
OpenShift Online 3

Developer Guide

OpenShift Online Developer Reference

Last Updated: 2020-03-31

OpenShift Online 3 Developer Guide

OpenShift Online Developer Reference

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

These topics help developers set up and configure a workstation to develop and deploy applications
in an OpenShift Online cloud environment with a command-line interface (CLI). This guide provide s
detailed instructions and examples to help developers:

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT
2.1. PLANNING YOUR DEVELOPMENT PROCESS

2.1.1. Overview
2.1.2. Using OpenShift Online as Your Development Environment
2.1.3. Bringing an Application to Deploy on OpenShift Online

2.2. CREATING NEW APPLICATIONS
2.2.1. Overview
2.2.2. Creating an Application Using the CLI

2.2.2.1. Creating an Application From Source Code
2.2.2.2. Creating an Application From an Image
2.2.2.3. Creating an Application From a Template
2.2.2.4. Further Modifying Application Creation

2.2.2.4.1. Specifying Environment Variables
2.2.2.4.2. Specifying Build Environment Variables
2.2.2.4.3. Specifying Labels
2.2.2.4.4. Viewing the Output Without Creation
2.2.2.4.5. Creating Objects With Different Names
2.2.2.4.6. Creating Objects in a Different Project
2.2.2.4.7. Creating Multiple Objects
2.2.2.4.8. Grouping Images and Source in a Single Pod

2.2.3. Creating an Application Using the Web Console
2.3. PROMOTING APPLICATIONS ACROSS ENVIRONMENTS

2.3.1. Overview
2.3.2. Application Components

2.3.2.1. API Objects
2.3.2.2. Images
2.3.2.3. Summary

2.3.3. Deployment Environments
2.3.3.1. Considerations
2.3.3.2. Summary

2.3.4. Methods and Tools
2.3.4.1. Managing API Objects

2.3.4.1.1. Exporting API Object State
2.3.4.1.2. Importing API Object State

2.3.4.1.2.1. Initial Creation
2.3.4.1.2.2. Iterative Modification

2.3.4.2. Managing Images and Image Streams
2.3.4.2.1. Moving Images

2.3.4.2.1.1. When Staging Environments Share a Registry
2.3.4.2.1.2. When Staging Environments Use Different Registries

2.3.4.2.2. Deploying
2.3.4.2.3. Automating Promotion Flows with Jenkins
2.3.4.2.4. Promotion Caveats

2.3.4.2.4.1. API Object References
2.3.4.2.4.2. Image Registry References

2.3.4.3. Summary
2.3.5. Scenarios and Examples

2.3.5.1. Setting up for Promotion
2.3.5.2. Repeatable Promotion Process

13

14
14
14
14
15
16
16
16
16
18
19
19

20
21
21
21
21
22
22
22
22
24
24
25
25
27
27
27
28
28
28
28
29
29
29
29
30
30
30
31
31
31
32
32
32
32
33
33
34

Table of Contents

1

. .

. .

. .

. .

2.3.5.3. Repeatable Promotion Process Using Jenkins

CHAPTER 3. AUTHENTICATION
3.1. WEB CONSOLE AUTHENTICATION
3.2. CLI AUTHENTICATION

CHAPTER 4. AUTHORIZATION
4.1. OVERVIEW
4.2. CHECKING IF USERS CAN CREATE PODS
4.3. DETERMINING WHAT YOU CAN DO AS AN AUTHENTICATED USER

CHAPTER 5. PROJECTS
5.1. OVERVIEW
5.2. CREATING A PROJECT

5.2.1. Using the Web Console
5.2.2. Using the CLI

5.3. VIEWING PROJECTS
5.4. CHECKING PROJECT STATUS
5.5. FILTERING BY LABELS
5.6. DELETING A PROJECT
5.7. PROJECT COLLABORATION IN OPENSHIFT ONLINE PRO

5.7.1. Collaboration Restrictions
5.7.2. Adding Collaborators
5.7.3. Granting Project Access Using the Web Console
5.7.4. Granting Project Access Using the CLI
5.7.5. Removing Collaborators

5.7.5.1. Removing Project Access Using the Web Console
5.7.5.2. Removing Project Access Using the CLI

CHAPTER 6. MIGRATING APPLICATIONS
6.1. OVERVIEW
6.2. MIGRATING DATABASE APPLICATIONS

6.2.1. Overview
6.2.2. Supported Databases
6.2.3. MySQL
6.2.4. PostgreSQL
6.2.5. MongoDB

6.3. MIGRATING WEB FRAMEWORK APPLICATIONS
6.3.1. Overview
6.3.2. Python
6.3.3. Ruby
6.3.4. PHP
6.3.5. Perl
6.3.6. Node.js
6.3.7. WordPress
6.3.8. Ghost
6.3.9. JBoss EAP
6.3.10. JBoss WS (Tomcat)
6.3.11. JBoss AS (Wildfly 10)
6.3.12. Supported JBoss Versions

6.4. QUICKSTART EXAMPLES
6.4.1. Overview
6.4.2. Workflow

6.5. CONTINUOUS INTEGRATION AND DEPLOYMENT (CI/CD)

36

38
38
38

40
40
40
40

42
42
42
42
43
43
44
45
46
46
47
47
48
48
49
49
49

50
50
50
50
51
51

53
55
57
57
57
57
58
58
59
60
60
61
61
61

62
62
62
63
64

OpenShift Online 3 Developer Guide

2

. .

6.5.1. Overview
6.5.2. Jenkins

6.6. WEBHOOKS AND ACTION HOOKS
6.6.1. Overview
6.6.2. Webhooks
6.6.3. Action Hooks

6.7. S2I TOOL
6.7.1. Overview
6.7.2. Creating a Container Image

6.8. SUPPORT GUIDE
6.8.1. Overview
6.8.2. Supported Databases
6.8.3. Supported Languages
6.8.4. Supported Frameworks
6.8.5. Supported Markers
6.8.6. Supported Environment Variables

CHAPTER 7. TUTORIALS
7.1. OVERVIEW
7.2. QUICKSTART TEMPLATES

7.2.1. Overview
7.2.2. Web Framework Quickstart Templates

7.3. RUBY ON RAILS
7.3.1. Overview
7.3.2. Local Workstation Setup

7.3.2.1. Setting Up the Database
7.3.3. Writing Your Application

7.3.3.1. Creating a Welcome Page
7.3.3.2. Configuring the Application for OpenShift Online
7.3.3.3. Storing Your Application in Git

7.3.4. Deploying Your Application to OpenShift Online
7.3.4.1. Creating the Database Service
7.3.4.2. Creating the Frontend Service
7.3.4.3. Creating a Route for Your Application

7.4. SETTING UP A NEXUS MIRROR FOR MAVEN
7.4.1. Introduction
7.4.2. Setting up Nexus

7.4.2.1. Using Probes to Check for Success
7.4.2.2. Adding Persistence to Nexus

7.4.3. Connecting to Nexus
7.4.4. Confirming Success
7.4.5. Additional Resources

7.5. OPENSHIFT PIPELINE BUILDS
7.5.1. Introduction
7.5.2. Creating the Jenkins Master
7.5.3. The Pipeline Build Configuration
7.5.4. The Jenkinsfile
7.5.5. Creating the Pipeline
7.5.6. Starting the Pipeline

7.6. BINARY BUILDS
7.6.1. Introduction

7.6.1.1. Use Cases
7.6.1.2. Limitations

64
64
64
64
64
65
65
65
66
66
66
66
66
67
67
69

70
70
70
70
70
71
71
71
71
72
73
73
74
74
75
75
77
77
77
77
78
78
79
79
79
79
79
80
80
80
83
83
84
84
84
85

Table of Contents

3

. .

7.6.2. Tutorials Overview
7.6.2.1. Tutorial: Building local code changes
7.6.2.2. Tutorial: Building private code
7.6.2.3. Tutorial: Binary artifacts from pipeline

CHAPTER 8. BUILDS
8.1. HOW BUILDS WORK

8.1.1. What Is a Build?
8.1.2. What Is a BuildConfig?

8.2. BASIC BUILD OPERATIONS
8.2.1. Starting a Build
8.2.2. Canceling a Build
8.2.3. Deleting a BuildConfig
8.2.4. Viewing Build Details
8.2.5. Accessing Build Logs

8.3. BUILD INPUTS
8.3.1. How Build Inputs Work
8.3.2. Image Source
8.3.3. Git Source

8.3.3.1. Using a Proxy
8.3.3.2. Source Clone Secrets

8.3.3.2.1. Automatically Adding a Source Clone Secret to a Build Configuration
8.3.3.2.2. Manually Adding Source Clone Secrets
8.3.3.2.3. .gitconfig File
8.3.3.2.4. .gitconfig File for Secured Git
8.3.3.2.5. Basic Authentication
8.3.3.2.6. SSH Key Authentication
8.3.3.2.7. Trusted Certificate Authorities
8.3.3.2.8. Combinations

8.3.4. Binary (Local) Source
8.3.5. Input Secrets

8.3.5.1. Adding Input Secrets
8.3.5.2. Source-to-Image Strategy

8.3.6. Using External Artifacts
8.3.7. Using Docker Credentials for Private Registries

8.4. BUILD OUTPUT
8.4.1. Build Output Overview
8.4.2. Output Image Environment Variables
8.4.3. Output Image Labels
8.4.4. Output Image Digest
8.4.5. Using Docker Credentials for Private Registries

8.5. BUILD STRATEGY OPTIONS
8.5.1. Source-to-Image Strategy Options

8.5.1.1. Force Pull
8.5.1.2. Incremental Builds
8.5.1.3. Overriding Builder Image Scripts
8.5.1.4. Environment Variables

8.5.1.4.1. Environment Files
8.5.1.4.2. BuildConfig Environment

8.5.1.5. Adding Secrets via Web Console
8.5.1.5.1. Enabling Pulling and Pushing

8.5.1.6. Ignoring Source Files
8.5.2. Pipeline Strategy Options

85
85
86
87

89
89
89
89
90
90
91

92
92
92
94
94
95
96
96
97
97
98
99
99

100
101
101
102
102
103
104
105
105
106
107
107
107
108
109
109
109
109
109
110
110
111
111
111
111

112
112
112

OpenShift Online 3 Developer Guide

4

. .

8.5.2.1. Providing the Jenkinsfile
8.5.2.2. Environment Variables

8.5.2.2.1. Mapping Between BuildConfig Environment Variables and Jenkins Job Parameters
8.6. BUILD ENVIRONMENT

8.6.1. Overview
8.6.2. Using Build Fields as Environment Variables
8.6.3. Using Container Resources as Environment Variables
8.6.4. Using Secrets as Environment Variables

8.7. TRIGGERING BUILDS
8.7.1. Build Triggers Overview
8.7.2. Webhook Triggers

8.7.2.1. GitHub Webhooks
8.7.2.2. GitLab Webhooks
8.7.2.3. Bitbucket Webhooks
8.7.2.4. Generic Webhooks
8.7.2.5. Displaying Webhook URLs

8.7.3. Image Change Triggers
8.7.4. Configuration Change Triggers

8.7.4.1. Setting Triggers Manually
8.8. BUILD HOOKS

8.8.1. Build Hooks Overview
8.8.2. Configuring Post Commit Build Hooks

8.8.2.1. Using the CLI
8.9. BUILD RUN POLICY

8.9.1. Build Run Policy Overview
8.9.2. Serial Run Policy
8.9.3. SerialLatestOnly Run Policy
8.9.4. Parallel Run Policy

8.10. ADVANCED BUILD OPERATIONS
8.10.1. Setting Build Resources
8.10.2. Setting Maximum Duration
8.10.3. Assigning Builds to Specific Nodes
8.10.4. Chaining Builds
8.10.5. Build Pruning

8.11. BUILD TROUBLESHOOTING
8.11.1. Requested Access to Resources Denied

CHAPTER 9. DEPLOYMENTS
9.1. HOW DEPLOYMENTS WORK

9.1.1. What Is a Deployment?
9.1.2. Creating a Deployment Configuration

9.2. BASIC DEPLOYMENT OPERATIONS
9.2.1. Starting a Deployment
9.2.2. Viewing a Deployment
9.2.3. Rolling Back a Deployment
9.2.4. Executing Commands Inside a Container
9.2.5. Viewing Deployment Logs
9.2.6. Setting Deployment Triggers

9.2.6.1. Configuration Change Trigger
9.2.6.2. ImageChange Trigger

9.2.6.2.1. Using the Command Line
9.2.7. Setting Deployment Resources
9.2.8. Manual Scaling

112
113
113
114
114
114
114
114
115
115
115
116
117
118
118

120
120
121
122
122
122
123
124
124
124
124
125
125
126
126
126
127
127
127
128
128

129
129
129
129
131
131
131
131
132
132
133
133
133
134
134
135

Table of Contents

5

. .

. .

. .

9.3. DEPLOYMENT STRATEGIES
9.3.1. What Are Deployment Strategies?
9.3.2. Rolling Strategy

9.3.2.1. Canary Deployments
9.3.2.2. When to Use a Rolling Deployment
9.3.2.3. Rolling Example

9.3.3. Recreate Strategy
9.3.3.1. When to Use a Recreate Deployment

9.3.4. Custom Strategy
9.3.5. Lifecycle Hooks

9.3.5.1. Pod-based Lifecycle Hook
9.3.5.2. Using the Command Line

9.4. ADVANCED DEPLOYMENT STRATEGIES
9.4.1. Advanced Deployment Strategies
9.4.2. Blue-Green Deployment

9.4.2.1. Using a Blue-Green Deployment
Using a Route and Two Services

9.4.3. A/B Deployment
9.4.3.1. Load Balancing for A/B Testing

9.4.3.1.1. Managing Weights Using the Web Console
9.4.3.1.2. Managing Weights Using the CLI
9.4.3.1.3. One Service, Multiple Deployment Configurations

9.4.4. Proxy Shard / Traffic Splitter
9.4.5. N-1 Compatibility
9.4.6. Graceful Termination

CHAPTER 10. TEMPLATES
10.1. OVERVIEW
10.2. UPLOADING A TEMPLATE
10.3. CREATING FROM TEMPLATES USING THE WEB CONSOLE
10.4. CREATING FROM TEMPLATES USING THE CLI

10.4.1. Labels
10.4.2. Parameters
10.4.3. Generating a List of Objects

10.5. MODIFYING AN UPLOADED TEMPLATE
10.6. USING THE INSTANT APP AND QUICKSTART TEMPLATES
10.7. WRITING TEMPLATES

10.7.1. Description
10.7.2. Labels
10.7.3. Parameters
10.7.4. Object List
10.7.5. Marking Templates as Bindable
10.7.6. Exposing Object Fields
10.7.7. Waiting for Template Readiness
10.7.8. Other Recommendations
10.7.9. Creating a Template from Existing Objects

CHAPTER 11. OPENING A REMOTE SHELL TO CONTAINERS
11.1. OVERVIEW
11.2. START A SECURE SHELL SESSION
11.3. SECURE SHELL SESSION HELP

CHAPTER 12. SERVICE ACCOUNTS
12.1. OVERVIEW

135
135
137
137
137
138
139
140
140
141

142
143
143
143
143
143
144
144
145
147
148
149
150
150
151

152
152
152
152
152
152
152
153
154
155
155
156
157
157
160
161
161

162
164
164

166
166
166
166

167
167

OpenShift Online 3 Developer Guide

6

. .

. .

12.2. USER NAMES AND GROUPS
12.3. DEFAULT SERVICE ACCOUNTS AND ROLES
12.4. MANAGING SERVICE ACCOUNTS
12.5. ENABLING SERVICE ACCOUNT AUTHENTICATION
12.6. MANAGING ALLOWED SECRETS
12.7. USING A SERVICE ACCOUNT’S CREDENTIALS INSIDE A CONTAINER
12.8. USING A SERVICE ACCOUNT’S CREDENTIALS EXTERNALLY

CHAPTER 13. MANAGING IMAGES
13.1. OVERVIEW
13.2. TAGGING IMAGES

13.2.1. Adding Tags to Image Streams
13.2.2. Recommended Tagging Conventions
13.2.3. Removing Tags from Image Streams
13.2.4. Referencing Images in Image Streams

13.3. IMAGE PULL POLICY
13.4. ACCESSING THE INTERNAL REGISTRY
13.5. USING IMAGE PULL SECRETS

13.5.1. Allowing Pods to Reference Images Across Projects
13.5.2. Allowing Pods to Reference Images from Other Secured Registries

13.5.2.1. Pulling from Private Registries with Delegated Authentication
13.6. IMPORTING TAG AND IMAGE METADATA

13.6.1. Importing Images from Insecure Registries
13.6.1.1. Image Stream Tag Policies

13.6.1.1.1. Insecure Tag Import Policy
13.6.1.1.2. Reference Policy

13.6.2. Importing Images from Private Registries
13.6.3. Adding Trusted Certificates for External Registries
13.6.4. Importing Images Across Projects
13.6.5. Creating an Image Stream by Manually Pushing an Image

13.7. TRIGGERING UPDATES ON IMAGE STREAM CHANGES
13.7.1. OpenShift Resources
13.7.2. Kubernetes Resources

13.8. WRITING IMAGE STREAM DEFINITIONS

CHAPTER 14. QUOTAS AND LIMIT RANGES
14.1. OVERVIEW
14.2. QUOTAS

14.2.1. Viewing Quotas
14.2.2. Resources Managed by Quota
14.2.3. Quota Scopes
14.2.4. Quota Enforcement
14.2.5. Requests Versus Limits

14.3. LIMIT RANGES
14.3.1. Viewing Limit Ranges
14.3.2. Container Limits
14.3.3. Pod Limits

14.4. COMPUTE RESOURCES
14.4.1. CPU Requests
14.4.2. Viewing Compute Resources
14.4.3. CPU Limits
14.4.4. Memory Requests
14.4.5. Memory Limits

167
168
168
169
169
170
171

172
172
172
172
173
174
174
176
177
178
178
178
179
180
182
182
182
183
184
184
184
185
186
186
186
187

189
189
189
189
193
194
195
195
196
196
198
199
199

200
201
201
201

202

Table of Contents

7

. .

. .

. .

. .

. .

14.4.6. Quality of Service Tiers
14.4.7. Specifying Compute Resources via CLI

CHAPTER 15. ROUTES
15.1. OVERVIEW
15.2. CREATING ROUTES
15.3. ALLOWING ROUTE ENDPOINTS TO CONTROL COOKIE NAMES
15.4. RESTRICTIONS
15.5. UPDATE DNS FOR CUSTOM ROUTES

CHAPTER 16. INTEGRATING EXTERNAL SERVICES
16.1. OVERVIEW
16.2. DEFINING A SERVICE FOR AN EXTERNAL DATABASE

16.2.1. Step 1: Define a Service
16.2.1.1. Using an IP address
16.2.1.2. Using an External Domain Name

16.2.2. Step 2: Consume a Service
16.3. EXTERNAL SAAS PROVIDER

16.3.1. Using an IP address and Endpoints
16.3.2. Using an External Domain Name

CHAPTER 17. SECRETS
17.1. USING SECRETS

17.1.1. Properties of Secrets
17.1.2. Creating Secrets
17.1.3. Types of Secrets
17.1.4. Updating Secrets

17.2. SECRETS IN VOLUMES AND ENVIRONMENT VARIABLES
17.3. IMAGE PULL SECRETS
17.4. SOURCE CLONE SECRETS
17.5. SERVICE SERVING CERTIFICATE SECRETS
17.6. RESTRICTIONS

17.6.1. Secret Data Keys
17.7. EXAMPLES
17.8. TROUBLESHOOTING

CHAPTER 18. CONFIGMAPS
18.1. OVERVIEW
18.2. CREATING CONFIGMAPS

18.2.1. Creating from Directories
18.2.2. Creating from Files
18.2.3. Creating from Literal Values

18.3. USE CASES: CONSUMING CONFIGMAPS IN PODS
18.3.1. Consuming in Environment Variables
18.3.2. Setting Command-line Arguments
18.3.3. Consuming in Volumes

18.4. EXAMPLE: CONFIGURING REDIS
18.5. RESTRICTIONS

CHAPTER 19. POD AUTOSCALING
19.1. OVERVIEW
19.2. SUPPORTED METRICS
19.3. AUTOSCALING
19.4. AUTOSCALING FOR CPU UTILIZATION

202
203

204
204
204
207
208
208

210
210
210
210
210
211
212
213
213
216

217
217
218
218
219
219
219

220
220
220
220
221
221

223

224
224
224
225
226
227
228
228
229
230
232
233

234
234
234
234
234

OpenShift Online 3 Developer Guide

8

. .

. .

. .

. .

. .

. .

. .

. .

19.5. AUTOSCALING FOR MEMORY UTILIZATION
19.6. VIEWING A HORIZONTAL POD AUTOSCALER

19.6.1. Viewing Horizontal Pod Autoscaler Status Conditions

CHAPTER 20. MANAGING VOLUMES
20.1. OVERVIEW
20.2. GENERAL CLI USAGE
20.3. ADDING VOLUMES

Examples
20.4. UPDATING VOLUMES

Examples
20.5. REMOVING VOLUMES

Examples
20.6. LISTING VOLUMES

Examples
20.7. SPECIFYING A SUB-PATH

CHAPTER 21. USING PERSISTENT VOLUMES
21.1. OVERVIEW
21.2. REQUESTING STORAGE
21.3. VOLUME AND CLAIM BINDING
21.4. CLAIMS AS VOLUMES IN PODS
21.5. VOLUME AND CLAIM PRE-BINDING

CHAPTER 22. STORAGE CLASSES
22.1. OVERVIEW

CHAPTER 23. SELECTOR AND LABEL VOLUME BINDING
23.1. OVERVIEW
23.2. MOTIVATION

CHAPTER 24. EXECUTING REMOTE COMMANDS
24.1. OVERVIEW
24.2. BASIC USAGE
24.3. PROTOCOL

CHAPTER 25. COPYING FILES TO OR FROM A CONTAINER
25.1. OVERVIEW
25.2. BASIC USAGE
25.3. BACKING UP AND RESTORING DATABASES
25.4. REQUIREMENTS
25.5. SPECIFYING THE COPY SOURCE
25.6. SPECIFYING THE COPY DESTINATION
25.7. DELETING FILES AT THE DESTINATION
25.8. CONTINUOUS SYNCING ON FILE CHANGE
25.9. ADVANCED RSYNC FEATURES

CHAPTER 26. PORT FORWARDING
26.1. OVERVIEW
26.2. BASIC USAGE
26.3. PROTOCOL

CHAPTER 27. SHARED MEMORY
27.1. OVERVIEW
27.2. POSIX SHARED MEMORY

236
237
238

241
241
241
242
243
243
244
244
244
245
245
245

247
247
247
247
248
248

250
250

251
251
251

252
252
252
252

254
254
254
254
255
255
256
256
256
256

257
257
257
257

259
259
259

Table of Contents

9

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 28. APPLICATION HEALTH
28.1. OVERVIEW
28.2. CONTAINER HEALTH CHECKS USING PROBES

CHAPTER 29. EVENTS
29.1. OVERVIEW
29.2. VIEWING EVENTS WITH THE CLI
29.3. VIEWING EVENTS IN THE CONSOLE
29.4. COMPREHENSIVE LIST OF EVENTS

CHAPTER 30. NOTIFICATIONS
30.1. OVERVIEW
30.2. HOW IT WORKS
30.3. CONFIGURING NOTIFICATIONS VIA THE WEB CONSOLE
30.4. STORING PREFERENCES

CHAPTER 31. MANAGING ENVIRONMENT VARIABLES
31.1. SETTING AND UNSETTING ENVIRONMENT VARIABLES
31.2. LIST ENVIRONMENT VARIABLES
31.3. SET ENVIRONMENT VARIABLES

31.3.1. Automatically Added Environment Variables
31.4. UNSET ENVIRONMENT VARIABLES

CHAPTER 32. JOBS
32.1. OVERVIEW
32.2. CREATING A JOB

32.2.1. Known Limitations
32.3. SCALING A JOB
32.4. SETTING MAXIMUM DURATION
32.5. JOB BACKOFF FAILURE POLICY

CHAPTER 33. OPENSHIFT PIPELINE
33.1. OVERVIEW
33.2. OPENSHIFT JENKINS CLIENT PLUG-IN

33.2.1. OpenShift DSL
33.3. JENKINS PIPELINE STRATEGY
33.4. JENKINSFILE
33.5. TUTORIAL
33.6. ADVANCED TOPICS

33.6.1. Disabling Jenkins AutoProvisioning
33.6.2. Configuring Slave Pods

CHAPTER 34. CRON JOBS
34.1. OVERVIEW
34.2. CREATING A CRON JOB
34.3. CLEANING UP AFTER A CRON JOB

CHAPTER 35. CREATE FROM URL
35.1. OVERVIEW
35.2. USING AN IMAGE STREAM AND IMAGE TAG

35.2.1. Query String Parameters
35.2.1.1. Example

35.3. USING A TEMPLATE
35.3.1. Query String Parameters

35.3.1.1. Example

261
261
261

264
264
264
264
264

273
273
273
273
275

276
276
276
276
277
277

278
278
278
279
279
279
279

281
281
281
281
281
281
282
282
282
282

283
283
283
284

286
286
286
286
287
287
287
288

OpenShift Online 3 Developer Guide

10

. .CHAPTER 36. APPLICATION MEMORY SIZING
36.1. OVERVIEW
36.2. BACKGROUND
36.3. STRATEGY
36.4. SIZING OPENJDK ON OPENSHIFT ONLINE

36.4.1. Overriding the JVM Maximum Heap Size
36.4.2. Encouraging the JVM to Release Unused Memory to the Operating System
36.4.3. Ensuring All JVM Processes Within a Container Are Appropriately Configured

36.5. FINDING THE MEMORY REQUEST AND LIMIT FROM WITHIN A POD
36.6. DIAGNOSING AN OOM KILL
36.7. DIAGNOSING AN EVICTED POD

289
289
289
290
290
291
291
291
292
292
294

Table of Contents

11

OpenShift Online 3 Developer Guide

12

https://www.patternfly.org/styles/terminology-and-wording/

CHAPTER 1. OVERVIEW
This guide is intended for application developers, and provides instructions for setting up and
configuring a workstation to develop and deploy applications in an OpenShift Online cloud environment.
This includes detailed instructions and examples to help developers:

1. Create new applications

2. Monitor and configure projects

3. Generate configurations using templates

4. Manage builds, including build strategy options and webhooks

5. Define deployments, including deployment strategies

6. Create and manage routes

7. Create and configure secrets

8. Integrate external services, such as databases and SaaS endpoints

9. Check application health using probes

CHAPTER 1. OVERVIEW

13

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

2.1. PLANNING YOUR DEVELOPMENT PROCESS

2.1.1. Overview

OpenShift Online is designed for building and deploying applications. Depending on how much you want
to involve OpenShift Online in your development process, you can choose to:

focus your development within an OpenShift Online project, using it to build an application from
scratch then continuously develop and manage its lifecycle, or

bring an application (e.g., binary, container image, source code) you have already developed in a
separate environment and deploy it onto OpenShift Online.

2.1.2. Using OpenShift Online as Your Development Environment

You can begin your application’s development from scratch using OpenShift Online directly. Consider
the following steps when planning this type of development process:

Initial Planning

What does your application do?

What programming language will it be developed in?

Access to OpenShift Online

Access OpenShift Online by logging in and creating an account at https://openshift.com/get-
started/.

Develop

Using your editor or IDE of choice, create a basic skeleton of an application. It should be
developed enough to tell OpenShift Online what kind of application it is .

Push the code to your Git repository.

Generate

Create a basic application using the oc new-app command. OpenShift Online generates build
and deployment configurations.

Manage

Start developing your application code.

Ensure your application builds successfully.

Continue to locally develop and polish your code.

OpenShift Online 3 Developer Guide

14

https://openshift.com/get-started/

Push your code to a Git repository.

Is any extra configuration needed? Explore the Developer Guide for more options.

Verify

You can verify your application in a number of ways. You can push your changes to your
application’s Git repository, and use OpenShift Online to rebuild and redeploy your application.
Alternatively, you can hot deploy using rsync to synchronize your code changes into a running
pod.

2.1.3. Bringing an Application to Deploy on OpenShift Online

Another possible application development strategy is to develop locally, then use OpenShift Online to
deploy your fully developed application. Use the following process if you plan to have application code
already, then want to build and deploy onto an OpenShift Online installation when completed:

Initial Planning

What does your application do?

What programming language will it be developed in?

Develop

Develop your application code using your editor or IDE of choice.

Build and test your application code locally.

Push your code to a Git repository.

Access to OpenShift Online

Access OpenShift Online by logging in and creating an account at
https://www.openshift.com/get-started/.

Generate

Create a basic application using the oc new-app command. OpenShift Online generates build
and deployment configurations.

Verify

Ensure that the application that you have built and deployed in the above Generate step is
successfully running on OpenShift Online.

Manage

Continue to develop your application code until you are happy with the results.

Rebuild your application in OpenShift Online to accept any newly pushed code.

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

15

https://www.openshift.com/get-started/

Is any extra configuration needed? Explore the Developer Guide for more options.

2.2. CREATING NEW APPLICATIONS

2.2.1. Overview

You can create a new OpenShift Online application from components including source or binary code,
images and/or templates by using either the OpenShift CLI or web console.

2.2.2. Creating an Application Using the CLI

2.2.2.1. Creating an Application From Source Code

The new-app command allows you to create applications from source code in a local or remote Git
repository.

To create an application using a Git repository in a local directory:

$ oc new-app /path/to/source/code

NOTE

If using a local Git repository, the repository should have a remote named origin that
points to a URL accessible by the OpenShift Online cluster. If there is no recognised
remote, new-app will create a binary build.

To create an application using a remote Git repository:

$ oc new-app https://github.com/sclorg/cakephp-ex

To create an application using a private remote Git repository:

$ oc new-app https://github.com/youruser/yourprivaterepo --source-secret=yoursecret

NOTE

If using a private remote Git repository, you can use the --source-secret flag to specify
an existing source clone secret that will get injected into your BuildConfig to access the
repository.

You can use a subdirectory of your source code repository by specifying a --context-dir flag. To create
an application using a remote Git repository and a context subdirectory:

$ oc new-app https://github.com/sclorg/s2i-ruby-container.git \
 --context-dir=2.0/test/puma-test-app

Also, when specifying a remote URL, you can specify a Git branch to use by appending #
<branch_name> to the end of the URL:

$ oc new-app https://github.com/openshift/ruby-hello-world.git#beta4

The new-app command creates a build configuration, which itself creates a new application image from

OpenShift Online 3 Developer Guide

16

The new-app command creates a build configuration, which itself creates a new application image from
your source code. The new-app command typically also creates a deployment configuration to deploy
the new image, and a service to provide load-balanced access to the deployment running your image.

OpenShift Online automatically detects whether the Pipeline or Sourcebuild strategy should be used,
and in the case of Source builds, detects an appropriate language builder image .

Build Strategy Detection

If a Jenkinsfile exists in the root or specified context directory of the source repository when creating a
new application, OpenShift Online generates a Pipeline build strategy . Otherwise, it generates a Source
build strategy.

You can override the build strategy by setting the --strategy flag to either pipeline or source.

$ oc new-app /home/user/code/myapp --strategy=source

NOTE

The oc command requires that files containing build sources are available in a remote Git
repository. For all source builds, you must use git remote -v.

Language Detection

If using the Source build strategy, new-app attempts to determine the language builder to use by the
presence of certain files in the root or specified context directory of the repository:

Table 2.1. Languages Detected by new-app

Language Files

dotnet project.json, *.csproj

jee pom.xml

nodejs app.json, package.json

perl cpanfile, index.pl

php composer.json, index.php

python requirements.txt, setup.py

ruby Gemfile, Rakefile, config.ru

scala build.sbt

golang Godeps, main.go

After a language is detected, new-app searches the OpenShift Online server for image stream tags
that have a supports annotation matching the detected language, or an image stream that matches the

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

17

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#builds
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#pipeline-build
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#source-build
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#image-streams

name of the detected language. If a match is not found, new-app searches the Docker Hub registry for
an image that matches the detected language based on name.

You can override the image the builder uses for a particular source repository by specifying the image
(either an image stream or container specification) and the repository, with a ~ as a separator. Note that
if this is done, build strategy detection and language detection are not carried out.

For example, to use the myproject/my-ruby image stream with the source in a remote repository:

$ oc new-app myproject/my-ruby~https://github.com/openshift/ruby-hello-world.git

To use the openshift/ruby-20-centos7:latest container image stream with the source in a local
repository:

$ oc new-app openshift/ruby-20-centos7:latest~/home/user/code/my-ruby-app

2.2.2.2. Creating an Application From an Image

You can deploy an application from an existing image. Images can come from image streams in the
OpenShift Online server, images in a specific registry or Docker Hub registry, or images in the local
Docker server.

IMPORTANT

OpenShift Online runs containers using an arbitrarily assigned user ID. This behavior
provides additional security against processes escaping the container due to a container
engine vulnerability and thereby achieving escalated permissions on the host node. Due
to this restriction, images that run as root will not deploy as expected on OpenShift
Online.

The new-app command attempts to determine the type of image specified in the arguments passed to
it. However, you can explicitly tell new-app whether the image is a Docker image (using the --docker-
image argument) or an image stream (using the -i|--image argument).

NOTE

If you specify an image from your local Docker repository, you must ensure that the same
image is available to the OpenShift Online cluster nodes.

For example, to create an application from the DockerHub MySQL image:

$ oc new-app mysql

To create an application using an image in a private registry, specify the full Docker image specification:

$ oc new-app myregistry:5000/example/myimage

NOTE

OpenShift Online 3 Developer Guide

18

https://registry.hub.docker.com
https://registry.hub.docker.com

NOTE

If the registry containing the image is not cluster administrators must ensure that the
Docker daemon on the OpenShift Online node hosts is run with the --insecure-registry
flag pointing to that registry. You must also tell new-app that the image comes from an
insecure registry with the --insecure-registry flag.

You can create an application from an existing image stream and optional image stream tag:

$ oc new-app my-stream:v1

2.2.2.3. Creating an Application From a Template

You can create an application from a previously stored template or from a template file, by specifying
the name of the template as an argument. For example, you can store a sample application template and
use it to create an application.

To create an application from a stored template:

$ oc create -f examples/sample-app/application-template-stibuild.json
$ oc new-app ruby-helloworld-sample

To directly use a template in your local file system, without first storing it in OpenShift Online, use the -
f|--file argument:

$ oc new-app -f examples/sample-app/application-template-stibuild.json

Template Parameters

When creating an application based on a template, use the -p|--param argument to set parameter values
defined by the template:

$ oc new-app ruby-helloworld-sample \
 -p ADMIN_USERNAME=admin -p ADMIN_PASSWORD=mypassword

You can store your parameters in a file, then use that file with --param-file when instantiating a
template. If you want to read the parameters from standard input, use --param-file=-:

$ cat helloworld.params
ADMIN_USERNAME=admin
ADMIN_PASSWORD=mypassword
$ oc new-app ruby-helloworld-sample --param-file=helloworld.params
$ cat helloworld.params | oc new-app ruby-helloworld-sample --param-file=-

2.2.2.4. Further Modifying Application Creation

The new-app command generates OpenShift Online objects that will build, deploy, and run the
application being created. Normally, these objects are created in the current project using names
derived from the input source repositories or the input images. However, new-app allows you to modify
this behavior.

The set of objects created by new-app depends on the artifacts passed as input: source repositories,
images, or templates.

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

19

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#image-stream-tag
https://github.com/openshift/origin/tree/master/examples/sample-app

Table 2.2. new-app Output Objects

Object Description

BuildConfig A BuildConfig is created for each source repository specified in the command line.
The BuildConfig specifies the strategy to use, the source location, and the build
output location.

ImageStreams For BuildConfig, two ImageStreams are usually created. One represents the input
image. With Source builds, this is the builder image. The second one represents the
output image. If a container image was specified as input to new-app, then an image
stream is created for that image as well.

DeploymentCon
fig

A DeploymentConfig is created either to deploy the output of a build, or a specified
image. The new-app command creates emptyDir volumes for all Docker volumes that
are specified in containers included in the resulting DeploymentConfig.

Service The new-app command attempts to detect exposed ports in input images. It uses the
lowest numeric exposed port to generate a service that exposes that port. In order to
expose a different port, after new-app has completed, simply use the oc expose
command to generate additional services.

Other Other objects may be generated when instantiating templates, according to the
template.

2.2.2.4.1. Specifying Environment Variables

When generating applications from a template, source, or an image, you can use the -e|--env argument
to pass environment variables to the application container at run time:

$ oc new-app openshift/postgresql-92-centos7 \
 -e POSTGRESQL_USER=user \
 -e POSTGRESQL_DATABASE=db \
 -e POSTGRESQL_PASSWORD=password

The variables can also be read from file using the --env-file argument:

$ cat postgresql.env
POSTGRESQL_USER=user
POSTGRESQL_DATABASE=db
POSTGRESQL_PASSWORD=password
$ oc new-app openshift/postgresql-92-centos7 --env-file=postgresql.env

Additionally, environment variables can be given on standard input by using --env-file=-:

$ cat postgresql.env | oc new-app openshift/postgresql-92-centos7 --env-file=-

See Managing Environment Variables for more information.

NOTE

OpenShift Online 3 Developer Guide

20

NOTE

Any BuildConfig objects created as part of new-app processing will not be updated with
environment variables passed via the -e|--env or --env-file argument.

2.2.2.4.2. Specifying Build Environment Variables

When generating applications from a template, source, or an image, you can use the --build-env
argument to pass environment variables to the build container at run time:

$ oc new-app openshift/ruby-23-centos7 \
 --build-env HTTP_PROXY=http://myproxy.net:1337/ \
 --build-env GEM_HOME=~/.gem

The variables can also be read from a file using the --build-env-file argument:

$ cat ruby.env
HTTP_PROXY=http://myproxy.net:1337/
GEM_HOME=~/.gem
$ oc new-app openshift/ruby-23-centos7 --build-env-file=ruby.env

Additionally, environment variables can be given on standard input by using --build-env-file=-:

$ cat ruby.env | oc new-app openshift/ruby-23-centos7 --build-env-file=-

2.2.2.4.3. Specifying Labels

When generating applications from source, images, or templates, you can use the -l|--label argument to
add labels to the created objects. Labels make it easy to collectively select, configure, and delete
objects associated with the application.

$ oc new-app https://github.com/openshift/ruby-hello-world -l name=hello-world

2.2.2.4.4. Viewing the Output Without Creation

To see a dry-run of what new-app will create, you can use the -o|--output argument with a yaml or json
value. You can then use the output to preview the objects that will be created, or redirect it to a file that
you can edit. Once you are satisfied, you can use oc create to create the OpenShift Online objects.

To output new-app artifacts to a file, edit them, then create them:

$ oc new-app https://github.com/openshift/ruby-hello-world \
 -o yaml > myapp.yaml
$ vi myapp.yaml
$ oc create -f myapp.yaml

2.2.2.4.5. Creating Objects With Different Names

Objects created by new-app are normally named after the source repository, or the image used to
generate them. You can set the name of the objects produced by adding a --name flag to the
command:

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

21

$ oc new-app https://github.com/openshift/ruby-hello-world --name=myapp

2.2.2.4.6. Creating Objects in a Different Project

Normally, new-app creates objects in the current project. However, you can create objects in a different
project that you have access to using the -n|--namespace argument:

$ oc new-app https://github.com/openshift/ruby-hello-world -n myproject

2.2.2.4.7. Creating Multiple Objects

The new-app command allows creating multiple applications specifying multiple parameters to new-
app. Labels specified in the command line apply to all objects created by the single command.
Environment variables apply to all components created from source or images.

To create an application from a source repository and a Docker Hub image:

$ oc new-app https://github.com/openshift/ruby-hello-world mysql

NOTE

If a source code repository and a builder image are specified as separate arguments,
new-app uses the builder image as the builder for the source code repository. If this is
not the intent, specify the required builder image for the source using the ~ separator.

2.2.2.4.8. Grouping Images and Source in a Single Pod

The new-app command allows deploying multiple images together in a single pod. In order to specify
which images to group together, use the + separator. The --group command line argument can also be
used to specify the images that should be grouped together. To group the image built from a source
repository with other images, specify its builder image in the group:

$ oc new-app ruby+mysql

To deploy an image built from source and an external image together:

$ oc new-app \
 ruby~https://github.com/openshift/ruby-hello-world \
 mysql \
 --group=ruby+mysql

2.2.3. Creating an Application Using the Web Console

1. While in the desired project, click Add to Project:

OpenShift Online 3 Developer Guide

22

2. Select either a builder image from the list of images in your project, or from the service catalog:

NOTE

Only image stream tags that have the builder tag listed in their annotations
appear in this list, as demonstrated here:

kind: "ImageStream"

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

23

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#image-streams

1

apiVersion: "v1"
metadata:
 name: "ruby"
 creationTimestamp: null
spec:
 dockerImageRepository: "registry.access.redhat.com/openshift3/ruby-20-rhel7"
 tags:
 -
 name: "2.0"
 annotations:
 description: "Build and run Ruby 2.0 applications"
 iconClass: "icon-ruby"
 tags: "builder,ruby" 1
 supports: "ruby:2.0,ruby"
 version: "2.0"

Including builder here ensures this ImageStreamTag appears in the web console as a
builder.

3. Modify the settings in the new application screen to configure the objects to support your
application:

2.3. PROMOTING APPLICATIONS ACROSS ENVIRONMENTS

2.3.1. Overview

Application promotion means moving an application through various runtime environments, typically
with an increasing level of maturity. For example, an application might start out in a development
environment, then be promoted to a stage environment for further testing, before finally being

OpenShift Online 3 Developer Guide

24

promoted into a production environment. As changes are introduced in the application, again the
changes will start in development and be promoted through stage and production.

The "application" today is more than just the source code written in Java, Perl, Python, etc. It is more
now than the static web content, the integration scripts, or the associated configuration for the
language specific runtimes for the application. It is more than the application specific archives consumed
by those language specific runtimes.

In the context of OpenShift Online and its combined foundation of Kubernetes and Docker, additional
application artifacts include:

Docker container images with their rich set of metadata and associated tooling.

Environment variables that are injected into containers for application use.

API objects (also known as resource definitions; see Core Concepts) of OpenShift Online,
which:

are injected into containers for application use.

dictate how OpenShift Online manages containers and pods.

In examining how to promote applications in OpenShift Online, this topic will:

Elaborate on these new artifacts introduced to the application definition.

Describe how you can demarcate the different environments for your application promotion
pipeline.

Discuss methodologies and tools for managing these new artifacts.

Provide examples that apply the various concepts, constructs, methodologies, and tools to
application promotion.

2.3.2. Application Components

2.3.2.1. API Objects

With regard to OpenShift Online and Kubernetes resource definitions (the items newly introduced to
the application inventory), there are a couple of key design points for these API objects that are relevant
to revisit when considering the topic of application promotion.

First, as highlighted throughout OpenShift Online documentation, every API object can be expressed
via either JSON or YAML, making it easy to manage these resource definitions via traditional source
control and scripting.

Also, the API objects are designed such that there are portions of the object which specify the desired
state of the system, and other portions which reflect the status or current state of the system. This can
be thought of as inputs and outputs. The input portions, when expressed in JSON or YAML, in particular
are items that fit naturally as source control managed (SCM) artifacts.

NOTE

Remember, the input or specification portions of the API objects can be totally static or
dynamic in the sense that variable substitution via template processing is possible on
instantiation.

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

25

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#architecture-core-concepts-index

The result of these points with respect to API objects is that with their expression as JSON or YAML
files, you can treat the configuration of the application as code.

Conceivably, almost any of the API objects may be considered an application artifact by your
organization. Listed below are the objects most commonly associated with deploying and managing an
application:

BuildConfigs

This is a special case resource in the context of application promotion. While a BuildConfig is
certainly a part of the application, especially from a developer’s perspective, typically the
BuildConfig is not promoted through the pipeline. It produces the Image that is promoted (along
with other items) through the pipeline.

Templates

In terms of application promotion, Templates can serve as the starting point for setting up resources
in a given staging environment, especially with the parameterization capabilities. Additional post-
instantiation modifications are very conceivable though when applications move through a
promotion pipeline. See Scenarios and Examples for more on this.

Routes

These are the most typical resources that differ stage to stage in the application promotion pipeline,
as tests against different stages of an application access that application via its Route. Also,
remember that you have options with regard to manual specification or auto-generation of host
names, as well as the HTTP-level security of the Route.

Services

If reasons exist to avoid Routers and Routes at given application promotion stages (perhaps for
simplicity’s sake for individual developers at early stages), an application can be accessed via the
Cluster IP address and port. If used, some management of the address and port between stages
could be warranted.

Endpoints

Certain application-level services (e.g., database instances in many enterprises) may not be managed
by OpenShift Online. If so, then creating those Endpoints yourself, along with the necessary
modifications to the associated Service (omitting the selector field on the Service) are activities
that are either duplicated or shared between stages (based on how you delineate your environment).

Secrets

The sensitive information encapsulated by Secrets are shared between staging environments when
the corresponding entity (either a Service managed by OpenShift Online or an external service
managed outside of OpenShift Online) the information pertains to is shared. If there are different
versions of the said entity in different stages of your application promotion pipeline, it may be
necessary to maintain a distinct Secret in each stage of the pipeline or to make modifications to it as
it traverses through the pipeline. Also, take care that if you are storing the Secret as JSON or YAML
in an SCM, some form of encryption to protect the sensitive information may be warranted.

DeploymentConfigs

This object is the primary resource for defining and scoping the environment for a given application
promotion pipeline stage; it controls how your application starts up. While there are aspects of it that
will be common across all the different stage, undoubtedly there will be modifications to this object
as it progresses through your application promotion pipeline to reflect differences in the
environments for each stage, or changes in behavior of the system to facilitate testing of the
different scenarios your application must support.

ImageStreams, ImageStreamTags, and ImageStreamImage

Detailed in the Images and Image Streams sections, these objects are central to the OpenShift
Online additions around managing container images.

ServiceAccounts and RoleBindings

OpenShift Online 3 Developer Guide

26

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#image-streams

Management of permissions to other API objects within OpenShift Online, as well as the external
services, are intrinsic to managing your application. Similar to Secrets, the ServiceAccounts and
RoleBindings objects can vary in how they are shared between the different stages of your
application promotion pipeline based on your needs to share or isolate those different environments.

PersistentVolumeClaims

Relevant to stateful services like databases, how much these are shared between your different
application promotion stages directly correlates to how your organization shares or isolates the
copies of your application data.

ConfigMaps

A useful decoupling of Pod configuration from the Pod itself (think of an environment variable style
configuration), these can either be shared by the various staging environments when consistent Pod
behavior is desired. They can also be modified between stages to alter Pod behavior (usually as
different aspects of the application are vetted at different stages).

2.3.2.2. Images

As noted earlier, container images are now artifacts of your application. In fact, of the new applications
artifacts, images and the management of images are the key pieces with respect to application
promotion. In some cases, an image might encapsulate the entirety of your application, and the
application promotion flow consists solely of managing the image.

Images are not typically managed in a SCM system, just as application binaries were not in previous
systems. However, just as with binaries, installable artifacts and corresponding repositories (that is,
RPMs, RPM repositories, Nexus, etc.) arose with similar semantics to SCMs, similar constructs and
terminology around image management that are similar to SCMs have arisen:

Image registry == SCM server

Image repository == SCM repository

As images reside in registries, application promotion is concerned with ensuring the appropriate image
exists in a registry that can be accessed from the environment that needs to run the application
represented by that image.

Rather than reference images directly, application definitions typically abstract the reference into an
image stream. This means the image stream will be another API object that makes up the application
components. For more details on image streams, see Core Concepts.

2.3.2.3. Summary

Now that the application artifacts of note, images and API objects, have been detailed in the context of
application promotion within OpenShift Online, the notion of where you run your application in the
various stages of your promotion pipeline is next the point of discussion.

2.3.3. Deployment Environments

A deployment environment, in this context, describes a distinct space for an application to run during a
particular stage of a CI/CD pipeline. Typical environments include development, test, stage, and
production, for example. The boundaries of an environment can be defined in different ways, such as:

Via labels and unique naming within a single project.

Via distinct projects within a cluster.

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

27

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#image-streams

Via distinct clusters.

And it is conceivable that your organization leverages all three.

2.3.3.1. Considerations

Typically, you will consider the following heuristics in how you structure the deployment environments:

How much resource sharing the various stages of your promotion flow allow

How much isolation the various stages of your promotion flow require

How centrally located (or geographically dispersed) the various stages of your promotion flow
are

Also, some important reminders on how OpenShift Online clusters and projects relate to image
registries:

Multiple project in the same cluster can access the same image streams.

Multiple clusters can access the same external registries.

Clusters can only share a registry if the OpenShift Online internal image registry is exposed via a
route.

2.3.3.2. Summary

After deployment environments are defined, promotion flows with delineation of stages within a pipeline
can be implemented. The methods and tools for constructing those promotion flow implementations are
the next point of discussion.

2.3.4. Methods and Tools

Fundamentally, application promotion is a process of moving the aforementioned application
components from one environment to another. The following subsections outline tools that can be used
to move the various components by hand, before advancing to discuss holistic solutions for automating
application promotion.

NOTE

There are a number of insertion points available during both the build and deployment
processes. They are defined within BuildConfig and DeploymentConfig API objects.
These hooks allow for the invocation of custom scripts which can interact with deployed
components such as databases, and with the OpenShift Online cluster itself.

Therefore, it is possible to use these hooks to perform component management
operations that effectively move applications between environments, for example by
performing an image tag operation from within a hook. However, the various hook points
are best suited to managing an application’s lifecycle within a given environment (for
example, using them to perform database schema migrations when a new version of the
application is deployed), rather than to move application components between
environments.

2.3.4.1. Managing API Objects

Resources, as defined in one environment, will be exported as JSON or YAML file content in preparation

OpenShift Online 3 Developer Guide

28

Resources, as defined in one environment, will be exported as JSON or YAML file content in preparation
for importing it into a new environment. Therefore, the expression of API objects as JSON or YAML
serves as the unit of work as you promote API objects through your application pipeline. The oc CLI is
used to export and import this content.

TIP

While not required for promotion flows with OpenShift Online, with the JSON or YAML stored in files,
you can consider storing and retrieving the content from a SCM system. This allows you to leverage the
versioning related capabilities of the SCM, including the creation of branches, and the assignment of
and query on various labels or tags associated to versions.

2.3.4.1.1. Exporting API Object State

API object specifications should be captured with oc export. This operation removes environment
specific data from the object definitions (e.g., current namespace or assigned IP addresses), allowing
them to be recreated in different environments (unlike oc get operations, which output an unfiltered
state of the object).

Use of oc label, which allows for adding, modifying, or removing labels on API objects, can prove useful
as you organize the set of object collected for promotion flows, because labels allow for selection and
management of groups of pods in a single operation. This makes it easier to export the correct set of
objects and, because the labels will carry forward when the objects are created in a new environment,
they also make for easier management of the application components in each environment.

NOTE

API objects often contain references such as a DeploymentConfig that references a
Secret. When moving an API object from one environment to another, you must ensure
that such references are also moved to the new environment.

Similarly, API objects such as a DeploymentConfig often contain references to
ImageStreams that reference an external registry. When moving an API object from one
environment to another, you must ensure such references are resolvable within the new
environment, meaning that the reference must be resolvable and the ImageStream must
reference an accessible registry in the new environment. See Moving Images and
Promotion Caveats for more detail.

2.3.4.1.2. Importing API Object State

2.3.4.1.2.1. Initial Creation

The first time an application is being introduced into a new environment, it is sufficient to take the JSON
or YAML expressing the specifications of your API objects and run oc create to create them in the
appropriate environment. When using oc create, keep the --save-config option in mind. Saving
configuration elements on the object in its annotation list facilitates the later use of oc apply to modify
the object.

2.3.4.1.2.2. Iterative Modification

After the various staging environments are initially established, as promotion cycles commence and the
application moves from stage to stage, the updates to your application can include modification of the
API objects that are part of the application. Changes in these API objects are conceivable since they
represent the configuration for the OpenShift Online system. Motivations for such changes include:

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

29

Accounting for environmental differences between staging environments.

Verifying various scenarios your application supports.

Transfer of the API objects to the next stage’s environment is accomplished via use of the oc CLI. While
a rich set of oc commands which modify API objects exist, this topic focuses on oc apply, which
computes and applies differences between objects.

Specifically, you can view oc apply as a three-way merge that takes in files or stdin as the input along
with an existing object definition. It performs a three-way merge between:

1. the input into the command,

2. the current version of the object, and

3. the most recent user specified object definition stored as an annotation in the current object.

The existing object is then updated with the result.

If further customization of the API objects is necessary, as in the case when the objects are not
expected to be identical between the source and target environments, oc commands such as oc set can
be used to modify the object after applying the latest object definitions from the upstream
environment.

Some specific usages are cited in Scenarios and Examples.

2.3.4.2. Managing Images and Image Streams

Images in OpenShift Online are managed via a series of API objects as well. However, managing images
are so central to application promotion that discussion of the tools and API objects most directly tied to
images warrant separate discussion. Both manual and automated forms exist to assist you in managing
image promotion (the propagation of images through your pipeline).

2.3.4.2.1. Moving Images

NOTE

For all the detailed caveats around managing images, refer to the Managing Images topic.

2.3.4.2.1.1. When Staging Environments Share a Registry

When your staging environments share the same OpenShift Online registry, for example if they are all on
the same OpenShift Online cluster, there are two operations that are the basic means of moving your
images between the stages of your application promotion pipeline:

1. First, analogous to docker tag and git tag, the oc tag command allows you to update an
OpenShift Online image stream with a reference to a specific image. It also allows you to copy
references to specific versions of an image from one image stream to another, even across
different projects in a cluster.

2. Second, the oc import-image serves as a bridge between external registries and image
streams. It imports the metadata for a given image from the registry and stores it into the image
stream as an image stream tag. Various BuildConfigs and DeploymentConfigs in your project
can reference those specific images.

OpenShift Online 3 Developer Guide

30

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#image-stream-tag

2.3.4.2.1.2. When Staging Environments Use Different Registries

More advanced usage occurs when your staging environments leverage different OpenShift Online
registries. Accessing the Internal Registry spells out the steps in detail, but in summary you can:

1. Use the docker command in conjunction which obtaining the OpenShift Online access token to
supply into your docker login command.

2. After being logged into the OpenShift Online registry, use docker pull, docker tag and docker
push to transfer the image.

3. After the image is available in the registry of the next environment of your pipeline, use oc tag
as needed to populate any image streams.

2.3.4.2.2. Deploying

Whether changing the underlying application image or the API objects that configure the application, a
deployment is typically necessary to pick up the promoted changes. If the images for your application
change (for example, due to an oc tag operation or a docker push as part of promoting an image from
an upstream environment), ImageChangeTriggers on your DeploymentConfig can trigger the new
deployment. Similarly, if the DeploymentConfig API object itself is being changed, a
ConfigChangeTrigger can initiate a deployment when the API object is updated by the promotion step
(for example, oc apply).

Otherwise, the oc commands that facilitate manual deployment include:

oc rollout: The new approach to manage deployments, including pause and resume semantics
and richer features around managing history.

oc rollback: Allows for reversion to a previous deployment; in the promotion scenario, if testing
of a new version encounters issues, confirming it still works with the previous version could be
warranted.

2.3.4.2.3. Automating Promotion Flows with Jenkins

After you understand the components of your application that need to be moved between environments
when promoting it and the steps required to move the components, you can start to orchestrate and
automate the workflow. OpenShift Online provides a Jenkins image and plug-ins to help with this
process.

The OpenShift Online Jenkins image is detailed in Using Images, including the set of OpenShift Online-
centric plug-ins that facilitate the integration of Jenkins, and Jenkins Pipelines. Also, the Pipeline build
strategy facilitates the integration between Jenkins Pipelines and OpenShift Online. All of these focus
on enabling various aspects of CI/CD, including application promotion.

When moving beyond manual execution of application promotion steps, the Jenkins-related features
provided by OpenShift Online should be kept in mind:

OpenShift Online provides a Jenkins image that is heavily customized to greatly ease
deployment in an OpenShift Online cluster.

The Jenkins image contains the OpenShift Pipeline plug-in, which provides building blocks for
implementing promotion workflows. These building blocks include the triggering of Jenkins jobs
as image streams change, as well as the triggering of builds and deployments within those jobs.

BuildConfigs employing the OpenShift Online Jenkins Pipeline build strategy enable execution
of Jenkinsfile-based Jenkins Pipeline jobs. Pipeline jobs are the strategic direction within

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

31

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/using_images/#using-images-other-images-jenkins

Jenkins for complex promotion flows and can leverage the steps provided by the OpenShift
Pipeline Plug-in.

2.3.4.2.4. Promotion Caveats

2.3.4.2.4.1. API Object References

API objects can reference other objects. A common use for this is to have a DeploymentConfig that
references an image stream, but other reference relationships may also exist.

When copying an API object from one environment to another, it is critical that all references can still be
resolved in the target environment. There are a few reference scenarios to consider:

The reference is "local" to the project. In this case, the referenced object resides in the same
project as the object that references it. Typically the correct thing to do is to ensure that you
copy the referenced object into the target environment in the same project as the object
referencing it.

The reference is to an object in another project. This is typical when an image stream in a shared
project is used by multiple application projects (see Managing Images). In this case, when
copying the referencing object to the new environment, you must update the reference as
needed so it can be resolved in the target environment. That may mean:

Changing the project the reference points to, if the shared project has a different name in
the target environment.

Moving the referenced object from the shared project into the local project in the target
environment and updating the reference to point to the local project when moving the
primary object into the target environment.

Some other combination of copying the referenced object into the target environment and
updating references to it.

In general, the guidance is to consider objects referenced by the objects being copied to a new
environment and ensure the references are resolvable in the target environment. If not, take appropriate
action to fix the references and make the referenced objects available in the target environment.

2.3.4.2.4.2. Image Registry References

Image streams point to image repositories to indicate the source of the image they represent. When an
image stream is moved from one environment to another, it is important to consider whether the
registry and repository reference should also change:

If different image registries are used to assert isolation between a test environment and a
production environment.

If different image repositories are used to separate test and production-ready images.

If either of these are the case, the image stream must be modified when it is copied from the source
environment to the target environment so that it resolves to the correct image. This is in addition to
performing the steps described in Scenarios and Examples to copy the image from one registry and
repository to another.

2.3.4.3. Summary

At this point, the following have been defined:

OpenShift Online 3 Developer Guide

32

New application artifacts that make up a deployed application.

