& RedHat

Red Hat AMQ 7.7

Using the AMQ JavaScript Client

For Use with AMQ Clients 2.7

Last Updated: 2020-06-24

Red Hat AMQ 7.7 Using the AMQ JavaScript Client

For Use with AMQ Clients 2.7

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to install and configure the client, run hands-on examples, and use your
client with other AMQ components.

Table of Contents

CHAPTER1L.OVERVIEW .. . i e

11. KEY FEATURES
1.2. SUPPORTED STANDARDS AND PROTOCOLS
1.3. SUPPORTED CONFIGURATIONS
1.4. TERMS AND CONCEPTS
1.5. DOCUMENT CONVENTIONS
The sudo command
File paths
Variable text

CHAPTER 2. INSTALLATION .. e

2.1. PREREQUISITES

2.2. INSTALLING ON RED HAT ENTERPRISE LINUX
2.3.INSTALLING ON MICROSOFT WINDOWS

2.4. PREPARING THE LIBRARY FOR USE IN BROWSERS

CHAPTER 3. GETTING STARTED ...t

3.1. PREREQUISITES
3.2. RUNNING HELLO WORLD ON RED HAT ENTERPRISE LINUX
3.3. RUNNING HELLO WORLD ON MICROSOFT WINDOWS

CHAPTER4.EXAMPLES ... e

4.1. SENDING MESSAGES
Running the example

4.2. RECEIVING MESSAGES
Running the example

CHAPTERS.USING THE APl . e

5.1. HANDLING MESSAGING EVENTS

5.2. ACCESSING EVENT-RELATED OBJECTS
5.3. CREATING A CONTAINER

5.4.SETTING THE CONTAINER IDENTITY

CHAPTER 6. NETWORK CONNECTIONS

6.1. CREATING OUTGOING CONNECTIONS
6.2. CONFIGURING RECONNECT

6.3. CONFIGURING FAILOVER

6.4. ACCEPTING INCOMING CONNECTIONS

CHAPTER 7. SECURITY .o e e

7.1. SECURING CONNECTIONS WITH SSL/TLS
7.2. CONNECTING WITH A USER AND PASSWORD
7.3. CONFIGURING SASL AUTHENTICATION

CHAPTER 8. SENDERSAND RECEIVERSt

8.1. CREATING QUEUES AND TOPICS ON DEMAND
8.2. CREATING DURABLE SUBSCRIPTIONS
8.3. CREATING SHARED SUBSCRIPTIONS

CHAPTER 9. FILE-BASED CONFIGURATIONo

9.1. FILE LOCATIONS
9.2. THE FILE FORMAT
9.3. CONFIGURATION OPTIONS

Table of Contents

»

O O 00 0 U1 N N DN

0 N N NN

O O O

.......................... 22

22
22
23

Red Hat AMQ 7.7 Using the AMQ JavaScript Client

CHAPTER 10. INTEROPERABILITY ittt ettt et e e e e eaaeeeeseannneeeeaannnneenennn,
10.1. INTEROPERATING WITH OTHER AMQP CLIENTS
10.2. INTEROPERATING WITH AMQ JMS
JMS message types
10.3. CONNECTING TO AMQ BROKER
10.4. CONNECTING TO AMQ INTERCONNECT

APPENDIX A.USING YOUR SUBSCRIPTION i i
Al ACCESSING YOUR ACCOUNT
A2. ACTIVATING A SUBSCRIPTION
A.3. DOWNLOADING RELEASE FILES
A.4.REGISTERING YOUR SYSTEM FOR PACKAGES

APPENDIX B. USING AMQ BROKER WITH THE EXAMPLES
B.1. INSTALLING THE BROKER
B.2. STARTING THE BROKER
B.3. CREATING A QUEUE
B.4. STOPPING THE BROKER

24
28
28
29
29

30
30
30
30

32
32
32
32
32

Table of Contents

Red Hat AMQ 7.7 Using the AMQ JavaScript Client

CHAPTER 1. OVERVIEW

AMQ JavaScript is a library for developing messaging applications. It enables you to write JavaScript
applications that send and receive AMQP messages.

AMQ JavaScript is part of AMQ Clients, a suite of messaging libraries supporting multiple languages
and platforms. For an overview of the clients, see AMQ Clients Overview. For information about this
release, see AMQ Clients 2.7 Release Notes .

AMQ JavaScript is based on the Rhea messaging library. For detailed APl documentation, see the AMQ
JavaScript APl reference.

1.1. KEY FEATURES

An event-driven API that simplifies integration with existing applications
SSL/TLS for secure communication

Flexible SASL authentication

Automatic reconnect and failover

Seamless conversion between AMQP and language-native data types

Access to all the features and capabilities of AMQP 1.0

1.2. SUPPORTED STANDARDS AND PROTOCOLS

AMQ JavaScript supports the following industry-recognized standards and network protocols:

Version 1.0 of the Advanced Message Queueing Protocol (AMQP)
Versions 1.0, 1.1, 1.2, and 1.3 of the Transport Layer Security (TLS) protocol, the successor to SSL

Simple Authentication and Security Layer (SASL) mechanisms ANONYMOUS, PLAIN, and
EXTERNAL

Modern TCP with IPv6

1.3. SUPPORTED CONFIGURATIONS

AMQ JavaScript supports the OS and language versions listed below. For more information, see Red
Hat AMQ 7 Supported Configurations.

