
Red Hat AMQ 7.4

Managing AMQ Broker

For Use with AMQ Broker 7.4

Last Updated: 2021-05-14

Red Hat AMQ 7.4 Managing AMQ Broker

For Use with AMQ Broker 7.4

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to monitor, manage, and upgrade AMQ Broker.

. .

. .

. .

Table of Contents

CHAPTER 1. UPGRADING YOUR BROKER
1.1. ABOUT UPGRADES
1.2. UPGRADING A BROKER INSTANCE FROM 7.0.X TO 7.0.Y

1.2.1. Upgrading from 7.0.x to 7.0.y on Linux
1.2.2. Upgrading from 7.0.x to 7.0.y on Windows

1.3. UPGRADING A BROKER INSTANCE FROM 7.0.X TO 7.1.0
1.3.1. Upgrading from 7.0.x to 7.1.0 on Linux
1.3.2. Upgrading from 7.0.x to 7.1.0 on Windows

1.4. UPGRADING A BROKER INSTANCE FROM 7.1.X TO 7.2.0
1.4.1. Upgrading from 7.1.x to 7.2.0 on Linux
1.4.2. Upgrading from 7.1.x to 7.2.0 on Windows

1.5. UPGRADING A BROKER INSTANCE FROM 7.2.X TO 7.3.0
1.5.1. Resolve exception due to deprecated dispatch console
1.5.2. Upgrading from 7.2.x to 7.3.0 on Linux
1.5.3. Upgrading from 7.2.x to 7.3.0 on Windows

1.6. UPGRADING A BROKER INSTANCE FROM 7.3.0 TO 7.4.X
1.6.1. Upgrading from 7.3.0 to 7.4.x on Linux
1.6.2. Upgrading from 7.3.0 to 7.4.x on Windows

1.7. UPGRADING A BROKER INSTANCE FROM 7.4.X TO 7.4.Y
1.7.1. Upgrading from 7.4.x to 7.4.y on Linux
1.7.2. Upgrading from 7.4.x to 7.4.y on Windows

CHAPTER 2. USING AMQ CONSOLE
2.1. OVERVIEW
2.2. ACCESSING AMQ CONSOLE
2.3. CONFIGURING AMQ CONSOLE

2.3.1. Setting up user access to AMQ Console
2.3.2. Securing AMQ Console and AMQ Broker connections
2.3.3. Securing network access to AMQ Console

2.4. MONITORING YOUR AMQ BROKER DEPLOYMENT
2.4.1. Viewing a dashboard
2.4.2. Creating a new dashboard
2.4.3. Creating AMQ Broker dashboards
2.4.4. Adding AMQ Broker data to the AMQ Console dashboard
2.4.5. Changing the layout of a dashboard

2.5. MANAGING AMQ BROKER
2.5.1. Viewing details about the broker
2.5.2. Viewing the broker diagram
2.5.3. Viewing acceptors
2.5.4. Managing addresses and queues

2.5.4.1. Creating addresses
2.5.4.2. Sending messages to an address
2.5.4.3. Creating queues
2.5.4.4. Checking the status of a queue
2.5.4.5. Browsing queues
2.5.4.6. Sending messages to a queue
2.5.4.7. Resending messages to a queue
2.5.4.8. Moving messages to a different queue
2.5.4.9. Deleting queues

CHAPTER 3. USING COMMAND LINE INTERFACE

4
4
4
4
6
7
7
9

10
11

12
13
13
14
16
17
17
19

20
21
22

24
24
24
25
25
26
26
27
27
28
29
29
29
30
30
31
31
32
32
33
34
35
36
37
37
38
38

40

Table of Contents

1

. .

. .

3.1. STARTING BROKER INSTANCES
3.1.1. Starting the broker instance
3.1.2. Starting a broker as a Linux service
3.1.3. Starting a broker as a Windows service

3.2. STOPPING BROKER INSTANCES
3.2.1. Stopping a broker instance
3.2.2. Stopping a broker instance gracefully

3.3. AUDITING MESSAGES BY INTERCEPTING PACKETS
3.3.1. Creating interceptors
3.3.2. Configuring the broker to use interceptors
3.3.3. Interceptors on the client side

3.4. COMMAND LINE TOOLS

CHAPTER 4. USING THE MANAGEMENT API
4.1. METHODS FOR MANAGING AMQ BROKER USING THE MANAGEMENT API
4.2. MANAGING AMQ BROKER USING JMX

4.2.1. Configuring JMX management
4.2.2. MBeanServer configuration
4.2.3. How JMX is exposed with Jolokia
4.2.4. Subscribing to JMX management notifications

4.3. MANAGING AMQ BROKER USING THE JMS API
4.3.1. Configuring broker management using JMS messages and the AMQ JMS Client
4.3.2. Managing brokers using the JMS API and AMQ JMS Client

4.4. MANAGEMENT OPERATIONS
4.4.1. Broker management operations
4.4.2. Address management operations
4.4.3. Queue management operations
4.4.4. Remote resource management operations

4.5. MANAGEMENT NOTIFICATIONS
4.6. USING MESSAGE COUNTERS

4.6.1. Types of message counters
4.6.2. Enabling message counters
4.6.3. Retrieving message counters

CHAPTER 5. MONITORING BROKER RUNTIME DATA USING PROMETHEUS
5.1. OVERVIEW
5.2. ENABLING THE PROMETHEUS PLUGIN FOR AMQ BROKER
5.3. ACCESSING BROKER RUNTIME DATA USING PROMETHEUS

40
40
41
41

42
42
42
43
43
46
46
47

50
50
50
51
51
51
52
52
52
53
53
54
55
55
56
57
59
60
60
61

62
62
63
63

Red Hat AMQ 7.4 Managing AMQ Broker

2

Table of Contents

3

CHAPTER 1. UPGRADING YOUR BROKER

1.1. ABOUT UPGRADES

Red Hat releases new versions of AMQ Broker to the Customer Portal. Update your brokers to the
newest version to ensure that you have the latest enhancements and fixes. In general, Red Hat releases
a new version of AMQ Broker in one of three ways:

Major Release

A major upgrade or migration is required when an application is transitioned from one major release
to the next, for example, from AMQ Broker 6 to AMQ Broker 7. This type of upgrade is not
addressed in this guide. For instructions on how to upgrade from previous releases of AMQ Broker,
see Migrating to Red Hat AMQ 7 .

Minor Release

AMQ Broker periodically provides minor releases, which are updates that include new features, as
well as bug and security fixes. If you plan to upgrade from one AMQ Broker minor release to another,
for example, from AMQ Broker 7.0 to AMQ Broker 7.1, code changes should not be required for
applications that do not use private, unsupported, or tech preview components.

Micro Release

AMQ Broker also periodically provides micro releases that contain minor enhancements and fixes.
Micro releases increment the minor release version by the last digit, for example from 7.0.1 to 7.0.2. A
micro release should not require code changes, however, some releases may require configuration
changes.

1.2. UPGRADING A BROKER INSTANCE FROM 7.0.X TO 7.0.Y

The procedure for upgrading AMQ Broker from one version of 7.0 to another is similar to the one for
installation: you download an archive from the Customer Portal and then extract it. The following
subsections describe how to upgrade a 7.0.x broker for different operating systems.

Upgrading from 7.0.x to 7.0.y on Linux

Upgrading from 7.0.x to 7.0.y on Windows

1.2.1. Upgrading from 7.0.x to 7.0.y on Linux

The name of the archive that you download could differ from what is used in the following examples.

Prerequisites

Before upgrading AMQ Broker, review the release notes for the target release.
The release notes describe important enhancements, known issues, and changes to behavior in
the target release.

For more information, see the AMQ Broker 7.0 Release Notes .

Procedure

1. Download the desired archive from the Red Hat Customer Portal by following the instructions
provided in Downloading the AMQ Broker archive .

2. Change the owner of the archive to the same user that owns the AMQ Broker installation to be

Red Hat AMQ 7.4 Managing AMQ Broker

4

http://access.redhat.com
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/migrating_to_red_hat_amq_7/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.0/html-single/amq_broker_7.0_release_notes/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

2. Change the owner of the archive to the same user that owns the AMQ Broker installation to be
upgraded.

sudo chown amq-broker:amq-broker jboss-amq-7.x.x.redhat-1.zip

3. Move the archive to the directory created during the original installation of AMQ Broker. In the
following example, the directory /opt/redhat is used.

sudo mv jboss-amq-7.x.x.redhat-1.zip /opt/redhat

4. As the directory owner, extract the contents of the compressed archive. The archive is kept in a
compressed format. In the following example, the user amq-broker extracts the archive by
using the unzip command.

su - amq-broker
cd /opt/redhat
unzip jboss-amq-7.x.x.redhat-1.zip

5. Stop the broker if it is running.

BROKER_INSTANCE_DIR/bin/artemis stop

6. Back up the instance directory of the broker by copying it to the home directory of the current
user.

cp -r BROKER_INSTANCE_DIR ~/

7. (Optional) Note the current version of the broker. After the broker stops, a line similar to the
one below is displayed at the end of its log file, which can be found at
BROKER_INSTANCE_DIR/log/artemis.log.

INFO [org.apache.activemq.artemis.core.server] AMQ221002: Apache ActiveMQ Artemis
Message Broker version 2.0.0.amq-700005-redhat-1 [4782d50d-47a2-11e7-a160-
9801a793ea45] stopped, uptime 28 minutes

8. Edit the BROKER_INSTANCE_DIR/etc/artemis.profile configuration file to set the
ARTEMIS_HOME property to the new directory created when the archive was extracted.

ARTEMIS_HOME='/opt/redhat/jboss-amq-7.x.x-redhat-1'

9. Restart the broker by entering the following command:

BROKER_INSTANCE_DIR/bin/artemis run

10. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the log file BROKER_INSTANCE_DIR/log/artemis.log and find two lines
similar to the ones below. Note the new version number that appears in the log after the broker
is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis

CHAPTER 1. UPGRADING YOUR BROKER

5

Message Broker version 2.1.0.amq-700005-redhat-1 [0.0.0.0, nodeID=4782d50d-47a2-11e7-
a160-9801a793ea45]

1.2.2. Upgrading from 7.0.x to 7.0.y on Windows

Prerequisites

Before upgrading AMQ Broker, review the release notes for the target release.
The release notes describe important enhancements, known issues, and changes to behavior in
the target release.

For more information, see the AMQ Broker 7.0 Release Notes .

Procedure

1. Download the desired archive from the Red Hat Customer Portal by following the instructions
provided in Downloading the AMQ Broker archive .

2. Use a file manager to move the archive to the folder you created during the last installation of
AMQ Broker.

3. Extract the file contents into the directory by right-clicking on the zip file and choosing Extract
All.

4. Stop the broker if it is running by entering the following command.

BROKER_INSTANCE_DIR\bin\artemis-service.exe stop

5. Back up the broker by using a file manager.

a. Right click on the BROKER_INSTANCE_DIR folder and select Copy.

b. Right click in the same window and select Paste.

6. (Optional) Note the current version of the broker. After the broker stops, a line similar to the
one below is displayed at the end of its log file, which can be found at
BROKER_INSTANCE_DIR\log\artemis.log.

INFO [org.apache.activemq.artemis.core.server] AMQ221002: Apache ActiveMQ Artemis
Message Broker version 2.0.0.amq-700005-redhat-1 [4782d50d-47a2-11e7-a160-
9801a793ea45] stopped, uptime 28 minutes

7. Edit the BROKER_INSTANCE_DIR\etc\artemis.profile configuration file to set the
ARTEMIS_HOME property to the new directory created when the archive was extracted.

ARTEMIS_HOME=NEW_INSTALL_DIR

8. Restart the broker entering the following command:

BROKER_INSTANCE_DIR\bin\artemis-service.exe start

9. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the log file BROKER_INSTANCE_DIR\log\artemis.log and find two lines
similar to the ones below. Note the new version number that appears in the log after the broker

Red Hat AMQ 7.4 Managing AMQ Broker

6

https://access.redhat.com/documentation/en-us/red_hat_amq/7.0/html-single/amq_broker_7.0_release_notes/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.1.0.amq-700005-redhat-1 [0.0.0.0, nodeID=4782d50d-47a2-11e7-
a160-9801a793ea45]

1.3. UPGRADING A BROKER INSTANCE FROM 7.0.X TO 7.1.0

AMQ Broker 7.1.0 includes configuration files and settings that were not included with previous versions.
Upgrading a broker instance from 7.0.x to 7.1.0 requires adding these new files and settings to your
existing 7.0.x broker instances. The following subsections describe how to upgrade a 7.0.x broker
instance to 7.1.0 for different operating systems.

IMPORTANT

Starting with AMQ Broker 7.1.0, you can access the AMQ Console only from the local host
by default. You must modify the configuration in BROKER_INSTANCE_DIR/etc/jolokia-
access.xml to enable remote access. For more information, see Securing AMQ Console
and AMQ Broker Connections.

Upgrading from 7.0.x to 7.1.0 on Linux

Upgrading from 7.0.x to 7.1.0 on Windows

1.3.1. Upgrading from 7.0.x to 7.1.0 on Linux

Before you can upgrade a 7.0.x broker, you need to install Red Hat AMQ Broker 7.1.0 and create a
temporary broker instance. This will generate the 7.1.0 configuration files required to upgrade a 7.0.x
broker.

Prerequisites

Before upgrading AMQ Broker, review the release notes for the target release.
The release notes describe important enhancements, known issues, and changes to behavior in
the target release.

For more information, see the AMQ Broker 7.1 Release Notes .