Correlation of application promotion activities to tools and concepts provided by OpenShift
Online.

Integration between OpenShift Online and the CI/CD pipeline engine Jenkins.

Putting together examples of application promotion flows within OpenShift Online is the final step for
this topic.

2.3.5. Scenarios and Examples

Having defined the new application artifact components introduced by the Docker, Kubernetes, and
OpenShift Online ecosystems, this section covers how to promote those components between
environments using the mechanisms and tools provided by OpenShift Online.

Of the components making up an application, the image is the primary artifact of note. Taking that
premise and extending it to application promotion, the core, fundamental application promotion pattern
is image promotion, where the unit of work is the image. The vast majority of application promotion
scenarios entails management and propagation of the image through the promotion pipeline.

Simpler scenarios solely deal with managing and propagating the image through the pipeline. As the
promotion scenarios broaden in scope, the other application artifacts, most notably the API objects, are
included in the inventory of items managed and propagated through the pipeline.

This topic lays out some specific examples around promoting images as well as API objects, using both
manual and automated approaches. But first, note the following on setting up the environment(s) for
your application promotion pipeline.

2.3.5.1. Setting up for Promotion

After you have completed development of the initial revision of your application, the next logical step is
to package up the contents of the application so that you can transfer to the subsequent staging
environments of your promotion pipeline.

1. First, group all the API objects you view as transferable and apply a common label to them:

labels:
 promotion-group: <application_name>

As previously described, the oc label command facilitates the management of labels with your
various API objects.

TIP

If you initially define your API objects in a OpenShift Online template, you can easily ensure all
related objects have the common label you will use to query on when exporting in preparation
for a promotion.

2. You can leverage that label on subsequent queries. For example, consider the following set of
oc command invocations that would then achieve the transfer of your application’s API objects:

$ oc login <source_environment>
$ oc project <source_project>
$ oc export dc,is,svc,route,secret,sa -l promotion-group=<application_name> -o yaml >

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

33

1

export.yaml
$ oc login <target_environment>
$ oc new-project <target_project> 1
$ oc create -f export.yaml

Alternatively, oc project <target_project> if it already exists.

NOTE

On the oc export command, whether or not you include the is type for image
streams depends on how you choose to manage images, image streams, and
registries across the different environments in your pipeline. The caveats around
this are discussed below. See also the Managing Images topic.

3. You must also get any tokens necessary to operate against each registry used in the different
staging environments in your promotion pipeline. For each environment:

a. Log in to the environment:

$ oc login <each_environment_with_a_unique_registry>

b. Get the access token with:

$ oc whoami -t

c. Copy and paste the token value for later use.

2.3.5.2. Repeatable Promotion Process

After the initial setup of the different staging environments for your pipeline, a set of repeatable steps
to validate each iteration of your application through the promotion pipeline can commence. These
basic steps are taken each time the image or API objects in the source environment are changed:

Move updated images → Move updated API objects → Apply environment specific customizations

1. Typically, the first step is promoting any updates to the image(s) associated with your
application to the next stage in the pipeline. As noted above, the key differentiator in promoting
images is whether the OpenShift Online registry is shared or not between staging
environments.

a. If the registry is shared, simply leverage oc tag:

$ oc tag <project_for_stage_N>/<imagestream_name_for_stage_N>:<tag_for_stage_N>
<project_for_stage_N+1>/<imagestream_name_for_stage_N+1>:<tag_for_stage_N+1>

b. If the registry is not shared, you can leverage the access tokens for each of your promotion
pipeline registries as you log into both the source and destination registries, pulling, tagging,
and pushing your application images accordingly:

i. Log in to the source environment registry:

$ docker login -u <username> -e <any_email_address> -p <token_value>
<src_env_registry_ip>:<port>

OpenShift Online 3 Developer Guide

34

ii. Pull your application’s image:

$ docker pull <src_env_registry_ip>:<port>/<namespace>/<image name>:<tag>

iii. Tag your application’s image to the destination registry’s location, updating namespace,
name, and tag as needed to conform to the destination staging environment:

$ docker tag <src_env_registry_ip>:<port>/<namespace>/<image name>:<tag>
<dest_env_registry_ip>:<port>/<namespace>/<image name>:<tag>

iv. Log into the destination staging environment registry:

$ docker login -u <username> -e <any_email_address> -p <token_value>
<dest_env_registry_ip>:<port>

v. Push the image to its destination:

$ docker push <dest_env_registry_ip>:<port>/<namespace>/<image name>:<tag>

TIP

To automatically import new versions of an image from an external registry, the oc tag
command has a --scheduled option. If used, the image the ImageStreamTag
references will be periodically pulled from the registry hosting the image.

2. Next, there are the cases where the evolution of your application necessitates fundamental
changes to your API objects or additions and deletions from the set of API objects that make up
the application. When such evolution in your application’s API objects occurs, the OpenShift
Online CLI provides a broad range of options to transfer to changes from one staging
environment to the next.

a. Start in the same fashion as you did when you initially set up your promotion pipeline:

$ oc login <source_environment>
$ oc project <source_project>
$ oc export dc,is,svc,route,secret,sa -l promotion-group=<application_name> -o yaml >
export.yaml
$ oc login <target_environment>
$ oc <target_project>

b. Rather than simply creating the resources in the new environment, update them. You can do
this a few different ways:

i. The more conservative approach is to leverage oc apply and merge the new changes
to each API object in the target environment. In doing so, you can --dry-run=true option
and examine the resulting objects prior to actually changing the objects:

$ oc apply -f export.yaml --dry-run=true

If satisfied, actually run the apply command:

$ oc apply -f export.yaml

The apply command optionally takes additional arguments that help with more

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

35

The apply command optionally takes additional arguments that help with more
complicated scenarios. See oc apply --help for more details.

ii. Alternatively, the simpler but more aggressive approach is to leverage oc replace.
There is no dry run with this update and replace. In the most basic form, this involves
executing:

$ oc replace -f export.yaml

As with apply, replace optionally takes additional arguments for more sophisticated
behavior. See oc replace --help for more details.

3. The previous steps automatically handle new API objects that were introduced, but if API
objects were deleted from the source environment, they must be manually deleted from the
target environment using oc delete.

4. Tuning of the environment variables cited on any of the API objects may be necessary as the
desired values for those may differ between staging environments. For this, use oc set env:

$ oc set env <api_object_type>/<api_object_ID> <env_var_name>=<env_var_value>

5. Finally, trigger a new deployment of the updated application using the oc rollout command or
one of the other mechanisms discussed in the Deployments section above.

2.3.5.3. Repeatable Promotion Process Using Jenkins

The OpenShift Sample job defined in the Jenkins Docker Image for OpenShift Online is an example of
image promotion within OpenShift Online within the constructs of Jenkins. Setup for this sample is
located in the OpenShift Origin source repository .

This sample includes:

Use of Jenkins as the CI/CD engine.

Use of the OpenShift Pipeline plug-in for Jenkins. This plug-in provides a subset of the
functionality provided by the oc CLI for OpenShift Online packaged as Jenkins Freestyle and
DSL Job steps. Note that the oc binary is also included in the Jenkins Docker Image for
OpenShift Online, and can also be used to interact with OpenShift Online in Jenkins jobs.

The OpenShift Online-provided templates for Jenkins. There is a template for both ephemeral
and persistent storage.

A sample application: defined in the OpenShift Origin source repository , this application
leverages ImageStreams, ImageChangeTriggers, ImageStreamTags, BuildConfigs, and
separate DeploymentConfigs and Services corresponding to different stages in the
promotion pipeline.

The following examines the various pieces of the OpenShift Sample job in more detail:

1. The first step is the equivalent of an oc scale dc frontend --replicas=0 call. This step is
intended to bring down any previous versions of the application image that may be running.

2. The second step is the equivalent of an oc start-build frontend call.

3. The third step is the equivalent of an oc rollout latest dc/frontend call.

4. The fourth step is the "test" for this sample. It ensures that the associated service for this

OpenShift Online 3 Developer Guide

36

https://github.com/openshift/jenkins/blob/master/2/contrib/openshift/configuration/jobs/OpenShift Sample/config.xml
https://github.com/openshift/jenkins
https://github.com/openshift/origin/blob/master/examples/jenkins/README.md
https://github.com/openshift/origin/blob/master/examples/jenkins/application-template.json
https://github.com/openshift/jenkins/blob/master/2/contrib/openshift/configuration/jobs/OpenShift Sample/config.xml#L15-L21
https://github.com/openshift/jenkins/blob/master/2/contrib/openshift/configuration/jobs/OpenShift Sample/config.xml#L23-L29
https://github.com/openshift/jenkins/blob/master/2/contrib/openshift/configuration/jobs/OpenShift Sample/config.xml#L31-L39

4. The fourth step is the "test" for this sample. It ensures that the associated service for this
application is in fact accessible from a network perspective. Under the covers, a socket
connection is attempted against the IP address and port associated with the OpenShift Online
service. Of course, additional tests can be added (if not via OpenShift Pipepline plug-in steps,
then via use of the Jenkins Shell step to leverage OS-level commands and scripts to test your
application).

5. The fifth step commences under that assumption that the testing of your application passed
and hence intends to mark the image as "ready". In this step, a new prod tag is created for the
application image off of the latest image. With the frontend DeploymentConfig having an
ImageChangeTriggerdefined for that tag, the corresponding "production" deployment is
launched.

6. The sixth and last step is a verification step, where the plug-in confirms that OpenShift Online
launched the desired number of replicas for the "production" deployment.

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

37

https://github.com/openshift/jenkins/blob/master/2/contrib/openshift/configuration/jobs/OpenShift Sample/config.xml#L41-47
https://github.com/openshift/jenkins/blob/master/2/contrib/openshift/configuration/jobs/OpenShift Sample/config.xml#L49-L61
https://github.com/openshift/origin/blob/master/examples/jenkins/application-template.json#L75-L87
https://github.com/openshift/jenkins/blob/master/2/contrib/openshift/configuration/jobs/OpenShift Sample/config.xml#L63-L73

CHAPTER 3. AUTHENTICATION

3.1. WEB CONSOLE AUTHENTICATION

When accessing the web console from a browser, you are automatically redirected to a login page.

Review the browser versions and operating systems that can be used to access the web console.

You can provide your login credentials on this page to obtain a token to make API calls. After logging in,
you can navigate your projects using the web console.

3.2. CLI AUTHENTICATION

You can authenticate from the command line using the CLI command oc login. You can get started with
the CLI by running this command

with the url of the online cluster you are using:

$ oc login https://<online_cluster_url>

The command’s interactive flow helps you establish a session to an OpenShift Online server with the
provided credentials. If any information required to successfully log in to an OpenShift Online server is
not provided, the command prompts for user input as required. The configuration is automatically saved
and is then used for every subsequent command.

All configuration options for the oc login command, listed in the oc login --help command output, are
optional. The following example shows usage with some common options:

$ oc login [-u=<username>] \
 [-p=<password>] \
 [-s=<server>] \
 [-n=<project>] \
 [--certificate-authority=</path/to/file.crt>|--insecure-skip-tls-verify]

The following table describes these common options:

Table 3.1. Common CLI Configuration Options

Option Syntax Description

-s, --
server $ oc login -s=

<server>

Specifies the host name of the OpenShift Online server. If a server
is provided through this flag, the command does not ask for it
interactively. This flag can also be used if you already have a CLI
configuration file and want to log in and switch to another server.

-u, --
usernam
e and -p, -
-
passwor
d

$ oc login -u=
<username> -p=
<password>

Allows you to specify the credentials to log in to the OpenShift
Online server. If user name or password are provided through
these flags, the command does not ask for it interactively. These
flags can also be used if you already have a configuration file with
a session token established and want to log in and switch to
another user name.

OpenShift Online 3 Developer Guide

38

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#architecture-infrastructure-components-web-console
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#browser-requirements
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#architecture-infrastructure-components-web-console
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#cli-reference-get-started-cli
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#cli-configuration-files

-n, --
namespa
ce

$ oc login -u=
<username> -p=
<password> -n=
<project>

A global CLI option which, when used with oc login, allows you to
specify the project to switch to when logging in as a given user.

--
certificat
e-
authority

$ oc login --
certificate-
authority=
<path/to/file.crt>

Correctly and securely authenticates with an OpenShift Online
server that uses HTTPS. The path to a certificate authority file
must be provided.

--
insecure-
skip-tls-
verify

$ oc login --
insecure-skip-tls-
verify

Allows interaction with an HTTPS server bypassing the server
certificate checks; however, note that it is not secure. If you try to
oc login to a HTTPS server that does not provide a valid
certificate, and this or the --certificate-authority flags were not
provided, oc login will prompt for user input to confirm (y/N kind
of input) about connecting insecurely.

Option Syntax Description

CLI configuration files allow you to easily manage multiple CLI profiles.

CHAPTER 3. AUTHENTICATION

39

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#cli-reference-manage-cli-profiles

CHAPTER 4. AUTHORIZATION

4.1. OVERVIEW

This topic contains authorization tasks for application developers and their capabilities, as dictated by
the cluster administrator.

4.2. CHECKING IF USERS CAN CREATE PODS

Using the scc-review and scc-subject-review options, you can see if an individual user, or a user under
a specific service account, can create or update a pod.

Using the scc-review option, you can check if a service account can create or update a pod. The
command outputs the security context constraints that admit the resource.

For example, to check if a user with the system:serviceaccount:projectname:default service account
can a create a pod:

$ oc policy scc-review -z system:serviceaccount:projectname:default -f my_resource.yaml

You can also use the scc-subject-review option to check whether a specific user can create or update a
pod:

$ oc policy scc-subject-review -u <username> -f my_resource.yaml

To check if a user belonging to a specific group can create a pod in a specific file:

$ oc policy scc-subject-review -u <username> -g <groupname> -f my_resource.yaml

4.3. DETERMINING WHAT YOU CAN DO AS AN AUTHENTICATED USER

From within your OpenShift Online project, you can determine what verbs you can perform against all
namespace-scoped resources (including third-party resources).

The can-i command option tests scopes in terms of the user and role.

$ oc policy can-i --list --loglevel=8

The output helps you to determine what API request to make to gather the information.

To receive information back in a user-readable format, run:

$ oc policy can-i --list

The output provides a full list.

To determine if you can perform specific verbs, run:

$ oc policy can-i <verb> <resource>

User scopes can provide more information about a given scope. For example:

OpenShift Online 3 Developer Guide

40

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#architecture-additional-concepts-authorization
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#evaluating-authorization

$ oc policy can-i <verb> <resource> --scopes=user:info

CHAPTER 4. AUTHORIZATION

41

CHAPTER 5. PROJECTS

5.1. OVERVIEW

A project allows a community of users to organize and manage their content in isolation from other
communities.

5.2. CREATING A PROJECT

If allowed , you can create a new project using the CLI or the web console.

5.2.1. Using the Web Console

To create a new project using the web console, click the Create Project button on the Projects panel or
the Projects page.

The Create Project button is displayed by default, but can be optionally hidden or customized.

OpenShift Online 3 Developer Guide

42

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#architecture-core-concepts-projects-and-users
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#architecture-infrastructure-components-web-console

5.2.2. Using the CLI

To create a new project using the CLI:

$ oc new-project <project_name> \
 --description="<description>" --display-name="<display_name>"

For example:

$ oc new-project hello-openshift \
 --description="This is an example project to demonstrate OpenShift v3" \
 --display-name="Hello OpenShift"

NOTE

The number of projects you are allowed to create is limited. Once your limit is reached,
you may need to delete an existing project in order to create a new one.

5.3. VIEWING PROJECTS

When viewing projects, you are restricted to seeing only the projects you have access to view based on
the authorization policy .

To view a list of projects:

$ oc get projects

You can change from the current project to a different project for CLI operations. The specified project
is then used in all subsequent operations that manipulate project-scoped content:

$ oc project <project_name>

You can also use the web console to view and change between projects. After authenticating and
logging in, you are presented with a list of projects that you have access to.

The right panel shown with the service catalog provides quick access to the most recently accessed
projects (up to five projects). For the full list of projects, use the View All link provided at the top of the
right panel.

CHAPTER 5. PROJECTS

43

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#architecture-additional-concepts-authorization
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#architecture-infrastructure-components-web-console

If you use the CLI to create a new project , you can then refresh the page in the browser to see the new
project.

Selecting a project brings you to the project overview for that project.

Clicking on the kebab menu for a particular project presents you with the following options:

5.4. CHECKING PROJECT STATUS

The oc status command provides a high-level overview of the current project, with its components and
their relationships. This command takes no argument:

OpenShift Online 3 Developer Guide

44

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#cli-reference-get-started-cli
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#project-overviews

$ oc status

5.5. FILTERING BY LABELS

You can filter the contents of a project page in the web console by using the labels of a resource. You
can pick from a suggested label name and values, or type in your own. Multiple filters can be added.
When multiple filters are applied, resources must match all of the filters to remain visible.

To filter by labels:

1. Select a label type:

2. Select one of the following:

exists Verify that the label name exists, but ignore its value.

does not
exist

Verify that the label name does not exist, but ignore its value.

in Verify that the label name exists and is equal to one of the selected values.

CHAPTER 5. PROJECTS

45

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#architecture-infrastructure-components-web-console
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#labels

not in Verify that the label name does not exist, or is not equal to any of the selected values.

a. If you selected in or not in, select a set of values then select Filter:

3. After adding filters, you can stop filtering by selecting Clear all filters or by clicking individual
filters to remove them:

5.6. DELETING A PROJECT

When you delete a project, the server updates the project status to Terminating from Active. The server
then clears all content from a project that is Terminating before finally removing the project. While a
project is in Terminating status, a user cannot add new content to the project. Projects can be deleted
from the CLI or the web console.

To delete a project using the CLI:

$ oc delete project <project_name>

5.7. PROJECT COLLABORATION IN OPENSHIFT ONLINE PRO

IMPORTANT

Collaboration is not available in OpenShift Online Starter.

Every OpenShift Online Pro account has the ability to add up to 50 collaborator users per subscription.
These collaborator users are granted cluster access from OpenShift Online Pro account subscribers so
that they can collaborate on projects hosted with OpenShift Online. This allows multiple users to gain
access to projects under a single subscription, without having to pay a monthly fee for every account.

OpenShift Online 3 Developer Guide

46

5.7.1. Collaboration Restrictions

Collaborators can only access the resources within the projects that they have been granted access.
Also, their ability to view, edit, and manage the project resources will depend on the specific role that
they have been granted within the project.

5.7.2. Adding Collaborators

OpenShift Online Pro subscribers can add collaborators by following these steps:

1. Each user you want to add as a collaborator must create a free account at
developers.redhat.com. Once your collaborator has confirmed their Red Hat Developers
account, you can add them to your subscription.

2. Each collaborator must sign into developers.redhat.com and click on their name in the upper-
right corner to access their account details. Make note of the Red Hat Login ID on this page, as
it is the user name you will be required to enter in order to associate the collaborator with your
subscription.

3. Sign in to manage.openshift.com and click on Manage Subscription under the cluster where
you want to add the collaborator.

4. Once you are in the subscription management console, click the Manage link under the
Collaborators heading, which brings you to the Collaboration page.

CHAPTER 5. PROJECTS

47

https://developers.redhat.com/
https://developers.redhat.com/
https://manage.openshift.com

5. On the Collaboration page, enter the Red Hat Login ID for the user in the user name field and
click Add Collaborator.
You should now see the user listed under your collaborators, the time the user was added, and
an option to remove the user from your subscription.

This does not automatically grant the user any access to your projects. Access must be granted
manually by the project owner using oc policy commands or the web console.

5.7.3. Granting Project Access Using the Web Console

After adding the collaborator to your OpenShift Online Pro subscription, you can grant project access to
the collaborator using the web console.

1. From within a project, click Resources, then Membership.

2. Add roles (for example, view, edit, or admin) to the user you want to grant access.
See Authorization for more information on access roles.

Now, when the collaborator user signs in to manage.openshift.com, they will see a card to log in
to the web console for the same cluster as your subscription and, if the collaborator was granted
access to your projects on the cluster, they will have access just like any other user.

5.7.4. Granting Project Access Using the CLI

After adding the collaborator to your OpenShift Online Pro subscription, you can grant project access to
the collaborator using the CLI.

1. Log in to the cluster through the CLI using your access token.

2. Grant the user a role using the same user name listed on the Collaboration page using:

$ oc policy add-role-to-user <role-name> <username>

For example:

OpenShift Online 3 Developer Guide

48

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#architecture-additional-concepts-authorization
https://manage.openshift.com

~$ oc login https://api.openshift.com --token=<...>
Logged into "https://api.openshift.com:443" as "exampleuser" using the token provided.

You have one project on this server: "exampleuser-collab"

Using project "exampleuser-collab".
~$ oc policy add-role-to-user view collaborator-1234
role "view" added: "collaborator-1234"

This example grants view access to the project for user collaborator-1234. See Authorization
for more information on access roles.

Now, when the collaborator user signs in to manage.openshift.com, they will see a card to log in
to the web console for the same cluster as your subscription and, if the collaborator was granted
access to your projects on the cluster, they will have access just like any other user.

5.7.5. Removing Collaborators

If at any time you wish to remove the user as a collaborator from your subscription, you can do so on the
same Collaboration page you used to add them. It is important to note, however, that this will not
automatically remove any roles you have assigned the user in your projects. These will need to be
manually deleted, or the user may still have access to your projects.

5.7.5.1. Removing Project Access Using the Web Console

You can remove project access from the collaborator using the web console.

1. From within a project, click Resources, then Membership.

2. Remove roles (for example, view, edit, or admin) from the user.

5.7.5.2. Removing Project Access Using the CLI

You can remove project access from the collaborator using the CLI.

1. Log in to the cluster through the CLI using your access token.

2. Remove a role (for example, view, edit, or admin) from a specific collaborator using the same
user name listed on the Collaboration page by running:

$ oc policy remove-role-from-user <role-name> <username>

CHAPTER 5. PROJECTS

49

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#architecture-additional-concepts-authorization
https://manage.openshift.com

CHAPTER 6. MIGRATING APPLICATIONS

6.1. OVERVIEW

This topic covers the migration procedure of OpenShift version 2 (v2) applications to OpenShift version
3 (v3).

To migrate OpenShift v2 applications to OpenShift Online v3, all cartridges in the v2 application must be
recorded as each v2 cartridge is equivalent with a corresponding image or template in OpenShift Online
v3 and they must be migrated individually. For each cartridge, all dependencies or required packages
also must be recorded, as they must be included in the v3 images.

The general migration procedure is:

1. Back up the v2 application.

Web cartridge: The source code can be backed up to a Git repository such as by pushing to
a repository on GitHub.

Database cartridge: The database can be backed up using a dump command (mongodump,
mysqldump, pg_dump) to back up the database.

Web and database cartridges: rhc client tool provides snapshot ability to back up multiple
cartridges:

$ rhc snapshot save <app_name>

The snapshot is a tar file that can be unzipped, and its content is application source code
and the database dump.

2. If the application has a database cartridge, create a v3 database application, sync the database
dump to the pod of the new v3 database application, then restore the v2 database in the v3
database application with database restore commands.

3. For a web framework application, edit the application source code to make it v3 compatible.
Then, add any dependencies or packages required in appropriate files in the Git repository.
Convert v2 environment variables to corresponding v3 environment variables.

4. Create a v3 application from source (your Git repository) or from a quickstart with your Git URL.
Also, add the database service parameters to the new application to link the database
application to the web application.

5. In v2, there is an integrated Git environment and your applications automatically rebuild and
restart whenever a change is pushed to your v2 Git repository. In v3, in order to have a build
automatically triggered by source code changes pushed to your public Git repository, you must
set up a webhook after the initial build in v3 is completed.

6.2. MIGRATING DATABASE APPLICATIONS

6.2.1. Overview

This topic reviews how to migrate MySQL, PostgreSQL, and MongoDB database applications from
OpenShift version 2 (v2) to OpenShift version 3 (v3).

OpenShift Online 3 Developer Guide

50

6.2.2. Supported Databases

v2 v3

MongoDB: 2.4 MongoDB: 2.4, 2.6

MySQL: 5.5 MySQL: 5.5, 5.6

PostgreSQL: 9.2 PostgreSQL: 9.2, 9.4

6.2.3. MySQL

1. Export all databases to a dump file and copy it to a local machine (into the current directory):

$ rhc ssh <v2_application_name>
$ mysqldump --skip-lock-tables -h $OPENSHIFT_MYSQL_DB_HOST -P
${OPENSHIFT_MYSQL_DB_PORT:-3306} -u ${OPENSHIFT_MYSQL_DB_USERNAME:-
'admin'} \
 --password="$OPENSHIFT_MYSQL_DB_PASSWORD" --all-databases > ~/app-
root/data/all.sql
$ exit

2. Download dbdump to your local machine:

$ mkdir mysqldumpdir
$ rhc scp -a <v2_application_name> download mysqldumpdir app-root/data/all.sql

3. Create a v3 mysql-persistent pod from template:

$ oc new-app mysql-persistent -p \
 MYSQL_USER=<your_V2_mysql_username> -p \
 MYSQL_PASSWORD=<your_v2_mysql_password> -p MYSQL_DATABASE=
<your_v2_database_name>

4. Check to see if the pod is ready to use:

$ oc get pods

5. When the pod is up and running, copy database archive files to your v3 MySQL pod:

$ oc rsync /local/mysqldumpdir <mysql_pod_name>:/var/lib/mysql/data

6. Restore the database in the v3 running pod:

$ oc rsh <mysql_pod>
$ cd /var/lib/mysql/data/mysqldumpdir

In v3, to restore databases you need to access MySQL as root user.

In v2, the $OPENSHIFT_MYSQL_DB_USERNAME had full privileges on all databases. In v3,
you must grant privileges to $MYSQL_USER for each database.

CHAPTER 6. MIGRATING APPLICATIONS

51

$ mysql -u root
$ source all.sql

Grant all privileges on <dbname> to <your_v2_username>@localhost, then flush privileges.

7. Remove the dump directory from the pod:

$ cd ../; rm -rf /var/lib/mysql/data/mysqldumpdir

Supported MySQL Environment Variables

v2 v3

OPENSHIFT_MYSQL_DB_HOST [service_name]_SERVICE_HOST

OPENSHIFT_MYSQL_DB_PORT [service_name]_SERVICE_PORT

OPENSHIFT_MYSQL_DB_USERNAME MYSQL_USER

OPENSHIFT_MYSQL_DB_PASSWORD MYSQL_PASSWORD

OPENSHIFT_MYSQL_DB_URL

OPENSHIFT_MYSQL_DB_LOG_DIR

OPENSHIFT_MYSQL_VERSION

OPENSHIFT_MYSQL_DIR

OPENSHIFT_MYSQL_DB_SOCKET

OPENSHIFT_MYSQL_IDENT

OPENSHIFT_MYSQL_AIO MYSQL_AIO

OPENSHIFT_MYSQL_MAX_ALLOWED_PACK
ET

MYSQL_MAX_ALLOWED_PACKET

OPENSHIFT_MYSQL_TABLE_OPEN_CACHE MYSQL_TABLE_OPEN_CACHE

OPENSHIFT_MYSQL_SORT_BUFFER_SIZE MYSQL_SORT_BUFFER_SIZE

OPENSHIFT_MYSQL_LOWER_CASE_TABLE
_NAMES

MYSQL_LOWER_CASE_TABLE_NAMES

OPENSHIFT_MYSQL_MAX_CONNECTIONS MYSQL_MAX_CONNECTIONS

OPENSHIFT_MYSQL_FT_MIN_WORD_LEN MYSQL_FT_MIN_WORD_LEN

OpenShift Online 3 Developer Guide

52

OPENSHIFT_MYSQL_FT_MAX_WORD_LEN MYSQL_FT_MAX_WORD_LEN

OPENSHIFT_MYSQL_DEFAULT_STORAGE_
ENGINE

OPENSHIFT_MYSQL_TIMEZONE

 MYSQL_DATABASE

 MYSQL_ROOT_PASSWORD

 MYSQL_MASTER_USER

 MYSQL_MASTER_PASSWORD

v2 v3

6.2.4. PostgreSQL

1. Back up the v2 PostgreSQL database from the gear:

$ rhc ssh -a <v2-application_name>
$ mkdir ~/app-root/data/tmp
$ pg_dump <database_name> | gzip > ~/app-root/data/tmp/<database_name>.gz

2. Extract the backup file back to your local machine:

$ rhc scp -a <v2_application_name> download <local_dest> app-root/data/tmp/<db-
name>.gz
$ gzip -d <database-name>.gz

NOTE

Save the backup file to a separate folder for step 4.

3. Create the PostgreSQL service using the v2 application database name, user name and
password to create the new service:

$ oc new-app postgresql-persistent -p POSTGRESQL_DATABASE=dbname -p
POSTGRESQL_PASSWORD=password -p POSTGRESQL_USER=username

4. Check to see if the pod is ready to use:

$ oc get pods

5. When the pod is up and running, sync the backup directory to pod:

$ oc rsync /local/path/to/dir <postgresql_pod_name>:/var/lib/pgsql/data

CHAPTER 6. MIGRATING APPLICATIONS

53

6. Remotely access the pod:

$ oc rsh <pod_name>

7. Restore the database:

psql dbname < /var/lib/pgsql/data/<database_backup_file>

8. Remove all backup files that are no longer needed:

$ rm /var/lib/pgsql/data/<database-backup-file>

Supported PostgreSQL Environment Variables

v2 v3

OPENSHIFT_POSTGRESQL_DB_HOST [service_name]_SERVICE_HOST

OPENSHIFT_POSTGRESQL_DB_PORT [service_name]_SERVICE_PORT

OPENSHIFT_POSTGRESQL_DB_USERNAME POSTGRESQL_USER

OPENSHIFT_POSTGRESQL_DB_PASSWOR
D

POSTGRESQL_PASSWORD

OPENSHIFT_POSTGRESQL_DB_LOG_DIR

OPENSHIFT_POSTGRESQL_DB_PID

OPENSHIFT_POSTGRESQL_DB_SOCKET_DI
R

OPENSHIFT_POSTGRESQL_DB_URL

OPENSHIFT_POSTGRESQL_VERSION

OPENSHIFT_POSTGRESQL_SHARED_BUFF
ERS

OPENSHIFT_POSTGRESQL_MAX_CONNECT
IONS

OPENSHIFT_POSTGRESQL_MAX_PREPARE
D_TRANSACTIONS

OPENSHIFT_POSTGRESQL_DATESTYLE

OPENSHIFT_POSTGRESQL_LOCALE

OpenShift Online 3 Developer Guide

54

OPENSHIFT_POSTGRESQL_CONFIG

OPENSHIFT_POSTGRESQL_SSL_ENABLED

 POSTGRESQL_DATABASE

 POSTGRESQL_ADMIN_PASSWORD

v2 v3

6.2.5. MongoDB

NOTE

For OpenShift v3: MongoDB shell version 3.2.6

For OpenShift v2: MongoDB shell version 2.4.9

1. Remotely access the v2 application via the ssh command:

$ rhc ssh <v2_application_name>

2. Run mongodump, specifying a single database with -d <database_name> -c <collections>.
Without those options, dump all databases. Each database is dumped in its own directory:

$ mongodump -h $OPENSHIFT_MONGODB_DB_HOST -o app-root/repo/mydbdump -u
'admin' -p $OPENSHIFT_MONGODB_DB_PASSWORD
$ cd app-root/repo/mydbdump/<database_name>; tar -cvzf dbname.tar.gz
$ exit

3. Download dbdump to a local machine in the mongodump directory:

$ mkdir mongodump
$ rhc scp -a <v2 appname> download mongodump \
 app-root/repo/mydbdump/<dbname>/dbname.tar.gz

4. Start a MongoDB pod in v3. Because the latest image (3.2.6) does not include mongo-tools, to
use mongorestore or mongoimport commands you need to edit the default mongodb-
persistent template to specify the image tag that contains the mongo-tools, “mongodb:2.4”.
For that reason, the following oc export command and edit are necessary:

$ oc export template mongodb-persistent -n openshift -o json > mongodb-24persistent.json

Edit L80 of mongodb-24persistent.json; replace mongodb:latest with mongodb:2.4.

$ oc new-app --template=mongodb-persistent -n <project-name-that-template-was-created-
in> \
 MONGODB_USER=user_from_v2_app -p \
 MONGODB_PASSWORD=password_from_v2_db -p \

CHAPTER 6. MIGRATING APPLICATIONS

55

 MONGODB_DATABASE=v2_dbname -p \
 MONGODB_ADMIN_PASSWORD=password_from_v2_db
$ oc get pods

5. When the mongodb pod is up and running, copy the database archive files to the v3 MongoDB
pod:

$ oc rsync local/path/to/mongodump <mongodb_pod_name>:/var/lib/mongodb/data
$ oc rsh <mongodb_pod>

6. In the MongoDB pod, complete the following for each database you want to restore:

$ cd /var/lib/mongodb/data/mongodump
$ tar -xzvf dbname.tar.gz
$ mongorestore -u $MONGODB_USER -p $MONGODB_PASSWORD -d dbname -v
/var/lib/mongodb/data/mongodump

7. Check if the database is restored:

$ mongo admin -u $MONGODB_USER -p $MONGODB_ADMIN_PASSWORD
$ use dbname
$ show collections
$ exit

8. Remove the mongodump directory from the pod:

$ rm -rf /var/lib/mongodb/data/mongodump

Supported MongoDB Environment Variables

v2 v3

OPENSHIFT_MONGODB_DB_HOST [service_name]_SERVICE_HOST

OPENSHIFT_MONGODB_DB_PORT [service_name]_SERVICE_PORT

OPENSHIFT_MONGODB_DB_USERNAME MONGODB_USER

OPENSHIFT_MONGODB_DB_PASSWORD MONGODB_PASSWORD

OPENSHIFT_MONGODB_DB_URL

OPENSHIFT_MONGODB_DB_LOG_DIR

 MONGODB_DATABASE

 MONGODB_ADMIN_PASSWORD

 MONGODB_NOPREALLOC

OpenShift Online 3 Developer Guide

56

 MONGODB_SMALLFILES

 MONGODB_QUIET

 MONGODB_REPLICA_NAME

 MONGODB_KEYFILE_VALUE

v2 v3

6.3. MIGRATING WEB FRAMEWORK APPLICATIONS

6.3.1. Overview

This topic reviews how to migrate Python, Ruby, PHP, Perl, Node.js, WordPress, Ghost, JBoss EAP,
JBoss WS (Tomcat), and Wildfly 10 (JBoss AS) web framework applications from OpenShift version 2
(v2) to OpenShift version 3 (v3).

6.3.2. Python

1. Set up a new GitHub repository and add it as a remote branch to the current, local v2 Git
repository:

$ git remote add <remote-name> https://github.com/<github-id>/<repo-name>.git

2. Push the local v2 source code to the new repository:

$ git push -u <remote-name> master

3. Ensure that all important files such as setup.py, wsgi.py, requirements.txt, and etc are pushed
to new repository.

Ensure all required packages for your application are included in requirements.txt.

4. Use the oc command to launch a new Python application from the builder image and source
code:

$ oc new-app --strategy=source
python:3.3~https://github.com/<github-id>/<repo-name> --name=<app-name> -e
<ENV_VAR_NAME>=<env_var_value>

Supported Python Versions

See Supported Container Images.

6.3.3. Ruby

1. Set up a new GitHub repository and add it as a remote branch to the current, local v2 Git
repository:

CHAPTER 6. MIGRATING APPLICATIONS

57

https://www.openshift.com/features/containers.html#online3

$ git remote add <remote-name> https://github.com/<github-id>/<repo-name>.git

2. Push the local v2 source code to the new repository:

$ git push -u <remote-name> master

3. If you do not have a Gemfile and are running a simple rack application, copy this Gemfile into the
root of your source:

https://github.com/sclorg/ruby-ex/blob/master/Gemfile

NOTE

The latest version of the rack gem that supports Ruby 2.0 is 1.6.4, so the Gemfile
needs to be modified to gem 'rack', “1.6.4”.

For Ruby 2.2 or later, use the rack gem 2.0 or later.

4. Use the oc command to launch a new Ruby application from the builder image and source code:

$ oc new-app --strategy=source
ruby:2.0~https://github.com/<github-id>/<repo-name>.git

Supported Ruby Versions

See Supported Container Images.

6.3.4. PHP

1. Set up a new GitHub repository and add it as a remote branch to the current, local v2 Git
repository:

$ git remote add <remote-name> https://github.com/<github-id>/<repo-name>

2. Push the local v2 source code to the new repository:

$ git push -u <remote-name> master

3. Use the oc command to launch a new PHP application from the builder image and source code:

$ oc new-app https://github.com/<github-id>/<repo-name>.git
--name=<app-name> -e <ENV_VAR_NAME>=<env_var_value>

Supported PHP Versions

See Supported Container Images.

6.3.5. Perl

1. Set up a new GitHub repository and add it as a remote branch to the current, local v2 Git
repository:

OpenShift Online 3 Developer Guide

58

https://www.openshift.com/features/containers.html#online3
https://www.openshift.com/features/containers.html#online3

$ git remote add <remote-name> https://github.com/<github-id>/<repo-name>

2. Push the local v2 source code to the new repository:

$ git push -u <remote-name> master

3. Edit the local Git repository and push changes upstream to make it v3 compatible:

a. In v2, CPAN modules reside in .openshift/cpan.txt. In v3, the s2i builder looks for a file
named cpanfile in the root directory of the source.

$ cd <local-git-repository>
$ mv .openshift/cpan.txt cpanfile

Edit cpanfile, as it has a slightly different format:

format of cpanfile format of cpan.txt

requires ‘cpan::mod’; cpan::mod

requires ‘Dancer’; Dancer

requires ‘YAML’; YAML

b. Remove .openshift directory

NOTE

In v3, action_hooks and cron tasks are not supported in the same way. See
Action Hooks for more information.

4. Use the oc command to launch a new Perl application from the builder image and source code:

$ oc new-app https://github.com/<github-id>/<repo-name>.git

Supported Perl Versions

See Supported Container Images.

6.3.6. Node.js

1. Set up a new GitHub repository and add it as a remote branch to the current, local Git
repository:

$ git remote add <remote-name> https://github.com/<github-id>/<repo-name>

2. Push the local v2 source code to the new repository:

$ git push -u <remote-name> master

CHAPTER 6. MIGRATING APPLICATIONS

59

https://www.openshift.com/features/containers.html#online3

3. Edit the local Git repository and push changes upstream to make it v3 compatible:

a. Remove the .openshift directory.

NOTE

In v3, action_hooks and cron tasks are not supported in the same way. See
Action Hooks for more information.

b. Edit server.js.

L116 server.js: 'self.app = express();'

L25 server.js: self.ipaddress = '0.0.0.0';

L26 server.js: self.port = 8080;

NOTE

Lines(L) are from the base V2 cartridge server.js.

4. Use the oc command to launch a new Node.js application from the builder image and source
code:

$ oc new-app https://github.com/<github-id>/<repo-name>.git
--name=<app-name> -e <ENV_VAR_NAME>=<env_var_value>

Supported Node.js Versions

See Supported Container Images.

IMPORTANT

In OpenShift Online v3, version 0.10 is deprecated and no longer available to use.

6.3.7. WordPress

IMPORTANT

Currently, support for migrating WordPress applications is offered by the community only
and not by Red Hat support.

For guidance on migrating WordPress applications to OpenShift Online v3, see the OpenShift blog.

6.3.8. Ghost

IMPORTANT

Currently, support for migrating Ghost applications is offered by the community only and
not by Red Hat support.

For guidance on migrating Ghost applications to OpenShift Online v3, see the OpenShift blog.

OpenShift Online 3 Developer Guide

60

https://www.openshift.com/features/containers.html#online3
https://blog.openshift.com/migrating-wordpress-openshift-3/
http://blog.openshift.com/migrating-ghost-app-openshift-3/

6.3.9. JBoss EAP

IMPORTANT

Currently, JBoss EAP is not available for OpenShift Online Starter. It is only available for
OpenShift Online Pro.

1. Set up a new GitHub repository and add it as a remote branch to the current, local Git
repository:

$ git remote add <remote-name> https://github.com/<github-id>/<repo-name>

2. Push the local v2 source code to the new repository:

$ git push -u <remote-name> master

3. If the repository includes pre-built .war files, they need to reside in the deployments directory
off the root directory of the repository.

4. Create the new application using the JBoss EAP 7 builder image (jboss-eap70-openshift) and
the source code repository from GitHub:

$ oc new-app --strategy=source jboss-eap70-openshift:1.6~https://github.com/<github-
id>/<repo-name>.git

6.3.10. JBoss WS (Tomcat)

1. Set up a new GitHub repository and add it as a remote branch to the current, local Git
repository:

$ git remote add <remote-name> https://github.com/<github-id>/<repo-name>

2. Push the local v2 source code to the new repository:

$ git push -u <remote-name> master

3. If the repository includes pre-built .war files, they need to reside in the deployments directory
off the root directory of the repository.

4. Create the new application using the JBoss Web Server 3 (Tomcat 7) builder image (jboss-
webserver30-tomcat7) and the source code repository from GitHub:

$ oc new-app --strategy=source
jboss-webserver30-tomcat7-openshift~https://github.com/<github-id>/<repo-name>.git
--name=<app-name> -e <ENV_VAR_NAME>=<env_var_value>

6.3.11. JBoss AS (Wildfly 10)

1. Set up a new GitHub repository and add it as a remote branch to the current, local Git
repository:

$ git remote add <remote-name> https://github.com/<github-id>/<repo-name>

CHAPTER 6. MIGRATING APPLICATIONS

61

2. Push the local v2 source code to the new repository:

$ git push -u <remote-name> master

3. Edit the local Git repository and push the changes upstream to make it v3 compatible:

a. Remove .openshift directory.

NOTE

In v3, action_hooks and cron tasks are not supported in the same way. See
Action Hooks for more information.

b. Add the deployments directory to the root of the source repository. Move the .war files to
‘deployments’ directory.

4. Use the oc command to launch a new Wildfly application from the builder image and source
code:

$ oc new-app https://github.com/<github-id>/<repo-name>.git
 --image-stream=”openshift/wildfly:10.0" --name=<app-name> -e
 <ENV_VAR_NAME>=<env_var_value>

NOTE

The argument --name is optional to specify the name of your application. The
argument -e is optional to add environment variables that are needed for build
and deployment processes, such as OPENSHIFT_PYTHON_DIR.

6.3.12. Supported JBoss Versions

See Supported Container Images.

6.4. QUICKSTART EXAMPLES

6.4.1. Overview

Although there is no clear-cut migration path for v2 quickstart to v3 quickstart, the following quickstarts
are currently available in v3. If you have an application with a database, rather than using oc new-app to
create your application, then oc new-app again to start a separate database service and linking the two
with common environment variables, you can use one of the following to instantiate the linked
application and database at once, from your GitHub repository containing your source code. You can list
all available templates with oc get templates -n openshift:

CakePHP MySQL https://github.com/sclorg/cakephp-ex

template: cakephp-mysql-example

Node.js MongoDB https://github.com/sclorg/nodejs-ex

template: nodejs-mongodb-example

Django PosgreSQL https://github.com/sclorg/django-ex
template: django-psql-example

OpenShift Online 3 Developer Guide

62

https://www.openshift.com/features/containers.html#online3
https://github.com/sclorg/cakephp-ex
https://github.com/sclorg/nodejs-ex
https://github.com/sclorg/django-ex

1

template: django-psql-example

Dancer MySQL https://github.com/sclorg/dancer-ex

template: dancer-mysql-example

Rails PostgreSQL https://github.com/sclorg/rails-ex

template: rails-postgresql-example

6.4.2. Workflow

Run a git clone of one of the above template URLs locally. Add and commit your application source
code and push a GitHub repository, then start a v3 quickstart application from one of the templates
listed above:

1. Create a GitHub repository for your application.

2. Clone a quickstart template and add your GitHub repository as a remote:

$ git clone <one-of-the-template-URLs-listed-above>
$ cd <your local git repository>
$ git remote add upstream <https://github.com/<git-id>/<quickstart-repo>.git>
$ git push -u upstream master

3. Commit and push your source code to GitHub:

$ cd <your local repository>
$ git commit -am “added code for my app”
$ git push origin master

4. Create a new application in v3:

$ oc new-app --template=<template> \
-p SOURCE_REPOSITORY_URL=<https://github.com/<git-id>/<quickstart_repo>.git> \
-p DATABASE_USER=<your_db_user> \
-p DATABASE_NAME=<your_db_name> \
-p DATABASE_PASSWORD=<your_db_password> \
-p DATABASE_ADMIN_PASSWORD=<your_db_admin_password> 1

Only applicable for MongoDB.

You should now have 2 pods running, a web framework pod, and a database pod. The web
framework pod environment should match the database pod environment. You can list the
environment variables with oc set env pod/<pod_name> --list:

DATABASE_NAME is now <DB_SERVICE>_DATABASE

DATABASE_USER is now <DB_SERVICE>_USER

DATABASE_PASSWORD is now <DB_SERVICE>_PASSWORD

DATABASE_ADMIN_PASSWORD is now MONGODB_ADMIN_PASSWORD (only
applicable for MongoDB)

If no SOURCE_REPOSITORY_URL is specified, the template will use the template URL

CHAPTER 6. MIGRATING APPLICATIONS

63

https://github.com/sclorg/dancer-ex
https://github.com/sclorg/rails-ex

If no SOURCE_REPOSITORY_URL is specified, the template will use the template URL
(https://github.com/openshift/<quickstart>-ex) listed above as the source repository,
and a hello-welcome application will be started.

5. If you are migrating a database, export databases to a dump file and restore the database in the
new v3 database pod. Refer to the steps outlined in Database Applications, skipping the oc
new-app step as the database pod is already up and running.

6.5. CONTINUOUS INTEGRATION AND DEPLOYMENT (CI/CD)

6.5.1. Overview

This topic reviews the differences in continuous integration and deployment (CI/CD) applications
between OpenShift version 2 (v2) and OpenShift version 3 (v3) and how to migrate these applications
into the v3 environment.

6.5.2. Jenkins

The Jenkins applications in OpenShift version 2 (v2) and OpenShift version 3 (v3) are configured
differently due to fundamental differences in architecture. For example, in v2, the application uses an
integrated Git repository that is hosted in the gear to store the source code. In v3, the source code is
located in a public or private Git repository that is hosted outside of the pod.

Furthermore, in OpenShift v3, Jenkins jobs can not only be triggered by source code changes, but also
by changes in ImageStream, which are changes on the images that are used to build the application
along with its source code. As a result, it is highly recommended that you migrate the Jenkins application
manually by creating a new Jenkins application in v3, and then re-creating jobs with the configurations
that are suitable to OpenShift v3 environment.

Consult these resources for more information on how to create a Jenkins application, configure jobs,
and use Jenkins plug-ins properly:

https://github.com/openshift/origin/blob/master/examples/jenkins/README.md

https://github.com/openshift/jenkins-plugin/blob/master/README.md

https://github.com/openshift/origin/blob/master/examples/sample-app/README.md

6.6. WEBHOOKS AND ACTION HOOKS

6.6.1. Overview

This topic reviews the differences in webhooks and action hooks between OpenShift version 2 (v2) and
OpenShift version 3 (v3) and how to migrate these applications into the v3 environment.

6.6.2. Webhooks

1. After creating a BuildConfig from a GitHub repository, run:

This will output a webhook GitHub URL that looks like:

$ oc describe bc/<name-of-your-BuildConfig>

OpenShift Online 3 Developer Guide

64

https://github.com/openshift/origin/blob/master/examples/jenkins/README.md
https://github.com/openshift/jenkins-plugin/blob/master/README.md
https://github.com/openshift/origin/blob/master/examples/sample-app/README.md

<https://api.starter-us-east-
1.openshift.com:443/oapi/v1/namespaces/nsname/buildconfigs/bcname/webhooks/secret/github
>.

2. Cut and paste this URL into GitHub, from the GitHub web console.

3. In your GitHub repository, select Add Webhook from Settings → Webhooks & Services.

4. Paste the URL output (similar to above) into the Payload URL field.

5. Set the Content Type to application/json.

6. Click Add webhook.

You should see a message from GitHub stating that your webhook was successfully configured.

Now, whenever you push a change to your GitHub repository, a new build will automatically start, and
upon a successful build a new deployment will start.

NOTE

If you delete or recreate your application, you will have to update the Payload URL field
in GitHub with the new BuildConfig webhook url.

6.6.3. Action Hooks

In OpenShift version 2 (v2), there are build, deploy, post_deploy, and pre_build scripts or action_hooks
that are located in the .openshift/action_hooks directory. While there is no one-to-one mapping of
function for these in v3, the S2I tool in v3 does have the option of adding customizable scripts, either in
a designated URL or in the .s2i/bin directory of your source repository.

OpenShift version 3 (v3) also offers a post-build hook for running basic testing of an image after it is
built and before it is pushed to the registry. Deployment hooks are configured in the deployment
configuration.

In v2, action_hooks are commonly used to set up environment variables. In v2, any environment variables
should be passed with:

or:

Also, environment variables can be added or changed using:

6.7. S2I TOOL

6.7.1. Overview

The Source-to-Image (S2I) tool injects application source code into a container image and the final

$ oc new-app <source-url> -e ENV_VAR=env_var

$ oc new-app <template-name> -p ENV_VAR=env_var

$ oc set env dc/<name-of-dc>
ENV_VAR1=env_var1 ENV_VAR2=env_var2’

CHAPTER 6. MIGRATING APPLICATIONS

65

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/creating_images/#s2i-scripts

The Source-to-Image (S2I) tool injects application source code into a container image and the final
product is a new and ready-to-run container image that incorporates the builder image and built source
code. The S2I tool can be installed on your local machine without OpenShift Online from the repository.

The S2I tool is a very powerful tool to test and verify your application and images locally before using
them on OpenShift Online.

6.7.2. Creating a Container Image

1. Identify the builder image that is needed for the application. Red Hat offers multiple builder
images for different languages including Python, Ruby, Perl, PHP, and Node.js . Other images
are available from the community space.

2. S2I can build images from source code in a local file system or from a Git repository. To build a
new container image from the builder image and the source code:

$ s2i build <source-location> <builder-image-name> <output-image-name>

NOTE

<source-location> can either be a Git repository URL or a directory to source
code in a local file system.

3. Test the built image with the Docker daemon:

$ docker run -d --name <new-name> -p <port-number>:<port-number> <output-image-
name>
$ curl localhost:<port-number>

6.8. SUPPORT GUIDE

6.8.1. Overview

This topic reviews supported languages, frameworks, databases, and markers for OpenShift version 2
(v2) and OpenShift version 3 (v3).

See OpenShift Online tested integrations for more information about common combinations that
OpenShift Online customers are using.

6.8.2. Supported Databases

See the Supported Databases section of the Database Applications topic.

6.8.3. Supported Languages

PHP

Python

Perl

Node.js

OpenShift Online 3 Developer Guide

66

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/using_images/#using-images-s2i-images-index
https://github.com/openshift/source-to-image#installation
https://github.com/sclorg?query=s2i
https://github.com/openshift-s2i
https://access.redhat.com/articles/2176281

Ruby

JBoss/xPaaS

6.8.4. Supported Frameworks

Table 6.1. Supported Frameworks

v2 v3

Jenkins Server jenkins-persistent

Drupal 7

Ghost 0.7.5

WordPress 4

Ceylon

Go

MEAN

6.8.5. Supported Markers

Table 6.2. Python

v2 v3

pip_install If your repository contains requirements.txt, then pip
is invoked by default. Otherwise, pip is not used.

Table 6.3. Ruby

v2 v3

disable_asset_compilation This can be done by setting
DISABLE_ASSET_COMPILATION environment
variable to true on the buildconfig strategy
definition.

Table 6.4. Perl

v2 v3

CHAPTER 6. MIGRATING APPLICATIONS

67

enable_cpan_tests This can be done by setting
ENABLE_CPAN_TEST environment variable to
true on the build configuration.

v2 v3

Table 6.5. PHP

v2 v3

use_composer composer is always used if the source repository
includes a composer.json in the root directory.

Table 6.6. Node.js

v2 v3

NODEJS_VERSION N/A

use_npm npm is always used to start the application, unless
DEV_MODE is set to true, in which case nodemon
is used instead.

Table 6.7. JBoss EAP, JBoss WS, WildFly

v2 v3

enable_debugging This option is controlled via the ENABLE_JPDA
environment variable set on the deployment
configuration by setting it to any non-empty value.

skip_maven_build If pom.xml is present, maven will be run.

java7 N/A

java8 JavaEE is using JDK8.

Table 6.8. Jenkins

v2 v3

enable_debugging N/A

Table 6.9. All

OpenShift Online 3 Developer Guide

68

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/using_images/#configuration

v2 v3

force_clean_build There is a similar concept in v3, as noCache field in
buildconfig forces the container build to rerun each
layer. In the S2I build, the incremental flag is false by
default, which indicates a clean build.

hot_deploy Ruby, Python, Perl, PHP, Node.js

enable_public_server_status N/A

disable_auto_scaling Autoscaling is off by default and it can be turn on via
pod auto-scaling.

6.8.6. Supported Environment Variables

MySQL

MongoDB

PostgreSQL

CHAPTER 6. MIGRATING APPLICATIONS

69

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/using_images/#ruby-hot-deploy
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/using_images/#python-hot-deploy
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/using_images/#perl-hot-deploy
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/using_images/#php-hot-deploy
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/using_images/#nodejs-hot-deploying

CHAPTER 7. TUTORIALS

7.1. OVERVIEW

This topic group includes information on how to get your application up and running in OpenShift Online
and covers different languages and their frameworks.

7.2. QUICKSTART TEMPLATES

7.2.1. Overview

A quickstart is a basic example of an application running on OpenShift Online. Quickstarts come in a
variety of languages and frameworks, and are defined in a template, which is constructed from a set of
services, build configurations, and deployment configurations. This template references the necessary
images and source repositories to build and deploy the application.

To explore a quickstart, create an application from a template. Your administrator may have already
installed these templates in your OpenShift Online cluster, in which case you can simply select it from
the web console. See the template documentation for more information on how to upload, create from,
and modify a template.

Quickstarts refer to a source repository that contains the application source code. To customize the
quickstart, fork the repository and, when creating an application from the template, substitute the
default source repository name with your forked repository. This results in builds that are performed
using your source code instead of the provided example source. You can then update the code in your
source repository and launch a new build to see the changes reflected in the deployed application.

7.2.2. Web Framework Quickstart Templates

These quickstarts provide a basic application of the indicated framework and language:

CakePHP: a PHP web framework (includes a MySQL database)

Template definition

Source repository

Dancer: a Perl web framework (includes a MySQL database)

Template definition

Source repository

Django: a Python web framework (includes a PostgreSQL database)

Template definition

Source repository

NodeJS: a NodeJS web application (includes a MongoDB database)

Template definition

Source repository

OpenShift Online 3 Developer Guide

70

https://github.com/openshift/origin/tree/master/examples/quickstarts/cakephp-mysql.json
https://github.com/sclorg/cakephp-ex
https://github.com/openshift/origin/tree/master/examples/quickstarts/dancer-mysql.json
https://github.com/sclorg/dancer-ex
https://github.com/openshift/origin/tree/master/examples/quickstarts/django-postgresql.json
https://github.com/sclorg/django-ex
https://github.com/openshift/origin/tree/master/examples/quickstarts/nodejs-mongodb.json
https://github.com/sclorg/nodejs-ex

Rails: a Ruby web framework (includes a PostgreSQL database)

Template definition

Source repository

7.3. RUBY ON RAILS

7.3.1. Overview

Ruby on Rails is a popular web framework written in Ruby. This guide covers using Rails 4 on OpenShift
Online.

WARNING

We strongly advise going through the whole tutorial to have an overview of all the
steps necessary to run your application on the OpenShift Online. If you experience a
problem try reading through the entire tutorial and then going back to your issue. It
can also be useful to review your previous steps to ensure that all the steps were
executed correctly.

For this guide you will need:

Basic Ruby/Rails knowledge

Locally installed version of Ruby 2.0.0+, Rubygems, Bundler

Basic Git knowledge

Provisioned account in OpenShift Online

7.3.2. Local Workstation Setup

First make sure that an instance of OpenShift Online is running and is available. Also make sure that
your oc CLI client is installed and the command is accessible from your command shell, so you can use it
to log in using your email address and password.

7.3.2.1. Setting Up the Database

Rails applications are almost always used with a database. For the local development we chose the
PostgreSQL database. To install it type:

$ sudo yum install -y postgresql postgresql-server postgresql-devel

Next you need to initialize the database with:

$ sudo postgresql-setup initdb

This command will create the /var/lib/pgsql/data directory, in which the data will be stored.



CHAPTER 7. TUTORIALS

71

https://github.com/openshift/origin/tree/master/examples/quickstarts/rails-postgresql.json
https://github.com/sclorg/rails-ex
https://github.com/sclorg/mysql-container/tree/master/5.5
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#cli-reference-get-started-cli
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#basic-setup-and-login

Start the database by typing:

$ sudo systemctl start postgresql.service

When the database is running, create your rails user:

$ sudo -u postgres createuser -s rails

Note that the user we created has no password.

7.3.3. Writing Your Application

If you are starting your Rails application from scratch, you need to install the Rails gem first.

$ gem install rails
Successfully installed rails-4.2.0
1 gem installed

After you install the Rails gem create a new application, with PostgreSQL as your database:

$ rails new rails-app --database=postgresql

Then change into your new application directory.

$ cd rails-app

If you already have an application, make sure the pg (postgresql) gem is present in your Gemfile. If not
edit your Gemfile by adding the gem:

gem 'pg'

To generate a new Gemfile.lock with all your dependencies run:

$ bundle install

In addition to using the postgresql database with the pg gem, you’ll also need to ensure the
config/database.yml is using the postgresql adapter.

Make sure you updated default section in the config/database.yml file, so it looks like this:

default: &default
 adapter: postgresql
 encoding: unicode
 pool: 5
 host: localhost
 username: rails
 password:

Create your application’s development and test databases by using this rake command:

$ rake db:create

OpenShift Online 3 Developer Guide

72

This will create development and test database in your PostgreSQL server.

7.3.3.1. Creating a Welcome Page

Since Rails 4 no longer serves a static public/index.html page in production, we need to create a new
root page.

In order to have a custom welcome page we need to do following steps:

Create a controller with an index action

Create a view page for the welcome controller index action

Create a route that will serve applications root page with the created controller and view

Rails offers a generator that will do all this necessary steps for you.

$ rails generate controller welcome index

All the necessary files have been created, now we just need to edit line 2 in config/routes.rb file to look
like:

root 'welcome#index'

Run the rails server to verify the page is available.