Red Hat Enterprise Linux 6 (x86-64 only) and 7 with Node.js 6 and 8 from Software Collections
Red Hat Enterprise Linux 8 with Node.js 10
Microsoft Windows 10 Pro with Node.js 10

Microsoft Windows Server 2012 R2 and 2016 with Node.js 10

AMQ JavaScript is supported in combination with the following AMQ components and versions:

e All versions of AMQ Broker

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/amq_clients_overview/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/amq_clients_2.7_release_notes/
https://github.com/grs/rhea
https://github.com/amqp/rhea#api
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc4422
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc2460
https://access.redhat.com/articles/2791941

CHAPTER 1. OVERVIEW

o All versions of AMQ Interconnect
o All versions of AMQ Online

® A-MQ 6 versions 6.2.1 and newer

1.4. TERMS AND CONCEPTS

This section introduces the core API entities and describes how they operate together.

Table 1.1. APl terms

Entity Description

Container A top-level container of connections.

Connection A channel for communication between two peers on a network. It contains
sessions.

Session A context for sending and receiving messages. It contains senders and receivers.

Sender A channel for sending messages to a target. It has a target.

Receiver A channel for receiving messages from a source. It has a source.

Source A named point of origin for messages.

Target A named destination for messages.

Message An application-specific piece of information.

Delivery A message transfer.

AMQ JavaScript sends and receives messages. Messages are transferred between connected peers
over senders and receivers. Senders and receivers are established over sessions. Sessions are
established over connections. Connections are established between two uniquely identified containers.
Though a connection can have multiple sessions, often this is not needed. The API allows you to ignore
sessions unless you require them.

A sending peer creates a sender to send messages. The sender has a target that identifies a queue or
topic at the remote peer. A receiving peer creates a receiver to receive messages. The receiver has a
source that identifies a queue or topic at the remote peer.

The sending of a message is called a delivery. The message is the content sent, including all metadata
such as headers and annotations. The delivery is the protocol exchange associated with the transfer of
that content.

To indicate that a delivery is complete, either the sender or the receiver settles it. When the other side
learns that it has been settled, it will no longer communicate about that delivery. The receiver can also
indicate whether it accepts or rejects the message.

Red Hat AMQ 7.7 Using the AMQ JavaScript Client

1.5. DOCUMENT CONVENTIONS

The sudo command

In this document, sudo is used for any command that requires root privileges. Exercise caution when
using sudo because any changes can affect the entire system. For more information about sudo, see
Using the sudo command.

File paths

In this document, all file paths are valid for Linux, UNIX, and similar operating systems (for example,
/home/andrea). On Microsoft Windows, you must use the equivalent Windows paths (for example,
C:\Users\andrea).

Variable text

This document contains code blocks with variables that you must replace with values specific to your
environment. Variable text is enclosed in arrow braces and styled as italic monospace. For example, in
the following command, replace <project-dirs> with the value for your environment:

I $ cd <project-dir>

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/chap-gaining_privileges#sect-Gaining_Privileges-The_sudo_Command

CHAPTER 2. INSTALLATION

CHAPTER 2. INSTALLATION

This chapter guides you through the steps to install AMQ JavaScript in your environment.

2.1. PREREQUISITES
® You must have a subscription to access AMQ release files and repositories.

® To use AMQ JavaScript, you must install Node.js in your environment. See the Node.js website
for more information.

® AMQ JavaScript depends on the Node.js debug module. See the npm page for installation
instructions.

2.2. INSTALLING ON RED HAT ENTERPRISE LINUX

Procedure

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQ Clientsentry in the INTEGRATION AND AUTOMATION category.
3. Click Red Hat AMQ Clients The Software Downloads page opens.
4. Download the AMQ Clients 2.7.0 JavaScript.zip file.

5. Use the unzip command to extract the file contents into a directory of your choosing.
I $ unzip amg-clients-2.7.0-javascript.zip

When you extract the contents of the .zip file, a directory named amq-clients-2.7.0-javascript is
created. This is the top-level directory of the installation and is referred to as <install-dir> throughout
this document.

To configure your environment to use the installed library, add the node_modules directory to the
NODE_PATH environment variable.

$ cd amg-clients-2.7.0-javascript
$ export NODE_PATH=$PWD/node_modules:$NODE_PATH

To make this configuration take effect for all new console sessions, set NODE_PATH in your
$HOME/.bashrec file.

To test your installation, use the following command. It prints OK to the console if it successfully imports
the installed library.

I $ node -e 'require("rhea")’ && echo OK
OK

2.3.INSTALLING ON MICROSOFT WINDOWS

https://nodejs.org/en/
https://www.npmjs.com/package/debug
https://access.redhat.com/downloads

Red Hat AMQ 7.7 Using the AMQ JavaScript Client

Procedure

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQ Clientsentry in the INTEGRATION AND AUTOMATION category.
3. Click Red Hat AMQ Clients The Software Downloads page opens.
4. Download the AMQ Clients 2.7.0 JavaScript.zip file.

5. Extract the file contents into a directory of your choosing by right-clicking on the zip file and
selecting Extract All.

When you extract the contents of the .zip file, a directory named amq-clients-2.7.0-javascript is
created. This is the top-level directory of the installation and is referred to as <install-dir> throughout

this document.

To configure your environment to use the installed library, add the node_modules directory to the
NODE_PATH environment variable.

