
OpenShift Enterprise 3.1

Installation and Configuration

OpenShift Enterprise 3.1 Installation and Configuration

Last Updated: 2019-03-14

OpenShift Enterprise 3.1 Installation and Configuration

OpenShift Enterprise 3.1 Installation and Configuration

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

OpenShift Installation and Configuration topics cover the basics of installing and configuring
OpenShift in your environment. Use these topics for the one-time tasks required to get OpenShift up
and running.

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW

CHAPTER 2. INSTALLING
2.1. OVERVIEW
2.2. PREREQUISITES

2.2.1. Overview
2.2.2. System Requirements

2.2.2.1. Host Recommendations
2.2.2.2. Configuring Core Usage
2.2.2.3. Security Warning

2.2.3. Environment Requirements
2.2.3.1. DNS
2.2.3.2. Network Access
2.2.3.3. Git Access
2.2.3.4. Persistent Storage
2.2.3.5. SELinux
2.2.3.6. Cloud Provider Considerations

2.2.4. Host Preparation
2.2.4.1. Software Prerequisites
2.2.4.2. Configuring Docker Storage

2.2.5. Ensuring Host Access
2.2.6. Setting Global Proxy Values
2.2.7. What’s Next?

2.3. RPM VS CONTAINERIZED
2.3.1. Overview
2.3.2. Required Images
2.3.3. CLI Wrappers
2.3.4. Starting and Stopping Containers
2.3.5. File Paths
2.3.6. Storage Requirements
2.3.7. Open vSwitch SDN Initialization

2.4. QUICK INSTALLATION
2.4.1. Overview
2.4.2. Before You Begin
2.4.3. Running an Interactive Installation
2.4.4. Defining an Installation Configuration File
2.4.5. Running an Unattended Installation
2.4.6. Verifying the Installation
2.4.7. Adding Nodes or Reinstalling the Cluster
2.4.8. Uninstalling OpenShift Enterprise
2.4.9. What’s Next?

2.5. ADVANCED INSTALLATION
2.5.1. Overview
2.5.2. Before You Begin
2.5.3. Configuring Ansible

2.5.3.1. Configuring Host Variables
2.5.3.2. Configuring Cluster Variables
2.5.3.3. Configuring Node Host Labels
2.5.3.4. Marking Masters as Unschedulable Nodes
2.5.3.5. Configuring Session Options
2.5.3.6. Configuring Custom Certificates

12

13
13
13
13
13
14
15
15
15
15
16
18
19
19
19
22
22
25
29
29
30
30
30
31
31
32
32
32
33
33
33
33
34
34
36
36
37
38
38
38
38
38
39
39
40
43
43
44
44

Table of Contents

1

2.5.4. Single Master Examples
2.5.5. Multiple Masters Examples
2.5.6. Running the Advanced Installation
2.5.7. Configuring Fencing
2.5.8. Verifying the Installation
2.5.9. Adding Nodes to an Existing Cluster
2.5.10. Uninstalling OpenShift Enterprise

2.5.10.1. Uninstalling Nodes
2.5.11. Known Issues
2.5.12. What’s Next?

2.6. DISCONNECTED INSTALLATION
2.6.1. Overview
2.6.2. Prerequisites
2.6.3. Required Software and Components

2.6.3.1. Syncing Repositories
2.6.3.2. Syncing Images
2.6.3.3. Preparing Images for Export

2.6.4. Repository Server
2.6.4.1. Placing the Software

2.6.5. OpenShift Enterprise Systems
2.6.5.1. Building Your Hosts
2.6.5.2. Connecting the Repositories
2.6.5.3. Host Preparation

2.6.6. Installing OpenShift Enterprise
2.6.6.1. Importing OpenShift Enterprise Containerized Components
2.6.6.2. Running the OpenShift Enterprise Installer
2.6.6.3. Creating the Internal Docker Registry

2.6.7. Post-Installation Changes
2.6.7.1. Re-tagging S2I Builder Images
2.6.7.2. Creating an Administrative User
2.6.7.3. Modifying the Security Policies
2.6.7.4. Editing the Image Stream Definitions
2.6.7.5. Loading the Docker Images

2.6.8. Installing a Router
2.7. DEPLOYING A DOCKER REGISTRY

2.7.1. Overview
2.7.2. Deploying the Registry

2.7.2.1. Storage for the Registry
2.7.2.1.1. Production Use
2.7.2.1.2. Non-Production Use

2.7.2.2. Maintaining the Registry IP Address
2.7.3. Viewing Logs
2.7.4. File Storage
2.7.5. Accessing the Registry Directly

2.7.5.1. User Prerequisites
2.7.5.2. Logging in to the Registry
2.7.5.3. Pushing and Pulling Images

2.7.6. Securing the Registry
2.7.7. Advanced: Overriding the Registry Configuration
2.7.8. Whitelisting Docker Registries
2.7.9. Exposing the Registry
2.7.10. Known Issues
2.7.11. What’s Next?

45
48
52
53
53
55
57
57
58
58
58
58
59
59
59
61
62
63
63
64
64
64
64
64
64
65
65
65
65
66
66
66
67
68
68
68
68
69
69
69
70
71
71
73
73
74
74
75
78
79
80
81
82

OpenShift Enterprise 3.1 Installation and Configuration

2

. .

2.8. DEPLOYING A ROUTER
2.8.1. Overview
2.8.2. The Router Service Account
2.8.3. Deploying the Default HAProxy Router

2.8.3.1. High Availability
2.8.3.2. Customizing the Default Routing Subdomain
2.8.3.3. Using Wildcard Certificates
2.8.3.4. Using Secured Routes
2.8.3.5. Using the Container Network Stack
2.8.3.6. Exposing Router metrics

2.8.4. Deploying a Customized HAProxy Router
2.8.4.1. Using Stick Tables
2.8.4.2. Rebuilding Your Router

2.8.5. Deploying the F5 Router
2.8.6. What’s Next?

CHAPTER 3. UPGRADING
3.1. OVERVIEW
3.2. PERFORMING AUTOMATED CLUSTER UPGRADES

3.2.1. Overview
3.2.2. Preparing for an Automated Upgrade
3.2.3. Using the Installer to Upgrade
3.2.4. Running the Upgrade Playbook Directly

3.2.4.1. Upgrading to OpenShift Enterprise 3.1.0
3.2.4.2. Upgrading to OpenShift Enterprise 3.1 Asynchronous Releases

3.2.5. Updating Master and Node Certificates
3.2.5.1. Node Certificates

3.2.5.1.1. Checking the Node’s Certificate
3.2.5.1.2. Generating a New Node Certificate
3.2.5.1.3. Replace Node Serving Certificates

3.2.5.2. Master Certificates
3.2.5.2.1. Checking the Master’s Certificate
3.2.5.2.2. Generating a New Master Certificate

3.2.6. Upgrading the EFK Logging Stack
3.2.7. Verifying the Upgrade

3.3. PERFORMING MANUAL CLUSTER UPGRADES
3.3.1. Overview
3.3.2. Preparing for a Manual Upgrade
3.3.3. Upgrading Masters
3.3.4. Updating Policy Definitions
3.3.5. Upgrading Nodes
3.3.6. Upgrading the Router
3.3.7. Upgrading the Registry
3.3.8. Updating the Default Image Streams and Templates
3.3.9. Importing the Latest Images
3.3.10. Updating Master and Node Certificates

3.3.10.1. Node Certificates
3.3.10.1.1. Checking the Node’s Certificate
3.3.10.1.2. Generating a New Node Certificate
3.3.10.1.3. Replace Node Serving Certificates

3.3.10.2. Master Certificates
3.3.10.2.1. Checking the Master’s Certificate
3.3.10.2.2. Generating a New Master Certificate

82
82
82
83
84
84
85
85
86
87
88
89
90
90
92

93
93
93
93
94
94
95
95
96
96
96
96
97
97
98
98
99

100
100
101
101
101
102
103
104
105
105
106
108
109
109
109
110
111
111
111
112

Table of Contents

3

. .

. .

. .

. .

3.3.11. Upgrading the EFK Logging Stack
3.3.12. Additional Manual Steps Per Release

3.3.12.1. OpenShift Enterprise 3.1.0
3.3.12.2. OpenShift Enterprise 3.1.1
3.3.12.3. OpenShift Enterprise 3.1.1.11

3.3.13. Verifying the Upgrade
3.4. UPGRADING FROM PACEMAKER TO NATIVE HA

3.4.1. Overview
3.4.2. Using Ansible Playbooks

3.4.2.1. Modifying the Ansible Inventory
3.4.2.1.1. Destroying the Pacemaker Cluster

3.4.2.2. Updating DNS
3.4.2.3. Running the Ansible Playbook

3.4.3. Manually Upgrading
3.4.3.1. Creating Unit and System Configuration for New Services
3.4.3.2. Destroying the Pacemaker Cluster
3.4.3.3. Updating DNS
3.4.3.4. Modifying Master and Node Configuration

3.4.3.4.1. Starting the API Service
3.4.3.4.2. Starting the Controller Service

3.4.3.5. Modifying the Ansible Inventory

CHAPTER 4. DOWNGRADING OPENSHIFT
4.1. OVERVIEW
4.2. VERIFYING BACKUPS
4.3. SHUTTING DOWN THE CLUSTER
4.4. REMOVING RPMS
4.5. REINSTALLING RPMS
4.6. RESTORING ETCD

4.6.1. Embedded etcd
4.6.2. External etcd

4.6.2.1. Adding Additional etcd Members
4.7. BRINGING OPENSHIFT SERVICES BACK ONLINE

CHAPTER 5. MASTER AND NODE CONFIGURATION
5.1. OVERVIEW
5.2. CREATING NEW CONFIGURATION FILES
5.3. LAUNCHING SERVERS USING CONFIGURATION FILES
5.4. MASTER CONFIGURATION FILES
5.5. NODE CONFIGURATION FILES

CHAPTER 6. LOADING THE DEFAULT IMAGE STREAMS AND TEMPLATES
6.1. OVERVIEW
6.2. PREREQUISITES
6.3. CREATING IMAGE STREAMS FOR OPENSHIFT IMAGES
6.4. CREATING IMAGE STREAMS FOR XPAAS MIDDLEWARE IMAGES
6.5. CREATING DATABASE SERVICE TEMPLATES
6.6. CREATING INSTANT APP AND QUICKSTART TEMPLATES
6.7. WHAT’S NEXT?

CHAPTER 7. CONFIGURING CUSTOM CERTIFICATES
7.1. OVERVIEW
7.2. CONFIGURING CUSTOM CERTIFICATES

113
115
115
115
116
116
117
117
117
117
118
119
119
119
119
121
121
122
122
122
123

124
124
124
124
124
125
125
125
126
128
129

131
131
131
131
132
134

136
136
137
137
138
138
138
139

140
140
140

OpenShift Enterprise 3.1 Installation and Configuration

4

. .

. .

. .

CHAPTER 8. CONFIGURING AUTHENTICATION
8.1. OVERVIEW
8.2. IDENTITY PROVIDERS

8.2.1. Mapping Identities to Users
8.2.2. Allow All
8.2.3. Deny All
8.2.4. HTPasswd
8.2.5. Keystone
8.2.6. LDAP Authentication
8.2.7. Basic Authentication (Remote)
8.2.8. Request Header
8.2.9. GitHub
8.2.10. Google
8.2.11. OpenID Connect

8.3. TOKEN OPTIONS
8.4. GRANT OPTIONS
8.5. SESSION OPTIONS

CHAPTER 9. SYNCING GROUPS WITH LDAP
9.1. OVERVIEW
9.2. CONFIGURING LDAP SYNC

9.2.1. LDAP Client Configuration
9.2.2. LDAP Query Definition
9.2.3. User-Defined Name Mapping

9.3. RUNNING LDAP SYNC
9.4. RUNNING A GROUP PRUNING JOB
9.5. SYNC EXAMPLES

9.5.1. RFC 2307
9.5.1.1. RFC2307 with User-Defined Name Mappings

9.5.2. Active Directory
9.5.3. Augmented Active Directory

CHAPTER 10. ADVANCED LDAP CONFIGURATION
10.1. OVERVIEW
10.2. SETTING UP SSSD FOR LDAP FAILOVER

10.2.1. Overview
10.2.2. Prerequisites for Authenticating Proxy Setup
10.2.3. Phase 1: Certificate Generation
10.2.4. Phase 2: Authenticating Proxy Setup

10.2.4.1. Step 1: Copy Certificates
10.2.4.2. Step 2: SSSD Configuration
10.2.4.3. Step 3: Apache Configuration

10.2.5. Phase 3: OpenShift Enterprise Configuration
10.3. CONFIGURING FORM-BASED AUTHENTICATION

10.3.1. Overview
10.3.2. Prepare a Login Page
10.3.3. Install Another Apache Module
10.3.4. Apache Configuration
10.3.5. OpenShift Enterprise Configuration

10.4. CONFIGURING EXTENDED LDAP ATTRIBUTES
10.4.1. Overview
10.4.2. Prerequisites
10.4.3. Configuring SSSD

141
141
141
142
142
143
144
145
145
148
149
155
156
157
160
160
161

163
163
163
163
164
165
165
166
166
166
169
170
172

175
175
175
175
175
176
177
177
177
178
180
181
181
181
181
181
181
182
182
182
182

Table of Contents

5

. .

. .

. .

. .

. .

10.4.4. Configuring Apache
10.4.5. Configuring OpenShift Enterprise
10.4.6. Debugging Notes

CHAPTER 11. CONFIGURING THE SDN
11.1. OVERVIEW
11.2. CONFIGURING THE POD NETWORK ON MASTERS
11.3. CONFIGURING THE POD NETWORK ON NODES
11.4. MIGRATING BETWEEN SDN PLUG-INS
11.5. EXTERNAL ACCESS TO THE CLUSTER NETWORK

CHAPTER 12. CONFIGURING FOR AWS
12.1. OVERVIEW
12.2. CONFIGURING AWS VARIABLES
12.3. CONFIGURING MASTERS
12.4. CONFIGURING NODES
12.5. SETTING KEY VALUE ACCESS PAIRS
12.6. APPLYING CONFIGURATION CHANGES

CHAPTER 13. CONFIGURING FOR OPENSTACK
13.1. OVERVIEW
13.2. CONFIGURING OPENSTACK VARIABLES
13.3. CONFIGURING MASTERS
13.4. CONFIGURING NODES

CHAPTER 14. CONFIGURING FOR GCE
14.1. OVERVIEW
14.2. CONFIGURING MASTERS
14.3. CONFIGURING NODES

CHAPTER 15. CONFIGURING PERSISTENT STORAGE
15.1. OVERVIEW
15.2. PERSISTENT STORAGE USING NFS

15.2.1. Overview
15.2.2. Provisioning
15.2.3. Enforcing Disk Quotas
15.2.4. NFS Volume Security

15.2.4.1. Group IDs
15.2.4.2. User IDs
15.2.4.3. SELinux
15.2.4.4. Export Settings

15.2.5. Reclaiming Resources
15.2.6. Automation
15.2.7. Additional Configuration and Troubleshooting

15.3. PERSISTENT STORAGE USING GLUSTERFS
15.3.1. Overview
15.3.2. Provisioning

15.3.2.1. Creating Gluster Endpoints
15.3.2.2. Creating the Persistent Volume
15.3.2.3. Creating the Persistent Volume Claim

15.3.3. Gluster Volume Security
15.3.3.1. Group IDs
15.3.3.2. User IDs
15.3.3.3. SELinux

183
184
184

185
185
185
185
186
186

187
187
187
187
187
187
188

189
189
189
189
189

191
191
191
191

192
192
192
192
192
194
194
195
195
196
197
197
198
198
199
199
199
200
201
202
203
203
204
205

OpenShift Enterprise 3.1 Installation and Configuration

6

. .

15.4. PERSISTENT STORAGE USING OPENSTACK CINDER
15.4.1. Overview
15.4.2. Provisioning

15.4.2.1. Creating the Persistent Volume
15.4.2.2. Volume Format

15.5. PERSISTENT STORAGE USING CEPH RADOS BLOCK DEVICE (RBD)
15.5.1. Overview
15.5.2. Provisioning

15.5.2.1. Creating the Ceph Secret
15.5.2.2. Creating the Persistent Volume

15.5.3. Ceph Volume Security
15.6. PERSISTENT STORAGE USING AWS ELASTIC BLOCK STORE

15.6.1. Overview
15.6.2. Provisioning

15.6.2.1. Creating the Persistent Volume
15.6.2.2. Volume Format

15.7. PERSISTENT STORAGE USING GCE PERSISTENT DISK
15.7.1. Overview
15.7.2. Provisioning

15.7.2.1. Creating the Persistent Volume
15.7.2.2. Volume Format

15.8. PERSISTENT STORAGE USING ISCSI
15.8.1. Overview
15.8.2. Provisioning

15.8.2.1. Enforcing Disk Quotas
15.8.2.2. iSCSI Volume Security

15.9. PERSISTENT STORAGE USING FIBRE CHANNEL
15.9.1. Overview
15.9.2. Provisioning

15.9.2.1. Enforcing Disk Quotas
15.9.2.2. Fibre Channel Volume Security

15.10. DYNAMICALLY PROVISIONING PERSISTENT VOLUMES
15.10.1. Overview
15.10.2. Enabling Provisioner Plug-ins
15.10.3. Requesting Dynamically Provisioned Storage
15.10.4. Volume Recycling

15.11. VOLUME SECURITY
15.11.1. Overview
15.11.2. SCCs, Defaults, and Allowed Ranges
15.11.3. Supplemental Groups
15.11.4. fsGroup
15.11.5. User IDs
15.11.6. SELinux Options

CHAPTER 16. PERSISTENT STORAGE EXAMPLES
16.1. OVERVIEW
16.2. SHARING AN NFS PERSISTENT VOLUME (PV) ACROSS TWO PODS

16.2.1. Overview
16.2.2. Creating the Persistent Volume
16.2.3. Creating the Persistent Volume Claim
16.2.4. Ensuring NFS Volume Access
16.2.5. Creating the Pod
16.2.6. Creating an Additional Pod to Reference the Same PVC

205
205
205
206
207
207
207
207
208
208
210
211
211
211
211
212
213
213
213
213
214
214
214
215
215
215
215
215
216
217
217
217
217
217
218
219
219
219
220
223
226
228
230

232
232
232
232
232
233
234
235
239

Table of Contents

7

. .

. .

. .

16.3. COMPLETE EXAMPLE USING CEPH RBD
16.3.1. Overview
16.3.2. Installing the ceph-common Package
16.3.3. Creating the Ceph Secret
16.3.4. Creating the Persistent Volume
16.3.5. Creating the Persistent Volume Claim
16.3.6. Creating the Pod
16.3.7. Defining Group and Owner IDs (Optional)

16.4. COMPLETE EXAMPLE USING GLUSTERFS
16.4.1. Overview
16.4.2. Installing the glusterfs-fuse Package
16.4.3. Creating the Gluster Endpoints
16.4.4. Creating the Persistent Volume
16.4.5. Creating the Persistent Volume Claim
16.4.6. Defining GlusterFS Volume Access
16.4.7. Creating the Pod

16.5. BACKING DOCKER REGISTRY WITH GLUSTERFS STORAGE
16.5.1. Overview
16.5.2. Prerequisites
16.5.3. Create the Gluster Persistent Volume
16.5.4. Attach the PVC to the Docker Registry
16.5.5. Known Issues

16.5.5.1. Pod Cannot Resolve the Volume Host
16.6. MOUNTING VOLUMES ON PRIVILEGED PODS

16.6.1. Overview
16.6.2. Prerequisites
16.6.3. Creating the Persistent Volume
16.6.4. Creating a Regular User
16.6.5. Creating the Persistent Volume Claim
16.6.6. Verifying the Setup

16.6.6.1. Checking the Pod SCC
16.6.6.2. Verifying the Mount

CHAPTER 17. WORKING WITH HTTP PROXIES
17.1. OVERVIEW
17.2. CONFIGURING HOSTS FOR PROXIES
17.3. PROXYING DOCKER PULL
17.4. USING MAVEN BEHIND A PROXY
17.5. CONFIGURING S2I BUILDS FOR PROXIES
17.6. CONFIGURING DEFAULT TEMPLATES FOR PROXIES
17.7. SETTING PROXY ENVIRONMENT VARIABLES IN PODS
17.8. GIT REPOSITORY ACCESS

CHAPTER 18. NATIVE CONTAINER ROUTING
18.1. OVERVIEW
18.2. NETWORK LAYOUT
18.3. NETWORK OVERVIEW
18.4. NODE SETUP
18.5. ROUTER SETUP

CHAPTER 19. ROUTING FROM EDGE LOAD BALANCERS
19.1. OVERVIEW
19.2. INCLUDING THE LOAD BALANCER IN THE SDN
19.3. ESTABLISHING A TUNNEL USING A RAMP NODE

241
241
241
241
242
243
244
245
245
245
245
246
246
247
248
249
253
253
253
254
254
255
255
256
256
256
256
257
257
258
258
258

260
260
260
261
262
262
263
263
263

265
265
265
265
266
266

267
267
267
267

OpenShift Enterprise 3.1 Installation and Configuration

8

. .

. .

. .

. .

19.3.1. Configuring a Highly Available Ramp Node

CHAPTER 20. AGGREGATING CONTAINER LOGS
20.1. OVERVIEW
20.2. PRE-DEPLOYMENT CONFIGURATION
20.3. DEPLOYING THE EFK STACK
20.4. POST-DEPLOYMENT CONFIGURATION

20.4.1. Elasticsearch
20.4.2. Fluentd
20.4.3. Kibana
20.4.4. Cleanup

20.5. UPGRADING
20.6. TROUBLESHOOTING KIBANA
20.7. EXTERNAL ELASTICSEARCH INSTANCE WITH FLUENTD

CHAPTER 21. ENABLING CLUSTER METRICS
21.1. OVERVIEW
21.2. BEFORE YOU BEGIN
21.3. SERVICE ACCOUNTS

21.3.1. Metrics Deployer Service Account
21.3.2. Heapster Service Account

21.4. METRICS DATA STORAGE
21.4.1. Persistent Storage
21.4.2. Non-Persistent Storage

21.5. METRICS DEPLOYER
21.5.1. Using Secrets

21.5.1.1. Providing Your Own Certificates
21.5.1.2. Using Generated Self-Signed Certificates

21.5.2. Modifying the Deployer Template
21.5.2.1. Deployer Template Parameters

21.6. DEPLOYING THE METRIC COMPONENTS
21.7. USING A RE-ENCRYPTING ROUTE
21.8. CONFIGURING OPENSHIFT
21.9. CLEANUP

CHAPTER 22. CUSTOMIZING THE WEB CONSOLE
22.1. OVERVIEW
22.2. LOADING CUSTOM SCRIPTS AND STYLESHEETS
22.3. SERVING STATIC FILES

22.3.1. Enabling HTML5 Mode
22.4. CUSTOMIZING THE LOGIN PAGE

22.4.1. Example Usage
22.5. CUSTOMIZING THE OAUTH ERROR PAGE
22.6. CHANGING THE LOGOUT URL

CHAPTER 23. REVISION HISTORY: INSTALLATION AND CONFIGURATION
23.1. WED FEB 01 2017
23.2. MON OCT 24 2016
23.3. MON OCT 17 2016
23.4. TUE OCT 04 2016
23.5. TUE SEP 13 2016
23.6. TUE SEP 06 2016
23.7. MON AUG 29 2016
23.8. TUE AUG 23 2016

269

272
272
272
274
276
277
280
281
281
281
281
283

284
284
284
284
285
285
285
285
286
286
286
286
288
288
288
290
290
292
292

293
293
293
294
295
295
296
296
296

297
297
297
297
297
298
298
298
298

Table of Contents

9

23.9. MON AUG 15 2016
23.10. MON AUG 08 2016
23.11. MON AUG 01 2016
23.12. WED JUL 27 2016
23.13. WED JUL 20 2016
23.14. MON JUN 13 2016
23.15. FRI JUN 10 2016
23.16. FRI JUN 03 2016
23.17. MON MAY 30 2016
23.18. TUE MAY 10 2016
23.19. WED APR 27 2016
23.20. MON APR 18 2016
23.21. WED APR 06 2016
23.22. MON APR 04 2016
23.23. TUE MAR 29 2016
23.24. MON MAR 21 2016
23.25. THU MAR 17 2016
23.26. MON MAR 7 2016
23.27. MON FEB 29 2016
23.28. MON FEB 22 2016
23.29. MON FEB 15 2016
23.30. MON FEB 08 2016
23.31. THU FEB 04 2016
23.32. MON FEB 01 2016
23.33. THU JAN 28 2016
23.34. TUE JAN 26 2016
23.35. MON JAN 19 2016
23.36. THU NOV 19 2015

298
298
299
299
299
300
300
301
301
302
302
303
303
303
304
304
304
305
305
306
307
307
307
308
308
308
309
310

OpenShift Enterprise 3.1 Installation and Configuration

10

Table of Contents

11

CHAPTER 1. OVERVIEW
OpenShift Enterprise Installation and Configuration topics cover the basics of installing and configuring
OpenShift Enterprise in your environment. Configuration, management, and logging are also covered.
Use these topics for the one-time tasks required quickly set up your OpenShift Enterprise environment
and configure it based on your organizational needs.

For day to day cluster administrator tasks, see Cluster Administration.

OpenShift Enterprise 3.1 Installation and Configuration

12

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#admin-guide-index

CHAPTER 2. INSTALLING

2.1. OVERVIEW

The quick installation method allows you to use an interactive CLI utility to install OpenShift across a set
of hosts. This installer is a self-contained wrapper intended for usage on a Red Hat Enterprise Linux 7
host.

For production environments, a reference configuration implemented using Ansible playbooks is available
as the advanced installation method.

NOTE

Before beginning either installation method, start with the Prerequisites topic.

2.2. PREREQUISITES

2.2.1. Overview

OpenShift infrastructure components can be installed across multiple hosts. The following sections
outline the system requirements and instructions for preparing your environment and hosts before
installing OpenShift.

2.2.2. System Requirements

You must have an active OpenShift Enterprise subscription on your Red Hat account to proceed. If you
do not, contact your sales representative for more information.

IMPORTANT

OpenShift Enterprise (OSE) 3.x supports Red Hat Enterprise Linux (RHEL) 7.1 or later.
Starting in OSE 3.1.1, RHEL Atomic Host 7.1.6 or later is also supported, as it requires
the containerized method introduced in OSE 3.1.1.

IMPORTANT

OSE 3.1.x requires Docker 1.8.2, however Docker 1.9 is currently not supported due to
performance issues. See the Red Hat Knowledgebase for details, including steps on how
to configure yum so that later Docker versions are not installed via yum update.
Otherwise, running yum update after installing OpenShift Enterprise will upgrade Docker
and put your cluster in an unsupported configuration. Follow this topic to ensure you have
the correct version of Docker installed on your hosts before installing or upgrading to OSE
3.1.

The system requirements vary per host type:

CHAPTER 2. INSTALLING

13

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-infrastructure-components-kubernetes-infrastructure
https://access.redhat.com/solutions/2214221

Masters
Physical or virtual system, or an instance running on a public or private IaaS.

Base OS: RHEL 7.1 or later with "Minimal" installation option, or RHEL Atomic Host
7.1.6 or later.

2 vCPU.

Minimum 8 GB RAM.

Minimum 30 GB hard disk space for the file system containing /var/.

Nodes
Physical or virtual system, or an instance running on a public or private IaaS.

Base OS: RHEL 7.1 or later with "Minimal" installation option, or RHEL Atomic Host
7.1.6 or later.

1 vCPU.

Minimum 8 GB RAM.

Minimum 15 GB hard disk space for the file system containing /var/.

An additional minimum 15 GB unallocated space to be used for Docker’s storage back
end; see Configuring Docker Storage below.

IMPORTANT

OpenShift Enterprise only supports servers with x86_64 architecture.

NOTE

Meeting the /var/ file system sizing requirements in RHEL Atomic Host requires making
changes to the default configuration. See Managing Storage in Red Hat Enterprise Linux
Atomic Host for instructions on configuring this during or after installation.

2.2.2.1. Host Recommendations

The following apply to production environments. Test or sample environments will function with the
minimum requirements.

Master Hosts

In a highly-available OpenShift Enterprise cluster with external etcd, a master host should have 1
CPU core and 2.5 GB of memory, on top of the defaults in the table above, for each 1000 pods.
Therefore, the recommended size of master host in an OpenShift Enterprise cluster of 2000 pods
would be 2 CPU cores and 5 GB of RAM, as well as the minimum requirements for a master host of 2
CPU cores and 8 GB of RAM.

When planning an environment with multiple masters, a minimum of three etcd hosts as well as a load-
balancer between the master hosts, is required.

Node Hosts

The size of a node host depends on the expected size of its workload. As an OpenShift Enterprise
cluster administrator, you will need to calculate the expected workload, then add about 10% for

OpenShift Enterprise 3.1 Installation and Configuration

14

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#node
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/#managing_storage_in_red_hat_enterprise_linux_atomic_host

overhead. For production environments, allocate enough resources so that node host failure does not
affect your maximum capacity.

Use the above with the following table to plan the maximum loads for nodes and pods:

Host Sizing Recommendation

Maximum nodes per cluster 300

Maximum pods per nodes 110

IMPORTANT

Oversubscribing the physical resources on a node affects resource guarantees the
Kubernetes scheduler makes during pod placement. Learn what measures you can take
to avoid memory swapping.

2.2.2.2. Configuring Core Usage

By default, OpenShift masters and nodes use all available cores in the system they run on. You can
choose the number of cores you want OpenShift to use by setting the GOMAXPROCS environment
variable.

For example, run the following before starting the server to make OpenShift only run on one core:

export GOMAXPROCS=1

2.2.2.3. Security Warning

OpenShift runs Docker containers on your hosts, and in some cases, such as build operations and the
registry service, it does so using privileged containers. Furthermore, those containers access your host’s
Docker daemon and perform docker build and docker push operations. As such, you should be
aware of the inherent security risks associated with performing docker run operations on arbitrary
images as they effectively have root access.

For more information, see these articles:

http://opensource.com/business/14/7/docker-security-selinux

https://docs.docker.com/articles/security/

To address these risks, OpenShift uses security context constraints that control the actions that pods can
perform and what it has the ability to access.

2.2.3. Environment Requirements

The following must be set up in your environment before OpenShift can be installed.

2.2.3.1. DNS

A wildcard for a DNS zone must ultimately resolve to the IP address of the OpenShift router.

CHAPTER 2. INSTALLING

15

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#disabling-swap-memory
https://golang.org/pkg/runtime/
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#containers
http://opensource.com/business/14/7/docker-security-selinux
https://docs.docker.com/articles/security/
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#security-context-constraints
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#routers

For example, create a wildcard DNS entry for cloudapps, or something similar, that has a low TTL and
points to the public IP address of the host where the router will be deployed:

*.cloudapps.example.com. 300 IN A 192.168.133.2

In almost all cases, when referencing VMs you must use host names, and the host names that you use
must match the output of the hostname -f command on each node.

WARNING

In your /etc/resolv.conf file on each node host, ensure that the DNS server that has
the wildcard entry is not listed as a nameserver or that the wildcard domain is not
listed in the search list. Otherwise, containers managed by OpenShift may fail to
resolve host names properly.

2.2.3.2. Network Access

A shared network must exist between the master and node hosts. If you plan to configure multiple
masters for high-availability using the advanced installation method, you must also select an IP to be
configured as your virtual IP (VIP) during the installation process. The IP that you select must be routable
between all of your nodes, and if you configure using a FQDN it should resolve on all nodes.

Required Ports

OpenShift infrastructure components communicate with each other using ports, which are
communication endpoints that are identifiable for specific processes or services. Ensure the following
ports required by OpenShift are open between hosts, for example if you have a firewall in your
environment. Some ports are optional depending on your configuration and usage.

Table 2.1. Node to Node

4789 UDP Required for SDN communication between pods on separate hosts.

Table 2.2. Nodes to Master

53 or 8053 TCP/
UDP

Required for DNS resolution of cluster services (SkyDNS). Installations prior to
3.2 or environments upgraded to 3.2 use port 53. New installations will use
8053 by default so that dnsmasq may be configured.

4789 UDP Required for SDN communication between pods on separate hosts.

443 or 8443 TCP Required for node hosts to communicate to the master API, for the node hosts
to post back status, to receive tasks, and so on.

Table 2.3. Master to Node

4789 UDP Required for SDN communication between pods on separate hosts.

OpenShift Enterprise 3.1 Installation and Configuration

16

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#high-availability-masters
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#master-components

10250 TCP The master proxies to node hosts via the Kubelet for oc commands.

NOTE

In the following table, (L) indicates the marked port is also used in loopback mode,
enabling the master to communicate with itself.

In a single-master cluster:

Ports marked with (L) must be open.

Ports not marked with (L) need not be open.

In a multiple-master cluster, all the listed ports must be open.

Table 2.4. Master to Master

53 (L) or 8053
(L)

TCP/
UDP

Required for DNS resolution of cluster services (SkyDNS). Installations prior to
3.2 or environments upgraded to 3.2 use port 53. New installations of 3.2 or
later use 8053 by default so that dnsmasq may be configured.

2049 (L) TCP/
UDP

Required when provisioning an NFS host as part of the installer.

2379 TCP Used for standalone etcd (clustered) to accept changes in state.

2380 TCP etcd requires this port be open between masters for leader election and peering
connections when using standalone etcd (clustered).

4001 (L) TCP Used for embedded etcd (non-clustered) to accept changes in state.

4789 (L) UDP Required for SDN communication between pods on separate hosts.

Table 2.5. External to Load Balancer

9000 TCP If you choose the native HA method, optional to allow access to the
HAProxy statistics page.

Table 2.6. External to Master

443 or 8443 TCP Required for node hosts to communicate to the master API, for node hosts to
post back status, to receive tasks, and so on.

Table 2.7. IaaS Deployments

22 TCP Required for SSH by the installer or system administrator.

CHAPTER 2. INSTALLING

17

53 or 8053 TCP/
UDP

Required for DNS resolution of cluster services (SkyDNS). Installations prior to
3.2 or environments upgraded to 3.2 use port 53. New installations will use
8053 by default so that dnsmasq may be configured. Only required to be
internally open on master hosts.

80 or 443 TCP For HTTP/HTTPS use for the router. Required to be externally open on node
hosts, especially on nodes running the router.

1936 TCP For router statistics use. Required to be open when running the template router
to access statistics, and can be open externally or internally to connections
depending on if you want the statistics to be expressed publicly.

4001 TCP For embedded etcd (non-clustered) use. Only required to be internally open on
the master host. 4001 is for server-client connections.

2379 and 2380 TCP For standalone etcd use. Only required to be internally open on the master
host. 2379 is for server-client connections. 2380 is for server-server
connections, and is only required if you have clustered etcd.

4789 UDP For VxLAN use (OpenShift Enterprise SDN). Required only internally on node
hosts.

8443 TCP For use by the OpenShift Enterprise web console, shared with the API server.

10250 TCP For use by the Kubelet. Required to be externally open on nodes.

24224 TCP/
UDP

For use by Fluentd. Required to be open on master hosts for internal
connections to node hosts.

Notes

In the above examples, port 4789 is used for User Datagram Protocol (UDP).

When deployments are using the SDN, the pod network is accessed via a service proxy, unless
it is accessing the registry from the same node the registry is deployed on.

OpenShift internal DNS cannot be received over SDN. Depending on the detected values of
openshift_facts, or if the openshift_ip and openshift_public_ip values are
overridden, it will be the computed value of openshift_ip. For non-cloud deployments, this will
default to the IP address associated with the default route on the master host. For cloud
deployments, it will default to the IP address associated with the first internal interface as defined
by the cloud metadata.

The master host uses port 10250 to reach the nodes and does not go over SDN. It depends on
the target host of the deployment and uses the computed values of openshift_hostname and
openshift_public_hostname.

2.2.3.3. Git Access

You must have either Internet access and a GitHub account, or read and write access to an internal,
HTTP-based Git server.

OpenShift Enterprise 3.1 Installation and Configuration

18

2.2.3.4. Persistent Storage

The Kubernetes persistent volume framework allows you to provision an OpenShift cluster with
persistent storage using networked storage available in your environment. This can be done after
completing the initial OpenShift installation depending on your application needs, giving users a way to
request those resources without having any knowledge of the underlying infrastructure.

The Installation and Configuration Guide provides instructions for cluster administrators on provisioning
an OpenShift cluster with persistent storage using NFS, GlusterFS, Ceph RBD, OpenStack Cinder, AWS
Elastic Block Store (EBS), GCE Persistent Disks, and iSCSI.

2.2.3.5. SELinux

Security-Enhanced Linux (SELinux) must be enabled on all of the servers before installing OpenShift or
the installer will fail. Also, configure SELINUXTYPE=targeted in the /etc/selinux/config file:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=enforcing
SELINUXTYPE= can take one of these three values:
targeted - Targeted processes are protected,
minimum - Modification of targeted policy. Only selected processes
are protected.
mls - Multi Level Security protection.
SELINUXTYPE=targeted

2.2.3.6. Cloud Provider Considerations

Set up the Security Group

When installing on AWS or OpenStack, ensure that you set up the appropriate security groups. These
are some ports that you should have in your security groups, without which the installation will fail. You
may need more depending on the cluster configuration you want to install. For more information and to
adjust your security groups accordingly, see Required Ports for more information.

All OpenShift Hosts tcp/22 from host running the installer/Ansible

etcd Security Group
tcp/2379 from masters

tcp/2380 from etcd hosts

Master Security Group
tcp/8443 from 0.0.0.0/0

tcp/53 from all OpenShift hosts

udp/53 from all OpenShift hosts

CHAPTER 2. INSTALLING

19

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-storage

Node Security Group
tcp/10250 from masters

tcp/4789 from nodes

Infrastructure Nodes (ones that
can host the openshift-
router)

tcp/443 from 0.0.0.0/0

tcp/80 from 0.0.0.0/0

If configuring ELBs for load balancing the masters and/or routers, you also need to configure Ingress and
Egress security groups for the ELBs appropriately.

Override Detected IP Addresses and Host Names

Some deployments require that the user override the detected host names and IP addresses for the
hosts. To see the default values, run the openshift_facts playbook:

ansible-playbook playbooks/byo/openshift_facts.yml

Now, verify the detected common settings. If they are not what you expect them to be, you can override
them.

The Advanced Installation topic discusses the available Ansible variables in greater detail.

hostname
Should resolve to the internal IP from the instances themselves.

openshift_hostname overrides.

ip
Should be the internal IP of the instance.

openshift_ip will overrides.

public_hostname
Should resolve to the external IP from hosts outside of the
cloud.

Provider openshift_public_hostname overrides.

public_ip
Should be the externally accessible IP associated with the
instance.

openshift_public_ip overrides.

OpenShift Enterprise 3.1 Installation and Configuration

20

use_openshift_sdn
Should be true unless the cloud is GCE.

openshift_use_openshift_sdn overrides.

WARNING

If openshift_hostname is set to a value other than the metadata-provided
private-dns-name value, the native cloud integration for those providers will no
longer work.

In AWS, situations that require overriding the variables include:

hostname The user is installing in a VPC that is not configured for both DNS
hostnames and DNS resolution.

ip Possibly if they have multiple network interfaces configured and they
want to use one other than the default. You must first set
openshift_node_set_node_ip to True. Otherwise, the SDN
would attempt to use the hostname setting or try to resolve the host
name for the IP.

public_hostname
A master instance where the VPC subnet is not configured for
Auto-assign Public IP. For external access to this
master, you need to have an ELB or other load balancer
configured that would provide the external access needed, or
you need to connect over a VPN connection to the internal
name of the host.

A master instance where metadata is disabled.

This value is not actually used by the nodes.

public_ip
A master instance where the VPC subnet is not configured for
Auto-assign Public IP.

A master instance where metadata is disabled.

This value is not actually used by the nodes.

If setting openshift_hostname to something other than the metadata-provided private-dns-name
value, the native cloud integration for those providers will no longer work.

For EC2 hosts in particular, they must be deployed in a VPC that has both DNS host names and DNS
resolution enabled, and openshift_hostname should not be overridden.

CHAPTER 2. INSTALLING

21

Post-Installation Configuration for Cloud Providers

Following the installation process, you can configure OpenShift for AWS, OpenStack, or GCE.

2.2.4. Host Preparation

Before installing OpenShift, you must first prepare each host per the following.

2.2.4.1. Software Prerequisites

Installing an Operating System

A base installation of RHEL 7.1 or later or RHEL Atomic Host 7.1.6 or later is required for master and
node hosts. See the following documentation for the respective installation instructions, if required:

Red Hat Enterprise Linux 7 Installation Guide

Red Hat Enterprise Linux Atomic Host 7 Installation and Configuration Guide

Registering the Hosts

Each host must be registered using Red Hat Subscription Manager (RHSM) and have an active
OpenShift Enterprise subscription attached to access the required packages.

1. On each host, register with RHSM:

subscription-manager register --username=<user_name> --password=
<password>

2. List the available subscriptions:

subscription-manager list --available

3. In the output for the previous command, find the pool ID for an OpenShift Enterprise subscription
and attach it:

subscription-manager attach --pool=<pool_id>

NOTE

When finding the pool ID, the related subscription name might include either
"OpenShift Enterprise" or "OpenShift Container Platform", due to the product
name change introduced with version 3.3.

If you plan to configure multiple masters with the advanced installation using the pacemaker HA
method, you must also attach a subscription for High Availability Add-on for Red Hat Enterprise
Linux:

subscription-manager attach --pool=<pool_id_for_rhel_ha>

OpenShift Enterprise 3.1 Installation and Configuration

22

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/index.html
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/installation-and-configuration-guide/
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#high-availability-masters
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/High_Availability_Add-On_Overview/index.html

NOTE

The High Availability Add-on for Red Hat Enterprise Linux subscription is provided
separately from the OpenShift Enterprise subscription.

4. Disable all repositories and enable only the required ones:

subscription-manager repos --disable="*"
subscription-manager repos \
 --enable="rhel-7-server-rpms" \
 --enable="rhel-7-server-extras-rpms" \
 --enable="rhel-7-server-ose-3.1-rpms"

If you plan to use the pacemaker HA method, enable the following repository as well:

subscription-manager repos \
 --enable="rhel-ha-for-rhel-7-server-rpms"

Managing Packages

For RHEL 7 systems:

1. Install the following base packages:

yum install wget git net-tools bind-utils iptables-services
bridge-utils bash-completion

2. Update the system to the latest packages:

yum update

3. Install the following package, which provides OpenShift utilities and pulls in other tools required
by the quick and advanced installation methods, such as Ansible and related configuration files:

yum install atomic-openshift-utils

4. Install the following *-excluder packages on each RHEL 7 system, which helps ensure your
systems stay on the correct versions of atomic-openshift and docker packages when you are
not trying to upgrade, according to the OpenShift Enterprise version:

yum install atomic-openshift-excluder atomic-openshift-docker-
excluder

5. The *-excluder packages add entries to the exclude directive in the host’s /etc/yum.conf file
when installed. Run the following command on each host to remove the atomic-openshift
packages from the list for the duration of the installation.

atomic-openshift-excluder unexclude

For RHEL Atomic Host 7 systems:

1. Ensure the host is up to date by upgrading to the latest Atomic tree if one is available:

CHAPTER 2. INSTALLING

23

atomic host upgrade

2. After the upgrade is completed and prepared for the next boot, reboot the host:

systemctl reboot

Installing Docker

At this point, you should install Docker on all master and node hosts. This allows you to configure your
Docker storage options before installing OpenShift.

IMPORTANT

Docker 1.9 is currently not supported due to performance issues. See the Red Hat
Knowledgebase for details, including steps on how to configure yum so that later Docker
versions are not installed via yum update. Otherwise, running yum update after
installing OpenShift Enterprise will upgrade Docker and put your cluster in an unsupported
configuration.

1. For RHEL 7 systems, install Docker 1.8.

NOTE

Docker should already be installed, configured, and running by default on RHEL
Atomic Host 7 systems.

The atomic-openshift-docker-excluder package that was installed in Software Prerequisites
should ensure that the correct version of Docker is installed in this step:

yum install docker

After the package installation is complete, verify that version 1.8.2 was installed:

docker version

2. Edit the /etc/sysconfig/docker file and add --insecure-registry 172.30.0.0/16 to the
OPTIONS parameter. For example:

OPTIONS='--selinux-enabled --insecure-registry 172.30.0.0/16'

The --insecure-registry option instructs the Docker daemon to trust any Docker registry
on the indicated subnet, rather than requiring a certificate.

IMPORTANT

172.30.0.0/16 is the default value of the servicesSubnet variable in the
master-config.yaml file. If this has changed, then the --insecure-registry
value in the above step should be adjusted to match, as it is indicating the subnet
for the registry to use. Note that the openshift_master_portal_net variable
can be set in the Ansible inventory file and used during the advanced installation
method to modify the servicesSubnet variable.

OpenShift Enterprise 3.1 Installation and Configuration

24

https://access.redhat.com/solutions/2214221

NOTE

After the initial OpenShift installation is complete, you can choose to secure the
integrated Docker registry, which involves adjusting the --insecure-registry
option accordingly.

2.2.4.2. Configuring Docker Storage

Docker containers and the images they are created from are stored in Docker’s storage back end. This
storage is ephemeral and separate from any persistent storage allocated to meet the needs of your
applications.

For RHEL Atomic Host

The default storage back end for Docker on RHEL Atomic Host is a thin pool logical volume, which is
supported for production environments. You must ensure that enough space is allocated for this volume
per the Docker storage requirements mentioned in System Requirements.

If you do not have enough allocated, see Managing Storage with Docker Formatted Containers for
details on using docker-storage-setup and basic instructions on storage management in RHEL Atomic
Host.

For RHEL

The default storage back end for Docker on RHEL 7 is a thin pool on loopback devices, which is not
supported for production use and only appropriate for proof of concept environments. For production
environments, you must create a thin pool logical volume and re-configure Docker to use that volume.

You can use the docker-storage-setup script included with Docker to create a thin pool device and
configure Docker’s storage driver. This can be done after installing Docker and should be done before
creating images or containers. The script reads configuration options from the /etc/sysconfig/docker-
storage-setup file and supports three options for creating the logical volume:

Option A) Use an additional block device.

Option B) Use an existing, specified volume group.

Option C) Use the remaining free space from the volume group where your root file system is
located.

Option A is the most robust option, however it requires adding an additional block device to your host
before configuring Docker storage. Options B and C both require leaving free space available when
provisioning your host.

1. Create the docker-pool volume using one of the following three options:

Option A) Use an additional block device.
In /etc/sysconfig/docker-storage-setup, set DEVS to the path of the block device you wish
to use. Set VG to the volume group name you wish to create; docker-vg is a reasonable
choice. For example:

cat <<EOF > /etc/sysconfig/docker-storage-setup
DEVS=/dev/vdc
VG=docker-vg
EOF

CHAPTER 2. INSTALLING

25

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#dev-guide-persistent-volumes
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/#managing_storage_with_docker_formatted_containers

Then run docker-storage-setup and review the output to ensure the docker-pool volume
was created:

docker-storage-setup
[5/1868]
0
Checking that no-one is using this disk right now ...
OK

Disk /dev/vdc: 31207 cylinders, 16 heads, 63 sectors/track
sfdisk: /dev/vdc: unrecognized partition table type

Old situation:
sfdisk: No partitions found

New situation:
Units: sectors of 512 bytes, counting from 0

 Device Boot Start End #sectors Id System
/dev/vdc1 2048 31457279 31455232 8e Linux LVM
/dev/vdc2 0 - 0 0 Empty
/dev/vdc3 0 - 0 0 Empty
/dev/vdc4 0 - 0 0 Empty
Warning: partition 1 does not start at a cylinder boundary
Warning: partition 1 does not end at a cylinder boundary
Warning: no primary partition is marked bootable (active)
This does not matter for LILO, but the DOS MBR will not boot this
disk.
Successfully wrote the new partition table

Re-reading the partition table ...

If you created or changed a DOS partition, /dev/foo7, say, then
use dd(1)
to zero the first 512 bytes: dd if=/dev/zero of=/dev/foo7 bs=512
count=1
(See fdisk(8).)
 Physical volume "/dev/vdc1" successfully created
 Volume group "docker-vg" successfully created
 Rounding up size to full physical extent 16.00 MiB
 Logical volume "docker-poolmeta" created.
 Logical volume "docker-pool" created.
 WARNING: Converting logical volume docker-vg/docker-pool and
docker-vg/docker-poolmeta to pool's data and metadata volumes.
 THIS WILL DESTROY CONTENT OF LOGICAL VOLUME (filesystem etc.)
 Converted docker-vg/docker-pool to thin pool.
 Logical volume "docker-pool" changed.

Option B) Use an existing, specified volume group.
In /etc/sysconfig/docker-storage-setup, set VG to the desired volume group. For example:

cat <<EOF > /etc/sysconfig/docker-storage-setup
VG=docker-vg
EOF

OpenShift Enterprise 3.1 Installation and Configuration

26

Then run docker-storage-setup and review the output to ensure the docker-pool volume
was created:

docker-storage-setup
 Rounding up size to full physical extent 16.00 MiB
 Logical volume "docker-poolmeta" created.
 Logical volume "docker-pool" created.
 WARNING: Converting logical volume docker-vg/docker-pool and
docker-vg/docker-poolmeta to pool's data and metadata volumes.
 THIS WILL DESTROY CONTENT OF LOGICAL VOLUME (filesystem etc.)
 Converted docker-vg/docker-pool to thin pool.
 Logical volume "docker-pool" changed.

Option C) Use the remaining free space from the volume group where your root file
system is located.
Verify that the volume group where your root file system resides has the desired free space,
then run docker-storage-setup and review the output to ensure the docker-pool volume
was created:

docker-storage-setup
 Rounding up size to full physical extent 32.00 MiB
 Logical volume "docker-poolmeta" created.
 Logical volume "docker-pool" created.
 WARNING: Converting logical volume rhel/docker-pool and
rhel/docker-poolmeta to pool's data and metadata volumes.
 THIS WILL DESTROY CONTENT OF LOGICAL VOLUME (filesystem etc.)
 Converted rhel/docker-pool to thin pool.
 Logical volume "docker-pool" changed.

2. Verify your configuration. You should have a dm.thinpooldev value in the
/etc/sysconfig/docker-storage file and a docker-pool logical volume:

cat /etc/sysconfig/docker-storage
DOCKER_STORAGE_OPTIONS=--storage-opt dm.fs=xfs --storage-opt
dm.thinpooldev=/dev/mapper/docker--vg-docker--pool

lvs
 LV VG Attr LSize Pool Origin Data% Meta% Move
Log Cpy%Sync Convert
 docker-pool rhel twi-a-t--- 9.29g 0.00 0.12

IMPORTANT

Before using Docker or OpenShift, verify that the docker-pool logical volume is
large enough to meet your needs. The docker-pool volume should be 60% of the
available volume group and will grow to fill the volume group via LVM monitoring.

3. Check if Docker is running:

systemctl is-active docker

4. If Docker has not yet been started on the host, enable and start the service:

CHAPTER 2. INSTALLING

27

systemctl enable docker
systemctl start docker

If Docker is already running, re-initialize Docker:

WARNING

This will destroy any Docker containers or images currently on the host.

systemctl stop docker
rm -rf /var/lib/docker/*
systemctl restart docker

If there is any content in /var/lib/docker/, it must be deleted. Files will be present if Docker has
been used prior to the installation of OpenShift.

Reconfiguring Docker Storage

Should you need to reconfigure Docker storage after having created the docker-pool, you should first
remove the docker-pool logical volume. If you are using a dedicated volume group, you should also
remove the volume group and any associated physical volumes before reconfiguring docker-storage-
setup according to the instructions above.

See Logical Volume Manager Administration for more detailed information on LVM management.

Managing Docker Container Logs

Sometimes a container’s log file (the /var/lib/docker/containers/<hash>/<hash>-json.log file on the
node where the container is running) can increase to a problematic size. You can manage this by
configuring Docker’s json-file logging driver to restrict the size and number of log files.

Option Purpose

--log-opt max-size Sets the size at which a new log file is created.

--log-opt max-file Sets the file on each host to configure the options.

For example, to set the maximum file size to 1MB and always keep the last three log files, edit the
/etc/sysconfig/docker file to configure max-size=1M and max-file=3:

OPTIONS='--insecure-registry=172.30.0.0/16 --selinux-enabled --log-opt
max-size=1M --log-opt max-file=3'

Next, restart the Docker service:

systemctl restart docker

OpenShift Enterprise 3.1 Installation and Configuration

28

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Logical_Volume_Manager_Administration/index.html

Viewing Available Container Logs

Container logs are stored in the /var/lib/docker/containers/<hash>/ directory on the node where the
container is running. For example:

ls -lh
/var/lib/docker/containers/f088349cceac173305d3e2c2e4790051799efe363842fda
b5732f51f5b001fd8/
total 2.6M
-rw-r--r--. 1 root root 5.6K Nov 24 00:12 config.json
-rw-r--r--. 1 root root 649K Nov 24 00:15
f088349cceac173305d3e2c2e4790051799efe363842fdab5732f51f5b001fd8-json.log
-rw-r--r--. 1 root root 977K Nov 24 00:15
f088349cceac173305d3e2c2e4790051799efe363842fdab5732f51f5b001fd8-
json.log.1
-rw-r--r--. 1 root root 977K Nov 24 00:15
f088349cceac173305d3e2c2e4790051799efe363842fdab5732f51f5b001fd8-
json.log.2
-rw-r--r--. 1 root root 1.3K Nov 24 00:12 hostconfig.json
drwx------. 2 root root 6 Nov 24 00:12 secrets

See Docker’s documentation for additional information on how to Configure Logging Drivers.

2.2.5. Ensuring Host Access

The quick and advanced installation methods require a user that has access to all hosts. If you want to
run the installer as a non-root user, passwordless sudo rights must be configured on each destination
host.

For example, you can generate an SSH key on the host where you will invoke the installation process:

ssh-keygen

Do not use a password.

An easy way to distribute your SSH keys is by using a bash loop:

for host in master.example.com \
 node1.example.com \
 node2.example.com; \
 do ssh-copy-id -i ~/.ssh/id_rsa.pub $host; \
 done

Modify the host names in the above command according to your configuration.

2.2.6. Setting Global Proxy Values

The OpenShift Enterprise installer uses the proxy settings in the _/etc/environment _ file.

Ensure the following domain suffixes and IP addresses are in the /etc/environment file in the no_proxy
parameter:

Master and node host names (domain suffix).

CHAPTER 2. INSTALLING

29

http://docs.docker.com/engine/reference/logging/overview/#the-json-file-options

Other internal host names (domain suffix).

Etcd IP addresses (must be IP addresses and not host names, as etcd access is done by IP
address).

Docker registry IP address.

Kubernetes IP address, by default 172.30.0.1. Must be the value set in the
openshift_portal_net parameter in the Ansible inventory file, by default
/etc/ansible/hosts.

Kubernetes internal domain suffix: cluster.local.

Kubernetes internal domain suffix: .svc.

The following example assumes http_proxy and https_proxy values are set:

no_proxy=.internal.example.com,10.0.0.1,10.0.0.2,10.0.0.3,.cluster.local,.
svc,localhost,127.0.0.1,172.30.0.1

NOTE

Because noproxy does not support CIDR, you can use domain suffixes.

2.2.7. What’s Next?

If you are interested in installing OpenShift using the containerized method (optional for RHEL but
required for RHEL Atomic Host), see RPM vs Containerized to ensure that you understand the
differences between these methods.

When you are ready to proceed, you can install OpenShift Enterprise using the quick installation or
advanced installation method.

2.3. RPM VS CONTAINERIZED

2.3.1. Overview

The default method for installing OpenShift on Red Hat Enterprise Linux (RHEL) uses RPMs.
Alternatively, you can use the containerized method, which deploys containerized OpenShift master and
node components. When targeting a RHEL Atomic Host system, the containerized method is the only
available option, and is automatically selected for you based on the detection of the /run/ostree-booted
file.

You can easily deploy environments mixing containerized and RPM based installations. For the
advanced installation method, you can set the Ansible variable containerized=true in an inventory
file on a cluster-wide or per host basis. For the quick installation method, you can choose between the
RPM or containerized method on a per host basis during the interactive installation, or set the values
manually in an installation configuration file.

OpenShift Enterprise 3.1 Installation and Configuration

30

NOTE

Containerized installations are supported starting in OpenShift Enterprise 3.1.1. When
installing an environment with multiple masters, the load balancer cannot be deployed by
the installation process as a container. See Advanced Installation for load balancer
requirements using either the native HA or Pacemaker methods.

The following sections detail the differences between the RPM and containerized methods.

2.3.2. Required Images

Containerized installations make use of the following images:

openshift3/ose

openshift3/node

openshift3/openvswitch

registry.access.redhat.com/rhel7/etcd

By default, all of the above images are pulled from the Red Hat Registry at registry.access.redhat.com.

If you need to use a private registry to pull these images during the installation, you can specify the
registry information ahead of time. For the advanced installation method, you can set the following
Ansible variables in your inventory file, as required:

cli_docker_additional_registries=<registry_hostname>
cli_docker_insecure_registries=<registry_hostname>
cli_docker_blocked_registries=<registry_hostname>

For the quick installation method, you can export the following environment variables on each target
host:

export OO_INSTALL_ADDITIONAL_REGISTRIES=<registry_hostname>
export OO_INSTALL_INSECURE_REGISTRIES=<registry_hostname>

Blocked Docker registries cannot currently be specified using the quick installation method.

The configuration of additional, insecure, and blocked Docker registries occurs at the beginning of the
installation process to ensure that these settings are applied before attempting to pull any of the required
images.

2.3.3. CLI Wrappers

When using containerized installations, a CLI wrapper script is deployed on each master at
/usr/local/bin/openshift. The following set of symbolic links are also provided to ease administrative
tasks:

Symbolic Link Usage

/usr/local/bin/oc Developer CLI

CHAPTER 2. INSTALLING

31

https://registry.access.redhat.com

/usr/local/bin/oadm Administrative CLI

/usr/local/bin/kubectl Kubernetes CLI

Symbolic Link Usage

The wrapper spawns a new container on each invocation, so you may notice it run slightly slower than
native CLI operations.

The wrapper scripts mount a limited subset of paths:

~/.kube

/etc/origin/

/tmp/

Be mindful of this when passing in files to be processed by the oc or oadm commands. You may find it
easier to redirect the input, for example:

oc create -f - < my-file.json

NOTE

The wrapper is intended only to be used to bootstrap an environment. You should install
the CLI tools on another host after you have granted cluster-admin privileges to a user.
See Managing Role Bindings and Get Started with the CLI for more information.

2.3.4. Starting and Stopping Containers

The installation process creates relevant systemd units which can be used to start, stop, and poll
services using normal systemctl commands. For containerized installations, these unit names match
those of an RPM installation, with the exception of the etcd service which is named etcd_container.

This change is necessary as currently RHEL Atomic Host ships with the etcd package installed as part
of the operating system, so a containerized version is used for the OpenShift installation instead. The
installation process disables the default etcd service. The etcd package is slated to be removed from
RHEL Atomic Host in the future.

2.3.5. File Paths

All OpenShift configuration files are placed in the same locations during containerized installation as
RPM based installations and will survive os-tree upgrades.

However, the default image stream and template files are installed at /etc/origin/examples/ for
containerized installations rather than the standard /usr/share/openshift/examples/, because that
directory is read-only on RHEL Atomic Host.

2.3.6. Storage Requirements

OpenShift Enterprise 3.1 Installation and Configuration

32

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#managing-role-bindings
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cli_reference/#cli-reference-get-started-cli

RHEL Atomic Host installations normally have a very small root file system. However, the etcd, master,
and node containers persist data in the /var/lib/ directory. Ensure that you have enough space on the
root file system before installing OpenShift; see the System Requirements section for details.

2.3.7. Open vSwitch SDN Initialization

OpenShift SDN initialization requires that the Docker bridge be reconfigured and that Docker is restarted.
This complicates the situation when the node is running within a container. When using the Open
vSwitch (OVS) SDN, you will see the node start, reconfigure Docker, restart Docker (which restarts all
containers), and finally start successfully.

In this case, the node service may fail to start and be restarted a few times because the master services
are also restarted along with Docker. The current implementation uses a workaround which relies on
setting the Restart=always parameter in the Docker based systemd units.

2.4. QUICK INSTALLATION

2.4.1. Overview

The quick installation method allows you to use an interactive CLI utility, the atomic-openshift-
installer command, to install OpenShift across a set of hosts. This installer can deploy OpenShift
components on targeted hosts by either installing RPMs or running containerized services.

This installation method is provided to make the installation experience easier by interactively gathering
the data needed to run on each host. The installer is a self-contained wrapper intended for usage on a
Red Hat Enterprise Linux (RHEL) 7 system. While RHEL Atomic Host is supported for running
containerized OpenShift services, the installer is provided by an RPM not available by default in RHEL
Atomic Host, and must therefore be run from a RHEL 7 system. The host initiating the installation does
not need to be intended for inclusion in the OpenShift cluster, but it can be.

In addition to running interactive installations from scratch, the atomic-openshift-installer
command can also be run or re-run using a predefined installation configuration file. This file can be used
with the installer to:

run an unattended installation,

add nodes to an existing cluster,

upgrade your cluster, or

reinstall the OpenShift cluster completely.

Alternatively, you can use the advanced installation method for more complex environments.

2.4.2. Before You Begin

The installer allows you to install OpenShift master and node components on a defined set of hosts.

CHAPTER 2. INSTALLING

33

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#node

NOTE

By default, any hosts you designate as masters during the installation process are
automatically also configured as nodes so that the masters are configured as part of the
OpenShift SDN. The node component on the masters, however, are marked
unschedulable, which blocks pods from being scheduled on it. After the installation, you
can mark them schedulable if you want.

Before installing OpenShift, you must first satisfy the prerequisites on your hosts, which includes verifying
system and environment requirements and properly installing and configuring Docker. You must also be
prepared to provide or validate the following information for each of your targeted hosts during the course
of the installation:

User name on the target host that should run the Ansible-based installation (can be root or non-
root)

Host name

Whether to install components for master, node, or both

Whether to use the RPM or containerized method

Internal and external IP addresses

If you are interested in installing OpenShift using the containerized method (optional for RHEL but
required for RHEL Atomic Host), see RPM vs Containerized to ensure that you understand the
differences between these methods, then return to this topic to continue.

After following the instructions in the Prerequisites topic and deciding between the RPM and
containerized methods, you can continue to running an interactive or unattended installation.

2.4.3. Running an Interactive Installation

NOTE

Ensure you have read through Before You Begin.

You can start the interactive installation by running:

$ atomic-openshift-installer install

Then follow the on-screen instructions to install a new OpenShift Enterprise cluster.

After it has finished, ensure that you back up the ~/.config/openshift/installer.cfg.ymlinstallation
configuration file that is created, as it is required if you later want to re-run the installation, add hosts to
the cluster, or upgrade your cluster. Then, verify the installation.

2.4.4. Defining an Installation Configuration File

The installer can use a predefined installation configuration file, which contains information about your
installation, individual hosts, and cluster. When running an interactive installation, an installation
configuration file based on your answers is created for you in ~/.config/openshift/installer.cfg.yml. The

OpenShift Enterprise 3.1 Installation and Configuration

34

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#openshift-sdn
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#marking-nodes-as-unschedulable-or-schedulable

1

2

3

4

5

6

7 8

9 10

file is created if you are instructed to exit the installation to manually modify the configuration or when the
installation completes. You can also create the configuration file manually from scratch to perform an
unattended installation.

Example 2.1. Installation Configuration File Specification

The version of this installation configuration file. As of OpenShift Enterprise (OSE) 3.1, the only
valid version here is v1.

The OpenShift variant to install. For OSE, set this to openshift-enterprise.

A valid version your selected variant. If not specified, this defaults to the newest version for the
specified variant. For example: 3.1 or 3.0.

Defines which user Ansible uses to SSH in to remote systems for gathering facts and for the
installation. By default, this is the root user, but you can set it to any user that has sudo
privileges.

Defines where the Ansible logs are stored. By default, this is the /tmp/ansible.log file.

Defines a list of the hosts onto which you want to install the OpenShift master and node
components.

Required. Allows the installer to connect to the system and gather facts before proceeding with
the install.

version: v1 1

variant: openshift-enterprise 2

variant_version: 3.1 3

ansible_ssh_user: root 4

ansible_log_path: /tmp/ansible.log 5

hosts: 6

- ip: 10.0.0.1 7

 hostname: master-private.example.com 8

 public_ip: 24.222.0.1 9

 public_hostname: master.example.com 10

 master: true 11

 node: true 12

 containerized: true 13

 connect_to: 24.222.0.1 14
- ip: 10.0.0.2
 hostname: node1-private.example.com
 public_ip: 24.222.0.2
 public_hostname: node1.example.com
 node: true
 connect_to: 10.0.0.2
- ip: 10.0.0.3
 hostname: node2-private.example.com
 public_ip: 24.222.0.3
 public_hostname: node2.example.com
 node: true
 connect_to: 10.0.0.3

CHAPTER 2. INSTALLING

35

11 12

13

14

Required for unattended installations. If these details are not specified, then this information is
pulled from the facts gathered by the installer, and you are asked to confirm the details. If

Determines the type of services that are installed. At least one of these must be set to true for
the configuration file to be considered valid.

If set to true, containerized OpenShift services are run on target master and node hosts instead
of installed using RPM packages. If set to false or unset, the default RPM method is used. RHEL
Atomic Host requires the containerized method, and is automatically selected for you based on
the detection of the /run/ostree-booted file. See RPM vs Containerized for more details.
Containerized installations are supported starting in OSE 3.1.1.

The IP address that Ansible attempts to connect to when installing, upgrading, or uninstalling the
systems. If the configuration file was auto-generated, then this is the value you first enter for the
host during that interactive install process.

2.4.5. Running an Unattended Installation

NOTE

Ensure you have read through the Before You Begin.

Unattended installations allow you to define your hosts and cluster configuration in an installation
configuration file before running the installer so that you do not have to go through all of the interactive
installation questions and answers. It also allows you to resume an interactive installation you may have
left unfinished, and quickly get back to where you left off.

To run an unattended installation, first define an installation configuration file at
~/.config/openshift/installer.cfg.yml. Then, run the installer with the -u flag:

$ atomic-openshift-installer -u install

By default in interactive or unattended mode, the installer uses the configuration file located at
~/.config/openshift/installer.cfg.yml if the file exists. If it does not exist, attempting to start an
unattended installation fails.

Alternatively, you can specify a different location for the configuration file using the -c option, but doing
so will require you to specify the file location every time you run the installation:

$ atomic-openshift-installer -u -c </path/to/file> install

After the unattended installation finishes, ensure that you back up the
~/.config/openshift/installer.cfg.yml file that was used, as it is required if you later want to re-run the
installation, add hosts to the cluster, or upgrade your cluster. Then, verify the installation.

2.4.6. Verifying the Installation

After the installation completes:

1. Verify that the master is started and nodes are registered and reporting in Ready status. On the
master host, run the following as root:

OpenShift Enterprise 3.1 Installation and Configuration

36

oc get nodes

NAME LABELS
STATUS
master.example.com
kubernetes.io/hostname=master.example.com,region=infra,zone=default
Ready,SchedulingDisabled
node1.example.com
kubernetes.io/hostname=node1.example.com,region=primary,zone=east
Ready
node2.example.com
kubernetes.io/hostname=node2.example.com,region=primary,zone=west
Ready

2. To verify that the web console is installed correctly, use the master host name and the console
port number to access the console with a web browser.
For example, for a master host with a hostname of master.openshift.com and using the
default port of 8443, the web console would be found at:

https://master.openshift.com:8443/console

3. Now that the install has been verified, run the following command on each master and node host
to add the atomic-openshift packages back to the list of yum excludes on the host:

atomic-openshift-excluder exclude

Then, see What’s Next for the next steps on configuring your OpenShift cluster.