Before upgrading your 7.0.x brokers, you must first install version 7.1.
For steps on installing 7.1 on Linux, see Installing AMQ Broker .

Procedure

1. If it is running, stop the 7.0.x broker you want to upgrade:

$ BROKER_INSTANCE_DIR/bin/artemis stop

2. Back up the instance directory of the broker by copying it to the home directory of the current
user.

cp -r BROKER_INSTANCE_DIR ~/

CHAPTER 1. UPGRADING YOUR BROKER

7

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/managing_amq_broker/index#securing-console-broker-connections-managing
https://access.redhat.com/documentation/en-us/red_hat_amq/7.1/html-single/amq_broker_7.1_release_notes/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/getting_started_with_amq_broker/#installing-broker-getting-started

3. Open the file artemis.profile in the BROKER_INSTANCE_DIR/etc/ directory of the 7.0.x
broker.

a. Update the ARTEMIS_HOME property so that its value refers to the installation directory
for AMQ Broker 7.1.0:

ARTEMIS_HOME="7.1.0_INSTALL_DIR"

b. On the line below the one you updated, add the property ARTEMIS_INSTANCE_URI and
assign it a value that refers to the 7.0.x broker instance directory:

ARTEMIS_INSTANCE_URI="file://7.0.x_BROKER_INSTANCE_DIR"

c. Update the JAVA_ARGS property by adding the jolokia.policyLocation parameter and
assigning it the following value:

-Djolokia.policyLocation=${ARTEMIS_INSTANCE_URI}/etc/jolokia-access.xml

4. Create a 7.1.0 broker instance. The creation procedure generates the configuration files
required to upgrade from 7.0.x to 7.1.0. In the following example, note that the instance is
created in the directory upgrade_tmp:

$ 7.1.0_INSTALL_DIR/bin/artemis create --allow-anonymous --user admin --password admin
upgrade_tmp

5. Copy configuration files from the etc directory of the temporary 7.1.0 instance into the
BROKER_INSTANCE_DIR/etc/ directory of the 7.0.x broker.

a. Copy the management.xml file:

$ cp TEMPORARY_7.1.0_BROKER_INSTANCE_DIR/etc/management.xml
7.0_BROKER_INSTANCE_DIR/etc/

b. Copy the jolokia-access.xml file:

$ cp TEMPORARY_7.1.0_BROKER_INSTANCE_DIR/etc/jolokia-access.xml
7.0_BROKER_INSTANCE_DIR/etc/

6. Open up the bootstrap.xml file in the BROKER_INSTANCE_DIR/etc/ directory of the 7.0.x
broker.

a. Comment out or delete the following two lines:

<app url="jolokia" war="jolokia.war"/>
<app url="hawtio" war="hawtio-no-slf4j.war"/>

b. Add the following to replace the two lines removed in the previous step:

<app url="console" war="console.war"/>

7. Start the broker that you upgraded:

$ BROKER_INSTANCE_DIR/bin/artemis run

Red Hat AMQ 7.4 Managing AMQ Broker

8

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

1.3.2. Upgrading from 7.0.x to 7.1.0 on Windows

Before you can upgrade a 7.0.x broker, you need to install Red Hat AMQ Broker 7.1.0 and create a
temporary broker instance. This will generate the 7.1.0 configuration files required to upgrade a 7.0.x
broker.

Prerequisites

Before upgrading AMQ Broker, review the release notes for the target release.
The release notes describe important enhancements, known issues, and changes to behavior in
the target release.

For more information, see the AMQ Broker 7.1 Release Notes .

Before upgrading your 7.0.x brokers, you must first install version 7.1.
For steps on installing 7.1 on Windows, see Installing AMQ Broker .

Procedure

1. If it is running, stop the 7.0.x broker you want to upgrade:

> BROKER_INSTANCE_DIR\bin\artemis-service.exe stop

2. Back up the instance directory of the broker by using a file manager.

a. Right click on the BROKER_INSTANCE_DIR folder and select Copy.

b. Right click in the same window and select Paste.

3. Open the file artemis.profile in the BROKER_INSTANCE_DIR/etc/ directory of the 7.0.x
broker.

a. Update the ARTEMIS_HOME property so that its value refers to the installation directory
for AMQ Broker 7.1.0:

ARTEMIS_HOME="7.1.0_INSTALL_DIR"

b. On the line below the one you updated, add the property ARTEMIS_INSTANCE_URI and
assign it a value that refers to the 7.0.x broker instance directory:

ARTEMIS_INSTANCE_URI="file://7.0.x_BROKER_INSTANCE_DIR"

c. Update the JAVA_ARGS property by adding the jolokia.policyLocation parameter and
assigning it the following value:

-Djolokia.policyLocation=${ARTEMIS_INSTANCE_URI}/etc/jolokia-access.xml

4. Create a 7.1.0 broker instance. The creation procedure generates the configuration files
required to upgrade from 7.0.x to 7.1.0. In the following example, note that the instance is
created in the directory upgrade_tmp:

CHAPTER 1. UPGRADING YOUR BROKER

9

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/7.1/html-single/amq_broker_7.1_release_notes/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/getting_started_with_amq_broker/#installing-broker-getting-started

> 7.1.0_INSTALL_DIR/bin/artemis create --allow-anonymous --user admin --password admin
upgrade_tmp

5. Copy configuration files from the etc directory of the temporary 7.1.0 instance into the
BROKER_INSTANCE_DIR/etc/ directory of the 7.0.x broker.

a. Copy the management.xml file:

> cp TEMPORARY_7.1.0_BROKER_INSTANCE_DIR/etc/management.xml
7.0_BROKER_INSTANCE_DIR/etc/

b. Copy the jolokia-access.xml file:

> cp TEMPORARY_7.1.0_BROKER_INSTANCE_DIR/etc/jolokia-access.xml
7.0_BROKER_INSTANCE_DIR/etc/

6. Open up the bootstrap.xml file in the BROKER_INSTANCE_DIR/etc/ directory of the 7.0.x
broker.

a. Comment out or delete the following two lines:

<app url="jolokia" war="jolokia.war"/>
<app url="hawtio" war="hawtio-no-slf4j.war"/>

b. Add the following to replace the two lines removed in the previous step:

<app url="console" war="console.war"/>

7. Start the broker that you upgraded:

> BROKER_INSTANCE_DIR\bin\artemis-service.exe start

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

1.4. UPGRADING A BROKER INSTANCE FROM 7.1.X TO 7.2.0

AMQ Broker 7.2.0 includes configuration files and settings that were not included with 7.0.x versions. If
you are running 7.0.x instances, you must first upgrade those broker instances from 7.0.x to 7.1.0 before
upgrading to 7.2.0. The following subsections describe how to upgrade a 7.1.x broker instance to 7.2.0
for different operating systems.

IMPORTANT

Starting with AMQ Broker 7.1.0, you can access the AMQ Console only from the local host
by default. You must modify the configuration in BROKER_INSTANCE_DIR/etc/jolokia-
access.xml to enable remote access. For more information, see Securing AMQ Console
and AMQ Broker Connections.

Upgrading from 7.1.x to 7.2.0 on Linux

Upgrading from 7.1.x to 7.2.0 on Windows

Red Hat AMQ 7.4 Managing AMQ Broker

10

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/managing_amq_broker/index#securing-console-broker-connections-managing

1.4.1. Upgrading from 7.1.x to 7.2.0 on Linux

NOTE

The name of the archive that you download could differ from what is used in the following
examples.

Procedure

1. Download the desired archive from the Red Hat Customer Portal by following the instructions
provided in Downloading the AMQ Broker archive .

2. Change the owner of the archive to the same user that owns the AMQ Broker installation to be
upgraded.

sudo chown amq-broker:amq-broker amq-7.x.x.redhat-1.zip

3. Move the archive to the directory created during the original installation of AMQ Broker. In the
following example, the directory /opt/redhat is used.

sudo mv amq-7.x.x.redhat-1.zip /opt/redhat

4. As the directory owner, extract the contents of the compressed archive. In the following
example, the user amq-broker extracts the archive by using the unzip command.

su - amq-broker
cd /opt/redhat
unzip jboss-amq-7.x.x.redhat-1.zip

5. Stop the broker if it is running.

BROKER_INSTANCE_DIR/bin/artemis stop

6. Back up the instance directory of the broker by copying it to the home directory of the current
user.

cp -r BROKER_INSTANCE_DIR ~/

7. (Optional) Note the current version of the broker. After the broker stops, a line similar to the
one below is displayed at the end of its log file, which can be found at
BROKER_INSTANCE_DIR/log/artemis.log.

INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.5.0.amq-720001-redhat-1 [0.0.0.0, nodeID=554cce00-63d9-11e8-
9808-54ee759954c4]

8. Edit the BROKER_INSTANCE_DIR/etc/artemis.profile configuration file to set the
ARTEMIS_HOME property to the new directory created when the archive was extracted.

ARTEMIS_HOME='/opt/redhat/amq-7.x.x-redhat-1'

9. Restart the broker by entering the following command:

CHAPTER 1. UPGRADING YOUR BROKER

11

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

BROKER_INSTANCE_DIR/bin/artemis run

10. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the log file BROKER_INSTANCE_DIR/log/artemis.log and find two lines
similar to the ones below. Note the new version number that appears in the log after the broker
is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.5.0.amq-720001-redhat-1 [0.0.0.0, nodeID=554cce00-63d9-11e8-
9808-54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
BROKER_INSTANCE_DIR/etc/artemis.profile file, update the
ARTEMIS_INSTANCE_ETC_URI property by specifying the location of the custom directory
after creating the broker instance. Previously, these configuration files and data could only be
stored in the etc/ and data/ directories within the broker instance’s directory.

1.4.2. Upgrading from 7.1.x to 7.2.0 on Windows

Procedure

1. Download the desired archive from the Red Hat Customer Portal by following the instructions
provided in Downloading the AMQ Broker archive .

2. Use a file manager to move the archive to the folder you created during the last installation of
AMQ Broker.

3. Extract the file contents into the directory by right-clicking on the zip file and choosing Extract
All.

4. Stop the broker if it is running by entering the following command.

BROKER_INSTANCE_DIR\bin\artemis-service.exe stop

5. Back up the broker by using a file manager.

a. Right click on the BROKER_INSTANCE_DIR folder and select Copy.

b. Right click in the same window and select Paste.

6. (Optional) Note the current version of the broker. After the broker stops, a line similar to the
one below is displayed at the end of its log file, which can be found at
BROKER_INSTANCE_DIR\log\artemis.log.

INFO [org.apache.activemq.artemis.core.server] AMQ221002: Apache ActiveMQ Artemis
Message Broker version 2.0.0.amq-700005-redhat-1 [4782d50d-47a2-11e7-a160-
9801a793ea45] stopped, uptime 28 minutes

Red Hat AMQ 7.4 Managing AMQ Broker

12

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

7. Edit the BROKER_INSTANCE_DIR\etc\artemis.profile.cmd and
BROKER_INSTANCE_DIR\bin\artemis-service.xml configuration files to set the
ARTEMIS_HOME property to the new directory created when the archive was extracted.

ARTEMIS_HOME=NEW_INSTALL_DIR

8. Restart the broker entering the following command:

BROKER_INSTANCE_DIR\bin\artemis-service.exe start

9. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the log file BROKER_INSTANCE_DIR\log\artemis.log and find two lines
similar to the ones below. Note the new version number that appears in the log after the broker
is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.5.0.amq-720001-redhat-1 [0.0.0.0, nodeID=554cce00-63d9-11e8-
9808-54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
BROKER_INSTANCE_DIR\etc\artemis.profile file, update the
ARTEMIS_INSTANCE_ETC_URI property by specifying the location of the custom directory
after creating the broker instance. Previously, these configuration files and data could only be
stored in the \etc and \data directories within the broker instance’s directory.

1.5. UPGRADING A BROKER INSTANCE FROM 7.2.X TO 7.3.0

The following subsections describe how to upgrade a 7.2.x broker instance to 7.3.0 for different
operating systems.

1.5.1. Resolve exception due to deprecated dispatch console

Starting in version 7.3.0, AMQ Broker no longer ships with the Hawtio dispatch console plugin dispatch-
hawtio-console.war. Previously, the dispatch console was used to manage AMQ Interconnect.
However, AMQ Interconnect now uses its own, standalone web console. This change affects the
upgrade procedures in the sections that follow.

If you take no further action before upgrading your broker instance to 7.3.0, the upgrade process
produces an exception that looks like the following:

2019-04-11 18:00:41,334 WARN [org.eclipse.jetty.webapp.WebAppContext] Failed startup of context
o.e.j.w.WebAppContext@1ef3efa8{/dispatch-hawtio-console,null,null}{/opt/amqbroker/amq-broker-
7.3.0/web/dispatch-hawtio-console.war}: java.io.FileNotFoundException: /opt/amqbroker/amq-broker-
7.3.0/web/dispatch-hawtio-console.war.

You can safely ignore the preceding exception without affecting the success of your upgrade.

CHAPTER 1. UPGRADING YOUR BROKER

13

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started

However, if you would prefer not to see this exception during your upgrade, you must first remove a
reference to the Hawtio dispatch console plugin in the bootstrap.xml file of your existing broker
instance. The bootstrap.xml file is in the {instance_directory}/etc/ directory of your broker instance.
The following example shows some of the contents of the bootstrap.xml file for a AMQ Broker 7.2.4
instance:

<broker xmlns="http://activemq.org/schema">
....
 <!-- The web server is only bound to localhost by default -->
 <web bind="http://localhost:8161" path="web">
 <app url="redhat-branding" war="redhat-branding.war"/>
 <app url="artemis-plugin" war="artemis-plugin.war"/>
 <app url="dispatch-hawtio-console" war="dispatch-hawtio-console.war"/>
 <app url="console" war="console.war"/>
 </web>
</broker>

To avoid an exception when upgrading AMQ Broker to version 7.3.0, delete the line <app
url="dispatch-hawtio-console" war="dispatch-hawtio-console.war"/>, as shown in the preceding
example. Then, save the modified bootstrap file and start the upgrade process, as described in the
sections that follow.