$ cd amg-clients-2.7.0-javascript
$ set NODE_PATH=%cd%\node_modules;%NODE_PATH%

2.4. PREPARING THE LIBRARY FOR USE IN BROWSERS

AMQ JavaScript can run inside a web browser. To create a browser-compatible version of the library,
use the npm run browserify command.

$ cd amg-clients-2.7.0-javascript/node_modules/rhea
$ npm install
$ npm run browserify

This produces a file named rhea.js that can be used in browser-based applications.

https://access.redhat.com/downloads

CHAPTER 3. GETTING STARTED

CHAPTER 3. GETTING STARTED

This chapter guides you through the steps to set up your environment and run a simple messaging
program.

3.1. PREREQUISITES
® You must complete the installation procedure for your environment.
® You must have an AMQP 1.0 message broker listening for connections on interface localhost
and port 5672. It must have anonymous access enabled. For more information, see Starting the

broker.

® You must have a queue named examples. For more information, see Creating a queue.

3.2. RUNNING HELLO WORLD ON RED HAT ENTERPRISE LINUX

The Hello World example creates a connection to the broker, sends a message containing a greeting to
the examples queue, and receives it back. On success, it prints the received message to the console.

Change to the examples directory and run the helloworld.js example.

$ cd <install-dir>/node_modules/rhea/examples
$ node helloworld.js
Hello World!

3.3. RUNNING HELLO WORLD ON MICROSOFT WINDOWS

The Hello World example creates a connection to the broker, sends a message containing a greeting to
the examples queue, and receives it back. On success, it prints the received message to the console.

Change to the examples directory and run the helloworld.js example.

> cd <install-dir>/node_modules/rhea/examples
> node helloworld.js
Hello World!

Red Hat AMQ 7.7 Using the AMQ JavaScript Client

CHAPTER 4. EXAMPLES

This chapter demonstrates the use of AMQ JavaScript through example programs.

For more examples, see the AMQ JavaScript example suite .

4.1. SENDING MESSAGES

This client program connects to a server using <connection-url>, creates a sender for target
<address>, sends a message containing <message-body>, closes the connection, and exits.

Example: Sending messages

"use strict";

var rhea = require("rhea");
var url = require("url");

if (process.argv.length == 5) {
console.error("Usage: send.js <connection-url> <address> <message-body>");
process.exit(1);

}

var conn_url = url.parse(process.argv(2]);
var address = process.argv[3];
var message_body = process.argv([4];

var container = rhea.create_container();

container.on("sender_open", function (event) {
console.log("SEND: Opened sender for target address ™ +
event.sender.target.address + "");

hE

container.on("sendable", function (event) {
var message = {
body: message_body

I

event.sender.send(message);
console.log("SEND: Sent message " + message.body + "");

event.sender.close();
event.connection.close();

hE

var opts = {
host: conn_url.hostname,
port: conn_url.port || 5672,
// To connect with a user and password:
// username: "<username>",
// password: "<password>",

10

https://github.com/amqphub/equipage/tree/master/rhea/

CHAPTER 4. EXAMPLES

var conn = container.connect(opts);
conn.open_sender(address);

Running the example
To run the example program, copy it to a local file and invoke it using the node command.

I $ node send.js amqp://localhost queuel hello

4.2. RECEIVING MESSAGES

This client program connects to a server using <connection-url>, creates a receiver for source
<address>, and receives messages until it is terminated or it reaches <count> messages.

Example: Receiving messages

"use strict";

var rhea = require("rhea");
var url = require("url");

if (process.argv.length == 4 && process.argv.length == 5) {
console.error("Usage: receive.js <connection-url> <address> [<message-count>]");
process.exit(1);

}

var conn_url = url.parse(process.argv(2]);
var address = process.argv[3];

var desired = 0;

var received = 0;

if (process.argv.length === 5) {
desired = parselnt(process.argv[4]);

}

var container = rhea.create_container();

container.on("receiver_open", function (event) {
console.log("RECEIVE: Opened receiver for source address ™ +
event.receiver.source.address + "");

hE

container.on("message", function (event) {
var message = event.message;

console.log("RECEIVE: Received message " + message.body + "");
received++;
if (received == desired) {

event.receiver.close();
event.connection.close();

}

1

Red Hat AMQ 7.7 Using the AMQ JavaScript Client

var opts = {
host: conn_url.hostname,
port: conn_url.port || 5672,
// To connect with a user and password:
// username: "<username>",
// password: "<password>",

1

var conn = container.connect(opts);
conn.open_receiver(address);

Running the example
To run the example program, copy it to a local file and invoke it using the python command.

I $ node receive.js amqp://localhost queue1

12

CHAPTER 5. USING THE API

CHAPTER 5. USING THE API

For more information, see the AMQ JavaScript AP reference and AMQ JavaScript example suite .

5.1. HANDLING MESSAGING EVENTS

AMQ JavaScript is an asynchronous event-driven API. To define how the application handles events, the
user registers event-handling functions on the container object. These functions are then called as
network activity or timers trigger new events.

Example: Handling messaging events

var rhea = require("rhea");
var container = rhea.create_container();

container.on("sendable", function (event) {
console.log("A message can be sent");

b;

container.on("message", function (event) {
console.log("A message is received");

h;

These are only a few common-case events. The full set is documented in the
{ClientAmgpJavaScriptApiLink}.