$ rails server

You should see your page by visiting http://localhost:3000 in your browser. If you don’t see the page,
check the logs that are output to your server to debug.

7.3.3.2. Configuring the Application for OpenShift Online

In order to have your application communicating with the PostgreSQL database service that will be
running in OpenShift Online, you will need to edit the default section in your config/database.yml to
use environment variables, which you will define later, upon the database service creation.

The default section in your edited config/database.yml together with pre-defined variables should look
like:

<% user = ENV.key?("POSTGRESQL_ADMIN_PASSWORD") ? "root" :
ENV["POSTGRESQL_USER"] %>
<% password = ENV.key?("POSTGRESQL_ADMIN_PASSWORD") ?
ENV["POSTGRESQL_ADMIN_PASSWORD"] : ENV["POSTGRESQL_PASSWORD"] %>
<% db_service = ENV.fetch("DATABASE_SERVICE_NAME","").upcase %>

default: &default
 adapter: postgresql
 encoding: unicode
 # For details on connection pooling, see rails configuration guide
 # http://guides.rubyonrails.org/configuring.html#database-pooling
 pool: <%= ENV["POSTGRESQL_MAX_CONNECTIONS"] || 5 %>
 username: <%= user %>
 password: <%= password %>

CHAPTER 7. TUTORIALS

73

http://localhost:3000
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/using_images/#postgresql-environment-variables

 host: <%= ENV["#{db_service}_SERVICE_HOST"] %>
 port: <%= ENV["#{db_service}_SERVICE_PORT"] %>
 database: <%= ENV["POSTGRESQL_DATABASE"] %>

For an example of how the final file should look, see Ruby on Rails example application
config/database.yml.

7.3.3.3. Storing Your Application in Git

OpenShift Online requires git, if you don’t have it installed you will need to install it.

Building an application in OpenShift Online usually requires that the source code be stored in a git
repository, so you will need to install git if you do not already have it.

Make sure you are in your Rails application directory by running the ls -1 command. The output of the
command should look like:

$ ls -1
app
bin
config
config.ru
db
Gemfile
Gemfile.lock
lib
log
public
Rakefile
README.rdoc
test
tmp
vendor

Now run these commands in your Rails app directory to initialize and commit your code to git:

$ git init
$ git add .
$ git commit -m "initial commit"

Once your application is committed you need to push it to a remote repository. For this you would need
a GitHub account, in which you create a new repository .

Set the remote that points to your git repository:

$ git remote add origin git@github.com:<namespace/repository-name>.git

After that, push your application to your remote git repository.

$ git push

7.3.4. Deploying Your Application to OpenShift Online

After creating the rails-app project, you will be automatically switched to the new project namespace.

OpenShift Online 3 Developer Guide

74

https://github.com/sclorg/rails-ex
https://github.com/sclorg/rails-ex/blob/master/config/database.yml
http://git-scm.com/
http://git-scm.com/
https://github.com/join
https://help.github.com/articles/creating-a-new-repository/

Deploying your application in OpenShift Online involves three steps:

Creating a database service from OpenShift Online’s PostgreSQL image

Creating a frontend service from OpenShift Online’s Ruby 2.0 builder image and your Ruby on
Rails source code, which we wire with the database service

Creating a route for your application.

7.3.4.1. Creating the Database Service

Your Rails application expects a running database service. For this service use PostgeSQL database
image.

To create the database service you will use the oc new-app command. To this command you will need to
pass some necessary environment variables which will be used inside the database container. These
environment variables are required to set the username, password, and name of the database. You can
change the values of these environment variables to anything you would like. The variables we are going
to be setting are as follows:

POSTGRESQL_DATABASE

POSTGRESQL_USER

POSTGRESQL_PASSWORD

Setting these variables ensures:

A database exists with the specified name

A user exists with the specified name

The user can access the specified database with the specified password

For example:

$ oc new-app postgresql -e POSTGRESQL_DATABASE=db_name -e
POSTGRESQL_USER=username -e POSTGRESQL_PASSWORD=password

To also set the password for the database administrator, append to the previous command with:

-e POSTGRESQL_ADMIN_PASSWORD=admin_pw

To watch the progress of this command:

$ oc get pods --watch

7.3.4.2. Creating the Frontend Service

To bring your application to OpenShift Online, you need to specify a repository in which your application
lives, using once again the oc new-app command, in which you will need to specify database related
environment variables we setup in the Creating the Database Service:

CHAPTER 7. TUTORIALS

75

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/using_images/#using-images-db-images-postgresql
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/using_images/#using-images-s2i-images-ruby
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#services
http://www.postgresql.org/
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/using_images/#using-images-db-images-postgresql
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/using_images/#postgresql-environment-variables
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/using_images/#postgresql-environment-variables
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/using_images/#postgresql-environment-variables
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/using_images/#postgresql-environment-variables

$ oc new-app path/to/source/code --name=rails-app -e POSTGRESQL_USER=username -e
POSTGRESQL_PASSWORD=password -e POSTGRESQL_DATABASE=db_name -e
DATABASE_SERVICE_NAME=postgresql

With this command, OpenShift Online fetches the source code, sets up the builder image, builds your
application image, and deploys the newly created image together with the specified environment
variables. The application is named rails-app.

You can verify the environment variables have been added by viewing the JSON document of the rails-
app DeploymentConfig:

$ oc get dc rails-app -o json

You should see the following section:

env": [
 {
 "name": "POSTGRESQL_USER",
 "value": "username"
 },
 {
 "name": "POSTGRESQL_PASSWORD",
 "value": "password"
 },
 {
 "name": "POSTGRESQL_DATABASE",
 "value": "db_name"
 },
 {
 "name": "DATABASE_SERVICE_NAME",
 "value": "postgresql"
 }

],

To check the build process:

$ oc logs -f build rails-app-1

Once the build is complete, you can look at the running pods in OpenShift Online.

$ oc get pods

You should see a line starting with myapp-<number>-<hash>, and that is your application running in
OpenShift Online.

Before your application will be functional, you need to initialize the database by running the database
migration script. There are two ways you can do this:

Manually from the running frontend container:

First you need to exec into frontend container with rsh command:

$ oc rsh <FRONTEND_POD_ID>

OpenShift Online 3 Developer Guide

76

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/using_images/#postgresql-environment-variables
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations

Run the migration from inside the container:

$ RAILS_ENV=production bundle exec rake db:migrate

If you are running your Rails application in a development or test environment you don’t have to specify
the RAILS_ENV environment variable.

By adding pre-deployment lifecycle hooks in your template. For example check the hooks
example in our Rails example application.

7.3.4.3. Creating a Route for Your Application

Expose the frontend service by typing:

$ oc expose service rails-app

7.4. SETTING UP A NEXUS MIRROR FOR MAVEN

7.4.1. Introduction

While developing your application with Java and Maven, you will most likely be building many times. In
order to shorten the build times of your pods, Maven dependencies can be cached in a local Nexus
repository. This tutorial will guide you through creating a Nexus repository on your cluster.

This tutorial assumes that you are working with a project that is already set up for use with Maven. If you
are interested in using Maven with your Java project, it is highly recommended that you look at their
guide.

In addition, be sure to check your application’s image for Maven mirror capabilities. Many images that
use Maven have a MAVEN_MIRROR_URL environment variable that you can use to simplify this
process. If it does not have this capability, read the Nexus documentation to configure your build
properly.

Furthermore, make sure that you give each pod enough resources to function. You may have to edit the
pod template in the Nexus deployment configuration to request more resources.

7.4.2. Setting up Nexus

1. Download and deploy the official Nexus container image:

oc new-app sonatype/nexus

2. Create a route by exposing the newly created Nexus service:

oc expose svc/nexus

3. Use oc get routes to find the pod’s new external address.

oc get routes

The output should resemble:

CHAPTER 7. TUTORIALS

77

https://github.com/sclorg/rails-ex/blob/master/openshift/templates/rails-postgresql.json#L122-L130
https://github.com/sclorg/rails-ex
https://maven.apache.org/guides/getting-started/index.html
https://books.sonatype.com/nexus-book/reference/config.html

NAME HOST/PORT PATH SERVICES PORT TERMINATION
nexus nexus-myproject.192.168.1.173.xip.io nexus 8081-tcp

4. Confirm that Nexus is running by navigating your browser to the URL under HOST/PORT. To
sign in to Nexus, the default administrator username is admin, and the password is admin123.

NOTE

Nexus comes pre-configured for the Central Repository, but you may need others for
your application. For many Red Hat images, it is recommended to add the jboss-ga
repository at Maven repository.

7.4.2.1. Using Probes to Check for Success

This is a good time to set up readiness and liveness probes . These will periodically check to see that
Nexus is running properly.

$ oc set probe dc/nexus \
 --liveness \
 --failure-threshold 3 \
 --initial-delay-seconds 30 \
 -- echo ok
$ oc set probe dc/nexus \
 --readiness \
 --failure-threshold 3 \
 --initial-delay-seconds 30 \
 --get-url=http://:8081/nexus/content/groups/public

7.4.2.2. Adding Persistence to Nexus

NOTE

If you do not want persistent storage, continue to Connecting to Nexus . However, your
cached dependencies and any configuration customization will be lost if the pod is
restarted for any reason.

Create a persistent volume claim (PVC) for Nexus, so that the cached dependencies are not lost when
the pod running the server terminates. PVCs require available persistent volumes (PV) in the cluster. If
there are no PVs available and you do not have administrator access on your cluster, ask your system
administrator to create a Read/Write Persistent Volume for you.

Add a PVC to the Nexus deployment configuration.

$ oc volumes dc/nexus --add \
 --name 'nexus-volume-1' \
 --type 'pvc' \
 --mount-path '/sonatype-work/' \
 --claim-name 'nexus-pv' \
 --claim-size '1G' \
 --overwrite

This removes the previous emptyDir volume for the deployment config and adds a claim for one

OpenShift Online 3 Developer Guide

78

https://maven.repository.redhat.com/ga/
https://books.sonatype.com/nexus-book/reference/config-maven.html

This removes the previous emptyDir volume for the deployment config and adds a claim for one
gigabyte of persistent storage mounted at /sonatype-work, which is where the dependencies will be
stored. Due to the change in configuration, the Nexus pod will be redeployed automatically.

To verify that Nexus is running, refresh the Nexus page in your browser. You can monitor the
deployment’s progress using:

$ oc get pods -w

7.4.3. Connecting to Nexus

The next steps demonstrate defining a build that uses the new Nexus repository. The rest of the tutorial
uses this example repository with wildfly-100-centos7 as a builder, but these changes should work for
any project.

The example builder image supports MAVEN_MIRROR_URL as part of its environment, so we can use
this to point our builder image to our Nexus repository. If your image does not support consuming an
environment variable to configure a Maven mirror, you may need to modify the builder image to provide
the correct Maven settings to point to the Nexus mirror.

$ oc new-build openshift/wildfly-100-centos7:latest~https://github.com/openshift/jee-ex.git \
 -e MAVEN_MIRROR_URL='http://nexus.<Nexus_Project>:8081/nexus/content/groups/public'
$ oc logs build/jee-ex-1 --follow

Replace <Nexus_Project> with the project name of the Nexus repository. If it is in the same project as
the application that is using it, you can remove the <Nexus_Project>.. Learn more about DNS resolution
in OpenShift Online.

7.4.4. Confirming Success

In your web browser, navigate to http://<NexusIP>:8081/nexus/content/groups/public to confirm that
it has stored your application’s dependencies. You can also check the build logs to see if Maven is using
the Nexus mirror. If successful, you should see output referencing the URL http://nexus:8081.

7.4.5. Additional Resources

Managing Volumes in OpenShift Online

Improving Build Time of Java Builds on OpenShift Online

Nexus Repository Documentation

7.5. OPENSHIFT PIPELINE BUILDS

7.5.1. Introduction

Whether you are creating a simple website or a complex web of microservices, use OpenShift Pipelines
to build, test, deploy, and promote your applications on OpenShift.

In addition to standard Jenkins Pipeline Syntax, the OpenShift Jenkins image provides the OpenShift
Domain Specific Language (DSL) (through the OpenShift Jenkins Client Plug-in), which aims to provide
a readable, concise, comprehensive, and fluent syntax for rich interactions with an OpenShift API server,
allowing for even more control over the build, deployment, and promotion of applications on your
OpenShift cluster.

CHAPTER 7. TUTORIALS

79

https://github.com/openshift/jee-ex.git
https://github.com/openshift/jee-ex.git
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#architecture-additional-concepts-networking
https://blog.openshift.com/improving-build-time-java-builds-openshift/
https://books.sonatype.com/nexus-book/reference/index.html

1

2

This example demonstrates how to create an OpenShift Pipeline that will build, deploy, and verify a
Node.js/MongoDB application using the nodejs-mongodb.json template.

7.5.2. Creating the Jenkins Master

To create the Jenkins master, run:

 $ oc project <project_name> 1
 $ oc new-app jenkins-ephemeral 2

Select the project that you want to use or create a new project with oc new-project
<project_name>.

If you want to use persistent storage, use jenkins-persistent instead.

NOTE

If Jenkins auto-provisioning is enabled on your cluster, and you do not need to make any
customizations to the Jenkins master, you can skip the previous step.

7.5.3. The Pipeline Build Configuration

Now that the Jenkins master is up and running, create a BuildConfig that employs the Jenkins pipeline
strategy to build, deploy, and scale the Node.js/MongoDB example application.

Create a file named nodejs-sample-pipeline.yaml with the following content:

For more information about configuring the Pipeline Build Strategy, see Pipeline Strategy Options.

7.5.4. The Jenkinsfile

Once you create a BuildConfig with a jenkinsPipelineStrategy, tell the pipeline what to do by using an
inline jenkinsfile. This example does not set up a Git repository for the application.

The following jenkinsfile content is written in Groovy using the OpenShift DSL. For this example,
include inline content in the BuildConfig using the YAML Literal Style, though including a jenkinsfile in
your source repository is the preferred method.

The completed BuildConfig can be viewed in the OpenShift Origin repository in the examples directory,
nodejs-sample-pipeline.yaml.

kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "nodejs-sample-pipeline"
spec:
 strategy:
 jenkinsPipelineStrategy:
 jenkinsfile: <pipeline content from below>
 type: JenkinsPipeline

def templatePath = 'https://raw.githubusercontent.com/openshift/nodejs-
ex/master/openshift/templates/nodejs-mongodb.json' 1

OpenShift Online 3 Developer Guide

80

https://github.com/sclorg/nodejs-ex/blob/master/openshift/templates/nodejs-mongodb.json
http://www.yaml.org/spec/1.2/spec.html#id2795688
https://github.com/openshift/origin/tree/master/examples/jenkins/pipeline/nodejs-sample-pipeline.yaml

def templateName = 'nodejs-mongodb-example' 2
pipeline {
 agent {
 node {
 label 'nodejs' 3
 }
 }
 options {
 timeout(time: 20, unit: 'MINUTES') 4
 }
 stages {
 stage('preamble') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 echo "Using project: ${openshift.project()}"
 }
 }
 }
 }
 }
 stage('cleanup') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 openshift.selector("all", [template : templateName]).delete() 5
 if (openshift.selector("secrets", templateName).exists()) { 6
 openshift.selector("secrets", templateName).delete()
 }
 }
 }
 }
 }
 }
 stage('create') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 openshift.newApp(templatePath) 7
 }
 }
 }
 }
 }
 stage('build') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 def builds = openshift.selector("bc", templateName).related('builds')
 timeout(5) { 8
 builds.untilEach(1) {

CHAPTER 7. TUTORIALS

81

1

2

3

4

5

6

7

8

9

Path of the template to use.

Name of the template that will be created.

Spin up a node.js slave pod on which to run this build.

Set a timeout of 20 minutes for this pipeline.

Delete everything with this template label.

Delete any secrets with this template label.

Create a new application from the templatePath.

Wait up to five minutes for the build to complete.

Wait up to five minutes for the deployment to complete.

 return (it.object().status.phase == "Complete")
 }
 }
 }
 }
 }
 }
 }
 stage('deploy') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 def rm = openshift.selector("dc", templateName).rollout().latest()
 timeout(5) { 9
 openshift.selector("dc", templateName).related('pods').untilEach(1) {
 return (it.object().status.phase == "Running")
 }
 }
 }
 }
 }
 }
 }
 stage('tag') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 openshift.tag("${templateName}:latest", "${templateName}-staging:latest") 10
 }
 }
 }
 }
 }
 }
}

OpenShift Online 3 Developer Guide

82

10 If everything else succeeded, tag the $ {templateName}:latest image as $ {templateName}-
staging:latest. A pipeline BuildConfig for the staging environment can watch for the $

NOTE

The previous example was written using the declarative pipeline style, but the older
scripted pipeline style is also supported.

7.5.5. Creating the Pipeline

You can create the BuildConfig in your OpenShift cluster by running:

$ oc create -f nodejs-sample-pipeline.yaml

If you do not want to create your own file, you can use the sample from the Origin repository by running:

$ oc create -f
https://raw.githubusercontent.com/openshift/origin/master/examples/jenkins/pipeline/nodejs-sample-
pipeline.yaml

For more information about the OpenShift DSL syntax used here, see OpenShift Jenkins Client Plug-in .

7.5.6. Starting the Pipeline

Start the pipeline with the following command:

$ oc start-build nodejs-sample-pipeline

NOTE

Alternatively, you can start your pipeline with the OpenShift Web Console by navigating
to the Builds → Pipeline section and clicking Start Pipeline, or by visiting the Jenkins
Console, navigating to the Pipeline that you created, and clicking Build Now.

Once the pipeline is started, you should see the following actions performed within your project:

A job instance is created on the Jenkins server.

A slave pod is launched, if your pipeline requires one.

The pipeline runs on the slave pod, or the master if no slave is required.

Any previously created resources with the template=nodejs-mongodb-example label will
be deleted.

A new application, and all of its associated resources, will be created from the nodejs-
mongodb-example template.

A build will be started using the nodejs-mongodb-example BuildConfig.

The pipeline will wait until the build has completed to trigger the next stage.

A deployment will be started using the nodejs-mongodb-example deployment

CHAPTER 7. TUTORIALS

83

https://github.com/openshift/jenkins-client-plugin/blob/master/README.md

A deployment will be started using the nodejs-mongodb-example deployment
configuration.

The pipeline will wait until the deployment has completed to trigger the next stage.

If the build and deploy are successful, the nodejs-mongodb-example:latest image will be
tagged as nodejs-mongodb-example:stage.

The slave pod is deleted, if one was required for the pipeline.

NOTE

The best way to visualize the pipeline execution is by viewing it in the OpenShift Web
Console. You can view your pipelines by logging into the web console and navigating to
Builds → Pipelines.

7.6. BINARY BUILDS

7.6.1. Introduction

The binary build feature in OpenShift allows developers to upload source or artifacts directly to a build
instead of having the build pull source from a Git repository URL. Any BuildConfig with a strategy of
source, Docker, or custom may be started as a binary build. When starting a build from local artifacts, the
existing source reference is replaced with the source coming from the local user’s machine.

The source may be supplied in several ways which correspond to arguments available when using the
start-build command:

From a file (--from-file): This is the case when the entire source of the build consists of a single
file. For example, it may be a Dockerfile for a Docker build, pom.xml for a Wildfly build, or
Gemfile for a Ruby build.

From a directory (--from-directory): Use this when the source is in a local directory and is not
committed to a Git repository. The start-build command will create an archive of the given
directory and upload it to the builder as source.

From an archive (--from-archive): Use this when an archive with the source already exists. The
archive may be in either tar, tar.gz, or zip format.

From a Git repository (--from-repo): This is for source that is currently part of a Git repository
on the user’s local machine. The HEAD commit of the current repository will be archived and
sent to OpenShift for building.

7.6.1.1. Use Cases

Binary builds remove the requirement for a build to pull source from an existing Git repository. Reasons
to use binary builds include:

Building and testing local code changes. Source from a public repository can be cloned and local
changes can be uploaded to OpenShift for building. Local changes do not have to be
committed or pushed anywhere.

Building private code. New builds can be started from scratch as binary builds. The source can
then be uploaded directly from your local workstation to OpenShift without having to check it in
to an SCM.

OpenShift Online 3 Developer Guide

84

Building images with artifacts from other sources. With Jenkins pipelines, binary builds are useful
to combine artifacts built with tools such as Maven or C compiler, and runtime images that
make use of those builds.

7.6.1.2. Limitations

Binary builds are not repeatable. Because binary builds rely on the user uploading artifacts at
build start, OpenShift cannot repeat the same build without the user repeating the same upload
every time.

Binary builds cannot be triggered automatically. They can only be started manually when the
user uploads the required binary artifacts.

NOTE

Builds that are started as binary builds may also have a configured source URL. If that’s
the case, triggers will successfully launch the build but source will come from the
configured source URL and not from what was supplied by the user the last time the build
ran.

7.6.2. Tutorials Overview

The following tutorials assume that you have an OpenShift cluster available and that you have a project
where you can create artifacts. It requires that you have both git and oc available locally.

7.6.2.1. Tutorial: Building local code changes

1. Create a new application based on an existing source repository and create a route for it:

$ oc new-app https://github.com/openshift/ruby-hello-world.git
$ oc expose svc/ruby-hello-world

2. Wait for the initial build to complete and view the application’s page by navigating to the route’s
host. You should get a welcome page:

$ oc get route ruby-hello-world

3. Clone the repository locally:

$ git clone https://github.com/openshift/ruby-hello-world.git
$ cd ruby-hello-world

4. Make a change to the application’s view. Using your favorite editor, edit views/main.rb: Change
the <body> tag to <body style="background-color:blue">.

5. Start a new build with your locally-modified source. From the repository’s local directory, run:

$ oc start-build ruby-hello-world --from-dir="." --follow

Once your build has completed and the application has redeployed, navigating to the application’s route
host should result in a page with a blue background.

CHAPTER 7. TUTORIALS

85

You can keep making changes locally and building your code with oc start-build --from-dir.

You can also create a branch of the code, commit your changes locally, and use the repository’s HEAD
as the source for your build:

$ git checkout -b my_branch
$ git add .
$ git commit -m "My changes"
$ oc start-build ruby-hello-world --from-repo="." --follow

7.6.2.2. Tutorial: Building private code

1. Create a local directory to hold your code:

$ mkdir myapp
$ cd myapp

2. In the directory create a file named Dockerfile with the following content:

FROM centos:centos7

EXPOSE 8080

COPY index.html /var/run/web/index.html

CMD cd /var/run/web && python -m SimpleHTTPServer 8080

3. Create a file named index.html with the following content:

<html>
 <head>
 <title>My local app</title>
 </head>
 <body>
 <h1>Hello World</h1>
 <p>This is my local application</p>
 </body>
</html>

4. Create a new build for your application:

$ oc new-build --strategy docker --binary --docker-image centos:centos7 --name myapp

5. Start a binary build using the local directory’s content:

$ oc start-build myapp --from-dir . --follow

6. Deploy the application using new-app, then create a route for it:

$ oc new-app myapp
$ oc expose svc/myapp

7. Get the host name for your route and navigate to it:

OpenShift Online 3 Developer Guide

86

$ oc get route myapp

After having built and deployed your code, you can iterate by making changes to your local files and
starting new builds by invoking oc start-build myapp --from-dir. Once built, the code will be
automatically deployed and the changes will be reflected in your browser when you refresh the page.

7.6.2.3. Tutorial: Binary artifacts from pipeline

Jenkins on OpenShift allows using slave images with the appropriate tools to build your code. For
example, you can use the maven slave to build a WAR from your code repository. However, once this
artifact is built, you need to commit it to an image that contains the right runtime artifacts to run your
code. A binary build may be used to add these artifacts to your runtime image. In the following tutorial,
we’ll create a Jenkins pipeline that makes use of the maven slave to build a WAR, and then uses a binary
build with a Dockerfile to add that WAR to a wildfly runtime image.

1. Create a new directory for your application:

$ mkdir mavenapp
$ cd mavenapp

2. Create a Dockerfile that copies a WAR to the appropriate location inside a wildfly image for
execution. Copy the following to a local file named Dockerfile:

FROM wildfly:latest
COPY ROOT.war /wildfly/standalone/deployments/ROOT.war
CMD $STI_SCRIPTS_PATH/run

3. Create a new BuildConfig for that Dockerfile:

NOTE

This will automatically start a build that will initially fail because the ROOT.war
artifact is not yet available. The pipeline below will pass that WAR to the build
using a binary build.

$ cat Dockerfile | oc new-build -D - --name mavenapp

4. Create a BuildConfig with the Jenkins pipeline that will build a WAR and then use that WAR to
build an image using the previously created Dockerfile. The same pattern can be used for other
platforms where a binary artifact is built by a set of tools and is then combined with a different
runtime image for the final package. Save the following code to mavenapp-pipeline.yml:

apiVersion: v1
kind: BuildConfig
metadata:
 name: mavenapp-pipeline
spec:
 strategy:
 jenkinsPipelineStrategy:
 jenkinsfile: |-
 pipeline {
 agent { label "maven" }
 stages {

CHAPTER 7. TUTORIALS

87

 stage("Clone Source") {
 steps {
 checkout([$class: 'GitSCM',
 branches: [[name: '*/master']],
 extensions: [
 [$class: 'RelativeTargetDirectory', relativeTargetDir: 'mavenapp']
],
 userRemoteConfigs: [[url: 'https://github.com/openshift/openshift-jee-
sample.git']]
])
 }
 }
 stage("Build WAR") {
 steps {
 dir('mavenapp') {
 sh 'mvn clean package -Popenshift'
 }
 }
 }
 stage("Build Image") {
 steps {
 dir('mavenapp/target') {
 sh 'oc start-build mavenapp --from-dir . --follow'
 }
 }
 }
 }
 }
 type: JenkinsPipeline
 triggers: []

5. Create the pipeline build. If Jenkins is not deployed to your project, creating the BuildConfig
with the pipeline will result in Jenkins getting deployed. It may take a couple of minutes before
Jenkins is ready to build your pipeline. You can check the status of the Jenkins rollout by
invoking, oc rollout status dc/jenkins:

$ oc create -f ./mavenapp-pipeline.yml

6. Once Jenkins is ready, start the pipeline defined previously:

$ oc start-build mavenapp-pipeline

7. When the pipeline has finished building, deploy the new application using new-app and expose
its route:

$ oc new-app mavenapp
$ oc expose svc/mavenapp

8. Using your browser, navigate to the route for the application:

$ oc get route mavenapp

OpenShift Online 3 Developer Guide

88

CHAPTER 8. BUILDS

8.1. HOW BUILDS WORK

8.1.1. What Is a Build?

A build in OpenShift Online is the process of transforming input parameters into a resulting object. Most
often, builds are used to transform source code into a runnable container image.

A build configuration, or BuildConfig, is characterized by a build strategy and one or more sources. The
strategy determines the aforementioned process, while the sources provide its input.

The supported build strategies are:

Source-to-Image (S2I) (description, options)

Pipeline (description, options)

And there are six types of sources that can be given as build input:

Git

Binary

Image

Input secrets

External artifacts

It is up to each build strategy to consider or ignore a certain type of source, as well as to determine how
it is to be used. Binary and Git are mutually exclusive source types. Image can be used by itself or
together with either Git or Binary. The Binary source type is unique from the other options in how it is
specified to the system.

8.1.2. What Is a BuildConfig?

A build configuration describes a single build definition and a set of triggers for when a new build should
be created. Build configurations are defined by a BuildConfig, which is a REST object that can be used
in a POST to the API server to create a new instance.

Depending on how you choose to create your application using OpenShift Online, a BuildConfig is
typically generated automatically for you if you use the web console or CLI, and it can be edited at any
time. Understanding the parts that make up a BuildConfig and their available options can help if you
choose to manually tweak your configuration later.

The following example BuildConfig results in a new build every time a container image tag or the source
code changes:

BuildConfig Object Definition

kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "ruby-sample-build" 1

CHAPTER 8. BUILDS

89

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#builds
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#source-build
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#pipeline-build

1

2

3

4

5

6

7

This specification will create a new BuildConfig named ruby-sample-build.

The runPolicy field controls whether builds created from this build configuration can be run
simultaneously. The default value is Serial, which means new builds will run sequentially, not
simultaneously.

You can specify a list of triggers, which cause a new build to be created.

The source section defines the source of the build. The source type determines the primary
source of input, and can be either Git, to point to a code repository location, or Binary, to accept
binary payloads. It is possible to have multiple sources at once, refer to the documentation for each
source type for details.

The strategy section describes the build strategy used to execute the build. You can specify a
Source strategy here. This above example uses the ruby-20-centos7 container image that
Source-To-Image will use for the application build.

After the container image is successfully built, it will be pushed into the repository described in the
output section.

The postCommit section defines an optional build hook.

8.2. BASIC BUILD OPERATIONS

8.2.1. Starting a Build

Manually start a new build from an existing build configuration in your current project using the following

spec:
 runPolicy: "Serial" 2
 triggers: 3
 -
 type: "GitHub"
 github:
 secret: "secret101"
 - type: "Generic"
 generic:
 secret: "secret101"
 -
 type: "ImageChange"
 source: 4
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 strategy: 5
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "ruby-20-centos7:latest"
 output: 6
 to:
 kind: "ImageStreamTag"
 name: "origin-ruby-sample:latest"
 postCommit: 7
 script: "bundle exec rake test"

OpenShift Online 3 Developer Guide

90

Manually start a new build from an existing build configuration in your current project using the following
command:

$ oc start-build <buildconfig_name>

Re-run a build using the --from-build flag:

$ oc start-build --from-build=<build_name>

Specify the --follow flag to stream the build’s logs in stdout:

$ oc start-build <buildconfig_name> --follow

Specify the --env flag to set any desired environment variable for the build:

$ oc start-build <buildconfig_name> --env=<key>=<value>

Rather than relying on a Git source pull for a build, you can can also start a build by directly pushing your
source, which could be the contents of a Git or SVN working directory, a set of prebuilt binary artifacts
you want to deploy, or a single file. This can be done by specifying one of the following options for the
start-build command:

Option Description

--from-dir=<directory> Specifies a directory that will be archived and used as a binary input for
the build.

--from-file=<file> Specifies a single file that will be the only file in the build source. The file
is placed in the root of an empty directory with the same file name as the
original file provided.

--from-repo=
<local_source_repo>

Specifies a path to a local repository to use as the binary input for a
build. Add the --commit option to control which branch, tag, or commit
is used for the build.

When passing any of these options directly to the build, the contents are streamed to the build and
override the current build source settings.

NOTE

Builds triggered from binary input will not preserve the source on the server, so rebuilds
triggered by base image changes will use the source specified in the build configuration.

For example, the following command sends the contents of a local Git repository as an archive from the
tag v2 and starts a build:

$ oc start-build hello-world --from-repo=../hello-world --commit=v2

8.2.2. Canceling a Build

CHAPTER 8. BUILDS

91

Manually cancel a build using the web console, or with the following CLI command:

$ oc cancel-build <build_name>

Cancel multiple builds at the same time:

$ oc cancel-build <build1_name> <build2_name> <build3_name>

Cancel all builds created from the build configuration:

$ oc cancel-build bc/<buildconfig_name>

Cancel all builds in a given state (for example, new or pending), ignoring the builds in other states:

$ oc cancel-build bc/<buildconfig_name> --state=<state>

8.2.3. Deleting a BuildConfig

Delete a BuildConfig using the following command:

$ oc delete bc <BuildConfigName>

This will also delete all builds that were instantiated from this BuildConfig. Specify the --cascade=false
flag if you do not want to delete the builds:

$ oc delete --cascade=false bc <BuildConfigName>

8.2.4. Viewing Build Details

You can view build details with the web console or by using the oc describe CLI command:

$ oc describe build <build_name>

This displays information such as:

The build source

The build strategy

The output destination

Digest of the image in the destination registry

How the build was created

If the build uses the Source strategy, the oc describe output also includes information about the
source revision used for the build, including the commit ID, author, committer, and message.

8.2.5. Accessing Build Logs

You can access build logs using the web console or the CLI.

OpenShift Online 3 Developer Guide

92

1

To stream the logs using the build directly:

$ oc logs -f build/<build_name>

To stream the logs of the latest build for a build configuration:

$ oc logs -f bc/<buildconfig_name>

To return the logs of a given version build for a build configuration:

$ oc logs --version=<number> bc/<buildconfig_name>

Log Verbosity

To enable more verbose output, pass the BUILD_LOGLEVEL environment variable as part of the
sourceStrategy in a BuildConfig:

Adjust this value to the desired log level.

NOTE

A platform administrator can set the default build verbosity for the entire OpenShift
Online instance by configuring env/BUILD_LOGLEVEL for the BuildDefaults admission
controller. This default can be overridden by specifying BUILD_LOGLEVEL in a given
BuildConfig. You can specify a higher priority override on the command line for non-
binary builds by passing --build-loglevel to oc start-build.

Available log levels for Source builds are as follows:

Level 0 Produces output from containers running the assemble script and all encountered errors.
This is the default.

Level 1 Produces basic information about the executed process.

Level 2 Produces very detailed information about the executed process.

Level 3 Produces very detailed information about the executed process, and a listing of the archive
contents.

Level 4 Currently produces the same information as level 3.

Level 5 Produces everything mentioned on previous levels and additionally provides docker push
messages.

sourceStrategy:
...
 env:
 - name: "BUILD_LOGLEVEL"
 value: "2" 1

CHAPTER 8. BUILDS

93

8.3. BUILD INPUTS

8.3.1. How Build Inputs Work

A build input provides source content for builds to operate on. There are several ways to provide source
in OpenShift Online. In order of precedence:

Content extracted from existing images

Git repositories

Binary (Local) inputs

Input secrets

External artifacts

IMPORTANT

The Docker build strategy is not supported in OpenShift Online. Therefore, inline
Dockerfile definitions are not accepted.

Different inputs can be combined into a single build. Binary (local) input and Git repositories are
mutually exclusive inputs.

Input secrets are useful for when you do not want certain resources or credentials used during a build to
be available in the final application image produced by the build, or want to consume a value that is
defined in a Secret resource. External artifacts can be used to pull in additional files that are not
available as one of the other build input types.

Whenever a build is run:

1. A working directory is constructed and all input content is placed in the working directory. For
example, the input Git repository is cloned into the working directory, and files specified from
input images are copied into the working directory using the target path.

2. The build process changes directories into the contextDir, if one is defined.

3. The content from the current directory is provided to the build process for reference by the
assemble script. This means any input content that resides outside the contextDir will be
ignored by the build.

The following example of a source definition includes multiple input types and an explanation of how
they are combined. For more details on how each input type is defined, see the specific sections for
each input type.

source:
 git:
 uri: https://github.com/openshift/ruby-hello-world.git 1
 images:
 - from:
 kind: ImageStreamTag
 name: myinputimage:latest
 namespace: mynamespace
 paths:

OpenShift Online 3 Developer Guide

94

1

2

3

1

2

3

4

The repository to be cloned into the working directory for the build.

/usr/lib/somefile.jar from myinputimage will be stored in <workingdir>/app/dir/injected/dir.

The working directory for the build will become <original_workingdir>/app/dir.

8.3.2. Image Source

Additional files can be provided to the build process via images. Input images are referenced in the same
way the From and To image targets are defined. This means both container images and image stream
tags can be referenced. In conjunction with the image, you must provide one or more path pairs to
indicate the path of the files or directories to copy the image and the destination to place them in the
build context.

The source path can be any absolute path within the image specified. The destination must be a relative
directory path. At build time, the image will be loaded and the indicated files and directories will be
copied into the context directory of the build process. This is the same directory into which the source
repository content (if any) is cloned. If the source path ends in /. then the content of the directory will
be copied, but the directory itself will not be created at the destination.

Image inputs are specified in the source definition of the BuildConfig:

An array of one or more input images and files.

A reference to the image containing the files to be copied.

An array of source/destination paths.

The directory relative to the build root where the build process can access the file.

 - destinationDir: app/dir/injected/dir 2
 sourcePath: /usr/lib/somefile.jar
 contextDir: "app/dir" 3

source:
 git:
 uri: https://github.com/openshift/ruby-hello-world.git
 images: 1
 - from: 2
 kind: ImageStreamTag
 name: myinputimage:latest
 namespace: mynamespace
 paths: 3
 - destinationDir: injected/dir 4
 sourcePath: /usr/lib/somefile.jar 5
 - from:
 kind: ImageStreamTag
 name: myotherinputimage:latest
 namespace: myothernamespace
 pullSecret: mysecret 6
 paths:
 - destinationDir: injected/dir
 sourcePath: /usr/lib/somefile.jar

CHAPTER 8. BUILDS

95

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#image-stream-tag

5

6

1

2

The location of the file to be copied out of the referenced image.

An optional secret provided if credentials are needed to access the input image.

8.3.3. Git Source

When specified, source code will be fetched from the location supplied.

The source definition is part of the spec section in the BuildConfig:

The git field contains the URI to the remote Git repository of the source code. Optionally, specify
the ref field to check out a specific Git reference. A valid ref can be a SHA1 tag or a branch name.

The contextDir field allows you to override the default location inside the source code repository
where the build looks for the application source code. If your application exists inside a sub-
directory, you can override the default location (the root folder) using this field.

If the ref field denotes a pull request, the system will use a git fetch operation and then checkout
FETCH_HEAD.

When no ref value is provided, OpenShift Online performs a shallow clone (--depth=1). In this case, only
the files associated with the most recent commit on the default branch (typically master) are
downloaded. This results in repositories downloading faster, but without the full commit history. To
perform a full git clone of the default branch of a specified repository, set ref to the name of the
default branch (for example master).

8.3.3.1. Using a Proxy

If your Git repository can only be accessed using a proxy, you can define the proxy to use in the source
section of the BuildConfig. You can configure both a HTTP and HTTPS proxy to use. Both fields are
optional. Domains for which no proxying should be performed can also be specified via the NoProxy
field.

NOTE

Your source URI must use the HTTP or HTTPS protocol for this to work.

NOTE

source:
 git: 1
 uri: "https://github.com/openshift/ruby-hello-world"
 ref: "master"
 contextDir: "app/dir" 2

source:
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 httpProxy: http://proxy.example.com
 httpsProxy: https://proxy.example.com
 noProxy: somedomain.com, otherdomain.com

OpenShift Online 3 Developer Guide

96

NOTE

For Pipeline strategy builds, given the current restrictions with the Git plug-in for
Jenkins, any Git operations through the Git plug-in will not leverage the HTTP or HTTPS
proxy defined in the BuildConfig. The Git plug-in only will use the proxy configured in
the Jenkins UI at the Plugin Manager panel. This proxy will then be used for all git
interactions within Jenkins, across all jobs. You can find instructions on how to configure
proxies through the Jenkins UI at JenkinsBehindProxy.

8.3.3.2. Source Clone Secrets

Builder pods require access to any Git repositories defined as source for a build. Source clone secrets
are used to provide the builder pod with access it would not normally have access to, such as private
repositories or repositories with self-signed or untrusted SSL certificates.

The following source clone secret configurations are supported.

.gitconfig File

Basic Authentication

SSH Key Authentication

Trusted Certificate Authorities

NOTE

You can also use combinations of these configurations to meet your specific needs.

Builds are run with the builder service account, which must have access to any source clone secrets
used. Access is granted with the following command:

$ oc secrets link builder mysecret

NOTE

Limiting secrets to only the service accounts that reference them is disabled by default.
This means that if serviceAccountConfig.limitSecretReferences is set to false (the
default setting) in the master configuration file, linking secrets to a service is not required.

8.3.3.2.1. Automatically Adding a Source Clone Secret to a Build Configuration

When a BuildConfig is created, OpenShift Online can automatically populate its source clone secret
reference. This behaviour allows the resulting Builds to automatically use the credentials stored in the
referenced Secret to authenticate to a remote Git repository, without requiring further configuration.

To use this functionality, a Secret containing the Git repository credentials must exist in the namespace
in which the BuildConfig will later be created. This Secret must additionally include one or more
annotations prefixed with build.openshift.io/source-secret-match-uri-. The value of each of these
annotations is a URI pattern, defined as follows. When a BuildConfig is created without a source clone
secret reference and its Git source URI matches a URI pattern in a Secret annotation, OpenShift Online
will automatically insert a reference to that Secret in the BuildConfig.

A URI pattern must consist of:

CHAPTER 8. BUILDS

97

https://wiki.jenkins-ci.org/display/JENKINS/JenkinsBehindProxy

a valid scheme (*://, git://, http://, https:// or ssh://).

a host (* or a valid hostname or IP address optionally preceded by *.).

a path (/* or / followed by any characters optionally including * characters).

In all of the above, a * character is interpreted as a wildcard.

IMPORTANT

URI patterns must match Git source URIs which are conformant to RFC3986. Do not
include a username (or password) component in a URI pattern.

For example, if you use ssh://git@bitbucket.atlassian.com:7999/ATLASSIAN/jira.git
for a git repository URL, the source secret must be specified as
ssh://bitbucket.atlassian.com:7999/* (and not
ssh://git@bitbucket.atlassian.com:7999/*).

If multiple Secrets match the Git URI of a particular BuildConfig, OpenShift Online will select the
secret with the longest match. This allows for basic overriding, as in the following example.

The following fragment shows two partial source clone secrets, the first matching any server in the
domain mycorp.com accessed by HTTPS, and the second overriding access to servers
mydev1.mycorp.com and mydev2.mycorp.com:

Add a build.openshift.io/source-secret-match-uri- annotation to a pre-existing secret using:

$ oc annotate secret mysecret \
 'build.openshift.io/source-secret-match-uri-1=https://*.mycorp.com/*'

8.3.3.2.2. Manually Adding Source Clone Secrets

$ oc annotate secret mysecret \
 'build.openshift.io/source-secret-match-uri-1=ssh://bitbucket.atlassian.com:7999/*'

kind: Secret
apiVersion: v1
metadata:
 name: matches-all-corporate-servers-https-only
 annotations:
 build.openshift.io/source-secret-match-uri-1: https://*.mycorp.com/*
data:
 ...

kind: Secret
apiVersion: v1
metadata:
 name: override-for-my-dev-servers-https-only
 annotations:
 build.openshift.io/source-secret-match-uri-1: https://mydev1.mycorp.com/*
 build.openshift.io/source-secret-match-uri-2: https://mydev2.mycorp.com/*
data:
 ...

OpenShift Online 3 Developer Guide

98

https://www.ietf.org/rfc/rfc3986.txt

Source clone secrets can be added manually to a build configuration by adding a sourceSecret field to
the source section inside the BuildConfig and setting it to the name of the secret that you created
(basicsecret, in this example).

NOTE

You can also use the oc set build-secret command to set the source clone secret on an
existing build configuration:

$ oc set build-secret --source bc/sample-build basicsecret

Defining Secrets in the BuildConfig provides more information on this topic.

8.3.3.2.3. .gitconfig File

If the cloning of your application is dependent on a .gitconfig file, then you can create a secret that
contains it, and then add it to the builder service account, and then your BuildConfig.

To create a secret from a .gitconfig file:

$ oc create secret generic <secret_name> --from-file=<path/to/.gitconfig>

NOTE

SSL verification can be turned off if sslVerify=false is set for the http section in your
.gitconfig file:

[http]
 sslVerify=false

8.3.3.2.4. .gitconfig File for Secured Git

apiVersion: "v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "sample-image:latest"
 source:
 git:
 uri: "https://github.com/user/app.git"
 sourceSecret:
 name: "basicsecret"
 strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "python-33-centos7:latest"

CHAPTER 8. BUILDS

99

1

2

If your Git server is secured with 2-way SSL and user name with password you must add the certificate
files to your source build and add references to the certificate files in the .gitconfig file:

1. Add the client.crt, cacert.crt, and client.key files to the /var/run/secrets/openshift.io/source/
folder in the application source code .

2. In the .gitconfig file for the server, add the [http] section shown in the following example:

cat .gitconfig
[user]
 name = <name>
 email = <email>
[http]
 sslVerify = false
 sslCert = /var/run/secrets/openshift.io/source/client.crt
 sslKey = /var/run/secrets/openshift.io/source/client.key
 sslCaInfo = /var/run/secrets/openshift.io/source/cacert.crt

3. Create the secret:

$ oc create secret generic <secret_name> \
--from-literal=username=<user_name> \ 1
--from-literal=password=<password> \ 2
--from-file=.gitconfig=.gitconfig \
--from-file=client.crt=/var/run/secrets/openshift.io/source/client.crt \
--from-file=cacert.crt=/var/run/secrets/openshift.io/source/cacert.crt \
--from-file=client.key=/var/run/secrets/openshift.io/source/client.key

The user’s Git user name.

The password for this user.

IMPORTANT

To avoid having to enter your password again, be sure to specify the S2I image in your
builds. However, if you cannot clone the repository, you still need to specify your user
name and password to promote the build.

8.3.3.2.5. Basic Authentication

Basic authentication requires either a combination of --username and --password, or a token to
authenticate against the SCM server.

Create the secret first before using the user name and password to access the private repository:

$ oc create secret generic <secret_name> \
 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --type=kubernetes.io/basic-auth

To create a basic authentication secret with a token:

OpenShift Online 3 Developer Guide

100

$ oc create secret generic <secret_name> \
 --from-literal=password=<token> \
 --type=kubernetes.io/basic-auth

8.3.3.2.6. SSH Key Authentication

SSH key based authentication requires a private SSH key.

The repository keys are usually located in the $HOME/.ssh/ directory, and are named id_dsa.pub,
id_ecdsa.pub, id_ed25519.pub, or id_rsa.pub by default. Generate SSH key credentials with the
following command:

$ ssh-keygen -t rsa -C "your_email@example.com"

NOTE

Creating a passphrase for the SSH key prevents OpenShift Online from building. When
prompted for a passphrase, leave it blank.

Two files are created: the public key and a corresponding private key (one of id_dsa, id_ecdsa,
id_ed25519, or id_rsa). With both of these in place, consult your source control management (SCM)
system’s manual on how to upload the public key. The private key is used to access your private
repository.

Before using the SSH key to access the private repository, create the secret first:

$ oc create secret generic <secret_name> \
 --from-file=ssh-privatekey=<path/to/ssh/private/key> \
 --type=kubernetes.io/ssh-auth

8.3.3.2.7. Trusted Certificate Authorities

The set of TLS certificate authorities that are trusted during a git clone operation are built into the
OpenShift Online infrastructure images. If your Git server uses a self-signed certificate or one signed by
an authority not trusted by the image, you can create a secret that contains the certificate or disable
TLS verification.

If you create a secret for the CA certificate, OpenShift Online uses it to access your Git server during
the git clone operation. Using this method is significantly more secure than disabling Git’s SSL
verification, which accepts any TLS certificate that is presented.

Complete one of the following processes:

Create a secret with a CA certificate file (recommended).

a. If your CA uses Intermediate Certificate Authorities, combine the certificates for all CAs in a
ca.crt file. Run the following command:

$ cat intermediateCA.crt intermediateCA.crt rootCA.crt > ca.crt

b. Create the secret:

$ oc create secret generic mycert --from-file=ca.crt=</path/to/file> 1

CHAPTER 8. BUILDS

101

1 You must use the key name ca.crt.

Disable Git TLS verification.
Set the GIT_SSL_NO_VERIFY environment variable to true in the appropriate strategy section
of your build configuration. You can use the oc set env command to manage BuildConfig
environment variables.

8.3.3.2.8. Combinations

Below are several examples of how you can combine the above methods for creating source clone
secrets for your specific needs.

a. To create an SSH-based authentication secret with a .gitconfig file:

$ oc create secret generic <secret_name> \
 --from-file=ssh-privatekey=<path/to/ssh/private/key> \
 --from-file=<path/to/.gitconfig> \
 --type=kubernetes.io/ssh-auth

b. To create a secret that combines a .gitconfig file and CA certificate:

$ oc create secret generic <secret_name> \
 --from-file=ca.crt=<path/to/certificate> \
 --from-file=<path/to/.gitconfig>

c. To create a basic authentication secret with a CA certificate file:

$ oc create secret generic <secret_name> \
 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --from-file=ca.crt=</path/to/file> \
 --type=kubernetes.io/basic-auth

d. To create a basic authentication secret with a .gitconfig file:

$ oc create secret generic <secret_name> \
 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --from-file=</path/to/.gitconfig> \
 --type=kubernetes.io/basic-auth

e. To create a basic authentication secret with a .gitconfig file and CA certificate file:

$ oc create secret generic <secret_name> \
 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --from-file=</path/to/.gitconfig> \
 --from-file=ca.crt=</path/to/file> \
 --type=kubernetes.io/basic-auth

8.3.4. Binary (Local) Source

Streaming content from a local file system to the builder is called a Binary type build. The

OpenShift Online 3 Developer Guide

102

Streaming content from a local file system to the builder is called a Binary type build. The
corresponding value of BuildConfig.spec.source.type is Binary for such builds.

This source type is unique in that it is leveraged solely based on your use of the oc start-build.

NOTE

Binary type builds require content to be streamed from the local file system, so
automatically triggering a binary type build (e.g. via an image change trigger) is not
possible, because the binary files cannot be provided. Similarly, you cannot launch binary
type builds from the web console.

To utilize binary builds, invoke oc start-build with one of these options:

--from-file: The contents of the file you specify are sent as a binary stream to the builder. You
can also specify a URL to a file. Then, the builder stores the data in a file with the same name at
the top of the build context.

--from-dir and --from-repo: The contents are archived and sent as a binary stream to the
builder. Then, the builder extracts the contents of the archive within the build context directory.
With --from-dir, you can also specify a URL to an archive, which will be extracted.

--from-archive: The archive you specify is sent to the builder, where it is extracted within the
build context directory. This option behaves the same as --from-dir; an archive is created on
your host first, whenever the argument to these options is a directory.

In each of the above cases:

If your BuildConfig already has a Binary source type defined, it will effectively be ignored and
replaced by what the client sends.

If your BuildConfig has a Git source type defined, it is dynamically disabled, since Binary and
Git are mutually exclusive, and the data in the binary stream provided to the builder takes
precedence.

Instead of a file name, you can pass a URL with HTTP or HTTPS schema to --from-file and --from-
archive. When using --from-file with a URL, the name of the file in the builder image is determined by
the Content-Disposition header sent by the web server, or the last component of the URL path if the
header is not present. No form of authentication is supported and it is not possible to use custom TLS
certificate or disable certificate validation.

When using oc new-build --binary=true, the command ensures that the restrictions associated with
binary builds are enforced. The resulting BuildConfig will have a source type of Binary, meaning that
the only valid way to run a build for this BuildConfig is to use oc start-build with one of the --from
options to provide the requisite binary data.

In the case of the binary stream encapsulating extracted archive content, the value of the contextDir
field is interpreted as a subdirectory within the archive, and, if valid, the builder changes into that
subdirectory before executing the build.

8.3.5. Input Secrets

In some scenarios, build operations require credentials to access dependent resources, but it is
undesirable for those credentials to be available in the final application image produced by the build.
You can define input secrets for this purpose.

CHAPTER 8. BUILDS

103

For example, when building a Node.js application, you can set up your private mirror for Node.js modules.
In order to download modules from that private mirror, you have to supply a custom .npmrc file for the
build that contains a URL, user name, and password. For security reasons, you do not want to expose
your credentials in the application image.

This example describes Node.js, but you can use the same approach for adding SSL certificates into the
/etc/ssl/certs directory, API keys or tokens, license files, and more.

8.3.5.1. Adding Input Secrets

To add an input secret to an existing BuildConfig:

1. Create the secret, if it does not exist:

$ oc create secret generic secret-npmrc \
 --from-file=.npmrc=<path/to/.npmrc>

This creates a new secret named secret-npmrc, which contains the base64 encoded content of
the ~/.npmrc file.

2. Add the secret to the source section in the existing BuildConfig:

To include the secret in a new BuildConfig, run the following command:

$ oc new-build \
 openshift/nodejs-010-centos7~https://github.com/openshift/nodejs-ex.git \
 --build-secret secret-npmrc

During the build, the .npmrc file is copied into the directory where the source code is located. In
OpenShift Online S2I builder images, this is the image working directory, which is set using the
WORKDIR instruction in the Dockerfile. If you want to specify another directory, add a destinationDir
to the secret definition:

You can also specify the destination directory when creating a new BuildConfig:

$ oc new-build \
 openshift/nodejs-010-centos7~https://github.com/openshift/nodejs-ex.git \
 --build-secret “secret-npmrc:/etc”

source:
 git:
 uri: https://github.com/openshift/nodejs-ex.git
 secrets:
 - secret:
 name: secret-npmrc

source:
 git:
 uri: https://github.com/openshift/nodejs-ex.git
 secrets:
 - secret:
 name: secret-npmrc
 destinationDir: /etc

OpenShift Online 3 Developer Guide

104

In both cases, the .npmrc file is added to the /etc directory of the build environment.

8.3.5.2. Source-to-Image Strategy

When using a Source strategy, all defined input secrets are copied to their respective destinationDir. If
you left destinationDir empty, then the secrets are placed in the working directory of the builder image.

The same rule is used when a destinationDir is a relative path; the secrets are placed in the paths that
are relative to the image’s working directory. The destinationDir must exist or an error will occur. No
directory paths are created during the copy process.

NOTE

Currently, any files with these secrets are world-writable (have 0666 permissions) and will
be truncated to size zero after executing the assemble script. This means that the secret
files will exist in the resulting image, but they will be empty for security reasons.

8.3.6. Using External Artifacts

It is not recommended to store binary files in a source repository. Therefore, you may find it necessary
to define a build which pulls additional files (such as Java .jar dependencies) during the build process.
How this is done depends on the build strategy you are using.

For a Source build strategy, you must put appropriate shell commands into the assemble script:

.s2i/bin/assemble File

.s2i/bin/run File

NOTE

For more information on how to control which assemble and run script is used by a
Source build, see Overriding Builder Image Scripts .

In practice, you may want to use an environment variable for the file location so that the specific file to
be downloaded can be customized using an environment variable defined on the BuildConfig, rather
than updating the assemble script.

You can choose between different methods of defining environment variables:

Using the .s2i/environment file (only for a Source build strategy)

Setting in BuildConfig

Providing explicitly using oc start-build --env (only for builds that are triggered manually)

#!/bin/sh
APP_VERSION=1.0
wget http://repository.example.com/app/app-$APP_VERSION.jar -O app.jar

#!/bin/sh
exec java -jar app.jar

CHAPTER 8. BUILDS

105

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#build-and-deployment-cli-operations

1

2

3

8.3.7. Using Docker Credentials for Private Registries

You can supply builds with a .docker/config.json file with valid credentials for private Docker registries.
This allows you to push the output image into a private Docker registry or pull a builder image from the
private Docker registry that requires authentication.

NOTE

For the OpenShift Online Docker registry, this is not required because secrets are
generated automatically for you by OpenShift Online.

The .docker/config.json file is found in your home directory by default and has the following format:

URL of the registry.

Encrypted password.

Email address for the login.

You can define multiple Docker registry entries in this file. Alternatively, you can also add authentication
entries to this file by running the docker login command. The file will be created if it does not exist.

Kubernetes provides Secret objects, which can be used to store configuration and passwords.

1. Create the secret from your local .docker/config.json file:

$ oc create secret generic dockerhub \
 --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
 --type=kubernetes.io/dockerconfigjson

This generates a JSON specification of the secret named dockerhub and creates the object.

2. Once the secret is created, add it to the builder service account. Each build is run with the
builder role, so you must give it access your secret with the following command:

$ oc secrets link builder dockerhub

3. Add a pushSecret field into the output section of the BuildConfig and set it to the name of
the secret that you created, which in the above example is dockerhub:

auths:
 https://index.docker.io/v1/: 1
 auth: "YWRfbGzhcGU6R2labnRib21ifTE=" 2
 email: "user@example.com" 3

spec:
 output:
 to:
 kind: "DockerImage"
 name: "private.registry.com/org/private-image:latest"
 pushSecret:
 name: "dockerhub"

OpenShift Online 3 Developer Guide

106

You can also use the oc set build-secret command to set the push secret on the build
configuration:

$ oc set build-secret --push bc/sample-build dockerhub

4. Pull the builder container image from a private Docker registry by specifying the pullSecret
field, which is part of the build strategy definition:

You can also use the oc set build-secret command to set the pull secret on the build
configuration:

$ oc set build-secret --pull bc/sample-build dockerhub

8.4. BUILD OUTPUT

8.4.1. Build Output Overview

Builds that use the Source strategy result in the creation of a new container image. The image is then
pushed to the container image registry specified in the output section of the Build specification.

If the output kind is ImageStreamTag, then the image will be pushed to the integrated OpenShift
Online registry and tagged in the specified image stream. If the output is of type DockerImage, then
the name of the output reference will be used as a Docker push specification. The specification may
contain a registry or will default to DockerHub if no registry is specified. If the output section of the build
specification is empty, then the image will not be pushed at the end of the build.

Output to an ImageStreamTag

Output to a Docker Push Specification

8.4.2. Output Image Environment Variables

strategy:
 sourceStrategy:
 from:
 kind: "DockerImage"
 name: "docker.io/user/private_repository"
 pullSecret:
 name: "dockerhub"

spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "sample-image:latest"

spec:
 output:
 to:
 kind: "DockerImage"
 name: "my-registry.mycompany.com:5000/myimages/myimage:tag"

CHAPTER 8. BUILDS

107

Source strategy builds set the following environment variables on output images:

Variable Description

OPENSHIFT_BUILD_NAME Name of the build

OPENSHIFT_BUILD_NAMESPACE Namespace of the build

OPENSHIFT_BUILD_SOURCE The source URL of the build

OPENSHIFT_BUILD_REFERENCE The Git reference used in the build

OPENSHIFT_BUILD_COMMIT Source commit used in the build

Additionally, any user-defined environment variable, for example those configured via Source strategy
options, will also be part of the output image environment variable list.

8.4.3. Output Image Labels

Source builds set the following labels on output images:

Label Description

io.openshift.build.commit.author Author of the source commit used in the build

io.openshift.build.commit.date Date of the source commit used in the build

io.openshift.build.commit.id Hash of the source commit used in the build

io.openshift.build.commit.message Message of the source commit used in the build

io.openshift.build.commit.ref Branch or reference specified in the source

io.openshift.build.source-location Source URL for the build

You can also use the BuildConfig.spec.output.imageLabels field to specify a list of custom labels that
will be applied to each image built from the BuildConfig.

Custom Labels to be Applied to Built Images

spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "my-image:latest"
 imageLabels:
 - name: "vendor"

OpenShift Online 3 Developer Guide

108

1

8.4.4. Output Image Digest

Built images can be uniquely identified by their digest, which can later be used to pull the image by
digest regardless of its current tag.