IMPORTANT

Starting with AMQ Broker 7.1.0, you can access the AMQ Console only from the local host
by default. You must modify the configuration in BROKER_INSTANCE_DIR/etc/jolokia-
access.xml to enable remote access. For more information, see Securing AMQ Console
and AMQ Broker Connections.

Upgrading from 7.2.x to 7.3.0 on Linux

Upgrading from 7.2.x to 7.3.0 on Windows

1.5.2. Upgrading from 7.2.x to 7.3.0 on Linux

NOTE

The name of the archive that you download could differ from what is used in the following
examples.

Procedure

1. Download the desired archive from the Red Hat Customer Portal by following the instructions
provided in Downloading the AMQ Broker archive .

2. Change the owner of the archive to the same user that owns the AMQ Broker installation to be
upgraded.

sudo chown amq-broker:amq-broker amq-7.x.x.redhat-1.zip

3. Move the archive to the directory created during the original installation of AMQ Broker. In the
following example, the directory /opt/redhat is used.

Red Hat AMQ 7.4 Managing AMQ Broker

14

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/managing_amq_broker/index#securing-console-broker-connections-managing
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

sudo mv amq-7.x.x.redhat-1.zip /opt/redhat

4. As the directory owner, extract the contents of the compressed archive. In the following
example, the user amq-broker extracts the archive by using the unzip command.

su - amq-broker
cd /opt/redhat
unzip jboss-amq-7.x.x.redhat-1.zip

5. Stop the broker if it is running.

BROKER_INSTANCE_DIR/bin/artemis stop

6. Back up the instance directory of the broker by copying it to the home directory of the current
user.

cp -r BROKER_INSTANCE_DIR ~/

7. (Optional) Note the current version of the broker. After the broker stops, a line similar to the
one below is displayed at the end of its log file, which can be found at
BROKER_INSTANCE_DIR/log/artemis.log.

INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.6.3.amq-720001-redhat-1 [0.0.0.0, nodeID=554cce00-63d9-11e8-
9808-54ee759954c4]

8. Edit the BROKER_INSTANCE_DIR/etc/artemis.profile configuration file to set the
ARTEMIS_HOME property to the new directory created when the archive was extracted.

ARTEMIS_HOME='/opt/redhat/amq-7.x.x-redhat-1'

9. Restart the broker by entering the following command:

BROKER_INSTANCE_DIR/bin/artemis run

10. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the log file BROKER_INSTANCE_DIR/log/artemis.log and find two lines
similar to the ones below. Note the new version number that appears in the log after the broker
is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.7.0.redhat-00054 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the

CHAPTER 1. UPGRADING YOUR BROKER

15

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started

BROKER_INSTANCE_DIR/etc/artemis.profile file, update the
ARTEMIS_INSTANCE_ETC_URI property by specifying the location of the custom directory
after creating the broker instance. Previously, these configuration files and data could only be
stored in the etc/ and data/ directories within the broker instance’s directory.

1.5.3. Upgrading from 7.2.x to 7.3.0 on Windows

Procedure

1. Download the desired archive from the Red Hat Customer Portal by following the instructions
provided in Downloading the AMQ Broker archive .

2. Use a file manager to move the archive to the folder you created during the last installation of
AMQ Broker.

3. Extract the file contents into the directory by right-clicking on the zip file and choosing Extract
All.

4. Stop the broker if it is running by entering the following command.

BROKER_INSTANCE_DIR\bin\artemis-service.exe stop

5. Back up the broker by using a file manager.

a. Right click on the BROKER_INSTANCE_DIR folder and select Copy.

b. Right click in the same window and select Paste.

6. (Optional) Note the current version of the broker. After the broker stops, a line similar to the
one below is displayed at the end of its log file, which can be found at
BROKER_INSTANCE_DIR\log\artemis.log.

INFO [org.apache.activemq.artemis.core.server] AMQ221002: Apache ActiveMQ Artemis
Message Broker version 2.6.3.amq-720001-redhat-1 [4782d50d-47a2-11e7-a160-
9801a793ea45] stopped, uptime 28 minutes

7. Edit the BROKER_INSTANCE_DIR\etc\artemis.profile.cmd and
BROKER_INSTANCE_DIR\bin\artemis-service.xml configuration files to set the
ARTEMIS_HOME property to the new directory created when the archive was extracted.

ARTEMIS_HOME=NEW_INSTALL_DIR

8. Edit the BROKER_INSTANCE_DIR\etc\artemis.profile.cmd configuration file to set the
JAVA_ARGS environment variable to reference the correct log manager version.

JAVA_ARGS=NEW_INSTALL_DIR\lib\jboss-logmanager-2.0.3.Final-redhat-1.jar

9. Edit the BROKER_INSTANCE_DIR\bin\artemis-service.xml configuration file to set the
bootstrap class path argument to reference the correct log manager version.

Xbootclasspath/a:%ARTEMIS_HOME%\lib\jboss-logmanager-2.0.3.Final-redhat-1.jar

10. Restart the broker entering the following command:

Red Hat AMQ 7.4 Managing AMQ Broker

16

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

BROKER_INSTANCE_DIR\bin\artemis-service.exe start

11. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the log file BROKER_INSTANCE_DIR\log\artemis.log and find two lines
similar to the ones below. Note the new version number that appears in the log after the broker
is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.7.0.redhat-00054 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
BROKER_INSTANCE_DIR\etc\artemis.profile file, update the
ARTEMIS_INSTANCE_ETC_URI property by specifying the location of the custom directory
after creating the broker instance. Previously, these configuration files and data could only be
stored in the \etc and \data directories within the broker instance’s directory.

1.6. UPGRADING A BROKER INSTANCE FROM 7.3.0 TO 7.4.X

The following subsections describe how to upgrade a 7.3.0 broker instance to 7.4.x for different
operating systems.

IMPORTANT

Starting with AMQ Broker 7.1.0, you can access the AMQ Console only from the local host
by default. You must modify the configuration in BROKER_INSTANCE_DIR/etc/jolokia-
access.xml to enable remote access. For more information, see Securing AMQ Console
and AMQ Broker Connections.

Upgrading from 7.3.0 to 7.4.x on Linux

Upgrading from 7.3.0 to 7.4.x on Windows

1.6.1. Upgrading from 7.3.0 to 7.4.x on Linux

NOTE

The name of the archive that you download could differ from what is used in the following
examples.

Procedure

1. Download the desired archive from the Red Hat Customer Portal. Follow the instructions
provided in Downloading the AMQ Broker archive .

2. Change the owner of the archive to the same user that owns the AMQ Broker installation to be

CHAPTER 1. UPGRADING YOUR BROKER

17

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/managing_amq_broker/index#securing-console-broker-connections-managing
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

2. Change the owner of the archive to the same user that owns the AMQ Broker installation to be
upgraded. The following example shows a user called amq-broker.

sudo chown amq-broker:amq-broker amq-broker-7.4.x.redhat-1.zip

3. Move the archive to the directory created during the original installation of AMQ Broker. The
following example uses /opt/redhat.

sudo mv amq-broker-7.4.x.redhat-1.zip /opt/redhat

4. As the directory owner, extract the contents of the compressed archive. In the following
example, the user amq-broker extracts the archive using the unzip command.

su - amq-broker
cd /opt/redhat
unzip amq-broker-7.4.x.redhat-1.zip

5. If the broker is running, stop it.

BROKER_INSTANCE_DIR/bin/artemis stop

6. Back up the instance directory of the broker by copying it to the home directory of the current
user.

cp -r BROKER_INSTANCE_DIR ~/

7. (Optional) Note the current version of the broker. After the broker stops, you see a line similar
to the one below at the end of the BROKER_INSTANCE_DIR/log/artemis.log file.

INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.7.0.redhat-00054 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

8. Edit the BROKER_INSTANCE_DIR/etc/artemis.profile configuration file.

a. Set the ARTEMIS_HOME property to the new directory created when the archive was
extracted.

ARTEMIS_HOME='/opt/redhat/amq-broker-7.4.x-redhat-1'

b. Add the bootstrap class path argument Xbootclasspath to JAVA_ARGS. This argument
specifies a dependent file for the log manager.

-Xbootclasspath/a:$ARTEMIS_HOME/lib/wildfly-common-1.5.1.Final-redhat-00001.jar

9. Edit the BROKER_INSTANCE_DIR/etc/bootstrap.xml configuration file. In the <web>
configuration element, add a reference to the metrics plugin file for AMQ Broker.

<app url="metrics" war="metrics.war"/>

10. Restart the broker.

Red Hat AMQ 7.4 Managing AMQ Broker

18

BROKER_INSTANCE_DIR/bin/artemis run

11. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the BROKER_INSTANCE_DIR/log/artemis.log file. Find two lines similar to
the ones below. Note the new version number that appears in the log when the broker is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.9.0.redhat-00001 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
BROKER_INSTANCE_DIR/etc/artemis.profile file, update the
ARTEMIS_INSTANCE_ETC_URI property by specifying the location of the custom directory
after creating the broker instance. Previously, these configuration files and data could only be
stored in the etc/ and data/ directories within the broker instance’s directory.

1.6.2. Upgrading from 7.3.0 to 7.4.x on Windows

Procedure

1. Download the desired archive from the Red Hat Customer Portal. Follow the instructions
provided in Downloading the AMQ Broker archive .

2. Use a file manager to move the archive to the folder you created during the last installation of
AMQ Broker.

3. Extract the file contents into the installation directory. Right-click the .zip file and select
Extract All.

4. If the broker is running, stop it.

BROKER_INSTANCE_DIR\bin\artemis-service.exe stop

5. Back up the broker using a file manager.

a. Right click the BROKER_INSTANCE_DIR folder. Select Copy.

b. Right click in the same window. Select Paste.

6. (Optional) Note the current version of the broker. After the broker stops, you see a line similar
to the one below at the end of the BROKER_INSTANCE_DIR\log\artemis.log file.

INFO [org.apache.activemq.artemis.core.server] AMQ221002: Apache ActiveMQ Artemis
Message Broker version 2.7.0.redhat-00054 [4782d50d-47a2-11e7-a160-9801a793ea45]
stopped, uptime 28 minutes

7. Edit the BROKER_INSTANCE_DIR\etc\artemis.profile.cmd and

CHAPTER 1. UPGRADING YOUR BROKER

19

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

7. Edit the BROKER_INSTANCE_DIR\etc\artemis.profile.cmd and
BROKER_INSTANCE_DIR\bin\artemis-service.xml configuration files. Set the
ARTEMIS_HOME property to the new directory created when the archive was extracted.

ARTEMIS_HOME=NEW_INSTALL_DIR

8. Edit the BROKER_INSTANCE_DIR\etc\artemis.profile.cmd configuration file. For
JAVA_ARGS, modify only the bootstrap class path argument Xbootclasspath. Specify the
correct log manager version and dependent file.

JAVA_ARGS=-Xbootclasspath/%ARTEMIS_HOME%\lib\jboss-logmanager-2.1.10.Final-
redhat-00001.jar;%ARTEMIS_HOME%\lib\wildfly-common-1.5.1.Final-redhat-00001.jar

9. Edit the BROKER_INSTANCE_DIR\bin\artemis-service.xml configuration file. Modify the
bootstrap class path argument Xbootclasspath to specify the correct log manager version and
dependent file.

<argument>-Xbootclasspath/a:%ARTEMIS_HOME%\lib\jboss-logmanager-2.1.10.Final-
redhat-00001.jar;%ARTEMIS_HOME%\lib\wildfly-common-1.5.1.Final-redhat-
00001.jar</argument>

10. Edit the BROKER_INSTANCE_DIR\etc\bootstrap.xml configuration file. In the <web>
configuration element, add a reference to the metrics plugin file for AMQ Broker.

<app url="metrics" war="metrics.war"/>

11. Restart the broker.

BROKER_INSTANCE_DIR\bin\artemis-service.exe start

12. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the BROKER_INSTANCE_DIR\log\artemis.log file. Find two lines similar to
the ones below. Note the new version number that appears in the log when the broker is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.9.0.redhat-00001 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
BROKER_INSTANCE_DIR\etc\artemis.profile file, update the
ARTEMIS_INSTANCE_ETC_URI property by specifying the location of the custom directory
after creating the broker instance. Previously, these configuration files and data could only be
stored in the \etc and \data directories within the broker instance’s directory.

1.7. UPGRADING A BROKER INSTANCE FROM 7.4.X TO 7.4.Y

IMPORTANT

Red Hat AMQ 7.4 Managing AMQ Broker

20

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started

IMPORTANT

AMQ Broker 7.4 has been designated as a Long Term Support (LTS) release version. Bug
fixes and security advisories will be made available for AMQ Broker 7.4 in a series of micro
releases (7.4.1, 7.4.2, 7.4.3, and so on) for a period of at least 12 months. This means that
you will be able to get recent bug fixes and security advisories for AMQ Broker without
having to upgrade to a new minor release.