2.4.7. Adding Nodes or Reinstalling the Cluster

You can use the installer to add nodes to your existing cluster, or to reinstall the cluster entirely.

If you installed OpenShift using the installer in either interactive or unattended mode, you can re-run the
installation as long as you have an installation configuration file at ~/.config/openshift/installer.cfg.yml
(or specify a different location with the -c option).

If you installed using the advanced installation method and therefore do not have an installation
configuration file, you can either try creating your own based on your cluster’s current configuration, or
see the advanced installation method on how to run the playbook for adding new nodes directly.

To add nodes or reinstall the cluster:

1. Re-run the installer with the install subcommand in interactive or unattended mode:

$ atomic-openshift-installer [-u] [-c </path/to/file>] install

2. The installer will detect your installed environment and allow you to either add an additional node
or perform a clean install:

Gathering information from hosts...
Installed environment detected.
By default the installer only adds new nodes to an installed

CHAPTER 2. INSTALLING

37

environment.
Do you want to (1) only add additional nodes or (2) perform a clean
install?:

Choose one of the options and follow the on-screen instructions to complete your desired task.

2.4.8. Uninstalling OpenShift Enterprise

You can uninstall OpenShift Enterprise on all hosts in your cluster using the installer by running:

$ atomic-openshift-installer uninstall

See the advanced installation method for more options.

2.4.9. What’s Next?

Now that you have a working OpenShift Enterprise instance, you can:

Configure authentication; by default, authentication is set to Deny All.

Deploy an integrated Docker registry.

Deploy a router.

2.5. ADVANCED INSTALLATION

2.5.1. Overview

For production environments, a reference configuration implemented using Ansible playbooks is available
as the advanced installation method for installing OpenShift hosts. Familiarity with Ansible is assumed,
however you can use this configuration as a reference to create your own implementation using the
configuration management tool of your choosing.

While RHEL Atomic Host is supported for running containerized OpenShift services, the advanced
installation method utilizes Ansible, which is not available in RHEL Atomic Host, and must therefore be
run from a RHEL 7 system. The host initiating the installation does not need to be intended for inclusion
in the OpenShift cluster, but it can be.

Alternatively, you can use the quick installation method if you prefer an interactive installation
experience.

IMPORTANT

Running Ansible playbooks with the --tags or --check options is not supported by Red
Hat.

2.5.2. Before You Begin

Before installing OpenShift, you must first see the Prerequisites topic to prepare your hosts, which
includes verifying system and environment requirements per component type and properly installing and
configuring Docker. It also includes installing Ansible version 1.8.4 or later, as the advanced installation
method is based on Ansible playbooks and as such requires directly invoking Ansible.

OpenShift Enterprise 3.1 Installation and Configuration

38

http://www.ansible.com

If you are interested in installing OpenShift using the containerized method (optional for RHEL but
required for RHEL Atomic Host), see RPM vs Containerized to ensure that you understand the
differences between these methods, then return to this topic to continue.

After following the instructions in the Prerequisites topic and deciding between the RPM and
containerized methods, you can continue in this topic to Configuring Ansible.

2.5.3. Configuring Ansible

The /etc/ansible/hosts file is Ansible’s inventory file for the playbook to use during the installation. The
inventory file describes the configuration for your OpenShift cluster. You must replace the default
contents of the file with your desired configuration.

The following sections describe commonly-used variables to set in your inventory file during an
advanced installation, followed by example inventory files you can use as a starting point for your
installation. The examples describe various environment topographies, including using multiple masters
for high availability. You can choose an example that matches your requirements, modify it to match your
own environment, and use it as your inventory file when running the advanced installation.

2.5.3.1. Configuring Host Variables

To assign environment variables to hosts during the Ansible installation, indicate the desired variables in
the /etc/ansible/hosts file after the host entry in the [masters] or [nodes] sections. For example:

[masters]
ec2-52-6-179-239.compute-1.amazonaws.com openshift_public_hostname=ose3-
master.public.example.com

The following table describes variables for use with the Ansible installer that can be assigned to
individual host entries:

Table 2.8. Host Variables

Variable Purpose

openshift_hostname This variable overrides the internal cluster host name
for the system. Use this when the system’s default IP
address does not resolve to the system host name.

openshift_public_hostname This variable overrides the system’s public host
name. Use this for cloud installations, or for hosts on
networks using a network address translation (NAT).

openshift_ip This variable overrides the cluster internal IP address
for the system. Use this when using an interface that
is not configured with the default route.

openshift_public_ip This variable overrides the system’s public IP
address. Use this for cloud installations, or for hosts
on networks using a network address translation
(NAT).

CHAPTER 2. INSTALLING

39

containerized If set to true, containerized OpenShift services are
run on target master and node hosts instead of
installed using RPM packages. If set to false or
unset, the default RPM method is used. RHEL Atomic
Host requires the containerized method, and is
automatically selected for you based on the detection
of the /run/ostree-booted file. See RPM vs
Containerized for more details. Containerized
installations are supported starting in OSE 3.1.1.

openshift_node_labels This variable adds labels to nodes during installation.
See Configuring Node Host Labels for more details.

openshift_node_kubelet_args This variable is used to configure
kubeletArguments on nodes, such as
arguments used in container and image garbage
collection, and to specify resources per node.
kubeletArguments are key value pairs that are
passed directly to the Kubelet that match the
Kubelet’s command line arguments .
kubeletArguments are not migrated or validated
and may become invalid if used. These values
override other settings in node configuration which
may cause invalid configurations. Example usage:
{'image-gc-high-threshold': ['90'],'image-gc-low-
threshold': ['80']}.

openshift_docker_options This variable configures additional Docker options
within /etc/sysconfig/docker, such as options used
in Managing Docker Container Logs . Example usage:
"--log-driver json-file --log-opt max-size=1M --log-
opt max-file=3".

Variable Purpose

2.5.3.2. Configuring Cluster Variables

To assign environment variables during the Ansible install that apply more globally to your OpenShift
cluster overall, indicate the desired variables in the /etc/ansible/hosts file on separate, single lines
within the [OSEv3:vars] section. For example:

[OSEv3:vars]

openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login':
'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider',
'filename': '/etc/origin/master/htpasswd'}]

osm_default_subdomain=apps.test.example.com

OpenShift Enterprise 3.1 Installation and Configuration

40

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#admin-guide-garbage-collection
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#configuring-node-resources
http://kubernetes.io/v1.1/docs/admin/kubelet.html

The following table describes variables for use with the Ansible installer that can be assigned cluster-
wide:

Table 2.9. Cluster Variables

Variable Purpose

ansible_ssh_user This variable sets the SSH user for the installer to use and defaults to
root. This user should allow SSH-based authentication without requiring
a password. If using SSH key-based authentication, then the key should
be managed by an SSH agent.

ansible_sudo If ansible_ssh_user is not root, this variable must be set to true
and the user must be configured for passwordless sudo.

containerized If set to true, containerized OpenShift services are run on all target
master and node hosts in the cluster instead of installed using RPM
packages. If set to false or unset, the default RPM method is used.
RHEL Atomic Host requires the containerized method, and is
automatically selected for you based on the detection of the /run/ostree-
booted file. See RPM vs Containerized for more details. Containerized
installations are supported starting in OSE 3.1.1.

openshift_master_clust
er_hostname

This variable overrides the host name for the cluster, which defaults to
the host name of the master.

openshift_master_clust
er_public_hostname

This variable overrides the public host name for the cluster, which
defaults to the host name of the master. If you use an external load
balancer, specify the address of the external load balancer.

For example:

---- openshift_master_cluster_public_hostname=openshift-
ansible.public.example.com ----

openshift_master_clust
er_method

Optional. This variable defines the HA method when deploying multiple
masters. Can be either native or pacemaker. See Multiple Masters
for more information.

openshift_master_clust
er_password

These variables are only required when using the pacemaker HA
method.

For openshift_master_cluster_vip, the virtual IP (VIP) is
assigned to the active master automatically, so the IP must be available
in the cluster network. This IP should be in the same network and able to
communicate with any other master, etcd, and node hosts' IP. See
Multiple Masters for more information.

openshift_master_clust
er_vip

openshift_master_clust
er_public_vip

CHAPTER 2. INSTALLING

41

openshift_rolling_rest
art_mode

This variable enables rolling restarts of HA masters (i.e., masters are
taken down one at a time) when running the upgrade playbook directly . It
defaults to services, which allows rolling restarts of services on the
masters. It can instead be set to system, which enables rolling, full
system restarts and also works for single master clusters.

os_sdn_network_plugin_
name

This variable configures which OpenShift SDN plug-in to use for the pod
network, which defaults to redhat/openshift-ovs-subnet for the
standard SDN plug-in. Set the variable to redhat/openshift-ovs-
multitenant to use the multitenant plug-in.

openshift_master_ident
ity_providers

This variable overrides the identity provider, which defaults to Deny All.

openshift_master_named
_certificates

These variables are used to configure custom certificates which are
deployed as part of the installation. See Configuring Custom Certificates
for more information.

openshift_master_overw
rite_named_certificate
s

openshift_master_sessi
on_name

These variables override defaults for session options in the OAuth
configuration. See Configuring Session Options for more information.

openshift_master_sessi
on_max_seconds

openshift_master_sessi
on_auth_secrets

openshift_master_sessi
on_encryption_secrets

openshift_master_porta
l_net

This variable configures the subnet in which services will be created
within the OpenShift Enterprise SDN. This network block should be
private and must not conflict with any existing network blocks in your
infrastructure to which pods, nodes, or the master may require access to,
or the installation will fail. Defaults to 172.30.0.0/16, and cannot be re-
configured after deployment. If changing from the default, avoid
172.16.0.0/16, which the docker0 network bridge uses by default, or
modify the docker0 network.

openshift_hosted_route
r_selector

Default node selector for automatically deploying router pods. See
Configuring Node Host Labels for details.

openshift_registry_sel
ector

Default node selector for automatically deploying registry pods. See
Configuring Node Host Labels for details.

Variable Purpose

OpenShift Enterprise 3.1 Installation and Configuration

42

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-sdn
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-sdn

osm_default_subdomain This variable overrides the default subdomain to use for exposed routes.

osm_default_node_selec
tor

This variable overrides the node selector that projects will use by default
when placing pods.

osm_cluster_network_ci
dr

This variable overrides the SDN cluster network CIDR block. This is the
network from which pod IPs are assigned. This network block should be
a private block and must not conflict with existing network blocks in your
infrastructure to which pods, nodes, or the master may require access.
Defaults to 10.1.0.0/16 and cannot be arbitrarily re-configured after
deployment, although certain changes to it can be made in the SDN
master configuration.

osm_host_subnet_length This variable specifies the size of the per host subnet allocated for pod
IPs by OpenShift SDN. Defaults to 8 which means that a subnet of size
/24 is allocated to each host; for example, given the default 10.1.0.0/16
cluster network, this will allocate 10.1.0.0/24, 10.1.1.0/24, 10.1.2.0/24,
and so on. This cannot be re-configured after deployment.

Variable Purpose

2.5.3.3. Configuring Node Host Labels

You can assign labels to node hosts during the Ansible install by configuring the /etc/ansible/hosts file.
Labels are useful for determining the placement of pods onto nodes using the scheduler. Other than
region=infra (discussed below), the actual label names and values are arbitrary and can be assigned
however you see fit per your cluster’s requirements.

To assign labels to a node host during an Ansible install, use the openshift_node_labels variable
with the desired labels added to the desired node host entry in the [nodes] section. In the following
example, labels are set for a region called primary and a zone called east:

[nodes]
node1.example.com openshift_node_labels="{'region': 'primary', 'zone':
'east'}"

The openshift_router_selector and openshift_registry_selector Ansible settings are set
to region=infra by default:

default selectors for router and registry services
openshift_router_selector='region=infra'
openshift_registry_selector='region=infra'

The default router and registry will be automatically deployed if nodes exist that match the selector
settings above. For example:

[nodes]
node1.example.com openshift_node_labels="
{'region':'infra','zone':'default'}"

2.5.3.4. Marking Masters as Unschedulable Nodes

CHAPTER 2. INSTALLING

43

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#sdn-design-on-masters
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#sdn-design-on-masters
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#labels
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#configurable-predicates

Any hosts you designate as masters during the installation process should also be configured as nodes
by adding them to the [nodes] section so that the masters are configured as part of the OpenShift SDN.

However, in order to ensure that your masters are not burdened with running pods, you can make them
unschedulable by adding the openshift_scheduleable=false option any node that is also a
master. For example:

[nodes]
master.example.com openshift_node_labels="
{'region':'infra','zone':'default'}" openshift_schedulable=false

2.5.3.5. Configuring Session Options

Session options in the OAuth configuration are configurable in the inventory file. By default, Ansible
populates a sessionSecretsFile with generated authentication and encryption secrets so that
sessions generated by one master can be decoded by the others. The default location is
/etc/origin/master/session-secrets.yaml, and this file will only be re-created if deleted on all masters.

You can set the session name and maximum number of seconds with
openshift_master_session_name and openshift_master_session_max_seconds:

openshift_master_session_name=ssn
openshift_master_session_max_seconds=3600

If provided, openshift_master_session_auth_secrets and
openshift_master_encryption_secrets must be equal length.

For openshift_master_session_auth_secrets, used to authenticate sessions using HMAC, it is
recommended to use secrets with 32 or 64 bytes:

openshift_master_session_auth_secrets=['DONT+USE+THIS+SECRET+b4NV+pmZNSO']

For openshift_master_encryption_secrets, used to encrypt sessions, secrets must be 16, 24, or
32 characters long, to select AES-128, AES-192, or AES-256:

openshift_master_session_encryption_secrets=
['DONT+USE+THIS+SECRET+b4NV+pmZNSO']

2.5.3.6. Configuring Custom Certificates

Custom serving certificates for the public host names of the OpenShift API and web console can be
deployed during an advanced installation and are configurable in the inventory file.

NOTE

Custom certificates should only be configured for the host name associated with the
publicMasterURL which can be set using
openshift_master_cluster_public_hostname. Using a custom serving certificate
for the host name associated with the masterURL
(openshift_master_cluster_hostname) will result in TLS errors as infrastructure
components will attempt to contact the master API using the internal masterURL host.

OpenShift Enterprise 3.1 Installation and Configuration

44

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#openshift-sdn
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#marking-nodes-as-unschedulable-or-schedulable
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-infrastructure-components-web-console

Certificate and key file paths can be configured using the openshift_master_named_certificates
cluster variable:

openshift_master_named_certificates=[{"certfile": "/path/to/custom1.crt",
"keyfile": "/path/to/custom1.key"}]

File paths must be local to the system where Ansible will be run. Certificates are copied to master hosts
and are deployed within the /etc/origin/master/named_certificates/ directory.

Ansible detects a certificate’s Common Name and Subject Alternative Names. Detected names
can be overridden by providing the "names" key when setting
openshift_master_named_certificates:

openshift_master_named_certificates=[{"certfile": "/path/to/custom1.crt",
"keyfile": "/path/to/custom1.key", "names": ["public-master-host.com"]}]

Certificates configured using openshift_master_named_certificates are cached on masters,
meaning that each additional Ansible run with a different set of certificates results in all previously
deployed certificates remaining in place on master hosts and within the master configuration file.

If you would like openshift_master_named_certificates to be overwritten with the provided
value (or no value), specify the openshift_master_overwrite_named_certificates cluster
variable:

openshift_master_overwrite_named_certificates=true

For a more complete example, consider the following cluster variables in an inventory file:

openshift_master_cluster_method=native
openshift_master_cluster_hostname=lb.openshift.com
openshift_master_cluster_public_hostname=custom.openshift.com

To overwrite the certificates on a subsequent Ansible run, you could set the following:

openshift_master_named_certificates=[{"certfile":
"/root/STAR.openshift.com.crt", "keyfile":
"/root/STAR.openshift.com.key"}, "names": ["custom.openshift.com"]}]
openshift_master_overwrite_named_certificates=true

2.5.4. Single Master Examples

You can configure an environment with a single master and multiple nodes, and either a single
embedded etcd or multiple external etcd hosts.

NOTE

Moving from a single master cluster to multiple masters after installation is not supported.

Single Master and Multiple Nodes

The following table describes an example environment for a single master (with embedded etcd) and
two nodes:

CHAPTER 2. INSTALLING

45

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#node

Host Name Infrastructure Component to Install

master.example.com Master and node

node1.example.com Node

node2.example.com

You can see these example hosts present in the [masters] and [nodes] sections of the following
example inventory file:

Example 2.2. Single Master and Multiple Nodes Inventory File

Create an OSEv3 group that contains the masters and nodes groups
[OSEv3:children]
masters
nodes

Set variables common for all OSEv3 hosts
[OSEv3:vars]
SSH user, this user should allow ssh based auth without requiring a
password
ansible_ssh_user=root

If ansible_ssh_user is not root, ansible_sudo must be set to true
#ansible_sudo=true

deployment_type=openshift-enterprise

uncomment the following to enable htpasswd authentication; defaults to
DenyAllPasswordIdentityProvider
#openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login':
'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider',
'filename': '/etc/origin/master/htpasswd'}]

host group for masters
[masters]
master.example.com

host group for nodes, includes region info
[nodes]
master.example.com openshift_node_labels="{'region': 'infra', 'zone':
'default'}"
node1.example.com openshift_node_labels="{'region': 'primary', 'zone':
'east'}"
node2.example.com openshift_node_labels="{'region': 'primary', 'zone':
'west'}"

To use this example, modify the file to match your environment and specifications, and save it as
/etc/ansible/hosts.

Single Master, Multiple etcd, and Multiple Nodes

OpenShift Enterprise 3.1 Installation and Configuration

46

The following table describes an example environment for a single master, three etcd hosts, and two
nodes:

Host Name Infrastructure Component to Install

master.example.com Master and node

etcd1.example.com etcd

etcd2.example.com

etcd3.example.com

node1.example.com Node

node2.example.com

NOTE

When specifying multiple etcd hosts, external etcd is installed and configured. Clustering
of OpenShift’s embedded etcd is not supported.

You can see these example hosts present in the [masters], [nodes], and [etcd] sections of the
following example inventory file:

Example 2.3. Single Master, Multiple etcd, and Multiple Nodes Inventory File

Create an OSEv3 group that contains the masters, nodes, and etcd
groups
[OSEv3:children]
masters
nodes
etcd

Set variables common for all OSEv3 hosts
[OSEv3:vars]
ansible_ssh_user=root
deployment_type=openshift-enterprise

uncomment the following to enable htpasswd authentication; defaults to
DenyAllPasswordIdentityProvider
#openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login':
'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider',
'filename': '/etc/origin/master/htpasswd'}]

host group for masters
[masters]
master.example.com

host group for etcd
[etcd]
etcd1.example.com

CHAPTER 2. INSTALLING

47

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#node

etcd2.example.com
etcd3.example.com

host group for nodes, includes region info
[nodes]
master.example.com openshift_node_labels="{'region': 'infra', 'zone':
'default'}"
node1.example.com openshift_node_labels="{'region': 'primary', 'zone':
'east'}"
node2.example.com openshift_node_labels="{'region': 'primary', 'zone':
'west'}"

To use this example, modify the file to match your environment and specifications, and save it as
/etc/ansible/hosts.

2.5.5. Multiple Masters Examples

You can configure an environment with multiple masters, multiple etcd hosts, and multiple nodes.
Configuring multiple masters for high availability (HA) ensures that the cluster has no single point of
failure.

NOTE

Moving from a single master cluster to multiple masters after installation is not supported.

When configuring multiple masters, the advanced installation supports two high availability (HA)
methods:

Table 2.10. HA Master Methods

native Leverages the native HA master capabilities built into OpenShift and can be combined with
any load balancing solution. If a host is defined in the [lb] section of the inventory file,
Ansible installs and configures HAProxy automatically as the load balancing solution. If no
host is defined, it is assumed you have pre-configured a load balancing solution of your
choice to balance the master API (port 8443) on all master hosts.

pacemaker Configures Pacemaker as the load balancer for multiple masters. Requires a High
Availability Add-on for Red Hat Enterprise Linux subscription, which is provided separately
from the OpenShift Enterprise subscription.

NOTE

For more on these methods and the high availability master architecture, see Kubernetes
Infrastructure.

To configure multiple masters, choose one of the above HA methods, and refer to the relevant example
section that follows.

Multiple Masters Using Native HA

The following describes an example environment for three masters, one HAProxy load balancer, three
etcd hosts, and two nodes using the native HA method:

OpenShift Enterprise 3.1 Installation and Configuration

48

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#high-availability-masters
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#node

Host Name Infrastructure Component to Install

master1.example.com Master (clustered using native HA) and node

master2.example.com

master3.example.com

lb.example.com HAProxy to load balance API master endpoints

etcd1.example.com etcd

etcd2.example.com

etcd3.example.com

node1.example.com Node

node2.example.com

NOTE

When specifying multiple etcd hosts, external etcd is installed and configured. Clustering
of OpenShift’s embedded etcd is not supported.

You can see these example hosts present in the [masters], [etcd], [lb], and [nodes] sections of the
following example inventory file:

Example 2.4. Multiple Masters Using HAProxy Inventory File

Create an OSEv3 group that contains the master, nodes, etcd, and lb
groups.
The lb group lets Ansible configure HAProxy as the load balancing
solution.
Comment lb out if your load balancer is pre-configured.
[OSEv3:children]
masters
nodes
etcd
lb

Set variables common for all OSEv3 hosts
[OSEv3:vars]
ansible_ssh_user=root
deployment_type=openshift-enterprise

Uncomment the following to enable htpasswd authentication; defaults to
DenyAllPasswordIdentityProvider.
#openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login':
'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider',

CHAPTER 2. INSTALLING

49

'filename': '/etc/origin/master/htpasswd'}]

Native high availbility cluster method with optional load balancer.
If no lb group is defined installer assumes that a load balancer has
been preconfigured. For installation the value of
openshift_master_cluster_hostname must resolve to the load balancer
or to one or all of the masters defined in the inventory if no load
balancer is present.
openshift_master_cluster_method=native
openshift_master_cluster_hostname=openshift-cluster.example.com
openshift_master_cluster_public_hostname=openshift-cluster.example.com

override the default controller lease ttl
#osm_controller_lease_ttl=30

enable ntp on masters to ensure proper failover
openshift_clock_enabled=true

host group for masters
[masters]
master1.example.com
master2.example.com
master3.example.com

host group for etcd
[etcd]
etcd1.example.com
etcd2.example.com
etcd3.example.com

Specify load balancer host
[lb]
lb.example.com

host group for nodes, includes region info
[nodes]
master[1:3].example.com openshift_node_labels="{'region': 'infra',
'zone': 'default'}"
node1.example.com openshift_node_labels="{'region': 'primary', 'zone':
'east'}"
node2.example.com openshift_node_labels="{'region': 'primary', 'zone':
'west'}"

To use this example, modify the file to match your environment and specifications, and save it as
/etc/ansible/hosts.

Note the following when using the native HA method:

The advanced installation method does not currently support multiple HAProxy load balancers in
an active-passive setup. See the Load Balancer Administration documentation for post-
installation amendments, or use the pacemaker method if you require this capability.

In a HAProxy setup, controller manager servers run as standalone processes. They elect their
active leader with a lease stored in etcd. The lease expires after 30 seconds by default. If a
failure happens on an active controller server, it will take up to this number of seconds to elect

OpenShift Enterprise 3.1 Installation and Configuration

50

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Load_Balancer_Administration/ch-lvs-overview-VSA.html

another leader. The interval can be configured with the osm_controller_lease_ttl
variable.

Multiple Masters Using Pacemaker

The following describes an example environment for three masters, three etcd hosts, and two nodes
using the pacemaker HA method:

Host Name Infrastructure Component to Install

master1.example.com Master (clustered using Pacemaker) and node

master2.example.com

master3.example.com

etcd1.example.com etcd

etcd2.example.com

etcd3.example.com

node1.example.com Node

node2.example.com

NOTE

When specifying multiple etcd hosts, external etcd is installed and configured. Clustering
of OpenShift’s embedded etcd is not supported.

You can see these example hosts present in the [masters], [nodes], and [etcd] sections of the
following example inventory file:

Example 2.5. Multiple Masters Using Pacemaker Inventory File

Create an OSEv3 group that contains the masters, nodes, and etcd
groups
[OSEv3:children]
masters
nodes
etcd

Set variables common for all OSEv3 hosts
[OSEv3:vars]
ansible_ssh_user=root
deployment_type=openshift-enterprise

Uncomment the following to enable htpasswd authentication; defaults to
DenyAllPasswordIdentityProvider.
#openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login':

CHAPTER 2. INSTALLING

51

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#node

'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider',
'filename': '/etc/origin/master/htpasswd'}]

Pacemaker high availability cluster method.
Pacemaker HA environment must be able to self provision the
configured VIP. For installation openshift_master_cluster_hostname
must resolve to the configured VIP.
openshift_master_cluster_method=pacemaker
openshift_master_cluster_password=openshift_cluster
openshift_master_cluster_vip=192.168.133.25
openshift_master_cluster_public_vip=192.168.133.25
openshift_master_cluster_hostname=openshift-cluster.example.com
openshift_master_cluster_public_hostname=openshift-cluster.example.com

override the default controller lease ttl
#osm_controller_lease_ttl=30

host group for masters
[masters]
master1.example.com
master2.example.com
master3.example.com

host group for etcd
[etcd]
etcd1.example.com
etcd2.example.com
etcd3.example.com

host group for nodes, includes region info
[nodes]
master[1:3].example.com openshift_node_labels="{'region': 'infra',
'zone': 'default'}"
node1.example.com openshift_node_labels="{'region': 'primary', 'zone':
'east'}"
node2.example.com openshift_node_labels="{'region': 'primary', 'zone':
'west'}"

To use this example, modify the file to match your environment and specifications, and save it as
/etc/ansible/hosts.

Note the following when using this configuration:

Installing multiple masters with Pacemaker requires that you configure a fencing device after
running the installer.

When specifying multiple masters, the installer handles creating and starting the HA cluster. If
during that process the pcs status command indicates that an HA cluster already exists, the
installer skips HA cluster configuration.

2.5.6. Running the Advanced Installation

After you have configured Ansible by defining an inventory file in /etc/ansible/hosts, you can run the
advanced installation using the following playbook:

OpenShift Enterprise 3.1 Installation and Configuration

52

ansible-playbook /usr/share/ansible/openshift-
ansible/playbooks/byo/config.yml

If for any reason the installation fails, before re-running the installer, see Known Issues to check for any
specific instructions or workarounds.

WARNING

The installer caches playbook configuration values for 10 minutes, by default. If you
change any system, network, or inventory configuration, and then re-run the installer
within that 10 minute period, the new values are not used, and the previous values
are used instead. You can delete the contents of the cache, which is defined by the
fact_caching_connection value in the /etc/ansible/ansible.cfg file.

NOTE

Due to a known issue, after running the installation, if NFS volumes are provisioned for
any component, the following directories might be created whether their components are
being deployed to NFS volumes or not:

/exports/logging-es

/exports/logging-es-ops/

/exports/metrics/

/exports/prometheus

/exports/prometheus-alertbuffer/

/exports/prometheus-alertmanager/

You can delete these directories after installation, as needed.

2.5.7. Configuring Fencing

If you installed OpenShift using a configuration for multiple masters with Pacemaker as a load balancer,
you must configure a fencing device. See Fencing: Configuring STONITH in the High Availability Add-on
for Red Hat Enterprise Linux documentation for instructions, then continue to Verifying the Installation.

2.5.8. Verifying the Installation

After the installation completes:

1. Verify that the master is started and nodes are registered and reporting in Ready status. On the
master host, run the following as root:

oc get nodes

NAME LABELS

CHAPTER 2. INSTALLING

53

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/High_Availability_Add-On_Reference/ch-fencing-HAAR.html

STATUS
master.example.com
kubernetes.io/hostname=master.example.com,region=infra,zone=default
Ready,SchedulingDisabled
node1.example.com
kubernetes.io/hostname=node1.example.com,region=primary,zone=east
Ready
node2.example.com
kubernetes.io/hostname=node2.example.com,region=primary,zone=west
Ready

2. To verify that the web console is installed correctly, use the master host name and the console
port number to access the console with a web browser.
For example, for a master host with a hostname of master.openshift.com and using the
default port of 8443, the web console would be found at:

https://master.openshift.com:8443/console

3. Now that the install has been verified, run the following command on each master and node host
to add the atomic-openshift packages back to the list of yum excludes on the host:

atomic-openshift-excluder exclude

Multiple etcd Hosts

If you installed multiple etcd hosts:

1. On a etcd host, verify the etcd cluster health, substituting for the FQDNs of your etcd hosts in
the following:

etcdctl -C \

https://etcd1.example.com:2379,https://etcd2.example.com:2379,https:
//etcd3.example.com:2379 \
 --ca-file=/etc/origin/master/master.etcd-ca.crt \
 --cert-file=/etc/origin/master/master.etcd-client.crt \
 --key-file=/etc/origin/master/master.etcd-client.key cluster-
health

2. Also verify the member list is correct:

etcdctl -C \

https://etcd1.example.com:2379,https://etcd2.example.com:2379,https:
//etcd3.example.com:2379 \
 --ca-file=/etc/origin/master/master.etcd-ca.crt \
 --cert-file=/etc/origin/master/master.etcd-client.crt \
 --key-file=/etc/origin/master/master.etcd-client.key member list

Multiple Masters Using Pacemaker

If you installed multiple masters using Pacemaker as a load balancer:

1. On a master host, determine which host is currently running as the active master:

OpenShift Enterprise 3.1 Installation and Configuration

54

pcs status

2. After determining the active master, put the specified host into standby mode:

pcs cluster standby <host1_name>

3. Verify the master is now running on another host:

pcs status

4. After verifying the master is running on another node, re-enable the host on standby for normal
operation by running:

pcs cluster unstandby <host1_name>

Red Hat recommends that you also verify your installation by consulting the High Availability Add-on for
Red Hat Enterprise Linux documentation.

Multiple Masters Using HAProxy

If you installed multiple masters using HAProxy as a load balancer, browse to the following URL
according to your [lb] section definition and check HAProxy’s status:

http://<lb_hostname>:9000

You can verify your installation by consulting the HAProxy Configuration documentation.

2.5.9. Adding Nodes to an Existing Cluster

After your cluster is installed, you can install additional nodes (including masters) and add them to your
cluster by running the scaleup.yml playbook. This playbook queries the master, generates and
distributes new certificates for the new nodes, then runs the configuration playbooks on the new nodes
only.

This process is similar to re-running the installer in the quick installation method to add nodes, however
you have more configuration options available when using the advanced method and running the
playbooks directly.

You must have an existing inventory file (for example, /etc/ansible/hosts) that is representative of your
current cluster configuration in order to run the scaleup.yml playbook. If you previously used the
atomic-openshift-installer command to run your installation, you can check
~/.config/openshift/.ansible/hosts for the last inventory file that the installer generated and use or
modify that as needed as your inventory file. You must then specify the file location with -i when calling
ansible-playbook later.

To add nodes to an existing cluster:

1. Ensure you have the latest playbooks by updating the atomic-openshift-utils package:

yum update atomic-openshift-utils

2. Edit your /etc/ansible/hosts file and add new_nodes to the [OSEv3:children] section:

CHAPTER 2. INSTALLING

55

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/High_Availability_Add-On_Reference/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Load_Balancer_Administration/ch-haproxy-setup-VSA.html

[OSEv3:children]
masters
nodes
new_nodes

3. Then, create a [new_nodes] section much like the existing [nodes] section, specifying host
information for any new nodes you want to add. For example:

[nodes]
master[1:3].example.com openshift_node_labels="{'region': 'infra',
'zone': 'default'}"
node1.example.com openshift_node_labels="{'region': 'primary',
'zone': 'east'}"
node2.example.com openshift_node_labels="{'region': 'primary',
'zone': 'west'}"

[new_nodes]
node3.example.com openshift_node_labels="{'region': 'primary',
'zone': 'west'}"

See Configuring Host Variables for more options.

4. Now run the scaleup.yml playbook. If your inventory file is located somewhere other than the
default /etc/ansible/hosts, specify the location with the -i option:
For additional nodes:

ansible-playbook [-i /path/to/file] \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
node/scaleup.yml

For additional masters:

ansible-playbook [-i /path/to/file] \
 usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
master/scaleup.yml

5. After the playbook completes successfully, verify the installation.

6. Finally, move any hosts you had defined in the [new_nodes] section up into the [nodes] section
(but leave the [new_nodes] section definition itself in place) so that subsequent runs using this
inventory file are aware of the nodes but do not handle them as new nodes. For example:

[nodes]
master[1:3].example.com openshift_node_labels="{'region': 'infra',
'zone': 'default'}"
node1.example.com openshift_node_labels="{'region': 'primary',
'zone': 'east'}"
node2.example.com openshift_node_labels="{'region': 'primary',
'zone': 'west'}"
node3.example.com openshift_node_labels="{'region': 'primary',
'zone': 'west'}"

[new_nodes]

OpenShift Enterprise 3.1 Installation and Configuration

56

2.5.10. Uninstalling OpenShift Enterprise

You can uninstall OpenShift Enterprise hosts in your cluster by running the uninstall.yml playbook. This
playbook deletes OpenShift Enterprise content installed by Ansible, including:

Configuration

Containers

Default templates and image streams

Images

RPM packages

The playbook will delete content for any hosts defined in the inventory file that you specify when running
the playbook. If you want to uninstall OpenShift Enterprise across all hosts in your cluster, run the
playbook using the inventory file you used when installing OpenShift Enterprise initially or ran most
recently:

ansible-playbook [-i /path/to/file] \
 /usr/share/ansible/openshift-ansible/playbooks/adhoc/uninstall.yml

2.5.10.1. Uninstalling Nodes

You can also uninstall node components from specific hosts using the uninstall.yml playbook while
leaving the remaining hosts and cluster alone:

WARNING

This method should only be used when attempting to uninstall specific node hosts
and not for specific masters or etcd hosts, which would require further configuration
changes within the cluster.

1. First follow the steps in Deleting Nodes to remove the node object from the cluster, then continue
with the remaining steps in this procedure.

2. Create a different inventory file that only references those hosts. For example, to only delete
content from one node:

[OSEv3:children]

nodes 1

[OSEv3:vars]
ansible_ssh_user=root
deployment_type=openshift-enterprise

[nodes]
node3.example.com openshift_node_labels="{'region': 'primary',

'zone': 'west'}" 2

CHAPTER 2. INSTALLING

57

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#deleting-nodes

1

2

Only include the sections that pertain to the hosts you are interested in uninstalling.

Only include hosts that you want to uninstall.

3. Specify that new inventory file using the -i option when running the uninstall.yml playbook:

ansible-playbook -i /path/to/new/file \
 /usr/share/ansible/openshift-
ansible/playbooks/adhoc/uninstall.yml

When the playbook completes, all OpenShift Enterprise content should be removed from any specified
hosts.

2.5.11. Known Issues

The following are known issues for specified installation configurations.

Multiple Masters

On failover, it is possible for the controller manager to overcorrect, which causes the system to
run more pods than what was intended. However, this is a transient event and the system does
correct itself over time. See https://github.com/GoogleCloudPlatform/kubernetes/issues/10030
for details.

On failure of the Ansible installer, you must start from a clean operating system installation. If
you are using virtual machines, start from a fresh image. If you are use bare metal machines:

1. Run the following on a master host with Pacemaker:

pcs cluster destroy --all

2. Then, run the following on all node hosts:

yum -y remove openshift openshift-* etcd docker

rm -rf /etc/origin /var/lib/openshift /etc/etcd \
 /var/lib/etcd /etc/sysconfig/atomic-openshift*
/etc/sysconfig/docker* \
 /root/.kube/config /etc/ansible/facts.d /usr/share/openshift

2.5.12. What’s Next?

Now that you have a working OpenShift instance, you can:

Configure authentication; by default, authentication is set to Deny All.

Deploy an integrated Docker registry.

Deploy a router.

2.6. DISCONNECTED INSTALLATION

2.6.1. Overview

OpenShift Enterprise 3.1 Installation and Configuration

58

https://github.com/GoogleCloudPlatform/kubernetes/issues/10030

Frequently, portions of a datacenter may not have access to the Internet, even via proxy servers.
Installing OpenShift Enterprise in these environments is considered a disconnected installation.

An OpenShift Enterprise disconnected installation differs from a regular installation in two primary ways:

The OpenShift Enterprise software channels and repositories are not available via Red Hat’s
content distribution network.

OpenShift Enterprise uses several containerized components. Normally, these images are pulled
directly from Red Hat’s Docker registry. In a disconnected environment, this is not possible.

A disconnected installation ensures the OpenShift Enterprise software is made available to the relevant
servers, then follows the same installation process as a standard connected installation. This topic
additionally details how to manually download the Docker images and transport them onto the relevant
servers.

Once installed, in order to use OpenShift Enterprise, you will need source code in a source control
repository (for example, Git). This topic assumes that an internal Git repository is available that can host
source code and this repository is accessible from the OpenShift Enterprise nodes. Installing the source
control repository is outside the scope of this document.

Also, when building applications in OpenShift Enterprise, your build may have some external
dependencies, such as a Maven Repository or Gem files for Ruby applications. For this reason, and
because they might require certain tags, many of the Quickstart templates offered by OpenShift
Enterprise may not work on a disconnected environment. However, while Red Hat Docker images try to
reach out to external repositories by default, you can configure OpenShift Enterprise to use your own
internal repositories. For the purposes of this document, we assume that such internal repositories
already exist and are accessible from the OpenShift Enterprise nodes hosts. Installing such repositories
is outside the scope of this document.

NOTE

You can also have a Red Hat Satellite server that provides access to Red Hat content via
an intranet or LAN. For environments with Satellite, you can synchronize the OpenShift
Enterprise software onto the Satellite for use with the OpenShift Enterprise servers.

Red Hat Satellite 6.1 also introduces the ability to act as a Docker registry, and it can be
used to host the OpenShift Enterprise containerized components. Doing so is outside of
the scope of this document.

2.6.2. Prerequisites

This document assumes that you understand OpenShift’s overall architecture and that you have already
planned out what the topology of your environment will look like.

2.6.3. Required Software and Components

In order to pull down the required software repositories and Docker images, you will need a Red Hat
Enterprise Linux (RHEL) 7 server with access to the Internet and at least 100GB of additional free space.
All steps in this section should be performed on the Internet-connected server as the root system user.

2.6.3.1. Syncing Repositories

Before you sync with the required repositories, you may need to import the appropriate GPG key:

CHAPTER 2. INSTALLING

59

http://www.redhat.com/en/technologies/linux-platforms/satellite
https://access.redhat.com/documentation/en/red-hat-satellite/
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-index

rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release

If the key is not imported, the indicated package is deleted after syncing the repository.

To sync the required repositories:

1. Register the server with the Red Hat Customer Portal. You must use the login and password
associated with the account that has access to the OpenShift Enterprise subscriptions:

subscription-manager register

2. Attach to a subscription that provides OpenShift Enterprise channels. You can find the list of
available subscriptions using:

subscription-manager list --available

Then, find the pool ID for the subscription that provides OpenShift Enterprise, and attach it:

subscription-manager attach --pool=<pool_id>
subscription-manager repos --disable="*"
subscription-manager repos \
 --enable="rhel-7-server-rpms" \
 --enable="rhel-7-server-extras-rpms" \
 --enable="rhel-7-server-ose-3.1-rpms"

3. The yum-utils command provides the reposync utility, which lets you mirror yum repositories,
and createrepo can create a usable yum repository from a directory:

yum -y install yum-utils createrepo docker git

You will need up to 110GB of free space in order to sync the software. Depending on how
restrictive your organization’s policies are, you could re-connect this server to the disconnected
LAN and use it as the repository server. You could use USB-connected storage and transport
the software to another server that will act as the repository server. This topic covers these
options.

4. Make a path to where you want to sync the software (either locally or on your USB or other
device):

mkdir -p </path/to/repos>

5. Sync the packages and create the repository for each of them. You will need to modify the
command for the appropriate path you created above:

for repo in \
rhel-7-server-rpms rhel-7-server-extras-rpms \
rhel-7-server-ose-3.1-rpms
do
 reposync --gpgcheck -lm --repoid=${repo} --
download_path=/path/to/repos
 createrepo -v </path/to/repos/>${repo} -o </path/to/repos/>${repo}
done

OpenShift Enterprise 3.1 Installation and Configuration

60

2.6.3.2. Syncing Images

To sync the Docker images:

1. Start the Docker daemon:

systemctl start docker

2. Pull all of the required OpenShift Enterprise containerized components:

docker pull registry.access.redhat.com/openshift3/ose-haproxy-
router:v3.1.1.11
docker pull registry.access.redhat.com/openshift3/ose-
deployer:v3.1.1.11
docker pull registry.access.redhat.com/openshift3/ose-sti-
builder:v3.1.1.11
docker pull registry.access.redhat.com/openshift3/ose-docker-
builder:v3.1.1.11
docker pull registry.access.redhat.com/openshift3/ose-
pod:v3.1.1.11
docker pull registry.access.redhat.com/openshift3/ose-docker-
registry:v3.1.1.11

3. Pull all of the required OpenShift Enterprise containerized components for the additional
centralized log aggregation and metrics aggregation components:

docker pull registry.access.redhat.com/openshift3/logging-
deployment
docker pull registry.access.redhat.com/openshift3/logging-
elasticsearch
docker pull registry.access.redhat.com/openshift3/logging-kibana
docker pull registry.access.redhat.com/openshift3/logging-fluentd
docker pull registry.access.redhat.com/openshift3/logging-auth-
proxy
docker pull registry.access.redhat.com/openshift3/metrics-deployer
docker pull registry.access.redhat.com/openshift3/metrics-
hawkular-metrics
docker pull registry.access.redhat.com/openshift3/metrics-
cassandra
docker pull registry.access.redhat.com/openshift3/metrics-heapster

4. Pull the Red Hat-certified Source-to-Image (S2I) builder images that you intend to use in your
OpenShift environment. You can pull the following images:

jboss-eap70-openshift

jboss-amq-62

jboss-datagrid65-openshift

jboss-decisionserver62-openshift

jboss-eap64-openshift

jboss-eap70-openshift

CHAPTER 2. INSTALLING

61

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#source-build

jboss-webserver30-tomcat7-openshift

jboss-webserver30-tomcat8-openshift

mongodb

mysql

nodejs

perl

php

postgresql

python

redhat-sso70-openshift

ruby
Make sure to indicate the correct tag specifying the desired version number. For example, to
pull both the previous and latest version of the Tomcat image:

docker pull \
registry.access.redhat.com/jboss-webserver-3/webserver30-tomcat7-
openshift:latest
docker pull \
registry.access.redhat.com/jboss-webserver-3/webserver30-tomcat7-
openshift:1.1

2.6.3.3. Preparing Images for Export

Docker images can be exported from a system by first saving them to a tarball and then transporting
them:

1. Make and change into a repository home directory:

mkdir </path/to/repos/images>
cd </path/to/repos/images>

2. Export the OpenShift Enterprise containerized components:

docker save -o ose3-images.tar \
 registry.access.redhat.com/openshift3/ose-haproxy-router \
 registry.access.redhat.com/openshift3/ose-deployer \
 registry.access.redhat.com/openshift3/ose-sti-builder \
 registry.access.redhat.com/openshift3/ose-docker-builder \
 registry.access.redhat.com/openshift3/ose-pod \
 registry.access.redhat.com/openshift3/ose-docker-registry

3. If you synchronized the metrics and log aggregation images, export:

docker save -o ose3-logging-metrics-images.tar \
 registry.access.redhat.com/openshift3/logging-deployment \

OpenShift Enterprise 3.1 Installation and Configuration

62

 registry.access.redhat.com/openshift3/logging-elasticsearch \
 registry.access.redhat.com/openshift3/logging-kibana \
 registry.access.redhat.com/openshift3/logging-fluentd \
 registry.access.redhat.com/openshift3/logging-auth-proxy \
 registry.access.redhat.com/openshift3/metrics-deployer \
 registry.access.redhat.com/openshift3/metrics-hawkular-metrics \
 registry.access.redhat.com/openshift3/metrics-cassandra \
 registry.access.redhat.com/openshift3/metrics-heapster

4. Export the S2I builder images that you synced in the previous section. For example, if you
synced only the Tomcat image:

docker save -o ose3-builder-images.tar \
 registry.access.redhat.com/jboss-webserver-3/webserver30-
tomcat7-openshift:latest \
 registry.access.redhat.com/jboss-webserver-3/webserver30-
tomcat7-openshift:1.1

2.6.4. Repository Server

During the installation (and for later updates, should you so choose), you will need a webserver to host
the repositories. RHEL 7 can provide the Apache webserver.

Option 1: Re-configuring as a Web server

If you can re-connect the server where you synchronized the software and images to your LAN, then you
can simply install Apache on the server:

yum install httpd

Skip to Placing the Software.

Option 2: Building a Repository Server

If you need to build a separate server to act as the repository server, install a new RHEL 7 system with at
least 110GB of space. On this repository server during the installation, make sure you select the Basic
Web Server option.

2.6.4.1. Placing the Software

1. If necessary, attach the external storage, and then copy the repository files into Apache’s root
folder. Note that the below copy step (cp -a) should be substituted with move (mv) if you are
repurposing the server you used to sync:

cp -a /path/to/repos /var/www/html/
chmod -R +r /var/www/html/repos
restorecon -vR /var/www/html

2. Add the firewall rules:

firewall-cmd --permanent --add-service=http
firewall-cmd --reload

3. Enable and start Apache for the changes to take effect:

CHAPTER 2. INSTALLING

63

systemctl enable httpd
systemctl start httpd

2.6.5. OpenShift Enterprise Systems

2.6.5.1. Building Your Hosts

At this point you can perform the initial creation of the hosts that will be part of the OpenShift Enterprise
environment. It is recommended to use the latest version of RHEL 7 and to perform a minimal installation.
You will also want to pay attention to the other OpenShift Enterprise-specific prerequisites.

Once the hosts are initially built, the repositories can be set up.

2.6.5.2. Connecting the Repositories

On all of the relevant systems that will need OpenShift Enterprise software components, create the
required repository definitions. Place the following text in the /etc/yum.repos.d/ose.repo file, replacing
<server_IP> with the IP or host name of the Apache server hosting the software repositories:

[rhel-7-server-rpms]
name=rhel-7-server-rpms
baseurl=http://<server_IP>/repos/rhel-7-server-rpms
enabled=1
gpgcheck=0
[rhel-7-server-extras-rpms]
name=rhel-7-server-extras-rpms
baseurl=http://<server_IP>/repos/rhel-7-server-extras-rpms
enabled=1
gpgcheck=0
[rhel-7-server-ose-3.1-rpms]
name=rhel-7-server-ose-3.1-rpms
baseurl=http://<server_IP>/repos/rhel-7-server-ose-3.1-rpms
enabled=1
gpgcheck=0

2.6.5.3. Host Preparation

At this point, the systems are ready to continue to be prepared following the OpenShift Enterprise
documentation.

Skip the section titled Registering the Hosts and start with Managing Packages.

2.6.6. Installing OpenShift Enterprise

2.6.6.1. Importing OpenShift Enterprise Containerized Components

To import the relevant components, securely copy the images from the connected host to the individual
OpenShift Enterprise hosts:

scp /var/www/html/repos/images/ose3-images.tar
root@<openshift_host_name>:
ssh root@<openshift_host_name> "docker load -i ose3-images.tar"

OpenShift Enterprise 3.1 Installation and Configuration

64

If you prefer, you could use wget on each OpenShift Enterprise host to fetch the tar file, and then
perform the Docker import command locally. Perform the same steps for the metrics and logging images,
if you synchronized them.

On the host that will act as an OpenShift Enterprise master, copy and import the builder images:

scp /var/www/html/images/ose3-builder-images.tar
root@<openshift_master_host_name>:
ssh root@<openshift_master_host_name> "docker load -i ose3-builder-
images.tar"

2.6.6.2. Running the OpenShift Enterprise Installer

You can now choose to follow the quick or advanced OpenShift Enterprise installation instructions in the
documentation.

2.6.6.3. Creating the Internal Docker Registry

You now need to create the internal Docker registry.

2.6.7. Post-Installation Changes

In one of the previous steps, the S2I images were imported into the Docker daemon running on one of
the OpenShift Enterprise master hosts. In a connected installation, these images would be pulled from
Red Hat’s registry on demand. Since the Internet is not available to do this, the images must be made
available in another Docker registry.

OpenShift Enterprise provides an internal registry for storing the images that are built as a result of the
S2I process, but it can also be used to hold the S2I builder images. The following steps assume you did
not customize the service IP subnet (172.30.0.0/16) or the Docker registry port (5000).

2.6.7.1. Re-tagging S2I Builder Images

1. On the master host where you imported the S2I builder images, obtain the service address of
your Docker registry that you installed on the master:

export REGISTRY=$(oc get service docker-registry -t
'{{.spec.clusterIP}}{{"\n"}}')

2. Next, tag all of the builder images that you synced and exported before pushing them into the
OpenShift Enterprise Docker registry. For example, if you synced and exported only the Tomcat
image:

docker tag \
registry.access.redhat.com/jboss-webserver-3/webserver30-tomcat7-
openshift:1.1 \
$REGISTRY:5000/openshift/webserver30-tomcat7-openshift:1.1
docker tag \
registry.access.redhat.com/jboss-webserver-3/webserver30-tomcat7-
openshift:latest \
$REGISTRY:5000/openshift/webserver30-tomcat7-openshift:1.2
docker tag \

CHAPTER 2. INSTALLING

65

registry.access.redhat.com/jboss-webserver-3/webserver30-tomcat7-
openshift:latest \
$REGISTRY:5000/openshift/webserver30-tomcat7-openshift:latest

2.6.7.2. Creating an Administrative User

Pushing the Docker images into OpenShift Enterprise’s Docker registry requires a user with cluster-
admin privileges. Because the default OpenShift system administrator does not have a standard
authorization token, they cannot be used to log in to the Docker registry.

To create an administrative user:

1. Create a new user account in the authentication system you are using with OpenShift
Enterprise. For example, if you are using local htpasswd-based authentication:

htpasswd -b /etc/openshift/openshift-passwd <admin_username>
<password>

2. The external authentication system now has a user account, but a user must log in to OpenShift
Enterprise before an account is created in the internal database. Log in to OpenShift Enterprise
for this account to be created. This assumes you are using the self-signed certificates generated
by OpenShift Enterprise during the installation:

oc login --certificate-authority=/etc/origin/master/ca.crt \
 -u <admin_username> https://<openshift_master_host>:8443

3. Get the user’s authentication token:

MYTOKEN=$(oc whoami -t)
echo $MYTOKEN
iwo7hc4XilD2KOLL4V1O55ExH2VlPmLD-W2-JOd6Fko

2.6.7.3. Modifying the Security Policies

1. Using oc login switches to the new user. Switch back to the OpenShift Enterprise system
administrator in order to make policy changes:

oc login -u system:admin

2. In order to push images into the OpenShift Enterprise Docker registry, an account must have the
image-builder security role. Add this to your OpenShift Enterprise administrative user:

oadm policy add-role-to-user system:image-builder <admin_username>

3. Next, add the administrative role to the user in the openshift project. This allows the
administrative user to edit the openshift project, and, in this case, push the Docker images:

oadm policy add-role-to-user admin <admin_username> -n openshift

2.6.7.4. Editing the Image Stream Definitions

The openshift project is where all of the image streams for builder images are created by the installer.

OpenShift Enterprise 3.1 Installation and Configuration

66

They are loaded by the installer from the /usr/share/openshift/examples directory. Change all of the
definitions by deleting the image streams which had been loaded into OpenShift Enterprise’s database,
then re-create them:

1. Delete the existing image streams:

oc delete is -n openshift --all

2. Make a backup of the files in /usr/share/openshift/examples/ if you desire. Next, edit the file
image-streams-rhel7.json in the /usr/share/openshift/examples/image-streams folder. You
will find an image stream section for each of the builder images. Edit the spec stanza to point to
your internal Docker registry.
For example, change:

"spec": {
 "dockerImageRepository":
"registry.access.redhat.com/rhscl/mongodb-26-rhel7",

to:

"spec": {
 "dockerImageRepository": "172.30.69.44:5000/openshift/mongodb-26-
rhel7",

In the above, the repository name was changed from rhscl to openshift. You will need to ensure
the change, regardless of whether the repository is rhscl, openshift3, or another directory.
Every definition should have the following format:

<registry_ip>:5000/openshift/<image_name>

Repeat this change for every image stream in the file. Ensure you use the correct IP address
that you determined earlier. When you are finished, save and exit. Repeat the same process for
the JBoss image streams in the /usr/share/openshift/examples/xpaas-streams/jboss-image-
streams.json file.

3. Load the updated image stream definitions:

oc create -f /usr/share/openshift/examples/image-streams/image-
streams-rhel7.json -n openshift
oc create -f /usr/share/openshift/examples/xpaas-streams/jboss-
image-streams.json -n openshift

2.6.7.5. Loading the Docker Images

At this point the system is ready to load the Docker images.

1. Log in to the Docker registry using the token and registry service IP obtained earlier:

docker login -u adminuser -e mailto:adminuser@abc.com \
 -p $MYTOKEN $REGISTRY:5000

2. Push the Docker images:

CHAPTER 2. INSTALLING

67

1

2

3

docker push $REGISTRY:5000/openshift/webserver30-tomcat7-
openshift:1.1
docker push $REGISTRY:5000/openshift/webserver30-tomcat7-
openshift:1.2
docker push $REGISTRY:5000/openshift/webserver30-tomcat7-
openshift:latest

3. Verify that all the image streams now have the tags populated:

oc get imagestreams -n openshift
NAME DOCKER REPO
TAGS UPDATED
jboss-webserver30-tomcat7-openshift $REGISTRY/jboss-webserver-
3/webserver30-jboss-tomcat7-openshift 1.1,1.1-2,1.1-6 + 2 more...
2 weeks ago
...

2.6.8. Installing a Router

At this point, the OpenShift Enterprise environment is almost ready for use. It is likely that you will want to
install and configure a router.

2.7. DEPLOYING A DOCKER REGISTRY

2.7.1. Overview

OpenShift can build Docker images from your source code, deploy them, and manage their lifecycle. To
enable this, OpenShift provides an internal, integrated Docker registry that can be deployed in your
OpenShift environment to locally manage images.

2.7.2. Deploying the Registry

To deploy the integrated Docker registry, use the oadm registry command as a user with cluster
administrator privileges. For example:

$ oadm registry --config=/etc/origin/master/admin.kubeconfig \ 1

 --credentials=/etc/origin/master/openshift-registry.kubeconfig \ 2
 --images='registry.access.redhat.com/openshift3/ose-

${component}:${version}' 3

--config is the path to the CLI configuration file for the cluster administrator.

--credentials is the path to the CLI configuration file for the openshift-registry.

Required to pull the correct image for OpenShift Enterprise.

This creates a service and a deployment configuration, both called docker-registry. Once deployed
successfully, a pod is created with a name similar to docker-registry-1-cpty9 .

Use --selector to deploy the registry to any node(s) that match a specified node label:

OpenShift Enterprise 3.1 Installation and Configuration

68

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#docker-images
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#integrated-openshift-registry
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cli_reference/#cli-reference-manage-cli-profiles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cli_reference/#cli-reference-manage-cli-profiles

$ oadm registry <registry_name> --replicas=<number> --selector=<label> \
 --service-account=registry

For example, if you want to create a registry named registry and have it placed on a node labeled
with region=infra:

$ oadm registry registry --replicas=1 --selector='region=infra' \
 --service-account=registry

To see a full list of options that you can specify when creating the registry:

$ oadm registry --help

2.7.2.1. Storage for the Registry

The registry stores Docker images and metadata. If you simply deploy a pod with the registry, it uses an
ephemeral volume that is destroyed if the pod exits. Any images anyone has built or pushed into the
registry would disappear.

2.7.2.1.1. Production Use

For production use, attach a remote volume or define and use the persistent storage method of your
choice.

For example, to use an existing persistent volume claim:

$ oc volume deploymentconfigs/docker-registry --add --name=registry-
storage -t pvc \
 --claim-name=<pvc_name> --overwrite

Or, to attach an existing NFS volume to the registry:

$ oc volume deploymentconfigs/docker-registry \
 --add --overwrite --name=registry-storage --mount-path=/registry \
 --source='{"nfs": { "server": "<fqdn>", "path": "/path/to/export"}}'

NOTE

See Known Issues if using a scaled registry with a shared NFS volume.

2.7.2.1.2. Non-Production Use

For non-production use, you can use the --mount-host=<path> option to specify a directory for the
registry to use for persistent storage. The registry volume is then created as a host-mount at the
specified <path>.

CHAPTER 2. INSTALLING

69

IMPORTANT

The --mount-host option mounts a directory from the node on which the registry
container lives. If you scale up the docker-registry deployment configuration, it is
possible that your registry pods and containers will run on different nodes, which can
result in two or more registry containers, each with its own local storage. This will lead to
unpredictable behavior, as subsequent requests to pull the same image repeatedly may
not always succeed, depending on which container the request ultimately goes to.

The --mount-host option requires that the registry container run in privileged mode. This is
automatically enabled when you specify --mount-host. However, not all pods are allowed to run
privileged containers by default. If you still want to use this option, create the registry and specify that it
use the registry service account that was created during installation:

$ oadm registry --service-account=registry \
 --config=/etc/origin/master/admin.kubeconfig \
 --credentials=/etc/origin/master/openshift-registry.kubeconfig \
 --images='registry.access.redhat.com/openshift3/ose-
${component}:${version}' \
 --mount-host=<path>

IMPORTANT

The Docker registry pod runs as user 1001. This user must be able to write to the host
directory. You may need to change directory ownership to user ID 1001 with this
command:

$ sudo chown 1001:root <path>

2.7.2.2. Maintaining the Registry IP Address

OpenShift refers to the integrated registry by its service IP address, so if you decide to delete and
recreate the docker-registry service, you can ensure a completely transparent transition by arranging to
re-use the old IP address in the new service. If a new IP address cannot be avoided, you can minimize
cluster disruption by rebooting only the masters.

Re-using the Address

To re-use the IP address, you must save the IP address of the old docker-registry service prior to
deleting it, and arrange to replace the newly assigned IP address with the saved one in the new
docker-registry service.

1. Make a note of the ClusterIP for the service:

$ oc get svc/docker-registry -o yaml | grep clusterIP:

2. Delete the service:

$ oc delete svc/docker-registry dc/docker-registry

3. Create the registry definition in registry.yaml, replacing <options> with, for example, those
used in step 3 of the instructions in the Non-Production Use section:

OpenShift Enterprise 3.1 Installation and Configuration

70

$ oadm registry <options> -o yaml > registry.yaml

4. Edit registry.yaml, find the Service there, and change its ClusterIP to the address noted in
step 1.

5. Create the registry using the modified registry.yaml:

$ oc create -f registry.yaml

Rebooting the Masters

If you are unable to re-use the IP address, any operation that uses a pull specification that includes
the old IP address will fail. To minimize cluster disruption, you must reboot the masters:

systemctl restart atomic-openshift-master

This ensures that the old registry URL, which includes the old IP address, is cleared from the cache.

NOTE

We recommend against rebooting the entire cluster because that incurs unnecessary
downtime for pods and does not actually clear the cache.

2.7.3. Viewing Logs

To view the logs for the Docker registry, run the oc logs indicating the desired pod:

$ oc logs docker-registry-1-da73t
2015-05-01T19:48:36.300593110Z time="2015-05-01T19:48:36Z" level=info
msg="version=v2.0.0+unknown"
2015-05-01T19:48:36.303294724Z time="2015-05-01T19:48:36Z" level=info
msg="redis not configured" instance.id=9ed6c43d-23ee-453f-9a4b-
031fea646002
2015-05-01T19:48:36.303422845Z time="2015-05-01T19:48:36Z" level=info
msg="using inmemory layerinfo cache" instance.id=9ed6c43d-23ee-453f-9a4b-
031fea646002
2015-05-01T19:48:36.303433991Z time="2015-05-01T19:48:36Z" level=info
msg="Using OpenShift Auth handler"
2015-05-01T19:48:36.303439084Z time="2015-05-01T19:48:36Z" level=info
msg="listening on :5000" instance.id=9ed6c43d-23ee-453f-9a4b-031fea646002

2.7.4. File Storage

Tag and image metadata is stored in OpenShift, but the registry stores layer and signature data in a
volume that is mounted into the registry container at /registry. As oc exec does not work on privileged
containers, to view a registry’s contents you must manually SSH into the node housing the registry pod’s
container, then run docker exec on the container itself:

1. List the current pods to find the pod name of your Docker registry:

oc get pods

CHAPTER 2. INSTALLING

71

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#referencing-images-in-image-streams

Then, use oc describe to find the host name for the node running the container:

oc describe pod <pod_name>

2. Log into the desired node:

ssh node.example.com

3. List the running containers on the node host and identify the container ID for the Docker registry:

docker ps | grep ose-docker-registry

4. List the registry contents using the docker exec command:

docker exec -it 4c01db0b339c find /registry
/registry/docker
/registry/docker/registry
/registry/docker/registry/v2

/registry/docker/registry/v2/blobs 1
/registry/docker/registry/v2/blobs/sha256
/registry/docker/registry/v2/blobs/sha256/ed
/registry/docker/registry/v2/blobs/sha256/ed/ede17b139a271d6b1331ca3
d83c648c24f92cece5f89d95ac6c34ce751111810
/registry/docker/registry/v2/blobs/sha256/ed/ede17b139a271d6b1331ca3

d83c648c24f92cece5f89d95ac6c34ce751111810/data 2
/registry/docker/registry/v2/blobs/sha256/a3
/registry/docker/registry/v2/blobs/sha256/a3/a3ed95caeb02ffe68cdd9fd
84406680ae93d633cb16422d00e8a7c22955b46d4
/registry/docker/registry/v2/blobs/sha256/a3/a3ed95caeb02ffe68cdd9fd
84406680ae93d633cb16422d00e8a7c22955b46d4/data
/registry/docker/registry/v2/blobs/sha256/f7
/registry/docker/registry/v2/blobs/sha256/f7/f72a00a23f01987b42cb26f
259582bb33502bdb0fcf5011e03c60577c4284845
/registry/docker/registry/v2/blobs/sha256/f7/f72a00a23f01987b42cb26f
259582bb33502bdb0fcf5011e03c60577c4284845/data

/registry/docker/registry/v2/repositories 3
/registry/docker/registry/v2/repositories/p1

/registry/docker/registry/v2/repositories/p1/pause 4
/registry/docker/registry/v2/repositories/p1/pause/_manifests
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisi
ons
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisi
ons/sha256
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisi
ons/sha256/e9a2ac6418981897b399d3709f1b4a6d2723cd38a4909215ce2752a5c
068b1cf
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisi
ons/sha256/e9a2ac6418981897b399d3709f1b4a6d2723cd38a4909215ce2752a5c

068b1cf/signatures 5
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisi
ons/sha256/e9a2ac6418981897b399d3709f1b4a6d2723cd38a4909215ce2752a5c
068b1cf/signatures/sha256
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisi
ons/sha256/e9a2ac6418981897b399d3709f1b4a6d2723cd38a4909215ce2752a5c

OpenShift Enterprise 3.1 Installation and Configuration

72

1

2

3

4

5

6

7

8

9

068b1cf/signatures/sha256/ede17b139a271d6b1331ca3d83c648c24f92cece5f
89d95ac6c34ce751111810
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisi
ons/sha256/e9a2ac6418981897b399d3709f1b4a6d2723cd38a4909215ce2752a5c
068b1cf/signatures/sha256/ede17b139a271d6b1331ca3d83c648c24f92cece5f

89d95ac6c34ce751111810/link 6

/registry/docker/registry/v2/repositories/p1/pause/_uploads 7

/registry/docker/registry/v2/repositories/p1/pause/_layers 8
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256/a3
ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256/a3
ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4/link

9
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256/f7
2a00a23f01987b42cb26f259582bb33502bdb0fcf5011e03c60577c4284845
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256/f7
2a00a23f01987b42cb26f259582bb33502bdb0fcf5011e03c60577c4284845/link

This directory stores all layers and signatures as blobs.

This file contains the blob’s contents.

This directory stores all the image repositories.

This directory is for a single image repository p1/pause.

This directory contains signatures for a particular image manifest revision.

This file contains a reference back to a blob (which contains the signature data).

This directory contains any layers that are currently being uploaded and staged for the
given repository.

This directory contains links to all the layers this repository references.

This file contains a reference to a specific layer that has been linked into this repository via
an image.

2.7.5. Accessing the Registry Directly

For advanced usage, you can access the registry directly to invoke docker commands. This allows you
to push images to or pull them from the integrated registry directly using operations like docker push
or docker pull. To do so, you must be logged in to the registry using the docker login command.
The operations you can perform depend on your user permissions, as described in the following
sections.

2.7.5.1. User Prerequisites

To access the registry directly, the user that you use must satisfy the following, depending on your
intended usage:

For any direct access, you must have a regular user, if one does not already exist, for your
preferred identity provider. A regular user can generate an access token required for logging in

CHAPTER 2. INSTALLING

73

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#users

to the registry. System users, such as system:admin, cannot obtain access tokens and,
therefore, cannot access the registry directly.
For example, if you are using HTPASSWD authentication, you can create one using the following
command:

htpasswd /etc/origin/openshift-htpasswd <user_name>

The user must have the system:registry role. To add this role:

oadm policy add-role-to-user system:registry <user_name>

Have the admin role for the project associated with the Docker operation. For example, if
accessing images in the global openshift project:

 $ oadm policy add-role-to-user admin <user_name> -n openshift

For writing or pushing images, for example when using the docker push command, the user
must have the system:image-builder role. To add this role:

$ oadm policy add-role-to-user system:image-builder <user_name>

For more information on user permissions, see Managing Role Bindings.

2.7.5.2. Logging in to the Registry

NOTE

Ensure your user satisfies the prerequisites for accessing the registry directly.

To log in to the registry directly:

1. Ensure you are logged in to OpenShift as a regular user:

$ oc login

2. Get your access token:

$ oc whoami -t

3. Log in to the Docker registry:

$ docker login -u <username> -e <any_email_address> \
 -p <token_value> <registry_ip>:<port>

2.7.5.3. Pushing and Pulling Images

After logging in to the registry, you can perform docker pull and docker push operations against
your registry.

OpenShift Enterprise 3.1 Installation and Configuration

74

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#users
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#managing-role-bindings

IMPORTANT

You can pull arbitrary images, but if you have the system:registry role added, you can
only push images to the registry in your project.

In the following examples, we use:

Component Value

<registry_ip> 172.30.124.220

<port> 5000

<project> openshift

<image> busybox

<tag> omitted (defaults to latest)

1. Pull an arbitrary image:

$ docker pull docker.io/busybox

2. Tag the new image with the form <registry_ip>:<port>/<project>/<image>. The
project name must appear in this pull specification for OpenShift to correctly place and later
access the image in the registry.

$ docker tag docker.io/busybox 172.30.124.220:5000/openshift/busybox

NOTE

Your regular user must have the system:image-builder role for the specified
project, which allows the user to write or push an image. Otherwise, the docker
push in the next step will fail. To test, you can create a new project to push the
busybox image.

