

"id": 35,
"type": "access_token",

"user": 1,

"token": "omMFLk7UKpB36WN2Qma9H3gbwEBSOc",
"refresh_token": "ALONKOT TpvOqp54dGbC4VUZtsZ9r8z",
"application": 6,

"expires": "2017-12-06T03:46:17.087022Z",

"scope": "read write"

}

The /api/o/token/ endpoint is used for refreshing the access token:

curl -X POST\

-d "grant_type=refresh_token&refresh_token=ALONKOT Tpv0qp54dGbC4VUZtsZ9r8z" \

-u
"gwSPoasWSdNKMDtBN3Hu2WYQpPWCO9SwWUEsKK22I:fI6ZpfocHYBGfm1tP92r0ylgCyfRdDQt0Tos
9L8a4fNsJjQQMwp9569elaUBsaVDgt2eiwOGe0bg5m5vCSstClZmtdy359RVx2rQK5YIIWYyPIrolpt2LEp
VeKXWaiybo" \

http://<controller>/api/o/token/ -i

Where refresh_token is provided by refresh_token field of the preceding access token.

The authentication information is of format <client_id>:<client_secret>, where client_id and
client_secret are the corresponding fields of the underlying related application of the access token.

NOTE

The special OAuth 2 endpoints only support using the x-www-form-urlencoded
Content-type, so as a result, none of the api/o/* endpoints accept application/json.

On success, a response displays in JSON format containing the new (refreshed) access token with the
same scope information as the previous one:

110

HTTP/1.1 200 OK

Server: nginx/1.12.2

Date: Tue, 05 Dec 2017 17:54:06 GMT
Content-Type: application/json
Content-Length: 169

Connection: keep-alive
Content-Language: en

Vary: Accept-Language, Cookie
Pragma: no-cache

Cache-Control: no-store
Strict-Transport-Security: max-age=15768000

CHAPTER 20. TOKEN-BASED AUTHENTICATION

{"access_token": "NDInWxGJl4iZggpsreujjbvzCfJqgR", "token_type": "Bearer", "expires_in":
315360000000, "refresh_token": "DgOrmz8bx3srIHkZNKmDpgA86bnQkT", "scope": "read write"}

The refresh operation replaces the existing token by deleting the original and then immediately creating
a new token with the same scope and related application as the original one.

Verify that the new token is present and the old one is deleted in the /api/v2/tokens/ endpoint.

20.4.2. Revoke an access token

You can revoke an access token by using the /api/o/revoke-token/ endpoint.

Revoking an access token by this method is the same as deleting the token resource object, but it
enables you to delete a token by providing its token value, and the associated client_id (and
client_secret if the application is confidential). For example:

curl -X POST -d "token=rQONsve372fQwuc2pn76k3IHDCYpi7" \

-u
"gwSPoasWSdNKMDtBN3Hu2WYQpPWCO9SwWUEsKK22I:fI6ZpfocHYBGfm1tP92r0ylgCyfRADQt0Tos
9L8a4fNsJjQQMwp9569elaUBsaVDgt2eiwOGe0bg5m5vCSstClZmtdy359RVx2rQK5YIIWYyPIrolpt2LEp
VeKXWaiybo" \

http://<controller>/api/o/revoke_token/ -i

NOTE

® The special OAuth 2 endpoints only support using the x-www-form-urlencoded
Content-type, so as a result, none of the api/o/* endpoints accept
application/json.

® The Allow External Users to Create Oauth2 Tokens
(ALLOW_OAUTH2_FOR_EXTERNAL_USERS in the API) setting is disabled by
default. External users refer to users authenticated externally with a service such
as LDAP, or any of the other SSO services. This setting ensures external users
cannot create their own tokens. If you enable then disable it, any tokens created
by external users in the meantime will still exist, and are not automatically
revoked.

Alternatively, to revoke OAuth2 tokens, you can use the manage utility, see Revoke oauth2 tokens.

This setting can be configured at the system-level in the Ul:

m

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

Settings > Miscellaneous Authentication o
" " L
Edit Details
Disable the built-in authentication system (2 Revert Idle Time Force Log Out * @ Revert Maximum number of simultaneous logged in sessions * @ Revert
a o 36666 A
Enable HTTP Basic Auth (3 Revert | Allow External Users to Create OAuth2 Tokens &) Revert Login redirect override URL & Revert
© o @ on o
Access Token Expiration & Revert Refresh Token Expiration & Revert Authorization Code Expiration @ Revert
31536000000 2628000 600
Social Auth Organization Map & Undo
1 null
Undo

Social Auth Team Map @

1 null

On success, a response of 200 OK is displayed. Verify the deletion by checking whether the token is
present in the /api/v2/tokens/ endpoint.

12

CHAPTER 21. SETTING UP SOCIAL AUTHENTICATION

CHAPTER 21. SETTING UP SOCIAL AUTHENTICATION

Authentication methods simplify logins for end users, offering single sign-ons by using existing login
information to sign in to a third party website rather than creating a new login account specifically for
that website.

You can configure account authentication in the User Interface and save it to the PostgreSQL database.

You can configure account authentication in automation controller to centrally use OAuth2, while you
can configure enterprise-level account authentication for SAML, RADIUS, or even LDAP as a source for
authentication information.

For websites, such as Microsoft Azure, Google, or GitHub, which give account information, account
information is often implemented by using the OAuth standard.

OAuth is a secure authorization protocol. It is commonly used in conjunction with account authentication
to grant third party applications a "session token" allowing them to make API calls to providers on the
user’s behalf.

Security Assertion Markup Language (SAML) is an XML-based, open-standard data format for
exchanging account authentication and authorization data between an identity provider and a service
provider.

The RADIUS distributed client/server system enables you to secure networks against unauthorized
access. You can implement this in network environments requiring high levels of security while
maintaining network access for remote users.

Additional resources

For more information, see the Automation controller configuration section.

21.1. GITHUB SETTINGS

To set up social authentication for GitHub, you must obtain an OAuth2 key and secret for a web
application. To do this, you must first register the new application with GitHub at
https://github.com/settings/developers.

To register the application, you must supply it with your homepage URL, which is the Callback URL

shown in the Details tab of the GitHub default settingspage. The OAuth2 key (Client ID) and secret
(Client Secret) are used to supply the required fields in the Ul.

Procedure
1. From the navigation panel, select Settings.
2. On the Settings page, select GitHub settings from the list of Authentication options.

3. Select the GitHub Default tab if not already selected.
The GitHub OAuth2 Callback URLfield is already pre-populated and non-editable. When the
application is registered, GitHub displays the Client ID and Client Secret.

4. Click Edit and copy and paste the GitHub Client ID into the GitHub OAuth2 Key field.

5. Copy and paste the GitHub Client Secret into the GitHub OAuth2 Secretfield.

13

https://github.com/settings/developers

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide
6. For more information on completing the mapping fields, see Organization mapping and Team
mapping.

7. Click Save.

Verification

To verify that the authentication was configured correctly, logout of automation controller. The login
screen now displays the GitHub logo to enable logging in with those credentials.

Welcome to Ansible Automation

Platform! Red Hat
Ansible Automation
Platform

Username *

Password *

LoaIn
Sign in with GitHub

©

21.1.1. GitHub Organization settings

When defining account authentication with either an organization or a team within an organization, you
should use the specific organization and team settings. Account authentication can be limited by an
organization and by a team within an organization.

You can also choose to permit all by specifying non-organization or non-team based settings.

You can limit users who can login to the controller by limiting only those in an organization or on a team
within an organization.

To set up social authentication for a GitHub Organization, you must obtain an OAuth2 key and secret for
a web application. To do this, you must first register your organization-owned application at
https://github.com/organizations/<yourorg>/settings/applications.

To register the application, you must supply it with your Authorization callback URL, which is the
Callback URL shown in the Details page. Each key and secret must belong to a unique application and

cannot be shared or reused between different authentication backends. The OAuth2 key (Client ID) and
secret (Client Secret) are used to supply the required fields in the UI.

Procedure

1. From the navigation panel, select Settings.

2. On the Settings page, select GitHub settings from the list of Authentication options.

14

CHAPTER 21. SETTING UP SOCIAL AUTHENTICATION

3. Select the GitHub Organization tab.
The GitHub Organization OAuth2 Callback URLfield is already pre-populated and non-
editable.

When the application is registered, GitHub displays the Client ID and Client Secret.

4. Click Edit and copy and paste GitHub's Client ID into the GitHub Organization OAuth2 Key
field.

5. Copy and paste GitHub's Client Secret into the GitHub Organization OAuth2 Secretfield.

6. Enter the name of your GitHub organization, as used in your organization’s URL, for example,
https://github.com/<yourorg>/ in the GitHub Organization Namefield.

7. For more information on completing the mapping fields, see Organization mapping and Team
mapping.

8. Click Save.

Verification

To verify that the authentication was configured correctly, logout of automation controller. The login
screen displays the GitHub Organization logo to enable logging in with those credentials.

Welcome to Ansible Automation

Platform! Red Hat
Ansible Automation
Platform

Username *

Password *

Loaln
Sign in with GitHub Organizations

21.1.2. GitHub Team settings

To set up social authentication for a GitHub Team, you must obtain an OAuth2 key and secret for a web
application. To do this, you must first register your team-owned application at
https://github.com/organizations/<yourorg>/settings/applications. To register the application, you
must supply it with your Authorization callback URL, which is the Callback URL shown in the Details
page. Each key and secret must belong to a unique application and cannot be shared or reused between
different authentication backends. The OAuth2 key (Client ID) and secret (Client Secret) are used to
supply the required fields in the UI.

Procedure

115

https://github.com/organizations/<yourorg>/settings/applications

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

1. Find the numeric team ID using the GitHub API. The Team ID is used to supply a required field in
the UL.

2. From the navigation panel, select Settings.
3. On the Settings page, select GitHub settings from the list of Authentication options.

4. Click the GitHub Team tab.
The GitHub Team OAuth2 Callback URLfield is already pre-populated and non-editable.
When the application is registered, GitHub displays the Client ID and Client Secret.

5. Click Edit and copy and paste GitHub's Client ID into the GitHub Team OAuth2 Keyfield.
6. Copy and paste GitHub's Client Secret into the GitHub Team OAuth2 Secretfield.
7. Copy and paste GitHub’s team ID in the GitHub Team IDfield.

8. For more information on completing the mapping fields, see Organization mapping and Team
mapping.

9. Click Save

Verification

To verify that the authentication was configured correctly, logout of automation controller. The login
screen displays the GitHub Team logo to enable logging in with those credentials.

Welcome to Ansible Automation

Platform! Red Hat
Ansible Automation
Platform

Username *

Password *

Loaln
Sign in with GitHub Teams

y)

21.1.3. GitHub Enterprise settings

To set up social authentication for a GitHub Enterprise, you must obtain a GitHub Enterprise URL, an
APl URL, OAuth2 key and secret for a web application.

To obtain the URLs, refer to the GitHub Enterprise administration documentation.

To obtain the key and secret, you must first register your enterprise-owned application at
https://github.com/organizations/<yourorg>/settings/applications.

16

https://fabian-kostadinov.github.io/2015/01/16/how-to-find-a-github-team-id/
https://docs.github.com/en/enterprise-server@3.1/rest/reference/enterprise-admin

CHAPTER 21. SETTING UP SOCIAL AUTHENTICATION

To register the application, you must supply it with your Authorization callback URL, which is the
Callback URL shown in the Details page. Because it is hosted on site and not github.com, you must
specify which authentication adapter it communicates with.

Each key and secret must belong to a unique application and cannot be shared or reused between
different authentication backends. The OAuth2 key (Client ID) and secret (Client Secret) are used to
supply the required fields in the UI.

Procedure

1.

2.

10.

From the navigation panel, select Settings.
On the Settings page, select GitHub settings from the list of Authentication options.

Click the GitHub Enterprise tab.
The GitHub Enterprise OAuth2 Callback URLfield is already pre-populated and non-editable.
When the application is registered, GitHub displays the Client ID and Client Secret.

Click Edit to configure GitHub Enterprise settings.

In the GitHub Enterprise URL field, enter the hostname of the GitHub Enterprise instance, for
example, https://github.example.com.

In the GitHub Enterprise APl URLfield, enter the API URL of the GitHub Enterprise instance,
for example, https://github.example.com/api/v3.

Copy and paste GitHub's Client ID into the GitHub Enterprise OAuth2 Key field.
Copy and paste GitHub's Client Secret into the GitHub Enterprise OAuth2 Secretfield.

For more information on completing the mapping fields, see Organization mapping and Team
mapping.

Click Save.

Verification

To verify that the authentication was configured correctly, logout of automation controller. The login
screen displays the GitHub Enterprise logo to enable logging in with those credentials.

17

https://github.example.com
https://github.example.com/api/v3

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

Welcome to Ansible Automation

Platform! Red Hat
Ansible Automation
Platform

Username *

Password *

Loaln
Sign in with GitHub Enterprise

y)

21.1.4. GitHub Enterprise Organization settings

To set up social authentication for a GitHub Enterprise Organization, you must obtain a GitHub
Enterprise Organization URL, an Organization API URL, an Organization OAuth2 key and secret for a
web application.

To obtain the URLs, refer to the GitHub documentation on GitHub Enterprise administration.

To obtain the key and secret, you must first register your enterprise organization-owned application at
https://github.com/organizations/<yourorg>/settings/applications

To register the application, you must supply it with your Authorization callback URL, which is the
Callback URL shown in the Details page.

Because it is hosted on site and not github.com, you must specify which authentication adapter it
communicates with.

Each key and secret must belong to a unique application and cannot be shared or reused between
different authentication backends. The OAuth2 key (Client ID) and secret (Client Secret) are used to
supply the required fields in the Ul

Procedure
1. From the navigation panel, select Settings.
2. On the Settings page, select GitHub settings from the list of Authentication options.

3. Click the GitHub Enterprise Organization tab.
The GitHub Enterprise Organization OAuth2 Callback URLfield is already pre-populated and
non-editable. When the application is registered, GitHub displays the Client ID and Client
Secret.

4. Click Edit to configure GitHub Enterprise Organization settings.

5. In the GitHub Enterprise Organization URL field, enter the hostname of the GitHub Enterprise
Organization instance, for example, https://github.orgexample.com.

18

https://docs.github.com/en/enterprise-server@3.1/rest/reference/enterprise-admin
https://github.com/organizations/<yourorg>/settings/applications
https://github.orgexample.com

CHAPTER 21. SETTING UP SOCIAL AUTHENTICATION

6. In the GitHub Enterprise Organization APl URLfield, enter the API URL of the GitHub
Enterprise Organization instance, for example, https://github.orgexample.com/api/v3.

7. Copy and paste GitHub's Client ID into the GitHub Enterprise Organization OAuth2 Keyfield.

8. Copy and paste GitHub's Client Secret into the GitHub Enterprise Organization OAuth2
Secret field.

9. Enter the name of your GitHub Enterprise organization, as used in your organization’s URL, for
example, https://github.com/<yourorg>/ in the GitHub Enterprise Organization Namefield.

10. For more information on completing the mapping fields, see Organization mapping and Team
mapping.

11. Click Save.

Verification

To verify that the authentication was configured correctly, logout of automation controller. The login
screen displays the GitHub Enterprise Organization logo to enable logging in with those credentials.

Welcome to Ansible Automation

Platform! Red Hat
Ansible Automation
Platform

Username *

Password *

Loaln
Sign in with GitHub Enterprise Organizations

y)

21.1.5. GitHub Enterprise Team settings

To set up social authentication for a GitHub Enterprise team, you must obtain a GitHub Enterprise
Organization URL, an Organization APl URL, an Organization OAuth2 key and secret for a web
application.

To obtain the URLs, refer to the GitHub documentation on GitHub Enterprise administration.

To obtain the key and secret, you must first register your enterprise team-owned application at
https://github.com/organizations/<yourorg>/settings/applications.