IMPORTANT

Starting with AMQ Broker 7.1.0, you can access the AMQ Console only from the local host
by default. You must modify the configuration in BROKER_INSTANCE_DIR/etc/jolokia-
access.xml to enable remote access. For more information, see Securing AMQ Console
and AMQ Broker Connections.

The following subsections describe how to upgrade a 7.4.x broker instance to 7.4.y (for example, a 7.4.3
broker instance to 7.4.4) for different operating systems.

Upgrading from 7.4.x to 7.4.y on Linux

Upgrading from 7.4.x to 7.4.y on Windows

1.7.1. Upgrading from 7.4.x to 7.4.y on Linux

NOTE

The name of the archive that you download could differ from what is used in the following
examples.

Procedure

1. Download the desired archive from the Red Hat Customer Portal. Follow the instructions
provided in Downloading the AMQ Broker archive .

2. Change the owner of the archive to the same user that owns the AMQ Broker installation to be
upgraded. The following example shows a user called amq-broker.

sudo chown amq-broker:amq-broker amq-broker-7.4.y.redhat-1.zip

3. Move the archive to the directory created during the original installation of AMQ Broker. The
following example uses /opt/redhat.

sudo mv amq-broker-7.4.y.redhat-1.zip /opt/redhat

4. As the directory owner, extract the contents of the compressed archive. In the following
example, the user amq-broker extracts the archive using the unzip command.

su - amq-broker
cd /opt/redhat
unzip amq-broker-7.4.y.redhat-1.zip

5. If the broker is running, stop it.

CHAPTER 1. UPGRADING YOUR BROKER

21

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/managing_amq_broker/index#securing-console-broker-connections-managing
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

BROKER_INSTANCE_DIR/bin/artemis stop

6. Back up the instance directory of the broker by copying it to the home directory of the current
user.

cp -r BROKER_INSTANCE_DIR ~/

7. (Optional) Note the current version of the broker. After the broker stops, you see a line similar
to the one below at the end of the BROKER_INSTANCE_DIR/log/artemis.log file.

INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.7.0.redhat-00054 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

8. Edit the BROKER_INSTANCE_DIR/etc/artemis.profile configuration file. Set the
ARTEMIS_HOME property to the new directory created when the archive was extracted.

ARTEMIS_HOME='/opt/redhat/amq-broker-7.4.y-redhat-1'

9. Restart the broker.

BROKER_INSTANCE_DIR/bin/artemis run

10. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the BROKER_INSTANCE_DIR/log/artemis.log file. Find two lines similar to
the ones below. Note the new version number that appears in the log when the broker is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.9.0.redhat-00001 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
BROKER_INSTANCE_DIR/etc/artemis.profile file, update the
ARTEMIS_INSTANCE_ETC_URI property by specifying the location of the custom directory
after creating the broker instance. Previously, these configuration files and data could only be
stored in the etc/ and data/ directories within the broker instance’s directory.

1.7.2. Upgrading from 7.4.x to 7.4.y on Windows

Procedure

1. Download the desired archive from the Red Hat Customer Portal. Follow the instructions
provided in Downloading the AMQ Broker archive .

2. Use a file manager to move the archive to the folder you created during the last installation of

Red Hat AMQ 7.4 Managing AMQ Broker

22

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

2. Use a file manager to move the archive to the folder you created during the last installation of
AMQ Broker.

3. Extract the file contents into the installation directory. Right-click the .zip file and select
Extract All.

4. If the broker is running, stop it.

BROKER_INSTANCE_DIR\bin\artemis-service.exe stop

5. Back up the broker using a file manager.

a. Right click the BROKER_INSTANCE_DIR folder. Select Copy.

b. Right click in the same window. Select Paste.

6. (Optional) Note the current version of the broker. After the broker stops, you see a line similar
to the one below at the end of the BROKER_INSTANCE_DIR\log\artemis.log file.

INFO [org.apache.activemq.artemis.core.server] AMQ221002: Apache ActiveMQ Artemis
Message Broker version 2.7.0.redhat-00054 [4782d50d-47a2-11e7-a160-9801a793ea45]
stopped, uptime 28 minutes

7. Edit the BROKER_INSTANCE_DIR\etc\artemis.profile.cmd and
BROKER_INSTANCE_DIR\bin\artemis-service.xml configuration files. Set the
ARTEMIS_HOME property to the new directory created when the archive was extracted.

ARTEMIS_HOME=NEW_INSTALL_DIR

8. Restart the broker.

BROKER_INSTANCE_DIR\bin\artemis-service.exe start

9. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the BROKER_INSTANCE_DIR\log\artemis.log file. Find two lines similar to
the ones below. Note the new version number that appears in the log when the broker is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.9.0.redhat-00001 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
BROKER_INSTANCE_DIR\etc\artemis.profile file, update the
ARTEMIS_INSTANCE_ETC_URI property by specifying the location of the custom directory
after creating the broker instance. Previously, these configuration files and data could only be
stored in the \etc and \data directories within the broker instance’s directory.

CHAPTER 1. UPGRADING YOUR BROKER

23

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started

CHAPTER 2. USING AMQ CONSOLE
AMQ Console is a web console included in the AMQ Broker installation that enables you to use a web
browser to manage AMQ Broker.

AMQ Console is based on hawtio.

2.1. OVERVIEW

AMQ Broker is a full-featured, message-oriented middleware broker. It offers specialized queueing
behaviors, message persistence, and manageability. It supports multiple protocols and client languages,
freeing you to use many of your application assets.

AMQ Broker’s key features allow you to:

monitor your AMQ brokers and clients

view the topology

view network health at a glance

manage AMQ brokers using:

AMQ Console

Command-line Interface (CLI)

Management API

The supported web browsers for AMQ Console are Firefox, Chrome, and Internet Explorer. For more
information on supported browser versions, see AMQ 7 Supported Configurations .

2.2. ACCESSING AMQ CONSOLE

After installing AMQ Console, you can log in and connect to the brokers in your environment. Access
AMQ Console through a single broker instance, regardless of how many brokers are installed in your
environment.

Procedure

1. Start the AMQ broker instances that you want to manage in AMQ Console.

2. Navigate to the web console address for the broker instance that you started.

NOTE

The web console address is http://HOST:PORT/console/login. If you are using
the default address, navigate to http://localhost:8161/console/login.

Red Hat AMQ 7.4 Managing AMQ Broker

24

http://hawt.io/
https://access.redhat.com/articles/2791941
http://localhost:8161/console/login

3. Log in to AMQ Console using the default username and password that you created when you
created the broker instance.

Additional resources

For more information on getting started with the broker, see Starting the broker in Getting Started with
AMQ Broker.

2.3. CONFIGURING AMQ CONSOLE

Configure user access and request access to resources on the broker.

2.3.1. Setting up user access to AMQ Console

You can access AMQ Console using the broker login credentials. The following table provides
information about different methods to add additional broker users to access AMQ Console:

Authentication Method Description

Guest Authentication Enables anonymous access. In this configuration, any user who connects
without credentials or with the wrong credentials will be authenticated
automatically and assigned a specific user and role.

For more information, see Enabling Guest Access in Configuring AMQ
Broker.

Basic User and Password
Authentication

For each user, you must define a username and password and assign a
security role. Users can only log into AMQ Console using these credentials.

For more information, see Enabling Password Authentication in Configuring
AMQ Broker.

CHAPTER 2. USING AMQ CONSOLE

25

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/getting_started_with_amq_broker/#starting-broker-instance-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/configuring_amq_broker/#enable_guest
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/configuring_amq_broker/#pass_auth

LDAP Authentication Users are authenticated and authorized by checking the credentials against
user data stored in a central X.500 directory server.

For more information, see Adding Certificate-Based Authentication in
Configuring AMQ Broker.

Authentication Method Description

2.3.2. Securing AMQ Console and AMQ Broker connections

To allow AMQ Console to access resources on the broker, specify the permitted origin URLs that can
access it by editing the allow-origin parameters in the access management configuration file on the
broker.

Prerequisites

You must first upgrade to AMQ Broker 7.1.0, during which the access management
configuration file named jolokia-access.xml is added to the broker instance. For more
information about upgrading see Upgrading Your Broker to 7.1.0 in Managing AMQ Broker.

Procedure

1. Open the <broker-instance-dir>/etc/jolokia-access.xml file in a text editor.

2. Within the <cors> section, edit the allow-origin settings to add each URL that you want to
allow to access AMQ Console. For example:

<cors>
 <!-- allow access to web console from localhost -->
 <allow-origin>https://localhost:8161/*</allow-origin>
 <!-- Check for the proper origin on the server side, too -->
 <strict-checking/>
</cors>

3. Save the file.

Additional resources

For more information on Cross-Origin Resource Sharing, see W3C Recommendations.

For more information on security commands, see Jolokia Protocols.

2.3.3. Securing network access to AMQ Console

To secure AMQ Console when it is being accessed over a WAN or the internet, use SSL to specify that
network access uses https instead of http.

Prerequisites

The following should be located in the <broker-instance-dir>/etc/:

Java KeyStore (.jks)

Red Hat AMQ 7.4 Managing AMQ Broker

26

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/configuring_amq_broker/#cert_auth
{BrokerManagingBookUrl}#upgrading_7.1
https://www.w3.org/TR/cors/
https://jolokia.org/reference/html/security.html

Java TrustStore (only if you want to require client authentication)

Procedure

1. Open the <broker-instance-dir>/etc/bootstrap.xml file.

2. In the <web> element, add the following attributes:

Attribute Description

bind Change the URI scheme to https.

keyStorePath The path of the KeyStore file. For example:

keyStorePassword The KeyStore’s password.

clientAuth Specifies whether client authentication is required. The default is
false, but you can change it to true to enable authentication.

trustStorePath The path of the TrustStore file. This attribute is only needed if
clientAuth is true.

trustStorePassword The TrustStore’s password.

2.4. MONITORING YOUR AMQ BROKER DEPLOYMENT

You can use the AMQ Console dashboard page to monitor the status of AMQ Broker. You can also
create your own dashboards to display the real-time charts, diagrams, and metrics most important to
you.

2.4.1. Viewing a dashboard

Dashboards provide you with real-time data about your AMQ Broker environment.

Procedure

1. In AMQ Console, click the Dashboard tab.
The Monitor dashboard appears, displaying real-time data about hawtio.

<web bind="https://localhost:8161"
 path="web"
 keyStorePath="<path_to_KeyStore>"
 keyStorePassword="<password>"
 clientAuth="<true/false>"
 trustStorePath="<path_to_TrustStore>"
 trustStorePassword="<password>">
 ...
</web>

keyStorePath="${artemis.instance}/etc/keystore.jks"

CHAPTER 2. USING AMQ CONSOLE

27

2. To switch to a different dashboard, click the dashboard tab.

2.4.2. Creating a new dashboard

Dashboards contain widgets, each of which can display a chart, diagram, or metrics. You can create as
many dashboards as needed.

Procedure

1. In AMQ Console, click the Dashboard tab.

2. On the navigation bar, click Manage.

NOTE

The Manage page appears displaying a list of existing dashboards.

3. Do one of the following:

To… Do this…

Create a new, blank dashboard Click Create.

Red Hat AMQ 7.4 Managing AMQ Broker

28

Create a dashboard similar to an existing
dashboard 1. Click the checkbox next to an existing

dashboard.

2. Click Duplicate.

To… Do this…

4. To change the name of the dashboard:

a. Hover over the dashboard name and click the pencil icon ().

b. Enter a new name for the dashboard and then click the checkmark icon ().

2.4.3. Creating AMQ Broker dashboards

You can create new dashboards to display real-time data for AMQ Broker.

Procedure

1. Create a new dashboard .

2. Add AMQ Broker data to the dashboard .

3. Change the dashboard layout as needed.

2.4.4. Adding AMQ Broker data to the AMQ Console dashboard

Add any of the available queue and topic charts to a dashboard.

Procedure

1. Click the Artemis tab.

2. On the navigation bar, click the add icon ().
The Dashboard tab appears, displaying a list of available dashboards.

3. Select the dashboard (or dashboards) which you want the chart to appear, and then click Add
View To Dashboard. The chart is added to the dashboards you selected.

2.4.5. Changing the layout of a dashboard

Dashboards contain widgets, which display metrics, diagrams, and charts. You can change the way these
widgets are displayed on a dashboard.

To… Do this…

Move or rearrange widgets Click and drag a widget to a new position on the dashboard.

CHAPTER 2. USING AMQ CONSOLE

29

Change the title of a widget
1. Hover over the widget’s title bar and click the edit icon ().

2. Enter a name for the widget and then click the checkmark icon (
).

Resize a widget
In the bottom-right corner of the widget, click and drag the resize icon (
).

Remove a widget from the
dashboard

In the widget’s title bar, click the close icon ().

To… Do this…

2.5. MANAGING AMQ BROKER

You can use AMQ Console to view important information about AMQ Broker brokers and manage the
following resources:

Incoming network connections (acceptors)

Addresses

Queues

2.5.1. Viewing details about the broker

View configuration properties and their values to see how the broker is configured.

Procedure

On the Artemis tab, in the folder tree, select a broker.
A list of configuration properties are displayed for the broker.

Connections

Displays information about the client connections.

Sessions

Displays information about the client sessions.

Consumers

Displays information about the client consumers.

Producers

Displays information about the session producers.

Addresses

Displays information about the addresses.

Queues

Displays information about the queues.

Diagrams

Displays diagram of all AMQ Broker resources in your topology, including brokers (masters

Red Hat AMQ 7.4 Managing AMQ Broker

30

Displays diagram of all AMQ Broker resources in your topology, including brokers (masters
and slaves), producers and consumers, addresses, and queues.