Source builds store the digest in Build.status.output.to.imageDigest after the image is pushed to a
registry. The digest is computed by the registry. Therefore, it may not always be present, for example
when the registry did not return a digest, or when the builder image did not understand its format.

Built Image Digest After a Successful Push to the Registry

8.4.5. Using Docker Credentials for Private Registries

To push an image to a private Docker registry, credentials can be supplied using a secret. See Build
Inputs for instructions.

8.5. BUILD STRATEGY OPTIONS

IMPORTANT

The Docker build strategy is not supported in OpenShift Online.

8.5.1. Source-to-Image Strategy Options

The following options are specific to the S2I build strategy .

8.5.1.1. Force Pull

By default, if the builder image specified in the build configuration is available locally on the node, that
image will be used. However, to override the local image and refresh it from the registry to which the
image stream points, create a BuildConfig with the forcePull flag set to true:

The builder image being used, where the local version on the node may not be up to date with the
version in the registry to which the image stream points.

This flag causes the local builder image to be ignored and a fresh version to be pulled from the

 value: "MyCompany"
 - name: "authoritative-source-url"
 value: "registry.mycompany.com"

status:
 output:
 to:
 imageDigest:
sha256:29f5d56d12684887bdfa50dcd29fc31eea4aaf4ad3bec43daf19026a7ce69912

strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "builder-image:latest" 1
 forcePull: true 2

CHAPTER 8. BUILDS

109

https://docs.docker.com/registry/spec/api/#/content-digests
https://docs.docker.com/engine/reference/commandline/pull/#/pull-an-image-by-digest-immutable-identifier
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#source-build

2

1

2

1

This flag causes the local builder image to be ignored and a fresh version to be pulled from the
registry to which the image stream points. Setting forcePull to false results in the default behavior

8.5.1.2. Incremental Builds

S2I can perform incremental builds, which means it reuses artifacts from previously-built images. To
create an incremental build, create a BuildConfig with the following modification to the strategy
definition:

Specify an image that supports incremental builds. Consult the documentation of the builder
image to determine if it supports this behavior.

This flag controls whether an incremental build is attempted. If the builder image does not support
incremental builds, the build will still succeed, but you will get a log message stating the incremental
build was not successful because of a missing save-artifacts script.

NOTE

See the S2I Requirements topic for information on how to create a builder image
supporting incremental builds.

8.5.1.3. Overriding Builder Image Scripts

You can override the assemble, run, and save-artifactsS2I scripts provided by the builder image in one
of two ways. Either:

1. Provide an assemble, run, and/or save-artifacts script in the .s2i/bin directory of your
application source repository, or

2. Provide a URL of a directory containing the scripts as part of the strategy definition. For
example:

This path will have run, assemble, and save-artifacts appended to it. If any or all scripts are found
they will be used in place of the same named script(s) provided in the image.

NOTE

strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "incremental-image:latest" 1
 incremental: true 2

strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "builder-image:latest"
 scripts: "http://somehost.com/scripts_directory" 1

OpenShift Online 3 Developer Guide

110

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/creating_images/#creating-images-s2i
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/creating_images/#s2i-scripts

NOTE

Files located at the scripts URL take precedence over files located in .s2i/bin of the
source repository. See the S2I Requirements topic and the S2I documentation for
information on how S2I scripts are used.

8.5.1.4. Environment Variables

There are two ways to make environment variables available to the source build process and resulting
image. Environment files and BuildConfig environment values. Variables provided will be present during
the build process and in the output image.

8.5.1.4.1. Environment Files

Source build enables you to set environment values (one per line) inside your application, by specifying
them in a .s2i/environment file in the source repository. The environment variables specified in this file
are present during the build process and in the output image. The complete list of supported
environment variables is available in the documentation for each image.

If you provide a .s2i/environment file in your source repository, S2I reads this file during the build. This
allows customization of the build behavior as the assemble script may use these variables.

For example, if you want to disable assets compilation for your Rails application, you can add
DISABLE_ASSET_COMPILATION=true in the .s2i/environment file to cause assets compilation to be
skipped during the build.

In addition to builds, the specified environment variables are also available in the running application
itself. For example, you can add RAILS_ENV=development to the .s2i/environment file to cause the
Rails application to start in development mode instead of production.

8.5.1.4.2. BuildConfig Environment

You can add environment variables to the sourceStrategy definition of the BuildConfig. The
environment variables defined there are visible during the assemble script execution and will be defined
in the output image, making them also available to the run script and application code.

For example disabling assets compilation for your Rails application:

The Build Environment section provides more advanced instructions.

You can also manage environment variables defined in the BuildConfig with the oc set env command.

8.5.1.5. Adding Secrets via Web Console

To add a secret to your build configuration so that it can access a private repository:

1. Create a new OpenShift Online project.

2. Create a secret that contains credentials for accessing a private source code repository.

sourceStrategy:
...
 env:
 - name: "DISABLE_ASSET_COMPILATION"
 value: "true"

CHAPTER 8. BUILDS

111

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/creating_images/#creating-images-s2i
https://github.com/openshift/source-to-image/blob/master/docs/builder_image.md#sti-scripts
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#source-build
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/using_images/#using-images-index

3. Create a Source-to-Image (S2I) build configuration .

4. On the build configuration editor page or in the create app from builder image page of the
web console, set the Source Secret.

5. Click the Save button.

8.5.1.5.1. Enabling Pulling and Pushing

Enable pulling to a private registry by setting the Pull Secret in the build configuration and enable
pushing by setting the Push Secret.

8.5.1.6. Ignoring Source Files

Source to image supports a .s2iignore file, which contains a list of file patterns that should be ignored.
Files in the build working directory, as provided by the various input sources, that match a pattern found
in the .s2iignore file will not be made available to the assemble script.

For more details on the format of the .s2iignore file, see the source-to-image documentation.

8.5.2. Pipeline Strategy Options

The following options are specific to the Pipeline build strategy.

8.5.2.1. Providing the Jenkinsfile

You can provide the Jenkinsfile in one of two ways:

1. Embed the Jenkinsfile in the build configuration.

2. Include in the build configuration a reference to the Git repository that contains the Jenkinsfile.

Embedded Definition

Reference to Git Repository

kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "sample-pipeline"
spec:
 strategy:
 jenkinsPipelineStrategy:
 jenkinsfile: |-
 node('agent') {
 stage 'build'
 openshiftBuild(buildConfig: 'ruby-sample-build', showBuildLogs: 'true')
 stage 'deploy'
 openshiftDeploy(deploymentConfig: 'frontend')
 }

kind: "BuildConfig"
apiVersion: "v1"
metadata:

OpenShift Online 3 Developer Guide

112

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#source-build
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#architecture-infrastructure-components-web-console
https://github.com/openshift/source-to-image#build-workflow
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#pipeline-build

1 The optional jenkinsfilePath field specifies the name of the file to use, relative to the source
contextDir. If contextDir is omitted, it defaults to the root of the repository. If jenkinsfilePath is
omitted, it defaults to Jenkinsfile.

8.5.2.2. Environment Variables

To make environment variables available to the Pipeline build process, you can add environment
variables to the jenkinsPipelineStrategy definition of the BuildConfig.

Once defined, the environment variables will be set as parameters for any Jenkins job associated with
the BuildConfig.

For example:

NOTE

You can also manage environment variables defined in the BuildConfig with the oc set
env command.

8.5.2.2.1. Mapping Between BuildConfig Environment Variables and Jenkins Job Parameters

When a Jenkins job is created or updated based on changes to a Pipeline strategy BuildConfig, any
environment variables in the BuildConfig are mapped to Jenkins job parameters definitions, where the
default values for the Jenkins job parameters definitions are the current values of the associated
environment variables.

After the Jenkins job’s initial creation, you can still add additional parameters to the job from the Jenkins
console. The parameter names differ from the names of the environment variables in the BuildConfig.
The parameters are honored when builds are started for those Jenkins jobs.

How you start builds for the Jenkins job dictates how the parameters are set. If you start with oc start-
build, the values of the environment variables in the BuildConfig are the parameters set for the
corresponding job instance. Any changes you make to the parameters' default values from the Jenkins
console are ignored. The BuildConfig values take precedence.

If you start with oc start-build -e, the values for the environment variables specified in the -e option
take precedence. And if you specify an environment variable not listed in the BuildConfig, they will be
added as a Jenkins job parameter definitions. Also any changes you make from the Jenkins console to

 name: "sample-pipeline"
spec:
 source:
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 strategy:
 jenkinsPipelineStrategy:
 jenkinsfilePath: some/repo/dir/filename 1

jenkinsPipelineStrategy:
...
 env:
 - name: "FOO"
 value: "BAR"

CHAPTER 8. BUILDS

113

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#pipeline-build

the parameters corresponding to the environment variables are ignored. The BuildConfig and what you
specify with oc start-build -e takes precedence.

If you start the Jenkins job via the Jenkins console, then you can control the setting of the parameters
via the Jenkins console as part of starting a build for the job.

8.6. BUILD ENVIRONMENT

8.6.1. Overview

As with pod environment variables, build environment variables can be defined in terms of references to
other resources/variables using the Downward API. However, there are some exceptions as noted below.

NOTE

You can also manage environment variables defined in the BuildConfig with the oc set
env command.

8.6.2. Using Build Fields as Environment Variables

You can inject information about the build object by setting the fieldPath environment variable source
to the JsonPath of the field from which you are interested in obtaining the value.

NOTE

Jenkins Pipeline strategy does not support valueFrom syntax for environment variables.

8.6.3. Using Container Resources as Environment Variables

Referencing container resources using valueFrom in build environment variables is not supported as the
references are resolved before the container is created.

8.6.4. Using Secrets as Environment Variables

You can make key values from Secrets available as environment variables using the valueFrom syntax.

env:
 - name: FIELDREF_ENV
 valueFrom:
 fieldRef:
 fieldPath: metadata.name

apiVersion: v1
kind: BuildConfig
metadata:
 name: secret-example-bc
spec:
 strategy:
 sourceStrategy:
 env:
 - name: MYVAL
 valueFrom:

OpenShift Online 3 Developer Guide

114

8.7. TRIGGERING BUILDS

8.7.1. Build Triggers Overview

When defining a BuildConfig, you can define triggers to control the circumstances in which the
BuildConfig should be run. The following build triggers are available:

Webhook

Image change

Configuration change

8.7.2. Webhook Triggers

Webhook triggers allow you to trigger a new build by sending a request to the OpenShift Online API
endpoint. You can define these triggers using GitHub, GitLab, Bitbucket, or Generic webhooks.

OpenShift Online webhooks currently only support their analogous versions of the push event for each
of the Git based source code management systems (SCMs). All other event types are ignored.

When the push events are processed, a confirmation is made as to whether the branch reference inside
the event matches the branch reference in the corresponding BuildConfig. If they match, then the
exact commit reference noted in the webhook event is checked out for the OpenShift Online build. If
they do not match, no build is triggered.

NOTE

oc new-app and oc new-build will create GitHub and Generic webhook triggers
automatically, but any other needed webhook triggers must be added manually (see
Setting Triggers).

For all webhooks, you must define a Secret with a key named WebHookSecretKey and the value being
the value to be supplied when invoking the webhook. The webhook definition must then reference the
secret. The secret ensures the uniqueness of the URL, preventing others from triggering the build. The
value of the key will be compared to the secret provided during the webhook invocation.

For example here is a GitHub webhook with a reference to a secret named mysecret:

The secret is then defined as follows. Note that the value of the secret is base64 encoded as is required
for any data field of a Secret object.

 secretKeyRef:
 key: myval
 name: mysecret

type: "GitHub"
github:
 secretReference:
 name: "mysecret"

- kind: Secret
 apiVersion: v1

CHAPTER 8. BUILDS

115

https://developer.github.com/webhooks/
https://docs.gitlab.com/ce/user/project/integrations/webhooks.html
https://confluence.atlassian.com/bitbucket/manage-webhooks-735643732.html

8.7.2.1. GitHub Webhooks

GitHub webhooks handle the call made by GitHub when a repository is updated. When defining the
trigger, you must specify a secret, which will be part of the URL you supply to GitHub when configuring
the webhook.

Example GitHub webhook definition:

NOTE

The secret used in the webhook trigger configuration is not the same as secret field you
encounter when configuring webhook in GitHub UI. The former is to make the webhook
URL unique and hard to predict, the latter is an optional string field used to create HMAC
hex digest of the body, which is sent as an X-Hub-Signatureheader.

The payload URL is returned as the GitHub Webhook URL by the oc describe command (see Displaying
Webhook URLs), and is structured as follows:

http://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<se
cret>/github

To configure a GitHub Webhook:

1. After creating a BuildConfig from a GitHub repository, run:

This generates a webhook GitHub URL that looks like:

<https://api.starter-us-east-
1.openshift.com:443/oapi/v1/namespaces/nsname/buildconfigs/bcname/webhooks/<secret>/gith
ub>.

2. Cut and paste this URL into GitHub, from the GitHub web console.

3. In your GitHub repository, select Add Webhook from Settings → Webhooks & Services.

4. Paste the URL output (similar to above) into the Payload URL field.

5. Change the Content Type from GitHub’s default application/x-www-form-urlencoded to
application/json.

 metadata:
 name: mysecret
 creationTimestamp:
 data:
 WebHookSecretKey: c2VjcmV0dmFsdWUx

type: "GitHub"
github:
 secretReference:
 name: "mysecret"

$ oc describe bc/<name-of-your-BuildConfig>

OpenShift Online 3 Developer Guide

116

https://developer.github.com/webhooks/creating/
https://developer.github.com/webhooks/#delivery-headers

6. Click Add webhook.

You should see a message from GitHub stating that your webhook was successfully configured.

Now, whenever you push a change to your GitHub repository, a new build will automatically start, and
upon a successful build a new deployment will start.

NOTE

Gogs supports the same webhook payload format as GitHub. Therefore, if you are using a
Gogs server, you can define a GitHub webhook trigger on your BuildConfig and trigger it
via your Gogs server also.

Given a file containing a valid JSON payload, such as payload.json, you can manually trigger the
webhook via curl:

$ curl -H "X-GitHub-Event: push" -H "Content-Type: application/json" -k -X POST --data-binary
@payload.json
https://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<s
ecret>/github

The -k argument is only necessary if your API server does not have a properly signed certificate.

8.7.2.2. GitLab Webhooks

GitLab webhooks handle the call made by GitLab when a repository is updated. As with the GitHub
triggers, you must specify a secret. The following example is a trigger definition YAML within the
BuildConfig:

The payload URL is returned as the GitLab Webhook URL by the oc describe command (see Displaying
Webhook URLs), and is structured as follows:

http://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<se
cret>/gitlab

To configure a GitLab Webhook:

1. Describe the build configuration to get the webhook URL:

$ oc describe bc <name>

2. Copy the webhook URL, replacing <secret> with your secret value.

3. Follow the GitLab setup instructions to paste the webhook URL into your GitLab repository
settings.

Given a file containing a valid JSON payload, such as payload.json, you can manually trigger the
webhook via curl:

type: "GitLab"
gitlab:
 secretReference:
 name: "mysecret"

CHAPTER 8. BUILDS

117

https://gogs.io
https://docs.gitlab.com/ce/user/project/integrations/webhooks.html
https://docs.gitlab.com/ce/user/project/integrations/webhooks.html#webhooks

$ curl -H "X-GitLab-Event: Push Hook" -H "Content-Type: application/json" -k -X POST --data-binary
@payload.json
https://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<s
ecret>/gitlab

The -k argument is only necessary if your API server does not have a properly signed certificate.

8.7.2.3. Bitbucket Webhooks

Bitbucket webhooks handle the call made by Bitbucket when a repository is updated. Similar to the
previous triggers, you must specify a secret. The following example is a trigger definition YAML within
the BuildConfig:

The payload URL is returned as the Bitbucket Webhook URL by the oc describe command (see
Displaying Webhook URLs), and is structured as follows:

http://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<se
cret>/bitbucket

To configure a Bitbucket Webhook:

1. Describe the build configuration to get the webhook URL:

$ oc describe bc <name>

2. Copy the webhook URL, replacing <secret> with your secret value.

3. Follow the Bitbucket setup instructions to paste the webhook URL into your Bitbucket
repository settings.

Given a file containing a valid JSON payload, such as payload.json, you can manually trigger the
webhook via curl:

$ curl -H "X-Event-Key: repo:push" -H "Content-Type: application/json" -k -X POST --data-binary
@payload.json
https://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<s
ecret>/bitbucket

The -k argument is only necessary if your API server does not have a properly signed certificate.

8.7.2.4. Generic Webhooks

Generic webhooks are invoked from any system capable of making a web request. As with the other
webhooks, you must specify a secret, which will be part of the URL that the caller must use to trigger the
build. The secret ensures the uniqueness of the URL, preventing others from triggering the build. The
following is an example trigger definition YAML within the BuildConfig:

type: "Bitbucket"
bitbucket:
 secretReference:
 name: "mysecret"

type: "Generic"
generic:

OpenShift Online 3 Developer Guide

118

https://confluence.atlassian.com/bitbucket/manage-webhooks-735643732.html
https://confluence.atlassian.com/bitbucket/manage-webhooks-735643732.html

1

1

Set to true to allow a generic webhook to pass in environment variables.

To set up the caller, supply the calling system with the URL of the generic webhook endpoint for your
build:

http://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<se
cret>/generic

The caller must invoke the webhook as a POST operation.

To invoke the webhook manually you can use curl:

$ curl -X POST -k
https://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<s
ecret>/generic

The HTTP verb must be set to POST. The insecure -k flag is specified to ignore certificate validation.
This second flag is not necessary if your cluster has properly signed certificates.

The endpoint can accept an optional payload with the following format:

Similar to the BuildConfig environment variables, the environment variables defined here are
made available to your build. If these variables collide with the BuildConfig environment variables,
these variables take precedence. By default, environment variables passed via webhook are
ignored. Set the allowEnv field to true on the webhook definition to enable this behavior.

To pass this payload using curl, define it in a file named payload_file.yaml and run:

$ curl -H "Content-Type: application/yaml" --data-binary @payload_file.yaml -X POST -k
https://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<s
ecret>/generic

The arguments are the same as the previous example with the addition of a header and a payload. The -
H argument sets the Content-Type header to application/yaml or application/json depending on your

 secretReference:
 name: "mysecret"
 allowEnv: true 1

git:
 uri: "<url to git repository>"
 ref: "<optional git reference>"
 commit: "<commit hash identifying a specific git commit>"
 author:
 name: "<author name>"
 email: "<author e-mail>"
 committer:
 name: "<committer name>"
 email: "<committer e-mail>"
 message: "<commit message>"
env: 1
 - name: "<variable name>"
 value: "<variable value>"

CHAPTER 8. BUILDS

119

payload format. The --data-binary argument is used to send a binary payload with newlines intact with
the POST request.

NOTE

OpenShift Online permits builds to be triggered via the generic webhook even if an invalid
request payload is presented (for example, invalid content type, unparsable or invalid
content, and so on). This behavior is maintained for backwards compatibility. If an invalid
request payload is presented, OpenShift Online returns a warning in JSON format as part
of its HTTP 200 OK response.

8.7.2.5. Displaying Webhook URLs

Use the following command to display any webhook URLs associated with a build configuration:

$ oc describe bc <name>

If the above command does not display any webhook URLs, then no webhook trigger is defined for that
build configuration. See Setting Triggers to manually add triggers.

8.7.3. Image Change Triggers

Image change triggers allow your build to be automatically invoked when a new version of an upstream
image is available. For example, if a build is based on top of a RHEL image, then you can trigger that
build to run any time the RHEL image changes. As a result, the application image is always running on
the latest RHEL base image.

Configuring an image change trigger requires the following actions:

1. Define an ImageStream that points to the upstream image you want to trigger on:

This defines the image stream that is tied to a container image repository located at <system-
registry>/<namespace>/ruby-20-centos7. The <system-registry> is defined as a service with
the name docker-registry running in OpenShift Online.

2. If an image stream is the base image for the build, set the from field in the build strategy to
point to the image stream:

In this case, the sourceStrategy definition is consuming the latest tag of the image stream
named ruby-20-centos7 located within this namespace.

3. Define a build with one or more triggers that point to image streams:

kind: "ImageStream"
apiVersion: "v1"
metadata:
 name: "ruby-20-centos7"

strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "ruby-20-centos7:latest"

OpenShift Online 3 Developer Guide

120

1

2

An image change trigger that monitors the ImageStream and Tag as defined by the build
strategy’s from field. The imageChange object here must be empty.

An image change trigger that monitors an arbitrary image stream. The imageChange part
in this case must include a from field that references the ImageStreamTag to monitor.

When using an image change trigger for the strategy image stream, the generated build is supplied with
an immutable Docker tag that points to the latest image corresponding to that tag. This new image
reference will be used by the strategy when it executes for the build.

For other image change triggers that do not reference the strategy image stream, a new build will be
started, but the build strategy will not be updated with a unique image reference.

In the example above that has an image change trigger for the strategy, the resulting build will be:

This ensures that the triggered build uses the new image that was just pushed to the repository, and the
build can be re-run any time with the same inputs.

If a build is triggered due to a webhook trigger or manual request, the build that is created uses the
<immutableid> resolved from the ImageStream referenced by the Strategy. This ensures that builds
are performed using consistent image tags for ease of reproduction.

NOTE

Image streams that point to container images in v1 Docker registries only trigger a build
once when the image stream tag becomes available and not on subsequent image
updates. This is due to the lack of uniquely identifiable images in v1 Docker registries.

8.7.4. Configuration Change Triggers

A configuration change trigger allows a build to be automatically invoked as soon as a new BuildConfig
is created. The following is an example trigger definition YAML within the BuildConfig:

NOTE

type: "imageChange" 1
imageChange: {}
type: "imageChange" 2
imageChange:
 from:
 kind: "ImageStreamTag"
 name: "custom-image:latest"

strategy:
 sourceStrategy:
 from:
 kind: "DockerImage"
 name: "172.30.17.3:5001/mynamespace/ruby-20-centos7:<immutableid>"

 type: "ConfigChange"

CHAPTER 8. BUILDS

121

http://docs.docker.com/v1.7/reference/api/hub_registry_spec/#docker-registry-1-0
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#image-stream-tag

NOTE

Configuration change triggers currently only work when creating a new BuildConfig. In a
future release, configuration change triggers will also be able to launch a build whenever a
BuildConfig is updated.

8.7.4.1. Setting Triggers Manually

Triggers can be added to and removed from build configurations with oc set triggers. For example, to
set a GitHub webhook trigger on a build configuration, use:

$ oc set triggers bc <name> --from-github

To set an imagechange trigger, use

$ oc set triggers bc <name> --from-image='<image>'

To remove a trigger, add --remove:

$ oc set triggers bc <name> --from-bitbucket --remove

NOTE

When a webhook trigger already exists, adding it again regenerates the webhook secret.

For more information, consult the help documentation with oc set triggers --help

8.8. BUILD HOOKS

8.8.1. Build Hooks Overview

Build hooks allow behavior to be injected into the build process.

The postCommit field of a BuildConfig object executes commands inside a temporary container that is
running the build output image. The hook is executed immediately after the last layer of the image has
been committed and before the image is pushed to a registry.

The current working directory is set to the image’s WORKDIR, which is the default working directory of
the container image. For most images, this is where the source code is located.

The hook fails if the script or command returns a non-zero exit code or if starting the temporary
container fails. When the hook fails it marks the build as failed and the image is not pushed to a registry.
The reason for failing can be inspected by looking at the build logs.

Build hooks can be used to run unit tests to verify the image before the build is marked complete and
the image is made available in a registry. If all tests pass and the test runner returns with exit code 0, the
build is marked successful. In case of any test failure, the build is marked as failed. In all cases, the build
log will contain the output of the test runner, which can be used to identify failed tests.

The postCommit hook is not only limited to running tests, but can be used for other commands as well.
Since it runs in a temporary container, changes made by the hook do not persist, meaning that the hook
execution cannot affect the final image. This behavior allows for, among other uses, the installation and
usage of test dependencies that are automatically discarded and will be not present in the final image.

OpenShift Online 3 Developer Guide

122

8.8.2. Configuring Post Commit Build Hooks

There are different ways to configure the post build hook. All forms in the following examples are
equivalent and execute bundle exec rake test --verbose:

Shell script:

The script value is a shell script to be run with /bin/sh -ic. Use this when a shell script is
appropriate to execute the build hook. For example, for running unit tests as above. To control
the image entry point, or if the image does not have /bin/sh, use command and/or args.

NOTE

The additional -i flag was introduced to improve the experience working with
CentOS and RHEL images, and may be removed in a future release.

Command as the image entry point:

In this form, command is the command to run, which overrides the image entry point in the exec
form, as documented in the Dockerfile reference. This is needed if the image does not have
/bin/sh, or if you do not want to use a shell. In all other cases, using script might be more
convenient.

Pass arguments to the default entry point:

In this form, args is a list of arguments that are provided to the default entry point of the image.
The image entry point must be able to handle arguments.

Shell script with arguments:

Use this form if you need to pass arguments that would otherwise be hard to quote properly in
the shell script. In the script, $0 will be "/bin/sh" and $1, $2, etc, are the positional arguments
from args.

Command with arguments:

This form is equivalent to appending the arguments to command.

postCommit:
 script: "bundle exec rake test --verbose"

postCommit:
 command: ["/bin/bash", "-c", "bundle exec rake test --verbose"]

postCommit:
 args: ["bundle", "exec", "rake", "test", "--verbose"]

postCommit:
 script: "bundle exec rake test $1"
 args: ["--verbose"]

postCommit:
 command: ["bundle", "exec", "rake", "test"]
 args: ["--verbose"]

CHAPTER 8. BUILDS

123

https://docs.docker.com/engine/reference/builder/#entrypoint

NOTE

Providing both script and command simultaneously creates an invalid build hook.

8.8.2.1. Using the CLI

The oc set build-hook command can be used to set the build hook for a build configuration.

To set a command as the post-commit build hook:

$ oc set build-hook bc/mybc \
 --post-commit \
 --command \
 -- bundle exec rake test --verbose

To set a script as the post-commit build hook:

$ oc set build-hook bc/mybc --post-commit --script="bundle exec rake test --verbose"

8.9. BUILD RUN POLICY

8.9.1. Build Run Policy Overview

The build run policy describes the order in which the builds created from the build configuration should
run. This can be done by changing the value of the runPolicy field in the spec section of the Build
specification.

It is also possible to change the runPolicy value for existing build configurations.

Changing Parallel to Serial or SerialLatestOnly and triggering a new build from this
configuration will cause the new build to wait until all parallel builds complete as the serial build
can only run alone.

Changing Serial to SerialLatestOnly and triggering a new build will cause cancellation of all
existing builds in queue, except the currently running build and the most recently created build.
The newest build will execute next.

8.9.2. Serial Run Policy

Setting the runPolicy field to Serial will cause all new builds created from the Build configuration to be
run sequentially. That means there will be only one build running at a time and every new build will wait
until the previous build completes. Using this policy will result in consistent and predictable build output.
This is the default runPolicy.

Triggering three builds from the sample-build configuration, using the Serial policy will result in:

NAME TYPE FROM STATUS STARTED DURATION
sample-build-1 Source Git@e79d887 Running 13 seconds ago 13s
sample-build-2 Source Git New
sample-build-3 Source Git New

When the sample-build-1 build completes, the sample-build-2 build will run:

OpenShift Online 3 Developer Guide

124

NAME TYPE FROM STATUS STARTED DURATION
sample-build-1 Source Git@e79d887 Completed 43 seconds ago 34s
sample-build-2 Source Git@1aa381b Running 2 seconds ago 2s
sample-build-3 Source Git New

8.9.3. SerialLatestOnly Run Policy

Setting the runPolicy field to SerialLatestOnly will cause all new builds created from the Build
configuration to be run sequentially, same as using the Serial run policy. The difference is that when a
currently running build completes, the next build that will run is the latest build created. In other words,
you do not wait for the queued builds to run, as they are skipped. Skipped builds are marked as
Cancelled. This policy can be used for fast, iterative development.

Triggering three builds from the sample-build configuration, using the SerialLatestOnly policy will
result in:

NAME TYPE FROM STATUS STARTED DURATION
sample-build-1 Source Git@e79d887 Running 13 seconds ago 13s
sample-build-2 Source Git Cancelled
sample-build-3 Source Git New

The sample-build-2 build will be canceled (skipped) and the next build run after sample-build-1
completes will be the sample-build-3 build:

NAME TYPE FROM STATUS STARTED DURATION
sample-build-1 Source Git@e79d887 Completed 43 seconds ago 34s
sample-build-2 Source Git Cancelled
sample-build-3 Source Git@1aa381b Running 2 seconds ago 2s

8.9.4. Parallel Run Policy

Setting the runPolicy field to Parallel causes all new builds created from the Build configuration to be
run in parallel. This can produce unpredictable results, as the first created build can complete last, which
will replace the pushed container image produced by the last build which completed earlier.

Use the parallel run policy in cases where you do not care about the order in which the builds will
complete.

Triggering three builds from the sample-build configuration, using the Parallel policy will result in three
simultaneous builds:

NAME TYPE FROM STATUS STARTED DURATION
sample-build-1 Source Git@e79d887 Running 13 seconds ago 13s
sample-build-2 Source Git@a76d881 Running 15 seconds ago 3s
sample-build-3 Source Git@689d111 Running 17 seconds ago 3s

The completion order is not guaranteed:

NAME TYPE FROM STATUS STARTED DURATION
sample-build-1 Source Git@e79d887 Running 13 seconds ago 13s
sample-build-2 Source Git@a76d881 Running 15 seconds ago 3s
sample-build-3 Source Git@689d111 Completed 17 seconds ago 5s

CHAPTER 8. BUILDS

125

1

2

1

8.10. ADVANCED BUILD OPERATIONS

8.10.1. Setting Build Resources

By default, builds are completed by pods using unbound resources, such as memory and CPU. These
resources can be limited by specifying resource limits in a project’s default container limits.

You can also limit resource use by specifying resource limits as part of the build configuration. In the
following example, each of the resources, cpu, and memory parameters are optional:

cpu is in CPU units: 100m represents 0.1 CPU units (100 * 1e-3).

memory is in bytes: 256Mi represents 268435456 bytes (256 * 2 ^ 20).

However, if a quota has been defined for your project, one of the following two items is required:

A resources section set with an explicit requests:

The requests object contains the list of resources that correspond to the list of resources
in the quota.

A limit range defined in your project, where the defaults from the LimitRange object apply to
pods created during the build process.

Otherwise, build pod creation will fail, citing a failure to satisfy quota.

8.10.2. Setting Maximum Duration

When defining a BuildConfig, you can define its maximum duration by setting the
completionDeadlineSeconds field. It is specified in seconds and is not set by default. When not set,
there is no maximum duration enforced.

The maximum duration is counted from the time when a build pod gets scheduled in the system, and
defines how long it can be active, including the time needed to pull the builder image. After reaching the
specified timeout, the build is terminated by OpenShift Online.

The following example shows the part of a BuildConfig specifying completionDeadlineSeconds field
for 30 minutes:

apiVersion: "v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 resources:
 limits:
 cpu: "100m" 1
 memory: "256Mi" 2

resources:
 requests: 1
 cpu: "100m"
 memory: "256Mi"

OpenShift Online 3 Developer Guide

126

1

spec:
 completionDeadlineSeconds: 1800

NOTE

This setting is not supported with the Pipeline Strategy option.

8.10.3. Assigning Builds to Specific Nodes

Builds can be targeted to run on specific nodes by specifying labels in the nodeSelector field of a build
configuration. The nodeSelector value is a set of key/value pairs that are matched to node labels when
scheduling the build pod.

Builds associated with this build configuration will run only on nodes with the key1=value2 and
key2=value2 labels.

The nodeSelector value can also be controlled by cluster-wide default and override values. Defaults will
only be applied if the build configuration does not define any key/value pairs for the nodeSelector and
also does not define an explicitly empty map value of nodeSelector:{}. Override values will replace
values in the build configuration on a key by key basis.

NOTE

If the specified NodeSelector cannot be matched to a node with those labels, the build
still stay in the Pending state indefinitely.

8.10.4. Chaining Builds

For compiled languages (Go, C, C++, Java, etc.), including the dependencies necessary for compilation
in the application image might increase the size of the image or introduce vulnerabilities that can be
exploited.

To avoid these problems, two builds can be chained together: one that produces the compiled artifact,
and a second build that places that artifact in a separate image that runs the artifact.

8.10.5. Build Pruning

By default, builds that have completed their lifecycle are persisted indefinitely. You can limit the number
of previous builds that are retained by supplying a positive integer value for
successfulBuildsHistoryLimit or failedBuildsHistoryLimit as shown in the following sample build
configuration.

apiVersion: "v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 nodeSelector: 1
 key1: value1
 key2: value2

apiVersion: "v1"

CHAPTER 8. BUILDS

127

1

2

successfulBuildsHistoryLimit will retain up to two builds with a status of completed.

failedBuildsHistoryLimit will retain up to two builds with a status of failed, cancelled, or error.

Build pruning is triggered by the following actions:

Updating a build configuration.

A build completes its lifecycle.

Builds are sorted by their creation timestamp with the oldest builds being pruned first.

8.11. BUILD TROUBLESHOOTING

8.11.1. Requested Access to Resources Denied

Issue

A build fails with:

requested access to the resource is denied

Resolution

You have exceeded one of the image quotas set on your project. Check your current quota and
verify the limits applied and storage in use:

$ oc describe quota

kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 successfulBuildsHistoryLimit: 2 1
 failedBuildsHistoryLimit: 2 2

OpenShift Online 3 Developer Guide

128

CHAPTER 9. DEPLOYMENTS

9.1. HOW DEPLOYMENTS WORK

9.1.1. What Is a Deployment?

OpenShift Online deployments provide fine-grained management over common user applications. They
are described using three separate API objects:

A deployment configuration, which describes the desired state of a particular component of the
application as a pod template.

One or more replication controllers, which contain a point-in-time record of the state of a
deployment configuration as a pod template.

One or more pods, which represent an instance of a particular version of an application.

IMPORTANT

Users do not need to manipulate replication controllers or pods owned by deployment
configurations. The deployment system ensures changes to deployment configurations
are propagated appropriately. If the existing deployment strategies are not suited for
your use case and you have the need to run manual steps during the lifecycle of your
deployment, then you should consider creating a custom strategy.

When you create a deployment configuration, a replication controller is created representing the
deployment configuration’s pod template. If the deployment configuration changes, a new replication
controller is created with the latest pod template, and a deployment process runs to scale down the old
replication controller and scale up the new replication controller.

Instances of your application are automatically added and removed from both service load balancers
and routers as they are created. As long as your application supports graceful shutdown when it receives
the TERM signal, you can ensure that running user connections are given a chance to complete
normally.

Features provided by the deployment system:

A deployment configuration, which is a template for running applications.

Triggers that drive automated deployments in response to events.

User-customizable strategies to transition from the previous version to the new version. A
strategy runs inside a pod commonly referred as the deployment process.

A set of hooks for executing custom behavior in different points during the lifecycle of a
deployment.

Versioning of your application in order to support rollbacks either manually or automatically in
case of deployment failure.

Manual replication scaling and autoscaling.

9.1.2. Creating a Deployment Configuration

Deployment configurations are deploymentConfig OpenShift Online API resources which can be

CHAPTER 9. DEPLOYMENTS

129

1

2

3

4

5

6

7

Deployment configurations are deploymentConfig OpenShift Online API resources which can be
managed with the oc command like any other resource. The following is an example of a
deploymentConfig resource:

The pod template of the frontend deployment configuration describes a simple Ruby application.

There will be 5 replicas of frontend.

A configuration change trigger causes a new replication controller to be created any time the pod
template changes.

An image change trigger trigger causes a new replication controller to be created each time a new
version of the origin-ruby-sample:latest image stream tag is available.

The Rolling strategy is the default way of deploying your pods. May be omitted.

Pause a deployment configuration. This disables the functionality of all triggers and allows for
multiple changes on the pod template before actually rolling it out.

Revision history limit is the limit of old replication controllers you want to keep around for rolling
back. May be omitted. If omitted, old replication controllers will not be cleaned up.

kind: "DeploymentConfig"
apiVersion: "v1"
metadata:
 name: "frontend"
spec:
 template: 1
 metadata:
 labels:
 name: "frontend"
 spec:
 containers:
 - name: "helloworld"
 image: "openshift/origin-ruby-sample"
 ports:
 - containerPort: 8080
 protocol: "TCP"
 replicas: 5 2
 triggers:
 - type: "ConfigChange" 3
 - type: "ImageChange" 4
 imageChangeParams:
 automatic: true
 containerNames:
 - "helloworld"
 from:
 kind: "ImageStreamTag"
 name: "origin-ruby-sample:latest"
 strategy: 5
 type: "Rolling"
 paused: false 6
 revisionHistoryLimit: 2 7
 minReadySeconds: 0 8

OpenShift Online 3 Developer Guide

130

8 Minimum seconds to wait (after the readiness checks succeed) for a pod to be considered
available. The default value is 0.

9.2. BASIC DEPLOYMENT OPERATIONS

9.2.1. Starting a Deployment

You can start a new deployment process manually using the web console, or from the CLI:

$ oc rollout latest dc/<name>

NOTE

If a deployment process is already in progress, the command will display a message and a
new replication controller will not be deployed.

9.2.2. Viewing a Deployment

To get basic information about all the available revisions of your application:

$ oc rollout history dc/<name>

This will show details about all recently created replication controllers for the provided deployment
configuration, including any currently running deployment process.

You can view details specific to a revision by using the --revision flag:

$ oc rollout history dc/<name> --revision=1

For more detailed information about a deployment configuration and its latest revision:

$ oc describe dc <name>

NOTE

The web console shows deployments in the Browse tab.

9.2.3. Rolling Back a Deployment

Rollbacks revert an application back to a previous revision and can be performed using the REST API, the
CLI, or the web console.

To rollback to the last successful deployed revision of your configuration:

$ oc rollout undo dc/<name>

The deployment configuration’s template will be reverted to match the deployment revision specified in
the undo command, and a new replication controller will be started. If no revision is specified with --to-
revision, then the last successfully deployed revision will be used.

Image change triggers on the deployment configuration are disabled as part of the rollback to prevent

CHAPTER 9. DEPLOYMENTS

131

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#project-overviews

Image change triggers on the deployment configuration are disabled as part of the rollback to prevent
accidentally starting a new deployment process soon after the rollback is complete. To re-enable the
image change triggers:

$ oc set triggers dc/<name> --auto

NOTE

Deployment configurations also support automatically rolling back to the last successful
revision of the configuration in case the latest deployment process fails. In that case, the
latest template that failed to deploy stays intact by the system and it is up to users to fix
their configurations.

9.2.4. Executing Commands Inside a Container

You can add a command to a container, which modifies the container’s startup behavior by overruling
the image’s ENTRYPOINT. This is different from a lifecycle hook, which instead can be run once per
deployment at a specified time.

Add the command parameters to the spec field of the deployment configuration. You can also add an
args field, which modifies the command (or the ENTRYPOINT if command does not exist).

...
spec:
 containers:
 -
 name: <container_name>
 image: 'image'
 command:
 - '<command>'
 args:
 - '<argument_1>'
 - '<argument_2>'
 - '<argument_3>'
...

For example, to execute the java command with the -jar and /opt/app-root/springboots2idemo.jar
arguments:

...
spec:
 containers:
 -
 name: example-spring-boot
 image: 'image'
 command:
 - java
 args:
 - '-jar'
 - /opt/app-root/springboots2idemo.jar
...

9.2.5. Viewing Deployment Logs

OpenShift Online 3 Developer Guide

132

To stream the logs of the latest revision for a given deployment configuration:

$ oc logs -f dc/<name>

If the latest revision is running or failed, oc logs will return the logs of the process that is responsible for
deploying your pods. If it is successful, oc logs will return the logs from a pod of your application.

You can also view logs from older failed deployment processes, if and only if these processes (old
replication controllers and their deployer pods) exist and have not been pruned or deleted manually:

$ oc logs --version=1 dc/<name>

For more options on retrieving logs see:

$ oc logs --help

9.2.6. Setting Deployment Triggers

A deployment configuration can contain triggers, which drive the creation of new deployment processes
in response to events inside the cluster.

WARNING

If no triggers are defined on a deployment configuration, a ConfigChange trigger is
added by default. If triggers are defined as an empty field, deployments must be
started manually.

9.2.6.1. Configuration Change Trigger

The ConfigChange trigger results in a new replication controller whenever changes are detected in the
pod template of the deployment configuration.

NOTE

If a ConfigChange trigger is defined on a deployment configuration, the first replication
controller will be automatically created soon after the deployment configuration itself is
created and it is not paused.

Example 9.1. A ConfigChange Trigger

9.2.6.2. ImageChange Trigger

The ImageChange trigger results in a new replication controller whenever the content of an image



triggers:
 - type: "ConfigChange"

CHAPTER 9. DEPLOYMENTS

133

1

The ImageChange trigger results in a new replication controller whenever the content of an image
stream tag changes (when a new version of the image is pushed).

Example 9.2. An ImageChange Trigger

If the imageChangeParams.automatic field is set to false, the trigger is disabled.

With the above example, when the latest tag value of the origin-ruby-sample image stream changes
and the new image value differs from the current image specified in the deployment configuration’s
helloworld container, a new replication controller is created using the new image for the helloworld
container.

NOTE

If an ImageChange trigger is defined on a deployment configuration (with a
ConfigChange trigger and automatic=false, or with automatic=true) and the
ImageStreamTag pointed by the ImageChange trigger does not exist yet, then the
initial deployment process will automatically start as soon as an image is imported or
pushed by a build to the ImageStreamTag.

9.2.6.2.1. Using the Command Line

The oc set triggers command can be used to set a deployment trigger for a deployment configuration.
For the example above, you can set the ImageChangeTrigger by using the following command:

$ oc set triggers dc/frontend --from-image=myproject/origin-ruby-sample:latest -c helloworld

For more information, see:

$ oc set triggers --help

9.2.7. Setting Deployment Resources

A deployment is completed by a pod that consumes resources (memory and CPU) on a node. By default,
pods consume unbounded node resources. However, if a project specifies default container limits, then
pods consume resources up to those limits.

You can also limit resource use by specifying resource limits as part of the deployment strategy.
Deployment resources can be used with the Recreate, Rolling, or Custom deployment strategies.

In the following example, each of resources, cpu, and memory is optional:

triggers:
 - type: "ImageChange"
 imageChangeParams:
 automatic: true 1
 from:
 kind: "ImageStreamTag"
 name: "origin-ruby-sample:latest"
 namespace: "myproject"
 containerNames:
 - "helloworld"

OpenShift Online 3 Developer Guide

134

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#image-stream-tag

1

2

1

cpu is in CPU units: 100m represents 0.1 CPU units (100 * 1e-3).

memory is in bytes: 256Mi represents 268435456 bytes (256 * 2 ^ 20).

However, if a quota has been defined for your project, one of the following two items is required:

A resources section set with an explicit requests:

The requests object contains the list of resources that correspond to the list of resources
in the quota.

See Quotas and Limit Ranges to learn more about compute resources and the differences between
requests and limits.

A limit range defined in your project, where the defaults from the LimitRange object apply to
pods created during the deployment process.

Otherwise, deploy pod creation will fail, citing a failure to satisfy quota.

9.2.8. Manual Scaling

In addition to rollbacks, you can exercise fine-grained control over the number of replicas from the web
console, or by using the oc scale command. For example, the following command sets the replicas in
the deployment configuration frontend to 3.

$ oc scale dc frontend --replicas=3

The number of replicas eventually propagates to the desired and current state of the deployment
configured by the deployment configuration frontend.

NOTE

Pods can also be autoscaled using the oc autoscale command. See Pod Autoscaling for
more details.

9.3. DEPLOYMENT STRATEGIES

9.3.1. What Are Deployment Strategies?

A deployment strategy is a way to change or upgrade an application. The aim is to make the change

type: "Recreate"
resources:
 limits:
 cpu: "100m" 1
 memory: "256Mi" 2

 type: "Recreate"
 resources:
 requests: 1
 cpu: "100m"
 memory: "256Mi"

CHAPTER 9. DEPLOYMENTS

135

A deployment strategy is a way to change or upgrade an application. The aim is to make the change
without downtime in a way that the user barely notices the improvements.

The most common strategy is to use a blue-green deployment. The new version (the blue version) is
brought up for testing and evaluation, while the users still use the stable version (the green version).
When ready, the users are switched to the blue version. If a problem arises, you can switch back to the
green version.

A common alternative strategy is to use A/B versions that are both active at the same time and some
users use one version, and some users use the other version. This can be used for experimenting with
user interface changes and other features to get user feedback. It can also be used to verify proper
operation in a production context where problems impact a limited number of users.

A canary deployment tests the new version but when a problem is detected it quickly falls back to the
previous version. This can be done with both of the above strategies.

The route based deployment strategies do not scale the number of pods in the services. To maintain
desired performance characteristics the deployment configurations may need to be scaled.

There are things to consider when choosing a deployment strategy.

Long running connections need to be handled gracefully.

Database conversions can get tricky and will need to be done and rolled back along with the
application.

If the application is a hybrid of microservices and traditional components downtime may be
needed to complete the transition.

You need the infrastructure to do this.

If you have a non-isolated test environment, you can break both new and old versions.

Since the end user usually accesses the application through a route handled by a router, the deployment
strategy can focus on deployment configuration features or routing features.

Strategies that focus on the deployment configuration impact all routes that use the application.
Strategies that use router features target individual routes.

Many deployment strategies are supported through the deployment configuration and some additional
strategies are supported through router features. The deployment configuration-based strategies are
discussed in this section.

Rolling Strategy and Canary Deployments

Recreate Strategy

Custom Strategy

Blue-Green Deployment using routes

A/B Deployment and canary deployments using routes

One Service, Multiple Deployment Configurations

The Rolling strategy is the default strategy used if no strategy is specified on a deployment
configuration.

OpenShift Online 3 Developer Guide

136

1

2

3

4

A deployment strategy uses readiness checks to determine if a new pod is ready for use. If a readiness
check fails, the deployment configuration will retry to run the pod until it times out. The default timeout
is 10m, a value set in TimeoutSeconds in dc.spec.strategy.*params.

9.3.2. Rolling Strategy

A rolling deployment slowly replaces instances of the previous version of an application with instances of
the new version of the application. A rolling deployment typically waits for new pods to become ready
via a readiness check before scaling down the old components. If a significant issue occurs, the rolling
deployment can be aborted.

9.3.2.1. Canary Deployments

All rolling deployments in OpenShift Online are canary deployments; a new version (the canary) is tested
before all of the old instances are replaced. If the readiness check never succeeds, the canary instance is
removed and the deployment configuration will be automatically rolled back. The readiness check is part
of the application code, and may be as sophisticated as necessary to ensure the new instance is ready to
be used. If you need to implement more complex checks of the application (such as sending real user
workloads to the new instance), consider implementing a custom deployment or using a blue-green
deployment strategy.

9.3.2.2. When to Use a Rolling Deployment

When you want to take no downtime during an application update.

When your application supports having old code and new code running at the same time.

A rolling deployment means you to have both old and new versions of your code running at the same
time. This typically requires that your application handle N-1 compatibility.

The following is an example of the Rolling strategy:

The time to wait between individual pod updates. If unspecified, this value defaults to 1.

The time to wait between polling the deployment status after update. If unspecified, this value
defaults to 1.

The time to wait for a scaling event before giving up. Optional; the default is 600. Here, giving up
means automatically rolling back to the previous complete deployment.

maxSurge is optional and defaults to 25% if not specified. See the information below the following
procedure.

maxUnavailable is optional and defaults to 25% if not specified. See the information below the

strategy:
 type: Rolling
 rollingParams:
 updatePeriodSeconds: 1 1
 intervalSeconds: 1 2
 timeoutSeconds: 120 3
 maxSurge: "20%" 4
 maxUnavailable: "10%" 5
 pre: {} 6
 post: {}

CHAPTER 9. DEPLOYMENTS

137

5

6

maxUnavailable is optional and defaults to 25% if not specified. See the information below the
following procedure.

pre and post are both lifecycle hooks.

The Rolling strategy will:

1. Execute any pre lifecycle hook.

2. Scale up the new replication controller based on the surge count.

3. Scale down the old replication controller based on the max unavailable count.

4. Repeat this scaling until the new replication controller has reached the desired replica count and
the old replication controller has been scaled to zero.

5. Execute any post lifecycle hook.

IMPORTANT

When scaling down, the Rolling strategy waits for pods to become ready so it can decide
whether further scaling would affect availability. If scaled up pods never become ready,
the deployment process will eventually time out and result in a deployment failure.

The maxUnavailable parameter is the maximum number of pods that can be unavailable during the
update. The maxSurge parameter is the maximum number of pods that can be scheduled above the
original number of pods. Both parameters can be set to either a percentage (e.g., 10%) or an absolute
value (e.g., 2). The default value for both is 25%.

These parameters allow the deployment to be tuned for availability and speed. For example:

maxUnavailable=0 and maxSurge=20% ensures full capacity is maintained during the update
and rapid scale up.

maxUnavailable=10% and maxSurge=0 performs an update using no extra capacity (an in-
place update).

maxUnavailable=10% and maxSurge=10% scales up and down quickly with some potential for
capacity loss.

Generally, if you want fast rollouts, use maxSurge. If you need to take into account resource quota and
can accept partial unavailability, use maxUnavailable.

9.3.2.3. Rolling Example

Rolling deployments are the default in OpenShift Online. To see a rolling update, follow these steps:

1. Create an application based on the example deployment images found in DockerHub:

$ oc new-app openshift/deployment-example

If you have the router installed, make the application available via a route (or use the service IP
directly)

$ oc expose svc/deployment-example

OpenShift Online 3 Developer Guide

138

https://hub.docker.com/r/openshift/deployment-example/

1

2

Browse to the application at deployment-example.<project>.<router_domain> to verify you
see the v1 image.

2. Scale the deployment configuration up to three replicas:

$ oc scale dc/deployment-example --replicas=3

3. Trigger a new deployment automatically by tagging a new version of the example as the latest
tag:

$ oc tag deployment-example:v2 deployment-example:latest

4. In your browser, refresh the page until you see the v2 image.

5. If you are using the CLI, the following command will show you how many pods are on version 1
and how many are on version 2. In the web console, you should see the pods slowly being added
to v2 and removed from v1.

$ oc describe dc deployment-example

During the deployment process, the new replication controller is incrementally scaled up. Once the new
pods are marked as ready (by passing their readiness check), the deployment process will continue. If
the pods do not become ready, the process will abort, and the deployment configuration will be rolled
back to its previous version.

9.3.3. Recreate Strategy

The Recreate strategy has basic rollout behavior and supports lifecycle hooks for injecting code into the
deployment process.

The following is an example of the Recreate strategy:

recreateParams are optional.

pre, mid, and post are lifecycle hooks.

The Recreate strategy will:

1. Execute any pre lifecycle hook.

2. Scale down the previous deployment to zero.

3. Execute any mid lifecycle hook.

4. Scale up the new deployment.

strategy:
 type: Recreate
 recreateParams: 1
 pre: {} 2
 mid: {}
 post: {}

CHAPTER 9. DEPLOYMENTS

139

5. Execute any post lifecycle hook.

IMPORTANT

During scale up, if the replica count of the deployment is greater than one, the first
replica of the deployment will be validated for readiness before fully scaling up the
deployment. If the validation of the first replica fails, the deployment will be considered a
failure.

9.3.3.1. When to Use a Recreate Deployment

When you must run migrations or other data transformations before your new code starts.

When you do not support having new and old versions of your application code running at the
same time.

When you want to use a RWO volume, which is not supported being shared between multiple
replicas.

A recreate deployment incurs downtime because, for a brief period, no instances of your application are
running. However, your old code and new code do not run at the same time.

9.3.4. Custom Strategy

The Custom strategy allows you to provide your own deployment behavior.

The following is an example of the Custom strategy:

In the above example, the organization/strategy container image provides the deployment behavior.
The optional command array overrides any CMD directive specified in the image’s Dockerfile. The
optional environment variables provided are added to the execution environment of the strategy
process.

Additionally, OpenShift Online provides the following environment variables to the deployment process:

Environment Variable Description

OPENSHIFT_DEPLOYMENT_
NAME

The name of the new deployment (a replication controller).

OPENSHIFT_DEPLOYMENT_
NAMESPACE

The name space of the new deployment.

The replica count of the new deployment will initially be zero. The responsibility of the strategy is to

strategy:
 type: Custom
 customParams:
 image: organization/strategy
 command: ["command", "arg1"]
 environment:
 - name: ENV_1
 value: VALUE_1

OpenShift Online 3 Developer Guide

140

1

The replica count of the new deployment will initially be zero. The responsibility of the strategy is to
make the new deployment active using the logic that best serves the needs of the user.

Learn more about advanced deployment strategies .

Alternatively, use customParams to inject the custom deployment logic into the existing deployment
strategies. Provide a custom shell script logic and call the openshift-deploy binary. Users do not have to
supply their custom deployer container image, but the default OpenShift Online deployer image will be
used instead:

This will result in following deployment:

Started deployment #2
--> Scaling up custom-deployment-2 from 0 to 2, scaling down custom-deployment-1 from 2 to 0
(keep 2 pods available, don't exceed 3 pods)
 Scaling custom-deployment-2 up to 1
--> Reached 50% (currently 50%)
Halfway there
--> Scaling up custom-deployment-2 from 1 to 2, scaling down custom-deployment-1 from 2 to 0
(keep 2 pods available, don't exceed 3 pods)
 Scaling custom-deployment-1 down to 1
 Scaling custom-deployment-2 up to 2
 Scaling custom-deployment-1 down to 0
--> Success
Complete

If the custom deployment strategy process requires access to the OpenShift Online API or the
Kubernetes API the container that executes the strategy can use the service account token available
inside the container for authentication.

9.3.5. Lifecycle Hooks

The Recreate and Rolling strategies support lifecycle hooks, which allow behavior to be injected into the
deployment process at predefined points within the strategy:

The following is an example of a pre lifecycle hook:

execNewPod is a pod-based lifecycle hook .

strategy:
 type: Rolling
 customParams:
 command:
 - /bin/sh
 - -c
 - |
 set -e
 openshift-deploy --until=50%
 echo Halfway there
 openshift-deploy
 echo Complete

pre:
 failurePolicy: Abort
 execNewPod: {} 1

CHAPTER 9. DEPLOYMENTS

141

1

Every hook has a failurePolicy, which defines the action the strategy should take when a hook failure is
encountered:

Abort The deployment process will be considered a failure if the hook fails.

Retry The hook execution should be retried until it succeeds.

Ignore Any hook failure should be ignored and the deployment should proceed.

Hooks have a type-specific field that describes how to execute the hook. Currently, pod-based hooks
are the only supported hook type, specified by the execNewPod field.

9.3.5.1. Pod-based Lifecycle Hook

Pod-based lifecycle hooks execute hook code in a new pod derived from the template in a deployment
configuration.

The following simplified example deployment configuration uses the Rolling strategy. Triggers and some
other minor details are omitted for brevity:

The helloworld name refers to spec.template.spec.containers[0].name.

kind: DeploymentConfig
apiVersion: v1
metadata:
 name: frontend
spec:
 template:
 metadata:
 labels:
 name: frontend
 spec:
 containers:
 - name: helloworld
 image: openshift/origin-ruby-sample
 replicas: 5
 selector:
 name: frontend
 strategy:
 type: Rolling
 rollingParams:
 pre:
 failurePolicy: Abort
 execNewPod:
 containerName: helloworld 1
 command: ["/usr/bin/command", "arg1", "arg2"] 2
 env: 3
 - name: CUSTOM_VAR1
 value: custom_value1
 volumes:
 - data 4

OpenShift Online 3 Developer Guide

142

2

3

4

This command overrides any ENTRYPOINT defined by the openshift/origin-ruby-sample image.

env is an optional set of environment variables for the hook container.

volumes is an optional set of volume references for the hook container.

In this example, the pre hook will be executed in a new pod using the openshift/origin-ruby-sample
image from the helloworld container. The hook pod will have the following properties:

The hook command will be /usr/bin/command arg1 arg2.

The hook container will have the CUSTOM_VAR1=custom_value1 environment variable.

The hook failure policy is Abort, meaning the deployment process will fail if the hook fails.

The hook pod will inherit the data volume from the deployment configuration pod.

9.3.5.2. Using the Command Line

The oc set deployment-hook command can be used to set the deployment hook for a deployment
configuration. For the example above, you can set the pre-deployment hook with the following
command:

$ oc set deployment-hook dc/frontend --pre -c helloworld -e CUSTOM_VAR1=custom_value1 \
 -v data --failure-policy=abort -- /usr/bin/command arg1 arg2

9.4. ADVANCED DEPLOYMENT STRATEGIES

9.4.1. Advanced Deployment Strategies

Deployment strategies provide a way for the application to evolve. Some strategies use the deployment
configuration to make changes that are seen by users of all routes that resolve to the application. Other
strategies, such as the ones described here, use router features to impact specific routes.

9.4.2. Blue-Green Deployment

Blue-green deployments involve running two versions of an application at the same time and moving
traffic from the in-production version (the green version) to the newer version (the blue version). You
can use a rolling strategy or switch services in a route.

NOTE

Since many applications depend on persistent data, you will need to have an application
that supports N-1 compatibility, which means you share data and implement live migration
between your database, store, or disk by creating two copies of your data layer.

Consider the data used in testing the new version. If it is the production data, a bug in the
new version can break the production version.

9.4.2.1. Using a Blue-Green Deployment

Blue-Green deployments use two deployment configurations. Both are running, and the one in
production depends on the service the route specifies, with each deployment configuration exposed to a

CHAPTER 9. DEPLOYMENTS

143

different service. You can create a new route to the new version and test it. When ready, change the
service in the production route to point to the new service and the new, blue, version is live.

If necessary, you can roll back to the older, green, version by switching service back to the previous
version.

Using a Route and Two Services
This example sets up two deployment configurations; one for the stable version (the green version) and
the other for the newer version (the blue version).

A route points to a service, and can be changed to point to a different service at any time. As a
developer, you can test the new version of your code by connecting to the new service before your
production traffic is routed to it.

Routes are intended for web (HTTP and HTTPS) traffic, so this technique is best suited for web
applications.

1. Create two copies of the example application:

$ oc new-app openshift/deployment-example:v1 --name=example-green
$ oc new-app openshift/deployment-example:v2 --name=example-blue

This creates two independent application components: one running the v1 image under the
example-green service, and one using the v2 image under the example-blue service.