To register the application, you must supply it with your Authorization callback URL, which is the

Callback URL shown in the Details page. Because it is hosted on site and not github.com, you must
specify which authentication adapter it communicates with.

19

https://github.orgexample.com/api/v3
https://github.com/<yourorg>/
https://docs.github.com/en/enterprise-server@3.1/rest/reference/enterprise-admin
https://github.com/organizations/<yourorg>/settings/applications

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

Each key and secret must belong to a unique application and cannot be shared or reused between
different authentication backends. The OAuth2key (Client ID) and secret (Client Secret) are used to
supply the required fields in the UI.

Procedure

1.

1.

12.

Find the numeric team ID using the GitHub API. The Team ID will be used to supply a required
field in the UL

From the navigation panel, select Settings.
On the Settings page, select GitHub settings from the list of Authentication options.

Click the GitHub Enterprise Teamtab.
The GitHub Enterprise Team OAuth2 Callback URLfield is already pre-populated and non-
editable. When the application is registered, GitHub displays the Client ID and Client Secret.

Click Edit to configure GitHub Enterprise Team settings.

In the GitHub Enterprise Team URLfield, enter the hostname of the GitHub Enterprise team
instance, for example, https://github.teamexample.com.

In the GitHub Enterprise Team API URLfield, enter the API URL of the GitHub Enterprise
team instance, for example, https://github.teamexample.com/api/v3.

Copy and paste GitHub’s Client ID into the GitHub Enterprise Team OAuth2 Keyfield.

Copy and paste GitHub's Client Secret into the GitHub Enterprise Team OAuth2 Secretfield.

. Copy and paste GitHub's team ID in the GitHub Enterprise Team IDfield.

For more information on completing the mapping fields, see Organization mapping and Team
mapping.

Click Save.

Verification

To verify that the authentication was configured correctly, logout of automation controller. The login
screen displays the GitHub Enterprise Teams logo to enable logging in with those credentials.

120

https://fabian-kostadinov.github.io/2015/01/16/how-to-find-a-github-team-id/
https://github.teamexample.com
https://github.teamexample.com/api/v3

CHAPTER 21. SETTING UP SOCIAL AUTHENTICATION

Welcome to Ansible Automation

Platform! Red Hat
Ansible Automation
Platform

Username *

Password *

Loaln
Sign in with GitHub Enterprise Teams

y)

21.2. GOOGLE OAUTH2 SETTINGS

To set up social authentication for Google, you must obtain an OAuth2 key and secret for a web
application. To do this, you must first create a project and set it up with Google.

Forinstructions, see Setting up OAuth 2.0 in the Google API Console Help documentation.
If you have already completed the setup process, you can access those credentials by going to the

Credentials section of the Google APl Manager Console. The OAuth2 key (Client ID) and secret (Client
secret) are used to supply the required fields in the Ul.

Procedure

1. From the navigation panel, select Settings.

2. On the Settings page, select Google OAuth 2 settings from the list of Authentication
options.
The Google OAuth2 Callback URL field is already pre-populated and non-editable.

3. The following fields are also pre-populated. If not, use the credentials Google supplied during

the web application setup process, and look for the values with the same format as the ones
shown in the example below:

e (Click Edit and copy and paste Google’s Client ID into the Google OAuth2 Key field.

e Copy and paste Google’s Client secret into the Google OAuth2 Secret field.

121

https://support.google.com/googleapi/answer/6158849
https://console.developers.google.com/

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

Settings > Google OAuth2

. . D
Edit Details
Google OAuth2 Key (3 Revert Google OAuth2 Secret (3 Revert
528620852399-gm2dt4hrl2tsj67fqamk09kleOad6gd... ©® kSjrPnmKLQgdRmnMj8GHcDzy
Google OAuth2 Allowed Domains (3 Revert
{1
Google OAuth2 Extra Arguments (2 Revert

{}

4. To complete the remaining optional fields, refer to the tooltips in each of the fields for
instructions and required format.

5. For more information on completing the mapping fields, see Organization mapping and Team
mapping.

6. Click Save.

Verification

To verify that the authentication was configured correctly, logout of automation controller. The login
screen displays the Google logo to indicate it as an alternate method of logging into automation
controller.

Welcome to Ansible Automation

Platform! Red Hat
Ansible Automation
Platform

Username *

Password *

Loaln
Sign in with Google

G

21.3. ORGANIZATION MAPPING

You must control which users are placed into which automation controller organizations based on their
username and email address (distinguishing your organization administrators and users from social or
enterprise-level authentication accounts).

Dictionary keys are organization names. Organizations are created, if not already present, and if the

license permits multiple organizations. Otherwise, the single default organization is used regardless of
the key.

122

CHAPTER 21. SETTING UP SOCIAL AUTHENTICATION

Values are dictionaries defining the options for each organization’s membership. For each organization,
you can specify which users are automatically users of the organization and also which users can
administer the organization.

admins: None, True/False, string or list/tuple of strings:
® |f None, organization administrators are not updated.

® |f True, all users using account authentication are automatically added as administrators of the
organization.

e [fFalse, no account authentication users are automatically added as administrators of the
organization.

® |f astring or list of strings, specifies the usernames and emails for users to be added to the
organization, strings beginning and ending with / are compiled into regular expressions. The
modifiers i (case-insensitive) and m (multi-line) can be specified after the ending /.

remove_admins: True/False. Defaults to True:
® When True, a user who does not match is removed from the organization’s administrative list.
e users: None, True/False, string or list/tuple of strings. The same rules apply as for admins.

® remove_users: True/False. Defaults to True. The same rules apply as for remove_admins.

"Default": {
"users": true
2
"Test Org": {
"admins”: ["admin@example.com"],
"users": true
2
"Test Org 2": {
"admins": ["admin@example.com”, "/Acontroller-[*"@]+?@.*$/i"],
"users": "N @].*?@example\\.com$/"
}
}

Organization mappings can be specified separately for each account authentication backend. If defined,
these configurations take precedence over the global configuration above.

SOCIAL_AUTH_GOOGLE_OAUTH2_ORGANIZATION_MAP = {}
SOCIAL_AUTH_GITHUB_ORGANIZATION_MAP = {}
SOCIAL_AUTH_GITHUB_ORG_ORGANIZATION_MAP = {}
SOCIAL_AUTH_GITHUB_TEAM_ORGANIZATION_MAP = {}
SOCIAL_AUTH_SAML_ORGANIZATION_MAP = {}

21.4. TEAM MAPPING

Team mapping is the mapping of team members (users) from social authentication accounts. Keys are
team names (which are created if not present). Values are dictionaries of options for each team’s
membership, where each can contain the following parameters:

123

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

® organization: String. The name of the organization to which the team belongs. The team is
created if the combination of organization and team name does not exist. The organization is
created first if it does not exist. If the license does not permit multiple organizations, the team is
always assigned to the single default organization.

e users: None, True/False, string or list/tuple of strings.

o |f None, team members are not updated.
o |If True, all social authentication users are added as team members.
o If False, all social authentication users are removed as team members.

e |f astring or list of strings, specifies expressions used to match users, the user is added as a
team member if the username or email matches. Strings beginning and ending with / are
compiled into regular expressions. The modifiers i (case-insensitive) and m (multi-line) can be
specified after the ending /.

remove: True/False. Defaults to True. When True, a user who does not match the preceding rules is
removed from the team.

"My Team": {
"organization": "Test Org",
"users": ["/N@]+?@test\\.example\\.com$/"],
"remove": true
b
"Other Team™: {
"organization": "Test Org 2",
"users": ["/N@]+?@test\\.example\\.com$/"],
"remove": false
}
}

Team mappings can be specified separately for each account authentication backend, based on which
of these you set up. When defined, these configurations take precedence over the preceding global
configuration.

SOCIAL_AUTH_GOOGLE_OAUTH2 TEAM_MAP = {}
SOCIAL_AUTH_GITHUB_TEAM_MAP = {}
SOCIAL_AUTH_GITHUB_ORG_TEAM_MAP = {}
SOCIAL_AUTH_GITHUB_TEAM_TEAM_MAP = {}
SOCIAL_AUTH_SAML_TEAM_MAP = {}

Uncomment the following line, that is, set SOCIAL_AUTH_USER_FIELDS to an empty list, to prevent
new user accounts from being created.

I SOCIAL_AUTH_USER_FIELDS =]

Only users who have previously logged in to automation controller using social or enterprise-level
authentication, or have a user account with a matching email address can then login.

124

CHAPTER 22. SETTING UP ENTERPRISE AUTHENTICATION

CHAPTER 22. SETTING UP ENTERPRISE AUTHENTICATION

Set up authentication for the following enterprise systems:
® Azure AD settings
® | DAP Authentication
® RADIUS settings

® SAML settings

o Transparent SAML Logins
o Enabling Logging for SAML
® TACACSH+ settings

® Generic OIDC settings

NOTE

For LDAP authentication, see Setting up LDAP Authentication.

SAML, RADIUS, and TACACS+ users are categorized as "Enterprise” users. The following rules apply to
Enterprise users:

® Enterprise users can only be created through the first successful login attempt from the remote
authentication backend.

® Enterprise users cannot be created or authenticated if non-enterprise users with the same
name have already been created in automation controller.

® Automation controller passwords of enterprise users must always be empty and cannot be set
by any user if they are enterprise backend-enabled.

e |f enterprise backends are disabled, an enterprise user can be converted to a normal automation
controller user by setting the password field.

' WARNING
A This operation is irreversible, as the converted automation controller user

can no longer be treated as an enterprise user.

22.1. MICROSOFT AZURE ACTIVE DIRECTORY AUTHENTICATION

To set up enterprise authentication for Microsoft Azure Active Directory (AD), you need to obtain an
OAuth2 key and secret by registering your organization-owned application from Azure at:
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app.

125

https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

Each key and secret must belong to a unique application and cannot be shared or reused between
different authentication backends. To register the application, you must supply it with your webpage
URL, which is the Callback URL shown in the Authentication tab of the Settings screen.

Procedure

1. From the navigation panel, select Settings.

2. Select Azure AD settings from the list of Authentication options.

NOTE

The Azure AD OAuth2 Callback URL field is already pre-populated and non-
editable. Once the application is registered, Microsoft Azure displays the
Application ID and Object ID.

3. Click Edit, copy and paste Microsoft Azure’s Application ID to the Azure AD OAuth2 Key field.
Following Microsoft Azure AD’s documentation for connecting your application to Microsoft
Azure Active Directory, supply the key (shown at one time only) to the client for authentication.

4. Copy and paste the secret key created for your Microsoft Azure AD application to the Azure AD
OAuth2 Secret field of the Settings - Authentication screen.

5. For more information on completing the Microsoft Azure AD OAuth2 Organization Map and
Microsoft Azure AD OAuth2 Team Map fields, see Organization mapping and Team Mapping.

6. Click Save.

Verification

To verify that the authentication is configured correctly, log out of automation controller and the login
screen displays the Microsoft Azure logo to enable logging in with those credentials:

Welcome to Ansible Automation

Platform! Red Hat
Ansible Automation
Platform

Username *

Password *

Loaln
Sign in with Azure AD

A

Additional resources

126

CHAPTER 22. SETTING UP ENTERPRISE AUTHENTICATION

For application registering basics in Microsoft Azure AD, see the What is the Microsoft identity
platform? overview.

22.2. RADIUS AUTHENTICATION

You can configure automation controller to centrally use RADIUS as a source for authentication
information.

Procedure
1. From the navigation panel, select Settings.
2. Select RADIUS settings from the list of Authentication options.

3. Click Edit and enter the host or IP of the RADIUS server in the RADIUS Server field. If you leave
this field blank, RADIUS authentication is disabled.

4. Enter the port and secret information in the next two fields.

5. Click Save.

22.3. SAML AUTHENTICATION

SAML enables the exchange of authentication and authorization data between an Identity Provider (IdP
- a system of servers that provide the Single Sign On service) and a service provider, in this case,
automation controller.

You can configure automation controller to communicate with SAML to authenticate

(create/login/logout) automation controller users. You can embed User, Team, and Organization
membership in the SAML response to automation controller.

SAML TOPOLOGY

Ansible 3 Node Cluster with

Loadbalancer

SERVICE PROVIDER (SP)

127

https://learn.microsoft.com/en-us/entra/identity-platform/v2-overview

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

The following instructions describe automation controller as the service provider. To authenticate users
through RHSSO (keycloak), see Red Hat Single Sign On Integration with the Automation Controller .

Procedure

128

1. From the navigation panel, select Settings.

2. Select SAML settings from the list of Authentication options.

NOTE

The SAML Assertion Consume Service (ACS) URLand SAML Service
Provider Metadata URL fields are pre-populated and are non-editable. Contact
the IdP administrator and provide the information contained in these fields.

3. Click Edit and set the SAML Service Provider Entity IDto be the same as the Base URL of the

automation controller host field, found in the Miscellaneous System settings screen. You can
view it through the APl in the /api/v2/settings/system, under the CONTROLLER_BASE_URL
variable. You can set the Entity ID to any one of the individual automation controller cluster
nodes, but it is good practice to set it to the URL of the service provider. Ensure that the Base
URL matches the FQDN of the load balancer, if used.

NOTE

The Base URL is different for each node in a cluster. A load balancer often sits in
front of automation controller cluster nodes to provide a single entry point, the
automation controller Cluster FQDN. The SAML service provider must be able
establish an outbound connection and route to the automation controller Cluster
Node or the automation controller Cluster FQDN that you set in the SAML
Service Provider Entity ID.

In the following example, the service provider is the automation controller cluster, and
therefore, the ID is set to the automation controller Cluster FQDN:

SAML SERVICE PROVIDER ENTITY ID € REVERT
{ https://ansible-tower-fgdn-elb.amazonaws.com J

. Create a server certificate for the Ansible cluster. Typically when an Ansible cluster is configured,

the automation controller nodes are configured to handle HTTP traffic only and the load
balancer is an SSL Termination Point. In this case, an SSL certificate is required for the load
balancer, and not for the individual automation controller Cluster Nodes. You can enable or
disable SSL per individual automation controller node, but you must disable it when using an
SSL terminated load balancer. Use a non-expiring self signed certificate to avoid periodically
updating certificates. This way, authentication does not fail in case someone forgets to update
the certificate.

NOTE

The SAML Service Provider Public Certificatefield must contain the entire
certificate, including the ----- BEGIN CERTIFICATE----- and ====- END
CERTIFICATE-----.

https://www.ansible.com/blog/red-hat-single-sign-on-integration-with-ansible-tower

CHAPTER 22. SETTING UP ENTERPRISE AUTHENTICATION

If you are using a CA bundle with your certificate, include the entire bundle in this field.

Example

. Create an optional private key for the controller to use as a service provider and enter it in the
SAML Service Provider Private Keyfield.

Example

. Provide the IdP with details about the automation controller cluster during the SSO process in
the SAML Service Provider Organization Infofield:

{
"en-US": {
"url": "http://www.example.com”,
"displayname": "Example",
"name": "example”

IMPORTANT

You must complete these fields to configure SAML correctly within automation
controller.

. Provide the IdP with the technical contact information in the SAML Service Provider Technical
Contact field. Do not remove the contents of this field:

{

"givenName": "Some User",
"emailAddress": "suser@example.com”

}

. Provide the IdP with the support contact information in the SAML Service Provider Support
Contact field. Do not remove the contents of this field:

{

"givenName": "Some User",
"emailAddress": "suser@example.com”

}

. In the SAML Enabled Identity Providersfield, provide information on how to connect to each
IdP listed. The following example shows what automation controller expects SAML attributes to
be:

129

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

130

Username(urn:oid:0.9.2342.19200300.100.1.1)
Email(urn:oid:0.9.2342.19200300.100.1.3)
FirstName(urn:oid:2.5.4.42)
LastName(urn:oid:2.5.4.4)

If these attributes are not known, map existing SAML attributes to Username, Email,
FirstName, and LastName.