Attributes

Displays information about the configured attributes.

Operations

Displays information about the operations that can be executed on the server.

Chart

Displays real-time data for the selected attributes.

2.5.2. Viewing the broker diagram

You can view a diagram of all AMQ Broker resources in your topology, including brokers (masters and
slaves), producers and consumers, addresses, and queues.

Procedure

1. On the Artemis tab, click Diagram.
This example shows three brokers with 10 queues.

2. To change what objects are displayed on the diagram, click the View drop-down and select the
items that you want to be displayed.

2.5.3. Viewing acceptors

You can view details about the acceptors configured for the broker.

CHAPTER 2. USING AMQ CONSOLE

31

Procedure

1. On the Artemis tab, in the folder tree, expand the acceptors folder.

2. Click an acceptor to view details about how it is configured.
This example shows the configuration properties for the amqp acceptor, which is the default
acceptor provided for the AMQP protocol:

2.5.4. Managing addresses and queues

An address represents a messaging endpoint. Within the configuration, a typical address is given a
unique name.

A queue is associated with an address. There can be multiple queues per address. Once an incoming
message is matched to an address, the message is sent on to one or more of its queues, depending on
the routing type configured. Queues can be configured to be automatically created and deleted.

2.5.4.1. Creating addresses

A typical address is given a unique name, 0 or more queues, and a routing type.

A routing type determines how messages are sent to the queues associated with an address. Addresses
can be configured with two different routing types.

If you want your messages routed to… Use this routing type…

A single queue within the matching address, in a point-to-point manner. Anycast

Every queue within the matching address, in a publish-subscribe manner. Multicast

You can create and configure addresses and queues, and then delete them when they are no longer in
use.

Procedure

1. In the folder tree, select a broker.

2. On the navigation bar, click drop-down icon, and then click Create.
A page appears for creating an address.

Red Hat AMQ 7.4 Managing AMQ Broker

32

3. Complete the following fields:

Address name

The routing name of the address.

Routing type

Select one of the following options:

Multicast

Messages sent to this address will be distributed to all subscribers in a publish-subscribe
manner.

Anycast

Messages sent to this address will be distributed to only one subscriber in a point-to-point
manner.

Both

Enables you to define more than one routing type per address. This typically results in an
anti-pattern and is therefore not recommended.

NOTE

If an address does use both routing types, however, and the client does not show
a preference for either one, the broker typically defaults to the anycast routing
type. The one exception is when the client uses the MQTT protocol. In that case,
the default routing type is multicast.

4. Click Create Address.

2.5.4.2. Sending messages to an address

The following procedure outlines the steps required to send a message to an address.

Procedure

1. In the folder tree, select an address.

2. On the navigation bar, click drop-down icon, and then click Send.
A page appears for you to compose the message.

CHAPTER 2. USING AMQ CONSOLE

33

3. If necessary, click the Header button to add message header information.

4. Enter the message body.

5. In the Payload format drop-down, select an option for the format of the message body, and
then click Auto format. The message body is formatted in a human-readable style for the
format you selected.

6. Click Send message. The message is sent.

7. To send additional messages, change any of the information you entered, and then click Send
message.

2.5.4.3. Creating queues

Queues provide a channel between a producer and a consumer.

Prerequisites

The address to which you want to bind the queue must exist.

Procedure

1. In the folder tree, select the address to which you want to bind the queue.

2. On the navigation bar, click drop-down icon, and then click Create.
A page appears for you to create the queue.

3. Complete the following fields:

Red Hat AMQ 7.4 Managing AMQ Broker

34

Queue name

A unique name for the queue.

Routing type

Select one of the following options:

Multicast

Messages sent to this address will be distributed to all queues bound to the address.

Anycast

Only one queue bound to the parent address will receive a copy of the message. Messages
will be distributed evenly among all of the queues bound to the address.

Durable

If you select this option, the queue and its messages will be persistent.

Filter

The username to be used when connecting to the broker.

Max Consumers

The maximum number of consumers that can access the queue at a given time.

Purge when no consumers

If selected, the queue will be purged when no consumers are connected.

4. Click Create Queue.

The queue is created. You can access it in the folder tree under the address to which it is bound.
Queues for an address are organized into a Queues folder. Within the Queues folder, queues
are further organized by routing type (MULTICAST and ANYCAST).

In this example, the clusterQueue queue is located within the clusterQueue address:

2.5.4.4. Checking the status of a queue

Charts provide a real-time view of the status of a queue on a broker.

CHAPTER 2. USING AMQ CONSOLE

35

Procedure

1. In the folder tree, navigate to a queue.
To view a chart for multiple queues for an address, select the ANYCAST or MULTICAST folder
that contains the queues.

2. On the navigation bar, click drop-down icon, and then click Chart.
A chart is displayed showing real-time data for all of the queue’s attributes.

3. If necessary, select different criteria for the chart:

a. On the navigation bar, click drop-down icon, and then click Edit Chart.

b. In the Attributes list, select one or more attributes that you want to include in the chart. To
select multiple attributes, press and hold the Ctrl key and select each attribute.

c. Click the View Chart button. The chart is displayed based on the criteria you selected.

2.5.4.5. Browsing queues

Browsing a queue displays all of the messages in the queue. You can also filter and sort the list to find
specific messages.

Procedure

1. In the folder tree, navigate to a queue.
Queues are located within the address to which they are bound.

2. On the navigation bar, click drop-down icon, and then click Browse.
The messages in the queue are displayed. By default, the first 200 messages are displayed.

Red Hat AMQ 7.4 Managing AMQ Broker

36

3. To browse for a specific message or group of messages, do one of the following:

To… Do this…

Filter the list of messages In the Filter messages text field, enter a filter criteria and
then press Enter.

Sort the list of messages In the list of messages, click a column header. To sort the
messages in descending order, click the header a second
time.

4. To view the content of a message, click the message ID.
You can view the message header, properties, and body.

2.5.4.6. Sending messages to a queue

After creating a queue, you can send a message to it. The following procedure outlines the steps
required to send a message to an existing queue.

Procedure

1. In the folder tree, select the queue to which you want to send the message.

2. On the navigation bar, click drop-down icon, and then click Send.
A page appears for you to compose the message.

3. If necessary, click the Header button to add message header information.

4. Enter the message body.

5. In the Payload format drop-down, select an option for the format of the message body, and
then click Auto format. The message body is formatted in a human-readable style for the
format you selected.

6. Click Send message. The message is sent.

7. To send additional messages, change any of the information you entered, and click Send
message.

2.5.4.7. Resending messages to a queue

CHAPTER 2. USING AMQ CONSOLE

37

You can resend previously sent messages.

Procedure

1. Browse for the message you want to resend .

2. Click the checkbox next to the message that you want to resend.

3. Click the Resend button. The message is displayed.

4. Update the message header and body as needed, and then click Send message.

2.5.4.8. Moving messages to a different queue

You can move one or more messages in a queue to a different queue.

Procedure

1. Browse for the messages you want to move .

2. Click the checkbox next to each message that you want to move.

3. Click the Move button.
A confirmation dialog box appears.

4. Enter the name of the queue to which you want to move the messages, and then click Move.

2.5.4.9. Deleting queues

You can delete a queue or purge all of the messages from a queue.

Procedure

1. Browse for the queue you want to delete or purge .

2. Do one of the following:

To… Do this…

Red Hat AMQ 7.4 Managing AMQ Broker

38

Delete a message from the
queue 1. Click the checkbox next to each message you want to delete.

2. Click the Delete button.

Purge all messages from
the queue 1. On the navigation bar, click Delete.

2. Click the Purge queue button.

Delete the queue
1. On the navigation bar, click Delete.

2. Click the Delete queue button.

To… Do this…

CHAPTER 2. USING AMQ CONSOLE

39

CHAPTER 3. USING COMMAND LINE INTERFACE
The command line interface (CLI) allows interaction with the message broker by use of an interactive
terminal. Manage broker actions, configure messages, and enter useful commands by using the CLI.

The command line interface (CLI) allows users and roles to be added to files, by using an interactive
process.

3.1. STARTING BROKER INSTANCES

A broker instance is a directory containing all the configuration and runtime data, such as logs and data
files. The runtime data is associated with a unique broker process.

You can start a broker in the foreground by using the artemis script, as a Linux service, or as a Windows
service.

3.1.1. Starting the broker instance

After the broker instance is created, you use the artemis run command to start it.

Procedure

1. Switch to the user account you created during installation.

2. Use the artemis run command to start the broker instance.

$ /var/opt/amq-broker/mybroker/bin/artemis run

 __ __ ____ ____ _
 /\ | \/ |/ __ \ | _ \ | |
 / \ | \ / | | | | | |_) |_ __ ___ | | _____ _ __
 / /\ \ | |\/| | | | | | _ <| '__/ _ \| |/ / _ \ '__|
 / ____ \| | | | |__| | | |_) | | | (_) | < __/ |
/_/ __| |_|____\ |____/|_| ___/|_|____|_|

Red Hat JBoss AMQ 7.2.1.GA

10:53:43,959 INFO [org.apache.activemq.artemis.integration.bootstrap] AMQ101000:
Starting ActiveMQ Artemis Server
10:53:44,076 INFO [org.apache.activemq.artemis.core.server] AMQ221000: live Message
Broker is starting with configuration Broker Configuration
(clustered=false,journalDirectory=./data/journal,bindingsDirectory=./data/bindings,largeMessage
sDirectory=./data/large-messages,pagingDirectory=./data/paging)
10:53:44,099 INFO [org.apache.activemq.artemis.core.server] AMQ221012: Using AIO
Journal
...

The broker starts and displays log output with the following information:

The location of the transaction logs and cluster configuration.

The type of journal being used for message persistence (AIO in this case).

$ su - amq-broker

Red Hat AMQ 7.4 Managing AMQ Broker

40

The URI(s) that can accept client connections.
By default, port 61616 can accept connections from any of the supported protocols (CORE,
MQTT, AMQP, STOMP, HORNETQ, and OPENWIRE). There are separate, individual ports
for each protocol as well.

The web console is available at http://localhost:8161.

The Jolokia service (JMX over REST) is available at http://localhost:8161/jolokia.

3.1.2. Starting a broker as a Linux service

If the broker is installed on Linux, you can run it as a service.

Procedure

1. Create a new amq-broker.service file in the /etc/systemd/system/ directory.

2. Copy the following text into the file.
Modify the path and user fields according to the information provided during the broker
instance creation. In the example below, the user amq-broker starts the broker service installed
under the /var/opt/amq-broker/mybroker/ directory.

[Unit]
Description=AMQ Broker
After=syslog.target network.target

[Service]
ExecStart=/var/opt/amq-broker/mybroker/bin/artemis run
Restart=on-failure
User=amq-broker
Group=amq-broker

A workaround for Java signal handling
SuccessExitStatus=143

[Install]
WantedBy=multi-user.target

3. Open a terminal.

4. Enable the broker service using the following command:

sudo systemctl enable amq-broker

5. Run the broker service using the following command:

sudo systemctl start amq-broker

3.1.3. Starting a broker as a Windows service

If the broker is installed on Windows, you can run it as a service.

Procedure

CHAPTER 3. USING COMMAND LINE INTERFACE

41

http://localhost:8161
http://localhost:8161/jolokia

1. Open a command prompt to enter the commands

2. Install the broker as a service with the following command:

<broker-instance-dir>\bin\artemis-service.exe install

3. Start the service by using the following command:

<broker-instance-dir>\bin\artemis-service.exe start

4. (Optional) Uninstall the service:

<broker-instance-dir>\bin\artemis-service.exe uninstall

3.2. STOPPING BROKER INSTANCES

Stop the broker instance manually or configure the broker to shutdown gracefully.

3.2.1. Stopping a broker instance

Stop the broker manually by issuing the stop command. Immediately after the command is entered, all
connections to the broker are forcefully stopped and the shutdown process begins.

Procedure

Stop the broker.

If you are running the broker on Linux, issue the following command:

<broker-instance-dir>\bin\artemis stop

If you are running the broker on Windows as a service, issue the following command:

<broker-instance-dir>\bin\artemis-service.exe stop

3.2.2. Stopping a broker instance gracefully

A manual shutdown forcefully disconnects all clients after a stop command is entered. As an alternative,
configure the broker to shut down gracefully by using the graceful-shutdown-enabled configuration
element.

When graceful-shutdown-enabled is set to true, no new client connections are allowed after a stop
command is entered. However, existing connections are allowed to close on the client-side before the
shutdown process is started. The default value for graceful-shutdown-enabled is false.

Use the graceful-shutdown-timeout configuration element to set a length of time, in milliseconds, for
clients to disconnect before connections are forcefully closed from the broker side. After all connections
are closed, the shutdown process is started. One advantage of using graceful-shutdown-timeout is
that it prevents client connections from delaying a shutdown. The default value for graceful-shutdown-
timeout is -1, meaning the broker waits indefinitely for clients to disconnect.

The following procedure demonstrates how to configure a graceful shutdown that uses a timeout.

Procedure

Red Hat AMQ 7.4 Managing AMQ Broker

42

Procedure

1. Open the configuration file <broker-instance-dir>\etc\broker.xml.

2. Add the graceful-shutdown-enabled configuration element and set the value to true.

3. Add the graceful-shutdown-timeout configuration element and set a value for the timeout in
milliseconds. In the following example, client connections are forcefully closed 30 seconds
(30000 milliseconds) after the stop command is issued.

3.3. AUDITING MESSAGES BY INTERCEPTING PACKETS

Intercept packets entering or exiting the broker, to audit packets or filter messages. Interceptors
change the packets that they intercept. This makes interceptors powerful, but also potentially
dangerous.