3. Push the newly-tagged image to your registry:

$ docker push 172.30.124.220:5000/openshift/busybox
...
cf2616975b4a: Image successfully pushed
Digest:
sha256:3662dd821983bc4326bee12caec61367e7fb6f6a3ee547cbaff98f77403ca
b55

2.7.6. Securing the Registry

Optionally, you can secure the registry so that it serves traffic via TLS:

1. Deploy the registry.

CHAPTER 2. INSTALLING

75

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#referencing-images-in-image-streams
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#create-a-project

2. Fetch the service IP and port of the registry:

$ oc get svc/docker-registry
NAME LABELS
SELECTOR IP(S) PORT(S)
docker-registry docker-registry=default docker-
registry=default 172.30.124.220 5000/TCP

3. You can use an existing server certificate, or create a key and server certificate valid for
specified IPs and host names, signed by a specified CA. To create a server certificate for the
registry service IP and the docker-registry.default.svc.cluster.local host name:

$ oadm ca create-server-cert \
 --signer-cert=/etc/origin/master/ca.crt \
 --signer-key=/etc/origin/master/ca.key \
 --signer-serial=/etc/origin/master/ca.serial.txt \
 --hostnames='docker-
registry.default.svc.cluster.local,172.30.124.220' \
 --cert=/etc/secrets/registry.crt \
 --key=/etc/secrets/registry.key

4. Create the secret for the registry certificates:

$ oc secrets new registry-secret \
 /etc/secrets/registry.crt \
 /etc/secrets/registry.key

5. Add the secret to the registry pod’s service accounts (including the default service account):

$ oc secrets add serviceaccounts/registry secrets/registry-secret
$ oc secrets add serviceaccounts/default secrets/registry-secret

6. Add the secret volume to the registry deployment configuration:

$ oc volume dc/docker-registry --add --type=secret \
 --secret-name=registry-secret -m /etc/secrets

7. Enable TLS by adding the following environment variables to the registry deployment
configuration:

$ oc env dc/docker-registry \
 REGISTRY_HTTP_TLS_CERTIFICATE=/etc/secrets/registry.crt \
 REGISTRY_HTTP_TLS_KEY=/etc/secrets/registry.key

See more details on overriding registry options.

8. Update the scheme used for the registry’s liveness probe from HTTP to HTTPS:

$ oc patch dc/docker-registry --api-version=v1 -p '{"spec":
{"template": {"spec": {"containers":[{
 "name":"registry",
 "livenessProbe": {"httpGet": {"scheme":"HTTPS"}}
 }]}}}}'

OpenShift Enterprise 3.1 Installation and Configuration

76

https://github.com/docker/distribution/blob/master/docs/configuration.md#override-configuration-options

1

9. Validate the registry is running in TLS mode. Wait until the docker-registry pod status changes
to Running and verify the Docker logs for the registry container. You should find an entry for
listening on :5000, tls.

$ oc get pods
POD IP CONTAINER(S) IMAGE(S)
HOST LABELS
STATUS CREATED MESSAGE
docker-registry-1-da73t 172.17.0.1
openshiftdev.local/127.0.0.1 deployment=docker-registry-
4,deploymentconfig=docker-registry,docker-registry=default Running
38 hours

$ oc log docker-registry-1-da73t | grep tls
time="2015-05-27T05:05:53Z" level=info msg="listening on :5000, tls"
instance.id=deeba528-c478-41f5-b751-dc48e4935fc2

10. Copy the CA certificate to the Docker certificates directory. This must be done on all nodes in the
cluster:

$ dcertsdir=/etc/docker/certs.d
$ destdir_addr=$dcertsdir/172.30.124.220:5000
$ destdir_name=$dcertsdir/docker-
registry.default.svc.cluster.local:5000

$ sudo mkdir -p $destdir_addr $destdir_name

$ sudo cp ca.crt $destdir_addr 1
$ sudo cp ca.crt $destdir_name

The ca.crt file is a copy of /etc/origin/master/ca.crt on the master.

11. Remove the --insecure-registry option only for this particular registry in the
/etc/sysconfig/docker file. Then, reload the daemon and restart the docker service to reflect
this configuration change:

$ sudo systemctl daemon-reload
$ sudo systemctl restart docker

12. Validate the docker client connection. Running docker push to the registry or docker pull
from the registry should succeed. Make sure you have logged into the registry.

$ docker tag|push <registry/image> <internal_registry/project/image>

For example:

$ docker pull busybox
$ docker tag docker.io/busybox 172.30.124.220:5000/openshift/busybox
$ docker push 172.30.124.220:5000/openshift/busybox
...
cf2616975b4a: Image successfully pushed
Digest:
sha256:3662dd821983bc4326bee12caec61367e7fb6f6a3ee547cbaff98f77403ca
b55

CHAPTER 2. INSTALLING

77

https://docs.docker.com/reference/commandline/push/
https://docs.docker.com/reference/commandline/pull/

2.7.7. Advanced: Overriding the Registry Configuration

You can override the integrated registry’s default configuration, found by default at /config.yml in a
running registry’s container, with your own custom configuration. See the upstream registry
documentation’s Registry Configuration Reference for the full list of available options.

To enable managing the registry configuration file directly, it is recommended that the configuration file
be mounted as a secret volume:

1. Deploy the registry.

2. Edit the registry configuration file locally as needed. The initial YAML file deployed on the
registry is provided below:

version: 0.1
log:
 level: debug
http:
 addr: :5000
storage:
 cache:
 layerinfo: inmemory
 filesystem:
 rootdirectory: /registry
 delete:
 enabled: true
auth:
 openshift:
 realm: openshift
middleware:
 repository:
 - name: openshift
 options:
 pullthrough: true

See Registry Configuration Reference for more options.

3. Create a new secret called registry-config from your custom registry configuration file you
edited locally:

$ oc secrets new registry-config config.yml=
</path/to/custom/registry/config.yml>

4. Add the registry-config secret as a volume to the registry’s deployment configuration to mount
the custom configuration file at /etc/docker/registry/:

$ oc volume dc/docker-registry --add --type=secret \
 --secret-name=registry-config -m /etc/docker/registry/

5. Update the registry to reference the configuration path from the previous step by adding the
following environment variable to the registry’s deployment configuration:

$ oc env dc/docker-registry \
 REGISTRY_CONFIGURATION_PATH=/etc/docker/registry/config.yml

OpenShift Enterprise 3.1 Installation and Configuration

78

https://docs.docker.com/registry/configuration/
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#dev-guide-secrets
https://docs.docker.com/registry/configuration/

This may be performed as an iterative process to achieve the desired configuration. For example, during
troubleshooting, the configuration may be temporarily updated to put it in debug mode.

To update an existing configuration:

WARNING

This procedure will overwrite the currently deployed registry configuration.

1. Edit the local registry configuration file, config.yml.

2. Delete the registry-config secret:

$ oc delete secret registry-config

3. Recreate the secret to reference the updated configuration file the first step:

$ oc secrets new registry-config config.yml=
</path/to/custom/registry/config.yml>

4. Redeploy the registry to read the updated configuration:

$ oc deploy docker-registry --latest

TIP

It is recommended that configuration files be maintained in a source control repository.

2.7.8. Whitelisting Docker Registries

You can specify a whitelist of docker registries, allowing you to curate a set of images and templates that
are available for download by OpenShift users. This curated set can be placed in one or more docker
registries, and then added to the whitelist. When using a whitelist, only the specified registries are
accessible within OpenShift, and all other registries are denied access by default.

To configure a whitelist:

1. Edit the /etc/sysconfig/docker file to block all registries:

BLOCK_REGISTRY='--block-registry=all'

You may need to uncomment the BLOCK_REGISTRY line.

2. In the same file, add registries to which you want to allow access:

ADD_REGISTRY='--add-registry=<registry1> --add-registry=<registry2>'

Example 2.6. Allowing Access to Registries

CHAPTER 2. INSTALLING

79

1

2

3

ADD_REGISTRY='--add-registry=registry.access.redhat.com'

This example would restrict access to images available on the Red Hat Customer Portal.

Once the whitelist is configured, if a user tries to pull from a docker registry that is not on the whitelist,
they will receive an error message stating that this registry is not allowed.

2.7.9. Exposing the Registry

To expose your internal registry externally, it is recommended that you run a secure registry. To expose
the registry you must first have deployed a router.

1. Deploy the registry.

2. Secure the registry.

3. Deploy a router.

4. Create your passthrough route with oc create -f <filename>.json. The passthrough
route will point to the registry service that you have created.

apiVersion: v1
kind: Route
metadata:
 name: registry
spec:

 host: <host> 1
 to:
 kind: Service

 name: docker-registry 2
 tls:

 termination: passthrough 3

The host for your route. You must be able to resolve this name externally via DNS to the
router’s IP address.

The service name for your registry.

Specify this route as a passthrough route.

NOTE

Passthrough is currently the only type of route supported for exposing the secure
registry.

5. Next, you must trust the certificates being used for the registry on your host system. The
certificates referenced were created when you secured your registry.

$ sudo mkdir -p /etc/docker/certs.d/<host>
$ sudo cp <ca certificate file> /etc/docker/certs.d/<host>
$ sudo systemctl restart docker

OpenShift Enterprise 3.1 Installation and Configuration

80

https://access.redhat.com/search/#/container-images
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#passthrough-termination

6. Log in to the registry using the information from securing the registry. However, this time point to
the host name used in the route rather than your service IP. You should now be able to tag and
push images using the route host.

$ oc get imagestreams -n test
NAME DOCKER REPO TAGS UPDATED

$ docker pull busybox
$ docker tag busybox <host>/test/busybox
$ docker push <host>/test/busybox
The push refers to a repository [<host>/test/busybox] (len: 1)
8c2e06607696: Image already exists
6ce2e90b0bc7: Image successfully pushed
cf2616975b4a: Image successfully pushed
Digest:
sha256:6c7e676d76921031532d7d9c0394d0da7c2906f4cb4c049904c4031147d8c
a31

$ docker pull <host>/test/busybox
latest: Pulling from <host>/test/busybox
cf2616975b4a: Already exists
6ce2e90b0bc7: Already exists
8c2e06607696: Already exists
Digest:
sha256:6c7e676d76921031532d7d9c0394d0da7c2906f4cb4c049904c4031147d8c
a31
Status: Image is up to date for <host>/test/busybox:latest

$ oc get imagestreams -n test
NAME DOCKER REPO TAGS UPDATED
busybox 172.30.11.215:5000/test/busybox latest 2 seconds ago

NOTE

Your image streams will have the IP address and port of the registry service, not
the route name and port. See oc get imagestreams for details.

NOTE

In the <host>/test/busybox example above, test refers to the project name.

2.7.10. Known Issues

The following are the known issues when deploying or using the integrated registry.

Image Push Errors with Scaled Registry Using Shared NFS Volume

When using a scaled registry with a shared NFS volume, you may see one of the following errors during
the push of an image:

digest invalid: provided digest did not match uploaded content

blob upload unknown

blob upload invalid

CHAPTER 2. INSTALLING

81

These errors are returned by an internal registry service when Docker attempts to push the image. Its
cause originates in the synchronization of file attributes across nodes. Factors such as NFS client side
caching, network latency, and layer size can all contribute to potential errors that might occur when
pushing an image using the default round-robin load balancing configuration.

You can perform the following steps to minimize the probability of such a failure:

1. Ensure that the sessionAffinity of your docker-registry service is set to ClientIP:

$ oc get svc/docker-registry --template='{{.spec.sessionAffinity}}'

This should return ClientIP, which is the default in recent OpenShift Enterprise versions. If
not, change it:

$ oc get -o yaml svc/docker-registry | \
 sed 's/\(sessionAffinity:\s*\).*/\1ClientIP/' | \
 oc replace -f -

2. Ensure that the NFS export line of your registry volume on your NFS server has the no_wdelay
options listed. See Export Settings in the Persistent Storage Using NFS topic for details.

2.7.11. What’s Next?

After you have a registry deployed, you can:

Configure authentication; by default, authentication is set to Deny All.

Deploy a router.

2.8. DEPLOYING A ROUTER

2.8.1. Overview

The OpenShift router is the ingress point for all external traffic destined for services in your OpenShift
installation. OpenShift provides and supports the following two router plug-ins:

The HAProxy template router is the default plug-in. It uses the openshift3/ose-haproxy-router
image to run an HAProxy instance alongside the template router plug-in inside a container on
OpenShift. It currently supports HTTP(S) traffic and TLS-enabled traffic via SNI. The router’s
container listens on the host network interface, unlike most containers that listen only on private
IPs. The router proxies external requests for route names to the IPs of actual pods identified by
the service associated with the route.

The F5 router integrates with an existing F5 BIG-IP® system in your environment to synchronize
routes. F5 BIG-IP® version 11.4 or newer is required in order to have the F5 iControl REST API.

NOTE

The F5 router plug-in is available starting in OpenShift Enterprise 3.0.2.

2.8.2. The Router Service Account

Before deploying an OpenShift cluster, you must have a service account for the router. Starting in

OpenShift Enterprise 3.1 Installation and Configuration

82

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#haproxy-template-router
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#f5-router

1

OpenShift Enterprise 3.1, a router service account is automatically created during a quick or advanced
installation (previously, this required manual creation). This service account has permissions to a
security context constraint (SCC) that allows it to specify host ports.

2.8.3. Deploying the Default HAProxy Router

The oadm router command is provided with the administrator CLI to simplify the tasks of setting up
routers in a new installation. Just about every form of communication between OpenShift components is
secured by TLS and uses various certificates and authentication methods. Use the --credentials
option to specify what credentials the router should use to contact the master.

IMPORTANT

Routers directly attach to port 80 and 443 on all interfaces on a host. Restrict routers to
hosts where port 80/443 is available and not being consumed by another service, and set
this using node selectors and the scheduler configuration. As an example, you can
achieve this by dedicating infrastructure nodes to run services such as routers.

IMPORTANT

It is recommended to use separate distinct openshift-router credentials with your router.
The credentials can be provided using the --credentials flag to the oadm router
command. Alternatively, the default cluster administrator credentials can be used from the
$KUBECONFIG environment variable.

$ oadm router --dry-run --service-account=router \
 --credentials='/etc/origin/master/openshift-

router.kubeconfig' 1

--credentials is the path to the CLI configuration file for the openshift-router.

IMPORTANT

Router pods created using oadm router have default resource requests that a node
must satisfy for the router pod to be deployed. In an effort to increase the reliability of
infrastructure components, the default resource requests are used to increase the QoS
tier of the router pods above pods without resource requests. The default values
represent the observed minimum resources required for a basic router to be deployed and
can be edited in the routers deployment configuration and you may want to increase them
based on the load of the router.

The default router service account, named router, is automatically created during quick and advanced
installations. To verify that this account already exists:

$ oadm router --dry-run \
 --credentials='/etc/origin/master/openshift-router.kubeconfig' \
 --service-account=router

To see what the default router would look like if created:

$ oadm router -o yaml \
 --credentials='/etc/origin/master/openshift-router.kubeconfig' \
 --service-account=router

CHAPTER 2. INSTALLING

83

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#admin-guide-service-accounts
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#security-context-constraints
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#admin-guide-scheduler
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cli_reference/#cli-reference-manage-cli-profiles

To create a router if it does not exist:

$ oadm router <router_name> --replicas=<number> \
 --credentials='/etc/origin/master/openshift-router.kubeconfig' \
 --service-account=router

Multiple instances are created on different hosts according to the scheduler policy.

To use a different router image and view the router configuration that would be used:

$ oadm router <router_name> -o <format> --images=<image> \
 --credentials='/etc/origin/master/openshift-router.kubeconfig' \
 --service-account=router

For example:

$ oadm router region-west -o yaml --images=myrepo/somerouter:mytag \
 --credentials='/etc/origin/master/openshift-router.kubeconfig' \
 --service-account=router

To deploy the router to any node(s) that match a specified node label:

$ oadm router <router_name> --replicas=<number> --selector=<label> \
 --service-account=router

For example, if you want to create a router named router and have it placed on a node labeled with
region=infra:

$ oadm router router --replicas=1 --selector='region=infra' \
 --service-account=router

2.8.3.1. High Availability

You can set up a highly-available router on your OpenShift Enterprise cluster using IP failover.

2.8.3.2. Customizing the Default Routing Subdomain

You can customize the suffix used as the default routing subdomain for your environment using the
master configuration file (the /etc/origin/master/master-config.yaml file by default). The following
example shows how you can set the configured suffix to v3.openshift.test:

Example 2.7. Master Configuration Snippet

routingConfig:
 subdomain: v3.openshift.test

NOTE

This change requires a restart of the master if it is running.

OpenShift Enterprise 3.1 Installation and Configuration

84

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#admin-guide-scheduler
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#admin-guide-high-availability

With the OpenShift master(s) running the above configuration, the generated host name for the example
of a host added to a namespace mynamespace would be:

Example 2.8. Generated Host Name

myroute-mynamespace.v3.openshift.test

2.8.3.3. Using Wildcard Certificates

A TLS-enabled route that does not include a certificate uses the router’s default certificate instead. In
most cases, this certificate should be provided by a trusted certificate authority, but for convenience you
can use the OpenShift CA to create the certificate. For example:

$ CA=/etc/origin/master
$ oadm ca create-server-cert --signer-cert=$CA/ca.crt \
 --signer-key=$CA/ca.key --signer-serial=$CA/ca.serial.txt \
 --hostnames='*.cloudapps.example.com' \
 --cert=cloudapps.crt --key=cloudapps.key

The router expects the certificate and key to be in PEM format in a single file:

$ cat cloudapps.crt cloudapps.key $CA/ca.crt > cloudapps.router.pem

From there you can use the --default-cert flag:

$ oadm router --default-cert=cloudapps.router.pem --service-account=router
\
 --credentials=${ROUTER_KUBECONFIG:-"$KUBECONFIG"}

NOTE

Browsers only consider wildcards valid for subdomains one level deep. So in this
example, the certificate would be valid for a.cloudapps.example.com but not for
a.b.cloudapps.example.com.

2.8.3.4. Using Secured Routes

Currently, password protected key files are not supported. HAProxy prompts for a password upon
starting and does not have a way to automate this process. To remove a passphrase from a keyfile, you
can run:

openssl rsa -in <passwordProtectedKey.key> -out <new.key>

Here is an example of how to use a secure edge terminated route with TLS termination occurring on the
router before traffic is proxied to the destination. The secure edge terminated route specifies the TLS
certificate and key information. The TLS certificate is served by the router front end.

First, start up a router instance:

oadm router --replicas=1 --service-account=router \
 --credentials=${ROUTER_KUBECONFIG:-"$KUBECONFIG"}

CHAPTER 2. INSTALLING

85

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#route-hostnames

Next, create a private key, csr and certificate for our edge secured route. The instructions on how to do
that would be specific to your certificate authority and provider. For a simple self-signed certificate for a
domain named www.example.test, see the example shown below:

sudo openssl genrsa -out example-test.key 2048
#
sudo openssl req -new -key example-test.key -out example-test.csr \
 -subj "/C=US/ST=CA/L=Mountain View/O=OS3/OU=Eng/CN=www.example.test"
#
sudo openssl x509 -req -days 366 -in example-test.csr \
 -signkey example-test.key -out example-test.crt

Generate a route configuration file using the above certificate and key. Make sure to replace
servicename my-service with the name of your service.

servicename="my-service"
echo "
apiVersion: v1
kind: Route
metadata:
 name: secured-edge-route
spec:
 host: www.example.test
 to:
 kind: Service
 name: $servicename
 tls:
 termination: edge
 key: |
$(openssl rsa -in example-test.key | sed 's/^/ /')
 certificate: |
$(openssl x509 -in example-test.crt | sed 's/^/ /')

" > example-test-route.yaml

Finally add the route to OpenShift (and the router) via:

oc create -f example-test-route.yaml

Make sure your DNS entry for www.example.test points to your router instance(s) and the route to
your domain should be available. The example below uses curl along with a local resolver to simulate the
DNS lookup:

routerip="4.1.1.1" # replace with IP address of one of your router
instances.
curl -k --resolve www.example.test:443:$routerip
https://www.example.test/

2.8.3.5. Using the Container Network Stack

The OpenShift router runs inside a Docker container and the default behavior is to use the network stack
of the host (i.e., the node where the router container runs). This default behavior benefits performance
because network traffic from remote clients does not need to take multiple hops through user space to

OpenShift Enterprise 3.1 Installation and Configuration

86

reach the target service and container.

Additionally, this default behavior enables the router to get the actual source IP address of the remote
connection rather than getting the node’s IP address. This is useful for defining ingress rules based on
the originating IP, supporting sticky sessions, and monitoring traffic, among other uses.

This host network behavior is controlled by the --host-network router command line option, and the
default behaviour is the equivalent of using --host-network=true. If you wish to run the router with
the container network stack, use the --host-network=false option when creating the router. For
example:

$ oadm router \
 --credentials='/etc/origin/master/openshift-router.kubeconfig' \
 --service-account=router \
 --host-network=false

Internally, this means the router container must publish the 80 and 443 ports in order for the external
network to communicate with the router.

NOTE

Running with the container network stack means that the router sees the source IP
address of a connection to be the NATed IP address of the node, rather than the actual
remote IP address.

NOTE

On OpenShift clusters using multi-tenant network isolation, routers on a non-default
namespace with the --host-network=false option will load all routes in the cluster,
but routes across the namespaces will not be reachable due to network isolation. With the
--host-network=true option, routes bypass the container network and it can access
any pod in the cluster. If isolation is needed in this case, then do not add routes across the
namespaces.

2.8.3.6. Exposing Router metrics

Using the --metrics-image and --expose-metrics options, you can configure the OpenShift
Enterprise router to run a sidecar container that exposes or publishes router metrics for consumption by
external metrics collection and aggregation systems (e.g. Prometheus, statsd).

Depending on your router implementation, the image is appropriately set up and the metrics sidecar
container is started when the router is deployed. For example, the HAProxy-based router
implementation defaults to using the prom/haproxy-exporter image to run as a sidecar container,
which can then be used as a metrics datasource by the Prometheus server.

NOTE

The --metrics-image option overrides the defaults for HAProxy-based router
implementations and, in the case of custom implementations, enables the image to use
for a custom metrics exporter or publisher.

1. Grab the HAProxy Prometheus exporter image from the Docker registry:

CHAPTER 2. INSTALLING

87

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#network-isolation-multitenant

$ sudo docker pull prom/haproxy-exporter

2. Create the OpenShift Enterprise router:

$ oadm router \
 --credentials='/etc/origin/master/openshift-router.kubeconfig' \
 --service-account=router --expose-metrics

Or, optionally, use the --metrics-image option to override the HAProxy defaults:

$ oadm router \
 --credentials='/etc/origin/master/openshift-router.kubeconfig' \
 --service-account=router --expose-metrics \
 --metrics-image=prom/haproxy-exporter

3. Once the haproxy-exporter containers (and your HAProxy router) have started, point
Prometheus to the sidecar container on port 9101 on the node where the haproxy-exporter
container is running:

$ haproxy_exporter_ip="<enter-ip-address-or-hostname>"
$ cat > haproxy-scraper.yml <<CFGEOF

global:
 scrape_interval: "60s"
 scrape_timeout: "10s"
 # external_labels:
 # source: openshift-router

scrape_configs:
 - job_name: "haproxy"
 target_groups:
 - targets:
 - "${haproxy_exporter_ip}:9101"
CFGEOF

$ # And start prometheus as you would normally using the above
config file.
$ echo " - Example: prometheus -config.file=haproxy-scraper.yml "
$ echo " or you can start it as a container on
OpenShift!!

$ echo " - Once the prometheus server is up, view the OpenShift
HAProxy "
$ echo " router metrics at:
http://<ip>:9090/consoles/haproxy.html "

2.8.4. Deploying a Customized HAProxy Router

The HAProxy router is based on a golang template that generates the HAProxy configuration file from a
list of routes. If you want a customized template router to meet your needs, you can customize the
template file, build a new Docker image, and run a customized router.

OpenShift Enterprise 3.1 Installation and Configuration

88

http://golang.org/pkg/text/template/

1

One common case for this might be implementing new features within the application back ends. For
example, it might be desirable in a highly-available setup to use stick-tables that synchronizes between
peers. The router plug-in provides all the facilities necessary to make this customization.

You can obtain a new haproxy-config.template file from the latest router image by running:

docker run --rm --interactive=true --tty --entrypoint=cat \
 registry.access.redhat.com/openshift3/ose-haproxy-router:v3.0.2.0
haproxy-config.template

Save this content to a file for use as the basis of your customized template.

2.8.4.1. Using Stick Tables

The following example customization can be used in a highly-available routing setup to use stick-tables
that synchronize between peers.

Adding a Peer Section

In order to synchronize stick-tables amongst peers you must a define a peers section in your HAProxy
configuration. This section determines how HAProxy will identify and connect to peers. The plug-in
provides data to the template under the .PeerEndpoints variable to allow you to easily identify
members of the router service. You may add a peer section to the haproxy-config.template file inside
the router image by adding:

{{ if (len .PeerEndpoints) gt 0 }}
peers openshift_peers
 {{ range $endpointID, $endpoint := .PeerEndpoints }}
 peer {{$endpoint.TargetName}} {{$endpoint.IP}}:1937
 {{ end }}
{{ end }}

Changing the Reload Script

When using stick-tables, you have the option of telling HAProxy what it should consider the name of the
local host in the peer section. When creating endpoints, the plug-in attempts to set the TargetName to
the value of the endpoint’s TargetRef.Name. If TargetRef is not set, it will set the TargetName to the
IP address. The TargetRef.Name corresponds with the Kubernetes host name, therefore you can add
the -L option to the reload-haproxy script to identify the local host in the peer section.

peer_name=$HOSTNAME 1

if [-n "$old_pid"]; then
 /usr/sbin/haproxy -f $config_file -p $pid_file -L $peer_name -sf
$old_pid
else
 /usr/sbin/haproxy -f $config_file -p $pid_file -L $peer_name
fi

Must match an endpoint target name that is used in the peer section.

Modifying Back Ends

CHAPTER 2. INSTALLING

89

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#configuring-a-highly-available-routing-service

Finally, to use the stick-tables within back ends, you can modify the HAProxy configuration to use the
stick-tables and peer set. The following is an example of changing the existing back end for TCP
connections to use stick-tables:

 {{ if eq $cfg.TLSTermination "passthrough" }}
backend be_tcp_{{$cfgIdx}}
 balance leastconn
 timeout check 5000ms
 stick-table type ip size 1m expire 5m{{ if (len $.PeerEndpoints) gt 0 }}
peers openshift_peers {{ end }}
 stick on src
 {{ range $endpointID, $endpoint :=
$serviceUnit.EndpointTable }}
 server {{$endpointID}} {{$endpoint.IP}}:{{$endpoint.Port}} check inter
5000ms
 {{ end }}
 {{ end }}

After this modification, you can rebuild your router.

2.8.4.2. Rebuilding Your Router

After you have made any desired modifications to the template, such as the example stick tables
customization, you must rebuild your router for your changes to go in effect:

1. Rebuild the Docker image to include your customized template.

2. Push the resulting image to your repository.

3. Create the router specifying your new image, either:

a. in the pod’s object definition directly, or

b. by adding the --images=<repo>/<image>:<tag> flag to the oadm router command
when creating a highly-available routing service.

2.8.5. Deploying the F5 Router

NOTE

The F5 router plug-in is available starting in OpenShift Enterprise 3.0.2.

The F5 router plug-in is provided as a Docker image and run as a pod, just like the default HAProxy
router. Deploying the F5 router is done similarly as well, using the oadm router command but
providing additional flags (or environment variables) to specify the following parameters for the F5 BIG-
IP® host:

Flag Description

--type=f5-
router

Specifies that an F5 router should be launched (the default --type is haproxy-
router).

OpenShift Enterprise 3.1 Installation and Configuration

90

https://access.redhat.com/articles/881893#createimage
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#configuring-a-highly-available-routing-service

--external-
host

Specifies the F5 BIG-IP® host’s management interface’s host name or IP address.

--external-
host-
username

Specifies the F5 BIG-IP® user name (typically admin).

--external-
host-
password

Specifies the F5 BIG-IP® password.

--external-
host-http-
vserver

Specifies the name of the F5 virtual server for HTTP connections.

--external-
host-https-
vserver

Specifies the name of the F5 virtual server for HTTPS connections.

--external-
host-
private-key

Specifies the path to the SSH private key file for the F5 BIG-IP® host. Required to
upload and delete key and certificate files for routes.

--external-
host-
insecure

A Boolean flag that indicates that the F5 router should skip strict certificate verification
with the F5 BIG-IP® host.

Flag Description

As with the HAProxy router, the oadm router command creates the service and deployment
configuration objects, and thus the replication controllers and pod(s) in which the F5 router itself runs.
The replication controller restarts the F5 router in case of crashes. Because the F5 router is only
watching routes and endpoints and configuring F5 BIG-IP® accordingly, running the F5 router in this
way along with an appropriately configured F5 BIG-IP® deployment should satisfy high-availability
requirements.

To deploy the F5 router:

1. First, establish a tunnel using a ramp node, which allows for the routing of traffic to pods through
the OpenShift SDN.

2. Run the oadm router command with the appropriate flags. For example:

$ oadm router \
 --type=f5-router \
 --external-host=10.0.0.2 \
 --external-host-username=admin \
 --external-host-password=mypassword \
 --external-host-http-vserver=ose-vserver \
 --external-host-https-vserver=https-ose-vserver \
 --external-host-private-key=/path/to/key \

CHAPTER 2. INSTALLING

91

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-sdn

1

 --credentials='/etc/origin/master/openshift-router.kubeconfig' \

1
 --service-account=router

--credentials is the path to the CLI configuration file for the openshift-router. It is
recommended using an openshift-router specific profile with appropriate permissions.

2.8.6. What’s Next?

If you deployed an HAProxy router, you can learn more about monitoring the router.

If you have not yet done so, you can:

Configure authentication; by default, authentication is set to Deny All.

Deploy an integrated Docker registry.

OpenShift Enterprise 3.1 Installation and Configuration

92

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cli_reference/#cli-reference-manage-cli-profiles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#admin-guide-router

CHAPTER 3. UPGRADING

3.1. OVERVIEW

When new versions of OpenShift are released, you can upgrade your existing cluster to apply the latest
enhancements and bug fixes. This includes upgrading from previous minor versions, such as release 3.0
to 3.1, and applying asynchronous errata updates within a minor version (3.1.z releases). See the
OpenShift Enterprise 3.1 Release Notes to review the latest changes.

NOTE

Due to the core architectural changes between the major versions, OpenShift Enterprise 2
environments cannot be upgraded to OpenShift Enterprise 3 and require a fresh
installation.

Unless noted otherwise, node and masters within a major version are forward and backward compatible,
so upgrading your cluster should go smoothly. However, you should not run mismatched versions longer
than necessary to upgrade the entire cluster.

If you installed using the quick or advanced installation and the ~/.config/openshift/installer.cfg.yml or
inventory file that was used is available, you can perform an automated upgrade. Alternatively, you can
upgrade OpenShift manually.

NOTE

The Upgrading topics pertains to RPM-based installations only (i.e., the quick and
advanced installation methods) and does not currently cover container-based
installations.

If you are using the Pacemaker method for high availability (HA) masters, you can upgrade to the native
HA method either using Ansible playbooks or manually.

3.2. PERFORMING AUTOMATED CLUSTER UPGRADES

3.2.1. Overview

Starting with OpenShift 3.0.2, if you installed using the advanced installation and the inventory file that
was used is available, you can use the upgrade playbook to automate the OpenShift cluster upgrade
process. If you installed using the quick installation method and a ~/.config/openshift/installer.cfg.yml
file is available, you can use the installer to perform the automated upgrade.

The automated upgrade performs the following steps for you:

Applies the latest configuration.

Upgrades and restart master services.

Upgrades and restart node services.

Applies the latest cluster policies.

Updates the default router if one exists.

CHAPTER 3. UPGRADING

93

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/release_notes/#release-notes-ose-3-1-release-notes

Updates the default registry if one exists.

Updates default image streams and InstantApp templates.

IMPORTANT

Running Ansible playbooks with the --tags or --check options is not supported by Red
Hat.

3.2.2. Preparing for an Automated Upgrade

1. If you are upgrading from OpenShift Enterprise 3.0 to 3.1, on each master and node host you
must manually disable the 3.0 channel and enable the 3.1 channel:

subscription-manager repos --disable="rhel-7-server-ose-3.0-rpms"
\
 --enable="rhel-7-server-ose-3.1-rpms" \
 --enable="rhel-7-server-rpms"

2. For any upgrade path, always ensure that you have the latest version of the atomic-openshift-
utils package, which should also update the openshift-ansible-* packages:

yum update atomic-openshift-utils

3. Install or update to the following latest available *-excluder packages on each RHEL 7 system,
which helps ensure your systems stay on the correct versions of atomic-openshift and docker
packages when you are not trying to upgrade, according to the OpenShift Enterprise version:

yum install atomic-openshift-excluder atomic-openshift-docker-
excluder

These packages add entries to the exclude directive in the host’s /etc/yum.conf file.

4. You must be logged in as a cluster administrative user on the master host for the upgrade to
succeed:

$ oc login

There are two methods for running the automated upgrade: using the installer or running the upgrade
playbook directly. Choose and follow one method.

3.2.3. Using the Installer to Upgrade

If you installed OpenShift using the quick installation method, you should have an installation
configuration file located at ~/.config/openshift/installer.cfg.yml. The installer requires this file to start
an upgrade.

NOTE

The installer currently only supports upgrading from OpenShift Enterprise 3.0 to 3.1. See
Upgrading to OpenShift Enterprise 3.1 Asynchronous Releases for instructions on using
Ansible directly.

OpenShift Enterprise 3.1 Installation and Configuration

94

If you have an older format installation configuration file in ~/.config/openshift/installer.cfg.yml from an
existing OpenShift Enterprise 3.0 installation, the installer will attempt to upgrade the file to the new
supported format. If you do not have an installation configuration file of any format, you can create one
manually.

To start the upgrade, run the installer with the upgrade subcommand:

1. Satisfy the steps in Preparing for an Automated Upgrade to ensure you are using the latest
upgrade playbooks.

2. Run the following command on each host to remove the atomic-openshift packages from the
list of yum excludes on the host:

atomic-openshift-excluder unexclude

3. Run the installer with the upgrade subcommand:

atomic-openshift-installer upgrade

4. Follow the on-screen instructions to upgrade to the latest release.

5. After all master and node upgrades have completed, a recommendation will be printed to reboot
all hosts. Before rebooting, run the following command on each master and node host to add the
atomic-openshift packages back to the list of yum excludes on the host:

atomic-openshift-excluder exclude

Then reboot all hosts.

6. After rebooting, continue to Updating Master and Node Certificates.

3.2.4. Running the Upgrade Playbook Directly

Alternatively, you can run the upgrade playbook with Ansible directly, similar to the advanced installation
method, if you have an inventory file.

3.2.4.1. Upgrading to OpenShift Enterprise 3.1.0

Before running the upgrade, first update your inventory file to change the deployment_type parameter
from enterprise to openshift-enterprise; this is required when upgrading from OpenShift Enterprise 3.0
to 3.1:

Before running the upgrade, first ensure the deployment_type parameter in your inventory file is set to
openshift-enterprise.

If you have multiple masters configured and want to enable rolling, full system restarts of the hosts, you
can set the openshift_rolling_restart_mode parameter in your inventory file to system.
Otherwise, the default value services performs rolling service restarts on HA masters, but does not
reboot the systems. See Configuring Cluster Variables for details.

Then, run the v3_0_to_v3_1 upgrade playbook. If your inventory file is located somewhere other than the
default /etc/ansible/hosts, add the -i flag to specify the location. If you previously used the atomic-
openshift-installer command to run your installation, you can check
~/.config/openshift/.ansible/hosts for the last inventory file that was used, if needed.

CHAPTER 3. UPGRADING

95

ansible-playbook [-i </path/to/inventory/file>] \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/upgrades/v3_0_to_v3_1/upgrade.yml

When the upgrade finishes, a recommendation will be printed to reboot all hosts. After rebooting,
continue to Updating Master and Node Certificates.

3.2.4.2. Upgrading to OpenShift Enterprise 3.1 Asynchronous Releases

To apply asynchronous errata updates to an existing OpenShift Enterprise 3.1 cluster, first upgrade the
atomic-openshift-utils package on the Red Hat Enterprise Linux 7 system where you will be running
Ansible:

yum update atomic-openshift-utils

Then, run the v3_1_minor upgrade playbook. If your inventory file is located somewhere other than the
default /etc/ansible/hosts, add the -i flag to specify the location. If you previously used the atomic-
openshift-installer command to run your installation, you can check
~/.config/openshift/.ansible/hosts for the last inventory file that was used, if needed.

ansible-playbook [-i </path/to/inventory/file>] \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/upgrades/v3_1_minor/upgrade.yml

When the upgrade finishes, a recommendation will be printed to reboot all hosts. After rebooting,
continue to Verifying the Upgrade.

3.2.5. Updating Master and Node Certificates

The following steps may be required for any OpenShift cluster that was originally installed prior to the
OpenShift Enterprise 3.1 release. This may include any and all updates from that version.

3.2.5.1. Node Certificates

With the 3.1 release, certificates for each of the kubelet nodes were updated to include the IP address of
the node. Any node certificates generated before the 3.1 release may not contain the IP address of the
node.

If a node is missing the IP address as part of its certificate, clients may refuse to connect to the kubelet
endpoint. Usually this will result in errors regarding the certificate not containing an IP SAN.

In order to remedy this situation, you may need to manually update the certificates for your node.

3.2.5.1.1. Checking the Node’s Certificate

The following command can be used to determine which Subject Alternative Names (SANs) are present
in the node’s serving certificate. In this example, the Subject Alternative Names are mynode,
mynode.mydomain.com, and 1.2.3.4:

openssl x509 -in /etc/origin/node/server.crt -text -noout | grep -A 1
"Subject Alternative Name"
X509v3 Subject Alternative Name:
DNS:mynode, DNS:mynode.mydomain.com, IP: 1.2.3.4

OpenShift Enterprise 3.1 Installation and Configuration

96

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/release_notes/#ose-31-asynchronous-errata-updates
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/release_notes/#release-notes-ose-3-1-release-notes

Ensure that the nodeIP value set in the /etc/origin/node/node-config.yaml file is present in the IP
values from the Subject Alternative Names listed in the node’s serving certificate. If the nodeIP is not
present, then it will need to be added to the node’s certificate.

If the nodeIP value is already contained within the Subject Alternative Names, then no further steps are
required.

You will need to know the Subject Alternative Names and nodeIP value for the following steps.

3.2.5.1.2. Generating a New Node Certificate

If your current node certificate does not contain the proper IP address, then you must regenerate a new
certificate for your node.

IMPORTANT

Node certificates will be regenerated on the master (or first master) and are then copied
into place on node systems.

1. Create a temporary directory in which to perform the following steps:

mkdir /tmp/node_certificate_update
cd /tmp/node_certificate_update

2. Export the signing options:

export signing_opts="--signer-cert=/etc/origin/master/ca.crt \
 --signer-key=/etc/origin/master/ca.key \
 --signer-serial=/etc/origin/master/ca.serial.txt"

3. Generate the new certificate:

oadm ca create-server-cert --cert=server.crt \
 --key=server.key $signing_opts \
 --hostnames=<existing_SANs>,<nodeIP>

For example, if the Subject Alternative Names from before were mynode,
mynode.mydomain.com, and 1.2.3.4, and the nodeIP was 10.10.10.1, then you would need to
run the following command:

oadm ca create-server-cert --cert=server.crt \
 --key=server.key $signing_opts \
 --hostnames=mynode,mynode.mydomain.com,1.2.3.4,10.10.10.1

3.2.5.1.3. Replace Node Serving Certificates

Back up the existing /etc/origin/node/server.crt and /etc/origin/node/server.key files for your node:

mv /etc/origin/node/server.crt /etc/origin/node/server.crt.bak
mv /etc/origin/node/server.key /etc/origin/node/server.key.bak

You must now copy the new server.crt and server.key created in the temporary directory during the
previous step:

CHAPTER 3. UPGRADING

97

mv /tmp/node_certificate_update/server.crt /etc/origin/node/server.crt
mv /tmp/node_certificate_update/server.key /etc/origin/node/server.key

After you have replaced the node’s certificate, restart the node service:

systemctl restart atomic-openshift-node

3.2.5.2. Master Certificates

With the 3.1 release, certificates for each of the masters were updated to include all names that pods
may use to communicate with masters. Any master certificates generated before the 3.1 release may not
contain these additional service names.

3.2.5.2.1. Checking the Master’s Certificate

The following command can be used to determine which Subject Alternative Names (SANs) are present
in the master’s serving certificate. In this example, the Subject Alternative Names are mymaster,
mymaster.mydomain.com, and 1.2.3.4:

openssl x509 -in /etc/origin/master/master.server.crt -text -noout |
grep -A 1 "Subject Alternative Name"
X509v3 Subject Alternative Name:
DNS:mymaster, DNS:mymaster.mydomain.com, IP: 1.2.3.4

Ensure that the following entries are present in the Subject Alternative Names for the master’s serving
certificate:

Entry Example

Kubernetes service IP address 172.30.0.1

All master host names master1.example.com

All master IP addresses 192.168.122.1

Public master host name in clustered environments public-master.example.com

kubernetes

kubernetes.default

kubernetes.default.svc

kubernetes.default.svc.cluster.local

openshift

openshift.default

OpenShift Enterprise 3.1 Installation and Configuration

98

1

2

openshift.default.svc

openshift.default.svc.cluster.local

Entry Example

If these names are already contained within the Subject Alternative Names, then no further steps are
required.

3.2.5.2.2. Generating a New Master Certificate

If your current master certificate does not contain all names from the list above, then you must generate a
new certificate for your master:

1. Back up the existing /etc/origin/master/master.server.crt and
/etc/origin/master/master.server.key files for your master:

mv /etc/origin/master/master.server.crt
/etc/origin/master/master.server.crt.bak
mv /etc/origin/master/master.server.key
/etc/origin/master/master.server.key.bak

2. Export the service names. These names will be used when generating the new certificate:

export
service_names="kubernetes,kubernetes.default,kubernetes.default.svc,
kubernetes.default.svc.cluster.local,openshift,openshift.default,ope
nshift.default.svc,openshift.default.svc.cluster.local"

3. You will need the first IP in the services subnet (the kubernetes service IP) as well as the
values of masterIP, masterURL and publicMasterURL contained in the
/etc/origin/master/master-config.yaml file for the following steps.
The kubernetes service IP can be obtained with:

oc get svc/kubernetes --template='{{.spec.clusterIP}}'

4. Generate the new certificate:

oadm ca create-master-certs \
 --hostnames=<master_hostnames>,<master_IP_addresses>,

<kubernetes_service_IP>,$service_names \ 1 2 3

 --master=<internal_master_address> \ 4

 --public-master=<public_master_address> \ 5
 --cert-dir=/etc/origin/master/ \
 --overwrite=false

Adjust <master_hostnames> to match your master host name. In a clustered
environment, add all master host names.

Adjust <master_IP_addresses> to match the value of masterIP. In a clustered
environment, add all master IP addresses.

CHAPTER 3. UPGRADING

99

3

4

5

Adjust <kubernetes_service_IP> to the first IP in the kubernetes services subnet.

Adjust <internal_master_address> to match the value of masterURL.

Adjust <public_master_address> to match the value of masterPublicURL.

5. Restart master services. For single master deployments:

systemctl restart atomic-openshift-master

For native HA multiple master deployments:

systemctl restart atomic-openshift-master-api
systemctl restart atomic-openshift-master-controllers

For Pacemaker HA multiple master deployments:

pcs resource restart master

After the service restarts, the certificate update is complete.

3.2.6. Upgrading the EFK Logging Stack

If you have previously deployed the EFK logging stack and want to upgrade to the latest logging
component images, the steps must be performed manually as shown in Manual Upgrades.

3.2.7. Verifying the Upgrade

To verify the upgrade, first check that all nodes are marked as Ready:

oc get nodes
NAME LABELS
STATUS
master.example.com
kubernetes.io/hostname=master.example.com,region=infra,zone=default
Ready
node1.example.com
kubernetes.io/hostname=node1.example.com,region=primary,zone=east
Ready

Then, verify that you are running the expected versions of the docker-registry and router images, if
deployed:

oc get -n default dc/docker-registry -o json | grep \"image\"
 "image": "openshift3/ose-docker-registry:v3.1.1.11",
oc get -n default dc/router -o json | grep \"image\"
 "image": "openshift3/ose-haproxy-router:v3.1.1.11",

If you upgraded from OSE 3.0 to OSE 3.1, verify in your old /etc/sysconfig/openshift-master and
/etc/sysconfig/openshift-node files that any custom configuration is added to your new
/etc/sysconfig/atomic-openshift-master and /etc/sysconfig/atomic-openshift-node files.

OpenShift Enterprise 3.1 Installation and Configuration

100

After upgrading, you can use the experimental diagnostics tool to look for common issues:

openshift ex diagnostics
...
[Note] Summary of diagnostics execution:
[Note] Completed with no errors or warnings seen.

3.3. PERFORMING MANUAL CLUSTER UPGRADES

3.3.1. Overview

As an alternative to performing an automated upgrade, you can manually upgrade your OpenShift
cluster. To manually upgrade without disruption, it is important to upgrade each component as
documented in this topic.

IMPORTANT

Before you begin your upgrade, familiarize yourself now with the entire procedure.
Specific releases may require additional steps to be performed at key points before or
during the standard upgrade process.

3.3.2. Preparing for a Manual Upgrade

1. If you are upgrading from OpenShift Enterprise 3.0 to 3.1, perform the following steps:

a. On each master and node host, manually disable the 3.0 channel and enable the 3.1
channel:

subscription-manager repos --disable="rhel-7-server-ose-3.0-
rpms" \
 --enable="rhel-7-server-ose-3.1-rpms"

b. Create an etcd backup on each master:

yum install etcd
etcdctl backup --data-dir
/var/lib/openshift/openshift.local.etcd \
 --backup-dir /var/lib/openshift/openshift.local.etcd.bak

c. Remove support for the v1beta3 API. Update the /etc/openshift/master/master-
config.yml file on each master, and remove v1beta3 from the apiLevels and
kubernetesMasterConfig.apiLevels parameters.

d. During this upgrade, some directories are renamed from openshift to origin, so create the
following symlinks on each host:

ln -s /var/lib/openshift /var/lib/origin
ln -s /etc/openshift /etc/origin

2. Install or update to the following latest available *-excluder packages on each RHEL 7 system,
which helps ensure your systems stay on the correct versions of atomic-openshift and docker
packages when you are not trying to upgrade, according to the OpenShift Enterprise version:

CHAPTER 3. UPGRADING

101

yum install atomic-openshift-excluder atomic-openshift-docker-
excluder

These packages add entries to the exclude directive in the host’s /etc/yum.conf file.

3. If you are already running OpenShift Enterprise 3.1 or later, create an etcd backup by running:

yum install etcd
etcdctl backup --data-dir /var/lib/origin/openshift.local.etcd \
 --backup-dir /var/lib/origin/openshift.local.etcd.bak

4. For any upgrade path, always ensure that you are running the latest kernel:

yum update kernel

3.3.3. Upgrading Masters

Upgrade your master hosts first:

1. Run the following command on each master to remove the atomic-openshift packages from the
list of yum excludes on the host:

atomic-openshift-excluder unexclude

2. Upgrade the atomic-openshift packages or related images.

yum upgrade atomic-openshift-master

3. If you are upgrading from OpenShift Enterprise 3.0 to 3.1:

a. Create the following master proxy client certificates:

cd /etc/origin/master/
oadm ca create-master-certs --cert-dir=/etc/origin/master/ \
 --master=https://<internal-master-fqdn>:8443 \
 --public-master=https://<external-master-fqdn>:8443 \
 --hostnames=<external-master-fqdn>,<internal-master-
fqdn>,localhost,127.0.0.1,<master-ip-
address>,kubernetes.default.local \
 --overwrite=false

This creates files at /etc/origin/master/master.proxy-client.{crt,key}.

b. Then, add the master proxy client certificates to the /etc/origin/master/master-config.yml
file on each master:

kubernetesMasterConfig:
 proxyClientInfo:
 certFile: master.proxy-client.crt
 keyFile: master.proxy-client.key

c. Enable the following renamed service on master hosts:

OpenShift Enterprise 3.1 Installation and Configuration

102

systemctl enable atomic-openshift-master

4. For any upgrade path, now restart the atomic-openshift-master service and review its logs to
ensure services have been restarted successfully:

systemctl restart atomic-openshift-master
journalctl -r -u atomic-openshift-master

5. Run the following command on each master to add the atomic-openshift packages back to the
list of yum excludes on the host:

atomic-openshift-excluder exclude

3.3.4. Updating Policy Definitions

After a cluster upgrade, the recommended default cluster roles may have been updated. To check if an
update is recommended for your environment, you can run:

oadm policy reconcile-cluster-roles

This command outputs a list of roles that are out of date and their new proposed values. For example:

oadm policy reconcile-cluster-roles
apiVersion: v1
items:
- apiVersion: v1
 kind: ClusterRole
 metadata:
 creationTimestamp: null
 name: admin
 rules:
 - attributeRestrictions: null
 resources:
 - builds/custom
...

NOTE

Your output will vary based on the OpenShift version and any local customizations you
have made. Review the proposed policy carefully.

You can either modify this output to re-apply any local policy changes you have made, or you can
automatically apply the new policy using the following process:

1. Reconcile the cluster roles:

oadm policy reconcile-cluster-roles --confirm

2. Restart the master service:

systemctl restart atomic-openshift-master

CHAPTER 3. UPGRADING

103

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#roles

3. Reconcile security context constraints:

oadm policy reconcile-sccs \
 --additive-only=true \
 --confirm

3.3.5. Upgrading Nodes

After upgrading your masters, you can upgrade your nodes. When restarting the atomic-openshift-node
service, there will be a brief disruption of outbound network connectivity from running pods to services
while the service proxy is restarted. The length of this disruption should be very short and scales based
on the number of services in the entire cluster.

To upgrade nodes:

1. Run the following command on each node to remove the atomic-openshift packages from the
list of yum excludes on the host:

atomic-openshift-excluder unexclude

2. As a user with cluster-admin privileges, disable scheduling for the node:

oadm manage-node <node> --schedulable=false

3. On each node host, upgrade all atomic-openshift packages:

yum upgrade atomic-openshift*

4. If you are upgrading from OpenShift Enterprise 3.0 to 3.1, enable the following renamed service
on node hosts:

systemctl enable atomic-openshift-node

5. For any upgrade path, now restart the atomic-openshift-node service:

systemctl restart atomic-openshift-node

6. Enable scheduling again for any non-master nodes that you disabled:

oadm manage-node <node> --schedulable=true

7. Run the following command on the node to add the atomic-openshift packages back to the list
of yum excludes on the host:

atomic-openshift-excluder exclude

8. Repeat these steps on the next node, and continue repeating these steps until all nodes have
been upgraded.

9. After all nodes have been upgraded, as a user with cluster-admin privileges, verify that all
nodes are showing as Ready:

oc get nodes

OpenShift Enterprise 3.1 Installation and Configuration

104

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#service-proxy

1

NAME LABELS
STATUS
master.example.com kubernetes.io/hostname=master.example.com
Ready,SchedulingDisabled
node1.example.com kubernetes.io/hostname=node1.example.com
Ready
node2.example.com kubernetes.io/hostname=node2.example.com
Ready

3.3.6. Upgrading the Router

If you have previously deployed a router, the router deployment configuration must be upgraded to apply
updates contained in the router image. To upgrade your router without disrupting services, you must
have previously deployed a highly-available routing service.

Edit your router’s deployment configuration. For example, if it has the default router name:

oc edit dc/router

Apply the following changes:

...
spec:
 template:
 spec:
 containers:
 - env:
 ...
 image: registry.access.redhat.com/openshift3/ose-haproxy-

router:v3.1.1.11 1
 imagePullPolicy: IfNotPresent
 ...

Adjust the image version to match the version you are upgrading to.

You should see one router pod updated and then the next.

3.3.7. Upgrading the Registry

The registry must also be upgraded for changes to take effect in the registry image. If you have used a
PersistentVolumeClaim or a host mount point, you may restart the registry without losing the
contents of your registry. Deploying a Docker Registry details how to configure persistent storage for the
registry.

Edit your registry’s deployment configuration:

oc edit dc/docker-registry

Apply the following changes:

...
spec:
 template:

CHAPTER 3. UPGRADING

105

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#configuring-a-highly-available-routing-service

1

 spec:
 containers:
 - env:
 ...
 image: registry.access.redhat.com/openshift3/ose-docker-

registry:v3.1.1.11 1
 imagePullPolicy: IfNotPresent
 ...

Adjust the image version to match the version you are upgrading to.

IMPORTANT

Images that are being pushed or pulled from the internal registry at the time of upgrade
will fail and should be restarted automatically. This will not disrupt pods that are already
running.

3.3.8. Updating the Default Image Streams and Templates

By default, the quick and advanced installation methods automatically create default image streams,
InstantApp templates, and database service templates in the openshift project, which is a default project
to which all users have view access. These objects were created during installation from the JSON files
located under the /usr/share/ansible/openshift-ansible/roles/openshift_examples/files/examples/
directory.

NOTE

Because RHEL Atomic Host 7 cannot use yum to update packages, the following steps
must take place on a RHEL 7 system.

1. Update the packages that provide the example JSON files. On a subscribed Red Hat Enterprise
Linux 7 system where you can run the CLI as a user with cluster-admin permissions, install or
update to the latest version of the atomic-openshift-utils package, which should also update
the openshift-ansible- packages:

yum update atomic-openshift-utils

The openshift-ansible-roles package provides the latest example JSON files.

2. Update the global openshift project by running the following commands. Receiving warnings
about items that already exist is expected.

oc create -n openshift -f /usr/share/openshift/examples/image-
streams/image-streams-rhel7.json
oc create -n openshift -f /usr/share/openshift/examples/db-
templates
oc create -n openshift -f
/usr/share/openshift/examples/quickstart-templates
oc create -n openshift -f /usr/share/openshift/examples/xpaas-
streams
oc create -n openshift -f /usr/share/openshift/examples/xpaas-
templates
oc replace -n openshift -f /usr/share/openshift/examples/image-

OpenShift Enterprise 3.1 Installation and Configuration

106

streams/image-streams-rhel7.json
oc replace -n openshift -f /usr/share/openshift/examples/db-
templates
oc replace -n openshift -f
/usr/share/openshift/examples/quickstart-templates
oc replace -n openshift -f /usr/share/openshift/examples/xpaas-
streams
oc replace -n openshift -f /usr/share/openshift/examples/xpaas-
templates

3. After a manual upgrade, get the latest templates from openshift-ansible-roles:

rpm -ql openshift-ansible-roles | grep examples | grep v1.2

In this example, /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v1.2/image-streams/image-streams-
rhel7.json is the latest file that you want in the latest openshift-ansible-roles package.

/usr/share/openshift/examples/image-streams/image-streams-rhel7.json is not owned by a
package, but is updated by Ansible. If you are upgrading outside of Ansible. you need to get the
latest .json files on the system where you are running oc, which can run anywhere that has
access to the master.

4. Install atomic-openshift-utils and its dependencies to install the new content into
/usr/share/ansible/openshift-ansible/roles/openshift_examples/files/examples/v1.2/.:

$ oc create -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v1.2/image-
streams/image-streams-rhel7.json
$ oc replace -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v1.2/image-
streams/image-streams-rhel7.json

5. Update the templates:

$ oc create -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v1.2/quickstart-
templates/
$ oc create -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v1.2/db-templates/
$ oc create -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v1.2/infrastructure-
templates/
$ oc create -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v1.2/xpaas-
templates/
$ oc create -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v1.2/xpaas-streams/
$ oc replace -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v1.2/quickstart-
templates/
$ oc replace -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v1.2/db-templates/
$ oc replace -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v1.2/infrastructure-

CHAPTER 3. UPGRADING

107

templates/
$ oc replace -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v1.2/xpaas-
templates/
$ oc replace -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v1.2/xpaas-streams/

Errors are generated for items that already exist. This is expected behavior:

oc create -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v1.2/quickstart-
templates/
Error from server: error when creating
"/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v1.2/quickstart-
templates/cakephp-mysql.json": templates "cakephp-mysql-example"
already exists
Error from server: error when creating
"/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v1.2/quickstart-
templates/cakephp.json": templates "cakephp-example" already exists
Error from server: error when creating
"/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v1.2/quickstart-
templates/dancer-mysql.json": templates "dancer-mysql-example"
already exists
Error from server: error when creating
"/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v1.2/quickstart-
templates/dancer.json": templates "dancer-example" already exists
Error from server: error when creating
"/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v1.2/quickstart-
templates/django-postgresql.json": templates "django-psql-example"
already exists

Now, content can be updated. Without running the automated upgrade playbooks, the content is not
updated in /usr/share/openshift/.

3.3.9. Importing the Latest Images

After updating the default image streams, you may also want to ensure that the images within those
streams are updated. For each image stream in the default openshift project, you can run:

oc import-image -n openshift <imagestream>

For example, get the list of all image streams in the default openshift project:

oc get is -n openshift
NAME DOCKER REPO
TAGS UPDATED
mongodb registry.access.redhat.com/openshift3/mongodb-24-rhel7
2.4,latest,v3.1 16 hours ago
mysql registry.access.redhat.com/openshift3/mysql-55-rhel7

OpenShift Enterprise 3.1 Installation and Configuration

108

5.5,latest,v3.1 16 hours ago
nodejs registry.access.redhat.com/openshift3/nodejs-010-rhel7
0.10,latest,v3.1 16 hours ago
...

Update each image stream one at a time:

oc import-image -n openshift nodejs
Waiting for the import to complete, CTRL+C to stop waiting.
The import completed successfully.

Name: nodejs
Created: 16 hours ago
Labels: <none>
Annotations: openshift.io/image.dockerRepositoryCheck=2015-07-
21T13:17:00Z
Docker Pull Spec: registry.access.redhat.com/openshift3/nodejs-010-
rhel7

Tag Spec Created PullSpec
Image
0.10 latest 16 hours ago
registry.access.redhat.com/openshift3/nodejs-010-rhel7:latest
66d92cebc0e48e4e4be3a93d0f9bd54f21af7928ceaa384d20800f6e6fcf669f
latest 16 hours ago
registry.access.redhat.com/openshift3/nodejs-010-rhel7:latest
66d92cebc0e48e4e4be3a93d0f9bd54f21af7928ceaa384d20800f6e6fcf669f
v3.1 <pushed> 16 hours ago
registry.access.redhat.com/openshift3/nodejs-010-rhel7:v3.1
66d92cebc0e48e4e4be3a93d0f9bd54f21af7928ceaa384d20800f6e6fcf669f

IMPORTANT

In order to update your S2I-based applications, you must manually trigger a new build of
those applications after importing the new images using oc start-build <app-
name>.

3.3.10. Updating Master and Node Certificates

The following steps may be required for any OpenShift cluster that was originally installed prior to the
OpenShift Enterprise 3.1 release. This may include any and all updates from that version.

3.3.10.1. Node Certificates

With the 3.1 release, certificates for each of the kubelet nodes were updated to include the IP address of
the node. Any node certificates generated before the 3.1 release may not contain the IP address of the
node.

If a node is missing the IP address as part of its certificate, clients may refuse to connect to the kubelet
endpoint. Usually this will result in errors regarding the certificate not containing an IP SAN.

In order to remedy this situation, you may need to manually update the certificates for your node.

3.3.10.1.1. Checking the Node’s Certificate

CHAPTER 3. UPGRADING

109

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/release_notes/#release-notes-ose-3-1-release-notes

The following command can be used to determine which Subject Alternative Names (SANs) are present
in the node’s serving certificate. In this example, the Subject Alternative Names are mynode,
mynode.mydomain.com, and 1.2.3.4:

openssl x509 -in /etc/origin/node/server.crt -text -noout | grep -A 1
"Subject Alternative Name"
X509v3 Subject Alternative Name:
DNS:mynode, DNS:mynode.mydomain.com, IP: 1.2.3.4

Ensure that the nodeIP value set in the /etc/origin/node/node-config.yaml file is present in the IP
values from the Subject Alternative Names listed in the node’s serving certificate. If the nodeIP is not
present, then it will need to be added to the node’s certificate.

If the nodeIP value is already contained within the Subject Alternative Names, then no further steps are
required.

You will need to know the Subject Alternative Names and nodeIP value for the following steps.

3.3.10.1.2. Generating a New Node Certificate

If your current node certificate does not contain the proper IP address, then you must regenerate a new
certificate for your node.

IMPORTANT

Node certificates will be regenerated on the master (or first master) and are then copied
into place on node systems.

1. Create a temporary directory in which to perform the following steps:

mkdir /tmp/node_certificate_update
cd /tmp/node_certificate_update

2. Export the signing options:

export signing_opts="--signer-cert=/etc/origin/master/ca.crt \
 --signer-key=/etc/origin/master/ca.key \
 --signer-serial=/etc/origin/master/ca.serial.txt"

3. Generate the new certificate:

oadm ca create-server-cert --cert=server.crt \
 --key=server.key $signing_opts \
 --hostnames=<existing_SANs>,<nodeIP>

For example, if the Subject Alternative Names from before were mynode,
mynode.mydomain.com, and 1.2.3.4, and the nodeIP was 10.10.10.1, then you would need to
run the following command:

oadm ca create-server-cert --cert=server.crt \
 --key=server.key $signing_opts \
 --hostnames=mynode,mynode.mydomain.com,1.2.3.4,10.10.10.1

OpenShift Enterprise 3.1 Installation and Configuration

110

3.3.10.1.3. Replace Node Serving Certificates

Back up the existing /etc/origin/node/server.crt and /etc/origin/node/server.key files for your node:

mv /etc/origin/node/server.crt /etc/origin/node/server.crt.bak
mv /etc/origin/node/server.key /etc/origin/node/server.key.bak

You must now copy the new server.crt and server.key created in the temporary directory during the
previous step:

mv /tmp/node_certificate_update/server.crt /etc/origin/node/server.crt
mv /tmp/node_certificate_update/server.key /etc/origin/node/server.key

After you have replaced the node’s certificate, restart the node service:

systemctl restart atomic-openshift-node

3.3.10.2. Master Certificates

With the 3.1 release, certificates for each of the masters were updated to include all names that pods
may use to communicate with masters. Any master certificates generated before the 3.1 release may not
contain these additional service names.

3.3.10.2.1. Checking the Master’s Certificate

The following command can be used to determine which Subject Alternative Names (SANs) are present
in the master’s serving certificate. In this example, the Subject Alternative Names are mymaster,
mymaster.mydomain.com, and 1.2.3.4:

openssl x509 -in /etc/origin/master/master.server.crt -text -noout |
grep -A 1 "Subject Alternative Name"
X509v3 Subject Alternative Name:
DNS:mymaster, DNS:mymaster.mydomain.com, IP: 1.2.3.4

Ensure that the following entries are present in the Subject Alternative Names for the master’s serving
certificate:

Entry Example

Kubernetes service IP address 172.30.0.1

All master host names master1.example.com

All master IP addresses 192.168.122.1

Public master host name in clustered environments public-master.example.com

kubernetes

kubernetes.default

CHAPTER 3. UPGRADING

111

kubernetes.default.svc

kubernetes.default.svc.cluster.local

openshift

openshift.default

openshift.default.svc

openshift.default.svc.cluster.local

Entry Example

If these names are already contained within the Subject Alternative Names, then no further steps are
required.

3.3.10.2.2. Generating a New Master Certificate

If your current master certificate does not contain all names from the list above, then you must generate a
new certificate for your master:

1. Back up the existing /etc/origin/master/master.server.crt and
/etc/origin/master/master.server.key files for your master:

mv /etc/origin/master/master.server.crt
/etc/origin/master/master.server.crt.bak
mv /etc/origin/master/master.server.key
/etc/origin/master/master.server.key.bak

2. Export the service names. These names will be used when generating the new certificate:

export
service_names="kubernetes,kubernetes.default,kubernetes.default.svc,
kubernetes.default.svc.cluster.local,openshift,openshift.default,ope
nshift.default.svc,openshift.default.svc.cluster.local"

3. You will need the first IP in the services subnet (the kubernetes service IP) as well as the
values of masterIP, masterURL and publicMasterURL contained in the
/etc/origin/master/master-config.yaml file for the following steps.
The kubernetes service IP can be obtained with:

oc get svc/kubernetes --template='{{.spec.clusterIP}}'

4. Generate the new certificate:

oadm ca create-master-certs \
 --hostnames=<master_hostnames>,<master_IP_addresses>,

<kubernetes_service_IP>,$service_names \ 1 2 3

 --master=<internal_master_address> \ 4

OpenShift Enterprise 3.1 Installation and Configuration

112

1

2

3

4

5

 --public-master=<public_master_address> \ 5
 --cert-dir=/etc/origin/master/ \
 --overwrite=false

Adjust <master_hostnames> to match your master host name. In a clustered
environment, add all master host names.

Adjust <master_IP_addresses> to match the value of masterIP. In a clustered
environment, add all master IP addresses.

Adjust <kubernetes_service_IP> to the first IP in the kubernetes services subnet.

Adjust <internal_master_address> to match the value of masterURL.

Adjust <public_master_address> to match the value of masterPublicURL.

5. Restart master services. For single master deployments:

systemctl restart atomic-openshift-master

For native HA multiple master deployments:

systemctl restart atomic-openshift-master-api
systemctl restart atomic-openshift-master-controllers

For Pacemaker HA multiple master deployments:

pcs resource restart master

After the service restarts, the certificate update is complete.

3.3.11. Upgrading the EFK Logging Stack

If you have previously deployed the EFK logging stack and want to upgrade to the latest logging
component images, you must take the following steps to safely upgrade with minimal disruption to your
log data.

NOTE

The following steps apply when you want to update to newer OpenShift Enterprise 3.1
logging images, but are not yet fully upgrading your cluster to a later minor or major
release of OpenShift Enterprise. The IMAGE_VERSION variable is used in a later step to
ensure that you do not accidentally pull the wrong images.

1. Ensure you are working in the project where the EFK stack was previously deployed, and stay in
that project for the remainder of these steps. For example, if the project is named logging:

$ oc project logging

2. Scale down your Fluentd instances to 0:

$ oc scale dc/logging-fluentd --replicas=0

CHAPTER 3. UPGRADING

113

Wait until they have properly terminated. This helps prevent loss of data by giving them time to
properly flush their current buffer and send any logs they were processing to Elasticsearch.

3. Scale down your Kibana instances:

$ oc scale dc/logging-kibana --replicas=0

If you have an operations deployment, also run:

$ oc scale dc/logging-kibana-ops --replicas=0

4. Once your Fluentd and Kibana pods are confirmed to be terminated, you can safely scale down
the Elasticsearch pods:

$ oc scale dc/logging-es-<unique_name> --replicas=0

If you have an operations deployment, also run:

$ oc scale dc/logging-es-ops-<unique_name> --replicas=0

5. After your Elasticsearch pods are confirmed to be terminated, pull in the latest EFK images using
the same procedure described in Importing the Latest Images, replacing the openshift project
with the project where the EFK stack was previously deployed.
For example, if the project is named logging:

$ oc import-image -n logging <imagestream>

The list of image streams are:

logging-auth-proxy
logging-elasticsearch
logging-fluentd
logging-kibana

6. With the latest images in your repository, you can now rerun the deployer to generate any
missing or changed features.

a. First, ensure that your OAuth client has been deleted:

$ oc delete oauthclient --selector logging-infra=support

b. Then, proceed to follow the same steps as done previously in Deploying the EFK Stack, but
ensure that you add IMAGE_VERSION to the list of variables and set it to the appropriate
version. For example, for the latest 3.1.1 image:

$ oc process logging-deployer-template -n openshift \
 -v
IMAGE_VERSION=3.1.1,KIBANA_HOSTNAME=kibana.example.com,ES_CLUSTER
_SIZE=1,PUBLIC_MASTER_URL=https://localhost:8443 \
 | oc create -f -

See Deploying the EFK Stack for the full instructions. After the deployer completes, re-attach
your persistent volumes you were using previously.