Configure the required keys for each IdP:

e attr_user_permanent_id - The unique identifier for the user. It can be configured to match

any of the attributes sent from the IdP. It is normally set to name_id if the SAML:nameid
attribute is sent to the automation controller node. It can be the username attribute or a
custom unique identifier.

entity_id - The Entity ID provided by the IdP administrator. The administrator creates a
SAML profile for automation controller and it generates a unique URL.

url- The Single Sign On (SSO) URL that automation controller redirects the user to, when
SSO is activated.

x509_cert - The certificate provided by the IdP administrator that is generated from the
SAML profile created on the IdP. Remove the ---BEGIN CERTIFICATE--- and ---END
CERTIFICATE--- headers, then enter the certificate as one non-breaking string.

Multiple SAML IdPs are supported. Some IdPs might provide user data using attribute
names that differ from the default OIDs. The SAML NamelD is a special attribute used by
some IdPs to tell the service provider (the automation controller cluster) what the unique
user identifier is. If it is used, set the attr_user_permanent_id to name_id as shown in the
following example. Other attribute names can be overridden for each IdP:

"myidp": {
"entity_id": "https://idp.example.com",
"url": "https://myidp.example.com/sso",
"x509cert": "
I3
"onelogin”: {
"entity_id": "https://app.onelogin.com/saml/metadata/123456",
"url": "https://example.onelogin.com/trust/saml2/http-post/sso/123456",
"x509cert": "",
"attr_user_permanent_id": "name_id",
"attr_first_ name": "User.FirstName",
"attr_last_name": "User.LastName",
"attr_username": "User.email”,
"attr_email": "User.email"

}

CHAPTER 22. SETTING UP ENTERPRISE AUTHENTICATION

WARNING
A Do not create a SAML user that shares the same email with another

user (including a non-SAML user). Doing so results in the accounts
being merged. Note that this same behavior exists for system
administrators. Therefore, a SAML login with the same email address as
the system administrator can login with system administrator privileges.
To avoid this, you can remove (or add) administrator privileges based
on SAML mappings.

10. Optional: Provide the SAML Organization Map. For more information, see Organization
mapping and Team mapping.

1. You can configure automation controller to look for particular attributes that contain Team and
Organization membership to associate with users when they log into automation controller. The
attribute names are defined in the SAML Organization Attribute Mappingand the SAML
Team Attribute Mapping fields.

Example SAML Organization Attribute Mapping

The following is an example SAML attribute that embeds user organization membership in the
attribute member-of:

<saml2:AttributeStatement>
<saml2:Attribute FriendlyName="member-of" Name="member-of"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">
<saml2:AttributeValue>Engineering</samli2:AttributeValue>
<saml2:AttributeValue>IT</saml2:AttributeValue>
<saml2:AttributeValue>HR</saml2:AttributeValue>
<saml2:AttributeValue>Sales</saml2:AttributeValue>
</saml2:Attribute>
<saml2:Attribute FriendlyName="admin-of" Name="admin-of"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">
<saml2:AttributeValue>Engineering</samli2:AttributeValue>
</saml2:Attribute>
</saml2:AttributeStatement>

The following is the corresponding automation controller configuration:

"saml_attr": "member-of",
"saml_admin_attr": "admin-of",
"remove": true,
"remove_admins": false

e saml_attr: The SAML attribute name where the organization array can be found and
remove is set to true to remove a user from all organizations before adding the user to the
list of organizations. To keep the user in the organizations they are in while adding the user
to the organizations in the SAML attribute, set remove to false.

131

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

e saml_admin_attr: Similar to the saml_attr attribute, but instead of conveying organization
membership, this attribute conveys administrator organization permissions.

Example SAML Team Attribute Mapping

The following example is another SAML attribute that contains a team membership in a list:

<saml:AttributeStatement>
<saml:Attribute
xmlns:x500="urn:oasis:names:tc:SAML:2.0:profiles:attribute:X500"
x500:Encoding="LDAP"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"
Name="urn:0id:1.3.6.1.4.1.5923.1.1.1.1"
FriendlyName="eduPersonAffiliation">
<saml:AttributeValue
xsi:type="xs:string">member</saml:AttributeValue>
<saml:AttributeValue
xsi:type="xs:string">staff</saml:AttributeValue>
</saml:Attribute>
</saml:AttributeStatement>

{
"saml_attr": "eduPersonAffiliation",
"remove": true,
"team_org_map": [
{
"team": "member",
"organization": "Default1"
2
{
"team": "staff",
"organization": "Default2"
}
]
}

e saml_attr: The SAML attribute name where the team array can be found.

® remove: Set remove to true to remove the user from all teams before adding the user to
the list of teams. To keep the user in the teams they are in while adding the user to the
teams in the SAML attribute, set remove to false.

e team_org_map: An array of dictionaries of the form { "team": "<AWX Team Name>",
"organization": "<AWX Org Name>" } that defines mapping from controller Team —
automation controller organization. You need this because the same named team can exist
in multiple organizations in automation controller. The organization to which a team listed in
a SAML attribute belongs to is ambiguous without this mapping.

You can create an alias to override both teams and organizations in the SAML Team
Attribute Mapping field. This option is useful in cases when the SAML backend sends out
complex group names, as show in the following example:

{

"remove": false,
"team_org_map": [

{

"team": "internal:unix:domain:admins”,

132

CHAPTER 22. SETTING UP ENTERPRISE AUTHENTICATION

"organization": "Default”,
"team_alias": "Administrators”
2

{

"team": "Domain Users",
"organization_alias": "OrgAlias",
"organization": "Default”

}

1,

"saml_attr": "member-of"

}

Once the user authenticates, automation controller creates organization and team aliases.

12. Optional: Provide team membership mapping in the SAML Team Map field. For more
information, see Organization mapping and Team Mapping.

13.

Optional: Provide security settings in the SAML Security Configfield. This field is the
equivalent to the SOCIAL_AUTH_SAML_SECURITY_CONFIG field in the API. For more
information, see Onel.ogin's SAML Python Toolkit.

Automation controller uses the python-social-auth library when users log in through SAML.
This library relies on the python-saml library to make the settings available for the next two
optional fields, SAML Service Provider extra configuration dataand SAML IDP to extra_data
attribute mapping.

e The SAML Service Provider extra configuration datafield is equivalent to the
SOCIAL_AUTH_SAML_SP_EXTRA in the API. For more information, see Onelogin’s
SAML Python Toolkit to learn about the valid service provider extra (SP_EXTRA)
parameters.

® The SAML IDP to extra_data attribute mappingfield is equivalent to the
SOCIAL_AUTH_SAML_EXTRA_DATA in the API. For more information, see Python's
SAML Advanced Settings documentation.

® The SAML User Flags Attribute Mappingfield enables you to map SAML roles and
attributes to special user flags. The following attributes are valid in this field:

o

is_superuser_role: Specifies one or more SAML roles which grants a user the
superuser flag.

is_superuser_attr: Specifies a SAML attribute which grants a user the superuser flag.

is_superuser_value: Specifies one or more values required for is_superuser_attr that
is required for the user to be a superuser.

remove_superusers: Boolean indicating if the superuser flag should be removed for
users or not. This defaults to true.

is_system_auditor_role: Specifies one or more SAML roles which will grant a user the
system auditor flag.

is_system_auditor_attr: Specifies a SAML attribute which will grant a user the system
auditor flag.

is_system_auditor_value: Specifies one or more values required for
is_system_auditor_attr that is required for the user to be a system auditor.

133

https://github.com/SAML-Toolkits/python-saml#settings
https://github.com/SAML-Toolkits/python-saml#settings
https://python-social-auth.readthedocs.io/en/latest/backends/saml.html#advanced-settings

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

o remove_system_auditors: Boolean indicating if the system_auditor flag should be
removed for users or not. This defaults to true.
The role and value fields are lists and are 'OR' logic. If you specify two roles: ["Role 1",
"Role 2"] and the SAML user has either role, the logic considers them to have the
required role for the flag. This is the same with the value field, if you specify: ["Value 1",
"Value 2"] and the SAML user has either value for their attribute the logic considers
their attribute value to have matched.

If you specify role and attr for either superuser or system_auditor, the settings for
attr take precedence over a role. System administrators and System auditor roles are
evaluated at login for a SAML user. If you grant a SAML user one of these roles through
the Ul and not through the SAML settings, the roles are removed on the user’s next
login unless the remove flag is set to false. The remove flag, if false, never enables the
SAML adapter to remove the corresponding flag from a user. The following table
describes how the logic works:

Has one or Has attr Has one or Remove Previous Is flagged
more roles more attr flag Flag

Values
No No N/A True False No
No No N/A False False No
No No N/A True True No
No No N/A False True Yes
Yes No N/A True False Yes
Yes No N/A False False Yes
Yes No N/A True True Yes
Yes No N/A False False Yes
No Yes Yes True True Yes
No Yes Yes True False Yes
No Yes Yes False False Yes
No Yes Yes True True Yes
No Yes Yes False True Yes
No Yes No True False No
No Yes No False False No

134

CHAPTER 22. SETTING UP ENTERPRISE AUTHENTICATION

Has one or Has attr Has one or Remove Previous Is flagged
more roles more attr flag Flag

Values
No Yes No True True No
No Yes No False True Yes
No Yes Unset True False Yes
No Yes Unset False False Yes
No Yes Unset True True Yes
No Yes Unset False True Yes
Yes Yes Yes True False Yes
Yes Yes Yes False False Yes
Yes Yes Yes True True Yes
Yes Yes Yes False True Yes
Yes Yes No True False No
Yes Yes No False False No
Yes Yes No True True No
Yes Yes No False True Yes
Yes Yes Unset True False Yes
Yes Yes Unset False False Yes
Yes Yes Unset True True Yes
Yes Yes Unset False True Yes

Each time a SAML user authenticates to automation controller, these checks are
performed and the user flags are altered as needed. If System Administrator or
System Auditor is set for a SAML user within the Ul, the SAML adapter overrides the
Ul setting based on the preceding rules. If you prefer that the user flags for SAML users
do not get removed when a SAML user logs in, you can set the remove_ flag to false.
With the remove flag set to false, a user flag set to true through either the Ul, API or
SAML adapter is not removed. However, if a user does not have the flag, and the
preceding rules determine the flag should be added, it is added, even if the flag is false.

135

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

Example

{

"is_superuser_attr": "blueGroups",
"is_superuser_role": ["is_superuser"],
"is_superuser_value": ["cn=My-Sys-
Admins,ou=memberlist,ou=mygroups,o=myco.com"],
"is_system_auditor_attr": "blueGroups",
"is_system_auditor_role": ["is_system_auditor"],
"is_system_auditor_value": ["ch=My-
Auditors,ou=memberlist,ou=mygroups,o=myco.com"]

}

14. Click Save.

Verification

To verify that the authentication is configured correctly, load the auto-generated URL found in the
SAML Service Provider Metadata URLinto a browser. If you do not get XML output, you have not
configured it correctly.

Alternatively, logout of automation controller and the login screen displays the SAML logo to indicate it
as a alternate method of logging into automation controller:

Welcome to Ansible Automation

Platform! Red Hat
Ansible Automation
Platform

Username *

Password *

Loaln
Sign in with SAML okta

(2]

22.3.1. Configuring transparent SAML logins

For transparent logins to work, you must first get IdP-initiated logins to work.

Procedure

1. Set the RelayState on the IdP to the key of the IdP definition in the SAML Enabled Identity
Providers field.

2. When this is working, specify the redirect URL for non-logged-in users to somewhere other than
the default automation controller login page by using the Login redirect override URLfield in

136

CHAPTER 22. SETTING UP ENTERPRISE AUTHENTICATION

the Miscellaneous Authentication settings window of the Settings menu. You must set this to
/sso/login/saml/?idp=<name-of-your-idp> for transparent SAML login, as shown in the
following example:

Settings » Miscellaneous Authentication

. . 2
Edit Details
Disable the built-in authentication system (2 Revert Idle Time Force Log Qut * (@ Revert il number of si logged in ® Revert
sessions *
off 26663
-1

Enable HTTP Basic Auth (3 Revert Allow External Users to Create OAuth2 Tokens (3) Revert Login redirect override URL (3 Revert
o On Off /foo/bar/baz
Access Token Expiration & Revert Refresh Token Expiration 3 Revert Authorization Code Expiration (3 Revert

31536000000 2628000 600
Social Auth Organization Map (3 Undo

1 null

NOTE

This example shows a typical IdP format, but might not be the correct format for
your particular case. You might need to reach out to your IdP for the correct
transparent redirect URL as that URL is not the same for all IdPs.

3. After you configure transparent SAML login, to log in using local credentials or a different SSO,
go directly to https://<your-tower-servers/login. This provides the standard automation
controller login page, including SSO authentication options, enabling you to log in with any
configured method.

22.3.2. Enable logging for SAML

You can enable logging messages for the SAML adapter in the same way that you can enable logging
for LDAP.

For more information, see the Enabling logging for LDAP section.

22.4. TACACS PLUS AUTHENTICATION

Terminal Access Controller Access-Control System Plus (TACACS+) is a protocol that handles remote
authentication and related services for networked access control through a centralized server.
TACACS+ provides authentication, authorization and accounting (AAA) services, in which you can
configure automation controller to use as a source for authentication.

NOTE

This feature is deprecated and will be removed in a future release.

Procedure
1. From the navigation panel, select Settings.
2. Select TACACs+ settings from the list of Authentication options.
3. Click Edit and enter the following information:

® TACACS+ Server: Provide the hostname or IP address of the TACACS+ server with which

137

https:/login

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

to authenticate. If you leave this field blank, TACACS+ authentication is disabled.
TACACS+ Port: TACACS+ uses port 49 by default, which is already pre-populated.
TACACS+ Secret The secret key for TACACS+ authentication server.

TACACS+ Auth Session Timeout The session timeout value in seconds. The defaultis 5
seconds.

TACACS+ Authentication Protocol: The protocol used by the TACACS+ client. The
options are ascii or pap.

4. Click Save.

22.5. GENERIC OIDC AUTHENTICATION

OpenlID Connect (OIDC) uses the OAuth 2.0 framework. It enables third-party applications to verify the
identity and obtain basic end-user information. The main difference between OIDC and SAML is that
SAML has a service provider (SP)-to-IdP trust relationship, whereas OIDC establishes the trust with the
channel (HTTPS) that is used to obtain the security token. To obtain the credentials needed to set up
OIDC with automation controller, see the documentation from the IdP of your choice that has OIDC
support.

Procedure

1. From the navigation panel, select Settings.

2. Select Generic OIDC settings from the list of Authentication options.

3. Click Edit and enter the following information:

OIDC Key: The client ID from your third-party IdP.
OIDC Secret: The client secret from your IdP.
OIDC Provider URL: The URL for your OIDC provider.

Verify OIDC Provider Certificate Use the toggle to enable or disable the OIDC provider
SSL certificate verification.

4. Click Save.

NOTE

Team and organization mappings for OIDC are currently not supported. The
OIDC adapter does authentication only and not authorization. It is only capable
of authenticating whether this user is who they say they are. It does not authorize
what this user is enabled to do. Configuring generic OIDC creates the UserlD
appended with an ID or key to differentiate the same user ID originating from two
different sources and therefore, considered different users. So you get an ID of
just the user name and the second is the username-<random number>.

Verification

138

CHAPTER 22. SETTING UP ENTERPRISE AUTHENTICATION

To verify that the authentication is configured correctly, logout of automation controller and the login
screen displays the OIDC logo to indicate it as a alternative method of logging into automation
controller:

Welcome to Ansible Automation

Platform! Red Hat
Ansible Automation
Platform

Username *

Password *

Loan
Sign in with OIDC

2]

139

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

CHAPTER 23. LDAP AUTHENTICATION

Administrators use the Lightweight Directory Access Protocol (LDAP) as a source for account
authentication information for automation controller users. User authentication is provided, but not the
synchronization of user permissions and credentials. Organization membership and team membership
can be synchronized by the organization administrator.