Develop interceptors to meet your business requirements. Interceptors are protocol specific and must
implement the appropriate interface.

Interceptors must implement the intercept() method, which returns a boolean value. If the value is true,
the message packet continues onward. If false, the process is aborted, no other interceptors are called,
and the message packet is not processed further.

3.3.1. Creating interceptors

Interceptors can change the packets they intercept. You can create your own incoming and outgoing
interceptors. All interceptors are protocol specific and are called for any packet entering or exiting the
server respectively. This allows you to create interceptors to meet business requirements such as
auditing packets.

Interceptors and their dependencies must be placed in the Java classpath of the broker. You can use the
<broker-instance-dir>/lib directory because it is part of the classpath by default.

<configuration>
 <core>
 ...
 <graceful-shutdown-enabled>
 true
 </graceful-shutdown-enabled>
 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <graceful-shutdown-enabled>
 true
 </graceful-shutdown-enabled>
 <graceful-shutdown-timeout>
 30000
 </graceful-shutdown-timeout>
 ...
 </core>
</configuration>

CHAPTER 3. USING COMMAND LINE INTERFACE

43

The following examples demonstrate how to create an interceptor that checks the size of each packet
passed to it.

NOTE

The examples implement a specific interface for each protocol.

Procedure

1. Implement the appropriate interface and override its intercept() method.

a. If you are using the AMQP protocol, implement the
org.apache.activemq.artemis.protocol.amqp.broker.AmqpInterceptor interface.

b. If you are using the Core protocol, your interceptor must implement the
org.apache.artemis.activemq.api.core.Interceptor interface.

package com.example;

import org.apache.activemq.artemis.protocol.amqp.broker.AMQPMessage;
import org.apache.activemq.artemis.protocol.amqp.broker.AmqpInterceptor;
import org.apache.activemq.artemis.spi.core.protocol.RemotingConnection;

public class MyInterceptor implements AmqpInterceptor
{
 private final int ACCEPTABLE_SIZE = 1024;

 @Override
 public boolean intercept(final AMQPMessage message, RemotingConnection
connection)
 {
 int size = message.getEncodeSize();
 if (size <= ACCEPTABLE_SIZE) {
 System.out.println("This AMQPMessage has an acceptable size.");
 return true;
 }
 return false;
 }
}

package com.example;

import org.apache.artemis.activemq.api.core.Interceptor;
import org.apache.activemq.artemis.core.protocol.core.Packet;
import org.apache.activemq.artemis.spi.core.protocol.RemotingConnection;

public class MyInterceptor implements Interceptor
{
 private final int ACCEPTABLE_SIZE = 1024;

 @Override
 boolean intercept(Packet packet, RemotingConnection connection)
 throws ActiveMQException
 {
 int size = packet.getPacketSize();

Red Hat AMQ 7.4 Managing AMQ Broker

44

c. If you are using the MQTT protocol, implement the
org.apache.activemq.artemis.core.protocol.mqtt.MQTTInterceptor interface.

d. If you are using the Stomp protocol, implement the
org.apache.activemq.artemis.core.protocol.stomp.StompFrameInterceptor interface.

 if (size <= ACCEPTABLE_SIZE) {
 System.out.println("This Packet has an acceptable size.");
 return true;
 }
 return false;
 }
}

package com.example;

import org.apache.activemq.artemis.core.protocol.mqtt.MQTTInterceptor;
import io.netty.handler.codec.mqtt.MqttMessage;
import org.apache.activemq.artemis.spi.core.protocol.RemotingConnection;

public class MyInterceptor implements Interceptor
{
 private final int ACCEPTABLE_SIZE = 1024;

 @Override
 boolean intercept(MqttMessage mqttMessage, RemotingConnection connection)
 throws ActiveMQException
 {
 byte[] msg = (mqttMessage.toString()).getBytes();
 int size = msg.length;
 if (size <= ACCEPTABLE_SIZE) {
 System.out.println("This MqttMessage has an acceptable size.");
 return true;
 }
 return false;
 }
}

package com.example;

import org.apache.activemq.artemis.core.protocol.stomp.StompFrameInterceptor;
import org.apache.activemq.artemis.core.protocol.stomp.StompFrame;
import org.apache.activemq.artemis.spi.core.protocol.RemotingConnection;

public class MyInterceptor implements Interceptor
{
 private final int ACCEPTABLE_SIZE = 1024;

 @Override
 boolean intercept(StompFrame stompFrame, RemotingConnection connection)
 throws ActiveMQException
 {
 int size = stompFrame.getEncodedSize();
 if (size <= ACCEPTABLE_SIZE) {
 System.out.println("This StompFrame has an acceptable size.");

CHAPTER 3. USING COMMAND LINE INTERFACE

45

3.3.2. Configuring the broker to use interceptors

Prerequisites

Create an interceptor class and add it (and its dependencies) to the Java classpath of the
broker. You can use the <broker-instance-dir>/lib directory since it is part of the classpath by
default.

Procedure

1. Open <broker-instance-dir>/etc/broker.xml

2. Configure the broker to use an interceptor by adding configuration to _<broker-instance-
dir>/etc/broker.xml

a. If the interceptor is intended for incoming messages, add its class-name to the list of
remoting-incoming-interceptors.

b. If the interceptor is intended for outgoing messages, add its class-name to the list of
remoting-outgoing-interceptors.

3.3.3. Interceptors on the client side

Clients can use interceptors to intercept packets either sent by the client to the server or by the server
to the client. If the broker-side interceptor returns a false value, then no other interceptors are called
and the client does not process the packet further. This process happens transparently, unless an
outgoing packet is sent in a blocking fashion. In this case, an ActiveMQException is thrown to the
caller. The ActiveMQException thrown contains the name of the interceptor that returned the false
value.

 return true;
 }
 return false;
 }
}

<configuration>
 <core>
 ...
 <remoting-incoming-interceptors>
 <class-name>org.example.MyIncomingInterceptor</class-name>
 </remoting-incoming-interceptors>
 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <remoting-outgoing-interceptors>
 <class-name>org.example.MyOutgoingInterceptor</class-name>
 </remoting-outgoing-interceptors>
 </core>
</configuration>

Red Hat AMQ 7.4 Managing AMQ Broker

46

On the server, the client interceptor classes and their dependencies must be added to the Java
classpath of the client, to be properly instantiated and invoked.

3.4. COMMAND LINE TOOLS

AMQ Broker includes a set of command line interface (CLI) tools, so you can manage your messaging
journal. The table below lists the name for each tool and its corresponding description.

Tool Description

address Addresses tool groups (create/delete/update/show) (example ./artemis address
create).

browser Browses messages on an instance.

consumer Consumes messages on an instance.

data Prints reports about journal records and compacts the data.

decode Imports the internal journal format from encode.

encode Shows an internal format of the journal encoded to String.

exp Exports the message data using a special and independent XML format.

help Displays help information.

imp Imports the journal to a running broker using the output provided by exp.

kill Kills a broker instance started with --allow-kill.

mask Masks a password and prints it out.

perf-journal Calculates the journal-buffer timeout you should use with the current data folder.

queue Queues tool groups (create/delete/update/stat) (example ./artemis queue create).

run Runs the broker instance.

stop Stops the broker instance.

user Default file-based user managament (add/rm/list/reset) (example ./artemis user list)

For a full list of commands available for each tool, use the help parameter followed by the tool’s name.
For instance, in the example below, the CLI output lists all the commands available to the data tool after
the user enters the command ./artemis help data.

$./artemis help data

CHAPTER 3. USING COMMAND LINE INTERFACE

47

NAME
 artemis data - data tools group
 (print|imp|exp|encode|decode|compact) (example ./artemis data print)

SYNOPSIS
 artemis data
 artemis data compact [--broker <brokerConfig>] [--verbose]
 [--paging <paging>] [--journal <journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]
 artemis data decode [--broker <brokerConfig>] [--suffix <suffix>]
 [--verbose] [--paging <paging>] [--prefix <prefix>] [--file-size <size>]
 [--directory <directory>] --input <input> [--journal <journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]
 artemis data encode [--directory <directory>] [--broker <brokerConfig>]
 [--suffix <suffix>] [--verbose] [--paging <paging>] [--prefix <prefix>]
 [--file-size <size>] [--journal <journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]
 artemis data exp [--broker <brokerConfig>] [--verbose]
 [--paging <paging>] [--journal <journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]
 artemis data imp [--host <host>] [--verbose] [--port <port>]
 [--password <password>] [--transaction] --input <input> [--user <user>]
 artemis data print [--broker <brokerConfig>] [--verbose]
 [--paging <paging>] [--journal <journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]

COMMANDS
 With no arguments, Display help information

 print
 Print data records information (WARNING: don't use while a
 production server is running)

 ...

You can use the help parameter for more information on how to execute each of the commands. For
example, the CLI lists more information about the data print command after the user enters the
./artemis help data print.

$./artemis help data print

NAME
 artemis data print - Print data records information (WARNING: don't use
 while a production server is running)

SYNOPSIS
 artemis data print [--bindings <binding>] [--journal <journal>]
 [--paging <paging>]

OPTIONS
 --bindings <binding>
 The folder used for bindings (default ../data/bindings)

 --journal <journal>
 The folder used for messages journal (default ../data/journal)

Red Hat AMQ 7.4 Managing AMQ Broker

48

 --paging <paging>
 The folder used for paging (default ../data/paging)

CHAPTER 3. USING COMMAND LINE INTERFACE

49

CHAPTER 4. USING THE MANAGEMENT API
AMQ Broker has an extensive management API, which you can use to modify a broker’s configuration,
create new resources (for example, addresses and queues), inspect these resources (for example, how
many messages are currently held in a queue), and interact with them (for example, to remove messages
from a queue).

In addition, clients can use the management API to manage the broker and subscribe to management
notifications.

4.1. METHODS FOR MANAGING AMQ BROKER USING THE
MANAGEMENT API

There are two ways to use the management API to manage the broker:

Using JMX — JMX is the standard way to manage Java applications

Using the JMS API — management operations are sent to the broker using JMS messages and
the AMQ JMS client

Although there are two different ways to manage the broker, each API supports the same functionality.
If it is possible to manage a resource using JMX it is also possible to achieve the same result by using
JMS messages and the AMQ JMS client.

This choice depends on your particular requirements, application settings, and environment. Regardless
of the way you invoke management operations, the management API is the same.

For each managed resource, there exists a Java interface describing what can be invoked for this type
of resource. The broker exposes its managed resources in the
org.apache.activemq.artemis.api.core.management package. The way to invoke management
operations depends on whether JMX messages or JMS messages and the AMQ JMS client are used.

NOTE

Some management operations require a filter parameter to choose which messages are
affected by the operation. Passing null or an empty string means that the management
operation will be performed on all messages.

4.2. MANAGING AMQ BROKER USING JMX

You can use Java Management Extensions (JMX) to manage a broker. The management API is exposed
by the broker using MBeans interfaces. The broker registers its resources with the domain
org.apache.activemq.

For example, the ObjectName to manage a queue named exampleQueue is:

The MBean is:

The MBean’s ObjectName is built using the helper class

org.apache.activemq.artemis:broker="__BROKER_NAME__",component=addresses,address="exam
pleQueue",subcomponent=queues,routingtype="anycast",queue="exampleQueue"

org.apache.activemq.artemis.api.management.QueueControl

Red Hat AMQ 7.4 Managing AMQ Broker

50

The MBean’s ObjectName is built using the helper class
org.apache.activemq.artemis.api.core.management.ObjectNameBuilder. You can also use jconsole
to find the ObjectName of the MBeans you want to manage.

Managing the broker using JMX is identical to management of any Java applications using JMX. It can
be done by reflection or by creating proxies of the MBeans.

4.2.1. Configuring JMX management

By default, JMX is enabled to manage the broker. You can enable or disable JMX management by
setting the jmx-management-enabled property in the broker.xml configuration file.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Set <jmx-management-enabled>.

If JMX is enabled, the broker can be managed locally using jconsole.

NOTE

Remote connections to JMX are not enabled by default for security reasons.

3. If you want to manage multiple brokers from the same MBeanServer, configure the JMX
domain for each of the brokers.
By default, the broker uses the JMX domain org.apache.activemq.artemis.

NOTE

If you are using AMQ Broker on a Windows system, system properties must be set
in artemis, or artemis.cmd. A shell script is located under <install-dir>/bin.

Additional resources

For more information on configuring the broker for remote management, see Oracle’s Java
Management Guide.

4.2.2. MBeanServer configuration

When the broker runs in standalone mode, it uses the Java Virtual Machine’s Platform MBeanServer to
register its MBeans. By default, Jolokia is also deployed to allow access to the MBean server using REST.

4.2.3. How JMX is exposed with Jolokia

By default, AMQ Broker ships with the Jolokia HTTP agent deployed as a web application. Jolokia is a
remote JMX over HTTP bridge that exposes MBeans.

NOTE

<jmx-management-enabled>true</jmx-management-enabled>

<jmx-domain>my.org.apache.activemq</jmx-domain>

CHAPTER 4. USING THE MANAGEMENT API

51

http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html
http://www.jolokia.org/
http://www.jolokia.org/

NOTE

To use Jolokia, the user must belong to the role defined by the hawtio.role system
property in the <broker-instance-dir>/etc/artemis.profile configuration file. By default,
this role is amq.

Example 4.1. Using Jolokia to query the broker’s version

This example uses a Jolokia REST URL to find the version of a broker.