OpenShift Enterprise 3.1 Installation and Configuration

114

7. Next, scale Elasticsearch back up incrementally so that the cluster has time to rebuild.

a. To begin, scale up to 1:

$ oc scale dc/logging-es-<unique_name> --replicas=1

Follow the logs of the resulting pod to ensure that it is able to recover its indices correctly
and that there are no errors:

$ oc logs -f <pod_name>

If that is successful, you can then do the same for the operations cluster, if one was
previously used.

b. After all Elasticsearch nodes have recovered their indices, continue to scale it back up to the
size it was prior to doing maintenance. Check the logs of the Elasticsearch members to
verify that they have correctly joined the cluster and recovered.

8. Now scale Kibana and Fluentd back up to their previous state. Because Fluentd was shut down
and allowed to push its remaining records to Elasticsearch in the previous steps, it can now pick
back up from where it left off with no loss of logs, provided any unread log files are still available
on the node.

9. In the latest version, Kibana will display indices differently now in order to prevent users from
being able to access the logs of previously created projects that have been deleted.
Due to this change, your old logs will not appear automatically. To migrate your old indices to the
new format, rerun the deployer with -v MODE=migrate in addition to your prior flags. This
should be run while your Elasticsearch cluster is running, as the script must connect to it to make
changes.

NOTE

This only impacts non-operations logs. Operations logs will appear the same as in
previous versions. There should be minimal performance impact to Elasticsearch
while running this and it will not perform an install.

3.3.12. Additional Manual Steps Per Release

Some OpenShift releases may have additional instructions specific to that release that must be
performed to fully apply the updates across the cluster. Read through the following sections carefully
depending on your upgrade path, as you may be required to perform certain steps at key points during
the standard upgrade process described earlier in this topic.

See the OpenShift Enterprise 3.1 Release Notes to review the latest release notes.

3.3.12.1. OpenShift Enterprise 3.1.0

There are no additional manual steps for these releases that are not already mentioned inline during the
standard manual upgrade process.

3.3.12.2. OpenShift Enterprise 3.1.1

There was an issue with OpenShift Enterprise 3.1.1 where hosts with host names that resolved to IP
addresses that were not local to the host would run into problems with liveness and readiness probes on
newly-created HAProxy routers. This was resolved in RHBA-2016:0293 by configuring the probes to use

CHAPTER 3. UPGRADING

115

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/release_notes/#release-notes-ose-3-1-release-notes
https://access.redhat.com/errata/product/290/ver=3.1/rhel---7/x86_64/RHBA-2016:0293

1

2

localhost as the hostname for pods with hostPort values.

If you created a router under the affected version, and your liveness or readiness probes unexpectedly
fail for your router, then add host: localhost:

oc edit dc/router

Apply the following changes:

spec:
 template:
 spec:
 containers:
 ...
 livenessProbe:
 httpGet:

 host: localhost 1
 path: /healthz
 port: 1936
 scheme: HTTP
 initialDelaySeconds: 10
 timeoutSeconds: 1
 ...
 readinessProbe:
 httpGet:

 host: localhost 2
 path: /healthz
 port: 1936
 scheme: HTTP
 timeoutSeconds: 1

Add 'host: localhost' to your liveness probe.

Add 'host: localhost' to your readiness probe.

3.3.12.3. OpenShift Enterprise 3.1.1.11

There are no additional manual steps for the upgrade to OpenShift Enterprise 3.1.1.11 that are not
already mentioned inline during the standard manual upgrade process.

3.3.13. Verifying the Upgrade

To verify the upgrade, first check that all nodes are marked as Ready:

oc get nodes
NAME LABELS
STATUS
master.example.com
kubernetes.io/hostname=master.example.com,region=infra,zone=default
Ready
node1.example.com
kubernetes.io/hostname=node1.example.com,region=primary,zone=east
Ready

OpenShift Enterprise 3.1 Installation and Configuration

116

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/release_notes/#ose-3-1-1-11

Then, verify that you are running the expected versions of the docker-registry and router images, if
deployed:

oc get -n default dc/docker-registry -o json | grep \"image\"
 "image": "openshift3/ose-docker-registry:v3.1.1.11",
oc get -n default dc/router -o json | grep \"image\"
 "image": "openshift3/ose-haproxy-router:v3.1.1.11",

If you upgraded from OSE 3.0 to OSE 3.1, verify in your old /etc/sysconfig/openshift-master and
/etc/sysconfig/openshift-node files that any custom configuration is added to your new
/etc/sysconfig/atomic-openshift-master and /etc/sysconfig/atomic-openshift-node files.

After upgrading, you can use the experimental diagnostics tool to look for common issues:

openshift ex diagnostics
...
[Note] Summary of diagnostics execution:
[Note] Completed with no errors or warnings seen.

3.4. UPGRADING FROM PACEMAKER TO NATIVE HA

3.4.1. Overview

If you are using the Pacemaker method for high availability (HA) masters, you can upgrade to the native
HA method either using Ansible playbooks or manually. Both methods are described in the following
sections.

3.4.2. Using Ansible Playbooks

These steps assume that cluster has been upgraded to OpenShift Enterprise 3.1 using either the manual
or automated method.

WARNING

Playbooks used for the Pacemaker to native HA upgrade will re-run cluster
configuration steps, therefore any settings that are not stored in your inventory file
will be overwritten. Back up any configuration files that have been modified since
installation before beginning this upgrade.

3.4.2.1. Modifying the Ansible Inventory

Your original Ansible inventory file’s Pacemaker configuration contains a VIP and a cluster host name
which should resolve to this VIP. Native HA requires a cluster host name which resolves to the load
balancer being used.

Consider the following example configuration:

Pacemaker high availability cluster method.

CHAPTER 3. UPGRADING

117

1

Pacemaker HA environment must be able to self provision the
configured VIP. For installation openshift_master_cluster_hostname
must resolve to the configured VIP.
#openshift_master_cluster_method=pacemaker
#openshift_master_cluster_password=openshift_cluster
#openshift_master_cluster_vip=192.168.133.35
#openshift_master_cluster_public_vip=192.168.133.35
#openshift_master_cluster_hostname=openshift-cluster.example.com
#openshift_master_cluster_public_hostname=openshift-cluster.example.com

Remove or comment the above section in your inventory file. Then, add the following section, modifying
the host names to match your current cluster host names:

Native high availability cluster method with optional load balancer.
If no lb group is defined, the installer assumes that a load balancer
has
been preconfigured. For installation the value of
openshift_master_cluster_hostname must resolve to the load balancer
or to one or all of the masters defined in the inventory if no load
balancer is present.
openshift_master_cluster_method=native
openshift_master_cluster_hostname=openshift-cluster.example.com
openshift_master_cluster_public_hostname=openshift-cluster.example.com

Native HA requires a load balancer to balance the master API (port 8443). When modifying your
inventory file, specify an [lb] group and add lb to the [OSEv3:children] section if you would like
the playbooks to configure an HAProxy instance as the load balancer. This instance must be on a
separate host from the masters and nodes:

[OSEv3:children]
masters
nodes
lb
...
[lb]

lb1.example.com 1

Host name of the HAProxy load balancer.

Any external load balancer may be used in place of the default HAProxy host, but it must be pre-
configured and allow API traffic to masters on port 8443.

3.4.2.1.1. Destroying the Pacemaker Cluster

On any master, run the following to destroy the Pacemaker cluster.

OpenShift Enterprise 3.1 Installation and Configuration

118

WARNING

After the Pacemaker cluster has been destroyed, the OpenShift cluster will be in
outage until the remaining steps are completed.

pcs cluster destroy --all

3.4.2.2. Updating DNS

Modify your cluster host name DNS entries such that the host name used resolves to the load balancer
that will be used with native HA.

In the earlier example configuration, openshift-cluster.example.com resolves to 192.168.133.35. DNS
must be modified such that openshift-cluster.example.com now resolves to the load balancer host or
to the master API balancer in an alternative load balancing solution.

3.4.2.3. Running the Ansible Playbook

You can now run the following Ansible playbook:

WARNING

Back up any configuration files that have been modified since installation before
beginning this upgrade.

ansible-playbook /usr/share/ansible/openshift-
ansible/playbooks/byo/config.yml

After the playbook finishes successfully, your upgrade to the native HA method is complete. Restore any
configuration files if you backed up any that had been modified since installation, and restart any relevant
OpenShift services, if necessary.

3.4.3. Manually Upgrading

These steps assume that cluster has been upgraded to OpenShift Enterprise 3.1 using either the manual
or automated method. They also assume that you are bringing your own load balancer which has been
configured to balance the master API on port 8443.

3.4.3.1. Creating Unit and System Configuration for New Services

The Systemd unit files for the atomic-openshift-master-api and atomic-openshift-master-controllers
services are not yet provided by packaging. Ansible creates unit and system configuration when
installing with the native HA method.

CHAPTER 3. UPGRADING

119

Therefore, create the following files:

Example 3.1. /usr/lib/systemd/system/atomic-openshift-master-api.service File

[Unit]
Description=Atomic OpenShift Master API
Documentation=https://github.com/openshift/origin
After=network.target
After=etcd.service
Before=atomic-openshift-node.service
Requires=network.target

[Service]
Type=notify
EnvironmentFile=/etc/sysconfig/atomic-openshift-master-api
Environment=GOTRACEBACK=crash
ExecStart=/usr/bin/openshift start master api --config=${CONFIG_FILE}
$OPTIONS
LimitNOFILE=131072
LimitCORE=infinity
WorkingDirectory=/var/lib/origin/
SyslogIdentifier=atomic-openshift-master-api

[Install]
WantedBy=multi-user.target
WantedBy=atomic-openshift-node.service

Example 3.2. /usr/lib/systemd/system/atomic-openshift-master-controllers.service File

[Unit]
Description=Atomic OpenShift Master Controllers
Documentation=https://github.com/openshift/origin
After=network.target
After=atomic-openshift-master-api.service
Before=atomic-openshift-node.service
Requires=network.target

[Service]
Type=notify
EnvironmentFile=/etc/sysconfig/atomic-openshift-master-controllers
Environment=GOTRACEBACK=crash
ExecStart=/usr/bin/openshift start master controllers --
config=${CONFIG_FILE} $OPTIONS
LimitNOFILE=131072
LimitCORE=infinity
WorkingDirectory=/var/lib/origin/
SyslogIdentifier=atomic-openshift-master-controllers
Restart=on-failure

[Install]
WantedBy=multi-user.target
WantedBy=atomic-openshift-node.service

OpenShift Enterprise 3.1 Installation and Configuration

120

Example 3.3. /etc/sysconfig/atomic-openshift-master-api File

OPTIONS=--loglevel=2
CONFIG_FILE=/etc/origin/master/master-config.yaml

Proxy configuration
Origin uses standard HTTP_PROXY environment variables. Be sure to set
NO_PROXY for your master
#NO_PROXY=master.example.com
#HTTP_PROXY=http://USER:PASSWORD@IPADDR:PORT
#HTTPS_PROXY=https://USER:PASSWORD@IPADDR:PORT

Example 3.4. /etc/sysconfig/atomic-openshift-master-controllers File

OPTIONS=--loglevel=2
CONFIG_FILE=/etc/origin/master/master-config.yaml

Proxy configuration
Origin uses standard HTTP_PROXY environment variables. Be sure to set
NO_PROXY for your master
#NO_PROXY=master.example.com
#HTTP_PROXY=http://USER:PASSWORD@IPADDR:PORT
#HTTPS_PROXY=https://USER:PASSWORD@IPADDR:PORT

Then, reload Systemd to pick up your changes:

systemctl daemon-reload

3.4.3.2. Destroying the Pacemaker Cluster

On any master, run the following to destroy the Pacemaker cluster.

WARNING

After the Pacemaker cluster has been destroyed, the OpenShift cluster will be in
outage until the remaining steps are completed.

pcs cluster destroy --all

3.4.3.3. Updating DNS

Modify your cluster host name DNS entries such that the host name used resolves to the load balancer
that will be used with native HA.

CHAPTER 3. UPGRADING

121

1

1

For example, if the cluster host name is openshift-cluster.example.com and it resolved to a VIP of
192.168.133.35, then DNS must be modified such that openshift-cluster.example.com now resolves to
the master API balancer.

3.4.3.4. Modifying Master and Node Configuration

Edit the master configuration in the /etc/origin/master/master-config.yaml file and ensure that
kubernetesMasterConfig.masterCount is updated to the total number of masters. Perform this
step on all masters:

Example 3.5. /etc/origin/master/master-config.yaml File

...
kubernetesMasterConfig:
 apiServerArguments:
 controllerArguments:

 masterCount: 3 1
...

Update this value to the total number of masters.

Edit the node configuration in the /etc/orign/node/node-config.yaml file and remove the dnsIP setting.
OpenShift will use the Kubernetes service IP as the dnsIP by default. Perform this step on all nodes:

Example 3.6. /etc/origin/node/node-config.yaml File

...
allowDisabledDocker: false
apiVersion: v1
dnsDomain: cluster.local

dnsIP: 10.6.102.3 1
dockerConfig:
 execHandlerName: ""
...

Remove this line.

3.4.3.4.1. Starting the API Service

Start and enable the API service on all masters:

systemctl start atomic-openshift-master-api
systemctl enable atomic-openshift-master-api

3.4.3.4.2. Starting the Controller Service

Start and enable the controllers service on all masters:

systemctl start atomic-openshift-master-controllers

OpenShift Enterprise 3.1 Installation and Configuration

122

systemctl enable atomic-openshift-master-controllers

After the service restarts, your upgrade to the native HA method is complete.

3.4.3.5. Modifying the Ansible Inventory

Optionally, modify your Ansible inventory file for future runs per the instructions above in the playbooks
method.

CHAPTER 3. UPGRADING

123

1

1

CHAPTER 4. DOWNGRADING OPENSHIFT

4.1. OVERVIEW

Following an OpenShift Enterprise upgrade, it may be desirable in extreme cases to downgrade your
cluster to a previous version. The following sections outline the required steps for each system in a
cluster to perform such a downgrade, currently supported for the OpenShift Enterprise 3.1 to 3.0
downgrade path.

4.2. VERIFYING BACKUPS

The Ansible playbook used during the upgrade process should have created a backup of the master-
config.yaml file and the etcd data directory. Ensure these exist on your masters and etcd members:

/etc/openshift/master/master-config.yaml.<timestamp>
/var/lib/openshift/etcd-backup-<timestamp>

If you use a separate etcd cluster instead of a single embedded etcd instance, the backup is likely
created on all etcd members, though only one is required for the recovery process. You can run a
separate etcd instance that is co-located with your master nodes.

The RPM downgrade process in a later step should create .rpmsave backups of the following files, but it
may be a good idea to keep a separate copy regardless:

/etc/sysconfig/openshift-master

/etc/etcd/etcd.conf 1

Only required if using a separate etcd cluster.

4.3. SHUTTING DOWN THE CLUSTER

On all masters, nodes, and etcd members, if you use a separate etcd cluster that runs on different
nodes, ensure the relevant services are stopped:

systemctl stop atomic-openshift-master
systemctl stop atomic-openshift-node

systemctl stop etcd 1

Only required if using external etcd.

4.4. REMOVING RPMS

On all masters, nodes, and etcd members (if using an external etcd cluster), remove the following
packages:

yum remove atomic-openshift \
 atomic-openshift-clients \
 atomic-openshift-node \
 atomic-openshift-master \

OpenShift Enterprise 3.1 Installation and Configuration

124

 openvswitch \
 atomic-openshift-sdn-ovs \
 tuned-profiles-atomic-openshift-node

If you are using external etcd, also remove the etcd package:

yum remove etcd

For embedded etcd, you can leave the etcd package installed, as the package is only required so that
the etcdctl command is available to issue operations in later steps.

4.5. REINSTALLING RPMS

Disable the OpenShift Enteprise 3.1 repositories, and re-enable the 3.0 repositories:

subscription-manager repos \
 --disable=rhel-7-server-ose-3.1-rpms \
 --enable=rhel-7-server-ose-3.0-rpms

On each master, install the following packages:

yum install openshift \
 openshift-master \
 openshift-node \
 openshift-sdn-ovs

On each node, install the following packages:

yum install openshift \
 openshift-node \
 openshift-sdn-ovs

If using a separate etcd cluster, install the following package on each etcd member:

yum install etcd

4.6. RESTORING ETCD

Whether using embedded or external etcd, you must first restore the etcd backup by creating a new,
single node etcd cluster. If using external etcd with multiple members, you must then also add any
additional etcd members to the cluster one by one.

However, the details of the restoration process differ between embedded and external etcd. See the
following section that matches your etcd configuration and follow the relevant steps before continuing to
Bringing OpenShift Services Back Online.

4.6.1. Embedded etcd

Restore your etcd backup and configuration:

1. Run the following on the master with the embedded etcd:

CHAPTER 4. DOWNGRADING OPENSHIFT

125

ETCD_DIR=/var/lib/openshift/openshift.local.etcd
mv $ETCD_DIR /var/lib/etcd.orig
cp -Rp /var/lib/openshift/etcd-backup-<timestamp>/ $ETCD_DIR
chcon -R --reference /var/lib/etcd.orig/ $ETCD_DIR
chown -R etcd:etcd $ETCD_DIR

WARNING

The $ETCD_DIR location differs between external and embedded etcd.

2. Create the new, single node etcd cluster:

etcd -data-dir=/var/lib/openshift/openshift.local.etcd \
 -force-new-cluster

Verify etcd has started successfully by checking the output from the above command, which
should look similar to the following at the end:

[...]
2016/01/8 13:24:21 etcdserver: starting server... [version: 2.1.1,
cluster version: 2.1.0]
2016/01/8 13:24:22 raft: 5168c093630001 is starting a new election
at term 13
2016/01/8 13:24:22 raft: 5168c093630001 became candidate at term 14
2016/01/8 13:24:22 raft: 5168c093630001 received vote from
5168c093630001 at term 14
2016/01/8 13:24:22 raft: 5168c093630001 became leader at term 14
2016/01/8 13:24:22 raft: raft.node: 5168c093630001 elected leader
5168c093630001 at term 14
2016/01/8 13:24:22 etcdserver: published {Name:default ClientURLs:
[http://localhost:2379 http://localhost:4001]} to cluster
5168c093630002

3. Shut down the process by running the following from a separate terminal:

pkill etcd

4. Continue to Bringing OpenShift Services Back Online.

4.6.2. External etcd

Choose a system to be the initial etcd member, and restore its etcd backup and configuration:

1. Run the following on the etcd host:

ETCD_DIR=/var/lib/etcd/
mv $ETCD_DIR /var/lib/etcd.orig
cp -Rp /var/lib/openshift/etcd-backup-<timestamp>/ $ETCD_DIR

OpenShift Enterprise 3.1 Installation and Configuration

126

chcon -R --reference /var/lib/etcd.orig/ $ETCD_DIR
chown -R etcd:etcd $ETCD_DIR

WARNING

The $ETCD_DIR location differs between external and embedded etcd.

2. Restore your /etc/etcd/etcd.conf file from backup or .rpmsave.

3. Create the new single node cluster using etcd’s --force-new-cluster option. You can do
this with a long complex command using the values from the /etc/etcd/etcd.conf, or you can
temporarily modify the systemd file and start the service normally.
To do so, edit the /usr/lib/systemd/system/etcd.service and add --force-new-cluster:

sed -i '/ExecStart/s/"$/ --force-new-cluster"/'
/usr/lib/systemd/system/etcd.service
cat /usr/lib/systemd/system/etcd.service | grep ExecStart

ExecStart=/bin/bash -c "GOMAXPROCS=$(nproc) /usr/bin/etcd --force-
new-cluster"

Then restart the etcd service:

systemctl daemon-reload
systemctl start etcd

4. Verify the etcd service started correctly, then re-edit the /usr/lib/systemd/system/etcd.service
file and remove the --force-new-cluster option:

sed -i '/ExecStart/s/ --force-new-cluster//'
/usr/lib/systemd/system/etcd.service
cat /usr/lib/systemd/system/etcd.service | grep ExecStart

ExecStart=/bin/bash -c "GOMAXPROCS=$(nproc) /usr/bin/etcd"

5. Restart the etcd service, then verify the etcd cluster is running correctly and displays
OpenShift’s configuration:

systemctl daemon-reload
systemctl restart etcd
etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --peers="https://172.16.4.18:2379,https://172.16.4.27:2379" \
 ls /

CHAPTER 4. DOWNGRADING OPENSHIFT

127

6. If you have additional etcd members to add to your cluster, continue to Adding Additional etcd
Members. Otherwise, if you only want a single node external etcd, continue to Bringing
OpenShift Services Back Online.

4.6.2.1. Adding Additional etcd Members

To add additional etcd members to the cluster, you must first adjust the default localhost peerURLs for
the first member:

1. Get the member ID for the first member using the member list command:

etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --
peers="https://172.18.1.18:2379,https://172.18.9.202:2379,https://17
2.18.0.75:2379" \
 member list

2. Update the peerURLs. In etcd 2.2 and beyond, this can be done with the etcdctl member
update command. However, OpenShift Enterprise 3.1 uses etcd 2.1, so you must use curl:

curl --cacert /etc/etcd/ca.crt \
 --cert /etc/etcd/peer.crt \
 --key /etc/etcd/peer.key \
 https://172.18.1.18:2379/v2/members/511b7fb6cc0001 \
 -XPUT -H "Content-Type: application/json" \
 -d '{"peerURLs":["https://172.18.1.18:2380"]}'

3. Re-run the member list command and ensure the peerURLs no longer points to localhost.

4. Now add each additional member to the cluster, one at a time.

WARNING

Each member must be fully added and brought online one at a time. When
adding each additional member to the cluster, the peerURLs list must be
correct for that point in time, so it will grow by one for each member added.
The etcdctl member add command will output the values that need to
be set in the etcd.conf file as you add each member, as described in the
following instructions.

a. For each member, add it to the cluster using the values that can be found in that system’s
etcd.conf file:

etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --peers="https://172.16.4.18:2379,https://172.16.4.27:2379" \

OpenShift Enterprise 3.1 Installation and Configuration

128

 member add 10.3.9.222 https://172.16.4.27:2380

Added member named 10.3.9.222 with ID 4e1db163a21d7651 to cluster

ETCD_NAME="10.3.9.222"
ETCD_INITIAL_CLUSTER="10.3.9.221=https://172.16.4.18:2380,10.3.9.
222=https://172.16.4.27:2380"
ETCD_INITIAL_CLUSTER_STATE="existing"

b. Using the environment variables provided in the output of the above etcdctl member add
command, edit the /etc/etcd/etcd.conf file on the member system itself and ensure these
settings match.

c. Now start etcd on the new member:

rm -rf /var/lib/etcd/member
systemctl enable etcd
systemctl start etcd

d. Ensure the service starts correctly and the etcd cluster is now healthy:

etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --peers="https://172.16.4.18:2379,https://172.16.4.27:2379" \
 member list

51251b34b80001: name=10.3.9.221 peerURLs=https://172.16.4.18:2380
clientURLs=https://172.16.4.18:2379
d266df286a41a8a4: name=10.3.9.222
peerURLs=https://172.16.4.27:2380
clientURLs=https://172.16.4.27:2379

etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --peers="https://172.16.4.18:2379,https://172.16.4.27:2379" \
 cluster-health

cluster is healthy
member 51251b34b80001 is healthy
member d266df286a41a8a4 is healthy

e. Now repeat this process for the next member to add to the cluster.

5. After all additional etcd members have been added, continue to Bringing OpenShift Services
Back Online.

4.7. BRINGING OPENSHIFT SERVICES BACK ONLINE

On each OpenShift master, restore your openshift-master configuration from backup and restart
relevant services:

cp /etc/sysconfig/openshift-master.rpmsave /etc/sysconfig/openshift-

CHAPTER 4. DOWNGRADING OPENSHIFT

129

master
cp /etc/openshift/master/master-config.yaml.2015-11-20\@08\:36\:51~
/etc/openshift/master/master-config.yaml
systemctl enable openshift-master
systemctl enable openshift-node
systemctl start openshift-master
systemctl start openshift-node

On each OpenShift node, enable and restart the openshift-node service:

systemctl enable openshift-node
systemctl start openshift-node

Your OpenShift cluster should now be back online.

OpenShift Enterprise 3.1 Installation and Configuration

130

CHAPTER 5. MASTER AND NODE CONFIGURATION

5.1. OVERVIEW

The openshift start command is used to launch OpenShift servers. The command and its
subcommands (master to launch a master server and node to launch a node server) all take a limited
set of arguments that are sufficient for launching servers in a development or experimental environment.

However, these arguments are insufficient to describe and control the full set of configuration and
security options that are necessary in a production environment. To provide those options, it is
necessary to use the dedicated master and node configuration files.

Master configuration files and node configuration files are fully specified with no default values.
Therefore, any empty value indicates that you want to start up with an empty value for that parameter.
This makes it easy to reason about exactly what your configuration is, but it also makes it difficult to
remember all of the options to specify. To make this easier, the configuration files can be created with
the --write-config option and then used with the --config option.

5.2. CREATING NEW CONFIGURATION FILES

For masters, the openshift start command accepts options that indicate that it should simply write
the configuration files that it would have used, then terminate. For nodes, a configuration file can be
written using the oadm create-node-config command. Creating new configuration files is useful to
get a starting point for defining your configuration.

The following commands write the relevant launch configuration file(s), certificate files, and any other
necessary files to the specified --write-config or --node-dir directory.

To create configuration files for an all-in-one server (a master and a node on the same host) in the
specified directory:

$ openshift start --write-config=/openshift.local.config

To create a master configuration file and other required files in the specified directory:

$ openshift start master --write-config=/openshift.local.config/master

To create a node configuration file and other related files in the specified directory:

$ oadm create-node-config --node-dir=/openshift.local.config/node-
<node_hostname> --node=<node_hostname> --hostnames=<hostname>,<ip_address>

For the --hostnames option in the above command, use a comma-delimited list of every host name or
IP address you want server certificates to be valid for. The above command also assumes that certificate
files are located in an openshift.local.config/master/ directory. If they are not, you can include options
to specify their location. Run the command with the -h option to see details.

5.3. LAUNCHING SERVERS USING CONFIGURATION FILES

Once you have modified the master and/or node configuration files to your specifications, you can use
them when launching servers by specifying them as an argument. Keep in mind that if you specify a
configuration file, none of the other command line options you pass are respected.

CHAPTER 5. MASTER AND NODE CONFIGURATION

131

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#node

To launch an all-in-one server using a master configuration and a node configuration file:

$ openshift start --master-config=/openshift.local.config/master/master-
config.yaml --node-config=/openshift.local.config/node-
<node_hostname>/node-config.yaml

To launch a master server using a master configuration file:

$ openshift start master --config=/openshift.local.config/master/master-
config.yaml

To launch a node server using a node configuration file:

$ openshift start node --config=/openshift.local.config/node-
<node_hostname>/node-config.yaml

5.4. MASTER CONFIGURATION FILES

The following master-config.yaml file is a sample master configuration file that was generated with the
default values as of writing. You can create a new master configuration file to see the valid options for
your installed version of OpenShift.

Example 5.1. Sample Master Configuration File

apiLevels:
- v1beta3
- v1
apiServerArguments:

 event-ttl: 1
 - "15m"
apiVersion: v1
assetConfig:
 logoutURL: ""
 masterPublicURL: https://10.0.2.15:8443
 publicURL: https://10.0.2.15:8443/console/
 servingInfo:
 bindAddress: 0.0.0.0:8443
 certFile: master.server.crt
 clientCA: ""
 keyFile: master.server.key
 maxRequestsInFlight: 0
 requestTimeoutSeconds: 0
controllers: '*'
corsAllowedOrigins:
- 10.0.2.15:8443
- 127.0.0.1
- localhost
disabledFeatures: null
dnsConfig: allowRecursiveQueries: false
 bindAddress: 0.0.0.0:8053
 bindNetwork: tcp4
etcdClientInfo:
 ca: ca.crt
 certFile: master.etcd-client.crt

OpenShift Enterprise 3.1 Installation and Configuration

132

 keyFile: master.etcd-client.key
 urls:
 - https://10.0.2.15:4001
etcdConfig:
 address: 10.0.2.15:4001
 peerAddress: 10.0.2.15:7001
 peerServingInfo:
 bindAddress: 0.0.0.0:7001
 certFile: etcd.server.crt
 clientCA: ca.crt
 keyFile: etcd.server.key
 servingInfo:
 bindAddress: 0.0.0.0:4001
 certFile: etcd.server.crt
 clientCA: ca.crt
 keyFile: etcd.server.key
 storageDirectory: /root/openshift.local.etcd
etcdStorageConfig:
 kubernetesStoragePrefix: kubernetes.io
 kubernetesStorageVersion: v1
 openShiftStoragePrefix: openshift.io
 openShiftStorageVersion: v1
imageConfig:
 format: openshift/origin-${component}:${version}
 latest: false
kind: MasterConfig
kubeletClientInfo:
 ca: ca.crt
 certFile: master.kubelet-client.crt
 keyFile: master.kubelet-client.key
 port: 10250
kubernetesMasterConfig:
 apiLevels:
 - v1beta3
 - v1
 apiServerArguments: null
 controllerArguments: null
 masterCount: 1
 masterIP: 10.0.2.15
 podEvictionTimeout: 5m
 schedulerConfigFile: ""
 servicesNodePortRange: 30000-32767
 servicesSubnet: 172.30.0.0/16
 staticNodeNames: []
masterClients:
 externalKubernetesKubeConfig: ""
 openshiftLoopbackKubeConfig: openshift-master.kubeconfig
masterPublicURL: https://10.0.2.15:8443
networkConfig:
 clusterNetworkCIDR: 10.1.0.0/16
 hostSubnetLength: 8
 networkPluginName: ""
 serviceNetworkCIDR: 172.30.0.0/16
oauthConfig:
 assetPublicURL: https://10.0.2.15:8443/console/
 grantConfig:

CHAPTER 5. MASTER AND NODE CONFIGURATION

133

1 Prevents memory overload by defining a lower limit (for example, 15m) for stored events. This
prevents excessive memory growth that can be the result of etcd storing too many events. By
default, this is set to two hours.

5.5. NODE CONFIGURATION FILES

 method: auto
 identityProviders:
 - challenge: true
 login: true
 name: anypassword
 provider:
 apiVersion: v1
 kind: AllowAllPasswordIdentityProvider
 masterPublicURL: https://10.0.2.15:8443
 masterURL: https://10.0.2.15:8443
 sessionConfig:
 sessionMaxAgeSeconds: 300
 sessionName: ssn
 sessionSecretsFile: ""
 tokenConfig:
 accessTokenMaxAgeSeconds: 86400
 authorizeTokenMaxAgeSeconds: 300
policyConfig:
 bootstrapPolicyFile: policy.json
 openshiftInfrastructureNamespace: openshift-infra
 openshiftSharedResourcesNamespace: openshift
projectConfig:
 defaultNodeSelector: ""
 projectRequestMessage: ""
 projectRequestTemplate: ""
 securityAllocator:
 mcsAllocatorRange: s0:/2
 mcsLabelsPerProject: 5
 uidAllocatorRange: 1000000000-1999999999/10000
routingConfig:
 subdomain: router.default.svc.cluster.local
serviceAccountConfig:
 managedNames:
 - default
 - builder
 - deployer
 masterCA: ca.crt
 privateKeyFile: serviceaccounts.private.key
 publicKeyFiles:
 - serviceaccounts.public.key
servingInfo:
 bindAddress: 0.0.0.0:8443
 certFile: master.server.crt
 clientCA: ca.crt
 keyFile: master.server.key
 maxRequestsInFlight: 0
 requestTimeoutSeconds: 3600

OpenShift Enterprise 3.1 Installation and Configuration

134

1

2

3

The following node-config.yaml file is a sample node configuration file that was generated with the
default values as of writing. You can create a new node configuration file to see the valid options for your
installed version of OpenShift.

Example 5.2. Sample Node Configuration File

Allows pods to be placed directly on certain set of nodes, or on all nodes without going through
the scheduler. You can then use pods to perform the same administrative tasks and support the
same services on each node.

Specifies the path for the pod manifest file or directory. If it is a directory, then it is expected to
contain one or more manifest files. This is used by the Kubelet to create pods on the node.

This is the interval (in seconds) for checking the manifest file for new data. The interval must be
a positive value.

allowDisabledDocker: true
apiVersion: v1
dnsDomain: cluster.local
dnsIP: 10.0.2.15
dockerConfig:
 execHandlerName: native
imageConfig:
 format: openshift/origin-${component}:${version}
 latest: false
kind: NodeConfig
masterKubeConfig: node.kubeconfig
networkConfig:
 mtu: 1450
 networkPluginName: ""
nodeIP: ""
nodeName: node1.example.com

podManifestConfig: 1

 path: "/path/to/pod-manifest-file" 2

 fileCheckIntervalSeconds: 30 3
servingInfo:
 bindAddress: 0.0.0.0:10250
 certFile: server.crt
 clientCA: node-client-ca.crt
 keyFile: server.key
volumeDirectory: /root/openshift.local.volumes

CHAPTER 5. MASTER AND NODE CONFIGURATION

135

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#pods

CHAPTER 6. LOADING THE DEFAULT IMAGE STREAMS AND
TEMPLATES

6.1. OVERVIEW

Your OpenShift installation includes useful sets of Red Hat-provided image streams and templates to
make it easy for developers to create new applications. By default, the quick and advanced installation
methods automatically create these sets in the openshift project, which is a default global project to
which all users have view access.

IMPORTANT

Before you consider using this topic, confirm if these image streams and templates are
already registered in your OpenShift cluster by doing one of the following:

Log into the web console and click Add to Project.

List them for the openshift project using the CLI:

$ oc get is -n openshift
$ oc get templates -n openshift

If the default image streams and templates are ever removed or changed, you can follow
this topic to create the default objects yourself. Otherwise, the following instructions are
not necessary.

The core set of image streams and templates are provided and supported by Red Hat with an active
OpenShift Enterprise subscription for the following technologies:

Languages
Node.js

Perl

PHP

Python

Ruby

Database
MongoDB

MySQL

PostgreSQL

Other
Services Jenkins

If you also have the relevant xPaaS Middleware subscription active on your account, image streams and
templates are also provided and supported by Red Hat for each of following middleware services:

OpenShift Enterprise 3.1 Installation and Configuration

136

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-core-concepts-templates
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-s2i-images-nodejs
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-s2i-images-perl
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-s2i-images-php
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-s2i-images-python
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-s2i-images-ruby
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-db-images-mongodb
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-db-images-mysql
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-db-images-postgresql
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-other-images-jenkins

Middleware
Services JBoss EAP

JBoss A-MQ

JBoss Web Server

JBoss Fuse Integration Services

Decision Server

JBoss Data Grid

6.2. PREREQUISITES

Before you can create the default image streams and templates:

The integrated Docker registry service must be deployed in your OpenShift installation.

You must be able to run the oc create command with cluster-admin privileges, because they
operate on the default openshiftproject.

You must have installed the atomic-openshift-utils RPM package. See Software Prerequisites
for instructions.

Define shell variables for the directories containing image streams and templates. This
significantly shortens the commands in the following sections. To do this:

$ IMAGESTREAMDIR="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v1.1/image-streams";
\
 XPAASSTREAMDIR="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v1.1/xpaas-streams";
\
 XPAASTEMPLATES="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v1.1/xpaas-
templates"; \
 DBTEMPLATES="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v1.1/db-templates";
\
 QSTEMPLATES="/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v1.1/quickstart-
templates"

6.3. CREATING IMAGE STREAMS FOR OPENSHIFT IMAGES

The core set of image streams provide images that can be used to build Node.js, Perl, PHP, Python,
and Ruby applications. It also defines images for MongoDB, MySQL, and PostgreSQL to support data
storage.

If your node hosts are subscribed using Red Hat Subscription Manager and you want to use the Red Hat
Enterprise Linux (RHEL) 7 based images:

$ oc create -f $IMAGESTREAMDIR/image-streams-rhel7.json -n openshift

CHAPTER 6. LOADING THE DEFAULT IMAGE STREAMS AND TEMPLATES

137

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-xpaas-images-eap
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-xpaas-images-a-mq
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-xpaas-images-jws
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-xpaas-images-fuse
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-xpaas-images-decision-server
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-xpaas-images-data-grid
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#projects
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-s2i-images-nodejs
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-s2i-images-perl
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-s2i-images-php
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-s2i-images-python
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-s2i-images-ruby
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-db-images-mongodb
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-db-images-mysql
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-db-images-postgresql

Alternatively, to create the core set of image streams that use the CentOS 7 based images:

$ oc create -f $IMAGESTREAMDIR/image-streams-centos7.json -n openshift

It is not possible to create both the CentOS and RHEL sets of image streams because they use the same
names. If you desire to have both sets of image streams available to users, either create one set in a
different project, or edit one of the files and modify the image stream names to make them unique.

6.4. CREATING IMAGE STREAMS FOR XPAAS MIDDLEWARE IMAGES

The xPaaS Middleware image streams provide images for JBoss EAP, JBoss JWS, JBoss A-MQ,
JBoss Fuse Integration Services, Decision Server, and JBoss Data Grid. They can be used to build
applications for those platforms using the provided templates.

To create the xPaaS Middleware set of image streams:

$ oc create -f $XPAASSTREAMDIR/jboss-image-streams.json -n openshift

NOTE

Access to the images referenced by these image streams requires the relevant xPaaS
Middleware subscriptions.

6.5. CREATING DATABASE SERVICE TEMPLATES

The database service templates make it easy to run a database image which can be utilized by other
components. For each database (MongoDB, MySQL, and PostgreSQL), two templates are defined.

One template uses ephemeral storage in the container which means data stored will be lost if the
container is restarted, for example if the pod moves. This template should be used for demonstration
purposes only.

The other template defines a persistent volume for storage, however it requires your OpenShift
installation to have persistent volumes configured.

To create the core set of database templates:

$ oc create -f $DBTEMPLATES -n openshift

After creating the templates, users are able to easily instantiate the various templates, giving them quick
access to a database deployment.

6.6. CREATING INSTANT APP AND QUICKSTART TEMPLATES

The Instant App and Quickstart templates define a full set of objects for a running application. These
include:

Build configurations to build the application from source located in a GitHub public repository

Deployment configurations to deploy the application image after it is built.

Services to provide load balancing for the application pods.

OpenShift Enterprise 3.1 Installation and Configuration

138

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-xpaas-images-eap
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-xpaas-images-jws
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-xpaas-images-a-mq
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-xpaas-images-fuse
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-xpaas-images-decision-server
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-xpaas-images-data-grid
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-db-images-mongodb
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-db-images-mysql
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-db-images-postgresql
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#builds
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#pods

Routes to provide external access to the application.

Some of the templates also define a database deployment and service so the application can perform
database operations.

NOTE

The templates which define a database use ephemeral storage for the database content.
These templates should be used for demonstration purposes only as all database data
will be lost if the database pod restarts for any reason.

After creating the templates, users are able to easily instantiate full applications using the various
language images provided with OpenShift. They can also customize the template parameters during
instantiation so that it builds source from their own repository rather than the sample repository, so this
provides a simple starting point for building new applications.

To create the core Instant App and Quickstart templates:

$ oc create -f $QSTEMPLATES -n openshift

There is also a set of templates for creating applications using various xPaaS Middleware products
(JBoss EAP, JBoss JWS, JBoss A-MQ, JBoss Fuse Integration Services, Decision Server, and
JBoss Data Grid), which can be registered by running:

$ oc create -f $XPAASTEMPLATES -n openshift

NOTE

The xPaaS Middleware templates require the xPaaS Middleware image streams, which in
turn require the relevant xPaaS Middleware subscriptions.

NOTE

The templates which define a database use ephemeral storage for the database content.
These templates should be used for demonstration purposes only as all database data
will be lost if the database pod restarts for any reason.

6.7. WHAT’S NEXT?

With these artifacts created, developers can now log into the web console and follow the flow for creating
from a template. Any of the database or application templates can be selected to create a running
database service or application in the current project. Note that some of the application templates define
their own database services as well.

The example applications are all built out of GitHub repositories which are referenced in the templates
by default, as seen in the SOURCE_REPOSITORY_URL parameter value. Those repositories can be
forked, and the fork can be provided as the SOURCE_REPOSITORY_URL parameter value when creating
from the templates. This allows developers to experiment with creating their own applications.

You can direct your developers to the Using the Instant App and Quickstart Templates section in the
Developer Guide for these instructions.

CHAPTER 6. LOADING THE DEFAULT IMAGE STREAMS AND TEMPLATES

139

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-xpaas-images-eap
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-xpaas-images-jws
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-xpaas-images-a-mq
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-xpaas-images-fuse
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-xpaas-images-decision-server
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/using_images/#using-images-xpaas-images-data-grid
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#dev-guide-authentication
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#creating-from-templates-using-the-web-console
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#using-the-instantapp-templates

CHAPTER 7. CONFIGURING CUSTOM CERTIFICATES

7.1. OVERVIEW

Administrators can configure custom serving certificates for the public host names of the OpenShift API
and web console. This can be done during an advanced installation or configured after installation.

7.2. CONFIGURING CUSTOM CERTIFICATES

The namedCertificates section may be listed in the servingInfo and
assetConfig.servingInfo sections of the master configuration file or in the servingInfo section
of the node configuration file. Multiple certificates can be configured this way and each certificate may be
associated with multiple host names or wildcards.

A default certificate must be configured in the servingInfo.certFile and servingInfo.keyFile
configuration sections in addition to namedCertificates.

NOTE

The namedCertificates section should only be configured for the host name
associated with the masterPublicURL, assetConfig.publicURL, and
oauthConfig.assetPublicURL settings. Using a custom serving certificate for the
host name associated with the masterURL will result in TLS errors as infrastructure
components will attempt to contact the master API using the internal masterURL host.

Example 7.1. Custom Certificates Configuration

servingInfo:
 ...
 namedCertificates:
 - certFile: custom.crt
 keyFile: custom.key
 names:
 - "customhost.com"
 - "api.customhost.com"
 - "console.customhost.com"
 - certFile: wildcard.crt
 keyFile: wildcard.key
 names:
 - "*.wildcardhost.com"
 ...

Relative paths are resolved relative to the master configuration file. Restart the server to pick up the
configuration changes.

OpenShift Enterprise 3.1 Installation and Configuration

140

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-infrastructure-components-web-console

CHAPTER 8. CONFIGURING AUTHENTICATION

8.1. OVERVIEW

The OpenShift master includes a built-in OAuth server. Developers and administrators obtain OAuth
access tokens to authenticate themselves to the API.

As an administrator, you can configure OAuth using the master configuration file to specify an identity
provider. If you installed OpenShift Enterprise using the Quick Installation or Advanced Installation
method, the Deny All identity provider is used by default, which denies access for all user names and
passwords. To allow access, you must choose a different identity provider and configure the master
configuration file appropriately (located at /etc/origin/master/master-config.yaml by default).

When running a master without a configuration file, the Allow All identity provider is used by default,
which allows any non-empty user name and password to log in. This is useful for testing purposes. To
use other identity providers, or to modify any token, grant, or session options, you must run the master
from a configuration file.

NOTE

Roles need to be assigned to administer the setup with an external user.

8.2. IDENTITY PROVIDERS

You can configure the master host for authentication using your desired identity provider by modifying
the master configuration file. The following sections detail the identity providers supported by OpenShift.

There are four parameters common to all identity providers:

Parameter Description

name The provider name is prefixed to provider user names to form an identity name.

challenge When true, unauthenticated token requests from non-web clients (like the CLI) are sent
a WWW-Authenticate challenge header. Not supported by all identity providers.

To prevent cross-site request forgery (CSRF) attacks against browser clients Basic
authentication challenges are only sent if a X-CSRF-Token header is present on the
request. Clients that expect to receive Basic WWW-Authenticate challenges should
set this header to a non-empty value.

login When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider. Not supported by all identity
providers.

mappingMetho
d

Defines how new identities are mapped to users when they login. See Mapping
Identities to Users for more information.

CHAPTER 8. CONFIGURING AUTHENTICATION

141

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#oauth
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#api-authentication
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#roles

NOTE

When adding or changing identity providers, you can map identities from the new provider
to existing users by setting the mappingMethod parameter to add.

8.2.1. Mapping Identities to Users

Setting the mappingMethod parameter in a master configuration file determines how identities are
mapped to users:

...
oauthConfig:
 identityProviders:
 - name: htpasswd_auth
 challenge: true
 login: false
 mappingMethod: "claim"
...

When set to the default claim value, OAuth will fail if the identity is mapped to a previously-existing user
name. The following table outlines the use cases for the available mappingMethod parameter values:

Parameter Description

claim The default value. Provisions a user with the identity’s preferred user name. Fails if a
user with that user name is already mapped to another identity.

lookup Looks up an existing identity, user identity mapping, and user, but does not
automatically provision users or identities. This allows cluster administrators to set up
identities and users manually, or using an external process.

generate Provisions a user with the identity’s preferred user name. If a user with the preferred
user name is already mapped to an existing identity, a unique user name is generated.
For example, myuser2. This method should not be used in combination with external
processes that require exact matches between OpenShift user names and identity
provider user names, such as LDAP group sync.

add Provisions a user with the identity’s preferred user name. If a user with that user name
already exists, the identity is mapped to the existing user, adding to any existing identity
mappings for the user. Required when multiple identity providers are configured that
identify the same set of users and map to the same user names.

8.2.2. Allow All

Set AllowAllPasswordIdentityProvider in the identityProviders stanza to allow any non-empty
user name and password to log in. This is the default identity provider when running OpenShift without a
master configuration file.

Example 8.1. Master Configuration Using AllowAllPasswordIdentityProvider

oauthConfig:
 ...

OpenShift Enterprise 3.1 Installation and Configuration

142

1

2

3

4

1

2

3

4

 identityProviders:

 - name: my_allow_provider 1

 challenge: true 2

 login: true 3

 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: AllowAllPasswordIdentityProvider

This provider name is prefixed to provider user names to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a WWW-
Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

8.2.3. Deny All

Set DenyAllPasswordIdentityProvider in the identityProviders stanza to deny access for all user
names and passwords.

Example 8.2. Master Configuration Using DenyAllPasswordIdentityProvider

oauthConfig:
 ...
 identityProviders:

 - name: my_deny_provider 1

 challenge: true 2

 login: true 3

 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: DenyAllPasswordIdentityProvider

This provider name is prefixed to provider user names to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a WWW-
Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

CHAPTER 8. CONFIGURING AUTHENTICATION

143

1

2

3

4

8.2.4. HTPasswd

Set HTPasswdPasswordIdentityProvider in the identityProviders stanza to validate user names
and passwords against a flat file generated using htpasswd.

NOTE

The htpasswd utility is in the httpd-tools package:

yum install httpd-tools

Only MD5, bcrypt, and SHA encryption types are supported. MD5 encryption is recommended, and is the
default for htpasswd. Plaintext and crypt hashes are not currently supported.

The flat file is re-read if its modification time changes, without requiring a server restart.

To create the file, run:

$ htpasswd -c </path/to/users.htpasswd> <user_name>

To add or update a login to the file, run:

$ htpasswd </path/to/users.htpasswd> <user_name>

To remove a login from the file, run:

$ htpasswd -D </path/to/users.htpasswd> <user_name>

Example 8.3. Master Configuration Using HTPasswdPasswordIdentityProvider

oauthConfig:
 ...
 identityProviders:

 - name: my_htpasswd_provider 1

 challenge: true 2

 login: true 3

 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: HTPasswdPasswordIdentityProvider

 file: /path/to/users.htpasswd 5

This provider name is prefixed to provider user names to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a WWW-
Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

OpenShift Enterprise 3.1 Installation and Configuration

144

http://httpd.apache.org/docs/2.4/programs/htpasswd.html

5

1

2

3

4

5

6

7

8

File generated using htpasswd.

8.2.5. Keystone

Set KeystonePasswordIdentityProvider in the identityProviders stanza to validate user names
and passwords against an OpenStack Keystone v3 server. This enables shared authentication with an
OpenStack server configured to store users in an internal Keystone database.

Example 8.4. Master Configuration Using KeystonePasswordIdentityProvider

oauthConfig:
 ...
 identityProviders:

 - name: my_keystone_provider 1

 challenge: true 2

 login: true 3

 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: KeystonePasswordIdentityProvider

 domainName: default 5

 ca: ca.pem 6

 certFile: keystone.pem 7

 keyFile: keystonekey.pem 8

This provider name is prefixed to provider user names to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a WWW-
Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

Keystone domain name. In Keystone, usernames are domain-specific. Only a single domain is
supported.

Optional: Certificate bundle to use to validate server certificates for the configured URL.

Optional: Client certificate to present when making requests to the configured URL.

Key for the client certificate. Required if certFile is specified.

8.2.6. LDAP Authentication

Set LDAPPasswordIdentityProvider in the identityProviders stanza to validate user names and
passwords against an LDAPv3 server, using simple bind authentication.

CHAPTER 8. CONFIGURING AUTHENTICATION

145

http://httpd.apache.org/docs/2.4/programs/htpasswd.html

During authentication, the LDAP directory is searched for an entry that matches the provided user name.
If a single unique match is found, a simple bind is attempted using the distinguished name (DN) of the
entry plus the provided password. Here are the steps taken:

1. Generate a search filter by combining the attribute and filter in the configured url with the user-
provided user name.

2. Search the directory using the generated filter. If the search does not return exactly one entry,
deny access.

3. Attempt to bind to the LDAP server using the DN of the entry retrieved from the search, and the
user-provided password.

4. If the bind is unsuccessful, deny access.

5. If the bind is successful, build an identity using the configured attributes as the identity, email
address, display name, and preferred user name.

The configured url is an RFC 2255 URL, which specifies the LDAP host and search parameters to use.
The syntax of the URL is:

ldap://host:port/basedn?attribute?scope?filter

For the above example:

URL Component Description

ldap For regular LDAP, use the string ldap. For secure LDAP (LDAPS), use ldaps
instead.

host:port The name and port of the LDAP server. Defaults to localhost:389 for ldap and
localhost:636 for LDAPS.

basedn The DN of the branch of the directory where all searches should start from. At the very
least, this must be the top of your directory tree, but it could also specify a subtree in
the directory.

attribute The attribute to search for. Although RFC 2255 allows a comma-separated list of
attributes, only the first attribute will be used, no matter how many are provided. If no
attributes are provided, the default is to use uid. It is recommended to choose an
attribute that will be unique across all entries in the subtree you will be using.

scope The scope of the search. Can be either either one or sub. If the scope is not provided,
the default is to use a scope of sub.

filter A valid LDAP search filter. If not provided, defaults to (objectClass=*)

When doing searches, the attribute, filter, and provided user name are combined to create a search filter
that looks like:

(&(<filter>)(<attribute>=<username>))

OpenShift Enterprise 3.1 Installation and Configuration

146

1

2

3

4

5

6

For example, consider a URL of:

ldap://ldap.example.com/o=Acme?cn?sub?(enabled=true)

When a client attempts to connect using a user name of bob, the resulting search filter will be (&
(enabled=true)(cn=bob)).

If the LDAP directory requires authentication to search, specify a bindDN and bindPassword to use to
perform the entry search.

Example 8.5. Master Configuration Using LDAPPasswordIdentityProvider

oauthConfig:
 ...
 identityProviders:

 - name: "my_ldap_provider" 1

 challenge: true 2

 login: true 3

 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: LDAPPasswordIdentityProvider
 attributes:

 id: 5
 - dn

 email: 6
 - mail

 name: 7
 - cn

 preferredUsername: 8
 - uid

 bindDN: "" 9

 bindPassword: "" 10

 ca: my-ldap-ca-bundle.crt 11

 insecure: false 12

 url: "ldap://ldap.example.com/ou=users,dc=acme,dc=com?uid" 13

This provider name is prefixed to the returned user ID to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a WWW-
Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

List of attributes to use as the identity. First non-empty attribute is used. At least one attribute is
required. If none of the listed attribute have a value, authentication fails.

List of attributes to use as the email address. First non-empty attribute is used.

CHAPTER 8. CONFIGURING AUTHENTICATION

147

7

8

9

10

11

12

13

1

List of attributes to use as the display name. First non-empty attribute is used.

List of attributes to use as the preferred user name when provisioning a user for this identity.
First non-empty attribute is used.

Optional DN to use to bind during the search phase.

Optional password to use to bind during the search phase.

Certificate bundle to use to validate server certificates for the configured URL. If empty, system
trusted roots are used. Only applies if insecure: false.

When true, no TLS connection is made to the server. When false, ldaps:// URLs connect
using TLS, and ldap:// URLs are upgraded to TLS.

An RFC 2255 URL which specifies the LDAP host and search parameters to use, as described
above.

8.2.7. Basic Authentication (Remote)

Set BasicAuthPasswordIdentityProvider in the identityProviders stanza to validate user names
and passwords against a remote server using a server-to-server Basic authentication request. User
names and passwords are validated against a remote URL that is protected by Basic authentication and
returns JSON.

A 401 response indicates failed authentication.

A non-200 status, or the presence of a non-empty "error" key, indicates an error:

{"error":"Error message"}

A 200 status with a sub (subject) key indicates success:

{"sub":"userid"} 1

The subject must be unique to the authenticated user and must not be able to be modified.

A successful response may optionally provide additional data, such as:

A display name using the name key. For example:

{"sub":"userid", "name": "User Name", ...}

An email address using the email key. For example:

{"sub":"userid", "email":"user@example.com", ...}

A preferred user name using the preferred_username key. This is useful when the unique,
unchangeable subject is a database key or UID, and a more human-readable name exists. This
is used as a hint when provisioning the OpenShift user for the authenticated identity. For
example:

OpenShift Enterprise 3.1 Installation and Configuration

148

1

2

3

4

5

6

7

8

{"sub":"014fbff9a07c", "preferred_username":"bob", ...}

Example 8.6. Master Configuration Using BasicAuthPasswordIdentityProvider

oauthConfig:
 ...
 identityProviders:

 - name: my_remote_basic_auth_provider 1

 challenge: true 2

 login: true 3

 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: BasicAuthPasswordIdentityProvider

 url: https://www.example.com/remote-idp 5

 ca: /path/to/ca.file 6

 certFile: /path/to/client.crt 7

 keyFile: /path/to/client.key 8

This provider name is prefixed to the returned user ID to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a WWW-
Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

URL accepting credentials in Basic authentication headers.

Optional: Certificate bundle to use to validate server certificates for the configured URL.

Optional: Client certificate to present when making requests to the configured URL.

Key for the client certificate. Required if certFile is specified.

8.2.8. Request Header

Set RequestHeaderIdentityProvider in the identityProviders stanza to identify users from request
header values, such as X-Remote-User. It is typically used in combination with an authenticating proxy,
which sets the request header value. This is similar to how the remote user plug-in in OpenShift
Enterprise 2 allowed administrators to provide Kerberos, LDAP, and many other forms of enterprise
authentication.

For users to authenticate using this identity provider, they must access <master>/oauth/authorize via an
authenticating proxy. You can either proxy the entire master API server so that all access goes through
the proxy, or you can configure the OAuth server to redirect unauthenticated requests to the proxy.

To redirect unauthenticated requests from clients expecting login flows:

CHAPTER 8. CONFIGURING AUTHENTICATION

149

https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html/Deployment_Guide/Configuring_OpenShift_Enterprise_Authentication.html

1

1. Set the login parameter to true.

2. Set the provider.loginURL parameter to the proxy URL to send those clients to.

To redirect unauthenticated requests from clients expecting WWW-Authenticate challenges:

1. Set the challenge parameter to true.

2. Set the provider.challengeURL parameter to the proxy URL to send those clients to.

The provider.challengeURL and provider.loginURL parameters can include the following
tokens in the query portion of the URL:

${url} is replaced with the current URL, escaped to be safe in a query parameter.
For example: https://www.example.com/sso-login?then=${url}

${query} is replaced with the current query string, unescaped.
For example: https://www.example.com/auth-proxy/oauth/authorize?${query}

WARNING

If you expect unauthenticated requests to reach the OAuth server, a clientCA
parameter should be set for this identity provider, so that incoming requests are
checked for a valid client certificate before the request’s headers are checked for a
user name. Otherwise, any direct request to the OAuth server can impersonate any
identity from this provider, merely by setting a request header.

Example 8.7. Master Configuration Using RequestHeaderIdentityProvider

oauthConfig:
 ...
 identityProviders:

 - name: my_request_header_provider 1

 challenge: true 2

 login: true 3

 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: RequestHeaderIdentityProvider
 challengeURL: "https://www.example.com/challenging-

proxy/oauth/authorize?${query}" 5
 loginURL: "https://www.example.com/login-proxy/oauth/authorize?

${query}" 6

 clientCA: /path/to/client-ca.file 7

 headers: 8
 - X-Remote-User
 - SSO-User

This provider name is prefixed to the user name in the request header to form an identity name.

OpenShift Enterprise 3.1 Installation and Configuration

150

https://www.example.com/sso-login?then=${url}
https://www.example.com/auth-proxy/oauth/authorize?${query}

2

3

4

5

6

7

8

RequestHeaderIdentityProvider can only respond to clients that request WWW-Authenticate
challenges by redirecting to a configured challengeURL. The configured URL should respond
with a WWW-Authenticate challenge.

RequestHeaderIdentityProvider can only respond to clients requesting a login flow by
redirecting to a configured loginURL. The configured URL should respond with a login flow.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

Optional: URL to redirect unauthenticated /oauth/authorize requests to, for clients which expect
interactive logins. ${url} is replaced with the current URL, escaped to be safe in a query
parameter. ${query} is replaced with the current query string.

Optional: URL to redirect unauthenticated /oauth/authorize requests to, for clients which expect
WWW-Authenticate challenges. ${url} is replaced with the current URL, escaped to be safe in
a query parameter. ${query} is replaced with the current query string.

Optional: PEM-encoded certificate bundle. If set, a valid client certificate must be presented and
validated against the certificate authorities in the specified file before the request headers are
checked for user names.

Header names to check, in order, for user names. The first header containing a value is used as
the user name. Required, case-insensitive.

Example 8.8. Apache Authentication Using RequestHeaderIdentityProvider

This example configures an authentication proxy on the same host as the master. Having the proxy
and master on the same host is merely a convenience and may not be suitable for your environment.
For example, if you were already running a router on the master, port 443 would not be available.

It is also important to note that while this reference configuration uses Apache’s mod_auth_form, it is
by no means required and other proxies can easily be used if the following requirements are met:

1. Block the X-Remote-User header from client requests to prevent spoofing.

2. Enforce client certificate authentication in the RequestHeaderIdentityProvider
configuration.

3. Require the X-Csrf-Token header be set for all authentication request using the challenge
flow.

4. Only the /oauth/authorize endpoint should be proxied, and redirects should not be rewritten to
allow the backend server to send the client to the correct location.

Installing the Prerequisites

The mod_auth_form module is shipped as part of the mod_session package that is found in the
Optional channel:

yum install -y httpd mod_ssl mod_session apr-util-openssl

Generate a CA for validating requests that submit the trusted header. This CA should be used as the
file name for clientCA in the master’s identity provider configuration.

CHAPTER 8. CONFIGURING AUTHENTICATION

151

https://access.redhat.com/solutions/392003

1

2

oadm ca create-signer-cert \
 --cert='/etc/origin/master/proxyca.crt' \
 --key='/etc/origin/master/proxyca.key' \
 --name='openshift-proxy-signer@1432232228' \
 --serial='/etc/origin/master/proxyca.serial.txt'

Generate a client certificate for the proxy. This can be done using any x509 certificate tooling. For
convenience, the oadm CLI can be used:

oadm create-api-client-config \
 --certificate-authority='/etc/origin/master/proxyca.crt' \
 --client-dir='/etc/origin/master/proxy' \
 --signer-cert='/etc/origin/master/proxyca.crt' \
 --signer-key='/etc/origin/master/proxyca.key' \
 --signer-serial='/etc/origin/master/proxyca.serial.txt' \

 --user='system:proxy' 1

pushd /etc/origin/master

cp master.server.crt /etc/pki/tls/certs/localhost.crt 2
cp master.server.key /etc/pki/tls/private/localhost.key
cp ca.crt /etc/pki/CA/certs/ca.crt
cat proxy/system\:proxy.crt \
 proxy/system\:proxy.key > \
 /etc/pki/tls/certs/authproxy.pem
popd

The user name can be anything, however it is useful to give it a descriptive name as it will
appear in logs.

When running the authentication proxy on a different host name than the master, it is important
to generate a certificate that matches the host name instead of using the default master
certificate as shown above. The value for masterPublicURL in the
/etc/origin/master/master-config.yaml file must be included in the X509v3 Subject
Alternative Name in the certificate that is specified for SSLCertificateFile. If a new
certificate needs to be created, the oadm ca create-server-cert command can be used.

Configuring Apache

Unlike OpenShift Enterprise 2, this proxy does not need to reside on the same host as the master. It
uses a client certificate to connect to the master, which is configured to trust the X-Remote-User
header.

Configure Apache per the following:

LoadModule auth_form_module modules/mod_auth_form.so
LoadModule session_module modules/mod_session.so
LoadModule request_module modules/mod_request.so

Nothing needs to be served over HTTP. This virtual host simply
redirects to
HTTPS.
<VirtualHost *:80>
 DocumentRoot /var/www/html
 RewriteEngine On

OpenShift Enterprise 3.1 Installation and Configuration

152

 RewriteRule ^(.*)$ https://%{HTTP_HOST}$1 [R,L]
</VirtualHost>

<VirtualHost *:443>
 # This needs to match the certificates you generated. See the CN and
X509v3
 # Subject Alternative Name in the output of:
 # openssl x509 -text -in /etc/pki/tls/certs/localhost.crt
 ServerName www.example.com

 DocumentRoot /var/www/html
 SSLEngine on
 SSLCertificateFile /etc/pki/tls/certs/localhost.crt
 SSLCertificateKeyFile /etc/pki/tls/private/localhost.key
 SSLCACertificateFile /etc/pki/CA/certs/ca.crt

 SSLProxyEngine on
 SSLProxyCACertificateFile /etc/pki/CA/certs/ca.crt
 # It's critical to enforce client certificates on the Master.
Otherwise
 # requests could spoof the X-Remote-User header by accessing the
Master's
 # /oauth/authorize endpoint directly.
 SSLProxyMachineCertificateFile /etc/pki/tls/certs/authproxy.pem

 # Send all requests to the console
 RewriteEngine On
 RewriteRule ^/console(.*)$ https://%
{HTTP_HOST}:8443/console$1 [R,L]

 # In order to using the challenging-proxy an X-Csrf-Token must be
present.
 RewriteCond %{REQUEST_URI} ^/challenging-proxy
 RewriteCond %{HTTP:X-Csrf-Token} ^$ [NC]
 RewriteRule ^.* - [F,L]

 <Location /challenging-proxy/oauth/authorize>
 # Insert your backend server name/ip here.
 ProxyPass https://[MASTER]:8443/oauth/authorize
 AuthType basic
 </Location>

 <Location /login-proxy/oauth/authorize>
 # Insert your backend server name/ip here.
 ProxyPass https://[MASTER]:8443/oauth/authorize

 # mod_auth_form providers are implemented by mod_authn_dbm,
mod_authn_file,
 # mod_authn_dbd, mod_authnz_ldap and mod_authn_socache.
 AuthFormProvider file
 AuthType form
 AuthName openshift
 ErrorDocument 401 /login.html
 </Location>

 <ProxyMatch /oauth/authorize>

CHAPTER 8. CONFIGURING AUTHENTICATION

153

 AuthUserFile /etc/origin/master/htpasswd
 AuthName openshift
 Require valid-user
 RequestHeader set X-Remote-User %{REMOTE_USER}s

 # For ldap:
 # AuthBasicProvider ldap
 # AuthLDAPURL "ldap://ldap.example.com:389/ou=People,dc=my-
domain,dc=com?uid?sub?(objectClass=*)"

 # It's possible to remove the mod_auth_form usage and replace it
with
 # something like mod_auth_kerb, mod_auth_gsspai or even
mod_auth_mellon.
 # The former would be able to support both the login and challenge
flows
 # from the Master. Mellon would likely only support the login flow.

 # For Kerberos
 # yum install mod_auth_gssapi
 # AuthType GSSAPI
 # GssapiCredStore keytab:/etc/httpd.keytab
 </ProxyMatch>

</VirtualHost>

RequestHeader unset X-Remote-User

Additional mod_auth_form Requirements

A sample login page is available from the openshift_extras repository. This file should be placed in the
DocumentRoot location (/var/www/html by default).

Creating Users

At this point, you can create the users in the system Apache is using to store accounts information. In
this example, file-backed authentication is used:

yum -y install httpd-tools
touch /etc/origin/master/htpasswd
htpasswd /etc/origin/master/htpasswd <user_name>

Configuring the Master

The identityProviders stanza in the /etc/origin/master/master-config.yaml file must be
updated as well:

 identityProviders:
 - name: requestheader
 challenge: true
 login: true
 provider:
 apiVersion: v1
 kind: RequestHeaderIdentityProvider
 challengeURL: "https://[MASTER]/challenging-proxy/oauth/authorize?
${query}"

OpenShift Enterprise 3.1 Installation and Configuration

154

https://github.com/openshift/openshift-extras/tree/master/misc/form_auth

 loginURL: "https://[MASTER]/login-proxy/oauth/authorize?${query}"
 clientCA: /etc/origin/master/proxyca.crt
 headers:
 - X-Remote-User

Restarting Services

Finally, restart the following services:

systemctl restart httpd
systemctl restart atomic-openshift-master

Verifying the Configuration

1. Test by bypassing the proxy. You should be able to request a token if you supply the correct
client certificate and header:

curl -L -k -H "X-Remote-User: joe" \
 --cert /etc/pki/tls/certs/authproxy.pem \
 https://[MASTER]:8443/oauth/token/request

2. If you do not supply the client certificate, the request should be denied:

curl -L -k -H "X-Remote-User: joe" \
 https://[MASTER]:8443/oauth/token/request

3. This should show a redirect to the configured challengeURL (with additional query
parameters):

curl -k -v -H 'X-Csrf-Token: 1' \
 '<masterPublicURL>/oauth/authorize?client_id=openshift-
challenging-client&response_type=token'

4. This should show a 401 response with a WWW-Authenticate basic challenge:

curl -k -v -H 'X-Csrf-Token: 1' \
 '<redirected challengeURL from step 3 +query>'

5. This should show a redirect with an access token:

curl -k -v -u <your_user>:<your_password> \
 -H 'X-Csrf-Token: 1' '<redirected_challengeURL_from_step_3
+query>'

8.2.9. GitHub

Set GitHubIdentityProvider in the identityProviders stanza to use GitHub as an identity provider,
using the OAuth integration.

CHAPTER 8. CONFIGURING AUTHENTICATION

155

https://github.com/
https://developer.github.com/v3/oauth/

1

2

3

4

5

6

NOTE

Using GitHub as an identity provider requires users to get a token using
<master>/oauth/token/request to use with command-line tools.