2. Create a route that points to the old service:

$ oc expose svc/example-green --name=bluegreen-example

3. Browse to the application at bluegreen-example.<project>.<router_domain> to verify you see
the v1 image.

4. Edit the route and change the service name to example-blue:

$ oc patch route/bluegreen-example -p '{"spec":{"to":{"name":"example-blue"}}}'

5. To verify that the route has changed, refresh the browser until you see the v2 image.

9.4.3. A/B Deployment

The A/B deployment strategy lets you try a new version of the application in a limited way in the
production environment. You can specify that the production version gets most of the user requests
while a limited fraction of requests go to the new version. Since you control the portion of requests to
each version, as testing progresses you can increase the fraction of requests to the new version and
ultimately stop using the previous version. As you adjust the request load on each version, the number of
pods in each service may need to be scaled as well to provide the expected performance.

In addition to upgrading software, you can use this feature to experiment with versions of the user
interface. Since some users get the old version and some the new, you can evaluate the user’s reaction
to the different versions to inform design decisions.

For this to be effective, both the old and new versions need to be similar enough that both can run at
the same time. This is common with bug fix releases and when new features do not interfere with the old.
The versions need N-1 compatibility to properly work together.

OpenShift Online 3 Developer Guide

144

OpenShift Online supports N-1 compatibility through the web console as well as the command line
interface.

9.4.3.1. Load Balancing for A/B Testing

The user sets up a route with multiple services . Each service handles a version of the application.

Each service is assigned a weight and the portion of requests to each service is the service_weight
divided by the sum_of_weights. The weight for each service is distributed to the service’s endpoints so
that the sum of the endpoint weights is the service weight.

The route can have up to four services. The weight for the service can be between 0 and 256. When the
weight is 0, no new requests go to the service, however existing connections remain active. When the
service weight is not 0, each endpoint has a minimum weight of 1. Because of this, a service with a lot of
endpoints can end up with higher weight than desired. In this case, reduce the number of pods to get
the desired load balance weight. See the Alternate Backends and Weights section for more information.

The web console allows users to set the weighting and show balance between them:

CHAPTER 9. DEPLOYMENTS

145

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#alternateBackends
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#alternateBackends

To set up the A/B environment:

1. Create the two applications and give them different names. Each creates a deployment
configuration. The applications are versions of the same program; one is usually the current
production version and the other the proposed new version:

$ oc new-app openshift/deployment-example1 --name=ab-example-a
$ oc new-app openshift/deployment-example2 --name=ab-example-b

2. Expose the deployment configuration to create a service:

$ oc expose dc/ab-example-a --name=ab-example-A
$ oc expose dc/ab-example-b --name=ab-example-B

At this point both applications are deployed and are running and have services.

3. Make the application available externally via a route. You can expose either service at this point,
it may be convenient to expose the current production version and latter modify the route to
add the new version.

$ oc expose svc/ab-example-A

Browse to the application at ab-example.<project>.<router_domain> to verify that you see
the desired version.

4. When you deploy the route, the router will balance the traffic according to the weights
specified for the services. At this point there is a single service with default weight=1 so all
requests go to it. Adding the other service as an alternateBackends and adjusting the weights
will bring the A/B setup to life. This can be done by the oc set route-backends command or by
editing the route.

NOTE

Changes to the route just change the portion of traffic to the various services.
You may need to scale the deployment configurations to adjust the number of
pods to handle the anticipated loads.

To edit the route, run:

$ oc edit route <route-name>
...
metadata:
 name: route-alternate-service
 annotations:
 haproxy.router.openshift.io/balance: roundrobin
spec:
 host: ab-example.my-project.my-domain
 to:
 kind: Service
 name: ab-example-A
 weight: 10
 alternateBackends:
 - kind: Service

OpenShift Online 3 Developer Guide

146

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#alternateBackends

 name: ab-example-B
 weight: 15
...

9.4.3.1.1. Managing Weights Using the Web Console

1. Navigate to the Route details page (Applications/Routes).

2. Select Edit from the Actions menu.

3. Check Split traffic across multiple services.

4. The Service Weights slider sets the percentage of traffic sent to each service.

For traffic split between more than two services, the relative weights are specified by integers
between 0 and 256 for each service.

CHAPTER 9. DEPLOYMENTS

147

Traffic weightings are shown on the Overview in the expanded rows of the applications
between which traffic is split.

9.4.3.1.2. Managing Weights Using the CLI

This command manages the services and corresponding weights load balanced by the route.

$ oc set route-backends ROUTENAME [--zero|--equal] [--adjust] SERVICE=WEIGHT[%] [...]
[options]

For example, the following sets ab-example-A as the primary service with weight=198 and ab-
example-B as the first alternate service with a weight=2:

$ oc set route-backends web ab-example-A=198 ab-example-B=2

This means 99% of traffic will be sent to service ab-example-A and 1% to service ab-example-B.

This command does not scale the deployment configurations. You may need to do that to have enough

OpenShift Online 3 Developer Guide

148

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#alternateBackends

This command does not scale the deployment configurations. You may need to do that to have enough
pods to handle the request load.

The command with no flags displays the current configuration.

$ oc set route-backends web
NAME KIND TO WEIGHT
routes/web Service ab-example-A 198 (99%)
routes/web Service ab-example-B 2 (1%)

The --adjust flag allows you to alter the weight of an individual service relative to itself or to the primary
service. Specifying a percentage will adjust the service relative to either the primary or the first alternate
(if you specify the primary). If there are other backends their weights will be kept proportional to the
changed.

$ oc set route-backends web --adjust ab-example-A=200 ab-example-B=10
$ oc set route-backends web --adjust ab-example-B=5%
$ oc set route-backends web --adjust ab-example-B=+15%

The --equal flag sets the weight of all services to 100

$ oc set route-backends web --equal

The --zero flag sets the weight of all services to 0. All requests will return with a 503 error.

NOTE

Not all routers may support multiple or weighted backends.

9.4.3.1.3. One Service, Multiple Deployment Configurations

If you have the router installed, make the application available via a route (or use the service IP directly):

$ oc expose svc/ab-example

Browse to the application at ab-example.<project>.<router_domain> to verify you see the v1 image.

1. Create a second shard based on the same source image as the first shard but different tagged
version, and set a unique value:

$ oc new-app openshift/deployment-example:v2 --name=ab-example-b --labels=ab-
example=true SUBTITLE="shard B" COLOR="red"

2. Edit the newly created shard to set a label ab-example=true that will be common to all shards:

$ oc edit dc/ab-example-b

In the editor, add the line ab-example: "true" underneath spec.selector and
spec.template.metadata.labels alongside the existing deploymentconfig=ab-example-b
label. Save and exit the editor.

3. Trigger a re-deployment of the second shard to pick up the new labels:

CHAPTER 9. DEPLOYMENTS

149

$ oc rollout latest dc/ab-example-b

4. At this point, both sets of pods are being served under the route. However, since both browsers
(by leaving a connection open) and the router (by default, through a cookie) will attempt to
preserve your connection to a back-end server, you may not see both shards being returned to
you. To force your browser to one or the other shard, use the scale command:

$ oc scale dc/ab-example-a --replicas=0

Refreshing your browser should show v2 and shard B (in red).

$ oc scale dc/ab-example-a --replicas=1; oc scale dc/ab-example-b --replicas=0

Refreshing your browser should show v1 and shard A (in blue).

If you trigger a deployment on either shard, only the pods in that shard will be affected. You can
easily trigger a deployment by changing the SUBTITLE environment variable in either
deployment config oc edit dc/ab-example-a or oc edit dc/ab-example-b. You can add
additional shards by repeating steps 5-7.

NOTE

These steps will be simplified in future versions of OpenShift Online.

9.4.4. Proxy Shard / Traffic Splitter

In production environments, you can precisely control the distribution of traffic that lands on a particular
shard. When dealing with large numbers of instances, you can use the relative scale of individual shards
to implement percentage based traffic. That combines well with a proxy shard, which forwards or splits
the traffic it receives to a separate service or application running elsewhere.

In the simplest configuration, the proxy would forward requests unchanged. In more complex setups,
you can duplicate the incoming requests and send to both a separate cluster as well as to a local
instance of the application, and compare the result. Other patterns include keeping the caches of a DR
installation warm, or sampling incoming traffic for analysis purposes.

While an implementation is beyond the scope of this example, any TCP (or UDP) proxy could be run
under the desired shard. Use the oc scale command to alter the relative number of instances serving
requests under the proxy shard. For more complex traffic management, consider customizing the
OpenShift Online router with proportional balancing capabilities.

9.4.5. N-1 Compatibility

Applications that have new code and old code running at the same time must be careful to ensure that
data written by the new code can be read and handled (or gracefully ignored) by the old version of the
code. This is sometimes called schema evolution and is a complex problem.

This can take many forms — data stored on disk, in a database, in a temporary cache, or that is part of a
user’s browser session. While most web applications can support rolling deployments, it is important to
test and design your application to handle it.

For some applications, the period of time that old code and new code is running side by side is short, so
bugs or some failed user transactions are acceptable. For others, the failure pattern may result in the
entire application becoming non-functional.

OpenShift Online 3 Developer Guide

150

One way to validate N-1 compatibility is to use an A/B deployment. Run the old code and new code at
the same time in a controlled way in a test environment, and verify that traffic that flows to the new
deployment does not cause failures in the old deployment.

9.4.6. Graceful Termination

OpenShift Online and Kubernetes give application instances time to shut down before removing them
from load balancing rotations. However, applications must ensure they cleanly terminate user
connections as well before they exit.

On shutdown, OpenShift Online will send a TERM signal to the processes in the container. Application
code, on receiving SIGTERM, should stop accepting new connections. This will ensure that load
balancers route traffic to other active instances. The application code should then wait until all open
connections are closed (or gracefully terminate individual connections at the next opportunity) before
exiting.

After the graceful termination period expires, a process that has not exited will be sent the KILL signal,
which immediately ends the process. The terminationGracePeriodSeconds attribute of a pod or pod
template controls the graceful termination period (default 30 seconds) and may be customized per
application as necessary.

CHAPTER 9. DEPLOYMENTS

151

CHAPTER 10. TEMPLATES

10.1. OVERVIEW

A template describes a set of objects that can be parameterized and processed to produce a list of
objects for creation by OpenShift Online. A template can be processed to create anything you have
permission to create within a project, for example services, build configurations, and deployment
configurations. A template may also define a set of labels to apply to every object defined in the
template.

You can create a list of objects from a template using the CLI or, if a template has been uploaded to
your project or the global template library, using the web console. For a curated set of templates, see
the OpenShift Image Streams and Templates library .

10.2. UPLOADING A TEMPLATE

If you have a JSON or YAML file that defines a template, for example as seen in this example , you can
upload the template to projects using the CLI. This saves the template to the project for repeated use
by any user with appropriate access to that project. Instructions on writing your own templates are
provided later in this topic.

To upload a template to your current project’s template library, pass the JSON or YAML file with the
following command:

$ oc create -f <filename>

You can upload a template to a different project using the -n option with the name of the project:

$ oc create -f <filename> -n <project>

The template is now available for selection using the web console or the CLI.

10.3. CREATING FROM TEMPLATES USING THE WEB CONSOLE

See Creating an Application Using the Web Console .

10.4. CREATING FROM TEMPLATES USING THE CLI

You can use the CLI to process templates and use the configuration that is generated to create objects.

10.4.1. Labels

Labels are used to manage and organize generated objects, such as pods. The labels specified in the
template are applied to every object that is generated from the template.

There is also the ability to add labels in the template from the command line.

$ oc process -f <filename> -l name=otherLabel

10.4.2. Parameters

The list of parameters that you can override are listed in the parameters section of the template. You

OpenShift Online 3 Developer Guide

152

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#architecture-core-concepts-index
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#builds
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#labels
https://github.com/openshift/library
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#labels

The list of parameters that you can override are listed in the parameters section of the template. You
can list them with the CLI by using the following command and specifying the file to be used:

$ oc process --parameters -f <filename>

Alternatively, if the template is already uploaded:

$ oc process --parameters -n <project> <template_name>

For example, the following shows the output when listing the parameters for one of the Quickstart
templates in the default openshift project:

$ oc process --parameters -n openshift rails-postgresql-example
NAME DESCRIPTION
GENERATOR VALUE
SOURCE_REPOSITORY_URL The URL of the repository with your application source code
https://github.com/sclorg/rails-ex.git
SOURCE_REPOSITORY_REF Set this to a branch name, tag or other ref of your repository if
you are not using the default branch
CONTEXT_DIR Set this to the relative path to your project if it is not in the root of your
repository
APPLICATION_DOMAIN The exposed hostname that will route to the Rails service
rails-postgresql-example.openshiftapps.com
GITHUB_WEBHOOK_SECRET A secret string used to configure the GitHub webhook
expression [a-zA-Z0-9]{40}
SECRET_KEY_BASE Your secret key for verifying the integrity of signed cookies
expression [a-z0-9]{127}
APPLICATION_USER The application user that is used within the sample application to
authorize access on pages openshift
APPLICATION_PASSWORD The application password that is used within the sample
application to authorize access on pages secret
DATABASE_SERVICE_NAME Database service name
postgresql
POSTGRESQL_USER database username
expression user[A-Z0-9]{3}
POSTGRESQL_PASSWORD database password
expression [a-zA-Z0-9]{8}
POSTGRESQL_DATABASE database name
root
POSTGRESQL_MAX_CONNECTIONS database max connections
10
POSTGRESQL_SHARED_BUFFERS database shared buffers
12MB

The output identifies several parameters that are generated with a regular expression-like generator
when the template is processed.

10.4.3. Generating a List of Objects

Using the CLI, you can process a file defining a template to return the list of objects to standard output:

$ oc process -f <filename>

Alternatively, if the template has already been uploaded to the current project:

CHAPTER 10. TEMPLATES

153

$ oc process <template_name>

You can create objects from a template by processing the template and piping the output to oc create:

$ oc process -f <filename> | oc create -f -

Alternatively, if the template has already been uploaded to the current project:

$ oc process <template> | oc create -f -

You can override any parameter values defined in the file by adding the -p option for each <name>=
<value> pair you want to override. A parameter reference may appear in any text field inside the
template items.

For example, in the following the POSTGRESQL_USER and POSTGRESQL_DATABASE parameters
of a template are overridden to output a configuration with customized environment variables:

Example 10.1. Creating a List of Objects from a Template

$ oc process -f my-rails-postgresql \
 -p POSTGRESQL_USER=bob \
 -p POSTGRESQL_DATABASE=mydatabase

The JSON file can either be redirected to a file or applied directly without uploading the template by
piping the processed output to the oc create command:

$ oc process -f my-rails-postgresql \
 -p POSTGRESQL_USER=bob \
 -p POSTGRESQL_DATABASE=mydatabase \
 | oc create -f -

If you have large number of parameters, you can store them in a file and then pass this file to oc
process:

$ cat postgres.env
POSTGRESQL_USER=bob
POSTGRESQL_DATABASE=mydatabase
$ oc process -f my-rails-postgresql --param-file=postgres.env

You can also read the environment from standard input by using "-" as the argument to --param-file:

$ sed s/bob/alice/ postgres.env | oc process -f my-rails-postgresql --param-file=-

10.5. MODIFYING AN UPLOADED TEMPLATE

You can edit a template that has already been uploaded to your project by using the following
command:

$ oc edit template <template>

OpenShift Online 3 Developer Guide

154

10.6. USING THE INSTANT APP AND QUICKSTART TEMPLATES

OpenShift Online provides a number of default Instant App and Quickstart templates to make it easy to
quickly get started creating a new application for different languages. Templates are provided for Rails
(Ruby), Django (Python), Node.js, CakePHP (PHP), and Dancer (Perl). Your cluster administrator should
have created these templates in the default, global openshift project so you have access to them. You
can list the available default Instant App and Quickstart templates with:

$ oc get templates -n openshift

By default, the templates build using a public source repository on GitHub that contains the necessary
application code. In order to be able to modify the source and build your own version of the application,
you must:

1. Fork the repository referenced by the template’s default SOURCE_REPOSITORY_URL
parameter.

2. Override the value of the SOURCE_REPOSITORY_URL parameter when creating from the
template, specifying your fork instead of the default value.

By doing this, the build configuration created by the template will now point to your fork of the
application code, and you can modify the code and rebuild the application at will.

NOTE

Some of the Instant App and Quickstart templates define a database deployment
configuration. The configuration they define uses ephemeral storage for the database
content. These templates should be used for demonstration purposes only as all
database data will be lost if the database pod restarts for any reason.

10.7. WRITING TEMPLATES

You can define new templates to make it easy to recreate all the objects of your application. The
template will define the objects it creates along with some metadata to guide the creation of those
objects.

Example 10.2. A Simple Template Object Definition (YAML)

apiVersion: v1
kind: Template
metadata:
 name: redis-template
 annotations:
 description: "Description"
 iconClass: "icon-redis"
 tags: "database,nosql"
objects:
- apiVersion: v1
 kind: Pod
 metadata:
 name: redis-master
 spec:
 containers:
 - env:

CHAPTER 10. TEMPLATES

155

https://github.com
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#deployments-and-deployment-configurations

1

10.7.1. Description

The template description informs users what the template does and helps them find it when searching in
the web console. Additional metadata beyond the template name is optional, but useful to have. In
addition to general descriptive information, the metadata also includes a set of tags. Useful tags include
the name of the language the template is related to (for example, java, php, ruby, and so on).

Example 10.3. Template Description Metadata

The unique name of the template.

 - name: REDIS_PASSWORD
 value: ${REDIS_PASSWORD}
 image: dockerfile/redis
 name: master
 ports:
 - containerPort: 6379
 protocol: TCP
parameters:
- description: Password used for Redis authentication
 from: '[A-Z0-9]{8}'
 generate: expression
 name: REDIS_PASSWORD
labels:
 redis: master

kind: Template
apiVersion: v1
metadata:
 name: cakephp-mysql-example 1
 annotations:
 openshift.io/display-name: "CakePHP MySQL Example (Ephemeral)" 2
 description: >-
 An example CakePHP application with a MySQL database. For more information
 about using this template, including OpenShift considerations, see
 https://github.com/sclorg/cakephp-ex/blob/master/README.md.

 WARNING: Any data stored will be lost upon pod destruction. Only use this
 template for testing." 3
 openshift.io/long-description: >-
 This template defines resources needed to develop a CakePHP application,
 including a build configuration, application deployment configuration, and
 database deployment configuration. The database is stored in
 non-persistent storage, so this configuration should be used for
 experimental purposes only. 4
 tags: "quickstart,php,cakephp" 5
 iconClass: icon-php 6
 openshift.io/provider-display-name: "Red Hat, Inc." 7
 openshift.io/documentation-url: "https://github.com/sclorg/cakephp-ex" 8
 openshift.io/support-url: "https://access.redhat.com" 9
message: "Your admin credentials are ${ADMIN_USERNAME}:${ADMIN_PASSWORD}" 10

OpenShift Online 3 Developer Guide

156

2

3

4

5

6

7

8

9

10

1

2

A brief, user-friendly name, which can be employed by user interfaces.

A description of the template. Include enough detail that the user will understand what is being
deployed and any caveats they need to know before deploying. It should also provide links to
additional information, such as a README file. Newlines can be included to create paragraphs.

Additional template description. This may be displayed by the service catalog, for example.

Tags to be associated with the template for searching and grouping. Add tags that will include it
into one of the provided catalog categories. Refer to the id and categoryAliases in
CATALOG_CATEGORIES in the console’s constants file.

An icon to be displayed with your template in the web console. Choose from our existing logo
icons when possible. You can also use icons from FontAwesome and PatternFly.

The name of the person or organization providing the template.

A URL referencing further documentation for the template.

A URL where support can be obtained for the template.

An instructional message that is displayed when this template is instantiated. This field should
inform the user how to use the newly created resources. Parameter substitution is performed
on the message before being displayed so that generated credentials and other parameters
can be included in the output. Include links to any next-steps documentation that users should
follow.

10.7.2. Labels

Templates can include a set of labels. These labels will be added to each object created when the
template is instantiated. Defining a label in this way makes it easy for users to find and manage all the
objects created from a particular template.

Example 10.4. Template Object Labels

A label that will be applied to all objects created from this template.

A parameterized label that will also be applied to all objects created from this template.
Parameter expansion is carried out on both label keys and values.

10.7.3. Parameters

Parameters allow a value to be supplied by the user or generated when the template is instantiated.
Then, that value is substituted wherever the parameter is referenced. References can be defined in any

kind: "Template"
apiVersion: "v1"
...
labels:
 template: "cakephp-mysql-example" 1
 app: "${NAME}" 2

CHAPTER 10. TEMPLATES

157

https://github.com/openshift/origin-web-console/blob/master/app/scripts/constants.js
https://rawgit.com/openshift/openshift-logos-icon/master/demo.html
http://fontawesome.io/icons/
https://www.patternfly.org/styles/icons/
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#labels

field in the objects list field. This is useful for generating random passwords or allowing the user to
supply a host name or other user-specific value that is required to customize the template. Parameters
can be referenced in two ways:

As a string value by placing values in the form ${PARAMETER_NAME} in any string field in the
template.

As a json/yaml value by placing values in the form ${{PARAMETER_NAME}} in place of any
field in the template.

When using the ${PARAMETER_NAME} syntax, multiple parameter references can be combined in a
single field and the reference can be embedded within fixed data, such as
"http://${PARAMETER_1}${PARAMETER_2}". Both parameter values will be substituted and the
resulting value will be a quoted string.

When using the ${{PARAMETER_NAME}} syntax only a single parameter reference is allowed and
leading/trailing characters are not permitted. The resulting value will be unquoted unless, after
substitution is performed, the result is not a valid json object. If the result is not a valid json value, the
resulting value will be quoted and treated as a standard string.

A single parameter can be referenced multiple times within a template and it can be referenced using
both substitution syntaxes within a single template.

A default value can be provided, which is used if the user does not supply a different value:

Example 10.5. Setting an Explicit Value as the Default Value

Parameter values can also be generated based on rules specified in the parameter definition:

Example 10.6. Generating a Parameter Value

In the example above, processing will generate a random password 12 characters long consisting of all
upper and lowercase alphabet letters and numbers.

The syntax available is not a full regular expression syntax. However, you can use \w, \d, and \a modifiers:

[\w]{10} produces 10 alphabet characters, numbers, and underscores. This follows the PCRE
standard and is equal to [a-zA-Z0-9_]{10}.

[\d]{10} produces 10 numbers. This is equal to [0-9]{10}.

[\a]{10} produces 10 alphabetical characters. This is equal to [a-zA-Z]{10}.

parameters:
 - name: USERNAME
 description: "The user name for Joe"
 value: joe

parameters:
 - name: PASSWORD
 description: "The random user password"
 generate: expression
 from: "[a-zA-Z0-9]{12}"

OpenShift Online 3 Developer Guide

158

1

2

3

4

Here is an example of a full template with parameter definitions and references:

Example 10.7. A full template with parameter definitions and references

This value will be replaced with the value of the SOURCE_REPOSITORY_URL parameter when
the template is instantiated.

This value will be replaced with the unquoted value of the REPLICA_COUNT parameter when
the template is instantiated.

The name of the parameter. This value is used to reference the parameter within the template.

The user-friendly name for the parameter. This will be displayed to users.

kind: Template
apiVersion: v1
metadata:
 name: my-template
objects:
 - kind: BuildConfig
 apiVersion: v1
 metadata:
 name: cakephp-mysql-example
 annotations:
 description: Defines how to build the application
 spec:
 source:
 type: Git
 git:
 uri: "${SOURCE_REPOSITORY_URL}" 1
 ref: "${SOURCE_REPOSITORY_REF}"
 contextDir: "${CONTEXT_DIR}"
 - kind: DeploymentConfig
 apiVersion: v1
 metadata:
 name: frontend
 spec:
 replicas: "${{REPLICA_COUNT}}" 2
parameters:
 - name: SOURCE_REPOSITORY_URL 3
 displayName: Source Repository URL 4
 description: The URL of the repository with your application source code 5
 value: https://github.com/sclorg/cakephp-ex.git 6
 required: true 7
 - name: GITHUB_WEBHOOK_SECRET
 description: A secret string used to configure the GitHub webhook
 generate: expression 8
 from: "[a-zA-Z0-9]{40}" 9
 - name: REPLICA_COUNT
 description: Number of replicas to run
 value: "2"
 required: true
message: "... The GitHub webhook secret is ${GITHUB_WEBHOOK_SECRET} ..." 10

CHAPTER 10. TEMPLATES

159

5

6

7

8

9

10

1

A description of the parameter. Provide more detailed information for the purpose of the
parameter, including any constraints on the expected value. Descriptions should use complete

A default value for the parameter which will be used if the user does not override the value when
instantiating the template. Avoid using default values for things like passwords, instead use
generated parameters in combination with Secrets.

Indicates this parameter is required, meaning the user cannot override it with an empty value. If
the parameter does not provide a default or generated value, the user must supply a value.

A parameter which has its value generated.

The input to the generator. In this case, the generator will produce a 40 character alphanumeric
value including upper and lowercase characters.

Parameters can be included in the template message. This informs the user about generated
values.

10.7.4. Object List

The main portion of the template is the list of objects which will be created when the template is
instantiated. This can be any valid API object, such as a BuildConfig, DeploymentConfig, Service, etc.
The object will be created exactly as defined here, with any parameter values substituted in prior to
creation. The definition of these objects can reference parameters defined earlier.

The definition of a Service which will be created by this template.

NOTE

kind: "Template"
apiVersion: "v1"
metadata:
 name: my-template
objects:
 - kind: "Service" 1
 apiVersion: "v1"
 metadata:
 name: "cakephp-mysql-example"
 annotations:
 description: "Exposes and load balances the application pods"
 spec:
 ports:
 - name: "web"
 port: 8080
 targetPort: 8080
 selector:
 name: "cakephp-mysql-example"

OpenShift Online 3 Developer Guide

160

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#architecture-core-concepts-index

NOTE

If an object definition’s metadata includes a fixed namespace field value, the field will be
stripped out of the definition during template instantiation. If the namespace field
contains a parameter reference, normal parameter substitution will be performed and the
object will be created in whatever namespace the parameter substitution resolved the
value to, assuming the user has permission to create objects in that namespace.

10.7.5. Marking Templates as Bindable

The template service broker advertises one service in its catalog for each Template object that it is
aware of. By default, each of these services is advertised as being "bindable", meaning an end user is
permitted to bind against the provisioned service.

Template authors can prevent end users from binding against services provisioned from a given
Template by adding the annotation template.openshift.io/bindable: "false" to the Template.

10.7.6. Exposing Object Fields

Template authors can indicate that fields of particular objects in a template should be exposed. The
template service broker recognizes exposed fields on ConfigMap, Secret, Service and Route objects,
and returns the values of the exposed fields when a user binds a service backed by the broker.

To expose one or more fields of an object, add annotations prefixed by template.openshift.io/expose-
or template.openshift.io/base64-expose- to the object in the template.

Each annotation key, with its prefix removed, is passed through to become a key in a bind response.

Each annotation value is a Kubernetes JSONPath expression , which is resolved at bind time to indicate
the object field whose value should be returned in the bind response.

NOTE

Bind response key/value pairs can be used in other parts of the system as environment
variables. Therefore, it is recommended that every annotation key with its prefix removed
should be a valid environment variable name — beginning with a character A-Z, a-z, or
underscore, and being followed by zero or more characters A-Z, a-z, 0-9, or underscore.

Use the template.openshift.io/expose- annotation to return the field value as a string. This is
convenient, although it does not handle arbitrary binary data. If you want to return binary data, use the
template.openshift.io/base64-expose- annotation instead to base64 encode the data before it is
returned.

NOTE

Unless escaped with a backslash, Kubernetes' JSONPath implementation interprets
characters such as ., @, and others as metacharacters, regardless of their position in the
expression. Therefore, for example, to refer to a ConfigMap datum named my.key, the
required JSONPath expression would be {.data['my\.key']}. Depending on how the
JSONPath expression is then written in YAML, an additional backslash might be required,
for example "{.data['my\\.key']}".

The following is an example of different objects' fields being exposed:

CHAPTER 10. TEMPLATES

161

https://kubernetes.io/docs/user-guide/jsonpath/

An example response to a bind operation given the above partial template follows:

10.7.7. Waiting for Template Readiness

Template authors can indicate that certain objects within a template should be waited for before a

kind: Template
apiVersion: v1
metadata:
 name: my-template
objects:
- kind: ConfigMap
 apiVersion: v1
 metadata:
 name: my-template-config
 annotations:
 template.openshift.io/expose-username: "{.data['my\\.username']}"
 data:
 my.username: foo
- kind: Secret
 apiVersion: v1
 metadata:
 name: my-template-config-secret
 annotations:
 template.openshift.io/base64-expose-password: "{.data['password']}"
 stringData:
 password: bar
- kind: Service
 apiVersion: v1
 metadata:
 name: my-template-service
 annotations:
 template.openshift.io/expose-service_ip_port: "{.spec.clusterIP}:{.spec.ports[?
(.name==\"web\")].port}"
 spec:
 ports:
 - name: "web"
 port: 8080
- kind: Route
 apiVersion: v1
 metadata:
 name: my-template-route
 annotations:
 template.openshift.io/expose-uri: "http://{.spec.host}{.spec.path}"
 spec:
 path: mypath

{
 "credentials": {
 "username": "foo",
 "password": "YmFy",
 "service_ip_port": "172.30.12.34:8080",
 "uri": "http://route-test.router.default.svc.cluster.local/mypath"
 }
}

OpenShift Online 3 Developer Guide

162

Template authors can indicate that certain objects within a template should be waited for before a
template instantiation by the service catalog, Template Service Broker, or TemplateInstance API is
considered complete.

To use this feature, mark one or more objects of kind Build, BuildConfig, Deployment,
DeploymentConfig, Job, or StatefulSet in a template with the following annotation:

"template.alpha.openshift.io/wait-for-ready": "true"

Template instantiation will not complete until all objects marked with the annotation report ready.
Similarly, if any of the annotated objects report failed, or if the template fails to become ready within a
fixed timeout of one hour, the template instantiation will fail.

For the purposes of instantiation, readiness and failure of each object kind are defined as follows:

Kind Readiness Failure

Build Object reports phase Complete Object reports phase Canceled, Error, or
Failed

BuildConfig Latest associated Build object reports
phase Complete

Latest associated Build object reports
phase Canceled, Error, or Failed

Deployment Object reports new ReplicaSet and
deployment available (this honors
readiness probes defined on the object)

Object reports Progressing condition as
false

DeploymentCon
fig

Object reports new ReplicationController
and deployment available (this honors
readiness probes defined on the object)

Object reports Progressing condition as
false

Job Object reports completion Object reports that one or more failures
have occurred

StatefulSet Object reports all replicas ready (this
honors readiness probes defined on the
object)

Not applicable

The following is an example template extract, which uses the wait-for-ready annotation. Further
examples can be found in the OpenShift quickstart templates.

kind: Template
apiVersion: v1
metadata:
 name: my-template
objects:
- kind: BuildConfig
 apiVersion: v1
 metadata:
 name: ...
 annotations:
 # wait-for-ready used on BuildConfig ensures that template instantiation

CHAPTER 10. TEMPLATES

163

10.7.8. Other Recommendations

Set memory, CPU, and storage default sizes to make sure your application is given enough
resources to run smoothly.

Avoid referencing the latest tag from images if that tag is used across major versions. This may
cause running applications to break when new images are pushed to that tag.

A good template builds and deploys cleanly without requiring modifications after the template is
deployed.

10.7.9. Creating a Template from Existing Objects

If you are upgrading from OpenShift Online Starter to OpenShift Online Pro, use oc export all to export
all of your existing objects. OpenShift Online Pro does not support per-object resource migration.

Rather than writing an entire template from scratch, you can export existing objects from your project in
template form, and then modify the template from there by adding parameters and other
customizations. To export objects in a project in template form, run:

$ oc export all --as-template=<template_name> > <template_filename>

You can also substitute a particular resource type or multiple resources instead of all. Run oc export -h
for more examples.

The object types included in oc export all are:

BuildConfig

Build

DeploymentConfig

ImageStream

Pod

 # will fail immediately if build fails
 template.alpha.openshift.io/wait-for-ready: "true"
 spec:
 ...
- kind: DeploymentConfig
 apiVersion: v1
 metadata:
 name: ...
 annotations:
 template.alpha.openshift.io/wait-for-ready: "true"
 spec:
 ...
- kind: Service
 apiVersion: v1
 metadata:
 name: ...
 spec:
 ...

OpenShift Online 3 Developer Guide

164

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#pvc-resources

ReplicationController

Route

Service

CHAPTER 10. TEMPLATES

165

CHAPTER 11. OPENING A REMOTE SHELL TO CONTAINERS

11.1. OVERVIEW

The oc rsh command allows you to locally access and manage tools that are on the system. The secure
shell (SSH) is the underlying technology and industry standard that provides a secure connection to the
application. Access to applications with the shell environment is protected and restricted with Security-
Enhanced Linux (SELinux) policies.

11.2. START A SECURE SHELL SESSION

Open a remote shell session to a container:

$ oc rsh <pod>

While in the remote shell, you can issue commands as if you are inside the container and perform local
operations like monitoring, debugging, and using CLI commands specific to what is running in the
container.

For example, in a MySQL container, you can count the number of records in the database by invoking
the mysql command, then using the prompt to type in the SELECT command. You can also use
commands like ps(1) and ls(1) for validation.

BuildConfigs and DeployConfigs map out how you want things to look and pods (with containers
inside) are created and dismantled as needed. Your changes are not persistent. If you make changes
directly within the container and that container is destroyed and rebuilt, your changes will no longer
exist.

NOTE

oc exec can be used to execute a command remotely. However, the oc rsh command
provides an easier way to keep a remote shell open persistently.

11.3. SECURE SHELL SESSION HELP

For help with usage, options, and to see examples:

$ oc rsh -h

OpenShift Online 3 Developer Guide

166

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/using_images/#using-images-db-images-mysql

CHAPTER 12. SERVICE ACCOUNTS

12.1. OVERVIEW

When a person uses the OpenShift Online CLI or web console, their API token authenticates them to
the OpenShift API. However, when a regular user’s credentials are not available, it is common for
components to make API calls independently. For example:

Replication controllers make API calls to create or delete pods.

Applications inside containers could make API calls for discovery purposes.

External applications could make API calls for monitoring or integration purposes.

Service accounts provide a flexible way to control API access without sharing a regular user’s credentials.

12.2. USER NAMES AND GROUPS

Every service account has an associated user name that can be granted roles, just like a regular user. The
user name is derived from its project and name:

system:serviceaccount:<project>:<name>

For example, to add the view role to the robot service account in the top-secret project:

$ oc policy add-role-to-user view system:serviceaccount:top-secret:robot

IMPORTANT

If you want to grant access to a specific service account in a project, you can use the -z
flag. From the project to which the service account belongs, use the -z flag and specify
the <serviceaccount_name>. This is highly recommended, as it helps prevent typos and
ensures that access is granted only to the specified service account. For example:

 $ oc policy add-role-to-user <role_name> -z <serviceaccount_name>

If not in the project, use the -n option to indicate the project namespace it applies to, as
shown in the examples below.

Every service account is also a member of two groups:

system:serviceaccount

Includes all service accounts in the system.

system:serviceaccount:<project>

Includes all service accounts in the specified project.

For example, to allow all service accounts in all projects to view resources in the top-secret project:

$ oc policy add-role-to-group view system:serviceaccount -n top-secret

To allow all service accounts in the managers project to edit resources in the top-secret project:

CHAPTER 12. SERVICE ACCOUNTS

167

$ oc policy add-role-to-group edit system:serviceaccount:managers -n top-secret

12.3. DEFAULT SERVICE ACCOUNTS AND ROLES

Three service accounts are automatically created in every project:

Service Account Usage

builder Used by build pods. It is given the system:image-builder role, which allows
pushing images to any image stream in the project using the internal Docker
registry.

deployer Used by deployment pods and is given the system:deployer role, which allows
viewing and modifying replication controllers and pods in the project.

default Used to run all other pods unless they specify a different service account.

All service accounts in a project are given the system:image-puller role, which allows pulling images
from any image stream in the project using the internal Docker registry.

12.4. MANAGING SERVICE ACCOUNTS

Service accounts are API objects that exist within each project. To manage service accounts, you can
use the oc command with the sa or serviceaccount object type or use the web console.

To get a list of existing service accounts in the current project:

$ oc get sa
NAME SECRETS AGE
builder 2 2d
default 2 2d
deployer 2 2d

To create a new service account:

$ oc create sa robot
serviceaccount "robot" created

As soon as a service account is created, two secrets are automatically added to it:

an API token

credentials for the OpenShift Container Registry

These can be seen by describing the service account:

$ oc describe sa robot
Name: robot
Namespace: project1
Labels: <none>
Annotations: <none>

OpenShift Online 3 Developer Guide

168

1

2

3

Image pull secrets: robot-dockercfg-qzbhb

Mountable secrets: robot-token-f4khf
 robot-dockercfg-qzbhb

Tokens: robot-token-f4khf
 robot-token-z8h44

The system ensures that service accounts always have an API token and registry credentials.

The generated API token and registry credentials do not expire, but they can be revoked by deleting the
secret. When the secret is deleted, a new one is automatically generated to take its place.

12.5. ENABLING SERVICE ACCOUNT AUTHENTICATION

Service accounts authenticate to the API using tokens signed by a private RSA key. The authentication
layer verifies the signature using a matching public RSA key.

To enable service account token generation, update the serviceAccountConfig stanza in the
/etc/origin/master/master-config.yml file on the master to specify a privateKeyFile (for signing), and
a matching public key file in the publicKeyFiles list:

serviceAccountConfig:
 ...
 masterCA: ca.crt 1
 privateKeyFile: serviceaccount.private.key 2
 publicKeyFiles:
 - serviceaccount.public.key 3
 - ...

CA file used to validate the API server’s serving certificate.

Private RSA key file (for token signing).

Public RSA key files (for token verification). If private key files are provided, then the public key
component is used. Multiple public key files can be specified, and a token will be accepted if it can
be validated by one of the public keys. This allows rotation of the signing key, while still accepting
tokens generated by the previous signer.

12.6. MANAGING ALLOWED SECRETS

In addition to providing API credentials, a pod’s service account determines which secrets the pod is
allowed to use.

Pods use secrets in two ways:

image pull secrets, providing credentials used to pull images for the pod’s containers

mountable secrets, injecting the contents of secrets into containers as files

To allow a secret to be used as an image pull secret by a service account’s pods, run:

CHAPTER 12. SERVICE ACCOUNTS

169

$ oc secrets link --for=pull <serviceaccount-name> <secret-name>

To allow a secret to be mounted by a service account’s pods, run:

$ oc secrets link --for=mount <serviceaccount-name> <secret-name>

NOTE

Limiting secrets to only the service accounts that reference them is disabled by default.
This means that if serviceAccountConfig.limitSecretReferences is set to false (the
default setting) in the master configuration file, mounting secrets to a service account’s
pods with the --for=mount option is not required. However, using the --for=pull option to
enable using an image pull secret is required, regardless of the
serviceAccountConfig.limitSecretReferences value.

This example creates and adds secrets to a service account:

$ oc create secret generic secret-plans \
 --from-file=plan1.txt \
 --from-file=plan2.txt
secret/secret-plans

$ oc create secret docker-registry my-pull-secret \
 --docker-username=mastermind \
 --docker-password=12345 \
 --docker-email=mastermind@example.com
secret/my-pull-secret

$ oc secrets link robot secret-plans --for=mount

$ oc secrets link robot my-pull-secret --for=pull

$ oc describe serviceaccount robot
Name: robot
Labels: <none>
Image pull secrets: robot-dockercfg-624cx
 my-pull-secret

Mountable secrets: robot-token-uzkbh
 robot-dockercfg-624cx
 secret-plans

Tokens: robot-token-8bhpp
 robot-token-uzkbh

12.7. USING A SERVICE ACCOUNT’S CREDENTIALS INSIDE A
CONTAINER

When a pod is created, it specifies a service account (or uses the default service account), and is allowed
to use that service account’s API credentials and referenced secrets.

A file containing an API token for a pod’s service account is automatically mounted at
/var/run/secrets/kubernetes.io/serviceaccount/token.

OpenShift Online 3 Developer Guide

170

That token can be used to make API calls as the pod’s service account. This example calls the users/~
API to get information about the user identified by the token:

$ TOKEN="$(cat /var/run/secrets/kubernetes.io/serviceaccount/token)"

$ curl --cacert /var/run/secrets/kubernetes.io/serviceaccount/ca.crt \
 "https://openshift.default.svc.cluster.local/oapi/v1/users/~" \
 -H "Authorization: Bearer $TOKEN"

kind: "User"
apiVersion: "user.openshift.io/v1"
metadata:
 name: "system:serviceaccount:top-secret:robot"
 selflink: "/oapi/v1/users/system:serviceaccount:top-secret:robot"
 creationTimestamp: null
identities: null
groups:
 - "system:serviceaccount"
 - "system:serviceaccount:top-secret"

12.8. USING A SERVICE ACCOUNT’S CREDENTIALS EXTERNALLY

The same token can be distributed to external applications that need to authenticate to the API.

Use the following syntax to view a service account’s API token:

$ oc describe secret <secret-name>

For example:

$ oc describe secret robot-token-uzkbh -n top-secret
Name: robot-token-uzkbh
Labels: <none>
Annotations: kubernetes.io/service-account.name=robot,kubernetes.io/service-
account.uid=49f19e2e-16c6-11e5-afdc-3c970e4b7ffe

Type: kubernetes.io/service-account-token

Data

token: eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9...

$ oc login --token=eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9...
Logged into "https://server:8443" as "system:serviceaccount:top-secret:robot" using the token
provided.

You don't have any projects. You can try to create a new project, by running

 $ oc new-project <projectname>

$ oc whoami
system:serviceaccount:top-secret:robot

CHAPTER 12. SERVICE ACCOUNTS

171

CHAPTER 13. MANAGING IMAGES

13.1. OVERVIEW

An image stream comprises any number of container images identified by tags. It presents a single
virtual view of related images, similar to a Docker image repository.

By watching an image stream, builds and deployments can receive notifications when new images are
added or modified and react by performing a build or deployment, respectively.

There are many ways you can interact with images and set up image streams, depending on where the
images' registries are located, any authentication requirements around those registries, and how you
want your builds and deployments to behave. The following sections cover a range of these topics.

13.2. TAGGING IMAGES

Before working with OpenShift Online image streams and their tags, it helps to first understand image
tags in the context of container images generally.

Container images can have names added to them that make it more intuitive to determine what they
contain, called a tag. Using a tag to specify the version of what is contained in the image is a common
use case. If you have an image named ruby, you could have a tag named 2.0 for 2.0 version of Ruby, and
another named latest to indicate literally the latest built image in that repository overall.

When interacting directly with images using the docker CLI, the docker tag command can add tags,
which essentially adds an alias to an image that can consist of several parts. Those parts can include:

<registry_server>/<user_name>/<image_name>:<tag>

The <user_name> part in the above could also refer to a project or namespace if the image is being
stored in an OpenShift Online environment with an internal registry (the OpenShift Container Registry).

OpenShift Online provides the oc tag command, which is similar to the docker tag command, but
operates on image streams instead of directly on images.

NOTE

See Red Hat Enterprise Linux 7’s Getting Started with Containers documentation for
more about tagging images directly using the docker CLI.

13.2.1. Adding Tags to Image Streams

Keeping in mind that an image stream in OpenShift Online comprises zero or more container images
identified by tags, you can add tags to an image stream using the oc tag command:

$ oc tag <source> <destination>

For example, to configure the ruby image streams static-2.0 tag to always refer to the current image
for the ruby image streams 2.0 tag:

$ oc tag ruby:2.0 ruby:static-2.0

This creates a new image stream tag named static-2.0 in the ruby image stream. The new tag directly

OpenShift Online 3 Developer Guide

172

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#docker-images
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#projects
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#namespaces
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/#creating_docker_images

This creates a new image stream tag named static-2.0 in the ruby image stream. The new tag directly
references the image id that the ruby:2.0 image stream tag pointed to at the time oc tag was run, and
the image it points to never changes.

There are different types of tags available. The default behavior uses a permanent tag, which points to a
specific image in time; even when the source changes, the new (destination) tag does not change.

A tracking tag means the destination tag’s metadata is updated during the import of the source tag. To
ensure the destination tag is updated whenever the source tag changes, use the --alias=true flag:

$ oc tag --alias=true <source> <destination>

NOTE

Use a tracking tag for creating permanent aliases (for example, latest or stable). The tag
works correctly only within a single image stream. Trying to create a cross-image-stream
alias produces an error.

You can also add the --scheduled=true flag to have the destination tag be refreshed (i.e., re-imported)
periodically. The period is configured globally at the system level. See Importing Tag and Image
Metadata for more details.

The --reference flag creates an image stream tag that is not imported. The tag points to the source
location, permanently.

If you want to instruct Docker to always fetch the tagged image from the integrated registry, use --
reference-policy=local. The registry uses the pull-through feature to serve the image to the client. By
default, the image blobs are mirrored locally by the registry. As a result, they can be pulled more quickly
the next time they are needed. The flag also allows for pulling from insecure registries without a need to
supply --insecure-registry to the Docker daemon as long as the image stream has an insecure
annotation or the tag has an insecure import policy .

13.2.2. Recommended Tagging Conventions

Images evolve over time and their tags reflect this. An image tag always points to the latest image built.

If there is too much information embedded in a tag name (for example, v2.0.1-may-2016), the tag
points to just one revision of an image and is never updated. Using default image pruning options, such
an image is never removed.

Instead, if the tag is named v2.0, more image revisions are more likely. This results in longer tag history
and, therefore, the image pruner is more likely to remove old and unused images.

Although tag naming convention is up to you, here are a few examples in the format <image_name>:
<image_tag>:

Table 13.1. Image Tag Naming Conventions

Description Example

Revision myimage:v2.0.1

Architecture myimage:v2.0-x86_64

CHAPTER 13. MANAGING IMAGES

173

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#image-stream-tag

Base image myimage:v1.2-centos7

Latest (potentially unstable) myimage:latest

Latest stable myimage:stable

Description Example

If you require dates in tag names, periodically inspect old and unsupported images and istags and
remove them. Otherwise, you might experience increasing resource usage caused by old images.

13.2.3. Removing Tags from Image Streams

To remove a tag completely from an image stream run:

$ oc delete istag/ruby:latest

or:

$ oc tag -d ruby:latest

13.2.4. Referencing Images in Image Streams

Images can be referenced in image streams using the following reference types:

An ImageStreamTag is used to reference or retrieve an image for a given image stream and
tag. It uses the following convention for its name:

<image_stream_name>:<tag>

An ImageStreamImage is used to reference or retrieve an image for a given image stream and
image name. It uses the following convention for its name:

<image_stream_name>@<id>

The <id> is an immutable identifier for a specific image, also called a digest.

A DockerImage is used to reference or retrieve an image for a given external registry. It uses
standard Docker pull specification for its name, e.g.:

openshift/ruby-20-centos7:2.0

NOTE

When no tag is specified, it is assumed the latest tag is used.

You can also reference a third-party registry:

registry.access.redhat.com/rhel7:latest

OpenShift Online 3 Developer Guide

174

Or an image with a digest:

centos/ruby-22-
centos7@sha256:3a335d7d8a452970c5b4054ad7118ff134b3a6b50a2bb6d0c07c746e8986b2
8e

When viewing example image stream definitions, such as the example CentOS image streams , you may
notice they contain definitions of ImageStreamTag and references to DockerImage, but nothing
related to ImageStreamImage.

This is because the ImageStreamImage objects are automatically created in OpenShift Online
whenever you import or tag an image into the image stream. You should never have to explicitly define
an ImageStreamImage object in any image stream definition that you use to create image streams.

You can view an image’s object definition by retrieving an ImageStreamImage definition using the
image stream name and ID:

$ oc export isimage <image_stream_name>@<id>

NOTE

You can find valid <id> values for a given image stream by running:

$ oc describe is <image_stream_name>

For example, from the ruby image stream asking for the ImageStreamImage with the name and ID of
ruby@3a335d7:

Definition of an Image Object Retrieved via ImageStreamImage

$ oc export isimage ruby@3a335d7

apiVersion: v1
image:
 dockerImageLayers:
 - name: sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4
 size: 0
 - name: sha256:ee1dd2cb6df21971f4af6de0f1d7782b81fb63156801cfde2bb47b4247c23c29
 size: 196634330
 - name: sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4
 size: 0
 - name: sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4
 size: 0
 - name: sha256:ca062656bff07f18bff46be00f40cfbb069687ec124ac0aa038fd676cfaea092
 size: 177723024
 - name: sha256:63d529c59c92843c395befd065de516ee9ed4995549f8218eac6ff088bfa6b6e
 size: 55679776
 dockerImageMetadata:
 Architecture: amd64
 Author: SoftwareCollections.org <sclorg@redhat.com>
 Config:
 Cmd:
 - /bin/sh

CHAPTER 13. MANAGING IMAGES

175

https://github.com/openshift/origin/blob/master/examples/image-streams/image-streams-centos7.json

 - -c
 - $STI_SCRIPTS_PATH/usage
 Entrypoint:
 - container-entrypoint
 Env:
 - PATH=/opt/app-root/src/bin:/opt/app-
root/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
 - STI_SCRIPTS_URL=image:///usr/libexec/s2i
 - STI_SCRIPTS_PATH=/usr/libexec/s2i
 - HOME=/opt/app-root/src
 - BASH_ENV=/opt/app-root/etc/scl_enable
 - ENV=/opt/app-root/etc/scl_enable
 - PROMPT_COMMAND=. /opt/app-root/etc/scl_enable
 - RUBY_VERSION=2.2
 ExposedPorts:
 8080/tcp: {}
 Image: d9c3abc5456a9461954ff0de8ae25e0e016aad35700594714d42b687564b1f51
 Labels:
 build-date: 2015-12-23
 io.k8s.description: Platform for building and running Ruby 2.2 applications
 io.k8s.display-name: Ruby 2.2
 io.openshift.builder-base-version: 8d95148
 io.openshift.builder-version: 8847438ba06307f86ac877465eadc835201241df
 io.openshift.s2i.scripts-url: image:///usr/libexec/s2i
 io.openshift.tags: builder,ruby,ruby22
 io.s2i.scripts-url: image:///usr/libexec/s2i
 license: GPLv2
 name: CentOS Base Image
 vendor: CentOS
 User: "1001"
 WorkingDir: /opt/app-root/src
 ContainerConfig: {}
 Created: 2016-01-26T21:07:27Z
 DockerVersion: 1.8.2-el7
 Id: 57b08d979c86f4500dc8cad639c9518744c8dd39447c055a3517dc9c18d6fccd
 Parent: d9c3abc5456a9461954ff0de8ae25e0e016aad35700594714d42b687564b1f51
 Size: 430037130
 apiVersion: "1.0"
 kind: DockerImage
 dockerImageMetadataVersion: "1.0"
 dockerImageReference: centos/ruby-22-
centos7@sha256:3a335d7d8a452970c5b4054ad7118ff134b3a6b50a2bb6d0c07c746e8986b28e
 metadata:
 creationTimestamp: 2016-01-29T13:17:45Z
 name: sha256:3a335d7d8a452970c5b4054ad7118ff134b3a6b50a2bb6d0c07c746e8986b28e
 resourceVersion: "352"
 uid: af2e7a0c-c68a-11e5-8a99-525400f25e34
kind: ImageStreamImage
metadata:
 creationTimestamp: null
 name: ruby@3a335d7
 namespace: openshift
 selflink: /oapi/v1/namespaces/openshift/imagestreamimages/ruby@3a335d7

13.3. IMAGE PULL POLICY

OpenShift Online 3 Developer Guide

176

Each container in a pod has a container image. Once you have created an image and pushed it to a
registry, you can then refer to it in the pod.

When OpenShift Online creates containers, it uses the container’s imagePullPolicy to determine if the
image should be pulled prior to starting the container. There are three possible values for
imagePullPolicy:

Always - always pull the image.

IfNotPresent - only pull the image if it does not already exist on the node.

Never - never pull the image.

If a container’s imagePullPolicy parameter is not specified, OpenShift Online sets it based on the
image’s tag:

1. If the tag is latest, OpenShift Online defaults imagePullPolicy to Always.

2. Otherwise, OpenShift Online defaults imagePullPolicy to IfNotPresent.

NOTE

When using the Never Image Pull Policy, you can ensure that private images can only be
used by pods with credentials to pull those images using the AlwaysPullImages
admission controller. If this admission controller is not enabled, any pod from any user on
a node can use the image without any authorization check against the image.

13.4. ACCESSING THE INTERNAL REGISTRY

You can access OpenShift Online’s internal registry directly to push or pull images. For example, this
could be helpful if you wanted to create an image stream by manually pushing an image , or just to
docker pull an image directly.

OpenShift Online gives developers a hands-on preview of the OpenShift platform in a hosted
environment that includes access to an internal registry.

The internal registry authenticates using the same tokens as the OpenShift Online API. To perform a
docker login against the internal registry, you can choose any user name and email, but the password
must be a valid OpenShift Online token.

To log into the internal registry:

1. Log in to OpenShift Online:

$ oc login

2. Get your access token:

$ oc whoami -t

3. Log in to the internal registry using the token. You must have docker installed on your system:

$ docker login -u <user_name> -e <email_address> \
 -p <token_value> https://registry.<clusterID>.openshift.com

CHAPTER 13. MANAGING IMAGES

177

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#architecture-additional-concepts-admission-controllers
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#api-authentication

NOTE

Contact your cluster administrator if you do not know the registry IP or host
name and port to use.

In order to pull an image, the authenticated user must have get rights on the requested
imagestreams/layers. In order to push an image, the authenticated user must have update rights on the
requested imagestreams/layers.

By default, all service accounts in a project have rights to pull any image in the same project, and the
builder service account has rights to push any image in the same project.

13.5. USING IMAGE PULL SECRETS

Docker registries can be secured to prevent unauthorized parties from accessing certain images. If you
are using OpenShift Online’s internal registry and are pulling from image streams located in the same
project, then your pod’s service account should already have the correct permissions and no additional
action should be required.

However, for other scenarios, such as referencing images across OpenShift Online projects or from
secured registries, then additional configuration steps are required. The following sections detail these
scenarios and their required steps.

13.5.1. Allowing Pods to Reference Images Across Projects

When using the internal registry, to allow pods in project-a to reference images in project-b, a service
account in project-a must be bound to the system:image-puller role in project-b:

$ oc policy add-role-to-user \
 system:image-puller system:serviceaccount:project-a:default \
 --namespace=project-b

After adding that role, the pods in project-a that reference the default service account is able to pull
images from project-b.

To allow access for any service account in project-a, use the group:

$ oc policy add-role-to-group \
 system:image-puller system:serviceaccounts:project-a \
 --namespace=project-b

13.5.2. Allowing Pods to Reference Images from Other Secured Registries

The .dockercfg file (or $HOME/.docker/config.json for newer Docker clients) is a Docker credentials
file that stores your information if you have previously logged into a secured or insecure registry.

To pull a secured container image that is not from OpenShift Online’s internal registry, you must create a
pull secret from your Docker credentials and add it to your service account.

If you already have a .dockercfg file for the secured registry, you can create a secret from that file by
running:

OpenShift Online 3 Developer Guide

178

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#architecture-infrastructure-components-image-registry

$ oc create secret generic <pull_secret_name> \
 --from-file=.dockercfg=<path/to/.dockercfg> \
 --type=kubernetes.io/dockercfg

Or if you have a $HOME/.docker/config.json file:

$ oc create secret generic <pull_secret_name> \
 --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
 --type=kubernetes.io/dockerconfigjson

If you do not already have a Docker credentials file for the secured registry, you can create a secret by
running:

$ oc create secret docker-registry <pull_secret_name> \
 --docker-server=<registry_server> \
 --docker-username=<user_name> \
 --docker-password=<password> \
 --docker-email=<email>

To use a secret for pulling images for pods, you must add the secret to your service account. The name
of the service account in this example should match the name of the service account the pod uses;
default is the default service account:

$ oc secrets link default <pull_secret_name> --for=pull

To use a secret for pushing and pulling build images, the secret must be mountable inside of a pod. You
can do this by running:

$ oc secrets link builder <pull_secret_name>

13.5.2.1. Pulling from Private Registries with Delegated Authentication

A private registry can delegate authentication to a separate service. In these cases, image pull secrets
must be defined for both the authentication and registry endpoints.

NOTE

Third-party images in the Red Hat Container Catalog are served from the Red Hat
Connect Partner Registry (registry.connect.redhat.com). This registry delegates
authentication to sso.redhat.com, so the following procedure applies.

1. Create a secret for the delegated authentication server:

$ oc create secret docker-registry \
 --docker-server=sso.redhat.com \
 --docker-username=developer@example.com \
 --docker-password=******** \
 --docker-email=unused \
 redhat-connect-sso

secret/redhat-connect-sso

CHAPTER 13. MANAGING IMAGES

179

2. Create a secret for the private registry:

$ oc create secret docker-registry \
 --docker-server=privateregistry.example.com \
 --docker-username=developer@example.com \
 --docker-password=******** \
 --docker-email=unused \
 private-registry

secret/private-registry

NOTE

The Red Hat Connect Partner Registry (registry.connect.redhat.com) does not accept
the auto-generated dockercfg secret type (BZ#1476330). A generic file-based secret
must be created using the generated file from a docker login command:

$ docker login registry.connect.redhat.com --username developer@example.com

Password: *************
Login Succeeded

$ oc create secret generic redhat-connect --from-
file=.dockerconfigjson=.docker/config.json

$ oc secrets link default redhat-connect --for=pull

13.6. IMPORTING TAG AND IMAGE METADATA

An image stream can be configured to import tag and image metadata from an image repository in an
external Docker image registry. You can do this using a few different methods.

You can manually import tag and image information with the oc import-image command using
the --from option:

$ oc import-image <image_stream_name>[:<tag>] --from=<docker_image_repo> --confirm

For example:

$ oc import-image my-ruby --from=docker.io/openshift/ruby-20-centos7 --confirm
The import completed successfully.

Name: my-ruby
Created: Less than a second ago
Labels: <none>
Annotations: openshift.io/image.dockerRepositoryCheck=2016-05-06T20:59:30Z
Docker Pull Spec: 172.30.94.234:5000/demo-project/my-ruby

Tag Spec Created PullSpec Image
latest docker.io/openshift/ruby-20-centos7 Less than a second ago docker.io/openshift/ruby-
20-centos7@sha256:772c5bf9b2d1e8... <same>

You can also add the --all flag to import all tags for the image instead of just latest.