Additional resources

For more information on using a JMX-HTTP bridge, see the Jolokia documentation.

For more information on assigning a user to a role, see Adding Users.

4.2.4. Subscribing to JMX management notifications

If JMX is enabled in your environment, you can subscribe to management notifications.

Procedure

Subscribe to ObjectName org.apache.activemq.artemis:broker="<broker-name>".

Additional resources

For more information about management notifications, see Section 4.5, “Management
notifications”.

4.3. MANAGING AMQ BROKER USING THE JMS API

The Java Message Service (JMS) API allows you to create, send, receive, and read messages. You can
use JMS and the AMQ JMS client to manage brokers.

4.3.1. Configuring broker management using JMS messages and the AMQ JMS
Client

To use JMS to manage a broker, you must first configure the broker’s management address with the
manage permission.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Add the <management-address> element, and specify a management address.
By default, the management address is queue.activemq.management. You only need to

$ curl
http://admin:admin@localhost:8161/console/jolokia/read/org.apache.activemq.artemis:broker=\"0.
0.0.0\"/Version
{"request":
{"mbean":"org.apache.activemq.artemis:broker=\"0.0.0.0\"","attribute":"Version","type":"read"},"val
ue":"2.4.0.amq-710002-redhat-1","timestamp":1527105236,"status":200}

Red Hat AMQ 7.4 Managing AMQ Broker

52

http://www.jolokia.org/documentation.html
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/configuring_amq_broker/#pass_auth

By default, the management address is queue.activemq.management. You only need to
specify a different address if you do not want to use the default.

3. Provide the management address with the manage user permission type.
This permission type enables the management address to receive and handle management
messages.

4.3.2. Managing brokers using the JMS API and AMQ JMS Client

To invoke management operations using JMS messages, the AMQ JMS client must instantiate the
special management queue.

Procedure

1. Create a QueueRequestor to send messages to the management address and receive replies.

2. Create a Message.

3. Use the helper class
org.apache.activemq.artemis.api.jms.management.JMSManagementHelper to fill the
message with the management properties.

4. Send the message using the QueueRequestor.

5. Use the helper class
org.apache.activemq.artemis.api.jms.management.JMSManagementHelper to retrieve the
operation result from the management reply.

Example 4.2. Viewing the number of messages in a queue

This example shows how to use the JMS API to view the number of messages in the JMS queue
exampleQueue:

4.4. MANAGEMENT OPERATIONS

Whether you are using JMX or JMS messages to manage AMQ Broker, you can use the same API

<management-address>my.management.address</management-address>

<security-setting-match="queue.activemq.management">
 <permission-type="manage" roles="admin"/>
</security-setting>

Queue managementQueue = ActiveMQJMSClient.createQueue("activemq.management");

QueueSession session = ...
QueueRequestor requestor = new QueueRequestor(session, managementQueue);
connection.start();
Message message = session.createMessage();
JMSManagementHelper.putAttribute(message, "queue.exampleQueue", "messageCount");
Message reply = requestor.request(message);
int count = (Integer)JMSManagementHelper.getResult(reply);
System.out.println("There are " + count + " messages in exampleQueue");

CHAPTER 4. USING THE MANAGEMENT API

53

Whether you are using JMX or JMS messages to manage AMQ Broker, you can use the same API
management operations. Using the management API, you can manage brokers, addresses, and queues.

4.4.1. Broker management operations

You can use the management API to manage your brokers.

Listing, creating, deploying, and destroying queues

A list of deployed queues can be retrieved using the getQueueNames() method.
Queues can be created or destroyed using the management operations createQueue(),
deployQueue(), or destroyQueue() on the ActiveMQServerControl (with the ObjectName
org.apache.activemq.artemis:broker="BROKER_NAME" or the resource name server).

createQueue will fail if the queue already exists while deployQueue will do nothing.

Pausing and resuming queues

The QueueControl can pause and resume the underlying queue. When a queue is paused, it will
receive messages but will not deliver them. When it is resumed, it will begin delivering the queued
messages, if any.

Listing and closing remote connections

Retrieve a client’s remote addresses by using listRemoteAddresses(). It is also possible to close the
connections associated with a remote address using the closeConnectionsForAddress() method.
Alternatively, list connection IDs using listConnectionIDs() and list all the sessions for a given
connection ID using listSessions().

Managing transactions

In case of a broker crash, when the broker restarts, some transactions might require manual
intervention. Use the the following methods to help resolve issues you encounter.
List the transactions which are in the prepared states (the transactions are represented as opaque
Base64 Strings) using the listPreparedTransactions() method lists.

Commit or rollback a given prepared transaction using commitPreparedTransaction() or
rollbackPreparedTransaction() to resolve heuristic transactions.

List heuristically completed transactions using the listHeuristicCommittedTransactions() and
listHeuristicRolledBackTransactions methods.

Enabling and resetting message counters

Enable and disable message counters using the enableMessageCounters() or
disableMessageCounters() method.
Reset message counters by using the resetAllMessageCounters() and
resetAllMessageCounterHistories() methods.

Retrieving broker configuration and attributes

The ActiveMQServerControl exposes the broker’s configuration through all its attributes (for
example, getVersion() method to retrieve the broker’s version, and so on).

Listing, creating, and destroying Core Bridge and diverts

List deployed Core Bridge and diverts using the getBridgeNames() and getDivertNames() methods
respectively.

Create or destroy using bridges and diverts using createBridge() and destroyBridge() or

Red Hat AMQ 7.4 Managing AMQ Broker

54

Create or destroy using bridges and diverts using createBridge() and destroyBridge() or
createDivert() and destroyDivert() on the ActiveMQServerControl (with the ObjectName
org.apache.activemq.artemis:broker="BROKER_NAME" or the resource name server).

Stopping the broker and forcing failover to occur with any currently attached clients

Use the forceFailover() on the ActiveMQServerControl (with the ObjectName
org.apache.activemq.artemis:broker="BROKER_NAME" or the resource name server)

NOTE

Because this method actually stops the broker, you will likely receive an error. The
exact error depends on the management service you used to call the method.

4.4.2. Address management operations

You can use the management API to manage addresses.

Manage addresses using the AddressControl class with ObjectName
org.apache.activemq.artemis:broker="<broker-name>",
component=addresses,address="<address-name>" or the resource name address.<address-
name>.

Modify roles and permissions for an address using the addRole() or removeRole() methods. You can list
all the roles associated with the queue with the getRoles() method.

4.4.3. Queue management operations

You can use the management API to manage queues.

The core management API deals with queues. The QueueControl class defines the queue management
operations (with the ObjectName,org.apache.activemq.artemis:broker="<broker-
name>",component=addresses,address="<bound-address>",subcomponent=queues,routing-
type="<routing-type>",queue="<queue-name>" or the resource name queue.<queue-name>).

Most of the management operations on queues take either a single message ID (for example, to remove
a single message) or a filter (for example, to expire all messages with a given property).

Expiring, sending to a dead letter address, and moving messages

Expire messages from a queue using the expireMessages() method. If an expiry address is defined,
messages will be sent to it, otherwise they are discarded. The queue’s expiry address can be set with
the setExpiryAddress() method.
Send messages to a dead letter address with the sendMessagesToDeadLetterAddress() method. It
returns the number of messages which are sent to the dead letter address. If a dead letter address is
not defined, messages are removed from the queue and discarded. The queue’s dead letter address
can be set with the setDeadLetterAddress() method.

Move messages from one queue to another by using the moveMessages() method.

Listing and removing messages

List messages from a queue using the listMessages() method. It will return an array of Map, one Map
for each message.
Remove messages from a queue using the removeMessages() method, which returns a boolean for

CHAPTER 4. USING THE MANAGEMENT API

55

the single message ID variant or the number of removed messages for the filter variant. This method
takes a filter argument to remove only filtered messages. Setting the filter to an empty string will in
effect remove all messages.

Counting messages

The number of messages in a queue is returned by the getMessageCount() method. Alternatively,
the countMessages() will return the number of messages in the queue which match a given filter.

Changing message priority

The message priority can be changed by using the changeMessagesPriority() method which returns
a boolean for the single message ID variant or the number of updated messages for the filter
variant.

Message counters

Message counters can be listed for a queue with the listMessageCounter() and
listMessageCounterHistory() methods (see Section 4.6, “Using message counters”). The message
counters can also be reset for a single queue using the resetMessageCounter() method.

Retrieving the queue attributes

The QueueControl exposes queue settings through its attributes (for example, getFilter() to
retrieve the queue’s filter if it was created with one, isDurable() to know whether the queue is
durable, and so on).

Pausing and resuming queues

The QueueControl can pause and resume the underlying queue. When a queue is paused, it will
receive messages but will not deliver them. When it is resumed, it will begin delivering the queued
messages, if any.

4.4.4. Remote resource management operations

You can use the management API to start and stop a broker’s remote resources (acceptors, diverts,
bridges, and so on) so that the broker can be taken offline for a given period of time without stopping
completely.

Acceptors

Start or stop an acceptor using the start() or. stop() method on the AcceptorControl class (with the
ObjectName org.apache.activemq.artemis:broker="<broker-
name>",component=acceptors,name="<acceptor-name>" or the resource name
acceptor.<address-name>). Acceptor parameters can be retrieved using the AcceptorControl
attributes. See Network Connections: Acceptors and Connectors for more information about
Acceptors.

Diverts

Start or stop a divert using the start() or stop() method on the DivertControl class (with the
ObjectName org.apache.activemq.artemis:broker="<broker-
name>",component=diverts,name="<divert-name>" or the resource name divert.<divert-
name>). Divert parameters can be retrieved using the DivertControl attributes.

Bridges

Start or stop a bridge using the start() (resp. stop()) method on the BridgeControl class (with the
ObjectName org.apache.activemq.artemis:broker="<broker-
name>",component=bridge,name="<bridge-name>" or the resource name bridge.<bridge-
name>). Bridge parameters can be retrieved using the BridgeControl attributes.

Broadcast groups

Start or stop a broadcast group using the start() or stop() method on the BroadcastGroupControl
class (with the ObjectName org.apache.activemq.artemis:broker="<broker-

Red Hat AMQ 7.4 Managing AMQ Broker

56

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/configuring_amq_broker/#transports

name>",component=broadcast-group,name="<broadcast-group-name>" or the resource name
broadcastgroup.<broadcast-group-name>). Broadcast group parameters can be retrieved using
the BroadcastGroupControl attributes. See Broker discovery methods for more information.

Discovery groups

Start or stop a discovery group using the start() or stop() method on the DiscoveryGroupControl
class (with the ObjectName org.apache.activemq.artemis:broker="<broker-
name>",component=discovery-group,name="<discovery-group-name>" or the resource name
discovery.<discovery-group-name>). Discovery groups parameters can be retrieved using the
DiscoveryGroupControl attributes. See Broker discovery methods for more information.

Cluster connections

Start or stop a cluster connection using the start() or stop() method on the
ClusterConnectionControl class (with the ObjectName
org.apache.activemq.artemis:broker="<broker-name>",component=cluster-
connection,name="<cluster-connection-name>" or the resource name
clusterconnection.<cluster-connection-name>). Cluster connection parameters can be retrieved
using the ClusterConnectionControl attributes. See Creating a broker cluster for more information.

4.5. MANAGEMENT NOTIFICATIONS

Below is a list of all the different kinds of notifications as well as which headers are on the messages.
Every notification has a _AMQ_NotifType (value noted in parentheses) and _AMQ_NotifTimestamp
header. The time stamp is the unformatted result of a call to java.lang.System.currentTimeMillis().

Notification type Headers

BINDING_ADDED (0) _AMQ_Binding_Type

_AMQ_Address

_AMQ_ClusterName

_AMQ_RoutingName

_AMQ_Binding_ID

_AMQ_Distance

_AMQ_FilterString

BINDING_REMOVED (1) _AMQ_Address

_AMQ_ClusterName

_AMQ_RoutingName

_AMQ_Binding_ID

_AMQ_Distance

_AMQ_FilterString

CHAPTER 4. USING THE MANAGEMENT API

57

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/configuring_amq_broker/#broker-discovery-methods-configuring
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/configuring_amq_broker/#broker-discovery-methods-configuring
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/configuring_amq_broker/#creating-broker-cluster-configuring

CONSUMER_CREATED (2) _AMQ_Address

_AMQ_ClusterName

_AMQ_RoutingName

_AMQ_Distance

_AMQ_ConsumerCount

_AMQ_User

_AMQ_RemoteAddress

_AMQ_SessionName

_AMQ_FilterString

CONSUMER_CLOSED (3) _AMQ_Address

_AMQ_ClusterName

_AMQ_RoutingName

_AMQ_Distance

_AMQ_ConsumerCount

_AMQ_User

_AMQ_RemoteAddress

_AMQ_SessionName

_AMQ_FilterString

SECURITY_AUTHENTICATION_VIOLATION
(6)

_AMQ_User

SECURITY_PERMISSION_VIOLATION (7) _AMQ_Address

_AMQ_CheckType

_AMQ_User

DISCOVERY_GROUP_STARTED (8) name

DISCOVERY_GROUP_STOPPED (9) name

BROADCAST_GROUP_STARTED (10) name

BROADCAST_GROUP_STOPPED (11) name

Notification type Headers

Red Hat AMQ 7.4 Managing AMQ Broker

58

BRIDGE_STARTED (12) name

BRIDGE_STOPPED (13) name

CLUSTER_CONNECTION_STARTED (14) name

CLUSTER_CONNECTION_STOPPED (15) name

ACCEPTOR_STARTED (16) factory

id

ACCEPTOR_STOPPED (17) factory

id

PROPOSAL (18) _JBM_ProposalGroupId

_JBM_ProposalValue

_AMQ_Binding_Type

_AMQ_Address

_AMQ_Distance

PROPOSAL_RESPONSE (19) _JBM_ProposalGroupId

_JBM_ProposalValue

_JBM_ProposalAltValue

_AMQ_Binding_Type

_AMQ_Address

_AMQ_Distance

CONSUMER_SLOW (21) _AMQ_Address

_AMQ_ConsumerCount

_AMQ_RemoteAddress

_AMQ_ConnectionName

_AMQ_ConsumerName

_AMQ_SessionName

Notification type Headers

4.6. USING MESSAGE COUNTERS

CHAPTER 4. USING THE MANAGEMENT API

59

You use message counters to obtain information about queues over time. This helps you to identify
trends that would otherwise be difficult to see.