23.1.SETTING UP LDAP AUTHENTICATION

When configured, a user who logs in with an LDAP username and password automatically has an
automation controller account created for them. They can be automatically placed into organizations as
either regular users or organization administrators.

Users created in the user interface (Local) take precedence over those logging into automation
controller for their first time with an alternative authentication solution. You must delete the local user if
you want to re-use with another authentication method, such as LDAP.

Users created through an LDAP login cannot change their username, given name, surname, or set a local
password for themselves. You can also configure this to restrict editing of other field names.

NOTE

If the LDAP server you want to connect to has a certificate that is self-signed or signed
by a corporate internal certificate authority (CA), you must add the CA certificate to the
system'’s trusted CAs. Otherwise, connection to the LDAP server results in an error that
the certificate issuer is not recognized. For more information, see Importing a certificate
authority in automation controller for LDAPS integration. If prompted, use your Red Hat
customer credentials to login.

Procedure

1. Create a user in LDAP that has access to read the entire LDAP structure.
2. Use the Idapsearch command to test if you can make successful queries to the LDAP server.

You can install this tool from automation controller’s system command line, and by using other
Linux and OSX systems.

Example

Idapsearch -x -H Idap://win -D "CN=josie,CN=Users,DC=website,DC=com" -b
"dc=website,dc=com" -w Josie4Cloud

In this example, CN=josie,CN=users,DC=website,DC=com is the distinguished name of the
connecting user.

NOTE

The Idapsearch utility is not automatically pre-installed with automation
controller. However, you can install it from the openldap-clients package.

3. From the navigation panel, select Settings in the automation controller Ul.

4. Select LDAP settings in the list of Authentication options.

140

1.

12.

CHAPTER 23. LDAP AUTHENTICATION

You do not need multiple LDAP configurations per LDAP server, but you can configure many
LDAP servers from this page, otherwise, leave the server at Default.

The equivalent APl endpoints show AUTH_LDAP_* repeated: AUTH_LDAP_1_*
AUTH_LDAP_2_* AUTH_LDAP_5_*to denote server designations.

To enter or change the LDAP server address, click Edit and enter in the LDAP Server URIfield
by using the same format as the one pre-populated in the text field.

NOTE

You can specify multiple LDAP servers by separating each with spaces or
commas. Click the @ icon to comply with the correct syntax and rules.

Enter the password to use for the binding user in the LDAP Bind Password text field. For more
information about LDAP variables, see Ansible automation hub variables.

Click to select a group type from the LDAP Group Type list.
The LDAP group types that are supported by automation controller use the underlying django-
auth-ldap library. To specify the parameters for the selected group type, see Step 15.

The LDAP Start TLSis disabled by default. To enable TLS when the LDAP connection is not
using SSL/TLS, set the toggle to On.

Enter the distinguished name in the LDAP Bind DN text field to specify the user that
automation controller uses to connect (Bind) to the LDAP server.

e |f that name is stored in key sAMAccountName, the LDAP User DN Templateis populated
from (sAMAccountName=%(user)s). Active Directory stores the username to
sAMAccountName. For OpenLDAP, the key is uid and the line becomes (uid=%(user)s).

. Enter the distinguished group name to enable users within that group to access automation

controller in the LDAP Require Group field, using the same format as the one shown in the text
field, CN=controller Users,OU=Users,DC=website,DC=com.

Enter the distinguished group name to prevent users within that group from accessing
automation controller in the LDAP Deny Group field, using the same format as the one shown
in the text field.

Enter where to search for users while authenticating in the LDAP User Search field by using the
same format as the one shown in the text field. In this example, use:

[
"OU=Users,DC=website,DC=com",
"SCOPE_SUBTREE",
"(cn=%(user)s)"

]

The first line specifies where to search for users in the LDAP tree. In the earlier example, the
users are searched recursively starting from DC=website,DC=com.

The second line specifies the scope where the users should be searched:

® SCOPE_BASE: Use this value to indicate searching only the entry at the base DN, resulting
in only that entry being returned.

141

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html/red_hat_ansible_automation_platform_installation_guide/appendix-inventory-files-vars#ref-hub-variables
https://django-auth-ldap.readthedocs.io/en/latest/groups.html#types-of-groups

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

® SCOPE_ONELEVEL: Use this value to indicate searching all entries one level under the
base DN, but not including the base DN and not including any entries under that one level
under the base DN.

® SCOPE_SUBTREE: Use this value to indicate searching of all entries at all levels under and
including the specified base DN.
The third line specifies the key name where the user name is stored.

For many search queries, use the following correct syntax:

[
[

"OU=Users,DC=northamerica,DC=acme,DC=com",
"SCOPE_SUBTREE",
"(sAMAccountName=%(user)s)"

],

[
"OU=Users,DC=apac,DC=corp,DC=com",
"SCOPE_SUBTREE",
"(sAMAccountName=%(user)s)"

1,

[
"OU=Users,DC=emea,DC=corp,DC=com",
"SCOPE_SUBTREE",
"(sAMAccountName=%(user)s)"

]
]

13. In the LDAP Group Search text field, specify which groups to search and how to search them. In
this example, use:

[
"dc=example,dc=com",
"SCOPE_SUBTREE",
"(objectClass=group)"

]

e The first line specifies the BASE DN where the groups should be searched.
® The second line specifies the scope and is the same as that for the user directive.

® The third line specifies what the objectClass of a group object is in the LDAP that you are
using.

14. Enter the user attributes in the LDAP User Attribute Map the text field. In this example, use:

{

"first_name": "givenName",
"last_name": "sn",
"email": "mail"

}

The earlier example retrieves users by surname from the key sn. You can use the same LDAP
query for the user to decide what keys they are stored under.

142

CHAPTER 23. LDAP AUTHENTICATION

Depending on the selected LDAP Group Type, different parameters are available in the LDAP
Group Type Parameters field to account for this. LDAP_GROUP_TYPE_PARAMS is a
dictionary that is converted by automation controller to kwargs and passed to the LDAP
Group Type class selected. There are two common parameters used by any of the LDAP
Group Type; hame_attr and member_attr. Where name_attr defaults to cn and member_attr
defaults to member:

I {"name_attr": "cn", "member_attr": "member"}

To find what parameters a specific LDAP Group Type expects, see the django_auth_ldap
documentation around the classes init parameters.

15. Enter the user profile flags in the LDAP User Flags by Group text field. The following example
uses the syntax to set LDAP users as "Superusers” and "Auditors™:

{
"is_superuser": "cn=superusers,ou=groups,dc=website,dc=com",
"is_system_auditor": "cn=auditors,ou=groups,dc=website,dc=com"

}

16. For more information about completing the mapping fields, LDAP Organization Map and LDAP
Team Map, see the LDAP Organization and team mapping section.

17. Click Save.

NOTE
Automation controller does not actively synchronize users, but they are created during

their initial login. To improve performance associated with LDAP authentication, see
Preventing LDAP attributes from updating on each login .

23.1.1. LDAP organization and team mapping

You can control which users are placed into which automation controller organizations based on LDAP
attributes (mapping out between your organization administrators, users and LDAP groups).

Keys are organization names. Organizations are created if not present. Values are dictionaries defining
the options for each organization’s membership. For each organization, you can specify what groups are
automatically users of the organization and also what groups can administer the organization.
admins: none, true, false, string or list/tuple of strings:

® |f none, organization administrators are not updated based on LDAP values.

e |[ftrue, all users in LDAP are automatically added as administrators of the organization.

e |ffalse, no LDAP users are automatically added as administrators of the organization.

e |f astring or list of strings specifies the group DNs that are added to the organization if they
match any of the specified groups.

remove_admins: True/False. Defaults to False:

e When true, a user who is not a member of the given group is removed from the organization’s
administrative list.

143

https://django-auth-ldap.readthedocs.io/en/latest/reference.html#django_auth_ldap.config.LDAPGroupType

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

users: none, true, false, string or list/tuple of strings. The same rules apply as for administrators.

remove_users: true or false. Defaults to false. The same rules apply as for administrators.

Example

{
"LDAP Organization™: {

"admins": "cn=engineering_admins,ou=groups,dc=example,dc=com",
"remove_admins": false,
"users": [
"cn=engineering,ou=groups,dc=example,dc=com",
"cn=sales,ou=groups,dc=example,dc=com",
"cn=it,ou=groups,dc=example,dc=com"
],
"remove_users": false
2
"LDAP Organization 2": {
"admins": [
"cn=Administrators,cn=Builtin,dc=example,dc=com"
],
"remove_admins": false,
"users": true,
"remove_users": false

}
}

When mapping between users and LDAP groups, keys are team names and are created if not present.
Values are dictionaries of options for each team’s membership, where each can contain the following
parameters:

organization: string. The name of the organization to which the team belongs. The team is created if
the combination of organization and team name does not exist. The organization is first created if it
does not exist.
users: hone, true, false, string, or list/tuple of strings:

e |f none, team members are not updated.

e |ftrue or false, all LDAP users are added or removed as team members.

e |f astring or list of strings specifies the group DNs, the user is added as a team member if the
user is a member of any of these groups.

remove: true or false. Defaults to false. When true, a user who is not a member of the given group is
removed from the team.

Example

{

"LDAP Engineering": {
"organization": "LDAP Organization",
"users": "cn=engineering,ou=groups,dc=example,dc=com",
"remove": true

b

144

CHAPTER 23. LDAP AUTHENTICATION

"LDAP IT": {
"organization": "LDAP Organization",
"users": "cn=it,ou=groups,dc=example,dc=com",
"remove": true

2
"LDAP Sales": {

"organization": "LDAP Organization",
"users": "cn=sales,ou=groups,dc=example,dc=com",
"remove": true

}
}

23.1.2. Enabling logging for LDAP

To enable logging for LDAP, you must set the level to DEBUG in the Settings configuration window:

Procedure

1. From the navigation panel, select Settings.
2. Select Logging settings from the list of System options.
3. Click Edit.
4. Set the Logging Aggregator Level Threshold field to DEBUG.

5. Click Save.

23.1.3. Preventing LDAP attributes from updating on each login

By default, when an LDAP user authenticates, all user-related attributes are updated in the database on
each login. In some environments, you can skip this operation due to performance issues. To avoid it, you
can disable the option AUTH_LDAP_ALWAYS_UPDATE_USER.

' WARNING
A Set this option to false to not update the LDAP user's attributes. Attributes are only

updated the first time the user is created.

Procedure

1. Create a custom file under /etc/tower/conf.d/custom-ldap.py with the following contents. If
you have multiple nodes, execute it on all nodes:

I AUTH_LDAP_ALWAYS_UPDATE_USER = False

2. Restart automation controller on all nodes:

I automation-controller-service restart

145

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

With this option set to False, no changes to LDAP user’s attributes are pushed to automation
controller. Note that new users are created and their attributes are pushed to the database on
their first login.

By default, an LDAP user gets their attributes updated in the database upon each login. For a playbook
that runs multiple times with an LDAP credential, those queries can be avoided.

Verification

Check the PostgreSQL for slow queries related to the LDAP authentication.

Additional resources

For more information, see AUTH_LDAP_ALWAYS_UPDATE_USER of the Django documentation.
23.1.4. Importing a certificate authority in automation controller for LDAPS
integration

You can authenticate to the automation controller server by using LDAP, but if you change to using
LDAPS (LDAP over SSL/TLS) to authenticate, it fails with one of the following errors:

2020-04-28 17:25:36,184 WARNING django_auth_ldap Caught LDAPError while authenticating
e079127: SERVER_DOWN({'info": "error:14090086:SSL
routines:ssl3_get_server_certificate:certificate verify failed (unable to get issuer certificate)', 'desc':
"Can't contact LDAP server"},)

2020-06-02 11:48:24,840 WARNING django_auth_ldap Caught LDAPError while authenticating
reinernippes: SERVER_DOWN({'desc": "Can't contact LDAP server", 'info": 'error:14090086:SSL
routines:ssl3_get server_certificate:certificate verify failed (certificate has expired)'},)

NOTE

By default, django_auth_ldap verifies SSL connections before starting an LDAPS
transaction. When you receive a certificate verify failed error, this means that the
django_auth_Ildap could not verify the certificate. When the SSL/TLS connection
cannot be verified, the connection attempt is halted.

Procedure

® Toimportan LDAP CA, run the following commands:

I cp ldap_server-CA.crt /etc/pki/ca-trust/source/anchors/

I update-ca-trust

NOTE

Run these two commands on all automation controller nodes in a clustered setup.

23.1.5. Referrals

146

https://django-auth-ldap.readthedocs.io/en/latest/reference.html#auth-ldap-always-update-user

CHAPTER 23. LDAP AUTHENTICATION

Active Directory uses "referrals" in case the queried object is not available in its database. This does not
work correctly with the django LDAP client and it helps to disable referrals.

Disable LDAP referrals by adding the following lines to your /etc/tower/conf.d/custom.py file:

AUTH_LDAP_GLOBAL_OPTIONS = {
Idap.OPT_REFERRALS: False,

}

23.1.6. Changing the default timeout for authentication

You can change the default length of time, in seconds, that your supplied token is valid in the Settings
screen of the automation controller UL

Procedure

1.

2.

From the navigation panel, select Settings.

Select Miscellaneous Authentication settings from the list of System options.
Click Edit.

Enter the timeout period in seconds in the Idle Time Force Log Outtext field.

Click Save.

NOTE

If you access automation controller and have trouble logging in, clear your web browser’s
cache. In situations such as this, it is common for the authentication token to be cached
during the browser session. You must clear it to continue.

147

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

CHAPTER 24. USER AUTHENTICATION WITH KERBEROS

User authentication using Active Directory (AD), also referred to as authentication through Kerberos, is
supported through automation controller.

24.1.SET UP THE KERBEROS PACKAGES

First set up the Kerberos packages in automation controller so that you can successfully generate a
Kerberos ticket.

Use the following commands to install the packages:

yum install krb5-workstation
yum install krb5-devel
yum install krb5-libs

When installed, edit the /etc/krb5.conf file, as follows, to provide the address of the AD, the domain, and
additional information:

[logging]

default = FILE:/var/log/krb5libs.log

kdc = FILE:/var/log/krb5kdc.log
admin_server = FILE:/var/log/kadmind.log

[libdefaults]

default_realm = WEBSITE.COM
dns_lookup_realm = false
dns_lookup_kdc = false
ticket_lifetime = 24h
renew_lifetime = 7d

forwardable = true

[realms]

WEBSITE.COM = {
kdc = WIN-SA2TXZOTVMV.website.com
admin_server = WIN-SA2TXZOTVMV.website.com

}

[domain_realm]
.website.com = WEBSITE.COM
website.com = WEBSITE.COM

When the configuration file has been updated, use the following commands to authenticate and get a
valid token:

[root@ip-172-31-26-180 ~J# kinit username
Password for username@WEBSITE.COM:
[root@ip-172-31-26-180 ~]#

Check if you have a valid ticket.
[root@ip-172-31-26-180 ~J# klist

Ticket cache: FILE:/tmp/krb5cc_0
Default principal: username@WEBSITE.COM

148

CHAPTER 24. USER AUTHENTICATION WITH KERBEROS

Valid starting Expires Service principal

01/25/23 11:42:56 01/25/23 21:42:53 krbtgt/WEBSITE.COM@WEBSITE.COM
renew until 02/01/23 11:42:56

[root@ip-172-31-26-180 ~]#

When you have a valid ticket, you can check to ensure that everything is working as expected from the
command line.

To test this, your inventory should resemble the following:

[windows]
win01.WEBSITE.COM

[windows:vars]
ansible_user = username@WEBSITE.COM

ansible_connection = winrm
ansible_port = 5986

You must also:

® Ensure that the hostname is the proper client hostname matching the entry in AD and is not the
IP address.