Example 8.9. Master Configuration Using GitHubIdentityProvider

oauthConfig:
 ...
 identityProviders:

 - name: github 1

 challenge: false 2

 login: true 3

 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: GitHubIdentityProvider

 clientID: ... 5

 clientSecret: ... 6

This provider name is prefixed to the GitHub numeric user ID to form an identity name. It is also
used to build the callback URL.

GitHubIdentityProvider cannot be used to send WWW-Authenticate challenges.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to GitHub to log in.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

The client ID of a registered GitHub OAuth application. The application must be configured with
a callback URL of <master>/oauth2callback/<identityProviderName>.

The client secret issued by GitHub.

8.2.10. Google

Set GoogleIdentityProvider in the identityProviders stanza to use Google as an identity provider,
using Google’s OpenID Connect integration.

NOTE

Using Google as an identity provider requires users to get a token using
<master>/oauth/token/request to use with command-line tools.

Example 8.10. Master Configuration Using GoogleIdentityProvider

oauthConfig:
 ...
 identityProviders:

OpenShift Enterprise 3.1 Installation and Configuration

156

https://github.com/settings/applications/new
https://developers.google.com/identity/protocols/OpenIDConnect

1

2

3

4

5

6

7

 - name: google 1

 challenge: false 2

 login: true 3

 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: GoogleIdentityProvider

 clientID: ... 5

 clientSecret: ... 6

 hostedDomain: "" 7

This provider name is prefixed to the Google numeric user ID to form an identity name. It is also
used to build the redirect URL.

GoogleIdentityProvider cannot be used to send WWW-Authenticate challenges.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to Google to log in.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

The client ID of a registered Google project. The project must be configured with a redirect URI
of <master>/oauth2callback/<identityProviderName>.

The client secret issued by Google.

Optional hosted domain to restrict sign-in accounts to. If empty, any Google account is allowed
to authenticate.

8.2.11. OpenID Connect

Set OpenIDIdentityProvider in the identityProviders stanza to integrate with an OpenID Connect
identity provider using an Authorization Code Flow.

NOTE

ID Token and UserInfo decryptions are not supported.

By default, the openid scope is requested. If required, extra scopes can be specified in the
extraScopes field.

Claims are read from the JWT id_token returned from the OpenID identity provider and, if specified,
from the JSON returned by the UserInfo URL.

At least one claim must be configured to use as the user’s identity. The standard identity claim is sub.

You can also indicate which claims to use as the user’s preferred user name, display name, and email
address. If multiple claims are specified, the first one with a non-empty value is used. The standard
claims are:

CHAPTER 8. CONFIGURING AUTHENTICATION

157

https://console.developers.google.com/
https://developers.google.com/identity/protocols/OpenIDConnect#hd-param
http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

1

2

3

4

sub The user identity.

preferred
_username

The preferred user name when provisioning a user.

email Email address.

name Display name.

NOTE

Using an OpenID Connect identity provider requires users to get a token using
<master>/oauth/token/request to use with command-line tools.

Example 8.11. Standard Master Configuration Using OpenIDIdentityProvider

oauthConfig:
 ...
 identityProviders:

 - name: my_openid_connect 1

 challenge: false 2

 login: true 3

 mappingMethod: claim 4
 provider:
 apiVersion: v1
 kind: OpenIDIdentityProvider

 clientID: ... 5

 clientSecret: ... 6
 claims:
 id:

 - sub 7
 preferredUsername:
 - preferred_username
 name:
 - name
 email:
 - email
 urls:

 authorize: https://myidp.example.com/oauth2/authorize 8

 token: https://myidp.example.com/oauth2/token 9

This provider name is prefixed to the value of the identity claim to form an identity name. It is
also used to build the redirect URL.

OpenIDIdentityProvider cannot be used to send WWW-Authenticate challenges.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to the authorize URL to log in.

Controls how mappings are established between this provider’s identities and user objects, as
described above.

OpenShift Enterprise 3.1 Installation and Configuration

158

5

6

7

8

9

The client ID of a client registered with the OpenID provider. The client must be allowed to
redirect to <master>/oauth2callback/<identityProviderName>.

The client secret.

Use the value of the sub claim in the returned id_token as the user’s identity.

Authorization Endpoint described in the OpenID spec. Must use https.

Token Endpoint described in the OpenID spec. Must use https.

A custom certificate bundle, extra scopes, extra authorization request parameters, and userInfo URL
can also be specified:

Example 8.12. Full Master Configuration Using OpenIDIdentityProvider

oauthConfig:
 ...
 identityProviders:
 - name: my_openid_connect
 challenge: false
 login: true
 mappingMethod: claim
 provider:
 apiVersion: v1
 kind: OpenIDIdentityProvider
 clientID: ...
 clientSecret: ...

 ca: my-openid-ca-bundle.crt 1

 extraScopes: 2
 - email
 - profile

 extraAuthorizeParameters: 3
 include_granted_scopes: "true"
 claims:

 id: 4
 - custom_id_claim
 - sub

 preferredUsername: 5
 - preferred_username
 - email

 name: 6
 - nickname
 - given_name
 - name

 email: 7
 - custom_email_claim
 - email
 urls:
 authorize: https://myidp.example.com/oauth2/authorize
 token: https://myidp.example.com/oauth2/token

 userInfo: https://myidp.example.com/oauth2/userinfo 8

CHAPTER 8. CONFIGURING AUTHENTICATION

159

http://openid.net/specs/openid-connect-core-1_0.html#AuthorizationEndpoint
http://openid.net/specs/openid-connect-core-1_0.html#TokenEndpoint

1

2

3

4

5

6

7

8

1

2

Certificate bundle to use to validate server certificates for the configured URLs. If empty, system
trusted roots are used.

Optional list of scopes to request, in addition to the openid scope, during the authorization token
request.

Optional map of extra parameters to add to the authorization token request.

List of claims to use as the identity. First non-empty claim is used. At least one claim is required.
If none of the listed claims have a value, authentication fails.

List of claims to use as the preferred user name when provisioning a user for this identity. First
non-empty claim is used.

List of claims to use as the display name. First non-empty claim is used.

List of claims to use as the email address. First non-empty claim is used.

UserInfo Endpoint described in the OpenID spec. Must use https.

8.3. TOKEN OPTIONS

The OAuth server generates two kinds of tokens:

Access
tokens

Longer-lived tokens that grant access to the API.

Authorize
codes

Short-lived tokens whose only use is to be exchanged for an access token.

Use the tokenConfig stanza to set token options:

Example 8.13. Master Configuration Token Options

oauthConfig:
 ...
 tokenConfig:

 accessTokenMaxAgeSeconds: 86400 1

 authorizeTokenMaxAgeSeconds: 300 2

Set accessTokenMaxAgeSeconds to control the lifetime of access tokens. The default lifetime
is 24 hours.

Set authorizeTokenMaxAgeSeconds to control the lifetime of authorize codes. The default
lifetime is five minutes.

8.4. GRANT OPTIONS

OpenShift Enterprise 3.1 Installation and Configuration

160

http://openid.net/specs/openid-connect-core-1_0.html#UserInfo

1

2

3

To configure how the OAuth server responds to token requests for a client the user has not previously
granted permission, set the method value in the grantConfig stanza. Valid values for method are:

auto Auto-approve the grant and retry the request.

prompt Prompt the user to approve or deny the grant.

deny Auto-deny the grant and return a failure error to the client.

Example 8.14. Master Configuration Grant Options

oauthConfig:
 ...
 grantConfig:
 method: auto

8.5. SESSION OPTIONS

The OAuth server uses a signed and encrypted cookie-based session during login and redirect flows.

Use the sessionConfig stanza to set session options:

Example 8.15. Master Configuration Session Options

oauthConfig:
 ...
 sessionConfig:

 sessionMaxAgeSeconds: 300 1

 sessionName: ssn 2

 sessionSecretsFile: "..." 3

Controls the maximum age of a session; sessions auto-expire once a token request is complete.
If auto-grant is not enabled, sessions must last as long as the user is expected to take to
approve or reject a client authorization request.

Name of the cookie used to store the session.

File name containing serialized SessionSecrets object. If empty, a random signing and
encryption secret is generated at each server start.

If no sessionSecretsFile is specified, a random signing and encryption secret is generated at each
start of the master server. This means that any logins in progress will have their sessions invalidated if
the master is restarted. It also means that if multiple masters are configured, they will not be able to
decode sessions generated by one of the other masters.

To specify the signing and encryption secret to use, specify a sessionSecretsFile. This allows you
separate secret values from the configuration file and keep the configuration file distributable, for
example for debugging purposes.

CHAPTER 8. CONFIGURING AUTHENTICATION

161

1

2

3

Multiple secrets can be specified in the sessionSecretsFile to enable rotation. New sessions are
signed and encrypted using the first secret in the list. Existing sessions are decrypted and authenticated
by each secret until one succeeds.

Example 8.16. Session Secret Configuration:

apiVersion: v1
kind: SessionSecrets

secrets: 1

- authentication: "..." 2

 encryption: "..." 3
- authentication: "..."
 encryption: "..."
...

List of secrets used to authenticate and encrypt cookie sessions. At least one secret must be
specified. Each secret must set an authentication and encryption secret.

Signing secret, used to authenticate sessions using HMAC. Recommended to use a secret with
32 or 64 bytes.

Encrypting secret, used to encrypt sessions. Must be 16, 24, or 32 characters long, to select
AES-128, AES-192, or AES-256.

OpenShift Enterprise 3.1 Installation and Configuration

162

1

2

3

4

5

CHAPTER 9. SYNCING GROUPS WITH LDAP

9.1. OVERVIEW

As an OpenShift administrator, you can use groups to manage users, change their permissions, and
enhance collaboration. Your organization may have already created user groups and stored them in an
LDAP server. OpenShift can sync those LDAP records with internal OpenShift records, enabling you to
manage your groups in one place. OpenShift currently supports group sync with LDAP servers using
three common schemas for defining group membership: RFC 2307, Active Directory, and augmented
Active Directory.

NOTE

You must have cluster-admin privileges to sync groups.

9.2. CONFIGURING LDAP SYNC

Before you can run LDAP sync, you need a sync configuration file. This file contains LDAP client
configuration details:

Configuration for connecting to your LDAP server.

Sync configuration options that are dependent on the schema used in your LDAP server.

A sync configuration file can also contain an administrator-defined list of name mappings that maps
OpenShift Group names to groups in your LDAP server.

9.2.1. LDAP Client Configuration

Example 9.1. LDAP Client Configuration

The connection protocol, IP address of the LDAP server hosting your database, and the port to
connect to, formatted as scheme://host:port.

Optional distinguished name (DN) to use as the Bind DN. OpenShift uses this if elevated
privilege is required to retrieve entries for the sync operation.

Optional password to use to bind. OpenShift uses this if elevated privilege is necessary to
retrieve entries for the sync operation.

When true, no TLS connection is made to the server. When false, secure LDAP (ldaps://)
URLs connect using TLS, and insecure LDAP (ldap://) URLs are upgraded to TLS.

The certificate bundle to use for validating server certificates for the configured URL. If empty,
OpenShift uses system-trusted roots. This only applies if insecure is set to false.

url: ldap://10.0.0.0:389 1

bindDN: cn=admin,dc=example,dc=com 2

bindPassword: password 3

insecure: true 4

ca: my-ldap-ca-bundle.crt 5

CHAPTER 9. SYNCING GROUPS WITH LDAP

163

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#roles

1

2

3

4

5

9.2.2. LDAP Query Definition

Sync configurations consist of LDAP query definitions for the entries that are required for
synchronization. The specific definition of an LDAP query depends on the schema used to store
membership information in the LDAP server.

Example 9.2. LDAP Query Definition

The distinguished name (DN) of the branch of the directory where all searches will start from. It
is required that you specify the top of your directory tree, but you can also specify a subtree in
the directory.

The scope of the search. Valid values are base, one, or sub. If this is left undefined, then a
scope of sub is assumed. Descriptions of the scope options can be found in the table below.

The behavior of the search with respect to aliases in the LDAP tree. Valid values are never,
search, base, or always. If this is left undefined, then the default is to always dereference
aliases. Descriptions of the dereferencing behaviors can be found in the table below.

The time limit allowed for the search by the client, in seconds. A value of 0 imposes no client-
side limit.

A valid LDAP search filter. If this is left undefined, then the default is (objectClass=*).

Table 9.1. LDAP Search Scope Options

LDAP Search
Scope

Description

base Only consider the object specified by the base DN given for the query.

one Consider all of the objects on the same level in the tree as the base DN for the query.

sub Consider the entire subtree rooted at the base DN given for the query.

Table 9.2. LDAP Dereferencing Behaviors

Dereferencing
Behavior

Description

never Never dereference any aliases found in the LDAP tree.

baseDN: ou=users,dc=example,dc=com 1

scope: sub 2

derefAliases: never 3

timeout: 0 4

filter: (objectClass=inetOrgPerson) 5

OpenShift Enterprise 3.1 Installation and Configuration

164

search Only dereference aliases found while searching.

base Only dereference aliases while finding the base object.

always Always dereference all aliases found in the LDAP tree.

Dereferencing
Behavior

Description

9.2.3. User-Defined Name Mapping

A user-defined name mapping explicitly maps the names of OpenShift Groups to unique identifiers that
find groups on your LDAP server. The mapping uses normal YAML syntax. A user-defined mapping can
contain an entry for every group in your LDAP server or only a subset of those groups. If there are
groups on the LDAP server that do not have a user-defined name mapping, the default behavior during
sync is to use the attribute specified as the Group’s name.

Example 9.3. User-Defined Name Mapping

9.3. RUNNING LDAP SYNC

Once you have created a sync configuration file, then sync can begin. OpenShift allows administrators to
perform a number of different sync types with the same server.

NOTE

By default, all group synchronization or pruning operations are dry-run, so you must set
the --confirm flag on the sync-groups command in order to make changes to
OpenShift Group records.

To sync all groups from the LDAP server with OpenShift:

$ oadm groups sync --sync-config=config.yaml --confirm

To sync all Groups already in OpenShift that correspond to groups in the LDAP server specified in the
configuration file:

$ oadm groups sync --type=openshift --sync-config=config.yaml --confirm

To sync a subset of LDAP groups with OpenShift, you can use whitelist files, blacklist files, or both:

groupUIDNameMapping:
 "cn=group1,ou=groups,dc=example,dc=com": firstgroup
 "cn=group2,ou=groups,dc=example,dc=com": secondgroup
 "cn=group3,ou=groups,dc=example,dc=com": thirdgroup

CHAPTER 9. SYNCING GROUPS WITH LDAP

165

NOTE

Any combination of blacklist files, whitelist files, or whitelist literals will work; whitelist
literals can be included directly in the command itself. This applies to groups found on
LDAP servers, as well as Groups already present in OpenShift. Your files must contain
one unique group identifier per line.

$ oadm groups sync --whitelist=<whitelist_file> \
 --sync-config=config.yaml \
 --confirm
$ oadm groups sync --blacklist=<blacklist_file> \
 --sync-config=config.yaml \
 --confirm
$ oadm groups sync <group_unique_identifier> \
 --sync-config=config.yaml \
 --confirm
$ oadm groups sync <group_unique_identifier> \
 --whitelist=<whitelist_file> \
 --blacklist=<blacklist_file> \
 --sync-config=config.yaml \
 --confirm
$ oadm groups sync --type=openshift \
 --whitelist=<whitelist_file> \
 --sync-config=config.yaml \
 --confirm

9.4. RUNNING A GROUP PRUNING JOB

An administrator can also choose to remove groups from OpenShift records if the records on the LDAP
server that created them are no longer present. The prune job will accept the same sync configuration
file and white- or black-lists as used for the sync job.

For example, if groups had previously been synchronized from LDAP using some config.yaml file, and
some of those groups no longer existed on the LDAP server, the following command would determine
which Groups in OpenShift corresponded to the deleted groups in LDAP and then remove them from
OpenShift:

$ oadm groups prune --sync-config=config.yaml --confirm

9.5. SYNC EXAMPLES

This section contains examples for the RFC 2307, Active Directory, and augmented Active Directory
schemas. All of the following examples synchronize a group named admins that has two members:
Jane and Jim. Each example explains:

How the group and users are added to the LDAP server.

What the LDAP sync configuration file looks like.

What the resulting Group record in OpenShift will be after synchronization.

9.5.1. RFC 2307

OpenShift Enterprise 3.1 Installation and Configuration

166

1

2

In the RFC 2307 schema, both users (Jane and Jim) and groups exist on the LDAP server as first-class
entries, and group membership is stored in attributes on the group. The following snippet of ldif defines
the users and group for this schema:

Example 9.4. LDAP Entries Using RFC 2307 Schema: rfc2307.ldif

The group is a first-class entry in the LDAP server.

Members of a group are listed with an identifying reference as attributes on the group.

To sync this group, you must first create the configuration file. The RFC 2307 schema requires you to
provide an LDAP query definition for both user and group entries, as well as the attributes with which to
represent them in the internal OpenShift records.

For clarity, the Group you create in OpenShift should use attributes other than the distinguished name
whenever possible for user- or administrator-facing fields. For example, identify the users of a Group by
their e-mail, and use the name of the group as the common name. The following configuration file
creates these relationships:

 dn: ou=users,dc=example,dc=com
 objectClass: organizationalUnit
 ou: users

 dn: cn=Jane,ou=users,dc=example,dc=com
 objectClass: person
 objectClass: organizationalPerson
 objectClass: inetOrgPerson
 cn: Jane
 sn: Smith
 displayName: Jane Smith
 mail: jane.smith@example.com

 dn: cn=Jim,ou=users,dc=example,dc=com
 objectClass: person
 objectClass: organizationalPerson
 objectClass: inetOrgPerson
 cn: Jim
 sn: Adams
 displayName: Jim Adams
 mail: jim.adams@example.com

 dn: ou=groups,dc=example,dc=com
 objectClass: organizationalUnit
 ou: groups

 dn: cn=admins,ou=groups,dc=example,dc=com 1
 objectClass: groupOfNames
 cn: admins
 owner: cn=admin,dc=example,dc=com
 description: System Administrators

 member: cn=Jane,ou=users,dc=example,dc=com 2
 member: cn=Jim,ou=users,dc=example,dc=com

CHAPTER 9. SYNCING GROUPS WITH LDAP

167

1

2

3

4

5

6

7

NOTE

If using user-defined name mappings, your configuration file will differ.

Example 9.5. LDAP Sync Configuration Using RFC 2307 Schema: rfc2307_config.yaml

The IP address and host of the LDAP server where this group’s record is stored.

When true, no TLS connection is made to the server. When false, secure LDAP (ldaps://)
URLs connect using TLS, and insecure LDAP (ldap://) URLs are upgraded to TLS.

The attribute that uniquely identifies a group on the LDAP server.

The attribute to use as the name of the Group.

The attribute on the group that stores the membership information.

The attribute that uniquely identifies a user on the LDAP server.

The attribute to use as the name of the user in the OpenShift Group record.

To run sync with the rfc2307_config.yaml file:

$ oadm groups sync --sync-config=rfc2307_config.yaml --confirm

OpenShift creates the following Group record as a result of the above sync operation:

Example 9.6. OpenShift Group Created Using rfc2307_config.yaml

kind: LDAPSyncConfig
apiVersion: v1

url: ldap://LDAP_SERVICE_IP:389 1

insecure: true 2
rfc2307:
 groupsQuery:
 baseDN: "ou=groups,dc=example,dc=com"
 scope: sub
 derefAliases: never
 filter: (objectclass=groupOfNames)

 groupUIDAttribute: dn 3

 groupNameAttributes: [cn] 4

 groupMembershipAttributes: [member] 5
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub
 derefAliases: never
 filter: (objectclass=inetOrgPerson)

 userUIDAttribute: dn 6

 userNameAttributes: [mail] 7

apiVersion: v1
kind: Group

OpenShift Enterprise 3.1 Installation and Configuration

168

1

2

3

4

5

1

The last time this Group was synchronized with the LDAP server, in ISO 6801 format.

The unique identifier for the group on the LDAP server.

The IP address and host of the LDAP server where this Group’s record is stored.

The name of the Group as specified by the sync file.

The users that are members of the Group, named as specified by the sync file.

9.5.1.1. RFC2307 with User-Defined Name Mappings

When syncing groups with user-defined name mappings, the configuration file changes to contain these
mappings as shown below.

Example 9.7. LDAP Sync Configuration Using RFC 2307 Schema With User-Defined Name
Mappings: rfc2307_config_user_defined.yaml

The user-defined name mapping.

metadata:
 annotations:

 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1

 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com 2

 openshift.io/ldap.url: LDAP_SERVER_IP:389 3
 creationTimestamp:

 name: admins 4

users: 5
- jane.smith@example.com
- jim.adams@example.com

kind: LDAPSyncConfig
apiVersion: v1
groupUIDNameMapping:

 "cn=admins,ou=groups,dc=example,dc=com": Administrators 1
rfc2307:
 groupsQuery:
 baseDN: "ou=groups,dc=example,dc=com"
 scope: sub
 derefAliases: never
 filter: (objectclass=groupOfNames)

 groupUIDAttribute: dn 2

 groupNameAttributes: [cn] 3
 groupMembershipAttributes: [member]
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub
 derefAliases: never
 filter: (objectclass=inetOrgPerson)
 userUIDAttribute: dn
 userNameAttributes: [mail]

CHAPTER 9. SYNCING GROUPS WITH LDAP

169

2

3

1

The unique identifier attribute that is used for the keys in the user-defined name mapping.

The attribute to name OpenShift Groups with if their unique identifier is not in the user-defined
name mapping.

To run sync with the rfc2307_config_user_defined.yaml file:

$ oadm groups sync --sync-config=rfc2307_config_user_defined.yaml --
confirm

OpenShift creates the following Group record as a result of the above sync operation:

Example 9.8. OpenShift Group Created Using rfc2307_config_user_defined.yaml

The name of the Group as specified by the user-defined name mapping.

9.5.2. Active Directory

In the Active Directory schema, both users (Jane and Jim) exist in the LDAP server as first-class entries,
and group membership is stored in attributes on the user. The following snippet of ldif defines the
users and group for this schema:

Example 9.9. LDAP Entries Using Active Directory Schema: active_directory.ldif

apiVersion: v1
kind: Group
metadata:
 annotations:
 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400
 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com
 openshift.io/ldap.url: LDAP_SERVER_IP:389
 creationTimestamp:

 name: Administrators 1
users:
- jane.smith@example.com
- jim.adams@example.com

dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit
ou: users

dn: cn=Jane,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jane
sn: Smith
displayName: Jane Smith
mail: jane.smith@example.com

OpenShift Enterprise 3.1 Installation and Configuration

170

1

1

2

The user’s group memberships are listed as attributes on the user, and the group does not exist
as an entry on the server. The testMemberOf attribute cannot be a literal attribute on the user;
it can be created during search and returned to the client but not committed to the database.

To sync this group, you must first create the configuration file. The Active Directory schema requires you
to provide an LDAP query definition for user entries, as well as the attributes to represent them with in
the internal OpenShift Group records.

For clarity, the Group you create in OpenShift should use attributes other than the distinguished name
whenever possible for user- or administrator-facing fields. For example, identify the users of a Group by
their e-mail, but define the name of the Group by the name of the group on the LDAP server. The
following configuration file creates these relationships:

Example 9.10. LDAP Sync Configuration Using Active Directory Schema:
active_directory_config.yaml

The attribute to use as the name of the user in the OpenShift Group record.

The attribute on the user that stores the membership information.

To run sync with the active_directory_config.yaml file:

$ oadm groups sync --sync-config=active_directory_config.yaml --confirm

testMemberOf: admins 1

dn: cn=Jim,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jim
sn: Adams
displayName: Jim Adams
mail: jim.adams@example.com
testMemberOf: admins

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389
insecure: true
activeDirectory:
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub
 derefAliases: never
 filter: (objectclass=inetOrgPerson)

 userNameAttributes: [mail] 1

 groupMembershipAttributes: [testMemberOf] 2

CHAPTER 9. SYNCING GROUPS WITH LDAP

171

1

2

3

4

5

OpenShift creates the following Group record as a result of the above sync operation:

Example 9.11. OpenShift Group Created Using active_directory_config.yaml

The last time this Group was synchronized with the LDAP server, in ISO 6801 format.

The unique identifier for the group on the LDAP server.

The IP address and host of the LDAP server where this Group’s record is stored.

The name of the group as listed in the LDAP server.

The users that are members of the Group, named as specified by the sync file.

9.5.3. Augmented Active Directory

In the augmented Active Directory schema, both users (Jane and Jim) and groups exist in the LDAP
server as first-class entries, and group membership is stored in attributes on the user. The following
snippet of ldif defines the users and group for this schema:

Example 9.12. LDAP Entries Using Augmented Active Directory Schema:
augmented_active_directory.ldif

apiVersion: v1
kind: Group
metadata:
 annotations:

 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1

 openshift.io/ldap.uid: admins 2

 openshift.io/ldap.url: LDAP_SERVER_IP:389 3
 creationTimestamp:

 name: admins 4

users: 5
- jane.smith@example.com
- jim.adams@example.com

dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit
ou: users

dn: cn=Jane,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jane
sn: Smith
displayName: Jane Smith
mail: jane.smith@example.com

testMemberOf: cn=admins,ou=groups,dc=example,dc=com 1

dn: cn=Jim,ou=users,dc=example,dc=com

OpenShift Enterprise 3.1 Installation and Configuration

172

1

2

The user’s group memberships are listed as attributes on the user.

The group is a first-class entry on the LDAP server.

To sync this group, you must first create the configuration file. The augmented Active Directory schema
requires you to provide an LDAP query definition for both user entries and group entries, as well as the
attributes with which to represent them in the internal OpenShift Group records.

For clarity, the Group you create in OpenShift should use attributes other than the distinguished name
whenever possible for user- or administrator-facing fields. For example, identify the users of a Group by
their e-mail, and use the name of the Group as the common name. The following configuration file
creates these relationships.

Example 9.13. LDAP Sync Configuration Using Augmented Active Directory Schema:
augmented_active_directory_config.yaml

objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jim
sn: Adams
displayName: Jim Adams
mail: jim.adams@example.com
testMemberOf: cn=admins,ou=groups,dc=example,dc=com

dn: ou=groups,dc=example,dc=com
objectClass: organizationalUnit
ou: groups

dn: cn=admins,ou=groups,dc=example,dc=com 2
objectClass: groupOfNames
cn: admins
owner: cn=admin,dc=example,dc=com
description: System Administrators
member: cn=Jane,ou=users,dc=example,dc=com
member: cn=Jim,ou=users,dc=example,dc=com

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389
insecure: true
augmentedActiveDirectory:
 groupsQuery:
 baseDN: "ou=groups,dc=example,dc=com"
 scope: sub
 derefAliases: never
 filter: (objectclass=groupOfNames)

 groupUIDAttribute: dn 1

 groupNameAttributes: [cn] 2
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub

CHAPTER 9. SYNCING GROUPS WITH LDAP

173

1

2

3

4

1

2

3

4

5

The attribute that uniquely identifies a group on the LDAP server.

The attribute to use as the name of the Group.

The attribute to use as the name of the user in the OpenShift Group record.

The attribute on the user that stores the membership information.

To run sync with the augmented_active_directory_config.yaml file:

$ oadm groups sync --sync-config=augmented_active_directory_config.yaml --
confirm

OpenShift creates the following Group record as a result of the above sync operation:

Example 9.14. OpenShift Group Created Using augmented_active_directory_config.yaml

The last time this Group was synchronized with the LDAP server, in ISO 6801 format.

The unique identifier for the group on the LDAP server.

The IP address and host of the LDAP server where this Group’s record is stored.

The name of the Group as specified by the sync file.

The users that are members of the Group, named as specified by the sync file.

 derefAliases: never
 filter: (objectclass=inetOrgPerson)

 userNameAttributes: [mail] 3

 groupMembershipAttributes: [testMemberOf] 4

apiVersion: v1
kind: Group
metadata:
 annotations:

 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1

 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com 2

 openshift.io/ldap.url: LDAP_SERVER_IP:389 3
 creationTimestamp:

 name: admins 4

users: 5
- jane.smith@example.com
- jim.adams@example.com

OpenShift Enterprise 3.1 Installation and Configuration

174

CHAPTER 10. ADVANCED LDAP CONFIGURATION

10.1. OVERVIEW

OpenShift Enterprise Advanced Lightweight Directory Access Protocol (LDAP) Configuration covers the
following topics:

Setting up SSSD for LDAP Failover

Configuring Form-Based Authentication

Configuring Extended LDAP Attributes

10.2. SETTING UP SSSD FOR LDAP FAILOVER

10.2.1. Overview

OpenShift Enterprise provides an authentication provider for use with Lightweight Directory Access
Protocol (LDAP) setups, but it can only connect to a single LDAP server. This can be problematic if that
LDAP server becomes unavailable. System Security Services Daemon (SSSD) can be used to solve the
issue.

Originally designed to manage local and remote authentication to the host operating system, SSSD can
now be configured to provide identity, authentication, and authorization services to web services like
OpenShift Enterprise. SSSD provides advantages over the built-in LDAP provider, including the ability to
connect to any number of failover LDAP servers, as well as the ability to cache authentication attempts in
case it can no longer reach any of those servers.

The setup for this configuration is advanced and requires a separate authentication server (also called
an authenticating proxy) for OpenShift Enterprise to communicate with. This topic describes how to do
this setup on a dedicated physical or virtual machine (VM), but the concepts are also applicable to a
setup in a container.

10.2.2. Prerequisites for Authenticating Proxy Setup

1. Before starting setup, you need to know the following information about your LDAP server.

Whether the directory server is powered by FreeIPA, Active Directory, or another LDAP
solution.

The Uniform Resource Identifier (URI) for the LDAP server (for example,
ldap.example.com).

The location of the CA certificate for the LDAP server.

Whether the LDAP server corresponds to RFC 2307 or RFC2307bis for user groups.

2. Prepare the VMs:

proxy.example.com: A VM to use as the authenticating proxy. This machine must have at
least SSSD 1.12.0 available, which means a fairly recent operating system. This topic uses
a Red Hat Enterprise Linux 7.2 server for its examples.

openshift.example.com: A VM to use to run OpenShift Enterprise.

CHAPTER 10. ADVANCED LDAP CONFIGURATION

175

http://www.freeipa.org/page/Main_Page

NOTE

These VMs can be configured to run on the same system, but for the examples used in
this topic they are kept separate.

10.2.3. Phase 1: Certificate Generation

1. To ensure that communication between the authenticating proxy and OpenShift Enterprise is
trustworthy, create a set of Transport Layer Security (TLS) certificates to use during the other
phases of this setup. In the OpenShift Enterprise system, start by using the auto-generated
certificates created as part of running:

openshift start \
 --public-master=https://openshift.example.com:8443 \
 --write-config=/etc/origin/

Among other things, this generates a /etc/origin/master/ca.{cert|key}. Use this signing
certificate to generate keys to use on the authenticating proxy.

mkdir -p /etc/origin/proxy/
oadm ca create-server-cert \
 --cert='/etc/origin/proxy/proxy.example.com.crt' \
 --key='/etc/origin/proxy/proxy.example.com.key' \
 --hostnames=proxy.example.com \
 --signer-cert=/etc/origin/master/ca.crt \
 --signer-key='/etc/origin/master/ca.key' \
 --signer-serial='/etc/origin/master/ca.serial.txt'

IMPORTANT

Ensure that any host names and interface IP addresses that need to access the
proxy are listed. Otherwise, the HTTPS connection will fail.

2. Generate the API client certificate that the authenticating proxy will use to prove its identity to
OpenShift Enterprise. This is necessary and prevents malicious users from impersonating the
proxy and sending fake identities.

3. Create a new CA to sign this client certificate:

mkdir -p /etc/origin/proxy/
oadm ca create-server-cert \
 --cert='/etc/origin/proxy/proxy.example.com.crt' \
 --key='/etc/origin/proxy/proxy.example.com.key' \
 --hostnames=proxy.example.com,1.2.3.4 \
 --signer-cert=/etc/origin/master/ca.crt \
 --signer-key='/etc/origin/master/ca.key' \
 --signer-serial='/etc/origin/master/ca.serial.txt'

Make UNIQUESTRING` something unique:

oadm ca create-signer-cert \
 --cert='/etc/origin/proxy/proxyca.crt' \
 --key='/etc/origin/proxy/proxyca.key' \

OpenShift Enterprise 3.1 Installation and Configuration

176

 --name='openshift-proxy-signer@UNIQUESTRING' \
 --serial='/etc/origin/proxy/proxyca.serial.txt'

10.2.4. Phase 2: Authenticating Proxy Setup

This section guides you through the steps to authenticate the proxy setup.

10.2.4.1. Step 1: Copy Certificates

From openshift.example.com, securely copy the necessary certificates to the proxy machine:

scp /etc/origin/proxy/master/ca.crt \
 root@proxy.example.com:/etc/pki/CA/certs/

scp /etc/origin/proxy/proxy.example.com.crt \
 /etc/origin/proxy/authproxy.pem \
 root@proxy.example.com:/etc/pki/tls/certs/

scp /etc/origin/proxy/proxy.example.com.key \
 root@proxy.example.com:/etc/pki/tls/private/

10.2.4.2. Step 2: SSSD Configuration

1. Install a new VM with an operating system that includes 1.12.0 or later so that you can use the
mod_identity_lookup module. The examples in this topic use a Red Hat Enterprise Linux 7.2
Server.

2. Install all of the necessary dependencies:

yum install -y sssd \
 sssd-dbus \
 realmd \
 httpd \
 mod_session \
 mod_ssl \
 mod_lookup_identity \
 mod_authnz_pam

This gives you the needed SSSD and the web server components.

3. Set up SSSD to authenticate this VM against the LDAP server. If the LDAP server is a FreeIPA
or Active Directory environment, then realmd can be used to join this machine to the domain.

realm join ldap.example.com

For more advanced case, see the System-Level Authentication Guide

If you want to use SSSD to manage failover situations for LDAP, this can be configured by
adding additional entries in /etc/sssd/sssd.conf on the ldap_uri line. Systems enrolled with
FreeIPA can automatically handle failover using DNS SRV records.

4. Restart SSSD to ensure that all of the changes are applied properly:

$ systemctl restart sssd.service

CHAPTER 10. ADVANCED LDAP CONFIGURATION

177

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System-Level_Authentication_Guide/authconfig-ldap.html

5. Test that the user information can be retrieved properly:

$ getent passwd <username>
username:*:12345:12345:Example User:/home/username:/usr/bin/bash

6. Attempt to log into the VM as an LDAP user and confirm that the authentication is properly set
up. This can be done via the local console or a remote service such as SSH.

NOTE

If you do not want LDAP users to be able to log into this machine, it is recommended to
modify /etc/pam.d/system-auth and /etc/pam.d/password-auth to remove the lines
containing pam_sss.so.

10.2.4.3. Step 3: Apache Configuration

You need to set up Apache to communicate with SSSD. Create a PAM stack file for use with Apache. To
do so:

1. Create the /etc/pam.d/openshift file and add the following contents:

auth required pam_sss.so
account required pam_sss.so

This configuration enables PAM (the pluggable authentication module) to use pam_sss.so to
determine authentication and access control when an authentication request is issued for the
openshift stack.

2. Configure the Apache httpd.conf. The steps in this section focus on setting up the challenge
authentication, which is useful for logging in with oc login and similar automated tools.

NOTE

Configuring Form-Based Authentication explains how to set up a graphical login
using SSSD as well, but it requires the rest of this setup as a prerequisite.

3. Create the new file openshift-proxy.conf in /etc/httpd/conf.d (substituting the correct host
names where indicated):

LoadModule request_module modules/mod_request.so
LoadModule lookup_identity_module modules/mod_lookup_identity.so
Nothing needs to be served over HTTP. This virtual host simply
redirects to
HTTPS.
<VirtualHost *:80>
 DocumentRoot /var/www/html
 RewriteEngine On
 RewriteRule ^(.*)$ https://%{HTTP_HOST}$1 [R,L]
</VirtualHost>

<VirtualHost *:443>
 # This needs to match the certificates you generated. See the CN
and X509v3

OpenShift Enterprise 3.1 Installation and Configuration

178

 # Subject Alternative Name in the output of:
 # openssl x509 -text -in /etc/pki/tls/certs/proxy.example.com.crt
 ServerName proxy.example.com

 DocumentRoot /var/www/html
 SSLEngine on
 SSLCertificateFile /etc/pki/tls/certs/proxy.example.com.crt
 SSLCertificateKeyFile /etc/pki/tls/private/proxy.example.com.key
 SSLCACertificateFile /etc/pki/CA/certs/ca.crt

 # Send logs to a specific location to make them easier to find
 ErrorLog logs/proxy_error_log
 TransferLog logs/proxy_access_log
 LogLevel warn
 SSLProxyEngine on
 SSLProxyCACertificateFile /etc/pki/CA/certs/ca.crt
 # It's critical to enforce client certificates on the Master.
Otherwise
 # requests could spoof the X-Remote-User header by accessing the
Master's
 # /oauth/authorize endpoint directly.
 SSLProxyMachineCertificateFile /etc/pki/tls/certs/authproxy.pem

 # Send all requests to the console
 RewriteEngine On
 RewriteRule ^/console(.*)$ https://%
{HTTP_HOST}:8443/console$1 [R,L]

 # In order to using the challenging-proxy an X-Csrf-Token must be
present.
 RewriteCond %{REQUEST_URI} ^/challenging-proxy
 RewriteCond %{HTTP:X-Csrf-Token} ^$ [NC]
 RewriteRule ^.* - [F,L]

 <Location /challenging-proxy/oauth/authorize>
 # Insert your backend server name/ip here.
 ProxyPass https://openshift.example.com:8443/oauth/authorize
 AuthType Basic
 AuthBasicProvider PAM
 AuthPAMService openshift
 Require valid-user
 </Location>

 <ProxyMatch /oauth/authorize>
 AuthName openshift
 RequestHeader set X-Remote-User %{REMOTE_USER}s
 </ProxyMatch>
</VirtualHost>

RequestHeader unset X-Remote-User

NOTE

Configuring Form-Based Authentication explains how to add the login-proxy
block to support form authentication.

CHAPTER 10. ADVANCED LDAP CONFIGURATION

179

4. Set a boolean to tell SELinux that it is acceptable for Apache to contact the PAM subsystem:

setsebool -P allow_httpd_mod_auth_pam on

5. Start up Apache:

systemctl start httpd.service

10.2.5. Phase 3: OpenShift Enterprise Configuration

This section describes how to set up an OpenShift Enterprise server from scratch in an "all in one"
configuration. Master and Node Configuration provides more information on alternate configurations.

Modify the default configuration to use the new identity provider just created. To do so:

1. Modify the /etc/origin/master/master-config.yaml file.

2. Scan through it and locate the identityProviders section and replace it with:

 identityProviders:
 - name: any_provider_name
 challenge: true
 login: false
 mappingMethod: claim
 provider:
 apiVersion: v1
 kind: RequestHeaderIdentityProvider
 challengeURL: "https://proxy.example.com/challenging-
proxy/oauth/authorize?${query}"
 clientCA: /etc/origin/master/proxy/proxyca.crt
 headers:
 - X-Remote-User

NOTE

Configuring Form-Based Authentication explains how to add the login URL to
support web logins.

Configuring Extended LDAP Attributes explains how to add the email and full-
name attributes. Note that the full-name attributes are only stored to the database
on the first login.

3. Start OpenShift Enterprise with the updated configuration:

openshift start \
 --public-master=https://openshift.example.com:8443 \
 --master-config=/etc/origin/master/master-config.yaml \
 --node-config=/etc/origin/node-node1.example.com/node-
config.yaml

4. Test logins:

oc login https://openshift.example.com:8443

OpenShift Enterprise 3.1 Installation and Configuration

180

It should now be possible to log in with only valid LDAP credentials.

10.3. CONFIGURING FORM-BASED AUTHENTICATION

10.3.1. Overview

This topic builds upon Setting up SSSD for LDAP Failover and describes how to set up form-based
authentication for signing into the OpenShift Enterprise web console.

10.3.2. Prepare a Login Page

The OpenShift Enterprise upstream repositories have a template for forms. Copy that to your
authenticating proxy on proxy.example.com:

curl -o /var/www/html/login.html \
 https://raw.githubusercontent.com/openshift/openshift-
extras/master/misc/form_auth/login.html

Modify this .html file to change the logo icon and "Welcome" content for your environment.

10.3.3. Install Another Apache Module

To intercept form-based authentication, install an Apache module:

 # yum -y install mod_intercept_form_submit

10.3.4. Apache Configuration

1. Modify /etc/httpd/conf.modules.d/55-intercept_form_submit.conf and uncomment the
LoadModule line.

2. Add a new section to your openshift-proxy.conf file inside the <VirtualHost *:443> block.

 <Location /login-proxy/oauth/authorize>
 # Insert your backend server name/ip here.
 ProxyPass https://openshift.example.com:8443/oauth/authorize

 InterceptFormPAMService openshift
 InterceptFormLogin httpd_username
 InterceptFormPassword httpd_password

 RewriteCond %{REQUEST_METHOD} GET
 RewriteRule ^.*$ /login.html [L]
</Location>

This tells Apache to listen for POST requests on the /login-proxy/oauth/authorize and to pass
the user name and password over to the openshift PAM service.

3. Restart the service and move back over to the OpenShift Enterprise configuration.

10.3.5. OpenShift Enterprise Configuration

CHAPTER 10. ADVANCED LDAP CONFIGURATION

181

1

2

1. In the master-config.yaml file, update the identityProviders section:

identityProviders:
- name: any_provider_name
 challenge: true

 login: true 1
 mappingMethod: claim
 provider:
 apiVersion: v1
 kind: RequestHeaderIdentityProvider
 challengeURL: "https://proxy.example.com/challenging-
proxy/oauth/authorize?${query}"
 loginURL: "https://proxy.example.com/login-

proxy/oauth/authorize?${query}" 2
 clientCA: /etc/origin/master/proxy/proxyca.crt
 headers:
 - X-Remote-User

Note that login is set to true, not false.

Newly added line.

2. Restart OpenShift Enterprise with the updated configuration.

NOTE

You should be able to browse to https://openshift.example.com:8443 and use
your LDAP credentials to sign in via the login form.

10.4. CONFIGURING EXTENDED LDAP ATTRIBUTES

10.4.1. Overview

This topic builds upon Setting up SSSD for LDAP Failover and Configuring Form-Based Authentication
and focuses on configuring extended Lightweight Directory Access Protocol (LDAP) attributes.

10.4.2. Prerequisites

SSSD 1.12.0 or later. This is available on Red Hat Enterprise Linux 7.0 and later.

mod_lookup_identity 0.9.4 or later.

The required version is not yet available on any version of Red Hat Enterprise Linux.
However, compatible packages (RPMs) are available from upstream until they arrive in Red
Hat Enterprise Linux.

10.4.3. Configuring SSSD

You need to ask System Security Services Daemon (SSSD) to look up attributes in LDAP that it normally
does not care about for simple system-login use-cases. In the case of OpenShift Enterprise, there is only
one such attribute: email. So, you need to:

OpenShift Enterprise 3.1 Installation and Configuration

182

https://openshift.example.com:8443
https://copr.fedorainfracloud.org/coprs/adelton/identity_demo/

1 2 3

1. Modify the [domain/DOMAINNAME] section of /etc/sssd/sssd.conf on the authenticating proxy
and add this attribute:

[domain/example.com]
...
ldap_user_extra_attrs = mail

2. Tell SSSD that it is acceptable for this attribute to be retrieved by Apache. Add the following two
lines to the [ifp] section of /etc/sssd/sssd.conf:

[ifp]
user_attributes = +mail
allowed_uids = apache, root

3. Restart SSSD:

systemctl restart sssd.service

4. Test this configuration.

10.4.4. Configuring Apache

Now that SSSD is set up and successfully serving extended attributes, configure the web server to ask
for them and to insert them in the correct places.

1. Enable the module to be loaded by Apache. To do so, modify /etc/httpd/conf.modules.d/55-
lookup_identity.conf and uncomment the line:

LoadModule lookup_identity_module modules/mod_lookup_identity.so

2. Set an SELinux boolean so that SElinux allows Apache to connect to SSSD over D-BUS:

setsebool -P httpd_dbus_sssd on

3. Edit /etc/httpd/conf.d/openshift-proxy.conf and add the following lines inside the
<ProxyMatch /oauth/authorize> section:

<ProxyMatch /oauth/authorize>
 AuthName openshift

 LookupOutput Headers 1

 LookupUserAttr mail X-Remote-User-Email 2

 LookupUserGECOS X-Remote-User-Display-Name 3

 RequestHeader set X-Remote-User %{REMOTE_USER}s env=REMOTE_USER
</ProxyMatch>

Added line.

4. Restart Apache to pick up the changes:

systemctl restart httpd.service

CHAPTER 10. ADVANCED LDAP CONFIGURATION

183

1 2 3 4

10.4.5. Configuring OpenShift Enterprise

Tell OpenShift Enterprise where to find these new attributes during login. To do so:

1. Edit the /etc/origin/master/master-config.yaml file and add the following lines to the
identityProviders section:

identityProviders:
 - name: sssd
 challenge: true
 login: true
 mappingMethod: claim
 provider:
 apiVersion: v1
 kind: RequestHeaderIdentityProvider
 challengeURL: "https://proxy.example.com/challenging-
proxy/oauth/authorize?${query}"
 loginURL: "https://proxy.example.com/login-proxy/oauth/authorize?
${query}"
 clientCA:
/home/example/workspace/openshift/configs/openshift.example.com/prox
y/proxyca.crt
 headers:
 - X-Remote-User

 emailHeaders: 1

 - X-Remote-User-Email 2

 nameHeaders: 3

 - X-Remote-User-Display-Name 4

Added line.

2. Launch OpenShift Enterprise with this updated configuration and log in to the web as a new
user.
You should see their full name appear in the upper-right of the screen. You can also verify with
oc get identities -o yaml that both email addresses and full names are available.

10.4.6. Debugging Notes

Currently, OpenShift Enterprise only saves these attributes to the user at the time of the first login and
does not update them again after that. So, while you are testing (and only while testing), run oc delete
users,identities --all to clear the identities out so you can log in again.

OpenShift Enterprise 3.1 Installation and Configuration

184

1

2

3

4

CHAPTER 11. CONFIGURING THE SDN

11.1. OVERVIEW

The OpenShift SDN enables communication between pods across the OpenShift cluster, establishing a
pod network. Two SDN plug-ins are currently available (ovs-subnet and ovs-multitenant), which
provide different methods for configuring the pod network.

For initial advanced installations, the ovs-subnet plug-in is installed and configured by default, though it
can be overridden during installation using the os_sdn_network_plugin_name parameter.

For initial quick installations, the ovs-subnet plug-in is installed and configured by default as well, and
can be reconfigured post-installation.

11.2. CONFIGURING THE POD NETWORK ON MASTERS

Cluster administrators can control pod network settings on masters by modifying parameters in the
networkConfig section of the master configuration file (located at /etc/origin/master/master-
config.yaml by default):

Cluster network for node IP allocation

Number of bits for pod IP allocation within a node

Set to redhat/openshift-ovs-subnet for the ovs-subnet plug-in or redhat/openshift-ovs-
multitenant for the ovs-multitenant plug-in

Service IP allocation for the cluster

IMPORTANT

The serviceNetworkCIDR and hostSubnetLength values cannot be changed after
the cluster is first created, and clusterNetworkCIDR can only be changed to be a
larger network that still contains the original network. For example, given the default value
of 10.1.0.0/16, you could change clusterNetworkCIDR to 10.0.0.0/15 (i.e., 10.0.0.0/16
plus 10.1.0.0/16) but not to 10.2.0.0/16, because that does not overlap the original value.

11.3. CONFIGURING THE POD NETWORK ON NODES

Cluster administrators can control pod network settings on nodes by modifying parameters in the
networkConfig section of the node configuration file (located at /etc/origin/node/node-config.yaml
by default):

networkConfig:

 clusterNetworkCIDR: 10.1.0.0/16 1

 hostSubnetLength: 8 2

 networkPluginName: "redhat/openshift-ovs-subnet" 3

 serviceNetworkCIDR: 172.30.0.0/16 4

CHAPTER 11. CONFIGURING THE SDN

185

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-sdn
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-sdn

1

2

Maximum transmission unit (MTU) for the pod overlay network

Set to redhat/openshift-ovs-subnet for the ovs-subnet plug-in or redhat/openshift-ovs-
multitenant for the ovs-multitenant plug-in

11.4. MIGRATING BETWEEN SDN PLUG-INS

If you are already using one SDN plug-in and want to switch to another:

1. Change the networkPluginName parameter on all masters and nodes in their configuration
files.

2. Restart the atomic-openshift-master service on masters and the atomic-openshift-node
service on nodes.

When switching from the ovs-subnet to the ovs-multitenant plug-in, all the existing projects in the
cluster will be fully isolated (assigned unique VNIDs). Cluster administrators can choose to modify the
project networks using the administrator CLI.

11.5. EXTERNAL ACCESS TO THE CLUSTER NETWORK

If a host that is external to OpenShift requires access to the cluster network, you have two options:

1. Configure the host as an OpenShift node but mark it unschedulable so that the master does not
schedule containers on it.

2. Create a tunnel between your host and a host that is on the cluster network.

Both options are presented as part of a practical use-case in the documentation for configuring routing
from an edge load-balancer to containers within OpenShift SDN.

networkConfig:

 mtu: 1450 1

 networkPluginName: "redhat/openshift-ovs-subnet" 2

OpenShift Enterprise 3.1 Installation and Configuration

186

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#admin-guide-pod-network
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#marking-nodes-as-unschedulable-or-schedulable

1

CHAPTER 12. CONFIGURING FOR AWS

12.1. OVERVIEW

OpenShift can be configured to access an AWS EC2 infrastructure, including using AWS volumes as
persistent storage for application data. After AWS is configured properly, some additional configurations
will need to be completed on the OpenShift hosts.

12.2. CONFIGURING AWS VARIABLES

To set the required AWS variables, create a /etc/aws/aws.conf file with the following contents on all of
your OpenShift hosts, both masters and nodes:

[Global]

Zone = us-east-1c 1

This is the Availability Zone of your AWS Instance and where your EBS Volume resides; this
information is obtained from the AWS Managment Console.

12.3. CONFIGURING MASTERS

Edit or create the master configuration file on all masters (/etc/origin/master/master-config.yaml by
default) and update the contents of the apiServerArguments and controllerArguments sections:

12.4. CONFIGURING NODES

Edit or create the node configuration file on all nodes (/etc/origin/node/node-config.yaml by default)
and update the contents of the kubeletArguments section:

12.5. SETTING KEY VALUE ACCESS PAIRS

kubernetesMasterConfig:
 ...
 apiServerArguments:
 cloud-provider:
 - "aws"
 cloud-config:
 - "/etc/aws/aws.conf"
 controllerArguments:
 cloud-provider:
 - "aws"
 cloud-config:
 - "/etc/aws/aws.conf"

kubeletArguments:
 cloud-provider:
 - "aws"
 cloud-config:
 - "/etc/aws/aws.conf"

CHAPTER 12. CONFIGURING FOR AWS

187

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html

Make sure the following environment variables are set in the /etc/sysconfig/atomic-openshift-master
file on masters and the /etc/sysconfig/atomic-openshift-node file on nodes:

AWS_ACCESS_KEY_ID=<key_ID>
AWS_SECRET_ACCESS_KEY=<secret_key>

NOTE

Access keys are obtained when setting up your AWS IAM user.

12.6. APPLYING CONFIGURATION CHANGES

Start or restart OpenShift services on all master and node hosts to apply your configuration changes:

systemctl restart atomic-openshift-master
systemctl restart atomic-openshift-node

Switching from not using a cloud provider to using a cloud provider produces an error message. Adding
the cloud provider tries to delete the node because the node switches from using the hostname as the
externalID (which would have been the case when no cloud provider was being used) to using the
AWS instance-id (which is what the AWS cloud provider specifies). To resolve this issue:

1. Log in to the CLI as a cluster administrator.

2. Delete the nodes:

$ oc delete node <node_name>

3. On each node host, restart the atomic-openshift-node service.

4. Add back any labels on each node that you previously had.

OpenShift Enterprise 3.1 Installation and Configuration

188

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#updating-labels-on-nodes

CHAPTER 13. CONFIGURING FOR OPENSTACK

13.1. OVERVIEW

When deployed on OpenStack, OpenShift can be configured to access OpenStack infrastructure,
including using OpenStack Cinder volumes as persistent storage for application data.

13.2. CONFIGURING OPENSTACK VARIABLES

To set the required OpenStack variables, create a /etc/cloud.conf file with the following contents on all
of your OpenShift hosts, both masters and nodes:

[Global]
auth-url = <OS_AUTH_URL>
username = <OS_USERNAME>
password = <password>
tenant-id = <OS_TENANT_ID>
region = <OS_REGION_NAME>

[LoadBalancer]
subnet-id = <UUID of the load balancer subnet>

Consult your OpenStack administrators for values of the OS_ variables, which are commonly used in
OpenStack configuration.

13.3. CONFIGURING MASTERS

Edit or create the master configuration file on all masters (/etc/origin/master/master-config.yaml by
default) and update the contents of the apiServerArguments and controllerArguments sections:

13.4. CONFIGURING NODES

Edit or create the node configuration file on all nodes (/etc/origin/node/node-config.yaml by default)
and update the contents of the kubeletArguments and nodeName sections:

kubernetesMasterConfig:
 ...
 apiServerArguments:
 cloud-provider:
 - "openstack"
 cloud-config:
 - "/etc/cloud.conf"
 controllerArguments:
 cloud-provider:
 - "openstack"
 cloud-config:
 - "/etc/cloud.conf"

nodeName:

 <instance_name> 1

kubeletArguments:

CHAPTER 13. CONFIGURING FOR OPENSTACK

189

https://www.openstack.org/

1 Name of the OpenStack instance where the node runs (i.e., name of the virtual machine)

 cloud-provider:
 - "openstack"
 cloud-config:
 - "/etc/cloud.conf"

OpenShift Enterprise 3.1 Installation and Configuration

190

CHAPTER 14. CONFIGURING FOR GCE

14.1. OVERVIEW

OpenShift can be configured to access an GCE infrastructure, including using GCE volumes as
persistent storage for application data. After GCE is configured properly, some additional configurations
will need to be completed on the OpenShift hosts.

14.2. CONFIGURING MASTERS

Edit or create the master configuration file on all masters (/etc/origin/master/master-config.yaml by
default) and update the contents of the apiServerArguments and controllerArguments sections:

14.3. CONFIGURING NODES

Edit or create the node configuration file on all nodes (/etc/origin/node/node-config.yaml by default)
and update the contents of the kubeletArguments section:

Then, start or restart the OpenShift services on the master and all nodes.

kubernetesMasterConfig:
 ...
 apiServerArguments:
 cloud-provider:
 - "gce"
 controllerArguments:
 cloud-provider:
 - "gce"

kubeletArguments:
 cloud-provider:
 - "gce"

CHAPTER 14. CONFIGURING FOR GCE

191

https://cloud.google.com/compute/docs/disks/

CHAPTER 15. CONFIGURING PERSISTENT STORAGE

15.1. OVERVIEW

The Kubernetes persistent volume framework allows you to provision an OpenShift cluster with
persistent storage using networked storage available in your environment. This can be done after
completing the initial OpenShift installation depending on your application needs, giving users a way to
request those resources without having any knowledge of the underlying infrastructure.

These topics show how to configure persistent volumes in OpenShift using the following supported
volume plug-ins:

NFS

GlusterFS

OpenStack Cinder

Ceph RBD

AWS Elastic Block Store (EBS)

GCE Persistent Disk

iSCSI

Fibre Channel

15.2. PERSISTENT STORAGE USING NFS

15.2.1. Overview

OpenShift clusters can be provisioned with persistent storage using NFS. Persistent volumes (PVs) and
persistent volume claims (PVCs) provide a convenient method for sharing a volume across a project.
While the NFS-specific information contained in a PV definition could also be defined directly in a pod
definition, doing so does not create the volume as a distinct cluster resource, making the volume more
susceptible to conflicts.

This topic covers the specifics of using the NFS persistent storage type. Some familiarity with OpenShift
and NFS is beneficial. See the Persistent Storage concept topic for details on the OpenShift persistent
volume (PV) framework in general.

15.2.2. Provisioning

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift.
To provision NFS volumes, a list of NFS servers and export paths are all that is required.

You must first create an object definition for the PV:

Example 15.1. PV Object Definition Using NFS

apiVersion: v1
kind: PersistentVolume
metadata:

OpenShift Enterprise 3.1 Installation and Configuration

192

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-nfs.html
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-storage

1

2

3

4

5

6

7

The name of the volume. This is the PV identity in various oc <command> pod commands.

The amount of storage allocated to this volume.

Though this appears to be related to controlling access to the volume, it is actually used similarly
to labels and used to match a PVC to a PV. Currently, no access rules are enforced based on
the accessModes.

The volume type being used, in this case the nfs plug-in.

The path that is exported by the NFS server.

The host name or IP address of the NFS server.

The reclaim policy for the PV. This defines what happens to a volume when released from its
claim. Valid options are Retain (default) and Recycle. See Reclaiming Resources.

NOTE

Each NFS volume must be mountable by all schedulable nodes in the cluster.

Save the definition to a file, for example nfs-pv.yaml, and create the PV:

$ oc create -f nfs-pv.yaml
persistentvolume "pv0001" created

Verify that the PV was created:

oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS
CLAIM REASON AGE
pv0001 <none> 5368709120 RWO Available
31s

The next step can be to create a PVC, which binds to the new PV:

Example 15.2. PVC Object Definition

 name: pv0001 1
spec:
 capacity:

 storage: 5Gi 2
 accessModes:

 - ReadWriteOnce 3

 nfs: 4

 path: /tmp 5

 server: 172.17.0.2 6

 persistentVolumeReclaimPolicy: Recycle 7

apiVersion: v1
kind: PersistentVolumeClaim

CHAPTER 15. CONFIGURING PERSISTENT STORAGE

193

1

2

As mentioned above for PVs, the accessModes do not enforce security, but rather act as labels
to match a PV to a PVC.

This claim looks for PVs offering 1Gi or greater capacity.

Save the definition to a file, for example nfs-claim.yaml, and create the PVC:

oc create -f nfs-claim.yaml

15.2.3. Enforcing Disk Quotas

You can use disk partitions to enforce disk quotas and size constraints. Each partition can be its own
export. Each export is one PV. OpenShift enforces unique names for PVs, but the uniqueness of the
NFS volume’s server and path is up to the administrator.

Enforcing quotas in this way allows the developer to request persistent storage by a specific amount (for
example, 10Gi) and be matched with a corresponding volume of equal or greater capacity.

15.2.4. NFS Volume Security

This section covers NFS volume security, including matching permissions and SELinux considerations.
The user is expected to understand the basics of POSIX permissions, process UIDs, supplemental
groups, and SELinux.

NOTE

See the full Volume Security topic before implementing NFS volumes.

Developers request NFS storage by referencing, in the volumes section of their pod definition, either a
PVC by name or the NFS volume plug-in directly.

The /etc/exports file on the NFS server contains the accessible NFS directories. The target NFS
directory has POSIX owner and group IDs. The OpenShift NFS plug-in mounts the container’s NFS
directory with the same POSIX ownership and permissions found on the exported NFS directory.
However, the container is not run with its effective UID equal to the owner of the NFS mount, which is the
desired behavior.

As an example, if the target NFS directory appears on the NFS server as:

ls -lZ /opt/nfs -d
drwxrws---. nfsnobody 5555 unconfined_u:object_r:usr_t:s0 /opt/nfs

id nfsnobody

metadata:
 name: nfs-claim1
spec:
 accessModes:

 - ReadWriteOnce 1
 resources:
 requests:

 storage: 1Gi 2

OpenShift Enterprise 3.1 Installation and Configuration

194

1

2

uid=65534(nfsnobody) gid=65534(nfsnobody) groups=65534(nfsnobody)

Then the container must match SELinux labels, and either run with a UID of 65534 (nfsnobody owner)
or with 5555 in its supplemental groups in order to access the directory.

NOTE

The owner ID of 65534 is used as an example. Even though NFS’s root_squash maps
root (0) to nfsnobody (65534), NFS exports can have arbitrary owner IDs. Owner 65534
is not required for NFS exports.

15.2.4.1. Group IDs

The recommended way to handle NFS access (assuming it is not an option to change permissions on
the NFS export) is to use supplemental groups. Supplemental groups in OpenShift are used for shared
storage, of which NFS is an example. In contrast, block storage, such as Ceph RBD or iSCSI, use the
fsGroup SCC strategy and the fsGroup value in the pod’s securityContext.

NOTE

It is generally preferable to use supplemental group IDs to gain access to persistent
storage versus using user IDs. Supplemental groups are covered further in the full
Volume Security topic.

Because the group ID on the example target NFS directory shown above is 5555, the pod can define that
group ID using supplementalGroups under the pod-level securityContext definition. For
example:

spec:
 containers:
 - name:
 ...

 securityContext: 1

 supplementalGroups: [5555] 2

securityContext must be defined at the pod level, not under a specific container.

An array of GIDs defined for the pod. In this case, there is one element in the array; additional GIDs
would be comma-separated.

Assuming there are no custom SCCs that might satisfy the pod’s requirements, the pod likely matches
the restricted SCC. This SCC has the supplementalGroups strategy set to RunAsAny, meaning that
any supplied group ID is accepted without range checking.

As a result, the above pod passes admissions and is launched. However, if group ID range checking is
desired, a custom SCC, as described in pod security and custom SCCs, is the preferred solution. A
custom SCC can be created such that minimum and maximum group IDs are defined, group ID range
checking is enforced, and a group ID of 5555 is allowed.

15.2.4.2. User IDs

CHAPTER 15. CONFIGURING PERSISTENT STORAGE

195

1

2

User IDs can be defined in the container image or in the pod definition. The full Volume Security topic
covers controlling storage access based on user IDs, and should be read prior to setting up NFS
persistent storage.

NOTE

It is generally preferable to use supplemental group IDs to gain access to persistent
storage versus using user IDs.

In the example target NFS directory shown above, the container needs its UID set to 65534 (ignoring
group IDs for the moment), so the following can be added to the pod definition:

Pods contain a securityContext specific to each container (shown here) and a pod-level
securityContext which applies to all containers defined in the pod.

65534 is the nfsnobody user.

Assuming the default project and the restricted SCC, the pod’s requested user ID of 65534 is not
allowed, and therefore the pod fails. The pod fails for the following reasons:

It requests 65534 as its user ID.

All SCCs available to the pod are examined to see which SCC allows a user ID of 65534
(actually, all policies of the SCCs are checked but the focus here is on user ID).

Because all available SCCs use MustRunAsRange for their runAsUser strategy, UID range
checking is required.

65534 is not included in the SCC or project’s user ID range.

It is generally considered a good practice not to modify the predefined SCCs. The preferred way to fix
this situation is to create a custom SCC, as described in the full Volume Security topic. A custom SCC
can be created such that minimum and maximum user IDs are defined, UID range checking is still
enforced, and the UID of 65534 is allowed.

15.2.4.3. SELinux

NOTE

See the full Volume Security topic for information on controlling storage access in
conjunction with using SELinux.

By default, SELinux does not allow writing from a pod to a remote NFS server. The NFS volume mounts
correctly, but is read-only.

To enable writing to NFS volumes with SELinux enforcing on each node, run:

spec:

 containers: 1
 - name:
 ...
 securityContext:

 runAsUser: 65534 2

OpenShift Enterprise 3.1 Installation and Configuration

196

setsebool -P virt_use_nfs 1
setsebool -P virt_sandbox_use_nfs 1

The -P option above makes the bool persistent between reboots.

The virt_use_nfs boolean is defined by the docker-selinux package. If an error is seen indicating that
this bool is not defined, ensure this package has been installed.

15.2.4.4. Export Settings

In order to enable arbitrary container users to read and write the volume, each exported volume on the
NFS server should conform to the following conditions:

Each export must be:

/<example_fs> *(rw,root_squash,no_wdelay)

The no_wdelay option prevents the server from delaying writes, which greatly improves read-
after-write consistency.

The firewall must be configured to allow traffic to the mount point. For NFSv4, the default port is
2049 (nfs). For NFSv3, there are three ports to configure: 2049 (nfs), 20048 (mountd), and 111
(portmapper).

NFSv4

iptables -I INPUT 1 -p tcp --dport 2049 -j ACCEPT

NFSv3

iptables -I INPUT 1 -p tcp --dport 2049 -j ACCEPT
iptables -I INPUT 1 -p tcp --dport 20048 -j ACCEPT
iptables -I INPUT 1 -p tcp --dport 111 -j ACCEPT

The NFS export and directory must be set up so that it is accessible by the target pods. Either
set the export to be owned by the container’s primary UID, or supply the pod group access using
supplementalGroups, as shown in Group IDs above. See the full Volume Security topic for
additional pod security information as well.

15.2.5. Reclaiming Resources

NFS implements the OpenShift Recyclable plug-in interface. Automatic processes handle reclamation
tasks based on policies set on each persistent volume.

By default, PVs are set to Retain. NFS volumes which are set to Recycle are scrubbed (i.e., rm -rf is
run on the volume) after being released from their claim (i.e, after the user’s PersistentVolumeClaim
bound to the volume is deleted). Once recycled, the NFS volume can be bound to a new claim.

Once claim to a PV is released (that is, the PVC is deleted), the PV object should not be re-used.
Instead, a new PV should be created with the same basic volume details as the original.

For example, the administrator creates a PV named nfs1:

CHAPTER 15. CONFIGURING PERSISTENT STORAGE

197

apiVersion: v1
kind: PersistentVolume
metadata:
 name: nfs1
spec:
 capacity:
 storage: 1Mi
 accessModes:
 - ReadWriteMany
 nfs:
 server: 192.168.1.1
 path: "/"

The user creates PVC1, which binds to nfs1. The user then deletes PVC1, releasing claim to nfs1,
which causes nfs1 to be Released. If the administrator wishes to make the same NFS share available,
they should create a new PV with the same NFS server details, but a different PV name:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: nfs2
spec:
 capacity:
 storage: 1Mi
 accessModes:
 - ReadWriteMany
 nfs:
 server: 192.168.1.1
 path: "/"

Deleting the original PV and re-creating it with the same name is discouraged. Attempting to manually
change the status of a PV from Released to Available causes errors and potential data loss.

NOTE

A PV with retention policy of Recycle scrubs (rm -rf) the data and marks it as
Available for claim. The Recycle retention policy is deprecated starting in OpenShift
Enterprise 3.6 and should be avoided. Anyone using recycler should use dynamic
provision and volume deletion instead.

15.2.6. Automation

Clusters can be provisioned with persistent storage using NFS in the following ways:

Enforce storage quotas using disk partitions.

Enforce security by restricting volumes to the project that has a claim to them.

Configure reclamation of discarded resources for each PV.

They are many ways that you can use scripts to automate the above tasks. You can use an example
Ansible playbook to help you get started.

15.2.7. Additional Configuration and Troubleshooting

OpenShift Enterprise 3.1 Installation and Configuration

198

https://github.com/openshift/openshift-ansible/tree/master/roles/kube_nfs_volumes

Depending on what version of NFS is being used and how it is configured, there may be additional
configuration steps needed for proper export and security mapping. The following are some that may
apply:

NFSv4 mount incorrectly shows
all files with ownership of
nobody:nobody

Could be attributed to the ID mapping settings
(/etc/idmapd.conf) on your NFS

See this Red Hat Solution .