OpenShift Online 3 Developer Guide

180

https://bugzilla.redhat.com/show_bug.cgi?id=1476330

Like most objects in OpenShift Online, you can also write and save a JSON or YAML definition
to a file then create the object using the CLI. Set the spec.dockerImageRepository field to the
Docker pull spec for the image:

apiVersion: "v1"
kind: "ImageStream"
metadata:
 name: "my-ruby"
spec:
 dockerImageRepository: "docker.io/openshift/ruby-20-centos7"

Then create the object:

$ oc create -f <file>

When you create an image stream that references an image in an external Docker registry, OpenShift
Online communicates with the external registry within a short amount of time to get up to date
information about the image.

After the tag and image metadata is synchronized, the image stream object would look similar to the
following:

apiVersion: v1
kind: ImageStream
metadata:
 name: my-ruby
 namespace: demo-project
 selflink: /oapi/v1/namespaces/demo-project/imagestreams/my-ruby
 uid: 5b9bd745-13d2-11e6-9a86-0ada84b8265d
 resourceVersion: '4699413'
 generation: 2
 creationTimestamp: '2016-05-06T21:34:48Z'
 annotations:
 openshift.io/image.dockerRepositoryCheck: '2016-05-06T21:34:48Z'
spec:
 dockerImageRepository: docker.io/openshift/ruby-20-centos7
 tags:
 -
 name: latest
 annotations: null
 from:
 kind: DockerImage
 name: 'docker.io/openshift/ruby-20-centos7:latest'
 generation: 2
 importPolicy: { }
status:
 dockerImageRepository: '172.30.94.234:5000/demo-project/my-ruby'
 tags:
 -
 tag: latest
 items:
 -
 created: '2016-05-06T21:34:48Z'
 dockerImageReference: 'docker.io/openshift/ruby-20-

CHAPTER 13. MANAGING IMAGES

181

1

centos7@sha256:772c5bf9b2d1e8e80742ed75aab05820419dc4532fa6d7ad8a1efddda5493dc3'
 image: 'sha256:772c5bf9b2d1e8e80742ed75aab05820419dc4532fa6d7ad8a1efddda5493dc3'
 generation: 2

You can set a tag to query external registries at a scheduled interval to synchronize tag and image
metadata by setting the --scheduled=true flag with the oc tag command as mentioned in Adding Tags
to Image Streams.

Alternatively, you can set importPolicy.scheduled to true in the tag’s definition:

apiVersion: v1
kind: ImageStream
metadata:
 name: ruby
spec:
 tags:
 - from:
 kind: DockerImage
 name: openshift/ruby-20-centos7
 name: latest
 importPolicy:
 scheduled: true

13.6.1. Importing Images from Insecure Registries

An image stream can be configured to import tag and image metadata from insecure image registries,
such as those signed with a self-signed certificate or using plain HTTP instead of HTTPS.

To configure this, add the openshift.io/image.insecureRepository annotation and set it to true. This
setting bypasses certificate validation when connecting to the registry:

Set the openshift.io/image.insecureRepository annotation to true

IMPORTANT

This option instructs integrated registry to fall back to an insecure transport for any
external image tagged in the image stream when serving it, which is dangerous. If
possible, avoid this risk by marking just an istag as insecure.

13.6.1.1. Image Stream Tag Policies

13.6.1.1.1. Insecure Tag Import Policy

The above annotation applies to all images and tags of a particular ImageStream. For a finer-grained

kind: ImageStream
apiVersion: v1
metadata:
 name: ruby
 annotations:
 openshift.io/image.insecureRepository: "true" 1
 spec:
 dockerImageRepository: my.repo.com:5000/myimage

OpenShift Online 3 Developer Guide

182

1

2

The above annotation applies to all images and tags of a particular ImageStream. For a finer-grained
control, policies may be set on istags. Set importPolicy.insecure in the tag’s definition to true to allow
a fall-back to insecure transport just for images under this tag.

NOTE

The fall-back to insecure transport for an image under particular istag is enabled either
when the image stream is annotated as insecure or the istag has insecure import policy.
The importPolicy.insecure ̀set to false can not override the image stream annotation.

13.6.1.1.2. Reference Policy

The Reference Policy allows you to specify from where resources that reference this image stream tag
pulls the image. It is only applicable to remote images (those imported from external registries). There
are two options to choose from, Local and Source.

The Source policy instructs clients to pull directly from the source registry of the image. The integrated
registry is not involved unless the image is managed by the cluster. (It is not an external image.) This is
the default policy.

The Local policy instructs clients to always pull from the integrated registry. This is useful if you want to
pull from external insecure registries without modifying Docker daemon settings.

This policy only affects the use of the image stream tag. Components or operations that directly
reference or pull the image using its external registry location is not redirected to the internal registry.

The pull-through feature

of the registry serves the remote image to the client. This feature, which is on by default, must be
enabled for the local reference policy to be used. Additionally, by default, all the blobs are mirrored for
faster access later.

You can set the policy in a specification of image stream tag as referencePolicy.type.

Example of Insecure Tag with a Local Reference Policy

Set tag mytag to use an insecure connection to that registry.

Set tag mytag to use integrated registry for pulling external images. If the reference policy type is
set to Source, clients fetch the image directly from my.repo.com:5000/myimage.

kind: ImageStream
apiVersion: v1
metadata:
 name: ruby
 tags:
 - from:
 kind: DockerImage
 name: my.repo.com:5000/myimage
 name: mytag
 importPolicy:
 insecure: true 1
 referencePolicy:
 type: Local 2

CHAPTER 13. MANAGING IMAGES

183

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#image-stream-tag

13.6.2. Importing Images from Private Registries

An image stream can be configured to import tag and image metadata from private image registries,
requiring authentication.

To configure this, you need to create a secret, which is used to store your credentials. See Allowing Pods
to Reference Images from Other Secured Registries for instructions on creating a secret using oc
create secret command.

After the secret is configured, proceed with creating the new image stream or using the oc import-
image command. During the import process, OpenShift Online picks up the secrets and provide them to
the remote party.

NOTE

When importing from an insecure registry, the registry URL defined in the secret must
include the :80 port suffix or the secret is not used when attempting to import from the
registry.

13.6.3. Adding Trusted Certificates for External Registries

If the registry you are importing from is using a certificate that is not signed by a standard certificate
authority, you need to explicitly configure the system to trust the registry’s certificate or signing
authority. This can be done by adding the CA certificate or registry certificate to the host system
running the registry import controller (typically the master node).

You must add the certificate or CA certificate to /etc/pki/tls/certs or /etc/pki/ca-trust, respectively, on
the host system. You also need to run the update-ca-trust command on Red Hat distributions followed
by a restart of the master services to pick up the certificate changes.

13.6.4. Importing Images Across Projects

An image stream can be configured to import tag and image metadata from the internal registry, but
from a different project. The recommended method for this is to use the oc tag command as shown in
Adding Tags to Image Streams :

$ oc tag <source_project>/<image_stream>:<tag> <new_image_stream>:<new_tag>

Another method is to import the image from the other project manually using the pull spec:

WARNING

The following method is strongly discouraged and should be used only if the former
using oc tag is insufficient.

1. First, add the necessary policy to access the other project:

$ oc policy add-role-to-group \
 system:image-puller \



OpenShift Online 3 Developer Guide

184

 system:serviceaccounts:<destination_project> \
 -n <source_project>

This allows <destination_project> to pull images from <source_project>.

2. With the policy in place, you can import the image manually:

$ oc import-image <new_image_stream> --confirm \
 --from=<docker_registry>/<source_project>/<image_stream>

13.6.5. Creating an Image Stream by Manually Pushing an Image

An image stream can also be automatically created by manually pushing an image to the internal
registry. This is only possible when using an OpenShift Online internal registry.

Before performing this procedure, the following must be satisfied:

The destination project you push to must already exist.

The user must be authorized to {get, update} "imagestream/layers" in that project. In addition,
since the image stream does not already exist, the user must be authorized to {create}
"imagestream" in that project. If you are a project administrator, then you would have these
permissions.

NOTE

The system:image-pusher role does not grant permission to create new image streams,
only to push images to existing image streams, so it cannot be used to push images to
image streams that do not yet exist unless additional permissions are also granted to the
user.

To create an image stream by manually pushing an image:

1. First, log in to the internal registry .

2. Then, tag your image using the appropriate internal registry location. For example, if you had
already pulled the docker.io/centos:centos7 image locally:

$ docker tag docker.io/centos:centos7 https://registry.<clusterID>.openshift.com

3. Finally, push the image to your internal registry. For example:

$ docker push https://registry.<clusterID>.openshift.com
The push refers to a repository [https://registry.<clusterID>.openshift.com] (len: 1)
c8a648134623: Pushed
2bf4902415e3: Pushed
latest: digest:
sha256:be8bc4068b2f60cf274fc216e4caba6aa845fff5fa29139e6e7497bb57e48d67 size:
6273

4. Verify that the image stream was created:

CHAPTER 13. MANAGING IMAGES

185

$ oc get is
NAME DOCKER REPO TAGS UPDATED
my-image 172.30.48.125:5000/test/my-image latest 3 seconds ago

13.7. TRIGGERING UPDATES ON IMAGE STREAM CHANGES

When an image stream tag is updated to point to a new image, OpenShift Online can automatically take
action to roll the new image out to resources that were using the old image. This is configured in
different ways depending on the type of resource that is referencing the image stream tag.

13.7.1. OpenShift Resources

OpenShift DeploymentConfigs and BuildConfigs can be automatically triggered by changes to
ImageStreamTags. The triggered action can be run using the new value of the image referenced by the
updated ImageStreamTag. For more details on using this capability see the documentation on
BuildConfig triggers and DeploymentConfig triggers.

13.7.2. Kubernetes Resources

Unlike DeploymentConfigs and BuildConfigs, which include as part of their API definition a set of fields
for controlling triggers, Kubernetes resources do not have fields for triggering. Instead, OpenShift
Online uses annotations to allow users to request triggering. The annotation is defined as follows:

Key: image.openshift.io/triggers
Value: array of triggers, where each item has the schema:
[
 {
 "from" :{
 "kind": "ImageStreamTag", // required, the resource to trigger from, must be ImageStreamTag
 "name": "example:latest", // required, the name of an ImageStreamTag
 "namespace": "myapp", // optional, defaults to the namespace of the object
 },
 // required, JSON path to change
 // Note that this field is limited today, and only accepts a very specific set
 // of inputs (a JSON path expression that precisely matches a container by ID or index).
 // For pods this would be "spec.containers[?(@.name='web')].image".
 "fieldPath": "spec.template.spec.containers[?(@.name='web')].image",
 // optional, set to true to temporarily disable this trigger.
 "paused": "false"
 },
 ...
]

When OpenShift Online sees one of the core Kubernetes resources that contains both a pod template
(i.e, only CronJobs, Deployments, StatefulSets, DaemonSets, Jobs, ReplicaSets, ReplicationControllers,
and Pods) and this annotation, it attempts to update the object using the image currently associated
with the ImageStreamTag referenced by trigger. The update is performed against the fieldPath
specified.

In the following example the trigger fires when the example:latest imagestream tag is updated. Upon
firing, the object’s pod template image reference for the web container is updated with a new image
value. If the pod template is part of a Deployment definition, the change to the pod template
automatically triggers a deployment, effectively rolling out the new image.

OpenShift Online 3 Developer Guide

186

1

2

image.openshift.io/triggers=[{"from":
{"kind":"ImageStreamTag","name":"example:latest"},"fieldPath":"spec.template.spec.containers[?
(@.name='web')].image"}]

When adding an Image Trigger to Deployments, you can also use the oc set triggers command. For
example the following command adds an image change trigger to the Deployment named example
such that when the example:latest image stream tag is updated, the web container inside the
deployment updates with the new image value:

$ oc set triggers deploy/example --from-image=example:latest -c web

Unless the Deployment is paused, this pod template update automatically causes a deployment to occur
with the new image value.

13.8. WRITING IMAGE STREAM DEFINITIONS

You can define image streams by writing the image stream definition for the entire image stream. This
allows you to distribute the definition to different clusters without running oc commands.

An image stream definition specifies information about the image stream and the specific tags to be
imported.

Definition of an Image Stream Object

apiVersion: v1
kind: ImageStream
metadata:
 name: ruby
 annotations:
 openshift.io/display-name: Ruby 1
spec:
 tags:
 - name: '2.0' 2
 annotations:
 openshift.io/display-name: Ruby 2.0 3
 description: >- 4
 Build and run Ruby 2.0 applications on CentOS 7. For more information
 about using this builder image, including OpenShift considerations,
 see
 https://github.com/sclorg/s2i-ruby-container/tree/master/2.0/README.md.
 iconClass: icon-ruby 5
 sampleRepo: 'https://github.com/sclorg/ruby-ex.git' 6
 tags: 'builder,ruby' 7
 supports: 'ruby' 8
 version: '2.0' 9
 from:
 kind: DockerImage 10
 name: 'docker.io/openshift/ruby-20-centos7:latest' 11

A brief, user-friendly name for the whole image stream.

The tag is referred to as the version. Tags appear in a drop-down menu.

CHAPTER 13. MANAGING IMAGES

187

3

4

5

6

7

8

9

10

11

A user-friendly name for this tag within the image stream. This should be brief and include version
information when appropriate.

A description of the tag, which includes enough detail for users to understand what the image is
providing. It can include links to additional instructions. Limit the description to a few sentences.

The icon to show for this tag. Pick from our existing logo icons when possible. Icons from
FontAwesome and Patternfly can also be used. Alternatively, provide icons through CSS
customizations that can be added to an OpenShift Online cluster that uses your image stream. You
must specify an icon class that exists, or it prevents falling back to the generic icon.

A URL to a source repository that works with this builder image tag and results in a sample running
application.

Categories that the image stream tag is associated with. The builder tag is required for it to show
up in the catalog. Add tags that associates it with one of the provided catalog categories. Refer to
the id and categoryAliases in CATALOG_CATEGORIES in the console’s constants file. The
categories can also be customized for the whole cluster.

Languages this image supports. This value is used during oc new-app invocations to try to match
potential builder images to the provided source repository.

Version information for this tag.

The type of object this image stream tag is referencing. Valid values are: DockerImage,
ImageStreamTag, and ImageStreamImage.

The object this image stream tag imports.

For more information on the fields that can be defined in an ImageStream, see the Imagestream API
and the ImagestreamTag API.

OpenShift Online 3 Developer Guide

188

https://rawgit.com/openshift/openshift-logos-icon/master/demo.html
http://fontawesome.io/icons/
https://www.patternfly.org/styles/icons/
https://github.com/openshift/origin-web-console/blob/master/app/scripts/constants.js
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/io/#object-schema
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/io/#object-schema

CHAPTER 14. QUOTAS AND LIMIT RANGES

14.1. OVERVIEW

Using quotas and limit ranges, cluster administrators can set constraints to limit the number of objects
or amount of compute resources that are used in your project. This helps cluster administrators better
manage and allocate resources across all projects, and ensure that no projects are using more than is
appropriate for the cluster size.

IMPORTANT

OpenShift Online Pro project owners can change quotas for their project, but not limit
ranges. OpenShift Online Starter users cannot modify quotas or limit ranges.

The following sections help you understand how to check on your quota and limit range settings, what
sorts of things they can constrain, and how you can request or limit compute resources in your own pods
and containers.

14.2. QUOTAS

A resource quota, defined by a ResourceQuota object, provides constraints that limit aggregate
resource consumption per project. It can limit the quantity of objects that can be created in a project by
type, as well as the total amount of compute resources and storage that may be consumed by resources
in that project.

NOTE

Quotas are set by cluster administrators and are scoped to a given project.

14.2.1. Viewing Quotas

You can view usage statistics related to any hard limits defined in a project’s quota by navigating in the
web console to the project’s Quota page.

You can also use the CLI to view quota details:

1. First, get the list of quotas defined in the project. For example, for a project called
demoproject:

$ oc get quota -n demoproject
NAME AGE
besteffort 11m
compute-resources 2m
core-object-counts 29m

2. Then, describe the quota you are interested in, for example the core-object-counts quota:

$ oc describe quota core-object-counts -n demoproject
Name: core-object-counts
Namespace: demoproject
Resource Used Hard
-------- ---- ----

CHAPTER 14. QUOTAS AND LIMIT RANGES

189

1

2

3

4

5

1

configmaps 3 10
persistentvolumeclaims 0 4
replicationcontrollers 3 20
secrets 9 10
services 2 10

Full quota definitions can be viewed by running oc export on the object. The following show some
sample quota definitions:

core-object-counts.yaml

The total number of ConfigMap objects that can exist in the project.

The total number of persistent volume claims (PVCs) that can exist in the project.

The total number of replication controllers that can exist in the project.

The total number of secrets that can exist in the project.

The total number of services that can exist in the project.

openshift-object-counts.yaml

The total number of image streams that can exist in the project.

compute-resources.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: core-object-counts
spec:
 hard:
 configmaps: "10" 1
 persistentvolumeclaims: "4" 2
 replicationcontrollers: "20" 3
 secrets: "10" 4
 services: "10" 5

apiVersion: v1
kind: ResourceQuota
metadata:
 name: openshift-object-counts
spec:
 hard:
 openshift.io/imagestreams: "10" 1

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources
spec:

OpenShift Online 3 Developer Guide

190

1

2

3

4

5

1

2

1

2

The total number of pods in a non-terminal state that can exist in the project.

Across all pods in a non-terminal state, the sum of CPU requests cannot exceed 1 core.

Across all pods in a non-terminal state, the sum of memory requests cannot exceed 1Gi.

Across all pods in a non-terminal state, the sum of CPU limits cannot exceed 2 cores.

Across all pods in a non-terminal state, the sum of memory limits cannot exceed 2Gi.

besteffort.yaml

The total number of pods in a non-terminal state with BestEffort quality of service that can exist in
the project.

Restricts the quota to only matching pods that have BestEffort quality of service for either
memory or CPU.

compute-resources-long-running.yaml

The total number of pods in a non-terminal state.

Across all pods in a non-terminal state, the sum of CPU limits cannot exceed this value.

 hard:
 pods: "4" 1
 requests.cpu: "1" 2
 requests.memory: 1Gi 3
 limits.cpu: "2" 4
 limits.memory: 2Gi 5

apiVersion: v1
kind: ResourceQuota
metadata:
 name: besteffort
spec:
 hard:
 pods: "1" 1
 scopes:
 - BestEffort 2

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources-long-running
spec:
 hard:
 pods: "4" 1
 limits.cpu: "4" 2
 limits.memory: "2Gi" 3
 scopes:
 - NotTerminating 4

CHAPTER 14. QUOTAS AND LIMIT RANGES

191

3

4

1

2

3

4

1

2

3

Across all pods in a non-terminal state, the sum of memory limits cannot exceed this value.

Restricts the quota to only matching pods where spec.activeDeadlineSeconds is set to nil. Build
pods will fall under NotTerminating unless the RestartNever policy is applied.

compute-resources-time-bound.yaml

The total number of pods in a non-terminal state.

Across all pods in a non-terminal state, the sum of CPU limits cannot exceed this value.

Across all pods in a non-terminal state, the sum of memory limits cannot exceed this value.

Restricts the quota to only matching pods where spec.activeDeadlineSeconds >=0. For example,
this quota would charge for build or deployer pods, but not long running pods like a web server or
database.

storage-consumption.yaml

The total number of persistent volume claims in a project

Across all persistent volume claims in a project, the sum of storage requested cannot exceed this
value.

Across all persistent volume claims in a project, the sum of storage requested in the gold storage
class cannot exceed this value.

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources-time-bound
spec:
 hard:
 pods: "2" 1
 limits.cpu: "1" 2
 limits.memory: "1Gi" 3
 scopes:
 - Terminating 4

apiVersion: v1
kind: ResourceQuota
metadata:
 name: storage-consumption
spec:
 hard:
 persistentvolumeclaims: "10" 1
 requests.storage: "50Gi" 2
 gold.storageclass.storage.k8s.io/requests.storage: "10Gi" 3
 silver.storageclass.storage.k8s.io/requests.storage: "20Gi" 4
 silver.storageclass.storage.k8s.io/persistentvolumeclaims: "5" 5
 bronze.storageclass.storage.k8s.io/requests.storage: "0" 6
 bronze.storageclass.storage.k8s.io/persistentvolumeclaims: "0" 7

OpenShift Online 3 Developer Guide

192

4

5

6

7

Across all persistent volume claims in a project, the sum of storage requested in the silver storage
class cannot exceed this value.

Across all persistent volume claims in a project, the total number of claims in the silver storage class
cannot exceed this value.

Across all persistent volume claims in a project, the sum of storage requested in the bronze storage
class cannot exceed this value. When this is set to 0, it means bronze storage class cannot request
storage.

Across all persistent volume claims in a project, the sum of storage requested in the bronze storage
class cannot exceed this value. When this is set to 0, it means bronze storage class cannot create
claims.

14.2.2. Resources Managed by Quota

The following describes the set of compute resources and object types that may be managed by a
quota.

NOTE

A pod is in a terminal state if status.phase in (Failed, Succeeded) is true.

Table 14.1. Compute Resources Managed by Quota

Resource Name Description

cpu The sum of CPU requests across all pods in a non-terminal state cannot exceed
this value. cpu and requests.cpu are the same value and can be used
interchangeably.

memory The sum of memory requests across all pods in a non-terminal state cannot
exceed this value. memory and requests.memory are the same value and
can be used interchangeably.

requests.cpu The sum of CPU requests across all pods in a non-terminal state cannot exceed
this value. cpu and requests.cpu are the same value and can be used
interchangeably.

requests.memory The sum of memory requests across all pods in a non-terminal state cannot
exceed this value. memory and requests.memory are the same value and
can be used interchangeably.

limits.cpu The sum of CPU limits across all pods in a non-terminal state cannot exceed
this value.

limits.memory The sum of memory limits across all pods in a non-terminal state cannot exceed
this value.

Table 14.2. Storage Resources Managed by Quota

CHAPTER 14. QUOTAS AND LIMIT RANGES

193

Resource Name Description

requests.storage The sum of storage requests across all persistent volume claims in any state
cannot exceed this value.

persistentvolumeclaim
s

The total number of persistent volume claims that can exist in the project.

<storage-class-
name>.storageclass.st
orage.k8s.io/requests.
storage

The sum of storage requests across all persistent volume claims in any state
that have a matching storage class, cannot exceed this value.

<storage-class-
name>.storageclass.st
orage.k8s.io/persistent
volumeclaims

The total number of persistent volume claims with a matching storage class
that can exist in the project.

Table 14.3. Object Counts Managed by Quota

Resource Name Description

pods The total number of pods in a non-terminal state that can exist in the project.

replicationcontrollers The total number of replication controllers that can exist in the project.

resourcequotas The total number of resource quotas that can exist in the project.

services The total number of services that can exist in the project.

secrets The total number of secrets that can exist in the project.

configmaps The total number of ConfigMap objects that can exist in the project.

persistentvolumeclaim
s

The total number of persistent volume claims that can exist in the project.

openshift.io/imagestre
ams

The total number of image streams that can exist in the project.

14.2.3. Quota Scopes

Each quota can have an associated set of scopes. A quota will only measure usage for a resource if it
matches the intersection of enumerated scopes.

Adding a scope to a quota restricts the set of resources to which that quota can apply. Specifying a
resource outside of the allowed set results in a validation error.

OpenShift Online 3 Developer Guide

194

Scope Description

Terminating Match pods where spec.activeDeadlineSeconds >= 0.

NotTerminating Match pods where spec.activeDeadlineSeconds is nil.

BestEffort Match pods that have best effort quality of service for either cpu or memory.

NotBestEffort Match pods that do not have best effort quality of service for cpu and
memory.

A BestEffort scope restricts a quota to limiting the following resources:

pods

A Terminating, NotTerminating, and NotBestEffort scope restricts a quota to tracking the following
resources:

pods

memory

requests.memory

limits.memory

cpu

requests.cpu

limits.cpu

14.2.4. Quota Enforcement

After a resource quota for a project is first created, the project restricts the ability to create any new
resources that may violate a quota constraint until it has calculated updated usage statistics.

After a quota is created and usage statistics are updated, the project accepts the creation of new
content. When you create or modify resources, your quota usage is incremented immediately upon the
request to create or modify the resource.

When you delete a resource, your quota use is decremented during the next full recalculation of quota
statistics for the project. If project modifications exceed a quota usage limit, the server denies the
action. An appropriate error message is returned explaining the quota constraint violated, and what your
currently observed usage stats are in the system.

14.2.5. Requests Versus Limits

When allocating compute resources, each container may specify a request and a limit value each for
CPU and memory. Quotas can restrict any of these values.

If the quota has a value specified for requests.cpu or requests.memory, then it requires that every
incoming container make an explicit request for those resources. If the quota has a value specified for

CHAPTER 14. QUOTAS AND LIMIT RANGES

195

limits.cpu or limits.memory, then it requires that every incoming container specify an explicit limit for
those resources.

See Compute Resources for more on setting requests and limits in pods and containers.

14.3. LIMIT RANGES

A limit range, defined by a LimitRange object, enumerates compute resource constraints in a project at
the pod, container, image, image stream, and persistent volume claim level, and specifies the amount of
resources that a pod, container, image, image stream, or persistent volume claim can consume.

All resource create and modification requests are evaluated against each LimitRange object in the
project. If the resource violates any of the enumerated constraints, then the resource is rejected. If the
resource does not set an explicit value, and if the constraint supports a default value, then the default
value is applied to the resource.

NOTE

Limit ranges are set by cluster administrators and are scoped to a given project.

14.3.1. Viewing Limit Ranges

You can view any limit ranges defined in a project by navigating in the web console to the project’s
Quota page.

You can also use the CLI to view limit range details:

1. First, get the list of limit ranges defined in the project. For example, for a project called
demoproject:

$ oc get limits -n demoproject
NAME AGE
resource-limits 6d

2. Then, describe the limit range you are interested in, for example the resource-limits limit range:

$ oc describe limits resource-limits -n demoproject
Name: resource-limits
Namespace: demoproject
Type Resource Min Max Default Request Default Limit Max
Limit/Request Ratio
---- -------- --- --- --------------- ------------- -----------------------
Pod cpu 200m 2 - - -
Pod memory 6Mi 1Gi - - -
Container cpu 100m 2 200m 300m 10
Container memory 4Mi 1Gi 100Mi 200Mi -
openshift.io/Image storage - 1Gi - - -
openshift.io/ImageStream openshift.io/image - 12 - - -
openshift.io/ImageStream openshift.io/image-tags - 10 - - -

Full limit range definitions can be viewed by running oc export on the object. The following shows an
example limit range definition:

IMPORTANT

OpenShift Online 3 Developer Guide

196

1

2

3

4

5

6

7

8

IMPORTANT

For OpenShift Online Pro, the maximum pod memory is 3Gi. The minimum pod or
container memory that you can specify is 100Mi.

For OpenShift Online Starter, the maximum pod memory is 1Gi. The minimum pod or
container memory that you can specify is 200Mi.

Core Limit Range Object Definition

The name of the limit range object.

The maximum amount of CPU that a pod can request on a node across all containers.

The maximum amount of memory that a pod can request on a node across all containers.

The minimum amount of CPU that a pod can request on a node across all containers.

The minimum amount of memory that a pod can request on a node across all containers.

The maximum amount of CPU that a single container in a pod can request.

The maximum amount of memory that a single container in a pod can request.

The minimum amount of CPU that a single container in a pod can request.

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "core-resource-limits" 1
spec:
 limits:
 - type: "Pod"
 max:
 cpu: "2" 2
 memory: "1Gi" 3
 min:
 cpu: "200m" 4
 memory: "6Mi" 5
 - type: "Container"
 max:
 cpu: "2" 6
 memory: "1Gi" 7
 min:
 cpu: "100m" 8
 memory: "4Mi" 9
 default:
 cpu: "300m" 10
 memory: "200Mi" 11
 defaultRequest:
 cpu: "200m" 12
 memory: "100Mi" 13
 maxLimitRequestRatio:
 cpu: "10" 14

CHAPTER 14. QUOTAS AND LIMIT RANGES

197

9

10

11

12

13

14

The minimum amount of memory that a single container in a pod can request.

The default amount of CPU that a container will be limited to use if not specified.

The default amount of memory that a container will be limited to use if not specified.

The default amount of CPU that a container will request to use if not specified.

The default amount of memory that a container will request to use if not specified.

The maximum amount of CPU burst that a container can make as a ratio of its limit over request.

For more information on how CPU and memory are measured, see Compute Resources.

14.3.2. Container Limits

Supported Resources:

CPU

Memory

Supported Constraints:

Per container, the following must hold true if specified:

Table 14.4. Container

Constraint Behavior

Min Min[resource] less than or equal to
container.resources.requests[resource] (required) less than or equal to
container/resources.limits[resource] (optional)

If the configuration defines a min CPU, then the request value must be greater
than the CPU value. A limit value does not need to be specified.

Max container.resources.limits[resource] (required) less than or equal to
Max[resource]

If the configuration defines a max CPU, then you do not need to define a
request value, but a limit value does need to be set that satisfies the maximum
CPU constraint.

OpenShift Online 3 Developer Guide

198

MaxLimitRequestRatio MaxLimitRequestRatio[resource] less than or equal to (
container.resources.limits[resource] /
container.resources.requests[resource])

If a configuration defines a maxLimitRequestRatio value, then any new
containers must have both a request and limit value. Additionally, OpenShift
Online calculates a limit to request ratio by dividing the limit by the request.
This value should be a non-negative integer greater than 1.

For example, if a container has cpu: 500 in the limit value, and cpu: 100 in
the request value, then its limit to request ratio for cpu is 5. This ratio must be
less than or equal to the maxLimitRequestRatio.

Constraint Behavior

Supported Defaults:

Default[resource]

Defaults container.resources.limit[resource] to specified value if none.

Default Requests[resource]

Defaults container.resources.requests[resource] to specified value if none.

14.3.3. Pod Limits

Supported Resources:

CPU

Memory

Supported Constraints:

Across all containers in a pod, the following must hold true:

Table 14.5. Pod

Constraint Enforced Behavior

Min Min[resource] less than or equal to
container.resources.requests[resource] (required) less than or equal to
container.resources.limits[resource] (optional)

Max container.resources.limits[resource] (required) less than or equal to
Max[resource]

MaxLimitRequestRatio MaxLimitRequestRatio[resource] less than or equal to (
container.resources.limits[resource] /
container.resources.requests[resource])

14.4. COMPUTE RESOURCES

CHAPTER 14. QUOTAS AND LIMIT RANGES

199

1

2

3

4

Each container running on a node consumes compute resources, which are measurable quantities that
can be requested, allocated, and consumed.

When authoring a pod configuration file, you can optionally specify how much CPU and memory (RAM)
each container needs in order to better schedule pods in the cluster and ensure satisfactory
performance.

CPU is measured in units called millicores. Each node in a cluster inspects the operating system to
determine the amount of CPU cores on the node, then multiplies that value by 1000 to express its total
capacity. For example, if a node has 2 cores, the node’s CPU capacity would be represented as 2000m.
If you wanted to use 1/10 of a single core, it would be represented as 100m.

Memory is measured in bytes. In addition, it may be used with SI suffices (E, P, T, G, M, K) or their power-
of-two-equivalents (Ei, Pi, Ti, Gi, Mi, Ki).

The container requests 100m CPU.

The container requests 200Mi memory.

The container limits 200m CPU.

The container limits 400Mi memory.

14.4.1. CPU Requests

Each container in a pod can specify the amount of CPU it requests on a node. The scheduler uses CPU
requests to find a node with an appropriate fit for a container.

The CPU request represents a minimum amount of CPU that your container may consume, but if there is
no contention for CPU, it can use all available CPU on the node. If there is CPU contention on the node,
CPU requests provide a relative weight across all containers on the system for how much CPU time the
container may use.

On the node, CPU requests map to Kernel CFS shares to enforce this behavior.

NOTE

In OpenShift Online, CPU requests are set automatically based on the memory limit
specified. If no memory limit is specified, a CPU request of 60m is set.

apiVersion: v1
kind: Pod
spec:
 containers:
 - image: openshift/hello-openshift
 name: hello-openshift
 resources:
 requests:
 cpu: 100m 1
 memory: 200Mi 2
 limits:
 cpu: 200m 3
 memory: 400Mi 4

OpenShift Online 3 Developer Guide

200

14.4.2. Viewing Compute Resources

To view compute resources for a pod:

$ oc describe pod ruby-hello-world-tfjxt
Name: ruby-hello-world-tfjxt
Namespace: default
Image(s): ruby-hello-world
Node: /
Labels: run=ruby-hello-world
Status: Pending
Reason:
Message:
IP:
Replication Controllers: ruby-hello-world (1/1 replicas created)
Containers:
 ruby-hello-world:
 Container ID:
 Image ID:
 Image: ruby-hello-world
 QoS Tier:
 cpu: Burstable
 memory: Burstable
 Limits:
 cpu: 200m
 memory: 400Mi
 Requests:
 cpu: 100m
 memory: 200Mi
 State: Waiting
 Ready: False
 Restart Count: 0
 Environment Variables:

14.4.3. CPU Limits

Each container in a pod can specify the amount of CPU it is limited to use on a node. CPU limits control
the maximum amount of CPU that your container may use independent of contention on the node. If a
container attempts to exceed the specified limit, the system will throttle the container. This allows the
container to have a consistent level of service independent of the number of pods scheduled to the
node.

NOTE

In OpenShift Online, CPU limits are set automatically based on the memory limit
specified. If no memory limit is specified, a CPU limit of 1 core is set.

14.4.4. Memory Requests

By default, a container is able to consume as much memory on the node as possible. In order to improve
placement of pods in the cluster, specify the amount of memory required for a container to run. The
scheduler will then take available node memory capacity into account prior to binding your pod to a
node. A container is still able to consume as much memory on the node as possible even when specifying
a request.

CHAPTER 14. QUOTAS AND LIMIT RANGES

201

NOTE

In OpenShift Online, memory requests are set automatically based on the memory limit
specified. If no memory limit is specified, a memory request of 307Mi is assumed.

14.4.5. Memory Limits

If you specify a memory limit, you can constrain the amount of memory the container can use. For
example, if you specify a limit of 200Mi, a container will be limited to using that amount of memory on
the node. If the container exceeds the specified memory limit, it will be terminated and potentially
restarted dependent upon the container restart policy.

NOTE

In OpenShift Online, the memory request, CPU request, and CPU limit will automatically
be determined and set appropriately based off of the specified memory limit. If no
memory limit is specified, a memory limit of 512Mi is assumed.

14.4.6. Quality of Service Tiers

When created, a compute resource is classified with a quality of service (QoS). There are three tiers, and
each is based on the request and limit value specified for each resource:

Quality of Service Description

BestEffort Provided when a request and limit are not specified.

Burstable Provided when a request is specified that is less than an optionally specified
limit.

Guaranteed Provided when a limit is specified that is equal to an optionally specified
request.

If a container has requests and limits set that would result in a different quality of service for each
compute resource, it will be classified as Burstable.

The quality of service has different impacts on different resources, depending on whether the resource
is compressible or not. CPU is a compressible resource, whereas memory is an incompressible resource.

With CPU Resources:

A BestEffort CPU container is able to consume as much CPU as is available on a node but
runs with the lowest priority.

A Burstable CPU container is guaranteed to get the minimum amount of CPU requested,
but it may or may not get additional CPU time. Excess CPU resources are distributed based
on the amount requested across all containers on the node.

A Guaranteed CPU container is guaranteed to get the amount requested and no more, even
if there are additional CPU cycles available. This provides a consistent level of performance
independent of other activity on the node.

With Memory Resources:

OpenShift Online 3 Developer Guide

202

A BestEffort memory container is able to consume as much memory as is available on the
node, but there are no guarantees that the scheduler will place that container on a node with
enough memory to meet its needs. In addition, a BestEffort container has the greatest
chance of being killed if there is an out of memory event on the node.

A Burstable memory container is scheduled on the node to get the amount of memory
requested, but it may consume more. If there is an out of memory event on the node,
Burstable containers are killed after BestEffort containers when attempting to recover
memory.

A Guaranteed memory container gets the amount of memory requested, but no more. In
the event of an out of memory event, it will only be killed if there are no more BestEffort or
Burstable containers on the system.

14.4.7. Specifying Compute Resources via CLI

To specify compute resources via the CLI:

$ oc run ruby-hello-world --image=ruby-hello-world --limits=memory=400Mi

CHAPTER 14. QUOTAS AND LIMIT RANGES

203

CHAPTER 15. ROUTES

15.1. OVERVIEW

An OpenShift Online route exposes a service at a host name, like www.example.com, so that external
clients can reach it by name.

DNS resolution for a host name is handled separately from routing; your administrator may have
configured a cloud domain that will always correctly resolve to the OpenShift Online router, or if using an
unrelated host name you may need to modify its DNS records independently to resolve to the router.

15.2. CREATING ROUTES

You can create unsecured and secured routes using the web console or the CLI.

Using the web console, you can navigate to the Routes page, found under the Applications section of
the navigation.

Click Create Route to define and create a route in your project:

Figure 15.1. Creating a Route Using the Web Console

OpenShift Online 3 Developer Guide

204

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#services

Figure 15.1. Creating a Route Using the Web Console

Using the CLI, create an unsecured route. For OpenShift Online Starter, follow this example:

$ oc expose svc/frontend

For OpenShift Online Pro, follow this example, with --hostname being optional:

$ oc expose svc/frontend --hostname=www.example.com

The new route inherits the name from the service unless you specify one using the --name option.

CHAPTER 15. ROUTES

205

YAML Definition of the Unsecured Route Created Above

For information on configuring routes using the CLI, see Route Types.

Unsecured routes are the default configuration, and are therefore the simplest to set up. However,
secured routes offer security for connections to remain private. To create a secured HTTPS route
encrypted with the default certificate for OpenShift Online 3 you can use the create route command.

NOTE

TLS is the replacement of SSL for HTTPS and other encrypted protocols.

For OpenShift Online Starter:

$ oc create route edge --service=frontend

YAML Definition of the Secured Route Created Above

For OpenShift Online Pro, you can use your own certificate and key files from a CA. However, you can
still omit the certificate and key files if you want to use the default certificate. With OpenShift Online
Starter, you cannot specify a certificate and key.

For OpenShift Online Pro:

$ oc create route edge --service=frontend \
 --cert=example.crt \
 --key=example.key \
 --ca-cert=ca.crt \
 --hostname=www.example.com

YAML Definition of the Secured Route Created Above

apiVersion: v1
kind: Route
metadata:
 name: frontend
spec:
 to:
 kind: Service
 name: frontend

apiVersion: v1
kind: Route
metadata:
 name: frontend
spec:
 to:
 kind: Service
 name: frontend
 tls:
 termination: edge

apiVersion: v1

OpenShift Online 3 Developer Guide

206

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#route-types
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#secured-routes
https://en.wikipedia.org/wiki/Transport_Layer_Security

Currently, password protected key files are not supported. To remove a passphrase from a keyfile, you
can run:

openssl rsa -in <passwordProtectedKey.key> -out <new.key>

Further information on all types of TLS termination as well as path-based routing are available in the
Architecture section.

15.3. ALLOWING ROUTE ENDPOINTS TO CONTROL COOKIE NAMES

OpenShift Online provides sticky sessions, which enables stateful application traffic by ensuring all
traffic hits the same endpoint. However, if the endpoint pod terminates, whether through restart,
scaling, or a change in configuration, this statefulness can disappear.

OpenShift Online can use cookies to configure session persistence. The router selects an endpoint to
handle any user requests, and creates a cookie for the session. The cookie is passed back in the
response to the request and the user sends the cookie back with the next request in the session. The
cookie tells the router which endpoint is handling the session, ensuring that client requests use the
cookie so that they are routed to the same pod.

You can set a cookie name to overwrite the default, auto-generated one for the route. By deleting the
cookie it can force the next request to re-choose an endpoint. So, if a server was overloaded it tries to
remove the requests from the client and redistribute them.

1. Annotate the route with the desired cookie name:

$ oc annotate route <route_name> router.openshift.io/cookie_name="<your_cookie_name>"

For example, to specify my_cookie as your new cookie name:

$ oc annotate route my_route router.openshift.io/cookie_name="my_cookie"

kind: Route
metadata:
 name: frontend
spec:
 host: www.example.com
 to:
 kind: Service
 name: frontend
 tls:
 termination: edge
 key: |-
 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----
 certificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 caCertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

CHAPTER 15. ROUTES

207

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#secured-routes
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#path-based-routes
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#architecture-core-concepts-routes

2. Save the cookie, and access the route:

$ curl $my_route -k -c /tmp/my_cookie

15.4. RESTRICTIONS

Routes are restricted in OpenShift Online Starter, but are not restricted in OpenShift Online Pro.
Custom route hosts are permitted in OpenShift Online Pro. If using OpenShift Online Starter, the
following host template is enforced on all user routes:

<route-name>-<namespace>.<external-address>

For example:

<route-name>-<namespace>.44fs.preview.openshiftapps.com

To determine the external address, run:

$ oc get route/<route-name>

Custom certificates are permitted in OpenShift Online Pro. In OpenShift Online Starter, only
unencrypted routes, edge routes using the default certificate, and passthrough routes work. Edge and
re-encrypt routes with custom certificates do not work in OpenShift Online Starter.

These restrictions are enforced by the API. Attempts to create routes with custom hosts or certificates
will be rejected in OpenShift Online Starter. In OpenShift Online Pro, a default host is provided if the
user does not specify a custom host.

15.5. UPDATE DNS FOR CUSTOM ROUTES

Once your custom route is created in OpenShift Online Pro, you must update your DNS provider by
creating a canonical name (CNAME) record. Your CNAME record should point your custom domain to
the OpenShift Online router as the alias. The OpenShift Online router’s domain is different for every
cluster.

NOTE

CNAME records cannot be set for a naked domain (example.com). A subdomain must
be specified (www.example.com).

In OpenShift Online Pro, you can view a created custom route to see the CNAME record that you must
provide to your DNS provider.

OpenShift Online 3 Developer Guide

208

CHAPTER 15. ROUTES

209

CHAPTER 16. INTEGRATING EXTERNAL SERVICES

16.1. OVERVIEW

Many OpenShift Online applications use external resources, such as external databases, or an external
SaaS endpoint. These external resources can be modeled as native OpenShift Online services, so that
applications can work with them as they would any other internal service.

16.2. DEFINING A SERVICE FOR AN EXTERNAL DATABASE

One of the most common types of external services is an external database. To support an external
database, an application needs:

1. An endpoint to communicate with.

2. A set of credentials and coordinates, including:

A user name

A passphrase

A database name

The solution for integrating with an external database includes:

A Service object to represent the SaaS provider as an OpenShift Online service.

One or more Endpoints for the service.

Environment variables in the appropriate pods containing the credentials.

The following steps outline a scenario for integrating with an external MySQL database:

16.2.1. Step 1: Define a Service

You can define a service either by providing an IP address and endpoints, or by providing a Fully qualified
domain name (FQDN).

16.2.1.1. Using an IP address

1. Create an OpenShift Online service to represent your external database. This is similar to
creating an internal service; the difference is in the service’s Selector field.
Internal OpenShift Online services use the Selector field to associate pods with services using
labels. The EndpointsController system component synchronizes the endpoints for services
that specify selectors with the pods that match the selector. The service proxy and OpenShift
Online router load-balance requests to the service amongst the service’s endpoints.

Services that represent an external resource do not require associated pods. Instead, leave the
Selector field unset. This represents the external service, making the EndpointsController
ignore the service and allows you to specify endpoints manually:

 kind: "Service"
 apiVersion: "v1"
 metadata:

OpenShift Online 3 Developer Guide

210

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#labels
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#service-proxy
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#routers

1

2

1

2

3

4

Optional: The port on the backing pods to which the service forwards connections.

The selector field to leave blank.

2. Next, create the required endpoints for the service. This gives the service proxy and router the
location to send traffic directed to the service:

The name of the Service instance, as defined in the previous step.

Traffic to the service will be load-balanced between the supplied Endpoints if more than
one is supplied.

Endpoints IPs cannot be loopback (127.0.0.0/8), link-local (169.254.0.0/16), or link-local
multicast (224.0.0.0/24).

The port and name definition must match the port and name value in the service defined
in the previous step.

16.2.1.2. Using an External Domain Name

Using external domain names make it easier to manage an external service linkage, because you do not
have to worry about the external service’s IP addresses changing.

ExternalName services do not have selectors, or any defined ports or endpoints, therefore, you can use
an ExternalName service to direct traffic to an external service.

 name: "external-mysql-service"
 spec:
 ports:
 -
 name: "mysql"
 protocol: "TCP"
 port: 3306
 targetPort: 3306 1
 nodePort: 0
 selector: {} 2

 kind: "Endpoints"
 apiVersion: "v1"
 metadata:
 name: "external-mysql-service" 1
 subsets: 2
 -
 addresses:
 -
 ip: "10.0.0.0" 3
 ports:
 -
 port: 3306 4
 name: "mysql"

kind: "Service"
apiVersion: "v1"

CHAPTER 16. INTEGRATING EXTERNAL SERVICES

211

http://kubernetes.io/docs/user-guide/services/#services-without-selectors

1 The selector field to leave blank.

Using an external domain name service tells the system that the DNS name in the externalName field
(example.domain.name in the previous example) is the location of the resource that backs the service.
When a DNS request is made against the Kubernetes DNS server, it returns the externalName in a
CNAME record telling the client to look up the returned name to get the IP address.

16.2.2. Step 2: Consume a Service

Now that the service and endpoints are defined, give the appropriate pods access to the credentials to
use the service by setting environment variables in the appropriate containers:

metadata:
 name: "external-mysql-service"
spec:
 type: ExternalName
 externalName: example.domain.name
selector: {} 1

kind: "DeploymentConfig"
apiVersion: "v1"
metadata:
 name: "my-app-deployment"
spec: 1
 strategy:
 type: "Rolling"
 rollingParams:
 updatePeriodSeconds: 1 2
 intervalSeconds: 1 3
 timeoutSeconds: 120
 replicas: 2
 selector:
 name: "frontend"
 template:
 metadata:
 labels:
 name: "frontend"
 spec:
 containers:
 -
 name: "helloworld"
 image: "origin-ruby-sample"
 ports:
 -
 containerPort: 3306
 protocol: "TCP"
 env:
 -
 name: "MYSQL_USER"
 value: "${MYSQL_USER}" 4
 -
 name: "MYSQL_PASSWORD"
 value: "${MYSQL_PASSWORD}" 5

OpenShift Online 3 Developer Guide

212

1

2

3

4

5

6

Other fields on the DeploymentConfig are omitted

The time to wait between individual pod updates.

The time to wait between polling the deployment status after update.

The user name to use with the service.

The passphrase to use with the service.

The database name.

External Database Environment Variables

Using an external service in your application is similar to using an internal service. Your application will be
assigned environment variables for the service and the additional environment variables with the
credentials described in the previous step. For example, a MySQL container receives the following
environment variables:

EXTERNAL_MYSQL_SERVICE_SERVICE_HOST=<ip_address>

EXTERNAL_MYSQL_SERVICE_SERVICE_PORT=<port_number>

MYSQL_USERNAME=<mysql_username>

MYSQL_PASSWORD=<mysql_password>

MYSQL_DATABASE_NAME=<mysql_database>

The application is responsible for reading the coordinates and credentials for the service from the
environment and establishing a connection with the database via the service.

16.3. EXTERNAL SAAS PROVIDER

A common type of external service is an external SaaS endpoint. To support an external SaaS provider,
an application needs:

1. An endpoint to communicate with

2. A set of credentials, such as:

a. An API key

b. A user name

c. A passphrase

The following steps outline a scenario for integrating with an external SaaS provider:

16.3.1. Using an IP address and Endpoints

1. Create an OpenShift Online service to represent the external service. This is similar to creating

 -
 name: "MYSQL_DATABASE"
 value: "${MYSQL_DATABASE}" 6

CHAPTER 16. INTEGRATING EXTERNAL SERVICES

213

1

2

1

2

1. Create an OpenShift Online service to represent the external service. This is similar to creating
an internal service; however the difference is in the service’s Selector field.
Internal OpenShift Online services use the Selector field to associate pods with services using
labels. A system component called EndpointsController synchronizes the endpoints for
services that specify selectors with the pods that match the selector. The service proxy and
OpenShift Online router load-balance requests to the service amongst the service’s endpoints.

Services that represents an external resource do not require that pods be associated with it.
Instead, leave the Selector field unset. This makes the EndpointsController ignore the service
and allows you to specify endpoints manually:

Optional: The port on the backing pods to which the service forwards connections.

The selector field to leave blank.

2. Next, create endpoints for the service containing the information about where to send traffic
directed to the service proxy and the router:

The name of the Service instance.

Traffic to the service is load-balanced between the subsets supplied here.

3. Now that the service and endpoints are defined, give pods the credentials to use the service by
setting environment variables in the appropriate containers:

 kind: "Service"
 apiVersion: "v1"
 metadata:
 name: "example-external-service"
 spec:
 ports:
 -
 name: "mysql"
 protocol: "TCP"
 port: 3306
 targetPort: 3306 1
 nodePort: 0
 selector: {} 2

kind: "Endpoints"
apiVersion: "v1"
metadata:
 name: "example-external-service" 1
subsets: 2
- addresses:
 - ip: "10.10.1.1"
 ports:
 - name: "mysql"
 port: 3306

 kind: "DeploymentConfig"
 apiVersion: "v1"
 metadata:

OpenShift Online 3 Developer Guide

214

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#labels
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#service-proxy
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#routers

1

2

3

4

Other fields on the DeploymentConfig are omitted.

SAAS_API_KEY: The API key to use with the service.

SAAS_USERNAME: The user name to use with the service.

SAAS_PASSPHRASE: The passphrase to use with the service.

These variables get added to the containers as environment variables. Using environment
variables allows service-to-service communication and it may or may not require additional
parameters such as API keys, user name and password authentication, or certificates.

External SaaS Provider Environment Variables

Similarly, when using an internal service, your application is assigned environment variables for the
service and the additional environment variables with the credentials described in the previous steps. In
the previous example, the container receives the following environment variables:

EXAMPLE_EXTERNAL_SERVICE_SERVICE_HOST=<ip_address>

EXAMPLE_EXTERNAL_SERVICE_SERVICE_PORT=<port_number>

 name: "my-app-deployment"
 spec: 1
 strategy:
 type: "Rolling"
 rollingParams:
 timeoutSeconds: 120
 replicas: 1
 selector:
 name: "frontend"
 template:
 metadata:
 labels:
 name: "frontend"
 spec:
 containers:
 -
 name: "helloworld"
 image: "openshift/openshift/origin-ruby-sample"
 ports:
 -
 containerPort: 3306
 protocol: "TCP"
 env:
 -
 name: "SAAS_API_KEY" 2
 value: "<SaaS service API key>"
 -
 name: "SAAS_USERNAME" 3
 value: "<SaaS service user>"
 -
 name: "SAAS_PASSPHRASE" 4
 value: "<SaaS service passphrase>"

CHAPTER 16. INTEGRATING EXTERNAL SERVICES

215

1

SAAS_API_KEY=<saas_api_key>

SAAS_USERNAME=<saas_username>

SAAS_PASSPHRASE=<saas_passphrase>

The application reads the coordinates and credentials for the service from the environment and
establishes a connection with the service.

16.3.2. Using an External Domain Name

ExternalName services do not have selectors, or any defined ports or endpoints. You can use an
ExternalName service to assign traffic to an external service outside the cluster.

The selector field to leave blank.

Using an ExternalName service maps the service to the value of the externalName field
(example.domain.name in the previous example), by automatically injecting a CNAME record, mapping
the service name directly to an outside DNS address, and bypassing the need for endpoint records.

 kind: "Service"
 apiVersion: "v1"
 metadata:
 name: "external-mysql-service"
 spec:
 type: ExternalName
 externalName: example.domain.name
 selector: {} 1

OpenShift Online 3 Developer Guide

216

1

2

3

4

5

CHAPTER 17. SECRETS

17.1. USING SECRETS

This topic discusses important properties of secrets and provides an overview on how developers can
use them.

The Secret object type provides a mechanism to hold sensitive information such as passwords,
OpenShift Online client configuration files, dockercfg files, private source repository credentials, and so
on. Secrets decouple sensitive content from the pods. You can mount secrets into containers using a
volume plug-in or the system can use secrets to perform actions on behalf of a pod.

YAML Secret Object Definition

Indicates the structure of the secret’s key names and values .

The allowable format for the keys in the data field must meet the guidelines in the
DNS_SUBDOMAIN value in the Kubernetes identifiers glossary.

The value associated with keys in the the data map must be base64 encoded.

The value associated with keys in the the stringData map is made up of plain text strings.

Entries in the stringData map are converted to base64 and the entry will then be moved to the
data map automatically. This field is write-only; the value will only be returned via the data field.

1. Create the secret from your local .docker/config.json file:

$ oc create secret generic dockerhub \
 --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
 --type=kubernetes.io/dockerconfigjson

This command generates a JSON specification of the secret named dockerhub and
creates the object.

YAML Opaque Secret Object Definition

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
 namespace: my-namespace
type: Opaque 1
data: 2
 username: dmFsdWUtMQ0K 3
 password: dmFsdWUtMg0KDQo=
stringData: 4
 hostname: myapp.mydomain.com 5

apiVersion: v1
kind: Secret
metadata:
 name: mysecret

CHAPTER 17. SECRETS

217

https://github.com/kubernetes/kubernetes/blob/v1.0.0/docs/design/identifiers.md

1

1

2

Specifies an opaque secret.

Docker Configuration JSON File Secret Object Definition

Specifies that the secret is using a Docker configuration JSON file.

The output of a base64-encoded the Docker configuration JSON file

17.1.1. Properties of Secrets

Key properties include:

Secret data can be referenced independently from its definition.

Secret data volumes are backed by temporary file-storage facilities (tmpfs) and never come to
rest on a node.

Secret data can be shared within a namespace.

17.1.2. Creating Secrets

You must create a secret before creating the pods that depend on that secret.

When creating secrets:

Create a secret object with secret data.

Update the pod’s service account to allow the reference to the secret.

Create a pod, which consumes the secret as an environment variable or as a file (using a secret
volume).

You can use the create command to create a secret object from a JSON or YAML file:

$ oc create -f <filename>

type: Opaque 1
data:
 username: dXNlci1uYW1l
 password: cGFzc3dvcmQ=

apiVersion: v1
kind: Secret
metadata:
 name: aregistrykey
 namespace: myapps
type: kubernetes.io/dockerconfigjson 1
data:

.dockerconfigjson:bm5ubm5ubm5ubm5ubm5ubm5ubm5ubmdnZ2dnZ2dnZ2dnZ2dnZ2dnZ2cgYXV0aC
BrZXlzCg== 2

OpenShift Online 3 Developer Guide

218

17.1.3. Types of Secrets

The value in the type field indicates the structure of the secret’s key names and values. The type can be
used to enforce the presence of user names and keys in the secret object. If you do not want validation,
use the opaque type, which is the default.

Specify one of the following types to trigger minimal server-side validation to ensure the presence of
specific key names in the secret data:

kubernetes.io/service-account-token. service account token.

kubernetes.io/dockercfg. Uses the .dockercfg file for required Docker credentials.

kubernetes.io/dockerconfigjson. Uses the .docker/config.json file for required Docker
credentials.

kubernetes.io/basic-auth. Use with Basic Authentication.

kubernetes.io/ssh-auth. Use with SSH Key Authentication.

kubernetes.io/tls. Use with TLS certificate authorities

Specify type= Opaque if you do not want validation, which means the secret does not claim to conform
to any convention for key names or values. An opaque secret, allows for unstructured key:value pairs
that can contain arbitrary values.

NOTE

You can specify other arbitrary types, such as example.com/my-secret-type. These
types are not enforced server-side, but indicate that the creator of the secret intended to
conform to the key/value requirements of that type.

For examples of differet secret types, see the code samples in Using Secrets.

17.1.4. Updating Secrets

When you modify the value of a secret, the value (used by an already running pod) will not dynamically
change. To change a secret, you must delete the original pod and create a new pod (perhaps with an
identical PodSpec).

Updating a secret follows the same workflow as deploying a new container image. You can use the
kubectl rolling-update command.

The resourceVersion value in a secret is not specified when it is referenced. Therefore, if a secret is
updated at the same time as pods are starting, then the version of the secret will be used for the pod
will not be defined.

NOTE

Currently, it is not possible to check the resource version of a secret object that was used
when a pod was created. It is planned that pods will report this information, so that a
controller could restart ones using a old resourceVersion. In the interim, do not update
the data of existing secrets, but create new ones with distinct names.

17.2. SECRETS IN VOLUMES AND ENVIRONMENT VARIABLES

CHAPTER 17. SECRETS

219

See examples of YAML files with secret data.

After you create a secret , you can:

1. Create the pod to reference your secret:

$ oc create -f <your_yaml_file>.yaml

2. Get the logs:

$ oc logs secret-example-pod

3. Delete the pod:

$ oc delete pod secret-example-pod

17.3. IMAGE PULL SECRETS

See Using Image Pull Secrets for more information.

17.4. SOURCE CLONE SECRETS

See Build Inputs for more information about using source clone secrets during a build.

17.5. SERVICE SERVING CERTIFICATE SECRETS

Service serving certificate secrets are intended to support complex middleware applications that need
out-of-the-box certificates. It has the same settings as the server certificates generated by the
administrator tooling for nodes and masters.

To secure communication to your service, have the cluster generate a signed serving certificate/key pair
into a secret in your namespace. To do this, set the service.alpha.openshift.io/serving-cert-secret-
name annotation on your service with the value set to the name you want to use for your secret. Then,
your PodSpec can mount that secret. When it is available, your pod will run. The certificate will be good
for the internal service DNS name, <service.name>.<service.namespace>.svc.

The certificate and key are in PEM format, stored in tls.crt and tls.key respectively. The certificate/key
pair is automatically replaced when it gets close to expiration. View the expiration date in the
service.alpha.openshift.io/expiry annotation on the secret, which is in RFC3339 format.

Other pods can trust cluster-created certificates (which are only signed for internal DNS names), by
using the CA bundle in the /var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt file that is
automatically mounted in their pod.

The signature algorithm for this feature is x509.SHA256WithRSA. To manually rotate, delete the
generated secret. A new certificate is created.

17.6. RESTRICTIONS

To use a secret, a pod needs to reference the secret. A secret can be used with a pod in three ways:

to populate environment variables for containers.