5.2. ACCESSING EVENT-RELATED OBJECTS

The event argument has attributes for accessing the object the event is regarding. For example, the
connection_open event sets the event connection attribute.

In addition to the primary object for the event, all objects that form the context for the event are set as
well. Attributes with no relevance to a particular event are null.

Example: Accessing event-related objects

event.container
event.connection
event.session
event.sender
event.receiver
event.delivery
event.message

5.3. CREATING A CONTAINER

The container is the top-level APl object. It is the entry point for creating connections, and it is
responsible for running the main event loop. It is often constructed with a global event handler.

Example: Creating a container

var rhea = require("rhea");
var container = rhea.create_container();

13

https://github.com/amqp/rhea#api
https://github.com/amqphub/equipage/tree/master/rhea/

Red Hat AMQ 7.7 Using the AMQ JavaScript Client

5.4.SETTING THE CONTAINER IDENTITY

Each container instance has a unique identity called the container ID. When AMQ JavaScript makes a
network connection, it sends the container ID to the remote peer. To set the container ID, pass the id
option to the create_container method.

Example: Setting the container identity
I var container = rhea.create_container({id: "job-processor-3"});

If the user does not set the ID, the library will generate a UUID when the container is constucted.

14

CHAPTER 6. NETWORK CONNECTIONS

CHAPTER 6. NETWORK CONNECTIONS

6.1. CREATING OUTGOING CONNECTIONS

To connect to a remote server, pass connection options containing the host and port to the
container.connect() method.

Example: Creating outgoing connections

container.on("connection_open", function (event) {
console.log("Connection " + event.connection + " is open");

D
var opts = {

host: "example.com",
port: 5672

I§

container.connect(opts);

The default host is localhost. The default port is 5672.

See the Chapter 7, Security section for information about creating secure connections.

6.2. CONFIGURING RECONNECT

Reconnect allows a client to recover from lost connections. It is used to ensure that the componentsin a
distributed system reestablish communication after temporary network or component failures.

AMQ JavaScript enables reconnect by default. If a connection attempt fails, the client will try again after
a brief delay. The delay increases exponentially for each new attempt, up to a default maximum of 60
seconds.

To disable reconnect, set the reconnect connection option to false.

Example: Disabling reconnect

var opts = {
host: "example.com",
reconnect: false

1

container.connect(opts);

To control the delays between connection attempts, set the initial_reconnect_delay and
max_reconnect_delay connection options. Delay options are specified in milliseconds.

To limit the number of reconnect attempts, set the reconnect_limit option.

Example: Configuring reconnect

var opts = {
host: "example.com",

15

Red Hat AMQ 7.7 Using the AMQ JavaScript Client

initial_reconnect_delay: 100,
max_reconnect_delay: 60 * 1000,
reconnect_limit: 10

1

container.connect(opts);

6.3. CONFIGURING FAILOVER
AMQ JavaScript allows you to configure alternate connection endpoints programatically.
To specify multiple connection endpoints, define a function that returns new connection options and

pass the function in the connection_details option. The function is called once for each connection
attempt.

Example: Configuring failover

var hosts = ["alpha.example.com", "beta.example.com"];
var index = -1;

function failover_fn() {
index += 1;

if (index == hosts.length) index = 0;

return {host: hosts[index].hostname};
I
var opts = {

host: "example.com"”,
connection_details: failover_fn

}

container.connect(opts);

This example implements repeating round-robin failover for a list of hosts. You can use this interface to
implement your own failover behavior.

6.4. ACCEPTING INCOMING CONNECTIONS

AMQ JavaScript can accept inbound network connections, enabling you to build custom messaging
servers.

To start listening for connections, use the container.listen() method with options containing the local
host address and port to listen on.

Example: Accepting incoming connections

container.on("connection_open", function (event) {
console.log("New incoming connection " + event.connection);

b;

var opts = {
host: "0.0.0.0",

16

CHAPTER 6. NETWORK CONNECTIONS

port: 5672
1

container.listen(opts);
The special IP address 0.0.0.0 listens on all available IPv4 interfaces. To listen on all IPv6 interfaces, use

[::0].

For more information, see the server receive.js example.

17

https://github.com/amqphub/equipage/blob/master/rhea/servers/receive.js

Red Hat AMQ 7.7 Using the AMQ JavaScript Client

CHAPTER 7. SECURITY

7.1. SECURING CONNECTIONS WITH SSL/TLS
AMQ JavaScript uses SSL/TLS to encrypt communication between clients and servers.

To connect to a remote server with SSL/TLS, set the transport connection option to tls.

Example: Enabling SSL/TLS

var opts = {
host: "example.com",
port: 5671,
transport: "tls"

1

container.connect(opts);

NOTE

By default, the client will reject connections to servers with untrusted certificates. This is
sometimes the case in test environments. To bypass certificate authorization, set the
rejectUnauthorized connection option to false. Be aware that this compromises the
security of your connection.

7.2. CONNECTING WITH A USER AND PASSWORD
AMQ JavaScript can authenticate connections with a user and password.

To specify the credentials used for authentication, set the username and password connection
options.

Example: Connecting with a user and password

var opts = {
host: "example.com",
username: "alice",
password: "secret"

I§

container.connect(opts);

7.3. CONFIGURING SASL AUTHENTICATION

AMQ JavaScript uses the SASL protocol to perform authentication. SASL can use a number of different
authentication mechanisms. When two network peers connect, they exchange their allowed mechanisms,
and the strongest mechanism allowed by both is selected.