Disabling ID mapping on NFSv4
On both the NFS client and server, run:

echo 'Y' >
/sys/module/nfsd/parameters/nfs4_disable
_idmapping

15.3. PERSISTENT STORAGE USING GLUSTERFS

15.3.1. Overview

OpenShift Enterprise clusters can be provisioned with persistent storage using GlusterFS.

Persistent volumes (PVs) and persistent volume claims (PVCs) can share volumes across a single
project. While the GlusterFS-specific information contained in a PV definition could also be defined
directly in a pod definition, doing so does not create the volume as a distinct cluster resource, making the
volume more susceptible to conflicts.

This topic presumes some familiarity with OpenShift Enterprise and GlusterFS. See the Persistent
Storage topic for details on the OpenShift Enterprise PV framework in general.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

15.3.2. Provisioning

To provision GlusterFS volumes the following are required:

An existing storage device in your underlying infrastructure.

A distinct list of servers (IP addresses) in the Gluster cluster, to be defined as endpoints.

A service, to persist the endpoints (optional).

An existing Gluster volume to be referenced in the persistent volume object.

glusterfs-fuse installed on each schedulable OpenShift Enterprise node in your cluster:

yum install glusterfs-fuse

CHAPTER 15. CONFIGURING PERSISTENT STORAGE

199

https://access.redhat.com/solutions/33455
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3/html/Administration_Guide/index.html
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-storage

1

NOTE

OpenShift Enterprise nodes can also host a gluster node (referred to as hyperconverged
storage). However, performance may be less predictable and harder to manage.

15.3.2.1. Creating Gluster Endpoints

An endpoints definition defines the GlusterFS cluster as EndPoints and includes the IP addresses of
your Gluster servers. The port value can be any numeric value within the accepted range of ports.
Optionally, you can create a service that persists the endpoints.

1. Define the following service:

Example 15.3. Gluster Service Definition

This name must be defined in the endpoints definition to match the endpoints to this
service

2. Save the service definition to a file, for example gluster-service.yaml, then create the service:

$ oc create -f gluster-service.yaml

3. Verify that the service was created:

oc get services
NAME CLUSTER_IP EXTERNAL_IP PORT(S)
SELECTOR AGE
glusterfs-cluster 172.30.205.34 <none> 1/TCP
<none> 44s

4. Define the Gluster endpoints:

Example 15.4. Gluster Endpoints Definition

apiVersion: v1
kind: Service
metadata:

 name: glusterfs-cluster 1
spec:
 ports:
 - port: 1

apiVersion: v1
kind: Endpoints
metadata:

 name: glusterfs-cluster 1
subsets:
 - addresses:

 - ip: 192.168.122.221 2
 ports:
 - port: 1
 - addresses:

OpenShift Enterprise 3.1 Installation and Configuration

200

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#services

1

2 3

4

1

2

3

This name must match the service name from step 1.

The ip values must be the actual IP addresses of a Gluster server, not fully-qualified
host names.

The port number is ignored.

5. Save the endpoints definition to a file, for example gluster-endpoints.yaml, then create the
endpoints:

$ oc create -f gluster-endpoints.yaml
endpoints "glusterfs-cluster" created

6. Verify that the endpoints were created:

$ oc get endpoints
NAME ENDPOINTS AGE
docker-registry 10.1.0.3:5000 4h
glusterfs-cluster 192.168.122.221:1,192.168.122.222:1 11s
kubernetes 172.16.35.3:8443 4d

15.3.2.2. Creating the Persistent Volume

1. Next, define the PV in an object definition before creating it in OpenShift Enterprise:

Example 15.5. Persistent Volume Object Definition Using GlusterFS

The name of the volume. This is how it is identified via persistent volume claims or from
pods.

The amount of storage allocated to this volume.

 - ip: 192.168.122.222 3
 ports:

 - port: 1 4

apiVersion: v1
kind: PersistentVolume
metadata:

 name: gluster-default-volume 1
spec:
 capacity:

 storage: 2Gi 2

 accessModes: 3
 - ReadWriteMany

 glusterfs: 4

 endpoints: glusterfs-cluster 5

 path: myVol1 6
 readOnly: false
 persistentVolumeReclaimPolicy: Recycle

CHAPTER 15. CONFIGURING PERSISTENT STORAGE

201

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-storage

4

5

6

1

2

accessModes are used as labels to match a PV and a PVC. They currently do not
define any form of access control.

The volume type being used, in this case the glusterfs plug-in.

The endpoints name that defines the Gluster cluster created in Creating Gluster
Endpoints.

The Gluster volume that will be accessed, as shown in the gluster volume status
command.

2. Save the definition to a file, for example gluster-pv.yaml, and create the persistent volume:

oc create -f gluster-pv.yaml

3. Verify that the persistent volume was created:

oc get pv
NAME LABELS CAPACITY ACCESSMODES
STATUS CLAIM REASON AGE
gluster-default-volume <none> 2147483648 RWX
Available 2s

15.3.2.3. Creating the Persistent Volume Claim

Developers request GlusterFS storage by referencing either a PVC or the Gluster volume plug-in directly
in the volumes section of a pod spec. A PVC exists only in the user’s project and can only be referenced
by pods within that project. Any attempt to access a PV across a project causes the pod to fail.

1. Create a PVC that will bind to the new PV:

Example 15.6. PVC Object Definition

accessModes do not enforce security, but rather act as labels to match a PV to a PVC.

This claim will look for PVs offering 1Gi or greater capacity.

2. Save the definition to a file, for example gluster-claim.yaml, and create the PVC:

oc create -f gluster-claim.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: gluster-claim
spec:
 accessModes:

 - ReadWriteMany 1
 resources:
 requests:

 storage: 1Gi 2

OpenShift Enterprise 3.1 Installation and Configuration

202

NOTE

PVs and PVCs make sharing a volume across a project simpler. The gluster-
specific information contained in the PV definition can also be defined directly in a
pod specification.

15.3.3. Gluster Volume Security

This section covers Gluster volume security, including matching permissions and SELinux
considerations. Understanding the basics of POSIX permissions, process UIDs, supplemental groups,
and SELinux is presumed.

NOTE

See the full Volume Security topic before implementing Gluster volumes.

As an example, assume that the target Gluster volume, HadoopVol is mounted under /mnt/glusterfs/,
with the following POSIX permissions and SELinux labels:

ls -lZ /mnt/glusterfs/
drwxrwx---. yarn hadoop system_u:object_r:fusefs_t:s0 HadoopVol

id yarn
uid=592(yarn) gid=590(hadoop) groups=590(hadoop)

In order to access the HadoopVol volume, containers must match the SELinux label, and run with a UID
of 592 or 590 in their supplemental groups. The OpenShift Enterprise GlusterFS plug-in mounts the
volume in the container with the same POSIX ownership and permissions found on the target gluster
mount, namely the owner will be 592 and group ID will be 590. However, the container is not run with its
effective UID equal to 592, nor with its GID equal to 590, which is the desired behavior. Instead, a
container’s UID and supplemental groups are determined by Security Context Constraints (SCCs) and
the project defaults.

15.3.3.1. Group IDs

Configure Gluster volume access by using supplemental groups, assuming it is not an option to change
permissions on the Gluster mount. Supplemental groups in OpenShift Enterprise are used for shared
storage, such as GlusterFS. In contrast, block storage, such as Ceph RBD or iSCSI, use the fsGroup
SCC strategy and the fsGroup value in the pod’s securityContext.

NOTE

Use supplemental group IDs instead of user IDs to gain access to persistent storage.
Supplemental groups are covered further in the full Volume Security topic.

The group ID on the target Gluster mount example above is 590. Therefore, a pod can define that group
ID using supplementalGroups under the pod-level securityContext definition. For example:

spec:
 containers:
 - name:

CHAPTER 15. CONFIGURING PERSISTENT STORAGE

203

1

2

1

2

 ...

 securityContext: 1

 supplementalGroups: [590] 2

securityContext must be defined at the pod level, not under a specific container.

An array of GIDs defined at the pod level.

Assuming there are no custom SCCs that satisfy the pod’s requirements, the pod matches the restricted
SCC. This SCC has the supplementalGroups strategy set to RunAsAny, meaning that any supplied
group IDs are accepted without range checking.

As a result, the above pod will pass admissions and can be launched. However, if group ID range
checking is desired, use a custom SCC, as described in pod security and custom SCCs. A custom SCC
can be created to define minimum and maximum group IDs, enforce group ID range checking, and allow
a group ID of 590.

15.3.3.2. User IDs

User IDs can be defined in the container image or in the pod definition. The full Volume Security topic
covers controlling storage access based on user IDs, and should be read prior to setting up NFS
persistent storage.

NOTE

Use supplemental group IDs instead of user IDs to gain access to persistent storage.

In the target Gluster mount example above, the container needs a UID set to 592, so the following can
be added to the pod definition:

Pods contain a securtityContext specific to each container and a pod-level
securityContext, which applies to all containers defined in the pod.

The UID defined on the Gluster mount.

With the default project and the restricted SCC, a pod’s requested user ID of 592 will not be allowed,
and the pod will fail. This is because:

The pod requests 592 as its user ID.

All SCCs available to the pod are examined to see which SCC will allow a user ID of 592.

Because all available SCCs use MustRunAsRange for their runAsUser strategy, UID range
checking is required.

spec:

 containers: 1
 - name:
 ...
 securityContext:

 runAsUser: 592 2

OpenShift Enterprise 3.1 Installation and Configuration

204

592 is not included in the SCC or project’s user ID range.

Do not modify the predefined SCCs. Insead, create a custom SCC so that minimum and maximum user
IDs are defined, UID range checking is still enforced, and the UID of 592 will be allowed.

15.3.3.3. SELinux

NOTE

See the full Volume Security topic for information on controlling storage access in
conjunction with using SELinux.

By default, SELinux does not allow writing from a pod to a remote Gluster server.

To enable writing to GlusterFS volumes with SELinux enforcing on each node, run:

$ sudo setsebool -P virt_sandbox_use_fusefs on

NOTE

The virt_sandbox_use_fusefs boolean is defined by the docker-selinux package. If
you get an error saying it is not defined, please ensure that this package is installed.

The -P option makes the bool persistent between reboots.

15.4. PERSISTENT STORAGE USING OPENSTACK CINDER

15.4.1. Overview

You can provision your OpenShift cluster with persistent storage using OpenStack Cinder. Some
familiarity with Kubernetes and OpenStack is assumed.

IMPORTANT

Before creating persistent volumes using Cinder, OpenShift must first be properly
configured for OpenStack.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure. Persistent volumes are not bound to a single project or namespace; they can
be shared across the OpenShift cluster. Persistent volume claims, however, are specific to a project or
namespace and can be requested by users.

For a detailed example, see the guide for WordPress and MySQL using persistent volumes.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

15.4.2. Provisioning

CHAPTER 15. CONFIGURING PERSISTENT STORAGE

205

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-openstack-platform/version-7/red-hat-enterprise-linux-openstack-platform-7-architecture-guide/chapter-1-components#comp-cinder
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#persistent-volume-claims
https://github.com/openshift/origin/tree/master/examples/wordpress

1

2

3

4

5

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift.
After ensuring OpenShift is configured for OpenStack, all that is required for Cinder is a Cinder volume ID
and the PersistentVolume API.

15.4.2.1. Creating the Persistent Volume

You must define your persistent volume in an object definition before creating it in OpenShift:

Example 15.7. Persistent Volume Object Definition Using Cinder

The name of the volume. This will be how it is identified via persistent volume claims or from
pods.

The amount of storage allocated to this volume.

This defines the volume type being used, in this case the cinder plug-in.

File system type to mount.

This is the Cinder volume that will be used.

IMPORTANT

Changing the value of the fstype parameter after the volume has been formatted and
provisioned can result in data loss and pod failure.

Save your definition to a file, for example cinder-pv.yaml, and create the persistent volume:

oc create -f cinder-pv.yaml
persistentvolume "pv0001" created

Verify that the persistent volume was created:

oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON
AGE
pv0001 <none> 5Gi RWO Available
2s

apiVersion: "v1"
kind: "PersistentVolume"
metadata:

 name: "pv0001" 1
spec:
 capacity:

 storage: "5Gi" 2
 accessModes:
 - "ReadWriteOnce"

 cinder: 3

 fsType: "ext3" 4

 volumeID: "f37a03aa-6212-4c62-a805-9ce139fab180" 5

OpenShift Enterprise 3.1 Installation and Configuration

206

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-storage

Users can then request storage using persistent volume claims, which can now utilize your new
persistent volume.

IMPORTANT

Persistent volume claims only exist in the user’s namespace and can only be referenced
by a pod within that same namespace. Any attempt to access a persistent volume from a
different namespace causes the pod to fail.

15.4.2.2. Volume Format

Before OpenShift mounts the volume and passes it to a container, it checks that it contains a file system
as specified by the fsType parameter in the persistent volume definition. If the device is not formatted
with the file system, all data from the device is erased and the device is automatically formatted with the
given file system.

This allows using unformatted Cinder volumes as persistent volumes, because OpenShift Enterprise
formats them before the first use.

15.5. PERSISTENT STORAGE USING CEPH RADOS BLOCK DEVICE
(RBD)

15.5.1. Overview

OpenShift Enterprise clusters can be provisioned with persistent storage using Ceph RBD.

Persistent volumes (PVs) and persistent volume claims (PVCs) can share volumes across a single
project. While the Ceph RBD-specific information contained in a PV definition could also be defined
directly in a pod definition, doing so does not create the volume as a distinct cluster resource, making the
volume more susceptible to conflicts.

This topic presumes some familiarity with OpenShift Enterprise and Ceph RBD. See the Persistent
Storage concept topic for details on the OpenShift Enterprise persistent volume (PV) framework in
general.

NOTE

Project and namespace are used interchangeably throughout this document. See
Projects and Users for details on the relationship.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

15.5.2. Provisioning

To provision Ceph volumes, the following are required:

An existing storage device in your underlying infrastructure.

The Ceph key to be used in an OpenShift Enterprise secret object.

The Ceph image name.

CHAPTER 15. CONFIGURING PERSISTENT STORAGE

207

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#dev-guide-persistent-volumes
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#dev-guide-persistent-volumes
https://access.redhat.com/products/red-hat-ceph-storage
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#namespaces

The file system type on top of the block storage (e.g., ext4).

ceph-common installed on each schedulable OpenShift Enterprise node in your cluster:

yum install ceph-common

15.5.2.1. Creating the Ceph Secret

Define the authorization key in a secret configuration, which is then converted to base64 for use by
OpenShift Enterprise.

NOTE

In order to use Ceph storage to back a persistent volume, the secret must be created in
the same project as the PVC and pod. The secret cannot simply be in the default project.

1. Run ceph auth get-key on a Ceph MON node to display the key value for the
client.admin user:

apiVersion: v1
kind: Secret
metadata:
 name: ceph-secret
data:
 key: QVFBOFF2SlZheUJQRVJBQWgvS2cwT1laQUhPQno3akZwekxxdGc9PQ==

2. Save the secret definition to a file, for example ceph-secret.yaml, then create the secret:

$ oc create -f ceph-secret.yaml

3. Verify that the secret was created:

oc get secret ceph-secret
NAME TYPE DATA AGE
ceph-secret Opaque 1 23d

15.5.2.2. Creating the Persistent Volume

Developers request Ceph RBD storage by referencing either a PVC, or the Gluster volume plug-in
directly in the volumes section of a pod specification. A PVC exists only in the user’s namespace and
can be referenced only by pods within that same namespace. Any attempt to access a PV from a
different namespace causes the pod to fail.

1. Define the PV in an object definition before creating it in OpenShift Enterprise:

Example 15.8. Persistent Volume Object Definition Using Ceph RBD

apiVersion: v1
kind: PersistentVolume
metadata:

 name: ceph-pv 1
spec:
 capacity:

OpenShift Enterprise 3.1 Installation and Configuration

208

1

2

3

4

5

6

7

 storage: 2Gi 2
 accessModes:

 - ReadWriteOnce 3

 rbd: 4

 monitors: 5
 - 192.168.122.133:6789
 pool: rbd
 image: ceph-image
 user: admin
 secretRef:

 name: ceph-secret 6

 fsType: ext4 7
 readOnly: false
 persistentVolumeReclaimPolicy: Recycle

The name of the PV that is referenced in pod definitions or displayed in various oc
volume commands.

The amount of storage allocated to this volume.

accessModes are used as labels to match a PV and a PVC. They currently do not
define any form of access control. All block storage is defined to be single user (non-
shared storage).

The volume type being used, in this case the rbd plug-in.

An array of Ceph monitor IP addresses and ports.

The Ceph secret used to create a secure connection from OpenShift Enterprise to the
Ceph server.

The file system type mounted on the Ceph RBD block device.

IMPORTANT

Changing the value of the fstype parameter after the volume has been
formatted and provisioned can result in data loss and pod failure.

2. Save your definition to a file, for example ceph-pv.yaml, and create the PV:

oc create -f ceph-pv.yaml

3. Verify that the persistent volume was created:

oc get pv
NAME LABELS CAPACITY ACCESSMODES
STATUS CLAIM REASON AGE
ceph-pv <none> 2147483648 RWO
Available 2s

4. Create a PVC that will bind to the new PV:

CHAPTER 15. CONFIGURING PERSISTENT STORAGE

209

1

2

Example 15.9. PVC Object Definition

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: ceph-claim
spec:

 accessModes: 1
 - ReadWriteOnce
 resources:
 requests:

 storage: 2Gi 2

The accessModes do not enforce access right, but instead act as labels to match a PV
to a PVC.

This claim looks for PVs offering 2Gi or greater capacity.

5. Save the definition to a file, for example ceph-claim.yaml, and create the PVC:

oc create -f ceph-claim.yaml

15.5.3. Ceph Volume Security

NOTE

See the full Volume Security topic before implementing Ceph RBD volumes.

A significant difference between shared volumes (NFS and GlusterFS) and block volumes (Ceph RBD,
iSCSI, and most cloud storage), is that the user and group IDs defined in the pod definition or docker
image are applied to the target physical storage. This is referred to as managing ownership of the block
device. For example, if the Ceph RBD mount has its owner set to 123 and its group ID set to 567, and if
the pod defines its runAsUser set to 222 and its fsGroup to be 7777, then the Ceph RBD physical
mount’s ownership will be changed to 222:7777.

NOTE

Even if the user and group IDs are not defined in the pod specification, the resulting pod
may have defaults defined for these IDs based on its matching SCC, or its project. See
the full Volume Security topic which covers storage aspects of SCCs and defaults in
greater detail.

A pod defines the group ownership of a Ceph RBD volume using the fsGroup stanza under the pod’s
securityContext definition:

spec:
 containers:
 - name:

OpenShift Enterprise 3.1 Installation and Configuration

210

1

2

 ...

 securityContext: 1

 fsGroup: 7777 2

The securityContext must be defined at the pod level, not under a specific container.

All containers in the pod will have the same fsGroup ID.

15.6. PERSISTENT STORAGE USING AWS ELASTIC BLOCK STORE

15.6.1. Overview

OpenShift supports AWS Elastic Block Store volumes (EBS). You can provision your OpenShift cluster
with persistent storage using AWS EC2. Some familiarity with Kubernetes and AWS is assumed.

IMPORTANT

Before creating persistent volumes using AWS, OpenShift must first be properly
configured for AWS ElasticBlockStore.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure. Persistent volumes are not bound to a single project or namespace; they can
be shared across the OpenShift cluster. Persistent volume claims, however, are specific to a project or
namespace and can be requested by users.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

15.6.2. Provisioning

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift.
After ensuring OpenShift is configured for AWS Elastic Block Store, all that is required for OpenShift and
AWS is an AWS EBS volume ID and the PersistentVolume API.

15.6.2.1. Creating the Persistent Volume

You must define your persistent volume in an object definition before creating it in OpenShift:

Example 15.10. Persistent Volume Object Definition Using AWS

apiVersion: "v1"
kind: "PersistentVolume"
metadata:

 name: "pv0001" 1
spec:
 capacity:

 storage: "5Gi" 2
 accessModes:
 - "ReadWriteOnce"

CHAPTER 15. CONFIGURING PERSISTENT STORAGE

211

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-storage
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#persistent-volume-claims

1

2

3

4

5

The name of the volume. This will be how it is identified via persistent volume claims or from
pods.

The amount of storage allocated to this volume.

This defines the volume type being used, in this case the awsElasticBlockStore plug-in.

File system type to mount.

This is the AWS volume that will be used.

IMPORTANT

Changing the value of the fstype parameter after the volume has been formatted and
provisioned can result in data loss and pod failure.

Save your definition to a file, for example aws-pv.yaml, and create the persistent volume:

oc create -f aws-pv.yaml
persistentvolume "pv0001" created

Verify that the persistent volume was created:

oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON
AGE
pv0001 <none> 5Gi RWO Available
2s

Users can then request storage using persistent volume claims, which can now utilize your new
persistent volume.

IMPORTANT

Persistent volume claims only exist in the user’s namespace and can only be referenced
by a pod within that same namespace. Any attempt to access a persistent volume from a
different namespace causes the pod to fail.

15.6.2.2. Volume Format

Before OpenShift mounts the volume and passes it to a container, it checks that it contains a file system
as specified by the fsType parameter in the persistent volume definition. If the device is not formatted
with the file system, all data from the device is erased and the device is automatically formatted with the
given file system.

This allows using unformatted AWS volumes as persistent volumes, because OpenShift Enterprise
formats them before the first use.

 awsElasticBlockStore: 3

 fsType: "ext4" 4

 volumeID: "vol-f37a03aa" 5

OpenShift Enterprise 3.1 Installation and Configuration

212

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#dev-guide-persistent-volumes

1

2

15.7. PERSISTENT STORAGE USING GCE PERSISTENT DISK

15.7.1. Overview

OpenShift supports GCE Persistent Disk volumes (gcePD). You can provision your OpenShift cluster
with persistent storage using GCE. Some familiarity with Kubernetes and GCE is assumed.

IMPORTANT

Before creating persistent volumes using GCE, OpenShift must first be properly
configured for GCE Persistent Disk.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure. Persistent volumes are not bound to a single project or namespace; they can
be shared across the OpenShift cluster. Persistent volume claims, however, are specific to a project or
namespace and can be requested by users.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

15.7.2. Provisioning

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift.
After ensuring OpenShift is configured for GCE PersistentDisk, all that is required for Openshift and GCE
is an GCE Persistent Disk volume ID and the PersistentVolume API.

15.7.2.1. Creating the Persistent Volume

You must define your persistent volume in an object definition before creating it in OpenShift:

Example 15.11. Persistent Volume Object Definition Using GCE

The name of the volume. This will be how it is identified via persistent volume claims or from
pods.

The amount of storage allocated to this volume.

apiVersion: "v1"
kind: "PersistentVolume"
metadata:

 name: "pv0001" 1
spec:
 capacity:

 storage: "5Gi" 2
 accessModes:
 - "ReadWriteOnce"

 gcePersistentDisk: 3

 fsType: "ext4" 4

 pdName: "pd-disk-1" 5

CHAPTER 15. CONFIGURING PERSISTENT STORAGE

213

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-storage
https://cloud.google.com/compute/docs/disks/
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#persistent-volume-claims
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-storage

3

4

5

This defines the volume type being used, in this case the gcePersistentDisk plug-in.

File system type to mount.

This is the GCE Persistent Disk volume that will be used.

IMPORTANT

Changing the value of the fstype parameter after the volume has been formatted and
provisioned can result in data loss and pod failure.

Save your definition to a file, for example gce-pv.yaml, and create the persistent volume:

oc create -f gce-pv.yaml
persistentvolume "pv0001" created

Verify that the persistent volume was created:

oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON
AGE
pv0001 <none> 5Gi RWO Available
2s

Users can then request storage using persistent volume claims, which can now utilize your new
persistent volume.

IMPORTANT

Persistent volume claims only exist in the user’s namespace and can only be referenced
by a pod within that same namespace. Any attempt to access a persistent volume from a
different namespace causes the pod to fail.

15.7.2.2. Volume Format

Before OpenShift mounts the volume and passes it to a container, it checks that it contains a file system
as specified by the fsType parameter in the persistent volume definition. If the device is not formatted
with the file system, all data from the device is erased and the device is automatically formatted with the
given file system.

This allows using unformatted GCE volumes as persistent volumes, because OpenShift Enterprise
formats them before the first use.

15.8. PERSISTENT STORAGE USING ISCSI

15.8.1. Overview

You can provision your OpenShift cluster with persistent storage using iSCSI. Some familiarity with
Kubernetes and iSCSI is assumed.

OpenShift Enterprise 3.1 Installation and Configuration

214

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#dev-guide-persistent-volumes
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch25.html

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

15.8.2. Provisioning

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift.
All that is required for iSCSI is iSCSI target portal, valid iSCSI IQN, valid LUN number, and filesystem
type, and the PersistentVolume API.

Example 15.12. Persistent Volume Object Definition

15.8.2.1. Enforcing Disk Quotas

Use LUN partitions to enforce disk quotas and size constraints. Each LUN is one persistent volume.
Kubernetes enforces unique names for persistent volumes.

Enforcing quotas in this way allows the end user to request persistent storage by a specific amount (e.g,
10Gi) and be matched with a corresponding volume of equal or greater capacity.

15.8.2.2. iSCSI Volume Security

Users request storage with a PersistentVolumeClaim. This claim only lives in the user’s namespace
and can only be referenced by a pod within that same namespace. Any attempt to access a persistent
volume across a namespace causes the pod to fail.

Each iSCSI LUN must be accessible by all nodes in the cluster.

15.9. PERSISTENT STORAGE USING FIBRE CHANNEL

15.9.1. Overview

apiVersion: v1
kind: PersistentVolume
metadata:
 name: iscsi-pv
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 iscsi:
 targetPortal: 10.16.154.81
 iqn: iqn.2014-12.example.server:storage.target00
 lun: 0
 fsType: 'ext4'
 readOnly: false

CHAPTER 15. CONFIGURING PERSISTENT STORAGE

215

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#dev-guide-persistent-volumes

You can provision your OpenShift cluster with persistent storage using Fibre Channel. Some familiarity
with Kubernetes and Fibre Channel is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

15.9.2. Provisioning

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift.
All that is required for Fibre Channel persistent storage is the targetWWNs (array of Fibre Channel
target’s World Wide Names), a valid LUN number, and filesystem type, and the PersistentVolume
API. Note, the number of LUNs must correspond to the number of Persistent Volumes that are created.
In the example below, we have LUN as 2, therefore we have created two Persistent Volume definitions.

Example 15.13. Persistent Volumes Object Definition

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 fc:
 targetWWNs: ['500a0981891b8dc5', '500a0981991b8dc5']
 lun: 2
 fsType: ext4

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0002
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadOnlyMany
 fc:
 targetWWNs: ['500a0981891b8dc5', '500a0981991b8dc5']
 lun: 2
 fsType: ext4

OpenShift Enterprise 3.1 Installation and Configuration

216

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch25.html
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#dev-guide-persistent-volumes

IMPORTANT

Changing the value of the fstype parameter after the volume has been formatted and
provisioned can result in data loss and pod failure.

15.9.2.1. Enforcing Disk Quotas

Use LUN partitions to enforce disk quotas and size constraints. Each LUN is one persistent volume.
Kubernetes enforces unique names for persistent volumes.

Enforcing quotas in this way allows the end user to request persistent storage by a specific amount (e.g,
10Gi) and be matched with a corresponding volume of equal or greater capacity.

15.9.2.2. Fibre Channel Volume Security

Users request storage with a PersistentVolumeClaim. This claim only lives in the user’s namespace
and can only be referenced by a pod within that same namespace. Any attempt to access a persistent
volume across a namespace causes the pod to fail.

Each Fibre Channel LUN must be accessible by all nodes in the cluster.

15.10. DYNAMICALLY PROVISIONING PERSISTENT VOLUMES

15.10.1. Overview

You can provision your OpenShift cluster with storage dynamically when running in a cloud environment.
The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure.

Many storage types are available for use as persistent volumes in OpenShift. While all of them can be
statically provisioned by an administrator, some types of storage can be created dynamically using an
API. These types of storage can be provisioned in an OpenShift cluster using the new and experimental
dynamic storage feature.

IMPORTANT

Dynamic provisioning of persistent volumes is currently a Technology Preview feature,
introduced in OpenShift Enterprise 3.1.1. This feature is experimental and expected to
change in the future as it matures and feedback is received from users. New ways to
provision the cluster are planned and the means by which one accesses this feature is
going to change. Backwards compatibility is not guaranteed.

15.10.2. Enabling Provisioner Plug-ins

OpenShift provides the following provisioner plug-ins, which have generic implementations for dynamic
provisioning that use the cluster’s configured cloud provider’s API to create new storage resources:

Storage Type Provisioner Plug-in
Name

Required Cloud
Configuration

Notes

CHAPTER 15. CONFIGURING PERSISTENT STORAGE

217

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-storage

OpenStack Cinder kubernetes.io/ci
nder

Configuring for
OpenStack

AWS Elastic Block Store
(EBS)

kubernetes.io/aw
s-ebs

Configuring for AWS For dynamic
provisioning when using
multiple clusters in
different zones, each
node must be tagged
with
Key=KubernetesCl
uster,Value=clus
terid.

GCE Persistent Disk
(gcePD)

kubernetes.io/gc
e-pd

Configuring for GCE In multi-zone
configurations, PVs must
be created in the same
region/zone as the
master node. Do this by
setting the failure-
domain.beta.kube
rnetes.io/region
and failure-
domain.beta.kube
rnetes.io/zone PV
labels to match the
master node.

Storage Type Provisioner Plug-in
Name

Required Cloud
Configuration

Notes

IMPORTANT

For any chosen provisioner plug-ins, the relevant cloud configuration must also be set up,
per Required Cloud Configuration in the above table.

When your OpenShift cluster is configured for EBS, GCE, or Cinder, the associated provisioner plug-in is
implied and automatically enabled. No additional OpenShift configuration by the cluster administration is
required for dynamic provisioning.

For example, if your OpenShift cluster is configured to run in AWS, the EBS provisioner plug-in is
automatically available for creating dynamically provisioned storage requested by a user.

Future provisioner plug-ins will include the many types of storage a single provider offers. AWS, for
example, has several types of EBS volumes to offer, each with its own performance characteristics;
there is also an NFS-like storage option. More provisioner plug-ins will be implemented for the supported
storage types available in OpenShift.

15.10.3. Requesting Dynamically Provisioned Storage

Users can request dynamically provisioned storage by including a storage class annotation in their
persistent volume claim:

OpenShift Enterprise 3.1 Installation and Configuration

218

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#dev-guide-persistent-volumes

1

Example 15.14. Persistent Volume Claim Requesting Dynamic Storage

The value of the volume.alpha.kubernetes.io/storage-class annotation is not
meaningful at this time. The presence of the annotation, with any arbitrary value, triggers
provisioning using the single implied provisioner plug-in per cloud.

15.10.4. Volume Recycling

Volumes created dynamically by a provisioner have their persistentVolumeReclaimPolicy set to
Delete. When a persistent volume claim is deleted, its backing persistent volume is considered released
of its claim, and that resource can be reclaimed by the cluster. Dynamic provisioning utilizes the
provider’s API to delete the volume from the provider and then removes the persistent volume from the
cluster.

15.11. VOLUME SECURITY

15.11.1. Overview

This topic provides a general guide on pod security as it relates to volume security. For information on
pod-level security in general, see Managing Security Context Constraints (SCC) and the Security
Context Constraint concept topic. For information on the OpenShift persistent volume (PV) framework in
general, see the Persistent Storage concept topic.

Accessing persistent storage requires coordination between the cluster and/or storage administrator and
the end developer. The cluster administrator creates PVs, which abstract the underlying physical
storage. The developer creates pods and, optionally, PVCs, which bind to PVs, based on matching
criteria, such as capacity.

Multiple persistent volume claims (PVCs) within the same project can bind to the same PV. However,
once a PVC binds to a PV, that PV cannot be bound by a claim outside of the first claim’s project. If the
underlying storage needs to be accessed by multiple projects, then each project needs its own PV,
which can point to the same physical storage. In this sense, a bound PV is tied to a project. For a
detailed PV and PVC example, see the guide for WordPress and MySQL using NFS.

For the cluster administrator, granting pods access to PVs involves:

knowing the group ID and/or user ID assigned to the actual storage,

understanding SELinux considerations, and

kind: "PersistentVolumeClaim"
apiVersion: "v1"
metadata:
 name: "claim1"
 annotations:

 volume.alpha.kubernetes.io/storage-class: "foo" 1
spec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: "3Gi"

CHAPTER 15. CONFIGURING PERSISTENT STORAGE

219

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#admin-guide-manage-scc
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#security-context-constraints
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-storage
https://github.com/openshift/origin/tree/master/examples/wordpress

ensuring that these IDs are allowed in the range of legal IDs defined for the project and/or the
SCC that matches the requirements of the pod.

Group IDs, the user ID, and SELinux values are defined in the SecurityContext section in a pod
definition. Group IDs are global to the pod and apply to all containers defined in the pod. User IDs can
also be global, or specific to each container. Four sections control access to volumes:

supplementalGroups

fsGroup

runAsUser

seLinuxOptions

15.11.2. SCCs, Defaults, and Allowed Ranges

SCCs influence whether or not a pod is given a default user ID, fsGroup ID, supplemental group ID, and
SELinux label. They also influence whether or not IDs supplied in the pod definition (or in the image) will
be validated against a range of allowable IDs. If validation is required and fails, then the pod will also fail.

SCCs define strategies, such as runAsUser, supplementalGroups, and fsGroup. These strategies
help decide whether the pod is authorized. Strategy values set to RunAsAny are essentially stating that
the pod can do what it wants regarding that strategy. Authorization is skipped for that strategy and no
OpenShift default is produced based on that strategy. Therefore, IDs and SELinux labels in the resulting
container are based on container defaults instead of OpenShift policies.

For a quick summary of RunAsAny:

Any ID defined in the pod definition (or image) is allowed.

Absence of an ID in the pod definition (and in the image) results in the container assigning an ID,
which is root (0) for Docker.

No SELinux labels are defined, so Docker will assign a unique label.

For these reasons, SCCs with RunAsAny for ID-related strategies should be protected so that ordinary
developers do not have access to the SCC. On the other hand, SCC strategies set to MustRunAs or
MustRunAsRange trigger ID validation (for ID-related strategies), and cause default values to be
supplied by OpenShift to the container when those values are not supplied directly in the pod definition
or image.

SCCs may define the range of allowed IDs (user or groups). If range checking is required (for example,
using MustRunAs) and the allowable range is not defined in the SCC, then the project determines the ID
range. Therefore, projects support ranges of allowable ID. However, unlike SCCs, projects do not define
strategies, such as runAsUser.

Allowable ranges are helpful not only because they define the boundaries for container IDs, but also
because the minimum value in the range becomes the default value for the ID in question. For example,
if the SCC ID strategy value is MustRunAs, the minimum value of an ID range is 100, and the ID is
absent from the pod definition, then 100 is provided as the default for this ID.

As part of pod admission, the SCCs available to a pod are examined (roughly, in priority order followed
by most restrictive) to best match the requests of the pod. Setting a SCC’s strategy type to RunAsAny is
less restrictive, whereas a type of MustRunAs is more restrictive. All of these strategies are evaluated.
To see which SCC was assigned to a pod, use the oc get pod command:

OpenShift Enterprise 3.1 Installation and Configuration

220

1

2

3

oc get pod <pod_name> -o yaml
...
metadata:
 annotations:

 openshift.io/scc: nfs-scc 1

 name: nfs-pod1 2

 namespace: default 3
...

Name of the SCC that the pod used (in this case, a custom SCC).

Name of the pod.

Name of the project. "Namespace" is interchangeable with "project" in OpenShift. See Projects and
Users for details.

It may not be immediately obvious which SCC was matched by a pod, so the command above can be
very useful in understanding the UID, supplemental groups, and SELinux relabeling in a live container.

Any SCC with a strategy set to RunAsAny allows specific values for that strategy to be defined in the
pod definition (and/or image). When this applies to the user ID (runAsUser) it is prudent to restrict
access to the SCC to prevent a container from being able to run as root.

Because pods often match the restricted SCC, it is worth knowing the security this entails. The
restricted SCC has the following characteristics:

User IDs are constrained due to the runAsUser strategy being set to MustRunAsRange. This
forces user ID validation.

Because a range of allowable user IDs is not defined in the SCC (see oc export scc
restricted for more details), the project’s openshift.io/sa.scc.uid-range range will
be used for range checking and for a default ID, if needed.

A default user ID is produced when a user ID is not specified in the pod definition due to
runAsUser being set to MustRunAsRange.

An SELinux label is required (seLinuxContext set to MustRunAs), which uses the project’s
default MCS label.

Arbitrary supplemental group IDs are allowed because no range checking is required. This is a
result of both the supplementalGroups and fsGroup strategies being set to RunAsAny.

Default supplemental groups are not produced for the running pod due to RunAsAny for the two
group strategies above. Therefore, if no groups are defined in the pod definition (or in the
image), the container(s) will have no supplemental groups predefined.

The following shows the default project and a custom SCC (my-custom-scc), which summarizes the
interactions of the SCC and the project:

$ oc get project default -o yaml 1
...
metadata:

 annotations: 2

 openshift.io/sa.scc.mcs: s0:c1,c0 3

CHAPTER 15. CONFIGURING PERSISTENT STORAGE

221

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#namespaces

1

2

3

4

5

6 10

7

8

 openshift.io/sa.scc.supplemental-groups: 1000000000/10000 4

 openshift.io/sa.scc.uid-range: 1000000000/10000 5

$ oc get scc my-custom-scc -o yaml
...
fsGroup:

 type: MustRunAs 6
 ranges:
 - min: 5000
 max: 6000
runAsUser:

 type: MustRunAsRange 7
 uidRangeMin: 65534
 uidRangeMax: 65634

seLinuxContext: 8
 type: MustRunAs

 SELinuxOptions: 9
 user: <selinux-user-name>
 role: ...
 type: ...
 level: ...
supplementalGroups:

 type: MustRunAs 10
 ranges:
 - min: 5000
 max: 6000

default is the name of the project.

Default values are only produced when the corresponding SCC strategy is not RunAsAny.

SELinux default when not defined in the pod definition or in the SCC.

Range of allowable group IDs. ID validation only occurs when the SCC strategy is RunAsAny.
There can be more than one range specified, separated by commas. See below for supported
formats.

Same as <4> but for user IDs. Also, only a single range of user IDs is supported.

MustRunAs enforces group ID range checking and provides the container’s groups default. Based
on this SCC definition, the default is 5000 (the minimum ID value). If the range was omitted from
the SCC, then the default would be 1000000000 (derived from the project). The other supported
type, RunAsAny, does not perform range checking, thus allowing any group ID, and produces no
default groups.

MustRunAsRange enforces user ID range checking and provides a UID default. Based on this
SCC, the default UID is 65534 (the minimum value). If the minimum *and maximum range
were omitted from the SCC, the default user ID would be *1000000000 (derived from the
project). *MustRunAsNonRoot and RunAsAny are *the other supported types. The range of
allowed IDs can be defined to include *any user IDs required for the target storage.

When set to MustRunAs, the container is created with the SCC’s SELinux options, or the MCS
default defined in the project. A type of RunAsAny indicates that SELinux context is not required,
and, if not defined in the pod, is not set in the container.

OpenShift Enterprise 3.1 Installation and Configuration

222

9 The SELinux user name, role name, type, and labels can be defined here.

Two formats are supported for allowed ranges:

1. M/N, where M is the starting ID and N is the count, so the range becomes M through (and
including) M+N-1.

2. M-N, where M is again the starting ID and N is the ending ID. The default group ID is the starting
ID in the first range, which is 1000000000 in this project. If the SCC did not define a minimum
group ID, then the project’s default ID is applied.

15.11.3. Supplemental Groups

NOTE

Read SCCs, Defaults, and Allowed Ranges before working with supplemental groups.

TIP

It is generally preferable to use group IDs (supplemental or fsGroup) to gain access to persistent storage
versus using user IDs.

Supplemental groups are regular Linux groups. When a process runs in Linux, it has a UID, a GID, and
one or more supplemental groups. These attributes can be set for a container’s main process. The
supplementalGroups IDs are typically used for controlling access to shared storage, such as NFS
and GlusterFS, whereas fsGroup is used for controlling access to block storage, such as Ceph RBD and
iSCSI.

The OpenShift shared storage plug-ins mount volumes such that the POSIX permissions on the mount
match the permissions on the target storage. For example, if the target storage’s owner ID is 1234 and
its group ID is 5678, then the mount on the host node and in the container will have those same IDs.
Therefore, the container’s main process must match one or both of those IDs in order to access the
volume.

For example, consider the following NFS export.

On an OpenShift node:

NOTE

showmount requires access to the ports used by rpcbind and rpc.mount on the NFS
server

showmount -e <nfs-server-ip-or-hostname>
Export list for f21-nfs.vm:
/opt/nfs *

On the NFS server:

cat /etc/exports
/opt/nfs *(rw,sync,no_root_squash)
...

CHAPTER 15. CONFIGURING PERSISTENT STORAGE

223

1

2

3

4

5

6

ls -lZ /opt/nfs -d
drwxrws---. nfsnobody 5555 unconfined_u:object_r:usr_t:s0 /opt/nfs

id nfsnobody
uid=65534(nfsnobody) gid=65534(nfsnobody) groups=65534(nfsnobody)

NOTE

In the above, the owner is 65534 (nfsnobody), but the suggestions and examples in this
topic apply to any non-root owner.

The /opt/nfs/ export is accessible by UID 65534 and the group 5555. In general, containers should not
run as root, so in this NFS example, containers which are not run as UID 65534 or are not members the
group 5555 will not be able to access the NFS export.

Often, the SCC matching the pod does not allow a specific user ID to be specified, thus using
supplemental groups is a more flexible way to grant storage access to a pod. For example, to grant NFS
access to the export above, the group 5555 can be defined in the pod definition:

Name of the volume mount. Must match the name in the volumes section.

NFS export path as seen in the container.

Pod global security context. Applies to all containers in the pod. Each container can also define its
securityContext, however group IDs are global to the pod and cannot be defined for individual
containers.

Supplemental groups, which is an array of IDs, is set to 5555. This grants group access to the
export.

Name of the volume. Must match the name in the volumeMounts section.

Actual NFS export path on the NFS server.

All containers in the above pod (assuming the matching SCC or project allows the group 5555) will be

apiVersion: v1
kind: Pod
...
spec:
 containers:
 - name: ...
 volumeMounts:

 - name: nfs 1

 mountPath: /usr/share/... 2

 securityContext: 3

 supplementalGroups: [5555] 4
 volumes:

 - name: nfs 5
 nfs:
 server: <nfs_server_ip_or_host>

 path: /opt/nfs 6

OpenShift Enterprise 3.1 Installation and Configuration

224

members of the group 5555 and have access to the volume, regardless of the container’s user ID.
However, the assumption above is critical. Sometimes, the SCC does not define a range of allowable
group IDs but requires group ID validation (due to supplementalGroups set to MustRunAs; note this
is not the case for the restricted SCC). The project will not likely allow a group ID of 5555, unless the
project has been customized for access to this NFS export. So in this scenario, the above pod will fail
because its group ID of 5555 is not within the SCC’s or the project’s range of allowed group IDs.

Supplemental Groups and Custom SCCs

To remedy the situation in the previous example, a custom SCC can be created such that:

a minimum and max group ID are defined,

ID range checking is enforced, and

the group ID of 5555 is allowed.

It is better to create new SCCs versus modifying a predefined SCC, or changing the range of allowed IDs
in the predefined projects.

The easiest way to create a new SCC is to export an existing SCC and customize the YAML file to meet
the requirements of the new SCC. For example:

1. Use the restricted SCC as a template for the new SCC:

$ oc export scc restricted > new-scc.yaml

2. Edit the new-scc.yaml file to your desired specifications.

3. Create the new SCC:

$ oc create -f new-scc.yaml

NOTE

The oc edit scc command can be used to modify an instantiated SCC.

Here is a fragment of a new SCC named nfs-scc:

$ oc export scc nfs-scc

allowHostDirVolumePlugin: false 1
...
kind: SecurityContextConstraints
metadata:
 ...

 name: nfs-scc 2

priority: 9 3
...
supplementalGroups:

 type: MustRunAs 4
 ranges:

CHAPTER 15. CONFIGURING PERSISTENT STORAGE

225

1

2

3

4

5

 - min: 5000 5
 max: 6000
...

The allow* bools are the same as for the restricted SCC.

Name of the new SCC.

Numerically larger numbers have greater priority. Nil or omitted is the lowest priority. Higher priority
SCCs sort before lower priority SCCs and thus have a better chance of matching a new pod.

supplementalGroups is a strategy and it is set to MustRunAs, which means group ID checking
is required.

Multiple ranges are supported. The allowed group ID range here is 5000 through 5999, with the
default supplemental group being 5000.

When the same pod shown earlier runs against this new SCC (assuming, of course, the pod has access
to the new SCC), it will start because the group 5555, supplied in the pod definition, is now allowed by
the custom SCC.

15.11.4. fsGroup

NOTE

Read SCCs, Defaults, and Allowed Ranges before working with supplemental groups.

TIP

It is generally preferable to use group IDs (supplemental or fsGroup) to gain access to persistent
storage versus using user IDs.

fsGroup defines a pod’s "file system group" ID, which is added to the container’s supplemental groups.
The supplementalGroups ID applies to shared storage, whereas the fsGroup ID is used for block
storage.

Block storage, such as Ceph RBD, iSCSI, and various cloud storage, is typically dedicated to a single
pod which has requested the block storage volume, either directly or using a PVC. Unlike shared
storage, block storage is taken over by a pod, meaning that user and group IDs supplied in the pod
definition (or image) are applied to the actual, physical block device. Typically, block storage is not
shared.

A fsGroup definition is shown below in the following pod definition fragment:

kind: Pod
...
spec:
 containers:
 - name: ...

 securityContext: 1

 fsGroup: 5555 2
 ...

OpenShift Enterprise 3.1 Installation and Configuration

226

1

2

1

2

3

As with supplementalGroups, fsGroup must be defined globally to the pod, not per container.

5555 will become the group ID for the volume’s group permissions and for all new files created in
the volume.

As with supplementalGroups, all containers in the above pod (assuming the matching SCC or project
allows the group 5555) will be members of the group 5555, and will have access to the block volume,
regardless of the container’s user ID. If the pod matches the restricted SCC, whose fsGroup strategy is
RunAsAny, then any fsGroup ID (including 5555) will be accepted. However, if the SCC has its
fsGroup strategy set to MustRunAs, and 5555 is not in the allowable range of fsGroup IDs, then the
pod will fail to run.

fsGroups and Custom SCCs

To remedy the situation in the previous example, a custom SCC can be created such that:

a minimum and maximum group ID are defined,

ID range checking is enforced, and

the group ID of 5555 is allowed.

It is better to create new SCCs versus modifying a predefined SCC, or changing the range of allowed IDs
in the predefined projects.

Consider the following fragment of a new SCC definition:

oc export scc new-scc
...
kind: SecurityContextConstraints
...
fsGroup:

 type: MustRunAs 1

 ranges: 2
 - max: 6000

 min: 5000 3
...

MustRunAs triggers group ID range checking, whereas RunAsAny does not require range
checking.

The range of allowed group IDs is 5000 through, and including, 5999. Multiple ranges are
supported. The allowed group ID range here is 5000 through 5999, with the default fsGroup being
5000.

The minimum value (or the entire range) can be omitted from the SCC, and thus range checking
and generating a default value will defer to the project’s
openshift.io/sa.scc.supplemental-groups range. fsGroup and supplementalGroups
use the same group field in the project; there is not a separate range for fsGroup.

When the pod shown above runs against this new SCC (assuming, of course, the pod has access to the
new SCC), it will start because the group 5555, supplied in the pod definition, is allowed by the custom
SCC. Additionally, the pod will "take over" the block device, so when the block storage is viewed by a
process outside of the pod, it will actually have 5555 as its group ID.

CHAPTER 15. CONFIGURING PERSISTENT STORAGE

227

Currently the list of volumes which support block ownership (block) management include:

AWS Elastic Block Store

OpenStack Cinder

Ceph RBD

GCE Persistent Disk

iSCSI

emptyDir

gitRepo

15.11.5. User IDs

NOTE

Read SCCs, Defaults, and Allowed Ranges before working with supplemental groups.

TIP

It is generally preferable to use group IDs (supplemental or fsGroup) to gain access to persistent storage
versus using user IDs.

User IDs can be defined in the container image or in the pod definition. In the pod definition, a single user
ID can be defined globally to all containers, or specific to individual containers (or both). A user ID is
supplied as shown in the pod definition fragment below:

ID 65534 in the above is container-specific and matches the owner ID on the export. If the NFS export’s
owner ID was 54321, then that number would be used in the pod definition. Specifying
securityContext outside of the container definition makes the ID global to all containers in the pod.

Similar to group IDs, user IDs may be validated according to policies set in the SCC and/or project. If the
SCC’s runAsUser strategy is set to RunAsAny, then any user ID defined in the pod definition or in the
image is allowed.

WARNING

This means even a UID of 0 (root) is allowed.

spec:
 containers:
 - name: ...
 securityContext:
 runAsUser: 65534

OpenShift Enterprise 3.1 Installation and Configuration

228

If, instead, the runAsUser strategy is set to MustRunAsRange, then a supplied user ID will be
validated against a range of allowed IDs. If the pod supplies no user ID, then the default ID is the
minimum value of the range of allowable user IDs.

Returning to the earlier NFS example, the container needs its UID set to 65534, which is shown in the
pod fragment above. Assuming the default project and the restricted SCC, the pod’s requested user ID
of 65534 will not be allowed, and therefore the pod will fail. The pod fails because:

it requests 65534 as its user ID,

all available SCCs use MustRunAsRange for their runAsUser strategy, so UID range checking
is required, and

65534 is not included in the SCC or project’s user ID range.

To address this situation, the recommended path would be to create a new SCC with the appropriate
user ID range. A new project could also be created with the appropriate user ID range defined. There are
other, less-preferred options:

The restricted SCC could be modified to include 65534 within its minimum and maximum user
ID range. This is not recommended as you should avoid modifying the predefined SCCs if
possible.

The restricted SCC could be modified to use RunAsAny for the runAsUser value, thus
eliminating ID range checking. This is strongly not recommended, as containers could run as
root.

The default project’s UID range could be changed to allow a user ID of 65534. This is not
generally advisable because only a single range of user IDs can be specified.

User IDs and Custom SCCs

It is good practice to avoid modifying the predefined SCCs if possible. The preferred approach is to
create a custom SCC that better fits an organization’s security needs, or create a new project that
supports the desired user IDs.

To remedy the situation in the previous example, a custom SCC can be created such that:

a minimum and maximum user ID is defined,

UID range checking is still enforced, and

the UID of 65534 will be allowed.

For example:

$ oc export scc nfs-scc

allowHostDirVolumePlugin: false 1
...
kind: SecurityContextConstraints
metadata:
 ...

 name: nfs-scc 2

priority: 9 3
requiredDropCapabilities: null

CHAPTER 15. CONFIGURING PERSISTENT STORAGE

229

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#create-a-project

1

2

3

4

5

1

2

runAsUser:

 type: MustRunAsRange 4

 uidRangeMax: 65534 5
 uidRangeMin: 65534
...

The allow* bools are the same as for the restricted SCC.

The name of this new SCC is nfs-scc.

Numerically larger numbers have greater priority. Nil or omitted is the lowest priority. Higher priority
SCCs sort before lower priority SCCs, and thus have a better chance of matching a new pod.

The runAsUser strategy is set to MustRunAsRange, which means UID range checking is
enforced.

The UID range is 65534 through 65534 (a range of one value).

Now, with runAsUser: 65534 shown in the previous pod definition fragment, the pod matches the new
nfs-scc and is able to run with a UID of 65534.

15.11.6. SELinux Options

All predefined SCCs, except for the privileged SCC, set the seLinuxContext to MustRunAs. So the
SCCs most likely to match a pod’s requirements will force the pod to use an SELinux policy. The SELinux
policy used by the pod can be defined in the pod itself, in the image, in the SCC, or in the project (which
provides the default).

SELinux labels can be defined in a pod’s securityContext.seLinuxOptions section, and supports
user, role, type, and level:

NOTE

Level and MCS label are used interchangeably in this topic.

...

 securityContext: 1
 seLinuxOptions:

 level: "s0:c123,c456" 2
...

level can be defined globally for the entire pod, or individually for each container.

SELinux level label.

Here are fragments from an SCC and from the default project:

$ oc export scc scc-name
...
seLinuxContext:

 type: MustRunAs 1

OpenShift Enterprise 3.1 Installation and Configuration

230

1

2

oc export project default
...
metadata:
 annotations:

 openshift.io/sa.scc.mcs: s0:c1,c0 2
...

MustRunAs causes volume relabeling.

If the label is not provided in the pod or in the SCC, then the default comes from the project.

All predefined SCCs, except for the privileged SCC, set the seLinuxContext to MustRunAs. This
forces pods to use MCS labels, which can be defined in the pod definition, the image, or provided as a
default.

The SCC determines whether or not to require an SELinux label and can provide a default label. If the
seLinuxContext strategy is set to MustRunAs and the pod (or image) does not define a label,
OpenShift defaults to a label chosen from the SCC itself or from the project.

If seLinuxContext is set to RunAsAny, then no default labels are provided, and the container
determines the final label. In the case of Docker, the container will use a unique MCS label, which will not
likely match the labeling on existing storage mounts. Volumes which support SELinux management will
be relabeled so that they are accessible by the specified label and, depending on how exclusionary the
label is, only that label.

This means two things for unprivileged containers:

The volume will be given a type which is accessible by unprivileged containers. This type is
usually svirt_sandbox_file_t.

If a level is specified, the volume will be labeled with the given MCS label.

For a volume to be accessible by a pod, the pod must have both categories of the volume. So a pod with
s0:c1,c2 will be able to access a volume with s0:c1,c2. A volume with s0 will be accessible by all pods.

If pods fail authorization, or if the storage mount is failing due to permissions errors, then there is a
possibility that SELinux enforcement is interfering. One way to check for this is to run:

ausearch -m avc --start recent

This examines the log file for AVC (Access Vector Cache) errors.

CHAPTER 15. CONFIGURING PERSISTENT STORAGE

231

CHAPTER 16. PERSISTENT STORAGE EXAMPLES

16.1. OVERVIEW

The following sections provide detailed, comprehensive instructions on setting up and configuring
common storage use cases. These examples cover both the administration of persistent volumes and
their security, and how to claim against the volumes as a user of the system.

Sharing an NFS PV Across Two Pods

Ceph-RBD Block Storage Volume

Shared Storage Using a GlusterFS Volume

Backing Docker Registry with GlusterFS Storage

Mounting a PV to Privileged Pods

16.2. SHARING AN NFS PERSISTENT VOLUME (PV) ACROSS TWO
PODS

16.2.1. Overview

The following use case describes how a cluster administrator wanting to leverage shared storage for use
by two separate containers would configure the solution. This example highlights the use of NFS, but
can easily be adapted to other shared storage types, such as GlusterFS. In addition, this example will
show configuration of pod security as it relates to shared storage.

Persistent Storage Using NFS provides an explanation of persistent volumes (PVs), persistent volume
claims (PVCs), and using NFS as persistent storage. This topic shows and end-to-end example of using
an existing NFS cluster and OpenShift Enterprise persistent store, and assumes an existing NFS server
and exports exist in your OpenShift Enterprise infrastructure.

NOTE

All oc commands are executed on the OpenShift Enterprise master host.

16.2.2. Creating the Persistent Volume

Before creating the PV object in OpenShift Enterprise, the persistent volume (PV) file is defined:

Example 16.1. Persistent Volume Object Definition Using NFS

apiVersion: v1
kind: PersistentVolume
metadata:

 name: nfs-pv 1
spec:
 capacity:

 storage: 1Gi 2
 accessModes:

 - ReadWriteMany 3

OpenShift Enterprise 3.1 Installation and Configuration

232

1

2

3

4

5

6

7

The name of the PV, which is referenced in pod definitions or displayed in various oc volume
commands.

The amount of storage allocated to this volume.

accessModes are used as labels to match a PV and a PVC. They currently do not define any
form of access control.

A volume reclaim policy of retain indicates to preserve the volume after the pods.

This defines the volume type being used, in this case the NFS plug-in.

This is the NFS mount path.

This is the NFS server. This can also be specified by IP address.

Save the PV definition to a file, for example nfs-pv.yaml, and create the persistent volume:

oc create -f nfs-pv.yaml
persistentvolume "nfs-pv" created

Verify that the persistent volume was created:

oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM
REASON AGE
nfs-pv <none> 1Gi RWX Available
37s

16.2.3. Creating the Persistent Volume Claim

A persistent volume claim (PVC) specifies the desired access mode and storage capacity. Currently,
based on only these two attributes, a PVC is bound to a single PV. Once a PV is bound to a PVC, that
PV is essentially tied to the PVC’s project and cannot be bound to by another PVC. There is a one-to-
one mapping of PVs and PVCs. However, multiple pods in the same project can use the same PVC. This
is the use case we are highlighting in this example.

Example 16.2. PVC Object Definition

 persistentVolumeReclaimPolicy: Retain 4

 nfs: 5

 path: /opt/nfs 6

 server: nfs.f22 7
 readOnly: false

apiVersion: v1
kind: PersistentVolumeClaim
metadata:

 name: nfs-pvc 1
spec:
 accessModes:

CHAPTER 16. PERSISTENT STORAGE EXAMPLES

233

1

2

3

1

1

2

The claim name is referenced by the pod under its volumes section.

As mentioned above for PVs, the accessModes do not enforce access right, but rather act as
labels to match a PV to a PVC.

This claim will look for PVs offering 1Gi or greater capacity.

Save the PVC definition to a file, for example nfs-pvc.yaml, and create the PVC:

oc create -f nfs-pvc.yaml
persistentvolumeclaim "nfs-pvc" created

Verify that the PVC was created and bound to the expected PV:

oc get pvc
NAME LABELS STATUS VOLUME CAPACITY ACCESSMODES
AGE
nfs-pvc <none> Bound nfs-pv 1Gi RWX
24s

 1

The claim, nfs-pvc, was bound to the nfs-pv PV.

16.2.4. Ensuring NFS Volume Access

Access is necessary to a node in the NFS server. On this node, examine the NFS export mount:

[root@nfs nfs]# ls -lZ /opt/nfs/
total 8
-rw-r--r--. 1 root 100003 system_u:object_r:usr_t:s0 10 Oct 12 23:27
test2b

 1

 2

the owner has ID 0.

the group has ID 100003.

In order to access the NFS mount, the container must match the SELinux label, and either run with a UID
of 0, or with 100003 in its supplemental groups range. Gain access to the volume by matching the NFS
mount’s groups, which will be defined in the pod definition below.

By default, SELinux does not allow writing from a pod to a remote NFS server. To enable writing to NFS
volumes with SELinux enforcing on each node, run:

 - ReadWriteMany 2
 resources:
 requests:

 storage: 1Gi 3

OpenShift Enterprise 3.1 Installation and Configuration

234

1

2

3

4

5

6

setsebool -P virt_sandbox_use_nfs on
setsebool -P virt_use_nfs on

NOTE

The virt_sandbox_use_nfs boolean is defined by the docker-selinux package. If
you get an error saying it is not defined, ensure that this package is installed.

16.2.5. Creating the Pod

A pod definition file or a template file can be used to define a pod. Below is a pod specification that
creates a single container and mounts the NFS volume for read-write access:

Example 16.3. Pod Object Definition

The name of this pod as displayed by oc get pod.

The image run by this pod.

The name of the volume. This name must be the same in both the containers and volumes
sections.

The mount path as seen in the container.

The group ID to be assigned to the container.

The PVC that was created in the previous step.

apiVersion: v1
kind: Pod
metadata:

 name: nginx-nfs-pod 1
 labels:
 name: nginx-nfs-pod
spec:
 containers:
 - name: nginx-nfs-pod

 image: fedora/nginx 2
 ports:
 - name: web
 containerPort: 80
 volumeMounts:

 - name: nfsvol 3

 mountPath: /usr/share/nginx/html 4
 securityContext:

 supplementalGroups: [100003] 5
 privileged: false
 volumes:
 - name: nfsvol
 persistentVolumeClaim:

 claimName: nfs-pvc 6

CHAPTER 16. PERSISTENT STORAGE EXAMPLES

235

Save the pod definition to a file, for example nfs.yaml, and create the pod:

oc create -f nfs.yaml
pod "nginx-nfs-pod" created

Verify that the pod was created:

oc get pods
NAME READY STATUS RESTARTS AGE
nginx-nfs-pod 1/1 Running 0 4s

More details are shown in the oc describe pod command:

[root@ose70 nfs]# oc describe pod nginx-nfs-pod
Name: nginx-nfs-pod

Namespace: default 1
Image(s): fedora/nginx

Node: ose70.rh7/192.168.234.148 2
Start Time: Mon, 21 Mar 2016 09:59:47 -0400
Labels: name=nginx-nfs-pod
Status: Running
Reason:
Message:
IP: 10.1.0.4
Replication Controllers: <none>
Containers:
 nginx-nfs-pod:
 Container ID:
docker://a3292104d6c28d9cf49f440b2967a0fc5583540fc3b062db598557b93893bc6f
 Image: fedora/nginx
 Image ID:
docker://403d268c640894cbd76d84a1de3995d2549a93af51c8e16e89842e4c3ed6a00a
 QoS Tier:
 cpu: BestEffort
 memory: BestEffort
 State: Running
 Started: Mon, 21 Mar 2016 09:59:49 -0400
 Ready: True
 Restart Count: 0
 Environment Variables:
Conditions:
 Type Status
 Ready True
Volumes:
 nfsvol:
 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in
the same namespace)

 ClaimName: nfs-pvc 3
 ReadOnly: false
 default-token-a06zb:
 Type: Secret (a secret that should populate this volume)
 SecretName: default-token-a06zb

Events: 4
 FirstSeen LastSeen Count From SubobjectPath Reason Message

OpenShift Enterprise 3.1 Installation and Configuration

236

1

2

3

4

 ───────── ──────── ───── ──── ───────────── ────── ───────
 4m 4m 1 {scheduler } Scheduled Successfully assigned nginx-nfs-
pod to ose70.rh7
 4m 4m 1 {kubelet ose70.rh7} implicitly required container POD Pulled
Container image "openshift3/ose-pod:v3.1.0.4" already present on machine
 4m 4m 1 {kubelet ose70.rh7} implicitly required container POD Created
Created with docker id 866a37108041
 4m 4m 1 {kubelet ose70.rh7} implicitly required container POD Started
Started with docker id 866a37108041
 4m 4m 1 {kubelet ose70.rh7} spec.containers{nginx-nfs-pod} Pulled
Container image "fedora/nginx" already present on machine
 4m 4m 1 {kubelet ose70.rh7} spec.containers{nginx-nfs-pod} Created
Created with docker id a3292104d6c2
 4m 4m 1 {kubelet ose70.rh7} spec.containers{nginx-nfs-pod} Started
Started with docker id a3292104d6c2

The project (namespace) name.

The IP address of the OpenShift Enterprise node running the pod.

The PVC name used by the pod.

The list of events resulting in the pod being launched and the NFS volume being mounted. The
container will not start correctly if the volume cannot mount.

There is more internal information, including the SCC used to authorize the pod, the pod’s user and group
IDs, the SELinux label, and more, shown in the oc get pod <name> -o yaml command:

[root@ose70 nfs]# oc get pod nginx-nfs-pod -o yaml
apiVersion: v1
kind: Pod
metadata:
 annotations:

 openshift.io/scc: restricted 1
 creationTimestamp: 2016-03-21T13:59:47Z
 labels:
 name: nginx-nfs-pod
 name: nginx-nfs-pod

 namespace: default 2
 resourceVersion: "2814411"
 selflink: /api/v1/namespaces/default/pods/nginx-nfs-pod
 uid: 2c22d2ea-ef6d-11e5-adc7-000c2900f1e3
spec:
 containers:
 - image: fedora/nginx
 imagePullPolicy: IfNotPresent
 name: nginx-nfs-pod
 ports:
 - containerPort: 80
 name: web
 protocol: TCP
 resources: {}
 securityContext:
 privileged: false
 terminationMessagePath: /dev/termination-log

CHAPTER 16. PERSISTENT STORAGE EXAMPLES

237

1

2

3

4

 volumeMounts:
 - mountPath: /usr/share/nginx/html
 name: nfsvol
 - mountPath: /var/run/secrets/kubernetes.io/serviceaccount
 name: default-token-a06zb
 readOnly: true
 dnsPolicy: ClusterFirst
 host: ose70.rh7
 imagePullSecrets:
 - name: default-dockercfg-xvdew
 nodeName: ose70.rh7
 restartPolicy: Always
 securityContext:
 supplementalGroups:

 - 100003 3
 serviceAccount: default
 serviceAccountName: default
 terminationGracePeriodSeconds: 30
 volumes:
 - name: nfsvol
 persistentVolumeClaim:

 claimName: nfs-pvc 4
 - name: default-token-a06zb
 secret:
 secretName: default-token-a06zb
status:
 conditions:
 - lastProbeTime: null
 lastTransitionTime: 2016-03-21T13:59:49Z
 status: "True"
 type: Ready
 containerStatuses:
 - containerID:
docker://a3292104d6c28d9cf49f440b2967a0fc5583540fc3b062db598557b93893bc6f
 image: fedora/nginx
 imageID:
docker://403d268c640894cbd76d84a1de3995d2549a93af51c8e16e89842e4c3ed6a00a
 lastState: {}
 name: nginx-nfs-pod
 ready: true
 restartCount: 0
 state:
 running:
 startedAt: 2016-03-21T13:59:49Z
 hostIP: 192.168.234.148
 phase: Running
 podIP: 10.1.0.4
 startTime: 2016-03-21T13:59:47Z

The SCC used by the pod.

The project (namespace) name.

The supplemental group ID for the pod (all containers).

The PVC name used by the pod.

OpenShift Enterprise 3.1 Installation and Configuration

238

1

2

3

4

5

6

16.2.6. Creating an Additional Pod to Reference the Same PVC

This pod definition, created in the same namespace, uses a different container. However, we can use
the same backing storage by specifying the claim name in the volumes section below:

Example 16.4. Pod Object Definition

The name of this pod as displayed by oc get pod.

The image run by this pod.

The name of the volume. This name must be the same in both the containers and volumes
sections.

The mount path as seen in the container.

The group ID to be assigned to the container.

The PVC that was created earlier and is also being used by a different container.