OpenShift Online 3 Developer Guide

220

1

2

3

4

as files in a volume mounted on one or more of its containers.

by kubelet when pulling images for the pod.

Volume type secrets write data into the container as a file using the volume mechanism.
imagePullSecrets use service accounts for the automatic injection of the secret into all pods in a
namespaces.

When a template contains a secret definition, the only way for the template to use the provided secret is
to ensure that the secret volume sources are validated and that the specified object reference actually
points to an object of type Secret. Therefore, a secret needs to be created before any pods that
depend on it. The most effective way to ensure this is to have it get injected automatically through the
use of a service account.

Secret API objects reside in a namespace. They can only be referenced by pods in that same
namespace.

Individual secrets are limited to 1MB in size. This is to discourage the creation of large secrets that would
exhaust apiserver and kubelet memory. However, creation of a number of smaller secrets could also
exhaust memory.

17.6.1. Secret Data Keys

Secret keys must be in a DNS subdomain.

17.7. EXAMPLES

Example 17.1. YAML Secret That Will Create Four Files

File contains decoded values.

File contains decoded values.

File contains the provided string.

File contains the provided data.

Example 17.2. YAML of a Pod Populating Files in a Volume with Secret Data

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
data:
 username: dmFsdWUtMQ0K 1
 password: dmFsdWUtMQ0KDQo= 2
stringData:
 hostname: myapp.mydomain.com 3
 secret.properties: |- 4
 property1=valueA
 property2=valueB

CHAPTER 17. SECRETS

221

Example 17.3. YAML of a Pod Populating Environment Variables with Secret Data

Example 17.4. YAML of a Build Config Populating Environment Variables with Secret Data

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 containers:
 - name: secret-test-container
 image: busybox
 command: ["/bin/sh", "-c", "cat /etc/secret-volume/*"]
 volumeMounts:
 # name must match the volume name below
 - name: secret-volume
 mountPath: /etc/secret-volume
 readOnly: true
 volumes:
 - name: secret-volume
 secret:
 secretName: test-secret
 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 containers:
 - name: secret-test-container
 image: busybox
 command: ["/bin/sh", "-c", "export"]
 env:
 - name: TEST_SECRET_USERNAME_ENV_VAR
 valueFrom:
 secretKeyRef:
 name: test-secret
 key: username
 restartPolicy: Never

apiVersion: v1
kind: BuildConfig
metadata:
 name: secret-example-bc
spec:
 strategy:
 sourceStrategy:
 env:
 - name: TEST_SECRET_USERNAME_ENV_VAR
 valueFrom:

OpenShift Online 3 Developer Guide

222

17.8. TROUBLESHOOTING

If a service certificate generations fails with (service’s service.alpha.openshift.io/serving-cert-
generation-error annotation contains):

secret/ssl-key references serviceUID 62ad25ca-d703-11e6-9d6f-0e9c0057b608, which does not
match 77b6dd80-d716-11e6-9d6f-0e9c0057b60

The service that generated the certificate no longer exists, or has a different serviceUID. You must
force certificates regeneration by removing the old secret, and clearing the following annotations on the
service service.alpha.openshift.io/serving-cert-generation-error,
service.alpha.openshift.io/serving-cert-generation-error-num:

$ oc delete secret <secret_name>
$ oc annotate service <service_name> service.alpha.openshift.io/serving-cert-generation-error-
$ oc annotate service <service_name> service.alpha.openshift.io/serving-cert-generation-error-num-

NOTE

The command removing annotation has a - after the annotation name to be removed.

 secretKeyRef:
 name: test-secret
 key: username

CHAPTER 17. SECRETS

223

1

CHAPTER 18. CONFIGMAPS

18.1. OVERVIEW

Many applications require configuration using some combination of configuration files, command line
arguments, and environment variables. These configuration artifacts should be decoupled from image
content in order to keep containerized applications portable.

The ConfigMap object provides mechanisms to inject containers with configuration data while keeping
containers agnostic of OpenShift Online. A ConfigMap can be used to store fine-grained information
like individual properties or coarse-grained information like entire configuration files or JSON blobs.

The ConfigMap API object holds key-value pairs of configuration data that can be consumed in pods or
used to store configuration data for system components such as controllers. ConfigMap is similar to
secrets, but designed to more conveniently support working with strings that do not contain sensitive
information.

For example:

ConfigMap Object Definition

Contains the configuration data.

Configuration data can be consumed in pods in a variety of ways. A ConfigMap can be used to:

1. Populate the value of environment variables.

2. Set command-line arguments in a container.

3. Populate configuration files in a volume.

Both users and system components may store configuration data in a ConfigMap.

18.2. CREATING CONFIGMAPS

You can use the following command to create a ConfigMap easily from directories, specific files, or
literal values:

$ oc create configmap <configmap_name> [options]

kind: ConfigMap
apiVersion: v1
metadata:
 creationTimestamp: 2016-02-18T19:14:38Z
 name: example-config
 namespace: default
data: 1
 example.property.1: hello
 example.property.2: world
 example.property.file: |-
 property.1=value-1
 property.2=value-2
 property.3=value-3

OpenShift Online 3 Developer Guide

224

The following sections cover the different ways you can create a ConfigMap.

18.2.1. Creating from Directories

Consider a directory with some files that already contain the data with which you want to populate a
ConfigMap:

$ ls example-files
game.properties
ui.properties

$ cat example-files/game.properties
enemies=aliens
lives=3
enemies.cheat=true
enemies.cheat.level=noGoodRotten
secret.code.passphrase=UUDDLRLRBABAS
secret.code.allowed=true
secret.code.lives=30

$ cat example-files/ui.properties
color.good=purple
color.bad=yellow
allow.textmode=true
how.nice.to.look=fairlyNice

You can use the following command to create a ConfigMap holding the content of each file in this
directory:

$ oc create configmap game-config \
 --from-file=example-files/

When the --from-file option points to a directory, each file directly in that directory is used to populate a
key in the ConfigMap, where the name of the key is the file name, and the value of the key is the
content of the file.

For example, the above command creates the following ConfigMap:

$ oc describe configmaps game-config
Name: game-config
Namespace: default
Labels: <none>
Annotations: <none>

Data

game.properties: 121 bytes
ui.properties: 83 bytes

You can see the two keys in the map are created from the file names in the directory specified in the
command. Because the content of those keys may be large, the output of oc describe only shows the
names of the keys and their sizes.

If you want to see the values of the keys, you can oc get the object with the -o option:

CHAPTER 18. CONFIGMAPS

225

$ oc get configmaps game-config -o yaml

apiVersion: v1
data:
 game.properties: |-
 enemies=aliens
 lives=3
 enemies.cheat=true
 enemies.cheat.level=noGoodRotten
 secret.code.passphrase=UUDDLRLRBABAS
 secret.code.allowed=true
 secret.code.lives=30
 ui.properties: |
 color.good=purple
 color.bad=yellow
 allow.textmode=true
 how.nice.to.look=fairlyNice
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T18:34:05Z
 name: game-config
 namespace: default
 resourceVersion: "407"-
 selflink: /api/v1/namespaces/default/configmaps/game-config
 uid: 30944725-d66e-11e5-8cd0-68f728db1985

18.2.2. Creating from Files

You can also pass the --from-file option with a specific file, and pass it multiple times to the CLI. The
following yields equivalent results to the Creating from Directories example:

1. Create the ConfigMap specifying a specific file:

$ oc create configmap game-config-2 \
 --from-file=example-files/game.properties \
 --from-file=example-files/ui.properties

2. Verify the results:

$ oc get configmaps game-config-2 -o yaml

apiVersion: v1
data:
 game.properties: |-
 enemies=aliens
 lives=3
 enemies.cheat=true
 enemies.cheat.level=noGoodRotten
 secret.code.passphrase=UUDDLRLRBABAS
 secret.code.allowed=true
 secret.code.lives=30
 ui.properties: |
 color.good=purple
 color.bad=yellow
 allow.textmode=true

OpenShift Online 3 Developer Guide

226

 how.nice.to.look=fairlyNice
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T18:52:05Z
 name: game-config-2
 namespace: default
 resourceVersion: "516"
 selflink: /api/v1/namespaces/default/configmaps/game-config-2
 uid: b4952dc3-d670-11e5-8cd0-68f728db1985

You can also set the key to use for an individual file with the --from-file option by passing an expression
of key=value. For example:

1. Create the ConfigMap specifying a key-value pair:

$ oc create configmap game-config-3 \
 --from-file=game-special-key=example-files/game.properties

2. Verify the results:

$ oc get configmaps game-config-3 -o yaml

apiVersion: v1
data:
 game-special-key: |-
 enemies=aliens
 lives=3
 enemies.cheat=true
 enemies.cheat.level=noGoodRotten
 secret.code.passphrase=UUDDLRLRBABAS
 secret.code.allowed=true
 secret.code.lives=30
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T18:54:22Z
 name: game-config-3
 namespace: default
 resourceVersion: "530"
 selflink: /api/v1/namespaces/default/configmaps/game-config-3
 uid: 05f8da22-d671-11e5-8cd0-68f728db1985

18.2.3. Creating from Literal Values

You can also supply literal values for a ConfigMap. The --from-literal option takes a key=value syntax
that allows literal values to be supplied directly on the command line:

1. Create the ConfigMap specifying a literal value:

$ oc create configmap special-config \
 --from-literal=special.how=very \
 --from-literal=special.type=charm

2. Verify the results:

CHAPTER 18. CONFIGMAPS

227

1

2 3

1

$ oc get configmaps special-config -o yaml

apiVersion: v1
data:
 special.how: very
 special.type: charm
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T19:14:38Z
 name: special-config
 namespace: default
 resourceVersion: "651"
 selflink: /api/v1/namespaces/default/configmaps/special-config
 uid: dadce046-d673-11e5-8cd0-68f728db1985

18.3. USE CASES: CONSUMING CONFIGMAPS IN PODS

The following sections describe some uses cases when consuming ConfigMap objects in pods.

18.3.1. Consuming in Environment Variables

ConfigMaps can be used to populate individual environment variables or can populate environment
variables from all keys that form valid environment variable names. As an example, consider the following
ConfigMaps:

ConfigMap with two environment variables

Name of the ConfigMap.

Environment variables to inject.

ConfigMap with one environment variable

Name of the ConfigMap.

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config 1
 namespace: default
data:
 special.how: very 2
 special.type: charm 3

apiVersion: v1
kind: ConfigMap
metadata:
 name: env-config 1
 namespace: default
data:
 log_level: INFO 2

OpenShift Online 3 Developer Guide

228

2

1

2 4

3 5

6

7

8

Environment variable to inject.

You can consume the keys of this ConfigMap in a pod using configMapKeyRef sections:

Sample pod specification configured to inject specific environment variables

Stanza to pull the specified environment variables from a ConfigMap.

Name of the ConfigMap to pull specific environment variables from.

Environment variable to pull from the ConfigMap.

Makes the environment variable optional. As optional, the pod will be started even if the specified
ConfigMap and keys do not exist.

Stanza to pull all environment variables from a ConfigMap.

Name of the ConfigMap to pull all environment variables.

When this pod is run, its output will include the following lines:

SPECIAL_LEVEL_KEY=very
log_level=INFO

18.3.2. Setting Command-line Arguments

A ConfigMap can also be used to set the value of the command or arguments in a container. This is

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env: 1
 - name: SPECIAL_LEVEL_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config 2
 key: special.how 3
 - name: SPECIAL_TYPE_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config 4
 key: special.type 5
 optional: true 6
 envFrom: 7
 - configMapRef:
 name: env-config 8
 restartPolicy: Never

CHAPTER 18. CONFIGMAPS

229

A ConfigMap can also be used to set the value of the command or arguments in a container. This is
accomplished using the Kubernetes substitution syntax $(VAR_NAME). Consider the following
ConfigMaps:

To inject values into the command line, you must consume the keys you want to use as environment
variables, as in the Consuming in Environment Variables use case. Then you can refer to them in a
container’s command using the $(VAR_NAME) syntax.

Sample pod specification configured to inject specific environment variables

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "echo $(SPECIAL_LEVEL_KEY) $(SPECIAL_TYPE_KEY)"]
 env:
 - name: SPECIAL_LEVEL_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: special.how
 - name: SPECIAL_TYPE_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: special.type
 restartPolicy: Never

When this pod is run, the output from the test-container container will be:

very charm

18.3.3. Consuming in Volumes

A ConfigMap can also be consumed in volumes. Returning again to the following example ConfigMap:

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config
 namespace: default
data:
 special.how: very
 special.type: charm

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config
 namespace: default

OpenShift Online 3 Developer Guide

230

You have a couple different options for consuming this ConfigMap in a volume. The most basic way is to
populate the volume with files where the key is the file name and the content of the file is the value of
the key:

When this pod is run, the output will be:

very

You can also control the paths within the volume where ConfigMap keys are projected:

When this pod is run, the output will be:

data:
 special.how: very
 special.type: charm

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "cat", "/etc/config/special.how"]
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 volumes:
 - name: config-volume
 configMap:
 name: special-config
 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "cat", "/etc/config/path/to/special-key"]
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 volumes:
 - name: config-volume
 configMap:
 name: special-config
 items:
 - key: special.how
 path: path/to/special-key
 restartPolicy: Never

CHAPTER 18. CONFIGMAPS

231

very

18.4. EXAMPLE: CONFIGURING REDIS

For a real-world example, you can configure Redis using a ConfigMap. To inject Redis with the
recommended configuration for using Redis as a cache, the Redis configuration file should contain the
following:

maxmemory 2mb
maxmemory-policy allkeys-lru

If your configuration file is located at example-files/redis/redis-config, create a ConfigMap with it:

1. Create the ConfigMap specifying the configuration file:

$ oc create configmap example-redis-config \
 --from-file=example-files/redis/redis-config

2. Verify the results:

$ oc get configmap example-redis-config -o yaml

apiVersion: v1
data:
 redis-config: |
 maxmemory 2mb
 maxmemory-policy allkeys-lru
kind: ConfigMap
metadata:
 creationTimestamp: 2016-04-06T05:53:07Z
 name: example-redis-config
 namespace: default
 resourceVersion: "2985"
 selflink: /api/v1/namespaces/default/configmaps/example-redis-config
 uid: d65739c1-fbbb-11e5-8a72-68f728db1985

Now, create a pod that uses this ConfigMap:

1. Create a pod definition like the following and save it to a file, for example redis-pod.yaml:

apiVersion: v1
kind: Pod
metadata:
 name: redis
spec:
 containers:
 - name: redis
 image: kubernetes/redis:v1
 env:
 - name: MASTER
 value: "true"
 ports:
 - containerPort: 6379
 resources:

OpenShift Online 3 Developer Guide

232

2. Create the pod:

$ oc create -f redis-pod.yaml

The newly-created pod has a ConfigMap volume that places the redis-config key of the example-
redis-config ConfigMap into a file called redis.conf. This volume is mounted into the /redis-master
directory in the Redis container, placing our configuration file at /redis-master/redis.conf, which is
where the image looks for the Redis configuration file for the master.

If you oc exec into this pod and run the redis-cli tool, you can check that the configuration was applied
correctly:

$ oc exec -it redis redis-cli
127.0.0.1:6379> CONFIG GET maxmemory
1) "maxmemory"
2) "2097152"
127.0.0.1:6379> CONFIG GET maxmemory-policy
1) "maxmemory-policy"
2) "allkeys-lru"

18.5. RESTRICTIONS

A ConfigMap must be created before they are consumed in pods. Controllers can be written to tolerate
missing configuration data; consult individual components configured via ConfigMap on a case-by-case
basis.

ConfigMap objects reside in a project. They can only be referenced by pods in the same project.

The Kubelet only supports use of a ConfigMap for pods it gets from the API server. This includes any
pods created using the CLI, or indirectly from a replication controller. It does not include pods created
using the OpenShift Online node’s --manifest-url flag, its --config flag, or its REST API (these are not
common ways to create pods).

 limits:
 cpu: "0.1"
 volumeMounts:
 - mountPath: /redis-master-data
 name: data
 - mountPath: /redis-master
 name: config
 volumes:
 - name: data
 emptyDir: {}
 - name: config
 configMap:
 name: example-redis-config
 items:
 - key: redis-config
 path: redis.conf

CHAPTER 18. CONFIGMAPS

233

CHAPTER 19. POD AUTOSCALING

19.1. OVERVIEW

A horizontal pod autoscaler, defined by a HorizontalPodAutoscaler object, specifies how the system
should automatically increase or decrease the scale of a replication controller or deployment
configuration, based on metrics collected from the pods that belong to that replication controller or
deployment configuration.

19.2. SUPPORTED METRICS

The following metrics are supported by horizontal pod autoscalers:

Table 19.1. Metrics

Metric Description API version

CPU utilization Percentage of the requested CPU autoscaling/v1,
autoscaling/v2beta1

Memory utilization Percentage of the requested memory. autoscaling/v2beta1

19.3. AUTOSCALING

You can create a horizontal pod autoscaler with the oc autoscale command and specify the minimum
and maximum number of pods you want to run, as well as the CPU utilization or memory utilization your
pods should target.

IMPORTANT

Autoscaling for Memory Utilization is a Technology Preview feature only.

After a horizontal pod autoscaler is created, it begins attempting to query Heapster for metrics on the
pods. It may take one to two minutes before Heapster obtains the initial metrics.

After metrics are available in Heapster, the horizontal pod autoscaler computes the ratio of the current
metric utilization with the desired metric utilization, and scales up or down accordingly. The scaling will
occur at a regular interval, but it may take one to two minutes before metrics make their way into
Heapster.

For replication controllers, this scaling corresponds directly to the replicas of the replication controller.
For deployment configurations, scaling corresponds directly to the replica count of the deployment
configuration. Note that autoscaling applies only to the latest deployment in the Complete phase.

19.4. AUTOSCALING FOR CPU UTILIZATION

Use the oc autoscale command and specify at least the maximum number of pods you want to run at
any given time. You can optionally specify the minimum number of pods and the average CPU utilization
your pods should target, otherwise those are given default values from the OpenShift Online server.

For example:

OpenShift Online 3 Developer Guide

234

1

2

3

4

5

6

7

$ oc autoscale dc/frontend --min 1 --max 10 --cpu-percent=80
deploymentconfig "frontend" autoscaled

The above example creates a horizontal pod autoscaler with the following definition when using the
autoscaling/v1 version of the horizontal pod autoscaler:

Example 19.1. Horizontal Pod Autoscaler Object Definition

The name of this horizontal pod autoscaler object

The kind of object to scale

The name of the object to scale

The API version of the object to scale

The minimum number of replicas to which to scale down

The maximum number of replicas to which to scale up

The percentage of the requested CPU that each pod should ideally be using

Alternatively, the oc autoscale command creates a horizontal pod autoscaler with the following
definition when using the v2beta1 version of the horizontal pod autoscaler:

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 name: frontend 1
spec:
 scaleTargetRef:
 kind: DeploymentConfig 2
 name: frontend 3
 apiVersion: apps/v1 4
 subresource: scale
 minReplicas: 1 5
 maxReplicas: 10 6
 targetCPUUtilizationPercentage: 80 7

apiVersion: autoscaling/v2beta1
kind: HorizontalPodAutoscaler
metadata:
 name: hpa-resource-metrics-cpu 1
spec:
 scaleTargetRef:
 apiVersion: apps/v1 2
 kind: ReplicationController 3
 name: hello-hpa-cpu 4
 minReplicas: 1 5
 maxReplicas: 10 6
 metrics:

CHAPTER 19. POD AUTOSCALING

235

1

2

3

4

5

6

7

The name of this horizontal pod autoscaler object

The API version of the object to scale

The kind of object to scale

The name of the object to scale

The minimum number of replicas to which to scale down

The maximum number of replicas to which to scale up

The average percentage of the requested CPU that each pod should be using

19.5. AUTOSCALING FOR MEMORY UTILIZATION

IMPORTANT

Autoscaling for Memory Utilization is a Technology Preview feature only.

Unlike CPU-based autoscaling, memory-based autoscaling requires specifying the autoscaler using
YAML instead of using the oc autoscale command. Optionally, you can specify the minimum number of
pods and the average memory utilization your pods should target as well, otherwise those are given
default values from the OpenShift Online server.

1. Memory-based autoscaling is only available with the v2beta1 version of the autoscaling API.
Enable memory-based autoscaling by adding the following to your cluster’s master-
config.yaml file:

2. Place the following in a file, such as hpa.yaml:

 - type: Resource
 resource:
 name: cpu
 targetAverageUtilization: 50 7

...
apiServerArguments:
 runtime-config:
 - apis/autoscaling/v2beta1=true
...

apiVersion: autoscaling/v2beta1
kind: HorizontalPodAutoscaler
metadata:
 name: hpa-resource-metrics-memory 1
spec:
 scaleTargetRef:
 apiVersion: apps/v1 2
 kind: ReplicationController 3
 name: hello-hpa-memory 4
 minReplicas: 1 5
 maxReplicas: 10 6

OpenShift Online 3 Developer Guide

236

1

2

3

4

5

6

7

The name of this horizontal pod autoscaler object

The API version of the object to scale

The kind of object to scale

The name of the object to scale

The minimum number of replicas to which to scale down

The maximum number of replicas to which to scale up

The average percentage of the requested memory that each pod should be using

3. Then, create the autoscaler from the above file:

$ oc create -f hpa.yaml

IMPORTANT

For memory-based autoscaling to work, memory usage must increase and decrease
proportionally to the replica count. On average:

An increase in replica count must lead to an overall decrease in memory (working
set) usage per-pod.

A decrease in replica count must lead to an overall increase in per-pod memory
usage.

Use the OpenShift web console to check the memory behavior of your application and
ensure that your application meets these requirements before using memory-based
autoscaling.

19.6. VIEWING A HORIZONTAL POD AUTOSCALER

To view the status of a horizontal pod autoscaler:

Use the oc get command to view information on the CPU utilization and pod limits:

$ oc get hpa/hpa-resource-metrics-cpu
NAME REFERENCE TARGET CURRENT MINPODS
MAXPODS AGE
hpa-resource-metrics-cpu DeploymentConfig/default/frontend/scale 80% 79% 1
10 8d

The output includes the following:

Target. The targeted average CPU utilization across all pods controlled by the deployment

 metrics:
 - type: Resource
 resource:
 name: memory
 targetAverageUtilization: 50 7

CHAPTER 19. POD AUTOSCALING

237

1

2

3

4

5

Target. The targeted average CPU utilization across all pods controlled by the deployment
configuration.

Current. The current CPU utilization across all pods controlled by the deployment
configuration.

Minpods/Maxpods. The minimum and maximum number of replicas that can be set by the
autoscaler.

Use the oc describe command for detailed information on the horizontal pod autoscaler object.

$ oc describe hpa/hpa-resource-metrics-cpu
Name: hpa-resource-metrics-cpu
Namespace: default
Labels: <none>
CreationTimestamp: Mon, 26 Oct 2015 21:13:47 -0400
Reference: DeploymentConfig/default/frontend/scale
Target CPU utilization: 80% 1
Current CPU utilization: 79% 2
Min replicas: 1 3
Max replicas: 4 4
ReplicationController pods: 1 current / 1 desired
Conditions: 5
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale True ReadyForNewScale the last scale time was sufficiently old
as to warrant a new scale
 ScalingActive True ValidMetricFound the HPA was able to successfully calculate
a replica count from pods metric http_requests
 ScalingLimited False DesiredWithinRange the desired replica count is within the
acceptable range
Events:

The average percentage of the requested memory that each pod should be using.

The current CPU utilization across all pods controlled by the deployment configuration.

The minimum number of replicas to scale down to.

The maximum number of replicas to scale up to.

If the object used the v2alpha1 API, status conditions are displayed.

19.6.1. Viewing Horizontal Pod Autoscaler Status Conditions

You can use the status conditions set to determine whether or not the horizontal pod autoscaler is able
to scale and whether or not it is currently restricted in any way.

The horizontal pod autoscaler status conditions are available with the v2beta1 version of the
autoscaling API:

kubernetesMasterConfig:
 ...
 apiServerArguments:

OpenShift Online 3 Developer Guide

238

1

The following status conditions are set:

AbleToScale indicates whether the horizontal pod autoscaler is able to fetch and update
scales, and whether any backoff conditions are preventing scaling.

A True condition indicates scaling is allowed.

A False condition indicates scaling is not allowed for the reason specified.

ScalingActive indicates whether the horizontal pod autoscaler is enabled (the replica count of
the target is not zero) and is able to calculate desired scales.

A True condition indicates metrics is working properly.

A False condition generally indicates a problem with fetching metrics.

ScalingLimited indicates that autoscaling is not allowed because a maximum or minimum
replica count was reached.

A True condition indicates that you need to raise or lower the minimum or maximum replica
count in order to scale.

A False condition indicates that the requested scaling is allowed.

If you need to add or edit this line, restart the OpenShift Online services:

To see the conditions affecting a horizontal pod autoscaler, use oc describe hpa. Conditions appear in
the status.conditions field:

$ oc describe hpa cm-test
Name: cm-test
Namespace: prom
Labels: <none>
Annotations: <none>
CreationTimestamp: Fri, 16 Jun 2017 18:09:22 +0000
Reference: ReplicationController/cm-test
Metrics: (current / target)
 "http_requests" on pods: 66m / 500m
Min replicas: 1
Max replicas: 4
ReplicationController pods: 1 current / 1 desired
Conditions: 1
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale True ReadyForNewScale the last scale time was sufficiently old as to warrant
a new scale
 ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica
count from pods metric http_request
 ScalingLimited False DesiredWithinRange the desired replica count is within the acceptable
range
Events:

The horizontal pod autoscaler status messages.

 runtime-config:
 - apis/autoscaling/v2beta1=true

CHAPTER 19. POD AUTOSCALING

239

The AbleToScale condition indicates whether HPA is able to fetch and update scales, as
well as whether any backoff-related conditions would prevent scaling.

The ScalingActive condition indicates whether the HPA is enabled (for example, the
replica count of the target is not zero) and is able to calculate desired scales. A`False`
status generally indicates problems with fetching metrics.

The ScalingLimited condition indicates that the desired scale was capped by the
maximum or minimum of the horizontal pod autoscaler. A True status generally indicates
that you might need to raise or lower the minimum or maximum replica count constraints
on your horizontal pod autoscaler.

The following is an example of a pod that is unable to scale:

Conditions:
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale False FailedGetScale the HPA controller was unable to get the target's current
scale: replicationcontrollers/scale.extensions "hello-hpa-cpu" not found

The following is an example of a pod that could not obtain the needed metrics for scaling:

Conditions:
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale True SucceededGetScale the HPA controller was able to get the target's
current scale
 ScalingActive False FailedGetResourceMetric the HPA was unable to compute the replica
count: unable to get metrics for resource cpu: no metrics returned from heapster

The following is an example of a pod where the requested autoscaling was less than the required
minimums:

Conditions:
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale True ReadyForNewScale the last scale time was sufficiently old as to warrant
a new scale
 ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica
count from pods metric http_request
 ScalingLimited False DesiredWithinRange the desired replica count is within the acceptable
range
Events:

OpenShift Online 3 Developer Guide

240

CHAPTER 20. MANAGING VOLUMES

20.1. OVERVIEW

Containers are not persistent by default; on restart, their contents are cleared. Volumes are mounted file
systems available to pods and their containers which may be backed by a number of host-local or
network attached storage endpoints.

To ensure that the file system on the volume contains no errors and, if errors are present, to repair them
when possible, OpenShift Online invokes the fsck utility prior to the mount utility. This occurs when
either adding a volume or updating an existing volume.

The simplest volume type is emptyDir, which is a temporary directory on a single machine.
Administrators may also allow you to request a persistent volume that is automatically attached to your
pods.

NOTE

emptyDir volume storage may be restricted by a quota based on the pod’s FSGroup, if
the FSGroup parameter is enabled by your cluster administrator.

You can use the CLI command oc volume to add, update, or remove volumes and volume mounts for
any object that has a pod template like replication controllers or deployment configurations. You can
also list volumes in pods or any object that has a pod template.

20.2. GENERAL CLI USAGE

The oc volume command uses the following general syntax:

$ oc volume <object_selection> <operation> <mandatory_parameters> <optional_parameters>

This topic uses the form <object_type>/<name> for <object_selection> in later examples. However,
you can choose one of the following options:

Table 20.1. Object Selection

Syntax Description Example

<object_type> <name> Selects <name> of type
<object_type>.

deploymentConfig registry

<object_type>/<name> Selects <name> of type
<object_type>.

deploymentConfig/registry

<object_type>--
selector=<object_label_selec
tor>

Selects resources of type
<object_type> that matched
the given label selector.

deploymentConfig--
selector="name=registry"

<object_type> --all Selects all resources of type
<object_type>.

deploymentConfig --all

CHAPTER 20. MANAGING VOLUMES

241

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#replication-controllers
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#deployments-and-deployment-configurations

-f or --filename=<file_name> File name, directory, or URL to file
to use to edit the resource.

-f registry-deployment-
config.json

Syntax Description Example

The <operation> can be one of --add, --remove, or --list.

Any <mandatory_parameters> or <optional_parameters> are specific to the selected operation and
are discussed in later sections.

20.3. ADDING VOLUMES

To add a volume, a volume mount, or both to pod templates:

$ oc volume <object_type>/<name> --add [options]

Table 20.2. Supported Options for Adding Volumes

Option Description Default

--name Name of the volume. Automatically generated, if not
specified.

-t, --type Name of the volume source.
Supported values: emptyDir,
hostPath, secret, configmap,
persistentVolumeClaim or
projected.

emptyDir

-c, --containers Select containers by name. It can
also take wildcard '*' that matches
any character.

'*'

-m, --mount-path Mount path inside the selected
containers.

--path Host path. Mandatory parameter
for --type=hostPath.

--secret-name Name of the secret. Mandatory
parameter for --type=secret.

--configmap-name Name of the configmap.
Mandatory parameter for --
type=configmap.

OpenShift Online 3 Developer Guide

242

--claim-name Name of the persistent volume
claim. Mandatory parameter for --
type=persistentVolumeClaim
.

--source Details of volume source as a
JSON string. Recommended if
the desired volume source is not
supported by --type.

-o, --output Display the modified objects
instead of updating them on the
server. Supported values: json,
yaml.

--output-version Output the modified objects with
the given version.

api-version

Option Description Default

Examples
Add a new volume source emptyDir to deployment configuration registry:

$ oc volume dc/registry --add

Add volume v1 with secret $ecret for replication controller r1 and mount inside the containers at /data:

$ oc volume rc/r1 --add --name=v1 --type=secret --secret-name='$ecret' --mount-path=/data

Add existing persistent volume v1 with claim name pvc1 to deployment configuration dc.json on disk,
mount the volume on container c1 at /data, and update the deployment configuration on the server:

$ oc volume -f dc.json --add --name=v1 --type=persistentVolumeClaim \
 --claim-name=pvc1 --mount-path=/data --containers=c1

Add volume v1 based on Git repository https://github.com/namespace1/project1 with revision
5125c45f9f563 for all replication controllers:

$ oc volume rc --all --add --name=v1 \
 --source='{"gitRepo": {
 "repository": "https://github.com/namespace1/project1",
 "revision": "5125c45f9f563"
 }}'

20.4. UPDATING VOLUMES

Updating existing volumes or volume mounts is the same as adding volumes, but with the --overwrite
option:

CHAPTER 20. MANAGING VOLUMES

243

$ oc volume <object_type>/<name> --add --overwrite [options]

Examples
Replace existing volume v1 for replication controller r1 with existing persistent volume claim pvc1:

$ oc volume rc/r1 --add --overwrite --name=v1 --type=persistentVolumeClaim --claim-name=pvc1

Change deployment configuration d1 mount point to /opt for volume v1:

$ oc volume dc/d1 --add --overwrite --name=v1 --mount-path=/opt

20.5. REMOVING VOLUMES

To remove a volume or volume mount from pod templates:

$ oc volume <object_type>/<name> --remove [options]

Table 20.3. Supported Options for Removing Volumes

Option Description Default

--name Name of the volume.

-c, --containers Select containers by name. It can
also take wildcard '*' that matches
any character.

'*'

--confirm Indicate that you want to remove
multiple volumes at once.

-o, --output Display the modified objects
instead of updating them on the
server. Supported values: json,
yaml.

--output-version Output the modified objects with
the given version.

api-version

Examples
Remove a volume v1 from deployment configuration d1:

$ oc volume dc/d1 --remove --name=v1

Unmount volume v1 from container c1 for deployment configuration d1 and remove the volume v1 if it is
not referenced by any containers on d1:

$ oc volume dc/d1 --remove --name=v1 --containers=c1

Remove all volumes for replication controller r1:

OpenShift Online 3 Developer Guide

244

$ oc volume rc/r1 --remove --confirm

20.6. LISTING VOLUMES

To list volumes or volume mounts for pods or pod templates:

$ oc volume <object_type>/<name> --list [options]

List volume supported options:

Option Description Default

--name Name of the volume.

-c, --containers Select containers by name. It can
also take wildcard '*' that matches
any character.

'*'

Examples
List all volumes for pod p1:

$ oc volume pod/p1 --list

List volume v1 defined on all deployment configurations:

$ oc volume dc --all --name=v1

20.7. SPECIFYING A SUB-PATH

Use the volumeMounts.subPath property to specify a subPath inside a volume instead of the volume’s
root. subPath allows you to share one volume for multiple uses in a single pod.

To view the list of files in the volume, run the oc rsh command:

$ oc rsh <pod>
sh-4.2$ ls /path/to/volume/subpath/mount
example_file1 example_file2 example_file3

Specify the subPath:

Example subPath Usage

apiVersion: v1
kind: Pod
metadata:
 name: my-site
spec:
 containers:
 - name: mysql
 image: mysql

CHAPTER 20. MANAGING VOLUMES

245

1

2

 volumeMounts:
 - mountPath: /var/lib/mysql
 name: site-data
 subPath: mysql 1
 - name: php
 image: php
 volumeMounts:
 - mountPath: /var/www/html
 name: site-data
 subPath: html 2
 volumes:
 - name: site-data
 persistentVolumeClaim:
 claimName: my-site-data

Databases are stored in the mysql folder.

HTML content is stored in the html folder.

OpenShift Online 3 Developer Guide

246

CHAPTER 21. USING PERSISTENT VOLUMES

21.1. OVERVIEW

A PersistentVolume object is a storage resource in an OpenShift Online cluster. Storage is provisioned
by your cluster administrator by creating PersistentVolume objects from sources such as GCE
Persistent Disk, AWS Elastic Block Store (EBS), and NFS mounts.

Storage can be made available to you by laying claims to the resource. You can make a request for
storage resources using a PersistentVolumeClaim object; the claim is paired with a volume that
generally matches your request.

21.2. REQUESTING STORAGE

You can request storage by creating PersistentVolumeClaim objects in your projects:

Persistent Volume Claim Object Definition

IMPORTANT

See the Storage topic for information about restrictions when using persistent volumes
with OpenShift Online.

21.3. VOLUME AND CLAIM BINDING

A PersistentVolume is a specific resource. A PersistentVolumeClaim is a request for a resource with
specific attributes, such as storage size. In between the two is a process that matches a claim to an
available volume and binds them together. This allows the claim to be used as a volume in a pod.
OpenShift Online finds the volume backing the claim and mounts it into the pod.

You can tell whether a claim or volume is bound by querying using the CLI:

$ oc get pvc
NAME LABELS STATUS VOLUME
claim1 map[] Bound pv0001

$ oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM
pv0001 map[] 5368709120 RWO Bound yournamespace / claim1

apiVersion: "v1"
kind: "PersistentVolumeClaim"
metadata:
 name: "claim1"
spec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: "1Gi"
 volumeName: "pv0001"

CHAPTER 21. USING PERSISTENT VOLUMES

247

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#persistent-volumes

21.4. CLAIMS AS VOLUMES IN PODS

A PersistentVolumeClaim is used by a pod as a volume. OpenShift Online finds the claim with the given
name in the same namespace as the pod, then uses the claim to find the corresponding volume to
mount.

Pod Definition with a Claim

21.5. VOLUME AND CLAIM PRE-BINDING

If you know exactly what PersistentVolume you want your PersistentVolumeClaim to bind to, you can
specify the PV in your PVC using the volumeName field. This method skips the normal matching and
binding process. The PVC will only be able to bind to a PV that has the same name specified in
volumeName. If such a PV with that name exists and is Available, the PV and PVC will be bound
regardless of whether the PV satisfies the PVC’s label selector, access modes, and resource requests.

Example 21.1. Persistent Volume Claim Object Definition with volumeName

apiVersion: "v1"
kind: "Pod"
metadata:
 name: "mypod"
 labels:
 name: "frontendhttp"
spec:
 containers:
 -
 name: "myfrontend"
 image: openshift/hello-openshift
 ports:
 -
 containerPort: 80
 name: "http-server"
 volumeMounts:
 -
 mountPath: "/var/www/html"
 name: "pvol"
 volumes:
 -
 name: "pvol"
 persistentVolumeClaim:
 claimName: "claim1"

apiVersion: "v1"
kind: "PersistentVolumeClaim"
metadata:
 name: "claim1"
spec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: "1Gi"
 volumeName: "pv0001"

OpenShift Online 3 Developer Guide

248

IMPORTANT

The ability to set claimRefs is a temporary workaround for the described use cases. A
long-term solution for limiting who can claim a volume is in development.

You may also want your cluster administrator to "reserve" the volume for only your claim so that nobody
else’s claim can bind to it before yours does. In this case, the administrator can specify the PVC in the PV
using the claimRef field. The PV will only be able to bind to a PVC that has the same name and
namespace specified in claimRef. The PVC’s access modes and resource requests must still be satisfied
in order for the PV and PVC to be bound, though the label selector is ignored.

Persistent Volume Object Definition with claimRef

Specifying a volumeName in your PVC does not prevent a different PVC from binding to the specified
PV before yours does. Your claim will remain Pending until the PV is Available.

Specifying a claimRef in a PV does not prevent the specified PVC from being bound to a different PV.
The PVC is free to choose another PV to bind to according to the normal binding process. Therefore, to
avoid these scenarios and ensure your claim gets bound to the volume you want, you must ensure that
both volumeName and claimRef are specified.

You can tell that your setting of volumeName and/or claimRef influenced the matching and binding
process by inspecting a Bound PV and PVC pair for the pv.kubernetes.io/bound-by-controller
annotation. The PVs and PVCs where you set the volumeName and/or claimRef yourself will have no
such annotation, but ordinary PVs and PVCs will have it set to "yes".

When a PV has its claimRef set to some PVC name and namespace, and is reclaimed according to a
Retain or Recycle reclaim policy, its claimRef will remain set to the same PVC name and namespace
even if the PVC or the whole namespace no longer exists.

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 nfs:
 path: /tmp
 server: 172.17.0.2
 persistentVolumeReclaimPolicy: Recycle
 claimRef:
 name: claim1
 namespace: default

CHAPTER 21. USING PERSISTENT VOLUMES

249

CHAPTER 22. STORAGE CLASSES

22.1. OVERVIEW

The StorageClass resource object describes and classifies storage that can be requested, as well as
provides a means for passing parameters for dynamically provisioned storage on demand.
StorageClass objects can also serve as a management mechanism for controlling different levels of
storage and access to the storage. Cluster administrators (users with cluster-admin privileges) or
storage administrators (users with storage-admin privileges) define and create the StorageClass
objects that users can request without needing any intimate knowledge about the underlying storage
volume sources.

In OpenShift Online, the storage class is configured and a single option is available to the user based on
the underlying cloud provider.

OpenShift Online 3 Developer Guide

250

CHAPTER 23. SELECTOR AND LABEL VOLUME BINDING

23.1. OVERVIEW

You can enable binding of persistent volume claims (PVCs) to persistent volumes (PVs) via selector
and label attributes. By implementing selectors and labels, regular users are able to target provisioned
storage by identifiers defined by a cluster administrator.

23.2. MOTIVATION

In cases of statically provisioned storage, developers seeking persistent storage are required to know a
handful identifying attributes of a PV in order to deploy and bind a PVC. This creates several
problematic situations. Regular users might have to contact a cluster administrator to either deploy the
PVC or provide the PV values. PV attributes alone do not convey the intended use of the storage
volumes, nor do they provide methods by which volumes can be grouped.

Selector and label attributes can be used to abstract away PV details from the user while providing
cluster administrators a way of identifying volumes by a descriptive and customizable tag. Through the
selector-label method of binding, users are only required to know which labels are defined by the
administrator.

NOTE

The selector-label feature is currently only available for statically provisioned storage and
is currently not implemented for storage provisioned dynamically.

CHAPTER 23. SELECTOR AND LABEL VOLUME BINDING

251

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#architecture-additional-concepts-storage

CHAPTER 24. EXECUTING REMOTE COMMANDS

24.1. OVERVIEW

You can use the CLI to execute remote commands in a container. This allows you to run general Linux
commands for routine operations in the container.

IMPORTANT

For security purposes, the oc exec command does not work when accessing privileged
containers except when the command is executed by a cluster-admin user. See the CLI
operations topic for more information.

24.2. BASIC USAGE

Support for remote container command execution is built into the CLI:

$ oc exec <pod> [-c <container>] <command> [<arg_1> ... <arg_n>]

For example:

$ oc exec mypod date
Thu Apr 9 02:21:53 UTC 2015

24.3. PROTOCOL

Clients initiate the execution of a remote command in a container by issuing a request to the Kubernetes
API server:

/proxy/minions/<node_name>/exec/<namespace>/<pod>/<container>?command=<command>

In the above URL:

<node_name> is the FQDN of the node.

<namespace> is the namespace of the target pod.

<pod> is the name of the target pod.

<container> is the name of the target container.

<command> is the desired command to be executed.

For example:

/proxy/minions/node123.openshift.com/exec/myns/mypod/mycontainer?command=date

Additionally, the client can add parameters to the request to indicate if:

the client should send input to the remote container’s command (stdin).

the client’s terminal is a TTY.

OpenShift Online 3 Developer Guide

252

https://access.redhat.com/errata/RHSA-2015:1650
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#cli-reference-index

the remote container’s command should send output from stdout to the client.

the remote container’s command should send output from stderr to the client.

After sending an exec request to the API server, the client upgrades the connection to one that
supports multiplexed streams; the current implementation uses SPDY.

The client creates one stream each for stdin, stdout, and stderr. To distinguish among the streams, the
client sets the streamType header on the stream to one of stdin, stdout, or stderr.

The client closes all streams, the upgraded connection, and the underlying connection when it is finished
with the remote command execution request.

CHAPTER 24. EXECUTING REMOTE COMMANDS

253

CHAPTER 25. COPYING FILES TO OR FROM A CONTAINER

25.1. OVERVIEW

You can use the CLI to copy local files to or from a remote directory in a container. This is a useful tool
for copying database archives to and from your pods for backup and restore purposes. It can also be
used to copy source code changes into a running pod for development debugging, when the running
pod supports hot reload of source files.

25.2. BASIC USAGE

Support for copying local files to or from a container is built into the CLI:

$ oc rsync <source> <destination> [-c <container>]

For example, to copy a local directory to a pod directory:

$ oc rsync /home/user/source devpod1234:/src

Or to copy a pod directory to a local directory:

$ oc rsync devpod1234:/src /home/user/source

25.3. BACKING UP AND RESTORING DATABASES

Use oc rsync to copy database archives from an existing database container to a new database
container’s persistent volume directory.

NOTE

MySQL is used in the example below. Replace mysql|MYSQL with pgsql|PGSQL or
mongodb|MONGODB and refer to the migration guide to find the exact commands for
each of our supported database images. The example assumes an existing database
container.

1. Back up the existing database from a running database pod:

$ oc rsh <existing db container>
mkdir /var/lib/mysql/data/db_archive_dir
mysqldump --skip-lock-tables -h ${MYSQL_SERVICE_HOST} -P
${MYSQL_SERVICE_PORT:-3306} \
 -u ${MYSQL_USER} --password="$MYSQL_PASSWORD" --all-databases >
/var/lib/mysql/data/db_archive_dir/all.sql
exit

2. Remote sync the archive file to your local machine:

$ oc rsync <existing db container with db archive>:/var/lib/mysql/data/db_archive_dir /tmp/.

3. Start a second MySQL pod into which to load the database archive file created above. The
MySQL pod must have a unique DATABASE_SERVICE_NAME.

OpenShift Online 3 Developer Guide

254

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#cli-reference-index

1

$ oc new-app mysql-persistent \
 -p MYSQL_USER=<archived mysql username> \
 -p MYSQL_PASSWORD=<archived mysql password> \
 -p MYSQL_DATABASE=<archived database name> \
 -p DATABASE_SERVICE_NAME='mysql2' 1
$ oc rsync /tmp/db_archive_dir new_dbpod1234:/var/lib/mysql/data
$ oc rsh new_dbpod1234

mysql is the default. In this example, mysql2 is created.

4. Use the appropriate commands to restore the database in the new database container from the
copied database archive directory:

MySQL

$ cd /var/lib/mysql/data/db_archive_dir
$ mysql -u root
$ source all.sql
$ GRANT ALL PRIVILEGES ON <dbname>.* TO '<your username>'@'localhost'; FLUSH
PRIVILEGES;
$ cd ../; rm -rf /var/lib/mysql/data/db_backup_dir

You now have two MySQL database pods running in your project with the archived database.

25.4. REQUIREMENTS

The oc rsync command uses the local rsync command if present on the client’s machine. This requires
that the remote container also have the rsync command.

If rsync is not found locally or in the remote container, then a tar archive will be created locally and sent
to the container where tar will be used to extract the files. If tar is not available in the remote container,
then the copy will fail.

The tar copy method does not provide the same functionality as rsync. For example, rsync creates the
destination directory if it does not exist and will only send files that are different between the source
and the destination.

NOTE

In Windows, the cwRsync client should be installed and added to the PATH for use with
the oc rsync command.

25.5. SPECIFYING THE COPY SOURCE

The source argument of the oc rsync command must point to either a local directory or a pod directory.
Individual files are not currently supported.

When specifying a pod directory the directory name must be prefixed with the pod name:

<pod name>:<dir>

Just as with standard rsync, if the directory name ends in a path separator (/), only the contents of the

CHAPTER 25. COPYING FILES TO OR FROM A CONTAINER

255

Just as with standard rsync, if the directory name ends in a path separator (/), only the contents of the
directory are copied to the destination. Otherwise, the directory itself is copied to the destination with
all its contents.

25.6. SPECIFYING THE COPY DESTINATION

The destination argument of the oc rsync command must point to a directory. If the directory does not
exist, but rsync is used for copy, the directory is created for you.

25.7. DELETING FILES AT THE DESTINATION

The --delete flag may be used to delete any files in the remote directory that are not in the local
directory.

25.8. CONTINUOUS SYNCING ON FILE CHANGE

Using the --watch option causes the command to monitor the source path for any file system changes,
and synchronizes changes when they occur. With this argument, the command runs forever.

Synchronization occurs after short quiet periods to ensure a rapidly changing file system does not result
in continuous synchronization calls.

When using the --watch option, the behavior is effectively the same as manually invoking oc rsync
repeatedly, including any arguments normally passed to oc rsync. Therefore, you can control the
behavior via the same flags used with manual invocations of oc rsync, such as --delete.

25.9. ADVANCED RSYNC FEATURES

The oc rsync command exposes fewer command line options than standard rsync. In the case that you
wish to use a standard rsync command line option which is not available in oc rsync (for example the --
exclude-from=FILE option), it may be possible to use standard rsync 's --rsh (-e) option or
RSYNC_RSH environment variable as a workaround, as follows:

$ rsync --rsh='oc rsh' --exclude-from=FILE SRC POD:DEST

or:

$ export RSYNC_RSH='oc rsh'
$ rsync --exclude-from=FILE SRC POD:DEST

Both of the above examples configure standard rsync to use oc rsh as its remote shell program to
enable it to connect to the remote pod, and are an alternative to running oc rsync.

OpenShift Online 3 Developer Guide

256

CHAPTER 26. PORT FORWARDING

26.1. OVERVIEW

OpenShift Online takes advantage of a feature built-in to Kubernetes to support port forwarding to
pods.

You can use the CLI to forward one or more local ports to a pod. This allows you to listen on a given or
random port locally, and have data forwarded to and from given ports in the pod.

26.2. BASIC USAGE

Support for port forwarding is built into the CLI:

$ oc port-forward <pod> [<local_port>:]<remote_port> [...[<local_port_n>:]<remote_port_n>]

The CLI listens on each local port specified by the user, forwarding via the protocol described below.

Ports may be specified using the following formats:

5000 The client listens on port 5000 locally and forwards to 5000 in the pod.

6000:5000 The client listens on port 6000 locally and forwards to 5000 in the pod.

:5000 or
0:5000

The client selects a free local port and forwards to 5000 in the pod.

For example, to listen on ports 5000 and 6000 locally and forward data to and from ports 5000 and 6000
in the pod, run:

$ oc port-forward <pod> 5000 6000

To listen on port 8888 locally and forward to 5000 in the pod, run:

$ oc port-forward <pod> 8888:5000

To listen on a free port locally and forward to 5000 in the pod, run:

$ oc port-forward <pod> :5000

Or, alternatively:

$ oc port-forward <pod> 0:5000

26.3. PROTOCOL

Clients initiate port forwarding to a pod by issuing a request to the Kubernetes API server:

/proxy/minions/<node_name>/portForward/<namespace>/<pod>

CHAPTER 26. PORT FORWARDING

257

https://kubernetes.io/docs/user-guide/kubectl/kubectl_port-forward/#
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#cli-reference-index

In the above URL:

<node_name> is the FQDN of the node.

<namespace> is the namespace of the target pod.

<pod> is the name of the target pod.

For example:

/proxy/minions/node123.openshift.com/portForward/myns/mypod

After sending a port forward request to the API server, the client upgrades the connection to one that
supports multiplexed streams; the current implementation uses SPDY.

The client creates a stream with the port header containing the target port in the pod. All data written to
the stream is delivered via the Kubelet to the target pod and port. Similarly, all data sent from the pod
for that forwarded connection is delivered back to the same stream in the client.

The client closes all streams, the upgraded connection, and the underlying connection when it is finished
with the port forwarding request.

OpenShift Online 3 Developer Guide

258

http://www.chromium.org/spdy

1

2

3

CHAPTER 27. SHARED MEMORY

27.1. OVERVIEW

There are two types of shared memory objects in Linux: System V and POSIX. The containers in a pod
share the IPC namespace of the pod infrastructure container and so are able to share the System V
shared memory objects. This document describes how they can also share POSIX shared memory
objects.

27.2. POSIX SHARED MEMORY

POSIX shared memory requires that a tmpfs be mounted at /dev/shm. The containers in a pod do not
share their mount namespaces so we use volumes to provide the same /dev/shm into each container in
a pod. The following example shows how to set up POSIX shared memory between two containers.

shared-memory.yaml

specifies the tmpfs volume dshm.

enables POSIX shared memory for hello-container1 via dshm.

enables POSIX shared memory for hello-container2 via dshm.

apiVersion: v1
id: hello-openshift
kind: Pod
metadata:
 name: hello-openshift
 labels:
 name: hello-openshift
spec:
 volumes: 1
 - name: dshm
 emptyDir:
 medium: Memory
 containers:
 - image: kubernetes/pause
 name: hello-container1
 ports:
 - containerPort: 8080
 hostPort: 6061
 volumeMounts: 2
 - mountPath: /dev/shm
 name: dshm
 - image: kubernetes/pause
 name: hello-container2
 ports:
 - containerPort: 8081
 hostPort: 6062
 volumeMounts: 3
 - mountPath: /dev/shm
 name: dshm

CHAPTER 27. SHARED MEMORY

259

Create the pod using the shared-memory.yaml file:

$ oc create -f shared-memory.yaml

OpenShift Online 3 Developer Guide

260

CHAPTER 28. APPLICATION HEALTH

28.1. OVERVIEW

In software systems, components can become unhealthy due to transient issues (such as temporary
connectivity loss), configuration errors, or problems with external dependencies. OpenShift Online
applications have a number of options to detect and handle unhealthy containers.

28.2. CONTAINER HEALTH CHECKS USING PROBES

A probe is a Kubernetes action that periodically performs diagnostics on a running container. Currently,
two types of probes exist, each serving a different purpose:

Liveness Probe A liveness probe checks if the container in which it is configured is still running. If the
liveness probe fails, the kubelet kills the container, which will be subjected to its restart
policy. Set a liveness check by configuring the
template.spec.containers.livenessprobe stanza of a pod configuration.

Readiness Probe A readiness probe determines if a container is ready to service requests. If the
readiness probe fails a container, the endpoints controller ensures the container has its
IP address removed from the endpoints of all services. A readiness probe can be used
to signal to the endpoints controller that even though a container is running, it should
not receive any traffic from a proxy. Set a readiness check by configuring the
template.spec.containers.readinessprobe stanza of a pod configuration.

The exact timing of a probe is controlled by two fields, both expressed in units of seconds:

Field Description

initialDelaySeconds How long to wait after the container starts to begin
the probe.

timeoutSeconds How long to wait for the probe to finish (default: 1). If
this time is exceeded, OpenShift Online considers the
probe to have failed.

Both probes can be configured in three ways:

HTTP Checks

The kubelet uses a web hook to determine the healthiness of the container. The check is deemed
successful if the HTTP response code is between 200 and 399. The following is an example of a
readiness check using the HTTP checks method:

Example 28.1. Readiness HTTP check

...
readinessProbe:
 httpGet:
 path: /healthz

CHAPTER 28. APPLICATION HEALTH

261

1

 port: 8080
 initialDelaySeconds: 15
 timeoutSeconds: 1
...

A HTTP check is ideal for applications that return HTTP status codes when completely initialized.

Container Execution Checks

The kubelet executes a command inside the container. Exiting the check with status 0 is considered a
success. The following is an example of a liveness check using the container execution method:

Example 28.2. Liveness Container Execution Check

...
livenessProbe:
 exec:
 command:
 - cat
 - /tmp/health
 initialDelaySeconds: 15
...

NOTE

The timeoutSeconds parameter has no effect on the readiness and liveness probes for
Container Execution Checks. You can implement a timeout inside the probe itself, as
OpenShift Online cannot time out on an exec call into the container. One way to
implement a timeout in a probe is by using the timeout parameter to run your liveness or
readiness probe:

[...]
 livenessProbe:
 exec:
 command:
 - /bin/bash
 - '-c'
 - timeout 60 /opt/eap/bin/livenessProbe.sh 1
 timeoutSeconds: 1
 periodSeconds: 10
 successThreshold: 1
 failureThreshold: 3
[...]

Timeout value and path to the probe script.

TCP Socket Checks

The kubelet attempts to open a socket to the container. The container is only considered healthy if the
check can establish a connection. The following is an example of a liveness check using the TCP socket
check method:

OpenShift Online 3 Developer Guide

262

Example 28.3. Liveness TCP Socket Check

...
livenessProbe:
 tcpSocket:
 port: 8080
 initialDelaySeconds: 15
 timeoutSeconds: 1
...

A TCP socket check is ideal for applications that do not start listening until initialization is complete.

For more information on health checks, see the Kubernetes documentation.

CHAPTER 28. APPLICATION HEALTH

263

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

CHAPTER 29. EVENTS

29.1. OVERVIEW

Events in OpenShift Online are modeled based on events that happen to API objects in an OpenShift
Online cluster. Events allow OpenShift Online to record information about real-world events in a
resource-agnostic manner. They also allow developers and administrators to consume information about
system components in a unified way.

29.2. VIEWING EVENTS WITH THE CLI

You can get a list of events in a given project using the following command:

$ oc get events [-n <project>]

29.3. VIEWING EVENTS IN THE CONSOLE

You can see events in your project from the web console from the Browse → Events page. Many other
objects, such as pods and deployments, have their own Events tab as well, which shows events related
to that object.

29.4. COMPREHENSIVE LIST OF EVENTS

This section describes the events of OpenShift Online.

Table 29.1. Configuration Events

Name Description

FailedValidation Failed pod configuration validation.

Table 29.2. Container Events

Name Description

BackOff Back-off restarting failed the container.

Created Container created.

Failed Pull/Create/Start failed.

Killing Killing the container.

Started Container started.

Preempting Preempting other pods.

OpenShift Online 3 Developer Guide

264

ExceededGrace
Period

Container runtime did not stop the pod within specified grace period.

Name Description

Table 29.3. Health Events

Name Description

Unhealthy Container is unhealthy.

Table 29.4. Image Events

Name Description

BackOff Back off Ctr Start, image pull.

ErrImageNeverP
ull

The image’s NeverPull Policy is violated.

Failed Failed to pull the image.

InspectFailed Failed to inspect the image.

Pulled Successfully pulled the image or the container image is already present on the machine.

Pulling Pulling the image.

Table 29.5. Image Manager Events

Name Description

FreeDiskSpaceF
ailed

Free disk space failed.

InvalidDiskCapa
city

Invalid disk capacity.

Table 29.6. Node Events

Name Description

FailedMount Volume mount failed.

HostNetworkNo
tSupported

Host network not supported.

CHAPTER 29. EVENTS

265

HostPortConflic
t

Host/port conflict.

InsufficientFree
CPU

Insufficient free CPU.

InsufficientFree
Memory

Insufficient free memory.

KubeletSetupFa
iled

Kubelet setup failed.

NilShaper Undefined shaper.

NodeNotReady Node is not ready.

NodeNotSched
ulable

Node is not schedulable.

NodeReady Node is ready.

NodeSchedulab
le

Node is schedulable.

NodeSelectorMi
smatching

Node selector mismatch.

OutOfDisk Out of disk.

Rebooted Node rebooted.

Starting Starting kubelet.

FailedAttachVol
ume

Failed to attach volume.

FailedDetachVol
ume

Failed to detach volume.

VolumeResizeF
ailed

Failed to expand/reduce volume.

VolumeResizeS
uccessful

Successfully expanded/reduced volume.

Name Description

OpenShift Online 3 Developer Guide

266

FileSystemResi
zeFailed

Failed to expand/reduce file system.

FileSystemResi
zeSuccessful

Successfully expanded/reduced file system.

FailedUnMount Failed to unmount volume.

FailedMapVolu
me

Failed to map a volume.

FailedUnmapDe
vice

Failed unmaped device.

AlreadyMounte
dVolume

Volume is already mounted.

SuccessfulDeta
chVolume

Volume is successfully detached.

SuccessfulMou
ntVolume

Volume is successfully mounted.

SuccessfulUnM
ountVolume

Volume is successfully unmounted.

ContainerGCFai
led

Container garbage collection failed.

ImageGCFailed Image garbage collection failed.