AMQ JavaScript enables SASL mechanisms based on the presence of user and password information. If

the user and password are both specified, PLAIN is used. If only a user is specified, ANONYMOUS is
used. If neither is specified, SASL is disabled.

18

CHAPTER 8. SENDERS AND RECEIVERS

CHAPTER 8. SENDERS AND RECEIVERS

The client uses sender and receiver links to represent channels for delivering messages. Senders and
receivers are unidirectional, with a source end for the message origin, and a target end for the message
destination.

Source and targets often point to queues or topics on a message broker. Sources are also used to
represent subscriptions.

8.1. CREATING QUEUES AND TOPICS ON DEMAND

Some message servers support on-demand creation of queues and topics. When a sender or receiver is
attached, the server uses the sender target address or the receiver source address to create a queue or
topic with a name matching the address.

The message server typically defaults to creating either a queue (for one-to-one message delivery) or a
topic (for one-to-many message delivery). The client can indicate which it prefers by setting the queue
or topic capability on the source or target.

To select queue or topic semantics, follow these steps:

1. Configure your message server for automatic creation of queues and topics. This is often the
default configuration.

2. Set either the queue or topic capability on your sender target or receiver source, as in the
examples below.

Example: Sending to a queue created on demand

var conn = container.connect({host: "example.com"});

var sender_opts = {
target: {
address: "jobs",
capabilities: ["queue"]
}
}

conn.open_sender(sender_opts);
Example: Receiving from a topic created on demand

var conn = container.connect({host: "example.com"});

var receiver_opts = {
source: {
address: "notifications",
capabilities: ["topic"]
}
}

conn.open_receiver(receiver_opts);

For more details, see the following examples:

19

Red Hat AMQ 7.7 Using the AMQ JavaScript Client

® queue-send.js

® queue-receive.js

topic-send.js

topic-receive.js

8.2. CREATING DURABLE SUBSCRIPTIONS

A durable subscription is a piece of state on the remote server representing a message receiver.
Ordinarily, message receivers are discarded when a client closes. However, because durable
subscriptions are persistent, clients can detach from them and then re-attach later. Any messages
received while detached are available when the client re-attaches.

Durable subscriptions are uniquely identified by combining the client container ID and receiver name to
form a subscription ID. These must have stable values so that the subscription can be recovered.

1. Set the connection container ID to a stable value, such as client-1:
I var container = rhea.create_container({id: "client-1"});

2. Create areceiver with a stable name, such as sub-1, and configure the receiver source for
durability by setting the durable and expiry_policy properties:

var receiver_opts = {
source: {
address: "notifications”,
name: "sub-1",
durable: 2,
expiry_policy: "never"
}
}

conn.open_receiver(receiver_opts);

To detach from a subscription, use the receiver.detach() method. To terminate the subscription, use
the receiver.close() method.

For more information, see the durable-subscribe.js example.

8.3. CREATING SHARED SUBSCRIPTIONS

A shared subscription is a piece of state on the remote server representing one or more message
receivers. Because it is shared, multiple clients can consume from the same stream of messages.

The client configures a shared subscription by setting the shared capability on the receiver source.
Shared subscriptions are uniquely identified by combining the client container ID and receiver name to
form a subscription ID. These must have stable values so that multiple client processes can locate the
same subscription. If the global capability is set in addition to shared, the receiver name alone is used to

identify the subscription.

To create a durable subscription, follow these steps:

20

https://github.com/amqphub/equipage/blob/master/rhea/auto-create/queue-send.js
https://github.com/amqphub/equipage/blob/master/rhea/auto-create/queue-receive.js
https://github.com/amqphub/equipage/blob/master/rhea/auto-create/topic-send.js
https://github.com/amqphub/equipage/blob/master/rhea/auto-create/topic-receive.js
https://github.com/amqphub/equipage/blob/master/rhea/subscriptions/durable-subscribe.js

CHAPTER 8. SENDERS AND RECEIVERS

1. Set the connection container ID to a stable value, such as client-1:

I var container = rhea.create_container({id: "client-1"});

2. Create areceiver with a stable name, such as sub-1, and configure the receiver source for
sharing by setting the shared capability:

var receiver_opts = {
source: {
address: "notifications",
name: "sub-1",
capabilities: ["shared"]
}
}

conn.open_receiver(receiver_opts);

To detach from a subscription, use the receiver.detach() method. To terminate the subscription, use
the receiver.close() method.

For more information, see the shared-subscribe.js example.

21

https://github.com/amqphub/equipage/blob/master/rhea/subscriptions/shared-subscribe.js

Red Hat AMQ 7.7 Using the AMQ JavaScript Client

CHAPTER 9. FILE-BASED CONFIGURATION

AMQ JavaScript can read the configuration options used to establish connections from a local file
named connect.json. This enables you to configure connections in your application at the time of
deployment.

The library attempts to read the file when the application calls the container connect method without
supplying any connection options.

9.1. FILE LOCATIONS

If set, AMQ JavaScript uses the value of the MESSAGING_CONNECT _FILE environment variable to
locate the configuration file.

If MESSAGING_CONNECT _FILE is not set, AMQ JavaScript searches for a file named connect.json
at the following locations and in the order shown. It stops at the first match it encounters.