® |n the username declaration, ensure that the domain name (the text after @) is properly
entered with regard to upper- and lower-case letters, as Kerberos is case sensitive.

® Forautomation controller, you must also ensure that the inventory looks the same.

NOTE
If you encounter a Server not found in Kerberos database error message, and your

inventory is configured using FQDNs (not IP addresses), ensure that the service
principal name is not missing or mis-configured.

e

Playbooks should run as expected. You can test this by running the playbook as the awx user.
When you have verified that playbooks work properly, you can integrate with automation controller.

Generate the Kerberos ticket as the awx user. Automation controller automatically picks up the
generated ticket for authentication.

NOTE

The python kerberos package must be installed. Ansible is designed to check if the
kerberos package is installed and, if so, it uses kerberos authentication.

24.2. ACTIVE DIRECTORY AND KERBEROS CREDENTIALS

Active Directory only:

e |f you are only planning to run playbooks against Windows machines with AD usernames and
passwords as machine credentials, you can use the "user@<domain>" format for the username.

149

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

With Kerberos:

e |f Kerberos is installed, you can create a machine credential with the username and password,
using the "user@<domain>" format for the username.

24.3. WORKING WITH KERBEROS TICKETS

Ansible defaults to automatically managing Kerberos tickets when both the username and password are
specified in the machine credential for a host that is configured for Kerberos. A new ticket is created in a
temporary credential cache for each host, before each task executes (to minimize the chance of ticket
expiration). The temporary credential caches are deleted after each task, and do not interfere with the
default credential cache.

To disable automatic ticket management, that is, to use an existing SSO ticket or call Kinit manually to
populate the default credential cache, set ansible_winrm_kinit_mode=manual in the inventory.

Automatic ticket management requires a standard kinit binary on the control host system path. To

specify a different location or binary name, set the ansible_winrm_Kkinit_cmd inventory variable to the
fully-qualified path to an MIT krbv5 kinit-compatible binary.

150

CHAPTER 25. SESSIONS LIMITS

CHAPTER 25. SESSIONS LIMITS

Setting a session limit enables administrators to limit the number of simultaneous sessions per user or
per IP address.

25.1. WORKING WITH SESSION LIMITS

In automation controller, a session is created for each browser that a user logs in with. This forces the
user to log out of any extra sessions after they exceed the administrator-defined maximum.

Session limits can be important, depending on your setup.

Example

You only want a single user on your system with a single login per device (where the user can login on
their work laptop, phone, or home computer). In this case, you want to create a session limit equal to 1
(one). If the user logs in on their laptop, for example, then logs in using their phone, their laptop session
expires (times out) and only the login on the phone persists. Proactive session limits kick the user out
when the session is idle. The default value is -1, which disables the maximum sessions allowed. This
means that you can have as many sessions without an imposed limit.

While session counts can be very limited, you can also expand them to cover as many session logins as
are needed by your organization.

When a user logs in resulting in other users being logged out, the session limit has been reached and
those users who are logged out are notified as to why the logout occurred.

Procedure

1. To make changes to your session limits, from the navigation panel, select Settings.
2. Select Miscellaneous Authentication settings from the list of System options.
3. Click Edit.

4. Edit the Maximum number of simultaneous logged in sessionssetting or use the Browsable
APl if you are comfortable with making REST requests.

NOTE

To make the best use of session limits, disable AUTH_BASIC_ENABLED by
changing the value to false, as it falls outside the scope of session limit
enforcement. Alternatively, in the Miscellaneous Authentication settings,
toggle the Enable HTTP Basic Authto off.

151

https://docs.ansible.com/automation-controller/4.4/html/controllerapi/browseable.html#api-browsable-api

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

CHAPTER 26. BACKUP AND RESTORE

The ability to backup and restore your system is integrated into the Ansible Automation Platform setup
playbook. For more information, see the Backup and restore clustered environments section.

NOTE

Ensure that you restore to the same version from which it was backed up. However, you
must use the most recent minor version of a release to backup or restore your Ansible
Automation Platform installation version. For example, if the current Ansible Automation
Platform version you are onis 2.0.x, use only the latest 2.0 installer.

Backup and restore only works on PostgreSQL versions supported by your current
platform version. For more information, see Red Hat Ansible Automation Platform
system requirements in the Red Hat Ansible Automation Platform Installation Guide .

The Ansible Automation Platform setup playbook is invoked as setup.sh from the path where you
unpacked the platform installer tarball. It uses the same inventory file used by the install playbook. The
setup script takes the following arguments for backing up and restoring:

® -b: Perform a database backup rather than an installation.

® -r: Perform a database restore rather than an installation.

As the root user, call setup.sh with the appropriate parameters and the Ansible Automation Platform
backup or restored as configured:

root@localhost:~# ./setup.sh -b
root@localhost:~# ./setup.sh -r

Backup files are created on the same path that setup.sh script exists. You can change it by specifying
the following EXTRA_VARS:

I root@localhost:~# ./setup.sh -e 'backup_dest=/path/to/backup_dir/" -b

A default restore path is used unless you provide EXTRA_VARS with a non-default path, as shown in
the following example:

I root@localhost:~# ./setup.sh -e 'restore_backup_file=/path/to/nondefault/backup.tar.gz' -r
Optionally, you can override the inventory file used by passing it as an argument to the setup script:

I setup.sh -i <inventory file>

26.1. BACKUP AND RESTORE PLAYBOOKS

In addition to the install.yml file included with your setup.sh setup playbook, there are also
backup.yml and restore.ymil files for your backup and restoration needs.

These playbooks serve to backup and restore.

® The overall backup, backs up:

152

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html-single/red_hat_ansible_automation_platform_installation_guide/index#red_hat_ansible_automation_platform_system_requirements

CHAPTER 26. BACKUP AND RESTORE

o The database
o The SECRET_KEY file

® The per-system backups include:

o Custom configuration files
o Manual projects

® The restore backup restores the backed up files and data to a freshly installed and working
second instance of automation controller.

When restoring your system, the installer checks to see that the backup file exists before beginning the
restoration. If the backup file is not available, your restoration fails.

NOTE

Ensure that your automation controller hosts are properly set up with SSH keys, user or
pass variables in the hosts file, and that the user has sudo access.

26.2. BACKUP AND RESTORATION CONSIDERATIONS

Consider the following points when you backup and restore your system:

Disk space

Review your disk space requirements to ensure you have enough room to backup configuration files,
keys, other relevant files, and the database of the Ansible Automation Platform installation.

System credentials

Confirm you have the required system credentials when working with a local database or a remote
database. On local systems, you might need root or sudo access, depending on how credentials are
set up. On remote systems, you might need different credentials to grant you access to the remote
system you are trying to backup or restore.

Version

You must always use the most recent minor version of a release to backup or restore your Ansible
Automation Platform installation version. For example, if the current platform version you are on is
2.0.x, use only the latest 2.0 installer.

File path

When using setup.sh in order to do a restore from the default restore file path, /var/lib/awx, -r is still
required in order to do the restore, but it no longer accepts an argument. If a non-default restore file
path is needed, you must provide this as an extra_var (root@localhost:~# ./setup.sh -e
'restore_backup_file=/path/to/nondefault/backup.tar.gz’ -r).

Directory

If the backup file is placed in the same directory as the setup.sh installer, the restore playbook
automatically locates the restore files. In this case, you do not need to use the restore_backup_file
extra var to specify the location of the backup file.

26.3. BACKUP AND RESTORE CLUSTERED ENVIRONMENTS

The procedure for backup and restore for a clustered environment is similar to a single install, except for
some of the following considerations:

153

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

NOTE

For more information on installing clustered environments, see the Install and configure
section.

ol

e |f restoring to a new cluster, ensure that the old cluster is shut down before proceeding because
they can conflict with each other when accessing the database.

® Per-node backups are only restored to nodes bearing the same hostname as the backup.

® When restoring to an existing cluster, the restore contains the following:

o A dump of the PostgreSQL database

o Ul artifacts, included in the database dump

o An automation controller configuration (retrieved from /etc/tower)
o An automation controller secret key

o Manual projects

26.3.1. Restore to a different cluster

When restoring a backup to a separate instance or cluster, manual projects and custom settings under
/etc/tower are retained. Job output and job events are stored in the database, and therefore, not
affected.

The restore process does not alter instance groups present before the restore. It does not introduce any

new instance groups either. Restored automation controller resources that were associated to instance
groups likely need to be reassigned to instance groups present on the new automation controller cluster.

154

CHAPTER 27. USABILITY ANALYTICS AND DATA COLLECTION

CHAPTER 27. USABILITY ANALYTICS AND DATA
COLLECTION

Usability data collection is included with automation controller to collect data to better understand how
automation controller users interact with it.

Only users installing a trial of or a fresh installation of are opted-in for this data collection.
Automation controller collects user data automatically to help improve the product. You can opt out or

control the way automation controller collects data by setting your participation level in the User
Interface settings in the Settings menu.

27.10. SETTING UP DATA COLLECTION PARTICIPATION

Use the following procedure to set your participation level for data collection.

Procedure

1. From the navigation panel, select Settings.
2. Select User Interface settings from the User Interface option.

3. Click Edit.

Settings > User Interface

Edit Details

User Analytics Tracking State * (3 / Revert Custom Login Info (3 Revert
Detailed -

Custom Logo (3 Revert

Drag a file here or browse to upload Browse... Clear

+]

Revert all to default Cancel

4. Select the desired level of data collection from the User Analytics Tracking Statelist:

o Off: Prevents any data collection.

® Anonymous: Enables data collection without your specific user data.

® Detailed: Enables data collection including your specific user data.
5. Click Save to apply the settings, or Cancel to abandon the changes.

For more information, see the Red Hat Privacy Statement.

27.2. AUTOMATION ANALYTICS

When you imported your license for the first time, you were given options related to the collection of
data that powers Automation Analytics, a cloud service that is part of the Ansible Automation Platform
subscription.

155

https://www.redhat.com/en/about/privacy-policy

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

IMPORTANT

For opt-in of Automation Analytics to have any effect, your instance of automation
controller must be running on Red Hat Enterprise Linux.

As with Red Hat Insights, Automation Analytics is built to collect the minimum amount of data needed.
No credential secrets, personal data, automation variables, or task output is gathered.

For more information, see Details of data collection.
To enable this feature, turn on data collection for Automation Analytics and enter your Red Hat

customer credentials in the Miscellaneous System settings of the System configuration list of options
in the Settings menu.

Settings » Miscellaneous System

. . D
Edit Details
Enable Activity Stream (3 Revert Enable Activity Stream for Inventory Sync) Revert Global default execution environment () Revert
© o @ or a
Base URL of the service * & Revert All Users Visible to Organization Admins (%) Revert Organization Admins Can Manage Users and Teams (2} Revert
https://towerhost o On o Cn
Gather data for Automation Analytics &) Revert Red Hat customer username (3 Revert Red Hat customer password (3 Revert
@ o w
Red Hat or Satellite username (3 Revert Red Hat or Satellite password (%) Revert Automation Analytics Gather Interval * (3) Revert
thavo@redhat.com W ENCRYPTED 14400
Last gathered entries from the data collection service of Automation Analytics Revert
You can view the location to which the collection of insights data is uploaded in the Automation
Analytics upload URL field on the Details page.
Settings » Miscellaneous System 9

Details

4 Back to Settings Details

Automation Analytics Gather 14400 seconds Automation Analytics upload https://cloud.redhat.c | Red Hat customer username Not configured
Interval @ URL ® om/api/ingress/vifupl | @
oad

Red Hat customer password @ Not configured Red Hat or Satellite username thavo@redhat.com Red Hat or Satellite password Encrypted

6] 6]
Unique identifier for an d0525238-cl5a- Base URL of the service @ https://towerhost Global default execution Not configured
installation 423e-9eaf- environment @

cceb0a%91d8e5

By default, the data is collected every four hours. When you enable this feature, data is collected up to a
month in arrears (or until the previous collection). You can turn off this data collection at any time in the
Miscellaneous System settings of the System configuration window.

This setting can also be enabled through the API by specifying INSIGHTS_TRACKING_STATE = true in
either of these endpoints:

® api/v2/settings/all

® api/v2/settings/system

156

CHAPTER 27. USABILITY ANALYTICS AND DATA COLLECTION

The Automation Analytics generated from this data collection can be found on the Red Hat Cloud
Services portal.

— RedHat (2] admin ~ .

P Red Hat Ansible

e —— Automation Analytics | clusters

Automation Analytics

Job Status Past Week v All Clusters v
Clusters

Organization Statistics

1,400
Automation Hub

1,200

Catalog

1,000

Settings

Jobs Across All Clusters

n2 s w4 Ws e nw e
Date

Top Templates Usage Top Modules Usage Notifications View All -

/A Cluster Error: No data from

verify_network 10677 file 1421255 .
madrid.tower.example.com in 1 day

Clusters data is the default view. This graph represents the number of job runs across all automation
controller clusters over a period of time. The previous example shows a span of a week in a stacked bar-
style chart that is organized by the number of jobs that ran successfully (in green) and jobs that failed (in
red).

Alternatively, you can select a single cluster to view its job status information.

Job Status Past Week - | ec2-52-90-106-58mmpute-l.amazarv(

1400

1200

1,000

Job Runs

na w2 n/3 /4 ws e nT
Date

This multi-line chart represents the number of job runs for a single automation controller cluster for a
specified period of time. The preceding example shows a span of a week, organized by the number of
successfully running jobs (in green) and jobs that failed (in red). You can specify the number of
successful and failed job runs for a selected cluster over a span of one week, two weeks, and monthly
increments.

On the clouds navigation panel, select Organization Statistics to view information for the following:

® Use by organization

157

https://cloud.redhat.com

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

® Job runs by organization

® Organization status

27.2.1. Use by organization

The following chart represents the number of tasks run inside all jobs by a particular organization.

Usage by Organization (Tasks) Past Week v

W Default 120612
B MWetwork 115068
m 115068
W Cloud 14972

RedHat 2093

27.2.2. Job runs by organization

This chart represents automation controller use across all automation controller clusters by organization,
calculated by the number of jobs run by that organization.

158

CHAPTER 27. USABILITY ANALYTICS AND DATA COLLECTION

Job Runs by Organization Past Week

27.2.3. Organization status

b
B Default 1793
B Network 1720
m T 1720
W Cloud 1720
RedHat 75

This bar chart represents automation controller use by organization and date, which is calculated by the
number of jobs run by that organization on a particular date.

Alternatively, you can specify to show the number of job runs per organization in one week, two weeks,

and monthly increments.

Organization Status

Jobs Across Orgs

na

RedHat
250
200
150
100
50
0 1

Default

MNetwork

M

Cloud

2 s ns4 s e wi

Date

27.3. DETAILS OF DATA COLLECTION

Automation Analytics collects the following classes of data from automation controller:

Past Week

® Basic configuration, such as which features are enabled, and what operating system is being

used

159

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

® Topology and status of the automation controller environment and hosts, including capacity
and health

® Counts of automation resources:
o organizations, teams, and users
o inventories and hosts
o credentials (indexed by type)
o projects (indexed by type)
o templates
o schedules
0 active sessions
© running and pending jobs
® Job execution details (start time, finish time, launch type, and success)
® Automation task details (success, host id, playbook/role, task name, and module used)
You can use awx-manage gather_analytics (without --ship) to inspect the data that automation
controller sends, so that you can satisfy your data collection concerns. This creates a tarball that
contains the analytics data that is sent to Red Hat.
This file contains a number of JSON and CSV files. Each file contains a different set of analytics data.
® manifest.json
® config.json
® instance_info.json
® counts.json
® org_counts.json
® cred_type_counts.json
® inventory_counts.json
® projects_by_scm_type.json
® query_info.json
® job_counts.json
® job_instance_counts.json
® unified_job_template_table.csv
® unified_jobs_table.csv

® workflow_job_template_node_table.csv

160

CHAPTER 27. USABILITY ANALYTICS AND DATA COLLECTION

® workflow_job_node_table.csv

® cvents_table.csv

27.3.1. manifest.json

manifest.json is the manifest of the analytics data. It describes each file included in the collection, and
what version of the schema for that file is included.