Save the pod definition to a file, for example nfs-2.yaml, and create the pod:

oc create -f nfs-2.yaml
pod "busybox-nfs-pod" created

Verify that the pod was created:

apiVersion: v1
kind: Pod
metadata:

 name: busybox-nfs-pod 1
 labels:
 name: busybox-nfs-pod
spec:
 containers:
 - name: busybox-nfs-pod

 image: busybox 2
 command: ["sleep", "60000"]
 volumeMounts:

 - name: nfsvol-2 3

 mountPath: /usr/share/busybox 4
 readOnly: false
 securityContext:

 supplementalGroups: [100003] 5
 privileged: false
 volumes:
 - name: nfsvol-2
 persistentVolumeClaim:

 claimName: nfs-pvc 6

CHAPTER 16. PERSISTENT STORAGE EXAMPLES

239

oc get pods
NAME READY STATUS RESTARTS AGE
busybox-nfs-pod 1/1 Running 0 3s

More details are shown in the oc describe pod command:

[root@ose70 nfs]# oc describe pod busybox-nfs-pod
Name: busybox-nfs-pod
Namespace: default
Image(s): busybox
Node: ose70.rh7/192.168.234.148
Start Time: Mon, 21 Mar 2016 10:19:46 -0400
Labels: name=busybox-nfs-pod
Status: Running
Reason:
Message:
IP: 10.1.0.5
Replication Controllers: <none>
Containers:
 busybox-nfs-pod:
 Container ID:
docker://346d432e5a4824ebf5a47fceb4247e0568ecc64eadcc160e9bab481aecfb0594
 Image: busybox
 Image ID:
docker://17583c7dd0dae6244203b8029733bdb7d17fccbb2b5d93e2b24cf48b8bfd06e2
 QoS Tier:
 cpu: BestEffort
 memory: BestEffort
 State: Running
 Started: Mon, 21 Mar 2016 10:19:48 -0400
 Ready: True
 Restart Count: 0
 Environment Variables:
Conditions:
 Type Status
 Ready True
Volumes:
 nfsvol-2:
 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in
the same namespace)
 ClaimName: nfs-pvc
 ReadOnly: false
 default-token-32d2z:
 Type: Secret (a secret that should populate this volume)
 SecretName: default-token-32d2z
Events:
 FirstSeen LastSeen Count From SubobjectPath Reason Message
 ───────── ──────── ───── ──── ───────────── ────── ───────
 4m 4m 1 {scheduler } Scheduled Successfully assigned busybox-
nfs-pod to ose70.rh7
 4m 4m 1 {kubelet ose70.rh7} implicitly required container POD Pulled
Container image "openshift3/ose-pod:v3.1.0.4" already present on machine
 4m 4m 1 {kubelet ose70.rh7} implicitly required container POD Created
Created with docker id 249b7d7519b1
 4m 4m 1 {kubelet ose70.rh7} implicitly required container POD Started

OpenShift Enterprise 3.1 Installation and Configuration

240

Started with docker id 249b7d7519b1
 4m 4m 1 {kubelet ose70.rh7} spec.containers{busybox-nfs-pod} Pulled
Container image "busybox" already present on machine
 4m 4m 1 {kubelet ose70.rh7} spec.containers{busybox-nfs-pod} Created
Created with docker id 346d432e5a48
 4m 4m 1 {kubelet ose70.rh7} spec.containers{busybox-nfs-pod} Started
Started with docker id 346d432e5a48

As you can see, both containers are using the same storage claim that is attached to the same NFS
mount on the back end.

16.3. COMPLETE EXAMPLE USING CEPH RBD

16.3.1. Overview

This topic provides an end-to-end example of using an existing Ceph cluster as an OpenShift Enterprise
persistent store. It is assumed that a working Ceph cluster is already set up. If not, consult the Overview
of Red Hat Ceph Storage.

Persistent Storage Using Ceph Rados Block Device provides an explanation of persistent volumes
(PVs), persistent volume claims (PVCs), and using Ceph RBD as persistent storage.

NOTE

All oc … commands are executed on the OpenShift Enterprise master host.

16.3.2. Installing the ceph-common Package

The ceph-common library must be installed on all schedulable OpenShift Enterprise nodes:

NOTE

The OpenShift Enterprise all-in-one host is not often used to run pod workloads and, thus,
is not included as a schedulable node.

yum install -y ceph-common

16.3.3. Creating the Ceph Secret

The ceph auth get-key command is run on a Ceph MON node to display the key value for the
client.admin user:

Example 16.5. Ceph Secret Definition

apiVersion: v1
kind: Secret
metadata:
 name: ceph-secret
data:

 key: QVFBOFF2SlZheUJQRVJBQWgvS2cwT1laQUhPQno3akZwekxxdGc9PQ== 1

CHAPTER 16. PERSISTENT STORAGE EXAMPLES

241

https://access.redhat.com/products/red-hat-ceph-storage

1

1

2

3

4

This base64 key is generated on one of the Ceph MON nodes using the ceph auth get-key
client.admin | base64 command, then copying the output and pasting it as the secret
key’s value.

Save the secret definition to a file, for example ceph-secret.yaml, then create the secret:

$ oc create -f ceph-secret.yaml
secret "ceph-secret" created

Verify that the secret was created:

oc get secret ceph-secret
NAME TYPE DATA AGE
ceph-secret Opaque 1 23d

16.3.4. Creating the Persistent Volume

Next, before creating the PV object in OpenShift Enterprise, define the persistent volume file:

Example 16.6. Persistent Volume Object Definition Using Ceph RBD

The name of the PV, which is referenced in pod definitions or displayed in various oc volume
commands.

The amount of storage allocated to this volume.

accessModes are used as labels to match a PV and a PVC. They currently do not define any
form of access control. All block storage is defined to be single user (non-shared storage).

This defines the volume type being used. In this case, the rbd plug-in is defined.

apiVersion: v1
kind: PersistentVolume
metadata:

 name: ceph-pv 1
spec:
 capacity:

 storage: 2Gi 2
 accessModes:

 - ReadWriteOnce 3

 rbd: 4

 monitors: 5
 - 192.168.122.133:6789
 pool: rbd
 image: ceph-image
 user: admin
 secretRef:

 name: ceph-secret 6

 fsType: ext4 7
 readOnly: false
 persistentVolumeReclaimPolicy: Recycle

OpenShift Enterprise 3.1 Installation and Configuration

242

5

6

7

1

2

This is an array of Ceph monitor IP addresses and ports.

This is the Ceph secret, defined above. It is used to create a secure connection from OpenShift
Enterprise to the Ceph server.

This is the file system type mounted on the Ceph RBD block device.

Save the PV definition to a file, for example ceph-pv.yaml, and create the persistent volume:

oc create -f ceph-pv.yaml
persistentvolume "ceph-pv" created

Verify that the persistent volume was created:

oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS
CLAIM REASON AGE
ceph-pv <none> 2147483648 RWO Available
2s

16.3.5. Creating the Persistent Volume Claim

A persistent volume claim (PVC) specifies the desired access mode and storage capacity. Currently,
based on only these two attributes, a PVC is bound to a single PV. Once a PV is bound to a PVC, that
PV is essentially tied to the PVC’s project and cannot be bound to by another PVC. There is a one-to-
one mapping of PVs and PVCs. However, multiple pods in the same project can use the same PVC.

Example 16.7. PVC Object Definition

As mentioned above for PVs, the accessModes do not enforce access right, but rather act as
labels to match a PV to a PVC.

This claim will look for PVs offering 2Gi or greater capacity.

Save the PVC definition to a file, for example ceph-claim.yaml, and create the PVC:

oc create -f ceph-claim.yaml
persistentvolumeclaim "ceph-claim" created

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: ceph-claim
spec:

 accessModes: 1
 - ReadWriteOnce
 resources:
 requests:

 storage: 2Gi 2

CHAPTER 16. PERSISTENT STORAGE EXAMPLES

243

1

1

2

3 5

4

6

#and verify the PVC was created and bound to the expected PV:
oc get pvc
NAME LABELS STATUS VOLUME CAPACITY ACCESSMODES AGE
ceph-claim <none> Bound ceph-pv 1Gi RWX 21s

 1

the claim was bound to the ceph-pv PV.

16.3.6. Creating the Pod

A pod definition file or a template file can be used to define a pod. Below is a pod specification that
creates a single container and mounts the Ceph RBD volume for read-write access:

Example 16.8. Pod Object Definition

The name of this pod as displayed by oc get pod.

The image run by this pod. In this case, we are telling busybox to sleep.

The name of the volume. This name must be the same in both the containers and volumes
sections.

The mount path as seen in the container.

The PVC that is bound to the Ceph RBD cluster.

Save the pod definition to a file, for example ceph-pod1.yaml, and create the pod:

oc create -f ceph-pod1.yaml
pod "ceph-pod1" created

#verify pod was created

apiVersion: v1
kind: Pod
metadata:

 name: ceph-pod1 1
spec:
 containers:
 - name: ceph-busybox

 image: busybox 2
 command: ["sleep", "60000"]
 volumeMounts:

 - name: ceph-vol1 3

 mountPath: /usr/share/busybox 4
 readOnly: false
 volumes:

 - name: ceph-vol1 5
 persistentVolumeClaim:

 claimName: ceph-claim 6

OpenShift Enterprise 3.1 Installation and Configuration

244

1

1

2

oc get pod
NAME READY STATUS RESTARTS AGE
ceph-pod1 1/1 Running 0 2m

 1

After a minute or so, the pod will be in the Running state.

16.3.7. Defining Group and Owner IDs (Optional)

When using block storage, such as Ceph RBD, the physical block storage is managed by the pod. The
group ID defined in the pod becomes the group ID of both the Ceph RBD mount inside the container,
and the group ID of the actual storage itself. Thus, it is usually unnecessary to define a group ID in the
pod specifiation. However, if a group ID is desired, it can be defined using fsGroup, as shown in the
following pod definition fragment:

Example 16.9. Group ID Pod Definition

securityContext must be defined at the pod level, not under a specific container.

All containers in the pod will have the same fsGroup ID.

16.4. COMPLETE EXAMPLE USING GLUSTERFS

16.4.1. Overview

This topic provides an end-to-end example of how to use an existing Gluster cluster as an OpenShift
Enterprise persistent store. It is assumed that a working Gluster cluster is already set up. If not, consult
the Red Hat Gluster Storage Administration Guide.

Persistent Storage Using GlusterFS provides an explanation of persistent volumes (PVs), persistent
volume claims (PVCs), and using GlusterFS as persistent storage.

NOTE

All oc … commands are executed on the OpenShift Enterprise master host.

16.4.2. Installing the glusterfs-fuse Package

The glusterfs-fuse library must be installed on all schedulable OpenShift Enterprise nodes:

...
spec:
 containers:
 - name:
 ...

 securityContext: 1

 fsGroup: 7777 2
...

CHAPTER 16. PERSISTENT STORAGE EXAMPLES

245

https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3/html/Administration_Guide/index.html

1

2

3

yum install -y glusterfs-fuse

NOTE

The OpenShift Enterprise all-in-one host is often not used to run pod workloads and, thus,
is not included as a schedulable node.

16.4.3. Creating the Gluster Endpoints

The named endpoints define each node in the Gluster-trusted storage pool:

Example 16.10. GlusterFS Endpoint Definition

The name of the endpoints is used in the PV definition below.

An array of IP addresses for each node in the Gluster pool. Currently, host names are not
supported.

The port numbers are ignored, but must be legal port numbers. The value 1 is commonly used.

Save the endpoints definition to a file, for example gluster-endpoints.yaml, then create the endpoints
object:

oc create -f gluster-endpoints.yaml
endpoints "gluster-endpoints" created

Verify that the endpoints were created:

oc get endpoints gluster-endpoints
NAME ENDPOINTS AGE
gluster-endpoints 192.168.122.21:1,192.168.122.22:1 1m

16.4.4. Creating the Persistent Volume

apiVersion: v1
kind: Endpoints
metadata:

 name: gluster-endpoints 1
subsets:

- addresses: 2
 - ip: 192.168.122.21

 ports: 3
 - port: 1
 protocol: TCP
- addresses:
 - ip: 192.168.122.22
 ports:
 - port: 1
 protocol: TCP

OpenShift Enterprise 3.1 Installation and Configuration

246

1

2

3

4

5

6

7

Next, before creating the PV object, define the persistent volume in OpenShift Enterprise:

Example 16.11. Persistent Volume Object Definition Using GlusterFS

The name of the PV, which is referenced in pod definitions or displayed in various oc volume
commands.

The amount of storage allocated to this volume.

accessModes are used as labels to match a PV and a PVC. They currently do not define any
form of access control.

This defines the volume type being used. In this case, the glusterfs plug-in is defined.

This references the endpoints named above.

This is the Gluster volume name, preceded by /.

A volume reclaim policy of retain indicates that the volume will be preserved after the pods
accessing it terminate.

Save the PV definition to a file, for example gluster-pv.yaml, and create the persistent volume:

oc create -f gluster-pv.yaml
persistentvolume "gluster-pv" created

Verify that the persistent volume was created:

oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM
REASON AGE
gluster-pv <none> 1Gi RWX Available
37s

16.4.5. Creating the Persistent Volume Claim

apiVersion: v1
kind: PersistentVolume
metadata:

 name: gluster-pv 1
spec:
 capacity:

 storage: 1Gi 2
 accessModes:

 - ReadWriteMany 3

 glusterfs: 4

 endpoints: gluster-endpoints 5

 path: /HadoopVol 6
 readOnly: false

 persistentVolumeReclaimPolicy: Retain 7

CHAPTER 16. PERSISTENT STORAGE EXAMPLES

247

1

2

3

1

A persistent volume claim (PVC) specifies the desired access mode and storage capacity. Currently,
based on only these two attributes, a PVC is bound to a single PV. Once a PV is bound to a PVC, that
PV is essentially tied to the PVC’s project and cannot be bound to by another PVC. There is a one-to-
one mapping of PVs and PVCs. However, multiple pods in the same project can use the same PVC.

Example 16.12. PVC Object Definition

The claim name is referenced by the pod under its volumes section.

As mentioned above for PVs, the accessModes do not enforce access rights, but rather act as
labels to match a PV to a PVC.

This claim will look for PVs offering 1Gi or greater capacity.

Save the PVC definition to a file, for example gluster-claim.yaml, and create the PVC:

oc create -f gluster-claim.yaml
persistentvolumeclaim "gluster-claim" created

Verify the PVC was created and bound to the expected PV:

oc get pvc
NAME LABELS STATUS VOLUME CAPACITY ACCESSMODES
AGE
gluster-claim <none> Bound gluster-pv 1Gi RWX
24s

 1

The claim was bound to the gluster-pv PV.

16.4.6. Defining GlusterFS Volume Access

Access is necessary to a node in the Gluster-trusted storage pool. On this node, examine the glusterfs-
fuse mount:

ls -lZ /mnt/glusterfs/
drwxrwx---. yarn hadoop system_u:object_r:fusefs_t:s0 HadoopVol

id yarn

apiVersion: v1
kind: PersistentVolumeClaim
metadata:

 name: gluster-claim 1
spec:
 accessModes:

 - ReadWriteMany 2
 resources:
 requests:

 storage: 1Gi 3

OpenShift Enterprise 3.1 Installation and Configuration

248

1

2 3

uid=592(yarn) gid=590(hadoop) groups=590(hadoop)

 1

 2

 3

The owner has ID 592.

The group has ID 590.

In order to access the HadoopVol volume, the container must match the SELinux label, and either run
with a UID of 592, or with 590 in its supplemental groups. It is recommended to gain access to the
volume by matching the Gluster mount’s groups, which is defined in the pod definition below.

By default, SELinux does not allow writing from a pod to a remote Gluster server. To enable writing to
GlusterFS volumes with SELinux enforcing on each node, run:

setsebool -P virt_sandbox_use_fusefs on

NOTE

The virt_sandbox_use_fusefs boolean is defined by the docker-selinux package. If
you get an error saying it is not defined, ensure that this package is installed.

16.4.7. Creating the Pod

A pod definition file or a template file can be used to define a pod. Below is a pod specification that
creates a single container and mounts the Gluster volume for read-write access:

Example 16.13. Pod Object Definition

apiVersion: v1
kind: Pod
metadata:
 name: gluster-pod1
 labels:

 name: gluster-pod1 1
spec:
 containers:
 - name: gluster-pod1

 image: busybox 2
 command: ["sleep", "60000"]
 volumeMounts:

 - name: gluster-vol1 3

 mountPath: /usr/share/busybox 4
 readOnly: false
 securityContext:

 supplementalGroups: [590] 5
 privileged: false
 volumes:

 - name: gluster-vol1 6
 persistentVolumeClaim:

 claimName: gluster-claim 7

CHAPTER 16. PERSISTENT STORAGE EXAMPLES

249

1

2

3 6

4

5

7

1

The name of this pod as displayed by oc get pod.

The image run by this pod. In this case, we are telling busybox to sleep.

The name of the volume. This name must be the same in both the containers and volumes
sections.

The mount path as seen in the container.

The group ID to be assigned to the container.

The PVC that is bound to the Gluster cluster.

Save the pod definition to a file, for example gluster-pod1.yaml, and create the pod:

oc create -f gluster-pod1.yaml
pod "gluster-pod1" created

Verify the pod was created:

oc get pod
NAME READY STATUS RESTARTS AGE
gluster-pod1 1/1 Running 0 31s

 1

After a minute or so, the pod will be in the Running state.

More details are shown in the oc describe pod command:

oc describe pod gluster-pod1
Name: gluster-pod1

Namespace: default 1
Image(s): busybox
Node: rhel7.2-dev/192.168.122.177
Start Time: Tue, 22 Mar 2016 10:55:57 -0700
Labels: name=gluster-pod1
Status: Running
Reason:
Message:

IP: 10.1.0.2 2
Replication Controllers: <none>
Containers:
 gluster-pod1:
 Container ID:
docker://acc0c80c28a5cd64b6e3f2848052ef30a21ee850d27ef5fe959d11da4e5a3f4f
 Image: busybox
 Image ID:
docker://964092b7f3e54185d3f425880be0b022bfc9a706701390e0ceab527c84dea3e3
 QoS Tier:
 cpu: BestEffort
 memory: BestEffort

OpenShift Enterprise 3.1 Installation and Configuration

250

1

2

3

4

 State: Running
 Started: Tue, 22 Mar 2016 10:56:00 -0700
 Ready: True
 Restart Count: 0
 Environment Variables:
Conditions:
 Type Status
 Ready True
Volumes:
 gluster-vol1:
 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in
the same namespace)

 ClaimName: gluster-claim 3
 ReadOnly: false
 default-token-rbi9o:
 Type: Secret (a secret that should populate this volume)
 SecretName: default-token-rbi9o

Events: 4
 FirstSeen LastSeen Count From SubobjectPath Reason Message
 ───────── ──────── ───── ──── ───────────── ────── ───────
 2m 2m 1 {scheduler } Scheduled Successfully assigned gluster-pod1
to rhel7.2-dev
 2m 2m 1 {kubelet rhel7.2-dev} implicitly required container POD Pulled
Container image "openshift3/ose-pod:v3.1.1.6" already present on machine
 2m 2m 1 {kubelet rhel7.2-dev} implicitly required container POD
Created Created with docker id d5c66b4f3aaa
 2m 2m 1 {kubelet rhel7.2-dev} implicitly required container POD
Started Started with docker id d5c66b4f3aaa
 2m 2m 1 {kubelet rhel7.2-dev} spec.containers{gluster-pod1} Pulled
Container image "busybox" already present on machine
 2m 2m 1 {kubelet rhel7.2-dev} spec.containers{gluster-pod1} Created
Created with docker id acc0c80c28a5
 2m 2m 1 {kubelet rhel7.2-dev} spec.containers{gluster-pod1} Started
Started with docker id acc0c80c28a5

The project (namespace) name.

The IP address of the OpenShift Enterprise node running the pod.

The PVC name used by the pod.

The list of events resulting in the pod being launched and the Gluster volume being mounted.

There is more internal information, including the SCC used to authorize the pod, the pod’s user and group
IDs, the SELinux label, and more shown in the oc get pod <name> -o yaml command:

oc get pod gluster-pod1 -o yaml
apiVersion: v1
kind: Pod
metadata:
 annotations:

 openshift.io/scc: restricted 1
 creationTimestamp: 2016-03-22T17:55:57Z
 labels:

CHAPTER 16. PERSISTENT STORAGE EXAMPLES

251

 name: gluster-pod1
 name: gluster-pod1

 namespace: default 2
 resourceVersion: "511908"
 selflink: /api/v1/namespaces/default/pods/gluster-pod1
 uid: 545068a3-f057-11e5-a8e5-5254008f071b
spec:
 containers:
 - command:
 - sleep
 - "60000"
 image: busybox
 imagePullPolicy: IfNotPresent
 name: gluster-pod1
 resources: {}
 securityContext:
 privileged: false

 runAsUser: 1000000000 3
 seLinuxOptions:

 level: s0:c1,c0 4
 terminationMessagePath: /dev/termination-log
 volumeMounts:
 - mountPath: /usr/share/busybox
 name: gluster-vol1
 - mountPath: /var/run/secrets/kubernetes.io/serviceaccount
 name: default-token-rbi9o
 readOnly: true
 dnsPolicy: ClusterFirst
 host: rhel7.2-dev
 imagePullSecrets:
 - name: default-dockercfg-2g6go
 nodeName: rhel7.2-dev
 restartPolicy: Always
 securityContext:
 seLinuxOptions:

 level: s0:c1,c0 5
 supplementalGroups:

 - 590 6
 serviceAccount: default
 serviceAccountName: default
 terminationGracePeriodSeconds: 30
 volumes:
 - name: gluster-vol1
 persistentVolumeClaim:

 claimName: gluster-claim 7
 - name: default-token-rbi9o
 secret:
 secretName: default-token-rbi9o
status:
 conditions:
 - lastProbeTime: null
 lastTransitionTime: 2016-03-22T17:56:00Z
 status: "True"
 type: Ready
 containerStatuses:
 - containerID:

OpenShift Enterprise 3.1 Installation and Configuration

252

1

2

3

4 5

6

7

docker://acc0c80c28a5cd64b6e3f2848052ef30a21ee850d27ef5fe959d11da4e5a3f4f
 image: busybox
 imageID:
docker://964092b7f3e54185d3f425880be0b022bfc9a706701390e0ceab527c84dea3e3
 lastState: {}
 name: gluster-pod1
 ready: true
 restartCount: 0
 state:
 running:
 startedAt: 2016-03-22T17:56:00Z
 hostIP: 192.168.122.177
 phase: Running
 podIP: 10.1.0.2
 startTime: 2016-03-22T17:55:57Z

The SCC used by the pod.

The project (namespace) name.

The UID of the busybox container.

The SELinux label for the container, and the default SELinux label for the entire pod, which happen
to be the same here.

The supplemental group ID for the pod (all containers).

The PVC name used by the pod.

16.5. BACKING DOCKER REGISTRY WITH GLUSTERFS STORAGE

16.5.1. Overview

This topic reviews how to attach a GlusterFS persistent volume to the Docker Registry.

It is assumed that the Docker registry service has already been started and the Gluster volume has been
created.

16.5.2. Prerequisites

The docker-registry was deployed without configuring storage.

A Gluster volume exists and glusterfs-fuse is installed on schedulable nodes.

Definitions written for GlusterFS endpoints and service, persistent volume (PV), and persistent
volume claim (PVC).

For this guide, these will be:

gluster-endpoints-service.yaml

gluster-endpoints.yaml

gluster-pv.yaml

CHAPTER 16. PERSISTENT STORAGE EXAMPLES

253

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#persistent-volume-claims

gluster-pvc.yaml

A user with the cluster-admin role binding.

For this guide, that user is admin.

NOTE

All oc commands are executed on the master node as the admin user.

16.5.3. Create the Gluster Persistent Volume

First, make the Gluster volume available to the registry.

$ oc create -f gluster-endpoints-service.yaml
$ oc create -f gluster-endpoints.yaml
$ oc create -f gluster-pv.yaml
$ oc create -f gluster-pvc.yaml

Check to make sure the PV and PVC were created and bound successfully. The expected output should
resemble the following. Note that the PVC status is Bound, indicating that it has bound to the PV.

$ oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM
REASON AGE
gluster-pv <none> 1Gi RWX Available
37s
$ oc get pvc
NAME LABELS STATUS VOLUME CAPACITY ACCESSMODES
AGE
gluster-claim <none> Bound gluster-pv 1Gi RWX
24s

NOTE

If either the PVC or PV failed to create or the PVC failed to bind, refer back to the
GlusterFS Persistent Storage guide. Do not proceed until they initialize and the PVC
status is Bound.

16.5.4. Attach the PVC to the Docker Registry

Before moving forward, ensure that the docker-registry service is running.

$ oc get svc
NAME CLUSTER_IP EXTERNAL_IP PORT(S)
SELECTOR AGE
docker-registry 172.30.167.194 <none> 5000/TCP
docker-registry=default 18m

NOTE

If either the docker-registry service or its associated pod is not running, refer back to the
docker-registry setup instructions for troubleshooting before continuing.

OpenShift Enterprise 3.1 Installation and Configuration

254

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#managing-role-bindings

1

2

Then, attach the PVC:

$ oc volume deploymentconfigs/docker-registry --add --name=v1 -t pvc \
 --claim-name=gluster-claim --overwrite

Deploying a Docker Registry provides more information on using the Docker registry.

16.5.5. Known Issues

16.5.5.1. Pod Cannot Resolve the Volume Host

In non-production cases where the dnsmasq server is located on the same node as the OpenShift
Enterprise master service, pods might not resolve to the host machines when mounting the volume,
causing errors in the docker-registry-1-deploy pod. This can happen when dnsmasq.service fails to
start because of a collision with OpenShift DNS on port 53. To run the DNS server on the master host,
some configurations needs to be changed.

In /etc/dnsmasq.conf, add:

Reverse DNS record for master
host-record=master.example.com,<master-IP>
Wildcard DNS for OpenShift Applications - Points to Router
address=/apps.example.com/<master-IP>
Forward .local queries to SkyDNS
server=/local/127.0.0.1#8053
Forward reverse queries for service network to SkyDNS.
This is for default OpenShift SDN - change as needed.
server=/17.30.172.in-addr.arpa/127.0.0.1#8053

With these settings, dnsmasq will pull from the /etc/hosts file on the master node.

Add the appropriate host names and IPs for all necessary hosts.

In master-config.yaml, change bindAddress to:

dnsConfig:
 bindAddress: 127.0.0.1:8053

When pods are created, they receive a copy of /etc/resolv.conf, which typically contains only the master
DNS server so they can resolve external DNS requests. To enable internal DNS resolution, insert the
dnsmasq server at the top of the server list. This way, dnsmasq will attempt to resolve requests
internally first.

In /etc/resolv.conf all scheduled nodes:

nameserver 192.168.1.100 1

nameserver 192.168.1.1 2

Add the internal DNS server.

Pre-existing external DNS server.

CHAPTER 16. PERSISTENT STORAGE EXAMPLES

255

Once the configurations are changed, restart the OpenShift Enterprise master and dnsmasq services.

$ systemctl restart atomic-openshift-master
$ systemctl restart dnsmasq

16.6. MOUNTING VOLUMES ON PRIVILEGED PODS

16.6.1. Overview

Persistent volumes can be mounted to pods with the privileged security context constraint (SCC)
attached.

NOTE

While this topic uses GlusterFS as a sample use-case for mounting volumes onto
privileged pods, it can be adapted to use any supported storage plug-in.

16.6.2. Prerequisites

An existing Gluster volume.

glusterfs-fuse installed on all hosts.

Definitions for GlusterFS:

Endpoints and services: gluster-endpoints-service.yaml and gluster-endpoints.yaml

Persistent volumes: gluster-pv.yaml

Persistent volume claims: gluster-pvc.yaml

Privileged pods: gluster-nginx-pod.yaml

A user with the cluster-admin role binding. For this guide, that user is called admin.

16.6.3. Creating the Persistent Volume

Creating the PersistentVolume makes the storage accessible to users, regardless of projects.

1. As the admin, create the service, endpoint object, and persistent volume:

$ oc create -f gluster-endpoints-service.yaml
$ oc create -f gluster-endpoints.yaml
$ oc create -f gluster-pv.yaml

2. Verify that the objects were created:

$ oc get svc
NAME CLUSTER_IP EXTERNAL_IP PORT(S) SELECTOR
AGE
gluster-cluster 172.30.151.58 <none> 1/TCP <none>
24s

OpenShift Enterprise 3.1 Installation and Configuration

256

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#persistent-volume-claims
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#managing-role-bindings

$ oc get ep
NAME ENDPOINTS AGE
gluster-cluster 192.168.59.102:1,192.168.59.103:1 2m

$ oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS
CLAIM REASON AGE
gluster-default-volume <none> 2Gi RWX
Available 2d

16.6.4. Creating a Regular User

Adding a regular user to the privileged SCC (or to a group given access to the SCC) allows them to run
privileged pods:

1. As the admin, add a user to the SCC:

$ oadm policy add-scc-to-user privileged <username>

1. Log in as the regular user:

$ oc login -u <username> -p <password>

1. Then, create a new project:

$ oc new-project <project_name>

16.6.5. Creating the Persistent Volume Claim

1. As a regular user, create the PersistentVolumeClaim to access the volume:

$ oc create -f gluster-pvc.yaml -n <project_name>

2. Define your pod to access the claim:

Example 16.14. Pod Definition

apiVersion: v1
id: gluster-nginx-pvc
kind: Pod
metadata:
 name: gluster-nginx-priv
spec:
 containers:
 - name: gluster-nginx-priv
 image: fedora/nginx
 volumeMounts:

 - mountPath: /mnt/gluster 1
 name: gluster-volume-claim
 securityContext:
 privileged: true
 volumes:

CHAPTER 16. PERSISTENT STORAGE EXAMPLES

257

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#users

1

2

Volume mount within the pod.

The gluster-claim must reflect the name of the PersistentVolume.

3. Upon pod creation, the mount directory is created and the volume is attached to that mount
point.
As regular user, create a pod from the definition:

$ oc create -f gluster-nginx-pod.yaml

4. Verify that the pod created successfully:

$ oc get pods
NAME READY STATUS RESTARTS AGE
gluster-nginx-pod 1/1 Running 0 36m

It can take several minutes for the pod to create.

16.6.6. Verifying the Setup

16.6.6.1. Checking the Pod SCC

1. Export the pod configuration:

$ oc export pod <pod_name>

2. Examine the output. Check that openshift.io/scc has the value of privileged:

Example 16.15. Export Snippet

16.6.6.2. Verifying the Mount

1. Access the pod and check that the volume is mounted:

$ oc rsh <pod_name>
[root@gluster-nginx-pvc /]# mount

2. Examine the output for the Gluster volume:

Example 16.16. Volume Mount

 - name: gluster-volume-claim
 persistentVolumeClaim:

 claimName: gluster-claim 2

metadata:
 annotations:
 openshift.io/scc: privileged

OpenShift Enterprise 3.1 Installation and Configuration

258

192.168.59.102:gv0 on /mnt/gluster type fuse.gluster
(rw,relatime,user_id=0,group_id=0,default_permissions,allow_other,
max_read=131072)

CHAPTER 16. PERSISTENT STORAGE EXAMPLES

259

CHAPTER 17. WORKING WITH HTTP PROXIES

17.1. OVERVIEW

Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS
proxy available. Configuring OpenShift to use these proxies can be as simple as setting standard
environment variables in configuration or JSON files.

17.2. CONFIGURING HOSTS FOR PROXIES

1. Add the NO_PROXY, HTTP_PROXY, and HTTPS_PROXY environment variables to each host’s
/etc/sysconfig/atomic-openshift-master file (for single master configuration),
/etc/sysconfig/atomic-openshift-master-api, or /etc/sysconfig/atomic-openshift-master-
controllers files (for multi-master configuration) and /etc/sysconfig/atomic-openshift-node file
(for node configuration) depending on the type of host:

HTTP_PROXY=http://USERNAME:PASSWORD@10.0.1.1:8080/
HTTPS_PROXY=https://USERNAME:PASSWORD@10.0.0.1:8080/
NO_PROXY=master.hostname.example.com

NO_PROXY accepts a comma-separated list of hosts:

For master hosts

Node hostname

Master IP or hostname

Service IP

Cluster IP

For node hosts

Master IP or hostname

Service IP

Cluster IP

For the Docker service

Registry service IP and hostname

IMPORTANT

Currently, using CIDR for IP addressing is not supported by NO_PROXY.
You must add individual IP addresses for values, such as, the registry.

OpenShift Enterprise 3.1 Installation and Configuration

260

NOTE

The only wildcard NO_PROXY accepts is a single * character, which
matches all hosts, and effectively disables the proxy. Each name in this
list is matched as either a domain which contains the host name as a
suffix, or the host name itself.

For instance, example.com would match example.com,
example.com:80, and www.example.com.

2. Restart the master or node host as appropriate:

systemctl restart atomic-openshift-master
systemctl restart atomic-openshift-node

For multi-master installations:

systemctl restart atomic-openshift-master-controllers
systemctl restart atomic-openshift-master-api

OpenShift does not accept * as a wildcard attached to a domain suffix. For example, this works:

NO_PROXY=.example.com

However, this does not:

NO_PROXY=*.example.com

To deploy Hawkular Metrics on a proxied OpenShift Enterprise environment, include the following
services in the NO_PROXY configuration:

Hawkular Cassandra

Hawkular Metrics

Heapster

Kubernetes

Application

OpenShift infra domain (added when using two DNS zones)

To obtain the service IPs, run:

$ oc get svc

NOTE

AutoScaling does not work on a proxied environment.

17.3. PROXYING DOCKER PULL

CHAPTER 17. WORKING WITH HTTP PROXIES

261

OpenShift node hosts need to perform push and pull operations to Docker registries. If you have a
registry that does not need a proxy for nodes to access, include the NO_PROXY parameter with the
registry’s host name, the registry service’s IP address, and service name. This blacklists that registry,
leaving the external HTTP proxy as the only option.

1. Edit the /etc/sysconfig/docker file and add the variables in shell format:

HTTP_PROXY=http://USERNAME:PASSWORD@10.0.1.1:8080/
HTTPS_PROXY=https://USERNAME:PASSWORD@10.0.0.1:8080/
NO_PROXY=master.hostname.example.com,172.30.123.45,docker-
registry.default.svc.cluster.local

2. Restart the Docker service:

systemctl restart docker

17.4. USING MAVEN BEHIND A PROXY

There are three options for using Maven behind a proxy on OpenShift Enterprise:

Generate the settings.xml file for the user by setting the $HTTP_PROXY_HOST and
$HTTP_PROXY_PORT environment variables in the .s2i/environment file:

HTTP_PROXY_HOST=<hostname>
HTTP_PROXY_PORT=<port_number>

Optionally, you can also set the $HTTP_PROXY_USERNAME, HTTP_PROXY_PASSWORD, and
HTTP_PROXY_NONPROXYHOSTS variables:

HTTP_PROXY_USERNAME=<user_name>
HTTP_PROXY_PASSWORD=<password>
HTTP_PROXY_NONPROXYHOSTS=<hostname>

Move the settings.xml file into your application’s local Git repository:

$ mv settings.xml <git_repo>/configuration/settings.xml

Point the MAVEN_ARGS_APPEND environment variable to the location of the settings.xml file:

MAVEN_ARGS_APPEND=" -s path/to/file"

17.5. CONFIGURING S2I BUILDS FOR PROXIES

S2I builds fetch dependencies from various locations. You can use a .sti/environment file to specify
simple shell variables and OpenShift will react accordingly when seeing build images.

The following are the supported proxy environment variables with example values:

HTTP_PROXY=http://USERNAME:PASSWORD@10.0.1.1:8080/
HTTPS_PROXY=https://USERNAME:PASSWORD@10.0.0.1:8080/
NO_PROXY=master.hostname.example.com

OpenShift Enterprise 3.1 Installation and Configuration

262

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#environment-files

17.6. CONFIGURING DEFAULT TEMPLATES FOR PROXIES

The example templates available in OpenShift by default do not include settings for HTTP proxies. For
existing applications based on these templates, modify the source section of the application’s build
configuration and add proxy settings:

...
source:
 type: Git
 git:
 uri: https://github.com/openshift/ruby-hello-world
 httpProxy: http://proxy.example.com
 httpsProxy: https://proxy.example.com
...

This is similar to the process for using proxies for Git cloning.

17.7. SETTING PROXY ENVIRONMENT VARIABLES IN PODS

You can set the NO_PROXY, HTTP_PROXY, and HTTPS_PROXY environment variables in the
templates.spec.containers stanza in a deployment configuration to pass proxy connection
information. The same can be done for configuring a Pod’s proxy at runtime:

...
containers:
- env:
 - name: "HTTP_PROXY"
 value: "http://USER:PASSWORD@IPADDR:PORT"
...

You can also use the oc env command to update an existing deployment configuration with a new
environment variable:

$ oc env dc/frontend HTTP_PROXY=http://USER:PASSWORD@IPADDR:PORT

If you have a ConfigChange trigger set up in your OpenShift instance, the changes happen
automatically. Otherwise, manually redeploy your application for the changes to take effect.

17.8. GIT REPOSITORY ACCESS

If your Git repository can only be accessed using a proxy, you can define the proxy to use in the source
section of the BuildConfig. You can configure both a HTTP and HTTPS proxy to use. Both fields are
optional.

NOTE

Your source URI must use the HTTP or HTTPS protocol for this to work.

source:
 type: Git
 git:

CHAPTER 17. WORKING WITH HTTP PROXIES

263

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#triggers

 uri: "https://github.com/openshift/ruby-hello-world"
 httpProxy: http://proxy.example.com
 httpsProxy: https://proxy.example.com

OpenShift Enterprise 3.1 Installation and Configuration

264

CHAPTER 18. NATIVE CONTAINER ROUTING

18.1. OVERVIEW

This topic describes how to set up container networking using existing switches and routers and the
kernel networking stack in Linux. The setup requires that the network administrator or a script modifies
the router or routers when new nodes are added to the cluster.

NOTE

The procedures outlined in this topic can be adapted to any type of router.

18.2. NETWORK LAYOUT

The following diagram shows the container networking setup described in this topic. It uses one Linux
node with two network interface cards serving as a router, two switches, and three nodes connected to
these switches.

18.3. NETWORK OVERVIEW

The following describes a general network setup:

11.11.0.0/16 is the container network.

The 11.11.x.0/24 subnet is reserved for each node and assigned to the Docker Linux bridge.

Each node has a route to the router for reaching anything in the 11.11.0.0/16 range, except the
local subnet.

The router has routes for each node, so it can be directed to the right node.

Existing nodes do not need any changes when new nodes are added, unless the network
topology is modified.

CHAPTER 18. NATIVE CONTAINER ROUTING

265

IP forwarding is enabled on each node.

18.4. NODE SETUP

1. Assign an unused 11.11.x.0/24 subnet IP address to the Linux bridge on the node:

brctl addbr lbr0
ip addr add 11.11.1.1/24 dev lbr0
ip link set dev lbr0 up

2. Modify the Docker startup script to use the new bridge. By default, the startup script is the
/etc/sysconfig/docker file:

docker -d -b lbr0 --other-options

3. Add a route to the router for the 11.11.0.0/16 network:

ip route add 11.11.0.0/16 via 192.168.2.2 dev p3p1

4. Enable IP forwarding on the node:

sysctl -w net.ipv4.ip_forward=1

18.5. ROUTER SETUP

The following procedure assumes a Linux box with multiple NICs is used as a router. Modify the steps as
required to use the syntax for a particular router:

1. Enable IP forwarding on the router:

sysctl -w net.ipv4.ip_forward=1

2. Add a route for each node added to the cluster:

ip route add <node_subnet> via <node_ip_address> dev <interface
through which node is L2 accessible>
ip route add 11.11.1.0/24 via 192.168.2.1 dev p3p1
ip route add 11.11.2.0/24 via 192.168.3.3 dev p3p2
ip route add 11.11.3.0/24 via 192.168.3.4 dev p3p2

OpenShift Enterprise 3.1 Installation and Configuration

266

CHAPTER 19. ROUTING FROM EDGE LOAD BALANCERS

19.1. OVERVIEW

Pods inside of an OpenShift cluster are only reachable via their IP addresses on the cluster network. An
edge load balancer can be used to accept traffic from outside networks and proxy the traffic to pods
inside the OpenShift cluster. In cases where the load balancer is not part of the cluster network, routing
becomes a hurdle as the internal cluster network is not accessible to the edge load balancer.

To solve this problem where the OpenShift cluster is using OpenShift SDN as the cluster networking
solution, there are two ways to achieve network access to the pods.

19.2. INCLUDING THE LOAD BALANCER IN THE SDN

If possible, run an OpenShift node instance on the load balancer itself that uses OpenShift SDN as the
networking plug-in. This way, the edge machine gets its own Open vSwitch bridge that the SDN
automatically configures to provide access to the pods and nodes that reside in the cluster. The routing
table is dynamically configured by the SDN as pods are created and deleted, and thus the routing
software is able to reach the pods.

Mark the load balancer machine as an unschedulable node so that no pods end up on the load balancer
itself:

$ oadm manage-node <load_balancer_hostname> --schedulable=false

If the load balancer comes packaged as a Docker container, then it is even easier to integrate with
OpenShift: Simply run the load balancer as a pod with the host port exposed. The pre-packaged
HAProxy router in OpenShift runs in precisely this fashion.

19.3. ESTABLISHING A TUNNEL USING A RAMP NODE

In some cases, the previous solution is not possible. For example, an F5 BIG-IP® host cannot run an
OpenShift node instance or the OpenShift SDN because F5® uses a custom, incompatible Linux kernel
and distribution.

Instead, to enable F5 BIG-IP® to reach pods, you can choose an existing node within the cluster network
as a ramp node and establish a tunnel between the F5 BIG-IP® host and the designated ramp node.
Because it is otherwise an ordinary OpenShift node, the ramp node has the necessary configuration to
route traffic to any pod on any node in the cluster network. The ramp node thus assumes the role of a
gateway through which the F5 BIG-IP® host has access to the entire cluster network.

Following is an example of establishing an ipip tunnel between an F5 BIG-IP® host and a designated
ramp node.

On the F5 BIG-IP® host:

1. Set the following variables:

F5_IP=10.3.89.66 1

RAMP_IP=10.3.89.89 2

TUNNEL_IP1=10.3.91.216 3

CLUSTER_NETWORK=10.1.0.0/16 4

CHAPTER 19. ROUTING FROM EDGE LOAD BALANCERS

267

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#pods
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#openshift-sdn
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#marking-nodes-as-unschedulable-or-schedulable
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/rest_api_reference/#v1-containerport
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#routers

1 2

3

4

1

The F5_IP and RAMP_IP variables refer to the F5 BIG-IP® host’s and the ramp node’s IP
addresses, respectively, on a shared, internal network.

An arbitrary, non-conflicting IP address for the F5® host’s end of the ipip tunnel.

The overlay network CIDR that the OpenShift SDN uses to assign addresses to pods.

2. Delete any old route, self, tunnel and SNAT pool:

tmsh delete net route $CLUSTER_NETWORK || true
tmsh delete net self SDN || true
tmsh delete net tunnels tunnel SDN || true
tmsh delete ltm snatpool SDN_snatpool || true

3. Create the new tunnel, self, route and SNAT pool and use the SNAT pool in the virtual servers:

tmsh create net tunnels tunnel SDN \
 \{ description "OpenShift SDN" local-address \
 $F5_IP profile ipip remote-address $RAMP_IP \}
tmsh create net self SDN \{ address \
 ${TUNNEL_IP1}/24 allow-service all vlan SDN \}
tmsh create net route $CLUSTER_NETWORK interface SDN
tmsh create ltm snatpool SDN_snatpool members add { $TUNNEL_IP1 }
tmsh modify ltm virtual ose-vserver source-address-translation {
type snat pool SDN_snatpool }
tmsh modify ltm virtual https-ose-vserver source-address-
translation { type snat pool SDN_snatpool }

On the ramp node:

1. Set the following variables:

F5_IP=10.3.89.66
TUNNEL_IP1=10.3.91.216

TUNNEL_IP2=10.3.91.217 1

A second, arbitrary IP address for the ramp node’s end of the ipip tunnel.

2. Delete any old tunnel:

ip tunnel del tun1 || true

3. Create the ipip tunnel on the ramp node, using a suitable L2-connected interface (e.g., eth0):

ip tunnel add tun1 mode ipip \
 remote $F5_IP dev eth0
ip addr add $TUNNEL_IP2 dev tun1
ip link set tun1 up
ip route add $TUNNEL_IP1 dev tun1
ping -c 5 $TUNNEL_IP1

4. SNAT the tunnel IP with an unused IP from the SDN subnet:

OpenShift Enterprise 3.1 Installation and Configuration

268

source /run/openshift-sdn/config.env
tap1=$(ip -o -4 addr list tun0 | awk '{print $4}' | cut -d/ -f1 |
head -n 1)
subaddr=$(echo ${OPENSHIFT_SDN_TAP1_ADDR:-"$tap1"} | cut -d "." -f
1,2,3)
export RAMP_SDN_IP=${subaddr}.254

5. Assign this RAMP_SDN_IP as an additional address to tun0 (the local SDN’s gateway):

ip addr add ${RAMP_SDN_IP} dev tun0

6. Modify the OVS rules for SNAT:

set plugin based on the openshift-sdn plugin used in your
cluster.
plugin="sdn" # "multitenant"
#
ipflowopts="cookie=0x999,ip"
["$plugin" == "multitenant"] &&
ipflowopts="cookie=0x999,table=1,priority=40000,ip"
#
arpflowopts="cookie=0x999, table=0, arp"
["$plugin" == "multitenant"] && arpflowopts="cookie=0x999,
table=1,priority=40000, arp"
#
ovs-ofctl -O OpenFlow13 add-flow br0 \

"${ipflowopts},nw_src=${TUNNEL_IP1},actions=mod_nw_src:${RAMP_SDN_IP
},resubmit(,0)"
ovs-ofctl -O OpenFlow13 add-flow br0 \

"${ipflowopts},nw_dst=${RAMP_SDN_IP},actions=mod_nw_dst:${TUNNEL_IP1
},resubmit(,0)"
ovs-ofctl -O OpenFlow13 add-flow br0 \
 "${arpflowopts}, arp_tpa=${RAMP_SDN_IP}, actions=output:2"
if ["$plugin" == "multitenant"]; then
 ovs-ofctl -O OpenFlow13 add-flow br0 \
 "cookie=0x999,
table=1,priority=40000,ip,nw_dst=${TUNNEL_IP1},actions=output:2"
 fi

7. Optionally, if you do not plan on configuring the ramp node to be highly available, mark the ramp
node as unschedulable. Skip this step if you do plan to follow the next section and plan on
creating a highly available ramp node.

$ oadm manage-node <ramp_node_hostname> --schedulable=false

NOTE

The F5 router plug-in integrates with F5 BIG-IP®.

19.3.1. Configuring a Highly Available Ramp Node

CHAPTER 19. ROUTING FROM EDGE LOAD BALANCERS

269

You can use OpenShift Enterprise’s ipfailover feature, which uses keepalived internally, to make the
ramp node highly available from F5 BIG-IP®'s point of view. To do so, first bring up two nodes, for
example called ramp-node-1 and ramp-node-2, on the same L2 subnet.

Then, choose some unassigned IP address from within the same subnet to use for your virtual IP, or VIP.
This will be set as the RAMP_IP variable with which you will configure your tunnel on F5 BIG-IP®.

For example, suppose you are using the 10.20.30.0/24 subnet for your ramp nodes, and you have
assigned 10.20.30.2 to ramp-node-1 and 10.20.30.3 to ramp-node-2. For your VIP, choose some
unassigned address from the same 10.20.30.0/24 subnet, for example 10.20.30.4. Then, to configure
ipfailover, mark both nodes with a label, such as f5rampnode:

$ oc label node ramp-node-1 f5rampnode=true
$ oc label node ramp-node-2 f5rampnode=true

Similar to instructions from the ipfailover documentation, you must now create a service account and
add it to the privileged SCC. First, create the f5ipfailover service account:

$ echo '
 { "kind": "ServiceAccount",
 "apiVersion": "v1",
 "metadata": { "name": "f5ipfailover" }
 }
 ' | oc create -f -

Next, you can manually edit the privileged SCC and add the f5ipfailover service account, or you can
script editing the privileged SCC if you have jq installed. To manually edit the privileged SCC, run:

$ oc edit scc privileged

Then add the f5ipfailover service account in form system:serviceaccount:<project>:<name> to the
users section:

...
users:
- system:serviceaccount:openshift-infra:build-controller
- system:serviceaccount:default:router
- system:serviceaccount:default:f5ipfailover

Alternatively, to script editing privileged SCC if you have jq installed, run:

$ oc get scc privileged -o json |
 jq '.users |= .+ ["system:serviceaccount:default:f5ipfailover"]' |
 oc replace scc -f -

Finally, configure ipfailover using your chosen VIP (the RAMP_IP variable) and the f5ipfailover service
account, assigning the VIP to your two nodes using the f5rampnode label you set earlier:

RAMP_IP=10.20.30.4

IFNAME=eth0 1
oadm ipfailover <name-tag> \
 --virtual-ips=$RAMP_IP \
 --interface=$IFNAME \

OpenShift Enterprise 3.1 Installation and Configuration

270

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#ip-failover

1

 --watch-port=0 \
 --replicas=2 \
 --service-account=f5ipfailover \
 --selector='f5rampnode=true'

The interface where RAMP_IP should be configured.

With the above setup, the VIP (the RAMP_IP variable) is automatically re-assigned when the ramp node
host that currently has it assigned fails.

CHAPTER 19. ROUTING FROM EDGE LOAD BALANCERS

271

CHAPTER 20. AGGREGATING CONTAINER LOGS

20.1. OVERVIEW

As an OpenShift Enterprise cluster administrator, you can deploy the EFK stack to aggregate logs for a
range of OpenShift Enterprise services. Application developers can view the logs of the projects for
which they have view access. The EFK stack aggregates logs from hosts and applications, whether
coming from multiple containers or even deleted pods.

The EFK stack is a modified version of the ELK stack and is comprised of:

Elasticsearch: An object store where all logs are stored.

Fluentd: Gathers logs from nodes and feeds them to Elasticsearch.

Kibana: A web UI for Elasticsearch.

Once deployed in a cluster, the stack aggregates logs from all nodes and projects into Elasticsearch, and
provides a Kibana UI to view any logs. Cluster administrators can view all logs, but application
developers can only view logs for projects they have permission to view. The stack components
communicate securely.

NOTE

Managing Docker Container Logs discusses the use of json-file logging driver options
to manage container logs and prevent filling node disks.

20.2. PRE-DEPLOYMENT CONFIGURATION

1. Ensure that you have deployed a router for the cluster.

2. Ensure that you have the necessary storage for Elasticsearch. Note that each Elasticsearch
replica requires its own storage volume. See Elasticsearch for more information.

3. Ansible-based installs should create the logging-deployer-template template in the openshift
project. Otherwise you can create it with the following command:

$ oc create -n openshift -f \
 /usr/share/openshift/examples/infrastructure-
templates/enterprise/logging-deployer.yaml

4. Create a new project. Once implemented in a single project, the EFK stack collects logs for
every project within your OpenShift Enterprise cluster. The examples in this topic use logging
as an example project:

$ oadm new-project logging --node-selector=""
$ oc project logging

NOTE

Specifying a non-empty node selector on the project is not recommended, as this
would restrict where Fluentd can be deployed. Instead, specify node selectors for
the deployer to be applied to your other deployment configurations.

OpenShift Enterprise 3.1 Installation and Configuration

272

https://www.elastic.co/videos/introduction-to-the-elk-stack
https://www.elastic.co/products/elasticsearch
http://www.fluentd.org/architecture
https://www.elastic.co/guide/en/kibana/current/introduction.html
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#using-node-selectors

5. Create a secret to provide security-related files to the deployer. While the secret is necessary,
the contents of the secret are optional, and will be generated for you if none are supplied.
You can supply the following files when creating a new secret:

File Name Description

kibana.crt A browser-facing certificate for the Kibana
server.

kibana.key A key to be used with the Kibana certificate.

kibana-ops.crt A browser-facing certificate for the Ops Kibana
server.

kibana-ops.key A key to be used with the Ops Kibana certificate.

server-tls.json JSON TLS options to override the Kibana server
defaults. Refer to Node.JS docs for available
options.

ca.crt A certificate for a CA that will be used to sign all
certificates generated by the deployer.

ca.key A matching CA key.

For example:

$ oc secrets new logging-deployer \
 kibana.crt=/path/to/cert kibana.key=/path/to/key

If a certificate file is not passed as a secret, the deployer will generate a self-signed certificate
instead. However, a secret is still required for the deployer to run. In this case, you can create a
"dummy" secret that does not specify a certificate value:

$ oc secrets new logging-deployer nothing=/dev/null

6. Create the deployer service account:

$ oc create -f - <<API
apiVersion: v1
kind: ServiceAccount
metadata:
 name: logging-deployer
secrets:
- name: logging-deployer
API

7. Enable the Fluentd service account, which the deployer will create, that requires special
privileges to operate Fluentd. Add the service account user to the security context:

$ oadm policy add-scc-to-user \

CHAPTER 20. AGGREGATING CONTAINER LOGS

273

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#dev-guide-secrets
https://nodejs.org/api/tls.html#tls_tls_connect_options_callback
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#admin-guide-service-accounts

1

1

 privileged system:serviceaccount:logging:aggregated-logging-

fluentd 1

Use the new project you created earlier (e.g., logging) when specifying this service
account.

Give the Fluentd service account permission to read labels from all pods:

$ oadm policy add-cluster-role-to-user cluster-reader \

 system:serviceaccount:logging:aggregated-logging-fluentd 1

Use the new project you created earlier (e.g., logging) when specifying this service
account.

20.3. DEPLOYING THE EFK STACK

The EFK stack is deployed using a template.

1. Run the deployer, specifying at least the parameters in the following example (more are
described in the table below):

$ oc new-app logging-deployer-template \
 --param KIBANA_HOSTNAME=kibana.example.com \
 --param ES_CLUSTER_SIZE=1 \
 --param PUBLIC_MASTER_URL=https://localhost:8443

Be sure to replace at least KIBANA_HOSTNAME and PUBLIC_MASTER_URL with values relevant
to your deployment.

The available parameters are:

Variable Name Description

PUBLIC_MASTER_URL (Required with the oc process command) The external URL for
the master. For OAuth use.

ENABLE_OPS_CLUSTER If set to true, configures a second Elasticsearch cluster and Kibana
for operations logs. Fluentd splits logs between the main cluster and a
cluster reserved for operations logs (which consists of
/var/log/messages on nodes and the logs from the projects default,
openshift, and openshift-infra). This means a second Elasticsearch
and Kibana are deployed. The deployments are distinguishable by the
-ops included in their names and have parallel deployment options
listed below.

KIBANA_HOSTNAME,
KIBANA_OPS_HOSTNAM
E

(Required with the oc process command) The external host name
for web clients to reach Kibana.

OpenShift Enterprise 3.1 Installation and Configuration

274

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#dev-guide-templates

ES_CLUSTER_SIZE,
ES_OPS_CLUSTER_SIZ
E

(Required with the oc process command) The number of
instances of Elasticsearch to deploy. Redundancy requires at least
three, and more can be used for scaling.

ES_INSTANCE_RAM,
ES_OPS_INSTANCE_RA
M

Amount of RAM to reserve per Elasticsearch instance. The default is
8G (for 8GB), and it must be at least 512M. Possible suffixes are
G,g,M,m.

ES_NODE_QUORUM,
ES_OPS_NODE_QUORUM

The quorum required to elect a new master. Should be more than half
the intended cluster size.

ES_RECOVER_AFTER_N
ODES,
ES_OPS_RECOVER_AFT
ER_NODES

When restarting the cluster, require this many nodes to be present
before starting recovery. Defaults to one less than the cluster size to
allow for one missing node.

ES_RECOVER_EXPECTE
D_NODES,
ES_OPS_RECOVER_EXP
ECTED_NODES

When restarting the cluster, wait for this number of nodes to be
present before starting recovery. By default, the same as the cluster
size.

ES_RECOVER_AFTER_T
IME,
ES_OPS_RECOVER_AFT
ER_TIME

When restarting the cluster, this is a timeout for waiting for the
expected number of nodes to be present. Defaults to "5m".

IMAGE_PREFIX The prefix for logging component images. For example, setting the
prefix to registry.access.redhat.com/openshift3/ose- creates
registry.access.redhat.com/openshift3/ose-logging-
deployment:latest.

IMAGE_VERSION The version for logging component images. For example, setting the
version to 3.1.1 creates
registry.access.redhat.com/openshift3/logging-deployment:3.1.1.

Variable Name Description

Running the deployer creates a deployer pod and prints its name.

2. Wait until the pod is running. It may take several minutes for OpenShift Enterprise to retrieve the
deployer image from the registry.

NOTE

The logs for the openshift and openshift-infra projects are automatically
aggregated and grouped into the .operations item in the Kibana interface.

The project where you have deployed the EFK stack (logging, as documented
here) is not aggregated into .operations and is found under its ID.

You can watch its progress with:

CHAPTER 20. AGGREGATING CONTAINER LOGS

275

$ oc get pod/<pod_name> -w

If it seems to be taking too long to start, you can retrieve more details about the pod and any
associated events with:

$ oc describe pod/<pod_name>

When it runs, you can check the logs of the resulting pod to see if the deployment was
successful:

$ oc logs -f <pod_name>

3. As a cluster administrator, deploy the logging-support-template template that the
deployer created:

$ oc process logging-support-template | oc create -f -

IMPORTANT

Deployment of logging components should begin automatically. However,
because deployment is triggered based on tags being imported into the
ImageStreams created in this step, and not all tags are automatically imported,
this mechanism has become unreliable as multiple versions are released.
Therefore, manual importing may be necessary as follows.

For each ImageStream logging-auth-proxy, logging-kibana, logging-
elasticsearch, and logging-fluentd, manually import the tag
corresponding to the IMAGE_VERSION specified (or defaulted) for the deployer.

$ oc import-image <name>:<version> --from <prefix><name>:
<tag>

For example:

$ oc import-image logging-auth-proxy:3.1.1 \
 --from
registry.access.redhat.com/openshift3/logging-auth-
proxy:3.1.1
$ oc import-image logging-kibana:3.1.1 \
 --from
registry.access.redhat.com/openshift3/logging-
kibana:3.1.1
$ oc import-image logging-elasticsearch:3.1.1 \
 --from
registry.access.redhat.com/openshift3/logging-
elasticsearch:3.1.1
$ oc import-image logging-fluentd:3.1.1 \
 --from
registry.access.redhat.com/openshift3/logging-
fluentd:3.1.1

20.4. POST-DEPLOYMENT CONFIGURATION

OpenShift Enterprise 3.1 Installation and Configuration

276

1

20.4.1. Elasticsearch

A highly-available environment requires at least three replicas of Elasticsearch; each on a different host.
Elasticsearch replicas require their own storage, but an OpenShift Enterprise deployment configuration
shares storage volumes between all its pods. So, when scaled up, the EFK deployer ensures each
replica of Elasticsearch has its own deployment configuration.

Viewing all Elasticsearch Deployments

To view all current Elasticsearch deployments:

$ oc get dc --selector logging-infra=elasticsearch

Persistent Elasticsearch Storage

The deployer creates an ephemeral deployment in which all of a pod’s data is lost upon restart. For
production usage, add a persistent storage volume to each Elasticsearch deployment configuration.

The best-performing volumes are local disks, if it is possible to use them. Doing so requires some
preparation as follows.

1. The relevant service account must be given the privilege to mount and edit a local volume, as
follows:

$ oadm policy add-scc-to-user privileged \
 system:serviceaccount:logging:aggregated-logging-

elasticsearch 1

Use the new project you created earlier (e.g., logging) when specifying this service
account.

2. Each Elasticsearch replica definition must be patched to claim that privilege, for example:

$ for dc in $(oc get deploymentconfig --selector logging-
infra=elasticsearch -o name); do
 oc scale $dc --replicas=0
 oc patch $dc \
 -p '{"spec":{"template":{"spec":{"containers":
[{"name":"elasticsearch","securityContext":{"privileged":
true}}]}}}}'
 done

3. The Elasticsearch pods must be located on the correct nodes to use the local storage, and
should not move around even if those nodes are taken down for a period of time. This requires
giving each Elasticsearch replica a node selector that is unique to the node where an
administrator has allocated storage for it. See below for directions on setting a node selector.

4. Once these steps are taken, a local host mount can be applied to each replica as in this
example (where we assume storage is mounted at the same path on each node):

$ for dc in $(oc get deploymentconfig --selector logging-
infra=elasticsearch -o name); do
 oc volume $dc \
 --add --overwrite --name=elasticsearch-storage \

CHAPTER 20. AGGREGATING CONTAINER LOGS

277

 --type=hostPath --path=/usr/local/es-storage
 oc scale $dc --replicas=1
 done

If using host mounts is impractical or undesirable, it may be necessary to attach block storage as a
PersistentVolumeClaim as in the following example:

$ oc volume dc/logging-es-<unique> \
 --add --overwrite --name=elasticsearch-storage \
 --type=persistentVolumeClaim --claim-name=logging-es-1

WARNING

Using NFS storage directly or as a PersistentVolume (or via other NAS such as
Gluster) is not supported for Elasticsearch storage, as Lucene relies on filesystem
behavior that NFS does not supply. Data corruption and other problems can occur. If
NFS storage is a requirement, you can allocate a large file on that storage to serve
as a storage device and treat it as a host mount on each host. For example:

$ truncate -s 1T /nfs/storage/elasticsearch-1
$ mkfs.xfs /nfs/storage/elasticsearch-1
$ mount -o loop /nfs/storage/elasticsearch-1 /usr/local/es-
storage
$ chown 1000:1000 /usr/local/es-storage

Then, use /usr/local/es-storage as a host-mount as described above. Performance
under this solution is significantly worse than using actual local drives.

Node Selector

Because Elasticsearch can use a lot of resources, all members of a cluster should have low latency
network connections to each other. Ensure this by directing the instances to dedicated nodes, or a
dedicated region within your cluster, using a node selector.

To configure a node selector, edit each deployment configuration and add the nodeSelector
parameter to specify the label of the desired nodes:

apiVersion: v1
kind: DeploymentConfig
spec:
 template:
 spec:
 nodeSelector:
 nodelabel: logging-es-node-1

Alternatively you can use the oc patch command:

OpenShift Enterprise 3.1 Installation and Configuration

278

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#persistent-volume-claims
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#using-node-selectors

$ oc patch dc/logging-es-<unique_name> \
 -p '{"spec":{"template":{"spec":{"nodeSelector":{"<label_name>":"
<label_value>"}}}}}'

Changing the Scale of Elasticsearch

If you need to scale up the number of Elasticsearch instances your cluster uses, it is not as simple as
changing the number of Elasticsearch cluster nodes. This is due to the nature of persistent volumes and
how Elasticsearch is configured to store its data and recover the cluster. Instead, you must create a
deployment configuration for each Elasticsearch cluster node.

During installation, the deployer creates templates with the Elasticsearch configurations provided to it:
logging-es-template and logging-es-ops-template if the deployer was run with
ENABLE_OPS_CLUSTER=true.

The node quorum and recovery settings were initially set based on the CLUSTER_SIZE value provided to
the deployer. Since the cluster size is changing, those values need to be updated.

1. Prior to changing the number of Elasticsearch cluster nodes, the EFK stack should first be scaled
down to preserve log data as described in Upgrading the EFK Logging Stack.

2. Edit the cluster template you are scaling up and change the parameters to the desired value:

NODE_QUORUM is the intended cluster size / 2 (rounded down) + 1. For an intended cluster
size of 5, the quorum would be 3.

RECOVER_EXPECTED_NODES is the same as the intended cluster size.

RECOVER_AFTER_NODES is the intended cluster size - 1.

$ oc edit template logging-es[-ops]-template

3. In addition to updating the template, all of the deployment configurations for that cluster also
need to have the three environment variable values above updated. To edit each of the
configurations for the cluster in series, you use the following.

$ oc get dc -l component=es[-ops] -o name | xargs -r oc edit

4. Create an additional deployment configuration, run the following command against the
Elasticsearch cluster you want to to scale up for (logging-es-template or logging-es-ops-
template).

$ oc new-app logging-es[-ops]-template

These deployments will be named differently, but all will have the logging-es prefix. Be aware of
the cluster parameters (described in the deployer parameters) based on cluster size that may
need corresponding adjustment in the template, as well as existing deployments.

5. After the intended number of deployment configurations are created, scale up your cluster,
starting with Elasticsearch as described in Upgrading the EFK Logging Stack.

CHAPTER 20. AGGREGATING CONTAINER LOGS

279

NOTE

The oc new-app logging-es[-ops]-template command creates a
deployment configuration with a persistent volume. If you want to create a
Elasticsearch cluster node with a persistent volume attached to it, upon creation
you can instead run the following command to create your deployment
configuration with a persistent volume claim (PVC) attached.

$ oc process logging-es-template | oc volume -f - \
 --add --overwrite --name=elasticsearch-storage
\
 --type=persistentVolumeClaim --claim-name=
{your_pvc}`

20.4.2. Fluentd

Once Elasticsearch is running, scale Fluentd to every node to feed logs into Elasticsearch. The following
example is for an OpenShift Enterprise instance with three nodes:

$ oc scale dc/logging-fluentd --replicas=3

You will need to scale Fluentd if nodes are added or subtracted.

When you make changes to any part of the EFK stack, specifically Elasticsearch or Fluentd, you should
first scale Elasicsearch down to zero and scale Fluentd so it does not match any other nodes. Then,
make the changes and scale Elasicsearch and Fluentd back.

To scale Elasicsearch to zero:

$ oc scale --replicas=0 dc/<ELASTICSEARCH_DC>

Change nodeSelector in the daemonset configuration to match zero:

Get the fluentd node selector:

$ oc get ds logging-fluentd -o yaml |grep -A 1 Selector
 nodeSelector:
 logging-infra-fluentd: "true"

Use the oc patch command to modify the daemonset nodeSelector:

$ oc patch ds logging-fluentd -p '{"spec":{"template":{"spec":
{"nodeSelector":{"nonexistlabel":"true"}}}}}'

Get the fluentd node selector:

$ oc get ds logging-fluentd -o yaml |grep -A 1 Selector
 nodeSelector:
 "nonexistlabel: "true"

Scale Elastcsearch back up from zero:

OpenShift Enterprise 3.1 Installation and Configuration

280

$ oc scale --replicas=# dc/<ELASTICSEARCH_DC>

Change nodeSelector in the daemonset configuration back to logging-infra-fluentd: "true".

Use the oc patch command to modify the daemonset nodeSelector:

oc patch ds logging-fluentd -p '{"spec":{"template":{"spec":
{"nodeSelector":{"logging-infra-fluentd":"true"}}}}}'

20.4.3. Kibana

To access the Kibana console from the OpenShift Enterprise web console, add the loggingPublicURL
parameter in the /etc/origin/master/master-config.yaml file, with the URL of the Kibana console (the
KIBANA_HOSTNAME parameter). The value must be an HTTPS URL:

...
assetConfig:
 ...
 loggingPublicURL: "https://kibana.example.com"
...

Setting the loggingPublicURL parameter creates a View Archive button on the OpenShift Enterprise
web console under the Browse → Pods → <pod_name> → Logs tab. This links to the Kibana console.

You can scale the Kibana deployment as usual for redundancy:

$ oc scale dc/logging-kibana --replicas=2

You can see the UI by visiting the site specified at the KIBANA_HOSTNAME variable.

See the Kibana documentation for more information on Kibana.

20.4.4. Cleanup

You can remove everything generated during the deployment while leaving other project contents intact:

$ oc delete all --selector logging-infra=kibana
$ oc delete all --selector logging-infra=fluentd
$ oc delete all --selector logging-infra=elasticsearch
$ oc delete all --selector logging-infra=curator
$ oc delete all,sa,oauthclient --selector logging-infra=support
$ oc delete secret logging-fluentd logging-elasticsearch \
 logging-es-proxy logging-kibana logging-kibana-proxy \
 logging-kibana-ops-proxy

20.5. UPGRADING

To upgrade the EFK logging stack, see Manual Upgrades.