On Linux:

1. $PWD/connect.json, where $PWD is the current working directory of the client process
2. $HOME/.config/messaging/connect.json, where $HOME is the current user home directory

3. /etc/messaging/connect.json

On Windows:

1. %cd%/connect.json, where %cd% is the current working directory of the client process

If no connect.json file is found, the library uses default values for all options.

9.2. THE FILE FORMAT
The connect.json file contains JSON data, with additional support for JavaScript comments.

All of the configuration attributes are optional or have default values, so a simple example need only
provide a few details:

Example: A simple connect.json file

{

"host": "example.com",
"user": "alice",
"password": "secret"

}

SASL and SSL/TLS options are nested under "sasl" and "tls" namespaces:

Example: A connect.json file with SASL and SSL/TLS options

{

"host": "example.com",
"user": "ortega",
"password": "secret",

22

CHAPTER 9. FILE-BASED CONFIGURATION

"sasl": {

"mechanisms": ["'SCRAM-SHA-1", "SCRAM-SHA-256"]
}
"tIs": {

"cert": "/home/ortega/cert.pem",

"key": "/home/ortega/key.pem"

}
}

9.3. CONFIGURATION OPTIONS
The option keys containing a dot (.) represent attributes nested inside a namespace.

Table 9.1. Configuration options inconnect.json

Value type Default Description

value

scheme string "amqps" "amqp" for cleartext or"amqps" for SSL/TLS
host string "localhost” The hostname or IP address of the remote host
port string or "amqps" A port number or port literal
number

user string None The user name for authentication
password string None The password for authentication
sasl.mechanism list or string None A JSON list of enabled SASL mechanisms. A bare
S (system string represents one mechanism. If none are

defaults) specified, the client uses the default mechanisms

provided by the system.

sasl.allow_insec boolean false Enable mechanisms that send cleartext passwords

ure

tls.cert string None The filename or database ID of the client
certificate

tis.key string None The filename or database ID of the private key for

the client certificate

tls.ca string None The filename, directory, or database ID of the CA
certificate

tis.verify boolean true Require a valid server certificate with a matching
hostname

23

Red Hat AMQ 7.7 Using the AMQ JavaScript Client

CHAPTER 10. INTEROPERABILITY

This chapter discusses how to use AMQ JavaScript in combination with other AMQ components. For an
overview of the compatibility of AMQ components, see the product introduction.

10.1. INTEROPERATING WITH OTHER AMQP CLIENTS

AMQP messages are composed using the AMQP type system. This common format is one of the
reasons AMQP clients in different languages are able to interoperate with each other.

When sending messages, AMQ JavaScript automatically converts language-native types to AMQP-
encoded data. When receiving messages, the reverse conversion takes place.

NOTE

More information about AMQP types is available at the interactive type reference
maintained by the Apache Qpid project.

Table 10.1. AMQP types

AMQP type Description

null An empty value

boolean A true or false value

char A single Unicode character
string A sequence of Unicode characters
binary A sequence of bytes

byte A signed 8-bit integer

short A signed 16-bit integer

int A signed 32-bit integer

long A signed 64-bit integer
ubyte An unsigned 8-bit integer
ushort An unsigned 16-bit integer
uint An unsigned 32-bit integer
ulong An unsigned 64-bit integer
float A 32-bit floating point number

24

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/introducing_red_hat_amq_7/#component_compatibility
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#toc
http://qpid.apache.org/amqp/type-reference.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-null
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-boolean
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-char
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-string
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-binary
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-short
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-int
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-long
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-ubyte
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-ushort
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-uint
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-ulong
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-float

CHAPTER 10. INTEROPERABILITY

AMQP type Description

double A 64-bit floating point number

array A sequence of values of a single type

list A sequence of values of variable type

map A mapping from distinct keys to values

uuid A universally unique identifier

symbol A 7-bit ASCII string from a constrained domain
timestamp An absolute point in time

JavaScript has fewer native types than AMQP can encode. To send messages containing specific AMQP
types, use the wrap_ functions from the rhea/types.js module.

Table 10.2. AMQ JavaScript types before encoding and after decoding

AMQP type AMQ JavaScript type before encoding AMQ JavaScript type after decoding
null null null
boolean boolean boolean
char wrap_char(number) number
string string string
binary wrap_binary(string) string
byte wrap_byte(number) number
short wrap_short(humber) number
int wrap_int(number) number
long wrap_long(number) number
ubyte wrap_ubyte(number) number
ushort wrap_ushort(number) number
uint wrap_uint(number) number

25

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-double
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-array
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-list
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-map
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-uuid
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-timestamp

Red Hat AMQ 7.7 Using the AMQ JavaScript Client

AMQP type

AMQ JavaScript type before encoding

ulong wrap_ulong(number)
float wrap_float(humber)
double wrap_double(number)
array wrap_array(Array, code)
list wrap_list(Array)

map wrap_map(object)

uuid wrap_uuid(number)
symbol wrap_symbol(string)
timestamp wrap_timestamp(number)

number

number

number

Array

Array

object

number

string

number

Table 10.3. AMQ JavaScript and other AMQ client types (1 of 2)

26

AMQ JavaScript type before encoding

null

boolean

wrap_char(number)

string

wrap_binary(string)

wrap_byte(number)

wrap_short(number)

wrap_int(number)

wrap_long(number)

wrap_ubyte(number)

wrap_ushort(number)