For example, you could use message counters to determine how a particular queue is being used over
time. You could also attempt to obtain this information by using the management API to query the
number of messages in the queue at regular intervals, but this would not show how the queue is actually
being used. The number of messages in a queue can remain constant because no clients are sending or
receiving messages on it, or because the number of messages sent to the queue is equal to the number
of messages consumed from it. In both of these cases, the number of messages in the queue remains
the same even though it is being used in very different ways.

4.6.1. Types of message counters

Message counters provide additional information about queues on a broker.

count

The total number of messages added to the queue since the broker was started.

countDelta

The number of messages added to the queue since the last message counter update.

messageCount

The current number of messages in the queue.

messageCountDelta

The overall number of messages added/removed from the queue since the last message counter
update. For example, if messageCountDelta is -10, then 10 messages overall have been removed
from the queue.

lastAddTimestamp

The time stamp of the last time a message was added to the queue.

udpateTimestamp

The time stamp of the last message counter update.

NOTE

You can combine message counters to determine other meaningful data as well. For
example, to know specifically how many messages were consumed from the queue since
the last update, you would subtract the messageCountDelta from countDelta.

4.6.2. Enabling message counters

Message counters can have a small impact on the broker’s memory; therefore, they are disabled by
default. To use message counters, you must first enable them.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Enable message counters.

3. Set the message counter history and sampling period.

<message-counter-enabled>true</message-counter-enabled>

Red Hat AMQ 7.4 Managing AMQ Broker

60

message-counter-max-day-history

The number of days the broker should store queue metrics. The default is 10 days.

message-counter-sample-period

How often (in milliseconds) the broker should sample its queues to collect metrics. The
default is 10000 milliseconds (10 seconds).

4.6.3. Retrieving message counters

You can use the management API to retrieve message counters.

Prerequisites

Message counters must be enabled on the broker.
For more information, see Section 4.6.2, “Enabling message counters” .

Procedure

Use the management API to retrieve message counters.

Additional resources

For more information about message counters, see Section 4.4.3, “Queue management
operations”.

<message-counter-max-day-history>7</message-counter-max-day-history>
<message-counter-sample-period>60000</message-counter-sample-period>

// Retrieve a connection to the broker's MBeanServer.
MBeanServerConnection mbsc = ...
JMSQueueControlMBean queueControl =
(JMSQueueControl)MBeanServerInvocationHandler.newProxyInstance(mbsc,
 on,
 JMSQueueControl.class,
 false);

// Message counters are retrieved as a JSON string.
String counters = queueControl.listMessageCounter();

// Use the MessageCounterInfo helper class to manipulate message counters more easily.
MessageCounterInfo messageCounter = MessageCounterInfo.fromJSON(counters);
System.out.format("%s message(s) in the queue (since last sample: %s)\n",
messageCounter.getMessageCount(),
messageCounter.getMessageCountDelta());

CHAPTER 4. USING THE MANAGEMENT API

61

CHAPTER 5. MONITORING BROKER RUNTIME DATA USING
PROMETHEUS

5.1. OVERVIEW

To monitor the health and performance of your broker instances, you can use the Prometheus plugin for
AMQ Broker to monitor and store broker runtime metrics. Prometheus is software built for monitoring
large, scalable systems and storing historical runtime data over an extended time period. The AMQ
Broker Prometheus plugin exports the broker runtime metrics to Prometheus format, enabling you to
use Prometheus itself to visualize and run queries on the data.

You can also use a graphical tool, such as Grafana, to configure more advanced visualizations and
dashboards for the metrics that the Prometheus plugin collects.

For AMQ Broker, the metrics exported to Prometheus format by the plugin are listed below. A
description of each metric is exported along with the metric itself.

Broker Metrics

address.memory.usage

connection.count

total.connection.count

Address Metrics

routed.message.count

unrouted.message.count

Queue Metrics

consumer.count

delivering.durable.message.count

delivering.durable.persistent.size

delivering.message.count

delivering.persistent.size

durable.message.count

durable.persistent.size

messages.acknowledged

messages.added

message.count

messages.killed

Red Hat AMQ 7.4 Managing AMQ Broker

62

messages.expired

persistent.size

scheduled.durable.message.count

scheduled.durable.persistent.size

scheduled.message.count

scheduled.persistent.size

For higher-level broker metrics that are not listed above, you can calculate these by aggregating lower-
level metrics. For example, to calculate total message count, you can aggregate the message.count
metrics from all queues in your broker deployment.

Java Virtual Machine (JVM) memory metrics are also exported to Prometheus format.

5.2. ENABLING THE PROMETHEUS PLUGIN FOR AMQ BROKER

When you install AMQ Broker, the Prometheus plugin is included in your installation and is already
configured for use. However, you need to enable the plugin in your broker configuration.

The following procedure shows you how to enable the Prometheus plugin and start gathering metrics
for running broker instances.

Procedure

1. Copy the Prometheus metrics plugin .jar file from your AMQ Broker 7.4 extracted archive to the
lib directory of your broker instance.

2. Add the following line to your broker.xml configuration file.

When you have enabled the Prometheus plugin, the plugin starts to gather the metrics listed in the
previous section, for any broker that you start.

5.3. ACCESSING BROKER RUNTIME DATA USING PROMETHEUS

Prerequisites

To query and visualize the broker runtime data collected by the Prometheus plugin, you need to
install Prometheus. For more information, see Installing Prometheus.

Procedure

1. From your Prometheus installation directory, open the prometheus.yml configuration file.

2. In the static_configs section of the configuration file, change the targets element to

$ cp amq-broker-7.4.0/lib/artemis-prometheus-metrics-plugin-1.0.0.CR1-redhat-00002.jar
BROKER_INSTANCE_DIR/lib

<metrics-plugin class-
name="org.apache.activemq.artemis.core.server.metrics.plugins.ArtemisPrometheusMetricsPlu
gin"/>

CHAPTER 5. MONITORING BROKER RUNTIME DATA USING PROMETHEUS

63

https://prometheus.io/docs/prometheus/latest/installation/

2. In the static_configs section of the configuration file, change the targets element to
localhost:8161. This location is where the broker runs its web server. By default, /metrics is
appended to this host name, forming the full path to the metrics stored on the broker web
server.

3. To view the broker runtime metrics collected by the Prometheus plugin, open
localhost:8161/metrics in a web browser.
On the resulting web page, you see the current values of the metrics collected by the plugin,
based on the queues and addresses that you have configured on the broker. If you have more
than one running broker instance in your JVM, you see metrics for each broker.

4. From your Prometheus installation directory, run Prometheus.

When Prometheus starts, the shell output includes the following line:

The preceding line indicates that Prometheus is listening for HTTP traffic on port 9090.

5. To access the Prometheus web console, open 127.0.0.1:9090 in a web browser.

6. In the Prometheus web console, you can use the Expression field to create a query on your
broker data. The queries you create are based on the Prometheus query language, PromQL.
Broker metrics that are available to insert in your query are in the Insert metric drop-down list.
As a simple example, suppose you want to query the message count on the DLQ queue, over
time. In this case, select artemis_message_count from the metrics drop-down list. Complete
your query by specifying the DLQ queue name and address. This example query is shown below.

For more advanced visualizations, you can use regular expressions to create complex queries
that overlay several metrics, for example. Or, you can perform mathematical operations on a
number of metrics, such as aggregating them. For more information about creating Prometheus
queries, see Querying Prometheus.

Revised on 2021-05-14 10:16:09 UTC

$./prometheus

component=web, msg=”Start listening for connections” address=0.0.0.0:9090

artemis_message_count{address=“DLQ”, queue=“DLQ”}

Red Hat AMQ 7.4 Managing AMQ Broker

64

https://prometheus.io/docs/prometheus/latest/querying/basics/

	Table of Contents
	CHAPTER 1. UPGRADING YOUR BROKER
	1.1. ABOUT UPGRADES
	1.2. UPGRADING A BROKER INSTANCE FROM 7.0.X TO 7.0.Y
	1.2.1. Upgrading from 7.0.x to 7.0.y on Linux
	1.2.2. Upgrading from 7.0.x to 7.0.y on Windows

	1.3. UPGRADING A BROKER INSTANCE FROM 7.0.X TO 7.1.0
	1.3.1. Upgrading from 7.0.x to 7.1.0 on Linux
	1.3.2. Upgrading from 7.0.x to 7.1.0 on Windows

	1.4. UPGRADING A BROKER INSTANCE FROM 7.1.X TO 7.2.0
	1.4.1. Upgrading from 7.1.x to 7.2.0 on Linux
	1.4.2. Upgrading from 7.1.x to 7.2.0 on Windows

	1.5. UPGRADING A BROKER INSTANCE FROM 7.2.X TO 7.3.0
	1.5.1. Resolve exception due to deprecated dispatch console
	1.5.2. Upgrading from 7.2.x to 7.3.0 on Linux
	1.5.3. Upgrading from 7.2.x to 7.3.0 on Windows

	1.6. UPGRADING A BROKER INSTANCE FROM 7.3.0 TO 7.4.X
	1.6.1. Upgrading from 7.3.0 to 7.4.x on Linux
	1.6.2. Upgrading from 7.3.0 to 7.4.x on Windows

	1.7. UPGRADING A BROKER INSTANCE FROM 7.4.X TO 7.4.Y
	1.7.1. Upgrading from 7.4.x to 7.4.y on Linux
	1.7.2. Upgrading from 7.4.x to 7.4.y on Windows

	CHAPTER 2. USING AMQ CONSOLE
	2.1. OVERVIEW
	2.2. ACCESSING AMQ CONSOLE
	2.3. CONFIGURING AMQ CONSOLE
	2.3.1. Setting up user access to AMQ Console
	2.3.2. Securing AMQ Console and AMQ Broker connections
	2.3.3. Securing network access to AMQ Console

	2.4. MONITORING YOUR AMQ BROKER DEPLOYMENT
	2.4.1. Viewing a dashboard
	2.4.2. Creating a new dashboard
	2.4.3. Creating AMQ Broker dashboards
	2.4.4. Adding AMQ Broker data to the AMQ Console dashboard
	2.4.5. Changing the layout of a dashboard

	2.5. MANAGING AMQ BROKER
	2.5.1. Viewing details about the broker
	2.5.2. Viewing the broker diagram
	2.5.3. Viewing acceptors
	2.5.4. Managing addresses and queues
	2.5.4.1. Creating addresses
	2.5.4.2. Sending messages to an address
	2.5.4.3. Creating queues
	2.5.4.4. Checking the status of a queue
	2.5.4.5. Browsing queues
	2.5.4.6. Sending messages to a queue
	2.5.4.7. Resending messages to a queue
	2.5.4.8. Moving messages to a different queue
	2.5.4.9. Deleting queues

	CHAPTER 3. USING COMMAND LINE INTERFACE
	3.1. STARTING BROKER INSTANCES
	3.1.1. Starting the broker instance
	3.1.2. Starting a broker as a Linux service
	3.1.3. Starting a broker as a Windows service

	3.2. STOPPING BROKER INSTANCES
	3.2.1. Stopping a broker instance
	3.2.2. Stopping a broker instance gracefully

	3.3. AUDITING MESSAGES BY INTERCEPTING PACKETS
	3.3.1. Creating interceptors
	3.3.2. Configuring the broker to use interceptors
	3.3.3. Interceptors on the client side

	3.4. COMMAND LINE TOOLS

	CHAPTER 4. USING THE MANAGEMENT API
	4.1. METHODS FOR MANAGING AMQ BROKER USING THE MANAGEMENT API
	4.2. MANAGING AMQ BROKER USING JMX
	4.2.1. Configuring JMX management
	4.2.2. MBeanServer configuration
	4.2.3. How JMX is exposed with Jolokia
	4.2.4. Subscribing to JMX management notifications

	4.3. MANAGING AMQ BROKER USING THE JMS API
	4.3.1. Configuring broker management using JMS messages and the AMQ JMS Client
	4.3.2. Managing brokers using the JMS API and AMQ JMS Client

	4.4. MANAGEMENT OPERATIONS
	4.4.1. Broker management operations
	4.4.2. Address management operations
	4.4.3. Queue management operations
	4.4.4. Remote resource management operations

	4.5. MANAGEMENT NOTIFICATIONS
	4.6. USING MESSAGE COUNTERS
	4.6.1. Types of message counters
	4.6.2. Enabling message counters
	4.6.3. Retrieving message counters

	CHAPTER 5. MONITORING BROKER RUNTIME DATA USING PROMETHEUS
	5.1. OVERVIEW
	5.2. ENABLING THE PROMETHEUS PLUGIN FOR AMQ BROKER
	5.3. ACCESSING BROKER RUNTIME DATA USING PROMETHEUS