FailedNodeAllo
catableEnforce
ment

Failed to enforce System Reserved Cgroup limit.

NodeAllocatabl
eEnforced

Enforced System Reserved Cgroup limit.

UnsupportedMo
untOption

Unsupported mount option.

SandboxChang
ed

Pod sandbox changed.

FailedCreatePo
dSandBox

Failed to create pod sandbox.

Name Description

CHAPTER 29. EVENTS

267

FailedPodSand
BoxStatus

Failed pod sandbox status.

Name Description

Table 29.7. Pod Worker Events

Name Description

FailedSync Pod sync failed.

Table 29.8. System Events

Name Description

SystemOOM There is an OOM (out of memory) situation on the cluster.

Table 29.9. Pod Events

Name Description

FailedKillPod Failed to stop a pod.

FailedCreatePo
dContainer

Failed to create a pod contianer.

Failed Failed to make pod data directories.

NetworkNotRea
dy

Network is not ready.

FailedCreate Error creating: <error-msg>.

SuccessfulCrea
te

Created pod: <pod-name>.

FailedDelete Error deleting: <error-msg>.

SuccessfulDelet
e

Deleted pod: <pod-id>.

Table 29.10. Horizontal Pod AutoScaler Events

Name Description

SelectorRequired Selector is required.

OpenShift Online 3 Developer Guide

268

InvalidSelector Could not convert selector into a corresponding internal selector object.

FailedGetObject
Metric

HPA was unable to compute the replica count.

InvalidMetricSo
urceType

Unknown metric source type.

ValidMetricFoun
d

HPA was able to successfully calculate a replica count.

FailedConvertH
PA

Failed to convert the given HPA.

FailedGetScale HPA controller was unable to get the target’s current scale.

SucceededGetS
cale

HPA controller was able to get the target’s current scale.

FailedCompute
MetricsReplicas

Failed to compute desired number of replicas based on listed metrics.

FailedRescale New size: <size>; reason: <msg>; error: <error-msg>.

SuccessfulResc
ale

New size: <size>; reason: <msg>.

FailedUpdateSt
atus

Failed to update status.

Name Description

Table 29.11. Network Events (openshift-sdn)

Name Description

Starting Starting OpenShift-SDN.

NetworkFailed The pod’s network interface has been lost and the pod will be stopped.

Table 29.12. Network Events (kube-proxy)

Name Description

NeedPods The service-port <serviceName>:<port> needs pods.

Table 29.13. Volume Events

CHAPTER 29. EVENTS

269

Name Description

FailedBinding There are no persistent volumes available and no storage class is set.

VolumeMismatc
h

Volume size or class is different from what is requested in claim.

VolumeFailedRe
cycle

Error creating recycler pod.

VolumeRecycle
d

Occurs when volume is recycled.

RecyclerPod Occurs when pod is recycled.

VolumeDelete Occurs when volume is deleted.

VolumeFailedDe
lete

Error when deleting the volume.

ExternalProvisi
oning

Occurs when volume for the claim is provisioned either manually or via external
software.

ProvisioningFail
ed

Failed to provision volume.

ProvisioningCle
anupFailed

Error cleaning provisioned volume.

ProvisioningSu
cceeded

Occurs when the volume is provisioned successfully.

WaitForFirstCo
nsumer

Delay binding until pod scheduling.

Table 29.14. Lifecycle hooks

Name Description

FailedPostStart
Hook

Handler failed for pod start.

FailedPreStopH
ook

Handler failed for pre-stop.

UnfinishedPreSt
opHook

Pre-stop hook unfinished.

OpenShift Online 3 Developer Guide

270

Table 29.15. Deployments

Name Description

DeploymentCan
cellationFailed

Failed to cancel deployment.

DeploymentCan
celled

Cancelled deployment.

DeploymentCre
ated

Created new replication controller.

IngressIPRange
Full

No available ingress IP to allocate to service.

Table 29.16. Scheduler Events

Name Description

FailedSchedulin
g

Failed to schedule pod: <pod-namespace>/<pod-name>. This event is raised for
multiple reasons, for example: AssumePodVolumes failed, Binding rejected etc.

Preempted By <preemptor-namespace>/<preemptor-name> on node <node-name>.

Scheduled Successfully assigned <pod-name> to <node-name>.

Table 29.17. DaemonSet Events

Name Description

SelectingAll This daemon set is selecting all pods. A non-empty selector is required.

FailedPlacemen
t

Failed to place pod on <node-name>.

FailedDaemonP
od

Found failed daemon pod <pod-name> on node <node-name>, will try to kill it.

Table 29.18. LoadBalancer Service Events

Name Description

CreatingLoadBa
lancerFailed

Error creating load balancer.

DeletingLoadBa
lancer

Deleting load balancer.

CHAPTER 29. EVENTS

271

EnsuringLoadB
alancer

Ensuring load balancer.

EnsuredLoadBa
lancer

Ensured load balancer.

UnAvailableLoa
dBalancer

There are no available nodes for LoadBalancer service.

LoadBalancerS
ourceRanges

Lists the new LoadBalancerSourceRanges. For example, <old-source-range>
→ <new-source-range>.

LoadbalancerIP Lists the new IP address. For example, <old-ip> → <new-ip>.

ExternalIP Lists external IP address. For example, Added: <external-ip>.

UID Lists the new UID. For example, <old-service-uid> → <new-service-uid>.

ExternalTrafficP
olicy

Lists the new ExternalTrafficPolicy. For example, <old-policy> → <new-ploicy>.

HealthCheckNo
dePort

Lists the new HealthCheckNodePort. For example, <old-node-port> → new-
node-port>.

UpdatedLoadBa
lancer

Updated load balancer with new hosts.

LoadBalancerU
pdateFailed

Error updating load balancer with new hosts.

DeletingLoadBa
lancer

Deleting load balancer.

DeletingLoadBa
lancerFailed

Error deleting load balancer.

DeletedLoadBal
ancer

Deleted load balancer.

Name Description

OpenShift Online 3 Developer Guide

272

CHAPTER 30. NOTIFICATIONS

30.1. OVERVIEW

For each of your projects, you can choose to receive email notifications about various failures, including:

Dead deployment : A failed deployment in which no other deployment in the rollout history is able
to remain active. The related deployment configuration has no deployments with active replicas.

Failed deployment: A new deployment fails and another deployment in the rollout history is now
active. The related deployment configuration has one active deployment, but it is not the latest
deployment.

Stuck deployment: A deployment in which the active replicas are less than the replicas defined by
the deployment configuration for a significant amount of time.

Dead build: Occurs when automatically triggered builds are failing for a specified build
configuration that previously had successful builds.

Dead persistent volume claim : A claim that is in the pending state for longer than some
reasonable amount of time. These are claims whose resource requests likely do not match with
any existing persistent volumes in the cluster.

Lost persistent volume claim : A claim that is bound to a backing persistent volume, but the
persistent volume has unexpectedly gone away.

30.2. HOW IT WORKS

The Notifications feature continually monitors resources across the cluster. When problems are
detected, notifications are sent to the email address of the project creator, designated in the requester
field of the project. These notifications are throttled so that the recipient is not overwhelmed with email
messages.

30.3. CONFIGURING NOTIFICATIONS VIA THE WEB CONSOLE

From the web console:

1. Select Monitoring from the left-hand navigation.

2. Select Notifications from the Monitoring dropdown menu.

CHAPTER 30. NOTIFICATIONS

273

3. Select your preferences on the Notifications page.

4. Click the Save button at the bottom of the page.
Once your options are successfully saved, this message will appear at the top of the page:

OpenShift Online 3 Developer Guide

274

30.4. STORING PREFERENCES

The Notifications feature uses a ConfigMap named openshift-online-notifications in each namespace
to store preferences. The preferences allow users to specify which resources they would like to receive
notifications for. An interface is provided in the web console to easily modify these preferences.

Example ConfigMap for Notification Preferences

[source,yaml]

kind: ConfigMap
apiVersion: v1
metadata:
 name: openshift-online-notifications
 namespace: example
data:
 builds-enabled: 'true'
 deployments-enabled: 'true'
 storage-enabled: 'true'

If the ConfigMap is not present, it is assumed that notifications are disabled. The email address used is
the email address of the project owner.

CHAPTER 30. NOTIFICATIONS

275

CHAPTER 31. MANAGING ENVIRONMENT VARIABLES

31.1. SETTING AND UNSETTING ENVIRONMENT VARIABLES

OpenShift Online provides the oc set env command to set or unset environment variables for objects
that have a pod template, such as replication controllers or deployment configurations. It can also list
environment variables in pods or any object that has a pod template. This command can also be used on
BuildConfig objects.

31.2. LIST ENVIRONMENT VARIABLES

To list environment variables in pods or pod templates:

$ oc set env <object-selection> --list [<common-options>]

This example lists all environment variables for pod p1:

$ oc set env pod/p1 --list

31.3. SET ENVIRONMENT VARIABLES

To set environment variables in the pod templates:

$ oc set env <object-selection> KEY_1=VAL_1 ... KEY_N=VAL_N [<set-env-options>] [<common-
options>]

Set environment options:

Option Description

-e, --env=<KEY>=<VAL> Set given key value pairs of environment variables.

--overwrite Confirm updating existing environment variables.

In the following example, both commands modify environment variable STORAGE in the deployment
config registry. The first adds, with value /data. The second updates, with value /opt.

$ oc set env dc/registry STORAGE=/data
$ oc set env dc/registry --overwrite STORAGE=/opt

The following example finds environment variables in the current shell whose names begin with RAILS_
and adds them to the replication controller r1 on the server:

$ env | grep RAILS_ | oc set env rc/r1 -e -

The following example does not modify the replication controller defined in file rc.json. Instead, it writes
a YAML object with updated environment STORAGE=/local to new file rc.yaml.

$ oc set env -f rc.json STORAGE=/opt -o yaml > rc.yaml

OpenShift Online 3 Developer Guide

276

31.3.1. Automatically Added Environment Variables

Table 31.1. Automatically Added Environment Variables

Variable Name

<SVCNAME>_SERVICE_HOST

<SVCNAME>_SERVICE_PORT

Example Usage

The service KUBERNETES which exposes TCP port 53 and has been allocated cluster IP address
10.0.0.11 produces the following environment variables:

KUBERNETES_SERVICE_PORT=53
MYSQL_DATABASE=root
KUBERNETES_PORT_53_TCP=tcp://10.0.0.11:53
KUBERNETES_SERVICE_HOST=10.0.0.11

NOTE

Use the oc rsh command to SSH into your container and run oc set env to list all
available variables.

31.4. UNSET ENVIRONMENT VARIABLES

To unset environment variables in the pod templates:

$ oc set env <object-selection> KEY_1- ... KEY_N- [<common-options>]

IMPORTANT

The trailing hyphen (-, U+2D) is required.

This example removes environment variables ENV1 and ENV2 from deployment config d1:

$ oc set env dc/d1 ENV1- ENV2-

This removes environment variable ENV from all replication controllers:

$ oc set env rc --all ENV-

This removes environment variable ENV from container c1 for replication controller r1:

$ oc set env rc r1 --containers='c1' ENV-

CHAPTER 31. MANAGING ENVIRONMENT VARIABLES

277

CHAPTER 32. JOBS

32.1. OVERVIEW

A job, in contrast to a replication controller , runs a pod with any number of replicas to completion. A job
tracks the overall progress of a task and updates its status with information about active, succeeded,
and failed pods. Deleting a job will clean up any pod replicas it created. Jobs are part of the Kubernetes
API, which can be managed with oc commands like other object types.

See the Kubernetes documentation for more information about jobs.

32.2. CREATING A JOB

A job configuration consists of the following key parts:

A pod template, which describes the application the pod will create.

An optional parallelism parameter, which specifies how many pod replicas running in parallel
should execute a job. If not specified, this defaults to the value in the completions parameter.

An optional completions parameter, specifying how many concurrently running pods should
execute a job. If not specified, this value defaults to one.

The following is an example of a job resource:

1. Optional value for how many pod replicas a job should run in parallel; defaults to completions.

2. Optional value for how many successful pod completions are needed to mark a job completed;
defaults to one.

3. Template for the pod the controller creates.

4. The restart policy of the pod. This does not apply to the job controller. See Section 32.2.1,
“Known Limitations” for details.

You can also create and launch a job from a single command using oc run. The following command
creates and launches the same job as specified in the previous example:

apiVersion: batch/v1
kind: Job
metadata:
 name: pi
spec:
 parallelism: 1 1
 completions: 1 2
 template: 3
 metadata:
 name: pi
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 restartPolicy: OnFailure 4

OpenShift Online 3 Developer Guide

278

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/architecture/#replication-controllers
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#object-types
http://kubernetes.io/docs/user-guide/jobs/

$ oc run pi --image=perl --replicas=1 --restart=OnFailure \
 --command -- perl -Mbignum=bpi -wle 'print bpi(2000)'

32.2.1. Known Limitations

The job specification restart policy only applies to the pods, and not the job controller. However, the job
controller is hard-coded to keep retrying jobs to completion.

As such, restartPolicy: Never or --restart=Never results in the same behavior as restartPolicy:
OnFailure or --restart=OnFailure. That is, when a job fails it is restarted automatically until it succeeds
(or is manually discarded). The policy only sets which subsystem performs the restart.

With the Never policy, the job controller performs the restart. With each attempt, the job controller
increments the number of failures in the job status and create new pods. This means that with each
failed attempt, the number of pods increases.

With the OnFailure policy, kubelet performs the restart. Each attempt does not increment the number
of failures in the job status. In addition, kubelet will retry failed jobs starting pods on the same nodes.

32.3. SCALING A JOB

A job can be scaled up or down by using the oc scale command with the --replicas option, which, in the
case of jobs, modifies the spec.parallelism parameter. This will result in modifying the number of pod
replicas running in parallel, executing a job.

The following command uses the example job above, and sets the parallelism parameter to three:

$ oc scale job pi --replicas=3

NOTE

Scaling replication controllers also uses the oc scale command with the --replicas
option, but instead changes the replicas parameter of a replication controller
configuration.

32.4. SETTING MAXIMUM DURATION

When defining a Job, you can define its maximum duration by setting the activeDeadlineSeconds field.
It is specified in seconds and is not set by default. When not set, there is no maximum duration enforced.

The maximum duration is counted from the time when a first pod gets scheduled in the system, and
defines how long a job can be active. It tracks overall time of an execution and is irrelevant to the
number of completions (number of pod replicas needed to execute a task). After reaching the specified
timeout, the job is terminated by OpenShift Online.

The following example shows the part of a Job specifying activeDeadlineSeconds field for 30 minutes:

32.5. JOB BACKOFF FAILURE POLICY

A Job can be considered failed, after a set amount of retries due to a logical error in configuration or

 spec:
 activeDeadlineSeconds: 1800

CHAPTER 32. JOBS

279

A Job can be considered failed, after a set amount of retries due to a logical error in configuration or
other similar reasons. To specify the number of retries for a job set the .spec.backoffLimit property.
This field defaults to six. Failed Pods associated with the Job are recreated by the controller with an
exponential backoff delay (10s, 20s, 40s …) capped at six minutes. The limit is reset if no new failed pods
appear between controller checks.

OpenShift Online 3 Developer Guide

280

CHAPTER 33. OPENSHIFT PIPELINE

33.1. OVERVIEW

OpenShift Pipelines give you control over building, deploying, and promoting your applications on
OpenShift. Using a combination of the Jenkins Pipeline Build Strategy, Jenkinsfiles, and the OpenShift
Domain Specific Language (DSL) (provided by the OpenShift Jenkins Client Plug-in), you can create
advanced build, test, deploy, and promote pipelines for any scenario.

33.2. OPENSHIFT JENKINS CLIENT PLUG-IN

The OpenShift Jenkins Client Plug-in must be installed on your Jenkins master so the OpenShift DSL
will be available to use within the JenkinsFile for your application. This plug-in is installed and enabled by
default when using the OpenShift Jenkins image.

33.2.1. OpenShift DSL

The OpenShift Jenkins Client Plug-in provides a fluent-styled DSL for communicating with the
OpenShift API from within the Jenkins slaves. The OpenShift DSL is based on Groovy syntax and
provides methods for controlling the lifecycle of your application such as create, build, deploy, and
delete.

The full details of the API are embedded within the plug-in’s online documentation within a running
Jenkins instance. To find it:

Create a new Pipeline Item.

Click Pipeline Syntax below the DSL text area.

From the left navigation menu, click Global Variables Reference.

33.3. JENKINS PIPELINE STRATEGY

In order to take advantage of the OpenShift Pipelines within your project, you will must use the Jenkins
Pipeline Build Strategy. This strategy defaults to using a jenkinsfile at the root of your source
repository, but also provides the following configuration options:

An inline jenkinsfile field within your BuildConfig.

A jenkinsfilePath field within your BuildConfig that references the location of the jenkinsfile to
use relative to the source contextDir.

NOTE

The optional jenkinsfilePath field specifies the name of the file to use, relative to the
source contextDir. If contextDir is omitted, it defaults to the root of the repository. If
jenkinsfilePath is omitted, it defaults to jenkinsfile.

For more detailed information about the Jenkins Pipeline Strategy, see Pipeline Strategy Options.

33.4. JENKINSFILE

The jenkinsfile utilizes the standard groovy language syntax to allow fine grained control over the

CHAPTER 33. OPENSHIFT PIPELINE

281

https://github.com/openshift/jenkins-client-plugin

The jenkinsfile utilizes the standard groovy language syntax to allow fine grained control over the
configuration, build, and deployment of your application.

The jenkinsfile can be supplied in one of the following ways:

A file located within your source code repository.

Embedded as part of your build configuration using the jenkinsfile field.

When using the first option, the jenkinsfile must be included in your applications source code repository
at one of the following locations:

A file named jenkinsfile at the root of your repository.

A file named jenkinsfile at the root of the source contextDir of your repository.

A file name specified via the jenkinsfilePath field of the JenkinsPiplineStrategy section of
your BuildConfig, which is relative to the source contextDir if supplied, otherwise it defaults to
the root of the repository.

The jenkinsfile is executed on the Jenkins slave pod, which must have the OpenShift Client binaries
available if you intend to use the OpenShift DSL.

33.5. TUTORIAL

For a full walkthrough of building and deploying an application with Jenkins Pipeline, see Jenkins
Pipeline Tutorial.

33.6. ADVANCED TOPICS

33.6.1. Disabling Jenkins AutoProvisioning

When a Pipeline build configuration is created, OpenShift checks to see if there is currently a Jenkins
master pod provisioned in the current project. If no Jenkins master is found, one is automatically
created. If this behavior is not desirable, or if you would like to use a Jenkins server external to
OpenShift, you can disable it.

33.6.2. Configuring Slave Pods

The Kubernetes Plug-in is also pre-installed in the official Jenkins image. This plug-in allows the Jenkins
master to create slave pods on OpenShift and delegate running jobs to them to achieve scalability as
well as providing pods with specific runtimes for specific jobs.

For more detailed information on configuring slave pods using the Kubernetes Plug-in, see Kubernetes
Plug-in.

OpenShift Online 3 Developer Guide

282

https://wiki.jenkins.io/display/JENKINS/Kubernetes+Plugin
https://github.com/jenkinsci/kubernetes-plugin/blob/master/README.md

CHAPTER 34. CRON JOBS

34.1. OVERVIEW

A cron job builds on a regular job by allowing you to specifically schedule how the job should be run. Cron
jobs are part of the Kubernetes API, which can be managed with oc commands like other object types.

IMPORTANT

Cron Jobs are only available for OpenShift Online Pro. For more information about the
differences between Starter and Pro tiers, visit the pricing page.

WARNING

A cron job creates a job object approximately once per execution time of its
schedule, but there are circumstances in which it fails to create a job or two jobs
might be created. Therefore, jobs must be idempotent and you must configure
history limits.

34.2. CREATING A CRON JOB

A cron job configuration consists of the following key parts:

A schedule specified in cron format.

A job template used when creating the next job.

An optional deadline (in seconds) for starting the job if it misses its scheduled time for any
reason. Missed jobs executions will be counted as failed ones. If not specified, there is no
deadline.

ConcurrencyPolicy: An optional concurrency policy, specifying how to treat concurrent jobs
within a cron job. Only one of the following concurrent policies may be specified. If not specified,
this defaults to allowing concurrent executions.

Allow allows Cron Jobs to run concurrently.

Forbid forbids concurrent runs, skipping the next run if the previous has not finished yet.

Replace cancels the currently running job and replaces it with a new one.

An optional flag allowing the suspension of a cron job. If set to true, all subsequent executions
will be suspended.

The following is an example of a CronJob resource:



apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: pi

CHAPTER 34. CRON JOBS

283

http://kubernetes.io/docs/user-guide/cron-jobs
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#object-types
https://www.openshift.com/pricing/index.html
https://en.wikipedia.org/wiki/Cron

1. Schedule for the job. In this example, the job will run every minute.

2. Job template. This is similar to the job example.

3. Sets a label for jobs spawned by this cron job.

4. The restart policy of the pod. This does not apply to the job controller. See Known Issues and
Limitations for details.

NOTE

All cron job schedule times are based on the timezone of the master where the job is
initiated.

You can also create and launch a cron job from a single command using oc run. The following command
creates and launches the same cron job as specified in the previous example:

$ oc run pi --image=perl --schedule='*/1 * * * *' \
 --restart=OnFailure --labels parent="cronjobpi" \
 --command -- perl -Mbignum=bpi -wle 'print bpi(2000)'

With oc run, the --schedule option accepts schedules in cron format.

NOTE

When creating a cron job, oc run only supports the Never or OnFailure restart policies (-
-restart).

TIP

Delete cron jobs that you no longer need:

$ oc delete cronjob/<cron_job_name>

Doing this prevents them from generating unnecessary artifacts.

34.3. CLEANING UP AFTER A CRON JOB

spec:
 schedule: "*/1 * * * *" 1
 jobTemplate: 2
 spec:
 template:
 metadata:
 labels: 3
 parent: "cronjobpi"
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 restartPolicy: OnFailure 4

OpenShift Online 3 Developer Guide

284

https://en.wikipedia.org/wiki/Cron

1 1 1

2 2 2

The .spec.successfulJobsHistoryLimit and .spec.failedJobsHistoryLimit fields are optional. These
fields specify how many completed and failed jobs should be kept. By default, they are set to 3 and 1
respectively. Setting a limit to 0 corresponds to keeping none of the corresponding kind of jobs after
they finish.

Cron jobs can leave behind artifact resources such as jobs or pods. As a user it is important to configure
history limits so that old jobs and their pods are properly cleaned. Currently, there are two fields within
cron job’s spec responsible for that:

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: pi
spec:
 successfulJobsHistoryLimit: 3 1
 failedJobsHistoryLimit: 1 2
 schedule: "*/1 * * * *"
 jobTemplate:
 spec:
 ...

The number of successful finished jobs to retain (defaults to 3).

The number of failed finished jobs to retain (defaults to 1).

CHAPTER 34. CRON JOBS

285

CHAPTER 35. CREATE FROM URL

35.1. OVERVIEW

Create From URL is a function that allows you to construct a URL from an image stream, image tag, or
template.

Create from URL only works with image streams or templates from namespaces that have been
explicitly whitelisted. The whitelist contains the openshift namespace by default.

You can define custom buttons.

These buttons leverage a defined URL pattern with an appropriate query string. The user is prompted to
select the project. Then, the Create from URL workflow continues.

35.2. USING AN IMAGE STREAM AND IMAGE TAG

35.2.1. Query String Parameters

Name Description Required Schema Default

imageStream The value
metadata.name
as defined in the
image stream to
be used.

true string

imageTag The value
spec.tags.name
as defined in the
image stream to
be used.

true string

namespace The name of the
namespace
containing the
image stream and
image tag to use.

false string openshift

name Identifies the
resources created
for this application.

false string

OpenShift Online 3 Developer Guide

286

sourceURI The Git repository
URL containing
the application
source code.

false string

sourceRef The branch, tag, or
commit for the
application source
code specified in
sourceURI.

false string

contextDir The subdirectory
for the application
source code
specified in
sourceURI, used
as the context
directory for the
build.

false string

Name Description Required Schema Default

NOTE

Reserved characters in parameter values should be URL encoded.

35.2.1.1. Example

 create?
imageStream=nodejs&imageTag=4&name=nodejs&sourceURI=https%3A%2F%2Fgithub.com%2Fope
nshift%2Fnodejs-ex.git&sourceRef=master&contextDir=%2F

35.3. USING A TEMPLATE

35.3.1. Query String Parameters

Name Description Required Schema Default

template The value of
metadata.name
as defined in the
template to be
used.

true string

CHAPTER 35. CREATE FROM URL

287

https://en.wikipedia.org/wiki/Percent-encoding#Percent-encoding_reserved_characters

templateParams
Map

A JSON
parameters map
containing the
template
parameter name
and corresponding
value you wish to
override.

false JSON

namespace The name of the
namespace
containing the
template to use.

false string openshift

Name Description Required Schema Default

NOTE

Reserved characters in parameter values should be URL encoded.

35.3.1.1. Example

 create?template=nodejs-mongodb-example&templateParamsMap=
{"SOURCE_REPOSITORY_URL"%3A"https%3A%2F%2Fgithub.com%2Fopenshift%2Fnodejs-
ex.git"}

OpenShift Online 3 Developer Guide

288

https://en.wikipedia.org/wiki/Percent-encoding#Percent-encoding_reserved_characters

CHAPTER 36. APPLICATION MEMORY SIZING

36.1. OVERVIEW

This page is intended to provide guidance to application developers using OpenShift Online on:

1. Determining the memory and risk requirements of a containerized application component and
configuring the container memory parameters to suit those requirements.

2. Configuring containerized application runtimes (for example, OpenJDK) to adhere optimally to
the configured container memory parameters.

3. Diagnosing and resolving memory-related error conditions associated with running in a
container.

36.2. BACKGROUND

It is recommended to read fully the overview of how OpenShift Online manages Compute Resources
before proceeding.

For the purposes of sizing application memory, the key points are:

For each kind of resource (memory, cpu, storage), OpenShift Online allows optional request
and limit values to be placed on each container in a pod. For the purposes of this page, we are
solely interested in memory requests and memory limits.

Memory request

The memory request value, if specified, influences the OpenShift Online scheduler. The
scheduler considers the memory request when scheduling a container to a node, then
fences off the requested memory on the chosen node for the use of the container.

If a node’s memory is exhausted, OpenShift Online prioritizes evicting its containers whose
memory usage most exceeds their memory request. In serious cases of memory exhaustion,
the node OOM killer may select and kill a process in a container based on a similar metric.

Memory limit

The memory limit value, if specified, provides a hard limit on the memory that can be
allocated across all the processes in a container.

If the memory allocated by all of the processes in a container exceeds the memory limit, the
node OOM killer will immediately select and kill a process in the container.

If both memory request and limit are specified, the memory limit value must be greater than
or equal to the memory request.

Administration

The cluster administrator may assign quota against the memory request value, limit value,
both, or neither.

The cluster administrator may assign default values for the memory request value, limit
value, both, or neither.

The cluster administrator may override the memory request values that a developer

CHAPTER 36. APPLICATION MEMORY SIZING

289

The cluster administrator may override the memory request values that a developer
specifies, in order to manage cluster overcommit. This occurs on OpenShift Online, for
example.

36.3. STRATEGY

The steps for sizing application memory on OpenShift Online are as follows:

1. Determine expected container memory usage
Determine expected mean and peak container memory usage, empirically if necessary (for
example, by separate load testing). Remember to consider all the processes that may
potentially run in parallel in the container: for example, does the main application spawn any
ancillary scripts?

2. Determine risk appetite
Determine risk appetite for eviction. If the risk appetite is low, the container should request
memory according to the expected peak usage plus a percentage safety margin. If the risk
appetite is higher, it may be more appropriate to request memory according to the expected
mean usage.

3. Set container memory request
Set container memory request based on the above. The more accurately the request represents
the application memory usage, the better. If the request is too high, cluster and quota usage will
be inefficient. If the request is too low, the chances of application eviction increase.

4. Set container memory limit, if required
Set container memory limit, if required. Setting a limit has the effect of immediately killing a
container process if the combined memory usage of all processes in the container exceeds the
limit, and is therefore a mixed blessing. On the one hand, it may make unanticipated excess
memory usage obvious early ("fail fast"); on the other hand it also terminates processes
abruptly.

Note that some OpenShift Online clusters may require a limit value to be set; some may override
the request based on the limit; and some application images rely on a limit value being set as this
is easier to detect than a request value.

If the memory limit is set, it should not be set to less than the expected peak container memory
usage plus a percentage safety margin.

5. Ensure application is tuned
Ensure application is tuned with respect to configured request and limit values, if appropriate.
This step is particularly relevant to applications which pool memory, such as the JVM. The rest of
this page discusses this.

36.4. SIZING OPENJDK ON OPENSHIFT ONLINE

The default OpenJDK settings unfortunately do not work well with containerized environments, with the
result that as a rule, some additional Java memory settings must always be provided whenever running
the OpenJDK in a container.

The JVM memory layout is complex, version dependent, and describing it in detail is beyond the scope
of this documentation. However, as a starting point for running OpenJDK in a container, at least the
following three memory-related tasks are key:

1. Overriding the JVM maximum heap size.

OpenShift Online 3 Developer Guide

290

2. Encouraging the JVM to release unused memory to the operating system, if appropriate.

3. Ensuring all JVM processes within a container are appropriately configured.

Optimally tuning JVM workloads for running in a container is beyond the scope of this documentation,
and may involve setting multiple additional JVM options.

36.4.1. Overriding the JVM Maximum Heap Size

For many Java workloads, the JVM heap is the largest single consumer of memory. Currently, the
OpenJDK defaults to allowing up to 1/4 (1/-XX:MaxRAMFraction) of the compute node’s memory to be
used for the heap, regardless of whether the OpenJDK is running in a container or not. It is therefore
essential to override this behaviour, especially if a container memory limit is also set.

There are at least two ways the above can be achieved:

1. If the container memory limit is set and the experimental options are supported by the JVM, set
-XX:+UnlockExperimentalVMOptions -XX:+UseCGroupMemoryLimitForHeap.
This sets -XX:MaxRAM to the container memory limit, and the maximum heap size (-
XX:MaxHeapSize / -Xmx) to 1/ -XX:MaxRAMFraction (1/4 by default).

2. Directly override one of -XX:MaxRAM, -XX:MaxHeapSize or -Xmx.
This option involves hard-coding a value, but has the advantage of allowing a safety margin to
be calculated.

36.4.2. Encouraging the JVM to Release Unused Memory to the Operating System

By default, the OpenJDK does not aggressively return unused memory to the operating system. This
may be appropriate for many containerized Java workloads, but notable exceptions include workloads
where additional active processes co-exist with a JVM within a container, whether those additional
processes are native, additional JVMs, or a combination of the two.

The OpenShift Online Jenkins maven slave image uses the following JVM arguments to encourage the
JVM to release unused memory to the operating system: -XX:+UseParallelGC -
XX:MinHeapFreeRatio=5 -XX:MaxHeapFreeRatio=10 -XX:GCTimeRatio=4 -
XX:AdaptiveSizePolicyWeight=90. These arguments are intended to return heap memory to the
operating system whenever allocated memory exceeds 110% of in-use memory (-
XX:MaxHeapFreeRatio), spending up to 20% of CPU time in the garbage collector (-
XX:GCTimeRatio). At no time will the application heap allocation be less than the initial heap allocation
(overridden by -XX:InitialHeapSize / -Xms). Detailed additional information is available Tuning Java’s
footprint in OpenShift (Part 1), Tuning Java’s footprint in OpenShift (Part 2) , and at OpenJDK and
Containers.

36.4.3. Ensuring All JVM Processes Within a Container Are Appropriately
Configured

In the case that multiple JVMs run in the same container, it is essential to ensure that they are all
configured appropriately. For many workloads it will be necessary to grant each JVM a percentage
memory budget, leaving a perhaps substantial additional safety margin.

Many Java tools use different environment variables (JAVA_OPTS, GRADLE_OPTS, MAVEN_OPTS,
and so on) to configure their JVMs and it can be challenging to ensure that the right settings are being
passed to the right JVM.

The JAVA_TOOL_OPTIONS environment variable is always respected by the OpenJDK, and values

CHAPTER 36. APPLICATION MEMORY SIZING

291

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/using_images/#
https://developers.redhat.com/blog/2014/07/15/dude-wheres-my-paas-memory-tuning-javas-footprint-in-openshift-part-1/
https://developers.redhat.com/blog/2014/07/22/dude-wheres-my-paas-memory-tuning-javas-footprint-in-openshift-part-2/
https://developers.redhat.com/blog/2017/04/04/openjdk-and-containers/

specified in JAVA_TOOL_OPTIONS will be overridden by other options specified on the JVM
command line. By default, the OpenShift Online Jenkins maven slave image sets
JAVA_TOOL_OPTIONS="-XX:+UnlockExperimentalVMOptions -
XX:+UseCGroupMemoryLimitForHeap -Dsun.zip.disableMemoryMapping=true" to ensure that
these options are used by default for all JVM workloads run in the slave image. This does not guarantee
that additional options are not required, but is intended to be a helpful starting point.

36.5. FINDING THE MEMORY REQUEST AND LIMIT FROM WITHIN A
POD

An application wishing to dynamically discover its memory request and limit from within a pod should use
the Downward API. The following snippet shows how this is done.

oc rsh test
$ env | grep MEMORY | sort
MEMORY_LIMIT=536870912
MEMORY_REQUEST=402653184

The memory limit value can also be read from inside the container by the
/sys/fs/cgroup/memory/memory.limit_in_bytes file.

36.6. DIAGNOSING AN OOM KILL

OpenShift Online may kill a process in a container if the total memory usage of all the processes in the
container exceeds the memory limit, or in serious cases of node memory exhaustion.

apiVersion: v1
kind: Pod
metadata:
 name: test
spec:
 containers:
 - name: test
 image: fedora:latest
 command:
 - sleep
 - "3600"
 env:
 - name: MEMORY_REQUEST
 valueFrom:
 resourceFieldRef:
 containerName: test
 resource: requests.memory
 - name: MEMORY_LIMIT
 valueFrom:
 resourceFieldRef:
 containerName: test
 resource: limits.memory
 resources:
 requests:
 memory: 384Mi
 limits:
 memory: 512Mi

OpenShift Online 3 Developer Guide

292

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/using_images/#

When a process is OOM killed, this may or may not result in the container exiting immediately. If the
container PID 1 process receives the SIGKILL, the container will exit immediately. Otherwise, the
container behavior is dependent on the behavior of the other processes.

If the container does not exit immediately, an OOM kill is detectable as follows:

1. A container process exited with code 137, indicating it received a SIGKILL signal

2. The oom_kill counter in /sys/fs/cgroup/memory/memory.oom_control is incremented

$ grep '^oom_kill ' /sys/fs/cgroup/memory/memory.oom_control
oom_kill 0
$ sed -e '' </dev/zero # provoke an OOM kill
Killed
$ echo $?
137
$ grep '^oom_kill ' /sys/fs/cgroup/memory/memory.oom_control
oom_kill 1

If one or more processes in a pod are OOM killed, when the pod subsequently exits, whether
immediately or not, it will have phase Failed and reason OOMKilled. An OOM killed pod may be
restarted depending on the value of restartPolicy. If not restarted, controllers such as the
ReplicationController will notice the pod’s failed status and create a new pod to replace the old one.

If not restarted, the pod status is as follows:

$ oc get pod test
NAME READY STATUS RESTARTS AGE
test 0/1 OOMKilled 0 1m

$ oc get pod test -o yaml
...
status:
 containerStatuses:
 - name: test
 ready: false
 restartCount: 0
 state:
 terminated:
 exitCode: 137
 reason: OOMKilled
 phase: Failed

If restarted, its status is as follows:

$ oc get pod test
NAME READY STATUS RESTARTS AGE
test 1/1 Running 1 1m

$ oc get pod test -o yaml
...
status:
 containerStatuses:
 - name: test
 ready: true

CHAPTER 36. APPLICATION MEMORY SIZING

293

 restartCount: 1
 lastState:
 terminated:
 exitCode: 137
 reason: OOMKilled
 state:
 running:
 phase: Running

36.7. DIAGNOSING AN EVICTED POD

OpenShift Online may evict a pod from its node when the node’s memory is exhausted. Depending on
the extent of memory exhaustion, the eviction may or may not be graceful. Graceful eviction implies the
main process (PID 1) of each container receiving a SIGTERM signal, then some time later a SIGKILL
signal if the process hasn’t exited already. Non-graceful eviction implies the main process of each
container immediately receiving a SIGKILL signal.

An evicted pod will have phase Failed and reason Evicted. It will not be restarted, regardless of the
value of restartPolicy. However, controllers such as the ReplicationController will notice the pod’s failed
status and create a new pod to replace the old one.

$ oc get pod test
NAME READY STATUS RESTARTS AGE
test 0/1 Evicted 0 1m

$ oc get pod test -o yaml
...
status:
 message: 'Pod The node was low on resource: [MemoryPressure].'
 phase: Failed
 reason: Evicted

OpenShift Online 3 Developer Guide

294

	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT
	2.1. PLANNING YOUR DEVELOPMENT PROCESS
	2.1.1. Overview
	2.1.2. Using OpenShift Online as Your Development Environment
	2.1.3. Bringing an Application to Deploy on OpenShift Online

	2.2. CREATING NEW APPLICATIONS
	2.2.1. Overview
	2.2.2. Creating an Application Using the CLI
	2.2.2.1. Creating an Application From Source Code
	2.2.2.2. Creating an Application From an Image
	2.2.2.3. Creating an Application From a Template
	2.2.2.4. Further Modifying Application Creation

	2.2.3. Creating an Application Using the Web Console

	2.3. PROMOTING APPLICATIONS ACROSS ENVIRONMENTS
	2.3.1. Overview
	2.3.2. Application Components
	2.3.2.1. API Objects
	2.3.2.2. Images
	2.3.2.3. Summary

	2.3.3. Deployment Environments
	2.3.3.1. Considerations
	2.3.3.2. Summary

	2.3.4. Methods and Tools
	2.3.4.1. Managing API Objects
	2.3.4.2. Managing Images and Image Streams
	2.3.4.3. Summary

	2.3.5. Scenarios and Examples
	2.3.5.1. Setting up for Promotion
	2.3.5.2. Repeatable Promotion Process
	2.3.5.3. Repeatable Promotion Process Using Jenkins

	CHAPTER 3. AUTHENTICATION
	3.1. WEB CONSOLE AUTHENTICATION
	3.2. CLI AUTHENTICATION

	CHAPTER 4. AUTHORIZATION
	4.1. OVERVIEW
	4.2. CHECKING IF USERS CAN CREATE PODS
	4.3. DETERMINING WHAT YOU CAN DO AS AN AUTHENTICATED USER

	CHAPTER 5. PROJECTS
	5.1. OVERVIEW
	5.2. CREATING A PROJECT
	5.2.1. Using the Web Console
	5.2.2. Using the CLI

	5.3. VIEWING PROJECTS
	5.4. CHECKING PROJECT STATUS
	5.5. FILTERING BY LABELS
	5.6. DELETING A PROJECT
	5.7. PROJECT COLLABORATION IN OPENSHIFT ONLINE PRO
	5.7.1. Collaboration Restrictions
	5.7.2. Adding Collaborators
	5.7.3. Granting Project Access Using the Web Console
	5.7.4. Granting Project Access Using the CLI
	5.7.5. Removing Collaborators
	5.7.5.1. Removing Project Access Using the Web Console
	5.7.5.2. Removing Project Access Using the CLI

	CHAPTER 6. MIGRATING APPLICATIONS
	6.1. OVERVIEW
	6.2. MIGRATING DATABASE APPLICATIONS
	6.2.1. Overview
	6.2.2. Supported Databases
	6.2.3. MySQL
	6.2.4. PostgreSQL
	6.2.5. MongoDB

	6.3. MIGRATING WEB FRAMEWORK APPLICATIONS
	6.3.1. Overview
	6.3.2. Python
	6.3.3. Ruby
	6.3.4. PHP
	6.3.5. Perl
	6.3.6. Node.js
	6.3.7. WordPress
	6.3.8. Ghost
	6.3.9. JBoss EAP
	6.3.10. JBoss WS (Tomcat)
	6.3.11. JBoss AS (Wildfly 10)
	6.3.12. Supported JBoss Versions

	6.4. QUICKSTART EXAMPLES
	6.4.1. Overview
	6.4.2. Workflow

	6.5. CONTINUOUS INTEGRATION AND DEPLOYMENT (CI/CD)
	6.5.1. Overview
	6.5.2. Jenkins

	6.6. WEBHOOKS AND ACTION HOOKS
	6.6.1. Overview
	6.6.2. Webhooks
	6.6.3. Action Hooks

	6.7. S2I TOOL
	6.7.1. Overview
	6.7.2. Creating a Container Image

	6.8. SUPPORT GUIDE
	6.8.1. Overview
	6.8.2. Supported Databases
	6.8.3. Supported Languages
	6.8.4. Supported Frameworks
	6.8.5. Supported Markers
	6.8.6. Supported Environment Variables

	CHAPTER 7. TUTORIALS
	7.1. OVERVIEW
	7.2. QUICKSTART TEMPLATES
	7.2.1. Overview
	7.2.2. Web Framework Quickstart Templates

	7.3. RUBY ON RAILS
	7.3.1. Overview
	7.3.2. Local Workstation Setup
	7.3.2.1. Setting Up the Database

	7.3.3. Writing Your Application
	7.3.3.1. Creating a Welcome Page
	7.3.3.2. Configuring the Application for OpenShift Online
	7.3.3.3. Storing Your Application in Git

	7.3.4. Deploying Your Application to OpenShift Online
	7.3.4.1. Creating the Database Service
	7.3.4.2. Creating the Frontend Service
	7.3.4.3. Creating a Route for Your Application

	7.4. SETTING UP A NEXUS MIRROR FOR MAVEN
	7.4.1. Introduction
	7.4.2. Setting up Nexus
	7.4.2.1. Using Probes to Check for Success
	7.4.2.2. Adding Persistence to Nexus

	7.4.3. Connecting to Nexus
	7.4.4. Confirming Success
	7.4.5. Additional Resources

	7.5. OPENSHIFT PIPELINE BUILDS
	7.5.1. Introduction
	7.5.2. Creating the Jenkins Master
	7.5.3. The Pipeline Build Configuration
	7.5.4. The Jenkinsfile
	7.5.5. Creating the Pipeline
	7.5.6. Starting the Pipeline

	7.6. BINARY BUILDS
	7.6.1. Introduction
	7.6.1.1. Use Cases
	7.6.1.2. Limitations

	7.6.2. Tutorials Overview
	7.6.2.1. Tutorial: Building local code changes
	7.6.2.2. Tutorial: Building private code
	7.6.2.3. Tutorial: Binary artifacts from pipeline

	CHAPTER 8. BUILDS
	8.1. HOW BUILDS WORK
	8.1.1. What Is a Build?
	8.1.2. What Is a BuildConfig?

	8.2. BASIC BUILD OPERATIONS
	8.2.1. Starting a Build
	8.2.2. Canceling a Build
	8.2.3. Deleting a BuildConfig
	8.2.4. Viewing Build Details
	8.2.5. Accessing Build Logs

	8.3. BUILD INPUTS
	8.3.1. How Build Inputs Work
	8.3.2. Image Source
	8.3.3. Git Source
	8.3.3.1. Using a Proxy
	8.3.3.2. Source Clone Secrets

	8.3.4. Binary (Local) Source
	8.3.5. Input Secrets
	8.3.5.1. Adding Input Secrets
	8.3.5.2. Source-to-Image Strategy

	8.3.6. Using External Artifacts
	8.3.7. Using Docker Credentials for Private Registries

	8.4. BUILD OUTPUT
	8.4.1. Build Output Overview
	8.4.2. Output Image Environment Variables
	8.4.3. Output Image Labels
	8.4.4. Output Image Digest
	8.4.5. Using Docker Credentials for Private Registries

	8.5. BUILD STRATEGY OPTIONS
	8.5.1. Source-to-Image Strategy Options
	8.5.1.1. Force Pull
	8.5.1.2. Incremental Builds
	8.5.1.3. Overriding Builder Image Scripts
	8.5.1.4. Environment Variables
	8.5.1.5. Adding Secrets via Web Console
	8.5.1.6. Ignoring Source Files

	8.5.2. Pipeline Strategy Options
	8.5.2.1. Providing the Jenkinsfile
	8.5.2.2. Environment Variables

	8.6. BUILD ENVIRONMENT
	8.6.1. Overview
	8.6.2. Using Build Fields as Environment Variables
	8.6.3. Using Container Resources as Environment Variables
	8.6.4. Using Secrets as Environment Variables

	8.7. TRIGGERING BUILDS
	8.7.1. Build Triggers Overview
	8.7.2. Webhook Triggers
	8.7.2.1. GitHub Webhooks
	8.7.2.2. GitLab Webhooks
	8.7.2.3. Bitbucket Webhooks
	8.7.2.4. Generic Webhooks
	8.7.2.5. Displaying Webhook URLs

	8.7.3. Image Change Triggers
	8.7.4. Configuration Change Triggers
	8.7.4.1. Setting Triggers Manually

	8.8. BUILD HOOKS
	8.8.1. Build Hooks Overview
	8.8.2. Configuring Post Commit Build Hooks
	8.8.2.1. Using the CLI

	8.9. BUILD RUN POLICY
	8.9.1. Build Run Policy Overview
	8.9.2. Serial Run Policy
	8.9.3. SerialLatestOnly Run Policy
	8.9.4. Parallel Run Policy

	8.10. ADVANCED BUILD OPERATIONS
	8.10.1. Setting Build Resources
	8.10.2. Setting Maximum Duration
	8.10.3. Assigning Builds to Specific Nodes
	8.10.4. Chaining Builds
	8.10.5. Build Pruning

	8.11. BUILD TROUBLESHOOTING
	8.11.1. Requested Access to Resources Denied

	CHAPTER 9. DEPLOYMENTS
	9.1. HOW DEPLOYMENTS WORK
	9.1.1. What Is a Deployment?
	9.1.2. Creating a Deployment Configuration

	9.2. BASIC DEPLOYMENT OPERATIONS
	9.2.1. Starting a Deployment
	9.2.2. Viewing a Deployment
	9.2.3. Rolling Back a Deployment
	9.2.4. Executing Commands Inside a Container
	9.2.5. Viewing Deployment Logs
	9.2.6. Setting Deployment Triggers
	9.2.6.1. Configuration Change Trigger
	9.2.6.2. ImageChange Trigger

	9.2.7. Setting Deployment Resources
	9.2.8. Manual Scaling

	9.3. DEPLOYMENT STRATEGIES
	9.3.1. What Are Deployment Strategies?
	9.3.2. Rolling Strategy
	9.3.2.1. Canary Deployments
	9.3.2.2. When to Use a Rolling Deployment
	9.3.2.3. Rolling Example

	9.3.3. Recreate Strategy
	9.3.3.1. When to Use a Recreate Deployment

	9.3.4. Custom Strategy
	9.3.5. Lifecycle Hooks
	9.3.5.1. Pod-based Lifecycle Hook
	9.3.5.2. Using the Command Line

	9.4. ADVANCED DEPLOYMENT STRATEGIES
	9.4.1. Advanced Deployment Strategies
	9.4.2. Blue-Green Deployment
	9.4.2.1. Using a Blue-Green Deployment

	9.4.3. A/B Deployment
	9.4.3.1. Load Balancing for A/B Testing

	9.4.4. Proxy Shard / Traffic Splitter
	9.4.5. N-1 Compatibility
	9.4.6. Graceful Termination

	CHAPTER 10. TEMPLATES
	10.1. OVERVIEW
	10.2. UPLOADING A TEMPLATE
	10.3. CREATING FROM TEMPLATES USING THE WEB CONSOLE
	10.4. CREATING FROM TEMPLATES USING THE CLI
	10.4.1. Labels
	10.4.2. Parameters
	10.4.3. Generating a List of Objects

	10.5. MODIFYING AN UPLOADED TEMPLATE
	10.6. USING THE INSTANT APP AND QUICKSTART TEMPLATES
	10.7. WRITING TEMPLATES
	10.7.1. Description
	10.7.2. Labels
	10.7.3. Parameters
	10.7.4. Object List
	10.7.5. Marking Templates as Bindable
	10.7.6. Exposing Object Fields
	10.7.7. Waiting for Template Readiness
	10.7.8. Other Recommendations
	10.7.9. Creating a Template from Existing Objects

	CHAPTER 11. OPENING A REMOTE SHELL TO CONTAINERS
	11.1. OVERVIEW
	11.2. START A SECURE SHELL SESSION
	11.3. SECURE SHELL SESSION HELP

	CHAPTER 12. SERVICE ACCOUNTS
	12.1. OVERVIEW
	12.2. USER NAMES AND GROUPS
	12.3. DEFAULT SERVICE ACCOUNTS AND ROLES
	12.4. MANAGING SERVICE ACCOUNTS
	12.5. ENABLING SERVICE ACCOUNT AUTHENTICATION
	12.6. MANAGING ALLOWED SECRETS
	12.7. USING A SERVICE ACCOUNT’S CREDENTIALS INSIDE A CONTAINER
	12.8. USING A SERVICE ACCOUNT’S CREDENTIALS EXTERNALLY

	CHAPTER 13. MANAGING IMAGES
	13.1. OVERVIEW
	13.2. TAGGING IMAGES
	13.2.1. Adding Tags to Image Streams
	13.2.2. Recommended Tagging Conventions
	13.2.3. Removing Tags from Image Streams
	13.2.4. Referencing Images in Image Streams

	13.3. IMAGE PULL POLICY
	13.4. ACCESSING THE INTERNAL REGISTRY
	13.5. USING IMAGE PULL SECRETS
	13.5.1. Allowing Pods to Reference Images Across Projects
	13.5.2. Allowing Pods to Reference Images from Other Secured Registries
	13.5.2.1. Pulling from Private Registries with Delegated Authentication

	13.6. IMPORTING TAG AND IMAGE METADATA
	13.6.1. Importing Images from Insecure Registries
	13.6.1.1. Image Stream Tag Policies

	13.6.2. Importing Images from Private Registries
	13.6.3. Adding Trusted Certificates for External Registries
	13.6.4. Importing Images Across Projects
	13.6.5. Creating an Image Stream by Manually Pushing an Image

	13.7. TRIGGERING UPDATES ON IMAGE STREAM CHANGES
	13.7.1. OpenShift Resources
	13.7.2. Kubernetes Resources

	13.8. WRITING IMAGE STREAM DEFINITIONS

	CHAPTER 14. QUOTAS AND LIMIT RANGES
	14.1. OVERVIEW
	14.2. QUOTAS
	14.2.1. Viewing Quotas
	14.2.2. Resources Managed by Quota
	14.2.3. Quota Scopes
	14.2.4. Quota Enforcement
	14.2.5. Requests Versus Limits

	14.3. LIMIT RANGES
	14.3.1. Viewing Limit Ranges
	14.3.2. Container Limits
	14.3.3. Pod Limits

	14.4. COMPUTE RESOURCES
	14.4.1. CPU Requests
	14.4.2. Viewing Compute Resources
	14.4.3. CPU Limits
	14.4.4. Memory Requests
	14.4.5. Memory Limits
	14.4.6. Quality of Service Tiers
	14.4.7. Specifying Compute Resources via CLI

	CHAPTER 15. ROUTES
	15.1. OVERVIEW
	15.2. CREATING ROUTES
	15.3. ALLOWING ROUTE ENDPOINTS TO CONTROL COOKIE NAMES
	15.4. RESTRICTIONS
	15.5. UPDATE DNS FOR CUSTOM ROUTES

	CHAPTER 16. INTEGRATING EXTERNAL SERVICES
	16.1. OVERVIEW
	16.2. DEFINING A SERVICE FOR AN EXTERNAL DATABASE
	16.2.1. Step 1: Define a Service
	16.2.1.1. Using an IP address
	16.2.1.2. Using an External Domain Name

	16.2.2. Step 2: Consume a Service

	16.3. EXTERNAL SAAS PROVIDER
	16.3.1. Using an IP address and Endpoints
	16.3.2. Using an External Domain Name

	CHAPTER 17. SECRETS
	17.1. USING SECRETS
	17.1.1. Properties of Secrets
	17.1.2. Creating Secrets
	17.1.3. Types of Secrets
	17.1.4. Updating Secrets

	17.2. SECRETS IN VOLUMES AND ENVIRONMENT VARIABLES
	17.3. IMAGE PULL SECRETS
	17.4. SOURCE CLONE SECRETS
	17.5. SERVICE SERVING CERTIFICATE SECRETS
	17.6. RESTRICTIONS
	17.6.1. Secret Data Keys

	17.7. EXAMPLES
	17.8. TROUBLESHOOTING

	CHAPTER 18. CONFIGMAPS
	18.1. OVERVIEW
	18.2. CREATING CONFIGMAPS
	18.2.1. Creating from Directories
	18.2.2. Creating from Files
	18.2.3. Creating from Literal Values

	18.3. USE CASES: CONSUMING CONFIGMAPS IN PODS
	18.3.1. Consuming in Environment Variables
	18.3.2. Setting Command-line Arguments
	18.3.3. Consuming in Volumes

	18.4. EXAMPLE: CONFIGURING REDIS
	18.5. RESTRICTIONS

	CHAPTER 19. POD AUTOSCALING
	19.1. OVERVIEW
	19.2. SUPPORTED METRICS
	19.3. AUTOSCALING
	19.4. AUTOSCALING FOR CPU UTILIZATION
	19.5. AUTOSCALING FOR MEMORY UTILIZATION
	19.6. VIEWING A HORIZONTAL POD AUTOSCALER
	19.6.1. Viewing Horizontal Pod Autoscaler Status Conditions

	CHAPTER 20. MANAGING VOLUMES
	20.1. OVERVIEW
	20.2. GENERAL CLI USAGE
	20.3. ADDING VOLUMES
	Examples

	20.4. UPDATING VOLUMES
	Examples

	20.5. REMOVING VOLUMES
	Examples

	20.6. LISTING VOLUMES
	Examples

	20.7. SPECIFYING A SUB-PATH

	CHAPTER 21. USING PERSISTENT VOLUMES
	21.1. OVERVIEW
	21.2. REQUESTING STORAGE
	21.3. VOLUME AND CLAIM BINDING
	21.4. CLAIMS AS VOLUMES IN PODS
	21.5. VOLUME AND CLAIM PRE-BINDING

	CHAPTER 22. STORAGE CLASSES
	22.1. OVERVIEW

	CHAPTER 23. SELECTOR AND LABEL VOLUME BINDING
	23.1. OVERVIEW
	23.2. MOTIVATION

	CHAPTER 24. EXECUTING REMOTE COMMANDS
	24.1. OVERVIEW
	24.2. BASIC USAGE
	24.3. PROTOCOL

	CHAPTER 25. COPYING FILES TO OR FROM A CONTAINER
	25.1. OVERVIEW
	25.2. BASIC USAGE
	25.3. BACKING UP AND RESTORING DATABASES
	25.4. REQUIREMENTS
	25.5. SPECIFYING THE COPY SOURCE
	25.6. SPECIFYING THE COPY DESTINATION
	25.7. DELETING FILES AT THE DESTINATION
	25.8. CONTINUOUS SYNCING ON FILE CHANGE
	25.9. ADVANCED RSYNC FEATURES

	CHAPTER 26. PORT FORWARDING
	26.1. OVERVIEW
	26.2. BASIC USAGE
	26.3. PROTOCOL

	CHAPTER 27. SHARED MEMORY
	27.1. OVERVIEW
	27.2. POSIX SHARED MEMORY

	CHAPTER 28. APPLICATION HEALTH
	28.1. OVERVIEW
	28.2. CONTAINER HEALTH CHECKS USING PROBES

	CHAPTER 29. EVENTS
	29.1. OVERVIEW
	29.2. VIEWING EVENTS WITH THE CLI
	29.3. VIEWING EVENTS IN THE CONSOLE
	29.4. COMPREHENSIVE LIST OF EVENTS

	CHAPTER 30. NOTIFICATIONS
	30.1. OVERVIEW
	30.2. HOW IT WORKS
	30.3. CONFIGURING NOTIFICATIONS VIA THE WEB CONSOLE
	30.4. STORING PREFERENCES

	CHAPTER 31. MANAGING ENVIRONMENT VARIABLES
	31.1. SETTING AND UNSETTING ENVIRONMENT VARIABLES
	31.2. LIST ENVIRONMENT VARIABLES
	31.3. SET ENVIRONMENT VARIABLES
	31.3.1. Automatically Added Environment Variables

	31.4. UNSET ENVIRONMENT VARIABLES

	CHAPTER 32. JOBS
	32.1. OVERVIEW
	32.2. CREATING A JOB
	32.2.1. Known Limitations

	32.3. SCALING A JOB
	32.4. SETTING MAXIMUM DURATION
	32.5. JOB BACKOFF FAILURE POLICY

	CHAPTER 33. OPENSHIFT PIPELINE
	33.1. OVERVIEW
	33.2. OPENSHIFT JENKINS CLIENT PLUG-IN
	33.2.1. OpenShift DSL

	33.3. JENKINS PIPELINE STRATEGY
	33.4. JENKINSFILE
	33.5. TUTORIAL
	33.6. ADVANCED TOPICS
	33.6.1. Disabling Jenkins AutoProvisioning
	33.6.2. Configuring Slave Pods

	CHAPTER 34. CRON JOBS
	34.1. OVERVIEW
	34.2. CREATING A CRON JOB
	34.3. CLEANING UP AFTER A CRON JOB

	CHAPTER 35. CREATE FROM URL
	35.1. OVERVIEW
	35.2. USING AN IMAGE STREAM AND IMAGE TAG
	35.2.1. Query String Parameters
	35.2.1.1. Example

	35.3. USING A TEMPLATE
	35.3.1. Query String Parameters
	35.3.1.1. Example

	CHAPTER 36. APPLICATION MEMORY SIZING
	36.1. OVERVIEW
	36.2. BACKGROUND
	36.3. STRATEGY
	36.4. SIZING OPENJDK ON OPENSHIFT ONLINE
	36.4.1. Overriding the JVM Maximum Heap Size
	36.4.2. Encouraging the JVM to Release Unused Memory to the Operating System
	36.4.3. Ensuring All JVM Processes Within a Container Are Appropriately Configured

	36.5. FINDING THE MEMORY REQUEST AND LIMIT FROM WITHIN A POD
	36.6. DIAGNOSING AN OOM KILL
	36.7. DIAGNOSING AN EVICTED POD