AMQ C++ type

nuliptr

bool

wchar_t

std::string

proton::binary

int8_t

int16_t

int32_t

int64_t

uint8_t

uint16_t

AMQ JavaScript type after decoding

AMQ .NET type

null

System.Boolean

System.Char

System.String

System.Byte[]

System.SByte

System.Int16

System.Int32

System.Int64

System.Byte

System.UInt16

CHAPTER 10. INTEROPERABILITY

AMQ JavaScript type before encoding AMQ C++ type AMQ .NET type
wrap_uint(number) uint32_t System.UInt32
wrap_ulong(number) uint64_t System.UInt64
wrap_float(hnumber) float System.Single
wrap_double(number) double System.Double

wrap_array(Array, code) - -

wrap_list(Array) std::vector Amgp.List
wrap_map(object) std::map Amqgp.Map
wrap_uuid(number) proton::uuid System.Guid
wrap_symbol(string) proton::symbol Amqp.Symbol
wrap_timestamp(number) proton::timestamp System.DateTime

Table 10.4. AMQ JavaScript and other AMQ client types (2 of 2)

AMQ JavaScript type before encoding AMQ Python type AMQ Ruby type
null None nil
boolean bool true, false
wrap_char(number) unicode String
string unicode String
wrap_binary(string) bytes String
wrap_byte(number) int Integer
wrap_short(humber) int Integer
wrap_int(number) long Integer
wrap_long(number) long Integer
wrap_ubyte(number) long Integer

27

Red Hat AMQ 7.7 Using the AMQ JavaScript Client

AMQ JavaScript type before encoding AMQ Python type AMQ Ruby type
wrap_ushort(number) long Integer
wrap_uint(number) long Integer
wrap_ulong(number) long Integer
wrap_float(humber) float Float
wrap_double(number) float Float
wrap_array(Array, code) proton.Array Array
wrap_list(Array) list Array
wrap_map(object) dict Hash

wrap_uuid(number) - -
wrap_symbol(string) str Symbol

wrap_timestamp(number) long Time

10.2. INTEROPERATING WITH AMQ JMS

AMQP defines a standard mapping to the JMS messaging model. This section discusses the various
aspects of that mapping. For more information, see the AMQ JUMS Interoperability chapter.

JMS message types

AMQ JavaScript provides a single message type whose body type can vary. By contrast, the JMS API
uses different message types to represent different kinds of data. The table below indicates how
particular body types map to JMS message types.

For more explicit control of the resulting JMS message type, you can set the x-opt-jms-msg-type
message annotation. See the AMQ JMS Interoperability chapter for more information.

Table 10.5. AMQ JavaScript and JMS message types

AMQ JavaScript body type JMS message type

string TextMessage
null TextMessage
wrap_binary(string) BytesMessage

28

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_the_amq_jms_client/#interoperability
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_the_amq_jms_client/#interoperability
http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/BytesMessage.html

CHAPTER 10. INTEROPERABILITY

AMQ JavaScript body type JMS message type

Any other type ObjectMessage

10.3. CONNECTING TO AMQ BROKER

AMQ Broker is designed to interoperate with AMQP 1.0 clients. Check the following to ensure the
broker is configured for AMQP messaging:

® Port 5672 in the network firewall is open.
® The AMQ Broker AMQP acceptor is enabled. See Default acceptor settings.
® The necessary addresses are configured on the broker. See Addresses, Queues, and Topics.

® The broker is configured to permit access from your client, and the client is configured to send
the required credentials. See Broker Security.

10.4. CONNECTING TO AMQ INTERCONNECT

AMQ Interconnect works with any AMQP 1.0 client. Check the following to ensure the components are
configured correctly:

® Port 5672 in the network firewall is open.

® The router is configured to permit access from your client, and the client is configured to send
the required credentials. See Securing network connections.

29

http://docs.oracle.com/javaee/7/api/javax/jms/ObjectMessage.html
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/configuring_amq_broker/#default-acceptor-settings-configuring
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/configuring_amq_broker/#addresses
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/configuring_amq_broker/#security
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_interconnect/#securing-network-connections-router-rhel

Red Hat AMQ 7.7 Using the AMQ JavaScript Client

APPENDIX A. USING YOUR SUBSCRIPTION

AMQ is provided through a software subscription. To manage your subscriptions, access your account
at the Red Hat Customer Portal.

A.1. ACCESSING YOUR ACCOUNT

Procedure

1. Go to access.redhat.com.
2. If you do not already have an account, create one.

3. Login to your account.

A.2. ACTIVATING A SUBSCRIPTION

Procedure

1. Go to access.redhat.com.
2. Navigate to My Subscriptions.

3. Navigate to Activate a subscriptionand enter your 16-digit activation number.

A.3. DOWNLOADING RELEASE FILES

To access .zip, .tar.gz, and other release files, use the customer portal to find the relevant files for
download. If you are using RPM packages or the Red Hat Maven repository, this step is not required.

Procedure

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQentries in the INTEGRATION AND AUTOMATION category.
3. Select the desired AMQ product. The Software Downloads page opens.

4. Click the Download link for your component.

A.4. REGISTERING YOUR SYSTEM FOR PACKAGES

To install RPM packages on Red Hat Enterprise Linux, your system must be registered. If you are using
downloaded release files, this step is not required.