The following is an example manifest.json file:

"config.json": "1.1",

"counts.json": "1.0",
"cred_type_counts.json": "1.0",
"events_table.csv": "1.1",
"instance_info.json": "1.0",
"inventory_counts.json": "1.2",
"job_counts.json": "1.0",
"job_instance_counts.json": "1.0",
"org_counts.json": "1.0",
"projects_by_scm_type.json": "1.0",
"query_info.json": "1.0",
"unified_job_template_table.csv": "1.0",
"unified_jobs_table.csv": "1.0",
"workflow_job_node_table.csv": "1.0",
"workflow_job_template_node_table.csv": "1.0"

27.3.2. config.json

The config.json file contains a subset of the configuration endpoint /api/v2/config from the cluster. An
example config.json is:

"ansible_version": "2.9.1",

"authentication_backends": [
"social_core.backends.azuread.AzureADOAuUth2",
"django.contrib.auth.backends.ModelBackend"

1,

"external_logger_enabled": true,

"external_logger_type": "splunk",

"free_instances": 1234,

"install_uuid": "d3d497f7-9d07-43ab-b8de-9d5cc9752b7c",

"instance_uuid": "bed08c6b-19cc-4a49-bc9e-82¢33936e91b",

"license_expiry": 34937373,

"license_type": "enterprise",

"logging_aggregators": |
"awx",
"activity_stream",
"job_events",
"system_tracking"

1,

"pendo_tracking": "detailed",

"platform™: {

"dist": [

161

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

"redhat",
ll7-4",
"Maipo"

1,
"release": "3.10.0-693.el7.x86_64",

"system": "Linux",
"type": "traditional”

}

"total_licensed_instances": 2500,
"controller_url_base": "https://ansible.rhdemo.io",
"controller_version": "3.6.3"

Which includes the following fields:
® ansible_version: The system Ansible version on the host

® authentication_backends: The user authentication backends that are available. For more
information, see Setting up social authentication or Setting up LDAP authentication.

® external_logger_enabled: Whether external logging is enabled

e external_logger_type: What logging backend is in use if enabled. For more information, see
Logging and aggregation.

® |ogging_aggregators: What logging categories are sent to external logging. For more
information, see Logging and aggregation.

e free_instances: How many hosts are available in the license. A value of zero means the cluster is
fully consuming its license.

e install_uuid: A UUID for the installation (identical for all cluster nodes)

® instance_uuid: A UUID for the instance (different for each cluster node)

® license_expiry: Time to expiry of the license, in seconds

® license_type: The type of the license (should be 'enterprise’ for most cases)
e pendo_tracking: State of usability_data_collection

e platform: The operating system the cluster is running on

e total_licensed_instances: The total number of hosts in the license

® controller_url_base: The base URL for the cluster used by clients (shown in Automation
Analytics)

® controller_version: Version of the software on the cluster

27.3.3. instance_info.json

The instance_info.json file contains detailed information on the instances that make up the cluster,
organized by instance UUID.

The following is an example instance_info.json file:

162

CHAPTER 27. USABILITY ANALYTICS AND DATA COLLECTION

{
"bed08c6b-19cc-4a49-bc9e-82¢33936e91b": {

"capacity": 57,
"cpu": 2,
"enabled": true,
"last_isolated_check": "2019-08-15T14:48:58.553005+00:00",
"managed_by_policy": true,
"memory": 8201400320,
"uuid": "bed08c6b-19cc-4a49-bc9e-82¢33936e91b",
"version": "3.6.3"

}

"c0a2a215-0e33-419a-92f5-e3a0f59bfaee": {
"capacity": 57,
"cpu": 2,
"enabled": true,
"last_isolated_check": "2019-08-15T14:48:58.553005+00:00",
"managed_by_policy": true,
"memory": 8201400320,
"uuid": "c0a2a215-0e33-419a-92f5-e3a0f59bfaee”,
"version": "3.6.3"

}

}

Which includes the following fields:
® capacity: The capacity of the instance for executing tasks.
® cpu: Processor cores for the instance
® memory: Memory for the instance
® enabled: Whether the instance is enabled and accepting tasks

® managed_by_policy: Whether the instance’s membership in instance groups is managed by
policy, or manually managed

® version: Version of the software on the instance

27.3.4. counts.json

The counts.json file contains the total number of objects for each relevant category in a cluster.

The following is an example counts.json file:

"active_anonymous_sessions": 1,
"active_host_count": 682,
"active_sessions": 2,
"active_user_sessions": 1,
"credential": 38,
"custom_inventory_script": 2,
"custom_virtualenvs": 4,
"host": 697,
"inventories": {

"normal": 20,

"smart": 1

163

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

b

"inventory": 21,
"job_template": 78,
"notification_template": 5,
"organization": 10,
"pending_jobs": 0,
"project": 20,
"running_jobs": 0,
"schedule": 16,

"team": 5,

"unified_job": 7073,
"user": 28,
"workflow_job_template": 15

Each entry in this file is for the corresponding APl objects in /api/v2, with the exception of the active
session counts.

27.3.5. org_counts.json

The org_counts.json file contains information on each organization in the cluster, and the number of
users and teams associated with that organization.

The following is an example org_counts.json file:

{
"1
"name": "Operations",
"teams": 5,
"users": 17
2
o |
"name": "Development",
"teams": 27,
"users": 154
2
"3 |
"name": "Networking",
"teams": 3,
"users": 28
}
}

27.3.6. cred_type_counts.json

The cred_type_counts.json file contains information on the different credential types in the cluster,
and how many credentials exist for each type.

The following is an example cred_type_counts.json file:

{
"1
"credential_count": 15,
"managed_by_controller": true,
"name": "Machine"

164

|3

o |
"credential_count": 2,
"managed_by_controller": true,
"name": "Source Control"

|3

"3 |
"credential_count": 3,
"managed_by_controller": true,
"name": "Vault"

|3

"4 |
"credential_count": 0,
"managed_by_controller": true,
"name": "Network"

|3

"5 |
"credential_count": 6,
"managed_by_controller": true,
"name": "Amazon Web Services"

|3

"6": |
"credential_count": 0,
"managed_by_controller": true,
"name": "OpenStack”

|3

27.3.7. inventory_counts.json

CHAPTER 27

. USABILITY ANALYTICS AND DATA COLLECTION

The inventory_counts.json file contains information on the different inventories in the cluster.

The following is an example inventory_counts.json file:

{

"1

"hosts": 211,

"kind": ",

"name": "AWS Inventory",

"source_list": [

{

"name": "AWS",
"num_hosts": 211,
"source": "ec2"

}

],

"sources": 1
|3
o |

"hosts": 15,

"kind": "",

"name": "Manual inventory",

"source_list": [],

"sources": 0

b
oy

165

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

"hosts": 25,

"Kind": ",

"name": "SCM inventory - test repo”,

"source_list": [

{

"name": "Git source",
"num_hosts": 25,
"source": "scm"

}
],
"sources": 1
}
"4": {
"num_hosts": 5,
"kind": "smart",
"name": "Filtered AWS inventory",
"source_list": [],
"sources": 0

27.3.8. projects_by_scm_type.json

The projects_by scm_type.json file provides a breakdown of all projects in the cluster, by source
control type.

The following is an example projects_by scm_type.json file:

{
"git": 27,
"hg": 0,
"insights™: 1,
"manual": 0,
"svn": 0

}

27.3.9. query_info.json

The query_info.json file provides details on when and how the data collection happened.

The following is an example query_info.json file:

{
"collection_type": "manual’,
"current_time": "2019-11-22 20:10:27.751267+00:00",
"last_run": "2019-11-22 20:03:40.361225+00:00"

}

collection_type is one of manual or automatic.

27.3.10. job_counts.json

The job_counts.json file provides details on the job history of the cluster, describing both how jobs
were launched, and what their finishing status is.

166

CHAPTER 27. USABILITY ANALYTICS AND DATA COLLECTION

The following is an example job_counts.json file:

"launch_type": {
"dependency": 3628,
"manual": 799,
"relaunch": 6,
"scheduled": 1286,
"scm": 6,
"workflow": 1348

b

"status": {
"canceled": 7,
"failed": 108,
"successful": 6958

|3
"total_jobs": 7073

27.3.11. job_instance_counts.json

The job_instance_counts.json file provides the same detail as job_counts.json, broken down by
instance.

The following is an example job_instance_counts.json file:

{

"localhost™: {
"launch_type": {
"dependency": 3628,
"manual": 770,
"relaunch": 3,
"scheduled": 1009,
"scm": 6,
"workflow": 1336
2
"status": {
"canceled": 2,
"failed": 60,
"successful": 6690
}
}
}

Note that instances in this file are by hostname, not by UUID as they are in instance_info.

27.3.12. unified_job_template_table.csv

The unified_job_template_table.csv file provides information on job templates in the system. Each line
contains the following fields for the job template:

® id: Job template id.
® pame: Job template name.

® polymorphic_ctype_id: The id of the type of template it is.

167

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

model: The name of the polymorphic_ctype_id for the template. Examples include project,
systemjobtemplate, jobtemplate, inventorysource, and workflowjobtemplate.

created: When the template was created.

modified: When the template was last updated.

created_by_id: The userid that created the template. Blank if done by the system.
modified_by_id: The userid that last modified the template. Blank if done by the system.
current_job_id: Currently executing job id for the template, if any.

last_job_id: Last execution of the job.

last_job_run: Time of last execution of the job.

last_job_failed: Whether the last_job_id failed.

status: Status of last_job_id.

next_job_run: Next scheduled execution of the template, if any.

next_schedule_id: Schedule id for next_job_run, if any.

27.3.13. unified_jobs_table.csv

The unified_jobs_table.csv file provides information on jobs run by the system.

Each line contains the following fields for a job:

168

id: Job id.
name: Job name (from the template).
polymorphic_ctype_id: The id of the type of job it is.

model: The name of the polymorphic_ctype_id for the job. Examples include job and
workflow.

organization_id: The organization ID for the job.

organization_name: Name for the organization_id.

created: When the job record was created.

started: When the job started executing.

finished: When the job finished.

elapsed: Elapsed time for the job in seconds.

unified_job_template_id: The template for this job.

launch_type: One of manual, scheduled, relaunched, scm, workflow, or dependency.

schedule_id: The id of the schedule that launched the job, if any,

CHAPTER 27. USABILITY ANALYTICS AND DATA COLLECTION

instance_group_id: The instance group that executed the job.
execution_node: The node that executed the job (hostname, not UUID).

controller_node: The automation controller node for the job, if run as an isolated job, orin a
container group.

cancel_flag: Whether the job was canceled.

status: Status of the job.

failed: Whether the job failed.

job_explanation: Any additional detail for jobs that failed to execute properly.

forks: Number of forks executed for this job.

27.3.14. workflow_job_template_node_table.csv

The workflow_job_template_node_table.csv file provides information on the nodes defined in
workflow job templates on the system.

Each line contains the following fields for a worfklow job template node:

id: Node id.
created: When the node was created.
modified: When the node was last updated.

unified_job_template_id: The id of the job template, project, inventory, or other parent
resource for this node.

workflow_job_template_id: The workflow job template that contains this node.
inventory_id: The inventory used by this node.

success_nodes: Nodes that are triggered after this node succeeds.
failure_nodes: Nodes that are triggered after this node fails.

always_nodes: Nodes that always are triggered after this node finishes.

all_parents_must_converge: Whether this node requires all its parent conditions satisfied to
start.

27.3.15. workflow_job_node_table.csv

The workflow_job_node_table.csv provides information on the jobs that have been executed as part
of a workflow on the system.

Each line contains the following fields for a job run as part of a workflow:

id: Node id.

created: When the node was created.

169

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

modified: When the node was last updated.
job_id: The job id for the job run for this node.

unified_job_template_id: The id of the job template, project, inventory, or other parent
resource for this node.

workflow_job_template_id: The workflow job template that contains this node.
inventory_id: The inventory used by this node.

success_nodes: Nodes that are triggered after this node succeeds.
failure_nodes: Nodes that are triggered after this node fails.

always_nodes: Nodes that always are triggered after this node finishes.

do_not_run: Nodes that were not run in the workflow due to their start conditions not being
triggered.

all_parents_must_converge: Whether this node requires all its parent conditions satisfied to
start.

27.3.16. events_table.csv

The events_table.csv file provides information on all job events from all job runs in the system.

Each line contains the following fields for a job event:

170

id: Event id.

uuid: Event UUID.

created: When the event was created.

parent_uuid: The parent UUID for this event, if any.
event: The Ansible event type.

task_action: The module associated with this event, if any (such as command or yum).
failed: Whether the event returned failed.

changed: Whether the event returned changed.
playbook: Playbook associated with the event.

play: Play name from playbook.

task: Task name from playbook.

role: Role name from playbook.

job_id: Id of the job this event is from.

host_id: Id of the host this event is associated with, if any.

host_name: Name of the host this event is associated with, if any.

CHAPTER 27. USABILITY ANALYTICS AND DATA COLLECTION

® start: Start time of the task.

e end: End time of the task.

® duration: Duration of the task.

® warnings: Any warnings from the task or module.

® deprecations: Any deprecation warnings from the task or module.

27.4. ANALYTICS REPORTS

Reports from collection are accessible through the automation controller Ul if you have superuser-level
permissions. By including the analytics view on-prem where it is most convenient, you can access data
that can affect your day-to-day work. This data is aggregated from the automation provided on
console.redhat.com.

Currently available is a view-only version of the Automation Calculator utility that shows a report that
represents (possible) savings to the subscriber.

Automation calculator

The calculated savings of the job templates running across the company in comparison to the cost of completing these jobs manually. You can use this report to get an idea of the ROl from your automation, as well as identify which templates ...

Executive | Job template | Savings

Cluster ~ Filterby cluster Pastyear « Savings from successfulhosts = IF 1-200f356 ~

Automation savings Total savings
$825,351.45
600k
Current page savings
2 500k
2 $71706874
3
400k
g Manual cost of automation
g
? 00k {e.g. average salary of mid-level Software Engineer)
£ $ S0
e
S 200k Automated process cost
@ Savings from successful hosts for Test Job Template: $58,642.28 s B
100k —
@ Automatien formula
& e e e & S
5 & 5 5 & &
& & & & o &
& Q«é‘ & N & &
& N & > o
o & = <& A
< & <& 5
& & &
S & &
Templates
Name Savings fromsucc.. L Manual time Savings
> debugyml $563,141.02 60 min x 11305 host runs Hide
> Demo Job Template $296,691.21 60 min x 5941 host runs Hide
> mslemr-hello-template $141129.35 60 min x 2832 host runs Hide
> TestJob Template $58,642.28 60 min x 177 host runs Hide
> hello_world_test $32,329.34 60 min % 649 host runs Hide
> RHEL - Run command $12,898.66 60 min x 258 host runs Hide

1-200f356 ~ 1 of 18 > »

NOTE

This option is available for technical preview and is subject to change in a future release.
To preview the analytic reports view, set the Enable Preview of New User Interface
toggle to On from the Miscellaneous System Settings option of the Settings menu.

171

https://console.redhat.com

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

c
o
c
o

=
3]
Q
[2]
n

0

+J

>
]
c
<
)
<
+—
—
9]

o
c
S
[)]
c
o

=
[o%
(@]
1)

<
+—
[)]
[2]
4]
O
O
©
o
o
£

V4
[§]
©

Qa
o

o

ge]
c
1]

-
S
o
o
ko)
o
£
>
©
[02]
—_
]
et

o

<

the navigation panel.