20.6. TROUBLESHOOTING KIBANA

CHAPTER 20. AGGREGATING CONTAINER LOGS

281

https://www.elastic.co/guide/en/kibana/4.1/discover.html

Using the Kibana console with OpenShift Enterprise can cause problems that are easily solved, but are
not accompanied with useful error messages. Check the following troubleshooting sections if you are
experiencing any problems when deploying Kibana on OpenShift Enterprise:

Login Loop

The OAuth2 proxy on the Kibana console must share a secret with the master host’s OAuth2 server. If
the secret is not identical on both servers, it can cause a login loop where you are continuously
redirected back to the Kibana login page.

To fix this issue, delete the current oauthclient, and create a new one, using the same template as
before:

$ oc delete oauthclient/kibana-proxy
$ oc process logging-support-template | oc create -f -

Cryptic Error When Viewing the Console

When attempting to visit the Kibana console, you may instead receive a browser error:

{"error":"invalid_request","error_description":"The request is missing a
required parameter,
 includes an invalid parameter value, includes a parameter more than once,
or is otherwise malformed."}

This can be caused by a mismatch between the OAuth2 client and server. The return address for the
client must be in a whitelist so the server can securely redirect back after logging in.

Fix this issue by replacing the OAuth client entry:

$ oc delete oauthclient/kibana-proxy
$ oc process logging-support-template | oc create -f -

If the problem persists, check that you are accessing Kibana at a URL listed in the OAuth client. This
issue can be caused by accessing the URL at a forwarded port, such as 1443 instead of the standard
443 HTTPS port. You can adjust the server whitelist by editing the OAuth client:

$ oc edit oauthclient/kibana-proxy

503 Error When Viewing the Console

If you receive a proxy error when viewing the Kibana console, it could be caused by one of two issues.

First, Kibana may not be recognizing pods. If Elasticsearch is slow in starting up, Kibana may timeout
trying to reach it. Check whether the relevant service has any endpoints:

$ oc describe service logging-kibana
Name: logging-kibana
[...]
Endpoints: <none>

If any Kibana pods are live, endpoints will be listed. If they are not, check the state of the Kibana pods
and deployment. You may need to scale the deployment down and back up again.

OpenShift Enterprise 3.1 Installation and Configuration

282

The second possible issue may be caused if the route for accessing the Kibana service is masked. This
can happen if you perform a test deployment in one project, then deploy in a different project without
completely removing the first deployment. When multiple routes are sent to the same destination, the
default router will only route to the first created. Check the problematic route to see if it is defined in
multiple places:

$ oc get route --all-namespaces --selector logging-infra=support

20.7. EXTERNAL ELASTICSEARCH INSTANCE WITH FLUENTD

It is possible to configure the Fluentd pod created with aggregated logging to connect to an externally
hosted Elasticsearch instance.

Fluentd knows where to send its logs to based on the ES_HOST, ES_PORT, OPS_HOST and OPS_PORT
environment variables. If you have an external Elasticsearch instance that will contain both application
and operations logs, ensure that ES_HOST and OPS_HOST are the same and that ES_PORT and
OPS_PORT are also the same. Fluentd is configured to send its application logs to the ES_HOST
destination and all of its operations logs to OPS_HOST.

If your externally hosted Elasticsearch does not make use of TLS you will need to update the
*_CLIENT_CERT, *_CLIENT_KEY and *_CA variables to be empty. If it uses TLS but not Mutual TLS,
update the *_CLIENT_CERT and *_CLIENT_KEY variables to be empty and patch or recreate the
logging-fluentd secret with the appropriate *_CA for communicating with your Elasticsearch. If it
uses Mutual TLS as the provided Elasticsearch does, you will just need to patch or recreate the
logging-fluentd secret with your client key, client cert, and CA.

You can use oc edit dc/logging-fluentd to update your Fluentd configuration. It is advised that
you first scale down your number of replicas to 0 before editing the DeploymentConfig.

NOTE

If you are not using the provided Kibana and Elasticsearch images, you will not have the
same multi-tenant capabilities and your data will not be restricted by user access to a
particular project.

CHAPTER 20. AGGREGATING CONTAINER LOGS

283

CHAPTER 21. ENABLING CLUSTER METRICS

21.1. OVERVIEW

The kubelet exposes metrics that can be collected and stored in back-ends by Heapster.

As an OpenShift Enterprise administrator, you can view a cluster’s metrics from all containers and
components in one user interface. These metrics are also used by horizontal pod autoscalers in order to
determine when and how to scale.

This topic describes using Hawkular Metrics as a metrics engine which stores the data persistently in a
Cassandra database. When this is configured, CPU and memory-based metrics are viewable from the
OpenShift Enterprise web console and are available for use by horizontal pod autoscalers.

Heapster retrieves a list of all nodes from the master server, then contacts each node individually
through the /stats endpoint. From there, Heapster scrapes the metrics for CPU and memory usage,
then exports them into Hawkular Metrics.

Browsing individual pods in the web console displays separate sparkline charts for memory and CPU.
The time range displayed is selectable, and these charts automatically update every 30 seconds. If there
are multiple containers on the pod, then you can select a specific container to display its metrics.

If you have resource limits defined for your project, then you can also see a donut chart for each pod.
The donut chart displays usage against the resource limit. For example: 145 Available of 200
MiB, with the donut chart showing 55 MiB Used.

21.2. BEFORE YOU BEGIN

The components for cluster metrics must be deployed to the openshift-infra project. This allows
horizontal pod autoscalers to discover the Heapster service and use it to retrieve metrics that can be
used for autoscaling.

All of the following commands in this topic must be executed under the openshift-infra project. To
switch to the openshift-infra project:

$ oc project openshift-infra

To enable cluster metrics, you must next configure the following:

Service Accounts

Metrics Data Storage

Metrics Deployer

21.3. SERVICE ACCOUNTS

You must configure service accounts for:

Metrics Deployer

Heapster

OpenShift Enterprise 3.1 Installation and Configuration

284

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#kubelet
https://github.com/GoogleCloudPlatform/heapster
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#dev-guide-pod-autoscaling
https://github.com/hawkular/hawkular-metrics
http://cassandra.apache.org/
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#dev-guide-pod-autoscaling
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#dev-guide-limits
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#dev-guide-pod-autoscaling
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/cluster_administration/#admin-guide-service-accounts

21.3.1. Metrics Deployer Service Account

The Metrics Deployer will be discussed in a later step, but you must first set up a service account for it:

1. Create a metrics-deployer service account:

$ oc create -f - <<API
apiVersion: v1
kind: ServiceAccount
metadata:
 name: metrics-deployer
secrets:
- name: metrics-deployer
API

2. Before it can deploy components, the metrics-deployer service account must also be granted
the edit permission for the openshift-infra project:

$ oadm policy add-role-to-user \
 edit system:serviceaccount:openshift-infra:metrics-deployer

21.3.2. Heapster Service Account

The Heapster component requires access to the master server to list all available nodes and access the
/stats endpoint for each node. Before it can do this, the Heapster service account requires the
cluster-reader permission:

$ oadm policy add-cluster-role-to-user \
 cluster-reader system:serviceaccount:openshift-infra:heapster

NOTE

The Heapster service account is created automatically during the Deploying the Metrics
Components step.

21.4. METRICS DATA STORAGE

You can store the metrics data to either persistent storage or to a temporary pod volume.

21.4.1. Persistent Storage

Running OpenShift Enterprise cluster metrics with persistent storage means that your metrics will be
stored to a persistent volume and be able to survive a pod being restarted or recreated. This is ideal if
you require your metrics data to be guarded from data loss.

The size of the persisted volume can be specified with the CASSANDRA_PV_SIZEtemplate parameter.
By default it is set to 10 GB, which may or may not be sufficient for the size of the cluster you are using.
If you require more space, for instance 100 GB, you could specify it with something like this:

$ oc process -f metrics-deployer.yaml -v \
 HAWKULAR_METRICS_HOSTNAME=hawkular-
metrics.example.com,CASSANDRA_PV_SIZE=100Gi \
 | oc create -f -

CHAPTER 21. ENABLING CLUSTER METRICS

285

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#dev-guide-volumes
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#persistent-volumes

The size requirement of the Cassandra storage is dependent on the cluster size. It is the administrator’s
responsibility to ensure that the size requirements are sufficient for their setup and to monitor usage to
ensure that the disk does not become full.

WARNING

Data loss will result if the Cassandra persisted volume runs out of sufficient space.

For cluster metrics to work with persistent storage, ensure that the persistent volume has the
ReadWriteOnce access mode. If not, the persistent volume claim will not be able to find the persistent
volume, and Cassandra will fail to start.

To use persistent storage with the metric components, ensure that a persistent volume of sufficient size
is available. The creation of persistent volume claims is handled by the Metrics Deployer.

21.4.2. Non-Persistent Storage

Running OpenShift Enterprise cluster metrics with non-persistent storage means that any stored metrics
will be deleted when the pod is deleted. While it is much easier to run cluster metrics with non-persistent
data, running with non-persistent data does come with the risk of permanent data loss. However, metrics
can still survive a container being restarted.

In order to use non-persistent storage, you must set the USE_PERSISTENT_STORAGEtemplate option to
false for the Metrics Deployer.

21.5. METRICS DEPLOYER

The Metrics Deployer deploys and configures all of the metrics components. You can configure it by
passing in information from secrets and by passing parameters to the Metrics Deployer’s template.

21.5.1. Using Secrets

By default, the Metrics Deployer auto-generates self-signed certificates for use between components.
Because these are self-signed certificates, they are not automatically trusted by a web browser.
Therefore, it is recommended to use internal certificates for anything being accessed outside of the
OpenShift Enterprise cluster, and then use the re-encrypting route to provide your own custom
certificates. This is especially important for the Hawkular Metrics server as it must be accessible in a
browser for the web console to function.

The Metrics Deployer requires that you manually create a metrics-deployer secret whether you are
providing your own certificates or using generated self-signed certificates.

21.5.1.1. Providing Your Own Certificates

To provide your own certificates and replace the internally used ones, you can pass these values as
secrets to the Metrics Deployer.

The preferred metrics deployment method is to pass the metrics secret with no certificates:

OpenShift Enterprise 3.1 Installation and Configuration

286

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#persistent-volumes
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#persistent-volume-claims
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#dev-guide-secrets
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-core-concepts-templates
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#dev-guide-secrets

$ oc secrets new metrics-deployer nothing=/dev/null

Then, use the a re-encrypting route to pass your custom certificates to Heapster. This allows for greater
control in modifying the certificates in the future.

NOTE

Using a re-encrypting route allows the self-signed certificates to remain in use internally
while allowing your own certificates to be used for externally access. To use a re-
encrypting route, do not set the certificates as a secret, but a secret named metrics-
deployer must still exist before the Metrics Deployer can complete.

Optionally, provide your own certificate that is configured to be trusted by your browser by pointing your
secret to the certificate’s .pem and certificate authority certificate files:

$ oc secrets new metrics-deployer \
 hawkular-metrics.pem=/home/openshift/metrics/hm.pem \
 hawkular-metrics-ca.cert=/home/openshift/metrics/hm-ca.cert

WARNING

Setting the value using secrets will replace the internally used certificates. Therefore,
these certificates must be valid for both the externally used host names as well as
the external host name. For hawkular-metrics, this means the certificate must
have a value of the literal string hawkular-metrics as well as the value specified
in HAWKULAR_METRICS_HOSTNAME.

If you are unable to add the internal host name to your certificate, then you can use
the re-encrypting route method.

The following table contains more advanced configuration options, detailing all the secrets which can be
used by the deployer:

Secret Name Description

hawkular-metrics.pem The pem file to use for the Hawkular Metrics certificate. This certificate
must contain the literal string hawkular-metrics as a host name as
well as the publicly available host name used by the route. This file is
auto-generated if unspecified.

hawkular-metrics-ca.cert The certificate for the CA used to sign the hawkular-metrics.pem. This
option is ignored if the hawkular-metrics.pem option is not specified.

hawkular-cassandra.pem The .pem file to use for the Cassandra certificate. This certificate must
contain the hawkular-cassandra host name. This file is auto-generated
if unspecified.

CHAPTER 21. ENABLING CLUSTER METRICS

287

hawkular-cassandra-ca.cert The certificate for the CA used to sign the hawkular-cassandra.pem.
This option is ignored if the hawkular-cassandra.pem option is not
specified.

heapster.cert The certificate for Heapster to use. This is auto-generated if unspecified.

heapster.key The key to use with the Heapster certificate. This is ignored if
heapster.cert is not specified

heapster_client_ca.cert The certificate that generates heapster.cert. This is required if
heapster.cert is specified. Otherwise, the main CA for the OpenShift
Enterprise installation is used. In order for horizontal pod autoscaling to
function properly, this should not be overridden.

heapster_allowed_users A file containing a comma-separated list of CN to accept from certificates
signed with the specified CA. By default, this is set to allow the OpenShift
Enterprise service proxy to connect. If you override this, make sure to add
system:master-proxy to the list in order to allow horizontal pod
autoscaling to function properly.

Secret Name Description

The Heapster component uses the service name DNS registry to connect to Hawkular Metrics. In the
metrics code, the URL used by Heapster to connect to Hawkular Metrics is hard-coded. It attaches the
search domain and resolves to the service IP.

21.5.1.2. Using Generated Self-Signed Certificates

The Metrics Deployer can accept multiple certificates using secrets. If a certificate is not passed as a
secret, the deployer will generate a self-signed certificate to be used instead. For the deployer to
generate certificates for you, a secret is still required before it can be deployed. In this case, create a
"dummy" secret that does not specify a certificate value:

$ oc secrets new metrics-deployer nothing=/dev/null

21.5.2. Modifying the Deployer Template

The OpenShift Enterprise installer uses a template to deploy the metrics components. The default
template can be found at the following path:

/usr/share/openshift/examples/infrastructure-templates/enterprise/metrics-
deployer.yaml

In case you need to make any changes to this file, copy it to another directory with the file name
metrics-deployer.yaml and refer to the new location when using it in the following sections.

21.5.2.1. Deployer Template Parameters

OpenShift Enterprise 3.1 Installation and Configuration

288

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#dev-guide-pod-autoscaling
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/developer_guide/#dev-guide-pod-autoscaling
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-core-concepts-templates

The deployer template parameter options and their defaults are listed in the default metrics-
deployer.yaml file. If required, you can override these values when creating the Metrics Deployer.

Table 21.1. Template Parameters

Parameter Description

METRIC_DURATION The number of days metrics should be stored.

CASSANDRA_PV_SIZE The persistent volume size for each of the Cassandra
nodes.

USE_PERSISTENT_STORAGE Set to true for persistent storage; set to false to use
non-persistent storage.

REDEPLOY If set to true, the deployer will try to delete all the
existing components before trying to redeploy.

HAWKULAR_METRICS_HOSTNAME External host name where clients can reach
Hawkular Metrics.

MASTER_URL Internal URL for the master, for authentication
retrieval.

IMAGE_VERSION Specify version for metrics components. For
example, for openshift/origin-metrics-
deployer:latest, set version to latest.

IMAGE_PREFIX Specify prefix for metrics components. For example,
for openshift/origin-metrics-deployer:latest, set
prefix to openshift/origin-.

The only required parameter is HAWKULAR_METRICS_HOSTNAME. This value is required when creating
the deployer because it specifies the hostname for the Hawkular Metrics route. This value should
correspond to a fully qualified domain name. You will need to know the value of
HAWKULAR_METRICS_HOSTNAME when configuring the console for metrics access.

If you are using persistent storage with Cassandra, it is the administrator’s responsibility to set a
sufficient disk size for the cluster using the CASSANDRA_PV_SIZE parameter. It is also the
administrator’s responsibility to monitor disk usage to make sure that it does not become full.

WARNING

Data loss will result if the Cassandra persisted volume runs out of sufficient space.

All of the other parameters are optional and allow for greater customization. For instance, if you have a
custom install in which the Kubernetes master is not available under

CHAPTER 21. ENABLING CLUSTER METRICS

289

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-core-concepts-routes

https://kubernetes.default.svc:443 you can specify the value to use instead with the
HAWKULAR_METRICS_HOSTNAME parameter. If you wish to deploy a specific version of the metrics
components, you can do so with the IMAGE_VERSION parameter.

21.6. DEPLOYING THE METRIC COMPONENTS

Because deploying and configuring all the metric components is handled by the Metrics Deployer, you
can simply deploy everything in one step.

The following examples show you how to deploy metrics with and without persistent storage using the
default template parameters. Optionally, you can specify any of the template parameters when calling
these commands.

IMPORTANT

In accordance with upstream Kubernetes rules, metrics can be collected only on the
default interface of eth0.

Example 21.1. Deploying with Persistent Storage

The following command sets the Hawkular Metrics route to use hawkular-metrics.example.com
and is deployed using persistent storage.

You must have a persistent volume of sufficient size available.

$ oc process -f metrics-deployer.yaml -v \
 HAWKULAR_METRICS_HOSTNAME=hawkular-metrics.example.com \
 | oc create -f -

Example 21.2. Deploying without Persistent Storage

The following command sets the Hawkular Metrics route to use hawkular-metrics.example.com
and is deployed without persistent storage. Remember, this is being deployed without persistent
storage, so metrics data loss can occur.

$ oc process -f metrics-deployer.yaml -v \
 HAWKULAR_METRICS_HOSTNAME=hawkular-
metrics.example.com,USE_PERSISTENT_STORAGE=false \
 | oc create -f -

21.7. USING A RE-ENCRYPTING ROUTE

NOTE

The following section is not required if the hawkular-metrics.pem secret was specified
as a deployer secret.

By default, the Hawkular Metrics server uses self-signed certificates, which are not trusted by a browser
or other external services. If you want to provide your own trusted certificate to be used for external

OpenShift Enterprise 3.1 Installation and Configuration

290

https://kubernetes.default.svc:443

1

2 3 4

5

access, you can do so using a route with a re-encryption termination after deploying the metrics
components.

1. First, delete the default route that uses the self-signed certificates:

$ oc delete route hawkular-metrics

2. Define a new route with a re-encryption termination:

The value specified in the HAWKULAR_METRICS_HOSTNAME template parameter.

These need to define the custom certificate you wish to provide.

This needs to correspond to the CA used to sign the internal Hawkular Metrics certificate

The CA used to sign the internal Hawkular Metrics certificate can be found from the hawkular-
metrics-certificate secret:

$ base64 -d <<< \
 `oc get -o yaml secrets hawkular-metrics-certificate \
 | grep -i hawkular-metrics-ca.certificate | awk '{print $2}'`

3. Save your route definition to a file, for example metrics-reencrypt.yaml, and create it:

apiVersion: v1
kind: Route
metadata:
 name: hawkular-metrics-reencrypt
spec:

 host: hawkular-metrics.example.com 1
 port:
 targetPort: 8444
 to:
 kind: Service
 name: hawkular-metrics
 tls:
 termination: reencrypt
 key: |-
 -----BEGIN PRIVATE KEY-----

 [...] 2
 -----END PRIVATE KEY-----
 certificate: |-
 -----BEGIN CERTIFICATE-----

 [...] 3
 -----END CERTIFICATE-----
 caCertificate: |-
 -----BEGIN CERTIFICATE-----

 [...] 4
 -----END CERTIFICATE-----
 destinationCACertificate: |-
 -----BEGIN CERTIFICATE-----

 [...] 5
 -----END CERTIFICATE-----

CHAPTER 21. ENABLING CLUSTER METRICS

291

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#secured-routes
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#secured-routes

$ oc create -f metrics-reencrypt.yaml

21.8. CONFIGURING OPENSHIFT

The OpenShift Enterprise web console uses the data coming from the Hawkular Metrics service to
display its graphs. The URL for accessing the Hawkular Metrics service must be configured via the
metricsPublicURL option in the master configuration file (/etc/origin/master/master-config.yaml).
This URL corresponds to the route created with the HAWKULAR_METRICS_HOSTNAME template
parameter during the deployment of the metrics components.

NOTE

You must be able to resolve the HAWKULAR_METRICS_HOSTNAME from the browser
accessing the console.

For example, if your HAWKULAR_METRICS_HOSTNAME corresponds to hawkular-
metrics.example.com, then you must make the following change in the master-config.yaml file:

Once you have updated and saved the master-config.yaml file, you must restart your OpenShift
Enterprise instance.

When your OpenShift Enterprise server is back up and running, metrics will be displayed on the pod
overview pages.

CAUTION

If you are using self-signed certificates, remember that the Hawkular Metrics service is hosted under a
different hostname and uses different certificates than the console. You may need to explicitly open a
browser tab to the value specified in metricsPublicURL and accept that certificate.

To avoid this issue, use certificates which are configured to be acceptable by your browser.

21.9. CLEANUP

You can remove everything deloyed by the metrics deployer by performing the following steps:

$ oc delete all --selector="metrics-infra"
$ oc delete sa --selector="metrics-infra"
$ oc delete templates --selector="metrics-infra"
$ oc delete secrets --selector="metrics-infra"
$ oc delete pvc --selector="metrics-infra"

If you also wish to remove the deployer components themselves, you can do so by performing the
following steps:

$ oc delete sa metrics-deployer
$ oc delete secret metrics-deployer

 assetConfig:
 ...
 metricsPublicURL: "https://hawkular-
metrics.example.com/hawkular/metrics"

OpenShift Enterprise 3.1 Installation and Configuration

292

CHAPTER 22. CUSTOMIZING THE WEB CONSOLE

22.1. OVERVIEW

Administrators can customize the web console using extensions, which let you run scripts and load
custom stylesheets when the web console loads. You can change the look and feel of nearly any aspect
of the user interface in this way.

22.2. LOADING CUSTOM SCRIPTS AND STYLESHEETS

To add scripts and stylesheets, edit the master configuration file. The scripts and stylesheet files must
exist on the Asset Server and are added with the following options:

assetConfig:
 ...
 extensionScripts:
 - /path/to/script1.js
 - /path/to/script2.js
 - ...
 extensionStylesheets:
 - /path/to/stylesheet1.css
 - /path/to/stylesheet2.css
 - ...

Relative paths are resolved relative to the master configuration file. To pick up configuration changes,
restart the server.

Custom scripts and stylesheets are read once at server start time. To make developing extensions
easier, you can reload scripts and stylesheets on every request by enabling development mode with the
following setting:

assetConfig:
 ...
 extensionDevelopment: true

When set, the web console reloads any changes to existing extension script or stylesheet files when you
refresh the page in your browser. You still must restart the server when adding new extension
stylesheets or scripts, however. This setting is only recommended for testing changes and not for
production.

The following examples show common ways you can customize the web console.

Customizing the Logo

The following style changes the logo in the web console header:

#header-logo {
 background-image: url("https://www.example.com/images/logo.png");
 width: 160px;
 height: 10px;
}

CHAPTER 22. CUSTOMIZING THE WEB CONSOLE

293

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.1/html-single/architecture/#architecture-infrastructure-components-web-console

Replace the example.com URL with a URL to an actual image, and adjust the width and height. The
ideal height is 10px.

Save the style to a file, for example logo.css, and add it to the master configuration file:

assetConfig:
 ...
 extensionStylesheets:
 - /path/to/logo.css

Changing the Header Color

The following style changes the header color to dark blue:

.navbar-header {
 background-color: #2B3856;
}

Save the style to a file, for example theme.css, and add it to the master configuration file:

assetConfig:
 ...
 extensionStylesheets:
 - /path/to/theme.css

Adding a Link to the Header

The following script adds a link into the web console header:

$(".navbar-utility").prepend('System Status');

Save this script to a file, for example nav-link.js, and add it to the master configuration file:

assetConfig:
 ...
 extensionScripts:
 - /path/to/nav-link.js

22.3. SERVING STATIC FILES

You can serve other files from the Asset Server as well. For example, you might want to make the CLI
executable available for download from the web console or add images to use in a custom stylesheet.

Add the directory with the files you want using the following configuration option:

assetConfig:
 ...
 extensions:
 - name: images
 sourceDirectory: /path/to/my_images

OpenShift Enterprise 3.1 Installation and Configuration

294

The files under the /path/to/my_images directory will be available under the URL
/<context>/extensions/images in the web console.

To reference these files from a stylesheet, you should generally use a relative path. For example:

#header-logo {
 background-image: url("../extensions/images/my-logo.png");
}

22.3.1. Enabling HTML5 Mode

The web console has a special mode for supporting certain static web applications that use the HTML5
history API:

assetConfig:
 ...
 extensions:
 - name: my_extension
 sourceDirectory: /path/to/myExtension
 html5Mode: true

Setting html5Mode to true enables two behaviors:

1. Any request for a non-existent file under /<context>/extensions/my_extension/ instead serves
/path/to/myExtension/index.html rather than a "404 Not Found" page.

2. The element <base href="/"> will be rewritten in /path/to/myExtension/index.html to use
the actual base depending on the asset configuration; only this exact string is rewritten.

This is needed for JavaScript frameworks such as AngularJS that require base to be set in index.html.

22.4. CUSTOMIZING THE LOGIN PAGE

You can also change the login page for the web console. Run the following command to create a
template you can modify:

$ oadm create-login-template > login-template.html

Edit the file to change the styles or add content, but be careful not to remove any required parameters
inside curly braces.

To use your custom login page, set the following option in the master configuration file:

oauthConfig:
 ...
 templates:
 login: /path/to/login-template.html

Relative paths are resolved relative to the master configuration file. You must restart the server after
changing this configuration.

CHAPTER 22. CUSTOMIZING THE WEB CONSOLE

295

When there are multiple login providers configured or when the alwaysShowProviderSelection
option in the master-config.yaml file is set to true, each time a user’s token to OpenShift Enterprise
expires, the user is presented with this custom page before they can proceed with other tasks.

22.4.1. Example Usage

Custom login pages can be used to create Terms of Service information. They can also be helpful if you
use a third-party login provider, like GitHub or Google, to show users a branded page that they trust and
expect before being redirected to the authentication provider.

22.5. CUSTOMIZING THE OAUTH ERROR PAGE

When errors occur during authentication, you can change the page shown.

1. Run the following command to create a template you can modify:

$ oadm create-error-template > error-template.html

2. Edit the file to change the styles or add content.
You can use the Error and ErrorCode variables in the template. To use your custom error
page, set the following option in the master configuration file:

oauthConfig:
 ...
 templates:
 error: /path/to/error-template.html

Relative paths are resolved relative to the master configuration file.

3. You must restart the server after changing this configuration.

22.6. CHANGING THE LOGOUT URL

You can change the location a console user is sent to when logging out of the console by modifying the
logoutURL parameter in the /etc/origin/master/master-config.yaml file:

...
assetConfig:
 logoutURL: "http://www.example.com"
...

This can be useful when authenticating with Request Header and OAuth or OpenID identity providers,
which require visiting an external URL to destroy single sign-on sessions.

OpenShift Enterprise 3.1 Installation and Configuration

296

CHAPTER 23. REVISION HISTORY: INSTALLATION AND
CONFIGURATION

23.1. WED FEB 01 2017

Affected Topic Description of Change

Installing →
Prerequisites

Added instructions for installing and using the atomic-openshift-excluder and
atomic-openshift-docker-excluder scripts during cluster installations and
upgrades.

Installing → Quick
Installation

Installing → Advanced
Installation

Upgrading → Manual
Upgrades

Upgrading → Automated
Upgrades

23.2. MON OCT 24 2016

Affected Topic Description of Change

Installing →
Prerequisites

Aded Note box to the Software Prerequisites section about subscription names.

23.3. MON OCT 17 2016

Affected Topic Description of Change

Installing → Advanced
Installation

Added more information to the openshift_master_portal_net parameter
description in the Configuring Cluster Variables section.

23.4. TUE OCT 04 2016

Affected Topic Description of Change

Configuring Persistent
Storage → Volume
Security

Fixed formatting of the oc get project default -o yaml example
output within the SCCs, Defaults, and Allowed Ranges section.

CHAPTER 23. REVISION HISTORY: INSTALLATION AND CONFIGURATION

297

23.5. TUE SEP 13 2016

Affected Topic Description of Change

Installing → Advanced
Installation

Updated the Multiple Masters Using HAProxy Inventory File example with a line
about enabling ntp on masters to ensure proper failover as part of HA
configuration.

23.6. TUE SEP 06 2016

Affected Topic Description of Change

Working with HTTP
Proxies

Added more information about the NO_PROXY variable.

23.7. MON AUG 29 2016

Affected Topic Description of Change

Installing →
Disconnected Install

Fixed the tag references of images to be more generic.

23.8. TUE AUG 23 2016

Affected Topic Description of Change

Aggregating Container
Logs

Removed oc set volume references, as oc volume is the correct
command until OpenShift Enterprise 3.2.

Enabling Cluster Metrics Added clarifying details to the Providing Your Own Certificates section.

Upgrading →
Performing Manual
Cluster Upgrades

Added manual upgrade steps to get the latest templates from openshift-
ansible-roles.

23.9. MON AUG 15 2016

Affected Topic Description of Change

Aggregating Container
Logs

Added information on log locations within Kibana to the Deploying the EFK Stack
section.

23.10. MON AUG 08 2016

OpenShift Enterprise 3.1 Installation and Configuration

298

Affected Topic Description of Change

Installing →
Prerequisites

Updated Important boxes in the System Requirements and Installing Docker
sections with more specific details regarding Docker versions and yum update.
(BZ#1341142)

Aggregating Container
Logs

Added that NFS is a not suitable for Lucene storage, NFS is not supported, and
how to use local storage.

23.11. MON AUG 01 2016

Affected Topic Description of Change

Routing from Edge Load
Balancers

Added a link connecting F5 router and Routing from Edge Load Balancers topics
within the Establishing a Tunnel Using a Ramp Node section.

Working With HTTP
Proxies

Added Using Maven Behind a Proxy section.

23.12. WED JUL 27 2016

Affected Topic Description of Change

Installing →
Prerequisites

Added TCP/UDP information to the xref:prereq-network-access[Network Access}
tables.

Installing →
Disconnected Installation

Fixed command in Syncing Repositories section.

Configuring Persistent
Storage

Added important box about changing fstype field in a persistent volume
configuration in several files.

23.13. WED JUL 20 2016

Affected Topic Description of Change

Installing →
Prerequisites

Added an Important box to the System Requirements section.

Corrected information in the Host Recommendations section.

Described which required ports are necessary for master self-communication.

CHAPTER 23. REVISION HISTORY: INSTALLATION AND CONFIGURATION

299

https://bugzilla.redhat.com/show_bug.cgi?id=1341142

Advanced LDAP
Configuration

New set of topics for advanced LDAP configuration:

Setting up SSSD for LDAP Failover

Configuring Form-Based Authentication

Configuring Extended LDAP Attributes

Aggregating Container
Logs

Rewording and clarifications.

Expanded documentation on scaling up Elasticsearch instances.

Added a section on sending logs to an external source.

Enabling Cluster Metrics Added a Template Parameters table to the Deployer Template Parameters
section.

Affected Topic Description of Change

23.14. MON JUN 13 2016

Affected Topic Description of Change

Aggregating Container Logs Specified the correct units for ES_INSTANCE_RAM
and ES_OPS_INSTANCE_RAM.

Persistent Storage Examples → Mounting Volumes
on Privileged Pods

Added Mounting Volumes on Privileged Pods file.

Deploying a Router Added an Important box regarding default resource
requests for router pods.

Deploying a Docker Registry Updated the example of using an existing persistent
volume claim (PVC) to a matching configuration for
docker-registry PVC.

23.15. FRI JUN 10 2016

Affected Topic Description of Change

Installing → Advanced
Installation

Replaced the openshift_docker_log_options Ansible variable with
openshift_docker_options in the Configuring Host Variables section.

Updated openshift_router_selector to its new name of
openshift_hosted_router_selector.

OpenShift Enterprise 3.1 Installation and Configuration

300

Installing → Deploying a
Docker Registry

Fixed examples in the Securing the Registry section to use consistent --cert
and --key values. Also, clarify the origin of the ca.crt file that must be installed
per-node.

Configuring
Authentication

Added a note on how to obtain the htpasswd utility.

Customizing the Web
Console

Added that each time a user’s token to OpenShift Enterprise expires, the user is
presented with a custom page. Also, added use cases for custom login pages.

Affected Topic Description of Change

23.16. FRI JUN 03 2016

Affected Topic Description of Change

Installing → Advanced
Installation

Updated the location of the scaleup.yml playbook in the Adding Nodes to an
Existing Cluster section.

Installing → Deploying a
Docker Registry

Removed support information for upstream registry configuration not relevant to
OpenShift Enterprise.

23.17. MON MAY 30 2016

Affected Topic Description of Change

Installing → Advanced
Installation

Updated the parameter name docker_log_options to
openshift_docker_log_options in the Host Variables table.

Installing →
Disconnected Installation

Fixed some outdated image names.

Installing →
Prerequisites

Added an Important box to the Sizing Recommendations section advising that
oversubscribing the physical resources on a node affects resource guarantees the
Kubernetes scheduler makes during pod placement.

Installing → Deploying a
Docker Registry

Added support information for upstream registry configuration.

Working with HTTP
Proxies

Updated the example in the Configuring Default Templates for Proxies section to
use https for GitHub access.

Persistent Storage
Examples → Backing
Docker Registry with
GlusterFS Storage

New topic about how to attach a GlusterFS persistent volume to the Docker
Registry.

CHAPTER 23. REVISION HISTORY: INSTALLATION AND CONFIGURATION

301

23.18. TUE MAY 10 2016

Affected Topic Description of Change

Upgrading → Manual
Upgrades

Added the Upgrading the EFK Logging Stack section.

Configuring Persistent
Storage → Persistent
Storage Using
GlusterFS

Updated for clarity throughout.

Enhanced the Volume Security section significantly.

Configuring Persistent
Storage → Persistent
Storage Using Ceph
Rados Block Device
(RBD)

Updated for clarity throughout.

Added the Creating the Ceph Secret and Volume Security section.

Persistent Storage
Examples

New topic category that includes the following topics:

Sharing an NFS Persistent Volume (PV) Across Two Pods : Provides an
end-to-end example of how to use an existing NFS cluster and OpenShift
Enterprise persistent store.

Complete Example Using GlusterFS : Provides an end-to-end example of
how to use an existing Gluster cluster as an OpenShift Enterprise
persistent store.

Complete Example Using Ceph RBD : Provides an end-to-end example
of using an existing Ceph cluster as an OpenShift Enterprise persistent
store.

Enabling Cluster Metrics Updated the port value for the re-encrypting port to 8444 for OpenShift Enterprise,
which is different from the value for OpenShift Origin, which uses 8443.

Simplified steps in the Cleanup section.

Added extra warnings for Cassandra and its disk size in the Persistent Storage
and Deployer Template Parameters sections.

23.19. WED APR 27 2016

Affected Topic Description of Change

Configuring Persistent
Storage → Persistent
Storage Using NFS

Updated the Export Settings section to note the no_wdelay NFS export option.

Installing → Deploying a
Docker Registry

Updated the Known Issues section to note the no_wdelay NFS export option.

OpenShift Enterprise 3.1 Installation and Configuration

302

Working with HTTP
Proxies

Added specific /etc/sysconfig files to the Configuring Hosts for Proxies section.

Added information explaining that OpenShift does not accept an asterisk as a
wildcard attached to a domain suffix.

Affected Topic Description of Change

23.20. MON APR 18 2016

Affected Topic Description of Change

Installing → Advanced
Installation

Fixed syntax of examples in the Configuring Custom Certificates section to be in
proper INI format.

Added an Adding Nodes to an Existing Cluster section on using the scaleup.yml
playbook. (BZ#1324571)

Added an Uninstalling Nodes section on using the uninstall.yml playbook for
specific nodes.

Installing →
Disconnected Installation

New topic on disconnected installations, detailing how to install OpenShift
Enterprise in datacenters that do not have access to the Internet.

23.21. WED APR 06 2016

Affected Topic Description of Change

Aggregating Container
Logs

Removed references to non-existent roles in the Pre-deployment Configuration
section. (BZ#1324571)

23.22. MON APR 04 2016

Affected Topic Description of Change

Installing →
Prerequisites

Updated the System Requirements and Installing Docker sections to take into
account the release of Docker 1.9.

Added the Cloud Provider Considerations section and documented ports 2049,
5404, 5405, and 9000 in the Required Ports section.

Installing → Advanced
Installation

Added information about region=infra to the Configuring Node Host Labels
section and added openshift_router_selector and
openshift_registry_selector to the Host Variables table.

CHAPTER 23. REVISION HISTORY: INSTALLATION AND CONFIGURATION

303

https://bugzilla.redhat.com/show_bug.cgi?id=1304954
https://bugzilla.redhat.com/show_bug.cgi?id=1324571

Aggregating Container
Logs

Updated significantly throughout to fix errors and recommended practices.

Enabling Cluster Metrics Fixed typo of the destinationCACertificate parameter name.

Affected Topic Description of Change

23.23. TUE MAR 29 2016

Affected Topic Description of Change

Deploying a Docker
Registry

Added an Important box about writing to the host directory in the Storage for the
Registry section.

Configuring Persistent
Storage → Persistent
Storage Using NFS

Updated for clarity throughout.

Enhanced the Volume Security section significantly.

Added the Additional Configuration and Troubleshooting section.

Configuring Persistent
Storage → Volume
Security

Updated significantly for clarity throughout.

23.24. MON MAR 21 2016

Affected Topic Description of Change

Installing Fixed broken links.

23.25. THU MAR 17 2016

Affected Topic Description of Change

Loading the Default
Image Streams and
Templates

Moved and updated the "First Steps" topic to become the Loading the Default
Image Streams and Templates topic

Upgrading → Manual
Upgrades

Changed a known issue to a fix regarding liveness and readiness probes.

Deploying a Docker
Registry

Changed command to update the liveness probe to use oc patch instead of
sed.

Enabling Cluster Metrics Added the Using a Re-encrypting Route section.

OpenShift Enterprise 3.1 Installation and Configuration

304

Advanced Installation Combined duplicate openshift_node_kubelet_args descriptions and
moved all of the content to the Host Variables table.

Aggregating Container
Logs

Fixed some errors and added some extra information.

Affected Topic Description of Change

23.26. MON MAR 7 2016

Affected Topic Description of Change

Installing → Advanced
Installation

Clarified in the Configuring Ansible section that the services and cluster networks
also cannot overlap with networks to which the master and nodes need access,
and not just networks to which the pods need access.

Modified the SDN-related Ansible cluster variables in the Configuring Ansible
section to be more consistent with each other in general.

Installing → Deploying a
Docker Registry

Mentioned default tag latest.

Clarified importance of the project name in the pull specification.

Added section Maintaining the Registry IP Address .

Upgrading In the Automated Upgrades and Manual Upgrades sections, added guidance
about verifying that custom configurations are added to the updated
/etc/sysconfig/ paths after upgrading from OSE 3.0 to 3.1. (BZ#1284504)

Configuring the SDN Added an Important box to the Configuring the Pod Network on Masters section
noting that clusterNetworkCIDR can now be changed under certain
conditions.

Configuring for AWS Added the Applying Configuration Changes section. (BZ#1314085)

Persistent Storage →
Persistent Storage Using
NFS

Updated the "SELinux and NFS Export Settings" section to distinguish between
NFSv3 and NFSv4 port requirements.

Aggregating Container
Logs

Added a Note box to the Pre-deployment Configuration section recommending
use of node selectors.

Fixed a service account name reference.

Enabling Cluster Metrics Added a Note box about the cluster metrics template location.

23.27. MON FEB 29 2016

CHAPTER 23. REVISION HISTORY: INSTALLATION AND CONFIGURATION

305

https://bugzilla.redhat.com/show_bug.cgi?id=1284504
https://bugzilla.redhat.com/show_bug.cgi?id=1314085

Affected Topic Description of Change

Upgrading Converted the "Upgrading OpenShift" topic into its own Upgrading directory with
separate topics for Performing Automated Cluster Upgrades and Performing
Manual Cluster Upgrades.

Upgrading from
Pacemaker to Native HA

New topic providing instructions on upgrading a multiple master cluster from
Pacemaker to native HA.

Enabling Cluster Metrics Removed the template in the "Creating the Deployer Template" section and fixed
an incorrect file location.

Aggregating Container
Logs

Added a step within the Pre-deployment Configuration section indicating that you
must switch to your new project after creating it.

Prerequisites Fixed the /etc/selinux/config file path in the SELinux section.

Advanced Installation Added notes indicating that moving from a single master cluster to multiple
masters after installation is not supported.

23.28. MON FEB 22 2016

Affected Topic Description of Change

Configuring Custom
Certificates

In the Configuring Custom Certificates section, replaced publicMasterURL
with masterPublicURL.

Installing →
Prerequisites

Added an SELinux section to include guidance that SELinux must be enabled, or
the installer will fail.

Enabling Cluster Metrics Added the Cleanup section with instructions on how to remove a metrics
deployment.

Syncing Groups With
LDAP

Updated the Running LDAP Sync section with better example command
formatting.

Configuring
Authentication

Updated the "Apache Authentication Using RequestHeaderIdentityProvider"
example to use the /etc/origin/master/htpasswd file path.

Added a section for the Keystone identity provider .

Advanced Installation Updated example inventory files to show the /etc/origin/master/htpasswd file
path.

Clarified in the Verifying the Installation section to run the oc get nodes
command on the master host.

OpenShift Enterprise 3.1 Installation and Configuration

306

Routing from Edge Load
Balancers

Corrected the /run/openshift-sdn/config.env path in the Establishing a Tunnel
Using a Ramp Node section.

Installing → Deploying a
Docker Registry

Added the Advanced: Overriding the Registry Configuration section.

Affected Topic Description of Change

23.29. MON FEB 15 2016

Affected Topic Description of Change

Installing →
Prerequisites

Added a new Managing Docker Container Logs section.

Updated to include guidance on how to check if Docker is running.

Installing → Advanced
Installation

Listed docker_log_options as an host variable in the Configuring Ansible
section.

Aggregating Container
Logs

Added a Note box about json-file logging driver options.

23.30. MON FEB 08 2016

Affected Topic Description of Change

Installing →
Prerequisites

Updated the System Requirements section to clarify that instances can be running
on a private IaaS, not just a public one.

23.31. THU FEB 04 2016

Affected Topic Description of Change

Installing → Deploying a
Docker Registry

Updated the Securing the Registry section to account for the liveness probe that is
now added to new registries by default starting in OpenShift Enterprise 3.1.1.
(BZ#1302956)

Configuring for AWS Fixed the default node configuration file path.

Corrected instructions on setting access key environment variables.

Configuring for GCE Fixed the default node configuration file path.

CHAPTER 23. REVISION HISTORY: INSTALLATION AND CONFIGURATION

307

https://bugzilla.redhat.com/show_bug.cgi?id=1302956

Configuring Persistent
Storage → Dynamically
Provisioning Persistent
Volumes

New topic on the experimental feature for allowing users to request dynamically
provisioned persistent storage based on the configured cloud provider. Available
in Technology Preview starting in OpenShift Enterprise 3.1.1.

Affected Topic Description of Change

23.32. MON FEB 01 2016

Affected Topic Description of Change

Configuring for
OpenStack

Changed <instance_ID> to <instance_name> in the Configuring Nodes
section for readability.

23.33. THU JAN 28 2016

OpenShift Enterprise 3.1.1 release.

Affected Topic Description of Change

Installing →
Prerequisites

Updated to include support for RHEL Atomic Host.

Installing → RPM vs
Containerized

New topic discussing differences between RPM and containerized installations.

Installing → Quick
Installation

Updated to include support for RHEL Atomic Host and containerized installations.

The former "Prerequisites" section in this topic has been renamed to Before You
Begin and enhanced to differentiate from the actual Prerequisites topic.

Installing → Advanced
Installation

Updated to include support for RHEL Atomic Host and containerized installations.

The former "Prerequisites" section in this topic has been renamed to Before You
Begin and enhanced to differentiate from the actual Prerequisites topic.

Upgrading Added the Upgrading to OpenShift Enterprise 3.1 Asynchronous Releases section
and various enhancements to support the OpenShift Enterprise 3.1.1 release.

Syncing Groups With
LDAP

Updated to promote the openshift ex sync-groups command to oadm
groups sync and added the Running a Group Pruning Job section.

23.34. TUE JAN 26 2016

OpenShift Enterprise 3.1 Installation and Configuration

308

Affected Topic Description of Change

Enabling Cluster Metrics Fixed the metrics-deployer.yaml file path.

Installing →
Prerequisites

Added a Warning box about wildcards and DNS server entries in the
/etc/resolv.conf file.

Configuring Persistent
Storage → Persistent
Storage Using Ceph
Rados Block Device
(RBD)

Fixed the ceph-common package name.

Configuring Persistent
Storage → Persistent
Storage Using NFS

Removed a contradictory Note box about NFS and SELinux.

23.35. MON JAN 19 2016

Affected Topic Description of Change

Installing → Advanced
Installation

Added custom certificate parameters and added the Configuring Custom
Certificates section.

Installing → Deploying a
Docker Registry

Enhanced the Accessing the Registry Directly section, including organizing all
user-related requirements under a User Prerequisites subsection. (BZ#1273412)

Downgrading OpenShift New topic for downgrading from OpenShift Enterprise 3.1 to 3.0.

Configuring Custom
Certificates

New topic for configuring custom certificates after initial installation.

Configuring
Authentication

Added the mappingMethod parameter to all examples.

Configuring for
OpenStack

Added references to nodeName in the Configuring Nodes section.

Fixed the default node configuration file path.

Aggregating Container
Logs

Fixed the path to the logging-deployer.yaml file.

Enabling Cluster Metrics Added information about Metrics Deployer certificates and the
nothing=/dev/null option.

Added clarification about required host names for the Hawkular Metrics certificate.

CHAPTER 23. REVISION HISTORY: INSTALLATION AND CONFIGURATION

309

https://bugzilla.redhat.com/show_bug.cgi?id=1273412

23.36. THU NOV 19 2015

OpenShift Enterprise 3.1 release.

OpenShift Enterprise 3.1 Installation and Configuration

310

	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. INSTALLING
	2.1. OVERVIEW
	2.2. PREREQUISITES
	2.2.1. Overview
	2.2.2. System Requirements
	2.2.2.1. Host Recommendations
	2.2.2.2. Configuring Core Usage
	2.2.2.3. Security Warning

	2.2.3. Environment Requirements
	2.2.3.1. DNS
	2.2.3.2. Network Access
	2.2.3.3. Git Access
	2.2.3.4. Persistent Storage
	2.2.3.5. SELinux
	2.2.3.6. Cloud Provider Considerations

	2.2.4. Host Preparation
	2.2.4.1. Software Prerequisites
	2.2.4.2. Configuring Docker Storage

	2.2.5. Ensuring Host Access
	2.2.6. Setting Global Proxy Values
	2.2.7. What’s Next?

	2.3. RPM VS CONTAINERIZED
	2.3.1. Overview
	2.3.2. Required Images
	2.3.3. CLI Wrappers
	2.3.4. Starting and Stopping Containers
	2.3.5. File Paths
	2.3.6. Storage Requirements
	2.3.7. Open vSwitch SDN Initialization

	2.4. QUICK INSTALLATION
	2.4.1. Overview
	2.4.2. Before You Begin
	2.4.3. Running an Interactive Installation
	2.4.4. Defining an Installation Configuration File
	2.4.5. Running an Unattended Installation
	2.4.6. Verifying the Installation
	2.4.7. Adding Nodes or Reinstalling the Cluster
	2.4.8. Uninstalling OpenShift Enterprise
	2.4.9. What’s Next?

	2.5. ADVANCED INSTALLATION
	2.5.1. Overview
	2.5.2. Before You Begin
	2.5.3. Configuring Ansible
	2.5.3.1. Configuring Host Variables
	2.5.3.2. Configuring Cluster Variables
	2.5.3.3. Configuring Node Host Labels
	2.5.3.4. Marking Masters as Unschedulable Nodes
	2.5.3.5. Configuring Session Options
	2.5.3.6. Configuring Custom Certificates

	2.5.4. Single Master Examples
	2.5.5. Multiple Masters Examples
	2.5.6. Running the Advanced Installation
	2.5.7. Configuring Fencing
	2.5.8. Verifying the Installation
	2.5.9. Adding Nodes to an Existing Cluster
	2.5.10. Uninstalling OpenShift Enterprise
	2.5.10.1. Uninstalling Nodes

	2.5.11. Known Issues
	2.5.12. What’s Next?

	2.6. DISCONNECTED INSTALLATION
	2.6.1. Overview
	2.6.2. Prerequisites
	2.6.3. Required Software and Components
	2.6.3.1. Syncing Repositories
	2.6.3.2. Syncing Images
	2.6.3.3. Preparing Images for Export

	2.6.4. Repository Server
	2.6.4.1. Placing the Software

	2.6.5. OpenShift Enterprise Systems
	2.6.5.1. Building Your Hosts
	2.6.5.2. Connecting the Repositories
	2.6.5.3. Host Preparation

	2.6.6. Installing OpenShift Enterprise
	2.6.6.1. Importing OpenShift Enterprise Containerized Components
	2.6.6.2. Running the OpenShift Enterprise Installer
	2.6.6.3. Creating the Internal Docker Registry

	2.6.7. Post-Installation Changes
	2.6.7.1. Re-tagging S2I Builder Images
	2.6.7.2. Creating an Administrative User
	2.6.7.3. Modifying the Security Policies
	2.6.7.4. Editing the Image Stream Definitions
	2.6.7.5. Loading the Docker Images

	2.6.8. Installing a Router

	2.7. DEPLOYING A DOCKER REGISTRY
	2.7.1. Overview
	2.7.2. Deploying the Registry
	2.7.2.1. Storage for the Registry
	2.7.2.2. Maintaining the Registry IP Address

	2.7.3. Viewing Logs
	2.7.4. File Storage
	2.7.5. Accessing the Registry Directly
	2.7.5.1. User Prerequisites
	2.7.5.2. Logging in to the Registry
	2.7.5.3. Pushing and Pulling Images

	2.7.6. Securing the Registry
	2.7.7. Advanced: Overriding the Registry Configuration
	2.7.8. Whitelisting Docker Registries
	2.7.9. Exposing the Registry
	2.7.10. Known Issues
	2.7.11. What’s Next?

	2.8. DEPLOYING A ROUTER
	2.8.1. Overview
	2.8.2. The Router Service Account
	2.8.3. Deploying the Default HAProxy Router
	2.8.3.1. High Availability
	2.8.3.2. Customizing the Default Routing Subdomain
	2.8.3.3. Using Wildcard Certificates
	2.8.3.4. Using Secured Routes
	2.8.3.5. Using the Container Network Stack
	2.8.3.6. Exposing Router metrics

	2.8.4. Deploying a Customized HAProxy Router
	2.8.4.1. Using Stick Tables
	2.8.4.2. Rebuilding Your Router

	2.8.5. Deploying the F5 Router
	2.8.6. What’s Next?

	CHAPTER 3. UPGRADING
	3.1. OVERVIEW
	3.2. PERFORMING AUTOMATED CLUSTER UPGRADES
	3.2.1. Overview
	3.2.2. Preparing for an Automated Upgrade
	3.2.3. Using the Installer to Upgrade
	3.2.4. Running the Upgrade Playbook Directly
	3.2.4.1. Upgrading to OpenShift Enterprise 3.1.0
	3.2.4.2. Upgrading to OpenShift Enterprise 3.1 Asynchronous Releases

	3.2.5. Updating Master and Node Certificates
	3.2.5.1. Node Certificates
	3.2.5.2. Master Certificates

	3.2.6. Upgrading the EFK Logging Stack
	3.2.7. Verifying the Upgrade

	3.3. PERFORMING MANUAL CLUSTER UPGRADES
	3.3.1. Overview
	3.3.2. Preparing for a Manual Upgrade
	3.3.3. Upgrading Masters
	3.3.4. Updating Policy Definitions
	3.3.5. Upgrading Nodes
	3.3.6. Upgrading the Router
	3.3.7. Upgrading the Registry
	3.3.8. Updating the Default Image Streams and Templates
	3.3.9. Importing the Latest Images
	3.3.10. Updating Master and Node Certificates
	3.3.10.1. Node Certificates
	3.3.10.2. Master Certificates

	3.3.11. Upgrading the EFK Logging Stack
	3.3.12. Additional Manual Steps Per Release
	3.3.12.1. OpenShift Enterprise 3.1.0
	3.3.12.2. OpenShift Enterprise 3.1.1
	3.3.12.3. OpenShift Enterprise 3.1.1.11

	3.3.13. Verifying the Upgrade

	3.4. UPGRADING FROM PACEMAKER TO NATIVE HA
	3.4.1. Overview
	3.4.2. Using Ansible Playbooks
	3.4.2.1. Modifying the Ansible Inventory
	3.4.2.2. Updating DNS
	3.4.2.3. Running the Ansible Playbook

	3.4.3. Manually Upgrading
	3.4.3.1. Creating Unit and System Configuration for New Services
	3.4.3.2. Destroying the Pacemaker Cluster
	3.4.3.3. Updating DNS
	3.4.3.4. Modifying Master and Node Configuration
	3.4.3.5. Modifying the Ansible Inventory

	CHAPTER 4. DOWNGRADING OPENSHIFT
	4.1. OVERVIEW
	4.2. VERIFYING BACKUPS
	4.3. SHUTTING DOWN THE CLUSTER
	4.4. REMOVING RPMS
	4.5. REINSTALLING RPMS
	4.6. RESTORING ETCD
	4.6.1. Embedded etcd
	4.6.2. External etcd
	4.6.2.1. Adding Additional etcd Members

	4.7. BRINGING OPENSHIFT SERVICES BACK ONLINE

	CHAPTER 5. MASTER AND NODE CONFIGURATION
	5.1. OVERVIEW
	5.2. CREATING NEW CONFIGURATION FILES
	5.3. LAUNCHING SERVERS USING CONFIGURATION FILES
	5.4. MASTER CONFIGURATION FILES
	5.5. NODE CONFIGURATION FILES

	CHAPTER 6. LOADING THE DEFAULT IMAGE STREAMS AND TEMPLATES
	6.1. OVERVIEW
	6.2. PREREQUISITES
	6.3. CREATING IMAGE STREAMS FOR OPENSHIFT IMAGES
	6.4. CREATING IMAGE STREAMS FOR XPAAS MIDDLEWARE IMAGES
	6.5. CREATING DATABASE SERVICE TEMPLATES
	6.6. CREATING INSTANT APP AND QUICKSTART TEMPLATES
	6.7. WHAT’S NEXT?

	CHAPTER 7. CONFIGURING CUSTOM CERTIFICATES
	7.1. OVERVIEW
	7.2. CONFIGURING CUSTOM CERTIFICATES

	CHAPTER 8. CONFIGURING AUTHENTICATION
	8.1. OVERVIEW
	8.2. IDENTITY PROVIDERS
	8.2.1. Mapping Identities to Users
	8.2.2. Allow All
	8.2.3. Deny All
	8.2.4. HTPasswd
	8.2.5. Keystone
	8.2.6. LDAP Authentication
	8.2.7. Basic Authentication (Remote)
	8.2.8. Request Header
	8.2.9. GitHub
	8.2.10. Google
	8.2.11. OpenID Connect

	8.3. TOKEN OPTIONS
	8.4. GRANT OPTIONS
	8.5. SESSION OPTIONS

	CHAPTER 9. SYNCING GROUPS WITH LDAP
	9.1. OVERVIEW
	9.2. CONFIGURING LDAP SYNC
	9.2.1. LDAP Client Configuration
	9.2.2. LDAP Query Definition
	9.2.3. User-Defined Name Mapping

	9.3. RUNNING LDAP SYNC
	9.4. RUNNING A GROUP PRUNING JOB
	9.5. SYNC EXAMPLES
	9.5.1. RFC 2307
	9.5.1.1. RFC2307 with User-Defined Name Mappings

	9.5.2. Active Directory
	9.5.3. Augmented Active Directory

	CHAPTER 10. ADVANCED LDAP CONFIGURATION
	10.1. OVERVIEW
	10.2. SETTING UP SSSD FOR LDAP FAILOVER
	10.2.1. Overview
	10.2.2. Prerequisites for Authenticating Proxy Setup
	10.2.3. Phase 1: Certificate Generation
	10.2.4. Phase 2: Authenticating Proxy Setup
	10.2.4.1. Step 1: Copy Certificates
	10.2.4.2. Step 2: SSSD Configuration
	10.2.4.3. Step 3: Apache Configuration

	10.2.5. Phase 3: OpenShift Enterprise Configuration

	10.3. CONFIGURING FORM-BASED AUTHENTICATION
	10.3.1. Overview
	10.3.2. Prepare a Login Page
	10.3.3. Install Another Apache Module
	10.3.4. Apache Configuration
	10.3.5. OpenShift Enterprise Configuration

	10.4. CONFIGURING EXTENDED LDAP ATTRIBUTES
	10.4.1. Overview
	10.4.2. Prerequisites
	10.4.3. Configuring SSSD
	10.4.4. Configuring Apache
	10.4.5. Configuring OpenShift Enterprise
	10.4.6. Debugging Notes

	CHAPTER 11. CONFIGURING THE SDN
	11.1. OVERVIEW
	11.2. CONFIGURING THE POD NETWORK ON MASTERS
	11.3. CONFIGURING THE POD NETWORK ON NODES
	11.4. MIGRATING BETWEEN SDN PLUG-INS
	11.5. EXTERNAL ACCESS TO THE CLUSTER NETWORK

	CHAPTER 12. CONFIGURING FOR AWS
	12.1. OVERVIEW
	12.2. CONFIGURING AWS VARIABLES
	12.3. CONFIGURING MASTERS
	12.4. CONFIGURING NODES
	12.5. SETTING KEY VALUE ACCESS PAIRS
	12.6. APPLYING CONFIGURATION CHANGES

	CHAPTER 13. CONFIGURING FOR OPENSTACK
	13.1. OVERVIEW
	13.2. CONFIGURING OPENSTACK VARIABLES
	13.3. CONFIGURING MASTERS
	13.4. CONFIGURING NODES

	CHAPTER 14. CONFIGURING FOR GCE
	14.1. OVERVIEW
	14.2. CONFIGURING MASTERS
	14.3. CONFIGURING NODES

	CHAPTER 15. CONFIGURING PERSISTENT STORAGE
	15.1. OVERVIEW
	15.2. PERSISTENT STORAGE USING NFS
	15.2.1. Overview
	15.2.2. Provisioning
	15.2.3. Enforcing Disk Quotas
	15.2.4. NFS Volume Security
	15.2.4.1. Group IDs
	15.2.4.2. User IDs
	15.2.4.3. SELinux
	15.2.4.4. Export Settings

	15.2.5. Reclaiming Resources
	15.2.6. Automation
	15.2.7. Additional Configuration and Troubleshooting

	15.3. PERSISTENT STORAGE USING GLUSTERFS
	15.3.1. Overview
	15.3.2. Provisioning
	15.3.2.1. Creating Gluster Endpoints
	15.3.2.2. Creating the Persistent Volume
	15.3.2.3. Creating the Persistent Volume Claim

	15.3.3. Gluster Volume Security
	15.3.3.1. Group IDs
	15.3.3.2. User IDs
	15.3.3.3. SELinux

	15.4. PERSISTENT STORAGE USING OPENSTACK CINDER
	15.4.1. Overview
	15.4.2. Provisioning
	15.4.2.1. Creating the Persistent Volume
	15.4.2.2. Volume Format

	15.5. PERSISTENT STORAGE USING CEPH RADOS BLOCK DEVICE (RBD)
	15.5.1. Overview
	15.5.2. Provisioning
	15.5.2.1. Creating the Ceph Secret
	15.5.2.2. Creating the Persistent Volume

	15.5.3. Ceph Volume Security

	15.6. PERSISTENT STORAGE USING AWS ELASTIC BLOCK STORE
	15.6.1. Overview
	15.6.2. Provisioning
	15.6.2.1. Creating the Persistent Volume
	15.6.2.2. Volume Format

	15.7. PERSISTENT STORAGE USING GCE PERSISTENT DISK
	15.7.1. Overview
	15.7.2. Provisioning
	15.7.2.1. Creating the Persistent Volume
	15.7.2.2. Volume Format

	15.8. PERSISTENT STORAGE USING ISCSI
	15.8.1. Overview
	15.8.2. Provisioning
	15.8.2.1. Enforcing Disk Quotas
	15.8.2.2. iSCSI Volume Security

	15.9. PERSISTENT STORAGE USING FIBRE CHANNEL
	15.9.1. Overview
	15.9.2. Provisioning
	15.9.2.1. Enforcing Disk Quotas
	15.9.2.2. Fibre Channel Volume Security

	15.10. DYNAMICALLY PROVISIONING PERSISTENT VOLUMES
	15.10.1. Overview
	15.10.2. Enabling Provisioner Plug-ins
	15.10.3. Requesting Dynamically Provisioned Storage
	15.10.4. Volume Recycling

	15.11. VOLUME SECURITY
	15.11.1. Overview
	15.11.2. SCCs, Defaults, and Allowed Ranges
	15.11.3. Supplemental Groups
	15.11.4. fsGroup
	15.11.5. User IDs
	15.11.6. SELinux Options

	CHAPTER 16. PERSISTENT STORAGE EXAMPLES
	16.1. OVERVIEW
	16.2. SHARING AN NFS PERSISTENT VOLUME (PV) ACROSS TWO PODS
	16.2.1. Overview
	16.2.2. Creating the Persistent Volume
	16.2.3. Creating the Persistent Volume Claim
	16.2.4. Ensuring NFS Volume Access
	16.2.5. Creating the Pod
	16.2.6. Creating an Additional Pod to Reference the Same PVC

	16.3. COMPLETE EXAMPLE USING CEPH RBD
	16.3.1. Overview
	16.3.2. Installing the ceph-common Package
	16.3.3. Creating the Ceph Secret
	16.3.4. Creating the Persistent Volume
	16.3.5. Creating the Persistent Volume Claim
	16.3.6. Creating the Pod
	16.3.7. Defining Group and Owner IDs (Optional)

	16.4. COMPLETE EXAMPLE USING GLUSTERFS
	16.4.1. Overview
	16.4.2. Installing the glusterfs-fuse Package
	16.4.3. Creating the Gluster Endpoints
	16.4.4. Creating the Persistent Volume
	16.4.5. Creating the Persistent Volume Claim
	16.4.6. Defining GlusterFS Volume Access
	16.4.7. Creating the Pod

	16.5. BACKING DOCKER REGISTRY WITH GLUSTERFS STORAGE
	16.5.1. Overview
	16.5.2. Prerequisites
	16.5.3. Create the Gluster Persistent Volume
	16.5.4. Attach the PVC to the Docker Registry
	16.5.5. Known Issues
	16.5.5.1. Pod Cannot Resolve the Volume Host

	16.6. MOUNTING VOLUMES ON PRIVILEGED PODS
	16.6.1. Overview
	16.6.2. Prerequisites
	16.6.3. Creating the Persistent Volume
	16.6.4. Creating a Regular User
	16.6.5. Creating the Persistent Volume Claim
	16.6.6. Verifying the Setup
	16.6.6.1. Checking the Pod SCC
	16.6.6.2. Verifying the Mount

	CHAPTER 17. WORKING WITH HTTP PROXIES
	17.1. OVERVIEW
	17.2. CONFIGURING HOSTS FOR PROXIES
	17.3. PROXYING DOCKER PULL
	17.4. USING MAVEN BEHIND A PROXY
	17.5. CONFIGURING S2I BUILDS FOR PROXIES
	17.6. CONFIGURING DEFAULT TEMPLATES FOR PROXIES
	17.7. SETTING PROXY ENVIRONMENT VARIABLES IN PODS
	17.8. GIT REPOSITORY ACCESS

	CHAPTER 18. NATIVE CONTAINER ROUTING
	18.1. OVERVIEW
	18.2. NETWORK LAYOUT
	18.3. NETWORK OVERVIEW
	18.4. NODE SETUP
	18.5. ROUTER SETUP

	CHAPTER 19. ROUTING FROM EDGE LOAD BALANCERS
	19.1. OVERVIEW
	19.2. INCLUDING THE LOAD BALANCER IN THE SDN
	19.3. ESTABLISHING A TUNNEL USING A RAMP NODE
	19.3.1. Configuring a Highly Available Ramp Node

	CHAPTER 20. AGGREGATING CONTAINER LOGS
	20.1. OVERVIEW
	20.2. PRE-DEPLOYMENT CONFIGURATION
	20.3. DEPLOYING THE EFK STACK
	20.4. POST-DEPLOYMENT CONFIGURATION
	20.4.1. Elasticsearch
	20.4.2. Fluentd
	20.4.3. Kibana
	20.4.4. Cleanup

	20.5. UPGRADING
	20.6. TROUBLESHOOTING KIBANA
	20.7. EXTERNAL ELASTICSEARCH INSTANCE WITH FLUENTD

	CHAPTER 21. ENABLING CLUSTER METRICS
	21.1. OVERVIEW
	21.2. BEFORE YOU BEGIN
	21.3. SERVICE ACCOUNTS
	21.3.1. Metrics Deployer Service Account
	21.3.2. Heapster Service Account

	21.4. METRICS DATA STORAGE
	21.4.1. Persistent Storage
	21.4.2. Non-Persistent Storage

	21.5. METRICS DEPLOYER
	21.5.1. Using Secrets
	21.5.1.1. Providing Your Own Certificates
	21.5.1.2. Using Generated Self-Signed Certificates

	21.5.2. Modifying the Deployer Template
	21.5.2.1. Deployer Template Parameters

	21.6. DEPLOYING THE METRIC COMPONENTS
	21.7. USING A RE-ENCRYPTING ROUTE
	21.8. CONFIGURING OPENSHIFT
	21.9. CLEANUP

	CHAPTER 22. CUSTOMIZING THE WEB CONSOLE
	22.1. OVERVIEW
	22.2. LOADING CUSTOM SCRIPTS AND STYLESHEETS
	22.3. SERVING STATIC FILES
	22.3.1. Enabling HTML5 Mode

	22.4. CUSTOMIZING THE LOGIN PAGE
	22.4.1. Example Usage

	22.5. CUSTOMIZING THE OAUTH ERROR PAGE
	22.6. CHANGING THE LOGOUT URL

	CHAPTER 23. REVISION HISTORY: INSTALLATION AND CONFIGURATION
	23.1. WED FEB 01 2017
	23.2. MON OCT 24 2016
	23.3. MON OCT 17 2016
	23.4. TUE OCT 04 2016
	23.5. TUE SEP 13 2016
	23.6. TUE SEP 06 2016
	23.7. MON AUG 29 2016
	23.8. TUE AUG 23 2016
	23.9. MON AUG 15 2016
	23.10. MON AUG 08 2016
	23.11. MON AUG 01 2016
	23.12. WED JUL 27 2016
	23.13. WED JUL 20 2016
	23.14. MON JUN 13 2016
	23.15. FRI JUN 10 2016
	23.16. FRI JUN 03 2016
	23.17. MON MAY 30 2016
	23.18. TUE MAY 10 2016
	23.19. WED APR 27 2016
	23.20. MON APR 18 2016
	23.21. WED APR 06 2016
	23.22. MON APR 04 2016
	23.23. TUE MAR 29 2016
	23.24. MON MAR 21 2016
	23.25. THU MAR 17 2016
	23.26. MON MAR 7 2016
	23.27. MON FEB 29 2016
	23.28. MON FEB 22 2016
	23.29. MON FEB 15 2016
	23.30. MON FEB 08 2016
	23.31. THU FEB 04 2016
	23.32. MON FEB 01 2016
	23.33. THU JAN 28 2016
	23.34. TUE JAN 26 2016
	23.35. MON JAN 19 2016
	23.36. THU NOV 19 2015