Procedure

1. Go to access.redhat.com.
2. Navigate to Registration Assistant.

3. Select your OS version and continue to the next page.

30

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads
https://access.redhat.com

APPENDIX A. USING YOUR SUBSCRIPTION

4. Use the listed command in your system terminal to complete the registration.

For more information, see How to Register and Subscribe a System to the Red Hat Customer Portal .

31

https://access.redhat.com/solutions/253273

Red Hat AMQ 7.7 Using the AMQ JavaScript Client

APPENDIX B. USING AMQ BROKER WITH THE EXAMPLES

The AMQ JavaScript examples require a running message broker with a queue named examples. Use
the procedures below to install and start the broker and define the queue.

B.1. INSTALLING THE BROKER

Follow the instructions in Getting Started with AMQ Broker to install the broker and create a broker
instance. Enable anonymous access.

The following procedures refer to the location of the broker instance as <broker-instance-dir>.

B.2. STARTING THE BROKER
Procedure
1. Use the artemis run command to start the broker.

I $ <broker-instance-dir>/bin/artemis run

2. Check the console output for any critical errors logged during startup. The broker logs Server
is now live when it is ready.

$ example-broker/bin/artemis run

ANV A |
NN
SANTIVITE T </ NV
N O <

7\) N\ A\ N]

Red Hat AMQ <version>

2020-06-03 12:12:11,807 INFO [org.apache.activemq.artemis.integration.bootstrap]
AMQ101000: Starting ActiveMQ Artemis Server

2020-06-03 12:12:12,336 INFO [org.apache.activemq.artemis.core.server] AMQ221007:
Server is now live

B.3. CREATING A QUEUE

In a new terminal, use the artemis queue command to create a queue named examples.

$ <broker-instance-dir>/bin/artemis queue create --name examples --address examples --auto-
create-address --anycast

You are prompted to answer a series of yes or no questions. Answer N for no to all of them.

Once the queue is created, the broker is ready for use with the example programs.

B.4. STOPPING THE BROKER

32

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/getting_started_with_amq_broker/#installing-broker-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started

APPENDIX B. USING AMQ BROKER WITH THE EXAMPLES

When you are done running the examples, use the artemis stop command to stop the broker.

I $ <broker-instance-dir>/bin/artemis stop

Revised on 2020-06-24 20:01:01UTC

33

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. KEY FEATURES
	1.2. SUPPORTED STANDARDS AND PROTOCOLS
	1.3. SUPPORTED CONFIGURATIONS
	1.4. TERMS AND CONCEPTS
	1.5. DOCUMENT CONVENTIONS
	The sudo command
	File paths
	Variable text

	CHAPTER 2. INSTALLATION
	2.1. PREREQUISITES
	2.2. INSTALLING ON RED HAT ENTERPRISE LINUX
	2.3. INSTALLING ON MICROSOFT WINDOWS
	2.4. PREPARING THE LIBRARY FOR USE IN BROWSERS

	CHAPTER 3. GETTING STARTED
	3.1. PREREQUISITES
	3.2. RUNNING HELLO WORLD ON RED HAT ENTERPRISE LINUX
	3.3. RUNNING HELLO WORLD ON MICROSOFT WINDOWS

	CHAPTER 4. EXAMPLES
	4.1. SENDING MESSAGES
	Running the example

	4.2. RECEIVING MESSAGES
	Running the example

	CHAPTER 5. USING THE API
	5.1. HANDLING MESSAGING EVENTS
	5.2. ACCESSING EVENT-RELATED OBJECTS
	5.3. CREATING A CONTAINER
	5.4. SETTING THE CONTAINER IDENTITY

	CHAPTER 6. NETWORK CONNECTIONS
	6.1. CREATING OUTGOING CONNECTIONS
	6.2. CONFIGURING RECONNECT
	6.3. CONFIGURING FAILOVER
	6.4. ACCEPTING INCOMING CONNECTIONS

	CHAPTER 7. SECURITY
	7.1. SECURING CONNECTIONS WITH SSL/TLS
	7.2. CONNECTING WITH A USER AND PASSWORD
	7.3. CONFIGURING SASL AUTHENTICATION

	CHAPTER 8. SENDERS AND RECEIVERS
	8.1. CREATING QUEUES AND TOPICS ON DEMAND
	8.2. CREATING DURABLE SUBSCRIPTIONS
	8.3. CREATING SHARED SUBSCRIPTIONS

	CHAPTER 9. FILE-BASED CONFIGURATION
	9.1. FILE LOCATIONS
	9.2. THE FILE FORMAT
	9.3. CONFIGURATION OPTIONS

	CHAPTER 10. INTEROPERABILITY
	10.1. INTEROPERATING WITH OTHER AMQP CLIENTS
	10.2. INTEROPERATING WITH AMQ JMS
	JMS message types

	10.3. CONNECTING TO AMQ BROKER
	10.4. CONNECTING TO AMQ INTERCONNECT

	APPENDIX A. USING YOUR SUBSCRIPTION
	A.1. ACCESSING YOUR ACCOUNT
	A.2. ACTIVATING A SUBSCRIPTION
	A.3. DOWNLOADING RELEASE FILES
	A.4. REGISTERING YOUR SYSTEM FOR PACKAGES

	APPENDIX B. USING AMQ BROKER WITH THE EXAMPLES
	B.1. INSTALLING THE BROKER
	B.2. STARTING THE BROKER
	B.3. CREATING A QUEUE
	B.4. STOPPING THE BROKER