172

CHAPTER 27. USABILITY ANALYTICS AND DATA COLLECTION

Red Hat
Ansible Automation Platform

Resources

Templates
Credentials
Projects
Inventories

Hosts

Access

Organizations
Teams

Users

Administration

Instance Groups
Instances

Execution Envircnments

Analytics

Reports

Host Metrics

© You are currently viewing =

Welcome to Ansi

Define, operate, scale, an

Inventories

Jobs

Recently finished jobs

173

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

Host Metrics is another analytics report collected for host data. The ability to access this option from
this part of the Ul is currently in tech preview and is subject to change in a future release. For more
information, see the Host Metrics view in Automation controller configuration.

174

CHAPTER 28. TROUBLESHOOTING AUTOMATION CONTROLLER

CHAPTER 28. TROUBLESHOOTING AUTOMATION
CONTROLLER

Useful troubleshooting information for automation controller.

28.1. UNABLE TO CONNECT TO YOUR HOST

If you are unable to run the helloworld.yml example playbook from the Managing projects section of
the Getting started with automation controller guide or other playbooks due to host connection errors,
try the following:

® Can you ssh to your host? Ansible depends on SSH access to the servers you are managing.

® Are your hostnames and IPs correctly added in your inventory file? Check for typos.

28.2. UNABLE TO LOGIN TO AUTOMATION CONTROLLER THROUGH
HTTP

Access to automation controller is intentionally restricted through a secure protocol (HTTPS). In cases
where your configuration is set up to run an automation controller node behind a load balancer or proxy
as "HTTP only", and you only want to access it without SSL (for troubleshooting, for example), you must
add the following settings in the custom.py file located at /etc/tower/conf.d of your automation
controller instance:

SESSION_COOKIE_SECURE = False
CSRF_COOKIE_SECURE = False

If you change these settings to false it enables automation controller to manage cookies and login
sessions when using the HTTP protocol. You must do this on every node of a cluster installation.

To apply the changes, run:

I automation-controller-service restart

28.3. UNABLE TO RUN A PLAYBOOK

If you are unable to run the helloworld.yml example playbook from the Managing projects section of
the Getting started with automation controller guide due to playbook errors, try the following:

® Ensure that you are authenticating with the user currently running the commands. If not, check
how the username has been set up or pass the --user=username or -u username commands
to specify a user.

® |syour YAML file correctly indented? You might need to line up your whitespace correctly.
Indentation level is significant in YAML. You can use yamlint to check your playbook.

28.4. UNABLE TO RUN A JOB

If you are unable to run a job from a playbook, review the playbook YAML file. When importing a
playbook, either manually or by a source control mechanism, keep in mind that the host definition is
controlled by automation controller and should be set to hosts:all.

175

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html-single/getting_started_with_automation_controller/index#controller-projects
https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.4/html-single/getting_started_with_automation_controller/index#controller-projects

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

28.5. PLAYBOOKS DO NOT SHOW UP IN THE JOB TEMPLATE LIST
If your playbooks are not showing up in the Job Template list, check the following:
® Ensure that the playbook is valid YML and can be parsed by Ansible.
® Ensure that the permissions and ownership of the project path (/var/lib/awx/projects) is set up

so that the "awx" system user can view the files. Run the following command to change the
ownership:

I chown awx -R /var/lib/awx/projects/

28.6. PLAYBOOK STAYS IN PENDING

If you are attempting to run a playbook job and it stays in the Pending state indefinitely, try the
following actions:

® Ensure that all supervisor services are running through supervisorctl status.

® Ensure that the /var/ partition has more than 1 GB of space available. Jobs do not complete
with insufficient space on the /var/ partition.

e Run automation-controller-service restart on the automation controller server.

If you continue to have issues, run sosreport as root on the automation controller server, then file a
support request with the result.

28.7. REUSING AN EXTERNAL DATABASE CAUSES INSTALLATIONS
TO FAIL

Instances have been reported where reusing the external database during subsequent installation of
nodes causes installation failures.

Example

You perform a clustered installation. Then, you need to do this again and perform a second clustered
installation reusing the same external database, only this subsequent installation failed.

When setting up an external database that has been used in a prior installation, you must manually clear
the database used for the clustered node before any additional installations can succeed.

28.8. VIEWING PRIVATE EC2 VPC INSTANCES IN THE AUTOMATION
CONTROLLER INVENTORY

By default, automation controller only shows instances in a VPC that have an Elastic IP (EIP) associated
with them.

Procedure

1. From the navigation panel, select Resources — Inventories.

2. Select the group that has the Source set to AWS, and click the Source tab. In the Source
variables field, enter:

176

http://support.ansible.com/

CHAPTER 28. TROUBLESHOOTING AUTOMATION CONTROLLER

I vpc_destination_variable: private_ip_address

3. Click Save and trigger an update of the group.

Once this is done you can see your VPC instances.

NOTE

Automation controller must be running inside the VPC with access to those instances if
you want to configure them.

177

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

CHAPTER 29. AUTOMATION CONTROLLER TIPS AND TRICKS

® Use the automation controller CLI Tool

® Change the automation controller Admin Password

® Create an automation controller Admin from the commandline

® Setup ajump host to use with automation controller

® View Ansible outputs for JSON commands when using automation controller
® | ocate and configure the Ansible configuration file

® \View a listing of all ansible_ variables

® The ALLOW_JINJA_IN_EXTRA_VARS variable

® Configure the controllerhost hostname for notifications

® | aunch Jobs with curl

® Filterinstances returned by the dynamic inventory sources in automation controller
® Use an unreleased module from Ansible source with automation controller

® Use callback plugins with automation controller

® Connect to Windows with winrm

® Import existing inventory files and host/group vars into automation controller

29.1. THE AUTOMATION CONTROLLER CLI TOOL
Automation controller has a full-featured command line interface.

For more information on configuration and use, see the AWX Command Line Interface and the AWX
manage utility section.

29.2. CHANGE THE AUTOMATION CONTROLLER ADMINISTRATOR
PASSWORD

During the installation process, you are prompted to enter an administrator password which is used for
the admin superuser or system administrator created by automation controller. If you log into the

instance using SSH, it tells you the default administrator password in the prompt.

If you need to change this password at any point, run the following command as root on the automation
controller server:

I awx-manage changepassword admin

Next, enter a new password. After that, the password you have entered works as the administrator
password in the web Ul.

To set policies at creation time for password validation using Django, see Django password policies.

178

https://docs.ansible.com/automation-controller/latest/html/controllercli/usage.html

CHAPTER 29. AUTOMATION CONTROLLER TIPS AND TRICKS

29.3. CREATE AN AUTOMATION CONTROLLER ADMINISTRATOR
FROM THE COMMAND LINE

Occasionally you might find it helpful to create a system administrator (superuser) account from the
command line.

To create a superuser, run the following command as root on the automation controller server and enter
the administrator information as prompted:

I awx-manage createsuperuser

29.4.SET UP A JUMP HOST TO USE WITH AUTOMATION
CONTROLLER

Credentials supplied by automation controller do not flow to the jump host through ProxyCommand.
They are only used for the end-node when the tunneled connection is set up.

You can configure a fixed user/keyfile in the AWX user’'s SSH configuration in the ProxyCommand
definition that sets up the connection through the jump host.

For example:

Host tampa
Hostname 10.100.100.11
IdentityFile [privatekeyfile]

Host 10.100..
Proxycommand ssh -W [jumphostuser]@%h:%p tampa

You can also add a jump host to your automation controller instance through Inventory variables.

These variables can be set at either the inventory, group, or host level. To add this, navigate to your
inventory and in the variables field of whichever level you choose, add the following variables:

ansible user: <user_name>

ansible_connection: ssh

ansible_ssh_common_args: -0 ProxyCommand="ssh -W %h:%p -q
<user_name>@-<jump_server_name>"'

29.5. VIEW ANSIBLE OUTPUTS FOR JSON COMMANDS WHEN USING
AUTOMATION CONTROLLER

When working with automation controller, you can use the API to obtain the Ansible outputs for
commands in JSON format.

To view the Ansible outputs, browse to https://<controller server
name>/api/v2/jobs/<job_id>/job_events/

29.6. LOCATE AND CONFIGURE THE ANSIBLE CONFIGURATION FILE

While Ansible does not require a configuration file, OS packages often include a default one in
/etc/ansible/ansible.cfg for possible customization.

179

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

To use a custom ansible.cfg file, place it at the root of your project. Automation controller runs
ansible-playbook from the root of the project directory, where it finds the custom ansible.cfg file.

NOTE

An ansible.cfg file anywhere else in the project is ignored.

-

To learn which values you can use in this file, see Generating a sample ansible.cfg file .

Using the defaults are acceptable for starting out, but you can configure the default module path or
connection type here, as well as other things.

Automation controller overrides some ansible.cfg options. For example, automation controller stores

the SSH ControlMaster sockets, the SSH agent socket, and any other per-job run items in a per-job
temporary directory that is passed to the container used for job execution.

29.7.VIEW A LISTING OF ALL ANSIBLE_ VARIABLES

By default, Ansible gathers "facts" about the machines under its management, accessible in Playbooks
and in templates.

To view all facts available about a machine, run the setup module as an ad hoc action:

I ansible -m setup hostname

This prints out a dictionary of all facts available for that particular host. For more information, see
information-discovered-from-systems-facts.

29.8. THE ALLOW_JINJA_IN_EXTRA_VARS VARIABLE

Setting ALLOW_JINJA_IN_EXTRA_VARS = template only works for saved job template extra
variables.

Prompted variables and survey variables are excluded from the 'template’.

This parameter has three values:
e template to allow usage of Jinja saved directly on a job template definition (the default).
® never to disable all Jinja usage (recommended).
e always to always allow Jinja (strongly discouraged, but an option for prior compatibility).

This parameter is configurable in the Jobs Settings page of the automation controller Ul.

180

https://docs.ansible.com/ansible/latest/reference_appendices/config.html#generating-a-sample-ansible-cfg-file
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html#facts

CHAPTER 29. AUTOMATION CONTROLLER TIPS AND TRICKS

Settings > Jobs

. . D
Edit Details

Job execution path * @ Revert Maximum Scheduled Jobs * & Revert Default Job Timeout & Revert
/tmp 10 o]

Default Job Idle Timeout 3 Revert Default Inventory Update Timeout (3 Revert Default Project Update Timeout (3 Revert
o] 0 o]

Per-Host Ansible Fact Cache Timeout &) Revert Maximum number of forks per job (3 Revert | When can extra variables contain Jinja templates? (3 Revert
o] 200 I Template -

Run Project Updates With Higher Verbosity &) Revert Ignore Ansible Galaxy SSL Certificate Verification & Revert Enable Role Download & Revert

off off @ o
Enable Collection(s) Download Revert Follow symlinks Revert
@ o off
Revert

Ansible Modules Allowed for Ad Hoc Jobs &

1-0
2 "command",
B "shell",

29.9. CONFIGURING THE coNTROLLERHOST HOSTNAME FOR
NOTIFICATIONS

In System settings, you can replace https://controller.example.com in the Base URL of The Controller

Host field with your preferred hostname to change the notification hostname.

Settings > Miscellaneous System

: " D
Edit Details
Enable Activity Stream (9 Revert Enable Activity Stream for Inventory Sync (3 Revert Global default execution environment (3 Revert
© o @ or a
Base URL of the service'@/ Revert All Users Visible to Organization Admins (3) Revert Organization Admins Can Manage Users and Teams () Revert
https://towerhost o On o On
Gather data for Automation Analytics 3 Revert Red Hat customer username (3 Revert Red Hat customer password (3 Revert
© o N
Red Hat or Satellite username () Revert Red Hat or Satellite password () Revert Automation Analytics Gather Interval * (3 Revert
thavo@redhat.com W ENCRYPTED 14400
Revert

Last gathered entries frem the data collection service of Automation Analytics

Refreshing your automation controller license also changes the notification hostname. New installations

of automation controller need not set the hostname for notifications.

29.10. LAUNCHING JOBS WITH CURL
Launching jobs with the automation controller APl is simple.

The following are some easy to follow examples using the curl tool.

Assuming that your Job Template ID is 'T', your controller IP is 192.168.42.100, and that admin and
awxsecret are valid login credentials, you can create a new job this way:

curl -f -k -H 'Content-Type: application/json' -XPOST \
--user admin:awxsecret \
ht p://192.168.42.100/api/v2/job_templates/1/launch/

181

https://controller.example.com

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

This returns a JSON object that you can parse and use to extract the 'id' field, which is the ID of the
newly created job. You can also pass extra variables to the Job Template call, as in the following
example:

curl -f -k -H 'Content-Type: application/json' -XPOST \
-d '{"extra_vars": "{\"foo\": \"bar\"}"}" \
--user admin:awxsecret http://192.168.42.100/api/v2/job_templates/1/launch/

NOTE

The extra_vars parameter must be a string which contains JSON, not just a JSON
dictionary. Use caution when escaping the quotes, etc.

29.11. FILTERING INSTANCES RETURNED BY THE DYNAMIC
INVENTORY SOURCES IN THE CONTROLLER

By default, the dynamic inventory sources in automation controller (such as AWS and Google) return all
instances available to the cloud credentials being used. They are automatically joined into groups based
on various attributes. For example, AWS instances are grouped by region, by tag name, value, and
security groups. To target specific instances in your environment, write your playbooks so that they
target the generated group names.

For example:

- hosts: tag_Name_webserver
tasks:

You can also use the Limit field in the Job Template settings to limit a playbook run to a certain group,
groups, hosts, or a combination of them. The syntax is the same as the --limit parameter on the ansible-
playbook command line.

You can also create your own groups by copying the auto-generated groups into your custom groups.
Make sure that the Overwrite option is disabled on your dynamic inventory source, otherwise
subsequent synchronization operations delete and replace your custom groups.

29.12. USE AN UNRELEASED MODULE FROM ANSIBLE SOURCE WITH
AUTOMATION CONTROLLER

If there is a feature that is available in the latest Ansible core branch that you want to use with your
automation controller system, making use of it in automation controller is simple.

First, determine which is the updated module you want to use from the available Ansible Core Modules
or Ansible Extra Modules GitHub repositories.

Next, create a new directory, at the same directory level of your Ansible source playbooks, named
/library.

When this is created, copy the module you want to use and drop it into the /library directory. It is

consumed first by your system modules and can be removed once you have updated the stable version
with your normal package manager.

182

CHAPTER 29. AUTOMATION CONTROLLER TIPS AND TRICKS

29.13. USE CALLBACK PLUGINS WITH AUTOMATION CONTROLLER

Ansible has a flexible method of handling actions during playbook runs, called callback plugins. You can
use these plugins with automation controller to do things such as notify services upon playbook runs or
failures, or send emails after every playbook run.

For official documentation on the callback plugin architecture, see Developing plugins.

NOTE

Automation controller does not support the stdout callback plugin because Ansible only
permits one, and it is already being used for streaming event data.

You might also want to review some example plugins, which should be modified for site-specific
purposes, such as those available at:
https://github.com/ansible/ansible/tree/devel/lib/ansible/plugins/callback

To use these plugins, put the callback plugin .py file into a directory called /callback_plugins alongside
your playbook in your automation controller Project. Then, specify their paths (one path per line) in the
Ansible Callback Plugins field of the Job settings:

20 "win_user"
211)

Ansible Callback Plugins &) Revert

10

Paths to expose to isolated jobs & Revert

10

Extra Environment Variables &) Revert

1y

Revert all to default Cancel

NOTE
i To have most callbacks shipped with Ansible applied globally, you must add them to the
callback_whitelist section of your ansible.cfg.

If you have custom callbacks, see Enabling callback plugins.

29.14. CONNECT TO WINDOWS WITH WINRM
By default, automation controller attempts to ssh to hosts.

You must add the winrm connection information to the group variables to which the Windows hosts
belong.

To get started, edit the Windows group in which the hosts reside and place the variables in the source or
edit screen for the group.

To add winrm connection info:

183

http://docs.ansible.com/developing_plugins.html#callbacks
https://github.com/ansible/ansible/tree/devel/lib/ansible/plugins/callback
https://docs.ansible.com/ansible/latest/plugins/callback.html#enabling-callback-plugins

Red Hat Ansible Automation Platform 2.4 Automation Controller Administration Guide

>
e Edit the properties for the selected group by clicking on the Edit @ icon of the group name
that contains the Windows servers. In the "variables" section, add your connection information as
follows: ansible_connection: winrm

When complete, save your edits. If Ansible was previously attempting an SSH connection and failed, you
should re-run the job template.

29.15. IMPORT EXISTING INVENTORY FILES AND HOST/GROUP VARS
INTO AUTOMATION CONTROLLER

To import an existing static inventory and the accompanying host and group variables into automation
controller, your inventory must be in a structure similar to the following:

inventory/

|-- group_vars
| ~-- mygroup
|-- host_vars

| “-- myhost
“-- hosts

To import these hosts and vars, run the awx-manage command:

awx-manage inventory_import --source=inventory/ \
--inventory-name="My Controller Inventory"

If you only have a single flat file of inventory, a file called ansible-hosts, for example, import it as follows:

awx-manage inventory_import --source=./ansible-hosts \
--inventory-name="My Controller Inventory"

In case of conflicts or to overwrite an inventory named "My Controller Inventory”, run:

awx-manage inventory_import --source=inventory/ \
--inventory-name="My Controller Inventory" \
--overwrite --overwrite-vars

If you receive an error, such as:

I ValueError: need more than 1 value to unpack

Create a directory to hold the hosts file, as well as the group_vars:
I mkdir -p inventory-directory/group_vars

Then, for each of the groups that have :vars listed, create a file called inventory-
directory/group_vars/<groupnames and format the variables in YAML format.

The importer then handles the conversion correctly.

184

CHAPTER 29. AUTOMATION CONTROLLER TIPS AND TRICKS

185

	Table of Contents
	PREFACE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. AUTOMATION CONTROLLER LICENSING, UPDATES AND SUPPORT
	1.1. TRIAL AND EVALUATION
	1.2. SUBSCRIPTION TYPES
	1.3. NODE COUNTING IN LICENSES
	1.4. ATTACHING SUBSCRIPTIONS
	1.5. COMPONENT LICENSES

	CHAPTER 2. START, STOP, AND RESTART AUTOMATION CONTROLLER
	CHAPTER 3. CUSTOM INVENTORY SCRIPTS
	CHAPTER 4. INVENTORY FILE IMPORTING
	4.1. CUSTOM DYNAMIC INVENTORY SCRIPTS
	4.2. SCM INVENTORY SOURCE FIELDS
	4.2.1. Supported File Syntax

	CHAPTER 5. MULTI-CREDENTIAL ASSIGNMENT
	5.1. BACKGROUND
	5.2. IMPORTANT CHANGES
	5.3. LAUNCH TIME CONSIDERATIONS
	5.4. MULTI-VAULT CREDENTIALS
	5.4.1. Prompted Vault Credentials
	5.4.2. Linked credentials

	CHAPTER 6. MANAGEMENT JOBS
	6.1. REMOVING OLD ACTIVITY STREAM DATA
	6.1.1. Scheduling deletion
	6.1.2. Setting notifications

	6.2. CLEANUP EXPIRED OAUTH2 TOKENS
	6.2.1. Cleanup Expired Sessions
	6.2.2. Removing Old Job History

	CHAPTER 7. CLUSTERING
	7.1. SETUP CONSIDERATIONS
	7.2. INSTALL AND CONFIGURE
	7.2.1. Instances and ports used by automation controller and automation hub

	7.3. STATUS AND MONITORING BY BROWSER API
	7.4. INSTANCE SERVICES AND FAILURE BEHAVIOR
	7.5. JOB RUNTIME BEHAVIOR
	7.5.1. Job runs

	7.6. DEPROVISIONING INSTANCES

	CHAPTER 8. INSTANCE AND CONTAINER GROUPS
	8.1. INSTANCE GROUPS
	8.1.1. Group policies for automationcontroller
	8.1.2. Configure instance groups from the API
	8.1.3. Instance group policies
	8.1.4. Notable policy considerations
	8.1.5. Pinning instances manually to specific groups
	8.1.6. Job runtime behavior
	8.1.7. Control where a job runs
	8.1.8. Instance group capacity limits
	8.1.9. Deprovisioning instance groups

	8.2. CONTAINER GROUPS
	8.2.1. Creating a container group
	8.2.2. Customizing the pod specification
	8.2.3. Verifying container group functions
	8.2.4. View container group jobs
	8.2.5. Kubernetes API failure conditions
	8.2.6. Container capacity limits

	CHAPTER 9. MANAGING CAPACITY WITH INSTANCES
	9.1. PREREQUISITES
	9.2. PULLING THE SECRET
	9.3. SETTING UP VIRTUAL MACHINES FOR USE IN AN AUTOMATION MESH
	9.4. MANAGING INSTANCES

	CHAPTER 10. TOPOLOGY VIEWER
	10.1. ACCESSING THE TOPOLOGY VIEWER

	CHAPTER 11. AUTOMATION CONTROLLER LOGFILES
	CHAPTER 12. LOGGING AND AGGREGATION
	12.1. LOGGERS
	12.1.1. Log message schema
	12.1.2. Activity stream schema
	12.1.3. Scan / fact / system tracking data schema
	12.1.4. Job status changes
	12.1.5. Automation controller logs
	12.1.6. Logging Aggregator Services
	12.1.6.1. Splunk
	12.1.6.2. Loggly
	12.1.6.3. Sumologic
	12.1.6.4. Elastic stack (formerly ELK stack)

	12.2. SETTING UP LOGGING
	12.3. API 4XX ERROR CONFIGURATION
	12.4. TROUBLESHOOTING LOGGING
	Logging Aggregation
	API 4XX Errors
	LDAP
	SAML

	CHAPTER 13. METRICS
	13.1. SETTING UP PROMETHEUS

	CHAPTER 14. PERFORMANCE TUNING FOR AUTOMATION CONTROLLER
	14.1. CAPACITY PLANNING FOR DEPLOYING AUTOMATION CONTROLLER
	14.1.1. Characteristics of your workload
	14.1.2. Types of nodes in automation controller
	14.1.2.1. Benefits of scaling control nodes
	14.1.2.2. Benefits of scaling execution nodes
	14.1.2.3. Benefits of scaling hop nodes
	14.1.2.4. Ratio of control to execution capacity

	14.2. EXAMPLE CAPACITY PLANNING EXERCISE
	14.2.1. Example workload requirements

	14.3. PERFORMANCE TROUBLESHOOTING FOR AUTOMATION CONTROLLER
	14.4. METRICS TO MONITOR AUTOMATION CONTROLLER
	14.4.1. Metrics for monitoring automation controller application
	14.4.2. System level monitoring

	14.5. POSTGRESQL DATABASE CONFIGURATION AND MAINTENANCE FOR AUTOMATION CONTROLLER
	14.6. AUTOMATION CONTROLLER TUNING
	14.6.1. Managing live events in the automation controller UI
	14.6.1.1. Disabling live streaming events
	14.6.1.2. Settings to modify rate and size of events

	14.6.2. Settings for managing job event processing
	14.6.3. Capacity settings for control and execution nodes
	14.6.4. Capacity settings for instance group and container group
	14.6.5. Settings for scheduling jobs
	14.6.6. Internal Cluster Routing
	14.6.7. Web server tuning

	CHAPTER 15. SECRET HANDLING AND CONNECTION SECURITY
	15.1. SECRET HANDLING
	15.1.1. User passwords for local users
	15.1.2. Secret handling for operational use
	15.1.3. Secret handling for automation use

	15.2. CONNECTION SECURITY
	15.2.1. Internal services
	15.2.2. External access
	15.2.3. Managed nodes

	CHAPTER 16. SECURITY BEST PRACTICES
	16.1. UNDERSTAND THE ARCHITECTURE OF ANSIBLE AUTOMATION PLATFORM AND AUTOMATION CONTROLLER
	16.1.1. Granting access
	16.1.2. Minimize administrative accounts
	16.1.3. Minimize local system access
	16.1.4. Remove user access to credentials
	16.1.5. Enforce separation of duties

	16.2. AVAILABLE RESOURCES
	16.2.1. Audit and logging functionality
	16.2.2. Existing security functionality
	16.2.3. External account stores
	16.2.4. Django password policies

	CHAPTER 17. THE AWX-MANAGE UTILITY
	17.1. INVENTORY IMPORT
	17.2. CLEANUP OF OLD DATA
	17.3. CLUSTER MANAGEMENT
	17.4. TOKEN AND SESSION MANAGEMENT
	17.4.1. create_oauth2_token
	17.4.2. revoke_oauth2_tokens
	17.4.3. cleartokens
	17.4.4. expire_sessions
	17.4.5. clearsessions

	17.5. ANALYTICS GATHERING

	CHAPTER 18. AUTOMATION CONTROLLER CONFIGURATION
	18.1. AUTHENTICATING AUTOMATION CONTROLLER
	18.2. CONFIGURING JOBS
	18.3. CONFIGURING SYSTEM SETTINGS
	18.4. CONFIGURING THE USER INTERFACE
	18.4.1. Configuring usability analytics and data collection
	18.4.2. Custom logos and images

	18.5. ADDITIONAL SETTINGS FOR AUTOMATION CONTROLLER
	18.6. OBTAINING AN AUTHORIZED ANSIBLE AUTOMATION CONTROLLER SUBSCRIPTION
	18.6.1. Troubleshooting: Keep your subscription in compliance
	18.6.2. Viewing the host activity
	18.6.3. Host metric utilities

	CHAPTER 19. ISOLATION FUNCTIONALITY AND VARIABLES
	CHAPTER 20. TOKEN-BASED AUTHENTICATION
	20.1. MANAGING OAUTH 2 APPLICATIONS AND TOKENS
	20.1.1. Access Rules for Applications
	20.1.2. Access rules for tokens

	20.2. USING OAUTH 2 TOKEN SYSTEM FOR PERSONAL ACCESS TOKENS
	20.2.1. Token scope mask over RBAC system

	20.3. APPLICATION FUNCTIONS
	20.3.1. Application using authorization code grant type
	20.3.2. Application using password grant type

	20.4. APPLICATION TOKEN FUNCTIONS
	20.4.1. Refresh an existing access token
	20.4.2. Revoke an access token

	CHAPTER 21. SETTING UP SOCIAL AUTHENTICATION
	21.1. GITHUB SETTINGS
	21.1.1. GitHub Organization settings
	21.1.2. GitHub Team settings
	21.1.3. GitHub Enterprise settings
	21.1.4. GitHub Enterprise Organization settings
	21.1.5. GitHub Enterprise Team settings

	21.2. GOOGLE OAUTH2 SETTINGS
	21.3. ORGANIZATION MAPPING
	21.4. TEAM MAPPING

	CHAPTER 22. SETTING UP ENTERPRISE AUTHENTICATION
	22.1. MICROSOFT AZURE ACTIVE DIRECTORY AUTHENTICATION
	22.2. RADIUS AUTHENTICATION
	22.3. SAML AUTHENTICATION
	22.3.1. Configuring transparent SAML logins
	22.3.2. Enable logging for SAML

	22.4. TACACS PLUS AUTHENTICATION
	22.5. GENERIC OIDC AUTHENTICATION

	CHAPTER 23. LDAP AUTHENTICATION
	23.1. SETTING UP LDAP AUTHENTICATION
	23.1.1. LDAP organization and team mapping
	23.1.2. Enabling logging for LDAP
	23.1.3. Preventing LDAP attributes from updating on each login
	23.1.4. Importing a certificate authority in automation controller for LDAPS integration
	23.1.5. Referrals
	23.1.6. Changing the default timeout for authentication

	CHAPTER 24. USER AUTHENTICATION WITH KERBEROS
	24.1. SET UP THE KERBEROS PACKAGES
	24.2. ACTIVE DIRECTORY AND KERBEROS CREDENTIALS
	24.3. WORKING WITH KERBEROS TICKETS

	CHAPTER 25. SESSIONS LIMITS
	25.1. WORKING WITH SESSION LIMITS

	CHAPTER 26. BACKUP AND RESTORE
	26.1. BACKUP AND RESTORE PLAYBOOKS
	26.2. BACKUP AND RESTORATION CONSIDERATIONS
	26.3. BACKUP AND RESTORE CLUSTERED ENVIRONMENTS
	26.3.1. Restore to a different cluster

	CHAPTER 27. USABILITY ANALYTICS AND DATA COLLECTION
	27.1. SETTING UP DATA COLLECTION PARTICIPATION
	27.2. AUTOMATION ANALYTICS
	27.2.1. Use by organization
	27.2.2. Job runs by organization
	27.2.3. Organization status

	27.3. DETAILS OF DATA COLLECTION
	27.3.1. manifest.json
	27.3.2. config.json
	27.3.3. instance_info.json
	27.3.4. counts.json
	27.3.5. org_counts.json
	27.3.6. cred_type_counts.json
	27.3.7. inventory_counts.json
	27.3.8. projects_by_scm_type.json
	27.3.9. query_info.json
	27.3.10. job_counts.json
	27.3.11. job_instance_counts.json
	27.3.12. unified_job_template_table.csv
	27.3.13. unified_jobs_table.csv
	27.3.14. workflow_job_template_node_table.csv
	27.3.15. workflow_job_node_table.csv
	27.3.16. events_table.csv

	27.4. ANALYTICS REPORTS

	CHAPTER 28. TROUBLESHOOTING AUTOMATION CONTROLLER
	28.1. UNABLE TO CONNECT TO YOUR HOST
	28.2. UNABLE TO LOGIN TO AUTOMATION CONTROLLER THROUGH HTTP
	28.3. UNABLE TO RUN A PLAYBOOK
	28.4. UNABLE TO RUN A JOB
	28.5. PLAYBOOKS DO NOT SHOW UP IN THE JOB TEMPLATE LIST
	28.6. PLAYBOOK STAYS IN PENDING
	28.7. REUSING AN EXTERNAL DATABASE CAUSES INSTALLATIONS TO FAIL
	28.8. VIEWING PRIVATE EC2 VPC INSTANCES IN THE AUTOMATION CONTROLLER INVENTORY

	CHAPTER 29. AUTOMATION CONTROLLER TIPS AND TRICKS
	29.1. THE AUTOMATION CONTROLLER CLI TOOL
	29.2. CHANGE THE AUTOMATION CONTROLLER ADMINISTRATOR PASSWORD
	29.3. CREATE AN AUTOMATION CONTROLLER ADMINISTRATOR FROM THE COMMAND LINE
	29.4. SET UP A JUMP HOST TO USE WITH AUTOMATION CONTROLLER
	29.5. VIEW ANSIBLE OUTPUTS FOR JSON COMMANDS WHEN USING AUTOMATION CONTROLLER
	29.6. LOCATE AND CONFIGURE THE ANSIBLE CONFIGURATION FILE
	29.7. VIEW A LISTING OF ALL ANSIBLE_ VARIABLES
	29.8. THE ALLOW_JINJA_IN_EXTRA_VARS VARIABLE
	29.9. CONFIGURING THE CONTROLLERHOST HOSTNAME FOR NOTIFICATIONS
	29.10. LAUNCHING JOBS WITH CURL
	29.11. FILTERING INSTANCES RETURNED BY THE DYNAMIC INVENTORY SOURCES IN THE CONTROLLER
	29.12. USE AN UNRELEASED MODULE FROM ANSIBLE SOURCE WITH AUTOMATION CONTROLLER
	29.13. USE CALLBACK PLUGINS WITH AUTOMATION CONTROLLER
	29.14. CONNECT TO WINDOWS WITH WINRM
	29.15. IMPORT EXISTING INVENTORY FILES AND HOST/GROUP VARS INTO AUTOMATION CONTROLLER

